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Abstract

Spatially accelerating turbulent flows occur in many applications and
contain intriguing flow phenomena, most notably laminarisation, which
causes rapid changes in flow characteristics in strong accelerations. This
study uses numerical simulations to provide new insights into the tur-
bulence dynamics that lead to the emergence of laminarisation in these
flows. This study has used the open-source solvers CHAPSim and In-
compact3D, implementing and validating a method for simulating spa-
tially accelerating turbulent boundary layers (TBLs). It is shown that
the turbulence response in spatially accelerating flows is dominated by a
three-stage transition-like process in the near-wall region similar to that
which occurs in a temporally accelerating flow (He & Seddighi, J. Fluid
Mech. 715:60-102, 2013), noting that spatially accelerating flows are more
complex due to influence of flow contraction and spatial development.

The study comprises three investigations. First, a direct numerical simu-
lation (DNS) of an idealised spatial acceleration is examined, where lon-
gitudinally accelerating moving walls are used to create a relative spatial
acceleration, removing the influence of flow contraction. This flow has
been found to be described by a three-stage process akin to the bypass
transition of a laminar boundary layer. During pre-transition, a new
boundary layer forms due to the viscous resistance to the acceleration
provided by the wall. This thin layer of enhanced mean shear amplifies
the near-wall streaks through the lift-up effect without significantly af-
fecting the transverse motions. At the onset of the transition stage, these
streaks break down, forming turbulent spots which grow in the spanwise
direction until the wall is covered in newly generated turbulence. Fi-
nally, this turbulence spreads into the core in the fully turbulent stage.
This flow exhibits many similarities with more typical spatial accelerating
flows, such as the amplification of the streaks and the changes in their
spanwise scale.



In the second investigation, spatially accelerating TBLs are studied, which
incorporates the effect of the flow contraction. Four simulations were con-
ducted over a range of acceleration rates, including laminarising accelera-
tions and weaker cases that did not show signs of laminarisation. All cases
are characterised by a transition process that resulted from the develop-
ment of a new boundary layer similar to the moving wall acceleration.
However, flow contraction also results in a flattening of the mean velocity
profile away from the wall. Differences emerged between the stronger and
weaker accelerations during the pre-transition stage, with the laminarising
cases exhibiting an absolute attenuation of the transverse stresses in the
inner layer, whereas in the weaker accelerations, the transverse stresses
remain largely unchanged close to the wall. The differences between the
weak and strong acceleration can be traced to distinct behaviours in the
intercomponent energy transfer close to the wall, particularly for the wall-
normal component.

Finally, spatially accelerating TBLs are compared with a carefully es-
tablished equivalent temporally accelerating channel flow to improve the
understanding of the similarities and differences between these two types
of acceleration. Previous studies have often highlighted the apparent sim-
ilarities between the accelerations, but no direct comparison has been
done previously. To facilitate the comparison, the acceleration parameter,
K = (ν∗/U∗

∞
2)dxU

∗
∞ and freestream/centreline velocities were matched

throughout the accelerations. The mean flow parameters exhibit gener-
ally similar variations in both accelerations, but the excursions in the skin
friction coefficient and shape factor are significantly greater in the spa-
tial acceleration cases, primarily due to the influence of flow contraction.
During the pre-transition region, the turbulence response shared some
similarities, with the near-wall peak of the streamwise Reynolds stress
nearly collapsing between the spatial and temporal accelerations. How-
ever, the strong reductions in streamwise turbulence away from the wall
and the transverse components everywhere are observed in strong spatial
accelerations but not in temporal cases.
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vs y+0: before transition (c); after transition (d). . . . . . . . . . . . . 111
6.7 x− z plane of the velocity fluctuations at y+0 = 15 for case 1. (a) U∞,

(b) u′, (c) v′, (d) w′. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.8 x− z plane of the velocity fluctuations at y+0 = 15 for case 3. (a) U∞,

(b) u′, (c) v′, (d) w′. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.9 Isosurfaces of λ2 for cases 1 and 3. (a) case 1 for 200 < x < 350

at λ2 = −0.1. (b) case 3 for 300 < x < 450 at λ2 = −0.16. The
isosurfaces are coloured by the mean velocity at x = 0. . . . . . . . . 114

6.10 Development of u′u′+0 vs y+0 in cases 1 to 4. Blue lines indicate
locations before the onset of transition, and red lines indicate those
after. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 Development of v′v′+0 vs y+0 in cases 1 to 4. Blue lines indicate loca-
tions before the onset of transition, and red lines indicate those after. 117

6.12 Development of peak normal Reynolds stress with x in cases 1 to 4 with
the boundaryes of each region from table 6.3 indicated with vertical
lines. (a) case 1, (b) case 2, (c) case 3, (d) case 4. . . . . . . . . . . . 119

xv



6.13 Development of u′v′+0 vs y+0 in cases 1 to 4. Blue lines indicate
locations before the onset of transition, and red lines indicate those
after. (a) case 1, (b) case 2, (c) case 3, (d) case 4. . . . . . . . . . . . 121

6.14 Development of νt vs y+0 in cases 1 to 4. Blue lines indicate locations
before the onset of transition, and red lines indicate those after. . . . 122

6.15 Kurtosis , F = v′4/v′2
2 at y+0 = 15 with a vertical line indicating the

onset of transition from table 6.3. (a) case 1, (b) case 2, (c) case 3, (d)
case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.16 Isosurfaces of |v′| = 3.5v′rms (blue colourmap) and |w′| = 3.5w′
rms

(red colourmap) for case 1. The isosurfaces are shaded by the mean
streamwise velocity at x = 0. . . . . . . . . . . . . . . . . . . . . . . 124

6.17 Streamwise Reynolds stress budget. Case 1 is presented on the left,
and case 3 is presented on the right. . . . . . . . . . . . . . . . . . . 125

6.18 Reynolds shear stress contributions for case 1 using the hyperbolic hole
method [21] with threshold, h ∈ {0, 1, 3}. (a) −u′v′Q1, (b) −u′v′Q2, (c)
−u′v′Q3, (d) −u′v′Q4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.19 Reynolds shear stress contributions for case 3 using the hyperbolic hole
method [21] with threshold, h ∈ {0, 1, 3}. (a) −u′v′Q1, (b) −u′v′Q2, (c)
−u′v′Q3, (d) −u′v′Q4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.20 Pre-multiplied spanwise spectrum of the streamwise velocity, kzΦ+0
11 (x, y, kz)

against referenced inner-scaled spanwise wavelength, λ+0
z for cases 1

((a), (c), (e), (g), (i)) and 3 ((b), (d), (f), (h), (j)). . . . . . . . . . . 129
6.21 Pre-multiplied spanwise ‘lift-up’ spectrum, kzĜ+0 against referenced
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Chapter 1

Introduction

For subsonic flows, spatial acceleration occurs when the effective flow area is reduced,
resulting in an increased flow velocity due to mass conservation and a favourable
pressure gradient (FPG). These flows contain interesting phenomena that can be sig-
nificantly different from those observed in canonical boundary layers. One of the most
important phenomena is laminarisation∗, which occurs in strong spatial accelerations,
where key mean flow parameters, such as the skin friction coefficient and shape factor,
shift towards values more typical of a laminar flow. This can have implications for
many applications, including heat transfer, where the diffusive nature of turbulence
is often beneficial. Laminarisation is observed in a range of engineering applications.
Studies have reported that laminarisation can occur on the wings during important
stages of flight. In-flight and wind tunnel measurements showed that substantial
acceleration rates and laminarisation could be observed on the leading edge slats of
modern passenger aircraft during landing, which can reduce the lift loss resulting from
attachment line transition [29, 1, 30, 31]. A schematic of laminarisation on a leading
edge slat in the presence of freestream disturbances is presented in figure 1.1 with a
detailed description in the caption. Laminarisation can also occur at high angles of
attack and on the leading edges of swept wings [32, 33]. Laminarisation has also been
observed in turbomachinery, occurring on the pressure and suction sides of turbine
blades, affecting their aerodynamic efficiency [34, 35, 36]. Laminarisation was noted
to be detrimental to the effectiveness of the film cooling of turbine blades located
after the gas turbine combustor [37]. Given the frequent occurrence of these flows in
engineering applications, accurate prediction is essential but currently lacking [38].

While prevalent in many engineering applications, laminarisation in spatially ac-
celerating flows remains not well-understood and requires further study. Of particular

∗sometimes called relaminarisation or reverse transition, but in this study, laminarisation will
be used when describing the overall process.
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Figure 1.1: Schematic of laminarisation occurring on a leading edge slat during land-
ing. 1 Freestream disturbances, which can originate from the TBL developing over
the fuselage, induce the boundary layer developing over the wing to transition shortly
after the attachment line. 2 During landing, the leading edge slat is deployed,
leading to significant streamline contraction and strong streamwise acceleration with
acceleration parameter, K > 1×10−5 [1]. 3 Acceleration induces the laminarisation
of the transitioned boundary layer.

interest is the gradual emergence of laminarisation, the onset of which is not clearly
defined by parametric criteria [39]. The processes that cause it also differ from those
that cause laminarisation in buoyant flows or diverging pipes [40, 41]. Furthermore,
improvements in the understanding of these complex flows can help provide further
insight into the physics of non-equilibrium wall turbulence more generally.

Alongside spatial acceleration, flows can be accelerated temporally, which is typ-
ically achieved by merely increasing the flow rate, such as by opening a valve. Tem-
poral accelerations are widely found in engineering applications and natural flows,
such as during pump start-up and blood flowing around the body [42]. Temporally
accelerating flows have been studied extensively in the Heat, Flow and Turbulence
research group at the University of Sheffield, with substantial progress being made
in understanding these flows. He and Seddighi [43] proposed that the flow and tur-
bulence response to temporal acceleration is characterised by a process of transition
resembling that which occurs in laminar-to-turbulent bypass transition. This process
results from the development of a new time-developing boundary layer in response to
the rapid increase in flow rate. Subsequent studies in the research group and beyond
have observed this process over a range of acceleration rates, Reynolds numbers, and
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acceleration profiles [44, 15, 12, 45]. Previous studies have long noted the overar-
ching similarities between spatial and temporal acceleration, particularly the slow
evolution of the Reynolds stresses in much of the early stages of both accelerations
[46, 47]. Similar concepts have also been used to explain the turbulence response in
both accelerations [48, 49]. There are also some important differences between these
accelerations, such as the influence of flow contraction in spatial accelerations, which
is not present in temporal accelerations.

The central premise of this study is to assess whether the recently developed
understanding of temporally accelerating flows can help to explain the mechanisms
underlying the response of turbulent flows to spatial acceleration, including processes
such as laminarisation. We also note that despite the reported similarities between
temporal and spatial accelerations, there have not yet been any direct detailed com-
parisons between spatial and temporal acceleration to understand the extent of the
similarities. This thesis has four main elements:

1. The development and validation of numerical tools to investigate spatially accel-
erating turbulent boundary layers in an open-source numerical solver capable of
investigating flows at Reynolds numbers larger than previous numerical studies
and over a wide range of acceleration rates.

2. An investigation of a relative spatial acceleration incorporating accelerating
moving walls. This element aims to understand whether a simplified spatial
acceleration, where the influence of flow contraction is removed, can be charac-
terised by a transition process similar to temporal acceleration.

3. A study of spatially accelerating turbulent boundary layers, including acceler-
ations where the process of laminarisation occurs and those where it does not.
The primary objective is to evaluate whether spatial accelerations involving flow
contraction can be characterised by a transition process and gain insights into
how the phenomena associated with laminarisation emerge as the acceleration
rate increases. These simulations represent the widest range of acceleration
rates in a single numerical study of laminarising spatial accelerating TBLs to
date (to the author’s knowledge).

4. A comparison of spatially accelerating turbulent boundary layers and tempo-
rally accelerating channel flows to assess the similarities and differences in the
response of key mean flow parameters and turbulence, identifying the primary
factors contributing to their differences.
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As a result of this study, a new understanding of the overarching processes in spatially
accelerating flows over a wide range of acceleration rates is developed based on the
concepts from temporally accelerating flows.

1.1 Structure of the thesis

The structure of this thesis is given below:

• Chapter 2: This chapter gives an overview of the background turbulence
theory that is used throughout the study focussing on wall-bounded turbulent
flows.

• Chapter 3: Provides a literature review covering spatially accelerating flows,
the bypass transition of laminar boundary layers, and temporally accelerating
flows.

• Chapter 4: This chapter details the numerical methods used in the study.
This chapter also details the implementation of the recycling-rescaling method
for turbulent inflow generation into Incompact3D to enable simulations of ac-
celerating TBLs. The validation of all numerical tools is also described here.

• Chapter 5: The results are presented of a relative spatial acceleration in which
accelerating moving walls are used to create a spatial acceleration without wall-
ward contraction.

• Chapter 6: Simulations of four spatially accelerating TBLs are presented,
covering a wide range of acceleration rates.

• Chapter 7: Comparisons of the two strongest spatially accelerating turbu-
lent boundary layers from chapter 6 are compared with temporally accelerating
channel flow with matched acceleration parameter.

• Chapter 8: Overall conclusions are presented alongside some recommendations
for future work.
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Chapter 2

Background theory

Turbulence is a key feature in many engineering and natural flows, and its investi-
gation dates back to Leonardo da Vinci’s renowned illustrations in the 16th century.
Turbulence is famous for its complexity and has been described as ‘the last great
unsolved problem of classical physics’ [50]. The characteristics of turbulence include
being random in time and space, having a large range of space and time scales, and
being highly diffusive of momentum and scalars.

In this chapter, we introduce some of the key turbulence concepts used through-
out this study including the governing equations (section 2.1), turbulence statistics
(section 2.2), and the fundamentals of wall-bounded turbulent flows (section 2.4).

2.1 Governing equations

Fluid flow problems that satisfy the continuum hypothesis [51] can be described using
the Navier-Stokes equations that describe the conservation of mass and momentum in
a fluid. For incompressible, isothermal flows, these are the continuity and momentum
equations, given in dimensional form by

∂u∗i
∂x∗i

= 0, (2.1a)

∂u∗i
∂t∗

+
∂u∗iu

∗
j

∂x∗j
= − 1

ρ∗
∂p∗

∂x∗i
+ ν∗

∂2u∗i
∂x∗j∂x

∗
j

, (2.1b)

where u∗i represents the dimenional velocity vector, p∗ is the modified pressure, and
ν∗ = µ∗/ρ∗ is the kinematic viscosity. Hereafter, unless otherwise stated, the su-
perscript ∗ indicates dimensional quantities. Being highly nonlinear, these equations
pose well-known mathematical challenges and cannot generally be solved analytically.
Nonetheless, these equations remain at the heart of almost all analyses of turbulent
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flows. In this study, we will exclusively consider equation (2.1) in non-dimensional
form by normalising the state variables, (u∗i , p∗). The non-dimensional variables are
given by

ui =
u∗i
U∗ xi =

x∗i
L∗ t =

t∗U∗

L∗ p =
p∗

ρ∗U∗2 (2.2)

where U∗ and L∗ are characteristic reference velocity and length scales. Substituting
these into equation (2.1) yields

∂ui
∂xi

= 0, (2.3a)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

. (2.3b)

In non-dimensional form, the Navier-Stokes equations are dependent on a single pa-
rameter, the Reynolds number Re. The values of U∗ and L∗ depend on the flow and
the physics being investigated.

2.2 Statistical description of turbulence

Due to the chaotic nature of turbulence, the velocity signal is not predictable as two
flows with very slight differences in initial conditions will lead, after a short time, to
flows that appear substantially different. Nonetheless, its statistical properties are
reproducible [? ]. The mean of a random variable, φ is given by

φ̄ =

∫ ∞

−∞
φf(φ)dφ, (2.4)

where f is the probability density function (PDF) in which the probability, P of φ
being between the values a and b, where a ≤ b is

P{a ≤ φ ≤ b} =

∫ b

a

f(φ)dφ. (2.5)

In this study, (¯) will usually be used to indicate averaging, although sometimes 〈 〉
will be used for clarity. If the PDF of the state variables do not vary in time, the
flow is statistically stationary. If it does not vary in a particular direction, the flow
is statistically homogeneous in that direction.

One of the most important statistical properties of turbulent flows is that they
have been found (but not proved) to be ergodic in time and space, meaning that
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if a flow is statistically stationary, the ensemble average over many realisations is
equivalent to the time average

φ̄ = lim
N→∞

1

N

∑
N

φn = lim
T→∞

1

T

∫ T

0

φ(τ)dτ, (2.6)

when T is sufficiently large. If a flow is statistically homogeneous in a given direction,
then the ensemble average over many realisations is equivalent to the spatial average
in that direction:

φ̄ = lim
N→∞

1

N

∑
N

φn = lim
L→∞

1

L

∫ L

0

φ(x)dx, (2.7)

when L is sufficiently large. This makes the computation of statistics far simpler.
Fluctuations in the state variables are given by φ′ = φ − φ̄, from which the mth

central moments can be defined,

φ′m = lim
N→∞

1

N

∑
N

φ′m
n . (2.8)

Statistics of particular relevance in this study are the velocity variance, u′i
2, the

root mean square (RMS) of the velocity fluctuations, u′i,rms =

√
u′i

2, the skewness,
u′i

3/(u′i
2)3/2, and the kurtosis, u′i

4/(u′i
2)2.

2.2.1 Reynolds-averaged Naver-Stokes equations

The statistical approach above can be combined with the Navier-Stokes equations to
derive transport equations for statistical quantities. The transport equations for the
mean velocity are derived by applying the Reynolds decomposition, φ = φ̄+φ′ to the
state variables and averaging leads to the Reynolds-averaged Navier-Stokes (RANS)
equations

∂ūi
∂xi

= 0, (2.9a)

∂ūi
∂t

+
∂ūiūj
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
1

Re

∂ūi
∂xj

− u′iu
′
j

]
. (2.9b)

In appearance, the RANS equations are the same as equation (2.1), except for the
Reynolds stress tensor (blue), which is an apparent stress arising from turbulent
fluctuations and represents the additional mean momentum transport by turbulence.
The diagonal terms, u′iu′i are called the normal Reynolds stresses, and the off-diagonal
terms are the Reynolds shear stresses. The normal stresses are also the velocity
variance and the turbulence energy per unit mass in each direction.
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2.2.2 Reynolds stress transport equations

The Reynolds stresses can be further analysed using the Reynolds stress transport
equation, the evolution equation for the Reynolds stress tensor. These are given by

∂u′iu
′
j

∂t
= Aij + Pij + Tij +Πd

ij +Πs
ij +Dij − εij. (2.10)

The terms on the right-hand side (RHS) are from left to right: advection, produc-
tion, turbulent diffusion, pressure diffusion, pressure strain, viscous diffusion, and
dissipation. Their definitions are given below:

Aij = −ūk
∂u′iu

′
j

∂xk

Pij = −u′iu′k
∂ūj
∂xk

− u′ju
′
k

∂ūi
∂xk

(2.11)

Tij = −
∂u′iu

′
ju

′
k

∂xk

Πd
ij = −∂u

′
ip

′

∂xj
−
∂u′jp

′

∂xi

Πs
ij =

〈
p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)〉

Dij =
1

Re

∂u′iu
′
j

∂xk∂xk

−εij = − 2

Re

〈
∂u′i
∂xk

∂u′j
∂xk

〉
Of particular importance are the production term, Pij, which represents the energy

being extracted from the mean flow; the pressure strain term Πs
ij, which is traceless

and hence represents the intercomponent energy transfer between the normal stresses;
and the dissipation, ε, which represents the represents the action of viscosity to
destroy the Reynolds stresses and dissipate them as heat.

2.2.3 Two-point correlations and spectra

The structure of turbulence in space can be investigated using two-point statistics.
The two-point correlation tensor is given by

R̃ij(x
(1),x(2); t) = 〈u′i(x(1); t)u′j(x

(2); t)〉. (2.12)

For homogeneous directions, the two-point correlation is independent of the starting
location and is just a function of separation, r

R̃ij(r; t) = 〈u′i(x; t)u′j(x+ r; t)〉 (2.13)

The two-point correlation is often normalised by its value at r = 0, where R̃ij(0; t) =

〈u′iu′j〉

Rij(x, r; t) =
R̃ij

〈u′iu′j〉
, (2.14)
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The scale-by-scale energy distribution, the velocity spectra can be used, defined as

Φij(k) = 〈û′i
∗
û′j〉, (2.15)

where (̂) indicates the Fourier transform, and (∗) is the complex conjugate, and k is
the wavenumber. Φuu(k) can be related to the Reynolds stresses through

u′iu
′
j =

∫ ∞

−∞
Φij(k)dk. (2.16)

For homogeneous directions, the two-point correlation can be related to the velocity
spectrum by taking the inverse Fourier transform

Rij =

∫ ∞

−∞
Φij(k)e

ikxdk. (2.17)

Equation (2.17) enables the efficient computation of the two-point correlations in ho-
mogeneous directions by first computing Φij(k) and then applying the inverse trans-
form. In this study, all autocorrelations in homogenous directions are computed in
this manner.

2.3 Vorticity and vortex identification

A feature of turbulent flows is that they are inherently rotational, meaning they have
non-zero vorticity, ωi, which for a flow with coordinates (x, y, z), and velocity field
(u, v, w) is defined as

ωx =
∂w

∂y
− ∂v

∂z
ωy =

∂u

∂z
− ∂w

∂y
ωz =

∂v

∂x
− ∂u

∂y
(2.18)

Turbulent flows are frequently considered from the perspective of coherent structures,
which Panton [52] defined simply as fluid motion that has coherence over a spatial
region and lasts for a reasonable period of time. Vortices represent one form of coher-
ent structures, which Robinson [53] roughly defined as a region where the streamlines
mapped onto a plane normal to the vortex core exhibit an approximately circular
pattern when viewed from a reference frame moving with the vortex core.

Several identification criteria for vortex cores have been developed to understand
the evolution of vortical structures in turbulent flows. This study uses the λ2 criterion
developed by Jeong and Hussain [54]. This method originates from a prior criterion
that identified vortex cores with the local minimum of pressure in a plane normal to
the vortex axis, which can be identified by regions where the pressure Hessian, H(p) =

9



∂ijp
∗, has two positive eigenvalues. Jeong and Hussain [54] noted that vortex cores

tend to deviate from the local pressure minimum in the case of unsteady straining,
which leads to a pressure minimum without vortical motion, and viscous effects,
which can eliminate the pressure minimum associated with vortical motion. The
contributions to the pressure Hessian can be considered by taking the gradient of the
momentum equation and considering its symmetric part,

DSij

Dt
− 1

Re

∂2Sij

∂k∂k
+ SikSkj + ΩikΩkj = −H(p), (2.19)

where Sij = (∂jui + ∂iuj)/2 is the strain rate tensor and Ωij = (∂jui − ∂iuj)/2

is the rotation rate tensor. The influence of unsteady stretching and viscosity can
consequently be removed by considering just the matrix, SikSkj +ΩikΩkj, with H(p)

having two positive eigenvalues when SikSkj + ΩikΩkj has two negative eigenvalues:
where its second largest eigenvalue, λ2 < 0. Other criteria, such as the Q criterion [55]
and swirling strength criterion [56], were also considered but did not lead to visibly
different results.

2.4 Wall-bounded turbulent flows

This study focuses on wall-bounded turbulent flows: turbulent channel flow and tur-
bulent boundary layers (TBLs). A schematic of these flows is shown in figure 2.1. We
take the convention that the streamwise, wall-normal, and spanwise directions are
given by (x∗, y∗, z∗), and velocities by (u∗, v∗, w∗). In wall-bounded flows, the mean
velocity and turbulence intensity are concentrated in the streamwise component, and
the flow develops much more rapidly in the wall-normal direction, such that typically
∂y � ∂x.

Channel flows are flows that exist between two parallel flat plates, which are sep-
arated by a distance of 2h∗, where h∗ is the half-channel height. The most commonly
studied channel flow is the fully developed channel flow, which is homogeneous in both
the streamwise and spanwise directions. The flow rate of the channel is maintained by
a pressure gradient. This flow represents the start and end conditions of the acceler-
ating channel flows in chapters 5 and 7. TBLs are bounded by a single flat plate and
extend infinitely (in principle) in the wall-normal direction. These flows are inher-
ently inhomogeneous in the streamwise direction with a (dimensional) boundary layer

∗Hereafter, for compactness, when first derivatives are used inline ∂xfrefers to ∂f
∂x and ∂if = ∂f

∂xi
.

For second derivatives, ∂xxf refers to ∂2f
∂x∂x and ∂ijf refers to ∂2f

∂xi∂xj
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U ∗
∞

(b)

Figure 2.1: Schematics of a turbulent channel flow (a) and a turbulent boundary layer
(b).

thickness, δ∗ that grows downstream (as depicted in figure 2.1(b)), with a freestream
velocity, U∗

∞, above the boundary layer. In this study, the boundary layer thickness
is determined using the 99% thickness, δ∗99, the wall-normal distance where the mean
velocity reaches 99% of the freestream velocity. Unlike channels, non-accelerating
TBLs have zero pressure gradient (ZPG) while spatially accelerating flows have a
favourable pressure gradient (FPG) ∂xp̄ < 0.

We now introduce important quantities that are used throughout the study. A
useful quantity in all wall-bounded flows is the wall-shear stress, τ ∗w, which is defined
as

τ ∗w = µ
∂ū∗

∂y∗

∣∣∣∣
y∗=0

⇒ τw =
1

Re

∂ū

∂y

∣∣∣∣
y=0

, (2.20)
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representing the mean stress imparted by the flow on the wall. It is often normalised
using the dynamic pressure, resulting in the skin friction coefficient

Cf =
2τ ∗w
ρ∗U∗2 . (2.21)

In channel flows, U∗ is usually the cross-section z − y average (or bulk) velocity, U∗
b ,

although in chapter 7 we use the centreline velocity, U∗
c . In TBLs, the freestream

velocity U∗
∞ is used. τ ∗w can be used to define the viscous scales or the wall units: the

friction velocity, u∗τ and the viscous length scale δ∗v

u∗τ =

√
τ ∗w
ρ∗

δ∗v =
ν

u∗τ
. (2.22)

Normalising flow variables using the viscous scales (or inner scaling) is indicated
using +, such that the inner-scaled mean velocity is ū+ = ū/uτ and the inner-scaled
wall-normal distance is y+ = y/δv. Other important lengthscales are the integral
thicknesses: the displacement thickness, δ∗u and momentum thickness, θ∗. In boundary
layers, these are given by

δ∗u =

∫ δ∗

0

1− ū∗

U∗
∞
dy∗ θ∗ =

∫ δ∗

0

ū∗

U∗
∞

(
1− ū∗

U∗
∞

)
dy∗. (2.23)

For channel flow, the upper limit of integration is h∗, and U∗
c is used rather that

U∗
∞. The ratio of these thicknesses is called the shape factor, H = δu/θ, and is useful

in accelerating flows as it has different values in laminar and turbulent flows and
consequently has been used to assess the degree of laminarisation. These velocity
and length scales can be used to define Reynolds numbers that are commonly used in
channels and boundary layers. The Reynolds numbers used for channel flows in this
study are the bulk Reynolds number, Reb; the centreline velocity Reynolds number
Rec; and the friction Reynolds number, Reτ , which represents the ratio of the largest
to the smallest scales:

Reb =
U∗
b h

∗

ν∗
Rec =

U∗
c h

∗

ν∗
Reτ =

u∗τh
∗

ν∗
=
h∗

δ∗v
(2.24)

In TBLs, some important examples are the momentum thickness Reynolds num-
ber, boundary layer thickness Reynolds number, and the friction Reynolds number

Reθ =
U∗
∞θ

∗

ν∗
Reδ =

U∗
∞δ

∗

ν∗
Reτ =

u∗τδ
∗

ν∗
=
δ∗

δ∗v
(2.25)
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Figure 2.2: The inner-scaled mean velocity profile of turbulent wall-bounded flows.
(a) shows ū+ vs y+ for turbulent channel flow [2] and TBLs [3] at Reτ = 2000 ū+ = y+

and the logarithmic law , where κ = 0.4 and B = 5, are indicated.. (b) shows the
diagnostic function, Ξ for channels flows up to Reτ = 5200 [4, 5].

2.4.1 Mean velocity profile

The inner-scaled mean velocity profile in ZPGTBL and channel flows is presented in
figure 2.2(a) for Reτ = 2000 [2, 3] and shows that both flows have a similar general
form. Dimensional analysis has shown that the mean velocity profile depends on
two length scales: η = y/δ and y+. In the inner region (η � 1), the mean velocity
becomes independent of δ and depends only on the viscous scales leading to the law
of the wall

ū+ = F1(y
+). (2.26)

In the outer region (y+ � 0), the mean velocity profile depends only on the outer
scale, resulting in the velocity defect law

U0 − ū

uτ
= F2(η), (2.27)

where U0 is either U∞ or Uc depend on flow configuration. At asymptotically high
Reynolds number (Reτ → ∞), there is an ‘overlap’ region where (η � 1) and (y+ �
0) and both laws should overlap smoothly. Millikan [57] showed that this leads to the
logarithmic law of the wall:

ū+ =
1

κ
ln
(
y+
)
+B, (2.28)
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Table 2.1: Regions of the mean velocity profile

Region Location
Viscous sublayer y+ ≤ 5
Buffer layer 5 < y+ ≤ 30
Logarithmic region y+ > 30, y/δ . 0.15
Velocity defect region y/δ & 0.15

where κ and B are the von Kármán and additive constants, respectively. The value
of the κ is usually determined using the diagnostic function, Ξ defined as

Ξ = y+
dū+

dy+
. (2.29)

with Ξ a constant, 1/κ in the logarithmic region and hence κ can be extracted from
mean flow data with B curve-fitted to this region. Panton [58] noted that high
Reynolds numbers are required to observe a well-developed logarithmic region, with
figure 2.2(b) showing that for channel flows, an extended region with approximately
constant Ξ is only observed for Reτ = 5200. At lower Reynolds numbers, Ξ exhibits a
roughly linear trend, which is consistent with the finite Reynolds number refinements
of the overlap Region discussed in Jiménez and Moser [59] and Bernardini et al. [5].
The mean velocity in this region may still appear approximately logarithmic even at
lower Reynolds numbers, with figure 2.2(a) showing that ū+ approximately follows
the logarithmic law for 30 < y+ < 400. Historically, κ and B have been regarded as
universal, although it has now been shown that they take slightly different values in
channels and ZPGTBLs [60].

Empirically, the mean velocity profile is usually further subdivided as indicated
in table 2.1. Other notable regions include the viscous sublayer where ū+ = y+ (also
indicated in figure 2.2(a)) and the buffer layer which lies between the viscous sublayer
and the logarithmic layer. The buffer layer is associated with the maximum in the
turbulence kinetic energy (TKE), k = 1

2
u′iu

′
i and TKE production, P = 1

2
Pii. The

structures and dynamics of this region are briefly reviewed in section 2.4.3. The inner
part of channels and TBLs (y/δ < 0.1) is usually regarded as being essentially the
same [61].

The mean velocity profile deviates from the logarithmic law in the outer part of
flows. This deviation is much larger in TBLs than in channels. The velocity defect
in TBLs is usually described through the additional law of the wake [62], leading to
a velocity profile of the form

ū+ =
1

κ
ln
(
y+
)
+B +

Π

κ
w(y/δ), (2.30)
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Figure 2.3: Quadrant analysis. (a) joint PDF of u′ and v′ of a channel flow at Reτ =
180 at y+ = 9 with quadrant events labelled. The contours are at 0.08(0.08)0.64. (b)
burst pattern of a TBL at y+ = 15 showing ejection and sweep events reproduced
from Blackwelder and Kaplan [6].

where w is the assumed universal ‘wake’ function and Π is the wake strength param-
eter [61].

2.4.2 Quadrant analysis, ejection and sweep events

In wall-bounded turbulent flows, the most dynamically significant Reynolds stress is
the Reynolds shear stress, u′v′, which is the dominant component in the turbulent
transport term in the mean momentum equation, −∂yu′v′ and for the TKE produc-
tion, P ≈ −u′v′∂yū. Events that contribute to positive P in a shear flow have u′v′ < 0

and events, which lead to negative P have u′v′ > 0. These events are frequently anal-
ysed using quadrant analysis which categorises events based on the sign of u′ and v′.
A joint probability density function of u′ and v′ in a channel flow at Reτ = 180 is
presented in figure 2.3(a) with the quadrants, Q1 to Q4 and their definitions labelled.
The events that contribute to positive P and shear stress are Q2 and Q4 events,
and those that contribute to negative P and shear stress are Q1 and Q3 events.
Figure 2.3(a) shows that Q2 and Q4 events tend to dominate the joint PDF.

Among the most dynamically significant events are ejections and sweeps, which
often occur in pairs. Ejections are the result of low-speed fluid (u′ < 0) being ejected
(v′ > 0) from the near-wall region, with sweeps resulting from high-speed fluid (u′ >
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Figure 2.4: Schematic of the layout of a meandering streamwise streak and staggered
opposing quasi-streamwise vortices (QSV) from Jeong et al. [7]. (a) top-down view, (b)
sideways view. SN and SP indicates QSVs with negative and positive ω′

x, respectively.

0) further from wall rushing wall-wards (v′ < 0) to replace the ejected fluid [61].
Consequently, these motions contribute to Q2 and Q4 events, respectively. These
bursting events have been analysed using the variable-interval time-averaging (VITA)
technique, where a signal, such as velocity, from a stationary probe is conditionally
averaged around a burst. A typical burst signal from Blackwelder and Kaplan [6] is
shown in figure 2.3(b), where u′ < 0 corresponds to the ejection part of the burst,
with the sweep part occurring where u′ > 0. A review of quadrant analysis can be
found in Wallace [63].

2.4.3 Near-wall turbulence structures and turbulence regen-
eration cycle

In this study, we are most concerned with the dynamics of the near-wall region, which,
as stated previously, is associated with maximum turbulence intensity and production.
Even at very high Reynolds numbers where its height is a tiny fraction of the flow
thickness, it contributes to a large proportion of total energy dissipation [64]. The
presence of coherent structures in the near-wall region of turbulent flows was first
observed in Kline et al. [65], where elongated streaky structures were observed close
to the wall. These streaks have alternating high-low streamwise velocity with lengths
of approximately 1000 wall units and widths of approximately 80 wall units [66].
Blackwelder and Eckelmann [67] indicated that pairs of counter-rotating streamwise
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Figure 2.5: Classical regeneration cycle, reproduced from Kim [8].

vortices frequently occur in the near-wall region of turbulent flows, with Jeong et al. [7]
finding that quasi-streamwise vortices of opposing vorticity were typically observed in
a staggered arrangement on the flanks of low-speed streaks. This arrangement can be
observed in figure 2.4. Robinson [53] highlighted that these quasi-streamwise vortices
were strongly associated with ejection and sweep events and highlighted that these
quasi-streamwise vortices are long-lived in the buffer layer.

The interactions between the streaks and quasi-streamwise and their role in the
sustenance of near-wall turbulence have been investigated extensively in recent decades,
with the overall process referred to as the turbulence regeneration cycle. Waleffe [68]
noted that this cycle is conjectured to be generic for wall-bounded shear flows. Wal-
effe [68] also emphasised how the streaks and vortices depend on each other for their
regeneration and sustenance against viscous decay. The cycle is often summarised as
a three-leg process, which is depicted in figure 2.5

In the first leg, the streaks are created via the lift-up effect, where quasi-streamwise
vortices lift low-speed fluid from close to the wall and push down high-speed fluid
further from the wall. The tendency of shear flows to generate long streamwise
disturbances is frequently understood using transient growth theory, which originated
from Ellingsen and Palm [69] and Landahl [70], who studied inviscid shear flows
with cross-stream disturbances, finding that streamwise disturbance energy grows at
least linearly in time. The extension of these concepts to viscous flows has focussed
on the non-normality of the Orr-Sommerfeld/Squires equations [71], the system of
equations that describes the linear evolution of perturbations in parallel flows. This
non-normality leads to certain ‘dangerous’ initial conditions growing substantially
for a short duration even if all the modes decay [72]. Butler and Farrell [73] found
that the initial perturbations that lead to the largest transient growth corresponded
with quasi-streamwise vortices, with the resulting disturbances consistent with long
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streamwise streaks, a process that is consistent with the lift-up effect. Pujals et al.
[74] and del Álamo and Jiménez [75] found that the spanwise scale of the optimal
streaks was consistent with experimental and numerical observations of streaks in the
buffer and outer layers.

The second and third legs of the cycle link how the streaks, generated by the lift-up
effect, result in the regeneration of the streamwise vortices and the restart of the cycle.
The breakdown of the streaks has often been associated with the sinuous (spanwise
anti-symmetric) instability of low-speed streaks with both normal mode and transient
growth mechanism being proposed [76, 77]. Understanding these processes is still an
area of active research, with recent work even casting doubt on the role of long streaks
in sustaining near-wall turbulence [78]. The near-wall turbulence regeneration cycle
is autonomous in the sense that it can be maintained without input from the outer
flow and can be maintained even if all fluctuations above y+ & 60 or structures wider
than 100 wall units are damped [79, 80]. Review of the turbulence regeneration cycle
can be found in Kim [8] and Panton [52].
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Chapter 3

Literature Review

3.1 Spatially accelerating flows

Spatially accelerating flows have been widely studied for more than six decades, with
the first observations of laminarisation occurring even earlier [81, 82]. Figure 3.1
shows a schematic of a typical spatial acceleration experiment, where the flow area
is reduced using a liner placed onto the wall of a wind tunnel, with measurements
taken of the boundary layer developing on the opposing flat wall. Many of the themes
and terminology regarding spatially accelerating flows were established in the 1960s
and 1970s. Launder [83, 84, 85] was the first to study laminarisation specifically and
introduced the acceleration parameter

K =
ν∗

U∗
∞

2

dU∗
∞

dx∗
, (3.1)

to characterise the rate of acceleration imposed on the boundary layer. Investigat-
ing the flow in a two-dimensional nozzle, Launder found that after initially following

Liner

Measurement equipment
(CTA, LDA, PIV, etc.)

Wind tunnel

U∞

Figure 3.1: Schematic of a typical wind tunnel experiment for a spatially accelerating
flow, where a liner has been used to create the reduction of flow area.

19



turbulent predictions, when K & 3.5× 10−6, significant changes to the mean velocity
profile were observed with the skin friction coefficient, Cf decreasing, and shape factor,
H increasing. By the end of the nozzle, these parameters approach values consistent
with laminar boundary layers. Schraub and Kline [86] surmised that at low accelera-
tion rates, K < 10−6, the mean velocity profile was little impacted by the acceleration,
while where 10−6 < K < 3.5×10−6, the flow was considered ‘laminarescent’, with the
flow affected by the acceleration but not yet exhibiting clear signs of reverting to the
laminar state. Other parametric criteria have been developed for the onset of lam-
inarisation, such as the pressure gradient parameter, ∆p = (ν∗/ρ∗u∗τ

3)dxp
∗ < −0.02

introduced by Patel [22] and Schraub and Kline [86]. It should be highlighted that
laminarisation is a gradual process with few clear physical onset markers, which, as
Sreenivasan [39] noted, meant that parametric criteria can only be considered ap-
proximate markers for laminarisation onset. Furthermore, in strong accelerations, K
often increases substantially over short streamwise distances, meaning that determin-
ing the critical values of parameters such as K or ∆p can be challenging. For the
critical acceleration parameter, Kcrit, values in the range of 2.8× 10−6 to 3.5× 10−6

have been reported with 3× 10−6, the most widely accepted value [87].
The early studies also noted changes in near-wall turbulence structures due to the

laminarisation process. The seminal work of Kline et al. [65] investigated turbulent
boundary layers with adverse, zero, and favourable pressure gradients and found
that in strong favourable pressure gradients, the inner-scaled bursting frequency near
the wall was found to reduce for K > 10−6 with a cessation of bursting observed
when K > 3.5 × 10−6. Retransition, where the laminarised boundary layer becomes
turbulent again, was found to occur once the acceleration had relaxed with (K <

10−6) [86]. Early studies assumed this process was similar to natural transition [85].
Many of the studies of spatial acceleration, including the present one, are not in

equilibrium and develop spatially. However, equilibrium sink flows are an important
category of spatially accelerating flows that have been studied extensively. Sink flows
develop between two converging planes in which the streamlines converge to a point
(the sink). Many of the studies discussing weaker spatial accelerations belong to
this category and are therefore important for understanding how the phenomena
associated with laminarisation emerge. If set up appropriately, sink flows can become
self-preserving, and complete similarity can be attained, representing the only class
of turbulent flow with varying freestream velocity where this is possible [39]. In these
flows, parameters such as K, Cf , H, and Re all become constant, with the mean
velocity profile and Reynolds stresses exhibiting similarity at downstream stations
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in inner and outer scaling (among others). At small values of K, turbulent sink
flows develop with little change to the logarithmic law parameters, albeit with the
near-complete absence of the wake [88]. At larger values of K, a departure from the
logarithmic law is observed with a progressive shift towards the laminar Falkner-Skan
solution for sink flows [89, 90, 91].

The cornerstone of the present understanding of spatial acceleration is Narasimha
and Sreenivasan [9]. Its key development was the introduction of a quasi-laminar
model, which was used to make accurate predictions of the flow in the region of strong
acceleration. This quasi-laminar model was a two-layer formulation in which the
inner layer was modelled as laminar, and the outer layer was considered inviscid and
rotational. This model accurately predicted mean flow behaviours in the region with
strong favourable pressure gradients. While this model was successful in the region of
strong acceleration, there was a small region between the region of strong acceleration
and the upstream zero-pressure gradient region, in which neither the quasi-laminar
model nor turbulent predictions were valid. Sreenivasan [39] later described this
region as the ‘island of ignorance’. The model’s success in the strong acceleration
region was not related to the absolute decrease of the turbulent stresses, which tended
to approximately freeze along streamlines, but due to their relative domination by the
significant increases in pressure gradient in strong spatial acceleration. In a sense, the
turbulent stresses were rendered negligible, so they did not contribute to the mean
flow dynamics. The process was subsequently referred to as a ‘soft’ laminarisation or
a quasi-laminarisation in contrast to the ‘hard’ laminarisation processes that occur
in buoyant flows or diverging pipes [41, 40]. The study suggested a pressure gradient
parameter to mark where the turbulence stresses should be rendered negligible

Λ = − δ∗

τ ∗w0

dp∗

dx∗
& 50, (3.2)

which represents the approximate ratio of the pressure gradient to the turbulent
stresses. The quasi-laminar model also led to laminarisation being characterised into
four stages which will be used herein: fully turbulent (I), where after the onset of
the acceleration, the flow retains its turbulent characteristics; reverse transition (II),
where the flow becomes increasingly laminar-like, but neither turbulent nor quasi-
laminar predictions are valid; quasi-laminar (III), where the flow statistics follow the
quasi laminar model; and retransition (IV), where the flow begins to return to the
turbulent state. A schematic of these stages is shown in figure 3.2, based on a figure
in Narasimha and Sreenivasan [9].
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Figure 3.2: Schematic of stages proposed by Narasimha and Sreenivasan [9]: Fully
turbulent (I), reverse transition (II), quasi-laminar (III), retransition (IV). The
freestream velocity, U∞ and boundary layer thickness, δ are also indicated.

With some of the core concepts and terminology described, the characteristics of
the response of flow statistics and turbulent structures to acceleration will be discussed
to provide a broad overview of the current understanding of spatial acceleration. The
characterisation and mechanisms of laminarisation proposed by previous studies will
also be reviewed.

3.1.1 Mean flow and turbulent statistics

As discussed above, mean flow parameters such as Cf and H can indicate whether a
boundary layer has started to revert to the laminar state. As described in Narasimha
and Sreenivasan [9], Cf typically increases during the initial stages of the acceleration.
For flows that undergo laminarisation, Cf typically reach a maximum before reducing
towards values typical of laminar flows [92, 93, 94]. The shape factor, H is found to
initially reduce during the acceleration before rising significantly after the onset of
laminarisation. Several studies have noted that for sufficiently sustained accelerations,
H can approach or overshoot values typically observed in laminar flows [94, 92]. With
the onset of retransition, Cf is observed to increase with H reducing, consistent with
a return to the turbulent state. Consequently, the minimum of Cf and the maximum
of H are regarded as approximate onset markers for retransition [9]. Consistent with
a reduction of turbulent diffusion during laminarisation, Moretti and Kays [95] and
Back et al. [96] found that the heat transfer coefficient reduced, taking values similar
to laminar flows during strong laminarising accelerations.
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Changes to the mean velocity profile are typical of spatial acceleration with an
uplift of the mean velocity profile from the law of the wall and an increase in the
thickness of the viscous sublayer [97, 98, 92]. Talamelli et al. [94] studied a strong
and sustained spatial acceleration where the mean velocity eventually tended to the
laminar Falkner-Skan solution [99]. Departures from the logarithmic law occur even
in relatively weak accelerations with Fernholz and Warnack [93] observing uplift in a
laminarescent case where Kmax = 1.5×10−6. This indicated that while strong depar-
tures from the standard logarithmic law are observed in laminarising spatial acceler-
ation, a breakdown of the law of the wall does not necessarily imply laminarisation
[39]. Dixit and Ramesh [100] studied sink flows using experiment and asymptotic
analysis over a range of K. It noted that while there was a departure from the stan-
dard logarithmic law, the mean velocity profile remained logarithmic, albeit with a
slope that is dependent on the pressure gradient. Bourassa and Thomas [87], investi-
gating a very strong non-equilibrium spatial acceleration at a high Reynolds number,
also found that the mean velocity remained logarithmic with the von Kármán and
Additive constants, κ and B, following the correlation from Nagib and Chauhan [60]
developed for canonical flows (TBLs, channels and pipes), significantly extending its
range of validity. Similar results have also been found in the numerical studies of
Piomelli and Yuan [10] and the rough wall study of Yuan and Piomelli [49], where B
was modified to account for roughness.

The response of the turbulent normal and shear stresses during laminarisation has
been a major focus of research on these flows. Usually, these quantities are presented
in a local scaling, which is useful for highlighting the ‘soft’ nature of laminarisation
as some of these quantities may increase but do not keep up with local scalings
[101, 102]. The streamwise Reynolds stress has been most commonly reported in
previous studies. Badri Narayanan and Ramjee [92], who studied both strong and
weak accelerations experimentally, found that in strong acceleration, u′rms/U∞ tended
to decay throughout the region of high acceleration across the boundary layer. In
contrast, for weaker accelerations, u′rms/U∞ increased initially before reducing. The
development of the streamwise Reynolds stress has also been reported in absolute
terms, with many studies showing that it increases close to the wall throughout
the acceleration for both weak and strong accelerations [103, 102, 93, 10]. Piomelli
and Yuan [10] noted that during laminarisation, the transverse stresses near the
wall tend to reduce in absolute terms, with these stresses becoming negligible when
presented in local scalings [101]. In the outer region, the turbulent stresses are found
to reduce in local scalings even in the weakly accelerating flows of Harun et al. [104]
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(K ≈ 0.08 × 10−6), although it has been noted that along streamlines the turbulent
stresses remain relatively constant even in strong spatial accelerations [97, 9]. The
Reynolds shear stress is found to decrease when scaled locally in both weaker and
stronger accelerations throughout the flow [93, 102], while close to the wall, the
Reynolds shear stress typically increases in absolute terms [105, 102].

The turbulent energy transfer mechanisms have also been explored in previous
studies through the budgets of turbulence kinetic energy and Reynolds stress trans-
port equations. Studies typically have mainly focussed on the budgets of the stream-
wise Reynolds stress or the TKE equations. Unlike other forms of laminarisation,
production tends to remain significant throughout the acceleration and is everywhere
larger than dissipation, even in the outer flow [9, 106]. Nonetheless, in the typical in-
ner scaling, production was found to reduce substantially [107]. These large reductions
occurred despite substantial absolute increases in the production close to the wall [87].
Fernholz and Warnack [93] noted that for a weaker case with Kmax = 2 × 10−6, the
production still increased substantially, noting that this was responsible for the large
absolute increases in streamwise Reynolds stress close to the wall. In the outer region,
Bourassa and Thomas [87] found that the shear production of TKE, −u′v′∂yū tends
to decrease away from the wall while the dilational production, −(u′2−v′2)∂xū, which
tends to transfer energy back to the mean flow in accelerating flows, becomes substan-
tially larger to the extent that the shear and dilational productions become compa-
rable but opposing. Piomelli and Yuan [10], looking to understand the causes behind
the absolute reductions in transverse stresses discussed above, examined the budget
of the v′v′ equation. The study noted that laminarisation appeared to be strongly re-
lated to the reduction in the inner-scaled pressure strain term, Πs

22 = 2p′∂yv′, which is
the primary source of the v′2 equation and represents intercomponent energy transfer.
With the onset of retransition, the pressure strain was noted to increase substantially.
Overall, the response of the turbulence in spatially accelerating flows has been de-
scribed as a ‘dual-layer’ structure [87] with distinctly different responses from the
near-wall and outer regions.

3.1.2 Turbulence structures

Much of the early interest in turbulent structures of spatial acceleration focused on
the buffer layer structures. As discussed above, Schraub and Kline [86] highlighted
the reduction of scaled near-wall bursting and the shallower trajectories of remaining
bursts. These changes are important given the importance of near-wall bursting to
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the generation of Reynold shear stress [6] and turbulence production [108]. Such ob-
servations have also been found in sink flows, with the numerical study of Spalart [109]
noting the emergence of quiescent patches near the wall at K = 3×10−6, although the
study noted the continued presence of near-wall streaks. Piomelli et al. [110] noted
that for strong accelerations, the streaks become elongated and tend to meander less
in the spanwise direction. However, for weaker accelerations (Kmax ≈ 2.5 × 10−6),
there is little visual distinction in streaks during the acceleration. However, the elon-
gation of the streamwise structures in both strong and weak acceleration can be
observed using the integral length scale with larger changes observed in laminaris-
ing accelerations [102]. The spanwise scale of the streaks has also been investigated,
with most authors indicating significant increases in the inner scaled streak spacing
[111, 107], although Talamelli et al. [94] noted that this was mostly due to the changes
in viscous length scale, ν/uτ with the absolute spanwise spacing reducing. Consistent
with streak strengthening in strong accelerations, the streamwise energy spectra have
been noted to strengthen at low wavenumbers consistent with a strengthening of the
larger scale structures [90, 102].

The overall reduction in turbulence activity in strong spatial accelerations has
been widely observed with intermittency, typically present in the outer layer of the
boundary layer, being observed all the way to the wall [97, 112, 103]. This has been
extensively visualised both in simulation [110] and experiment using smoke [113],
with a visible reduction in the number of vortices, although the remaining vortices
become more intense due to stretching caused by the acceleration. The reduction
in the number of vortices during laminarisation can be observed in figure 3.3, which
shows the isosurfaces of the Q vortex identification criterion becoming sparser with
downstream distance.

A number of studies have also examined how acceleration affects shear stress-
producing events - ejections (Q2) and sweeps (Q4). Earlier experimental studies
tended to use the VITA technique around near-wall bursts. Ichimiya et al. [112]
found that in strong accelerations, the ejection part of the bursts away from the wall
was largely unaffected by the acceleration, while the sweep events typically weak-
ened. Closer to the wall, the reverse was found, with the ejection part weakening
and the sweep part strengthening. Bourassa and Thomas [87] used the hyperbolic
hole method [21] and found that, compared to the local eddy turnover time, δ/uτ ,
there were reductions in both ejection and sweep events with the latter being partic-
ularly affected. However, it was noted that the remaining events were stronger. The
study also noted the apparent aliasing of Q4 events into shear stress-destroying Q3
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Figure 3.3: Isosurfaces of the Q criterion, where Q = −∂jui∂iuj/2 from Piomelli
and Yuan [10] coloured by ω′

x/ω
′
rms. The reduction in the density of vortices can be

observed.

events. Piomelli and Yuan [10] found generally similar results away from the wall
(y+ > 40) but noted that for y+ < 10, there was a substantial increase in Q4 events
as irrotational fluid outside the boundary layer is redirected towards the wall and
decelerated there. This may be consistent with the changes in burst pattern observed
in Ichimiya et al. [112]. Joshi et al. [105], examining weaker accelerations, noted that
the behaviour of Q2 and Q4 events changed significantly in an accelerating case com-
pared with ZPG flows. Q4 events are associated with incursions of outer layer fluid
into the inner part of the boundary layer, and in an FPG flow, they transport the
lower-intensity turbulence located in the outer layer into the inner layer, contributing
to the reduction of intermittency. McEligot and co-workers [114, 115, 116, 117] stud-
ied an innovative laterally-converging duct that enabled an investigation of spatial
acceleration without the effect of a wall-ward contraction. They found that the shape
of the burst pattern did not significantly change, which appears to contrast with the
observations in the conventional accelerations of Ichimiya et al. [112].

Changes in flow structure have also been noted in the outer flow, with the main
observation being a reduction in the inclination angle of outer layer hairpin vortices
compared with ZPG flows, which was first reported in Dixit and Ramesh [118] using
two-point correlations for sink flows over a wide range of K. Joshi et al. [105] also
observed these reductions in weaker acceleration and explained them heuristically
by considering the self-induced velocity of typical hairpin vortices in the presence of
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streamwise acceleration and mean shear. In the rough-wall sink flow study of Yuan
and Piomelli [119], the roughness is found to resist this reduction of inclination angle.

With the onset of retransition, there is a significant change in the turbulence
structures. Blackwelder and Kovasznay [97] identified the presence of turbulent spots
forming in the buffer layer. In the early stage of retransition, Ichimiya et al. [112]
noted that violent fluctuations appear initially to be intermittent before becoming
continuous further downstream. While early studies suggested that retransition re-
sembled natural transition [84, 9], more recent studies have typically considered the
process more complex due to the residual turbulence in the boundary layer and more
akin to bypass transition [103, 10]. de Prisco et al. [120] and Piomelli and Yuan [10]
highlighted a prominent role for the residual turbulence in the freestream during re-
transition with these motions disturbing the near-wall region, which until that point
had been stabilised by the acceleration. Bader et al. [121] showed in detail how re-
transition initiated in the near-wall region with newly generated turbulence gradually
spreading into the outer part of the boundary layer as it is convected downstream.

3.1.3 Mechanisms of laminarisation

While Narasimha and Sreenivasan [9] explained many important aspects of the mean
flow and turbulence during strong spatial accelerations, questions remain, particularly
relating to the island of ignorance. The most important question is what processes
progressively lead to the flow attaining a quasi-laminar state under sustained ac-
celeration. Some early studies believed the observations were related to turbulence
decaying due to dissipation exceeding production [96, 86] or the Reynolds number re-
ducing below some critical threshold [122, 92]. These mechanisms were challenged by
results indicating that production remains significant and exceeds dissipation even in
strong accelerations [106, 9] and that laminarisation can begin and may even be more
susceptible to laminarisation at high Reynolds numbers [40]. Despite their flaws,
these mechanisms are often the basis for some of the parametric criteria still used
today, such as ∆p.

Some of the more recent studies have built on the improved understanding of the
structures and processes of near-wall turbulence, with several studies suggesting that
laminarisation results from the interruption of the near-wall turbulence regeneration
cycle. This cycle is discussed in more detail in chapter 4. Bourassa and Thomas [87]
suggested that strong spatial accelerations inhibit the sinuous normal mode streak
instability mechanism by reducing the inclination angle of lifted low-speed streaks,
which Schoppa and Hussain [76] had found to be unstable only if this angle exceeded
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a certain threshold. Piomelli and Yuan [10] proposed that the cause of the reduction
in v′ and w′ was related to the decrease of the source of the rapid pressure Poisson
equation leading to a reduction of pressure fluctuations and, consequently, a reduc-
tion of pressure strain. The decrease in w′ would then inhibit the streak transient
growth mechanism, also proposed in Schoppa and Hussain [76], thus inhibiting the
regeneration cycle.

Yuan and Piomelli [49] suggested that the reduction of turbulence near the wall
in smooth wall accelerations could be associated with rapid distortion due to shear,
which for initially homogeneous isotropic turbulence results in an accumulation of
energy in the streamwise component similar to that observed in spatial acceleration
[61, 123]. In rough walls, where laminarisation can often be avoided, it was noted
that the shear parameter was reduced compared with a smooth wall case with the
same acceleration rate. Dixit and Ramesh [118] proposed a mechanism to explain the
success of the quasi-laminar model of Narasimha and Sreenivasan [9]. This was based
on the observed reduction of structure inclination angle and a structural argument
relating this reduction to the elimination of turbulent transport, leading to a laminar-
like inner layer. Some of these mechanisms are plausible but generally difficult to test
and are usually based on a limited number of simulations or experiments, meaning
that their ability to explain the emergence of laminarisation is largely untested. As
a result, a large range of K is used in this study.

3.2 Bypass transition of laminar boundary layers

Early studies of transition in laminar boundary layers tended to focus on natural
transition via the generation and propagation of two-dimensional Tollmein-Schlichting
(TS) waves [124], which lead to three-dimensional secondary instabilities leading to
turbulent spot generation and transition. These disturbances grow slowly on viscous
time scales and only attain the required amplitude for the development of secondary
instabilities when Rex = U∗

∞x
∗/ν∗ = O(106) [125], where x is the distance from

the leading edge of a flat plate. Early studies of transition, such as Dryden [126]
and Taylor [127], found that at elevated freestream turbulence (FST) intensities,
Tu = u′rms/U∞ & 1%, the onset of transition occurred much further upstream (Rex =

O(105)), with the presence of low-frequency streamwise velocity fluctuations in the
boundary layer. At these intensities, modal growth mechanisms, such as the TS wave
mechanism, may be bypassed [128].
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Figure 3.4: The velocity fluctuations from Nagarajan et al. [11] showing the typical
progression of a boundary layer undergoing bypass transition. (a) u′; (b) v′;(c) w′.

One of the most consequential observations of what is now known as bypass tran-
sition is Klebanoff [129], who noted the presence of long streaks of alternating high
and low streamwise velocity that grow from near the leading edge of the flat plate.
These streaks reach amplitudes far larger than those typical of TS waves and have
subsequently been referred to as ‘Klebanoff’ modes [130]. Jacobs and Durbin [131]
characterised the overall bypass transition process in three stages: the buffeted lami-
nar boundary layer, the intermittent region, and the fully turbulent boundary layer.
The first region is largely characterised by the development and amplification of the
Klebanoff modes, which eventually results in secondary instabilities developing on
specific streaks, leading to their breakdown and the formation of turbulent spots.
The Klebanoff modes can be observed in figure 3.4(a), which shows the elongated u′

fluctuations from Nagarajan et al. [11] with turbulent spots being observed somewhat
further downstream. In the second region, these spots grow in the spanwise direction,
co-existing with the streaks until the spots merge, covering the spanwise extent of
the wall, culminating in the final fully turbulent region, which can be observed at
the downstream end of figure 3.4. The remainder of this review focuses on the key
themes of bypass transition research that are particularly relevant to this study, such
as the amplification of near-wall streaks and their eventual breakdown mechanisms.

The formation of these streaks is linked to the internalisation of freestream dis-
turbances into the boundary layer in a process known as receptivity. The boundary
layer shear acts like a low-pass filter where smaller scale disturbances are filtered out
while larger scale disturbances are amplified [132, 133, 134]. The basic mechanism for
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the growth of streaks within the boundary layer is the lift-up effect [135, 136], which
is also responsible for the growth of streaks in turbulent flows (section 2.4.3). Westin
et al. [137] also noted the importance of the wall-normal component in penetrating,
highlighting the spanwise gradients of v′ in particular. The growth of the streaks
within the boundary layer has been an important focus of research on bypass tran-
sition. Kendall [130] found that the streamwise disturbance energy, u′u′ associated
with these streaks has been found to grow linearly with downstream distance, which
was subsequently found by other authors, including Westin et al. [138] and Matsub-
ara and Alfredsson [139]. Westin et al. [138] also noted that the streamwise scale
of the structures inside the boundary layer was much larger than for the freestream
turbulence, with Matsubara and Alfredsson [139] showing that the energy growth
is concentrated at low streamwise wavenumbers initially, with growth occurring at
higher wavenumbers only with the breakdown of the streaks.

Several theoretical approaches to modelling the development of streaks in laminar
boundary layers have been proposed. First, optimal growth theory which was devel-
oped by Andersson et al. [140] and Luchini [141]. This approach looked for the initial
velocity profile that maximised the transient energy growth in the boundary layer.
The wall-normal profile of resulting streamwise disturbances was found to be similar
to experimental studies [138], with the transient growth exhibiting a linear profile
similar to experiments [138, 130, 139]. Ricco et al. [142] reviewed this approach,
highlighting that it does not model the freestream disturbances that lead to bypass
transition, with the initial conditions instead being an output of the method. There-
fore, the development of the laminar streaks cannot be linked with the characteristics
of the freestream vortical disturbances that cause them. Leib et al. [143] developed
another theoretical approach that does include the influence of the FST by deriving
initial and freestream conditions that describe the conditions close to the leading edge
and the interaction between the outer part of the boundary layer and freestream using
matched asymptotic expansions. Using the same approach, Ricco et al. [142] found
good agreement with the DNS of Wu and Moin [144] throughout the pre-transitional
boundary layer. The importance of modelling the freestream is also highlighted by
Lengani et al. [145], which studied bypass transition on low-pressure turbine blades.
These results highlighted the strong correlation of the most amplified spanwise wave-
lengths with the FST in the blade passage, while the spanwise wavelengths associated
with optimal growth were less amplified.

The eventual formation of turbulent spots in bypass transition depends on many
factors, including FST intensity, integral length scale, and leading edge geometry
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[11, 146]. The most relevant literature for the current study is the transition that
occurs with 0.5% < Tu < 2% [147]. In these cases, the spots are caused by the
instabilities developing on low-speed streaks. These come in two principle types: a
varicose (spanwise symmetric) instability and a sinuous (spanwise anti-symmetric)
instability.

Jacobs and Durbin [131] studied bypass transition using DNS without explicitly
modelling the leading edge by using the continuous spectrum of the Orr-Sommerfeld/Squire
equations to model the FST. This approach has also been frequently used by other
studies such as Brandt et al. [148], Brandt and de Lange [149] and Schlatter et al.
[150]. Dong and Wu [151] and Ricco et al. [142] showed that this approach leads to
non-physical spurious entanglements between freestream modes, which are related to
the parallel flow assumption in the Orr-Sommerfeld equations. Ricco et al. [142] also
notes that using the Orr-Sommerfeld equation implies that the presence of the FST is
dependent on the presence of the boundary layer, whereas the freestream disturbances
clearly should exist independently of the presence of the flat plate. Nonetheless, the
results of studies using this approach have significantly influenced the understanding
of the breakdown of laminar streaks, with qualitative similarities with subsequent ex-
periments. Jacobs and Durbin [131] identified a varicose Kelvin-Helmholtz-like insta-
bility that develops on specific lifted low-speed streaks or ‘backward jets’ due to their
interaction with the elevated high-frequency FST at the boundary layer edge. These
then subsequently develop into patches of irregular motion or turbulent spots. Asai
et al. [152] experimentally investigated both mechanisms on a single streak through
acoustic excitement. The varicose mode was found to be a Kelvin-Helmholtz insta-
bility resembling Jacobs and Durbin [131] with an inflectional wall-normal velocity
profile, whose growth rate reduces as a streak’s spanwise scale increases. The sin-
uous instability was found to cause streak meandering and could propagate further
downstream. As a result, the sinuous instability was found to occur more frequently.
Mans et al. [153], studying a full flat plate boundary layer, found that the propaga-
tion velocity of the spots from both mechanisms could be linked to low-speed streaks
and that the critical amplitudes related to the varicose mode were larger than for
the sinuous modes, consistent with the sinuous mode occurring more frequently. The
greater prevalence of sinuous instabilities has also been observed in DNS [150] and
theoretical investigations on streak instability [154, 155, 156, 157].

Several studies have also considered the time evolution of these mechanisms using
DNS. Brandt et al. [148] found that varicose breakdowns could be the result of inter-
actions of lifted low-speed streaks with freestream disturbances as discussed in Jacobs
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and Durbin [131] or streak interactions with the head of a high-speed streak reaching
the tail of a low-speed streak. Sinuous breakdowns were caused by a higher-speed
streak passing on one side of a low-speed streak, causing an inflectional spanwise ve-
locity profile. Brandt and de Lange [149] further studied the role of streak collision
with the varicose instabilities initiating the development of Λ or hairpin vortices, while
sinuous instabilities lead to quasi-streamwise vortices on the flank of the low-speed
streak flank. The role of streak collisions in sinuous and varicose breakdowns have
also been observed in experiments such as Mans et al. [158], Nolan and Walsh [134]
and Balamurugan and Mandal [159].

Beyond the breakdown mechanism, the statistical characteristics of the formation
of turbulent spots have also been examined. Hernon et al. [160], using experiment,
showed that as the boundary layer approaches transition, the streamwise velocity has
a strong negative skewness in the upper part of the boundary layer, consistent with
the presence of strong low-speed streaks there, which can subsequently interact with
the FST. Nolan et al. [161] used quadrant analysis to examine the breakdown of the
streaks with the formation of spots associated with short but strong ejection events
in regions associated with low-speed streaks, although the mechanism of breakdown
could not be discerned. Voke and Yang [162], using large eddy simulation, noted
that the break up of the streaks at the onset of transition was marked by a signifi-
cant increase in the pressure strain, indicating energy transfer from the streamwise
component to the transverse motions. It is interesting to note that transition onset
is typically delayed in laminar boundary layers subject to strong spatial acceleration
[163, 164].

The development of these nascent spots in the intermittent region has also been
investigated. Nolan and Zaki [165] used conditional averaging in which the statistics
of the quiescent and turbulent patches within the intermittent region were computed
separately, with the mean velocity profile of the turbulent patches consistent with
a fully turbulent flow throughout this region, although the velocity perturbations
were observed to be elevated compared to turbulent flows near the formation of the
turbulent spots. Marxen and Zaki [166] extended this analysis, and it was found that
the velocity perturbation in the core of sufficiently large spots was consistent with
ZPGTBL flows.
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3.3 Temporal acceleration

The development of turbulence in temporally accelerating internal flows has been
studied extensively, particularly in recent years. Much of the interest in temporal
acceleration is because when accelerated strongly they laminarise, with the mean flow
parameters undershooting quasi-steady predictions during the transient. This leads to
challenges in predicting mean flow quantities such as heat transfer and skin friction
coefficients that are vitally important in engineering applications [167, 168, 169].
Studies have consequently been focussed on predicting the transient development of
these flows and understanding their turbulence dynamics.

Among the first studies to investigate temporal acceleration was Maruyama et al.
[170], which highlighted some of the key aspects of the turbulence response in these
flows, notably the generation of ‘new’ turbulence, which begins at the wall and prop-
agates into the core with time. With advances in experimental methods, greater
insights into the transient turbulence development were obtained. He and Jackson
[171] investigating ramp-up accelerations made substantial progress in understanding
the mean flow and turbulence response. The study noted the tendency of the flow
to accelerate in an essentially uniform manner for much of the acceleration, except
for a thin region near the wall. The response of the turbulence is marked by an in-
crease in the streamwise Reynolds stress component from shortly after the beginning,
with the transverse components at any wall-normal location increasing only after a
more significant delay. Their eventual response was strongly linked to a delayed in-
crease in the pressure strain. This new turbulence subsequently propagated away
from the wall. The frozen nature of the turbulence in the core of the flow was also
noted by Greenblatt and Moss [47], who studied higher Reynolds numbers and noted
the changes in the outer region with the weakening of the wake part of the velocity
profile during the acceleration, which was not restored until the delayed increase of
turbulence there.

The current understanding of temporal acceleration largely derives from He and
Seddighi [43], which investigated a step-change temporal acceleration at low Reynolds
number using DNS. The transient turbulence response to the acceleration was char-
acterised as a three-stage transition process: pre-transition, transition, and fully tur-
bulent, mirroring the stages of boundary layer bypass transition from Jacobs and
Durbin [131]. At the beginning of the acceleration, due to the influence of viscosity
and the wall, a thin region of high strain rate forms at the wall, representing a new
time-developing boundary layer that modulates the near-wall turbulence structures.
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Figure 3.5: z− t surface plots of the streamwise and wall-normal velocity fluctuations
for transient channel flow at y+0 = 15 from Mathur et al. [12]. The two vertical planes
indicate the onset of acceleration and transition, respectively. (a) u′; (b) v′.

The result is that during pre-transition, there is significant amplification of the near-
wall streaks, resulting in a linear increase in the streamwise energy disturbance near
the wall [139], similar to bypass transition. During this region, the transverse stresses
were observed to freeze across the channel. This region is associated with the delay
between the streamwise and transverse stresses in He and Jackson [171]. This region
was terminated by the formation of localised turbulent spots, which was linked to the
breakdown of the strengthened streaks in an apparent varicose instability mechanism
resembling the ‘backward jets’ in Jacobs and Durbin [131]. Throughout the transition
region, these spots grow in the spanwise and streamwise direction with time until the
wall is covered in the newly generated turbulence. The final region is associated with
the diffusion of turbulence into the core, as found in prior studies [171, 47, 170]. The
overall near-wall turbulence development can be observed in figure 3.5, which shows
the spanwise and temporal development of u′ and v′ with the intial growth of u′ being
observed from t = 0s and the delayed increase of v′ only being observed at t ≈ 2s. He
and Seddighi [43] highlighted that unlike the bypass transition of a laminar boundary
layer, the pre-existing flow is already a turbulent wall shear flow and consequently
has a different structure to the homogeneous isotropic turbulence that characterises
the FST in bypass transition. In this sense, the transition-like process here may be
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described as a turbulent-to-turbulent transition.
Following He and Seddighi [43], studies extended this understanding to a much

greater range of temporal accelerations. Seddighi et al. [44] investigated a ramp-up
temporal acceleration using DNS and found significant similarities to the step change
case. However, it noted that the transition was delayed compared to step change
due to the continuous strong FPG associated with gradual acceleration. He and
Seddighi [15] investigated step-change accelerations with a range of velocity ratios,
Ub1/Ub0 from 1.1 to 4.5 alongside variations of initial Reynolds number. All cases
exhibited signs of the transition process in the turbulence statistics, although for the
instantaneous results, the processes became less prominent in weaker accelerations,
with the streaks only strengthening slightly during pretransition. The results of
Jung and Kim [45] indicated that the transition process could not be detected in
sufficiently long and weak accelerations. The accelerations with a clear transition
process exhibited a sinuous instability similar to those in Schlatter et al. [150]. Similar
mechanisms were also observed by Mathur et al. [12] and Mathur et al. [172] in
which some of the strongest accelerations to date were performed (Ub1/Ub0 < 19.3)
using both simulations and experiments. In these strong accelerations (Ub1/Ub0 >

6.5), absolute reductions in the transverse stresses could be observed close to the
wall. Sundstrom and Cervantes [173] examined the response of the turbulent stresses
around the onset of transition, noting significant increases in TKE production, and
hypothesised the role of the rapid pressure in the initial increases of the pressure
strain, although this could not be tested in their experiments.

More recently, Guerrero et al. [174] investigated unsteady pipe flow focusing on
the changes to momentum balance and skin friction using Fukagata, Iwamoto, and
Kasagi (FIK) identity [175], which indicated the presence of an inertia-dominated
region at the beginning of the acceleration, which results in significant increases of
viscous stresses near the wall while the turbulent transport remains frozen. In the
fully turbulent region, the FIK identity indicated that redevelopment of the core
region was a slow process that lasted substantially longer than the comparatively
steady Cf suggested.

Much research on temporal acceleration investigated predictions of the mean
flow evolution, particularly during pre-transition. He and Seddighi [43] decomposed
the mean flow by defining a differential or perturbation mean velocity defined as
ū∧ = ū(y; t) − ū(y; t = 0), with ū∧ encapsulating the new time-developing bound-
ary layer. ū∧ and associated mean flow parameters were found to follow the Blasius
solution during pre-transition. He and Seddighi [15] over the large range of Re and
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Ub1/Ub0 found that during pre-transition, ū∧ followed the laminar similarity solution
to Stokes’ First Problem. The laminar similarities in temporal acceleration were ex-
plored in more detail by Sundstrom and Cervantes [176], who derived them from the
mean momentum equation with the assumption of a negligible change to the tur-
bulent transport, which is valid during pretransition. A similar approach was used
in the predictions of the wall shear stress in He et al. [177] and He and Ariyaratne
[178]. Mathur et al. [12] used an ‘extended’ Stokes first problem to predict the per-
turbation mean flow in arbitrary changes of bulk velocity in which the acceleration is
considered as a convolution of small acceleration increments. Good predictions using
this approach were found in Oluwadare [179] over a wide range of Reynolds numbers
and acceleration rates. Alternative approaches explaining the mean flow development
have also been proposed by García García and Alvariño [180].

From the above discussion, it is clear that there are many similarities between
the turbulence development in temporal and spatial acceleration. These similarities
include the response of the streamwise Reynolds stress, which increases from near
the start of the acceleration in both cases [93, 102, 43]. The delayed response of the
transverse stresses has been widely observed in temporal acceleration [171] and well-
documented particularly in strong spatial accelerations [10]. Furthermore, in both
accelerations, the eventual increases of the transverse stresses has been associated
with increases in pressure strain [10, 171, 173]. Several authors have previously
discussed the similarities between spatial and temporal acceleration. Greenblatt and
Moss [46, 47] found that the development of mean flow parameters exhibited similar
trends to their spatial counterparts, even if the excursions in these parameters were
smaller and did not reach values typical of a laminar flow. Recently. Mangavelli et al.
[181] and Mangavelli and Yuan [48] showed that the role of roughness in temporal
acceleration is similar to that in spatial acceleration [49], indicating that the near-wall
mean shear may play a similar role in the laminarisation in temporal accelerations.
These similarities suggest that there are likely to be common, fundamental processes
at work in both accelerations, which are of value for further study.

It is also useful to highlight the conceptual differences between the existing un-
derstanding of spatial and temporal acceleration. Spatial acceleration is usually con-
sidered from the perspective of the gradual reversion of the boundary layer to the
laminar state, followed by its recovery during retransition. Temporally accelerating
flows are considered from the perspective of the time-developing boundary layer re-
sulting from the resistance to the acceleration provided by the wall. The interactions
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of the new boundary layer with the existing turbulence dominate the turbulence re-
sponse leading initially to the amplification of the near-wall streaks and eventually
their breakdown resulting in transition. These will concepts will be developed and
explored further throughout the remainder of the study.
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Chapter 4

Numerical methods and validation

Due in large part to the complexity of turbulence, computational fluid dynamics
(CFD) has become a cornerstone of fluids research both in industry and in the study
of fundamental turbulent flows. In this study, we primarily use direct numerical
simulation (DNS), which resolves all spatio-temporal turbulence scales by directly
solving the Navier-Stokes equations. We also make limited use of large eddy simula-
tion (LES) in which only the larger scales are resolved, with the dissipative effects of
the small scales being modelled, meaning more computationally demanding cases can
be simulated due to the relaxation of grid and time resolution requirements. Direct
numerical simulations were first used to study homogeneous isotropic turbulence on
small grids with periodicity in all three directions [182]. Full DNS of turbulent plane
channel flow was not performed until Kim et al. [183], while the simulation of tur-
bulent boundary layers [17] tended to lag further behind mainly due to the issues of
dealing with streamwise inhomogeneity. Much of the early work using DNS employed
spectral methods, which enabled sufficient spatial resolution at an economical compu-
tational cost [184]. As the power of computers has increased, other solution methods
have become popular. This includes finite difference (FD) methods, which have a
greater ability to handle complex geometries and reduced aliasing errors compared
with spectral methods [185]. Other developments in FD schemes include the devel-
opment of high-order compact finite difference schemes, which allow quasi-spectral
accuracy while using small FD stencils [186].

The finite difference solvers Incompact3D and CHAPSim have been used in this
study. These solvers are overviewed in sections 4.1 and 4.2. The main software
contributions of this study are:

1. The development of a method for simulating spatially accelerating TBLs in
Incompact3D, which included the implementation of the recycling-rescaling
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method for inflow generation and freestream boundary conditions to create
streamwise acceleration. This contribution is described in section 4.5.

2. The implementation of temporal acceleration into Incompact3D, including mod-
ifications to reduce the development time for turbulent channel flow enabling
shorter duration simulations. This is described in section 4.4.

3. Implementation of novel moving wall acceleration into CHAPSim, which is de-
scribed in more detail in chapter 5.

4. The addition of on-the-fly statistics processing for a large number of useful
quantities including one-point statistics, energy spectra and quadrant analysis
for both stationary and transient simulations. These are described in section 4.6.

The assessment and validation of all numerical tools used in this study are presented
in section 4.7.

4.1 Incompact3D

Incompact3D is an open-source DNS/LES solver based on the finite difference method
to solve incompressible and compressible flows in the low-Mach number limit [187,
188]. Incompact3D numerically solves the non-dimensional Navier-Stokes Equations
(equation (2.3)) with characteristic velocity and length scales determined by flow
configuration (sections 4.4 and 4.5). Incompact3D is written in Fortran 90 using
the Message Passing Interface (MPI) for distributed memory parallelisation. A two-
dimensional pencil decomposition is used to partition the mesh using the library
2DECOMP&FFT, which will be discussed in more detail in section 4.3.2. The key elements
of the solver will now be reviewed.

4.1.1 Time advancement and discretisation

An important difficulty in numerically solving the Navier-Stokes equations is that
there is no independent equation for pressure, with the velocity and pressure being
coupled through the incompressibility constraint. To resolve this issue, Incompact3D
uses the fractional step method for time advancement of the simulations while ensur-
ing the momentum and continuity equations are satisfied at each time step [189, 190].
The fractional step method is a projection method where the momentum equation
is solved first without considering the continuity equation, then this intermediate so-
lution is projected onto the space of divergence-free solutions. A hybrid approach is
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used for the temporal discretisation with the third-order explicit multi-step Adams-
Bashforth scheme used for the convective terms and the diffusive terms in the stream-
wise and spanwise directions, while the second-order implicit Crank-Nicolson scheme
is used for the diffusive terms in the wall-normal direction.

The time advancement in Incompact3D, accounting for both the fractional step
method and the temporal discretisation, is

u∗i − uni
∆t

=aF n
i + bF n−1

i + cF n−2
i − ∂p̃n

∂xi
+

1

2Re
[Lyyu

∗
i + Lyyu

n
i ], (4.1a)

u∗∗i − ui
∗

∆t
=
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DGp̃n+1 =
1

∆t
Du∗∗i , (4.1c)

un+1
i − u∗∗i

∆t
=− ∂p̃n+1

∂xi
(4.1d)

where the coefficients of the Adams-Bashforth time scheme are a = 23/12, b =

−16/12, c = 5/12. Lαα represents the second derivative with respect to α, with D and
G representing the vector divergence and gradient operations respectively. Note that,
in this case, ∗ and ∗∗ represent intermediate velocity fields rather dimensional quanti-
ties. The Crank-Nicolson component can be observed on the right of equation (4.1a).
The projection variable, p̃ represents an approximation of the physical pressure with
Temam [191] highlighting that equation (4.1c) is different from the Poisson equation
for the exact pressure and has different boundary conditions. For the fractional step
method of Kim and Moin [190], p̃ represents the time-averaged pressure over the in-
terval ∆t [192, 187], and is related to the physical pressure, pn+1 = p̃n+1 + O(∆t)

[190]. F n
i is the explicit part of the right-hand side at time step n, defined as
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Note the skew-symmetric form of the convection terms, which ensures their conser-
vatism while reducing aliasing errors [185, 187].

Due to the implicit Crank-Nicolson terms and the use of the sixth-order compact
scheme (equation (4.7)), equation (4.1a) is solved by inverting Nx×Nz (up to) nona-
diagonal matrices using LU decomposition, this is presented in detail for a stretched
mesh in the appendix of Mahfoze and Laizet [193]. In equation (4.1b), the pressure
gradient from the previous time step is removed from the predicted velocity, u∗i , en-
suring that the tangential velocity boundary conditions imposed after equation (4.1a)
are accurate to O(∆t2) after the correction step (equation (4.1d)) [190, 194]. Equa-
tion (4.1c) is solved using a fully spectral approach. This takes advantage of the
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equivalence between differentiation in physical space and multiplication by wavenum-
ber in spectral space alongside the efficient Fast Fourier Transform (FFT) algorithm.
The general form of the 3D discrete Fourier transform, F is given by

f̂lmn =
1

NxNyNz

∑
i

∑
j

∑
k

fijkWx(−kxxi)Wy(−kyyj)Wz(−kzzk), (4.3)

and its inverse

fijk =
∑
l

∑
m

∑
n

f̂lmnWx(kxxi)Wy(kyyj)Wz(kzzk). (4.4)

Applying equation (4.3) to equation (4.1c) leads to

− k′2 ˆ̃p
n+1

= F
(

1

∆t
Du∗∗i

)
(4.5)

where F indicates the Fourier transform and k′2 = k′2x + k′2y + k′2z is the modified
wavenumbers associated with the spatial discretisation and interpolations schemes
used (section 4.1.2). These ensure the equivalence of differentiation in physical and
spectral space that is required by the correction step [195]. The particular basis func-
tions for W in equations (4.3) and (4.4) depend on the pressure boundary conditions.
For periodic boundary conditions, the FFT is used in that direction, while for homoge-
neous Neumann BCs, such as those used on no-slip walls, a discrete cosine transform
is used. The FFTW backend of 2DECOMP&FFT is used in this study to provide FFTs.
Note that these transforms are shifted in space due to the partially staggered grid.
p̃n+1 is recovered from equation (4.5) by dividing by −k′2 and performing the inverse
transform. The correction step is subsequently performed with the computed p̃n+1

(equation (4.1d)).

4.1.2 Spatial discretisation

Incompact3D has a single computational domain and uses a cartesian grid with uni-
form grid spacing in the streamwise and spanwise directions. A non-uniform grid is
used in the wall-normal direction, which allows the grid to be refined close to the
walls, allowing the smaller turbulence scales located there to be resolved economi-
cally. The mesh stretching function [196, 187] can be expressed in a small number
of Fourier modes, allowing the pressure field to be solved fully in spectral space at
a moderate cost (a pentadiagonal matrix is inverted for each (kx,kz)). The mesh is
partially staggered with the pressure mesh offset in each direction by half a cell with
the velocity components collocated (figure 4.1). The staggering of the mesh prevents
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Figure 4.1: Partial staggered grid: the computation of derivatives for equations (4.1c)
and (4.1d) is indicated with the blue and red arrows representing the computation of
∂xp̃ and ∂xu

∗∗ respectively. 1 indicates differentiation using equation (4.9) and 2
indicates interpolation using equation (4.10). Used in Incompact3D.

unphysical oscillations in the pressure and velocity fields, which can be associated
with fully collocated grids [197].

Incompact3D uses the sixth-order compact finite difference scheme for the spatial
derivatives. For gradients computed on the velocity mesh, the first derivative [186] is
given by

αf ′
i−1 + f ′

i + αf ′
i+1 = a

fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
, (4.6)

with α = 1/3, a = 14/9 and b = 1/9. The second derivative [186] is given by
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(4.7)

with α = 2/11, a = 12/11, b = 3/11, c = 0, and d = 0. Equations (4.6) and (4.7) can-

42



not be used close to solid boundaries. Consequently, a third-order one-sided compact
difference scheme is used at the boundary cell, while a fourth-order Padé scheme is
used for the adjacent point. Ghost nodes are used for symmetric and periodic bound-
ary conditions. This implicit formulation of spatial derivatives results in a tridiagonal
system (cyclic tridiagonal for periodic boundary conditions)

A1f
′ = B1f, A2f

′′ = B2f, (4.8)

which is solved using the Tridiagonal Matrix Algorithm (TDMA). Due to the partially
staggered grid, the divergence on the right-hand side of the Poisson equation (equa-
tion (4.1c)) requires the computation of velocity derivatives on the pressure mesh.
Conversely, the correction step requires the pressure gradient to be located on the
velocity mesh. This is achieved using a staggered sixth-order first-derivative scheme

αf ′
i−1/2 + f ′

i+1/2 + αf ′
i+3/2 = a

fi+1 − fi
∆x

+ b
fi+2 − fi−1

3∆x
, (4.9)

where α = 9/62, a = 63/62, and b = 17/62, and a sixth-order mid-point interpolation
scheme,

αf I
i−1/2 + f I

i+1/2 + αf I
i+3/2 = a

fi+1 + fi
2

+ b
fi+2 + fi−1

2
, (4.10)

with α = 3/10, a = 3/4, and b = 1/20. The successive differentiation and interpola-
tion for the gradient computations of ∂xu∗∗ and ∂xp̃ is shown in figure 4.1.

4.1.3 Large eddy simulation

While DNS requires all spatio-temporal scales to be resolved, LES is only interested
in the large anisotropic scales of the turbulent flow. LES is predominantly based on
the filtered Navier-Stokes equations, with the resulting subgrid terms representing the
influence of the unresolved small-scale motions on the filtered variables. Subgrid-scale
(SGS) viscosity models use the Boussinesq hypothesis to relate the subgrid terms to
the filtered velocity gradient through a subgrid-scale viscosity [61]. While these SGS
models are popular in many applications, they struggle when used with high-order
compact finite difference schemes because the second derivative (equation (4.7)) is
sub-dissipative meaning that it underpredicts the exact derivative at high wavenum-
bers. This can lead to spurious ‘wiggles’ when the mesh is coarse as the system is
insufficiently damped. Using Incompact3D, Dairay et al. [198] showed that to prevent
wiggles using the Smagorinsky [199] and Dynamic Smagorinsky [200] SGS viscosity
models required substantial mesh resolution such that the benefits of using LES were
negated.
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Figure 4.2: (a) shows the modified wavenumber for equation (4.7) and the iSVV
model for various values of ν0. (b) shows the resulting spectral viscosity, νs/ν0 for
different values of ν0 compared with the SVV kernel [13].

Another approach is the Spectral Vanishing Viscosity method developed for LES
by Karamanos and Karniadakis [13], where the premise is to add additional dissipa-
tion at high wavenumbers that can damp wiggles and can mimic the dissipative effects
of the subgrid scales, leading to its use in LES. In Incompact3D, a method imitating
this approach is implemented efficiently by modifying the coefficients of the second
derivative scheme (equation (4.7)) to provide additional dissipation at high wavenum-
bers at no additional computation cost per time step. The modified wavenumber for
the scheme in equation (4.7) is [193]

k′′∆x2 =
2a[1− cos(k∆x)] + b

2
[1− cos(2k∆x)] + 2c

9
[1− cos(3k∆x)] + d

8
[1− cos(4k∆x)]

1 + 2α cos(k∆x)
.

(4.11)
k′′∆x2 is shown in figure 4.2(a) alongside the exact derivative (k2) and can be ob-
served to underpredict the exact derivative at high wavenumbers leading to the sub-
dissipative behaviour described above. The premise of the method in Incompact3D is
to modify the coefficients of equation (4.7) such that k′′ is changed, giving a different
dissipative behaviour than the coefficients in section 4.1.2 while maintaining high-
order accuracy. This results in a spectral viscosity, νs, which is defined by comparing
the discrete second derivative operator with the exact derivative in spectral space

νk′′ = (ν + νs(k))k
2 ⇒ νs(k)

ν
=
k′′ − k2

k2
(4.12)

Details of how the coefficients are determined are given in Mahfoze and Laizet [193]
but results in two parameters that need to be determined: ν0 a parameter that controls
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the spectral viscosity, νs at the cut-off wavenumber, kc and cν , which is the ratio of
the νs between 2/3kc and kc.

Following Mahfoze and Laizet [193], cν is determined such that νs matches the
SVV kernel at the 2/3kc yielding cν ≈ 0.33. A drawback of this method is that ν0 is
generally case dependent, although strategies can be employed to make it dependent
on the local strain rate, mesh size, or Reynolds number [193]. Figure 4.2(a) shows the
modified wavenumber with different values of ν0 and figure 4.2(b) shows the resulting
spectral viscosity νs/ν0 compared with the original SVV kernel of Karamanos and
Karniadakis [13]. This shows that νs is similar to the original SVV kernel and is
self-similar over large values of ν0. This implicit SVV (iSVV) approach has been
used sparingly in this study with one computationally expensive validation case and
one case in chapter 6, which is minor but very computationally demanding if full
DNS was used. The iSVV method is evaluated for spatially accelerating TBLs in
section 4.7.4.1.

4.2 CHAPSim

CHAPSim is a pipe and channel flow DNS solver developed at Sheffield [201, 202].
It has been used previously in the study of temporally accelerating channel flow
[43, 15, 12], mixed convection of supercritical CO2 in vertically heated pipes [203]
and body forced influenced flows [204]. CHAPSim is also written in Fortran 90 and
uses the Message Passing Interface (MPI) to provide multi-process parallelisation.
For parallel computing, the mesh is partitioned in the y direction, resulting in a ‘slab’
decomposition that will be discussed in more detail in section 4.3.2.

4.2.1 Time advancement

CHAPSim follows a modified form of the fractional step method detailed in Orlandi
[205], which uses a different projection variable to Incompact3D, φ, which represents
an incremental pressure correction with the physical pressure, pn+1 = pn+φ+O(∆t).
Equation (4.13) shows the fractional step method alongside the three-stage, low-
storage Runge-Kutta scheme [206], where the superscript k represents each stage of
the scheme with f 3 = fn+1. The Crank-Nicolson scheme is used for the linear terms
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in all three directions.
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where Hi is the convection term. The numerical scheme coefficients γ, ζ, and α are
defined as:

γ1 = 8/15 ζ1 = 0 α1 = γ1 + ζ1 = 8/15
γ2 = 5/12 ζ2 = −17/60 α2 = γ2 + ζ2 = 2/15
γ3 = 3/4 ζ3 = −5/12 α3 = γ3 + ζ3 = 1/3

Similar to Incompact3D, the Crank-Nicolson scheme means that u∗i cannot be de-
termined directly from known quantities. Here, u∗i is computed using an approximate
matrix factorisation which leads to a splitting error O(∆t2) [201].[
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where ∆ui = u∗i−uni . The three matrices on the LHS are succesively inverted using the
TDMA. The Poisson equation (equation (4.13b)) is solved using a combined FFT-
TDMA solver where the streamwise and spanwise directions are solved spectrally.
This leads to a tri-diagonal system(
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D(u∗i )

)
, (4.15)

which is solved using the TDMA with φ being recovered by performing the inverse
FFT in the streamwise and spanwise directions.

4.2.2 Spatial discretisation

CHAPSim includes two computational domains: a streamwise periodic turbulence
generator, which is used to provide fully developed turbulent inflow conditions for an
inlet-outlet solver. A schematic of this configuration is presented in figure 4.3. The
mesh is fully staggered with the pressure stored at the cell centre, with each velocity
component shifted by half a cell in the direction it is normal to. A schematic of a fully
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Figure 4.3: Diagram showing the turbulence generator and inlet-outlet domain of
CHAPSim
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staggered grid is shown in figure 4.4. A fully staggered grid helps to eliminate pressure
chequering, although this requires extensive mid-point interpolation, particularly in
the computation of the convection terms. Unlike Incompact3D, no interpolation is
required to compute the velocity divergence or pressure gradient. CHAPSim uses the
second-order central difference scheme for all derivatives. This scheme less accurately
represents the exact derivative compared with the sixth-order scheme of Incompact3D.
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4.3 Important considerations for DNS

4.3.1 Grid resolution, domain size and time step

Alongside the numerical methods, the simulations must be set up correctly to capture
the turbulence physics accurately. For homogeneous directions where periodic bound-
ary conditions are imposed, the domain size must be large enough such that the two-
point correlations of the flow variables decay to zero within half the domain [184]. This
guideline is satisfied for all cases in this study, ensuring that the domain size should
not affect the statistics in those directions. However, this criterion does not neces-
sarily mean that all energy-containing motions are captured, with superstructures
and very-large-scale motions (VLSMs) present in the outer layer at high Reynolds
numbers that can extend for 20 h∗ in the streamwise direction [207, 208, 209].

The grid resolution must ensure that all relevant turbulence scales are captured. It
follows that DNS must resolve down to the Kolmogorov length scale, η = (ν3/ε)1/4, the
length scale associated with the dissipation of the smallest turbulent eddies. Moin and
Mahesh [184] noted that this condition is likely too stringent and that the requirement
is O(η), highlighting that most of the dissipation occurs at scales greater than 15η.
For wall-bounded flows, Coleman and Sandberg [210] noted that the streamwise and
spanwise grid spacing should be ∆x+ < 15 and ∆z+ < 8, respectively, for spectral
methods. For finite difference methods, the resolution requirements are finer due to
their high-wavenumber behaviour, although this is mitigated somewhat by the high-
order compact scheme used in Incompact3D. The wall-normal resolution at the wall
should be ∆y+ < 1 to resolve the viscous length, δ∗v scale with the first ten points
within y+ < 10 [210].

Also significant is the time step duration required to capture the flow physics
and ensure a stable numerical solution. Regarding flow physics, Choi and Moin
[194] performed simulations with a fully implicit time scheme, allowing consideration
of the physical aspects alone. Their results indicated that turbulence could not be
sustained if ∆t was larger than the Kolmogorov time scale, τη = (ν/ε)1/2 with second-
order statistics converging for ∆t+ < 0.4 corresponding to ∆tUb/h = 0.05. Another
important consideration for choosing the time step is numerical stability. Given that
the momentum equation is an advection-diffusion problem, the stability of simulations
is indicated by two dimensionless numbers. The Courant-Friedrich-Lewy criterion
comes from the advection term

C =
U∆t

∆x
≤ Cmax, (4.16)
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where C is the Courant number. The second number is the diffusion number, which
leads to the condition

D =
ν∆t

∆x2
≤ Dmax. (4.17)

The specific values of Cmax and Dmax depend on the temporal and spatial discreti-
sation schemes used. For explicit schemes, typically Cmax ≤ 1. In the study of
wall-bounded turbulence, equation (4.17) is often a more stringent condition, partic-
ularly in the y direction due to its dependence on ∆y2, which is small close to the
wall. This has been mitigated in this study by using the implicit Crank-Nicolson
scheme for the y diffusion term, which relaxes this condition. C also has a physical
meaning: it is the ratio of the distance traveled by a particle of speed U in time ∆t

to the grid spacing. The implication is that if C > 1, information is lost as a particle
would travel more than one grid spacing per time step. As a result, it is desirable for
C < 1 regardless of numerical stability considerations. Typically, in DNS studies of
wall-bounded turbulence, equations (4.16) and (4.17) are a more stringent constraint
on ∆t than flow physics with ∆t an order of magnitude below the values suggested
in Choi and Moin [194]. The total simulation duration must ensure that the flow
statistics are sufficiently converged.

4.3.2 High-performance computing strategy

All simulations in this study are conducted on supercomputers. Described simply, su-
percomputers comprise many computational cores grouped into a ‘node’ with many
nodes connected via high-speed interconnects. This architecture allows a large CFD
problem to be broken down into smaller chunks, which are solved by individual
cores in parallel. The result is that computationally expensive CFD problems can
be solved rapidly. Supercomputing is considered a subset of high-performance com-
puting (HPC), which encompasses the hardware and software technologies that enable
the solution of large-scale computational problems. Most simulations have been run
on ARCHER2, the UK national supercomputer, which contains more than 750,000
cores.

Both Incompact3D and CHAPSim are specifically designed to take advantage of
the massively parallel architectures of supercomputers. The main strategy of these
codes is to partition the computational mesh into smaller subdomains, which are
solved by separate processes on individual cores, with information being communi-
cated between cores using the Message Passing Interface (MPI). Consequently, as the
number of cores increases, the number of points being solved by each core reduces,
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Figure 4.5: Domain partitioning strategies. (a) Pencil decomposition showing from
left-to-right the X pencil, Y pencil and Z pencil. (b) Slab decomposition showing
from left-to-right the XZ slab and the XY slab.

typically reducing the overall duration of the simulation. The parallel efficiency of a
program is also determined by the amount of data that needs to be communicated
between the processes. The ability of a code to effectively use an increasing number
of cores determines the parallel efficiency and this depends on the partitioning and
communication strategies.

As discussed above, Incompact3D uses 2DECOMP&FFT to provide a ‘pencil’
decomposition, which is shown in figure 4.5(a). The computation of derivatives (sec-
tion 4.1.2) and FFTs in a particular direction requires the pencil to be aligned in that
direction. This requires the domain decomposition to be transposed, as indicated
by the different orientations of the pencils in figure 4.5(a). The 2DECOMP&FFT
library provides subroutines for transposition based on the MPI_Alltoallv subrou-
tine. For cases run using Incompact3D, the strong scaling of the problem, where the
same problem is tested on an increasing number of CPUs, is investigated. Ideally,
as the number of cores increases, the wall time per time step should reduce propor-
tionally, leading to a ‘linear’ speed-up. In the present study, the simulations are run
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Figure 4.6: Strong scaling for a spatially accelerating TBL turbulent boundary layer
with 1.4 billion points (case 3 from chapter 6).

on the maximum number of cores where at least linear speed-up is observed. Fig-
ure 4.6 shows the strong scaling for a turbulent boundary layer simulation with 1.4
billion mesh points on ARCHER2 and shows that for up to 192 nodes (24576 cores),
Incompact3D exhibits super-linear scaling with the speed-up falling below linear for
256 nodes.

CHAPSim uses a slab decomposition, with most computations being performed
on the XZ slab and most inter-process communication performed using a classic halo
exchange, in which only the boundary information of each slab is communicated.
Where TDMAs are performed in the y direction, the domain is transposed into the
XY slab (figure 4.5(b)) using MPI_Sendrecv calls. The use of slab decomposition is less
parallel efficient because the amount of data communicated during the halo exchange
per process does not decrease as the number of cores increases. The maximum number
of cores is also limited by the number of cells in the y or z direction. For CHAPSim,
the number of cores used was determined such that there should be a core for each 1 or
2 cells in the y direction. While this is not parallel efficient, it ensures the simulations
are completed in a reasonable time.

It is also important to consider file input-output (I/O) and data management.
Significant amounts of data may be produced for large simulations such as the TBL
case above. As a result, the amount of data written to disk must be minimised,
particularly for the turbulent statistics. This is achieved by performing averaging in
the homogeneous directions on the fly and thus reducing the total amount of data
being written to disk. MPI-IO is used for all large data writes, allowing the different
processes to write collectively to disk. Striping is used on the ‘Lustre’ parallel file
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system on ARCHER2, meaning that multiple processes can write to the same file
simultaneously, which significantly increases the speed of file I/O for large files.

4.4 Channel flow and temporal acceleration

For the channel flows in this study, the non-dimensional Navier-Stokes equations are
solved with the initial bulk velocity, U∗

b0 as the characteristic velocity scale and the
half-channel height, h∗ as the characteristic length scale both in Incompact3D and
CHAPSim. This results in the non-dimensional variables: u = u∗/U∗

b0, x = x∗/h∗,
t = t∗U∗

b0/h
∗, and p = p∗/ρ∗0U

∗
b0

2. The domain extents are consequently (0, Lx),
(0, 2), (0, Lz) in the streamwise, wall-normal, and spanwise directions, respectively.
Consistent with previous numerical studies of streamwise homogeneous channel flow,
the mean flow and turbulence are developed in time during the initial phase of the
simulation. This contrasts with experiments where the flow develops in space and
time before the test section.

4.4.1 Initial and boundary conditions

The velocity field in Incompact3D and CHAPSim is initialised with

ui(x, y, z; t = 0) = ūp(y)δi1 + u′i(x, y, z) (4.18)

where ūp(y) is the laminar Poiseuille profile, δi1 is the Kronecker delta, and u′i(x, y, z)
is an additional random perturbation. For Incompact3D, u′i(x, y, z) has been modified
compared to the base source code to promote a more rapid development of the tur-
bulent channel flow. This is particularly important for temporal acceleration cases,
where the duration of the transient arising from the acceleration is usually short com-
pared with the time required for the flow to fully develop after initialisation. In this
case, the u′i(x, y, z) distribution is given by

u′i(x, y, z) = A(x, y, z)[exp
(
− ln(y/0.1)2

)
+ exp

(
− ln((2− y)/0.1)2

)
], (4.19)

where A(x, y, z) is an array of random numbers in the range [−b, b] generated by a
pseudo-random number generator (Fortran intrinsic function random_number) where
b is an amplitude specified in the input file. The random number generator is seeded
with a number based on the system clock (time since 1st January 1970). This means
that the u′i(x, y, z) will be different each time the simulation is run, allowing for
repeated independent runs for temporally accelerating flows where time averaging is
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not permitted. The log-normal form of equation (4.19) results in strong fluctuations
close to the wall with peaks at y = 0.1 and y = 1.9, which was found to trigger
turbulence in the channel rapidly. The code is also modified to use a higher Reynolds
number in the initial stage of the flow, which further promotes transition.

Periodic boundary conditions are used in the streamwise and spanwise directions.
In the wall-normal direction, a no-slip condition is applied for the velocity field, and
homogeneous Neumann boundary conditions are used for pressure. For channel flows,
a uniform streamwise pressure gradient is applied at each time step to maintain mass
flow with

S =
Udes
b − Ub

∆t
. (4.20)

For steady channel flows, the desired bulk velocity, Udes
b = 1, while for temporally

accelerating cases, Udes
b varies with time. In practice, this is implemented by adding

a uniform velocity, Udes
b −Ub to the velocity field at the start of each time step. For a

given time-step the Udes
b − Ub is < 10−5. For temporally accelerating channel flow, it

is necessary to ensure that the flow is fully developed and the statistics are stationary
before beginning the acceleration.

4.5 Simulation of turbulent boundary layers

The simulation of turbulent boundary layers has some additional challenges compared
with turbulent channel flow. This includes the presence of streamwise inhomogeneity,
which invalidates the use of periodic boundary conditions in the streamwise direction,
and the need to generate reliable inflow conditions. Two main approaches to generat-
ing inflow data are available in the literature. In the first, a laminar inflow is used in
conjunction with a numerical ‘trip’ to trigger transition. Prominent studies that have
used this approach include Schlatter et al. [211] and Wu and Moin [144]. The second
approach, developed in Lund et al. [212], uses a turbulent inflow condition with the
velocity components on the inlet plane determined by recycling and rescaling a plane
from the flow interior. This method eliminates the need to simulate transition, mean-
ing smaller domains, and hence reduces computational cost. Other studies using the
‘recycling-rescaling’ method include Sillero et al. [3] and Simens et al. [16].

In this study, the recycling-rescaling method has been implemented in Incom-
pact3D and is used in order to reduce computational cost. For spatially accelerating
flows, this is particularly important because of the fine mesh required to adequately
resolve the onset of retransition. It is also anticipated that in the future, simulations
of spatially accelerating flows at much higher Reynolds numbers than the current
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study will be required to bridge the gap between recent experiments and simulations.
The current implementation is capable of achieving substantially higher Reynolds
numbers efficiently. It should be noted that Schlatter and Örlü [14] highlighted that
both approaches could be used effectively in the simulation of turbulent boundary
layers. The recycling-rescaling method has also been widely used in the study of
spatially accelerating TBLs [110, 120, 10, 213, 214, 215]. In this implementation in
Incompact3D, the method of Lund et al. [212] has been used with some improve-
ments to mean flow initialisation and a simplified freestream condition to impose the
acceleration.

4.5.1 Implementation details

For turbulent boundary layer cases, the non-dimensional Naver-Stokes equations are
solved with the inlet freestream velocity, U∗

∞,0 as the characteristic velocity scale
and the target inlet momentum thickness θ∗0 as the characteristic length scale. This
leads to the non-dimensional flow variables: u = u∗/U∗

∞,0, x = x∗/θ∗0, t = t∗U∗
∞,0/θ

∗
0,

and p = p∗/ρ∗0U
∗
∞,0

2 and a scaling momentum thickness Reynolds number, Re0 =

Reθ,0 = U∗
∞,0θ

∗
0/ν, a quantity often given in studies of turbulent boundary layers. The

momentum thickness is an output from the simulation, and hence, the target value of
Reθ,0 can be approached by iteratively adjusting the conditions. Therefore, the inlet
conditions must approach the desired conditions after the start of the simulations
such that the conditions in the domain are predictable a priori.

4.5.1.1 Recycling-rescaling method

The basic approach of Lund et al. [212] is used in the present study. Lund et al. [212]
uses scaling arguments to rescale the mean flow and turbulent fluctuations from the
recycling plane to the inlet plane. This has been found to be capable of locking onto
the statistics expected of zero-pressure gradient TBLs within a short distance of the
inlet. Other rescaling approaches have also been suggested [216, 217], based on the
scalings derived from George and Castillo [218]. A schematic of the recycling-rescaling
method is shown in figure 4.7. In the following sections, the following conventions will
be used: subscripts inlt and recy represent quantities at the inlet and recycling planes,
respectively and the superscript des indicates a desired quantity. The superscripts
inner and outer indicate where in the boundary layer, a quantity is used. For the mean
streamwise velocity, the law of the wall and velocity defect law are used,

ū

uτ
= F1(y

+)
U∞ − ū

uτ
= F2(η), (4.21)
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Figure 4.7: Schematic of the recycling-rescaling method showing the computational
domain, inlet, and recycling planes in relation to the boundary layer leading edge.

where F1 is the law of the wall and F2 is the velocity defect law.
The following relations can be derived relating the recycling and inlet planes in

the inner and outer parts of the boundary layer.

ūinnerinlt (y+inlt) = γūrecy(y
+
recy) (4.22)

ūouterinlt = γūrecy(ηinlt) + (1− γ)U∞, (4.23)

where γ = uinltτ /urecyτ . For the wall-normal mean velocity, it was assumed that in the
inner and outer regions, respectively

v̄/U∞ = F3(y
+) v̄/U∞ = F4(η). (4.24)

While this is not strictly true, Lund et al. [212] indicated that it was an adequate
assumption due to the small value of the wall-normal mean velocity. The inlet mean
wall-normal velocity is consequently given by

v̄innerinlt (y+inlt) = v̄recy(y
+
recy) (4.25)

v̄innerinlt (ηinlt) = v̄recy(ηrecy). (4.26)

The spanwise mean velocity, w̄ = 0. The velocity fluctuations at the inlet are based
on the similarity of the normal Reynolds stresses in the inner and outer layer

u′2i
+
= F5(y

+) u′2i
+
= F6(η), (4.27)
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While these scalings do not hold over a large Reynolds number range [219], the
Reynolds number dependence is weak. These scalings lead to

(u′i)inner(y
+
inlt) = γui(y

+
recy), (4.28)

(u′i)outer(ηinlt) = γui(ηrecy). (4.29)

The mean and fluctuating components are combined into a composite profile using a
weighting function

(ui)inlt = [(ūi)
inner
inlt + (u′i)

inner
inlt ][1−W (ηinlt)] + [(ūi)

outer
inlt + (u′i)

outer
inlt ]W (ηinlt), (4.30)

With the weighting function W (ηinlet) defined as:

W (η) =
1

2

[
1 + tanh

(
α(η − b)

(1− 2b)η + b

)
/ tanh(α)

]
. (4.31)

If α = 4 and β = 0.2, W (η) = 0.5 at η = 0.2, the traditional boundary between the
inner and outer layers. While it is interesting to note that equation (4.30) assumes
scale separation between the inner and outer regions of the boundary layer, which is
unlikely to be fully the case for any DNS studies using this method∗. For stability
reasons, equation (4.30) is imposed before equation (4.1c) which is equivalent to
imposition before equation (4.1b) (when the other boundary conditions are imposed)
with

v∗ = vinlt −∆t
∂p̃n

∂y
w∗ = winlt −∆t

∂p̃n

∂z
. (4.32)

This modification of equation (4.30) does not have an adverse effect on flow develop-
ment, and the flow developing from the inflow after a short distance attains statistics
consistent with ZPGTBL. This will be shown in section 4.7.

The recycling-rescaling method requires the computation of the mean flow. The
mean velocity at time-step n+1 is determined using a similar approach to Lund et al.
[212].

ūn+1
i =

∆t

T
〈ui〉nz +

(
1− ∆t

T

)
ūni , (4.33)

where 〈ui〉nz indicates the spanwise averaging only, and T is a reference time period.
Initially, T is fixed so that the contributions of older averages become less significant
with time. Eventually, the weighting is changed such that the contributions of all
subsequent times are equally weighted. From equation (4.33), uτ,recy, δrecy and θrecy

∗Scale separation typically requires Reτ ≥ 2000
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are computed with δ being the 99% thickness. The fluctuating velocities are defined
by

u′
n+1
i = uni − 〈ui〉nz , (4.34)

ensuring that the fluctuation has zero mean. uτ,inlt and δinlt are determined such that
the desired conditions at the inlet are approached. uτ,inlt is specified by relating the
flow at the inlet to that at the recycling plane using the relation [212, 19]

uτ ∝ Re
−1/8
θ =⇒ uτ,inlt = uτ,recy

θrecy
θdesinlt

−1/8

, (4.35)

with the desired inlet momentum thickness θdesinlt = 1. The boundary layer thickness at
the inlet is determined such that measured inlet momentum thickness, θinlt approaches
1. A relaxation-based scheme is used

δn+1
inlt = δninlt + α(1− θinlt)δ

n
inlt, (4.36)

where α is a relaxation factor. Therefore, if θinlt < 1, δn+1
inlt increases and vice versa.

Given that equation (4.33) will not immediately respond to such changes, a limit to
the value of δn+1

inlt is imposed to prevent δn+1
inlt quickly reaching extreme values

|δn+1
inlt − δinlt| < 1, (4.37)

where δinlt is the measured inlet boundary layer thickness. This approach was found
to be effective at reaching the desired inlet Reynolds number with the computed Reθ,0
always within 1% of its desired value.

4.5.1.2 Computational domain and boundary conditions

Similarly to other numerical studies of spatially accelerating TBLs [110, 10], the ac-
celeration is performed on a Cartesian mesh without explicitly contracting the flow
domain by applying freestream boundary conditions that mimic the effect of the con-
traction on the wall-normal and streamwise velocities. This approach considers the
flow development on a plane wall where it is assumed that the opposite contracting
wall is sufficiently far away that the boundary layer developing on that wall does
not affect the plane wall except for causing the desired flow contraction and stream-
wise flow acceleration. The resulting computational domain and its relationship to a
typical experimental setup are depicted in figure 4.8.

The acceleration is imposed by specifying the freestream wall-normal boundary
condition such that a desired freestream streamwise velocity, Udes

∞ , is approached.
The boundary conditions at Ly are
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Figure 4.8: Schematic of the computational domain used for a typical spatially accel-
erating TBL compared with a typical experimental setup

∂u

∂y
= 0

∂v

∂y
= −dUdes

∞
dx

∂w

∂y
= 0, (4.38)

where the boundary condition for v is a statement of mass continuity at the freestream.
After the correction step (equation (4.1d)), ∂yv = −dxU

des
∞ will not apply exactly.

Nonetheless, figure 4.9(a) shows that Udes
∞ is recovered accurately. The wall-normal

mean velocity is shown in figure 4.9(b) and shows large wall-ward velocities originat-
ing from the freestream consistent with the effect of flow contraction, noting that
there is a mild suction at the freestream upstream of acceleration consistent with
a slowly growing boundary layer there. The approach used here differs from that
used in Piomelli et al. [110] which uses the integrated continuity equation where
V∞ = Udes

∞ dxδu + (δu − h)dxU
des
∞ . However, equation (4.38) was found to tend to

the desired freestream velocity more rapidly as it does not depend on a local compu-
tation of δu. Testing indicated that both approaches produced essentially the same
results. Acceleration could also be imposed using the immersed boundary method to
explicitly contract the flow, although the current approach is more straightforward
to implement and less computationally demanding.

Similar to many studies of pressure gradient turbulent boundary layers [10, 215,
220], a single computational domain is used for all cases in this study. As the method
of Lund et al. [212] is developed for ZPG flows, it is necessary to ensure that the ac-
celeration has a minimal effect on the recycling plane. This was ensured by checking
that the statistics upstream of the FPG region are consistent with ZPG turbulent
boundary layers a posteriori, which indicated that only small deviations were ob-
served.
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Figure 4.9: U∞ compared with Udes
∞ and the wall-normal mean velocity, v̄ showing

substantial inflow as a result of the flow contraction induced by equation (4.38).

A no-slip/impermeability condition is applied at y = 0, and the spanwise direction
is periodic. A convective outlet boundary condition, based on the one-dimensional
advection equation, is applied at x = Lx,

∂ui
∂t

+ Uc
∂ui
∂x

= 0, (4.39)

where Uc is the local streamwise velocity at the outflow plane. Homogeneous Neu-
mann boundary conditions are used for the pressure at the inlet, outlet, freestream,
and wall, with a periodic boundary condition used for the spanwise direction. The
Poisson equation is singular with these boundary conditions, with the pressure only
determined up to an additive constant. As a result, the right-hand-side of the Poisson
equation must satisfy the compatibility condition [16]∫

V
DGp̃n+1 dV =

∫
S

∂p̃n+1

∂n
dS = 0 =

∫
V
Du∗∗ dV =

∫
S
u∗∗ · n dS, (4.40)

which is a statement of global mass conversation on the predicted velocity field. As a
result, a small uniform velocity (< 10−5) is added to u at the outlet plane such that
equation (4.40) is satisfied.

4.5.1.3 Initialisation and flow development

The flow is initialised for TBL simulations such that the duration of the initial tran-
sient is minimised. For the mean streamwise velocity, it is desired that δ(x, t = 0),
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θ(x, t = 0), and uτ (x, t = 0) are consistent with ZPG turbulent boundary layers to
aid the initial development of the recycling method. It is also desired that the θinlt
is initialised close to θdesinlt. The composite profile proposed by Nickels [221] is used to
determine ū+ with correlations, effective at low Reynolds number, used to determine
the streamwise development of uτ and δ. Nickels’ profile has several advantages, such
as its relative simplicity, ability to capture the wake accurately even at low Reynolds
numbers [14], and its asymptotic behaviour as y → ∞. This approach represents an
improvement over previous studies such as Lund et al. [212] and Lee and Sung [222],
which used Spalding’s law of the wall [223], which does not asymptote as y+ → ∞,
does not account for the wake, and requires root-finding. Luchini [224] also showed
that Spalding [223] exhibited worse agreement with numerical data than alternatives.
The composite profile developed by Luchini [224] is a possible alternative to the cur-
rent approach. The Nickels profile is given by

ū+ = ū+s + ū+o + ū+w , (4.41)

where ūs describes the viscous sublayer, ūo describes the overlap region and ūw de-
scribes the wake region. These components are defined as

ū+s =y+c

[
1−

(
1 + 2(y+/y+c ) +

3

2
(y+/y+c )

2

)
e−3y+/y+c

]
, (4.42a)

ū+o =
1

6κ
ln

(
1 + (0.6(y+/y+c ))

6

1 + η6

)
, (4.42b)

ū+w =b

[
1− exp

(
−5(η4 + η8)

1 + 5η3

)]
. (4.42c)

where κ is von Kármán constant and b represents the wake strength which is deter-
mined by taking equation (4.41) with y+ → ∞

b = U+
∞ − y+c − 1

6κ
ln

(
0.66δ+

6

y+c
6

)
, (4.43)

where U+
∞ =

√
2/Cf , y+c = 12. δ+ and Cf are determined from correlations [19, 14]

Cf = 0.024Re
−1/4
θ , (4.44)

δ+ = Reτ = χ1.13Re0.843θ . (4.45)

where χ = 0.86 is a correction factor that accounts for the difference between the
definition of δ originating from Nickels’ composite profile and the 99% thickness which
equation (4.45) is based on. Reθ is computed at each streamwise location, x, from a
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correlation derived from equation (4.44) and the momentum integral equation 2 dReθ
dRex

=

Cf

Reθ =

[
3x

200
Reθ,0 +Re

5/4
θ,0

]4/5
. (4.46)

The mean streamwise velocity is recovered from ū = uτ ū
+ where uτ =

√
Cf/2. The

mean wall-normal velocity is determined from the computed values of ū using the
integrated mean continuity equation,

v̄(x, y) = −
∫ y

0

∂ū

∂x
dy. (4.47)

The resulting ū+ is shown in figure 4.10(a) compared with DNS data [14] high-
lighting the similarity of the initialised flow with reference data. Figure 4.10(b) shows
an almost exact overlap between a given value of Retargetθ with the resulting Reθ

computed from the initialised profile indicating an effective mean flow initialisation
strategy.

A numerical trip is used to initiate turbulence in the domain. This trip is a
volumetric body force applied to the wall-normal momentum equation at periodic
intervals in the streamwise direction. The tripping function is based on Schlatter and
Örlü [225] and is already implemented in Incompact3D [226]. This forcing displaces
fluid in the wall-normal direction, leading to streak generation and transition. After
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Figure 4.11: Tripping method: u and v early in the simulation showing the periodic
arrays of tripping locations and the resulting turbulent structures. (a) u′ x− z plane,
(b) v′ x− z plane. (c) u′ x− y plane

a user-defined amount of time, the forcing is removed, and the turbulence is sustained
solely through the turbulent inflow described above. Figure 4.11(b) shows the periodic
array of tripping locations in the wall-normal velocity shortly after the start of a
simulation with the resulting near-wall streaks and turbulence visible in figures 4.11(a)
and 4.11(c).

4.5.2 Specific considerations for the simulation of TBLs

In simulations of TBLs, the height of the computational domain, Ly is a parameter
to be determined. Ly should not have any unintended side effects on the behaviour of
turbulence within the computational domain. In their assessment of TBL simulations,
Schlatter and Örlü [14] noted that the simulations that had taller and wider domains
tended to perform better, highlighting the data of Simens et al. [16] and Schlatter et al.
[227] as performing best. Consequently, we have used domain sizes similar to those
studies with the height and width that exceeded 3δ99 for all streamwise locations.
These guidelines have also been used in other studies [228]. All cases presented in
this study have Ly & 3max(δ99) and Lz & 3max(δ99).
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The distance between the inlet and recycling planes is also an important consid-
eration. Simens et al. [16] highlighted that the recycling-rescaling method introduced
an artificial periodicity into the turbulent boundary layer, which could be observed
even in the instantaneous data [222]. This periodicity was only completely elimi-
nated if the distance between the recycling and inlet planes exceeded x/θ0 > 850.
In general, they conclude that the recycling plane should be at least 20-30 boundary
layer thicknesses from the inlet, as this region tends to be governed by the assump-
tions made to generate the inflow conditions. While it has been noted that accurate
first and second-order statistics can be achieved even with relatively short distances
[10, 222], it is desirable to reduce the effect as much as possible. Morgan et al. [229],
studying supersonic boundary layers using the recycling-rescaling method, assessed a
number of strategies for minimising these artificial periodicities and hence enabling
shorter distances between the inlet and recycling planes. These include applying a
spanwise shift or a reflection along the spanwise centreline to the generated inflow.
Three test cases have been run to assess the effect of shifting and reflecting the inflow.
The distance between the inlet and recycling planes in these tests, Lrecy ≈ 40δ0. The
effect of these approaches is presented in figure 4.12, which shows the spatiotemporal
autocorrelation,

R11(x, y; ∆t,∆z) = 〈u′(x, y, z, t)u′(x, y, z +∆z, t+∆t)/u′u′(x, y) (4.48)

at the recycling plane at y/δ ≈ 0.5. The temporal separation is normalised by
Lrecy/Uconv such that one on the abscissa scale indicates the approximate time lag
for a recycled plane to reach the recycling plane. Figure 4.12(a) shows R11 for a
case without any shift or reflection. The negative lobes, typical of the spanwise
autocorrelations of u′, can be observed above and below the central peak at ∆t =

∆z = 0. Strong secondary peaks can be observed at ∆tUconv/Lrecy = 1, indicating
a strong correlation between the inlet and recycling planes. There does not appear
to be a peak at ∆tUconv/Lrecy = 2. For the Lz/2 shifted case (figure 4.12(b)), there
is still a second peak at ∆tUconv/Lrecy = 1 although it is weaker and shifted. In
this case, there is a small peak at ∆tUconv/Lrecy = 2. Figure 4.12(c) shows only
a very minor secondary peak at ∆tUconv/Lrecy = 2, indicating the periodicity has
been weakened significantly and occurs at much larger ∆t. which together with the
relatively large Lrecy prevents the periodicity from significantly affecting the inflow
time series. Hereafter, the reflection method has been applied to the simulations of
turbulent boundary layers.
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Figure 4.12: Spatiotemporal autocorrelation of the streamwise velocity showing spu-
rious periodicities in the recycling method and several mitigation approaches. (a)
Normal Recycling method. (b) Shifting the inlet plane by Lz/2 in the z direction. (c)
Reflecting the inlet plane about z = Lz/2.

4.6 Computation of statistics

4.6.1 Statistic computation for different flow configurations

The present study investigates a range of flow configurations that require slightly
different definitions of key statistics. Below, we will describe the discrete statistics in
terms of the statistical moments of a random variable, φ(x, y, z; t) for brevity. More
advanced statistics will be defined as required. For Incompact3D, all statistics have
been computed on the fly with the Python packages matplotlib, pgfplots and
pyvista used for visualisation. For CHAPSim, most statistics were calculated on the
fly, with some more advanced quantities computed using saved instantaneous data.

Stationary channel flow

This flow configuration is found in the validation cases and the turbulence generator
of the moving wall case. These cases are averaged in the homogeneous spanwise and
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streamwise directions, in time and about the midplane. Hence, for the mth statistical
moment of φ(x, y, z; t)

φm(y) =
1

NtNzNx

Nt∑
t

Nx∑
i

Nz∑
k

φm, (4.49)

where Nt is the total number of timesteps, and Nx and Nz are the number of points in
the streamwise and spanwise direction, respectively. The final statistics of simulation
are computed with the effect of the initial transient removed a posteriori such that
the average between time step Nt1 and Nt2 is

φm(y) =
Nt2φm

t2(y)−Nt1φm
t1(y)

Nt2 −Nt1

. (4.50)

where φm
t2 and φm

t1 are the average (equation (4.49)) at steps Nt2 and Nt1 respec-
tively. Nt1 is determined using monitoring points and spanwise averaged quantities
to assess when the flow has become stationary. The approach to stationary condition
for a turbulent channel flow is shown in figure 4.13, which also highlights the rapid
approach to the steady conditions using the methods discussed in section 4.4.
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Figure 4.13: Monitoring fully developed channel flow at Reτ = 180: Instantaneous, u
and spanwise averaged streamwise velocity,ū (y axis right), and skin friction coefficient
Cf (y axis left).

Temporally accelerating channel flow

The temporally accelerating channel flows are also averaged in the homogeneous
spanwise and streamwise directions, and about the midplane. Due to the lack of
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Table 4.1: Case setup for the channel flow validation at Reτ = 180 and Reτ = 395.

Reτ,ref Reτ Lx Lz Nx Ny Nz ∆x+ ∆z+ ∆y+w ∆y+c

CHAPSim 180 178 10 4 540 288 360 3.3 1.98 0.242 1.87
Incompact3D 1a 180 181 18 6 540 257 240 6.04 4.53 0.401 5
Incompact3D 1b 180 182 18 6 324 181 154 10.1 7.11 0.505 8.13
Incompact3D 2 395 391 18 6 882 393 400 7.98 5.87 0.585 6.81

Vreman and Kuerten [230] 180 180 4π 4π
3

512 256 256 4.4 2.9 2.2
Moser et al. [231] 395 392 2π π 256 193 192 10 6.5 6.5

stationarity in temporal acceleration, the simulations are also run multiple times and
ensemble-averaged to achieve statistical convergence. φm is given by

φm(y; t) =
1

NeNzNx

Ne∑
e

Nx∑
i

Nz∑
k

φm. (4.51)

where Ne is the number of ensembles.

Streamwise-developing flows

Streamwise developing flows such as the spatially accelerating turbulent boundary
layers and moving wall accelerations are averaged in the spanwise direction and in
time yielding

φm(x, y) =
1

NtNz

Nt∑
n

Nz∑
k

φm. (4.52)

The initial transients are removed using the same approach as stationary channel
flows. The moving wall accelerations are also averaged about the midplane.

4.7 Validation and assessment of numerical tools

4.7.1 Turbulent channel flow

CHAPSim and Incompact3D are now validated for fully-developed turbulent chan-
nel flow at Reτ = 180 and Reτ = 395 against the reference DNS data of Vreman
and Kuerten [230] and Moser et al. [231]. The characteristics of each case and the
validating data are shown in table 4.1. Note that for Reτ = 180, Incompact3D has
been validated with both a fine and coarse grid to highlight that Incompact3D can
accurately reproduce statistics even at marginal resolution.

The mesh resolution is within the bounds specified in section 4.3 with the ∆y+ at
the wall less than one, although the grid resolutions are somewhat coarser than the
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Figure 4.14: Channel flow validation: (a) ū+ vs y+ at Reτ = 180; (b) Normal Reynolds
stresses at Reτ = 180; (c) ū+ vs y+ at Reτ = 395; (d) Normal Reynolds stresses at
Reτ = 395.

Vreman and Kuerten [230] data. The domain sizes are larger than the comparison
data, particularly for Reτ = 395. Figure 4.14 shows that for the fine mesh cases,
there is excellent agreement between the solvers used herein and the reference data
for the mean streamwise velocity and the RMS of the fluctuating velocity components.
The agreement is still very good for the coarser mesh case, although perhaps slightly
worse for w′

rms close to the wall. The streamwise Reynolds stress budget for Reτ =

180 is shown in figure 4.15. Good agreement is observed for both CHAPSim and
Incompact3D.

4.7.2 Temporally accelerating channel flow

For the transient channel flow simulations, we compare Incompact3D with the data
from He and Seddighi [15]. This case is a step-change temporal acceleration where the
bulk velocity is increased linearly by a factor of 2.6 over a short duration (∆tUb1/δ =

0.22). The flow configurations for each case are shown in table 4.2, with the present
case having a slightly finer mesh and larger domain sizes in the periodic directions.
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Figure 4.16 shows the skin friction coefficient and the inner-scaled mean velocity.
The transition process that occurs in temporal acceleration is recovered with Cf

decreasing to a minimum before increasing after the onset of transition. The present
results closely correspond with He and Seddighi [15] for both the Cf and ū+ with the
strong deviation of the latter from the law of the wall during the transient captured
well.

Table 4.2: Simulations configuration for temporal acceleration validation.

Reb Reτ ∆x+ ∆z+ ∆y+w ∆y+c Lx Lz

Case

Present Initial flow 2825 179.4 4.27 2.99 0.303 3.47 18 6
Final flow 7404 418.3 9.96 6.97 0.706 8.09 18 6

He and Seddighi [15] Initial flow 2818 179.3 3.2 1.9 0.16 2.78 18 5
Final flow 7404 418 7.3 4.3 0.37 6.4 18 5

4.7.3 Zero pressure gradient TBLs

The ZPG case is summarised in table 4.3 and validated against DNS data from
Spalart [17], Simens et al. [16] and Schlatter and Örlü [14], and the experimental
data from Purtell et al. [18]. The inlet plane of the simulations is at Reθ = 450 with
the outlet at Reθ ≈ 1540. Figure 4.17 shows the development of several important
parameters that were used by Schlatter and Örlü [14] to assess the quality of DNSs
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of ZPGTBLs. Figure 4.17(a) shows the Cf compared with the reference data and
the Smits et al. [19] correlation (solid blue), with the ±5% bounds (blue dashed)
suggested by Schlatter and Örlü [14] also shown. After a short recovery region,
Cf closely follows the reference data and the correlation of Smits et al. [19]. The
recovery region for Reθ < 600 is commonly observed in turbulent boundary layer
DNSs using the recycling-rescaling method and is related to assumptions used to
rescale the velocity onto the inlet plane [16, 3]. In particular, the weighting function
(equation (4.31)) leads to a second smaller inner peak in the streamwise Reynolds
stress at the inlet plane due to the lack of scale separation between the inner and outer
layers. Nonetheless, the recovery region is comparatively short and is considered in
case setups. Figure 4.17(b) shows the variation of Reτ vs Reθ with the correlation
suggested by Schlatter and Örlü [14]. After the recovery region, a close correspondence
with the correlation is observed with a closer fit than the reference data.

Figure 4.17(c) compares the shape factor with the correlation from Chauhan et al.
[20] for H with the ±1% suggested by Schlatter and Örlü [14] also shown. H is

Table 4.3: Simulation configuration for ZPG turbulent boundary layer validation.
The grid resolutions indicate their worst in the domain.

Reθ,0 Reθ,f ∆x+ ∆z+ ∆y+w ∆y+δ Lx/δf Ly/δf Lz/δf

Present 445.9 1539 6.11 4.72 0.53 7.68 42.1 3.51 3.5
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Figure 4.17: Comparison of mean flow parameters with validating data [14, 16, 17, 18].
(a) Cf compared with correlation [19]. (b) Reθ vs Reτ compared with correlation [14].
(c) H compared with Chauhan et al. [20] relation. (d) τ ′+w,rms compared with relation
from Schlatter and Örlü [14].

just about within 1% the Chauhan et al. [20] correlation. The recovery region is
longer than for Cf (extending to Reθ ≈ 800) due to H being a function of the entire
velocity profile and susceptible to the slower relaxation times of the outer flow [3].
For Reθ > 1300, there appears to be a slight change in trend, suggesting that there
is a region that is slightly affected by the outlet. While the effect appears to be
small in the present study, it has been managed by discarding results close to the
outlet, similar to previous studies [232]. Figure 4.17(d) shows τ ′+w,rms, which has been
computed similarly to Schlatter and Örlü [14] using τ ′+w,rms = limy+→∞(u′+rms/ū

+).
The results indicate good agreement with the correlation proposed by Schlatter and
Örlü [14] and the reference data. It also indicates that the recovery region extends to
Reθ ≈ 800.

The mean streamwise velocity is shown in figures 4.18(a) and 4.18(c) at Reθ =
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Figure 4.18: Comparison of mean velocity and normal Reynolds stresses with Schlat-
ter and Örlü [14]. Present: solid lines. Schlatter and Örlü [14]: dashed lines with
markers.

1000 and Reθ = 1410, indicating a good correspondence between the present data and
Schlatter and Örlü [14]. The RMS velocity fluctuations are shown in figures 4.18(b)
and 4.18(d). While there is generally good agreement, the stresses in the present
results extend slightly further from the wall in the outer layer. This is likely due to
the slightly higher Reτ for a given Reθ in the present case (figure 4.17(b)), noting
that Reτ is closer to the proposed correlation (figure 4.17(b)). The budget of u′u′ is
presented in figure 4.19 which indicates good agreement with Schlatter and Örlü [14]
at Reθ = 1000 and Reθ = 1410.

4.7.4 Favourable pressure gradient TBLs

We validate the implementation of spatially accelerating TBLs by comparing the
present method to case LES3s from Piomelli and Yuan [10]. This section comprises
two parts: an assessment of the iSVV model for simulating laminarising spatial accel-
erations by comparing it with DNS data (section 4.7.4.1), and the comparison with
Piomelli and Yuan [10] (section 4.7.4.2).
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4.7.4.1 Applicability of iSVV method

It is important to show that the iSVV approach can capture the laminarisation process
qualitatively and quantitatively, with any differences between the present implemen-
tation of spatially accelerating TBLs and Piomelli and Yuan [10] not likely to be
related to the use of the iSVV model. As discussed in section 4.1.3, ν0 must be se-
lected, noting that the optimal value of ν0 is unknown a priori. Consequently, we
must ensure that flow statistics are not strongly dependent on the specific value of
ν0 or the mesh resolution and produce results comparable to DNS. A strategy is also
required to use the iSVV method to ensure its results can be trusted when reference
DNS is not available.

We use case 1 from chapter 6 for the DNS reference case. This case strongly
laminarises, so it can be considered to reflect the physics that occurs in Piomelli

Table 4.4: Case characteristics for the iSVV tests, noting that the resolutions are the
worst in the domain. Coarse case is at ν0 = 20.

Reθ,ref Kmax Lx Ly Lz ∆x+ ∆z+ ∆y+w ∆y+δ

DNS 884 6.26 59.8 2.94 3.8 9.88 6.11 0.719 6.79
ν0/ν = 20 874 6.26 60.9 2.99 3.86 26.2 14.9 0.623 7.23
ν0/ν = 30 879 6.25 60.9 2.99 3.86 26 14.8 0.62 7.24
ν0/ν = 50 875 6.26 61.4 3.02 3.89 25.9 14.7 0.616 7.25
Coarse 876 6.27 60.3 2.96 3.81 47.9 20 0.821 10.5
WALE 796 7 68.3 2.48 3.09 37.5 13.3 1.08 5.07
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and Yuan [10]. Table 4.4 shows a summary of the DNS reference case and all the
LES cases, noting that smaller values ν0 diverged. For reference, an LES case using
the wall-adapting local eddy viscosity (WALE) [233] subgrid-scale (SGS) model has
also been presented to highlight the deficiencies in using SGS viscosity models with
high-order finite difference schemes, noting that this case is slightly different from the
others.

We first present a qualitative comparison of the flow during laminarisation. Fig-
ure 4.20 compares an instantaneous snapshot of v′ for case 1 using DNS, WALE model,
and the iSVV model with ν0 = 20. In the DNS case, the typical hallmarks of laminar-
isation can be observed with the attenuation of the wall-normal component during
laminarisation. The WALE model using the ordinary 6th-order compact scheme for
the second derivative shows good behaviour during the ZPG region, but during the
laminarisation, it suffers from severe small-scale oscillations similar to those observed
in Dairay et al. [198]. In contrast, the iSVV model qualitatively replicates the DNS
results and does not suffer from wiggles. While not a focus of this study, understand-
ing why the WALE model suffers from such severe oscillations during laminarisation
specifically should be investigated further.

Figure 4.21 shows Cf , Reθ, and H for DNS and the iSVV model cases. All
curves match the DNS results well, with the region associated with laminarisation
captured excellently in all cases. The agreement is worst during retransition, with
larger values of ν0 becoming progressively worse, with the coarser mesh somewhat
worse. Figure 4.22 shows the inner-scaled mean velocity and Reynolds shear stress
profiles for case 1 for the DNS (lines) and iSVV cases (markers). All cases exhibit
good agreement, particularly in the early stages of the acceleration. After the onset
of retransition (x ≥ 500), the cases with larger values of ν0 have a slightly worse
agreement, although they are still adequate, noting the very rapid development of
the mean flow around the onset of retransition. The close results suggest that the
results are not too sensitive but that lower values of ν0 are likely to be better, providing
the simulations do not diverge. Finer meshes are better, likely because they limit the
influence of the spectral viscosity, with the modified wavenumber, k′′ approaching the
exact wavenumber for most flow scales.

As a result, the strategy we propose is that the smallest value of ν0 that eliminates
wiggles and does not diverge should be used, as this should provide the best overall
agreement during the laminarisation and retransition stages. We also use mesh reso-
lutions that are at least approximately as good as those in table 4.4, noting that the
resolutions in table 4.4 represent the worst in the domain such that much of domain
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Figure 4.20: Wall-normal velocity fluctuations, v′ for DNS, LES (WALE) and LES
(iSVV). (a) DNS,(b) WALE, (b) iSVV.
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Figure 4.21: Comparison of mean flow parameters between DNS and the iSVV model
for case 1 with ν0 ∈ {20, 30, 50}. (a) Cf , (b) Reθ, and (c) H.
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upstream of retransition is close to DNS resolution with the influence of spectral vis-
cosity likely to be small. Nonetheless, there is still a degree of uncertainty in the
choice of ν0. Therefore, the iSVV model has only been used in a limited way in this
study. The Adaptive Numerical Viscosity method of Mahfoze and Laizet [193] could
also be adapted and tested on spatial accelerations, which would remove the need to
select ν0 for each case.

4.7.4.2 Validation

Following the policy described in section 4.1.3, ν0 = 20 and the mesh is well-resolved,
with the y and z resolutions close to DNS. Case LES3s uses large eddy simulation
using the Dynamic Smagorinsky model for the subgrid stresses.

Some key flow parameters for case P are shown in figure 4.23 compared with
Piomelli and Yuan [10]. Figures 4.23(a) and 4.23(b) indicate that the variation of
U∞ was closely reproduced with the current method. Cf and Reθ are presented in
figures 4.23(c) and 4.23(d). Before acceleration (x ≈ 0), Piomelli and Yuan [10]

Table 4.5: Simulation configuration of spatially accelerating turbulent boundary layer
validation.

Reθ,ref Lx Ly Lz ∆x+ ∆z+ ∆y+w ∆y+δ

Case P 737 570 18.3 20.3 35.8 10.4 0.734 5.62
Piomelli and Yuan [10] 737 68 13 1.2
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Figure 4.23: Comparison of mean flow parameter with Piomelli and Yuan [10]. (a)
U∞, (b) K, (c) Cf , (d) Reθ.

appears to overpredict Cf , with the present results consistent with the Smits et al.
[19] correlation. After the onset of laminarisation, the skin friction coefficients in
both cases overlap with the behaviour around retransition very similar. For Reθ, the
trends in both cases are similar, although there is a stronger reduction in Piomelli
and Yuan [10] during the laminarisation.

The inner-scaled mean streamwise velocity are presented in figure 4.24. Fig-
ure 4.24(a) indicates that the present results and Piomelli and Yuan [10] are consistent
for much of the acceleration, with the uplift of the logarithmic law observed during
the laminarisation and the return to equilibrium after retransition in both cases. Con-
sistent with the overpredicted Cf , the wake strength at x = 0 is noticeably smaller in
Piomelli and Yuan [10], although at subsequent locations, the velocity profiles match
well. The variation of the von Kármán and additive constants for case P will now be
examined using the diagnostic function approach discussed in section 2.4.1. Nagib
and Chauhan [60] showed that for a range of canonical flows, including spatially ac-
celerating flows, κB = 1.6[exp(0.1663B) − 1]. This was subsequently confirmed for
much stronger accelerations [87] and the reference case in Piomelli and Yuan [10].
Figure 4.24(b) shows close correspondence with the correlation up to the point of
retransition for case P consistent with Piomelli and Yuan [10]. Figure 4.24(c) com-
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ū
+

(a)

0 5 10 15

B

0

5

10

15

20

25

30

κ
B

(b)

κB

L�;B# � *?�m?�M kyy3

100 101 102 103

y+

0

5

10

15

20

ū
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Figure 4.24: Comparison of inner-scaled mean velocity profile. (a) ū+, where lines
represent the present results; the markers are from Piomelli and Yuan [10]. (b) shows
the variation of the logarithmic law constants, κB vs. B and κB = 1.6[exp(0.1663B)−
1]. (c) shows the consistency of the computed logarithmic law constants with the inner
scaled mean velocity. (d) shows the diagnostic function, Ξ during laminarisation for
case P, with the symbols having the same meaning as (c).

pares the computed logarithmic law with ū+, with both agreeing well, particularly
later in the acceleration. The agreement at x = 0 is somewhat worse, which can
be investigated further by examining the diagnostic function, Ξ, which shows that
Ξ only reaches a minimum at x = 0, similar to the lower Reynolds number channel
flows in figure 2.2(b). However, a region of constant Ξ emerges as the acceleration
progresses and by x = 280, much of the outer part of the boundary layer is essentially
logarithmic. This indicates that a logarithmic region emerges in strong accelerations
notwithstanding the low initial Reynolds number.

The inner-scaled Reynolds shear stress is presented in figure 4.25 with reasonable
agreement between case P and Piomelli and Yuan [10], first reducing until the onset
of retransition before increasing back to its typical ZPG values. However, there are
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Figure 4.25: Comparison of the inner-scaled Reynolds shear stress with Piomelli and
Yuan [10]. Lines and symbols are the same as figure 4.24(a).

some small differences between the cases during laminarisation ( x/δu,ref = 225−298).
Overall, the results follow Piomelli and Yuan [10] reasonably well with the agreement
of the mean flow with the correlation of Nagib and Chauhan [60] encouraging. How-
ever, the agreement is not perfect, and it is also clear that their Cf upstream of
the acceleration does not match correlations for low Reynolds number TBLs. The
present results highlight the need for high-quality experimental data at low Reynolds
numbers to enable a more thorough validation of simulations using the method in
section 4.5.
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Chapter 5

A spatially accelerating flow with
longitudinally contracting walls

In this chapter, an idealised spatially accelerating flow is studied where the effect
of flow contraction is removed by using longitudinally accelerating moving walls to
provide a relative spatial acceleration. This allows an investigation of a spatially
accelerating flow where the influence of near-wall viscosity can be considered without
the influence of flow contraction. The resulting flow development is consequently
simpler than the spatially accelerating TBLs considered in chapter 6. A transition
process is identified similar to that in temporal acceleration. In addition, it is shown
that the moving wall acceleration captures some of the important aspects of the
turbulence development in spatially accelerating TBLs.

5.1 Moving wall acceleration

The moving wall acceleration was implemented through a decreasing streamwise ve-
locity boundary condition on the top and bottom walls of the channel. A schematic
of this acceleration is presented in figure 5.1. This study uses a linear acceleration,
which can be achieved by letting the wall velocity, Uw(x) = −Cx in which C is a
positive constant in the highlighted section of figure 5.1. This leads to the bulk of
the fluid accelerating linearly relative to the wall as Ub = Ua−Uw = Ua+Cx with Ua

being the absolute bulk velocity. After the end of the acceleration, the wall velocity
is maintained constant. The development of Ub, Ua, and Uw are presented in fig-
ure 5.1(c). Such an acceleration is analogous to the ramp-up accelerations frequently
used in temporal acceleration [44, 47].
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Figure 5.1: Flow acceleration caused using the moving-wall approach. (a) the absolute
streamwise velocity profile at different streamwise locations. (b) the channel and
its streamwise boundary condition are shown with the arrows representing the wall
velocity. The shaded yellow region is the region where the acceleration is applied. (c)
A plot showing the variation of the absolute velocity (dashed), wall velocity (dotted),
and relative velocity (solid).

The flow created this way is naturally not equivalent to its conventional∗ counter-
part. Instead, it is effort to study spatial flow acceleration with the influence of wall-
ward contraction removed, providing an alternative to other approaches such as the
laterally converging duct experiments of McEligot and co-workers [115, 114, 116, 117].
The similarities and differences between this flow and its conventional counterpart are
highlighted throughout the results. It should be noted that accelerating moving wall
flows have been studied in isolation previously using stability analysis (Brady and
Acrivos [234] and Watson et al. [235]) and numerical simulation (Espín and Papa-
georgiou [236]).

As discussed in chapter 4, CHAPSim is used in this chapter with the moving walls
located in the inlet-outlet domain (figure 4.3). The turbulence generator was used
for validation in the previous chapter, with proof of the sufficiency of the domain size

∗In this chapter, spatially accelerating flows that include the effect of contraction, such as the
spatially accelerating TBLs in chapter 6 are referred to as conventional for clarity.
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Table 5.1: Details of the inlet-outlet domain presented in this study. Note that the
resolutions indicate the worst resolutions in the domain.

Reb0 Reb1 Reτ0 Reτ1 ∆X Lx Lz ∆x+ ∆z+ ∆y+w ∆y+c Tsuτ/δ

2800 5600 178 325 15 30 4 6.35 3.81 0.466 3.59 10.1

shown in appendix A.1 following the considerations in section 4.3.
The computational setup of the case is shown in table 5.1. The Reynolds number

of the inlet flow is Re0 = U∗
b0h

∗/ν∗ = 2800 (Reτ = 178) with wall velocity opposing the
flow increasing linearly downstream for 15 half-channel heights reaching a Reynolds
number based on the relative bulk velocity, Re1 = U∗

b1h
∗/ν∗ of 5600 (Reτ = 324). The

domain extends for an additional 10h to allow the flow to be fully developed by the
outlet though the results close to the outlet are not used in the discussion to exclude
any minor effects close to the boundary. The inner-scaled grid resolutions indicate
their worst values in the domain and are consistent with the recommendations in
section 4.3. For this chapter, statistics based on the mean velocity, such as the shape
factor, H, and acceleration parameter, K are presented relative to the wall to show
the effect of the relative acceleration. When mean flow statistics are presented in
absolute terms, the subscript (a) is used. Velocities and lengths are normalised by
the inlet bulk velocity and half-channel height, respectively, unless otherwise stated.

5.2 Mean flow

Figure 5.2 shows the wall-normal distribution of the absolute, relative, and inner-
scaled mean streamwise velocity. The absolute velocity (figure 5.2(a)) is negative at
the wall, and its magnitude increases with downstream distance, as expected from the
accelerating moving wall, with the relative mean velocity increasing (figure 5.2(b)).
Figure 5.2(c) shows that after the onset of the acceleration (x = 0), the inner-scaled
(relative) velocity profile in the log region exhibits an uplift from the equilibrium
profile reaching its highest level at around x = 6. After this point, it falls back
and reaches the equilibrium profile before the end of the acceleration (figure 5.2(d)).
Alongside the uplift, there is a slight increase in the thickness of the viscous sublayer
as indicated by the larger wall-normal extent where ū+ = y+. The thickening of the
viscous sublayer and the uplift and subsequent return to equilibrium of the logarithmic
law are typical features of all accelerating flows, including temporal acceleration [44,
47] and spatial acceleration [98, 97].
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ū
+

= y
+

Figure 5.2: Streamwise mean velocity profile. (a): Absolute mean velocity, ūa; (b):
Mean velocity relative to the wall, ū; (c) inner-scaled relative mean velocity profile
in the pre-transition stage (x ≤ 5); and (d) post onset of transition (x > 5) including
x = 0, 5. In figures 5.2(c) and 5.2(d), the red line is ū+ = y+.

There are some differences between the development of the mean velocity profile
in the present case and conventional accelerations. In figure 5.2(c), the uplift from
the equilibrium profile is relatively uniform across the channel, whereas in conven-
tional acceleration such as Bourassa and Thomas [87] (also figure 4.24(a)) the uplift
is concentrated close the wall resulting in a significant flattening of the ū+ in the
logarithmic region. A likely cause of this difference is the removal of the wall-wards
contraction in the present flow, leading to a change in the mean flow structure. For
example, a top wall contraction is expected to skew the mean velocity profile towards
the bottom wall. As a result, the uplift occurs closer to the wall in conventional
spatial acceleration. The laterally converging ducts studied by McEligot and Eckel-
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Figure 5.3: (a) shows the skin friction coefficient, Cf and wall shear stress, τw =
1/Re0 · ∂ū/∂y. (b) shows the shape factor, H; and the acceleration parameter, K.
As stated in section 5.1, these quantities have been calculated relative to the wall.
The vertical lines indicate the onset and completion of transition using the definitions
described in section 5.3.

mann [116] and temporally accelerating channel flows [44], which both lack wall-ward
contraction, exhibit a similar change in the equilibrium profile to the moving wall
acceleration, which supports this explanation.

A number of important flow parameters are presented in figure 5.3. Figure 5.3(b)
shows that K is highest at the beginning of the acceleration and then decreases mono-
tonically during the acceleration period due to the increasing free-stream velocity
before suddenly dropping to a value close to zero on the removal of the acceleration.
This distribution is substantially different from typical acceleration profiles found in
previous studies, which are usually bell-shaped because the flow acceleration is in-
creased gradually (e.g. Escudier et al. [103] or Warnack and Fernholz [102]). It should
be noted, however, that the shape of the acceleration profile does not significantly
affect the key features of the flow transition concerned herein as demonstrated in
appendix A.2, which presents some results with a smooth acceleration profile.

The variation of the skin friction coefficient, Cf is given in figure 5.3(a), which
shows that Cf decreases rapidly after the onset of the acceleration primarily due to the
increasing relative bulk velocity, whereas the wall shear stress increases only mildly in
the initial phase of the acceleration. Cf reaches a minimum around x = 6, the point
where the uplift of the log region of the velocity profile reaches its maximum. The
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skin friction increases after this point due to rapid increases in wall shear, reaching
a peak at around x ≈ 13. A further sudden increase occurs when the acceleration
is stopped at x = 15, after which it remains constant until the end of the channel.
Finally, the shape factor H begins to increase shortly after the acceleration before
reaching a maximum at approximately the same location as the minimum in Cf before
falling monotonically. Recall that the locations of the minimum and maximum of Cf

and H, respectively, are broadly viewed as indications of the location of retransition
in studies of accelerating flow [9, 103, 10].

5.3 Instantaneous flow

The instantaneous results highlight some of the key features in the development of the
flow acceleration. Figure 5.4 shows the contours of the streamwise and wall-normal
velocity fluctuations at y+0 = 5. In the pre-existing flow (x < 0), the ubiquitous near-
wall streaky structures are clearly present, although the initial turbulence is of a much
smaller magnitude than at the end of the acceleration. The streamwise fluctuation
indicates that after the onset of the acceleration, the strength of the streaks mildly
increases initially. Around the minimum of Cf (the dashed red line), turbulent spots
start to form, as indicated by the appearance of large magnitude fluctuations of
shorter spatial scale. These spots are initially localised in space, coexisting with the
streaks, but grow in the spanwise and streamwise directions as they are convected
downstream until the entire wall surface is covered in new turbulence. However, the
wall-normal velocity fluctuations develop differently. Figure 5.4(c) indicates that the
wall-normal fluctuating velocity initially does not respond until the appearance of high
magnitude spots, which correspond with the large magnitude events in streamwise
velocity fluctuation contour. There is a significant increase in the amplitude of both
components on the formation of the turbulent spots, as shown by more frequent and
much darker red and blue events. These observations are similar to those observed
in studies of bypass transition such as Nagarajan et al. [11] (figure 3.4). The lack of
response from v′ until the formation of turbulent spots is also true in boundary layer
bypass transition, but the background flow in that case is laminar, hence there are
few fluctuations at all. The development is nonetheless similar.

The following interpretation is proposed to explain this development. When the
mean flow is accelerated, the velocity tends to increase uniformly at all vertical loca-
tions. However, due to fluid viscosity, the flow is retarded close to the wall resulting
in a new boundary layer superimposed on the existing flow, which grows downstream
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Figure 5.4: A x− z plane of the streamwise (u′/Ub0) and wall-normal (v′/Ub0) fluctu-
ating velocities at single instance in time at y+0 = 4.9. The relative bulk velocity, Ub,
is shown in (a) for reference. The first black line indicates the start of the accelera-
tion, while the final black line is the end of the acceleration. The red line indicates
the approximate location of the onset of transition as indicated by the minimum in
Cf .

as the effect of the acceleration is felt further from the wall. In the case of the rela-
tive acceleration studied here, the boundary layer is directly created by imposing a
velocity on the wall. This can be observed in figure 5.2(a) where the mean velocity
close to the wall is observed to reduce while the flow further from the wall remains
nearly fixed. Viscosity subsequently causes the extent of the channel affected by the
moving wall to increase with downstream distance. The new boundary layer does
not significantly change the turbulent structures in the existing flow, but through
the enhancement of the lift-up effect due to the increase in near-wall shear, the near-
wall streaks are strengthened. With the continuing growth of the boundary layer,
localised streaks break down, leading to transition. The onset of transition is typi-
cally marked by the occurrence of high frequency/high amplitude fluctuations in all
three turbulence components, and this is clearly indicated by the coincident spots in
the u′ and v′ velocity fluctuation contours. The spread and growth of these spots can
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also be compared to bypass transition, where the intermittent region is linked to the
coexistence of streaks and patches of broken-down flow until the entire surface of the
wall is covered in new turbulence structures, which is also observed here.

In summary, the flow can be described as a three-stage development, that is,
the initial pre-transition stage (0 < x ≤ 6), the transition stage (6 < x ≤ 13),
and the fully turbulent stage (x > 13). Here, the onset of transition (x = 6) is
determined using the minimum Cf , and the completion of transition (x = 13) is the
first peak in Cf after the onset of transition. These locations have been indicated on
figure 5.3. It should be noted that turbulence may still develop in the core of the
flow beyond the buffer layer after the completion of transition, which is marked by
the population of new turbulence in the wall region. This interpretation is analogous
to the transition theory proposed by He and Seddighi [43] for temporally accelerating
flows with the stages above the same as those found in studies of bypass transition
[131] and temporal acceleration [43]. It should be noted in temporally accelerating
flows, a similarity solution can be derived for the new boundary layer that allows
accurate predictions of the mean flow from the beginning of the acceleration to the
onset of transition, which provides a basis for understanding the turbulence response
to the acceleration [173, 177, 12]. However, the nonlinearity of the convection terms
means that analogous similarity solutions are not possible in spatially accelerating
flows. Nonetheless, the concept can still provide a qualitative understanding of the
flow and turbulence response from close to the onset of the acceleration by considering
the response of near-wall turbulence to the development of the new boundary layer
resulting from near-wall viscous effects.

It is important to consider how this interpretation can help to improve the un-
derstanding of spatially accelerating flows. Laminarisation in spatially accelerating
flows occurs due to the relative domination of the pressure gradient over the turbu-
lent stresses [9]. The present interpretation allows a qualitative description of the
flow and turbulence response in accelerating flows from close to the start of the ac-
celeration. In this interpretation, the slow response of the turbulent stresses, which
leads to laminarisation, results from the delay between the onset of the acceleration
and the breakdown of the strengthened near-wall streaks with the onset of transition.
This transition results from the amplification of the near-wall streaks due to the de-
velopment of the new boundary layer and, therefore, is a direct consequence of the
acceleration. As a result, this transition can occur even in the absence of a laminar-
like inner layer or before the removal of the acceleration, similar to the case studied
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Figure 5.5: Streamwise distribution of the peak normal Reynolds stresses normalised
by U2

b0. u′u′ is shown on the left axis with v′v′ and w′w′ on the right axis. The vertical
line indicates the onset of transition as indicated by the minimum in Cf

here. In the remainder of the chapter, the statistical development of the moving wall
is analysed to provide a foundation for discussions in chapter 6.

5.4 Turbulence statistics

5.4.1 Reynolds stresses

The streamwise distribution of the peak normal Reynolds stresses is presented in
figure 5.5, which illustrates the energy growth of the disturbances commonly used
in studies of bypass transition. The figure shows that shortly after the start of the
acceleration, the streamwise Reynolds stress exhibits downstream growth throughout
pre-transition. This can be associated with the stretching and elongation of the
streaks by the new boundary layer observed in figure 5.4 leading to an increase in the
streamwise disturbance energy as energy is extracted from the mean flow. Such energy
growth prior to the onset of transition is typical in bypass transition [141, 131, 139].
Also consistent with the observation in figure 5.4(c), there is a clear lack of increase
in the transverse Reynolds stresses during pre-transition. The location where the
transverse Reynolds stresses begin to increase is consistent with the point of transition
denoted by the minimum in Cf .

The downstream growth of u′u′ prior to retransition was noted to occur in several
studies of spatial acceleration [110, 87]. Warnack and Fernholz [102] also showed
that the development of the peak streamwise Reynolds stress exhibits downstream
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Figure 5.6: The wall-normal distribution of the normal Reynolds stresses normalised
by U2

b0. The figures on the left ((a), (c), and (e)), are of x locations prior to transition
and those on the right ((b), (d), and (f)) are of locations after the onset of transition.
The legend in (a) is used in (c) and (e) while the legend in (b) is used in (d) and (f).

growth from near the onset of the acceleration until the onset of retransition. The
continuing increase in the peak streamwise Reynolds stress after the onset of transition
in the present case is likely due to the acceleration continuing to extract energy from
the mean flow during and after transition. Other cases, not presented here, where
transition occurs after the end of the acceleration showed a slight decline in the peak
streamwise Reynolds stress after transition similarly to Warnack and Fernholz [102].
This was also observed in bypass transition [131].

The wall-normal distribution of the streamwise Reynolds stress at different down-
stream locations is presented in figures 5.6(a) and 5.6(b). The former shows the
downstream locations prior to transition, and the latter shows those after transition.
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Figure 5.6(a) indicates that during pre-transition, most of the increases in u′u′ occur
for y+ . 50 and only increases further away from the wall after the onset of transi-
tion. This is consistent with Warnack and Fernholz [102], who also indicated that the
downstream growth tends to be confined to the near-wall region in spatially accelerat-
ing flows before retransition. Figure 5.6(a) also indicates the peak in the streamwise
Reynolds stress moves slightly further away from the wall, which is consistent with
observations in bypass transition [139] and spatial acceleration [97]. Figure 5.6(b)
shows that after the onset of transition, the peak streamwise Reynolds stress settles
closer to the wall, consistent with a channel flow at higher Reynolds numbers.

Figures 5.6(c) to 5.6(f) shows the wall-normal distribution of v′v′ and w′w′. Con-
sistent with figure 5.5 and the instantaneous contour plots, figures 5.6(c) and 5.6(e)
indicate that v′v′ and w′w′ remains nearly constant through pre-transition, albeit
with small increases towards the end of pre-transition. After the onset of transition,
v′v′ and w′w′ increase over a broad wall-normal region. The wall-normal extent of
the new turbulence continues to increase with downstream distance post-transition,
and it is not until towards the end of the channel at x ≥ 21 that there is an increase
in v′v′ and w′w′ in the centre of the channel. The increase in the extent of the new
turbulence with downstream distance can be similarly observed in bypass transition
[138, 131] consistent with turbulence being transported away from the wall as the
wall-normal extent of the new boundary layer increases and is not directly linked to
the formation of turbulent spots which occurs closer to the wall. The limited changes
of the transverse stresses during pre-transition in figure 5.6 are similarly observed
in temporal accelerations [15, 12]. It is useful to note that conventional spatial ac-
celeration tends to behave somewhat differently, with absolute reductions observed
in strong accelerations close to the wall [10]. After transition, the spreading of new
turbulence into the core resembles that observed in conventional spatial acceleration
[121].

The development of the Reynolds shear stress, −u′v′ is shown in figure 5.7. During
pre-transition, −u′v′ increases by around 60% near the wall (y+ . 50). This is
consistent with the delayed response of v′ in figure figure 5.4(c) and the increases in
u′ being limited to the near-wall region. After transition, there are significant rises
across a broad wall-normal region. Figure 5.7(b) indicates that the flow has largely
redeveloped at x = 21 as demonstrated by the linear distribution −u′v′ in the core.
These results are consistent with Warnack and Fernholz [102], who similarly showed
that −u′v′ increases are initially limited to the near-wall region while after the onset
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Figure 5.7: Reynolds shear stress, −u′v′ ((a) and (b)) normalised by U2
b0 and eddy

viscosity, νt/ν ((c) and (d)).

of retransition, there is a broad increase, the wall-normal extent of which increases
with downstream distance.

Applying the Boussinesq hypothesis and considering the dominant strain rate only,
the turbulent shear stress can be written as a product of the eddy viscosity and the
velocity gradient:

− u′v′ = νt
∂ū

∂y
. (5.1)

As can be inferred from the above equation, the eddy viscosity represents the mix-
ing/diffusive effect of turbulence on the flow. Figure 5.7(c) shows that νt remains
unchanged during pre-transition. Alongside the lack of change of the transverse com-
ponents, this indicates that key elements of the near-wall turbulence processes are
not significantly modified at this point beyond the strengthening of the near-wall
streaks. After the onset of transition from 6 < x < 12, figure 5.7(d) shows that νt
is found to increase in a broad near-wall region, yet does not significantly increase
in the core of the flow until the end of the transition phase of the acceleration. For
x & 15, the eddy viscosity increases further from the wall with the final profile similar
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to the initial profile, albeit with larger values. The results for the Reynolds stresses
and the eddy viscosity are very similar to those of temporal acceleration, with initial
increases limited to u′u′, which is followed by increases in the transverse terms and
the generation of new turbulent structures with the onset of transition [43, 44].

5.4.2 Reynolds stress budgets

The contributions to the growth of the Reynolds stresses can be analysed through
the budgets of the Reynolds stress transport equation. The wall-normal distribution
of the streamwise budgets normalised with respect to the wall units of the initial flow
(u4τ,0/ν) is shown in figure 5.8. The plot from before the onset of the acceleration at
x = 0 depicts a typical profile for wall shear flow. After the onset of the acceleration,
the production exhibits streamwise growth, indicating an increase in energy being
extracted from the mean flow consistent with enhanced lift-up. Such production
increases have also been noted in spatial [87] and temporal acceleration [43]. The
lack of flow contraction or streamwise straining in the freestream means there is
no reduction of shear production or increase in negative dilation production, unlike
conventional spatial acceleration [87]. This reflects the amplification of the streaks
by the mean shear associated with the newly developing boundary layer. It is also
apparent that the production rises substantially during the transition phase between
x = 6 and x = 18. The changes in most of the terms broadly mirror that of the
production except the pressure strain, which is subdued until the onset of transition.
This is significant as the pressure strain is the primary redistributive mechanism
between the normal Reynolds stresses and is the sole source of the wall-normal and
spanwise Reynolds stress budgets. This can provide a further explanation for the
delayed increases in the transverse stresses, as the majority of the disturbance energy
during pre-transition is produced in the streamwise component. This delay supports
the notion that the changes during pre-transition are related to the strengthening
of streaks which are primarily manifested in the streamwise velocity fluctuations.
The results also imply that the turbulent spots observed in figure 5.4 are linked to
intercomponent energy transfer, which is consistent with Voke and Yang [162], who
highlighted the importance of the pressure strain in the process of bypass transition.
The importance of energy redistribution has similarly been shown in previous studies
of spatial acceleration [10] and temporal acceleration [43].

Figure 5.9 shows the streamwise development of some of the key terms of wall-
normally integrated streamwise Reynolds stress budget, namely the production, dis-
sipation, and pressure strain. In addition to the observations in figure 5.8, this figure
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Figure 5.8: Streamwise Reynolds stress budget scaled with initial wall units, u∗τ,04/ν∗.

shows that despite the large proportion of the overall increase in u′u′ occurring dur-
ing pre-transition, the changes of production appear significantly larger during the
transition phase of the acceleration. This is consistent with the results of Jacobs and
Durbin [131], although, in this study, the increase after transition is less stark due to
the gradual acceleration and the relatively small velocity changes. The delayed rise
of the pressure strain is also more clearly shown in this figure.
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5.4.3 Quadrant analysis

Quadrant analysis is useful for investigating how turbulence structures change dur-
ing the acceleration by looking at the different contributions (denoted u′v′Q) to the
Reynolds shear stress. The coherent motions which dominate wall shear flows tend
to be ejection (Q2) events (u′ < 0 and v′ > 0), which occur when slow-moving streaks
are ejected away from the wall, and sweep (Q4) events (u′ > 0 and v′ < 0), which
occur when fluid rushes wall-wards to replace ejected fluid. Figure 5.10 presents quad-
rant analysis using the hyperbolic hole method of Willmarth and Lu [21] presented
in equations (5.2) and (5.3).

u′v′Q(x, y) = lim
T→∞

1

T

∫ T

0

u′v′I(x, y, t)dt (5.2)

I(x, y, t) =

{
1, (u′v′)Q ≥ hu′rmsv

′
rms.

0, Otherwise (5.3)

Figure 5.10 shows u′v′Q/u′v′, the proportion of the total Reynolds shear stress at
different coordinates for Q2 and Q4 giving an indication of how the significance of
events in these quadrants change. The larger values of h indicate a higher threshold
for events to be considered and hence show just the stronger events contributing to
the Reynolds shear stress. For typical wall shear flows, sweep events tend to dominate
the near-wall region for y+ < 12 [61], with ejection events dominating further from
the wall. This is reflected in figure 5.10 where ejection events dominate at y+0 = 15
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Figure 5.10: u′v′Q/u′v′ calculated using the method of Willmarth and Lu [21]. The
values of the threshold h are given in the legend. The black dashed line indicates the
onset of transition.

and particularly at y+0 = 50. It is interesting to note that the onset of transition is
marked by a significant increase in the proportion of high-magnitude ejection events.
This is signified by similar increases in the contribution to the Reynolds shear stress
across all thresholds. This also indicates that the new turbulent structures created
at the onset of transition are linked to the negative u′ fluctuations, which is poten-
tially consistent with the interactions on slow-moving streaks that have been found
to result in streak breakdown in bypass transition [148]. Nolan et al. [161] also found
a significant increase in ejection events during transition. It should be noted that
the corresponding decrease in the contribution of Q4 events should not be considered
an absolute reduction but merely a reduction in their contribution compared to Q2
events, and as shown in figure 5.7(b) during transition the turbulent shear stress in-
creases substantially. The results here can also be compared to the linear temporal
acceleration of Seddighi et al. [44] where transition also occurred well prior to the end
of the acceleration. The results in the present study are quantitatively near-identical
to that study, indicating that events contributing to u′v′ are comparable in both
studies.

Figure 5.11 presents the number of Q2 and Q4 events averaged over all spanwise
points, which would indicate how ‘filled’ the spanwise extent of the domain is at a

94



0

10

20

30

Q
2

y+0
= 5

h = 1

h = 2

h = 4

0

10

20

30

y+0
= 15

0

10

20

30

y+0
= 50

0 10 20

x

0

10

20

30

Q
4

0 10 20

x

0

10

20

0 10 20

x

0

10

20

Figure 5.11: Number of distinct events using the method of Willmarth and Lu [21].
The black dashed line indicates the onset of transition.

given x and y location. More details of the algorithm and the sampling is presented
in appendix A.3. During pre-transition, the number of Q2 and Q4 events decrease,
but the number of stronger events (that is, those with h ∈ {2, 4}) tend to reduce by a
smaller amount with h = 4 remaining broadly constant. It should also be noted that
the threshold in equation (5.3) will increase due to increasing u′rms indicating that
the number of stronger events may even increase in absolute terms. As a result, these
events are likely to be responsible for the increases in u′v′ observed in figure 5.7. This
is supported by figure 5.12, which shows the mean ratio of the duration of quadrant
events, ∆TQi to the interval between events, TQi. The reduction of this ratio, partic-
ularly close to the wall, indicates a reduction in the dynamical significance of these
events during pre-transition, although similarly with figure 5.11, this is not reflected
in the stronger events. This observation is consistent with previous studies of spatial
acceleration, which indicated the presence of fewer but stronger events, although the
changes appear to be less severe than for conventional cases [87, 112]. After the on-
set of transition, both the number of events and ∆TQi/TQi strongly increases at the
wall-normal locations closer to the wall (y+0 ∈ 5, 15) responding further upstream
indicating that the processes which lead to the breakdown of the flow are linked to
the dynamics of the near-wall region.
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Figure 5.12: The ratio of the mean duration of quadrant events and the interval
between quadrant events. The black dashed line indicates the onset of transition.

5.4.4 Correlations

Figures 5.13 and 5.14 show the autocorrelation, which can be used to understand
how the scales of turbulent structures are altered by the acceleration. Figures 5.13(a)
and 5.13(b) show the autocorrelation with respect to spanwise and streamwise sepa-
ration, respectively defined as:

R11(x,∆x) = 〈u′(x)u′(x+∆x)〉/u′2(x), (5.4)

R11(x,∆z) = 〈u′(x)u′(x,∆z)〉/u′2(x). (5.5)

Figure 5.13(a) gives an indication of the spanwise spacing of the near-wall streaky
structures. The spacing is calculated as 2zmin, where zmin is the distance to the first
minimum. After the start of the acceleration, there is a mild decrease in the absolute
spanwise spacing. However, when presented in local wall units, the spacing increases
during pre-transition. These results show similar trends to Talamelli et al. [94], who
indicated that there is a reduction in the absolute spanwise spacing, but when locally
scaled, the spacing increases. These variations are substantially milder in the present
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Figure 5.13: Streamwise velocity autocorrelation in the spanwise (a) and streamwise
(b) directions at various streamwise locations. The blue lines are from locations after
the onset of transition.

study, however. Figure 5.13(b) shows that after the onset of the acceleration, the
width of the autocorrelation increases in the streamwise direction consistent with the
elongation of the streaks during pre-transition. With the onset of transition, the
correlation shortens consistent with the breakdown of the streaks and the generation
of new turbulence, which is of shorter spatial scale than the initial turbulent flow as
shown in figure 5.4(b). After the completion of transition, the streamwise scale of the
turbulence is clearly far shorter than the initial flow.

Figure 5.14 shows the ∆z − y contour of the spanwise autocorrelation with only
the negative values present to more closely compare with similar plots in Matsubara
and Alfredsson [139]. Nonetheless, the results show a very similar trend before and
during transition. It is clear that the minimum becomes more negative during the pre-
transition phase, consistent with a strengthening of the streaks, although the change,
in general, is relatively small, consistent with the increases of u′ in figure 5.4(b).
After the onset of transition, the strength of the minimum fades consistent with
figure 5.13(a) due to the breakdown of the streaks during the transition phase. The
development also closely resembles similar contour plots in He and Seddighi [43],
which showed initial strengthening in pre-transition followed by a noticeable decline
in the strength of the minimum with the onset of transition.
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Figure 5.14: A ∆z − y contour of the spanwise autocorrelation of the streamwise
velocity at streamwise locations indicated in the top right of each figure. Only the
values where the autocorrelation is negative are shown for clarity.

5.4.5 Flow structures

With the strengthening of the streaks observed during pre-transition and the apparent
role of low-speed streaks in the breakdown of the flow, it is useful to study the
dynamics of the buffer layer where these streaks reside. The root-mean-square of the
streamwise vorticity fluctuations is presented in figure 5.15, and the instantaneous
streamwise vorticity is presented in figure 5.16. During the pre-transition region,
figure 5.15(a) shows that until the end of this period, ω′

x,rms is unchanged, which
is similarly indicated by figures 5.16(a) to 5.16(c). The generation of streaks is the
result of the interaction between the streamwise vortices and the mean shear (the
lift-up effect). The constant streamwise vorticity observed here indicates that the
larger amplitude near-wall streaks during pre-transition are linked primarily to the
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Figure 5.15: Wall-normal distribution of ω′
x,rms at different streamwise locations. (a)

during pre-transition. (b) after the onset of transition.

increase in the mean shear, which results from the acceleration. These stronger streaks
then remain stable until the onset of transition. It is conceivable that the process
of generating stronger streaks through the lift-up effect may be responsible for the
apparent increase in the absolute number of stronger Q2 and Q4 events observed in
figure 5.11 [7].

Figure 5.15(b) shows that with the onset of transition, ω′
x,rms increases signifi-

cantly until x = 15, which is also indicated by the instantaneous plots (figure 5.16).
Figure 5.16(d) shows that with the onset of transition, there are localised spots of
increased streamwise vorticity, which can be observed growing downstream in fig-
ures 5.16(e) and 5.16(f). Such sudden changes can be linked to the breakdown of the
streaks and are a reflection of the much smaller scales of the new turbulence struc-
tures. Figure 5.17 shows a top-down view of the three-dimensional isosurfaces of the
streamwise velocity fluctuations and the streamwise vorticity. This figure shows the
sinuous breakdown of a near-wall streak with the onset of transition in a mechanism
similar to that detailed in studies of bypass transition [149, 150]. The time frame and
spatial location of the plots are shifted consistently to follow the event. At t∗ = 71.5,
a high-speed streak (green) can be observed on the +z flank of the low-speed streak
(blue). At this point, the streamwise vorticity (+ωz in black, −ωz in red) isosurfaces
are barely visible (under the chosen scales used here, which is intended to show the
regions of stronger vorticity). It is also important to note the increasing amplitude of
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Figure 5.16: z − y contours of the streamwise vorticity ω′
x at different streamwise

locations.

the streaks as downstream distance increases, which is shown by the increased volume
of the isosurface. This is consistent with the streamwise autocorrelation in figure 5.14.
At t∗ = 72.5, the strengthened positive u′ streak can be observed catching up with
the low-speed streak with the consequent generation of new streamwise vorticity. At
this point, the spanwise waviness of the streaks and the patterning of the streamwise
vorticity bear significant similarity to Brandt and de Lange [149]. The patterning
also resembles the layout of quasi-streamwise vortices in studies of wall turbulence
(figure 2.4) [7] as well as the sinuous instabilities observed in studies of temporal ac-
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Figure 5.17: A top-down view of u′ and ω′
x isosurfaces at t∗ ∈

{70.5, 71.5, 72.5, 73.5, 74.5, 75.5}. u′ surfaces: -0.31 (blue); 0.31 (green). ω′
x

isosurfaces: -8 (red); 8 (black).

celeration [172]. As the instability progresses in the subsequent frames, the spanwise
waviness of u′ and the streamwise vorticity intensify. At t∗ = 75.5, the low-speed
fluid can be observed being ejected from the near-wall region. This indicates that
the generation of new localised streamwise vorticity in figure 5.16(d) can be linked to
the breakdown of the strengthened streaks that occurs with the onset of transition.
This also confirms the role of low-speed streaks in the process of transition implied
by the quadrant analysis. The higher energy contained in the strengthened streak
makes it more susceptible to the development of instabilities on interaction with a
high-speed streak. The resulting breakdown contains small scales and high magnitude
disturbances characteristic of transition to a higher Reynolds number turbulent flow.

5.5 Summary and conclusion

This chapter describes a study of spatially accelerating turbulent flow based on the
direct numerical simulation of a flow with longitudinally accelerating moving walls
to create a relative acceleration between the fluid and the wall. This enables the
influence of viscous effects on spatial acceleration to be investigated without inducing
flow contraction. The flow response is characterised by the development of a new
boundary layer in response to the acceleration due to viscous effects at the wall. The
development of this boundary layer and the eventual transition of the flow in response
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can explain the key aspects of the turbulence dynamics. Qualitative similarities were
also observed with previous studies of spatially accelerating TBLs.

5.5.1 Summary of flow development

At the onset of the acceleration, a new boundary layer forms due to the influence
of viscous effects, resulting in a three-stage development. The new boundary layer
modulates the pre-existing near-wall streaky structures, leading to their amplification
through the lift-up effect. This leads to significant growth of the streamwise Reynolds
stress and turbulence kinetic energy production close to the wall. The transverse
stresses are not strongly affected, with the pressure strain remaining constant. The
eddy viscosity does not change at this stage, indicating that turbulence mixing is not
strongly changed at this point. This region is denoted pre-transition. Eventually,
streak instabilities develop on specific strengthened streaks, leading to their break-
down and the formation of turbulent spots, which marks the onset of the transition
region. These spots spread in the spanwise direction as they travel downstream until
the surface of the wall is covered in newly generated turbulence. The breakdown of
the streaks is associated with extreme ejection and, to a lesser extent, sweep events.
At this stage, the transverse stresses increase alongside large increases in the pressure
strain, indicating a significant enhancement of intercomponent energy transfer. The
final fully turbulent region is characterised by the diffusion of turbulence into the core
of the channel, with the near-wall region not strongly altered.

5.5.2 Similarities and differences with conventional spatial
acceleration

The overall development of the flow shares many similarities with conventional spa-
tial acceleration. Among the similarities is the downstream growth of u′u′ from the
commencement of the acceleration and the movement of the peak away from the wall,
which have been widely observed in previous studies of spatial acceleration [102, 97].
The absolute increase of production during pre-transition is also consistent with pre-
vious studies [87]. The decrease in the spanwise scale of the streaks before the onset
of transition is also similar in both accelerations. Similarly, the role of pressure strain
with the onset of transition mirrors that of retransition in spatially accelerating flows
[10]. The increased contribution of stronger Q2 events to the Reynolds shear stress
during pre-transition has also been observed in previous studies [116, 87].
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While these similarities suggest similar processes could be at work in both accel-
erations, there are some notable differences. This includes different trends in the de-
velopment of the mean velocity profile in the moving wall acceleration, which appears
to be linked to the lack of flow contraction and can be observed in other accelerating
flows that lack wall-normal contraction such as temporal acceleration and laterally
converging ducts [44, 116]. Additionally, the constant transverse stresses during pre-
transition differ somewhat from laminarising spatial accelerations, where they have
been observed to reduce close to the wall [10]. These differences will be discussed in
chapters 6 and 7.
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Chapter 6

Transition in spatially accelerating
turbulent boundary layers

This chapter presents simulations of spatially accelerating turbulent boundary layers
covering a range of acceleration rates corresponding to laminarescent accelerations,
where the mean flow is strongly affected by the acceleration, but the mean flow
parameters do not clearly indicate a shift towards values typical of a laminar flow
[86], and laminarising accelerations, where the mean flow parameters tend towards
laminar-like values. There are two main objectives of this chapter. The first is
to understand whether the flow is characterised by the development of a boundary
layer followed by transition as for the moving wall and temporal accelerations. The
second is to understand how the turbulence response changes as the acceleration rate
increases.

6.1 Case setup

Simulations have been performed for a range of K both above and below the critical
acceleration parameter for flow laminarisation to occur Kcrit = 3×10−6 [87] using the
method developed in section 4.5. These cases are summarised in table 6.1 with the
profiles of U∞ and K presented in figure 6.1. Cases 1 and 2 are strong accelerations
with a Kmax of 6.3× 10−6 and 3.9× 10−6, respectively, and would hence be expected
to begin the process of laminarisation as K exceeds Kcrit for a downstream distance
of around 100θ0 in both cases. The maxima of the parameters Λ [9] and ∆p [22],
are presented in table 6.2. The values of Λmax [9] are large for cases 1 and 2 but
do not exceed the threshold of 50, indicating that while dominated by the pressure
gradient, they are not likely to have ‘completed’ laminarisation. ∆p,max exceeds the
typical threshold for the onset of laminarisation for both cases [87]. Cases 3 and
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Table 6.1: Case setup for the spatially accelerating TBLs. The acceleration parame-
ter, K, is multiplied by 106. Here, the lengths, L, are normalised with the maximum
boundary layer thickness in the domain, showing that the height of the domain,
Ly & 3. The mesh resolutions represent their worst value in the domain with ∆y+δ ,
indicating the wall-normal mesh resolution at y = δ.

Reθ,ref Kmax Lx Ly Lz ∆x+ ∆z+ ∆y+w ∆y+δ Tsuτ/δ

Case 1 883 6.26 59.4 2.91 3.77 9.88 6.11 0.719 6.98 14
Case 2 882 3.88 68.6 2.94 3.42 10.1 6.19 0.673 7.73 9.57
Case 3 869 2.36 80.8 3.09 3.08 9.8 6.07 0.695 6.45 14
Case 4 844 1.21 113 3.01 3.37 37.1 16.2 0.855 13.1 10

4 are weaker accelerations with a Kmax of 2.4 × 10−6 and 1.2 × 10−6, respectively,
and while likely to be still strongly affected by the acceleration, are not expected to
show clear indications of laminarisation. This is supported by the values of Λmax and
∆p,max, which are below the typical laminarisation threshold values for both cases.
Consequently, these cases would typically be regarded as laminarescent [93].

The streamwise coordinates of each case have been shifted in the streamwise
direction such that x = 0 occurs at a reference plane upstream of the beginning
of the acceleration. Quantities associated with the reference plane are denoted with
a superscript or subscript 0. For example, y+ at x = 0 is denoted y+0. Velocities
and lengths have been normalised by the freestream velocity, U∞,0, and momentum
thickness, θ0 at the reference plane unless otherwise stated. The initial Reynolds
number is approximately the same in all cases with Reθ,0 = U∞,0θ0/ν ≈ 870, which
represents the highest Reynolds number DNS of a laminarising spatially accelerating
TBL to date (to the author’s knowledge). The near-constant initial Reynolds number
also means its effect on the turbulence response cannot be established in this study.
The velocity ratio, U∞,1/U∞,0 is 2 for all cases ensuring that the turbulence response,
which is anticipated to be weaker in cases 3 and 4, can be characterised unambiguously
in all cases. The mesh sizes are 0.98, 1.3, 1.4, and 0.36 billion, respectively. Case 4
has been computed using the LES method discussed in section 4.1.3 with ν/ν0 = 10

Table 6.2: Maximum pressure gradient parameters from Narasimha and Sreenivasan
[9] and Patel [22] for each case.

Case 1 Case 2 Case 3 Case 4

Λmax 45 32 22 17
∆p,max -0.037 -0.028 -0.02 -0.012
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Figure 6.1: The freestream velocity, U∞ and the acceleration parameter, K. (a): case
1. (b): case 2. (c): case 3. (d): Case 4.

following the stategy described in chapter 4 with the mesh resolution similar to the
LES cases in section 4.7.4.1 and to the validation case in section 4.7. The mesh
resolutions for cases 1-3 are comparable with previous DNS studies of ZPG and FPG
TBLs [10, 215, 211] and follow the recommendations in section 4.3, with the values
in table 6.1 representing their worst value in the domain. The resolution for the LES
corresponds to previous wall-resolved LES studies [10].

6.2 Case characterisation

Figures 6.2 and 6.3 shows Cf and H to further characterise the flow regime in all cases.
The ZPG case from section 4.7 is shown for comparison, showing that upstream of
the acceleration, these quantities follow that of a ZPG, although H shows a small
offset of around 1% in cases 1, 2 and 3. The mean velocity and the Reynolds stresses
are compared with the ZPG case in appendix B.1, indicating that the acceleration
only has a minor influence on the upstream flow. Similar to previous studies [10, 103],
for strong acceleration (Cases 1 and 2), the Cf rapidly increases initially, reaching a
maximum, followed by a rapid reduction to a minimum and a recovery. The initial
increase is due to the substantial increase in velocity gradient close to the wall, which
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Figure 6.2: Skin friction coefficient, Cf and the wall shear stress, τw. (a): case 1. (b):
case 2. (c): case 3. (d): Case 4. All y axis limits are fixed to highlight the influence
of the acceleration in the different cases.
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Figure 6.4: Boundary layer thickness, δ and the momentum thickness Reynolds num-
ber, Reθ. (a): case 1. (b): case 2. (c): case 3. (d): Case 4.

can be observed in the wall-shear stress, τw which is also shown in figure 6.2. The
subsequent reduction is caused by the increase of τw failing to keep up with the
rapidly increasing U∞. In case 1, τw reduces in the later stages of the acceleration,
likely due to a reduction in turbulence activity due to laminarisation. In the less
strongly accelerated case 2, τw stagnates rather than reduces. The minimum of Cf

is associated with the recovery of turbulence in the boundary layer, which leads to a
substantial growth of the wall shear stress and signifies the onset of retransition [9].
Finally, τw and Cf reach a maximum and subsequently reduce monotonically. The
shape factor, H shows an initial reduction followed by substantial increases towards
laminar-like values similar to previous studies [9, 102], although the accelerations
end before these values are reached (H ≈ 2 in a Falkner-Skan boundary layer under
contraction), with H reaching a maximum around the same location as the minimum
of Cf , again indicating the onset of retransition, before returning to values more
consistent with turbulent boundary layers.

In case 3, Cf exhibits similar features to the stronger accelerations, albeit with
smaller variations, whereas case 4 shows no reduction in Cf . Unlike the stronger
accelerations, there is no obvious change in the trend of τw in these cases before the
maximum towards the end of the acceleration. In these cases, H reduces with the
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beginning of the acceleration but shows little sign of a rapid increase towards laminar-
like values, in line with the expected behaviour based on K, Λ, and ∆p. The shape
of the Cf and H curves in cases 3 and 4 are reminiscent of the laminarescent cases
(1 and 3) from Fernholz and Warnack [93], which are also at similar values of K.

Figure 6.4 shows that the overall behaviour of the boundary layer thickness, δ
in all cases is similar to that observed in previous studies [103, 10], with δ initially
continuing the increasing trend of the upstream ZPGTBL before the effect of flow
contraction becomes significant, which results in δ reducing over much of the acceler-
ation even in the weaker accelerations. Cal and Castillo [101] associated the reduction
of δ with a tendency towards the quasi-laminar state. However, it should be noted
that in case 4, this reduction occurs over a considerable streamwise distance. On the
other hand, δ in cases 1 and 2 reduce rapidly in a short downstream distance. These
parameters also indicate cases 1 and 2 begin the process of laminarisation, whereas
cases 3 and 4 exhibit behaviours consistent with laminarescence.

6.3 The transition process

In this section, the mean flow development and turbulence responses will be dis-
cussed, which will lead to the proposition that spatially accelerating TBLs can be
characterised as a process of transition. Figures 6.5(a) and 6.6(a) presents the mean
velocity profile for cases 1 and 3, showing that early in the acceleration (blue lines), ū
tends to accelerate in a mostly uniform manner away from the wall, whereas close to
the wall, there is a steep increase in the mean shear. This is more clearly observed in
figures 6.5(c) and 6.6(c), which shows that the mean velocity gradient, τ/τw0 = ∂yū

increases significantly, but only for a narrow region close to the wall (y+0 . 40). This
region results from the influence of the viscosity, which acts to resist the freestream
acceleration in the vicinity of the wall and represents the development of a new
boundary layer that encapsulates the additional near-wall frictional effects from the
acceleration. This newly developing boundary layer is analogous to that which forms
in temporal and moving wall accelerations. However, there is a less obvious but im-
portant additional variation in the mean velocity distribution due to flow contraction,
which causes the velocity profile to be flattened in the outer region, as indicated by
the reduction of ∂yū. In case 1, the decrease in the velocity gradient is substantial,
occurring even in the inner part of the boundary layer (y+0 & 30), and by x = 225, the
velocity profile appears essentially flat away from the wall (figure 6.5(a)). However, in
case 3, where the acceleration is relatively mild, this reduction is small and occurs for
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Figure 6.5: Mean flow development for case 1. (a): ū vs y, (b): ū+ vs y+. τ/τw0 vs
y+0: before transition (c); after transition (d).

y+0 & 100. It should also be noted that the mean velocity profile would also continue
developing even without acceleration, but in all the accelerations studied herein, the
development associated with the onset of acceleration is much more severe.

The turbulence response in cases 1 and 3 is presented in figures 6.7 and 6.8,
which show contours of the velocity fluctuations for all components at a x− z plane
close to the wall (y+0 = 15) with (a) in each figure showing U∞ for reference. Fig-
ure 6.7(b) shows that as the flow travels downstream, the near-wall streaky structures
in u′, which are initially faint upstream of the acceleration (x < 100), are amplified
significantly as they travel downstream (100 < x < 250), resulting in long mostly
unperturbed streaks which can extend for more than 50θ0. The amplification of the
near-wall streaks can explain this through the lift-up effect due to the increased mean
shear associated with the new boundary layer, which is a typical phenomenon of the
pre-transition region of accelerating flows and bypass transition. Figure 6.8(b) show
that u′ in case 3 responds similarly to case 1 with a strengthening of the near-wall
streaks and emergence of elongated streaks by x ≈ 375. These streaks are less promi-
nent than in case 1 due to the weaker acceleration, meaning the increase in shear is
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Figure 6.6: Mean flow development for case 3. (a): ū vs y, (b): ū+ vs y+. τ/τw0 vs
y+0: before transition (c); after transition (d).

less rapid. The behaviours of v′ and w′ are substantially different to u′. For case 3
(figures 6.8(c) and 6.8(d)), v′ and w′ do not vary significantly. In contrast, there is
substantial attenuation of these components in case 1 (figures 6.7(c) and 6.7(d)) with
the flow being largely quiescent by x = 220. This attenuation is related to common
observations in previous studies of laminarising accelerations, including the reduction
in near-wall bursting [86, 65] and the streaks appearing to be less perturbed [110],
which can also be observed in figure 6.7(b).

The region of streaks amplification is terminated by the formation of localised
high-intensity patches of shorter scale in u′, v′, and w′ typically at the interface
between the high and low-speed streaks similar to the breakdown of streaks in bypass
transition [149]. In case 1, the spots are easily observed (x ≈ 250) due to the stronger
streaks at the breakdown point and the attenuated surrounding turbulence. The spots
are weaker in case 3 (x ≈ 375), being only slightly stronger than the surrounding
turbulence. Hence, a spot detection algorithm, detailed in appendix B.2, has been
used to identify the broken-down patches for clarity. These spots grow as they travel
downstream, and by x ≈ 310 in case 1 (x = 500 in case 3), the newly generated
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Figure 6.7: x− z plane of the velocity fluctuations at y+0 = 15 for case 1. (a) U∞, (b) u′, (c) v′, (d) w′.
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Figure 6.8: x− z plane of the velocity fluctuations at y+0 = 15 for case 3. (a) U∞, (b) u′, (c) v′, (d) w′.
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Figure 6.9: Isosurfaces of λ2 for cases 1 and 3. (a) case 1 for 200 < x < 350 at
λ2 = −0.1. (b) case 3 for 300 < x < 450 at λ2 = −0.16. The isosurfaces are coloured
by the mean velocity at x = 0.

turbulence fills the spanwise extent of the wall. The break-up of the streaks leads
to the generation of new vortical structures. Figure 6.9 shows isosurfaces of the λ2
vortex identification criterion (section 2.3) for cases 1 and 2. Figure 6.9(a) shows
the presence of the strong vortices accompanying the spots in case 1, whereas further
upstream, there are few vortices due to the attenuation of transverse motions. These
new vortices are predominantly hairpin-like, resembling images observed in studies of
bypass transition such as Wu and Moin [144] and Wu et al. [237]. The substantial
variation of the vortex density highlights the intermittent character of the near-wall
turbulence around the onset of transition. For case 3 (figure 6.9(b)), a substantial
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increase in the density of vortices can also be observed as the spots break down,
although weaker vortical structures can still be observed upstream, reflecting the
essentially unchanged transverse motions close to the wall.

The visualisation and mean flow development discussed above suggest that key
elements of flow response to acceleration resemble those in a boundary layer bypass
transition, similar to temporal and moving wall acceleration. The transition process
can naturally be split into three distinct stages that mirror those in other accelerat-
ing flows. During the first stage, pre-transition, the turbulence response is primarily
characterised by the amplification of streaks due to the modulation of near-wall struc-
tures by the new boundary layer. During this stage, a clear difference can be observed
between stronger (case 1) and weaker accelerations (case 3): in the former v′ and w′

reduce gradually in absolute terms in the near-wall region throughout pre-transition
but not in the latter, which retains a fully turbulent inner layer. These differences
are discussed in more detail in later sections. The second stage is transition and is
characterised by the formation and growth of turbulent spots which coexist with the
amplified streaks. The final stage begins once the near-wall region is populated with
the newly generated turbulence. It is useful to note that the formation of turbulent
spots in case 3 (figure 6.8) occurs during the acceleration, consistent with the notion
that transition is not necessarily linked to the end of the acceleration as suggested in
section 5.3.

The remainder of the chapter is organised as follows. The development of the key
turbulent statistics, including the Reynolds stresses and the energy budgets, are pre-
sented in section 6.4, showing that all cases undergo a process of transition. Spectra
associated with the development of streamwise component are presented in section 6.5,
and the mechanisms that lead to the attenuation of the transverse motions near the
wall are explored in section 6.6. The conclusions are presented in section 6.7.

6.4 Reynolds stresses and higher-order statistics

6.4.1 Normal Reynolds stresses

The wall-normal distributions of the streamwise and wall-normal Reynolds stresses
are presented in figures 6.10 and 6.11 normalised with reference wall units with blue
lines for locations during pre-transition and red lines for those after the onset of tran-
sition (this colour scheme is used in the remainder of the chapter). This scaling has
been used rather than the typical local inner or outer scaling, as many of the distinct
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Figure 6.10: Development of u′u′+0 vs y+0 in cases 1 to 4. Blue lines indicate locations
before the onset of transition, and red lines indicate those after.

differences that occur in the development of turbulence between the accelerations oc-
cur absolutely and would be masked by local scalings. The local scalings have been
widely presented in previous studies and remain useful for showcasing key elements
of the ‘soft’ laminarisation. During pre-transition, u′u′+0exhibits substantial down-
stream growth in the near-wall region (y+0 < 50) in all cases due to the amplification
of the streaks due to the modulation of the near-wall structures by the new boundary
layer. The growth of u′u′+0during pre-transition is weaker in the weaker accelera-
tions, which is consistent with the relative prominence of the streaks observed in case
1 compared with case 3 (figures 6.7 and 6.8). Nonetheless, a notable amplification of
u′u′

+0occurs even in case 4 (figure 6.10(d)). This absolute near-wall growth of u′u′+0is
also observed in previous studies across a range of acceleration rates [93, 102, 10] but
has not been explicitly linked to streak amplification. Such increases in the stream-
wise Reynolds stress are typical of bypass transition and result from the lift-up effect
[139, 135].

The response of v′v′+0during pre-transition is substantially different from that of
u′u′

+0with no (or minimal) increase in its value from before the acceleration. The re-
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Figure 6.11: Development of v′v′+0 vs y+0 in cases 1 to 4. Blue lines indicate locations
before the onset of transition, and red lines indicate those after.

sponse of v′v′+0is also different in the laminarising and laminarescent cases. In cases
1 and 2, v′v′+0reduces across the entire boundary layer throughout pre-transition,
with the peak reducing by around 40% and 30% in cases 1 and 2, respectively. The
reduction of v′v′+0indicates a trend towards absolute flow laminarisation and the ap-
pearance of a more quiescent inner layer. On the other hand, v′v′+0does not change
substantially in the near-wall region in cases 3 and 4 during pre-transition, approx-
imately retaining their values from further upstream, consistent with the limited
changes in v′ in figure 6.8(c) upstream of the formation of turbulent spots. Compar-
ing cases 2 and 3 highlights that the behaviour of the inner layer changes drastically
over comparatively modest changes in Kmax with the reduction of v′v′+0beginning
early in the acceleration for case 2, whereas the near-wall region remains unchanged
until transition in case 3. The mechanisms that lead to the reduction of v′v′+0are
explored in section 6.6.

Away from the wall (y+0 & 50), u′u′+0and v′v′
+0are found to decay during pre-

transition for all cases as the boundary layer contracts with larger reductions observed
in the stronger accelerations. The reduction of all Reynolds stresses in the outer layer
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is similar to previous studies where the decay of turbulence has been observed even
at low values of K [118, 105].

After the onset of transition, the wall-normal extent of the increasing u′u′+0grows
substantially in all accelerations, although this occurs more rapidly in the stronger
accelerations. This can be linked to the formation of turbulent spots, which results in
a rapid transport of turbulence away from the wall as fluid is ejected from the near-
wall region. In cases 1 and 2, the peak of u′u′+0is observed to decrease shortly after
the onset of transition, which can similarly be observed in studies of bypass transition
[139, 131]. This reduction is likely linked to the formation of turbulent spots with
energy being drawn from u′ and redistributed to the transverse components (shown
later through the increase in pressure strain at this stage). In cases 3 and 4, however,
u′u′

+0continues to increase after the onset of transition. This is likely because the
flow undergoes transition during the acceleration, leading to sustained increases in
energy extraction from the mean flow even after transition, similar to moving wall
(figure 5.5) and ramp-up temporal accelerations [44].

With the onset of transition, v′v′+0increases initially close to the wall in all cases
due to the formation of turbulent spots on the breakdown of strengthened near-wall
streaks. The near-wall peak grows progressively as these spots merge. The extent of
the increased v′v′+0grows as the new turbulence travels downstream, similar to u′u′+0.
The newly generated turbulence structures reside closer to the wall, as indicated by
the new v′v′

+0peak being located closer to the wall than its pre-transitional peak. It
is interesting to note that v′v′+0can continue to reduce in the region away from the
wall even after the onset of transition (figure 6.11(d)), with its eventual recovery not
occurring until newly generated turbulence has propagated from the wall. Overall,
the characteristics of the turbulence response after the onset of transition appear
essentially the same in all cases.

The streamwise development of the peak of the normal Reynolds stresses is pre-
sented in figure 6.12, which highlights the differences in the response of the normal
Reynolds stresses and the similarity in the response between all cases with the down-
stream growth of the near-wall u′u′+0due to streak strengthening and the delayed
response of the v′v′+0and w′w′+0more clearly visible. Figures 6.12(a) and 6.12(b) also
show that the absolute reduction of v′v′+0and w′w′+0in cases 1 and 2 begins early
in the acceleration and occurs upstream of common onset markers for laminarisation
such as min(H) (indicated in figures 6.12(a) and 6.12(b)), or max(Cf ) (not presented).
Alongside Kcrit = 3× 10−6.
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Figure 6.12: Development of peak normal Reynolds stress with x in cases 1 to 4 with
the boundaryes of each region from table 6.3 indicated with vertical lines. (a) case 1,
(b) case 2, (c) case 3, (d) case 4.

The distinct behaviours of the normal Reynolds stresses can be used to delimit
the different stages of acceleration. The onset of the pre-transition and transition
are defined here using the response u′ and v′, respectively, which are summarised in
table 6.3. The boundaries are also shown in the table and marked in figure 6.12.
The definition for the beginning of the pre-transition region is based on the fact
that in this region, u′u′+0tends to reduce slowly downstream in ZPGTBLs, but the
acceleration reverses this trend. Consequently, the increase of u′u′+0is a marker for the

Table 6.3: Limits of regions, where α = 0.07, which ensures that u′u′ and v′v′ are
on unambiguously increasing trajectories. The limits using the definitions from the
moving wall acceleration are shown in brackets for cases 1 to 3.

Case 1 Case 2 Case 3 Case 4 Description

Pre-transition 120 166 198 419 u′u′ > (1 + α)min u′u′

Transition 241 (242) 324 (337) 389 (428) 653 v′v′ > (1 + α)min v′v′

Fully turbulent 315 (326) 412 (423) 521 (505) 1050 max(τw)
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start of pre-transition. The rapid increase of v′v′+0due to the formation of turbulent
spots marks the location for the onset of transition. The onset of the fully turbulent
region is not clearly marked by the maxima of the normal Reynolds stresses but can
be represented by the final maximum of the wall shear stress, which would tend to
reduce once turbulence begins to diffuse away from the wall. This can be viewed as
similar to the use of the first peak of Cf after transition onset to delimit this region
in moving wall and temporal accelerations [12], although the present definition also
works in case 4. The delimiters of the regions based on the definitions from the moving
wall acceleration are given in brackets in table 6.3 for cases 1 to 3, indicating that
where both definitions are valid, they are comparable. The resulting vertical lines in
figure 6.12 further indicate how the transition process becomes less discernible as the
acceleration rate reduces, with case 4 showing only limited growth of u′u′+0before the
onset of transition, suggesting that in sufficiently weak accelerations, the process will
become undiscernible similar to temporal acceleration [45].

6.4.2 Reynolds shear stress and eddy viscosity

In the near-wall region, the Reynolds shear stress (figure 6.13), −u′v′+0, exhibits
generally small increases close to the wall. The comparatively limited increases of
−u′v′+0close to the wall compared with u′u′

+0highlights a near-wall reduction in the
Reynolds shear stress correlation coefficient (not presented), which has been reported
in previous studies [10, 87] and reflects that the increase of u′ during pre-transition
is primarily due to the strengthening streaks and therefore not strongly correlated
with v′. It is interesting to note that in the early part of the acceleration, −u′v′+0in-
creases more near the wall in the weaker accelerations, highlighting the competing
mechanisms for the changes in −u′v′+0: the amplification of the streaks (increasing
u′) and the suppression of turbulence (decreasing v′). −u′v′+0reduces slowly in the
outer layer during pre-transition, following the behaviour of u′u′+0and v′v′

+0, noting
that the absolute changes are not sudden, as expected from a ‘soft’ laminarisation.

With the onset of transition, −u′v′+0mirrors the response of the normal stresses,
with initial increases occurring close to the wall with the extent of the increase grow-
ing with downstream distance. The growth of −u′v′+0corresponds to a significant
increase in turbulent transport, substantially altering the mean flow dynamics. The
influence of these changes can be observed in the mean velocity profile with the shape
of ū drastically changing (figures 6.5(a) and 6.6(a)) and rapid increases in the wall-
normal extent of the high-shear region as new turbulence is produced (figures 6.5(d)
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Figure 6.13: Development of u′v′+0 vs y+0 in cases 1 to 4. Blue lines indicate locations
before the onset of transition, and red lines indicate those after. (a) case 1, (b) case
2, (c) case 3, (d) case 4.

and 6.6(d)). These sudden changes in the mean velocity profile are approximately co-
incident with the maximum uplift of the logarithmic region (figures 6.5(b) and 6.6(b)),
which subsequently begins to return to equilibrium. This can also be observed in
moving wall (figure 5.2) and temporal accelerations [44].

Figure 6.14 shows the eddy viscosity, νt. Close to the wall, νt almost exactly
collapses onto its value from upstream during pre-transition in cases 3 and 4 (fig-
ure 6.14(c)). Alongside the nearly constant near-wall transverse stresses, this indi-
cates that the turbulence in the inner layer does not substantially change beyond the
amplification of the near-wall streaks. νt reduces close to the wall in cases 1 and 2,
although not catastrophically, with the former reducing by around 30%. With the
onset of transition, νt increases in the near-wall region due to the generation of new
turbulence structures and the enhancement of near-wall turbulence mixing. Simulta-
neously, νt can be observed to substantially reduce further from the wall in cases 1 to
3 (y+0 ≈ 120). Figure 6.13 suggests that this reduction is driven most by the change
in mean shear as at this location, there has been minimal change in −u′v′+0. The
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Figure 6.14: Development of νt vs y+0 in cases 1 to 4. Blue lines indicate locations
before the onset of transition, and red lines indicate those after.

results from Fernholz and Warnack [93] also show a similar response of νt with dis-
tinctive near-wall ‘lobes’ found in both laminarescent and laminarising acceleration
close to the onset of transition.

6.4.3 Kurtosis

The kurtosis, F (v′) = v′4/v′2
2 at y+0 = 15 is presented in figure 6.15 and gives an

indication of the ‘tailedness’ of the probability distribution of v′ with higher values
suggesting a propensity for a small number of extreme events. In each case, F (v′)
is observed to reach a maximum around or just upstream of the onset of transition
(vertical line in figure 6.15). This is a reflection of the formation of an intermittent
region comprising localised turbulent spots and strengthened streaks originating from
the pre-transition region, as the spots correspond with far-from-mean events leading
to increases in F (v′). F (v′) subsequently reducing as these spots grow during the
transition stage. Instantaneous extreme events for case 1 are shown in figure 6.16.
These events are defined here by locations where |v′| > 3.5v′rms (blue) and |w′| >
3.5w′

rms (red) and hence would be concentrated where the fluctuations are much larger
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Figure 6.15: Kurtosis , F = v′4/v′2
2 at y+0 = 15 with a vertical line indicating the

onset of transition from table 6.3. (a) case 1, (b) case 2, (c) case 3, (d) case 4.

than the local RMS value. These events are observed to be concentrated around the
onset of transition as suggested by F (v′), being less prominent in the pre-transition
and fully turbulent regions.

The peak value of the F (v′) is higher in the strong accelerations due to the greater
prominence of the spots and the more quiescent background turbulence in the stronger
accelerations, which is indicated in figures 6.7 and 6.8. A similar plot to figure 6.16
for case 3 did not show an obvious increase in extreme events around the onset of
transition as the extreme events were not sufficiently prominent in that case. Similar
peaks in kurtosis can be observed around transition in temporally accelerating flows
[15]. Kurtosis has sometimes been reported in previous studies of spatial acceleration.
Fernholz and Warnack [93] presents F (τ ′w) (figure 8), which would be expected to
behave similarly to F (v′), for laminarescent accelerations and similarly shows peaks
during the acceleration that are roughly coincident with the maximum uplift of the
logarithmic region (figure 6) highlighting that there is evidence of transition in the
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Figure 6.16: Isosurfaces of |v′| = 3.5v′rms (blue colourmap) and |w′| = 3.5w′
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colourmap) for case 1. The isosurfaces are shaded by the mean streamwise velocity
at x = 0.

results of previous studies of laminarescent accelerations. Warnack and Fernholz
[102] similarly shows peaks of F (τ ′w) in laminarising accelerations with the decreases
associated with retransition, similar to the present study.

6.4.4 Reynolds stress budgets

The streamwise Reynolds stress budgets normalised with reference wall units are
presented in figure 6.17 for cases 1 (left) and 3 (right) at four streamwise stations.
At the first station (figures 6.17(a) and 6.17(b)), located upstream of pre-transition
(table 6.3), the budget resembles that of a ZPGTBL. During pre-transition (stations
2 and 3), the near-wall (shear) production, P11 increases in both cases, consistent
with increased energy extraction from the mean flow as a result of the strengthening
near-wall streaks. A similar near-wall increase of production can also be observed in
moving wall accelerations (figure 5.8) and bypass transition [131]. In stark contrast,
all terms substantially reduce away from the wall (y+0 & 40), particularly in case
1, aligning with the reduction of u′u′+0observed in the outer part of the boundary
layer. This can be explained by the reduction in shear production caused partly
by the reducing mean shear (figures 6.5(c) and 6.6(c)), and the effect of dilational
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Figure 6.17: Streamwise Reynolds stress budget. Case 1 is presented on the left, and
case 3 is presented on the right.

production, −u′u′∂xū in transferring energy back to the mean flow as suggested by
Bourassa and Thomas [87].

With the onset of transition (figures 6.17(g) and 6.17(h)), all terms increase signif-
icantly in both cases as new turbulence is generated. The increase of production with
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Figure 6.18: Reynolds shear stress contributions for case 1 using the hyperbolic hole
method [21] with threshold, h ∈ {0, 1, 3}. (a) −u′v′Q1, (b) −u′v′Q2, (c) −u′v′Q3, (d)
−u′v′Q4.

the onset of transition is much larger than during pre-transition, similar to bypass
transition [131]. Also noticeable is the rapid response of pressure strain, Πs

11, which
is subdued during pre-transition, indicating a sudden increase in intercomponent en-
ergy transfer with the formation of turbulent spots in both cases. The rapid increase
of pressure strain is similar to studies of temporal acceleration and bypass transition
[43, 162] and is consistent with the sudden increase of the transverse stresses observed
in figure 6.12. Piomelli and Yuan [10] linked the rapid increase of pressure strain with
retransition after Πs

ii and the transverse motions are suppressed during laminarisa-
tion. Here, the increase of Πs

ii is associated with transition and occurs irrespective of
the suppression of the transverse motions during pre-transition as indicated by this
increase occurring in both cases 1 and 3 in figure 6.17. The behaviour of the pressure
strain during pre-transition is explored in more detail in section 6.6.

6.4.5 Quadrant analysis

The contributions of Reynolds shear stress-producing events are now considered using
the hyperbolic hole method (equation (5.2)) [21]. The Reynolds shear stress contri-
butions for case 1 at y+0 = 13 are shown in figure 6.18 for h ∈ {0, 1, 3}. The effect
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Figure 6.19: Reynolds shear stress contributions for case 3 using the hyperbolic hole
method [21] with threshold, h ∈ {0, 1, 3}. (a) −u′v′Q1, (b) −u′v′Q2, (c) −u′v′Q3, (d)
−u′v′Q4.

of the absolute turbulence reduction during pre-transition can be observed from near
the beginning of the acceleration. −u′v′Q2 and −u′v′Q3 exhibit limited reductions for
h = 0 while for h = 1 and h = 3, −u′v′Q increases, albeit very mildly. −u′v′Q1 and
−u′v′Q4 reduce strongly in the early stages of the acceleration at both h = 0 and
h = 1. This is consistent with previous studies showing that Q4 (sweep) events tend
to reduce more significantly than Q2 (ejection) events [87, 10]. However, by x = 200,
the magnitude of all quadrants (h = 0) has started to increase, potentially due to the
amplification of the streaks, where the advecting vortices associated with the lift-up
effect can be linked to quadrant events [7]. With the onset of transition, there is
a significant increase in all quadrants, particularly in strong Q2 events. The rapid
increase of −u′v′Q2 with the onset of transition can be linked to the breakdown of the
near-wall streaks leading to the ejection of slow-moving fluid away from the wall as
discussed in chapter 5, with similar observations in bypass transition [161].

The contributions to u′v′ in case 3 are shown in figure 6.19. −u′v′Q1 and −u′v′Q4

remain nearly constant in the near-wall region for all h during pre-transition, while
−u′v′Q2 and −u′v′Q3 are observed to mildly increase in later stages of pre-transition
(x & 300). This is particularly noticeable for −u′v′Q2, where a similar increase is
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observed at all h, indicating that extreme events drive it. These increases reflect the
mild increase in −u′v′+0during pre-transition (figure 6.13) and the lack of absolute
attenuation of the transverse motions in the weaker accelerations. There is still an
interesting parallel with the Q2 and Q3 events tending to decrease less (or increase
more) than the Q1 and Q4 events. With the onset of transition (x & 375), case 3
behaves similarly to case 1 with further increases in −u′v′Q2 at all thresholds indicative
of streak breakdown. The other quadrants also increase, albeit at lower h. This
behaviour again highlights that both accelerations behave similarly after the onset of
transition.

6.5 Energy spectra

Figure 6.20 shows contour plots of the pre-multiplied streamwise energy spectrum,
kzΦ

+0
11 (x, y, kz) for cases 1 (left) and 3 (right). Upstream of the acceleration (fig-

ures 6.20(a) and 6.20(b)), both cases exhibit a streamwise spectrum similar to a low
Reynolds number ZPGTBL with a prominent near-wall peak corresponding to the
buffer layer streaks with a short spectral tail associated with streaks in the logarith-
mic and defect layers [227, 238]. During pre-transition (figures 6.20(c) to 6.20(f)),
the buffer layer peak strengthens substantially due to the enhanced lift-up effect -
similar growth at larger scales has been observed in previous studies [90, 93]. There
is a tendency for the buffer layer peak to move to slightly shorter spanwise wave-
lengths, indicating that the streaks’ spanwise spacing reduces in absolute terms as
they are amplified, which is also observed in Talamelli et al. [239]. This has also been
observed in temporal and moving wall accelerations during pre-transition [43]. In the
logarithmic region, Φ11 weakens as expected by the reduction of the u′u′+0away from
the wall during pretransition (figure 6.10).

Figures 6.20(g) to 6.20(j) shows development of the Φ11 after the onset of transi-
tion. Shortly after the onset of transition (figures 6.20(g) and 6.20(h)), the near-wall
peak significantly intensifies and moves to a shorter spanwise scale and closer to the
wall. This is consistent with the break-up of the amplified streaks leading to the gen-
eration of new turbulence of shorter spatial scale as observed in figures 6.7 and 6.8.
The recovery of turbulence in the outer part of the boundary layer can be observed
through the re-emergence of the spectral tail, with the larger scale structures origi-
nating close to the wall (figures 6.20(g) and 6.20(h)) before spreading away from it
(figures 6.20(i) and 6.20(j)). Compared with figures 6.20(a) and 6.20(b), a greater
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Figure 6.20: Pre-multiplied spanwise spectrum of the streamwise velocity,
kzΦ

+0
11 (x, y, kz) against referenced inner-scaled spanwise wavelength, λ+0

z for cases 1
((a), (c), (e), (g), (i)) and 3 ((b), (d), (f), (h), (j)).
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range of scales can be observed with the spectral tail becoming more prominent rela-
tive to the near-wall peak due to the rapid development of a higher Reynolds number
TBL. However, note that neither acceleration has fully recovered to a ZPGTBL as
indicated by the lack of full re-establishment of the wake in figures 6.5(b) and 6.6(b).
The results highlight the similarity of the response of u′ to the acceleration in cases
1 and 3, initially characterised by streak strengthening followed by streak breakdown
and the spreading of turbulence away from the wall after the transition.

6.5.1 Streak generation

Given the centrality of the streak amplification to the turbulence response, the lift-up
effect is now investigated in more detail. The wall-normal vorticity, ω′

y ≈ ∂zu
′, in the

buffer layer, is dominated by the high- and low-speed streaks, which are represented by
a spanwise variation of u′. The wall-normal vorticity fluctuation transport equation
can represent this,

∂ω′
y

∂t
= −∂ū

∂y

∂v′

∂z
+ . . . , (6.1)

omitting terms not related to the lift-up effect, for clarity. This term represents the in-
teraction been the mean shear and the spanwise variation of v′ - the essence of the lift-
up effect. This term is also an important component of the Orr-Sommerfeld/Squires
system and is partly responsible for its non-normality, which is strongly associated
with transient growth and streak generation, as discussed in section 2.4.3. Numeri-
cal experiments have been performed to eliminate the streaks by damping this term
[79, 78].

The changes in the lift-up effect can be examined using the transport equation
for the spectral density of the wall-normal enstrophy, ω̂2

y/2, with the relevant terms
derived in appendix B.3:

1

2

∂〈ω̂′2
y〉

∂t
= kz Im

{〈
ω̂′∗

yv̂
′
〉} ∂ū

∂y︸ ︷︷ ︸
Ĝ

+ . . . , (6.2)

where ∗ indicates the complex conjugate and Ĝ indicates the scale-by-scale changes
in the lift-up effect, which has been used previously to understand streak generation
in turbulent channel flows [66]. The pre-multiplied spectra, kzG+0 is presented in
figure 6.21 for cases 1 (figures 6.21(a) and 6.21(b)) and 3 (figures 6.21(c) and 6.21(d))
in the buffer layer, with locations during pre-transition on the left and those after
the onset of transition on the right. During pre-transition, significant increases of
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Figure 6.21: Pre-multiplied spanwise ‘lift-up’ spectrum, kzĜ+0 against referenced
inner-scaled spanwise wavelength, λ+0

z for cases 1 ((a) and (b)) and 3 ((c) and (d)).
Locations during pre-transition are on the left at y+0 = 13, and locations after the
onset of transition are on the right at y+0 = 8.

G+0 can be observed in both accelerations, indicative of enhanced lift-up as the near-
wall structures are modulated by the new boundary layer. The peak of G+0 can be
observed to move to slightly smaller wavelengths consistent with the observed shift
of the near-wall spectral peak in figure 6.20. Interestingly, in case 1, there is a region
of negative G+0 at λ+0

z ≈ 10 that is not present in case 3. This may be linked with
the less perturbed streaks in figure 6.7(b), although a spectral analysis of the full
widehatω′

y transport equation would be required to understand the smaller scale
processes completely. These results highlight the importance of the lift-up effect to
turbulence development in the pre-transition region in cases 1 and 3.

With the onset of transition, large increases in G+0 are observed in both cases with
a substantial further shift towards smaller wavelengths, again reflecting the changes
in the near-wall Φ11 peak and the generation of new turbulence, which would be
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Figure 6.22: v′v′+0and w′w′+0against streamfunction ψ for cases 1 (left) and 3 (right).

associated with the formation of streaks of a much shorter scale than in the pre-
transition flow. The large increase of G+0 is likely caused by the rapid reduction of
spanwise scale and hence ω′

y ≈ ∂zu
′.

6.6 Transverse stresses

The reduction of the transverse Reynolds stresses in the inner layer is an important
feature of cases that tend to laminarise, and it is plausible that such an attenuation
could delay the onset of transition, which may explain why retransition is usually
observed after the relaxation of the acceleration in laminarising accelerations [9, 103].
Section 6.4 showed that the behaviour of the transverse components in the inner
layer changes significantly between cases 2 and 3, with v′v′

+0and w′w′+0essentially
remaining unchanged in cases 3 and 4 with substantial attenuation in cases 1 and
2. This section primarily focuses on the behaviour of transverse stresses in the inner
layer and the mechanisms that lead to it, with some limited discussion of the outer
layer turbulence where its behaviour was deemed relevant to the near-wall turbulence.
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Figure 6.22 shows v′v′+0and w′w′+0for cases 1 (left) and 3 (right) at locations during
pre-transition against the streamfunction, ψ defined as

ψ(y) =

∫ y

0

ū(x, y′)dy′, (6.3)

with lines of constant ψ indicating the mean streamlines. v′v′+0and w′w′+0do not sig-
nificantly change in case 3, with some limited near-wall reduction in v′v′

+0observed
close to the wall. v′v′+0and w′w′+0increase mildly in the outer boundary layer, which
has been noted in previous studies [97, 9]. In case 1, w′w′+0and particularly v′v′+0re-
duce substantially. However, it is also clear that v′v′+0and w′w′+0behave differently,
with the peak of w′w′+0reducing along its mean streamline and settling closer to the
wall as the flow contracts. On the other hand, the peak of v′v′+0moves across its mean
streamline and settles somewhat further from the wall (figure 6.11(a)) as it reduces.
This suggests that there are processes in strong accelerations that particularly affect
v′v′

+0. The differences between v′v′
+0and w′w′+0can be observed in previous results,

but this has not been previously reported [9, 10].

6.6.1 Pressure strain

Figure 6.23 shows the pressure strain in the normal components, Πs
ii scaled with

reference wall units for cases 1 (left) and 3 (right). For case 3, Πs
ii remains roughly

fixed in absolute terms during pre-transition (figures 6.23(d) and 6.23(f)) in the near-
wall region compared to its value upstream of the acceleration (figure 6.23(b)), which
indicates that the near-wall intercomponent energy transfer processes are largely un-
affected by the acceleration during pre-transition. This is consistent with the limited
changes observed in v′v′

+0and w′w′+0close to the wall in figure 6.11 and highlights
that beyond the amplification of the streaks, the near-wall turbulence is not strongly
affected by the acceleration during pre-transition in this case. Further from the wall,
Πs

ii reduces in all components, in line with the steady decline of all stresses in the
outer layer. In contrast, in case 1, Πs

ii reduces significantly during pre-transition close
to the wall, corresponding with the reduction of the transverse stresses near the wall
in figure 6.22. However, figures 6.23(c) and 6.23(e) shows that the response of Πs

22

differs significantly from the other two. While Πs
11 and Πs

33 are smaller during pre-
transition, they retain their shape. However, Πs

22 changes completely, becoming an
energy sink across the entire boundary layer by x = 160 and indicates a substantive
change in the energy transfer processes in the wall-normal component. Figure 6.23
also shows that the dilation production of v′, P22 = −v′v′∂yv̄ becomes the primary
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Figure 6.23: Pressure strain components, Πs
ii and wall-normal dilational production,

P22 for cases 1 (left) and 3 (right).

source of the wall-normal Reynolds stress budget away from the wall. The negative
Πs

22 suggests that it acts to redistribute this energy to the other components. The
‘splatting’ peak close to the wall, where Πs

22 < 0, is caused by the inviscid blocking
of packets of v′ by the wall [240, 241], is observed to increase in wall-normal extent,
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but its amplitude is smaller. The differences between the response of Πs
22 and Πs

33 are
reminiscent of homogeneous shear flows undergoing streamwise acceleration where
Πs

22 is observed to become negative, with Πs
33 remaining positive [242]. As discussed

in section 6.4.4, with the onset of transition, Πs
ii increases significantly in both cases,

with this increase starting near the wall, further highlighting the similarity between
these cases after the onset of transition.

6.6.2 Spectral analysis of Reynolds stress budget

To better understand the energy transfer processes, particularly for the wall-normal
component, the spectrum of the Reynolds stress transport equation can be examined,
giving insight into the scales of energy transfer. Such analysis has previously been
used in turbulent channel flows [243, 244, 245]. Here, we focus on the pressure strain
spectra for the wall-normal and spanwise components and the dilational production
terms.

Π̂s
22 =2Re

{〈
p̂′

∗∂v̂

∂y

〉}
(6.4a)

Π̂s
33 =− 2kz Im

{〈
p̂′

∗
ŵ
〉}

(6.4b)

P̂22 =2Re

{
〈v̂′

2
〉∂ū
∂x

}
(6.4c)

where ∗ indicates the complex conjugate. The derivations of the terms in equa-
tion (6.4) are given in appendix B.4. The pressure strain terms, Π̂s

22 and Π̂s
33 from

equations (6.4a) and (6.4b) are presented in figure 6.24 for case 1, noting that during
pre-transition there is no appreciable change for case 3 for any component. Fig-
ure 6.24(a) shows the distribution for Π̂s

22 in a ZPG boundary layer which resembles
that in turbulent channel flow [245]. The splatting peak can be observed close to the
wall (y+0 . 10) where Π̂s

22 < 0. Splatting is mostly a result of the transfer of energy
from v′ to w′ as these motions are typically linked to the quasi-streamwise vortices
[245]. Further from the wall, Π̂s

22 contains a large positive region that is associated
with the transfer of energy from u′; Π̂s

33 is essentially positive across the boundary
layer.

During pre-transition, the amplitude of Π̂s
22 and Π̂s

33 has substantially reduced at
all wavelengths and heights. The main positive peak for both components reduce by
approximately 60%, indicating that the processes that transfer energy from u′ to v′

and w′ are weaker but that the substantial differences between Πs
22 and Πs

33 during pre-
transition are not related to it. The shape of Π̂s

33 has not changed substantially by x =
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Figure 6.24: Pre-multiplied pressure-strain spectra for case 1. Wall-normal compo-
nent, Π̂s

+0

22 (left) and spanwise component, Π̂s
+0

33 (right).

160. In contrast, at large wavelengths, Π̂s
22 becomes a sink at all heights, suggesting

that there are processes that specifically affect the wall-normal component. Close to
the wall, the splatting peak has become more prominent and occupies a region further
from the wall. The spanwise scale of the splatting peak suggests that the structures
being blocked are wider than the typical near-wall structures present in the buffer
layer, where the streamwise vortices typically of order 50 wall units [66]. The enhanced
blocking may explain why v′v′+0moves away from the wall while w′w′+0tends to follow
the mean streamlines (figure 6.22). As the acceleration progresses, this negative peak
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Figure 6.25: Pre-multiplied wall-normal dilational production, P̂+0
22 spectra for case

1.

in Π̂s
22 strengthens until x ≈ 160, which corresponds to the maximum dxU∞ and −V∞

(maximum flow contraction). The weakening of the negative splatting peak is also
linked to the small recovery of Πs

22 close to the wall in figure 6.23(e). Figure 6.25
shows the spectrum of the wall-normal dilation production (equation (6.4c)), which
shows that the negative region of Π̂s

22 further from the wall corresponds with where
P̂22 > 0 (figure 6.25) confirming that pressure strain acts to redistribute energy
directly extracted from the mean flow due to flow contraction. The peak of P̂22 reaches
its maximum at x ≈ 160, where the negative region of Π̂s

22 has its maximum extent,
which is consistent with the direct dependence of (equation (6.4c)). It should be noted
that the extended splatting peak is not collocated with the increased production
because P̂22 acts further from the wall and is everywhere much weaker than the
splatting peak. Instead, the prominent splatting peak at large spanwise scales in
figure 6.24 indicates that large-scale wall-ward (v′ < 0) motions that are redirected
by the wall are responsible for the significantly different behaviour of Πs

22 close to the
wall.

The large-scale incursions from the freestream, identified in Piomelli and Yuan
[10], are a potential candidate, particularly as these would be expected to peak
around the maximum −V∞. These wall-ward motions correspond primarily to Q4
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Figure 6.26: z − y plane of instantaneous velocity vectors for case 1 superimposed
with contours of p′∂yv′ < 0 (blue lines). Filled contours represent u′v′ corresponding
Q4 events. The thick black lines indicates where u = 0.92U∞

events. Figure 6.26 shows the instantaneous velocity vectors in the z − y plane at
streamwise locations during pre-transition superimposed with contour plots showing
u′v′ corresponding with Q4 events. We also show events that contribute to energy
being transferred away from v′ (2p′∂yv′ < 0) as blue line contours. To highlight the in-
cursions from the freestream, a thick black line is used to indicate where u = 0.92U∞.

At x = 60, the flow is only slightly deviating from ZPG with patches of Q4, and
p′∂yv

′ < 0 occurring throughout the boundary layer. Individual events are typically
small-scale and localised, and there does not appear to be a clear correspondence
between these events. At x = 135, the boundary layer has become more quiescent with
fewer small-scale events. Vertical vectors show the influence of flow contraction with
the incursion of unperturbed fluid into the boundary layer from the freestream. Much
of the small-scale Q4 events of the ZPGTBL have disappeared, with large regions of
Q4 events resulting from incursions from the outer flow. As these motions approach
the wall, wide patches of p′∂yv′ < 0 overlap with the bottom edges of these events.
This is indicative of splatting with negative v′ being slowed as these motions impinge
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on the wall resulting in negative ∂yv′ and Q4 events being associated with local adverse
pressure gradients [246, 105] resulting in positive p′, and hence negative 2p′∂yv

′. At
these locations, the black contour line approaches the wall, indicating that these
impinging motions originate in the freestream. At subsequent downstream stations,
similar events can be observed close to the wall. The presence of these large incursions
and the wide regions of p′∂yv′ < 0 conforms with the wide structures implicated in
figure 6.24. The incursion of unperturbed flow is also reminiscent of low-K sink flows
[105], where distorted outer layer vortices act to transport quiescent flow into the
near-wall region, which may also contribute to the more quiescent appearance of the
inner layer.

While similar observations can be found in other planes and at other times, time-
resolved conditional averaging of these structures (along the lines of Lozano-Durán et
al. [247, 248]) is required to confirm that these motions have the correct character-
istics. In particular, whether these motions’ spanwise scale and wall-normal location
correspond with the extended splatting peak in figure 6.24. It is also useful to confirm
whether these motions, on average, reach their maximum intensity near min(V∞) as
expected from the maximum of the splatting peak.

6.6.3 Rapid pressure

The above mechanisms can help to explain the substantially different behaviour of
the wall-normal pressure strain but do not explain the general reduction of all three
pressure strain components, which is much larger than the enhanced splatting peak
or the dilational production. Furthermore, both of these mechanisms reach their
maxima around x ≈ 160, while v′v′+0and w′w′+0continue to reduce until the onset of
transition at x ≈ 270. The positive peak of Π̂s

22 and Π̂s
33 reduces by approximately

the same amount during pre-transition, indicating that there are also mechanisms
that act on all three components. One possible mechanism proposed by Piomelli and
Yuan [10], is that the reduction of Πs

ii is caused by the reduction of the rapid pressure
fluctuations, p′r. The pressure fluctuations, p′, can be decomposed into rapid and
slow, p′s components:

p′ = p′s + p′r. (6.5)

These can be defined through the Poisson equations

∇2p′s = −∂u
′
i

∂xj

∂u′j
∂xi︸ ︷︷ ︸

fs

, (6.6)
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Figure 6.27: Isosurfaces of the source of the rapid pressure, fr = 0.03 for cases 1
and 3 for streamwise locations upstream of the onset of transition.The isosurfaces are
coloured by the mean streamwise velocity at x = 0.

∇2p′r = −2
∂ūi
∂xj

∂u′j
∂xi︸ ︷︷ ︸

fr

≈ −2
∂ū

∂y

∂v′

∂x
. (6.7)

The direct dependence of equation (6.7) on the mean velocity gradients means that it
responds rapidly to changes in the mean flow [61, 10]. Piomelli and Yuan [10] showed
that the source of equation (6.7), fr reduces significantly in a strong acceleration
whereas fs does not and so proposed that the reductions in fr lead to reductions in p′r
and consequently Πii. Given the sudden near-wall drastic reduction of the pressure
strain in the inner layer in case 1 but not case 3, any mechanism responsible for this
reduction should appear in the former but not the latter. The importance of the
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mechanism proposed by Piomelli and Yuan [10] can be assessed by comparing fr in
cases 1 and 3. The isosurface of fr = 0.03 upstream of the onset of transition is
presented in figure 6.27. Note that fr and fs are related to the Q criterion for vortex
indentification as Q = ∇2p/2 [10]. fr reduces substantially in case 1, as indicated
by the appearance of large regions which are sparsely populated with isosurfaces in
figure 6.27(a), similarly to Piomelli and Yuan [10]. However, case 3 does not show any
significant reductions in fr, which suggests that the reduction in fr and consequently
pr is a plausible mechanism to explain the mostly isotropic reductions of pressure
strain that occur in strong spatial accelerations.

The likely physical mechanism of this process is indicated by the dominant term
in fr: −2∂yū∂xv

′, which reveals a direct dependence on the mean velocity gradient.
Figure 6.5(c) shows that in strong accelerations, ∂yū reduces substantially down to
y+0 ≈ 30 suggesting that the buffer layer processes, which exist up to y+0 . 80

[79], would be substantially affected, while in case 3 (figure 6.6(c)), the reduction is
limited and only occurs away from the wall y+0 & 100. While this suggests that the
reduction in fr is a plausible mechanism to explain the mostly isotropic reductions of
the pressure strain, further work is required. In particular, the relationship between
the reduction of fr and p′r and whether it can explain the behaviour of Πs

ii, which is
complicated by the nonlocality of p′r.

6.7 Summary and Conclusion

In this chapter, numerical simulations of spatially accelerating TBLs have been re-
ported, covering a wide range of acceleration rates. A new understanding of spatial
acceleration is proposed that characterises the flow and turbulence response as a
transition process that occurs in response to the development of a new boundary
layer. This boundary layer is formed as a consequence of the acceleration, with the
resulting flow bearing substantial similarities to bypass transition. This description
incorporates observations of laminarising and much weaker laminarescent cases. The
range of accelerations studied also allowed an investigation of the differences between
stronger and weaker accelerations, with an absolute attenuation of transverse motions
close to the wall in the former but not the latter, with several potential mechanisms
investigated.
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6.7.1 Summary of near-wall transition process

As the flow accelerates, a new boundary layer forms as viscous effects resist the
freestream acceleration, leading to a confined region of high mean shear. The en-
hanced mean shear amplifies the near-wall streaks as they travel downstream through
the lift-up effect. In all cases, the increasing amplitude of the near-wall streaks can be
observed through the persistent growth of the streamwise Reynolds stress in a limited
near-wall region. At this stage, there is a mild decrease in the absolute spanwise scale
of these streaks. The enhanced lift-up can be observed through the spectra of the
‘lift-up’ term in the wall-normal vorticity equation, with the changes in its amplitude
and spanwise scale aligning with the changes of u′. During this region, the rise of
turbulence kinetic energy is entirely due to the streaks as energy is extracted from the
mean flow, with no significant accompanying increases in the wall-normal Reynolds
stress, which either remains essentially constant or decays. Close to the wall, the
Reynolds shear stress generally exhibits no or limited increases in this region, which
is linked to the increasing amplitude of the streaks not being strongly correlated with
v′. Further from the wall, all turbulent stresses decay. This region is denoted as
pre-transition.

The onset of transition is caused by the breakdown of these strengthened streaks
with the appearance of localised, high-intensity spots in all three components. In
strong accelerations, the breakdown mechanism appears to resemble a streak insta-
bility process with disturbances originating at the interface of the streaks. In the
weaker accelerations, the mechanism is more difficult to discern, but the statistical
and visual characteristics of the breakdown are essentially identical across all cases.
This includes large increases in the transverse stresses initially close to the wall before
spreading away from it, which is due to a sudden rise in the pressure strain indicative
of an increase in intercomponent energy transfer. A sudden change in the energy
spectrum is also observed, with the near-wall peak moving closer to the wall and
to a shorter spanwise scale. There is also a large increase in all quadrant events,
particularly ejection events, indicative of a significant rise in wall-normal momentum
transport. The onset of transition is also linked to a significant increase in the eddy
viscosity near the wall, which had been subdued during pre-transition. The formation
of spots is also related to a peak of the kurtosis of v′ in all cases. Once the newly
generated turbulence covers the spanwise extent of the wall, the flow enters the ‘fully
turbulent’ region, which is characterised by the diffusion of turbulence away from the
wall, noting that the spread of the new turbulence dictates the recovery of the outer
layer in all cases.
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The transition process described above characterises the overarching turbulence
response in all cases investigated, with important features such as the formation of
turbulent spots not previously reported in laminarescent accelerations to the author’s
knowledge. Distinctive onset markers for transition reported in this study can also
be observed in previous studies, including a peak in kurtosis and near-wall lobes in
the eddy viscosity [102].

6.7.2 Comparison of spatial accelerations with different K

We now discuss the important differences between the laminarising (cases 1 and 2)
and laminarescent (cases 3 and 4) accelerations. While all accelerations exhibit a
flattening of the mean velocity profile away from the wall linked to boundary layer
contraction, this effect is much stronger in the laminarising accelerations, with flat-
tening observed down to the buffer layer.

The absolute attenuation of transverse motions in the inner layer in strong acceler-
ations has been investigated, revealing strikingly different behaviours between v′ and
w′. While the pressure strain in all three components reduces, this reduction is more
substantial for v′. We have identified several potential mechanisms that specifically
affect v′ associated with a sink at large scales in the pressure strain spectrum of v′. In
the first mechanism, large-scale motions originating in the freestream impinge on the
wall and are inviscidly blocked, leading to a transfer of energy from v′ to w′ and u′.
Second, energy is directly extracted from the mean flow by v′, which is subsequently
redistributed. We have also investigated a mechanism proposed by Piomelli and Yuan
[10], which can reduce the pressure strain in all three components by reducing the
rapid pressure Poisson equation source. The current results suggest this is a plausible
mechanism to explain the near-wall reduction of the pressure strain, but further work
is required to confirm this.

In contrast to the inner layer, the outer layer behaves similarly in all accelerations,
exhibiting a slow decay during pre-transition. This decay is observed to be stronger as
the acceleration rate increases. From a statistical perspective, this reduction can be
explained by the decrease of production in the outer layer as suggested by Bourassa
and Thomas [87]. However, further work examining the systematic behaviour of
coherent structures in this region would be beneficial.

There are also some differences in the transition process between the stronger
and weaker accelerations. Cases 3 and 4 undergo transition during the acceleration
where K remains close to its peak value. In contrast, cases 1 and 2 transition after
the relaxation of the acceleration, similar to previous studies of laminarising spatial
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acceleration. This may be related to the stabilisation of the streaks due to the at-
tenuation of transverse motions in the inner layer in those cases, leading to delayed
transition.

6.7.3 Laminarisation: where are we?

In this new understanding of spatial acceleration, the ‘soft’ laminarisation in spatially
accelerating flows results from the delay between the beginning of the acceleration and
the onset of transition. While transition occurs even in cases that do not laminarise, in
those cases, the pressure gradient is not strong enough to render the turbulent stresses
negligible to the mean flow dynamics. The absolute attenuation of the turbulent
stresses in the inner layer only occurs in strong accelerations, which further diminishes
the role of turbulence in the mean flow dynamics and may delay the onset of transition,
resulting in an extended streamwise region where the turbulent stresses are negligible.

It is also useful to consider the conceptual differences between this interpretation
and previous studies. Laminarisation in spatially accelerating flows is usually consid-
ered in terms of the progressive shift of the boundary layer between its asymptotic
states: the initial ZPGTBL and the quasi-laminar boundary layer where the two-layer
model of Narasimha and Sreenivasan [9] is valid. In the present study, we consider the
flow and turbulence response to be dominated by the incremental change of the mean
velocity profile, which is dominated by the development of the new boundary layer.
The new boundary layer amplifies the streamwise component in the form of near-wall
streaks, whose break-up is ultimately responsible for the onset of transition. This
contrasts with the previous studies that have considered u′ to be passively advected
from upstream and not driving the turbulence response to the acceleration [10, 121].

Retransition is usually regarded as a consequence of flow laminarisation and is
indicative of the recovery of the inner layer to the turbulent state. The present study
shows that this transition occurs across a range of acceleration rates irrespective of
the state of the inner layer. The onset of transition has the same characteristics as
previous observations of retransition, being associated with intermittency and origi-
nating close to the wall [112, 10, 121]. We have also shown that the onset of transition
can help to explain the return to equilibrium of the inner-scaled mean velocity profile
across all cases simulated.

It is also important to note that while cases 1 and 2 represent large values of
K, these accelerations have not been sustained for a significant streamwise distance.
Somewhat longer accelerations such as those of Piomelli and Yuan [10] and case 2
from Warnack and Fernholz [102] appear to behave similarly to those studied herein.
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However, extreme accelerations such as Bourassa and Thomas [87] (where Λmax ≈
2800) may exhibit somewhat different behaviour, with their results implying that in
sufficiently strong accelerations, v′v′ can increase more (or reduce less) than u′u′. On
the other hand, case 4 implies that the transition process may become undiscernible
in sufficiently weak accelerations with all three turbulence components responding
similarly. Therefore, further investigation of even weaker accelerations should also be
considered.

It is also useful to consider what influence the initial Reynolds number has on
the transition process and the attenuation of the transverse motions. Narasimha
and Sreenivasan [40] suggested that TBLs would likely begin to laminarise at lower
values of K as Reynolds number increases with some experimental results tentatively
supporting this [249]. However, a study has yet to systematically investigate Reynolds
number effects in spatially accelerating flows, with the initial Reθ in FPGTBLs much
smaller than experiments of ZPGTBLs. With the initial Reynolds number nearly
constant in this study, we are not able to investigate its influence on transition or the
attenuation of the transverse motions.
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Chapter 7

A comparison of spatially and
temporally accelerating flows

Previous studies of temporal acceleration have highlighted the similarities and differ-
ences between these accelerations, both in terms of mean flow parameters and the
turbulence response [46, 47, 12, 48]. However, no direct detailed comparisons of the
spatially and temporally accelerating flows have been made to date. In the context
of the previous chapter, where it was established that the turbulence response to
the spatial acceleration has many similarities to its temporal counterpart, we directly
compare these accelerations at comparable acceleration rates to understand the differ-
ences in mean flow and turbulence response. This study has three primary objectives:
First, to develop and assess a temporal analogy for the strong spatial accelerations
(cases 1 and 2 from chapter 6) to facilitate a comparison between the accelerations.
Second, to compare the mean flow development and important mean flow parameters,
such as Cf and H, explaining the key differences. Third, to explore the differences
in the turbulence response, particularly the transverse motions where chapter 6 sug-
gested processes occur in spatial acceleration that would not be present in temporal
acceleration.

7.1 Comparison approach

7.1.1 Initial flow

A comparison between spatial and temporal acceleration must begin at the conditions
of the flows upstream of the acceleration: a ZPGTBL and a stationary turbulent chan-
nel flow, respectively. Most comparisons of these flows have maintained approximately
the same friction Reynolds number in each case - essentially making an analogy be-
tween the boundary layer thickness and the half-channel height [250, 232]. Previous
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Table 7.1: Characteristics of channel flow cases at low Reynolds number to be com-
pared with ZPGTBL from chapter 4.

Rec Reτ Lx Lz Nx Ny Nz ∆x+ ∆z+ ∆y+w ∆y+c

Case C1 6792 344 18 6 648 385 360 9.56 5.74 0.401 8
Case C2 7286 366 18 6 648 385 360 10.2 6.1 0.427 8.52

studies, over a wide range of Reynolds numbers (580 ≤ Reτ ≤ 3000) have found
that with approximately matched Reτ , there are similarities close to the wall for the
inner-scaled mean velocity and streamwise turbulent statistics with the inner-scaled
transverse stresses typically being larger in TBLs compared with channels. In the
present study, we are comparing accelerating flows at lower Reynolds numbers than
the studies above. As a result, we have simulated two stationary channel flows at low
Reynolds number to compare with the ZPGTBL from section 4.7: one at Reτ ≈ 340

(case C1) to compare with matched Reτ (like previous studies), and a second with
matched Rec ≈ 7280 (case C2), which is relevant for the comparison approach devel-
oped in section 7.1.2. The summary of these cases is given in table 7.1, indicating
reasonable grid resolution.

Figure 7.1(a) presents the inner-scaled mean velocities for cases ZPG, C1 and C2.
There is good agreement between all cases up to the edge of the logarithmic region
(y+ . 100). Further from the wall, there are deviations between the channels and
TBL due to the presence of the wake in the outer layer of the TBL, which can sim-
ilarly been observed in figure 2.2(a). The lower Reynolds number and reduced scale
separation mean that the mean velocity profiles overlap for a greater proportion of
the boundary layer ( y/δ . 0.3) compared with the comparisons at higher Reτ such
as Monty et al. [250]. The relatively low Reynolds number of the present simulations
leads to a small velocity defect, implying the influence of the higher momentum outer
region in the TBL may increase with Reynolds number as the velocity defect becomes
more prominent. Figure 7.1(b) shows the RMS streamwise velocity fluctuations. All
cases collapse for much of the channel/TBL with reasonable agreement observed even
into the outer part of the boundary layer, although deviations can be observed to-
wards the outer edge of the TBL, which is consistent with higher Reynolds number
studies [232, 250]. It should also be highlighted that the RMS velocity fluctuations in
ZPGTBLs go to zero in the freestream, whereas for channels, the domain is bounded
with turbulence developing on the opposing wall, meaning that the velocity fluctu-
ations do not reduce to zero at the centreline. The inner peak of u′+rms exhibits a
very good collapse, which is significant given the role of the streamwise streaks in
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Figure 7.1: Variation of first and second-order statistics for the low Reynolds number
channel and TBLs: (a) ū+ vs y+; (b) u′u′+ vs y+; (c) v′v′+ vs y+;(d) w′w′+ vs y+.

temporal and spatial acceleration, indicating the streaks upstream of the acceleration
are similar.

The transverse Reynolds stresses are presented in figures 7.1(c) and 7.1(d). Con-
sistent with previous studies, the transverse motions are stronger in TBLs across the
flow. The location of maximum excess for v′+rms and w′+

rms between the TBL and
the channels is at y/δ ≈ 0.3 which is generally similar to previous studies at higher
Reynolds number, although it is perhaps somewhat further from the wall [232, 251].
The excess appears to be somewhat larger in the present case compared with higher
Reynolds number comparisons [232]. Consistent with Jiménez and Hoyas [252], v′+rms

and w′+
rms tend to peak closer to the wall in the channel flows compared with the

TBLs.
Figure 7.2 shows the skewness, S(u′) and kurtosis, F (u′) of the streamwise velocity

fluctuations showing that for much of the channel/TBL, there is good agreement
in both flows similar to previous studies [250], although there appears to be some
deviation in the viscous sublayer (this region is not resolved in Monty et al. [250]). In
the outer layer, both flows behave consistently with previous studies of channel and
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Figure 7.2: Higher order statistics: (a): skewness of u′, S(u′); (b): kurtosis of u′,
F (u′).

boundary layer flows [250]. Overall, the similarity of one-point turbulence statistics
between the channel flows and TBLs is comparable to previous studies conducted
at higher Reynolds numbers. There is also good agreement between cases C1 and
C2 suggesting that the difference in the initial turbulence between these different
Reynolds numbers is negligible.

7.1.2 Matched accelerations

While comparisons of spatial and temporal acceleration have not previously been
performed, there have been many comparisons of temporally developing and spa-
tially developing flows, mostly to reduce the computational cost, as the streamwise
direction can be treated as periodic in the temporal case. Early uses of the temporal
analogy to investigate flows that ordinarily develop in space include transitional flows
where the flow statistics and turbulent structures have been found to match their spa-
tially developing counterparts [253, 254, 255]. Recently, temporal analogies have been
applied to turbulent boundary layers. Kozul et al. [228] created a temporally develop-
ing TBL using an impulsively started moving wall and a numerical trip, resulting in
good agreement with its spatial counterpart for the first and second-order statistics,
even at low Reynolds numbers. Numerical studies of three-dimensional TBLs also
typically use a temporal analogy where they are represented by a channel flow with
a suddenly applied spanwise pressure gradient or moving wall [256, 257, 258, 259].

This study compares spatially and temporally accelerating flows with a matched
acceleration parameter, K, of the two flows at a given streamwise location/convective
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distance. K is chosen as it is an important parameter that is often reported in studies
of both accelerations. It should be emphasised that, unlike some of the studies above,
we are not attempting to create accelerations with equivalent statistics but to evaluate
the similarities and differences of spatial and temporal accelerations of the same value
of a chosen control parameter, K.

The acceleration parameters for spatially accelerating TBLs and temporally ac-
celerating channel flows are

K =
ν∗

U∗
∞

2

dU∗
∞

dx∗
K =

ν∗

U∗
c
3

dU∗
c

dt∗
, (7.1)

respectively. To compare the time development of the temporal acceleration with the
spatial acceleration, a convective distance is defined [171],

X∗
c =

∫ t∗

0

U∗
c (τ

∗)dτ ∗, (7.2)

Equation (7.2) can be considered analogous to the definition used in Kozul et al. [228]
for temporally developing TBLs, where X∗

c = U∗
wt

∗, albeit with a time-varying con-
vection velocity in this case. The choice of U∗

c as the convection velocity is physically
relevant due to the tendency of temporally accelerating channel flows to accelerate
uniformly across the channel for much of the acceleration.

A characteristic length is required to compare X∗
c from the temporal acceleration

and x∗ from the spatial acceleration. Here, we use the half-channel height, h∗ and
the 99% boundary layer thickness at a reference plane upstream of the acceleration,
δ∗0. The fixed value of δ∗ used in this study ensures that x varies monotonically.
In principle, h∗ could be matched to a smaller value than δ∗0 to reflect the reducing
outer scale, although in appendix C.1.1, it is shown that this should not change
at least the early stage excursions of the mean flow parameters. It also should be
noted that neither the location of the reference plane nor the choice of the boundary
layer thickness appreciably affects the results (appendices C.1.2 and C.1.3). Hereafter,
lengths in the accelerations will be normalised by these values unless otherwise stated.

Alongside matching the accelerating parameter, K, we also match the scaled cen-
treline velocity of the channel with the scaled freestream velocity at a given convective
distance.

Uc(Xc) = U∞(x). (7.3)

where Uc = U∗
c /U

∗
c0 and U∗

∞/U
∗
∞0. Matching K, equation (7.3), and matching the

half-channel height and initial boundary layer thickness places a condition on the
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Reynolds number of the channel. Substituting equation (7.3) into equation (7.1),
noting that from equation (7.2) dt = UcdXc

K =
1

Reδ0

1

U2
∞

dU∞

dx
, K =

1

Rec0

1

U2
c

dUc

dXc

. (7.4)

where Reδ0 = U∗
∞,0δ

∗
0/ν and Rec0 = U∗

c,0h
∗/ν. Therefore, for K to match at a given

Xc and x, Rec0 = Reδ0. This requires the initial Reynolds number to differ from
those used in previous turbulent channel flow and TBL comparisons, where Reτ is
more common. Section 7.1.1 shows that the same similarities in the initial flow also
exist for matched Rec at the low Reynolds numbers in this study. Equations (7.2)
and (7.3) allow further analogies to be made between the temporal and spatial ac-
celerations. Firstly, the scaled freestream/centreline inertia is approximately equal in
each acceleration.

U∞
dU∞

dx
≈ Uc

dUc

dXc

≡ dUc

dt
. (7.5)

Using the mean momentum balance at the freestream/centreline. For spatial accel-
eration (neglecting small terms),

− dp̄∞
dx

≈ U∞
dU∞

dx
(7.6)

For temporal acceleration,

Uc
dUc

dXc

= −dp̄c
dx

− ∂u′v′

∂y

∣∣∣∣
c

. (7.7)

Decomposing the pressure gradient using dxp̄
∧
c (t) = dxp̄c(t)− dxp̄c(t = 0) and noting

that −u′v′ at the centreline does not change in temporally accelerating flows until
the re-establishment of the linear Reynolds shear stress profile at the end of the fully
turbulent region [43] and that dxp̄c(t = 0) = ∂yu′v′(t = 0, y = 1)

− dp̄∧c
dx

≈ Uc
dUc

dXc

, (7.8)

where physically ∂xp̄
∧ is the driving pressure gradient associated with the temporal

acceleration. From equation (7.5),

dp̄∞
dx

≈ dp̄∧

dx
. (7.9)

It should be noted that in non-zero pressure gradient TBLs, the mean velocity
above the edge of the boundary layer is not exactly constant due to the non-uniformity
of the pressure gradient that results from the effect of flow contraction [260], meaning
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Table 7.2: Details of the temporally accelerating simulations. ∆T is the time from
the start of the acceleration to where it has reached 90% of its final value. K is
multiplied by 106. Resolutions represent their worst values during the simulations.

Rec Reτ Kmax ∆T ∆x+ ∆z+ ∆y+w ∆y+c Lx Lz

Case

Case 1T Initial 7784 388 6.3 12.8 5.5 3.9 0.4 3.9 18 6
Final 15600 698 9.8 7.0 0.7 7.0 18 6

Case 2T Initial 7842 389 3.9 20.2 5.5 3.9 0.4 3.9 18 6
Final 15692 697 9.8 7.0 0.7 7.0 18 6

that equations (7.5) and (7.9) can only match approximately. It also means that the
Uc must be matched to a ‘particular’ U∞, and hence this means that there is some
uncertainty in the K profile in spatially accelerating flows. In this study, we take
U∞ = ū(y = 1.1max(δ99)). This point was chosen such that it was far enough from
the wall that ū was not varying significantly, but close enough that equation (7.9)
is approximately valid within the boundary layer/channel. Other more systematic
approaches to determining U∞, such as using the diagnostic plot [260], have been
considered but were not found to work in such strong favourable pressure gradients.
A more detailed explanation and assessment is given in appendix C.1.4 with testing
indicating that the choice of U∞ does not significantly affect the results, with only
some small quantitative differences observed in case 1.

In summary, the temporal acceleration has been matched to the spatial accel-
eration at a given Xc through (i) the acceleration parameter, K; (ii) the scaled
freestream/centerline velocity (equation (7.3)), noting that the half-channel height
and initial boundary layer thickness have been used to scale Xc and x in the tem-
poral and spatial accelerations, respectively. As a consequence, the scaled pressure
gradient and the streamwise inertia match at the centreline/freestream. The initial
Reynolds number (Reδ0 = Rec0) also match. Other approaches for matching the
accelerations include using different acceleration parameters, such as the Narasimha
and Sreenivasan [9] pressure gradient parameter, Λ. The development of alternative
acceleration parameters will be considered in the results.

7.2 Simulation setup

The details of the temporal acceleration simulations in this chapter are outlined in
table 7.2, showing cases 1T and 2T, the analogous accelerations for cases 1 and 2.
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Figure 7.3: Freestream/centreline velocity and acceleration parameter. (a) U∞ and
Uc for cases 1 and 1T. (b) U∞ and Uc for cases 2 and 2T. The bulk velocity, Ub for
the channel flows is also presented, shifted upwards so that it initially overlaps with
Uc. (c) K for cases 1 and 1T. (d) K for cases 2 and 2T. The legend in (a) applies to
(c) and the legend in (b) applies to (d).

The details of the spatial acceleration cases are presented in table 6.1 with these
cases rescaled using δ at the same reference location. Equation (7.3) specifies that
the centreline velocity of the channel is matched to the freestream velocity. This is
achieved by dynamically modifying the pressure gradient of the channel to ensure
that at every time step, the cross-sectionally averaged centreline velocity matches the
desired freestream velocity of the spatial accelerations with the error between these
values of O(10−6). Uc is presented for cases 1T and 2T against Xc in figures 7.3(a)
and 7.3(b) showing that it matches U∞(x) at all locations. Figures 7.3(c) and 7.3(d)
show that K also matches at a given Xc.

Figure 7.3 shows that the bulk velocity, Ub, also approximately matches U∞ in the
early stages of the acceleration due to the new boundary layer being thin during the
pre-transition region. The number of mesh points (Nx, Ny, Nz) is 1280 × 649 × 600

for both cases leading to mesh resolutions that are similar to previous studies of
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Figure 7.4: Comparison of other acceleration parameters. Λ [9] (a), (b). ∆p [22] (c),
(d). Cases 1 and 1T: (a) (c). Cases 2 and 2T: (b) (d).

temporally accelerating channel flow [43, 44]. Three ensembles have been run for
cases 1T and 2T.

7.3 Mean flow response

Figure 7.4 shows the development of the pressure gradient parameters Λ =

−(δ/τw0)dxp̄∞ and ∆p = (ν/u3τ )dxp̄∞ [9, 22] for cases 1 and 2, where for tempo-
ral acceleration, Λ = −(h/τw0)dxp̄

∧
c and ∆p = (ν/u3τ )dxp̄

∧
c . Λ is larger in case 1T

compared with case 1. This is largely due to the substantial reduction of δ, which
is somewhat offset by the smaller value of τw0 in spatial accelerations. For cases 2
and 2T, the peak values of Λ and ∆p are also larger for the temporal accelerations.
Matching these acceleration parameters represents alternatives to the approach dis-
cussed in section 7.1.2. The larger values in the temporal acceleration indicate that if
these parameters were matched, the resulting temporal accelerations would be weaker
than those presented herein.

Figure 7.5 presents several important mean flow parameters for cases 1 (left) and
2 (right). The wall shear stress, τw for cases 1 and 2 is presented in figures 7.5(a)
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Figure 7.5: Comparison of mean flow parameters. Skin friction coefficient Cf (c) (d).
Shape factor H (e) (f). Cases 1 and 1T: (c) (e). Cases 2 and 2T: (d) (f)

and 7.5(b). In case 1T, τw follows the four-stage development described in Oluwadare
and He [261] for strong temporal accelerations. During pre-transition, τw rapidly
increases due to the formation of the new boundary layer before stagnating for a
short time. This results from the tendency of the τw to reduce as the new boundary
layer grows, combined with the lack of further substantial increases in bulk velocity
to maintain the rapid increase of τw. Case 1 follows a similar development initially,
although τw increases earlier and somewhat more strongly than for case 1T. Next,
instead of reaching a plateau as in case 1T, τw in case 1 reduces rapidly after reaching
a peak. At the onset of transition, (Xc ≈ 29 in case 1; Xc ≈ 27 in case 1T), τw
increases rapidly in both cases as new turbulence is generated. τw is similarly observed
to increase earlier in case 2 than in case 2T (figure 7.5(b)). From (22 . Xc . 33),
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both cases nearly collapse for a region comprising much of the overall increase in τw.
Case 2T behaves more similarly to the slower accelerations from Oluwadare and He
[261], with little stagnation of τw, whereas in case 2, τw stagnates without obvious
reduction.

Figures 7.5(c) and 7.5(d) shows the skin friction coefficient for cases 1 and 2,
where Cf = 2τw/(ρU

2
c ) for the temporal acceleration cases. For Xc < 0, the initial Cf

is lower in the spatial accelerations, reflecting the fuller velocity profile and absence
of the wake in stationary channel flows. Cf also slowly decreases with downstream
distance in the spatial accelerations due to the downstream growth of the boundary
layer in the upstream TBL, whereas temporal acceleration cases are stationary. Af-
ter the onset of the accelerations, Cf in case 1 increases significantly in the spatial
acceleration, overshooting case 1T in the early stages. As Uc = U∞, these differences
derive just from the changes in τw, which increases slightly earlier in case 1. By
Xc ≈ 16, τw increases somewhat more rapidly in case 1 than case 1T, but both accel-
erations exhibit similar trends. However, pointwise, τw is significantly larger in case
1. Hence, normalisation by U2

∞ accentuates these differences, meaning the changes
of Cf appear substantially larger in the spatial accelerations. For case 2, the early
stages of the acceleration are also characterised by significant increases in Cf , which
reflects the small increases in τw at Xc ≈ 20 where the increase of U∞ is modest. Cf

subsequently reduces substantially in all accelerations, although more strongly in the
spatial acceleration. Cf reaches a minimum indicating the onset of transition. The
location of transition in the temporal and spatial acceleration is similar, although it
appears slightly delayed in the spatial accelerations.

The shape factor, H, is presented in figures 7.5(e) and 7.5(f) and can be ob-
served to behave similarly after the start of the acceleration, with an initial decrease
followed by an increase towards the end of the pre-transition region. However, the
initial reduction in cases 1 and 2 occurs earlier and stronger than for cases 1T and
2T. The subsequent increase is far larger in cases 1 and 2, where H increases towards
laminar-like values, whereas cases 1T and 2T exhibit only a mild increase. These
much stronger excursions in the spatial acceleration agree with the observations of
Greenblatt and Moss [47]. Overall, the mean flow parameters in both accelerations
show general similarities. However, the spatial accelerations tend to respond ear-
lier and more strongly to the increases in freestream velocity than their temporal
counterparts.

Figures 7.6(a) and 7.6(b) shows the mean streamwise velocity, ū for cases 1 and
1T with blue lines indicating locations before the onset of transition and red lines
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Figure 7.6: Comparison of mean velocity: (a) ū case 1; (b) ū case 1T; (c) ū+ case 1;
(d) ū+ case 1T.

indicating those after. Hereafter, we focus predominantly on cases 1 and 1T because
the mean flow and turbulence response in cases 2 and 2T are generally similar. From
the matching strategy, Uc and U∞ are the same. The effect of flow contraction can
be observed in case 1 with the uplift from the Xc = 0 line at Xc = 12 larger at
y = 0.1 than in the freestream. This trend continues, and by Xc = 22, ū has been
significantly flattened in case 1. In contrast, case 1T accelerates uniformly and largely
retains its velocity gradient from further upstream. The flattening of the velocity
profile helps to explain the stronger and earlier increases of τw in spatial acceleration:
the contraction results in a stronger effective acceleration being felt in the near-
wall region, consequently leading to larger velocity gradients there to satisfy the
no-slip condition. The inner-scaled mean velocity profile is presented in figures 7.6(c)
and 7.6(d) for cases 1 and 1T. At Xc = 0, the differences in the initial flow can be
observed with the strong wake component visible in case 1. The inner-scaled mean
velocity profile for case 1 shows that in the early stages of the acceleration Xc ≤ 15,
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Figure 7.7: Development of integral thicknesses in cases 1 (a) and 1T (b).

the reduction of velocity gradient is mostly associated with the destruction of the
wake with the uplift of the logarithmic law observed for Xc > 15. There are some
similar general trends in case 1T (figure 7.6(d)) with ū+ reducing below the Xc = 0

line for Xc ≤ 15 before exhibiting some mild uplift. However, case 1T lacks the
distinctive skew towards the wall, with the uplift occurring relatively evenly across
the logarithmic region, which can be compared with the uplift of the logarithmic
law in moving wall accelerations (figure 5.2). The much larger variations of ū+ in
case 1 compared with case 1T conforms with the larger variation of Cf in figure 7.5
(Cf = 2/U+

∞
2). In both cases, the onset of transition is approximately associated

with the maximum uplift from the logarithmic law as discussed in chapter 6.
The flow contraction has an important influence on the development of the shape

factor in each acceleration. Figure 7.7 presents the integral thicknesses for cases 1
(left) and 1T (right) normalised by the momentum thickness at the reference plane,
θ0. For reference, the location of the min(H) during pretransition and the max(H)

associated with the onset of transition are indicated by vertical lines. Figure 7.7 shows
that for Xc < 22, δu and θ reduce, although the former reduces more strongly. This
can be explained by considering a location where ū/U∞ = 0.7 initially and becomes
ū/U∞ = 0.9 due to the flattening of the velocity profile (or just the increasing centre-
line velocity without a change in absolute velocity defect for temporal acceleration):
the contribution to δu goes from 0.3 → 0.1 whereas θ goes from 0.21 → 0.09, leading
to a reduction of H. The flattening of the velocity profile results in larger and earlier
reductions of δu and θ, causing earlier and stronger reductions of H in cases 1 and 2
compared with cases 1T and 2T (figure 7.5). However, as the acceleration progresses,
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Figure 7.8: Comparison of integral thickness integrands pre-multiplied by y. 1−ū/U∞
(a) (b). (ū/U∞)(1− ū/U∞) (c) (d). Case 1: (a) (c). Case 1T: (b) (d)

ū/U∞ will approach one away from the wall. Therefore, δu and θ would tend to re-
duce by a similar amount, although the decrease of the former is always greater than
the latter. This comparable reduction of δu and θ can be observed around Hmin in
figures 7.7(a) and 7.7(b). This comparable decrease helps explain why H begins to
increase in both accelerations. From the quotient rule

θ2
dH

dx
= θ

dδu
dx

− δu
dθ

dx
. (7.10)

From equation (7.10), where θ is reducing, H will increase when

H >
dδu
dx

/
dθ

dx
. (7.11)

As a result, as both thicknesses decrease at the roughly same rate, the RHS of
equation (7.11) will approach 1, and as Hmin > 1.3 in cases 1 and 1T, H will begin
to increase. This effect applies to both cases 1 and 1T, explaining why H increases
in both accelerations towards the end of the pre-transition region. However, the con-
traction should result in this increase being stronger in the spatial accelerations due
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to the larger reductions of the integral thicknesses (figure 7.7). The influence of the
mean velocity on the integral thicknesses can also be investigated by examining their
integrands. Figure 7.8 shows locations during pre-transition where H is increasing.
The abscissa is plotted logarithmically to highlight the near-wall region. Therefore,
the integrands have been premultiplied by y such that the area under the curve still
visually represents the integral thicknesses. In the outer part of the flow (y > 0.1),
the effect of the reducing velocity defect can be observed in both accelerations with
stronger decreases in spatial acceleration, consistent with the flattening of the velocity
profile. However, close to the wall, there appears to be a region in case 1 where both
the δu and θ integrands are increasing that is not present in case 1T. This indicates
an expansion in the near-wall region, which will be investigated in more detail in the
next section. The expansion has the opposite effect of the flattening mean velocity
profile, leading to δu beginning to increase (or reduce less) than θ, thus increasing H.

7.4 Momentum balance

The non-dimensional mean momentum equations for spatial and temporal accelera-
tion are

ū
∂ū

∂x︸︷︷︸
−IC1

+ v̄
∂ū

∂y︸︷︷︸
−IC2

= −∂p̄
∂x︸ ︷︷ ︸
P

+
1

Reδ0

[
∂2ū

∂x2
+
∂2ū

∂y2

]
︸ ︷︷ ︸

V

−∂u
′2

∂x
− ∂u′v′

∂y︸ ︷︷ ︸
T

, (7.12)

∂ū

∂t︸︷︷︸
−IT

= −∂p̄
∂x︸ ︷︷ ︸
P

+
1

Rec0

∂2ū

∂y2︸ ︷︷ ︸
V

−∂u
′v′

∂y︸ ︷︷ ︸
T

. (7.13)

where Reδ0 = Rec0. Of particular interest is the behaviour of the inertial terms with
IC1 and IT representing the streamwise accelerations in the spatial and temporal
accelerations. Spatial accelerations have the additional IC2 term representing the
influence of the wall-normal contraction and expansion. These terms are balanced on
the RHS by the pressure gradient, P , viscous diffusion, V and turbulence diffusion,
T .

Figure 7.9 shows the momentum balance for cases 1 (left) and 1T (right) at the
same convective/downstream distance. At Xc = 0, we can observe the differences
between the flows before the accelerations. In case 1T (figure 7.9(b)), P balances
T away from the wall, while in case 1 (figure 7.9(a)), T is mostly balanced by IC1,
which is positive indicating that the outer flow is being decelerated as the bound-
ary layer grows. The V and T balance close to the wall in both accelerations. In
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Figure 7.9: Momentum balance during pre-transition. Cases 1 and 1T are presented
on the left and right, respectively. Streamwise locations: Xc = 0 (a) and (b); Xc = 16
(c) and (d); Xc = 23 (e) and (f).

figures 7.9(c) to 7.9(f), the momentum balances are presented at locations during pre-
transition. As expected from the comparison approach, the pressure gradient across
the channel/boundary layer approximately matches, although small deviations can
be observed, for example, at Xc = 16 due to slight non-uniformity in the pressure
gradient in FPGTBLs (see appendix C.1.4). Similarly, the streamwise inertia terms
also approximately match at the freestream. We can also see that at the wall, the
viscous diffusion matches in both cases, consistent with taking the force balance at
the wall and the approximately equal pressure gradient.

At Xc = 16, IT is essentially constant for much of the wall-normal extent, which
conforms with the uniform increase of the mean velocity in figure 7.6(b) and acts to
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balance the increasing pressure gradient. In case 1, the IC1 is also mostly balanced by
the increasing pressure gradient away from the wall. However, the magnitude of IC1 is
slightly larger than the pressure gradient in the outer part of the boundary layer and
is larger there than in the freestream, which can be linked to the flow accelerating
faster in the outer boundary layer than at the freestream (figure 7.6(a)). At this
stage, IC1 and IT have similar general shapes. The ‘excess’ IC1 in the outer layer is
balanced mainly by wall-normal convection term, IC2, which is consistent with the
flow contraction being responsible for the flattening of the velocity profile. Closer to
the wall, V typically has a similar shape in both accelerations, with case 1 slightly
larger than case 1T at Xc = 16.

More substantial differences emerge between the accelerations in the late pre-
transition stage (Xc = 23). For case 1T, the momentum balance has not substantially
changed from Xc = 16, albeit with a moderate increase in T . In contrast, there have
been substantial changes in case 1. Close to the wall (y ≈ 0.02), the fluid has also
started to mildly decelerate (IC1 > 0), despite the continuing freestream acceleration,
with the flow beginning to expand (v̄ > 0) and IC2 becoming negative close to the
wall. This expansion is consistent with the increase of the δu integrand in figure 7.8
and it is evident that a similar expansion is not observed in the matched temporal
acceleration (figure 7.9(f)). The expansion can also explain the tendency for τw to
reduce more strongly in the later stages of pre-transition in the spatial accelerations
(figures 7.5(a) and 7.5(b)).

We consider there to be two main mechanisms that may lead to this near-wall ex-
pansion. First, by Xc = 23, the effect of flow contraction has substantially diminished
as indicated by IC2 ≈ 0 away from the wall, with minV∞ at Xc ≈ 18. Consequently,
as the acceleration begins to relax, the flow in the near-wall region, which has been
substantially thinned due to the contraction, begins to expand. Second, the subdued
turbulence mixing by this point means that there is less momentum transport into
the near-wall region by the turbulent fluctuations. This is indicated by T being no-
ticeably weaker in case 1 compared with case 1T, consistent with the near-wall region
becoming more laminar-like and the turbulent stresses not substantially contribut-
ing to the mean flow dynamics. The comparatively short region of acceleration in
the present study means that it is difficult to determine definitively between these
mechanisms.
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Figure 7.10: Maxima of RMS velocity fluctuations for cases 1 and 1T (left), and cases
2 and 2T (right). u′+0

rms (a) (b); v′
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rms (e) (f).

7.5 Turbulence response

The maxima of the RMS of the velocity fluctuations are presented in figure 7.10 for
cases 1 and 2. Upstream of the acceleration, the peak of u′+0

rms for spatial and tem-
poral acceleration collapse as expected from figure 7.1(b). After the beginning of the
acceleration, the near-wall maximum of u′+0

rms follow very similar trajectories with the
temporal acceleration slightly larger than their spatial counterparts. The agreement
in case 2 is somewhat better than in case 1. At Xc ≈ 25 in case 1T (Xc ≈ 35 in case
2T), the rate of increase of max(u′+0

rms) decreases substantially whereas the spatial
accelerations continue to increase until somewhat later. This difference reflects the
slightly earlier onset of transition in the temporal acceleration. The onset of transition
leads to increased intercomponent energy transfer, drawing energy from u′. Conse-
quently, the earlier transition results in an earlier decrease of u′rms in the temporal
accelerations. Upstream of the acceleration, the peak of transverse components, v′+0

rms
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Figure 7.11: Wall normal distributions of v′v′+0((c)(d)) and w′w′+0((e)(f)) for cases
1 (left) and 1T (right.)

and w′+0
rms are larger in the spatial accelerations as expected from previous studies [232]

(see also figure 7.1). However, v′+0
rms and w′+0

rms reduce substantially in absolute terms
in the spatial accelerations during pre-transition, whereas the temporal accelerations
remain approximately constant.

Figure 7.11 presents the wall-normal distribution of the normal Reynolds stresses
for cases 1 and 1T, with blue lines indicating locations during pre-transition and
red lines indicating those after. The similar values of the near-wall peak of u′u′

during pre-transition in cases 1 and 1T can also be observed here, with the growth
indicative of the increasing amplitude of the near-wall streaks. However, further from
the wall, there are significant differences between cases 1 and 1T. While case 1 reduces
substantially, case 1T remains at its value from before the acceleration for y+0 > 50.
The behaviour of the transverse components during pre-transition is also very different
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(figures 7.10(c) to 7.10(f)). While case 1 attenuates substantially across the boundary
layer during pre-transition, case 1T remains unchanged until the onset of transition.
With the onset of transition, transverse components increase substantially in both
accelerations, initially close to the wall, then further away from it. The significant
differences in the response of v′v′+0 and w′w′+0 between the spatial and temporal
accelerations are consistent with the mechanisms for the absolute reduction of the
transverse stresses in spatial acceleration being closely tied to the contraction of the
boundary layer.

These similarities and differences in the turbulence response can also be observed
in the velocity fluctuations. Figure 7.12 shows u′ and v′ for cases 1 and 1T. For
case 1, an x − z plane near the wall is shown, with the corresponding plane in case
1T generated from a line probe in the z direction, which is converted to a plane
of Xc − z for comparison with case 1. Figure 7.12 also shows z − y at the same
downstream/convective distance for both cases with two planes during pre-transition
and one plane located after the onset of transition.

The similarity in the response of the streamwise component close to the wall in
cases 1 and 1T is shown in figures 7.12(a) and 7.12(b), with the x−z plane showing the
increase in the amplitude of the near-wall streaks, as expected in the pre-transition
stage of the accelerations. The streaky structures in the spatial acceleration are
noticeably less perturbed than for the temporal acceleration, reflecting the absolute
attenuation of transverse motions in the former but not the latter. The z−y planes in
figures 7.12(a) and 7.12(b) also indicate how further from the wall there are significant
differences, with u′ reducing and the turbulence becoming confined to a thin region
close to the wall for case 1. However, for case 1T, u′ is not significantly changed
away from the wall in any of the z − y planes. The differences in the wall-normal
component during pre-transition can also be observed with v′ attenuating for case
1 (figure 7.12(c)) and remaining at approximately the same amplitude in case 1T
(figure 7.12(d)). The onset of transition can also be observed in both cases with the
formation of higher intensity, shorter scale motions at Xc ≈ 25. These spots are more
prominent in case 1 due to the attenuation of the transverse motions, with the spots
forming slightly further downstream in case 1 consistent with the somewhat delayed
minimum in Cf in figure 7.5. The differences in the turbulence response away from
the wall can similarly be observed in the wall-normal velocity fluctuations.

The similarities and differences in the turbulence structures can also be considered
in an averaged sense. The ∆x− y autocorrelation of the streamwise velocity fluctua-
tion, R11(∆x, y, y0; t) has frequently been used to characterise the average extent and
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Figure 7.12: Comparison of the velocity fluctuations for cases 1 and 1T at an x − z
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colourmap for v′ is shown in the bottom right.
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Figure 7.13: ∆x− y streamwise velocity autocorrelation, R11(∆x, y, y0; t) for case 1T
at y+0 = 11 (a) and y+0 = 97 (b) for Xc ∈ −5, 18, 23, 33 with subsequent stations
shifted by 3 to the right. Inclination computed using the method of Volino et al. [23]
is given to the left of R11. At (y+0 = 11, Xc = −5), the points used to compute the
inclination angle are marked with red dots.

shape of turbulent structures in boundary layers and channels [23, 48]. In the present
study, R11 has been computed with

R11(∆x, y, y0; t) =
1

u′u′
F−1

[〈
û′

∗
(kx, y0, t)û′(kx, y, t)

〉]
, (7.14)

employing the relationship between the spectral density and the autocovariance (equa-
tion (2.17)). In this case, 〈 〉 indicates spanwise and ensemble averaging of the
spectral density. The changes in turbulent structures can be summarised by the
structure inclination angle, φ, developed by Volino et al. [23]. φ is determined by
least-squares fitting the points furthest from (∆x, y − y0) = (0, 0) for the contours of
R11 at (0.5, 0.6, 0.7, 0.8, 0.9) both upstream and downstream of the autocorrelation
peak to y = m∆x + c with φ = tan−1(m). The points selected for the least-squares
fit for Xc = −5 are indicated by red dots in figure 7.13(a).

In the present study, R11 has not been computed for the spatial accelerations,
but the substantial reduction of the inclination angle throughout the boundary layer
has been widely reported [118, 105, 215]. Figure 7.13 shows the development of R11
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in the buffer layer (figure 7.13(a)) and logarithmic layer (figure 7.13(b)) during the
acceleration in case 1T. Before the start of the acceleration (Xc = −1), the structures
close to the wall (y+0 = 10) are nearly aligned with the streamwise direction, although
R11 shows they are slightly lifted at their downstream end. As the acceleration
progresses, these structures tilt further toward the wall, exhibiting a notable reduction
in inclination angle by Xc = 23. This results from the increase in mean shear, which
causes these structures to elongate as their downstream (upwards tilted) end is subject
to higher streamwise velocities and is ‘pulled’ away from the upstream end, which is
closer to the wall and moving more slowly. After the onset of transition, the inclination
increases significantly.

In the logarithmic region, R11 is associated with the inclination of logarithmic layer
streaks and their associated vortical structures. The nature of these vortical structures
is still debated [262], although they have often been represented as packets of hairpin
vortices [263, 264]. At (y+0 = 97), the shape of R11 does not substantially change
during pre-transition (figure 7.13(b)) as indicated by the comparatively small changes
in inclination angle, which remains similar to values observed in the logarithmic layer
of stationary turbulent channel flows [265]. R11 is still substantially distorted towards
the bottom left of the contours as the roots of these structures, which are embedded
in the near-wall region, are sheared. The comparatively small distortion of R11 is
because, in temporal accelerations, the flow accelerates without deformation outside
the new boundary layer, as indicated in figure 7.6(b). However, in spatial acceleration,
the streamwise acceleration elongates these structures in the streamwise direction and
flow contraction pushes these structures towards the wall. This leads to the turbulent
structures in the outer flow being strongly distorted and a reduction of inclination
angle across the boundary layer.

In summary, the turbulence response shares some important similarities associated
with the transition process, such as the response of u′rms and the eventual increase
of the transverse components with the onset of transition, which occurs at similar
locations. However, there are substantial differences in the behaviour of the turbulent
stresses and structures away from the wall. This indicates that it is unlikely that
there is a common mechanism, such as those proposed in Yuan and Piomelli [49] and
Mangavelli and Yuan [48], that can fully explain laminarisation in both accelerations.
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7.6 Discussion

7.6.1 Influence of the initial flow

Given the different nature of the flow before the accelerations, we can consider the po-
tential influence that this may have on the flow development during the acceleration.
One notable difference is the streamwise inhomogeneity of the TBL upstream of the
spatial acceleration, contrasting with the fully developed channel flow in the temporal
accelerations. For cases 1 and 2, this should not strongly affect the results, as the
flow development after the onset of acceleration dwarfs that before it. Furthermore,
it can be shown that modestly changing the location of the reference plane does not
substantially affect the comparison (see appendix C.1). However, in weaker acceler-
ations, where the influence of the acceleration is less severe, this difference may be
more relevant. Another difference is the presence of the wake in TBLs, which results
in a fuller mean velocity profile in the temporal accelerations before the acceleration.
The less full mean velocity profile in the upstream TBL likely reinforces the signifi-
cance of flow contraction in spatial accelerations, as the larger initial velocity deficit
leads to more substantial excursions in the mean flow parameters as the mean velocity
profile is flattened. Significantly, the elimination of the wake represents one of the
earliest changes in the inner-scaled mean velocity (figure 7.6(c)). Additionally, there
are differences in the initial turbulence, particularly the larger transverse motions in
ZPGTBLs compared with channels [232]. This is not expected to substantially con-
tribute to the different turbulence responses during pre-transition, as the streamwise
acceleration and flow contraction are much more important.

7.6.2 Assessment of the comparison approach

The purpose of the comparison approach developed in section 7.1 was to facilitate
comparison between spatial and temporal accelerations. The chosen approach offers
several advantages. First, the matching of Uc and U∞ ensured that the changes
in Cf can be related directly to τw, highlighting that the significant differences in
the former could be associated with seemingly limited differences in the trends of
the latter. It also allows a comparison of the mean velocity by ensuring that the
scaled freestream/centreline velocities are the same. This, in turn, enables differences
between the uniformly increasing mean velocity in temporal acceleration and the
flattening mean velocity profile in spatial acceleration to be observed. Second, the
approximate matching of the scaled pressure gradients means that the momentum
balance could be compared at each Xc, with many terms approximately equal at the
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freestream or the wall. Third, the matched acceleration parameter, K means that
the accelerations could be considered nominally equivalent in terms of a quantity that
has been used previously to characterise both accelerations. As noted in section 7.3,
it is possible to match other parameters, but figure 7.4 suggests it is unlikely to lead
to different conclusions as it would lead to weaker accelerations and even weaker
excursions of the mean flow parameters.

Another advantage of the comparison approach is that the resulting temporal
acceleration shares many overarching similarities with its spatial counterpart. These
similarities include the overall behaviour of τw until the late stages of pre-transition,
the similar location of transition onset, and the variation of the near-wall peak of u′rms.
While such similarities were not strictly necessary for drawing general conclusions
regarding the similarities and differences between the accelerations, they facilitated a
meaningful pointwise comparison of the accelerations for much of the pre-transition
region. It should be noted that such similarities may not occur at different values ofK.
Weaker accelerations are more likely to be affected by the differences in the initial flow,
while stronger or more sustained accelerations may result in a more extended ‘late
pre-transition’ region where more substantial differences in the momentum balance
and H were observed.

7.7 Summary and Conclusions

In this chapter, we compared laminarising spatially accelerating TBLs (cases 1 and
2) with temporally accelerating channel flows (cases 1T and 2T) by matching the
acceleration parameter, K. For the temporal acceleration cases, we used a convective
distance, Xc, where the channel centerline velocity was used as the convection velocity.
The comparison approach was effective in facilitating the comparison between the
accelerations. The resulting temporal accelerations have similar overarching responses
in the development of mean flow parameters and some aspects of the turbulence
response as their spatial counterparts. However, flow contraction plays a significant
role in spatial acceleration, resulting in much more pronounced variations of the mean
flow parameters and significant differences in the transverse turbulent stresses during
pre-transition. The main conclusions are summarised below.

• With the onset of the acceleration, Cf initially increases before falling rapidly
until the onset of transition in both cases, but the variations are far stronger
in the spatial accelerations. The primary reason for this is the contraction of
the boundary layer, with the mean velocity close to the wall accelerating faster
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than the freestream, meaning the near-wall region is affected by the increasing
U∞ earlier and more strongly than its temporal counterpart. The contraction
is reinforced by the initially less full mean velocity profile in the spatial case,
leading to a lower initial Cf , which rapidly increases as the velocity profile
flattens.

• Similarly, H tends to follow similar trends in both accelerations with more pro-
nounced variations in the spatial accelerations. It is shown that the reduction
of the velocity defect relative to the freestream/centreline velocity is responsible
for both the initial decrease in H and its subsequent increases in the later stages
of pre-transition. Again, flow contraction leads to a more substantial reduction
of the velocity defect, contributing to the more significant changes in H.

• In spatial accelerations, the momentum balance exhibits a distinct change of
behaviour in the late pre-transition stage, characterised by an expansion of the
near-wall flow as the freestream continues to accelerate. Similar behaviours
are not observed in their temporal counterparts. This expansion likely plays
a significant role in the more notable increases in H and the more substan-
tial decreases in τw during this stage. Two possible (not mutually exclusive)
mechanisms were identified: (i) the flow beginning to relax as the influence
of contraction diminished, and (ii) the subdued turbulence, meaning less tur-
bulent mixing in the near-wall region. However, due to the relatively short
accelerations in this study, further simulations or experiments are required to
understand their relative importance fully.

• The streamwise turbulent stresses behave similarly close to the wall in spatial
and temporal accelerations, with the peak values nearly collapsing throughout
pre-transition. In contrast, further from the wall, the streamwise component
reduces strongly in the former.

• The transverse motions exhibit significant differences, remaining constant in
temporal accelerations while reducing substantially in spatial accelerations.
This supports the notion that the absolute attenuation of transverse stresses
and the streamwise component away from the wall in spatial accelerations is
closely tied to the contraction of the boundary layer. Additionally, distinc-
tions in the development of turbulent structures in the outer flow have been
highlighted. After the onset of transition, both accelerations behave similarly.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this study, we have investigated spatially accelerating turbulent flows to improve
the understanding of the turbulence dynamics, particularly the processes that lead
to the emergence of laminarisation, which has remained enigmatic for decades and is
present in many engineering applications. The main finding of this study is the flow
and turbulence response of spatially accelerating turbulent boundary layers across a
wide range of acceleration rates are dominated by the development of a new boundary
layer and the eventual transition of the flow in response. This was first investigated
through a simplified spatial acceleration, driven by longitudinally accelerating mov-
ing walls, which enabled a study of the development of the new boundary layer and
the turbulence response without the influence of flow contraction (chapter 5). This
simplified flow has been characterised by a transition process and exhibited many
similarities to both spatially and temporally accelerating flows. We subsequently
investigated spatially accelerating TBLs, which include the influence of flow contrac-
tion, over a range of acceleration rates from the weak laminarescent to the strongly
laminarising regimes (chapter 6). A transition process was identified in all cases as
a result of the near-wall increases in mean shear. Important differences were found
in the turbulence response of laminarescent and laminarising cases, with the tur-
bulence in the inner layer freezing in the former, while in the latter, it attenuates
significantly. The mechanisms for the differences have been explored. Lastly, we have
directly compared spatially accelerating TBLs and temporally accelerating channel
flow with matched acceleration parameter, K (chapter 7). It has been found that
flow contraction results in spatially accelerating flows exhibiting earlier and larger
excursions in the mean flow parameters such as Cf and H and leads to substantial
differences in the turbulence development, particularly away from the wall. While
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many aspects of spatially accelerating flows remain enigmatic and require further
study, we believe this work has shed light on some of the fundamental processes in
these flows. Below, we summarise each of the results chapters.

8.1.1 Moving wall acceleration

The flow response in the moving wall acceleration is characterised by the development
of a new boundary layer followed by transition. As such, the process can be described
as a three-stage development: pre-transition, transition, and fully turbulent, similar
to temporal acceleration. During pre-transition, the new boundary layer amplifies the
near-wall streaks through the lift-up effect without significantly affecting the trans-
verse components. At the onset of the transition stage, these streaks break down due
to localised instabilities developing of specific streaks. This leads to the formation of
turbulent spots, which spread in the spanwise direction until the wall is covered in new
turbulence. The newly generated turbulence propagates away from the wall during
the fully turbulent stage. The moving wall acceleration shares many similarities with
conventional spatially accelerating flows that include flow contraction, such as the
downstream growth of the streamwise Reynolds stress, changes in the spanwise scales
of the streaks before transition, and the role of pressure strain in the recovery of tur-
bulence during transition. The similarities suggested that similar mechanisms could
be present in the more complex acceleration where contraction effects are present.
The flow also shares considerable similarities with temporally accelerating flows.

8.1.2 Spatially accelerating turbulent boundary layers

Four spatially accelerating TBLs were simulated with peak acceleration parameter K
ranging from 1.2×10−6 to 6.3×10−6, which is among the widest range of acceleration
rates studied using numerical simulation to date enabling a detailed evaluation of
the changes in turbulence dynamics as acceleration rate increases. The two weaker
accelerations could be classified as laminarescent, in which the flows exhibit some
departures from the turbulent state but do not show clear signs of laminarisation.
The two stronger accelerations are consistent with laminarising spatial accelerations.
The main conclusions are

• The development of the mean velocity in all cases can be characterised in two
parts: (i) the development of a new boundary layer due to the resistance
provided by viscous effects to freestream acceleration and (ii) a flattening of
the mean velocity away from the wall due to flow contraction, which becomes
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stronger as acceleration rate increases such that in the strongest acceleration,
the mean shear reduces down to the buffer layer.

• All four cases undergo a transition process similar to that described for the
moving wall acceleration, with the onset of transition marking the recovery of
turbulence in the boundary layer. This recovery is linked to the generation
of new turbulence close to the wall, which subsequently spreads away from it,
with the turbulence in the outer layer not increasing until the new turbulence
has propagated from the wall. In all cases, transition onset can be associated
with the maximum uplift from the logarithmic law, an important observation
in spatially accelerating flows.

• During pre-transition, the transverse stresses behave differently in the lam-
inarescent and laminarising accelerations, with the former remaining frozen in
absolute terms and the latter strongly attenuating. The same difference is also
observed for the streamwise component but only away from the wall.

• For the laminarising accelerations, the wall-normal pressure strain has been
found to behave differently from the other components, becoming negative for
much of the boundary layer, which was linked to the ‘splatting’ of large-scale
wall-ward motions from the freestream and the redistribution of energy ex-
tracted directly from the mean flow by flow contraction.

8.1.3 Comparison of spatially and temporally accelerating
flows

Matched temporally accelerating channel flows have been created for the laminaris-
ing spatial accelerations by matching the acceleration parameter, K and the scaled
freestream/centreline velocities to understand the similarities and differences in the
development of mean flow parameters and turbulence between the accelerations. Cf

and H have been found to have similar trends in both accelerations. However, the
variations are much more significant in the spatial accelerations. There are two main
reasons for this: First, the flattening of the velocity profile in spatial accelerations
results in the flow close to the wall accelerating faster than the freestream, meaning
that the mean flow parameters tend to respond earlier and more strongly than their
temporal counterparts. Second, the momentum balance showed that in the late pre-
transition stage, the near-wall region in the spatial acceleration expands, resulting in
strong increases in H and reductions in τw.
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The precise cause of the expansion is unclear, but it is likely to result from either
the subdued turbulence in the spatial acceleration or the relaxation of the flow con-
traction towards the end of the acceleration, although these should not be mutually
exclusive. The near-wall peak streamwise stress nearly collapses between the spatial
and temporal accelerations. However, the transverse stresses across the boundary
layer and the streamwise stress away from the wall behave differently, with turbu-
lence in the temporal accelerations roughly collapsing onto their values from before
the acceleration. However, in the spatial accelerations, they attenuate absolutely.
Significant differences have been observed in the turbulent structures in the loga-
rithmic layer of the temporal acceleration compared with previous studies of spatial
accelerations.

8.2 Proposed future work

There are three areas that should be investigated in future work. (i) More simulations
and experiments of spatially accelerating TBLs to extend the range of acceleration
further and to consider additional physics. (ii) Studying accelerations with geome-
tries closer to those in engineering applications, particularly those accompanied by
curvature. (iii) Work to improve the understanding of the near-wall turbulence pro-
cesses that lead to transition occurring in spatially and temporally accelerating flows.
These are detailed below.

Further simulations and experiments of spatially accelerating TBLs should in-
clude stronger, more sustained accelerations and weaker accelerations. As discussed
in chapter 6, experimental works such as Bourassa and Thomas [87] have accelerations
that have been sustained for far longer with much larger freestream velocity ratios of
around (10). Their results suggest that differences in the turbulence response com-
pared with this study may emerge in such strong acceleration rates. It is likely that
extreme cases such as Bourassa and Thomas [87] will remain computationally unfea-
sible for the foreseeable future and will require experimental investigation, potentially
supported by simulations using the present code at more moderate acceleration rates
and Reynolds numbers. Additionally, weaker accelerations should also be simulated
to ascertain if and at what acceleration rates the transition process described herein
becomes indiscernible.

It would also be useful to consider a broader range of initial Reynolds numbers to
understand what influence this has on transition and the attenuation of the transverse
motions in spatially accelerating TBLs. Spatial accelerations with additional physics,
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such as heat transfer, should also be investigated. Some of the early works on spatial
acceleration, such as Moretti and Kays [95], noted that laminarisation was responsible
for heat transfer deterioration. However, few studies have since investigated this in
detail. Future simulations could also consider using more advanced analyses to charac-
terise the transition process, such as using the budget of the Kármán-Howarth-Monin
equation to improve the understanding of energy redistribution around transition on-
set.

Simulations should also be performed on accelerating flows with more complex
geometries to understand how the presence of curvature may alter the transition
process. Many applications discussed in chapter 1, such as the leading edge slat,
also include significant curvature. These could include simulations or experiments of
Gaussian bumps or curved hills, where there is already a significant body of research
[38, 266, 267].

Lastly, the transition process in accelerating flows has been established, with the
mean and turbulence responses explained in this framework. However, we believe that
this new understanding could be further linked to the turbulence re-generation cycle,
which already has a significant body of research. The link between the turbulence
regeneration cycle and the present transition concept may be established with the
aid of stability analysis, which could focus particularly on the amplification of the
streaks and their breakdown. This is out of the scope of the present study but may
be a valuable future research topic.
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Appendix A

Moving wall acceleration

A.1 Details of the turbulence generator

The sufficiency of the domain size in periodic directions is confirmed using the two-
point correlation. Figure A.1 shows the streamwise autocorrelation in the periodic
streamwise and spanwise directions. These plots show that the correlation is close to
zero by the half-width and half-length of the channel, indicating that the turbulence
generator size is sufficient.
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Figure A.1: Streamwise autocorrelation for turbulence generator at y+ ∈
{5, 15, 50, 150}. (a) spanwise direction. (b) streamwise direction.
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Figure A.2: Smooth case compared with the case presented in the paper. (a) Relative
bulk velocity. (b) Acceleration parameter.

A.2 Moving-wall acceleration with a smooth and
gradual flow increase

Some results are presented below of a smooth moving wall acceleration, which shows
that the overall phenomena, including the location of transition, are largely unchanged
compared to the linear acceleration presented in the main body of the paper. In order
to create an equivalent smooth acceleration, a tanh function was used such that the
acceleration, dU/dx in the middle of the acceleration is the same as the linear case, and
the velocity of both cases was the same in the middle of the acceleration. Enforcing
these conditions results in:

U(x) = U0 − Uw(x) = U0 +
∆U

2

[
tanh

(
2x

∆x
+ 1

)
+ 1

]
, (A.1)

where x is the downstream distance from the nominal onset of the acceleration in
the equivalent linear case. ∆x is the streamwise length of the acceleration in the
equivalent linear acceleration case. The resulting bulk velocity profile and acceleration
parameter distributions for the smooth case compared with the case presented in the
study are shown in figure A.2. It can be observed that the peak K observed in
figure 5.3 is now absent in the ‘smooth’ case, which shows a shape more similar to
those exhibited in conventional flows. Figure A.3 shows that the general behaviour
of the skin friction coefficient and shape factor in the two cases are similar. In
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Figure A.3: Smooth case compared with the case presented in the paper. (a) Skin
friction coefficient. (b) Shape factor.

particular, the locations of the minimum Cf and peak H are similar in the two flows,
which indicates that the smoothing of the flow acceleration profile does not change
the key transition features of the flows presented in the main body of the chapter.
The parameters in figure A.3 show some detailed different behaviour before transition,
which can explain the longer acceleration in the smooth case. Preliminary results from
u′u′max and v′v′max (not presented) also show similar trends to the results presented
in the paper.

A.3 Algorithm for quadrant events

The quadrant event statistics were computed from saved instantaneous data with
a time interval between samples ∆ts = 0.5h/Ub0. This corresponds to ∆t+0

s = 6

with a maximum ∆t+s = 20 near the completion of transition. In the early stages
of the pre-transition, this spacing should be capable of adequately resolving nearly
all quadrant events, while during the transition region, the dynamically significant
events in the buffer layer, which typically have lifetimes ∆t+ ≈ 30 [248]should be
captured. This algorithm considers the events passing a fixed point in the domain
with the result averaged over spanwise locations, indicating how ‘full’ the domain is
with these events. An event begins at threshold h at sample n when I(x, y, z; t) = 1

(equation (5.3)) at n and I(x, y, z; t) = 0 at n−1. The average event duration, ∆TQi,
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is given by the total time at a point where I(x, y, z; t) = 1 divided by the number of
new events. The average interval between events, TQi, is given by the total time that
statistics are accrued divided by the number of new events.
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Appendix B

Transition in spatially accelerating
TBLs

B.1 Conditions upstream of acceleration

Figure B.1 shows the mean velocity and the normal Reynolds stresses at the reference
plane. There is a good agreement with the ZPG data from chapter 4, indicating that
the use of a single domain has not substantially affected the inflow generation in these
cases, with the statistics still consistent with ZPG data. Nonetheless, in the future, it
is recommended that the inflow data be created with separate precursor simulations
to completely eliminate the possibility of feedback between the acceleration and the
inflow generation.

B.2 Spot detection algorithm

A simple spot detection algorithm was used in this study with the quantity of interest
being

D = |v′|+ |w′|, (B.1)

which is the quantity used in the transition study of Nolan and Zaki [165] to detect
turbulent spots. The criterion for spot detection was defined as

D −Drms,0 > 0.15(max(Drms)−Drms,0), (B.2)

where Drms = v′rms + w′
rms. This threshold is similar to that used in the conditional

averaging of temporally accelerating flows performed by Mathur et al. [172]. This
is different from Nolan and Zaki [165] because their detection method [268] was less
effective due to the turbulence present before transition, although more sophisticated
versions of the Otsu [268] thresholding method may have worked adequately. The
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Figure B.1: Comparison of the reference plane of cases 1 to 4 with ZPG case from
chapter 4

criterion is depicted as lines on figures 6.8(c) and 6.8(d), indicating that the spots are
accurately captured with some false positives due to the relatively low prominence
of the turbulent spots compared with the background turbulent. Given that the
purpose of this spot detection algorithm is as a visual aid only, these false positives
are unimportant.

B.3 Derivation of Ĝ

The wall-normal vorticity fluctuation, considering the dominant term only

ω′
y =

∂u′

∂z
− ∂w′

∂x
≈ ∂u′

∂z
(B.3)

To derive the transport equation for ω′
y, we start with the streamwise Navier-Stokes

(NS) and Reynolds-averaged NS equations, omitting the pressure, viscous, and tur-
bulence transport terms.

∂u

∂t
= −u∂u

∂x
− v

∂u

∂y
= . . . (B.4)

∂ū

∂t
= −ū∂ū

∂x
− v̄

∂ū

∂y
+ . . . (B.5)
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Differentiating equations (B.4) and (B.5) by z yields

∂

∂t

∂u

∂z
=
∂ωy

∂t
= − ∂

∂z

(
u
∂u

∂x

)
− ∂

∂z

(
v
∂u

∂y

)
+ . . . (B.6)

∂

∂t

∂ū

∂z
=
∂ω̄y

∂t
= − ∂

∂z

(
ū
∂ū

∂x

)
− ∂

∂z

(
v̄
∂ū

∂y

)
+ . . . (B.7)

Subtracting equation (B.7) from equation (B.6) and noting that ω′ = ω − ω̄ gives

∂ω′
y

∂t
= − ∂

∂z

(
u
∂u

∂x
− ū

∂ū

∂x

)
− ∂

∂z

(
v
∂u

∂y
− v̄

∂ū

∂y

)
︸ ︷︷ ︸

A

+ . . . (B.8)

Considering just term A in equation (B.8)

− ∂

∂z

(
v
∂u

∂y
− v̄

∂ū

∂y

)
= − ∂

∂z

(
v′
∂ū

∂y
+ v̄

∂u′

∂y
+ v′

∂u′

∂y

)
(B.9)

Considering just the first term on the RHS of equation (B.9) and applying the product
rule

− ∂

∂z

(
v′
∂ū

∂y

)
= −∂v

′

∂z

∂ū

∂y
− v′

∂2ū

∂y
⇒

∂ω′
y

∂t
= −∂v

′

∂z

∂ū

∂y
+ . . . . (B.10)

The spectral density of the wall-normal enstrophy is given by

1

2

∂〈ω̂′2
y〉

∂t
=

1

2

∂〈ω̂′∗
yω̂

′
y〉

∂t
=

1

2

〈
ω̂′∗

y

∂ω̂′
y

∂t
+ ω̂′

y

∂ω̂′∗
y

∂t

〉
(B.11)

First, take the Fourier transform of equation (B.10) in the z direction, noting that
∂zω̂′

y = ikzω̂′
y

∂ω̂′
y

∂t
= − ∂̂v

′

∂z

∂ū

∂y
+ . . . = −ikzv̂′

∂ū

∂y
. (B.12)

Multiplying equation (B.12) by complex conjugate of ω̂′
y, ω̂′∗

y and averaging in time
gives 〈

ω̂′∗
y

∂ω̂′
y

∂t

〉
= −ikz

〈
ω̂′∗

yv̂
′
〉 ∂ū
∂y

+ . . . . (B.13)

Taking the complex conjugate of equation (B.13), adding it to equation (B.13), and
dividing by 2 gives

1

2

∂〈ω̂′2〉
∂t

= −1

2

[
ikz

〈
ω̂′∗

yv̂
′
〉
+ ikz

〈
ω̂′

yv̂′
∗〉 ∂ū

∂y

]
= kz Im

{〈
ω̂′∗

yv̂
′
〉} ∂ū

∂y
(B.14)
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B.4 Derivation of terms in the spectral Reynolds
stress transport equation

Beginning with the Navier-Stokes and RANS equations, showing only those terms
required to derive the production and pressure strain spectra

∂ui
∂t

+ uk
∂ui
∂xk

= − ∂p

∂xi
+ . . . (B.15)

∂ūi
∂t

+ ūk
∂ūi
∂xk

= − ∂p̄

∂xi
+ . . . (B.16)

Applying the Reynolds decomposition, ui = ūi + u′i to equation (B.15) yields

∂ūi
∂t

+
∂u′i
∂t

= −ūk
∂ūi
∂xk

− u′k
∂ūi
∂xk

− ūk
∂u′i
∂xk

− u′k
∂u′i
∂xk

− ∂p̄

∂xi
− ∂p′

∂xi
+ . . . (B.17)

Subtracting equation (B.16) from equation (B.17) gives

∂u′i
∂t

= −u′k
∂ūi
∂xk

− ūk
∂u′i
∂xk

− u′k
∂u′i
∂xk

− ∂p′

∂xi
+ . . . (B.18)

Taking the Fourier transform in z and retaining only the terms needed to derive the
production and pressure strain terms gives

∂û′i
∂t

= −û′k
∂ūi
∂xk

− ∂p̂′

∂xi
+ . . . (B.19)

The spectral transport equation is given by

∂〈û′i
∗
û′j〉

∂t
=

〈
û′i

∗∂û′j
∂t︸ ︷︷ ︸

A

+ û′j
∂û′i

∗

∂t︸ ︷︷ ︸
B

〉
(B.20)

For term A, we reindex equation (B.19) with i becoming j and multiply by û′i
∗
. This

gives

û′i
∗∂û′j
∂t

= −û′i
∗
û′k
∂ūj
∂xk

− û′i
∗ ∂p̂′

∂xj
+ . . . (B.21)

For term B, we take the complex conjugate of equation (B.19) and multiply by û′j

û′j
∂û′i

∗

∂t
= −û′jû′k

∗ ∂ūi
∂xk

− û′j
∂p̂′

∗

∂xi
+ . . . (B.22)

For the production term, the first terms on the RHS of equations (B.21) and (B.22)
are added together and averaged in time

P̂ij = −
〈
û′i

∗
û′k

〉 ∂ūj
∂xk

−
〈
û′jû

′
k

∗〉 ∂ūi
∂xk

(B.23)
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The pressure strain, Π̂s
ij is recovered from the velocity-pressure gradient term

− û′i
∗ ∂p̂′

∂xj
= p̂′

∂û′i
∗

∂xj
− ∂û′i

∗
p̂′

∂xj
(B.24)

− û′j
∂p̂′

∗

∂xi
= p̂′

∗∂û′j
∂xi

−
∂p̂′

∗
û′j

∂xi
(B.25)

Gathering the first terms of the RHS of equations (B.24) and (B.25) and averaging
in time gives

Π̂s
ij =

〈
p̂′
∂û′i

∗

∂xj
+ p̂′

∗∂û′j
∂xi

〉
(B.26)

Hence, the wall-normal dilational production and the wall-normal and spanwise pres-
sure strain spectra are given by

P̂22 =− 2Re
{〈

v̂′
2
〉} ∂v̄

∂y
= 2Re

{〈
v̂′

2
〉} ∂ū

∂x
(B.27)

Π̂s
22 =2Re

{〈
p̂′

∗∂v̂′

∂y

〉}
(B.28)

Π̂s
33 =2Re

{〈
p̂′

∗∂ŵ′

∂z

〉}
= −2kz Im

{〈
p̂′

∗
ŵ′
〉}

(B.29)
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Appendix C

Comparison of spatially and
temporally accelerating flows

C.1 Stokes first problem

Here, we discuss a method for approximating the wall shear stress to indicate how
the temporal accelerations may behave in slightly different configurations. Pre-
vious studies have used Stokes’ first problem to predict flow development during
pre-transition [15, 12]. This model assumes that the perturbation mean velocity,
ū∧(y, t) = ū(y, t) − ū(y, 0), follows the laminar solution for an impulsively acceler-
ated flow from rest. This model of temporally accelerating flows is derived in Sund-
strom and Cervantes [176], assuming that the change in turbulent transport during
pre-transition is negligible. This model cannot capture the transition region but is
capable of giving a good indication of the flow development in its early stages and is
useful for assessing the matching decisions in section 7.1.2.

For an arbitrary centreline velocity profile [12], the perturbation flow, ū∧(y, t) =
ū(y, t)− ū(y, 0) is given by

ū∧(y, t) =

∫ t

0

dUc

dτ
erfc

(
y

√
Re

4(t− τ)

)
dτ. (C.1)

It can be easily shown that the perturbation wall shear stress, τ∧w , is given by the
extended Stokes’ solution:

τ∧w =
1

Re

∂ū∧

∂y
=

∫ t

0

dUc

dt

1√
πRe(t− τ)

dτ (C.2)

The total wall shear stress is given by τw = τw0 + τ∧w . The initial wall shear stress
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Figure C.1: Validation of the laminar model for pre-transition region. (a) Case 1. (b)
Case 2.

is estimated from the following correlation for Cf in channel flows [269].√
1

Cf

= a log
(
2Reb

√
Cf

)
+ b, (C.3)

where a = 3.53 a.d b = 1.78. Note that in this chapter, we use Rec rather than Reb.
Consequently, we approximate Rec = 1.13Reb, which was found to be reasonable
based on existing channel flow data at low Reynolds numbers. Figure C.1 compares
this approach with cases 1 and 2.

A reasonable agreement is observed between the model and the temporal acceler-
ations in case 1, with a worse prediction in case 2. The underpredictions result mostly
from neglecting changes to the turbulent transport in the laminar model, noting that,
in reality, the eddy viscosity remains constant during pretransition. This is a good
approximation in stronger acceleration but is less effective in weaker accelerations be-
cause the changes in the turbulent transport are more dynamically significant in the
latter. Hence, the better agreement with case 1T than case 2T. The approximation
of the initial τw is excellent.

C.1.1 Different reference heights

In this section, we consider the influence of choosing a reference height different from
the boundary layer thickness. The primary motivation for this is to account for the
reduction of the boundary layer thickness by selecting a reference height for the TBL
that is smaller than the reference boundary layer thickness but still matching the
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Figure C.2: Comparison of extended Stokes’ solution for different reference heights.

accelerations in the same manner. The reference height is given by hrefδ99,0. We can
compare the development of the flows with different reference heights. This leads to
the scalings compared with the method used in section 7.1.2:

t =
tref
href

Xc =
Xc,ref

href
, (C.4)

with the resulting initial Reynolds number from equation (7.4) Rec0 = hrefRec,ref .
Substituting into equation (C.2)

τ∧w

(
tref
href

)
=

∫ tref

0

href
href

dUc

dτref

1√
π href

href
Rec,ref(tref − τref)

dτref . (C.5)

This shows that the change in τ∧w should be the same as for the original case,
albeit with the time stretched a factor 1/href . However, the different initial Reynolds
numbers mean that τw0 would be different. Nonetheless, the excursions would be the
same initially, where the extended Stokes’ solution is valid. A comparison of case 1
with different choices of href is shown in figure C.2, confirming that the excursions of
τw should be the same in the initial stages of the acceleration but lower values of href
have higher initial wall shear stress as their Reynolds numbers are lower.
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Figure C.3: Comparison of case 1 with laminar models using different definitions of
the boundary layer thickness. (a) 99% thickness. (b) 99.5% thickness.

C.1.2 Different boundary layer thickness definitions

Figure C.3 compares the use of the 99% and 99.5% thicknesses for case 1 using the
laminar model above, keeping all other elements of the comparison approach the
same. For the 99% thickness Rec = 7773 and for the 99.5% thickness Rec = 8380.
The results indicate that using a different definition of boundary layer thickness would
not make a significant difference, with the figures barely distinguishable.

C.1.3 Different reference planes

Figure C.4 compares case 1 with laminar models at different reference planes up-
stream of the acceleration. Four different locations have been tested at 300θ0, 350θ0,
400θ0, and 450θ0 from the inlet plane, with the results indicating that the matched
accelerations are not very sensitive to the location of the reference plane.

C.1.4 Different freestream velocities

As discussed in section 7.1.2, the mean velocity is not exactly constant in the freestream
of a non-zero pressure gradient TBL due to significant non-uniformities in the pres-
sure gradient. The pressure gradient can be decomposed into wall and non-uniform
components. The wall-normal momentum equation is given by

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
= −∂p̄

∂y
+

1

Re

[
∂2v̄

∂x2
+
∂2v̄

∂y2

]
− ∂u′v′

∂x
− ∂v′2

∂y
(C.6)
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Figure C.4: Comparison of case 1 with different reference plane locations. (a) x/θ0 =
300, (b) x/θ0 = 350, (c) x/θ0 = 400, (d) x/θ0 = 450.

The non-uniform pressure is determined by integrating equation (C.6) from the wall

p̄(x, y)− p̄(x, 0) = −
∫ y

0

[
ū
∂v̄

∂x
+ v̄

∂v̄

∂y
+
∂u′v′

∂x

]
dy − v′2. (C.7)

The total streamwise pressure gradient is given by

−∂p̄(x, y)
∂x︸ ︷︷ ︸
P

= −∂p(x, 0)
∂x︸ ︷︷ ︸
Pw

+
∂

∂x

[∫ y

0

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
+
∂u′v′

∂x
dy

]
+
∂v′2

∂x︸ ︷︷ ︸
Pconv

. (C.8)

In ZPGTBLs, only the last term of Pconv is significant. However, in FPGTBLs,
the convection terms can become very large due to the high wall-normal mean ve-
locities associated with flow contraction. The terms of equation (C.8) are shown in
figure C.5 at two locations during pre-transition for case 1, alongside the perturba-
tion pressure gradient, P∧ from case 1T. Figure C.5 highlights how significant the
freestream pressure distortions can be and how choosing a different definition of U∞

has the potential to have a significant effect on the matched pressure gradients.

190



0.0 0.5 1.0 1.5 2.0 2.5 3.0

y

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Xc = 16

(a)

P *�b2 R

Pw

Pconv

P
∧

*�b2 Rh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

y

−0.02

0.00

0.02

0.04

0.06

0.08

Xc = 23

(b)

Figure C.5: Pressure gradient at two locations during pre-transition showing the
terms of equation (C.8). (a) Xc = 16, (b) Xc = 23.

We can use the laminar model to understand the influence of choosing different
definitions of U∞ on the response of the wall shear stress. The method used in
this chapter is U∞(x) = ū(x, 1.1max(δ99)). Figure C.6 shows case 1 compared with
the laminar model for four different values of wall-normal distance. Note that the
non-uniformity is much weaker in case 2 compared with case 1. We observe that the
response of τw becomes stronger as the reference height becomes further from the wall,
although temporal cases are still much weaker than case 1 and that the matching of
the pressure gradient within the boundary layer in section 7.4 would be worse. This
indicates that changing the freestream velocity definition is unlikely to change the
general conclusions but may change the detailed flow development.
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