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Abstract

This work is structured to explore two distinct facets of the moduli space of

curves, each inquiring into different aspects: one focuses on topological recur-

sion relations in open Gromov-Witten theory, and the other on the bihamilto-

nian aspects of the double ramification hierarchy.

The first topic investigates open topological recursion relations in genus 1, rep-

resented by a set of partial differential equations (PDEs) that are conjectured

to control open Gromov-Witten invariants in genus 1. In this segment, an

explicit formula is derived, serving as an analog to the Dijkgraaf-Witten for-

mula, specifically for a descendent Gromov-Witten potential in genus 1. This

formula stands as a solution to the recursion relations, and is proven that the

exponent of an open descendent potential, when approximated up to genus 1,

satisfies a system of linear evolutionary PDEs, explicitly constructed with a

single spatial variable.

The second facet of the thesis is based on a conjecture of Buryak, Rossi, and

Shadrin [BRS21]. This conjecture proposes a formula for a Poisson bracket

associated with any given homogeneous cohomological field theory (CohFT). It

is hypothesized that this bracket defines a second Hamiltonian structure for the

double ramification hierarchy for the given CohFT. This part of the research

validates the conjecture at an approximation up to genus 1 and establishes

a relationship between this bracket and the second Poisson bracket of the

Dubrovin-Zhang hierarchy by an explicit Miura transformation.
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1

Organization of the thesis

The first chapter centers on integrable systems, with a specific emphasis on the KdV hier-

archy and its dispersionless version. This foundational chapter lays out the mathematical

frameworks and terminologies that will be important for the discussions in chapters 4 and

5.

Furthermore, the chapter defines the Hamiltonians associated with the KdV hierarchy

and its inherent bihamiltonian structure. This structure is distinguished by the presence of

two compatible Poisson structures, a highlight of a very specific set of integrable systems.

Such a structure is essential in deriving additional integrals of motion, facilitated by the

introduction of a recursion operator (1.1.4). The invertibility of this operator allows for

the systematic computation of all related Hamiltonians. This characteristic is postulated

to be a featured aspect of the Double Ramification hierarchy (5.3.2), which is elaborated

upon in chapter 5.

The second chapter introduces the moduli space of curves, a geometric structure

that parametrizes classes of compact Riemann surfaces with marked points. This space

possesses an orbifold structure, to facilitate a comprehensive description of singularities

that emerge due to the automorphisms in the elements. The chapter further explores

the Deligne-Mumford stacks, introduced by Pierre Deligne and David Mumford in 1969

[DM69] . These stacks are central in the study of moduli spaces of algebraic curves and

intersection theory. Additionally, the chapter introduces key operations between moduli

spaces, specifically the forgetful and attaching maps. These maps induce morphisms in

the cohomology ring, laying the foundation for the tautological ring of the moduli space.

The third chapter presents the moduli space of stable maps, evaluation maps, and

descendant invariants. It emphasizes their role in defining and computing Gromov-Witten

invariants, highlighting their significance in enumerative geometry and the representation

of cohomology classes. The connection with integrable systems is illustrated through

the topological recursion relations in Gromov-Witten theory, a set of PDEs that govern

lower genera invariants. This sets the stage for Dubrovin-Frobenius manifolds, which

are geometric solutions to a unique set of PDEs termed the WDVV equations (3.3.2).

These manifolds can also be interpreted as a geometric condition for integrability. The

chapter also introduces Cohomological Field Theories (CohFTs) in Gromov-Witten theory.

Introduced by Maxim Kontsevich and Yuri Manin [KM94], CohFTs consist of a series of

linear maps, that encapsulate operations on moduli spaces and to formalize essential tools

in Gromov-Witten theory. The chapter enlightens the role of CohFTs in bridging the

geometry of moduli spaces of stable curves with intersection numbers and Gromov-Witten

invariants. Within the study of CohFTs, the introduction of a quantum product and the

notion of a semi-simple CohFT (ssCohFT) are discussed. This specific constraint paves

the way for a classification of ssCohFTs by Constantin Teleman [Tel12].
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The fourth chapter is devoted to open moduli spaces of curves, emphasizing their sig-

nificance in extending the theory of moduli spaces of curves. The chapter highlights the

effects of boundary terms on intersection numbers and the structure of moduli spaces.

A notable segment of the discussion revolves around the Dubrovin-Zhang (DZ) hierar-

chy, a system of partial differential equations intrinsically linked with total descendant

potentials. This hierarchy serves as a link between open moduli spaces and their corre-

sponding integrable systems. The chapter also presents an explicit formula, similar to

the Dijkgraaf-Witten formula, for a descendant Gromov-Witten potential in genus 1. The

chapter further elaborates on the Gromov-Witten potential, up to genus 1 and the expo-

nential of an open descendant potential satisfying a system of linear partial differential

equations with one spatial variable. These results were previously published in the Journal

of High Energy Physics [BB21b]. The chapter concludes by exploring the open KdV and

Virasoro equations, emphasizing their role in describing the intersection theory within the

context of moduli spaces of Riemann surfaces with boundaries.

The fifth chapter focuses on the Double Ramification and Dubrovin-Zhang Hierarchies.

The Double Ramification Hierarchy (DR hierarchy) has its foundation in algebraic geom-

etry and acts as a bridge between curve counting theories and integrable systems. This

hierarchy expands upon integrable hierarchies associated with a cohomological field the-

ory. The DR hierarchy is defined by the Double Ramification Cycle, a class in the Chow

ring of the moduli space of stable curves, representing the condition that a meromorphic

function on a Riemann surface has specific orders and residues.

The chapter further examines the moduli space of stable relative maps. This space

possesses a virtual fundamental class, and the double ramification cycle can be expressed

using basic tautological classes, addressing an issue highlighted by Y. Eliashberg in 2001.

A concrete example is provided for the trivial CoFT, which leads to the Hamiltonians of the

KdV hierarchy. The main result of this chapter is the validation of a conjecture put forth

by Buryak, Rossi, and Shadrin [BRS21]. This conjecture, which suggests a bihamiltonian

structure for the DR hierarchy, is proven up to genus one, also establishing a connection

between the Poisson structure and the DZ hierarchy through a Miura transformation.

It is worth noting that while the initial three chapters lay the foundational groundwork

for understanding the thesis, the fourth and fifth chapters present distinct results and

operate independently without overlapping conceptually.



Chapter 1

Integrable Hierarchies

1.1 Integrable systems and bi-Hamiltonian structures

Integrable systems represent mathematical models that describe the dynamical behaviour

of physical systems, with the defining characteristic of possessing enough invariants (also

called conserved quantities), such as energy, momentum, and angular momentum. The

designation integrable reflects the unique feature of these systems, which can be exactly

solved through a variety of mathematical techniques, encompassing inverse scattering,

algebraic-geometric methods, and Lax pairs, among others.

An important attribute of certain integrable systems is their bi-Hamiltonian structure.

Franco Magri first introduced the concept of bi-Hamiltonian structures [Mag78], who

employed the Korteweg-de Vries (KdV) equation as an example of such a system. These

structures allow to find additional integrals of motion and offer a method to analyze the

system’s dynamics through Hamiltonian flows, thereby offering tools for understanding

the system’s underlying mechanics.

Characteristically, a bi-Hamiltonian structure exhibits two Poisson structures (see

1.1.1). For these Poisson structures to be deemed compatible, the Poisson brackets of

one structure should be preserved under the Hamiltonian flows generated by the other.

This compatibility condition facilitates the construction of a hierarchy of Hamiltonian

equations. These equations subsequently generate a series of conserved quantities, enabling

the derivation of exact solutions for a wide variety of integrable systems. Some renowned

examples of bi-Hamiltonian hierarchies comprise the Korteweg–de Vries (KdV) hierarchy,

Toda lattice hierarchy, the Calogero-Moser system, and the Gelfand-Dickey hierarchy.

In this section, we present the formal definitions necessary to describe integrable hi-

erarchies, their space of local functionals, and bi-Hamiltonian structure, we will follow

[BRS21] with some modifications to the notation.

It is important to clarify that the focus of this work will not be on the formal solutions

of integrable systems or the convergence properties of series representations. Instead, our

3



4

approach will primarily be algebraic in nature.

Let V be a vector space of dimension N , in order to model the loop space of V , we

could describe its ring of functions. We then consider the components of a formal loop

u : S1 → V , where S1 is the 1-sphere, in a basis e1, . . . , eN of V . So, the variables uα := uα0

can be thought of as the components uα(x) of this formal loop.

We take u1, ..., uN to be formal variables, these will be the entries of uα of the loop

u, and attach the additional formal variables uαd for d ≥ 0. We bring forth the ring of

differential polynomials, denoted by Au := C [[u∗]]
[
u∗≥0

]
. Here, we recognise uα0 = uα and

denote its derivatives as uαx := uα1 , uαxx := uα2 , and so on. Subsequent sections will develop

further our theoretical framework into these concepts and their implications in the context

of integrable systems.

We now formally define the following objects:

• The standard degree deg(uαi ) := i is defined on Au.

• The operator ∂x :=
∑

i≥0 u
α
i+1

∂
∂uαi

increases the standard degree by 1, i.e.,

deg(∂xu
α
i ) = i+ 1.

• The space Λu := Au/ (C⊕ Im ∂x) is called the space of local functionals.

• Au;d ⊂ Au and Λu;d ⊂ Λu are called the homogeneous components of differential

degree d.

• The extended spaces of differential polynomials and local functionals are defined by

Âu := Au[[ε]] and Λ̂u := Λu[[ε]], respectively. Here, Âu;k ⊂ Âu and Λ̂u;k ⊂ Λ̂u

are the subspaces of degree k, where deg(ε) = −1. The parameter ε is called the

dispersive parameter.

• The equivalence class of f(u∗∗; ε) in Λu is denoted as f̄ :=
∫
f(u∗∗; ε)dx, here the

polynomial f(u∗∗) is called the density of the local functional f̄

• Given any variable u∗, we introduce its Fourier transformation as the formal power

series

uα =
∑
b∈Z

pαb e
ibx,

we call the variables p∗∗ Fourier coordinates.

• The variational derivative δ
δuα : Au → Au, 1 ≤ α ≤ N , is defined by

δ

δuα
:=
∑
i≥0

(−∂x)i ◦ ∂

∂uαi
.
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• For f ∈ Âu, we define the sequence of differential operators

Lkα(f) :=
∑
i≥k

(
i

k

)
∂f

∂uαi
∂i−kx ,

where α = 1, . . . , N and k ≥ 0. We also define Lα(f) := L0
α(f).

• Let K = (Kµν) be an N ×N matrix of differential operators of the form

Kµν =
∑

j≥0K
µν
j ∂jx =

∑
l,j≥0 ε

lK
[l],µν
j ∂jx, where K

[l],µν
j ∈ Au;l−j+1. We define a

bracket of degree 1 on the space Λ̂u by

{f̄ , ḡ}K :=

∫ (
δf̄

δuµ
Kµν δḡ

δuν

)
dx. (1.1.1)

• A Poisson operator K is defined to be an operator for which the bracket {·, ·}K is

skew-symmetric and satisfies the Jacobi identity. We denote the space of Poisson

operators by POu.

• Two Poisson operators K1 and K2 are said to be compatible if the linear combination

K2 − λK1 is a Poisson operator for any λ ∈ C.

• A Miura transformation is a change of variables uα 7→ ũα(u∗∗, ε) of the form

ũα(u∗∗, ε) = uα + εfα(u∗∗, ε), where fα ∈ Âu;1. A Poisson operator K rewritten in

the new variables ũα will be denoted by Kũ.

• For a scalar operator A =
∑

m≥0Am∂
m
x , where Am ∈ Au (finite sum), we define

A† :=
∑

m≥0(−∂x)m ◦Am.

• Let us fix N ≥ 1, an N × N symmetric nondegenerate complex matrix η = (ηαβ),

and an N -tuple of complex numbers (A1, . . . , AN ), not all equal to zero. We will use

the notation

∂

∂t1a
:= Aα

∂

∂tαa
, a ≥ 0. (1.1.2)

• LetK =
(
Kαβ

)
be a matrix operator defined asKαβ =

∑
mK

αβ
m ∂mx whereKαβ

m ∈ Au
is a finite sum. Define K† =

(
K†;αβ

)
, where K†;αβ :=

∑
m (−∂x)m ◦Kβα

m .

• A Hamiltonian hierarchy of PDEs is a system of the form:

∂uα

∂ti
= Kαµ δh̄i

δuµ
, 1 ≤ α ≤ N, i ≥ 1,

where h̄i are local functionals in Λ̂u;0, K = (Kµν) is a Poisson operator, and

{h̄i, h̄j}K = 0 for i, j ≥ 1. The local functionals h̄i are called the Hamiltonians.
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• A Hamiltonian hierarchy of the form:

∂uα

∂tβq
= Kαµ

1

δh̄β,q
δuµ

, 1 ≤ α, β ≤ N, q ≥ 0, (1.1.3)

is said to be bi-Hamiltonian if it has N linearly independent Casimirs 1 h̄α,−1, for

α = 1, . . . , N , of the Poisson bracket {·, ·}K1 , and is endowed with a Poisson operator

K2 compatible with K1 such that:

{·, h̄α,i−1}K2 =
i∑

j=0

Rj,βi,α{·, h̄β,i−j}K1 , 1 ≤ α ≤ N, i ≥ 0, (1.1.4)

where Rji =
(
Rj,βi,α

)
, 0 ≤ j ≤ i, are constant N ×N matrices. The relation (1.1.4) is

called a bi-Hamiltonian recursion and the matrix Rji is called the recursion operator,

if R0
i is invertible, it is possible to compute all the Hamiltonians recursively from

the Casimirs h̄α,−1.

1.2 The KdV hierarchy

The Korteweg–de Vries (KdV) equation, a nonlinear partial differential equation, serves

as a mathematical model for waves propagating in one-dimensional media with weakly

nonlinear and dispersive properties. The equation was initially formulated by Korteweg

and de Vries in 1895 to describe the propagation of long waves in shallow water [KdV95],

and was later rediscovered in the 1960s by Zabusky and Kruskal, who unveiled its soliton

solutions [ZK65].

Solitons, which are localized wave packets that retain their shape and speed even after

collisions, can propagate without distortion over substantial distances [AC91]. The KdV

equation is an example of an integrable system and forms part of an infinite sequence of

equations known as the KdV hierarchy.

The KdV hierarchy comprises nonlinear partial differential equations that extend the

KdV equation, outlining the evolution of wave amplitude’s higher-order terms. These

equations are linked by a bi-Hamiltonian recursion operator that allows us to generate an

infinite series of conserved quantities for the system.2

1We refer to a functional as a Casimir if it is annihilated by a Poisson operator. This is mathematically
equivalent to having a zero Poisson bracket with any other element in the algebra.

2The bi-Hamiltonian operator for the KdV hierarchy is also known as Lenard recursion formula, due
to Andrew Lenard, while he did not publish his results, his contributions, particularly the method leading
to what is now known as the Lenard recursion scheme, were documented and formalized by others. The
main findings and methodologies associated with Lenard were published by others, notably in the works
by Peter D. Lax and the joint work of Clifford S. Gardner, John M. Greene, Martin D. Kruskal, and
Robert M. Miura.
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Our study will be centered on the KdV hierarchy, this system, defined over one spatial

variable x, with u∗ ∈ Au, encompasses the following initial terms of the KdV hierarchy:

ut0 =ux,

ut1 =uux +
ε2

12
uxxx,

ut2 =
u2ux

2
+ ε2

(uuxxx
12

+
uxuxx

6

)
+ ε4 u5

240
,

ut3 =
u3ux

6
+ ε2

(
u2uxxx

24
+
u3
x

24
+
uuxuxx

6

)
,

+ ε4
(uu5

240
+
u4ux
80

+
uxxxuxx

48

)
+ ε6 u7

6720
,

...

The integrability of the Korteweg–de Vries (KdV) hierarchy was first established by

Gardner, Greene, Kruskal, and Miura [GGKM67]. They showed that the KdV hierarchy

exhibits an infinite number of conservation laws, a feature characteristic of integrable

systems. These laws state that certain quantities associated with the system remain

invariant as the system evolves, a property that enables the exact solution of the system.

The integrability of the equations in the hierarchy is manifested by the following identities:

(uti)tj = (utj )ti , (1.2.1)

for all i, j ≥ 01. This identity illustrates that the time derivatives of the system commute

for any pair of indices, a property that characterizes the integrability of the system, more-

over it guarantees the existence of a formal solution uα(x, t∗∗, ε) ∈ C[[x, t∗∗, ε]] with initial

condition uα(x, t∗∗ = 0, ε) [Lax76].

The KdV hierarchy can be represented in the language of pseudodifferential operators

via the Lax operator. The Lax operator simplifies the algebraic structure of the Lax pair,

thus exposing some of the properties of the KdV hierarchy. Specifically, the Lax operator

for the KdV hierarchy is given by:

L =
1

2
(ε∂x)2 + u. (1.2.2)

This operator provides a critical tool for understanding the underlying integrable struc-

ture of the KdV hierarchy.

The corresponding Lax pair is then defined in terms of the positive part of the pseu-

1Alternatively, integrability can be defined by requiring the commutativity of the Hamiltonian op-
erators within the context of a given Poisson structure K. Specifically, this condition is expressed as{
h̄α,d1 , h̄β,d2

}
K

= 0 for any Hamiltonian system characterized by the equation ∂uα

∂t
β
d

=
{
uα, h̄β,d

}
K
. for

d ≥ 0 and 1 ≤ α, β ≤ N
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dodifferential operator (2L)(2i+1)/2, denoted by Ai. This means we only consider terms

with ∂i≥0
x :

Ai :=
1

(2i+ 1)!!
(2L)

2i+1
2

+ =
1

(2i+ 1)!!

[
(ε∂x)2i+1 + (2i+ 1)u (ε∂x)2i−1 + . . .

]
+
. (1.2.3)

The pseudodifferential approach to the Lax operator has the advantage of simplifying

the algebraic structure of the Lax pair, by virtue of the integrability properties of the KdV

hierarchy [Lax68].

The operators Ai in the KdV hierarchy can be explicitly written out for the first few

terms. For instance, the first two operators A1 and A2 are given by:

A1 = (ε∂x)3 − 3

2
ε

(
u∂x +

1

2
ux,

)
,

A2 = (ε∂x)5 − 5ε3

4
u

(
∂3
x +

3

4
uxxx

)
+

7

2
ux (ε∂x)2 +

(
3

2
u2 − 3uxx

)
(ε∂x) + 2uux

+
3

8
u2 − 1

8
uxx.

The KdV hierarchy is then obtained by the Lax equation:

Lti = [Ai, L] . (1.2.4)

This equation represents the evolution of the Lax operator L under the flow ti generated

by the operator Ai. The commutator on the right-hand side ensures that the Lax equation

preserves the integrability of the KdV hierarchy.

Finally the Hamiltonians are given by:

h̄i =
1

(2i+ 3)!!

∫
resL(2i+3)/2dx,

for i ≥ 0, for a more comprehensive description, we recommend consulting the work by

[BBT03].

1.3 Dispersionless KdV hierarchy

It is possible to construct the KdV hierarchy from a simpler system known as the dis-

persionless KdV hierarchy. This set of nonlinear partial differential equations arises in

the limit where the dispersion term vanishes. For the KdV equation, the dispersion term

is responsible for the spreading wave packets, meaning that the amplitude and shape of

the propagating waves change due to dispersion, by setting this term to zero (ε = 0), we
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obtain the dispersionless KdV hierarchy, which has the general form:

uti =
ui

i!
ux.

The Hamiltonians h̄i for the hierarchy are given by:

h̄i =

∫
ui+2

(i+ 2)!
dx. (1.3.1)

This system can be studied using the bi-Hamiltonian formalism, which involves ex-

pressing the equations in terms of two Poisson bracket structures:

K1 = ∂x, (1.3.2)

K2 = u∂x +
1

2
ux, (1.3.3)

where K1 and K2 are two Poisson operators, known as the first and second Hamiltonian

structures respectively.

To obtain the full KdV hierarchy from the dispersionless KdV equation is not a direct

process, one can start by studying the Lax representation of both the full KdV hierarchy

and the dispersionless KdV hierarchy. The Lax representations of both hierarchies involve

different operators, however they are related in the sense that the dispersionless Lax

operator can be considered a particular limit of the full KdV Lax operator, where the

pseudo-differential part of the operator vanishes, this relation is known as a quasitriviality

transformation [Dub14].

The main idea behind quasitriviality transformations is to express a given system in

terms of a simpler one, with the hope of using the properties of the simpler system to gain

insight into the more complicated one. The transformation is called ”quasitrivial” because

it does not change the underlying integrability of the system, but rather provides a different

way of looking at it. This transformation involves introducing an additional dependent

variable and a new Hamiltonian that satisfies a certain differential equation, then the

quasitriviality transformation can be used to relate the two Hamiltonian structures. The

quasitriviality transformation for the dispersionless KdV is given by:

u 7→ v = u+
ε2

24
(log ux)xx + ε4

(
uxxxx

1152u2
x

− 7uxxuxxx
1920u3

x

+
u3
xx

360u4
x

)
xx

+O
(
ε6
)
. (1.3.4)
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This implies that the Hamiltonians for the KdV hierarchy are:

H̄i =

∫
1

(i+ 2)!

[
u+

ε2

24
(log ux)xx +O

(
ε4
)]i+2

dx

=

∫ {
ui+2

(i+ 2)!
+
ε2

24

[
− ui−1

(i− 1)!
u2
x + ∂x

(
ui+1

(i+ 1)!

uxx
ux

)]
+O

(
ε4
)}

dx

=

∫ {
ui+2

(i+ 2)!
− ε2

24

ui−1

(i− 1)!
u2
x +O

(
ε4
)}

dx.

It is desirable to have polynomial densities, and fortunately for the KdV hierarchy, it is

possible to add an irrelevant total derivative to the quasitriviality transformation. By

adding this expression, it will effectively cancel all non-polynomial terms of the Hamilto-

nians, this is expressed by ∂x(∂ti+1∆F), where

∆F =
1

24
log ux + ε2

(
uxxxx

1152ux2
− 7uxxuxxx

1920ux3
+

uxx
3

360ux4

)
+O

(
ε4
)
, (1.3.5)

so, the Hamiltonians for the KdV hierarchy can now be expressed as:

H̄i =

∫ [
ui+2

(i+ 2)!
+
ε2

24

(
2
uiuxx
i!

+
ui−1u2

x

(i− 1)!

)
+O

(
ε4
)]
dx. (1.3.6)

Example 1.3.1 (Bi-Hamiltonian recursion of the dispersionless KdV hierarchy)

The dispersionless KdV (1.2) in hamiltonian form can be expressed in terms of two dif-

ferent Poisson brackets

K1 = ∂x, (1.3.7)

K2 = u∂x +
1

2
ux, (1.3.8)

from (1.3.7), we would like to find the recursion operator R (c.f. 1.1.4), the bi-Hamiltonian

recursion reads:

{
u(x), h̄i

}
K1

= ∂x
δh̄i
δu(x)

= R
{
u(x), h̄i−1

}
K2

=

(
u∂x +

1

2
ux

)
δh̄i−1

δu(x)
,

if

h̄i =

∫
[u(x)]i+2

(i+ 2)!
dx, (1.3.9)

the term for the Poisson structure K1 gives

{
u(x), h̄i

}
K1

= ∂x

(
ui+1

(i+ 1)!

)
=
ui

i!
ux,
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for K2 we get,

R

(
u∂x +

1

2
ux

)
ui

i!
= R

(
i+

1

2

)
ui

i!
ux,

comparing both terms for any field u(x), we find the bi-Hamiltonian recursion matrix is

then:

R = (i+
1

2
)−1.

Theorem 1.3.2 [Olv93] Consider a bi-Hamiltonian system described by the equation

∂u

∂t
= K1

δh̄0

δu
= K2

δh̄1

δu
,

where K1 and K2 are Poisson operators. Then, the operator R = K2K
−1
1 , is a recursion

operator for the system.

Example 1.3.3 (KdV equation and Bi-Hamiltonian Hierarchy) Consider a Hamil-

tonian hierarchy for the KdV equation with simplified variables u, x, and t. Introducing

the Hamiltonian functional:

h̄1,0 =

∫ (
u3

6
+
ε2

24
uuxx

)
dx, (1.3.10)

with the Poisson operator K1 = ∂x. The KdV equation derivation follows the Hamil-

tonian dynamics:

∂u

∂t
=
{
u, h̄1,0

}
K1

= ∂x
δh̄1,0

δu

= ∂x

1

6

∑
i≥0

(−∂x)i ◦ ∂

∂ui
u3 +

ε2

24

∑
i≥0

(−∂x)i ◦ ∂

∂ui
uuxx


= ∂x

{
u2

2
+
ε2

24
(uxx + uxx)

}
= uux +

ε2

12
uxxx.

The Korteweg-de Vries (KdV) hierarchy can be formulated in Hamiltonian form by an

additional Poisson bracket [Mag78], (we will use the notation as described in [BRS21]):

K2 =
ε2

8
∂3
x + u∂x +

1

2
ux. (1.3.11)

This system fulfills the conditions of Theorem 1.3.2. Assuming the inverse of K1 is ∂−1
x ,

the recursion operator R can be expressed as:

R =

(
ε2

8
∂3
x + u∂x +

1

2
ux

)
◦ ∂−1

x , (1.3.12)

=
ε2

8
∂2
x + u+

1

2
ux∂

−1
x . (1.3.13)
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1.4 Integrable Hierarchies in Moduli Spaces: Dubrovin-Zhang

and Double Ramification Hierarchies

Recent advancements in integrable systems have been significantly influenced by geometric

and topological theories, particularly from the study of moduli spaces of Riemann surfaces.

Two notable hierarchies, the Dubrovin-Zhang and Double Ramification hierarchies, have

emerged as extensions of the KdV hierarchy and other well known systems. These hier-

archies have led to new connections with the geometry of moduli spaces, cohomological

field theories, and intersection numbers, and will be elaborated upon in the subsequent

chapters.

The Dubrovin-Zhang hierarchy, an integrable system of PDEs, is associated with total

descendant potentials. These are formal power series that play a central role in the de-

scription of the cohomology of moduli spaces. Motivated in topological field theories, the

geometry of moduli spaces and cohomological field theories, the Dubrovin-Zhang hierar-

chy offers a framework for investigating relations between intersection numbers on moduli

spaces, integrable systems, curve counting theories, and algebraic geometry.

On the other hand, the double ramification hierarchy is a Hamiltonian system that

arises in the context of moduli spaces of stable curves. This hierarchy has its beginnings

in study of the double ramification cycle, a complicated cohomological class in the mod-

uli space of curves. The double ramification hierarchy involves enumerative geometry

problems, Gromov-Witten invariants and other geometric invariants.

Despite their distinct origins, the Dubrovin-Zhang and double ramification hierarchies

share several similarities and both exhibit connections with the geometry of moduli spaces.

The interrelation between these hierarchies, as well as their applications to the theory of

integrable systems and algebraic geometry, has been noticed in the DR/DZ equivalence

conjecture. This states that the two hierarchies are related by a normal Miura transfor-

mation; this means the existence of a change of coordinates preserving the hierarchies’

structures. The last chapter is devoted to this conjecture and some new results on the

matter.



Chapter 2

Moduli Spaces of Curves

The moduli space of curves is a geometric object that parametrizes classes of compact

Riemann surfaces with marked points. Its orbifold structure enables a detailed descrip-

tion of the singularities arising from the presence of automorphisms in the curves [Thu79].

Orbifolds, are spaces that locally resemble the quotient of either Cn (for complex orbifolds)

or Rn (for real orbifolds) by the actions of finite groups. These actions can introduce sin-

gularities into the quotient space. Analogous to manifolds, one can define structures such

as an atlas, differential forms, bundles, and cohomology classes on an orbifold, allowing

for the application of geometric and topological methods.

However, defining morphisms can be technically challenging, and the category of bun-

dles over an orbifold may be more complex than the category of bundles over a manifold.

By defining bundles over an orbifold such that the fibers have a manifold structure, some

of these difficulties can be circumvented. The orbifold structure, though, does not provide

the necessary tools to describe the boundary of the moduli space. Knudsen introduced the

combinatorial boundary, which consists of nodal curves with marked points that represent

degenerations of smooth curves [Knu83]. These degenerations can be illustrated using

dual graphs that encode the combinatorial data of the nodal curves [Str84].

To study the compactification of the moduli space of curves, one must also examine its

Deligne-Mumford stack structure. Introduced by Pierre Deligne and David Mumford in

1969 [DM69], a Deligne-Mumford stack is a generalization of a moduli space that accounts

for the presence of automorphisms in the geometric objects being parametrized. Deligne-

Mumford stacks are commonly used in algebraic geometry to describe moduli problems

where the objects being parametrized possess nontrivial automorphism groups. As a result,

Deligne-Mumford stacks are central objects in studying moduli spaces of algebraic curves

and intersection theory.

13
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2.1 Orbifolds

Orbifolds are a special class of spaces that have some local structure resembling a quotient

of a space by a finite group action. In algebraic geometry, orbifolds arise naturally as

quotient spaces of algebraic varieties by finite group actions. Our approach will follow

[ALR07], [CJ19], [Dun88], [Kap10] and [CR04]

We start with a connected topological space, denoted as U and a connected n−dimensional

smooth manifold, V . We also have a finite group G that acts smoothly on V . This means

that each element of G corresponds to a transformation of V that is smooth, this action

is not necessarily effective. We will assume that for each element of G, the set of points

in V that are left fixed by the corresponding transformation, is either the entire space V

or a subset of V with codimension at least two.

We now formally introduce the following elements:

• An n−dimensional uniformizing system of U , is a triple (V,G, π), where π is a

continuous map from V to U that induces a homeomorphism between the quotient

space V/G and U .

• Two uniformizing systems (Vi, Gi, πi), i = 1, 2, are considered isomorphic if there’s

a diffeomorphism φ from V1 to V2 and an isomorphism λ from G1 to G2 such that φ

is λ-equivariant (meaning it commutes with the action of the group), and π2◦φ = π1.

• Consider an inclusion map i : U ′ → U , and a uniformizing system (V ′, G′, π′) as-

sociated with U ′. We can establish a relationship between this system and another

uniformizing system (V,G, π) of U . Specifically, we say that (V ′, G′, π′) is derived

from (V,G, π) if the following conditions are met:

1. There exists a monomorphism τ : G′ → G which behaves as an isomorphism

when it is restricted to the kernels of the actions of G′ and G.

2. There is a τ -equivariant open embedding ψ : V ′ → V satisfying the condition

i ◦ π′ = π ◦ ψ.

This relationship is illustrated in the following commuting diagram. In this context,

the pair (ψ, τ), which maps (V ′, G′, π′) to (V,G, π), is referred to as an injection.

V ′ V

U ′ U

ψ

π′ π

i

• Two injections (ψi, τi) : (V ′i , G
′
i, π
′
i) → (V,G, π), i = 1, 2, are isomorphic if there

exists an isomorphism (φ, λ) between (V ′1 , G
′
1, π
′
1) and (V ′2 , G

′
2, π
′
2), and an automor-

phism (φ̄, λ̄) of (V,G, π) such that (φ̄, λ̄) ◦ (ψ1, τ1) = (ψ2, τ2) ◦ (φ, λ).



15

• Consider a topological space U that is both connected and locally connected. For

any given point p within U , we can identify two uniformizing systems, denoted as

(V1, G1, π1) and (V2, G2, π2). These systems are associated with the neighborhoods

U1 and U2 of the point p. We say these two uniformizing systems (V1, G1, π1) and

(V2, G2, π2) are equivalent at the point p if they induce isomorphic uniformizing

systems for some neighborhood U3 of p.

Definition 2.1.1 (Orbifold) [CR04] Consider X, a Hausdorff, second countable topo-

logical space. An n-dimensional orbifold structure on X is characterized by the fol-

lowing data:

• For any point p in X, there exists a neighborhood Up and an n-dimensional uni-

formizing system (Vp, Gp, πp) of Up.

• For any point q in Up, (Vp, Gp, πp) and (Vq, Gq, πq) are equivalent at q (i.e., they

define the same local structure at q).

Given a local structure of orbifold structures, X is called an orbifold.

Definition 2.1.2 Let X be an orbifold, p ∈ X and (V,G, π) an uniforming system con-

taining p, the local group at p is given by

Gp = {g ∈ G | gp = p} .

Example 2.1.3 The complex orbifold M/Zn is obtained by taking the quotient of a smooth

complex manifold M by an action of the cyclic group Zn of order n. We assume that the

action is effective, meaning every non-identity element of the group moves at least one

point in M .

We define the equivalence relation on M as follows: x ∼ y if and only if there exists

k ∈ Zn such that x = ρk(y), where in a local chart provided by a map φ : U ⊂ M → Cm,

the action ρk is given by φ(ρk(x)) = e2πik/nφ(x) for x ∈ U . This means that the group Zn
acts on the chart by rotating points in Cm.

The orbifold M/Zn has singularities that are locally modeled on the quotient space

Cm/Zn, where m is the dimension of M . Specifically, near a point [x] in M/Zn, we can

choose an uniforming system (V,Zn, ϕ) around x in M such that Zn acts on V through

ρk, and the action in this chart is represented by ϕ−1(e2πik/n · ϕ(y)) for y ∈ V , where

e2πik/n is a primitive nth root of unity. The quotient space V/Zn is then isomorphic to a

neighborhood of [x] in M/Zn, hence locally equivalent to the quotient space Cm/Zn.

Example 2.1.4 The quotient of the 2-sphere by an action of the cyclic group Z2, which

identifies antipodal points, is an orbifold known as the projective plane P1.
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Example 2.1.5 Consider the hypersurface X on CP4 with homogeneous coordinates

[z0, z1, z2, z3, z4] defined by the homogenous equation:

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + αz0z1z2z3z4 = 0,

for α ∈ C constant. X can be realized as an orbifold by considering its action under the

group Z5.

To define the orbifold structure, we begin by constructing an action of Z5 on C5 that

preserves X. We do this by defining an action of Z5 on the coordinates [z0, z1, z2, z3, z4]

by setting:

ρk[z0, z1, z2, z3, z4] = [e2πik/5z0, e
2πik/5z1, e

2πik/5z2, e
2πik/5z3, e

2πik/5z4],

for k ∈ Z5. This action clearly preserves X, since each term z5
0, z5

1, z5
2, z5

3, z5
4 and

z0z1z2z3z4 is invariant under the action of Z5.

We can then define an orbifold structure on X as the quotient space CP5/Z5, where

Z5 acts on by the above action. The orbifold has singularities at the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 1 : 0], and [0 : 0 : 0 : 0 : 1],

in CP4, which are fixed points of the Z5 action.

Near each singular point, the orbifold is locally modeled on the quotient space C5/Z5,

where Z5 acts on C5 by the action

(w1, w2, , w3, w4, w5) 7→ (e2πi/5w1, e
2πi/5w2, e

2πi/5w3, e
2πi/5w4, e

2πi/5w5).

These quotient spaces have well-known singularities, which are called cyclic quotient

singularities and are the local model for an orbifold point. [HKK+03]

Example 2.1.6 Consider the hypersurface X in CP4 with homogeneous coordinates

[z0, z1, z2, z3, z4] defined by the homogeneous equation:

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + αz0z1z2z3z4 = 0,

for α ∈ C constant. X can be realized as an orbifold by considering its action under the

group Z5.

To define the orbifold structure, we begin by constructing an action of Z5 on C5 that

preserves X. We do this by defining an action of Z5 on the coordinates [z0, z1, z2, z3, z4]

by setting:

ρk[z0, z1, z2, z3, z4] = [e2πik/5z0, e
2πik/5z1, e

2πik/5z2, e
2πik/5z3, e

2πik/5z4],
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for k ∈ Z5. This action clearly preserves X, since each term z5
0, z5

1, z5
2, z5

3, z5
4 and

z0z1z2z3z4 is invariant under the action of Z5.

We can then define an orbifold structure on X as the quotient space CP4/Z5, where

Z5 acts as described above. The orbifold has singularities at the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 1 : 0], and [0 : 0 : 0 : 0 : 1],

in CP4, which are fixed points of the Z5 action.

As X is a 3−dimensional curve in CP4, near each singular point, the orbifold is locally

modeled as the quotient space C3/Z5. Here Z5 acts on C3 through the action:

(w1, w2, w3) 7→ (e2πi/5w1, e
2πi/5w2, e

2πi/5w3).

These quotient spaces exhibit well-known singularities, referred to as cyclic quotient

singularities, which serve as the local model for an orbifold point [HKK+03]. However,

it is important to note that other types of singularities can arise from non-cyclic finite

groups.

2.1.1 Bundles on orbifolds

It is possible to introduce fiber bundles on orbifolds in a similar manner to how we do on

manifolds. A first approach is by defining vector fields and differential forms, which can

be treated as sections of vector bundles. To define a vector bundle over an orbifold, we can

use the same definition as for manifolds, which involves assigning a vector space to each

point in the orbifold and gluing them together consistently over a cover. Similarly, we

can define a section of a vector bundle over an orbifold as a continuous map that assigns

a vector to each point in the orbifold, along with a projection map that satisfies certain

local triviality conditions adapted for orbifolds.

Definition 2.1.7 (Fiber bundle) [CR04] Let X be an orbifold, F and E be topological

spaces (called the typical fiber and the total space respectively). A fiber bundle on X is

given by:

• A projection map πE : E → X, such that for each point p ∈ X, there exists a

uniformizing system (V,G, π) around p ∈ U , where U is an open connected subset of

X.

• A G-equivariant homeomorphism:

ψ : π−1
E (U)→ (V × F )/G,
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where G acts on V × F by g · (v, f) = (g · v, g · f) and g ∈ G, v ∈ V , f ∈ F . This

homeomorphism should satisfy πE(π−1
E (U)) = ϕ−1(V/G), where ϕ is local homeomorphism

from the open subset U onto the quotient space V/G, such that the following diagram

commutes:

π−1
E (U) (V × F )/G

U V/G

ψ

πE ϕ̃

ϕ

where ϕ̃ represents the natural projection from (V ×F )/G to V/G induced by the group

action.

Definition 2.1.8 Given an orbifold fiber bundle E we say it is a vector bundle if the

typical fiber F has the structure of a vector space.

Definition 2.1.9 Let X be an orbifold, and let E be a fiber bundle over X. A section of

the fiber bundle over the orbifold is a continuous map s : X → E such that π(s(x)) = x

for all x ∈ X and should satisfy the following:

• Locally compatible with the orbifold structure: For each point x ∈ X, there is

an open neighborhood Ux ⊆ X and a uniformizing system (Vx, Gx, φx) such that the

restriction of the section s to Ux can be lifted to a continuous map sx : Ux → Vx,

where Vx is a local model for the fiber bundle in the uniformizing system.

• Consistent with group actions: The lifted maps sx should be equivariant with

respect to the group actions, meaning that sx(gx) = g(sx(x)) for all x ∈ Ux and

g ∈ Gx, where Gx is the finite group acting on the local model Vx.

Definition 2.1.10 Let X be an orbifold, and let
∧k T ∗X denote the vector bundle formed

by taking the k-fold exterior product of the cotangent spaces of X. A differential k-form

on X is defined as a section of the vector bundle
∧k T ∗X, we will denote by Ωk(X) the

set of all differential k-forms over X.

Definition 2.1.11 Given an orbifold X and ω ∈ Ωk(X), the integration of ω over X,

denoted by
∫
X ω, is defined as follows:

• Let (Up, Gp, ϕp) be a uniformized system p ∈ X, we locally lift the differential form

ω to a form ω̃p on Ũp ' Vp/Gp.

• Integrate the lifted form ω̃p over the fundamental domain of the group action of Gp,

summing the integrals of the transformed forms for each g ∈ Gp.

• Patch together the local integrals to obtain a global integral, ensuring compatibility

on intersections of open sets and independence of the choice of partition.
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Definition 2.1.12 Let X = M/G an n-dimensional orbifold, U an open subset of X and

ω ∈ Ωn(U) a GU−invariant differential form, the integral over U is defined as∫
U
ω :=

1

|GU |

∫
Ũ
ω̃,

where |GU | is the order of GU .

Definition 2.1.13 [Zvo12] The homology and cohomology groups of an orbifold over Q,

are defined to be the homology and cohomology groups of the orbifold’s underlying topolog-

ical space, with coefficients in Q.

Consider an orbifold X and an irreducible sub-orbifold Y 1. Let X̂ and Ŷ represent

the underlying topological spaces of X and Y , respectively. In the context of homology

with rational coefficients, the homology class [Y ] within H∗(X,Q), which is isomorphic

to H∗(X̂,Q), is defined as 1
|GY | [Ŷ ] in H∗(X̂,Q). This convention reflects the quotient

structure of the orbifold’s homology induced by the action of the stabilizer group.

Example 2.1.14 We define the orbifold M1,1 as follows:

M1,1 =
H

SL(2,Z)
'
{
z ∈ H | Re(z) ≤ 1

2
, |z| ≥ 1

}
/ ∼ .

Here, ∼ denotes an identification of vertical lines Re(z) = ±1
2 and unit semi-arcs from

σ± = ±1
2 + i

√
3

2 to i.

The stabilizer groups are given by:

Gi ∼= Z4, Gσ+
∼= Z6, GD̂

∼= Z2,

where D̂ =M1,1 \ {σ+, i}.
If we decompose M1,1 into cells as shown in Figure 2.1, we obtain the following table:

n-cell cnj

0 c0
1 = i

c0
2 = σ+

1 c1
1(t) = i+ it, t ∈ R≥0

c1
2(t) = σ+ + it, t ∈ R≥0

c1
3 = {z ∈ H | |z| = 1, 0 < Re(z) < 1

2}

2 c2
1 = {z ∈ H | |z| > 1, 0 < Re(z) < 1

2}
c2

2 = {z ∈ H | |z| > 1,−1
2 < Re(z) < 0}

1An orbifold is irreducible if it cannot be expressed as a nontrivial connected sum of two orbifolds.
This means that there is no way to cut the orbifold into two pieces such that each piece is itself a non-
trivial orbifold with boundary, and the original orbifold is the result of gluing these two pieces along their
boundary.



20

Figure 2.1: Set of n-cells cnj of M1,1.

After computing its cell homology, we observe a global 2-to-1 symmetry. This arises

because I and −I yield the same quotient topologically. The orbifold Euler characteristic

of M1,1, can be computed as follows:

χ(M1,1) =
1

2

(
c0

1

|Gi|
+

c0
2

|Gσ+ |
− c1

1 + c1
2 + c1

3 − c2
1 − c2

2

|GD̂|

)
=

1

24
.

2.2 Moduli Spaces of Curves

The moduli space of curves with marked points Mg,n consists of isomorphism classes of

smooth projective curves of genus g with n marked points on each curve. Marked points

will help to track and study geometric and topological properties of the curves, so the

moduli space captures properties related to their geometric structures. The topology of

the moduli space has been extensively studied using methods from algebraic geometry and

homological algebra [Har86] [Mum83]. This space has found applications in various fields,

including:

• Mirror symmetry: relates geometric structures emerging in string theory to elements

from algebraic geometry [CdlOGP91] [KM94],
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• Enumerative geometry: counting geometric objects with certain properties [Pan06],

• Conformal field theory: conformal 2D systems, including quantum gravity [Dij90].

Definition 2.2.1 Let g, n ∈ Z≥0. A genus-g curve with n marked points is a connected,

smooth projective curve Cg,n of genus g together with n distinct points p1, . . . , pn ∈ Cg,n.

Two such curves (Cg,n, p1, . . . , pn) and (C ′g,n, p
′
1, . . . , p

′
n) are considered isomorphic if there

exists an isomorphism of algebraic curves φ : Cg,n → C ′g,n taking pi to p′i with 1 ≤ i ≤ n.

For 2g + n − 2 > 0, we define the moduli space Mg,n of genus-g curves with n marked

points as the space of isomorphism classes of such curves.

The moduli space Mg,n is a complex orbifold of dimension 3g − 3 + n. It requires 3g −
3 parameters, that account for all possible deformations of Cg,∗, and n parameters to

represent all possible choices of n distinct points on Cg,n. [HL97] [ACGH85]

2.2.1 The moduli space M0,3

Let X = CP1 with three marked points x1, x2 and x3 pairwise different, then there exists

a unique element in PSL(2,C) that sends (x1, x2, x3) to (0, 1,∞) in CP1 given by:

F (x) =
(x− x1)(x2 − x3)

(x− x3)(x2 − x1)
.

This means in particular, we can always find a Möbius transformation that maps CP1 to

itself while sending the three marked points to (0, 1,∞), so there is only one such curve

up to isomorphism, hence M0,3 is a single point.

Figure 2.2: Map between CP1 with three marked points x1, x2 and x3 to (CP1, 0, 1,∞) .

2.2.2 The moduli space M1,1

The moduli space M1,1 parameterizes isomorphism classes of elliptic curves (compact

Riemann surfaces of genus 1) with a single marked point. In this case, the space has a

more complicated description than M0,3. We start by representing an elliptic curve E as

a complex torus, which is the quotient of the complex plane by a lattice Γ, i.e. E = C/Γ.
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A lattice Γ can be generated by two linearly independent complex numbers ω1 and ω2

as Γ = {mω1 + nω2 | m,n ∈ Z}. Suppose we have a homothety with a factor of λ ∈ C∗,

which scales the lattice as Γ′ = {λmω1 + λnω2 | m,n ∈ Z}. The new lattice Γ′ will

differ from the original lattice Γ, however, if we consider the complex tori C/Γ and C/Γ′,

they are isomorphic as complex tori, meaning that the corresponding elliptic curves are

isomorphic as well.

Since it is always possible to find a unique basis {ω1, ω2} if we now consider that

homotheties do not change the elliptic curve, we might as well consider instead the basis

{ω1
ω2
, 1} = {τ, 1}, with τ = ω1

ω2
. Furthermore, the condition for {ω1, ω2} being an oriented

basis translates into Im(ω1/ω2) = Im(τ) > 0. This means that the space of all possible

lattices, up to complex multiplication, can be identified with the set of all points in the

complex upper half-plane H = {z ∈ C | Im(z) > 0}. We will denote by Γτ the lattice

generated by the basis {τ, 1}.

Let τ1 and τ2 ∈ H, two tori: Tτ1 = C/Γτ1 and Tτ2 = C/Γτ2 are biholomorphic if only if

τ2 =
aτ1 + b

cτ1 + d
,

where a, b, c, d ∈ Z and ad− bc = 1.

This means, the modular group SL(2,Z) changes the generators in a specified lat-

tice Γτ . Therefore, we examine the action of SL(2,Z) on the upper half-plane, which is

characterized by fractional linear transformations:

a b

c d

z
1

 :=
az + b

cz + d
,

where z ∈ H and

a b

c d

 ∈ SL(2,Z).

Two points z1, z2 ∈ H are considered equivalent if there exists an element of the

modular group that maps one to the other, so the moduli space M1,1 can be constructed

as the quotient of the upper half-plane H by the action of the modular group:

M1,1 ' H/ SL(2,Z).

This means every orbit of SL(2,Z) will be represented as a point in the quotient.

The group SL(2,Z) is generated by the following elements:

T =

1 1

0 1

 and V =

0 −1

1 0

 .
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Proposition 2.2.2 The set H/SL(2,Z) is isomorphic to

D =

{
z ∈ H

∣∣∣∣ −1

2
≤ Re(z) ≤ 1

2
and 1 ≤ |z|

}
/ ∼,

where for L− = {z ∈ H | |z| = 1 and − 1/2 < Re(z) < 0},
L+ = {z ∈ H | |z| = 1 and 0 < Re(z) < 1/2} and σ± = ±1

2 + i
√

3
2 we have L+ ∼ L−

and σ+ ∼ σ−

Proof. As SL(2,Z) is generated by the following elements:

T =

1 1

0 1

 and V =

0 −1

1 0

 .

We will focus on the effects of T and V on τ (lattice generator)

T (τ) = τ + 1,

V (τ) = −1

τ
,

this shows T is a translation of the real part of τ , so, the orbit of τ under the action of T

can composed of elements whose |Re(τ)| ≤ 1
2 .

Recall from eq. (B.0.4), that for any L ∈ SL(2,Z), Im(L(z)) → 0 so, either c → ∞
or d→∞, this implies Im(T (z)) is bounded, as neither c or d can be zero simultaneously

(because det(abdc) = 1), so let z be an element in the orbit space whose imaginary part is

maximal, as we saw before, the action of T leaves the imaginary part invariant, however

the action of V gives:

Im(V (z)) =
Im(z)

|z|2
,

so, if |z| < 1, then Im(V (z)) > Im(z). This contradicts the fact that Im(z) was maximal,

hence, we must have |z| ≥ 1. �

Now, let us consider two elements τ ′ and τ that lie within the same orbit in the set D,

such that τ ′
1

 =

a b

c d

τ
1

 ,

for (abcd) ∈ SL(2,Z). We consider c ≥ 0 and Im(τ ′) ≥ Im(τ), by (B.0.4) we have

|cτ + d| ≤ 1, (2.2.1)
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Figure 2.3: The set H/SL(2,Z) (marked in red) and the image under the composition of
T and V .

from |Re(τ)| ≤ 1/2 and |τ | ≥ 1 we get Im(τ) ≥
√

3/2 so (2.2.1) gives∣∣∣∣∣c
√

3

2

∣∣∣∣∣ ≤ 1,

as c ∈ Z, this leaves two options

• c = 0, by the determinant condition we get a = ±1 = d, so

A =

1 b

0 1

 = T b.

If |τ ′| ≤ 1/2 and |τ | ≤ 1/2 for being in D then b = ±1, this can only be achieved by

points lying on the the vertical lines |Re(z)| = 1/2 this means both lines are identified.

• c = 1

Because |cτ+d| ≤ 1 and τ > 0, then |x+d| < 1 from this we have different possibilities

for d = 0,±1.

• c = 1 and d = 0
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From ad− bc = 1 we have b = −1 so

A =

a −1

1 0

 = T aV.

As T a is a translation, if we want to stay inside D, either a = 0 or a = ±1, for a = 0

A =

0 −1

1 0

 ,

so

A(τ) = V (τ) = −1

τ
,

if |τ | > 1 then V (τ) /∈ D, so |τ | = 1 and the action of V reads

V (τ) = −Re(τ) + iIm(τ),

this identifies the arcs of the unitary circle L− and L− given by

L− =

{
z ∈ H | |z| = 1 and − 1

2
< Re(z) < 0

}
,

L+ =

{
z ∈ H | |z| = 1 and 0 < Re(z) <

1

2

}
.

It is relevant to note the point: i is invariant under such transformation, indeed

V (i) = −1

i
= i.

As for a = ±1 we will first do a translation T and then the ”inversion” V , even though

this might seem too restrictive for a given interval of length 1, there is actually a point

that satisfies both transformations and is still in D, this point lies at the endpoints of the

vertical line that intersects the arc L±, we call it σ± = ±1
2 + i

√
3

2 , we see indeed:

T (σ±) = σ∓ and V (σ±) = σ∓,

so

TV (σ±) = σ∓.

Whereas we have V 2 = (TV )3 = I, and by the above arguments we have that the local

groups of i and σ+

Gi = {I,−I, V,−V } ∼= Z/4Z, (2.2.2)
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Figure 2.4: Process of identification of the vertical lines Re(τ) = ±1
2 and of the arcs L±

resulting in the moduli space M1,1.

Gσ+ =
{
I,−I, TV,−TV, (TV )2,−(TV )2

} ∼= Z/6Z. (2.2.3)

This is precisely the reason for which we use orbifolds instead of manifolds, here the

local groups are not trivial and the orbifold structure will remember this local information.

This space parameterizes all isomorphism classes of elliptic curves with a marked point.

It is worth noting that M1,1 is not compact. Its compactification, known as the Deligne-

Mumford compactification (cf. 2.3 ), is denoted byM1,1 and includes stable nodal curves

(curves with at most one node) in addition to smooth elliptic curves. The boundary of

the compactification corresponds to the cusps of the modular group action on the upper

half-plane.

2.2.3 The moduli space M0,n

The moduli space M0,4 parameterizes isomorphism classes of stable rational curves with

4 marked points. As before, a stable 4-pointed rational curve is a Riemann sphere with

x1, x2, x3 and x4 distinct marked points. Since the complex structure of the Riemann

sphere is fixed, the only possible parameter in the moduli space comes from the position

of the 4th marked point x4.

By applying a Möbius transformation, we can always fix the positions of x1, x2 and

x3 to 0, 1, and ∞ respectively. Then, the position of the fourth marked point can be any

complex number t except 0, 1, and ∞, the parameter t can be expressed in terms of the

other points as:
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t =
(x4 − x1)(x2 − x3)

(x4 − x3)(x2 − x1)
,

because t ∈ CP1 \ {0, 1,∞}, then:

M0,4 = CP1 \ {0, 1,∞}.

Note that this space is also non-compact as the points: {0, 1,∞} are missing. The

Deligne-Mumford compactification M0,4 adds the points {0, 1,∞} back to M0,4, making

it the Riemann sphere CP1.

As the number of marked points increases, the moduli space M0,n exhibits combina-

torial properties and requires a more detailed description. Consider CP1 with n pairwise

distinct points. By applying a Möbius transformation, we fix the positions of three points,

(x1, x2, x3), mapping them to (0, 1,∞). For the remaining points (x4, . . . , xn), we asso-

ciate them with (t1, . . . , tn−3) such that ti 6= tj for i 6= j. This ensures that each point in

the remaining set has a unique corresponding value in the target set, with:

ti =
(xi+3 − x1)(x2 − x3)

(xi+3 − x3)(x2 − x1)

This implies that each ti ∈ CP1 \ {0, 1,∞} and ti 6= tj for i 6= j. Therefore, the moduli

space M0,n can be described as the product of these spaces while avoiding the diagonals,

as follows:

M0,n = {(t1, . . . , tn−3) ∈ (CP1)n−3 | ti /∈ {0, 1,∞}, ti 6= tj for i 6= j},

for n > 3.

2.3 Deligne-Mumford compactification

We previously observed that the moduli space M0,4 is non-compact, similarly, we can

deduce that M0,n≥4 is also non-compact. In general, the moduli space Mg,n might not

be compact. However, it is possible to compactify the moduli space by including spe-

cific sets of curves in a process known as Deligne-Mumford compactification. This

method extends the moduli space to include stable curves with nodes (singularities). The

compactification was introduced by Pierre Deligne and David Mumford in 1969. [DM69]

The idea behind the Deligne-Mumford compactification is to include stable nodal

curves in the moduli space. A stable curve is a curve with only nodes as singularities,

and finite automorphism group. The nodes can be thought of as ”points of attachment”

between different components of the curve. By allowing these singularities, the moduli

space becomes compact.



28

Definition 2.3.1 A simple nodal point within a curve Cg,n is defined as an isolated

singularity characterized by the self-transversal intersection of the curve at a distinct point,

near such a nodal point, the curve can be locally modeled by the equation xy = 0 in C2.1

Definition 2.3.2 A nodal curve is a complex curve Cg,n with simple nodal points.

Definition 2.3.3 Given a nodal curve Cg,n, we define its normalization to be the smooth,

though not necessarily connected, curve CSg,n. This process involves separating the original

curve at its nodes, where each singular point, or node, of the curve is replaced with distinct

marked points.

Definition 2.3.4 A stable curve Cg,n is a connected nodal curve satisfying the following

conditions:

• The only singularities of Cg,n are simple nodal points.

• If xi and xj are marked points on Cg,n, then xi 6= xj for all i 6= j, and none of the

xi can be nodal points.

• Irreducible components of genus 0 must have at least three points, counting both nodal

points and marked points.

• Irreducible components of genus 1 must have at least one nodal point or marked

point.

The boundary ofMg,n needs to describe the local behaviour when we approach a limit

point, in the case of M0,4 this limit corresponds to two marked points colliding within

CP1, so we begin first by studying a stable curve; for a Riemann surface with genus 0 and

4 marked points C0,4, we have the isomorphism:

(C0,4, x1, x2, x3, x4) w (CP1, , 0, 1,∞, t),

so, the boundary elements must represent the limits: t → 0, t → 1 and t → ∞. To

visualize this process, consider the following example [Zvo12], take a family of curves in

CP2 denoted by C(s), let [x, y, x] be homogeneous coordinates in CP2, the family of curves

parametrized by s ∈ I ⊂ R is defined as:

C(s) = {[x, y, z] ∈ CP2 | xy = sz2},

this means, each value of s defines a 4−marked curve CP1, on C(s) we mark the following

points:

x1 = [0, 1, 0], x2 = [1, s, 1],

1The equation xy = 0 in C2 represents the standard local model for a simple node, implying that the
curve looks like the crossing of two lines near the singularity. In the context of this local model, the curve
resembles the transversal intersection of two smooth paths, each referred to as a branch of the node.
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x3 = [1, 0, 0], x4 = [s, 1, 1].

Figure 2.5: A family of curves Cs in M0,4 approaching a limit point as s→ 0.

This example shows the behavior of a curve in M0,4 where x4 → x1 as s → 0, it is

important to keep the marked points separated as we take the limit, the details on this

process are very technical but the idea is to apply conformal transformations while keep-

ing the colliding points separated, as a consequence the distance with respect to the other

points gets very large and in the limit, the curve collapses a region into one point (the

nodal point) creating a separation between the colliding points and the rest of the marked

points. This example captures the ‘jump’ from one sphere into two spheres, and in the

process distributing the marked points with the node to obtain a stable surface.

In this example we also notice points on the curve are either smooth marked points or

are isomorphic to a neighborhood of xy = 0 in C2, this means, if we take a neighborhood

of a node, we can transform it by diffeomorphisms into two open disks with their centers

identified, there are two ways to remove the singularity at a nodal points, we will refer to

them as:

• Normalized node: If the neighborhood near a node can be replaced by two disjoint

open discs.

• Smoothened node: If the neighborhood near a node can be replaced by a cylinder.

Theorem 2.3.5 There exists a (3g − 3 + n)-dimensional compact complex differential

orbifold Mg,n, a (3g − 2 + n)-dimensional compact complex differential orbifold Cg,n, and

a map π : Cg,n →Mg,n such that
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• Mg,n ⊂Mg,n is an open dense sub-orbifold and π−1(Mg,n) = Cg,n ⊂ Cg,n .

• The fibers of π are stable surface of genus g with n marked points.

• Each stable curve is isomorphic to only one fiber.

• The stabilizer of a point p ∈ Mg,n is isomorphic to the automorphism group of the

corresponding stable curve Cg,n ' [p].

Definition 2.3.6 We call the space Mg,n the Deligne-Mumford compactification of

Mg,n, and the set Mg,n \Mg,n its boundary.

Definition 2.3.7 The family of curves Cg,n such that π : Cg,n → Mg,n is called the

universal curve.

Theorem 2.3.8 [Zvo12] Let π : Cg,n → Mg,n be the universal curve and z ∈ Cg,n a

node in a singular fiber. Then there is a neighborhood of z in Cg,n with a system of local

coordinates (w1, ..., w3g−4+n, x, y) and a neighborhood of π(z) ∈ Mg,n with a system of

local coordinates (s1, ..., s3g−3+n) such that in these coordinates π is given by

si = wi, for 1 ≤ i ≤ 3g − 4 + n, s3g−3+n = xy.

The Deligne-Mumford compactification provides a method for adding strata with the

same dual intersection complex to the limit set and characterizing the topology ofMg,n.1

The prevoius theorem also reinforces the idea illustrated in Fig. 2.5, which serves as

a model for the behavior near nodal points. Although numerous elements need to be

incorporated during the compactification process, the number of elements added will be

finite, as each element on the boundary must have the same Euler characteristic. This

ensures that the resulting compactified space remains manageable and retains its essential

topological and geometric properties.

2.4 Forgetful and attaching maps

There are two primary types of natural maps between moduli spaces: the forgetful maps

and the attaching (or gluing) maps. These maps induce relations on the cohomology

classes of Mg,n. The forgetful map removes m marked points from elements in Mg,n+m,

resulting in stable curves inMg,n. On the other hand, the attaching map identifies curves

in the moduli space by connecting them through a pair of marked points gluing the curves

together, or gluing the curve with itself increasing its genus. These operations allow us to

construct more complex moduli spaces and also to study some relations between them.

1The boundary strata refer to specific sections at the edges of moduli spaces, representing types of
degenerate curves, such as those with nodal singularities. These strata help us understanding the com-
pactification and geometric properties of the space, classifying curves by their topological features.
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Definition 2.4.1 (Stabilization of a Nodal Curve) Let (Cg,n+m, x1, . . . , xn+m) be a

nodal curve inMg,n+m. The stabilization of this curve, denoted by Stab, transforms it into

a stable curve (Cstab
g,n , x1, . . . , xn). Should the curve (Cg,n, x1, . . . , xn) satisfy the condition

2 − 2g − n < 0 yet contain unstable components—particularly, genus 0 components with

fewer than three special points—then these components must be contracted into singular

points. This process is carried out iteratively, removing each unstable genus 0 component

through contraction.

Definition 2.4.2 (Forgetful Map) The forgetful map fm :Mg,n+m →Mg,n is defined

as the morphism that takes an element (Cg,n+m, p1, . . . , pn+m) in Mg,n+m and maps it to

(Cstab
g,n , p1, . . . , pn) in Mg,n by omitting the last m marked points and subsequently stabiliz-

ing the curve:

fm(Cg,m+n, p1, . . . , pn+m) = (Cstab
g,n , p1, . . . , pn) ∈Mg,n.

Figure 2.6: Forgetful map of the points {x2, x3, x4, x5} of an element in M4,5 to a stable
element in M4,1.

The motivation for attaching maps originates from the wish to construct new curves by

connecting or gluing existing ones, resulting in a different moduli space structure. Given

a curve C ′g1,n+1 of genus g1 with n+ 1 marked points and another curve C ′′g2,m+1 of genus

g2 with m+ 1 marked points, we can identify a marked point in C ′ with a marked point

in C ′′. This process creates a new curve Cg1+g2,n+m, where the points at which they were

attached are replaced by a node.

Another possibility arises when we have a curve C ′g1,n+2 of genus g1 with n+ 2 marked

points. By identifying two marked points on the same curve, we can transform it into a

curve Cg1+1,n. This operation increases the genus of the curve and introduces a new nodal

point. With this motivation, we can proceed to formally define the attaching maps and

explore their properties:

Definition 2.4.3 There are two kinds of attaching maps:

• Separating attaching map
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Let Mg1,n+1 be the moduli space of stable curves of genus g1 with n+ 1 marked points

and Mg2,m+1 be the moduli space of stable curves of genus g2 with m + 1 marked points.

The attaching map

gl :Mg1,n+1 ×Mg2,m+1 →Mg1+g2,n+m,

maps pairs of equivalence classes of stable curves (C ′g1,n+1, C
′′
g2,m+1) to an equivalence

class of a stable curve Cg1+g2,n+m obtained by identifying a marked point in C ′g1,n+1 with

a marked point in C ′′g2,m+1 and gluing the curves along these points, introducing a nodal

point at the gluing location.

Figure 2.7: Separating attaching map, gluing the points x4 and x̂6 of elements in M1,4

and M2,6, the image lies in M3,8.

• Non-separating attaching map.

Let Mg,n+2 be the moduli space of stable curves of genus g with n+ 2 marked points.

The attaching map

glirr :Mg,n+2 →Mg+1,n,

maps an equivalence class of stable curves C ′g,n+2 to an equivalence class of a stable curve

Cg+1,n obtained by identifying two marked points on the same curve and gluing them

together, increasing the genus of the curve by 1 and introducing a new nodal point.

Figure 2.8: Non-separating attaching map , gluing the points x3 and x4 of an element in
M2,4, the image lies in M3,2.
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2.5 Witten-Kontsevich theorem

The structure of moduli spaces is in general very complicated and performing computations

involving these objects is highly non-trivial. Given its geometric structure, it is possible

to define cohomology classes on moduli spaces to better understand them. In particular,

Chern classes are of great interest, and they can be defined using vector bundles over the

moduli space, relating the cohomology classes of the bundle with those on the base space.

One key aspect on the study of moduli spaces are their intersection numbers, which

can be obtained through wedge products of Chern classes. In 1990, Edward Witten dis-

covered a connection between algebraic geometry, specifically on intersection numbers of

moduli spaces of algebraic curves, and the theory of integrable systems. He observed that

intersection numbers played a role in the construction of the free energy function of 2D

quantum gravity models, while the function for counting triangulations on surfaces was

related to a special tau function of the KdV hierarchy. This led Witten to conjecture a

link between algebraic geometry and integrable systems. [Wit90]

Witten’s conjecture was later proven by Maxim Kontsevich [Kon92], this remarkable

result, known as the Witten-Kontsevich theorem, has been explored and explained in de-

tail in recent years, a modern introduction and proof can be found in the work of B.

Eynard [Eyn16]. Witten’s conjecture was later reformulated by Robbert Dijkgraaf, Erik

Verlinde, and Herman Verlinde [DVV91], who introduced the Virasoro differential oper-

ators Ln for n ≥ −1 and demonstrated the connection between Witten’s conjecture and

the Virasoro equations. This connection has opened up plenty of new research possibil-

ities and helped develop new tools to describe the structure of moduli spaces and their

intersection numbers.

In Mg,n, each point represents an equivalence class of algebraic curves (up to isomor-

phism), and the tangent space at a point is related to the infinitesimal deformations of

the corresponding curve. The cotangent space then consists of linear functionals that act

on these deformations.

As each marked point xi varies smoothly across curves inMg,n, we can define a natural

line bundle Li over Mg,n, whose fiber at each point is the cotangent space at xi of the

respective curve represented in the moduli space.

Given a vector bundle, we define its characteristic classes as invariant polynomials on

the curvature of a connection. Since a line bundle is a specific type of vector bundle, we

can consider its first Chern class c1(L). This class is a 2-form onMg,n and, as a topological

invariant, it can be shown its definition does not depend on the choice of connection.

Definition 2.5.1 The ψ-classes are defined as follows:

ψi = c1(Li) ∈ H2(Mg,n,Q). (2.5.1)
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Remark. By taking the wedge product of a sufficient number of ψ-classes, equal

to the dimension of Mg,n, it is possible to compute the integral of a top form, such as

c1(L1)k1 ∧ · · · ∧ c1(Ln)kn , over the space Mg,n.

Definition 2.5.2 [Wit90] Let Li →Mg,n be the cotangent line bundle associated with the

marked point xi, and let ψi = c1(Li) denote its ψ-class. Provided that 2g − 2 + n > 0, we

define the intersection numbers as

〈τa1τa2 · · · τan〉g :=


∫
Mg,n

c1(L1)a1 ∧ · · · ∧ c1(Ln)an if
∑n

l=1 al = dim(Mg,n),

0 if
∑n

l=1 al 6= dim(Mg,n).

At times, we might opt for a notation distinct from Witten’s bracket notation to denote

the intersection numbers:

〈τa1τa2 ...τan〉g = 〈ψa1i · · ·ψ
an
n 〉g,n =

∫
Mg,n

ψa11 ∧ ... ∧ ψ
an
n .

The intersection numbers 〈τa1τa2 . . . τan〉g are also referred to as descendant integrals.

We also notice, once g and n are specified, using the dimension of Mg,n and the stability

conditions for its elements implies that the set of non-zero intersection numbers must be

finite.

Moreover, Witten conjectured that if the stability condition 2g− 2 +n > 0 is satisfied,

then the intersection numbers also fulfills two interconnected systems of equations:

〈
τ0

n∏
i=1

τai

〉
g

=
n∑
j=1

〈
τaj−1

∏
i 6=j

τai

〉
g

,

〈
τ1

n∏
i=1

τai

〉
g

= (2g − 2 + n)

〈
n∏
i=1

τai

〉
g

.

(2.5.2)

These equations are referred to as the string and dilaton equations, respectively. This

system offers relations for recursively computing all intersection numbers in genus 0. E.

Witten proposed a generating function that combines these intersection numbers into a

single object, effectively converting a series of complicated calculations into a study of

the properties of a single function. This generating function is now known as the Witten

generating function of intersection numbers.

Let u, ti>0 be a set of variables. We introduce the generating function of genus g as:

FWg (t0, t1, . . . ;u) :=
∑
n≥1

2g−2+n>0

u2g−2

n!

∑
a1,...,an≥0

〈τa1τa2 . . . τan〉g ta1ta2 . . . tan . (2.5.3)
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This expression emerges in the context of two-dimensional quantum gravity, which is

a simplified model of quantum gravity that retains many important features of the full

theory, this theory is also associated with models of string theories and it can be described

in terms of certain topological field theories known as topological gravity.

In this model, Riemann surfaces play the role of the space-time history of a one-

dimensional string, and the moduli space of such surfaces is a crucial object of the model.

Essentially, the different configurations of the string are parametrized by points in the

moduli space. Whenever we try to calculate the quantum amplitudes associated with

different configurations, the integral must be computed over the entire moduli space, and

the integrand involves the exponential of the so-called action of the theory i.e. the Witten

potential.

We now introduce the following differential operators:

L−1 = − ∂

∂t0
+
u−2

2
t20 +

∞∑
i=0

ti+1
∂

∂ti
,

L0 = −3

2

∂

∂t1
+

∞∑
i=0

2i+ 1

2
ti
∂

∂ti
+

1

16
.

(2.5.4)

If FW =
∑

g≥0 F
W
g , then we can rewrite the string and dilaton equations (2.5.2) by

the exponential function eF
W

being annihilated by the operators in (2.5.4).

We can recover the intersection numbers expressions from the generating functions

FWg as follows:

〈τa1τa2 ...τak〉g =
∂

∂ta1

∂

∂ta2
. . .

∂

∂tak
FWg

∣∣∣∣
ti=0,u=1

.

In the early 90’s, E. Witten [Wit90] conjectured that starting from FW , U = ∂FW
∂t20

satisfies the KdV equations and, along with the string equation (eq. (2.5.2)), enables us

to subsequently formulate a relation for the intersection numbers:

(2n+ 1)
〈
τnτ

2
0

〉
= 〈τn−1τ0〉

〈
τ3

0

〉
+ 2

〈
τn−1τ

2
0

〉 〈
τ2

0

〉
+

1

4

〈
τn−1τ

4
0

〉
.

This conjecture was later proven by M. Kontsevich [Kon92] and it is known in the

literature as the Witten-Kontsevich theorem.

Theorem 2.5.3 (Witten-Kontsevich) The generating function FW (t0, t1, . . .) is a so-

lution to the Korteweg-de Vries (KdV) hierarchy.

Building upon the Witten-Kontsevich theorem, the Virasoro conjecture suggests that

not only does the generating function of intersection numbers satisfy the KdV hierarchy,

but it is also governed by a larger symmetry group known as the Virasoro algebra, this

version will be useful in the following chapters and can be stated as follows:
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Theorem 2.5.4 (Virsoro formulation of the Witten-Kontsevich theorem) Let

FW , be the generating function for the intersection numbers on the moduli space Mg,n.

Then, the function FW satisfies the Virasoro constraints

Lne
FW = 0, for all n ≥ −1,

where the Virasoro operators Ln are defined by:

Ln :=
∑
i≥0

(2i+ 2n+ 1)!!

2n+1(2i− 1)!!
(ti − δi,1)

∂

∂ti+n
+
u2

2

n−1∑
i=0

(2i+ 1)!!(2n− 2i− 1)!!

2n+1

∂2

∂ti∂tn−1−i

+δn,−1
t20

2u2
+ δn,0

1

16
.

(2.5.5)

These constraints, containing the string and dilaton equations, fully characterize the

generating function FW . Consequently, this enables a recursive computation of all inter-

section numbers on the moduli spaces. [Zvo12]

Example 2.5.5 For g = 0, it is possible to obtain an explicit formula for all the inter-

section numbers for n ≥ 3, if
∑
ai = n− 3, then

〈τa1 · · · τan〉0 =
(n− 3)!

a1! · · · an!
. (2.5.6)

We will proceed by induction, the last example provides the base case when n = 3.

For the inductive step, we consider n+ 1 marked points. For some fixed index i, we have

ai = 0. Then, the string equation gives:

〈
τa1 · · · τan+1

〉
0

=
n∑
j=1

〈
τaj−1

∏
k 6=j

τak

〉
0

.

Evaluating the right side of the equation, we get:

n∑
j=1

〈
τaj−1

∏
k 6=j

τak

〉
0

=

n∑
j=1

aj(n− 3)!

aj !
∏
k 6=j ak!

.

Notice that
∑n

j=1 aj+ai = (n+1)−3, where ai = 0. Substituting this into the previous

equation yields:

n∑
j=1

〈
τaj−1

∏
k 6=j

τak

〉
0

=
(n− 2)(n− 3)!∏n

k=1 ak!
=

((n+ 1)− 3)!∏n+1
k=1 ak!

.

Thus, the formula is proven for the case when n + 1 marked points are considered,

given that it holds for n points. This completes the proof.
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2.6 Dual graphs

In the study of moduli spaces, some elements can sometimes be difficult to visualize or

describe explicitly. To understand these elements, we can associate them a simpler, visually

informative, combinatorial structure. Such association is the dual graph representation.

For example, when examining boundary points, they characterize the behavior of limit

points in Mg,n. Certain elements may decompose into multiple components, resulting in

a nodal curve.

For instance, when considering boundary points in Mg,n, they characterize the be-

haviour of limit points. Specifically, some configurations may split into multiple com-

ponents, yielding a nodal curve with some irreducible components intersecting at nodes.

While providing a formal description of these curves can be laborious, an alternative, more

intuitive method exists. This approach employs dual graphs, which effectively capture the

topological features of the curve’s degeneration, offering a simplified yet comprehensive

representation.

This alternative is known as a dual graph. In this representation, each irreducible com-

ponent of a nodal curve corresponds to a vertex, and each node translates to an edge. This

method transforms potentially complicated geometric structures into a more straightfor-

ward combinatorial representation. Consequently, this transformation gives the ability to

apply graph theory tools into the combinatorial and geometric aspects of algebraic curves.

Definition 2.6.1 [Pan18] Consider an element [Cg,n, p1, . . . , pn] ∈Mg,n. The associated

dual graph is constructed as follows:

• Each irreducible component of Cg,n is represented by a vertex, which is labeled by its

genus.

• Every node of Cg,n is represented by an edge that connects the vertices corresponding

to the two components of the node.

• For each marked point {pi}ni=1, we attach a half-edge labeled by i to the vertex rep-

resenting the irreducible component containing pi.

This construction yields a graph Γg,n defined by:

Γg,n = (V,H,L, g : V→ Z≥0, v : H→ V, ι : H→ H) ,

with the following characteristics:

1. V is the set of vertices, each associated with a genus through the function g : V →
Z≥0.

2. H denotes the set of half-edges, which comes with a function v : H → V assigning

each half-edge to a vertex and an involution ι : H→ H.
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3. The set of edges, E, is determined by the 2-cycles of ι in H, allowing for self-edges

at vertices.

4. The set of legs, L, corresponds to the fixed points of ι and is bijectively related to the

set of markings {1, . . . , n}.

5. The graph defined by the pair (V,E) is connected.

6. The genus of the graph, denoted by g(Γg,n), is given by g(Γg,n) =
∑

v∈V g(v) +h1(Γ)

and matches g.

7. Every vertex v satisfies the stability condition:

2g(v)− 2 + n(v) > 0,

where n(v) represents the valence of Γg,n at v, indicating the number of half-edges

connected to v.

For each stable graph Γg,n, we define its associated moduli space as

MΓg,n =
∏
v∈V
Mg(v),n(v).

We use πv to denote the projection map from MΓg,n to Mg(v),n(v), corresponding to the

vertex v. A canonical morphism

ιΓg,n :MΓg,n →Mg,n (2.6.1)

exists, and its image corresponds to the boundary stratum specifically associated with the

graph Γg,n.

0

0

2

2

Figure 2.9: A nodal element in M5,7 and its dual graph with each component pictured.
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Definition 2.6.2 The moduli space of curves of compact type, denoted as Mct
g,n, can be

defined as the subset of marked curves [Cg,n, p1, . . . , pn] ∈ Mg,n whose associated dual

graph is a tree.

3

0

2

3

0 1

2

Figure 2.10: Representative elements from Mct
5,6 and M7,6 \ M

ct
7,6, illustrated through

their respective dual graphs below.

2.7 Tautological Ring

Tautological classes in the moduli spaces of curves are cohomological classes that can

be defined naturally from the geometric structure of the moduli space itself. They are

intrinsic to the moduli space and are described in terms of the universal properties of the

space. The term tautological suggests that these classes are self-referential based on the

endowed structure of the moduli space.

In this sense, ψ classes (def. 2.5.1) are specific examples of tautological classes, recall

ψ classes are associated with the cotangent line bundle over the moduli space of pointed

curves. The reason they are considered tautological is that they are constructed directly

from the geometric data provided by the moduli space and its universal curve.

Definition 2.7.1 (Tautologial Rings) The tautological rings are defined as the smallest

collection of subrings, denoted by R∗
(
Mg,n

)
, within H∗

(
Mg,n

)
, such that it contains

1 ∈ H0
(
Mg,n

)
and it is closed under push-forwards and pullbacks of the forgetful and

attaching maps.

Any cohomology class that resides within a tautological ring is termed a tautological

class.
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Definition 2.7.2 Let fn+1 :Mg,n+1 →Mg,n be the forgetful map, that forgets the point

n+ 1. The κ-class, denoted κj, is defined by:

κj = fn+1∗

(
ψj+1
n+1

)
∈ H2j

(
Mg,n

)
,

where ψj+1
n+1 represents the power of the ψ-class associated with the marked point n+ 1.

Similarly we can define multi kappa classes by:

κj1,...,jm = (f∗)
m
(
ψj1+1
n+1 · · ·ψ

jm+1
n+m

)
∈ H

∑
ji
(
Mg,n

)
.

By definition, it is easy to see that κ-classes are also tautological.

In any tautological ring, the generators can be represented using a dual graph, where

the corresponding ψ and κ classes are attach to half-edges.

3 0 1

2

Figure 2.11: Decomposed dual graph in M7,4, represented as elements from M3,4 ×
M2,2+1 ×M1,5 ×M0,3+1. In this representation, the κ classes are visualized as red ψ
classes on edges prior to the application of the forgetful map.

Definition 2.7.3 Consider Mg,n and Cg,n the associated universal curve. For a curve

Cg,n in Cg,n, we define an abelian differential as follows:

• If Cg,n is smooth, an abelian differential is a holomorphic 1-form on Cg,n.

• If Cg,n has a node, an abelian differential is a meromorphic 1-form on Cg,n with

poles of order at most one at the nodes. Furthermore, the residues at these poles

must be equal in magnitude, but with opposite sign on the branches meeting at each

node.

The collection of abelian differentials on Cg,n constitutes a vector space of dimension equal

to the genus g of the curve.

Remark: The definition of an abelian differential does not depend on the marked points

of the curve. Therefore, discussions regarding abelian differentials will focus solely on the

genus of the curve.
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Definition 2.7.4 (Hodge Bundle on Mg,n) Let
(
Cg,n, π̄ : Cg,n →Mg,n

)
be the univer-

sal curve over the moduli spaceMg,n. The Hodge bundle, denoted as Eg, is a rank g vector

bundle over Mg,n defined by:

Eg := π∗ωπ̄,

where ωπ̄ is the relative cotangent bundle of Cg,n over Mg,n. The fiber of Eg over a point

[Cg,n, p1, . . . , pn] in Mg,n is the space of holomorphic 1-forms on Cg,n, i.e.,

Eg|[Cg,n,p1,...,pn] = H0(Cg,n, ωCg,n),

where ωCg,n is the canonical bundle of the curve Cg,n.

Definition 2.7.5 (λ-classes of the Hodge Bundle) Given the Hodge bundle Eg over

Mg,n, the λ-classes are defined as the Chern classes of this bundle. For each integer

0 ≤ j ≤ g, the j-th λ-class, denoted λj, is the j-th Chern class of Eg:

λj = cj(Eg) ∈ H2j
(
Mg,n

)
.

And the total Chern class of the rank g Hodge bundle E→Mg,n is expressed as:

c(Eg) = 1 + λ1 + . . .+ λg ∈ H∗(Mg,n,Q).

In [Mum83], D. Mumford presented a formula that expresses the λ-classes in terms of

the more familiar κ- and ψ-classes. This formulation allows the computation and analysis

of λ-classes using well-understood classes. Furthermore, it highlights the tautological

nature of the λ-classes.

Given the Chern polynomial Λg(t) =
∑g

i=0 t
iλi, Mumford’s formula can be expressed

in terms of this polynomial as a generating function. The formula is then given by:

Λg(t) = exp

∑
m≥1

tm
Bm+1

m(m+ 1)

[
κm −

n∑
i=1

ψmi +
1

2
j∗

(ψ′)m − (−ψ′′)m

ψ′ + ψ′′

] . (2.7.1)

In the formula, Bm+1 represents the Bernoulli numbers1. The morphism j∗ and the

classes ψ′ and ψ′′ account for boundary contributions. They also describe the behavior of

the λ-classes near the moduli space’s boundary, where curves may degenerate and break

into multiple components.

Mumford also derived the relation Λg(t)Λg(−t) = 1. By isolating the coefficients of t2g

and t2g−1, obtained the following relations:

1The Bernoulli numbers can be defined through the recursive formula: Bm = 1−
∑m−1
k=0

(
m
k

)
Bk

m−k+1
for

m ≥ 0, with B0 = 1
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λ2
g = 0, (2.7.2)

λ2
g−1 = 2λgλg−2. (2.7.3)

These relations are applicable for all g, n for 2g− 2 + n > 0. These identities will play

a significant role for computations associated with the Double Ramification cycle, detailed

in Chapter 5.



Chapter 3

Gromov-Witten Theory and

Cohomological Field Theories

Cohomological Field Theories (CohFTs) are systems of linear maps introduced by Maxim

Kontsevich and Yuri Manin in the mid-1990s [KM94], they encapsulate essential oper-

ations within moduli spaces. Originally conceptualized to formalize tools developed in

Gromov-Witten theory, CohFTs have since become instrumental in bridging the geom-

etry of moduli spaces of stable curves with intersection numbers and Gromov-Witten

invariants. Moreover, their framework has been extended to encompass broader curve

counting theories.

A remarkable classification result for semisimple CohFTs, achieved through the action

of the Givental group, was proven by Constantin Teleman in 2012 [Tel12]. The Teleman

classification can be used to explicitly calculate the full CohFT in the semi-simple case,

extending the range of cases that can be studied by these methods.

In addition to their connection in Gromov-Witten theory, CohFTs significantly con-

tribute to various contexts, including Frobenius manifolds, Dubrovin-Zhang hierarchies,

and double ramification hierarchies [BPS12b]. These connections lay the foundations for

a comprehensive study of diverse algebraic and geometric structures, particularly those

related to the moduli space of curves.

3.1 Moduli Space of Stable Maps Mg,n(X, β)

The moduli space of stable maps was introduced by Maxim Kontsevich as a generalization

of the moduli space of curves [Kon95]. This concept aimed to describe Gromov-Witten

invariants, which are enumerative invariants in algebraic geometry. The concept of the

moduli space of stable maps emerged as a way to formalize the collection of all morphisms

from a nonsingular algebraic variety into a specified target space.

43
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3.1.1 Stable Maps

Let us recall definition 2.3.4, in which we introduced the stability condition for nodal

curves. We are now interested in understanding the behavior of surfaces with marked

points when they are mapped to another projective variety. Such a map might not neces-

sarily be stable, so it is essential to impose a constraint on the maps that guarantees the

resulting curve to remain stable. This requirement leads to the concept of stable maps,

which offers tools for investigating the geometry and topology of surfaces with marked

points, while maintaining the stability condition when mapping them to a target space.

Definition 3.1.1 [HKK+03] Let X be a non-singular projective variety. A morphism f

from a nodal Riemann surface of genus g with n marked nodes, denoted as Σg,n, to X is a

stable map if every genus 0 contracted component of Σg,n has at least three marked nodes

and every genus 1 contracted component has at least one marked node.

Definition 3.1.2 [HKK+03] Given the fundamental class [Σ] ∈ H2(Σg,n,Z), a stable

map represents a homology class β ∈ H2(X,Z) if f∗[Σ] = β.

Definition 3.1.3 [HKK+03] We denote by Mg,n(X,β) the moduli space of stable

maps from nodal curves of genus g with n marked points Σg,n to X representing the class

β.

Figure 3.1: Examples of an unstable map f̂ : Σ̂1,3 → X and stable map f : Σ1,3 → X.

There are two natural maps [CK99]:

π1 :Mg,n(X,β) −→ Xn,

π2 :Mg,n(X,β) −→Mg,n.
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For π1, consider a stable map f : (Σ, p1, . . . , pn) → X. The map π1 takes this stable

map and returns the element obtained by mapping the individual marked points, i.e.,

(f(p1), f(p2), . . . , f(pn)) ∈ Xn.

Then π2 sends the map f to the class associated with the stable curve Σ, represented

as [Σ] in Mg,n.

These elements lead to the following induced maps:

π∗1 : H∗(Xn,Z) −→ H∗
(
Mg,n(X,β),Z

)
,

π2∗ : H∗(Mg,n(X,β),Z) −→ H∗(Mg,n,Z).

For any map m : X → Y between smooth compact oriented varieties, we introduce

the Gysin map:

m! : H∗(X,Z)→ H∗(Y,Z),

α 7→ PD−1(m∗(PD(α))),

where PD is the Poincaré dual map, defined by the cap product with the fundamental class

of X [Kaj97]. However, the moduli space of stable maps, Mg,n(X,β), does not possess a

well-defined fundamental class in the usual sense. To address this, a virtual fundamental

class, denoted as [Mg,n(X,β)]vir, is introduced. This virtual class is constructed to be

compatible with the Gysin map [LT98] and allows us to formally introduce Gromov-Witten

invariants.

The construction of the mentioned virtual cycle is highly technical, and the reader is

referred to [LT98] for a detailed explanation. With this in mind, we can now introduce

the Gysin map of π2:

π2! : H∗(Mg,n(X,β),Z) −→ H∗(Mg,n,Z).

These Gysin maps are employed to associate cohomology classes from the moduli

space of stable maps to the moduli space of stable curves, enabling a more manageable

representation of geometric data.

By utilizing the Gysin map, we can effectively translate geometric data from the mod-

uli space of stable maps to the moduli space of stable curves. This process provides a

mechanism for associating cohomology classes between the two moduli spaces, which is

essential for defining Gromov-Witten invariants.
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3.2 Gromov-Witten theory

Initially inspired by Mikhail Gromov’s work on pseudo-holomorphic curves in symplectic

geometry [Gro85], Gromov-Witten invariants focus on counting the number of solutions

to certain geometric problems, specifically the number of rational curves in a given ho-

mology class on a complex projective variety. This theory motivated the introduction of

Cohomological Field Theories (CohFTs) to formalize and encode the structure of Gromov-

Witten invariants, providing a systematic approach to represent the essential properties of

Gromov-Witten invariants in terms of linear maps between cohomology groups. [KM94]

[BM96]

Given a non-singular projective varietyX, consider a fixed homology class β ∈ H2(X,Z)

and n cycles v1, . . . , vn ⊂ X. We are interested in examining the set characterized by the

following data:

(Σg,n ⊂ X,β) such that Σg,n ∩ vi 6= ∅ ∀i.

This set represents the collection of genus g Riemann surfaces with n marked points,

Σg,n, that are embedded in the projective variety X with the specified homology class β,

and intersect each of the given cycles vi for all i.

Figure 3.2: Curve Σ3,3 ⊂ X with cycles v1, v2 and v3.

If this condition results in a finite set of curves, we refer to them as Gromov-Witten

invariants; otherwise, they are called Gromov-Witten classes [CK99].

Definition 3.2.1 Let αi ∈ H∗(X) be the dual class to vi. We define the Gromov-Witten

class as:

GWg,n,β(α1, . . . , αn) = π2! (π∗1 (α1 ⊗ · · · ⊗ αn))

= PD−1
(
π2∗

(
π∗1 (α1 ⊗ · · · ⊗ αn) ∩

[
Mg,n(X,β)

]vir)) ∈ H∗(Mg,n,Q).
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This class represents the cohomology class of a set of curves with marked points

(Σg,n, p1, . . . , pn) for the stable map f with f∗[Σg,n] = β.

Definition 3.2.2 If the degree of GWg,n,β(α1, . . . , αn) is 3g−3 +n, then GWg,f,β defines

a primary Gromov-Witten invariant as

〈α1, . . . , αn〉Xg,β =

∫
Mg,n

GWg,n,β(α1, . . . , αn).

Definition 3.2.3 Let i ∈ {1, . . . , n}, and for a stable map f : (Σ, p1, . . . , pn) → X, the

evaluation map evi is given by:

evi :Mg,n(X,β)→ X,

f 7→ f(pi).

The evaluation maps assist in formulating Gromov-Witten invariants by linking marked

points on the curve to specific cohomology classes in the target space. This association

imposes constraints on the potential curves in the target space, enumerating curves that

intersect specified cycles in the target space at the marked points. This relationship allows

us to express the primary Gromov-Witten invariants as follows:

〈α1, . . . , αn〉Xg,β =

∫
[Mg,n(X,β)]vir

ev1(α1) ∪ · · · ∪ evn(αn).

The Gromov-Witten invariant measures the number of n-pointed genus-g curves in the

class β in the target space X that intersect the cycles representing the cohomology classes

α1, . . . , αn at the marked points p1, . . . , pn, respectively.

By introducing psi classes on the moduli spaceMg,n(X,β), we can extend the Gromov-

Witten invariants to a more general form known as descendant invariants:

〈τa1 (α1) · · · τan (αn)〉Xg,β :=

∫
[Mg,n(X,β)]

vir
ev∗1 (α1) ∪ ψa11 ∪ · · · ∪ ev∗n (αn) ∪ ψann , (3.2.1)

where ai ∈ Z≥0 and αi ∈ H∗(X).

Similar to the case of Mg,n, we can introduce the String equation, it arises from con-

sidering how Gromov-Witten invariants change when an extra marked point, constrained

to lie on a divisor representing the first Chern class of the target space, is added. It reflects

a certain recursive structure in the Gromov-Witten invariants. If e ∈ H∗(X) is the unit,

then the string equation for the correlators 〈τa1 (α1) · · · τan (αn)〉Xg,β reads:

〈τa1 (α1) · · · τan (αn) e〉Xg,β =
n∑
i=1

〈
τa1 (α1) · · · τai−1 (αi−1) τai−1 (αi) τai+1 (αi+1) · · · τan (αn)

〉X
g,β
.

and the dilaton equation relates the Gromov-Witten invariants with an extra marked point
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carrying the psi class to the invariants without this extra point, but with a shift in the

virtual dimension of the moduli space:

〈τa1 (α1) · · · τan (αn) τ1 (e)〉Xg,β = (2g − 2 + n) 〈τa1 (α1) · · · τan (αn)〉Xg,β .

Definition 3.2.4 The Gromov-Witten potential in genus g is a generating function that

encompasses all descendant invariants. It is defined by the following series:

FGWg (t, q) =
∑ tα1

a1 . . . t
αm
am

m!
〈τa1 (α1) . . . τam (αm)〉Xg,β q

β. (3.2.2)

Here, qβ and tαiai are formal variables, with d, p ≥ 0 and 1 < i < m. The total Gromov-

Witten potential is obtained by summing over all possible values of g:

FGW (t, q, ε) =
∑
g≥0

ε2g−2FGWg (t, q). (3.2.3)

We will later see how the potential FGW (t, q, ε) serves as a generating function for a

hierarchy of integrable systems. This hierarchy is characterized by time variables t∗∗ and

t10 = x

Gromov-Witten theory establishes a framework to study the enumerative geometry of

algebraic varieties by examining curves and their intersections within the target space.

The introduction of evaluation maps, psi classes, and descendant invariants allows us to

count and categorize these curves in an efficient manner. Consequently, this leads to

the formulation of distinct potentials associated with the geometry and topology of the

space. These potentials encapsulate the geometric information and their structure can

be understood with the theory of integrable systems. This relation between algebraic

geometry, represented through these invariants, and integrable systems is an active area

of research, with profound implications for both mathematics and theoretical physics,

specifically in the context of quantum field theory and string theory.

3.2.1 Topological recursion relations in Gromov-Witten theory

Topological Recursion Relations (TRR) are an important tool for Gromov-Witten poten-

tials, they provide a system of equations that relate invariants of different genera and with

different numbers of marked points. Among these potentials, we can include those associ-

ated to the intersection theory of moduli spaces of curves, particularly Witten’s potential

FW (eq. (2.5.3)). In genus 0, the Topological Recursion Relations take a particular form

and give a relation between total descendent potentials and nonlinear partial differential

equations. This relationship is exemplified through a specific system of PDEs that govern

the genus 0 descendant potential, denoted as FGW0 . This system, originally traced back

to the works of [Get98], [Gat03] and [Lee09], is defined as follows.
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Definition 3.2.5 A formal power series F0 ∈ C[[t∗∗]] is called a descendent potential of

genus 0 if it satisfies the following system of PDEs:

∑
a≥0

tαa+1

∂F0

∂tαa
− ∂F0

∂t110
= −1

2
ηαβt

α
0 t
β
0 , (3.2.4)

∑
a≥0

tαa
∂F0

∂tαa
− ∂F0

∂t111
= 2F0, (3.2.5)

∂3F0

∂tαa+1∂t
β
b ∂t

γ
c

=
∂2F0

∂tαa∂t
µ
0

ηµν
∂3F0

∂tν0∂t
β
b ∂t

γ
c

, 1 ≤ α, β, γ ≤ N, a, b, c ≥ 0, (3.2.6)

∂2F0

∂tαa+1∂t
β
b

+
∂2F0

∂tαa∂t
β
b+1

=
∂2F0

∂tαa∂t
µ
0

ηµν
∂2F0

∂tν0∂t
β
b

, 1 ≤ α, β ≤ N, a, b ≥ 0.

In these equations, the term (ηαβ) = η denotes a symmetric, nondegenerate N × N
matrix with complex coefficients. The constants ηαβ are defined by the inverse matrix

(ηαβ) := η−1. Additionally, the Einstein summation convention is applied, where repeated

Greek indices in both upper and lower positions imply summation. It is important to note

that this framework represents a more general construct than the Gromov-Witten potential

as defined in 3.2.4. Specifically, the Gromov-Witten potential in genus 0 is a special case

that satisfies this system of equations.

These equations are respectively known as the string equation, dilaton equation

and the topological recursion relations in genus 0. These equations can be seen

as a specific instance of a more general relation in Gromov-Witten theory, related to the

WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) (Equations 3.3.3).

The mathematical meaning of the WDVV equations is best understood in terms of the

so-called quantum cohomology ring of a smooth projective variety. This ring helps us un-

derstand the structure of a space by studying the functions, forms, and other mathematical

objects defined on the space.

The cohomology ring allows us to add and multiply cohomology classes, the structure

constants of this quantum product, which encode how to multiply elements in the quantum

cohomology ring, are given by certain counts of holomorphic curves that serve as complex

analogues of geodesics in the manifold called Gromov-Witten invariants, particularly, the

structure is determined by three-point Gromov-Witten invariants of the manifold (genus

0 curves with 3 marked points), and the WDVV equations state that the multiplication

in this ring is associative up to quantum corrections.

Recursion relations are important to understand these spaces. Thus, it is desirable

to derive such relations for higher genera. Indeed, an analogous expression to Equation

(3.2.6) can be found for genus 1, as demonstrated in [EGX00]:
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∂F1

∂tαa+1

=
∂2F0

∂tαa∂t
µ
0

ηµν
∂F1

∂tν0
+

1

24
ηµν

∂3F0

∂tµ0∂t
ν
0∂t

α
a

, 1 ≤ α ≤ N, a ≥ 0. (3.2.7)

These are known as the topological recursion relations in genus 1. From these relations,

we can have [DW90]:

F1 =
1

24
log det(η−1M) +G(v1, . . . , vN ). (3.2.8)

In this context, we introduce the N × N matrix M = (Mαβ), with each element de-

fined as Mαβ := ∂3F0

∂t10∂t
α
0 ∂t

β
0

. Furthermore, we denote vα as the function of ηαµ and the

second partial derivative of F0, such that vα := ηαµ ∂2F0

∂tµ0∂t
1
0
. We also specify the function

G(t1, . . . , tN ), which is equivalent to the descendent potential F1 evaluated at t≥1 = 0, de-

noted as G(t1, . . . , tN ) := F1|t∗≥1=0
. These definitions were initially introduced in [DW90]

and subsequently extended in [DZ98]. This expression will play a bigger role in the follow-

ing chapter, as we will use it as motivation to construct similar TRRs for moduli spaces

of open Riemann surfaces.

As we move to higher genera, the complexity significantly increases due to the growing

number of moduli and the curves’ configurations, an example of genus 2 TRRs can be

found in [Liu07].

It’s also worth noting for any total descendent potential, denoted as F =
∑

g≥0 ε
2gFg,

the function F0 is inherently a descendent potential in genus 0. However, it remains as an

open problem which descendent potentials in genus 0 can be properly extended to total

descendent potentials.

3.2.2 Introduction to the Dubrovin-Zhang hierarchy for Gromov-Witten

theory

Equations (3.2.4), (3.2.6), and (3.2.7) hold an important property they are universal,

which means their form is not restricted to a particular total descendant potential. This

universality reveals a structural regularity, thus enabling us to enclose these equations

from a more general perspective.

There is a more general theory that describes such systems of equations, suggested by

Dubrovin and Zhang in 2001 (see [DZ01]), this theory relates total descendent potentials to

a hierarchy of evolutionary partial differential equations with a single spatial variable. This

link encapsulates the full information about these potentials, establishing a connection

between the geometry of moduli spaces and the dynamics of integrable systems.

Conjecturally, it is believed that for every total descendent potential F , a unique sys-

tem of Partial Differential Equations (PDEs) can be constructed, related to a specific
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structural framework. This conjecture remains unproven. If true, it would establish a pre-

cise mathematical framework for Gromov-Witten theory, categorizing it as an integrable

system. The conjectured system is proposed as follows:

∂wα

∂tβb
= Pαβ,b, 1 ≤ α, β ≤ N, b ≥ 0. (3.2.9)

In this system, w1, . . . , wN are elements of C[[t∗∗, ε]], and Pαβ,b are differential polynomials

in w1, . . . , wN . A notable feature of this system is that the flows defined by these equations

commute.

The system hypothesizes the existence of a solution to (3.2.9) under the initial condition

wα|
tβb=δβ,1δb,0x

= δα,1x, where the solution is defined by wα = ηαµ ∂2F
∂tµ0∂t

1
0
. Should such a

system exist, it is referred to as the Dubrovin–Zhang hierarchy or the hierarchy of

topological type.

While the full proof of this conjecture is still unproven, significant progress has been

made in specific cases. Notably, the conjecture has been validated for semi-simple Co-

hFTs. Additionally, in the general case, the conjecture has been proven to hold up to an

approximation of ε2 [DZ98].

Though this conjecture remains unproven in its entirety, its validity has been proven

for semi-simple CohFTs, and up to an approximation of ε2 in the general case [DZ98]

[DZ01] [BPS12b].

The Dubrovin–Zhang hierarchy for the Witten potential FW =
∑

g≥0 F
W
g (cf. 2.5.3),

is expressed as the Korteweg–de Vries (KdV) hierarchy, given as:

∂w

∂t1
= wwx +

ε2

12
wxxx,

∂w

∂t2
=
w2wx

2
+ ε2

(wwxxx
12

+
wxwxx

6

)
+ ε4wxxxxx

240
,

....

This relation with the KdV hierarchy is equivalent to Witten’s conjecture (theorem

2.5.4).

We can try to develop a similar construction for the descendent potential of genus 0:

F0. This approach is centered on the introduction and definition of differential polynomials

Ω
[0]
α,a;β,b within the ring of polynimials Av1,...,vN ;0. Here, 1 ≤ α, β ≤ N and a, b ≥ 0.

The polynomials Ω
[0]
α,a;β,b are constructed by evaluating second-order derivatives of the

potential function, F0, with respect to variables tαa and tβb :

Ω
[0]
α,a;β,b :=

∂2F0

∂tαa∂t
β
b

∣∣∣∣∣
tγc=δc,0vγ

. (3.2.10)
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Simultaneously, we define (vtop)α using the metric tensor η and second-order derivatives

of the potential F0:

(vtop)α := ηαµ
∂2F0

∂tµ0∂t
1

0

∈ C[[t∗∗]], 1 ≤ α ≤ N. (3.2.11)

Then, using the property found in [Proposition 3] [BPS12b]:

∂2F0

∂tαa∂t
β
b

= Ω
[0]
α,a;β,b

∣∣∣
vγ=(vtop)γ

. (3.2.12)

A remarkable outcome of this is the construction of a system of PDEs, whose solutions

coincide with an N -tuple of functions derived from (vtop)α.

∂vα

∂tβb
= ηαµ∂xΩ

[0]
µ,0;β,b, 1 ≤ α, β ≤ N, b ≥ 0. (3.2.13)

This is known as the principal hierarchy associated with the potential F0. We will

later use a similar construction for open moduli spaces, this will play a crucial role in our

discussion for the following chapter.

3.3 Dubrovin–Frobenius manifolds

In the 1990s, B. Dubrovin introduced the concept of Frobenius manifolds, now commonly

known as Dubrovin-Frobenius manifolds, which serve as an axiomatic framework for

topological field theories (TFTs) and provide a geometric manifestation of the Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equations. Frobenius manifolds are locally Eu-

clidean spaces with additional algebraic structures. These algebraic structures endow

the tangent spaces of Frobenius manifolds with a multiplication operation that satisfies

the properties of associativity and potentiality (cf. def. 3.3.5). Such spaces with algebraic

operations are referred to as Frobenius algebras.

A remarkable aspect about Dubrovin-Frobenius manifolds is their connection to inte-

grable hierarchies of partial differential equations. Every Dubrovin-Frobenius manifold is

associated with a Hamiltonian integrable system called the principal hierarchy. In [DZ01],

Dubrovin and Zhang constructed a hierarchy from the partition function with the CohFT

associated with a moduli space across all genera, recovering a full dispersive hierarchy in

the process.

The connection between Gromov-Witten theory, CohFTs, and Frobenius manifolds

arises from the study of quantum cohomology. Quantum cohomology encompasses Gromov–

Witten invariants by introducing a new multiplication operation known as the quantum

product. In specific scenarios, the quantum cohomology ring of an algebraic variety ex-
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hibits the characteristics of a Frobenius manifold. This Frobenius structure gives informa-

tion about the variety’s geometry and enables the computation of enumerative information

encoded in Gromov–Witten invariants.

Definition 3.3.1 Let (V, ?, e) be a finite dimensional algebra over a field K with unit e,

associative and commutative with respect to the product ?. A Frobenius algebra (V, ?, e) is

an algebra equipped with a non-degenerate bilinear form 〈·, ·〉 : V × V → K, such that:

• The bilinear form η(·, ·) (also denoted by 〈·, ·〉) is compatible with the multiplication

operation, which means that for all elements a, b, c ∈ V , the following equation holds:

η(a ? b, c) = η(a, b ? c).

Proposition 3.3.2 Let (V, ?, e) be a finite-dimensional algebra defined as above with V ∗

its dual space, a Frobenius algebra structure can be equivalently defined by a linear func-

tional L ∈ V ∗, meaning this functional can define a non-degenerate bilinear form, if only

if, the pairing η : V × V → K given by:

η(u, v) ≡ L(u ? v),

is non-degenerate.

Proof:

(⇒) Take η(u ? e) = L(u). Then L is non-trivial, as η defines a Frobenius algebra

structure, i.e. is not degenerate.

(⇐) Since (V, ?, e) is associative, we have

η(u ? v, w) = L((u ? v) ? w) = L(u ? (v ? w)) = η(u, v ? w) �.

Example 3.3.3 (Cohomology Ring of a Manifold) Consider a connected, oriented,

compact 2n-dimensional manifold M . The even degree part of its de Rham cohomology

ring forms a vector space V over C, defined as V =
⊕

k≥0H
2k(M,C).

We can construct a symmetric bilinear form on this space using the natural integration

pairing given by wedge product and integration over M .

First, let [M ] denote the fundamental class of M . For any cohomology class α ∈ V ,

we can define a linear functional L on V by L(α) =
∫
M α. This maps each cohomology

class to a complex number via integration over the manifold.

Next, we define the symmetric form η as follows:
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η : H2k(M,C)×H2m(M,C)→ C,

η(α, β) :=

∫
M
α ∧ β.

This symmetric form η provides a complex-valued inner product on the cohomology

ring, pairing cohomology classes of complementary degrees, we take e = 1 ∈ H0(M,C),

and the product to be the wedge between forms, then V is a Frobenius algebra.

Example 3.3.4 (r−spin Cohomological Field Theory) Consider r ≥ 2 and a vector

space V = Cr−1 with basis e1, ..., er−1. We can construct a Frobenius algebra structure on

this vector space (V, ?, e) as follows:

1. The unit of the algebra is chosen to be e := e1.

2. The non-degenerate symmetric bilinear form η : V × V → C (which gives us the

Frobenius structure) is defined by η(ei, ej) := δi+j,r. Here, δi+j,r is the Kronecker

delta, which is 1 if i+ j = r, and 0 otherwise.

3. The product ? : V × V → V (giving the algebra structure) is defined as follows:

ei ? ej :=

ei+j−1 if i+ j ≤ r,

0 otherwise.

Intuitively, a Dubrovin-Frobenius manifold is a geometric structure that blends to-

gether the concepts of smooth manifolds with the algebraic structure of associative alge-

bra. Here the algebra multiplication and the metric are not independent; they are deeply

related in a specific way defined by the manifold’s structure.

Often, a Dubrovin-Frobenius manifold is described using a what is called a prepo-

tential function F , which encodes the manifold’s geometric and algebraic properties. In

many contexts, especially in mathematical physics, Dubrovin-Frobenius manifolds emerge

naturally, specifically in the study of integrable systems and quantum cohomology where

the structure of a Frobenius manifold elegantly captures both geometric and algebraic

properties.

Definition 3.3.5 (Dubrovin-Frobenius Manifold) Let V a N-dimensional complex

vector space, and U a connected open subset of V with coordinates
(
t1, . . . , tN

)
, let η =

(ηαβ) be an N × N complex symmetric nondegenerate matrix and a fixed vector field on

U Aα ∂
∂tα , for Aα ∈ C, which we will often denote by ∂

∂t1
. Consider a scalar function

F
(
t1, . . . , tN

)
: U → C. Denote
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cαβγ :=
∂3F

∂tα∂tβ∂tγ
. (3.3.1)

The function F is known as the prepotential, together with the matrix η and the vec-

tor field ∂
∂tI

define a structure of a Dubrovin-Frobenius manifold on U if the following

properties are satisfied:

• The relation between η and the prepotential F is given by: ηαβ = c1αβ,

• cγαβ give the structure constants of an associative algebra.

A Dubrovin-Frobenius manifold is said to be conformal if it possesses a specific vector

field, known as the Euler field, denoted by E. This field is of the following form:

E = ((1− qα) tα + rα︸ ︷︷ ︸
Eα

)
∂

∂tα
,

satisfying

• LEF = (3− δ)F + 1
2Aαβt

αtβ +Bαt
α + C, for some δ, Aαβ, Bα, C ∈ C, and L is the

Lie derivative.

• LE
∂
∂t1

= − ∂
∂t1

.

• LEη = (2− δ)η.

The parameter δ is referred to as the conformal dimension or the charge of the man-

ifold1. In a Dubrovin-Frobenius manifold, this parameter gives information on the mani-

fold’s conformal properties.2

In a Dubrovin-Frobenius manifold, the algebraic structure is linked to a prepotential

function F (t1, . . . , tn), which defines the structure constants for the algebra’s multiplica-

tion (eq. 3.3.1). This prepotential must fulfill specific conditions, known as the Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equations:

∂3F

∂tα∂tβ∂tγ
ηγδ

∂3F

∂tδ∂tµ∂tµ
=

∂3F

∂tν∂tβ∂tγ
ηγδ

∂3F

∂tδ∂tµ∂tα
. (3.3.2)

So, the WDVV equations can be interpreted as the associativity conditions for the

Frobenius algebra.

The Euler field plays an important role in defining the geometric and algebraic struc-

ture of the manifold, such as:

1The term charge often refers to its role in describing how the manifold responds to certain transforma-
tions, much like how electric charge determines an object’s response to an electromagnetic field generated
by the abelian symmetry U(1) in gauge theory, where in this context, the symmetry is conformal.

2Specifically, the conformal dimension describes the scaling behavior of the manifold under confor-
mal transformations, especially where scale invariance or self-similarity properties need to be considered,
examples can be found in topological field theories and conformal gravity in physics.
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1. Conformal Symmetry: The Euler field represents a vector field on the manifold

that encodes the conformal symmetry of the Frobenius structure. It acts as a genera-

tor of dilations, scaling the coordinates in a way that reflects the geometric structure

of the manifold.

2. Quantum Cohomology: In the context of quantum cohomology, which is often

modeled by Dubrovin-Frobenius manifolds, the Euler field corresponds to the first

Chern class of the target space in Gromov-Witten theory.

3. Homogeneity of the Prepotential: The Euler field ensures the homogeneity of

the prepotential function, thereby imposing specific constraints on its form and the

solutions of the WDVV equations. This implies that the prepotential scales in a

particular way under the scaling transformations induced by the action of the Euler

field.

4. Degree Assignment: The Euler field assigns degrees to the coordinates on the

manifold. This degree assignment endows a graded structure of the Frobenius algebra

and ensures that the multiplication operation respects this grading.

5. Control of Deformations: The Euler field controls the deformations1 of the Frobe-

nius structure. Specifically, it determines how the structure constants change when

the manifold’s parameters are varied.

Example 3.3.6 (Trivial DF-manifold) The most basic example of a DF manifold is a

one-dimensional (N = 1) manifold M = C with the following data:

• The prepotential function is cubic: F = 1
6(t1)3.

• The unit vector field e = ∂
∂t1

.

• The metric is simply a scalar, η = 1.

• The Euler vector field is E = t1 ∂
∂t1

.

• The Euler field is conformal with scaling factor 2: LEη = 2η. This tells us the charge

or conformal dimension of the manifold is 2− δ = 2, which implies δ = 0.

Example 3.3.7 (Genus 0 Gromov-Witten Theory with Target Variety X) Let {t∗∗}
be a basis of H∗(X,C), consider the Gromov-Witten potential FGW (t, q) (3.2.3). For genus

g = 0, we set t∗≥1 = 0, FGW0 (t, q) satisfies the WDVV equations (3.3.2) [Dub96]:

∂3FGW0

∂tα∂tβ∂tγ
ηγδ

∂3FGW0

∂tδ∂tµ∂tν
=

∂3FGW0

∂tν∂tβ∂tγ
ηγδ

∂3FGW0

∂tδ∂tµ∂tα
. (3.3.3)

1The deformations might involve changes in the manifold’s geometric properties, algebraic relations,
or the multiplication rule itself encoded in the structure constants.
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Assuming the power series FGW0 (t, q)|t∗≥1=0 converges within a non-empty open subset

M ⊆ H∗(X,C). The subset M forms a Dubrovin-Frobenius (DF) manifold, characterized

by:

• The unit vector field e = ∂
∂t1

.

• FGW0 (t, q)|t∗≥1=0 as the prepotential.

• The Euler vector field E = c1(X) +
∑N

α=1

(
1− 1

2 deg(τα)
)
tα ∂

∂tα , combining the first

Chern class and coordinates with classes τα.

• The metric η, defined by the Poincaré pairing on elements of H∗(X,C).

• The Euler field’s conformality with δ = dimCX, leading to LEη = (2− δ)η.

Example 3.3.8 (Gromov-Witten theory for X = CP1) In this specific case of Gromov-

Witten theory for the complex projective line, the DF manifold structure is determined by

the following elements:

• The prepotential function is FGW0 (t1, t2) = 1
2(t1)2t2 + et

2
.

• The Euler vector field is given by E = t1 ∂
∂t1

+ 2t2 ∂
∂t2

.

• The metric is given by an anti-diagonal matrix η =

0 1

1 0

.

• The Euler field is conformal and preserves the metric, as shown by LEη = η.

While Dubrovin-Frobenius Manifolds provide a geometric interpretation to study these

structures, there seems to be a disconnection between the geometric foundations of the

Dubrovin-Frobenius manifold and the combinatorial complexity of Gromov-Witten invari-

ants. The latter are defined via integrals over the moduli space of stable curves, which

is an extremely complex, often singular, space. In contrast, the structure of a Dubrovin-

Frobenius manifold is generally defined over the cohomology ring of the target space.

Nevertheless, there exists another conceptual structure that aims to bridge this gap. This

structure, known as Cohomological Field Theories (CohFTs).

3.4 Cohomological Field theories

Cohomological field theories (CohFTs) were introduced in the 1990 by M. Kontsevich and

Y.I. Manin, their motivation was to set in algebraic terms, invariants studied in Gromov-

Witten theory, later in 2012, Teleman [Tel12], based on the works of Givental [Giv04],

developed a classification for semi-simple CohFTs.
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Nowadays, it is used as a tool to study properties of the cohomology ring of Mg,n,

based on a system of linear maps cg,n from V ⊗ · · · ⊗ V 7→ H∗(Mg,n), where V is a finite

dimensional complex vector space, along with these maps we will introduce some axioms to

abstract morphisms inspired in the natural maps onMg,n. The formal definition requires

to fix a basis e1, . . . , eN in V and denote by η = (ηαβ) the matrix of the metric in this basis

formally defined by ηαβ := (eα, eβ), let Aα be the coordinates of e in this basis: e = Aαeα.

Definition 3.4.1 ([KM94]) Let V be finite dimensional complex vector space. A coho-

mological field theory (CohFT) is a system of linear maps cg,n : V ⊗n → Heven(Mg,n),

2g − 2 + n > 0, such that the following axioms are satisfied:

1. The maps cg,n are equivariant with respect to the Sn-action permuting the n copies

of V in V ⊗n and the n marked points on classes in Mg,n.

2. f∗cg,n(⊗ni=1eαi) = cg,n+1(⊗ni=1eαi ⊗ e) and c0,3(eα1 ⊗ eα2 ⊗ e) = ηα1α2.1 The use of

the identity element keeps the map well defined after being pulled back by the forgetful

map f , and for the special case of M0,3 as it is composed of a point, the class is a

scalar that is now chosen to be the inner product.

3. gl∗cg1+g2,n1+n2(⊗n1+n2
i=1 eαi) = cg1,n1+1(⊗i∈I1eαi ⊗ eµ) ⊗ cg2,n2+1(⊗i∈I2eαi ⊗ eν)ηµν .

The metric in this axiom plays the role of the gluing of the extra marked points

on Mg1,n1+1 and Mg2,n2+1 respectively.

4. glirr∗cg+1,n(⊗ni=1eαi) = cg,n+2(⊗ni=1eαi ⊗ eµ⊗ eν)ηµν . In this case, the metric is used

to fill in for the missing points in the pulled back class by the gluing map.

The vector space V is frequently referred to as the ”phase space” of the theory. The

term phase space refers to the idea that V encompasses all possible states or configurations

that the cohomological field theory can assume, and the dimension of V is commonly called

the rank of the cohomological field theory.

In the framework we’ve presented for a cohomological field theory, there’s a notable

characteristic: all the classes {cg,n(⊗ni=1vi)}, reside in Heven(Mg,n), i.e. they all have

an even degree. This isn’t a strict necessity, one could indeed conceive a definition of a

cohomological field theory without imposing this even-degree constraint, these are often

called super CohFTs. However, this approach is considerably more challenging, specif-

ically, when we develop our approach into the associated theory of integrable systems

linked to a cohomological field theory (e.g. the double ramification hierarchy). We find

that the foundational understanding for supersymmetry in CohFTs is not as robust or

well-established. Given these complexities we’ve chosen to sidestep it in our discussion.

1Remark: Consider the cohomological class c0,3(eα1⊗eα2⊗e). This class is essentially a scalar, given
that the moduli spaceM0,3 corresponds to a single point. As a result, its cohomology group H∗(M0,3) is
isomorphic to C. Therefore, the equality is well defined.
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Definition 3.4.2 For a given CohFT {cg,n}, let
∑n

i=1 di ≤ dim(Mg,n), we define the

correlators 〈τd1 (v1) · · · τdn (vn)〉CohFTg on Mg,n as:

〈τd1 (v1) · · · τdn (vn)〉CohFTg :=

∫
Mg,n

cg,n (v1 ⊗ · · · ⊗ vn)

n∏
i=1

ψdii , (3.4.1)

and 〈τd1 (v1) · · · τdn (vn)〉CohFTg = 0 for
∑n

i=1 di > dim(Mg,n).

Example 3.4.3 (Trivial CohFT) A basic example of a Cohomological Field Theory

(CohFT) is the trivial CohFT, which is defined on C. The data (V, η, e) for the trivial

CohFT is given as follows:

• The vector space V is the field itself, V = C.

• The unit of the Frobenius algebra structure is the identity element of the field, e = 1.

• The symmetric bilinear form η on V is defined by η(1, 1) = 1.

• The maps cg,n are all set to 1

Given this data, the correlators (3.4.1) of the trivial CohFT coincide with the intersec-

tion numbers on the moduli space of stable curves,Mg,n. In other words, the trivial CohFT

encapsulates the basic structure of intersection theory on the moduli space of curves.

Example 3.4.4 (Hodge Class CohFT) Recall the Hodge bundle (Definition 2.7.4) on

Mg,n and its total Chern class (Definition 2.7.5). Utilizing this information, we can

construct a Cohomological Field Theory (CohFT). For this CohFT, we define the vector

space V as Q, the unit element as 1, and establish a symmetric bilinear form η with

η(1, 1) = 1.

Furthermore, the class cg,n(1, . . . , 1) is defined to be the total Chern class of the Hodge

bundle, i.e., cg,n(1⊗ · · · ⊗ 1) = c(E).

To validate the axioms, we observe that cg,n(1⊗ · · · ⊗ 1) = c(E) is independent of the

marked points and is equivariant, thereby satisfying Axiom 1. For Axiom 2, the forgetful

map leaves the genus unchanged. Additionally, the rank of the space of abelian differentials

is zero, which means that the class c0,3(1⊗1⊗1) = 1 fulfills the requisite condition. Thus,

Axiom 2 is also satisfied.

Axiom 3 can be derived from the properties of the total Chern class, specifically the

property that the total Chern class of a direct sum of vector bundles is the product of their

individual Chern classes. Consider a separating node class. Since the differential cannot

be defined at the node, each connected component of the curve will have its own set of

abelian differentials. Let g = g1 + g2 be the total genus of the curve, then the pullback of
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the Hodge bundle under the gluing map is given by:

gl∗Eg = Eg1 ⊕ Eg2 .

Consequently, the pullback of the total Chern class is:

gl∗cg,∗(1⊗ · · · ⊗ 1) = cg1,∗(1⊗ · · · ⊗ 1)⊗ cg2,∗(1⊗ · · · ⊗ 1),

as required.

For Axiom 4, consider a meromorphic differential α with opposite residues around a

simple node that is formed. This differential induces a map Rα from glirr∗Eg to C, defined

by α 7→ Resn+1α. The kernel of this map is Eg−1 because, prior to the gluing operation, the

marked point lies on the smooth part of the associated universal curve, making its residue

zero. This leads to the following sequence of vector bundles:

0→ Eg−1 → Eg → C→ 0,

from the splitting property, we have glirr∗Eg ' Eg−1 ⊕ C, since the bundles differ in rank

and this difference is accounted for by a trivial bundle, Axiom 4 is satisfied by the stability

property for Chern classes. [RW23]

3.4.1 Semisimple CohFTs

In recent years, the study of cohomological field theories (CohFTs) has attracted significant

interest in mathematics. Among them, semi-simple CohFTs stand out as a special class,

exhibiting remarkable properties such as Frobenius algebra structures and compatibility

with Dubrovin-Frobenius manifolds, along with a classification given by the Givental-

Teleman theorem.

The theorem classifies semisimple Cohomological Field Theories (CohFTs) in terms of

certain data, essentially providing a complete classification of these mathematical struc-

tures. Specifically, the theorem states that semisimple CohFTs are uniquely determined

by their genus-zero data and are thus classified by Frobenius manifolds that arise as their

genus-zero correlation functions. This classification is up to a certain equivalence, often

called twisting, which involves a change of variables in the underlying Frobenius manifold.

The Teleman classification theorem enables us to recover higher degree classes from

the more computationally accessible genus zero data.

A Cohomological Field Theory (CohFT) equipped with a unit {cg,n, e} defines a quan-

tum product ? on the complex vector space V ⊗n as follows:

η(v1 ? v2, v3) = c0,3(v1 ⊗ v2 ⊗ v3).



61

The quantum product ? is commutative, a property that arises from the equivariance

under the action of the symmetric group. The associativity of ? is guaranteed by the

gluing map (Axiom 4, Definition 3.4.1). The element e = 1 ∈ V serves as the identity

element for ?, as per the definition of the product. Thus, (V, ?, 1) forms a commutative,

associative algebra.

Definition 3.4.5 [Pan18] Given a CohFT {cg,n}2g−2+n>0, we define its topological part

{ωg,n} as the 0-th class part of {cg,n},

ωg,n = [cg,n]0 ∈ H0(Mg,n)⊗ V ∗⊗n.

This simplification does not affect the CohFT structure of {ωg,n}, meaning it is also a

CohFT.

Example 3.4.6 Recall the Cohomological Field Theory associated with the Hodge class,

which is given by:

cg,n(1⊗ · · · ⊗ 1) = 1 + λ1 + . . .+ λg.

In this expression, λi are the Hodge classes. The topological component of this CohFT

denoted as ωg,n corresponds to:

ωg,n(1⊗ · · · ⊗ 1) = 1.

This implies that the topological part of the CohFT for the Hodge class coincides with the

trivial CohFT.

Definition 3.4.7 [Pan18] A Cohomological Field Theory (CohFT) denoted by {cg,n} is

said to be semisimple if the associated algebra (V, ?, 1) is a semisimple algebra. 1

Lemma 3.4.8 [Pan18] Let {ωg,n} denote the topological part of {cg,n}. Then {ωg,n} is

uniquely determined by the classes

c0,3(v1 ⊗ v2 ⊗ v3) ∈ H0(Mg,n),

and their associated quantum product.

Proof. Since the topological part has degree zero, projecting the class associated

with a curve [Cg,n, p1, . . . , pn] onto its topological part implies that the components of the

curve’s class are isomorphic to CP1 with three special points. This allows us to express

1In this context, semisimple refers to the algebraic structure V equipped with the quantum product
? and the identity element 1. The semisimplicity of the algebra implies that it can be decomposed into
a direct sum of simple algebras, which in turn has implications for the structure and properties of the
CohFT.
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ωg,n(v1⊗· · ·⊗vn) entirely in terms of pull-backs of c0,3(v1⊗v2⊗v3) by repeatedly applying

both the regular and irregular gluing map axioms. This completes the proof of the lemma.

.  .  .

.  .  .

00

00

0

0

0

0

Figure 3.3: The class ωg,0 for g ≥ 2 represented in terms of dual graphs of the classes c0,3.

Definition 3.4.9 Consider a Cohomological Field Theory (CohFT) {cg,n}2g−2+n>0 equipped

with the data (V, η, 1). We define a translation operator T acting on elements of the CohFT

as the formal power series:

T (z) =
∑
k≥2

tkz
k, where T ∈ z2V [[z]] and tk ∈ V.

The action of T on elements is given by:

T (cg,n(v1 ⊗ · · · ⊗ vn)) =
∑
k≥0

1

k!
fn+k∗ (cg,n+k (v1 ⊗ · · · ⊗ vn ⊗ T (ψn+1)⊗ · · · ⊗ T (ψn+k))) ,

where fn+k is the forgetful map of the point n+ k. Formally, the transformation expands

in ψ-classes as:

cg,n+k(v1 ⊗ · · · ⊗ vn ⊗ · · · ⊗ T (ψ−)⊗ · · · ) =
∑
l≥2

ψl−cg,n+k(v1 ⊗ · · · ⊗ vn ⊗ · · · ⊗ tl ⊗ · · · ),

where the symbol ψ− is used to denote a specific place where evaluation occurs on the

ψ−class within the expression.

Definition 3.4.10 [Pan18] Consider a Cohomological Field Theory (CohFT) {cg,n}2g−2+n>0

equipped with the data (V, η, 1). We define a symplectic operator R acting on elements of

the CohFT by the matrix series:

R(z) =
∑
k≥0

rkz
k, where R(z) ∈ End(V )[[z]] and rk : V → V,

and satisfies the condition

R(z) ·R∗(−z) = I,
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here the ∗ denotes the η−adjoint matrix, i.e. R∗ = η−1R η.

The action of R on elements is given by:

R(cg,n(v1 ⊗ · · · ⊗ vn)) =
∑
{Γg,n}

1

|Aut (Γg,n)|
ιΓg,n∗

(∏
v∈V

fvertex(v)
∏
e∈E

fedge(e)
∏
l∈L

flegs(l)

)
,

where {Γg,n} denotes the set of all stable graphs of genus g with n legs1. We assign the

following data to the elements of the graph:

i) For each vertex v, we assign the element in {cg,n}:

fvertex(v) = cg(v),n(v),

where g(v) and n(v) represent the genus and the number of half-edges and legs asso-

ciated with the vertex, respectively.

ii) For each leg l, we assign the End(V )-valued cohomology class:

flegs(l) = R(ψl),

where ψl ∈ H2(Mg(v),n(v),Q) is the cotangent class at the marking corresponding to

the leg.

iii) For each edge e, we assign:

fedge(e) =
η−1 −R(ψ′e)η

−1R(ψ′′e )top

ψ′e + ψ′′e
,

where fedge(e) ∈ V ⊗2[[ψ′, ψ′′]], ψ′e and ψ′′e are the cotangent classes at the node rep-

resenting the edge e. The symplectic condition ensures that the edge contribution is

well-defined.

Theorem 3.4.11 (Teleman Classification Theorem) [Tel12] Let {cg,n} denote a semi-

simple CohFT equipped with the quantum product ?, and let {ωg,n} represent its topological

component. Then, unique operators T and R exist such that the following relationship

holds:

cg,n = RTωg,n

This equation establishes a direct link between the CohFT cg,n and its topological part

ωg,n, mediated by the operators T and R.

1For details on the notation and morphisms of stable graphs, please refer to Definition 2.6.1
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Example 3.4.12 (Hodge Bundle CohFT) In the case of the Hodge bundle, the Co-

homological Field Theory (CohFT) is characterized by the data (V = C, η(1) = 1)1. The

operator R in this context is defined as:

R(z) = exp

∑
m≥1

1

m(m+ 1)
Bm+1(−ψ)m

 ,

where Bm+1 represent the Bernoulli numbers. The operator R can be formally derived

from Mumford’s formula, as expressed in Equation (2.7.1).

1Note that the actions of the R and T operators do not preserve the unit axiom, hence the CohFT of
the Hodge class is considered without a unit.



Chapter 4

Moduli Spaces of Riemann

surfaces with boundary

The moduli space of Riemann surfaces with boundary represent an important extension

of the traditional framework of moduli spaces of curves, with a particular emphasis on

how boundary conditions influence the intersection numbers and overall structure of the

moduli spaces.

A part of our discussion concerns the Dubrovin-Zhang hierarchy. This system of partial

differential equations is inherently linked with total descendant potentials and here also

serves as a bridge between the moduli space of Riemann surfaces with boundary and

their associated integrable systems. Using these tools, we derive a specific formula for

any solution, bearing a resemblance to the Dijkgraaf-Witten formula for a descendant

Gromov-Witten potential in genus 1 (3.2.8).

Starting from the Gromov-Witten potential, we demonstrate that when up to genus 1,

the exponent of an open descendant potential satisfies a system of linear partial differential

equations with a single spatial variable, which we construct explicitly. These results were

published in the Journal of High Energy Physics [BB21b].

4.1 Introduction

In 2014, Pandharipande, Solomon, and Tessler [PST14] introduced the theory of inter-

section numbers on the moduli spaces of Riemann surfaces with boundaries, commonly

known as open moduli spaces. Unlike traditional moduli spaces, open moduli spaces incor-

porate additional structures to account for the boundary characteristics of the Riemann

surfaces. This provides a more precise framework for examining open Gromov-Witten

invariants, essential elements in open string theory. For the necessary definitions relevant

to our study, we rely primarily on the works of [PST14] and [Bur15a].

Let ∆ ⊂ C denote the open unit disk, and let ∆ represent its closure.

65
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Definition 4.1.1 An extendable embedding of the open disk ∆ into a closed Riemann

surface C, specified by

f : ∆→ C,

is a holomorphic map extendable to a holomorphic embedding of an open neighborhood

encompassing ∆.

Two extendable embeddings in C are deemed disjoint if their images of ∆ do not

intersect, implying that the corresponding closed unit disks are distinctly positioned within

the Riemann surface. This differentiation is key to understanding the interplay between

various embeddings and their associated regions within the surface.

Definition 4.1.2 A Riemann surface with boundary (X, ∂X) is constructed by re-

moving a finite number of disjoint, extendably embedded open disks from a connected,

closed Riemann surface X.

This operation results in a surface containing boundaries, which correspond to the

extracted disks. In this context, a compact Riemann surface differs from a Riemann

surface with boundary.

Given a Riemann surface with boundary (X, ∂X), a canonical process known as the

Schwartz reflection, allows us to construct its double, D(X, ∂X)[AS60]. This ‘doubling’

transforms (X, ∂X) into a compact Riemann surface. The term ‘doubled genus’ of (X, ∂X)

refers to the standard genus of the resulting Riemann surface D(X, ∂X).

On a Riemann surface with boundary (X, ∂X), we consider two distinct types of

marked points. The markings classified as interior type are located in X \∂X, while the

markings of boundary type are located on ∂X.

The moduli spaceMg,k,l represents Riemann surfaces with boundary of doubled genus

g, containing k unique boundary markings and l unique interior markings. The moduli

space Mg,k,l is defined as empty unless the stability condition 2g − 2 + k + 2l > 0 is

satisfied. When this condition is met, the moduli space Mg,k,l is a real orbifold with a

real dimension of 3g − 3 + k + 2l.

The cotangent line classes, denoted as ψi ∈ H2(Mg,k,l;Q), are defined in the same way

as before, which involves using the first Chern classes of the cotangent line bundles that

correspond to the markings located within the interior regions (refer to 2.5.1).

However, it is important to note that the cotangent lines situated at the boundaries

are not taken into account in [PST14].

In order to formally define the intersection numbers, there are three steps that need

to be addressed:

• A compactification of Mg,k,l ⊂ Mg,k,l must be constructed, where Mg,k,l is a real

orbifold with boundary ∂Mg,k,l.
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• To ensure that integration over Mg,k,l is well-defined, the boundary conditions of

the integrand along ∂Mg,k,l must be specified.

• Orientation issues should be resolved, as the moduli space Mg,k,l is generally non-

orientable.

In the works of [PST14], these steps are thoroughly examined and addressed, providing

the required foundation. Hence, in this discourse, our focus will be primarily on the

computational aspects and attributes of these intersection numbers, along with potential

implications for integrable systems.

Definition 4.1.3 Open intersection numbers are defined as follows:

〈
τa1τa2 . . . τalσ

k
〉o
g

:=

∫
Mg,k,l

ψa11 ψa22 . . . ψall . (4.1.1)

for 2
∑l

i=1 ai = 3g − 3 + k + 2l, and
〈
τa1τa2 . . . τalσ

k
〉o
g

= 0 otherwise. This expression

represents the integration of the product of cotangent line classes, raised to their respective

powers, over the moduli space Mg,k,l, and σ corresponds to boundary markings.

Following a similar construction to the moduli space Mg,n (refer to Equation 2.5.3),

we introduce the generalized corresponding total descendant potential:

Fo (t0, t1, . . . , s;u) :=
∑

k>0;g,l≥0
2g−2+k+2l>0

∑
a1,...,a1≥0

ug−1

k!l!

〈
τa1τa2 . . . τaiσ

k
〉o
g
sk

l∏
i=1

tai . (4.1.2)

In this setup Fo(t0, t1, . . . , s;u) depends on a sequence of variables t∗, a variable s

which is associated with the boundary marking, and a variable u typically related to the

‘string coupling’.

The double summation goes over all possible values of the genus g, the number of

interior markings k, the number of boundary markings l, and the descendant indices ai.

The factor of (k!l!)−1 corrects for over-counting of symmetric situations.

4.2 Open KdV and Virasoro Equations

In [Bur15b], A. Buryak demonstrated that the open potential formula (referenced as 4.1.2)

conforms to the open Korteweg-de Vries (KdV) equations:

2n+ 1

2

∂Fo

∂tn
= u

∂Fo

∂s

∂Fo

∂tn−1
+ u

∂2Fo

∂s∂tn−1
+
u2

2

∂Fo

∂t0

∂2FW

∂t0∂tn−1
− u2

4

∂3FW

∂t20∂tn−1
. (4.2.1)
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Here, FW =
∑

g≥0 F
W
g is the total Witten potential, as defined in equation (2.5.3).

The term ‘open KdV equations’ refers to a system of partial differential equations that are

analogous to both the KdV and the Virasoro equations. These equations were developed

to describe the intersection theory in the context of the moduli space of Riemann surfaces

with boundaries.

The open KdV equations bear a close relationship to the equations governing the

wave function of the KdV hierarchy. This connection enables an explicit formula for the

open potential Fo (see (4.1.2)), utilizing Witten’s original series generator for intersection

numbers on the moduli space of stable curves FW .

The open potential is found to be in accordance with the open Virasoro equations, of-

fering an equivalent representation of intersection numbers in the moduli space of Riemann

surfaces with boundaries.

Furthermore, it’s possible to elaborate on the properties of the open potential Fo by

introducing new variables. These variables can be considered as descendants of boundary

points. The augmented open potential satisfies a more straightforward set of Virasoro-

type equations. In combination, the open KdV equations and these simplified Virasoro

equations constitute an analytical setup to study the intersection theory of the moduli

space of Riemann surfaces with boundaries.

Moreover, given the following initial condition:

Fo|t≥1=0 = u−1

(
s3

6
+ t0s

)
, (4.2.2)

is possible to fully determinate the open potential Fo. In this case, the open KdV equa-

tions, in conjunction with the closed potential FWg (2.5.3), provide all necessary informa-

tion to characterize Fo.

4.2.1 Open Descendent Potentials in Genus 0

In recent years, the field of intersection theory in the context of moduli spaces of Riemann

surfaces with boundaries has experienced significant development. These moduli spaces

have a corresponding moduli space of closed Riemann surfaces, along with an associated

total descendent potential F(t∗∗, ε) =
∑

g≥0 ε
2gFg(t∗∗) of rank N .

Recent research, as highlighted in [PST14, BCT18, ST23, Che22, CZ21b, CZ21a,

Zin20], has prominently featured a genus 0 open descendent potential F o0 (t∗∗, s∗) ∈ C[[t∗∗, s∗]].

This potential, which incorporates additional formal variables sa (for a ≥ 0) to address

boundary contributions, is defined as a solution to a set of partial differential equations

that parallel those associated with its closed counterpart. The following definition provides

a detailed description of this system.
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Definition 4.2.1 An open descendent potential in genus 0, denoted as F o0 ∈ C[[t∗∗, s∗]], is

a solution of the following system of partial differential equations:

∑
b≥0

tβb+1

∂F o0

∂tβb
+
∑
a≥0

sa+1
∂F o0
∂sa
− ∂F o0
∂tµ0

= −s0, (4.2.3)

∑
b≥0

tβb
∂F o0

∂tβb
+
∑
a≥0

sa
∂F o0
∂sa
− ∂F o0
∂tµ1

= F o0 ,

d

(
∂F o0
∂tαp+1

)
=

∂2F0

∂tαp∂t
µ
0

ηµνd

(
∂F o0
∂tν0

)
+
∂F o0
∂tαp

d

(
∂F o0
∂s0

)
, (4.2.4)

d

(
∂F o0
∂sp+1

)
=
∂F o0
∂sp

d

(
∂F o0
∂s0

)
. (4.2.5)

This system is motivated by extending the principles of closed Gromov-Witten theory

to the open string sector. The first equation extends the string equation (3.2.4) with

the open string parameter s, while the second, like the dilaton equation (3.2.5), describes

scaling with respect to gravitational descendants. The third and fourth equations are

open analogues of the topological recursion relation (3.2.6), governing the behavior of

descendent invariants and reflecting the recursive structure of the moduli space.

To expand the principal hierarchy associated with the potential F0, let us introduce

a new formal variable φ. Analogous to the differential polynomials Ω
[0]
α,a;β,b (refer to Eq.

3.2.10), we define new differential polynomials Γ
[0]
α,a and ∆

[0]
a within the expanded algebraic

ring Av1,...,vN ,φ;0 for 1 ≤ α ≤ N and a ≥ 0. They are defined as:

Γ[0]
α,a :=

∂F o0
∂tαa

∣∣∣∣tγc=δc,0vγ

sc=δc,0φ

,

∆[0]
a :=

∂F o0
∂sa

∣∣∣∣tγc=δc,0vγ

sc=δc,0φ

,

and φtop as:

φtop :=
∂F o0
∂tµ0

∈ C[[t∗∗, s∗]].

From these definitions, we arrive at the following relations, analogous to Eq. (3.2.12):

∂F o0
∂tαa

= Γ[0]
α,a

∣∣∣vγ=(vtop)γ

φ=φtop

,
∂F o0
∂sa

= ∆[0]
a

∣∣∣vγ=(vtop)γ

φ=φtop

.

From these, we can see that the (N + 1)-tuple of functions(
(vtop)1, . . . , (vtop)N , φtop

)∣∣
tγ0 7→t

γ
0+Aγx

satisfy an expanded system of PDEs:
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∂vα

∂tβb
= ∂xη

αµΩ
[0]
µ,0;β,b,

∂vα

∂sb
= 0,

∂φ

∂tβb
= ∂xΓ

[0]
β,b,

∂φ

∂sb
= ∂x∆

[0]
b ,

This extended system is referred to as the extended principal hierarchy, associated with

the pair of potentials (F0, F
o
0 ).

4.3 Open descendent potentials in genus 1

In this section, we introduce the concept of an open descendent potential in genus 1 and

establish two main theorems, Theorems 4.3.2 and 4.3.7, which are key results of our paper

[BB21b].

We define a pair (F0, F
o
0 ), which represent the closed and open potentials in genus 0,

respectively. Here, F0 satisfies the string and dilaton equations, whereas F o0 is established

according to Definition 4.2.1.

Definition 4.3.1 An open descendent potential in genus 1, denoted by F o1 ∈ C[[t∗∗, s∗]], is

defined as a solution to the following system of partial differential equations (PDEs):

∂F o1
∂tαa+1

=
∂2F0

∂tαa∂t
µ
0

ηµν
∂F o1
∂tν0

+
∂F o0
∂tαa

∂F o1
∂s0

+
1

2

∂2F o0
∂tαa∂s0

, 1 ≤ α ≤ N, a ≥ 0, (4.3.1)

∂F o1
∂sa+1

=
∂F o0
∂sa

∂F o1
∂s0

+
1

2

∂2F o0
∂sa∂s0

, a ≥ 0. (4.3.2)

Consider an open descendent potential in genus 1, represented by F o1 . We define a

formal power series, Go, belonging to C[[v∗, φ]] as follows:

Go := F o1 |tαa=δa,0vα

sa=δa,0φ

.

Theorem 4.3.2 The following formula holds:

F o1 =
1

2
log

∂2F o0
∂t110 ∂s0

+ Go|vγ=(vtop)γ

φ=φtop
. (4.3.3)

Proof 4.3.3 Firstly, it is important to note that Equation (4.2.3) implies that

∂2F o0
∂t110 ∂s0

∣∣∣∣
t∗≥1=s≥1=0

= 1.

As such, the logarithm log
∂2F o0
∂t110 ∂s0

is a well-defined formal power series in the variables t∗∗
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and s∗. Furthermore, Equations (3.2.4) and (4.2.3) imply that

(vtop)α
∣∣
t∗≥1=0

= tα0 , φtop
∣∣
t∗≥1=s≥1=0

= s0.

Therefore, Equation (4.3.3) holds when t∗≥1 = s≥1 = 0.

We define the linear differential operators:

P 1
α,a :=

∂

∂tαa+1

− ∂2F0

∂tαa∂t
µ
0

ηµν
∂

∂tν0
− ∂F o0
∂tαa

∂

∂s0
, 1 ≤ α ≤ N, a ≥ 0,

P 2
a :=

∂

∂sa+1
− ∂F o0
∂sa

∂

∂s0
, a ≥ 0.

Under these operators, Equations (4.3.1) and (4.3.2) can be rewritten as

P 1
α,aF

o
1 =

1

2

∂2F o0
∂tαa∂s0

, 1 ≤ α ≤ N, a ≥ 0,

P 2
aF

o
1 =

1

2

∂2F o0
∂sa∂s0

, a ≥ 0.

This system of partial differential equations (PDEs) uniquely determines the function

F o1 , given the initial condition F o1 |t∗≥1=s≥1=0 = Go(t10, . . . , t
N
0 , s0).

From Equations (3.2.6), (4.2.4), and (4.2.5), it follows that

P 1
α,a(v

top)β = P 1
α,aφ

top = P 2
a (vtop)β = P 2

aφ
top = 0.

Our next step is to verify that the following equations hold:

P 1
α,a log

∂2F o0
∂t110 ∂s0

=
∂2F o0
∂tαa∂s0

, (4.3.4)

P 2
a log

∂2F o0
∂t110 ∂s0

=
∂2F o0
∂sa∂s0

. (4.3.5)

To verify Equation (4.3.4), we compute:

P 1
α,a log

∂2F o0
∂t110 ∂s0

=
1

∂2F o0
∂t110 ∂s0

(
∂3F o0

∂tαa+1∂t
11
0 ∂s0

− ∂2F0

∂tαa∂t
µ
0

ηµν
∂3F o0

∂tν0∂t
11
0 ∂s0

− ∂F o0
∂tαa

∂3F o0
∂s0∂t110 ∂s0

)

=
1

∂2F o0
∂t110 ∂s0

[
∂

∂s0

(
∂2F o0

∂tαa+1∂t
11
0

− ∂2F0

∂tαa∂t
µ
0

ηµν
∂2F o0
∂tν0∂t

11
0

− ∂F o0
∂tαa

∂2F o0
∂s0∂t110

)
+

∂2F o0
∂tαa∂s0

∂2F o0
∂t110 ∂s0

]

=
∂2F o0
∂tαa∂s0

.
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The underlined expression vanishes due to Equation (4.2.4). The proof of Equa-

tion (4.3.5) follows a similar line of reasoning. Therefore, the theorem is proved.

In this discussion, the computations heavily rely on the structure and properties of

the differential operators P 1
α,a and P 2

a . Their definitions and applications in the equations

demonstrate how the properties of these operators are exploited to simplify the equations

and ultimately prove the theorem.

4.3.1 The Role of Differential Operators and PDEs

Consider a differential operator L defined as follows:

L =
∑
i≥0

Li(v
∗
∗, ε)(ε∂x)i, Li ∈ Âv1,...,vN ;0.

here v∗∗ is a placeholder for the vector variables v1, . . . , vN and its derivatives, Âv1,...,vN ;0

denotes the algebra generated by these variables and their derivatives, evaluated at 0.

Let’s introduce f as a formal variable and consider the following partial differential

equation (PDE)

∂

∂t
exp(ε−1f) = ε−1L exp(ε−1f). (4.3.6)

We observe that the differential operator applied to the exponential of a function

divided by the same exponential can be represented in terms of a new function Qi ∈ Âf :

(ε∂x)i exp(ε−1f)

exp(ε−1f)
= Qi(f∗, ε), i ≥ 0,

which can be recursively computed by the relation

Qi =

1, if i = 0,

fxQi−1 + ε∂xQi−1, if i ≥ 1.

Remark 4.3.4 Interestingly, Qi is independent of f and can be considered a polynomial

in the derivatives fx, fxx, . . . and ε. In addition, by introducing a new formal variable ψ

and substituting fi+1 = ψi for i ≥ 0, then Qi reduces to a differential polynomial of

degree 0.

Equation (4.3.6) can now be rewritten in terms of the new functions Qi:

∂f

∂t
=
∑
i≥0

Li(v
∗
∗, ε)Qi(f∗, ε). (4.3.7)
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By looking at equation (4.3.7) in greater detail, specifically up to first-order in ε, we

have the flowing:

Lemma 4.3.5 The function Qi can be approximated as follows up to second order in ε:

Qi = f ix + ε
i(i− 1)

2
f i−2
x fxx +O(ε2).

Proof 4.3.6 The formula is evidently true for i = 0. Assuming the inductive hypothesis

is true for i, we prove for i+ 1:

Qi+1 =fxQi + ε∂xQi = f i+1
x + ε

(
fx
i(i− 1)

2
f i−2
x fxx + ∂x

(
f ix
))

+O(ε2)

=f i+1
x + ε

(i+ 1)i

2
f i−1
x fxx +O(ε2),

which concludes the induction step and proves the lemma.

Now consider the expansion of Li(v
∗
∗, ε) in powers of ε:

Li(v
∗
∗, ε) =

∑
j≥0

L
[j]
i (v∗∗)ε

j , L
[j]
i ∈ Av1,...,vN ;j .

With this, equation (4.3.7) can be rewritten in the following form up to the first order

in ε:

∂f

∂t
=
∑
i≥0

L
[0]
i f

i
x + ε

∑
i≥0

(
L

[1]
i f

i
x + L

[0]
i

i(i− 1)

2
f i−2
x fxx

)
+O(ε2). (4.3.8)

4.3.2 A Linear PDE for an Open Descendent Potential Up to Genus 1

Let us define the differential operators Lint
α,a, where 1 ≤ α ≤ N , a ≥ 0, and Lboun

a , where

a ≥ 0, as

Lint
α,a :=

∑
i≥0

(
L

int;[0]
α,a,i + εL

int;[1]
α,a,i

)
(ε∂x)i,

Lboun
a :=

∑
i≥0

(
L

boun;[0]
a,i + εL

boun;[1]
a,i

)
(ε∂x)i,
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where

L
int;[0]
α,a,i := CoefφiΓ

[0]
α,a ∈ Av1,...,vN ;0,

L
int;[1]
α,a,i := Coefφi

[(
∂Go

∂φ

∂Γ
[0]
α,a

∂vβ
− ∂Go

∂vβ
∂Γ

[0]
α,a

∂φ
+

1

2

∂2Γ
[0]
α,a

∂vβ∂φ

)
vβx +

∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a

]
∈ Av1,...,vN ;1,

L
boun;[0]
a,i := Coefφi∆

[0]
a ∈ Av1,...,vN ;0,

L
boun;[1]
a,i := Coefφi

[(
∂Go

∂φ

∂∆
[0]
a

∂vβ
− ∂Go

∂vβ
∂∆

[0]
a

∂φ
+

1

2

∂2∆
[0]
a

∂vβ∂φ

)
vβx

]
∈ Av1,...,vN ;1.

Theorem 4.3.7 The formal power series vβ = (vtop)β
∣∣
tγ0 7→t

γ
0+Aγx

and

f = (F o0 + εF o1 )|tγ0 7→tγ0+Aγx satisfy the system of PDEs up to O(ε):

∂

∂tαa
exp(ε−1f) = ε−1Lint

α,a exp(ε−1f), ∀ 1 ≤ α ≤ N, a ≥ 0, (4.3.9)

∂

∂sa
exp(ε−1f) = ε−1Lboun

a exp(ε−1f), ∀ a ≥ 0. (4.3.10)

Proof: For notational simplicity, let us denote the formal powers series F o0 |tγ0 7→tγ0+Aγx,

F o1 |tγ0 7→tγ0+Aγx, (vtop)α
∣∣
tγ0 7→t

γ
0+Aγx

, and φtop
∣∣
tγ0 7→t

γ
0+Aγx

by F o0 , F o1 , vα, and φ, respectively.

We can then rewrite the statement of Theorem 4.3.2 as

F o1 =
1

2
log φs +Go.

Let us prove Equation (4.3.9) up to linear order in ε. We have

∂x (F o0 + εF o1 )

dx
= φ+ ε

(
1

2

φxs
φs

+ ∂xG
o

)
.

By equation (4.3.8), we must verify that

∂

∂tαa
(F o0 + εF o1 ) =

∑
i≥0

L
int;[0]
α,a,i φ

i + ε
∑
i≥0

L
int;[1]
α,a,i φ

i+

+ ε
∑
i≥0

L
int;[0]
α,a,i

(
i(i− 1)

2
φi−2φx + iφi−1

(
1

2

φxs
φs

+ ∂xG
o

))
∂

∂tαa
(F o0 + εF o1 ) = Γ[0]

α,a + ε

∑
i≥0

L
int;[1]
α,a,i φ

i +
1

2

∂2Γ
[0]
α,a

∂φ2
φx +

1

2

∂Γ
[0]
α,a

∂φ

φxs
φs

+
∂Γ

[0]
α,a

∂φ
∂xG

o


∂F o1
∂tαa

=
1

2

∂Γ
[0]
α,a

∂φ

φxs
φs

+

(
1

2

∂2Γ
[0]
α,a

∂φ2
+
∂Γ

[0]
α,a

∂φ

∂Go

∂φ

)
φx +

∂Γ
[0]
α,a

∂φ

∂Go

∂vβ
vβx +

∑
i≥0

L
int;[1]
α,a,i φ

i.

Using the definition of L
int;[1]
α,a,i , we equate the derivative of F o1 with respect to tαa to
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various expressions involving derivatives of Γ
[0]
α,a, Go, and Ω

[0]
γ,0;α,a as follows:

∂Fo1
∂tαa

=
1

2

∂Γ
[0]
α,a

∂φ

φxs
φs

+
1

2

∂2Γ
[0]
α,a

∂φ2
φx +

∂Γ
[0]
α,a

∂φ

∂Go

∂φ
φx

+
∂Go

∂φ

∂Γ
[0]
α,a

∂vβ
vβx +

1

2

∂2Γ
[0]
α,a

∂vβ∂φ
vβx +

∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a.

This can be simplified further as:

∂F o1
∂tαa

=
1

2

∂Γ
[0]
α,a

∂φ

φxs
φs

+
1

2
∂x
∂Γ

[0]
α,a

∂φ
+
∂Go

∂φ
∂xΓ[0]

α,a +
∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a. (4.3.11)

To confirm the above, we compute the derivative of F o1 with respect to tαa :

∂F o1
∂tαa

=
1

2

(
φtαa
)
s

φs
+
∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a +

∂Go

∂φ
∂xΓ[0]

α,a

=
1

2

∂x

(
Γ

[0]
α,a

)
s

φs
+
∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a +

∂Go

∂φ
∂xΓ[0]

α,a

=
1

2

∂x

(
∂Γ

[0]
α,a

∂φ φs

)
φs

+
∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a +

∂Go

∂φ
∂xΓ[0]

α,a

=
1

2
∂x
∂Γ

[0]
α,a

∂φ
+

1

2

∂Γ
[0]
α,a

∂φ

φxs
φs

+
∂Go

∂vβ
ηβγ∂xΩ

[0]
γ,0;α,a +

∂Go

∂φ
∂xΓ[0]

α,a,

which verifies equation (4.3.11) and, by extension, equation (4.3.9) up to the approximation

of ε.

The proof of equation (4.3.10) follows the same procedure.

The discussion was centered around the series vβ, F o0 , and F o1 , along with their interre-

lation with the system of PDEs. We found that these series and the system are governed

by the constraints of certain internal and boundary equations, which we thoroughly ex-

amined.

By looking these equations, we notice it is possible to manipulate the formal power

series, by employing the notation L
int;[n]
α,a,i and L

boun;[n]
a,i we can make the involved expressions

more approachable and intuitive.

We also found that certain formal power series are linked with others. The equation

F o1 = 1
2 log φs + Go is an example of this. By analyzing the derivatives of F o0 and F o1 , we

were able to elaborate on how these quantities evolve within the system and its dynamics.
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Chapter 5

Double Ramification and

Dubrovin-Zhang Hierarchies

5.1 Introduction

The Double Ramification Hierarchy (DR hierarchy) takes as input ideas from algebraic

geometry to establish an integrable hierarchy. Its inception can be traced back to the

study of moduli spaces of algebraic curves and their intersection theory. The hierarchy is

also an elaborated example of the relation between curve counting theories and integrable

systems.

The Double Ramification Hierarchy represents an advancement in the field of inte-

grable hierarchies associated with cohomological field theories. The DR hierarchy allows

the modification of certain axioms of the usual CohFTs, thereby accommodating a more

diverse range of mathematical structures. The hierarchy is characterized by certain initial

data coming from the Double Ramification Cycle. This cycle is a class in the homology

ring of the moduli space of stable curves, first introduced into an integrable hierarchy by

A. Buryak [Bur15a]. The DR cycle, in essence, is a cohomological representation of the

condition that a given meromorphic function on a Riemann surface has prescribed orders

at the points of the surface.

The DR hierarchy is closely related to total descendant potentials and the theory of

nonlinear partial differential equations, providing new connections between geometric in-

variants and the integrable systems they induce. The DR hierarchy offers a mathematical

setting that allows the study of several theories and models, including Gromov-Witten the-

ory and Gauged Linear Sigma Models1, resulting in a unified theory capable of describing

an array of curve counting theories, geometric structures, and physical systems.

The double ramification cycle can be understood from two main perspectives [Pix21]:

1Gauged Linear Sigma Model (GLSM) is a type of two-dimensional quantum field theory that describes
the dynamics of maps from a Riemann surface to Cn, subject to certain gauge symmetries. Through GLSM,
one can compute certain Gromov-Witten invariants, especially in the context of mirror symmetry. [FJR17]
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• Ramification Profiles: The term double ramification is derived from the specific

ramification profiles that the cycle aims to parametrize. Consider a genus g curve,

denoted as Cg,n, which admits a ramified map f : Cg,n → CP1. This map is char-

acterized by predetermined ramification profiles over two distinct points: 0 and ∞.

These profiles are encapsulated in a vector A ∈ Zn. The positive and negative com-

ponents of A correspond to two partitions that describe the ramification over 0 and

∞, respectively, and must satisfy
∑
ai = 0. The marked points on Cg,n that corre-

spond to non-zero entries in A are precisely the pre-images of 0 and ∞ under the

map f . Points corresponding to zero entries in A are not subject to this constraint.

The DR-cycle is then defined using n integers a1, . . . , an with
∑
ai = 0. For a given

class [Cg,n, p1, . . . , pn] in the moduli space Mg,n, we examine the divisor
∑
aipi on

the curve Cg,n. If this divisor is principal, it implies the existence of a meromorphic

function f : Cg,n → CP1 such that the sum of the orders of its zeros equals the

sum of the orders of its poles. Note that it is permissible for some aj to be zero,

corresponding to unconstrained points pj .

Intuitively, the cohomology class DRg(a1, . . . , an) is the Poincaré dual to the locus

in Mg,n that is characterized by curves with the specified principal divisor.

• Abel-Jacobi Maps: The double ramification cycle can also be understood through

Abel-Jacobi maps. While this perspective is useful within the context of this work,

describing the formal details might be excessive for our current objectives. Intuitively

it involves a g−dimensional universal abelian variety1 Xg and the data from A defines

a morphism from jA : Mg,n → Xg and the double ramification locus is the inverse

image under jA of a zero section of Xg. This construction can be extended to the

moduli space of curves of compact type Mct
g,n (def. 2.6.2).

In 2016, F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine provided a formula

that expresses the double ramification cycle in terms of basic tautological classes

[JPPZ17]. This result addressed a question originally posed by Y. Eliashberg in

2001. 2

Example 5.1.1 For g = 0, the meromorphic function f(z) =
∏n
i=1(z − pi)ai satisfies the

required ramification profile for any element in M0,n. Therefore, the Double Ramification

(DR) cycle encompasses the entire moduli space, and its Poincaré dual is the unit in

cohomology:

1An abelian variety is a complex torus that can be embedded into projective space. Given a moduli
space that parametrizes abelian varieties of a fixed dimension (with some additional data, like polarization),
the universal abelian variety is a family of abelian varieties over this moduli space such that each point of
the moduli space corresponds to an abelian variety, which is a fiber of the universal abelian variety over
that point.

2This is commonly known in the literature as the Eliashberg problem.
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DR0(a1, . . . , an) = 1. (5.1.1)

Remark: This approach is not universally applicable, especially in the case of nodal

curves. While we leveraged the compactness of the space to obtain its Poincaré dual,

a more comprehensive definition exists that addresses these special cases. This broader

definition serves as the motivation for the topic discussed in the next section.

5.2 Moduli space of stable relative maps

In this section, we will adopt the construction outlined in [Bur17] with minor modifications

to the notation.

Definition 5.2.1 Let
(
Cg,n; p1, . . . , pn, q

1
1, . . . , q

1
n1
, q2

1, . . . , q
2
n2

)
be a nodal curve of genus

g with n marked points. Consider n1, n2, d ∈ Z≥0. Let µ1 = (µ1
1, . . . , µ

1
n1

) ∈ Zn1
≥0 and

µ2 = (µ2
1, . . . , µ

2
n2

) ∈ Zn2
≥0 satisfying

|µ1| :=
n1∑
i=1

µ1
i = d, |µ2| :=

n2∑
i=1

µ2
i = d.

A stable relative map (SRM) to the unparametrized CP1 is represented by

[(
Cg,n; p1, . . . , pn, q

1
1, . . . , q

1
n1
, q2

1, . . . , q
2
n2

) fSRM−→ (X; q1, q2)
]
,

where (X; q1, q2) is a nodal curve whose dual graph is of genus 0 (fig. 5.1). In this curve,

q1 and q2 are points located on the first and last components of the chain, respectively and

consists of the following components:

• The pre-image of each qj under fSRM is {qj1, . . . , q
j
nj}j=1,2, and the multiplicity of

fSRM at each qji is µji .

• The pre-image of any nodal point q in X consists of nodal points in Cg,n. Fur-

thermore, if q is a nodal point in X and p is in f−1
SRM (q), then local representa-

tions of Cg,n and X at p and q must exist such that fSRM can be expressed as

(u, v) 7→ (um, vm) = (x, y) for some integer m ≥ 11.

Definition 5.2.2 Two stable relative maps, denoted as [Cg,n
fSRM−−−→ X] and [C ′g,n

f ′SRM−−−→ X′],

are considered isomorphic if there exist isomorphisms α : Cg,n → C ′g,n and β : X → X′

that not only preserve the marked points but also commute with fSRM and f ′SRM.

1Recall, any nodal point on a curve with local coordinates (x1, x2) can be locally characterized by the
equation x1x2 = 0.
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Figure 5.1: Illustration of a stable relative map originating from C9,7 targeting X.

Definition 5.2.3 The moduli space of stable relative maps, denoted byM∼g,n(µ1, µ2), com-

prises the isomorphism classes of stable relative maps targeting the unparameterized CP1.

The space M∼g,n(µ1, µ2) is a compact topological space, sharing similarities with the

moduli spaceMg,n in that it is also a Deligne-Mumford stack. This space is endowed with

a virtual fundamental class, denoted as

[
M∼g,n(µ1, µ2)

]virt ∈ HD
(
M∼g,n(µ1, µ2),Q

)
,

where the degree D is calculated as

D = 2(2g − 3 + n+ n1 + n2).

Assuming that 2g− 2 + n+ n1 + n2 > 0, we can associate a stabilized curve to any stable

relative map, typically the stabilized curve can be expressed as

(
Cg,n; p1, . . . , pn, q

1
1, . . . , q

1
n1
, q2

1, . . . , q
2
n2

)
.

This suggests the existence of a map to Mg,n, which we denote by S.

For g, n ≥ 0 and 2g−2+n > 0, consider a list of integers a1, . . . , an such that
∑
ai = 0.

The indices i1 < · · · < in1 and j1 < · · · < jn2 label the positive and negative numbers in

the list, respectively. The remaining n0 = n− n1 − n2 numbers are set to zero. We define
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µ1 = (µ1
1, . . . , µ

1
n1

) and µ2 = (µ2
1, . . . , µ

2
n2

) where µ1
k = aik and µ2

k = −ajk .

The double ramification cycle is then defined as

DRg(a1, . . . , an) = PD
(
S∗
[
M∼g,n(µ1, µ2)

]virt
)
∈ H∗(Mg,n,Q).

Here, PD denotes the Poincaré duality map. Consequently, we have

DRg(a1, . . . , an) ∈ H2g(Mg,n,Q).

Recall the forgetful map f , as previously defined in Definition 2.4.2. This map es-

tablishes a relationship between the double ramification cycles in different moduli spaces.

Specifically, the relationship can be expressed as:

f∗DRg(a1, . . . , an) = DRg(a1, . . . , an, 0). (5.2.1)

There exists a generalized version of the relation given in equation (5.1.1), where all

the ramification profiles are set to zero:

DRg(0, ..., 0) = (−1)gλg ∈ H2g(Mg,n,Q). (5.2.2)

Theorem 5.2.4 [Hai13][JPPZ17] Consider two non-negative integers h and g such that

0 ≤ h ≤ g. Let I be a subset of the set P = {1, . . . , n}.
We impose two conditions:

• 2h− 1 + |I| > 0,

• 2(g − h)− 1 + |Ic| > 0,

here, |I| and |Ic| denote the cardinalities of the sets I and its complement Ic, respectively.

Finally, we introduce a cohomology class δIh in H2(Mg,n,Q). This class is defined by

the push-forward of the identity classes from both moduli spaces under the gluing map (def.

2.4.3), given by:

δIh := gl∗(1× 1).

Then, the following formula holds:

DRg (a1, . . . , an)|Mct
g,n

=
1

g!

 n∑
i=1

a2
iψi
2
− 1

2

∑
I⊂{1,...,n}
|I|>2

a2
Iδ
I
0 −

1

4

∑
I⊂{1,...,n}

g−1∑
h=1

a2
Iδ
I
h


g

,

(5.2.3)

where Mct
g,n is the moduli space of curves of compact type (def. 2.6.2), this theorem
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implies that the restriction DRg (a1, . . . , an)|Mct
g,n

is a homogeneous polynomial of degree

2g in the variables a1, . . . , an with coefficients in H2g
(
Mct

g,n,Q
)
.

In 2023, A. Pixton proved1 that the class DRg (a1, . . . , an) is a polynomial in the

variables a1, . . . , an with coefficients in H2g
(
Mg,n,Q

)
[Pix23].

5.3 The Double Ramification hierarchy

The most important feature of the Double Ramification (DR) cycle is its behavior under

integration. Specifically, for any cohomology class θ ∈ H∗(Mg,n+1), the integral∫
Mg,n+1

λgDRg

(
−
∑

ai, a1, . . . , an

)
θ,

is a homogeneous polynomial in the variables a1, . . . , an of degree 2g.

Given a Cohomological Field Theory (CohFT) denoted by {cg,n} (Definition 3.4.1), we

introduce differential polynomials gα,d in Âu;0 for 1 ≤ α ≤ N and d ≥ 0 as follows:

gα,d :=
∑
g,n≥0

2g−1+n>0

ε2g

n!

∑
b1,...,bn≥0

b1+...+bn=2g

uα1
b1
. . . uαnbn × (5.3.1)

× Coef
a
b1
1 ...abnn

∫
Mg,n+1

DRg

(
−
∑

ai, a1, . . . , an

)
λgψ

d
1cg,n+1 (eα ⊗⊗ni=1eαi) .

This construction is proven to yield local functionals ḡα,d =
∫
gα,d dx that commute

with respect to the bracket {·, ·}η−1∂x [Bur15a].

Definition 5.3.1 The system of equations

∂uα

∂tβq
= ηαµ∂x

δḡβ,q
δuµ

, 1 ≤ α, β ≤ N, q ≥ 0, (5.3.2)

is called the Double Ramification Hierarchy.

Example 5.3.2 (Trivial CohFT) Consider the Double Ramification hierarchy associ-

ated with the trivial Cohomological Field Theory, denoted as {cg,n = 1}. The integrals for

the coefficients are given by2:

∫
Mg,n+1

DRg

(
−
∑

ai, a1, . . . , an

)
λgψ

d
1 . (5.3.3)

We observe that the cohomology class DRg (−
∑
ai, a1, . . . , an)λgψ

d
1 is non zero only

when its degree (g + g + d) matches the dimension of Mg,n+1, leading to the relation:

1As of the time of writing, this result has not been officially published and therefore has not undergone
peer review. However, it is available online for preliminary examination and discussion.

2Note that throughout our computation, we disregarded the α index in equation (5.3.1) for the trivial
CohFT, since such term emerges from the free index of the CohFT.
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d = g + n− 2. (5.3.4)

We will focus on genus 0 terms, we simplify (5.3.3) by use of (5.1.1) as follows:

∫
M0,n+1

DR0

(
−
∑

ai, a1, . . . , an

)
λ0ψ

d
1 =

∫
M0,n+1

ψd1 ,

The integral was previously calculated in (2.5.6), so:

∫
M0,n+1

ψd1 =
〈
τk1 · · · τkn+1

〉
0

∣∣
k1=d,ki>1=0

=
(n− 2)!

d!
= 1.

Substituting this result into (5.3.1) along with the condition (5.3.4), we get the genus

0 Hamiltonian densities:

g
[0]
d =

∑
n>1

1

n!
uα1 . . . uαnδ1

α1
· · · δ1

αn

∣∣∣∣∣
n=d+2

=
ud+2

(d+ 2)!
. (5.3.5)

It is interesting to observe the striking similarity of this formulation to the Hamiltoni-

ans of the dispersionless KdV hierarchy, as introduced in Equation (1.3.1).

If we were to include higher genus terms, we need to revisit condition (5.3.4), for d = 0

the only possible cases are (g, n) = (0, 1) and (1, 0).

The genus 0 is straightforward and follows from (5.3.5). Therefore, our focus shifts to

the (1, 0) case:

∫
M1,2

DR1 (−a1, a1)λ1.

We can replace the DR class utilizing Hain’s formula (eq. 5.2.3) and identify the

stable nodes. In this instance, stable nodes arise when the genus 0 component has at least

2 markings (fig. 5.2).

Figure 5.2: Possible boundary Divisors as derived from Hain’s Formula, represented from
equation (5.2.3).

Applying Hain’s formula and considering the symmetry of the ψ classes:

DR1(−a1, a1) =
(−a1)2

2
ψ1 +

a2
1

2
ψ2 = a2

1ψ1. (5.3.6)

The ψ−class is then eliminated using the dilaton relation (cf. 2.5.2):
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∫
M1,2

DR1 (−a1, a1)λ1 = a2
1

∫
M1,2

ψ1λ1 = a2
1

∫
M1,1

λ1 =
a2

1

24
.

For the last equality, we used the class computed in Example 2.1.14. According with (5.3.1),

the term a2
1 contributes as uxx, so the Hamiltonian density for d = 0 reads:

g0 =
u2

2
+ ε2uxx

24
.

For d = 1, the non-zero cases are (g, n) = (0, 3), (1, 2), and (2, 1), again the genus 0 case

can be derived from (5.3.5), so we move onto (g, n) = (1, 2):

∫
M1,3

DR1 (−a1 − a2, a1, a2)λ1ψ1.

We can simplify this expression by applying the dilaton equation (see 2.5.2). This yields:

(2g − 2 + n)

∣∣∣∣∣
g=1,n=2

∫
M1,2

DR1 (a1,−a1)λ1. (5.3.7)

This is the same term as in (5.3.6), so:

∫
M1,3

DR1 (−a1 − a2, a1, a2)λ1ψ1 =
a2

1

12
. (5.3.8)

Following a similar procedure from Hain’s formula we find:

∫
M2,2

DR2 (−a1, a1)λ2ψ1 =
1

2!

(
a2

1

24

)2

.

So, the Hamiltonian density for d = 1 can be expressed as follows:

g1 =
u3

3!
+
ε2

2!
Coef

a
b1
1 ,a

b2
2

(
a2

1

12
a0

2

)
ub1ub2 + ε4 Coef

a
b1
1

(
a4

1

1152

)
ub1 ,

=
u3

6
+
ε2

24
uuxx +

ε4

1152
uxxxx.

It is noteworthy that this Hamiltonian matches the Korteweg-de Vries (KdV), as pre-

viously introduced in (1.3.10). Although deriving the complete terms involves extensive

computation, it is a remarkable result that the Double Ramification (DR) hierarchy for the

trivial Cohomological Field Theory (CohFT) coincides with the full KdV hierarchy.

We can equip the Double Ramification (DR) hierarchy with N linearly independent

Casimirs of its Poisson bracket, denoted as {·, ·}η−1∂x . Specifically, we define

ḡα,−1 :=

∫
ηαβu

β dx,

where 1 ≤ α ≤ N .
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Another crucial object in the context of the DR hierarchy is the local functional ḡ ∈
Λ̂u;0. This is determined by the following relation [Bur15a]:

ḡ1,1 = (D − 2)ḡ, where D :=
∑
n≥0

(n+ 1)uαn
∂

∂uαn
,

and ḡ1,1 := Aαḡα,1.1 It’s important to note that δḡ
δuα = gα,0.

The local functional ḡ also has an explicit expression up to the approximation ε2, as

given in [BDGR18]:

ḡ =

∫
f dx− ε2

48

∫
cθθξc

ε
αβu

α
xu

β
x dx+O

(
ε4
)
, (5.3.9)

where f := F |t∗=u∗ and cαβγ := Cαβγ |t∗=u∗ .

Conjecture 5.3.3 [BRS21] Consider a homogeneous Cohomological Field Theory along

with its associated Double Ramification hierarchy. The conjecture posits the following:

1. Poisson Compatibility of KDR
2 and KDR

1 : The operator KDR
2 =

(
KDR;αβ

2

)
is

defined as

KDR;αβ
2 := ηαµηβν

((
1

2
− µβ

)
∂x ◦ Lν (gµ,0) +

(
1

2
− µα

)
Lν (gµ,0) ◦ ∂x

+Aµν∂x + ∂x ◦ L1
ν (gµ,0) ◦ ∂x

)
. (5.3.10)

This operator is Poisson and is compatible with the operator KDR
1 := η−1∂x. Here,

µα := qα − δ
2 .

2. Bihamiltonian Structure: The Poisson brackets {·, ·}KDR
2

and {·, ·}KDR
1

give a

bihamiltonian structure for the DR hierarchy. This structure is expressed by the

following bihamiltonian recursion relations:

{·, ḡα,d}KDR
2

=

(
d+

3

2
+ µα

)
{·, ḡα,d+1}KDH

1
+Aβα {·, ḡβ,d}KDR

1
, d ≥ −1,

where Aαβ := ηανAνβ.

5.4 The Dubrovin-Zhang hierarchy

5.4.1 Homogeneous Cohomological Field Theory and Potential

Consider a homogeneous Cohomological Field Theory (CohFT), denoted by {cg,n}. We

introduce a set of formal variables, which we denote as tαa . Here, 1 ≤ α ≤ N and a ≥ 0.

Additionally, we identify tα0 = tα.

1Recall: ∂
∂t11a

:= Aα ∂
∂tαa

, a ≥ 0. cf. def. 1.1.2
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Definition 5.4.1 The potential F associated with a homogeneous CohFT is formally de-

fined as:

F (t∗∗, ε) =
∑
g≥0

ε2gFg (t∗∗) , (5.4.1)

:=
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
1≤α1,...,αn≤N
d1,...,dn≥0

(∫
Mg,n

cg,n (⊗ni=1eαi)
n∏
i=1

ψdii

)
n∏
i=1

tαidi ∈ C [[t∗∗, ε]] ,

(5.4.2)

We also introduce the formal power series wtop;α and wtop;α
n as follows:

wtop;α := ηαµ
∂2F
∂tµ0∂t

1

0

,

wtop;α
n :=

∂n(
∂t10
)nwtop;α,

where 1 ≤ α ≤ N and n ≥ 0.

5.4.2 Conjecture on Differential Polynomials and Poisson Operators for

the DZ hierarchy

Conjecture 5.4.2 [DZ01] Consider the ring Âw consisting of differential polynomials in

variables w1, . . . , wN .

1. Existence of the Differential Polynomial from the potential: For any 1 ≤
α, β ≤ N and a, b ≥ 0, there exists a differential polynomial Ωα,a;β,b ∈ Âw;0, such

that

∂2F
∂tαa∂t

β
b

= Ωα,a;β,b|wγn=wtop; γ
n

. (5.4.3)

2. Poisson Operator KDZ
1 : There exists a Poisson operator KDZ

1 =
(
KDZ;αβ

1

)
such

that the local functionals h̄α,−1 =
∫
ηoww

νdx are Casimirs. The operator satisfies:

ηαµ∂xΩµ,0;β,b = KDZ;αν
1

δh̄β,b
δwν

, (5.4.4)

where h̄β,b :=
∫

Ω1,0;β,b+1 dx, and 1 ≤ α, β ≤ N, b ≥ 0.

3. Poisson Operator KDZ
2 and Bihamiltonian relations: There exists another

Poisson operator KDZ
2 =

(
KDZ;αβ

2

)
that satisfies the following relations:
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{
·, h̄α,d

}
KDZ

2
=

(
d+

3

2
+ µα

){
·, h̄α,d+1

}
KDZ

1
+Aβα

{
·, h̄β,d

}
KDZ

1
, 1 ≤ α ≤ N, d ≥ −1.

(5.4.5)

5.4.3 Uniqueness and Implications of the Conjecture

If the differential polynomials specified in Part 1 of conjecture 5.4.2 exist, then they are

unique, as demonstrated in [BDGR18]. Similarly, if the Poisson operators from Parts 2

and 3 of 5.4.2 exist, they are also unique, as shown in [BPS12b].

Commutativity of Local Functionals

Part 2 of conjecture 5.4.2 implies that the local functionals h̄α,d mutually commute with

respect to the bracket {·, ·}KDZ
1

.

Bihamiltonian Hierarchy

If conjecture 5.4.2 holds true, the resulting bihamiltonian hierarchy is given by:

∂wα

∂tβq
= KDZ;αµ

1

δh̄β,q
δuµ

, 1 ≤ α, β ≤ N, q ≥ 0,

and is referred to as the Dubrovin-Zhang (DZ) hierarchy.

The N -tuple of formal power series wtop;α serves as a solution to this hierarchy. Here,

the derivative ∂x is identified with ∂
∂t10

. This particular solution is known as the topological

solution.

Preliminary Results

Conjecture 5.4.2 has been proven up to genus 1 [DZ98]. Specifically, the differential poly-

nomials and Poisson operators are given by the following approximations:

Ωα,a;β,b =
∂2F0

∂tαa∂t
β
b

∣∣∣∣∣
tγc=δc,0wγ

+O
(
ε2
)
,

KDZ;αβ
1 = ηαβ∂x +O

(
ε2
)
,

KDZ;αβ
2 =

(
EγCαβγ

)∣∣∣
t∗=w∗

∂x +

(
1

2
− µβ

)(
Cαβγ

)∣∣∣∣
t∗=w∗

wγx +O
(
ε2
)
.

Generalized Proofs

Parts 1 and 2 of conjecture 5.4.2 have been proven for an arbitrary semisimple, not nec-

essarily homogeneous, CohFT [BPS12b]. A simplified proof of Part 2 is presented in

[BPS12a].
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5.4.4 DR/DZ Equivalence Conjecture

We consider an arbitrary homogeneous CohFT and define the normal coordinates of the

DR hierarchy as

ũα (u∗∗, ε) := ηαµ
δḡµ,0
δu1

.

Unique Differential Polynomial

In [BDGR18], it is proven that there exists a unique differential polynomial P ∈ Âw;−2

such that F red ∈ C [[t∗∗, ε]] defined by F red := F+ P|wγn=wtop ;γ
n

satisfies the following

vanishing property:

Coefε2g
∂nF red

∂tα1
d1
. . . ∂tαndn

∣∣∣∣∣
t:=0

= 0, if
n∑
i=1

di ≤ 2g − 2.

Form of the Differential Polynomial P and Reduced Potential

The differential polynomial P takes a specific form, given by:

P = −ε2G(w1, . . . , wN ) +O(ε4),

where the function G(t1, . . . , tN ) is defined as the restriction of F1|t∗≥1=0.

The power series F red is termed the reduced potential of our Cohomological Field

Theory (CohFT).

Miura Transformations

To establish a relationship between the variables ũα and wα, we introduce a Miura trans-

formation. Specifically, ũα(w∗∗, ε) is defined as:

ũα(w∗∗, ε) = wα + ηαν∂x
{
P, h̄ν,0

}
KDZ

1
.

Conjecture 5.4.3 [BDGR18][BRS21] If Conjectures 5.3.3 and 5.4.2 hold true, then the

Double Ramification (DR) and Dubrovin/Zhang (DZ) hierarchies, along with their respec-

tive bihamiltonian structures, are equivalent when expressed in the normal coordinates ũα.

5.4.5 Main Theorem

Theorem 5.4.4 The DR and DZ hierarchies, along with their bihamiltonian structures,

coincide up to genus 1 in the coordinates ũα.

The proof is given in section 5.6.

Implications: Together with Conjecture 5.4.2, which was proven in [DZ98] up to

genus 1, this theorem provides a comprehensive understanding of the bihamiltonian struc-
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tures of the DR and DZ hierarchies and their relation for an arbitrary homogeneous

CohFT.

These results were published in the Journal on Functional Analysis and Its Applica-

tions, Springer Verlag [BB21a].

5.5 Extension of the Space of Differential Polynomials by

Tame Rational Functions

Before proving Theorem 5.4.4, we introduce several technical lemmas that will be instru-

mental in our discussion.

Although Conjecture 5.4.2 remains unproven, a weaker form holds true when we extend

the space of differential polynomials. Following the work in [BDGR20], let us consider

formal variables v1, . . . , vN . For any d ∈ Z, let Art
v;d denote the vector space spanned by

expressions of the form

∑
i≥m

Pi (v∗∗)

(v1
x)i

, (5.5.1)

where m ∈ Z, Pi ∈ Av;d+i, and ∂P
∂v1x

= 0.

We define the extended space Ârt
v := Art

v [[ε]]. A rational function of the form (5.5.1)

is termed tame if there exists a non-negative integer C such that ∂Pi
∂vαk

= 0 for k > C.

Let Art
v :=

⊕
d∈ZArt

v;d. The subspace of tame elements in Art
v is denoted by Art,t

v , and

its extended space is Ârt, t
v := Art, t

v [[ε]].

We introduce a rational Miura transformation that relates the variables vα to ṽα(v∗∗, ε)

as follows:

ṽα(v∗∗, ε) = vα + εfα(v∗∗, ε),

where fα ∈ Ârt
v;1.

Let us introduce formal power series vtop;α := ηαµ ∂2F0

∂tµ0∂t
1

0
and vtop;α

n := ∂n

(∂t10 )n
vtop;α.

It is noteworthy that the mapping Ârt,t
v → C[[t∗∗, ε]], defined by

f ∈ Ârt,t
v 7→ f |vγc=vtop;γc

∈ C[[t∗∗, ε]],

is injective. Furthermore, there exists a unique tame rational function wα(v∗∗, ε) ∈ Â
rt,t
v;0

such that wα(vtop;∗
∗ , ε) = wtop;α [BDGR20]. Additionally, wα(v∗∗, ε)− vα belongs to Im ∂x

[BPS12b].

It is also worth mentioning that the same proof technique used in Proposition 7.6 of

[BDGR20] establishes the existence of a unique tame rational function Ωα,a;β,b ∈ Ârt,t
w;0 that

satisfies equation (5.4.3).
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5.5.1 Generalized Poisson operators

In the framework of Poisson operators, we now consider a broader class of operators

characterized by structures of the form Kµν =
∑

j≥0K
µν
j ∂jx, where each Kµν

j ∈ Â
rt,t
w;j+1.

We will denote the space of such Poisson operators by POrt
w .

Consider KDZ
1 and KDZ

2 as specific instances in POrt
w . These operators are derived

from the base operators

ηαβ∂x and
(
EγCαβγ

)∣∣∣
t∗=v∗

∂x +

(
1

2
− µβ

)(
Cαβγ

)∣∣∣∣
t∗=v∗

vγx ,

respectively, through the rational Miura transformation vα 7→ wα(v∗∗, ε).

With these definitions, relations (5.4.4) and (5.4.5) hold true, as shown in [BDGR20].

Therefore, Conjecture 5.4.2 can equivalently be stated as Ωα,a;β,b ∈ Âw;0 and KDZ
1 ,KDZ

2 ∈
POw.

Lemma 5.5.1 Let K ∈ POrt
v be a Poisson operator and consider a rational Miura trans-

formation vα 7→ ṽα(v∗∗, ε) such that ṽα(v∗∗, ε)− vα ∈ Im ∂x. Then, we have

Kαβ
ṽ;0 =

∑
m≥0

∂ṽα

∂vρm
∂mx K

ρβ
0 .

Proof. To prove this, we compute the following:

Kαβ
ṽ;0 = Coef∂0x K

αβ
ṽ (5.5.2)

= Coef∂0x

 ∑
m,n≥0

∂ṽα

∂vρm
∂mx ◦Kρθ ◦ (−∂x)n ◦ ∂ṽ

β

∂vθn

 (5.5.3)

= Coef∂0x


∑
m≥0

∂ṽα

∂vρm
∂mx ◦Kρθ ◦

∑
n≥0

(−∂x)n
∂ṽβ

∂vθn︸ ︷︷ ︸
= δũβ

δvθ
=δβθ


(5.5.4)

= Coef∂0x

∑
m≥0

∂ṽα

∂vρm
∂mx ◦Kρβ

 (5.5.5)

=
∑
m≥0

∂ṽα

∂vρm
∂mx K

ρβ
0 . (5.5.6)

The lemma is now proved.

Lemma 5.5.2 We have

KDZ;αβ
2;0 =

(
1

2
− µβ

)
ηαθηβν∂xΩθ,0;ν,0.
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Proof. By invoking lemma 5.5.1, we obtain

KDZ;αβ
2;0 =

(
1

2
− µβ

)∑
m≥0

∂wα

∂vρm
∂mx

((
Cρβγ

)∣∣∣
t∗=v∗

vγx

)
.

Note that ((
Cρβγ

)∣∣∣
t∗=v∗

vγx

)∣∣∣
v∗t=vtop β;∗

= ηβν
∂vtop;p

∂tν0
.

Therefore, we have ∑
m≥0

∂wα

∂vρm
∂mx

((
Cρβγ

)∣∣∣
t∗=v∗

vγx

)∣∣∣∣∣∣
v∗=vtop;∗∗

= ηβν
∂wtop;α

∂tν0

= ηαθηβν∂xΩθ,0;ν,0

∣∣∣
v∗∗=v

top; ∗
∗

,

which confirms that

∑
m≥0

∂wα

∂vρm
∂mx

((
Cρβγ

)∣∣∣
t∗=v∗

vγx

)
= ηαθηβν∂xΩθ,0;ν,0,

as required.

Remark 5.5.3 The lemma implies that the constant term of the operator KDZ
2 is a dif-

ferential polynomial if Ωθ,0;ν,0 is also a differential polynomial. This is particularly true in

the semisimple case, as observed in [IS22].

Lemma 5.5.4 We have

KDR;αβ
2;0 =

(
1

2
− µβ

)
ηαθηβν∂x

δḡν,0
δuθ

.

Proof. The lemma directly follows from the definition given by equation (5.3.10).

5.6 Proof of the main Theorem

If we exclude the operators KDZ
2 and KDR

2 from consideration, the coincidence of the DZ

and DR hierarchies in the coordinates ũα, up to genus 1 approximation, has already been

established in Theorem 8.4 of [BDGR18]. Therefore, it suffices to prove that

KDZ
2;ũ = KDR

2;ũ +O
(
ε4
)
.

Given that K
DZ:[0]
2;ū = K

DR;[0]
2;ū [BRS21], we need to verify that

K
DZ;[2]
2;ũ;l = K

DR;[2]
2;ũ;l for l = 0, 1, 2, 3. (5.6.1)
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We divide the proof into several steps.

Step 1. We first examine equation (5.6.1) for l = 2 and l = 3 through direct compu-

tation.

For convenience, we introduce the following notations:

∂α :=
∂

∂uα
,

cαβγδ := ∂δc
αβ
γ ,

cαβγδθ := ∂θc
αβ
γδ ,

eγ := Eγ |t∗=u∗ = (1− qγ)uγ + rγ ,

gαβ = eγcαβγ .

In [DZ98], the authors derived the following formulas:

K
DZ;[2],αβ
2;ũ;3 = hαβ

∣∣∣
u∗=ũ∗

,

K
DZ;[2],αβ
2;ũ;2 =

(
3

2
∂γh

αβ +
1

24

(
3

2
− µβ

)
cανγ cβµνµ −

1

24

(
3

2
− µα

)
cβνγ cαµνµ

)∣∣∣∣
u∗=ũ∗

ũγx,

where

hαβ =
1

12

(
∂ν

(
gµνcαβµ

)
+

1

2
cµνν cαβµ

)
.

On the other hand, considering the expansion ũα = uα + ε2

24∂
2
xc
αµ
µ +O(ε4) [BDGR18],

we find that

KDR;αβ
2;ũ = Lν

(
uα +

ε2

24
∂2
xc
αλ
λ

)
◦KDR;νρ

2 ◦ L†ρ
(
uβ +

ε2

24
∂2
xc
βθ
θ

)
+O

(
ε4
)

= KDR;αβ
2 +

ε2

24

(
∂2
x ◦ Lν

(
cαλλ

)
◦KDR;νβ

2 +KDR;αρ
2 ◦ L†ρ

(
cβθθ

)
◦ ∂2

x

)
+O

(
ε4
)

= KDR;αβ
2 + ε2 1

24

(
∂2
x ◦ cαλνλ ◦K

DR;[0],νβ
2 +K

DR;[0],αρ
2 ◦ cβθρθ ◦ ∂

2
x

)
︸ ︷︷ ︸

=:
∑3
i=0R

αβ
i ∂ix

+O
(
ε4
)
,

where Rαβi ∈ Au;3−i.

Considering the expansion gµ,0 =
∑

g≥0 ε
2gg

[2g]
µ,0 , g

[2g]
µ,0 ∈ Au;2g, from equation (5.3.10)

we compute:

K
DR;[2],αβ
2;3 = (3− µα − µβ) ηαµηβν

∂g
[2]
µ,0

∂uνxx
,

K
DR;[2],αβ
2;2 = ηαµηβν

[
(2− µα − µβ)

∂g
[2]
µ,0

∂uνx
+

(
5

2
− µβ

)
∂x
∂g

[2]
µ,0

∂uνxx

]
.
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Using equation (5.3.9), we then find:

∂g
[2]
µ,0

∂uνxx
=

1

24
cθθξc

ξ
µν ,

∂g
[2]
µ,0

∂uνx
=

1

24

[
∂ν

(
cθθξc

ξ
µγ

)
+ ∂γ

(
cθθξc

ξ
µν

)
− ∂µ

(
cθθξc

ξ
νγ

)]
uγx,

and finally obtain:

K
DR;[2],αβ
2;3 =

3− µα − µβ
24

cγσγ cαβσ ,

K
DR;[2],αβ
2;2 =

[
2− µα − µβ

24

(
cβθθξ c

αξ
γ − cαθθξ cβξγ

)
+

9
2 − µα − 2µβ

24
∂γ

(
cθξθ c

αβ
ξ

)]
uγx.

Using the expression K
DR;[0],αβ
2 = gαβ∂x +

(
1
2 − µβ

)
cαβγ uγx, we can also compute:

Rαβ3 =
1

24

(
cαλνλg

νβ + gανcβλνλ

)
,

Rαβ2 =
1

24

[
2∂γ

(
cαλνλg

νβ
)

+ cαλνλc
νβ
γ

(
1

2
− µβ

)
+ gανcβλγνλ + cανγ

(
1

2
− µν

)
cβλνλ

]
uγx.

we aim to prove equation (5.6.1). Specifically, we need to verify the following two equa-

tions:

1

12

(
∂ν

(
gνµcαβµ

)
+

1

2
cµνν cαβµ

)
=

3− µα − µβ
24

cγσγ cαβσ +
1

24

(
cαλνλg

νβ + gανcβλνλ

)
, (5.6.2)

1

8
∂γ

∂ν (gµνcαβµ )+
1

2
cµνν cαβµβ︸ ︷︷ ︸
∗

+
1

24

(
3

2
− µβ

)
cανγ cβµνµ︸ ︷︷ ︸
∗∗

− 1

24

(
3

2
− µα

)
cβνγ cαµνµ︸ ︷︷ ︸
∗∗∗

=

2− µα − µβ
24

(cβθθξ c
αξ
γ︸ ︷︷ ︸

∗∗

− cαβθξ c
βξ
γ︸ ︷︷ ︸

∗∗∗

) +
9
2 − µα − 2µβ

24
∂γ(cβξθ c

αβ
ξ︸ ︷︷ ︸
∗

)


+

1

24
[2∂γ

(
cαλνλg

ν/β
)

+

(
1

2
− µβ

)
cαλνλc

νβ
γ︸ ︷︷ ︸

∗∗∗

+gανcβλγνλ +

(
1

2
− µν

)
cανγ cβλνλ︸ ︷︷ ︸
∗∗

]. (5.6.3)

To prove Equation (5.6.2), let us start by focusing on the terms that are underlined.

We’ll use the identity gαβ = eγcαβγ and multiply both sides of the equation by 12. Doing

so, we find that Equation (5.6.2) can be rewritten as:
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(1− qν) cνµν cαβµ + eγ∂ν

(
cνµγ cαβµ

)
=

2− µα − µβ
2

cγσγ cαβσ +
1

2
eγ
(
cαλνλc

νβ
γ + cανγ cβλνλ

)
. (5.6.4)

Next, let’s consider the transformation of the boxed term. Specifically, we have:

eγ∂ν

(
cνµγ cαβµ

)
= eγ∂ν

(
cβµγ cανµ

)
= eγ

(
cβµνγ c

αν
µ + cβµγ cαννµ

)
. (5.6.5)

Finally, by moving all terms to the left-hand side, we arrive at the following expression:

µα + µβ − 2qν
2

cνµν cαβµ + eγ
(
cβµνγ c

αν
µ + cβµγ cαννµ −

1

2
cαλνλc

νβ
γ −

1

2
cανγ cβλνλ

)
=
µα + µβ − 2qν

2
cνµν cαβµ + eγcβµνγ c

αν
µ + eγ

(
1

2
cβµγ cαννµ −

1

2
cανγ cβλνλ

)
, (5.6.6)

To complete the proof, we need to show that a certain expression vanishes. This is

where the theory of Dubrovin-Frobenius manifolds comes into play. According to this the-

ory, as outlined in [Dub96], we have the following relationship involving the Lie derivative

LE :

LECaβγ = Cαβγ .

This result has an important implication for our problem. Specifically, it leads to the

equation:

eλcαβλγ = (δ − qα − qβ + qγ) cαβγ .

Upon applying the given relationship to the boxed term, we find that Equation (5.6.6)

can be rewritten as a sum of several terms involving the coefficients qα, qβ, qν , and qµ, as

well as the tensor cνµν cαβµ . Specifically, the equation can be expressed as follows:

qα + qβ − 2qν − δ
2

cνµν cαβµ + (δ − qβ − qµ + qν) cβµν cανµ +
eγ

2

(
cβµγ cαννµ − cανγ cβλνλ

)
=
qα − qβ + δ − 2qµ

2
cβµν cανµ +

eγ

2

(
cβµγ cαννµ − cανγ cβλνλ

)
. (5.6.7)

To further simplify the equation, we focus on transforming the underlined terms. After

some algebraic manipulations, we arrive at the following expression:
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cβµγ cαννµ − cανγ cβλνλ =

(
∂ν

(
cβµγ cανµ

)
− cβµνγ cανµ

)
−
(
∂λ

(
cανγ cβλν

)
− cανλγcβλν

)
= cανµγc

βµ
ν − cβµνγ cανµ . (5.6.8)

Upon simplifying Equation (5.6.7), we find that it can be expressed as follows:

qα − qβ + δ − 2qµ
2

cβµν cανµ +
1

2
eγ
(
cανµγc

βµ
ν − cβµνγ cανµ

)
=
qα − qβ + δ − 2qµ

2
cβµν cανµ +

δ − qα − qν + qµ
2

cανµ cβµν −
δ − qβ − qµ + qν

2
cβµν cανµ

= −µνcβµν cανµ = −µνcνµν cαβµ . (5.6.9)

To validate the equation, it is sufficient to confirm that µνc
ν
αν = 0 for any α. Upon

computation, we find:

X := µνc
ν
αν = µνη

νληνθc
θ
αλ = −µληνληνθcθαλ = −µλcλαλ = −X, (5.6.10)

which implies X = 0, as required.

Next, let us focus on proving Equation (5.6.3). After collecting terms that are alike,

the equation can be rewritten as:

1

8
∂γ∂ν

(
gµνcαβµ

)
+
µα + µν − 1

24
cανγ cβµνµ

=
3− µα − 2µβ

24
∂γ

(
cνµν cαβµ

)
+

1

24

[
2∂γ

(
cαλνλg

νβ
)

+ gανcβλγνλ

]
,

which is equivalent to

1− δ
2 − µν
8

∂γ

(
cνµν cαβµ

)
︸ ︷︷ ︸

∗

+
1

8
∂γ

(
eθ∂ν

(
cµνθ cαβµ

))
+
µα + µν − 1

24
cανγ cβµνµ

+
µα + 2µβ − 3

24
∂γ

(
cνµν cαβµ

)
︸ ︷︷ ︸

∗

− 1

24

[
2∂γ

(
cαλνλg

νβ
)

+ gανcβλγνλ

]
= 0.

Using that µνc
µµ
ν = 0 we see that the left-hand side is equal to
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1

8
∂γ

(
eθ∂ν

(
cµνθ cαβµ

))
+
µα + µν − 1

24
cανγ cβµνµ

+
qα + 2qβ − 3δ

24
∂γ

(
cνµν cαβµ

)
− 1

24

[
2∂γ

(
cαλνλg

νβ
)

+ gανcβλγνλ

]
.

Transforming the first term in this expression as

∂γ

(
eθ∂ν

(
cµνθ cαβµ

))
= ∂γ

(
eθ∂ν

(
cµβθ cανµ

))
= ∂γ

(
eθcµβθν c

αν
µ

)
+ ∂γ

(
eθcµβθ cανµν

)
= (δ − qµ − qβ + qν) ∂γ

(
cµβν cανµ

)
+ ∂γ

(
gµβcανµν

)
= (δ − qβ) ∂γ

(
cµβν cανµ

)
+ (−qµ + qν) ∂γ

(
cµβν cανµ

)
︸ ︷︷ ︸

=0

+∂γ

(
gµβcανµν

)

= (δ − qβ) ∂γ

(
cµβν cανµ

)
+ ∂γ

(
gµβcανµν

)
,

we come to the expression

δ − qβ
8

∂γ

(
cµβν cανµ

)
+

1

8
∂γ

(
gµβcανµν

)
+
µα + µν − 1

24
cανγ cβµνµ

+
qα + 2qβ − 3δ

24
∂γ

(
cνµν cαβµ

)
− 1

24

[
2 ∂γ

(
cαλνλg

νβ
)

+ gανcβλγνλ

]
=
µα − µβ

24
∂γ

(
cµβν cανµ

)
+
µα + µν − 1

24
cανγ cβµνµ +

1

24

[
∂γ

(
cαλνλg

νβ
)
− gανcβλγνλ

]
.

Applying to the underlined term the formula

∂γg
νβ = (1− qγ) cνβγ + eθcνβθγ = (1− µν − µβ) cνβγ ,

we obtain

µα − µβ
24

∂γ

(
cµβν cανµ

)
+
µα + µν − 1

24
cανγ cβµνµ +

1

24

[
cαλνλγg

νβ + (1− µν − µβ) cαλνλc
νβ
γ − gανc

βλ
γνλ

]
=
µα − µβ

24
∂γ

(
cµβν cανµ

)
+
µα + µν − 1

24
cανγ cβµνµ +

1− µν − µβ
24

cαλνλc
νβ
γ +

1

24

[
cαλνλg

νβ − gανcβλγνλ
]

.

Expressing the underlined terms as follows:

∂λ∂γ

(
cαλν gνβ − gανcβλν

)
︸ ︷︷ ︸

=0

−cαλνλ∂γgνβ − cαλνγ ∂λgνβ

− cαλν ∂λ∂γg
νβ + ∂γg

ανcβλνλ + ∂λg
ανcβλνγ + ∂λ∂γg

ανcβλν
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= (µβ + µν − µλ − µα) ∂γ

(
cαλν cβνλ

)
+ (µβ + µν − 1) cαλνλc

βν
γ + (1− µα − µν) cανγ cβλνλ ,

we obtain

µα − µβ
24

∂γ

(
cµβν cανµν

)
︸ ︷︷ ︸

∗

+
µα + µν − 1

24
cανν cβµνµ︸ ︷︷ ︸
∗∗

+
1− µν − µβ

24
cαλνλc

νβ
γ︸ ︷︷ ︸

∗∗∗

+
µβ + µν − µλ − µα

24
∂γ

(
cαλν cβνλ

)
︸ ︷︷ ︸

∗

+
µβ + µν − 1

24
cαλνλc

βν
γ︸ ︷︷ ︸

∗∗

+
1− µα − µν

24
cανγ cβλνλ︸ ︷︷ ︸
∗∗

=

=
µν − µλ

24
∂γ

(
cαλν cβνλ

)
= 0,

as required.

Step 2. To prove equation (5.6.1) for l = 0, we first observe that ũα (w∗∗, ε) − wα

belongs to the image of ∂x, as per its definition. Invoking Lemmas 5.5.1 and 5.5.2, we find

that

KDZ;αβ
2;ũ;0 =

(
1

2
− µβ

)
ηβν

∑
m≥0

∂ũα

∂wρm
ηρθ∂m+1

x Ωθ,0;r,0 =

(
1

2
− µβ

)
ηβν

∑
m≥0

{
ũα, h̄ν,0

}
KDZ

1
.

Similarly, Lemmas 5.5.1 and 5.5.4, along with the fact that ũα (u∗∗, ε) − uα is also in the

image of ∂x [BDGR18], lead us to

KDR;αβ
2;ũ;0 =

(
1

2
− µβ

)
ηβν

∑
m≥0

∂ũα

∂uρm
ηρθ∂m+1

x

δḡν,0
δuθ

=

(
1

2
− µβ

)
ηβν

∑
m≥0

{ũα, ḡν,0}KDR
1
.

Finally, considering that in the coordinates ũα and up to an approximation of ε2, the local

functionals h̄α,a are equivalent to ḡα,a, and the Poisson operator KDZ
1 is identical to KDR

1 ,

we conclude that KDZ;αβ
2;ũ;0 = KDR;β

2;ũ;0 +O
(
ε4
)
, as required.

Step 3: To complete the proof, we need to show that K
DZ[2]
2:ũ = K

DR;[2]
2;ũ . We have

already established equation (5.6.1) for l = 0, 2, 3. Therefore, the difference K
DZ;[2]
2;ū −

K
DR;[2]
2;ū can be expressed as R∂x, where R =

(
Rαβ

)
and Rαβ ∈ Aū;2.

Given that both K
DZ;[2]
2;ũ and K

DR;[2]
2;ũ are skew-symmetric operators, we obtain:

(R∂x)† = −R∂x ⇔ RT = R and ∂xR = 0.

The condition ∂xR = 0 directly implies that R = 0, thereby concluding the proof of the

theorem.
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Appendix A

Integrability and the WDVV

equations

Theorem A.0.1 [Get02] Consider a Poisson structure Kαβ
u given by:

Kαβ
u = gαβ(u∗)∂x + Γαβγ (u∗)uγx +O(ε),

where gαβ is a non-degenerate symmetric matrix.1

Then, there exists a Miura transformation, denoted by u 7→ ũ, such that Kαβ
u can be

rewritten as:

Kαβ
ũ = ηαβ∂x,

where ηαβ is a constant non-degenerate symmetric matrix.

Let K be a Poisson operator as defined in theorem A.0.1, and let h̄α,d1 and h̄β,d2 ∈ Λ̂u

such that

{
h̄α,d1 , h̄β,d1

}
K

= 0

by theorem A.0.1, we can express the Poisson operator K as

{
h̄α,d1 , h̄β,d2

}
K

=

∫
δh̄α,d1
δuµ

Kµν δh̄β,d2
δuν

dx

=

∫
δh̄α,d1
δuµ

ηµν∂x
δh̄β,d2
δuν

dx

1When gαβ is interpreted as a metric, its Riemann curvature tensor vanishes due to the Jacobi identities
satisfied by K. Additionally, Γαβγ are the Christoffel symbols corresponding to the Levi-Civita connection
defined by gαβ .
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Given that the integral is zero, we have:

δ

δuσ

(
δh̄α,d1
δuµ

ηµν∂x
δh̄β,d2
δuν

)
= 0

Assuming the local functionals hα,d1 and hβ,d2 are defined up to genus 0, they solely

depend on u∗ (with no u∗i terms for i ≥ 1). Thus, we obtain:

∑
i≥0

(−∂x)i ◦ ∂

∂uσi

(
∂hα,d1
∂uµ

ηµν
∂2hβ,d2
∂uλ∂uν

uλx

)

=
∂

∂uσ

(
∂hα,d1
∂uµ

ηµν
∂2hβ,d2
∂uλ∂uν

uλx

)
− ∂x

(
∂hα,d1
∂uµ

ηµν
∂2hβ,d2
∂uλ∂uν

δλσ

)
=

(
∂2hα,d1
∂uσ∂uµ

ηµν
∂2hβ,d2
∂uλ∂uν

uλx

)
−
(
∂2hα,d1
∂uλ∂uµ

ηµν
∂2hβ,d2
∂uσ∂uν

uλx

)
From the above, we deduce:

(
∂2hα,d1
∂uσ∂uµ

ηµν
∂2hβ,d2
∂uλ∂uν

)
=

(
∂2hα,d1
∂uλ∂uµ

ηµν
∂2hβ,d2
∂uσ∂uν

)
(A.0.1)

For d1,2 = 0, these equations are recognized as the WDVV equations. This suggests

these equations correspond to a genus 0 relation, and are equivalent to the cohomological

relation in M0,4:

Figure A.1: Cohomological relation represented onM0,4 in condition to the WDVV equa-
tions.



Appendix B

On the complex structures of tori

Theorem B.0.1 Consider two tori Tτ1 and Tτ2 defined over the complex upper half-plane

H, such that Tτ1 = C/Γτ1 and Tτ2 = C/Γτ2. These tori are biholomorphic if and only if

their defining parameters τ1 and τ2 satisfy the relation

τ2 =
aτ1 + b

cτ1 + d
,

where a, b, c, and d are integers such that ad− bc = 1.

Proof. (⇒) Consider a biholomorphic map f : Tτ2 → Tτ1 . We can lift this map to a

new map, f̃ , between the universal covers of Tτ2 and Tτ1 , such that the following diagram

commutes:

C f̃−−−−→ C

π2

y yπ1
Tτ2 −−−−→

f
Tτ1

Since f is biholomorphic, f̃ : C → C must also be biholomorphic. We can extend f̃ to a

map f̂ : C∞ → C∞ as follows:

f̂(z) =

f̃(z) if z ∈ C,

∞ if z =∞.

Expanding f̂ at ∞, we obtain

f̂ = a1z +
∞∑
n=0

bnz
−n.

Since f̂ − a1z is holomorphic on C∞, it must be a constant, which we denote by κ.

Therefore, f̂ = a1z + κ is holomorphic on C. If we require the lattices to match at the

origin, then κ = 0. Moreover, we can express f̃(τ2) and f̃(1) in terms of elements of Γτ1
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as follows:

f̃(τ2) = a1τ2 = aτ1 + b, (B.0.1)

and

f̃(1) = a1 = cτ1 + d, (B.0.2)

where a, b, c, d ∈ Z.

In matrix notation, this can be written as:f̃(τ2)

f̃(1)

 = a1

τ2

1

 =

a b

c d

τ1

1

 .

Using Equation (B.0.2) in (B.0.1), we obtain:

τ2 =
aτ1 + b

cτ1 + d
. (B.0.3)

Since τ2 ∈ H and Im(τ2) > 0, we have:

(ad− bc)
|cτ1 + d|2

· Im(τ1) > 0, (B.0.4)

which implies (ad−bc) > 0. This shows that f̃ is invertible. Therefore, f̃−1◦ f̃ |Γτ2 = IdΓτ2
,

implying that 1
det f̃

∈ Z. Combining this with the previous results, we conclude that

ad− bc = 1.

(⇐) By changing the basis of the lattice using Equation (B.0.3), and noting that

f : Tτ2 → Tτ1 is a biholomorphism, we conclude that Tτ2 ' Tτ1 .
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