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Abstract

In this thesis we study the properties of nuclear matter in the massiveℒ024 and generalizedℒ0246
Skyrme models, and also the 𝜔-meson variant of the Skyrme model. A semi-analytic method is
developed to determine local minima of the static energy functional with respect to variations of
both the field and the period lattice of the crystal. In general, four distinct skyrmion crystals are
found. Two of these were already known – the cubic lattice of half-skyrmions and the 𝛼-particle
crystal – but two are new. In the Skyrme model with no vector mesons, these new solutions have
lower energy per baryon number and less symmetry, being periodic with respect to trigonal but not
cubic period lattices. Minimal energy crystals are also constructed under the constraint of constant
baryon density, and it is shown that the two new non-cubic crystals tend to chain and multi-wall
solutions at low densities.

Isospin asymmetric nuclear matter is investigated in the generalizedℒ0246-Skyrme mode by
canonically quantizing the isospin collective degrees of freedomof themulti-wall crystal. We obtain,
for the first time, an equation of state from the Skyrme model which interpolates between infinite
isospin asymmetric nuclear matter and finite isospin symmetric atomic nuclei. This enables us to
describe neutron stars with crusts within the Skyrme framework. Furthermore, we observe that
the symmetry energy tends to a constant value at zero density, which can be identified with the
asymmetry coefficient in the semi-empirical mass formula for atomic nuclei. The symmetry energy
also reveals a cusp in its structure below the nuclear saturation point 𝑛0 at 𝑛∗ ∼ 3𝑛0/4. This cusp
density point 𝑛∗ can be interpreted as the nuclear density whereby the infinite crystalline multi-wall
configuration undergoes a phase transition to a finite isolated multi-wall configuration. Both of
these observations are observed to be generic features of skyrmion crystals that tend asymptotically
to somewhat isolated skyrmion configurations in the zero density limit. We find that the resulting
neutron stars from our study agree quite well with recent NICER/LIGO observational data.

In the 𝜔-meson variant of the Skyrme model, the solitonic crystals are stable with respect to
variations of the Skyrme 𝜑 and 𝜔-meson fields, and also the period lattice Λ of the crystal. In the
conventional massive Skyrme model the ground state is a multi-wall solution, whereas the ground
state in this theory is dependent upon the choice of free parameters. Further, we predict coefficients
in the Bethe–Weizsäcker semi empirical mass formula using 𝜔-skyrmion crystals and the 𝛼-particle
approximation. Finally, we attempt to address the compression modulus problem and determine a
more acceptable value of the nuclear matter incompressibility coefficient.

Keywords: Topological Solitons, Skyrmion Crystals, Dense NuclearMatter, Neutron Stars, Vector
Mesons.
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One

Introduction

It is well known that the phase structure of nuclear matter is rich and highly non-trivial. At high
densities, the hadrons have considerably different properties than in the lower density regimes. In
order to understand what happens to nuclear matter under extreme conditions, the underlying
theory must be consistent with quantum chromodynamics (QCD). It was initially believed by
many nuclear theorists that descriptions of the low energy regime of QCDmust contain explicit
quarks. However, this was shown not to be the case by ’t Hooft [1], wherein he considered the
number of quark colors𝑁𝑐 as a free parameter. Then a detailed analysis showed that, in the large
𝑁𝑐-limit, low-energy QCD can be reduced to an effective chiral field theory of mesons. Witten [2]
took this further and conjectured that baryons arise as solitons in this large-𝑁𝑐 theory. Rather, the
quarks can be integrated away and the degrees of freedom are no longer quarks and gluons, they
are hadrons, that is, the family of mesons and baryons.

Skyrme’s original model [3] is one such description; it is an effective Lagrangian involving
only the lightest of mesons, the pions, with the idea that baryons emerge as stable solitons with
non-trivial topological charge. These baryons are realized as non-perturbative excitations of the
pionic fields (𝜋+, 𝜋−, 𝜋0). The theory has 𝑁𝑓 = 2 flavours of quarks: the up and down quarks
(and their corresponding antiquarks). These make up the pion fields, which are encoded in the
SU(𝑁𝑓)-valued Skyrme field. Skyrmions are field configurations classified topologically by an
integer-valued homotopy invariant 𝐵, which is interpreted physically as the baryon number of the
configuration [4, 5]. They can be quantized as rigid-bodies acquiring spin and isospin [6], which
has been reasonably successful for some light nuclei [7–9], and can be improved by considering
quantized vibrational deformations [10–14].

Skyrmions are minimal energy field configurations within their homotopy class, that is, they
are solutions of the Euler–Lagrange field equations corresponding to some static energy functional.
There is a topological lower bound on this static energy of the form 𝐸 ≥ 𝐸top𝐵, where 𝐸top is
some positive constant, originally due to Faddeev [15] and subsequently improved by Harland
[16]. (Improved in this context means that the constant 𝐸top is increased.) Let 𝐸(𝐵) denote the
minimum static energy among all fields of baryon number 𝐵. The energy bound 𝐸(𝐵) = 𝐸top𝐵
is never attained, but numerical studies suggest that the ratio 𝐸(𝐵)/𝐵 decreases monotonically,
and hence converges to some limit 𝐸∗ as 𝐵 → ∞, which is bounded below. This suggests that, as 𝐵
grows large, minimal energy Skyrme fields may tend to some regular, spatially periodic crystalline
structure, with baryon number 𝐵cell and energy 𝐸∗𝐵cell per unit cell.

One of the outstanding problems in the Skyrme model is the correct prediction of nuclear
binding energies. One would like to be able to predict correct binding energies using the Bethe–

5



6 1. Introduction

Weizsäcker semi empiricalmass formula (SEMF), which is composed of five terms: the volume term,
the surface term, the Coulomb term, the asymmetry term, and the pairing term. The coefficients
in each term are normally determined empirically, and the problem at hand is: can the coefficients
be estimated by using skyrmions? Baskerville [17] attempted to address the volume and surface
terms using the standard massless ℒ24-Skyrme model but was unsuccessful, overestimating the
coefficients by an order ofmagnitude. Ma et al. [18] hadmore success with theCoulomb coefficient
in the conventional massiveℒ024-Skyrme model, predicting the coefficient within 3%. This proved
promising, however, the other coefficients still remained out of grasp.

In the Skyrmemodel, the classical mass of a skyrmion roughly plays the same role as the volume
and surface terms. To be able to address these first two terms, we need to understand the phases
of nuclear matter in the Skyrme model. An important question arises when studying phases of
nuclear matter regarding the nature of high-density and low-density phases, and the transition
between these phases. At high densities the skyrmions form a crystal [19], whereas at low densities
the skyrmions are localised to their corresponding lattice points and form clusters, chains, and
other exotic shapes like graphene [20]. As the ground state of nuclear matter has a crystalline
structure in the classical approximation, understanding the infinite crystalline structure is key.

In order to determine such crystalline structures, one must find local minimizers of the rele-
vant static energy functional associated to some action, or Lagrangian. The generalized Skyrme
Lagrangian consists of four terms and is given by

ℒ0246 = ℒ0 + ℒ2 + ℒ4 + ℒ6, (1.0.1)

where the index 𝑖 denotes the degree of each term as a polynomial in spatial derivatives. The four
terms appearing in the generalized Lagrangian are the potential, Dirichlet, Skyrme and sextic terms,
respectively, and are detailed later. It is conventional to label the models by terms used in the
Lagrangian, e.g. the generalized model is labelledℒ0246, the standard massive model is denoted
ℒ024, the massless Skyrme modelℒ24 and the BPS (Bogomol’nyi–Prasad–Sommerfield) modelℒ06.
We will formulate our studies in terms of the fullℒ0246-model; however, we shall only consider the
ℒ024- andℒ24-models in our numerical studies in Chap. 3. The subsequent chapter (Chap. 4) will
deal withℒ0246-crystals and their applications to cold dense nuclear matter. Chap. 5 deals with an
𝜔-meson variant of the Skyrme model without the Skyrme term, related to theℒ026-model.

Forℒ24-skyrmions with 𝐵 < 8, solutions were found to be hollow fullerene structures [21, 22].
These are well approximated by the rational map approximation (RMA) [23]. In the RMA, the
target manifold 𝑆3 is decomposed into horizontal slices, with a radial profile function 𝑓(𝑟), and
a angular direction described by a rational map 𝑆2 → 𝑆2, where the domain 𝑆2 is identified with
concentric spheres in R3 and the target 𝑆2 with spheres of latitude on 𝑆3. This was extended to
include all 𝐵 ≤ 22 [24] and then icosahedrally symmetric rational maps for 𝐵 = 37, 47, 67, 97were
constructed [25]. These hollow fullerenes collapse into smaller clusters in theℒ024-model [26]. A
multi-layer rational map approach was proposed byManton and Piette [27] and later considered in
the context of the Skyrme crystal by Manton [28]. Feist et al. [29] developed this further by using
a cubic grid method to determine multi-layer rational maps for the construction of skyrmions as
chunks of the Skyrme crystal.

Atiyah andManton [30] showed that skyrmions could be generated from SU(2) instantons
by computing the holonomy along lines parallel to the time direction. The Atiyah–Manton
construction was extended by Sutcliffe [31] to a BPS Skyrme model where the Skyrme field is
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coupled to a tower of vector mesons. Truncating this BPS Skyrme model to include only the first
term produces the standard Skyrme model. Halcrow and Winyard [32] then conjectured that,
by coupling the Skyrme field to at least one vector meson, the low energy modes of a skyrmion
can be used to understand the moduli space of instantons. Skyrmions have also been derived
from holographic QCDmodels such as the Sakai-Sugimoto model [33]. More recently, skyrmions
have been approximated directly from ADHM (Atiyah–Drinfeld–Hitchin–Manin) data [34, 35],
which has been particularly successful at describing clusters of skyrmions and highly-symmetric
amalgamated skyrmions. Manton and Sutcliffe [36] have approximated the Skyrme crystal from
the holonomy of a twisted instanton on a 4-torus, obtaining a Skyrme crystal whose energy is 2%
above that of the known numerical solution.

The crystal structure ofℒ24-skyrmions was first studied by Klebanov [19], wherein he found a
crystal of 𝐵 = 1 skyrmions arranged in attractive channel orientations in a simple cubic (SC) lattice.
This was achieved by considering a 𝐵 = 1 hedgehog in a cubic period lattice with twisted boundary
conditions [37]. At higher densities, this SC lattice undergoes a phase transition to a body centered
cubic (BCC) lattice of half-skyrmions, whichManton &Goldhaber [38] later formulated as an
enhanced symmetry. Then, independently, Kugler & Shtrikman [39] and Castillejo et al. [40]
determined a new lower 𝐸/𝐵 solution, whereby skyrmions are initially arranged in a face centered
cubic (FCC) lattice and relax to a SC lattice of half-skyrmions. In all of these studies, theℒ24 energy
functional has only been varied for cubic lattices, in which only the side length of the cube is varied.
This was carried out at various cube side lengths and a curve fitted to the data.

The phase structure of theℒ24-Skyrme model has been studied by Jackson and Verbaarschot
[41], and Perapechka and Shnir [42] investigated phase transitions in the generalizedℒ0246-Skyrme
model. Two candidates have been previously proposed as the minimal 𝐸/𝐵 crystal for ℒ024-
skyrmions, these are the cubic lattice of half-skyrmions [39, 40] and the 𝛼-particle lattice [29].
Many skyrmions can be constructed as chunks of the infinite crystal [17, 43] and many have been
built from 𝛼-particles [44]. The phase transition between the 𝛼-particle and the 𝛼-particle lattice
has been investigated in both theℒ24-model [45] andℒ0246-model [46]. This 𝐵 = 4, or 𝛼-particle,
cluster picture supports the 𝛼-particle model of nuclei in which medium to large skyrmions are
composed of 𝐵 = 4 skyrmions in many arrangements [43, 44]. This 𝛼-clustering model has been
pretty successful in the predicting the energy spectrumof states ofCarbon-12 [9, 13] andOxygen-16
[11, 12].

One would expect that most skyrmions would be constructed from chunks of some infinite
crystalline configuration, such as the 𝛼 particle lattice or the SC lattice of half-skyrmions. However,
Gudnason and Halcrow [20] show that only the global minimisers for 𝐵 = 4, 8, 12 for 𝐵 ≤ 16 are
constructed from chunks of the 𝛼-particle lattice. They find a plethora of skyrmionswithmany new
solutions constructed from sheets of square and hexagonal layers, chains of 2- and 3-tori, and chains
of loosely bound clusters of lower charge skyrmions. Some work has been done on Skyrme chains
[47, 48], domain walls [49] and multi-walls [50]. However, a rigorous numerical investigation
into Skyrme crystals minimized over all period lattices has hitherto not been performed.

Additionally, a quantization of the isospin degrees of freedom for the SC crystal of half-
skyrmions, in theℒ24-model, has been carried out by Baskerville [51] and the state corresponding
to a neutron crystal identified. This was taken further by Adam et al. [52], in the context of the
generalizedℒ0246-model, to model isospin asymmetric nuclear matter and determine the nuclear
matter equation of state (EoS) at high densities [53]. A key part of these studies is the isotropy of
the isospin inertia tensor, which is only the case for the SC half-skyrmion crystal. So treatment for
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the isospin quantization of Skyrme crystals with non-isotropic inertia tensors is needed. Further,
the EoS derived from the Skyrme crystal is only valid in the high density regime where nuclear
matter is assumed to be homogeneous. Whereas, below the nuclear saturation density, nuclear
matter is known to be rather inhomogeneous. So, previous studies using the Skyrme crystal to
model compact stars have had to interpolate between the high density Skyrme EoS and some other
EoS valid in the low density regime [54].

The equationof state of nuclearmatter plays a key role in understanding a number of interesting
phenomena such as the mass and radii of neutron stars, the neutron-skin thickness of heavy nuclei,
and the collective behavior of nucleons. So, our main aim is to derive an EoS from pure skyrmion
matter which describes matter over all density regimes, that is, it interpolates between infinite
nuclear matter and finite atomic nuclei. Then, using the EoS, we can estimate coefficients in the
Bethe–Weizsäcker SEMF and extract information regarding the nuclear matter incompressibility
coefficient.

1.1 The SkyrmeModel
The Skyrme model consists of a single scalar field 𝜙 ∶ Σ → SU(2)where spacetime is given by the
(3 + 1)-dimensional Lorentzian manifold Σ = R ×𝑀with the pseudo-Riemannian product metric
𝜂 = −d𝑡2+𝑔, and (𝑀, 𝑔) is an oriented 3-dimensionalRiemannianmanifoldwithRiemannianmetric
𝑔. We equip (SU(2), ℎ)with the canonical bi-invariant metric ℎ(𝑋, 𝑌) = 1

2 Tr(𝑋
†𝑌) and denote the

Lie algebra of SU(2) by 𝔰𝔲(2). Let us introduce oriented local coordinates 𝑥 = (𝑡, 𝑥1, 𝑥2, 𝑥3) on the
domain Σ and let {𝜕0, 𝜕1, 𝜕2, 𝜕3} be a local basis for the tangent space 𝑇𝑥Σ at 𝑥 ∈ Σ, where we have
denoted 𝜕𝜇 ≡ 𝜕/𝜕𝑥𝜇. Let 𝜔 ∈ Ω1(SU(2)) ⊗ 𝔰𝔲(2) be the left Maurer-Cartan form. Then, for any left
invariant vector fields𝑋, 𝑌 ∈ 𝑇𝜙(𝑥) SU(2), where 𝑥 ∈ Σ, we defineΩ ∈ Ω2(SU(2)) ⊗ 𝔰𝔲(2) to be be an
𝔰𝔲(2)-valued two-form on SU(2) given by

Ω(𝑋, 𝑌) = [𝜔(𝑋), 𝜔(𝑌)] , (1.1.1)

where [⋅, ⋅] ∶ 𝔰𝔲(2) × 𝔰𝔲(2) → 𝔰𝔲(2) is the usual Lie bracket. The pullback of the left Maurer-Cartan
form 𝜔 defines the 𝔰𝔲(2)-valued left current

𝜙∗𝜔 =∶ 𝐿𝜇d𝑥𝜇, 𝐿𝜇 = 𝜔𝜙(𝜕𝜇𝜙) = 𝜙†𝜕𝜇𝜙. (1.1.2)

Let us write the pullback of the curvature asΩ𝜇𝜈 = 𝜙∗Ω(𝜕𝜇, 𝜕𝜈). Then the curvature can be expressed
in terms of the 𝔰𝔲(2)-valued left current as

Ω𝜇𝜈 = Ω (d𝜙(𝜕𝜇),d𝜙(𝜕𝜈)) = [𝜔𝜙(𝜕𝜇𝜙), 𝜔𝜙(𝜕𝜈𝜙)] = [𝐿𝜇, 𝐿𝜈] . (1.1.3)

Skyrme’s original ℒ24-model [3] is composed of two terms: the Dirichlet (or kinetic) term,
which is given by

ℒ2 =
𝐹2𝜋
16ℏ𝜂

𝜇𝜈Tr(𝐿𝜇𝐿𝜈), (1.1.4)

and the Skyrme term, corresponding to the four pion interaction,

ℒ4 =
ℏ

32𝑒2
𝜂𝜇𝛼𝜂𝜈𝛽Tr ([𝐿𝜇, 𝐿𝜈] [𝐿𝛼, 𝐿𝛽]) . (1.1.5)
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Theℒ24-model is (SU(2) × SU(2)) /Z2 ≅ SO(4) invariant and the pions are massless in this theory.
If one studies static Skyrme fields 𝜙 ∶ R3 → SU(2) and wants to obtain finite energy configura-
tions, then they are required to impose the vacuum boundary conditions 𝜙(�⃗� → ∞) = Id2. This
vacuum boundary condition spontaneously breaks the chiral SO(4) symmetry to an SO(3) isospin
symmetry, which acts on the pion fields �⃗�. So, the pion fields �⃗� are actually the Goldstone bosons
associated with this spontaneous symmetry breaking. The massiveℒ024-Skyrme model includes
the pion mass term

ℒ0 = − 1
8ℏ3

𝐹2𝜋𝑉(𝜙). (1.1.6)

where, throughout, we will use the standard pion mass potential 𝑉 ∶ SU(2) → [0, ∞) given by

𝑉(𝜙) = 𝑚2
𝜋Tr(Id2 −𝜙). (1.1.7)

This has the effect of giving the pions of the theory (small amplitude waves about the vacuum
𝜙 = Id2) mass𝑚𝜋. Therefore, in the massiveℒ024-model, the inclusion of the pion mass potential
(1.1.6), first proposed by Adkins and Nappi [6], explicitly breaks the chiral SO(4) symmetry to an
isospin SO(3) ≅ SU(2) isospin symmetry, given by the conjugation

𝜙 ↦ 𝐴𝜙𝐴†, 𝐴 ∈ SU(2). (1.1.8)

Upon quantization, this gives rise to the quantity that distinguishes protons and neutrons: isospin.
In addition to the spontaneous symmetry breaking, the finite energy boundary condition

𝜙(�⃗� → ∞) = Id2 yields the one-point compactification of space R3 ∪ {∞} ≅ 𝑆3, such that the
Skyrme field can be identified as a map 𝜙 ∶ 𝑆3 → SU(2) ≅ 𝑆3. The disjoint homotopy classes of
such maps are labelled by their topological degree 𝐵 ∈ 𝜋3(𝑆

3) = Z and the fields are necessarily
topologically stable configurations. In general, the topological degree is identified with the physical
baryon number upon quantization, so we often to refer to 𝐵 as the baryon number, which may be
computed using

𝐵 = deg(𝜙) = ∫
𝛭
d3𝑥√𝑔ℬ0, ℬ𝜇 = 1

24𝜋2√𝑔
𝜖𝜇𝜈𝜌𝜎Tr(𝐿𝜈𝐿𝜌𝐿𝜎), (1.1.9)

where𝑀 is a connected, oriented, 3-dimensional manifold without boundary.
We will also consider the generalization of the massiveℒ024-Skyrme Lagrangian which yields an

𝜔-meson-like repulsion on short distances, while also allowing the quartic Skyrme term to describe
scalar meson effects. This is achieved by including the sextic term, defined by [55]

ℒ6 = −𝜋4𝜆2𝜂𝜇𝜈ℬ𝜇ℬ𝜈, (1.1.10)

whereℬ𝜇 is the topological current defined in (1.1.9). So, the free parameters of the model are the
pion decay constant 𝐹𝜋, the pion mass𝑚𝜋, the dimensionless Skyrme parameter 𝑒, and 𝜆which is
related to the 𝜔-meson mass𝑚𝜔 and the coupling constant 𝛽𝜔 of the 𝜔meson via 𝜆2 = 𝛽2𝜔ℏ

3/(2𝜋4𝑚2
𝜔)

[56], where ℏ = 197.33MeV fm is the reduced Planck constant.
Our aim is normally to find static solutions and, so, we define 𝜙 = 𝜑 ∘ pr

2
where 𝜑 ∶ 𝑀 → SU(2)

is a fixedmap and pr
2
∶ R×𝑀 →𝑀 is a projection. Themap 𝜑 ∶ 𝑀 → SU(2)will now be identified

as the Skyrme field. Following convention, we adopt the usual Skyrme units of length and energy.
The classical energy scale is �̃� = 𝐹𝜋/4𝑒 (MeV) and the length scale is �̃� = 2ℏ/𝑒𝐹𝜋 (fm). Thus the
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quantum energy scale is defined by ℏ̃ = 2𝑒2. In these dimensionless Skyrme units, the Lagrangian is
given by

ℒ = �̃�3

�̃�
ℒ0 +

�̃�
�̃�
ℒ2 +

1
�̃��̃�

ℒ4 +
1
�̃�3�̃�

ℒ6

= − 𝑚2Tr (Id2 −𝜙) +
1
2𝜂

𝜇𝜈Tr(𝐿𝜇𝐿𝜈) +
1
16𝜂

𝜇𝛼𝜂𝜈𝛽Tr ([𝐿𝜇, 𝐿𝜈] [𝐿𝛼, 𝐿𝛽]) − 𝑐6𝜂𝜇𝜈ℬ𝜇ℬ𝜈, (1.1.11)

where the rescaled pion mass for our studies is

𝑚 =
2𝑚𝜋
𝐹𝜋𝑒

(1.1.12)

and the dimensionless sextic coupling constant is

𝑐6 =
𝜋4𝜆2𝑒4𝐹2𝜋
2ℏ3

. (1.1.13)

It will prove useful throughout to introduce the Hilbert energy-momentum tensor (in dimension-
less Skyrme units):

𝑇𝜇𝜈 = − 2
√−𝜂

𝜕(√−𝜂ℒ0246)
𝜕𝜂𝜇𝜈 = −2

𝜕ℒ0246
𝜕𝜂𝜇𝜈 + 𝜂𝜇𝜈ℒ0246

= −Tr(𝐿𝜇𝐿𝜈) −
1
4𝜂

𝛼𝛽Tr([𝐿𝜇, 𝐿𝛼][𝐿𝜈, 𝐿𝛽]) + 2𝑐6ℬ𝜇ℬ𝜈 + 𝜂𝜇𝜈ℒ0246. (1.1.14)

The static energy functional can be obtained from the timelike part of the energy-momentum
tensor, 𝑇00 = ℰstat + ℰkin, and is given by

𝑀𝛣(𝜑, 𝑔) = ∫
𝛭
d3𝑥√𝑔ℰstat

= ∫
𝛭
d3𝑥√𝑔 {𝑚2Tr (Id2 −𝜑) −

1
2𝑔

𝑖𝑗Tr(𝐿𝑖𝐿𝑗) −
1
16𝑔

𝑖𝑎𝑔𝑗𝑏Tr ([𝐿𝑖, 𝐿𝑗][𝐿𝑎, 𝐿𝑏])

+𝑐6
𝜖𝑖𝑗𝑘𝜖𝑎𝑏𝑐

(24𝜋2√𝑔)2
Tr(𝐿𝑖𝐿𝑗𝐿𝑘)Tr(𝐿𝑎𝐿𝑏𝐿𝑐)} . (1.1.15)

A field configuration 𝜑which minimizes the static energy functional (1.1.15), for some choice of
domain metric 𝑔, is referred to as a skyrmion and the static energy𝑀𝛣 is often interpreted as the
classical mass of the skyrmion.

Throughout, it will be convenient to utilize the non-linear 𝜎-model (NL𝜎M) formulation
of the model, that is, we write 𝜑 = 𝜎 Id2 +𝑖�⃗� ⋅ �⃗� where 𝜏𝑖 are the usual Pauli spin matrices. Then,
exploiting the isometry between (SU(2), ℎ) and 𝑆3 with its round metric of unit radius, we can
identify

SU(2) ∋ ( 𝜎 + 𝑖𝜋
3 𝑖𝜋1 + 𝜋2

𝑖𝜋1 − 𝜋2 𝜎 − 𝑖𝜋3
) ↔ (𝜎, 𝜋1, 𝜋2, 𝜋3) ∈ 𝑆3, (1.1.16)

with the unitary condition 𝜎2 + �⃗� ⋅ �⃗� = 1, where �⃗� = (𝜋1, 𝜋2, 𝜋3) is normally identified with the
triplet of pion fields and 𝜎with the non-linear 𝜎-field. For numerical purposes, we will write 𝜑𝜇
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where it is understood that 𝜑0 = 𝜎 and 𝜑𝑖 = 𝜋𝑖. Then we can write the energy functional in NL𝜎M
notation as

𝑀𝛣(𝜑, 𝑔) = ∫
𝛭
d3𝑥√𝑔 {2𝑚2(1 − 𝜎) + 𝑔𝑖𝑗𝜕𝑖𝜑

𝜇𝜕𝑗𝜑
𝜇 + 1

2𝑔
𝑖𝑘𝑔𝑗𝑙 (𝜕𝑖𝜑

𝜇𝜕𝑘𝜑
𝜇𝜕𝑗𝜑

𝜈𝜕𝑙𝜑
𝜈 − 𝜕𝑖𝜑

𝜇𝜕𝑙𝜑
𝜇𝜕𝑗𝜑

𝜈𝜕𝑘𝜑
𝜈)

+
𝑐6𝜖

𝑖𝑗𝑘𝜖𝑙𝑚𝑛

(12𝜋2√𝑔)2
𝜖𝜇𝜈𝜌𝜎𝜖𝛼𝛽𝛾𝛿𝜑

𝜇𝜑𝛼𝜕𝑖𝜑
𝜈𝜕𝑗𝜑

𝜌𝜕𝑘𝜑
𝜎𝜕𝑙𝜑

𝛽𝜕𝑚𝜑
𝛾𝜕𝑛𝜑

𝛿} . (1.1.17)

After a lengthy but straightforward calculation, the corresponding Euler–Lagrange field equations
(for a flat metric) are found to be

𝛿ℰstat
𝛿𝜑𝜇 =

𝜕ℰstat
𝜕𝜑𝜇 − 𝜕𝑖 (

𝜕ℰstat
𝜕(𝜕𝑖𝜑𝜇)

)

= 𝜕𝑉
𝜕𝜑𝜇 − 2𝑔

𝑝𝑎 {𝜕𝑝𝑎𝜑
𝜇 + 𝑔𝑞𝑏 [(𝜕𝑝𝑎𝜑

𝜇𝜕𝑞𝜑
𝛼𝜕𝑏𝜑

𝛼 + 𝜕𝑝𝜑
𝜇𝜕𝑞𝑎𝜑

𝛼𝜕𝑏𝜑
𝛼 + 𝜕𝑝𝜑

𝜇𝜕𝑞𝜑
𝛼𝜕𝑏𝑎𝜑

𝛼)

− (𝜕𝑞𝑎𝜑
𝜇𝜕𝑝𝜑

𝛼𝜕𝑏𝜑
𝛼 + 𝜕𝑞𝜑

𝜇𝜕𝑝𝑎𝜑
𝛼𝜕𝑏𝜑

𝛼 + 𝜕𝑞𝜑
𝜇𝜕𝑝𝜑

𝛼𝜕𝑏𝑎𝜑
𝛼)]} +

2𝑐6𝜖
𝑝𝑞𝑟𝜖𝑎𝑏𝑐

(12𝜋2√𝑔)2
𝜖𝛼𝛽𝛾𝛿𝜖𝜇𝜈𝜌𝜎

× {𝜑𝛼𝜕𝑝𝜑
𝜈𝜕𝑎𝜑

𝛽𝜕𝑞𝜑
𝜌𝜕𝑏𝜑

𝛾𝜕𝑟𝜑
𝜎𝜕𝑐𝜑

𝛿 + 3 [𝜕𝑝𝜑
𝜈𝜑𝛼𝜕𝑎𝜑

𝛽𝜕𝑞𝜑
𝜌𝜕𝑏𝜑

𝛾𝜕𝑟𝜑
𝜎𝜕𝑐𝜑

𝛿

+ 𝜑𝜈𝜕𝑝𝜑
𝛼𝜕𝑎𝜑

𝛽𝜕𝑞𝜑
𝜌𝜕𝑏𝜑

𝛾𝜕𝑟𝜑
𝜎𝜕𝑐𝜑

𝛿 + 𝜑𝜈𝜑𝛼 (𝜕𝑝𝑎𝜑
𝛽𝜕𝑞𝜑

𝜌𝜕𝑏𝜑
𝛾𝜕𝑟𝜑

𝜎𝜕𝑐𝜑
𝛿

+ 𝜕𝑎𝜑
𝛽𝜕𝑝𝑞𝜑

𝜌𝜕𝑏𝜑
𝛾𝜕𝑟𝜑

𝜎𝜕𝑐𝜑
𝛿 + 𝜕𝑎𝜑

𝛽𝜕𝑞𝜑
𝜌𝜕𝑝𝑏𝜑

𝛾𝜕𝑟𝜑
𝜎𝜕𝑐𝜑

𝛿

+ 𝜕𝑎𝜑
𝛽𝜕𝑞𝜑

𝜌𝜕𝑏𝜑
𝛾𝜕𝑝𝑟𝜑

𝜎𝜕𝑐𝜑
𝛿 + 𝜕𝑎𝜑

𝛽𝜕𝑞𝜑
𝜌𝜕𝑏𝜑

𝛾𝜕𝑟𝜑
𝜎𝜕𝑝𝑐𝜑

𝛿)]} . (1.1.18)

Arrested Newton Flow
The Euler–Lagrange field equations (1.1.18) associated to (1.1.15) can be approximately solved by
discretizing the static energy (1.1.15) and employing a 4th order central finite-difference method.
This is carried out using the NL𝜎M formulation detailed above. The first order and second order
spatial derivatives with respect to the local coordinate 𝑥1 are, respectively, given by

𝜕𝜑𝜇𝑖,𝑗,𝑘
𝜕𝑥1

=
1
12𝜑

𝜇
𝑖−2,𝑗,𝑘 −

2
3𝜑

𝜇
𝑖−1,𝑗,𝑘 +

2
3𝜑

𝜇
𝑖+1,𝑗,𝑘 −

1
12𝜑

𝜇
𝑖+2,𝑗,𝑘

Δ𝑥1
(1.1.19)

𝜕2𝜑𝜇𝑖,𝑗,𝑘
𝜕(𝑥1)2

=
− 1
12𝜑

𝜇
𝑖−2,𝑗,𝑘 +

4
3𝜑

𝜇
𝑖−1,𝑗,𝑘 −

5
2𝜑

𝜇
𝑖,𝑗,𝑘 +

4
3𝜑

𝜇
𝑖+1,𝑗,𝑘 −

1
12𝜑

𝜇
𝑖+2,𝑗,𝑘

(Δ𝑥1)2
, (1.1.20)

with the 𝑥2, 𝑥3 derivatives defined analogously. We can then regard the static energy as a function
𝑀𝛣 ∶ 𝒞 → R, where the discretised configuration space is the manifold𝒞 = (𝑆3)𝛮1𝛮2𝛮3 ⊂ R4𝛮1𝛮2𝛮3 .
To solve the Euler–Lagrange field equations (1.1.18) we use arrested Newton flow: an accelerated
gradient descent method with flow arresting, with some appropriate initial configuration. That is,
we are solving the system of 2nd order ODEs

�̈� = −
𝛿ℰstat
𝛿𝜑 , 𝜑(0) = 𝜑0, (1.1.21)

with initial velocity �̇�(0) = 0. Setting 𝜓 ∶= �̇� as the velocity with 𝜓(0) = �̇�(0) = 0 reduces the
problem to a coupled system of 1st order ODEs. We implement a 4th order Runge–Kutta method
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to solve this coupled system. In general, the initial configuration 𝜑0 is not a minimizer and so it
swaps its potential energy for kinetic energy as it evolves. During the evolution we check to see
if the potential energy is increasing. If the energy is indeed increasing, we take out all the kinetic
energy in the system by setting 𝜓(𝑡) = �̇�(𝑡) = 0 and restart the flow (this is the arresting criteria).
Naturally the field will relax to a local, or global, minimum in some potential well. The evolution
then terminates when every component of the energy gradient 𝛿𝛭𝛣

𝛿𝜑 is zero within some specified
tolerance, e.g. tol = 10−5.

It is essential that we ensure our Skyrme field lies on the target 3-sphere. Numerically we pull
our target space back onto 𝑆3. This is done by normalizing the Skyrme field 𝜑 each loop,

𝜑𝜇 →
𝜑𝜇

𝜑 ⋅ 𝜑 . (1.1.22)

We also need to project out the component of the energy gradient, and velocity, in the direction of
Skyrme field, that is

𝛿ℰ
𝛿𝜑𝜇 → 𝛿ℰ

𝛿𝜑𝜇 − (
𝛿ℰ
𝛿𝜑 ⋅ 𝜑)

𝜑𝜇

𝜑 ⋅ 𝜑 and 𝜓𝜇 → 𝜓𝜇 − (𝜓 ⋅ 𝜑)
𝜑𝜇

𝜑 ⋅ 𝜑 . (1.1.23)

1.2 The 𝐵 = 1 Skyrmion
In Skyrme’s originalℒ24-model he presented the spherically symmetric 𝐵 = 1 hedgehog skyrmion
[3]. The existence of a minimizer in the charge 1 sector with spherical symmetry was proven by
Kapitanski and Ladyzenskaia [57], and Esteban [58] proved existence of a 𝐵 = 1 minimizer in
general. The hedgehog ansatz takes the form

𝜑𝛨(�⃗�) = exp (𝑖𝑓(𝑟) ̂�⃗� ⋅ �⃗�) , (1.2.1)

where 𝑓 ∶ [0, ∞) → R is some radial profile function. This ansatz is known as the hedgehog ansatz
because the pion fields point radially outwards from the origin at all points in space. This can be
easily seen by considering the ansatz in terms of the pion fields,

𝜎 = cos𝑓(𝑟), �⃗� = sin𝑓(𝑟) ̂�⃗�. (1.2.2)

In order to ensure the boundary condition 𝜑(�⃗� → ∞) = Id2, the profile function 𝑓(𝑟)must satisfy
the boundary conditions 𝑓(0) = 𝜋 and 𝑓(∞) = 0. The hedgehog solution does indeed have baryon
number 𝐵 = 1 since, upon substitution of (1.2.1) into (1.1.9), one finds that

𝐵 = − 1
2𝜋2

∫
∞

0

sin2 𝑓
𝑟2

d𝑓
d𝑟 4𝜋𝑟

2d𝑟 = 1
𝜋𝑓(0) = 1. (1.2.3)

To determine the 𝐵 = 1 skyrmion, we have to solve the Euler–Lagrange field equations corre-
sponding to the static energy functional associated to the hedgehog ansatz (1.2.1). The associated
energy functional is found to be (upon substituting (1.2.1) into (1.1.15) with 𝑉(𝜑) = 0 = 𝑐6)

𝑀1 = 4𝜋∫
∞

0
[𝑟2 (

d𝑓
d𝑟 )

2

+ 2 sin2 𝑓 (1 + (d𝑓d𝑟 )
2

) +
sin4 𝑓
𝑟2

]d𝑟 (1.2.4)



1.2. The 𝐵 = 1 Skyrmion 13

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) (b)

Figure 1.1: The profile function (a) and isosurface plot of the baryon density (b) of the 𝐵 = 1 hedgehog
skyrmion.

and the corresponding Euler–Lagrange field equations reduce to a second order non-linear ODE
that can only be solved numerically, which are given by

(𝑟2 + 2 sin2 𝑓) d
2𝑓
d𝑟2 + 2𝑟

d𝑓
d𝑟 + sin 2𝑓 [(d𝑓d𝑟 )

2

− 1 −
sin2 𝑓
𝑟2

] = 0. (1.2.5)

Using a shooting method, the resulting profile function 𝑓(𝑟) is shown in Fig. 1.1a. We observe that
the massless 𝐵 = 1 hedgehog skyrmion has energy per baryon 𝐸/(12𝜋2) = 1.232. As a fidelity check
on our numerics we also obtain the 𝐵 = 1 skyrmion using arrested Newton flow, and we find that
both results are in agreement. Also shown in Fig. 1.1 is an isosurface plot of the baryon density
ℬ0(�⃗�), which is colored using the Runge color sphere detailed in Sec. A.2.

The asymptotic behavior of the profile function 𝑓(𝑟) can be determined by linearizing the
field equations (1.2.5) for large 𝑟, revealing that 𝑓(𝑟) → 𝑐/𝑟2, for some constant 𝑐. This shows that,
to leading order, the pion fields behave asymptotically as a triplet of scalar orthogonal dipoles,
�⃗� → (𝑐/𝑟2) ̂�⃗�. We employ a multiple shooting method to numerically determine the asymptotic
constant 𝑐, where we define two profile functions: the left 𝑓𝐿(𝑟) and right 𝑓𝑅(𝑟) profiles. These
profiles must satisfy the boundary conditions 𝑓𝐿(0) = 𝜋 and 𝑓𝑅(∞) = 0. At some 𝑟∗ ∈ [0, ∞), we
require the profiles and their derivatives to match, that is, 𝑓𝐿(𝑟∗) = 𝑓𝑅(𝑟∗) and 𝑓′𝐿 (𝑟∗) = 𝑓′𝑅(𝑟∗). Setting
𝑓𝑅(𝑟) = 𝑐/𝑟2 and shooting from both sides, we find that 𝑐 = 2.157which is in agreement with [59].
This enables one to determine the dipole strength 𝐹𝐷 = 4𝜋𝑐 and also calculate the asymptotic forces
between well-separated skyrmions. Jackson et al. [60] investigated the asymptotic interactions of
two well-separated 𝐵 = 1 skyrmions. Therein, they observed that two 𝐵 = 1 skyrmions with one
rotated by an angle of 𝜋 about a line perpendicular to the line joining them produces the lowest
interaction energy. This is known as the attractive channel orientation.
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1.3 Skyrmion Crystals
So far, we have only detailed the 𝐵 = 1 skyrmion solution on R3. However, as we have previously
motivated, we wish to study static Skyrme fields 𝜑 ∶ R3 → SU(2) that are periodic with respect to
some 3-dimensional period lattice

Λ = {𝑛1�⃗�1 + 𝑛2�⃗�2 + 𝑛3�⃗�3 ∶ 𝑛𝑖 ∈ Z} , (1.3.1)

i.e. we impose the condition 𝜑(𝑥+𝑋) = 𝜑(𝑥) for all 𝑥 ∈ R3 and𝑋 ∈ Λ. We can equivalently interpret
the domain of the Skyrme field as R3/Λ, where (R3/Λ, 𝑑) is a 3-torus equipped with the standard
Euclidean metric 𝑑. Now, let us denote the unit 3-torus by T3 ≡ 𝑆1 × 𝑆1 × 𝑆1 = R3/Z3 and equip it
with a flat Riemannian metric 𝑔. Let (𝑥1, 𝑥2, 𝑥3) be oriented local coordinates on T3 and {𝜕1, 𝜕2, 𝜕3}
be a local frame for the tangent space 𝑇𝑥T3 at 𝑥 ∈ T3. Then every 3-torus (R3/Λ, 𝑑) can be identified
with this unit 3-torus (T3, 𝑔) via the diffeomorphism

𝐹 ∶ T3 → R3/Λ, (𝑥1, 𝑥2, 𝑥3) ↦ 𝑥1�⃗�1 + 𝑥
2�⃗�2 + 𝑥

3�⃗�3. (1.3.2)

The associated metric 𝑔 on T3 is the pullback of the metric 𝑑 by 𝐹, i.e.

𝑔 = 𝐹∗𝑑 = 𝑔𝑖𝑗d𝑥𝑖d𝑥𝑗, 𝑔𝑖𝑗 = �⃗�𝑖 ⋅ �⃗�𝑗. (1.3.3)

Note that the matrix (𝑔𝑖𝑗) is a symmetric positive definite real 3 × 3matrix. We denote the set of
such matrices SPD3 and note that every such matrix arises as the metric on T3 corresponding to
some lattice Λ, with lattices producing the same matrix related by an oriented isometry of R3. So,
we can now consider variations of the period lattice Λ𝑠, with Λ0 = Λ, by equivalently varying the
metric 𝑔𝑠 on T3 with 𝑔0 = 𝐹∗𝑑.

Definition 1. An energy minimizing map 𝜑 ∶ (T3, 𝑔∗) → 𝑆3, where 𝑔∗ is some fixed metric, is a
skyrmion lattice. A skyrmion crystal is a skyrmion lattice such that the field 𝜑 is also critical with
respect to variations of the metric 𝑔 about 𝑔∗.

Theorem 2 (HopfDegreeTheorem). If𝑀 is a connected, oriented, 𝑛-dimensionalmanifold without
boundary, then two maps𝑀→ 𝑆𝑛 are smoothly homotopic if and only if they have the same degree.

For a proof of this theorem see, e.g., [61, p. 50]. Hopf’s degree theorem ensures that such
mappings 𝜑 ∶ T3 → 𝑆3 are also characterized by a homotopy invariant: the topological degree
𝐵 ∈ 𝐻3(T

3) = Z, since T3 is compact and without boundary. That is, the unit cell of a skyrmion
crystal has an associated topological charge, which we will denote by 𝐵cell, and can be computed
using (1.1.9). Further, the energy per unit cell 𝐸cell is finite and well-defined. So, one can compute
the energy per baryon of the infinitely extended crystal via

𝐸crystal
𝐵crystal

=
𝑁cell𝐸cell
𝑁cell𝐵cell

=
𝐸cell
𝐵cell

. (1.3.4)

For the remainder of this section, we focus mainly on the ℒ24-Skyrme model on T3. The
configuration space of skyrmion crystals is

ℳ = 𝐶∞(T3, 𝑆3) × SPD3, (1.3.5)
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and the masslessℒ24-Skyrme energy functional is denoted 𝐸24 ∶ ℳ → R for 𝜑 ∶ T3 → 𝑆3, 𝑔 ∈ SPD3.
Denote by𝑂 the subgroup of SO(3) consisting of orientation preserving symmetries of the cube (a
finite group of order |𝑂| = 24). Define Aut(T3) as the set of transformations on T3 of the form

𝑆 ∶ �⃗� ↦ 𝐴�⃗� + �⃗�, 𝐴 ∈ 𝑂, �⃗� ∈ R3. (1.3.6)

Then we observe that the massless Skyrme energy 𝐸24 is invariant under the left action of the group

𝐺 = SO(4) ×Aut(T3). (1.3.7)

The natural action of this group 𝐺 on the configuration spaceℳ is

(𝑅, 𝑆) ⋅ (𝜑(�⃗�), 𝑔) = (𝑅 ∘ 𝜑 ∘ 𝑆−1(�⃗�), (𝑆−1)∗𝑔) (1.3.8)
= (𝑅𝜑 (𝐴−1(�⃗� − �⃗�)) , (𝐴−1)𝛵𝑔𝐴−1) .

We now present a review of crystalline solutions in the Skyrme model, with the main focus on
theℒ24-model. For a more general review see, e.g., [42, 46, 53, 62].

Klebanov [19] was the first to study the crystalline structure of skyrmion matter in theℒ24-
model. Therein, he obtained a skyrmion lattice in the low density regime by arranging 𝐵 = 1
hedgehog skyrmions in the attractive channel on a SC lattice. In practice, this was carried out by
considering a 𝐵 = 1 hedgehog in a cubic period lattice with twisted boundary conditions. We will
label this simple cubic lattice of 𝐵 = 1 hedgehogs as SC1. The resulting unit cell is cubic with period
lattice Λ = 𝐿Z3, for some constant unit cell side length 𝐿, and has charge 𝐵cell = 8 per unit cell. The
corresponding metric on T3 is thus 𝑔𝑖𝑗 = 𝐿2𝛿𝑖𝑗. The initial crystalline configuration Klebanov used
is invariant under the following transformations

A1 ∶ 𝑅(𝜑) = (𝜎, −𝜋1, 𝜋2, 𝜋3), 𝑆(�⃗�) = (−𝑥1, 𝑥2, 𝑥3), (1.3.9)
A2 ∶ 𝑅(𝜑) = (𝜎, 𝜋2, 𝜋3, 𝜋1), 𝑆(�⃗�) = (𝑥2, 𝑥3, 𝑥1), (1.3.10)

and an additional periodic symmetry,

A3 ∶ 𝑅(𝜑) = (𝜎, −𝜋1, 𝜋2, −𝜋3), 𝑆(�⃗�) = (𝑥1 + 1/2, 𝑥2, 𝑥3), (1.3.11)

where we have opted to use the crystal notation of Kugler and Shtrikman [62]. These transforma-
tions act via (1.3.8) and we denote the symmetries of the SC1 skyrmion lattice by (A1,A2,A3).

The symmetries (A1,A2,A3) of the Klebanov lattice SC1 are detailed as follows. Relation A1
(1.3.9) is a reflection in a face of the cube, coupled with a reflection on the field 𝜑. Symmetry A2
(1.3.10) is a simultaneous rotation around a three-fold axis in both spaces. Finally, A3 (1.3.11) is
a translation by 1/2 along an axis coupled with a mutual isorotation into the attractive channel
between nearest neighbours.

We remark that the Skyrme field of the SC1 Klebanov lattice is invariant under translations by
𝐿 in R3/(𝐿Z3); however, using symmetry A3 (1.3.11), we see that the energy and baryon densities
are invariant under translations by 𝐿/2. That is, the unit cell in R3/(𝐿Z3) of the baryon and energy
densities is of periodicity 𝐿/2, whereas the unit cell for the Skyrme field is of periodicity 𝐿.

It was later observed byGoldhaber andManton [38] that, at higher densities, the SC1 skyrmion
lattice of Klebanov undergoes a phase transition to a BCC skyrmion crystal of 1/2-skyrmions. This
BCC1/2 crystal shares the simple cubic symmetries (A1,A2,A3) plus a further symmetry,

B4 ∶ 𝑅(𝜑) = (−𝜎, 𝜋2, 𝜋1, 𝜋3), 𝑆(�⃗�) = (1/4 − 𝑥3, 1/4 − 𝑥2, 1/4 − 𝑥1). (1.3.12)
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This corresponds to a rotation of 𝜋 around an axis going through the points (0, 1/8, 1/4) and
(1/4, 1/8, 0) and an 𝑂(4) transformation. Like Klebanov’s SC skyrmion lattice, the energy and
baryon densities of the BCC skyrmion crystal are periodic in 𝐿/2 but the field periodic in 𝐿, and
the unit cell has topological charge 𝐵cell = 8.

Kugler and Shtrikman [62] thenproposed a FCC lattice of𝐵 = 1 skyrmionswith the symmetries
(A1,A2,C3,C4), where

C3 ∶ 𝑅(𝜑) = (𝜎, −𝜋1, 𝜋3, −𝜋2), 𝑆(�⃗�) = (𝑥1, 𝑥3, −𝑥2) (1.3.13)
C4 ∶ 𝑅(𝜑) = (𝜎, −𝜋1, −𝜋2, 𝜋3), 𝑆(�⃗�) = (𝑥1 + 1/2, 𝑥2 + 1/2, 𝑥3). (1.3.14)

The resulting unit cell is cubic with charge 𝐵cell = 4. However, in contrast to the SC1 lattice
and BCC1/2 crystal, the FCC1 lattice has energy and baryon densities periodic in 𝐿. Kugler &
Shtrikman [39] and Castillejo et al. [40] independently found, by allowing this FCC1 lattice to
vary by homothety, a SC crystal of 1/2-skyrmions that shares the C3 symmetry and an additional
chiral SO(4) symmetry [62],

D4 ∶ 𝑅(𝜑) = (−𝜎, −𝜋1, 𝜋2, 𝜋3), 𝑆(�⃗�) = (𝑥1 + 1/2, 𝑥2, 𝑥3). (1.3.15)

The enhanced symmetry D4 (1.3.15) means that the energy and baryon densities are now periodic
in 𝐿/2, with the field remaining period in 𝐿. This SC1/2 skyrmion crystal has charge 𝐵cell = 4 and is
believed to be the lowest energy (per baryon) crystalline configuration in the masslessℒ24-Skyrme
model. As it has been believed to be the ground state crystalline configuration for many decades,
the SC1/2 crystal has been coined the Skyrme crystal.

Before detailing the construction of these skyrmion lattices/crystals, we briefly summarize them.
In the low density regime there exists a SC1 lattice that undergoes a phase transition to a BCC1/2
crystal in the higher density region. Likewise, there also exists a FCC1 lattice at low densities that
phase transitions to a SC1/2 crystal at high density. At low densities, the FCC1 lattice generally has
lower energy than the SC1 lattice. However, at densities higher than that of the saturation density*,
the SC1/2 lattice exhibits a phase transition to the BCC1/2 lattice [42, 46].

The starting point in the construction of the above skyrmion lattices and crystals is the Fourier
series-like expansion of the Skyrme fields as an initial configuration [62],

𝜎 =
∞
∑
𝑎,𝑏,𝑐

𝛽𝑎𝑏𝑐 cos (
2𝑎𝜋𝑥1

𝐿 ) cos (2𝑏𝜋𝑥
2

𝐿 ) cos (2𝑐𝜋𝑥
3

𝐿 ) , (1.3.16a)

𝜋1 =
∞
∑
ℎ,𝑘,𝑙

𝛼ℎ𝑘𝑙 sin (
2ℎ𝜋𝑥1

𝐿 ) cos (2𝑘𝜋𝑥
2

𝐿 ) cos (2𝑙𝜋𝑥
3

𝐿 ) , (1.3.16b)

𝜋2 =
∞
∑
ℎ,𝑘,𝑙

𝛼ℎ𝑘𝑙 cos (
2𝑙𝜋𝑥1

𝐿 ) sin (2ℎ𝜋𝑥
2

𝐿 ) cos (2𝑘𝜋𝑥
3

𝐿 ) , (1.3.16c)

𝜋3 =
∞
∑
ℎ,𝑘,𝑙

𝛼ℎ𝑘𝑙 cos (
2𝑘𝜋𝑥1

𝐿 ) cos (2𝑙𝜋𝑥
2

𝐿 ) sin (2ℎ𝜋𝑥
3

𝐿 ) , (1.3.16d)

with initial metric 𝑔 = 𝐿3 Id3 on T3. This is a valid expansion as all of the lattice/crystal symmetries
above have the two common cubic transformations A1 (1.3.9) and A2 (1.3.10). The additional

*The saturation density is the density, or volume, for which the lattice is minimal energy, i.e. it is the density at
which the skyrmion lattice becomes a skyrmion crystal.
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symmetries (A3,B4,C3,C4,D4) impose some conditions on the Skyrme field which, in turn, are
translated into constraints on the expansion coefficients 𝛽𝑎𝑏𝑐 and 𝛼ℎ𝑘𝑙. Varying a finite truncation
of these expansion coefficients enables the calculation of the lowest energy configuration at fixed
unit cell size 𝐿, i.e. it determines a skyrmion lattice. Carrying this out for various side lengths 𝐿 and
fitting a curve to the data produces an energy against length curve 𝐸24(𝐿), yielding the lowest energy
lattice configuration (a skyrmion crystal) at some unit cell size 𝐿∗. This is the general methodology
employed when investigating the Skyrme crystal and its applications. However, the method is
rather cumbersome and highly restrictive on the geometry. In particular, it only really allows for the
consideration of cubic crystals on fixed period lattices, with many simulations required in order to
determine the minimal energy crystalline configuration and the corresponding energy minimizing
cubic lattice size 𝐿∗.

A more appealing method was presented and implemented by Baskerville [17]. This method
does also rely on the period lattice being cubic and uses a Derrick scaling argument to determine
the optimal unit cell size 𝐿∗. We now detail this method and use it to obtain the SC1/2 and BCC1/2
crystals. Consider the masslessℒ24-model for an arbitrary field configuration 𝜑 ∶ T3 → 𝑆3 with
metric 𝑔𝑖𝑗 = 𝐿2𝛿𝑖𝑗 on T3, associated to the cubic lattice Λ = 𝐿Z3. The resulting energy functional is
found to be

𝐸24(𝜑; 𝐿) = ∫
T3
d3𝑥 𝐿3 { 1

𝐿2
𝛿𝑖𝑗𝜕𝑖𝜑

𝜇𝜕𝑗𝜑
𝜇 + 1

2𝐿4
𝛿𝑖𝑘𝛿𝑗𝑙 (𝜕𝑖𝜑

𝜇𝜕𝑘𝜑
𝜇𝜕𝑗𝜑

𝜈𝜕𝑙𝜑
𝜈 − 𝜕𝑖𝜑

𝜇𝜕𝑙𝜑
𝜇𝜕𝑘𝜑

𝜈𝜕𝑗𝜑
𝜈)}

= 𝐿∫
T3
d3𝑥 (𝜕𝑖𝜑 ⋅ 𝜕𝑖𝜑) +

1
𝐿 ∫

T3
d3𝑥 12 [(𝜕𝑖𝜑 ⋅ 𝜕𝑖𝜑) (𝜕𝑗𝜑 ⋅ 𝜕𝑗𝜑) − (𝜕𝑖𝜑 ⋅ 𝜕𝑗𝜑)

2
]

= 𝐿𝐸T3
2 + 1

𝐿𝐸
T3
4 . (1.3.17)

Then the optimal unit cell size 𝐿∗ can be computed simply as

d
d𝐿∣𝐿=𝐿∗

𝐸24(𝜑; 𝐿) = 0 ⇒ 𝐿∗ = √
𝐸T3
4

𝐸T3
2
. (1.3.18)

The energy (1.3.17) needs to be minimized with respect to variations of the field 𝜑, using, e.g.,
arrested Newton flow. During each iteration of the algorithm, the unit cell size 𝐿 needs to be
updated using (1.3.18). Once the algorithm finds the local minimizer, Derrick’s scaling argument
(or the virial constraint) will be satisfied, 𝐸2 = 𝐸4. Thus, the energy for the minimizer can be
computed independently of 𝐿∗ as

𝐸24(𝜑; 𝐿∗) = 2√𝐸T3
2 𝐸T3

4 , (1.3.19)

provided the virial constraint is satisfied.
Now, we need initial configurations 𝜑0 for the algorithm. As we are finding the SC1/2 and

BCC1/2 crystals numerically, only an approximation is needed for the initial configuration. The
resulting baryon and energy density plots of the BCC1/2 and SC1/2 crystals are shown in Fig. 1.2
and Fig. 1.3, respectively, alongside isosurface plots of the associated Skyrme fields.

For the BCC1/2 crystal, the Fourier coefficients 𝛽𝑎𝑏𝑐 and 𝛼ℎ𝑘𝑙must satisfy the conditions: ℎ is odd,
𝑘 and 𝑙 are even, and 𝑎, 𝑏, 𝑐 are all even [62]. For the initial configuration, we truncate the Fourier
series expansion of the fields (1.3.16) to include only the first few terms, and then normalize the field,
𝜑𝜇 → 𝜑𝜇/(𝜑 ⋅ 𝜑). After relaxation, this yields the BCC1/2 crystal with unit cell charge 𝐵cell = 8 and
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(a) Isosurface plots of the baryon densityℬ0 and energy density ℰ.

(b) Plots of the Skyrme fields 𝜑 = (𝜎, 𝜋1, 𝜋2, 𝜋3).

Figure 1.2: Plots of the (a) baryon densityℬ0 and energy densityℰ and (b) the Skyrme fields𝜑 = (𝜎, 𝜋1, 𝜋2, 𝜋3)
for the BCC1/2 Skyrme crystal, with unit cell charge 𝐵cell = 8.

optimal cell size 𝐿∗ = 5.50. The crystal is also found to have energy per baryon 𝐸/(12𝜋2𝐵) = 1.0856,
which is in reasonable agreement with Goldhaber andManton’s estimation of 𝐸/(12𝜋2𝐵) = 1.08 at
𝐿∗ = 5.54 [38], and also Klebanov’s calculation of 𝐸/(12𝜋2𝐵) = 1.0807.

For the SC1/2 crystal, the Fourier coefficients 𝛽𝑎𝑏𝑐 and 𝛼ℎ𝑘𝑙 must satisfy the conditions: ℎ and
𝑘 are odd, and 𝑙 is even, and 𝑎, 𝑏, 𝑐 are all odd [53]. Then, truncating the Fourier series (1.3.16) to
only include the first terms in the expansions yields the approximation of Castillejo et al. [40],

𝜎 = − cos (2𝜋𝑥
1

𝐿 ) cos (2𝜋𝑥
2

𝐿 ) cos (2𝜋𝑥
3

𝐿 ) , (1.3.20a)

𝜋1 = sin (2𝜋𝑥
1

𝐿 )√1 − 1
2 sin

2 (2𝜋𝑥
2

𝐿 ) − 1
2 sin

2 (2𝜋𝑥
3

𝐿 ) + 1
3 sin

2 (2𝜋𝑥
2

𝐿 ) sin2 (2𝜋𝑥
3

𝐿 ), (1.3.20b)

and cyclic [63]. The optimal unit cell size is found to be 𝐿∗ = 4.61 and has normalized energy
𝐸/(12𝜋2𝐵) = 1.0378. Kugler and Shtrikmann [39] approximated the SC1/2 crystal to have an energy
excess of 3.8% above the topological energy bound, andBattye and Sutcliffe [22] compute the energy
excess to be 3.6%, which are both in good agreement with our result. Baskerville [51] determined
the lattice parameter to be 𝐿∗ = 4.70 and, so, our findings are thus consistent.

Recall that theℒ24-Skyrme energy is invariant under the natural action of SO(4) on the target
𝑆3, that is 𝐸24(𝑅𝜑, 𝑔) = 𝐸24(𝜑, 𝑔) for all 𝑅 ∈ SO(4). So, the SC1/2 crystal is just one critical point of
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(a) Isosurface plots of the baryon densityℬ0 and energy density ℰ.

(b) Plots of the Skyrme fields 𝜑 = (𝜎, 𝜋1, 𝜋2, 𝜋3).

Figure 1.3: Plots of the (a) baryon densityℬ0 and energy densityℰ and (b) the Skyrme fields𝜑 = (𝜎, 𝜋1, 𝜋2, 𝜋3)
for the SC1/2 Skyrme crystal, with unit cell charge 𝐵cell = 4.

𝐸24, with other critical points lying on the SO(4) orbit of the SC1/2 crystal. Speight [64] showed
that the SC1/2 crystal is indeed a skyrmion crystal, that is, it is stable with respect to variations of the
metric 𝑔 on T3. The interesting question is: what happens to the SC1/2 crystal, and the family of
crystals under the SO(4) orbit, when the pion mass is switched on? The pion mass potential (1.1.7)
explicitly breaks the SO(4) symmetry to an SO(3) isospin symmetry. So, the SC1/2 crystal will no
longer enjoy the enhanced SO(4) symmetry D4 (1.3.15), as the vacuum 𝜎 = 1will now be penalized
by the pion mass potential. Will it, and any other crystals, survive the perturbation? However,
before we proceed with investigating massive (3 + 1)-dimensional skyrmion crystals, we turn our
focus initially to a simpler toy model to start with: the (2 + 1)-dimensional baby Skyrme model.

g 0 G





Two

Baby Skyrmion Crystals
This chapter is based on the work in the single author paper [65].

2.1 Introduction

The baby Skyrme model [66] is a (2 + 1)-dimensional analogue of the (3 + 1)-dimensional Skyrme
model, where interest in the baby Skyrme model has peaked again with the apparent prevalence of
baby skyrmions in condensed matter systems [67], quantum hall systems [68, 69], chiral magnetic
systems [70] and nematic liquid crystals [71]. We investigate the crystalline structure for baby
skyrmions and formulate our method in terms of an arbitrary potential term. The choice of
potential is crucial for baby skyrmions as it determines the behaviour of the solitons and, thus, the
underlying skyrmion crystalline structure. For the first time, we propose amethod to determine the
surface energy contribution of a crystal chunk, once the minimal energy infinite crystal structure is
determined. In order to predict the minimal energy of a charge-𝐵 crystal chunk with a fixed area,
we then study isoperimetric problems for particular crystal symmetries.

For the standard baby Skyrme model [66] we find that the solitons form a hexagonal crystal
structurewith𝐷6 symmetry, whichwas first proposed byHen andKarliner [72, 73]. This hexagonal
crystal structure is not unique to the baby Skyrmemodel; it also arises in quantumhall systems [69],
chiral magnetic skyrmion systems [74, 75], Ginzburg-Landau vortices [76] and (3+1)-dimensional
skyrmions in analogy with fullerene shells in carbon chemistry [49, 50]. However, in the easy plane
model [77–79] the optimal crystal structure is found to be a square lattice of half solitons, similar
to that of the SC1/2 crystal in theℒ24-Skyrme model. This square crystal structure also arises in
chiral magnets with easy plane anisotropy [80].

This chapter is laid out as follows. We begin by discussing the general baby Skyrme model.
From here, we define the initial configurations that we use to initialize our numerical minimization
algorithm. Then static multi-soliton solutions are considered on the plane and a discussion of
the possible global minima is presented. In Sec 2.4 we investigate the lattice structure of baby
skyrmions and formulate amethod to determine theminimum energy baby skyrmion crystal. Once
these minimal energy infinite crystals are known, we construct a crystal slab model to numerically
determine the surface energy of a crystal chunk. Finally, we study chunks of the infinite crystal in a
bid to predict the classical energies of baby skyrmion crystals.

21
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2.2 Baby SkyrmeModel
The general static baby Skyrme model consists of a single scalar field 𝜑 ∶ Σ → 𝑆2 where (Σ, 𝑔) is
a 2-dimensional Riemannian manifold, and (𝑆2, ℎ, 𝜔) is the 2-sphere embedded in R3 with the
induced flat Euclidean metric ℎ and area 2-form 𝜔. We will often write the baby Skyrme field as the
3-vector 𝜑 = (𝜑1, 𝜑2, 𝜑3). The static energy functional of this model on Σ is given by

𝐸[𝜑] = ∫
Σ
{12|d𝜑|

2 + 𝜅2

2 |𝜑
∗𝜔|2 + 𝑉(𝜑)} vol𝑔, (2.2.1)

where 𝑉 ∶ 𝑆2 → R is the potential of the baby Skyrme model, | ⋅ | denotes the Hilbert-Schmidt
norm and vol𝑔 is the volume form on Σ associated with its metric 𝑔. The parameter 𝜅 is a standard
coupling constant for which we will set 𝜅 = 1 for our numerical analysis. Note that the differential
form d𝜑 ∈ 𝜑−1𝑇𝑆2 is a linear map d𝜑𝑥 ∶ 𝑇𝑥Σ → 𝑇𝜑(𝑥)𝑆

2 and so the Hilbert-Schmidt norm |d𝜑𝑥|
depends on both the domain metric 𝑔 and target metric ℎ. However, the pullback of the area form
𝜔 ∈ Ω2(𝑆2) is 𝜑∗𝜔 ∈ Ω2(Σ) and so its norm only depends on the metric 𝑔.

We will follow the terminology of harmonic map theory, and Chap. 1, and refer to the first term
in (2.2.1) as the Dirichlet energy, or the NL𝜎M term. The second term is known as the Skyrme
energy. It is conventional to label the three terms in (2.2.1) as 𝐸2, 𝐸4, and 𝐸0 respectively, where,
akin to the (3 + 1)-dimensional Skyrme model, each term is thought of as a polynomial in spatial
derivatives with the subscript denoting the degree.

Let us introduce oriented local coordinates (𝑥1, 𝑥2) on the domain Σ and let {𝜕1, 𝜕2} be a local
basis for the tangent space 𝑇𝑥Σ at 𝑥 ∈ Σ. Then the Dirichlet energy in local coordinates is given by
[81]

𝐸2 =
1
2 ∫Σ

|d𝜑|2𝑔 vol𝑔 =
1
2 ∫Σ

d2𝑥√𝑔 𝑔𝑖𝑗𝜕𝑗𝜑𝑎𝜕𝑗𝜑𝑏ℎ𝑎𝑏, (2.2.2)

where, as before, 𝜕𝑖 ≡ 𝜕/𝜕𝑥𝑖. The Skyrme energy in local coordinates is

𝐸4 =
𝜅2

2 ∫
Σ
|𝜑∗𝜔|2𝑔 vol𝑔 =

𝜅2

4 ∫
Σ
d2𝑥√𝑔 𝑔𝑖𝑗𝑔𝑘𝑙(𝜑∗𝜔)𝑖𝑘(𝜑∗𝜔)𝑗𝑙. (2.2.3)

We can compute the pullback 𝜑∗𝜔 explicitly for the local frame {𝜕1, 𝜕2}, that is

𝜑∗𝑥𝜔(𝜕𝑖, 𝜕𝑗) = 𝜔𝜑(𝑥) (𝜑∗(𝜕𝑖|𝑥), 𝜑∗(𝜕𝑗|𝑥)) = ⟨𝜑(𝑥), 𝜕𝑖𝜑 × 𝜕𝑗𝜑⟩ℎ = 𝜑(𝑥) ⋅ (𝜕𝑖𝜑 × 𝜕𝑗𝜑). (2.2.4)

It is easy to see that 𝜑∗𝑥𝜔(𝜕𝑖, 𝜕𝑖) = 0 and 𝜑∗𝑥𝜔(𝜕𝑖, 𝜕𝑗) = 0 is antisymmetric, therefore, the pullback of
the area 2-form 𝜔 on the 2-sphere to Σ is

𝜑∗𝜔 = 𝜑 ⋅ (𝜕1𝜑 × 𝜕2𝜑)d𝑥1 ∧ d𝑥2 ∈ Ω2(Σ). (2.2.5)

If the domain Σ is compact, then the baby Skyrmemap 𝜑 ∶ Σ → 𝑆2 has an associated topological
degree given by the pullback of the normalised area 2-form of the target space 𝑆2,

𝐵[𝜑] = 1
4𝜋 ∫

Σ
𝜑∗𝜔 ∈ Z. (2.2.6)
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In terms of the local coordinates (𝑥1, 𝑥2) on Σ, the topological degree is explicitly

𝐵[𝜑] = 1
4𝜋 ∫

Σ
𝜑 ⋅ (𝜕1𝜑 × 𝜕2𝜑) d𝑥1d𝑥2. (2.2.7)

We refer to minimizers of the static energy functional 𝐸 for fixed degree 𝐵 as baby skyrmions. The
topological degree 𝐵 is also referred to as the topological charge, or just charge, which we adopt
throughout. Finding baby skyrmions involves numerically solving partial differential equations.
We do this using an accelerated gradient descent algorithm for second order dynamics, detailed in
Sec 2.2.

In order for static (multi)soliton solutions to exist in the baby Skyrme system, we must evade
Derrick’s non-existence Theorem. Consider a variation 𝜑𝜆 ∶ Σ × R → 𝑆2 of the baby Skyrme field 𝜑
such that 𝜑𝜆=0 = 𝜑. This has infinitesimal generator 𝜕𝜆𝜑𝜆|𝜆=0 ∈ Γ(𝜑−1𝑇𝑆2), where 𝜑−1𝑇𝑆2 is the vector
bundle over Σwith fibre 𝑇𝜑(𝑥)𝑆2 over 𝑥 ∈ Σ. Explicitly, if we consider the spatial rescaling 𝑥 ↦ 𝑒𝜆𝑥,
then we have a one-parameter family of maps 𝜑𝜆 = 𝜑(𝑒𝜆𝑥) such that 𝜑𝜆=0 = 𝜑. The rescaled static
energy functional is then

𝐸𝜆 = 𝐸[𝜑𝜆] = 𝐸2 + 𝑒
−2𝜆𝐸4 + 𝑒

2𝜆𝐸0. (2.2.8)

If the baby Skyrme field configuration 𝜑 is a minimizer of the energy 𝐸, then we require

d
d𝜆∣𝜆=0

𝐸[𝜑𝜆] = 𝐸0 − 𝐸4 = 0, (2.2.9)

which yields the familiar virial constraint𝐸4 = 𝐸0. Unlike the (3+1)-dimensional Skyrmemodel, the
potential 𝐸0 = ∫Σ 𝑉(𝜑)vol𝑔 is necessary in the baby Skyrme model otherwise the energy 𝐸[𝜑] can be
lowered by spatial rescaling and thus cannot have minima. So the baby skyrmions have a preferred
size determined by the ratio √𝜅/𝑚, where𝑚 is the mass normally appearing in the potential 𝑉(𝜑).
There also exists a lower topological Bogomol’nyi bound on the (static) energy given by [82]

𝐸 ≥ ± (1 + 𝜅 ⟨𝑉⟩)∫
Σ
𝜑∗𝜔 = 4𝜋|𝐵| (1 + 𝜅 ⟨𝑉⟩) , (2.2.10)

where ⟨𝑉⟩ is the average value of 𝑉 ∶ 𝑆2 → R on 𝑆2.
In comparison to the NL𝜎M, the addition of the Skyrme term stabilizes the NL𝜎M to spatial

rescalings. The addition of any term that is cubic, or more, in spatial derivatives would stabilise
the model (for example, the 𝑂(3)NL𝜎M coupled to a massive vector meson [83]), however the
Skyrme term is the lowest order expression that retains the second order nature of the equations of
motion in terms of time derivatives.

Throughout this paper, there are three choices of the physical space Σ that we will consider.
The first physical space we will consider is the plane Σ = R2. For the solitons to have finite energy, it
is necessary to impose the boundary conditions

lim
|𝑥|→∞

𝜑(𝑥) ≡ 𝜑∞ = constant, (2.2.11)

and select 𝜑∞ from the vacuummanifold of the model, i.e. such that 𝑉(𝜑∞) = 0. Without loss of
generality, we choose the vacuum 𝜑∞ = (0, 0, 1) throughout. This gives us the one-point compacti-
fication of space R2 ∪ {∞} ≅ 𝑆2. The baby Skyrme field can then be viewed as the map 𝜑 ∶ 𝑆2 → 𝑆2,
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which has a conserved topological charge 𝐵 ∈ 𝜋2(𝑆
2) = Z, characterized as the topological degree of

the map and given explicitly by (2.2.7).
The second physical space we will consider is that of the 2-torus Σ = R2/Λ, in which our field

satisfies the doubly-periodic boundary conditions 𝜑(𝑥) = 𝜑(𝑥 + 𝑛1𝑋
1 + 𝑛2𝑋

2). Here 𝑛1, 𝑛2 ∈ Z and
𝑋1, 𝑋2 ∈ R2 are a fundamental pair of periods that generate the lattice Λ. The maps 𝜑 ∶ R2/Λ → 𝑆2

have an associated integer degree, and so admit topological solitons.
Finally, the third physical space we consider is the infinite cylinder Σ = 𝑆1 ×R. This corresponds

to a Dirichlet boundary condition in the 𝑥2-direction, lim|𝑥2|→∞ = 𝜑∞, and a periodic boundary
condition in the 𝑥1-direction, 𝜑(𝑥) = 𝜑(𝑥 + 𝑛1𝑋

1), where 𝑛1 ∈ Z and 𝑋1 ∈ R2 is a vector in the
𝑥1-direction. The maps 𝜑 ∶ 𝑆1 × R → 𝑆2 also have a conserved integer topological degree and admit
topological solitons.

Initial Configurations
To initialize the numerical minimization procedure, the gradient descent algorithm requires an ini-
tial configuration, or approximation to the static soliton. This is carried out using polar coordinates
on Σ = R2 or Σ = R2/Λ. Consider the axially symmetric field configuration

𝜑 = (sin𝑓(𝑟) cos𝐵𝜃, sin𝑓(𝑟) sin𝐵𝜃, cos𝑓(𝑟)) , (2.2.12)
with the monotonically decreasing radial profile function 𝑓(𝑟) satisfying 𝑓(0) = 𝜋 and 𝑓(∞) = 0.
Equivalently, the profile function 𝑓 vanishes at the boundary of the grid. Here, 𝑟 and 𝜃 are polar
coordinates in the plane and there exists an internal phase that has been set to zero by applying the
global symmetry that rotates the 𝜑1, 𝜑2 field components [84].

For our numerical minimization procedure, the profile function is taken to be [85]
𝑓(𝑟) = 𝜋 exp(−𝑟). (2.2.13)

The initial field configuration is a linear superposition of axially symmetric configurations;
typically we use a set-up of𝑁 charge-1 skyrmions with a favourable relative phase-shift between
each other (for maximal attraction). This is known as the attractive channel, and is dependent
upon the choice of potential. The superposition is justified because the profile function decays
exponentially. The superposition is done in the complex field formalism, i.e. where𝑊 ∶ 𝑆2 → C𝑃1

is the stereographic projection of the 𝜑 field of 𝑆2. We use the profile function of a static solution
(typically of topological charge one) to obtain

𝑊[𝜑] =
𝜑1 + 𝑖 𝜑2

1 − 𝜑3
. (2.2.14)

Using the radial ansatz (2.2.12), this is

𝑊 = tan (𝑓(𝑟)2 ) 𝑒𝑖𝛣𝜃. (2.2.15)

We can then assume that if the solitons are well separated in relation to their size, then we can
approximate the resulting solution as𝑊 = ∑𝛮

𝑖 𝑊𝑖, where𝑁 is the total number of solitons in the
system, and 𝐵 = ∑𝛮

𝑖 𝐵𝑖 is the total baryon number of the system. In terms of the stereographic
coordinate𝑊, the baby Skyrme field is

𝜑 = ( 𝑊 + �̄�
1 + |𝑊|2

, −𝑖 (𝑊 − �̄�)
1 + |𝑊|2

, 1 − |𝑊|2

1 + |𝑊|2
) . (2.2.16)
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Numerical Minimization Procedure

In order to find local minima of the static energy, we must numerically relax the baby Skyrme
field. The numerical methods are carried out on a 𝑁1 × 𝑁2 grid with lattice spacings Δ𝑥1, Δ𝑥2.
The baby Skyrme energy is then discretised using a 4th order central finite-difference scheme.
This yields a discrete approximation 𝐸dis[𝜑] to the static energy functional 𝐸[𝜑], which we can
regard as a function 𝐸dis ∶ 𝒞 → R, where the discretised configuration space is the manifold
𝒞 = (𝑆2)𝛮1𝛮2 ⊂ R3𝛮1𝛮2 [86, 87].

To compute the minima of the discretised static energy, initially a gradient descent method
was chosen. However, gradient descent can be particularly slowmethod when the Hessian is of
poor condition. A more efficient way to is to simulate the time development using an accelerated
gradient descent algorithm known as arrested Newton flow [88]. The essence of the algorithm is
as follows: we solve Newton’s equations of motion for a particle on the discretised configuration
space𝒞with potential energy 𝐸dis. Explicitly, we are solving the system of 2nd order ODEs

�̈� = −
𝛿𝐸dis
𝛿𝜑 [𝜑], 𝜑(0) = 𝜑0, (2.2.17)

with initial velocity �̇�(0) = 0. Setting 𝜓 ∶= �̇� as the velocity with 𝜓(0) = �̇�(0) = 0 reduces the
problem to a coupled system of 1st order ODEs. We implement a 4th order Runge–Kutta method
to solve this coupled system.

The main advantage in implementing the arrested Newton flow algorithm is that the field
will naturally relax to a local minimum. After each time step 𝑡 ↦ 𝑡 + 𝛿𝑡, we check to see if the
energy is increasing. If 𝐸dis(𝑡 + 𝛿𝑡) > 𝐸dis(𝑡), we take out all the kinetic energy in the system by
setting 𝜓(𝑡 + 𝛿𝑡) = 0 and restart the flow. The flow then terminates when every component of the
energy gradient 𝛿𝛦dis

𝛿𝜑 is zero to within a given tolerance (we have used 10−4). Unless stated otherwise,
the plots shown throughout were simulated on a grid with 0.05 lattice spacings and grid sizes
1000 × 1000.

It is essential that we enforce the constraint 𝜑 ⋅ 𝜑 = 1. This is normally done by including a
Lagrange multiplier term into the Lagrangian, and the form for the Lagrange multiplier can be
found taking the dot product of the field with the resulting Euler-Lagrange equations. However,
to do this numerically we have to pull our target space back onto 𝑆2. This is done by normalizing
the Skyrme field 𝜑 each loop,

𝜑𝑎 →
𝜑𝑎

√𝜑 ⋅ 𝜑
. (2.2.18)

Then we need to project out the component of the energy gradient, and velocity, in the direction
of Skyrme field, that is

𝛿ℰdis
𝛿𝜑𝑎 →

𝛿ℰdis
𝛿𝜑𝑎 − (

𝛿ℰdis
𝛿𝜑 ⋅ 𝜑)

𝜑𝑎

𝜑 ⋅ 𝜑 (2.2.19)

and

𝜓𝑎 → 𝜓𝑎 − (𝜓 ⋅ 𝜑)
𝜑𝑎

𝜑 ⋅ 𝜑 . (2.2.20)
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(a) Standard charge-1 energy density. (b) Easy plane charge-1 energy density.

Figure 2.1: Plots of the energy density of (a) the axially symmetric charge-1 baby skyrmion, for the standard
potential 𝑉(𝜑) = 𝑚2(1 − 𝜑3), and (b) the charge-1 baby skyrmion for the easy plane potential
𝑉(𝜑) = 1

2𝑚
2(𝜑1)2.

2.3 Baby Skyrmions on the Plane
Consider the real plane R2 with the usual flat Euclidean metric 𝑔 = 𝑑, such that 𝑔𝑖𝑗 = 𝛿𝑖𝑗. The static
energy functional of the baby Skyrme model on R2 takes the familiar form

𝐸[𝜑] = ∫
R2
{12(𝜕𝑖𝜑)

2 + 𝜅2

4 (𝜕𝑖𝜑 × 𝜕𝑗𝜑)
2
+ 𝑉(𝜑)}d2𝑥. (2.3.1)

For numerical analysis, it proves convenient to express the static energy functional using Einstein’s
summation notation, that is

𝐸[𝜑] = ∫
R2
{12 (𝜕𝑖𝜑

𝑎)2 + 𝜅2

4 ((𝜕𝑖𝜑
𝑎 𝜕𝑗𝜑

𝑏)2 − 𝜕𝑖𝜑
𝑎 𝜕𝑗𝜑

𝑎 𝜕𝑗𝜑
𝑏 𝜕𝑖𝜑

𝑏) + 𝑉(𝜑)} d2𝑥, (2.3.2)

where 𝑖, 𝑗 ∈ {1, 2} and 𝑎, 𝑏 ∈ {1, 2, 3}. The energy functional has a continuous𝑂(3) symmetry before
the symmetry is broken by the choice of potential term 𝑉(𝜑). To carry out arrested Newton flow,
or a numerical relaxation method using the gradient of the energy, we need to calculate the energy
gradient explicitly. We will do this in index notation for numerical convenience. The variation of
the energy density with respect to field 𝜑𝑎 is

𝛿ℰ
𝛿𝜑𝑎 = 𝛿𝑉

𝛿𝜑𝑎 − {𝜕𝑖𝑖𝜑
𝑎 + 𝜅2 [𝜕𝑖𝑖𝜑

𝑎 (𝜕𝑗𝜑
𝑏)
2
+ 𝜕𝑖𝜑

𝑎 (𝜕𝑖𝑗𝜑
𝑏 𝜕𝑗𝜑

𝑏 − 𝜕𝑗𝑗𝜑
𝑏 𝜕𝑖𝜑

𝑏) − 𝜕𝑖𝑗𝜑
𝑎 (𝜕𝑖𝜑

𝑏 𝜕𝑗𝜑
𝑏)]} .

Standard Baby Skyrmions
Numerous potentials have been proposed [66, 77, 84, 89–93] and studied extensively in the
literature. However, there are two choices of potential that we are particularly interested in: the
standard potential and the easy plane potential. These two theories are quite distinct and, as we
will describe below, we should expect different phenomena. In the standard baby Skyrme model



2.3. Baby Skyrmions on the Plane 27

(a) Standard charge-1 coloring. (b) Easy plane charge-1 coloring.

Figure 2.2: Plots of the coloring scheme detailed in the text for (a) the axially symmetric charge-1 baby
skyrmion, for the standard potential, and (b) the charge-1 baby skyrmion for the easy plane
potential.

[66], the standard potential is an analogue of the pion mass term in the Skyrme model, and takes
the form

𝑉 = 𝑚2(1 − 𝜑3). (2.3.3)

If we consider excitations around our unique choice of vacuum 𝜑∞ = (0, 0, 1), then the fields 𝜑1
and 𝜑2 acquire a mass𝑚. The standard potential (2.3.3) spontaneously breaks the 𝑂(3) symmetry
to an 𝑂(2) symmetry that acts on the field components 𝜑1, 𝜑2. For this potential, the charge-1 baby
skyrmion is axially symmetric and exponentially localised, see Fig. 2.1a. Piette et al. [66] studied the
asymptotic interactions of standard baby skyrmions and found that two well-separated charge-1
solitons have an interaction energy that can be calculated using a dipole approximation, such that

𝐸standard ∝ cos(𝜒1 − 𝜒2), (2.3.4)

where 𝜒1 − 𝜒2 is the relative phase. The attraction between these two well-separated baby skyrmions
is greatest when 𝜒1 − 𝜒2 = 𝜋. This is also known as the attractive channel orientation.

There is a rather nice way to graphically represent the phase of a baby skyrmion [94] using a
HSV color model, which is almost analogous to the Runge color sphere coloring in the Skyrme
model. We begin by plotting the energy density and color it using the stereographic coordinate𝑊,
given in (2.2.14). The phase of𝑊, arg(𝜙1 + 𝑖𝜙2), gives the hue of the color and is defined such that
arg(𝜙1 + 𝑖𝜙2) = 0 is red, arg(𝜙1 + 𝑖𝜙2) = 2𝜋/3 is green and arg(𝜙1 + 𝑖𝜙2) = 4𝜋/3 is blue. We use the
value of 𝜙3 to determine the lightness, such that 𝜙3 = +1 is white and 𝜙3 = −1 is black [95]. The
coloring scheme detailed above is shown in Fig. 2.2.

For both potentials, multi-charged baby skyrmion solutions have an underlying modular
structure. One such structure of interest for the standard potential (2.3.3) is that of chains of
solitons. This was first investigated by Harland [96], in the context of baby skyrmions, and then
later by Foster [97] and also Shnir [48]. Each chain has its ends capped by charge-2 solutions and
the chain links are built from either charge-1 baby skyrmions, with a relative phase of 𝜋with each
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neighbour, or charge-2 solitons. Shnir [48] showed that a chain with charge-1 links has a lower
energy than a chain with charge-2 links within each homotopy class. For low charge solutions,
chains appear to be good candidates for the global minima. A typical chain configuration for the
standard potential (2.3.3) is displayed in Fig. 2.3a.

Foster [97] also investigated baby skyrmions on a cylinder R × 𝑆1, and calculated the minimum
energy per charge of an infinite chain to beℰchain = 1.4549. We have carried out the same calculation
using the lattice variationmethoddetailed in Sec 2.4. This is done by imposing aDirichlet boundary
condition in the 𝑥2-direction, lim|𝑥2|→∞ = 𝜑∞, and a periodic boundary condition in the 𝑥1-direction,
𝜑(𝑥1, 𝑥2) = 𝜑(𝑥1 + 𝑛1𝐿, 𝑥

2), where 𝑛1 ∈ Z. The periodic cell length 𝐿 is then varied to minimize the
energy, and a minimum energy of ℰchain = 1.4548was found for a periodic cell length of 𝐿 = 8.53.
Thus, our results provide excellent fidelity.

Later, it was realised byWinyard [98] that the energy density peaks at the ends of the chains
could be reduced by joining the two ends into a ring-like solution with an added energy correction
for the curvature of the ring. Using a least squares fitting, they were able to obtain values for the
energy contributions from the chain caps and the ring curvature. They showed that ring solutions
are a better candidate for the global minima for 𝐵 > 𝐵ring ∈ Z. For the mass𝑚2 = 0.1, this transition
from chains to rings is numerically found to occur at 𝐵ring = 15. A typical ring configuration is
displayed in Fig. 2.3c.

Skyrmion crystals in the standard baby Skyrmemodel, with the standard potential (2.3.3), were
studied by Hen and Karliner [72, 73]. Through their work they observed that the minimal energy
skyrmion crystal was almost hexagonal by use of simulated annealing. So one would expect chunks
of the infinite hexagonal crystal to be global minima for some 𝐵 > 𝐵crystal ∈ Z. This prompts the
basis of this chapter: at what charge do chunks of the infinite skyrmion crystal become the global
minima?

Easy Plane Baby Skyrmions
The second potential of particular interest is the easy plane potential,

𝑉(𝜑) = 1
2𝑚

2(𝜑1)2, (2.3.5)

proposed by Jäykkä and Speight [77]. As with the standard potential, the easy plane potential leaves
an unbroken 𝑂(2) symmetry. However, the canonical choice of vacuum 𝜑∞ = (0, 0, 1) distinguishes
a point on the 𝑂(2) orbit and breaks the symmetry further to a discrete𝐷2 symmetry. Unlike the
standardmodel, the charge-1 baby skyrmion is not axially symmetric but rather is composed of two
charge-1/2 baby skyrmions. This is shown in Fig. 2.1b. As we did before, let us consider elementary
excitations around our canonical choice of vacuum 𝜑∞ = (0, 0, 1), then the field 𝜑1 acquires amass𝑚
and the 𝜑2 field is massless. Adapting the dipole approximation proposed by Piette et al. [66], and
assuming that 𝜑2 mediates the dominant interaction asymptotically [77], gives us an interaction
energy

𝐸easy-plane ∝ cos(𝜒1 + 𝜒2). (2.3.6)

This shows that the interaction energy depends only on the average phase of the dipoles, which is
exactly opposite of the situation in the standard model.

While the phase coloring is particularly useful for the standard potential, it is actually more
instructive to use the field structure of the field component 𝜑1 for the easy plane model. The red
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(a) (b)

(c) (d)

Figure 2.3: Energy density plots of (a) the charge-10 chain solution, and (c) the charge-30 ring solution. On
the right hand side are the corresponding plots using the color scheme detailed in the text.

peaks and blues peaks are attracted to one another, but peaks of the same color are repelled by each
other. As each individual peak in the energy density resembles a C𝑃1 model lump, then we refer to
each lump as a half charge lump. Each of these half lumps are located at the red and blue peaks of
𝜑1 and come in pairs. So more information can be gained by studying plots of the 𝜑1 density than
the energy density itself.

In contrast to the standardmodel, chains do not appear to be the global minima for low charges
in the easy plane model. For charges 𝐵 ≤ 6 with mass 𝑚2 = 1, the global minima are 2𝐵-gons or
ring-like solutions. Chunks of an infinite crystal with a square/rectangular crystalline structure
seem to be the global minima for almost all charges 𝐵 > 6. An example of such a global minimum
for 𝐵 = 8 can be seen in Fig. 2.4c. The easy plane model also exhibits a modular structure with
some more exotic local minima consisting of square and polygonal building blocks. One such
solution is the 𝐵 = 10 easy plane baby skyrmion built from square and hexagonal units in Fig. 2.4e.

Although chunks of the assumed infinite crystal are prevalent, ring-like solutions and chain
solutions do exist as other local minima. Jäykkä and Speight [77] showed that 2𝐵-gon rings are
the global minima for low charges, that is a single ring of 2𝐵 half lumps. For higher charges, it is
energetically favourable for the ring solutions to form a double ring structure with some discrete
symmetry. Example solutions for the easy plane model are shown in Fig. 2.4. The charge-5 chain
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(a) 𝛣 = 5. (b) 𝛣 = 7∗. (c) 𝛣 = 8∗.

(d) 𝛣 = 10∗. (e) 𝛣 = 10. (f) 𝛣 = 12∗.

(g) 𝛣 = 13. (h) 𝛣 = 14. (i) 𝛣 = 36∗.

Figure 2.4: 𝜑1 density plots of various local and global (*) energy minimizers.

in Fig. 2.4a is coincidentally a chunk of the assumed infinite skyrmion crystal and is only a local
minimizer for 𝐵 = 5, rather a 10-gon of half lumps is the global minimizer. The particularly
interesting aspect of the charge-5 chain is that its shape is closer to that of a square skyrmion crystal
chain than that of a double hexagon. This suggests that the square skyrmion crystal is a lower
energy crystalline structure than the hexagonal skyrmion crystal.

2.4 Lattice Structure of Baby Skyrmions
In a series of papers by Hen and Karliner [72, 73], they determine the minimal energy skyrmion
crystal for the standard model to be hexagonal. They scanned the parallelogram parameter space at
a constant skyrmion density to find the parallelogram that minimizes the static energy. Once they
found the optimal parallelogram, they then varied the skyrmion density to find the minimal energy
skyrmion structure. In what follows, we refer to the shape of the lattice Λ as the lattice structure
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𝑥1

𝑥2

(0, 1)

(1, 0)

(a) T2 = R2/Z2

𝑦1

𝑦2

𝛼�⃗�1

𝛼�⃗�2

(b) R2/Λ

Figure 2.5: The (a) domain 2-torus T2 and (b) target 2-torus R2/Λ for the diffeomorphism 𝐹 ∶ T2 → R2/Λ.

and the energy minimizing skyrmion as the skyrmion crystal. Note that for an energy minimizer 𝜑
to be a skyrmion crystal it has to satisfy the extended virial constraints detailed below. We use a
more robust method based on the work done by Speight [64] and propose a semi-analytic method
to determine the optimal lattice structure for an arbitrary potential. We then apply this method to
study skyrmion crystals in the standard model and in the easy plane model.

The physical space of interest is the 2-torus R2/Λ, where Λ is the set of all 2-dimensional period
lattices

Λ = {
2
∑
𝑖=1

𝑛𝑖(𝛼�⃗�𝑖) | 𝑛𝑖 ∈ Z, 𝛼 ∈ R∗} , (2.4.1)

where 𝛼 is a scaling parameter and {�⃗�1, �⃗�2} is a basis forR2. We have written the fundamental pair of
periods in the form �⃗�𝑖 = 𝛼�⃗�𝑖 ∈ R2 for later convenience, where we will introduce a constraint such
that the area of the period lattice is 𝛼2. The crystallographic restriction theorem states that there
are 5 Bravais lattice types in 2-dimensions [99]. In each of these lattice types the fundamental unit
cell is a certain type of a parallelogram. To find skyrmion crystals we minimize the static energy
functional over all period lattices. Equivalently, we fix our domain of 𝜑 to be the unit 2-torus
R2/Z2 and identify every other torus R2/Λ with R2/Z2, but with a non-standard Riemannian
metric 𝑔. This metric 𝑔 on R2/Z2 is the pullback of the flat Euclidean metric 𝑑 on R2/Λ via the
diffeomorphism R2/Z2 → R2/Λ. As we vary the period lattice Λ then the metric 𝑔 varies [64].

Now, let 𝐹 ∶ T2 → R2/Λ be a diffeomorphism with 𝐹 ∈ GL+(2,R) and T2 = R2/Z2, as shown
in Fig. 2.5. Using the identification GL+(2,R) = SL(2,R) × R∗/Z2, let𝒜 = [�⃗�1 �⃗�2] ∈ SL(2,R) and
𝛼 ∈ R∗ such that 𝐹 = 𝛼𝒜 ∈ GL+(2,R). We will now identify the domain of 𝜑 as Σ = T2, so that the
Skyrme field is a map 𝜑 ∶ T2 → 𝑆2. The metric on T2 is the pullback 𝑔 = 𝐹∗𝑑 of the flat Euclidean
metric 𝑑 on R2/Λ, that is

𝑔 = 𝐹∗𝑑 = 𝑔𝑖𝑗d𝑥𝑖d𝑥𝑗, 𝑔𝑖𝑗 = 𝛼2�⃗�𝑖 ⋅ �⃗�𝑗. (2.4.2)

The corresponding matrix representation of the inverse metric is given by

𝑔−1 = 1
𝛼2

[ �⃗�2 ⋅ �⃗�2 −�⃗�1 ⋅ �⃗�2
−�⃗�1 ⋅ �⃗�2 �⃗�1 ⋅ �⃗�1

] , (2.4.3)

and the Riemannian volume form is simply vol𝑔 = √det 𝑔d𝑥1 ∧ d𝑥2 = 𝛼2 d𝑥1 ∧ d𝑥2.
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Then, using the local form for the Dirichlet term (2.2.2) and the inverse metric (2.4.3), we can
compute the Dirichlet energy on T2 to be

𝐸2 =
1
2 ∫T2

d2𝑥 {(�⃗�2 ⋅ �⃗�2)(𝜕1𝜑)
2 − 2(�⃗�2 ⋅ �⃗�1)(𝜕1𝜑 ⋅ 𝜕2𝜑) + (�⃗�1 ⋅ �⃗�1)(𝜕2𝜑)

2} . (2.4.4)

Since the Dirichlet energy is conformally invariant, it does not have a dependence on the scaling
parameter 𝛼. Likewise, using the local form for the Skyrme term (2.2.3), the inverse metric (2.4.3)
and the pullback of the area 2-form (2.2.5), the Skyrme energy on T2 is

𝐸4 =
𝜅2

2𝛼2
∫

T2
d2𝑥 (𝜕1𝜑 × 𝜕2𝜑) ⋅ (𝜕1𝜑 × 𝜕2𝜑) , (2.4.5)

and the potential energy is simply

𝐸0 = 𝛼2∫
T2
d2𝑥𝑉(𝜑). (2.4.6)

Putting this together, we see that the static energy functional for baby skyrmions on the unit area
2-torus T2 with the non-standard Riemannian metric 𝑔 is

𝐸 = 1
2 ∫T2

d2𝑥 {�⃗�2
2 (𝜕1𝜑)

2 − 2(�⃗�2 ⋅ �⃗�1)(𝜕1𝜑 ⋅ 𝜕2𝜑) + �⃗�
2
1 (𝜕2𝜑)

2} + 𝜅2

2𝛼2
∫

T2
d2𝑥 (𝜕1𝜑 × 𝜕2𝜑)

2

+ 𝛼2∫
T2
d2𝑥𝑉(𝜑). (2.4.7)

As before, we need an explicit description of the energy gradient for our numerical analysis. The
variation of the energy density with respect to field 𝜑𝑎 can be obtained from the Euler–Lagrange
field equations, that is

𝛿ℰ
𝛿𝜑𝑎 = 𝛼2 𝛿𝑉𝛿𝜑𝑎 − {𝛼

2𝑔𝑖𝑗𝜕𝑖𝑗𝜑
𝑎 + 𝜅2

𝛼2
[𝜕𝑖𝑖𝜑

𝑎 (𝜕𝑗𝜑
𝑏)
2
+ 𝜕𝑖𝜑

𝑎 (𝜕𝑖𝑗𝜑
𝑏 𝜕𝑗𝜑

𝑏 − 𝜕𝑗𝑗𝜑
𝑏 𝜕𝑖𝜑

𝑏) − 𝜕𝑖𝑗𝜑
𝑎 (𝜕𝑖𝜑

𝑏 𝜕𝑗𝜑
𝑏)]} ,

where 𝑖, 𝑗 ∈ {1, 2} and 𝑎, 𝑏 ∈ {1, 2, 3}.
To find the optimal lattice structure, we must vary the static energy functional (2.4.7) with

respect to the period lattice parameters �⃗�1, �⃗�2 and 𝛼. Firstly, taking the variation of the static energy
functional (2.4.7) with respect to the scaling parameter 𝛼,

𝜕𝐸
𝜕𝛼 = ∫

T2
d2𝑥 {−𝜅

2

𝛼3
(𝜕1𝜑 × 𝜕2𝜑)

2 + 2𝛼𝑉(𝜑)} = 0,

yields the following relation for the scaling parameter:

𝛼2 = √
𝜅2
2 ∫T2

d2𝑥 (𝜕1𝜑 × 𝜕2𝜑)
2

∫
T2
d2𝑥𝑉(𝜑)

= √
𝐸T2
4

𝐸T2
0
. (2.4.8)

Thus, the area of the period lattice is determined by the ratio of the flat Skyrme term to the
flat potential term. Determining the fundamental pair of periods �⃗�1, �⃗�2 which minimize the
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Dirichlet energy 𝐸2 is a constrained quadratic optimization problem with the nonlinear constraint
det([�⃗�1 �⃗�2]) = 1. For notational convenience, let us write

ℰ𝑖𝑗 = ∫
T2
d2𝑥 (𝜕𝑖𝜑 ⋅ 𝜕𝑗𝜑) . (2.4.9)

Then the Dirichlet energy (2.4.4) can be expressed in the quadratic form

𝐸2 =
1
2𝑥

𝛵𝒬𝑥, 𝒬 = [

ℰ22 0 −ℰ12 0
0 ℰ22 0 −ℰ12

−ℰ12 0 ℰ11 0
0 −ℰ12 0 ℰ11

] , (2.4.10)

where 𝑥 = [�⃗�1
�⃗�2
] is a 4-vector and 𝒬 is a 4 × 4-symmetric matrix. This constrained quadratic optimiza-

tion problem can be solved by including the Lagrange term 𝛾(det([�⃗�1 �⃗�2]) − 1) into (2.4.10), where
𝛾 ∈ R∗ is a Lagrange multiplier. This reduces the problem to an eigenvalue problem

ℬ𝑥 = 𝛾𝑥, ℬ = [

0 ℰ12 0 −ℰ11
−ℰ12 0 ℰ11 0
0 ℰ22 0 −ℰ12

−ℰ22 0 ℰ12 0

] . (2.4.11)

Now, we focus on the stress tensor 𝑆 of the field 𝜑 and its relation to baby skyrmion crystals. In
this chapter we only briefly cover the stress tensor formulation for completeness, but in subsequent
chapters we will delve more into it and exploit it in the (3 + 1)-dimensional models. By definition,
for an energy minimizer 𝜑 ∶ R2/Λ → 𝑆2 to be a skyrmion lattice, its stress tensor 𝑆[𝜑]must be 𝐿2
orthogonal to the space of parallel symmetric bilinear forms E (a 3-dimensional subspace of the
space of sections of the rank 3 vector bundle 𝑇∗R2/Λ ⊙ 𝑇∗R2/Λ). Furthermore, if the Hessian of
the skyrmion lattice is positive definite then it is a skyrmion crystal. In fact, Speight [64] showed
that every baby Skyrme lattice is a skyrmion crystal. The stress tensor of 𝜑 is given by [90]

𝑆[𝜑] = (12|d𝜑|
2
𝑑 −

1
2|𝜑

∗𝜔|2𝑑 + 𝑉(𝜑)) 𝑑 − 𝜑
∗ℎ. (2.4.12)

Let E0 be the 2-dimensional space of traceless parallel symmetric bilinear forms. Then the Skyrme
field 𝜑 is a skyrmion lattice if and only if 𝑆[𝜑] is 𝐿2 orthogonal to 𝑑 and E0. This gives us the familiar
virial constraint

∫
R2/Λ

(−12|𝜑
∗𝜔|2𝑑 + 𝑉(𝜑)) vol𝑑 = 𝐸0 − 𝐸4 = 0. (2.4.13)

Let (𝑦1, 𝑦2) be local orthonormal coordinates on R2/Λ and 𝜀 ∈ E0. Then for 𝑆 to be 𝐿2 orthogonal
to E0, we require

⟨𝑆, 𝜀⟩𝐿2 = −12 ⟨𝜑
∗ℎ, 𝜀⟩𝐿2 = 0.

As E0 is spanned by 𝜀1 = (d𝑦1)2 − (d𝑦2)2 and 𝜀2 = 2d𝑦1d𝑦2, we get the following additional virial
constraints

∫
R2/Λ

(∣
𝜕𝜑
𝜕𝑦1

∣
2

− ∣
𝜕𝜑
𝜕𝑦2

∣
2

)d𝑦1d𝑦2 = 0 (2.4.14)
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and
∫

R2/Λ

𝜕𝜑
𝜕𝑦1

⋅
𝜕𝜑
𝜕𝑦2

d𝑦1d𝑦2 = 0. (2.4.15)

These additional virial constraints state that the Skyrme map 𝜑must be conformal on average. We
have shown above that for the skyrmion lattice 𝜑 to be critical with respect to variations of the
period lattice Λ, it must satisfy the extended virial constraints in each lattice cell.

The extendedDerrick virial constraints (2.4.13)–(2.4.15) can be imposed as a consistency check
when implementing the lattice optimisation method detailed above. For numerics, the domain
manifold of interest is the 2-torus T2 = R2/Z2 withmetric 𝑔 = 𝐹∗𝑑, where we previously introduced
the diffeomorphism 𝐹 ∶ T2 → R2/Λ. Recall that we used the identification 𝐹 = 𝛼𝒜 ∈ GL+(2,R) for
𝛼 ∈ R∗ and𝒜 = [�⃗�1 �⃗�2] ∈ SL(2,R). Thus, using the compact notation (2.4.9), the generalised virial
constraints (2.4.14) and (2.4.15) on T2 are given, respectively, by

(𝒜2
22 − 𝒜

2
12)ℰ11 + (𝒜

2
21 − 𝒜

2
11)ℰ22 + 2(𝒜11𝒜12 − 𝒜21𝒜22)ℰ12 = 0 (2.4.16)

and
−𝒜12𝒜22ℰ11 − 𝒜11𝒜21ℰ22 + (𝒜11𝒜22 + 𝒜12𝒜21)ℰ12 = 0, (2.4.17)

where𝒜𝑖𝑗 = (�⃗�𝑗)𝑖, the 𝑖th component of �⃗�𝑗, and (𝒜𝑖𝑗) = 𝒜.
In this section, we have shown that the problemof determining the optimal lattice structure that

minimizes the baby Skyrme energy (2.4.7) amounts to solving an eigenvalue problem (2.4.11). Dur-
ing each iteration of our numerical minimization algorithm, we perform an accelerated gradient de-
scent then we compute the scaling parameter 𝛼 via (2.4.8) and solve the eigenvalue problem (2.4.11)
to give us the pair of periods �⃗�1, �⃗�2. We also check that the generalised virial constraints (2.4.13),
(2.4.16) and (2.4.17) are satisfied each iteration, showing that the energy minimizer 𝜑 ∶ R2/Λ → 𝑆2

is indeed a skyrmion lattice and thus a skyrmion crystal. This determines the lattice Λ and the algo-
rithm in turn determines the skyrmion crystal. The numerics detailed throughout this section were
carried out initially on a 200 × 200-grid with lattice spacing Δ𝑥 = 0.005, with a final higher accuracy
simulation carried out on a 500 × 500-grid with lattice spacing Δ𝑥 = 0.002. Finer meshes were tried
but there were no considerable changes in the final energy. Note that the coarser 200 × 200-grid
would be sufficient as this gives approximately the same accuracy as the numerics for the baby
skyrmions on R2. It is also worth noting that the lattice spacings are fixed sizes on the discretised
unit area 2-torus T2, whereas the equivalent lattice spacings on the discretised 2-torus R2/Λ vary as
the lattice Λ varies.

Standard Baby Skyrmion Crystals
Employing the lattice optimisation method detailed in Sec 2.4 for the standard potential (2.3.3)
with 𝑚2 = 0.1 (and 𝜅2=1), the optimal lattice is found to be an equianharmonic lattice with the
baby skyrmions forming a hexagonal skyrmion crystal with𝐷6 symmetry. This is found for almost
all 𝐵 = 2 initial configurations on random initial lattice geometry (with the exception of relaxing to
the infinite chain solution occasionally). Each unit cell contains a charge of 𝐵 = 2 and has sides of
equal length 𝐿crystal = 9.60with the angle between the two periods �⃗�1, �⃗�2 being 𝜃 = 2𝜋

3 , giving a unit
cell area of 𝐴 = 79.84. We find that the skyrmion crystal has energy ℰcrystal = 1.4543, which is lower
than the infinite chain energy ℰchain = 1.4548. Note that when we refer to energy values, we have
normalised them by the Bogomolny bound, i.e. ℰ ∶= 𝐸/(4𝜋𝐵). The hexagonal skyrmion crystal
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(a) Energy density. (b) Phase coloring.

Figure 2.6: Hexagonal crystalline structure of the infinite crystal in the standard model.

(a) Energy density. (b) Phase coloring.

Figure 2.7: Plots of the adjacent infinite chains in the attractive channel, yielding an energy lower than the
infinite chain but higher than the hexagonal infinite crystal.

can be seen in Fig. 2.6. As a fidelity check with Hen and Karliner’s work, we also determined the
optimal lattice to be equianharmonic with a hexagonal skyrmion crystal for𝑚2 = 0.1 and 𝜅2 = 0.03.
The energy for this crystal is found to beℰcrystal = 1.0799, which is in excellent agreement with their
numerically determined value of ℰcrystal = 1.08.

Other skyrmion crystals were searched for at numerous topological charges for various initial
configurations and initial lattice geometry. However, they all had a tendency to relax into a chain
or rows of separate chains with the infinite chain energy ℰchain = 1.4548. A slightly lower energy
configuration was found for rows of adjacent chains with all the charge-1 links rotated by 𝜋 in one
chain relative to the other. This attractive chains configuration has an energy of ℰ2-chains = 1.4545
and is shown in Fig. 2.7.

Easy Plane Baby Skyrmion Crystals
As previously proposed in Sec 2.3, it seems likely that there may possibly be a few skyrmion crystals
for the easy plane model. This prompts the search for skyrmion crystals for a range of charges with
various initial configurations. The lowest energy skyrmion crystal is a square of half lumps with𝐷4
symmetry in a square lattice for 𝐵 = 2, with energy ℰ𝛣=2 = 1.5152. The square lattice has sides of
equal length 𝐿crystal = 8.20, giving a unit cell area of 𝐴 = 67.24. Two other skyrmion crystals were
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(a) 𝛣 = 2. (b) 𝛣 = 3. (c) 𝛣 = 4.

Figure 2.8: 𝜑1 density plots of the optimal crystalline structures and their corresponding lattices. The lowest
energy crystal structure is the 𝐵 = 2 and the highest is 𝐵 = 4.

found with slightly higher energies: a hexagonal skyrmion crystal in an equianharmonic lattice for
𝐵 = 3with𝐷6 symmetry and energy ℰ𝛣=3 = 1.5207, and an octagonal skyrmion crystal in a square
lattice with 𝐷4 symmetry and energy ℰ𝛣=4 = 1.5228. These three skyrmion crystals are shown in
Fig. 2.8.

2.5 Baby Skyrmion Crystal Chunks
The skyrmion crystal is the ground state crystalline configuration, so one would expect chunks of
the skyrmion crystal to be the global minima for charges past a critical charge 𝐵crystal. A starting
point would be to split the crystal chunk energy into a bulk volume, or area, term and a surface
term. For a given charge 𝐵, we know the minimal energy skyrmion crystal, the corresponding
lattice Λ and the lattice area. So, the bulk area term is easy to calculate. However, the problem lies
in minimizing the surface energy contribution for a fixed area, which corresponds to minimizing
the crystal perimeter for a fixed area. This is known as an isoperimetric problem. Even once the
minimal energy crystal chunk shape has been found, we still require an estimate of the surface
energy (per unit length) to determine the surface energy of the crystal chunk.

Surface Energy of a Baby Skyrmion Crystal Chunk
The surface energy per unit length of a skyrmion crystal chunk can be predicted by using a crystal
slab model. Skyrmion crystals are layered on an infinite cylinder Σ = R × 𝑆1 of width 𝐿 = 𝐿crystal,
and the number of layers 𝑛 ∈ N are increased to estimate the surface energy contribution. As stated
in Sec 2.2, this corresponds to a Dirichlet boundary condition in the 𝑥2-direction, lim|𝑥2|→∞ = 𝜑∞,
and a periodic boundary condition in the 𝑥1-direction, 𝜑(𝑥) = 𝜑(𝑥 + 𝑛1𝑋

1). Each layer contributes
a charge of 2 in this model, giving an 𝑛-layer crystal slab a total charge of 𝐵 = 2𝑛. The crystal slab
layering can be seen in Fig. 2.9.

For the standard potential, each hexagonal baby skyrmion has 6 bonding sides (or nearest
neighbours) and each crystal slab edge has 2 unbonded sides. Similarly, for easy plane crystal
chunks, each baby skyrmion has 4 bonding sides and each crystal slab edge has 2 unbonded sides.
We can express the crystal slab energy as

𝐸slab = 𝐸crystal + 𝑁free𝐸bond, (2.5.1)
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(a) (b)

Figure 2.9: Energy density and 𝜑1 density plots showing a (a) 7-layer standard hexagonal crystal slab and (b)
a 5-layer easy plane square crystal slab.

where 𝑁free is the number of free bonds (or unbonded sides) and 𝐸bond is the energy of each
free bond. For the standard and easy plane crystal slabs in Fig. 2.9 we have 𝑁free = 4. We can
approximate the surface energy contribution by applying a least squares fitting to the crystal slab
energy normalised by the Bogomolny bound,

ℰslab = ℰcrystal +
𝑁free
2𝑛 ℰbond, (2.5.2)

where ℰbond is the normalised free bond energy such that 𝐸bond = 4𝜋ℰbond. For approximating the
surface energy, we computed the energies of various 𝑛-layer crystal slabs with 𝑛 ∈ {3, … , 11}. Using
a trust region reflective algorithm, and the crystal slab approximation (2.5.2), we find that for the
standard potential ℰbond = 0.0031 (with𝑚2 = 0.1) and for the easy plane potential ℰbond = 0.0103
(with𝑚2 = 1).
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Figure 2.10: Comparison of ring, chain and crystal chunk approximations in the standard model.

Standard Crystal Chunks

Tomodel a skyrmion crystal chunk, we split the crystal chunk energy into a bulk volume term and
a surface term, 𝐸chunk = 𝐸bulk + 𝐸surface. The surface energy contribution of a baby Skyrme crystal is
determined by the number of unbonded sides. As stated before, for the standard potential, each
hexagonal baby skyrmion has 6 bonding sides (or nearest neighbours) which means there are many
possible arrangements for crystal chunks for a given charge 𝐵. For easy plane crystal chunks, the
square lattice is the minimal energy crystal configuration so we only consider each easy plane baby
skyrmion to have 4 bonding sides. Our aim is to determine the shape of an equilibrium crystal by
minimizing the total surface energy associated to the crystal-vacuum interface. In crystallography
one normally employs theWulff construction method to determine the equilibrium shape of a
crystal chunk. However, we take a simpler approach and only consider the perimeter of the crystal
chunk boundary, not its shape. Equivalently, we are considering the number of free bonds in a
given crystal chunk. This enables us to write the energy in the form

𝐸chunk = 𝐸bulk + 𝑁free𝐸bond. (2.5.3)

Therefore, we want to find the crystal chunk that minimizes the number of free bonds, and hence
its surface energy contribution, for a fixed charge 𝐵 and crystal area 𝐴.

The infinite standard crystal has a discrete𝐷6 symmetry, so we propose that minimal energy
chunks of the infinite crystal take the form of layered hexagonal solitons, as can be seen in Fig. 2.11.
The number of charge-2 units in each layer is precisely 6𝑛. As we consider each charge-2 baby
Skyrme unit to have 6 bonding sides, we can determine the number of free bonds in an 𝑛-layer
crystal chunk to be𝑁free = (12𝑛 + 6). This accounts for the 2 free bonds on each outer charge-2
soliton plus the additional free bond at each vertex of the crystal chunk. The total charge of a
crystal chunk is 𝐵 = 2(3(𝑛 + 1)𝑛 + 1), such that

𝑛 = 1
6 (

√6𝐵 − 3 − 3) . (2.5.4)
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(a) 𝑛 = 2, 𝛣 = 38. (b) 𝛣 = 38 coloring.

Figure 2.11: Energy density plot of a crystal chunk solution in the standard model and its corresponding
coloring on the right hand side.

Thus, we can approximate the normalised energy of a hexagonal standard baby skyrmion crystal
chunk to be given by

ℰchunk = ℰcrystal +
𝑁free
𝐵 ℰbond = ℰcrystal +

2√6𝐵 − 3
𝐵 ℰbond. (2.5.5)

To determine the transition charge𝐵crystal where chunks of the infinite skyrmion crystal become
the global minima, we need to compare the crystal chunk model (2.5.5) to chain and ring models.
Using the models proposed byWinyard [98], and our numerically determined value for the infinite
chain, we are able to approximate ring and chain solutions. The results are plotted in Fig. 2.10,
which includes data points from crystal chunk solutions for numerous charges 𝐵 up to 𝐵 = 2054.
It can be observed that the crystal chunk approximation (2.5.5) fits the data very well. We find that
crystal chunk solutions become global minima for charges 𝐵 > 𝐵crystal = 954. An energy density
plot of the 𝐵 = 38 skyrmion crystal chunk solution is shown in Fig. 2.11. Most of the crystal chunks
were found numerically on grids with lattice spacing 0.05, with grid sizes ranging from 800 × 800 to
2400 × 2400. Crystal chunk solutions for 𝐵 = 1262 and 𝐵 = 2054were obtained on grids with lattice
spacing 0.1 and grid sizes 3000 × 3000 and 3800 × 3800, respectively.

Easy Plane Crystal Chunks
To predict the energy of an easy plane crystal chunk is somewhat more challenging. There exists
three skyrmion crystals, all relatively close in energywith one other. For charges𝐵 such that √2𝐵 ∈ Z,
the minimal energy crystal chunk is the minimal perimeter √2𝐵 × √2𝐵-square of half lumps. For
non-square 2𝐵, it becomes exceedingly difficult to predict the global minima. This is because there
exists a smörgåsbord of local minima for a given charge, which increases with the charge number.

Nevertheless, some progress can be made if we consider rectangular crystal chunks built from
the square skyrmion crystal. In the first instance, if 2𝐵 has factors other than 2 and 𝐵, say 𝑎 ∈ Z and
2𝐵/𝑎 ∈ Z, then the (local) minimal energy crystal chunk will be an 𝑎 × 2𝐵/𝑎-rectangle of half lumps
such that the sum 𝑎 + 2𝐵/𝑎 is minimal with respect to the other pairs of possible factors. We ignore
the trivial factors 2𝐵 and 1 as the 2𝐵 × 1-chain is most likely not a local minimizer for the easy plane
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Figure 2.12: Comparison of approximate and true square crystal chunks in the easy plane model.

model. Random initial configurations do not relax to a single linear chain, unlike the standard
model. Even starting with a single chain initial configuration in attractive channel orientations
does not result in a relaxed final state of a single chain, it normally relaxes to the double chain. To
find the pair of factors with minimum sum, one would find the factor 𝑎 ∈ Z of 2𝐵 that minimizes
the perimeter function 𝑓(𝑎) = 2(𝑎 + 2𝐵/𝑎).

Using the above information, we are able estimate the energy of a crystal chunk for a given
charge 𝐵. Similar to the standard model, we split the crystal chunk energy into a bulk term and
a surface term. For charges 𝐵, we need to determine the pair (𝑎, 2𝐵/𝑎) of minimal sum factors of
2𝐵. Then we can calculate the surface energy and determining the bulk energy is straightforward.
Explicitly, the normalised energy for a charge-𝐵 crystal chunk is given by

ℰchunk = ℰ𝛣=2 +
𝑁free
𝐵 ℰbond = ℰ𝛣=2 + 2 (𝑎 +

2𝐵
𝑎 )

ℰbond
𝐵 . (2.5.6)

This approximation for square crystal chunks (2𝐵 = 𝑎2) is plotted in Fig. 2.12, alongside the
corresponding true numerically determined (normalised) energies.

Clearly, the further 𝑎 deviates from √2𝐵 the higher the surface energy contribution. So one
would expect there tobenormalised energybands at high charges for this rectangular approximation.
These bands can be determined in the limit 𝐵 → ∞, and for such highly rectangular pairs (𝑎, 2𝐵/𝑎)
the bands in the limit 𝐵 → ∞ are given by

ℰbands = ℰ𝛣=2 +
4
𝑎ℰbond. (2.5.7)

Since there are three skyrmion crystals, there are obviously better crystal chunk solutions for
highly rectangular factors (𝑎, 𝑏). As an example, lets consider local minima for the charge-13 easy
plane soliton. There are three solutions that one might expect to be contenders for the crystal
chunk for this charge. Firstly, the natural choice is the minimal perimeter rectangle, which will be
a double chain, or simply a 2 × 13-rectangle of half lumps. This is depicted in Fig. 2.13a. The next



2.6. Concluding Remarks 41

(a) ℰ = 1.5411. (b) ℰ = 1.5395∗. (c) ℰ = 1.5407.

Figure 2.13: 𝜑1 density plots of the three candidates for the crystal chunk solution for a 𝐵 = 13 easy plane
baby skyrmion. The asterisk (*) indicates the global minimum.

idea is to consider theminimal perimeter rectangle of half lumps for a 𝐵−1 = 12 crystal chunk, then
add a half lump pair to one of its corners to create a defect. This results in a 6 × 4-rectangular crystal
chunk with one distorted hexagonal corner, as shown in Fig. 2.13b. The third contender is akin
to the corner cutting method used in the Skyrme model [28, 43], in which we try to remove half
lumps (one blue and one red) from two corners of the minimal perimeter 7 × 4-rectangular 𝐵 = 14
crystal chunk. This does not have the intended effect of missing half lumps on corners, rather it
pulls the rest of the row, and the adjacent row, away from the chunk to form an arc with two half
lumps more than the half lump height of the rectangular chunk. This can be seen in Fig. 2.13c.
Out of these three most likely crystal chunk candidates for a charge-13 soliton, the rectangular
crystal chunk with one distorted hexagonal corner is the minimal energy solution.

So for a charge-13 baby skyrmion the minimal perimeter rectangle model fails as a candidate
for the global minimal energy crystal chunk in the easy plane model. So even at charge-13we have
already found a lower energy crystal arrangement than the rectangular crystal chunk. One would
expect that adding hexagonal/octagonal defects to nearly square crystal chunks would result in
lower energy solutions than rectangular crystal chunks. However, for square crystal chunks, such
that 𝐵 ∈ √2𝐵, the rectangular crystal chunk model (2.5.6) is an excellent approximation.

In brief, we conjecture that the prevalent minimal energy crystal chunks for the easy plane
model are squares of half lumps if √2𝐵 ∈ Z, otherwise they are minimal perimeter rectangles of
half lumps, with some crystal chunks having distorted hexagonal defects. We have also proposed
an empirical model to determine the energy for a given square/rectangular crystal chunk.

2.6 Concluding Remarks
In this chapter, we have presented a method to determine skyrmion crystals on an optimised
lattice for arbitrary potentials in the baby Skyrme model. Once the minimal energy skyrmion
crystal is known, the solitons can be layered by use of a crystal slab model and the surface energy
per unit length obtained numerically. Using insight obtained from the skyrmion crystal and the
surface energy, chunks of the skyrmion crystal can be constructed and their corresponding energies
determined.

For the standard potential, we have demonstrated that the global minimum energy skyrmion
crystal exhibits a clear hexagonal𝐷6 symmetry. This hexagonal skyrmion crystal has a lower nor-
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(a) Energy density. (b) Phase coloring.

Figure 2.14: Plots of the (a) energy density and (b) phase coloring for the (2 + 1)-dimensional square lattice

malised energy than the infinite chain solution proposed by Foster [97]. We propose that the global
minima are layered hexagonal crystals for 𝐵 > 954with𝑚2 = 0.1.

We determined that rows of adjacent infinite chains in attractive orientations have normalised
energies close to that of the the infinite hexagonal crystal. So it is quite possible that concentric ring
solutions in attractive orientations could be the global minima for charges 𝐵with 𝐵ring < 𝐵 < 𝐵crystal,
this would need to be investigated. Likewise, Winyward [98] showed that chain solutions could
also intersect to form junctions, and proposed that networks of standard baby skyrmions could be
the global minima between rings and crystal chunks. This too would need to be studied.

Solitons in the easy plane model take the form of configurations of half lumps. This model has
three skyrmion crystals all relatively close in energy: square, hexagonal and octagonal. Of these, the
square skyrmion crystal of half lumps is the global minimum. This is more reminiscent of the three
dimensional Skyrme system and, in a manner of respect, a better analogue. The easy plane model
exhibits a plethora of local minima with various different types of symmetries. We conjecture that,
when 2𝐵 is a perfect square, square crystal chunks are the global minima. For rectangular 2𝐵, the
minimal energy crystal chunks are, as close to square as possible, rectangular crystal chunks of half
lumps with some chunks having hexagonal surface defects. The study of internal anomalies has not
been carried out, so it is possible that the inclusion of a defect into the bulk is more energetically
favourable over a surface defect.

The obvious extension of the work detailed in this chapter is to the (3 + 1)-dimensional Skyrme
model. However, there is no direct natural extension of the semi-analytic method developed here,
as the NL𝜎M term is not conformally invariant in three dimensions. So, perhaps an alternative
numerical method is required. In the (3 + 1)-dimensional model, the crystal structure has been
studied extensively in the literature and a review is detailed in the previous chapter, Chap. 1. Recall
that all the lattice variations that have been studied were for a cubic lattice of side length 𝐿, in which
only 𝐿 is varied. In this case, the conjectured ground state skyrmion crystal is the cubic arrangement
of half skyrmions, that is, the SC1/2 crystal [39].

Now consider the standard pion mass analogue potential (2.3.3), if we allow our two dimen-
sional baby skyrmion lattice to only vary over all square lattices then we get the analogue structure
of the three dimensional cubic SC1/2 crystal. The resulting square skyrmion lattice of half baby
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skyrmions is shown in Fig. 2.14. Considering only scalings of cubic lattices is highly restrictive in
three dimensions as there exists fourteen types of Bravais lattices, in each of which the fundamental
unit cell is a certain type of parallelepiped. So one would need to vary over all 3-tori, or equivalently
vary the metric on the fixed unit 3-torus T3. It is believed that the SC1/2 skyrmion crystal is indeed
the ground state skyrmion crystal. However, if the (3 + 1)-dimensional Skyrme model and the
(2+1)-dimensional baby Skyrmemodel truly are analogous, it is possible that a hexagonal skyrmion
configuration could prevail (or even an entirely different crystalline structure).

g 0 G





Three

Skyrmion Crystals with Massive Pions
This chapter is an extension of the work presented in the joint paper with D. Harland andM. Speight
[100].

3.1 Introduction

In this chapter, we studyℒ024-Skyrme crystals and minimize the energy with respect to variations
of both the Skyrme field 𝜑 ∶ R3/Λ → SU(2) and the period lattice Λ. This is achieved through the
correspondence between all 3-toriR3/Λ and the fixed 3-torus T3 = 𝑆1 ×𝑆1 ×𝑆1 = R3/Z3, whereR3/Λ
is equipped with the standard Euclideanmetric 𝑑 and the metric 𝑔 on T3 is the pullback of 𝑑 via the
diffeomorphism T3 → R3/Λ. Varying over all period lattices Λ is then equivalent to varying over all
flat metrics 𝑔 on the fixed torus T3. This approach was introduced by Speight [64], in which the
interpretation of the gradient of the energy with respect to the metric 𝑔 as the stress tensor of the
field was repeatedly exploited. We will utilize this exploitation but also identify 𝑔with the constant
symmetric positive definite matrix (𝑔𝑖𝑗) representing it with respect to the canonical coordinate
system on T3.

So, the numerical task we set ourselves is, for fixed topological degree 𝐵 = 𝐵cell per unit cell, to
minimize 𝐸(𝜑, 𝑔) among all degree 𝐵maps 𝜑 ∶ T3 → SU(2) and flat metrics 𝑔 on T3. It is known
that, for fixed 𝑔, the function 𝜑 ↦ 𝐸(𝜑, 𝑔) attains a minimum (in a function space of rather low
regularity) [101]. The complementary problem of minimizing in 𝑔 for fixed 𝜑was first studied in
[64] and numerically implemented in [65, 102]. In [64] it was shown that in the baby Skyrme
model, any critical metric 𝑔 is automatically a local minimum of 𝐸. The problem of extending this
result to the Skyrme model was discussed, but unfortunately the proof used in two dimensions did
not generalise. Further, the existence of critical metrics was not addressed in [64].

We define Skyrme lattices and Skyrme crystals using the definitions laid out by Speight [64]
and determine the necessary requirements for an energy minimizer to be a crystal and/or lattice. In
the context of the baby Skyrme model, Speight [64] showed that all Skyrme lattices are Skyrme
crystals. We take this further and do so in the full generalizedℒ0246-Skyrme model.

In the present chapter we obtain a much stronger result. We show in Corollary 13 that, for
fixed 𝜑 satisfying very mild assumptions, there is a unique flat metric with respect to which 𝐸(𝜑, 𝑔)
is minimal, and hence a unique period lattice Λ (up to automorphism) with respect to which 𝜑 has
minimal energy per unit cell. In theℒ24-model, we can even write down this metric explicitly. In
the (more interesting) massiveℒ024- andℒ0246-models, we can resort to a gradient based numerical
minimization scheme to find 𝑔. Applying a similar scheme to minimize over 𝜑 ∶ T3 → SU(2) in
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tandem, we can find the energetically optimal field and period lattice for a given 𝐵, without ever
imposing any symmetry assumptions on the lattice.

The results reveal that, for 𝑚𝜋 > 0, the energetically optimal lattice (with 𝐵 = 4 per unit cell)
does not have cubic symmetry. In fact there are two crystal solutions with trigonal period lattices
(orthorhombic with side lengths 𝐿1 = 𝐿2 ≠ 𝐿3) which have lower energy than the lowest strictly
cubic lattice. This fact persists if, instead of minimizing over all flat 𝑔, we minimize only over the
subset of metrics with fixed total volume. This is equivalent to minimizing under the constraint of
fixed average baryon density, a problem of phenomenological interest in determining equations
of state for neutron stars [46]. We will explore this application in the next chapter. As might be
expected, the energy difference between the trigonal and cubic lattices becomes negligible as baryon
density grows very large, but is significant at lower densities.

This chapter is structured as follows. In section 3.2, we formulate the model mathematically,
considering in detail how its energy functional depends on the metric on physical space. In
particular, we consider the first variation of the static energy functional with respect to the metric.
This allows us to introduce the stress-energy tensor, which lies at the core of our numerical method.
In section 3.3, we prove existence and uniqueness of an energy minimizing metric 𝑔 for any given
fixed field. In section 3.4 we describe our numerical scheme in detail, while section 3.5 presents the
results of this scheme. In section 3.6 we determine minimal energy crystals under the constraint of
fixed baryon density. Finally, section 3.7 presents some concluding remarks.

Themainmathematical problem that this chapter addresses is tominimize 𝐸(𝜑, 𝑔), with respect
to both 𝜑 and 𝑔, among all fields of fixed degree 𝐵 and all metrics 𝑔 ∈ SPD3.

3.2 Mathematical Formulation of the Generalized SkyrmeModel
Recall that the general staticℒ0246-Skyrme model we are interested in consists of a single scalar field
𝜑 ∶ T3 → SU(2)where T3 is the unit 3-torus T3 = R3/Z3 with Riemannian metric 𝑔, and (SU(2), ℎ)
a compact simple Lie group with the canonical bi-invariant metric ℎ(𝑋, 𝑌) = 1

2 Tr(𝑋
†𝑌). We denote

the Lie algebra of SU(2) by 𝔰𝔲(2). Let us introduce oriented local coordinates (𝑥1, 𝑥2, 𝑥3) on the
domain T3 and let {𝜕1, 𝜕2, 𝜕3} be a local basis for the tangent space 𝑇𝑥T3 at 𝑥 ∈ T3.

Let
𝜑−1𝑇 SU(2) = {(𝑥, 𝑣) ∈ T3 × 𝑇 SU(2) ∶ 𝜑(𝑥) = 𝜋(𝑣)} (3.2.1)

be the vector bundle with base space T3 induced by the field 𝜑 from the tangent bundle 𝜋 ∶
𝑇 SU(2) → SU(2). We have a vector bundle morphism with the commutative diagram

𝜑−1𝑇 SU(2) 𝑇 SU(2)

T3 SU(2)

𝑝2

𝑝1 𝜋

𝜑

. (3.2.2)

Let d ∶ Ω𝑝(T3) → Ω𝑝+1(T3) be the exterior derivative. Then the differential d𝜑𝑥 ∶ 𝑇𝑥T3 → 𝑇𝜑(𝑥) SU(2)
is a linear map for each 𝑥 ∈ T3, and can be interpreted as an element of the vector space 𝑇∗

𝑥 T3 ⊗
𝑇𝜑(𝑥) SU(2). Thus we obtain a section d𝜑 of the bundle⋀

1(𝜑−1𝑇 SU(2)) = 𝑇∗T3 ⊗ 𝑇 SU(2) → T3.
The Hilbert–Schmidt norm | ⋅ | on 𝑇∗

𝑥 T3 ⊗ 𝑇𝜑(𝑥) SU(2) of the differential d𝜑𝑥 ∶ 𝑇𝑥T3 → 𝑇𝜑(𝑥) SU(2)
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at 𝑥 ∈ T3 is defined by [81]

|d𝜑𝑥|2𝑔 = Tr𝑔(𝜑∗ℎ) = 𝑔𝑖𝑗ℎ𝜑 (d𝜑𝑥(𝜕𝑖),d𝜑𝑥(𝜕𝑗)) , (3.2.3)

where 𝜑∗ℎ is known as the first fundamental form of 𝜑 on T3 [103]. The trace of a bilinear form𝑋
on T3 with respect to a metric 𝑔 on T3 is defined by Tr𝑔(𝑋) = Tr(\𝑔𝑋) = 𝑔𝑖𝑗𝑋𝑖𝑗, where we define
the sharp musical isomorphism on T3 induced by the metric 𝑔 by \𝑔 ∶ Ω1(T3) → 𝑇T3.

As before, letΩ ∈ Ω2(SU(2)) ⊗ 𝔰𝔲(2) be an 𝔰𝔲(2)-valued two-form on SU(2), defined below,
and 𝜔 ∈ Ω1(SU(2)) ⊗ 𝔰𝔲(2) be the left Maurer-Cartan form (an 𝔰𝔲(2)-valued one-form on SU(2)).
Then, for any left invariant vector fields𝑋, 𝑌 ∈ 𝑇𝜑(𝑥) SU(2), where 𝑥 ∈ T3, we define

Ω(𝑋, 𝑌) = [𝜔(𝑋), 𝜔(𝑌)] . (3.2.4)

We have the Ad(SU(2)) invariant inner product on the Lie algebra 𝔰𝔲(2) given by

ℎId2(𝑋, 𝑌) =
1
2 Tr(𝑋

†𝑌), 𝑋, 𝑌 ∈ 𝔰𝔲(2). (3.2.5)

For notational convenience we will write ℎ(𝑋, 𝑌) = ℎId2(𝑋, 𝑌). Consider the action of SU(2) on
itself by left translation,

𝐿 ∶ SU(2) × SU(2) → SU(2)
(𝜑, 𝜇) ↦ 𝐿𝜑(𝜇) = 𝜑𝜇. (3.2.6)

This induces a map of the tangent bundle to itself (𝐿𝜑)∗ ∶ 𝑇𝜇 SU(2) → 𝑇𝜑𝜇 SU(2). The left Maurer-
Cartan form 𝜔 is defined on vectors𝑋 ∈ 𝑇𝜑 SU(2) by

𝜔𝜑(𝑋) = (𝐿𝜑−1)∗𝑋 ∈ 𝔰𝔲(2). (3.2.7)

Consider a curve 𝛾 ∶ (−𝜖, 𝜖) → SU(2) through 𝜑 ∈ SU(2)with tangent vector𝑋 ∈ 𝑇𝜑 SU(2) defined
by 𝛾(𝑡) = 𝜑 + 𝑡𝑋 + 𝑂(𝑡2). Then 𝐿𝜑−1(𝛾) is a curve through Id2 with tangent vector 𝜑−1𝑋. Thus, for
SU(2), 𝐿𝜑 is a linear operation so (𝐿𝜑)∗ = 𝐿𝜑 and hence

𝜔𝜑(𝑋) = 𝐿𝜑−1(𝑋) = 𝜑−1𝑋. (3.2.8)

Now we can use this action to identify the inner product at 𝜑 ∈ SU(2)with the inner product at
the identity Id2,

ℎ𝜑(𝑋, 𝑌) = ℎ𝐿𝜑−1(𝜑) ((𝐿𝜑−1)∗𝑋, (𝐿𝜑−1)∗𝑌) = ℎId2(𝜑
−1𝑋, 𝜑−1𝑌), 𝑋, 𝑌 ∈ 𝑇𝜑 SU(2). (3.2.9)

Then the Dirichlet energy in local coordinates is given by

𝐸2(𝜑, 𝑔) = ∫
T3
|d𝜑|2𝑔 vol𝑔 = ∫

T3
𝑔𝑖𝑗ℎ(𝐿𝑖, 𝐿𝑗) vol𝑔, (3.2.10)

where 𝐿𝑖 = 𝜑−1𝜕𝑖𝜑 is the previously defined 𝔰𝔲(2)-valued left current.
In Sec 3.3 we want to reduce the underlying metric variational problem to a non-linear matrix

equation. To do this, we appeal to an isomorphism peculiar to 3-dimensions. We define a vector
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field𝑋𝜑,𝑔 that is metrically dual to the Hodge dual of 𝜑∗Ωwith respect to the metric 𝑔. Then, we
construct an isomorphismΩ2(𝑀) ⊗ 𝔰𝔲(2) ≅ 𝑇T3 ⊗ 𝔰𝔲(2) via the mapping

𝜑∗Ω ↦ \
𝑔 (⋆𝑔𝜑

∗Ω) = 𝑋𝜑,𝑔, (3.2.11)

where ⋆𝑔 ∶ Ω𝑝(T3) → Ω3−𝑝(T3) is the Hodge star operator. An alternative interpretation is is given
by considering the inverse isomorphism

𝑇T3 ⊗ 𝔰𝔲(2) ≅ Ω2(T3) ⊗ 𝔰𝔲(2)
𝑋𝜑,𝑔 ↦ 𝜄𝛸𝜑,𝑔vol𝑔 = 𝜑∗Ω, (3.2.12)

where 𝜄𝛸𝜑,𝑔 ∶ Ω
𝑝(T3) → Ω𝑝−1(T3) is the interior product. Now, let us write 𝑋𝜑,𝑔 = 𝑋𝑖

𝜑𝜕𝑖/√𝑔, where
𝑋𝑖
𝜑 ∈ 𝔰𝔲(2) and we have introduced the 1/√𝑔 factor for later convenience. As before, the pullback

𝜑∗Ω can be written asΩ𝑖𝑗 = 𝜑∗Ω(𝜕𝑖, 𝜕𝑗), such that

Ω𝑖𝑗 = Ω (d𝜑(𝜕𝑖),d𝜑(𝜕𝑗)) = [𝜔𝜑(𝜕𝑖𝜑), 𝜔𝜑(𝜕𝑗𝜑)] = [𝐿𝑖, 𝐿𝑗] . (3.2.13)

Then, the metric isomorphism is computed to be given by

\
𝑔 (⋆𝑔𝜑

∗Ω) = 1
2
1
√𝑔

𝜀𝑖𝑗𝑘Ω𝑗𝑘𝜕𝑖 ∈ 𝑇T3 ⊗ 𝔰𝔲(2). (3.2.14)

Hence, the corresponding 𝔰𝔲(2)-valued vector field on T3 is given by

𝑋𝜑,𝑔 =
1
√𝑔

𝑋𝑖
𝜑𝜕𝑖, 𝑋𝑖

𝜑 =
1
2𝜖

𝑖𝑗𝑘Ω𝑗𝑘 ∈ 𝔰𝔲(2). (3.2.15)

The 𝔰𝔲(2)-valued 2-form 𝜑∗Ω on T3 can be expressed in terms of the 𝔰𝔲(2)-valued vector field𝑋𝜑,𝑔
on T3 via the relation

Ω𝑗𝑘 = 𝑋𝑖𝜀𝑖𝑗𝑘 ∈ 𝔰𝔲(2). (3.2.16)

We can write |𝜑∗Ω|2𝑔 = | ⋆𝑔 𝜑
∗Ω|2𝑔 = |\𝑔(⋆𝑔𝜑∗Ω)|2𝑔, such that the Skyrme energy 𝐸4 can be expressed

as

𝐸4(𝜑, 𝑔) =
1
4 ∫T3

|\𝑔(⋆𝑔𝜑∗Ω)|2𝑔 vol𝑔 = 1
4 ∫T3

1
√𝑔2

𝑔𝑖𝑗ℎ (𝑋
𝑖
𝜑, 𝑋

𝑗
𝜑) vol𝑔. (3.2.17)

For completeness, we have included the sextic term [104] and define the natural three-form
Ξ ∈ Ω3(SU(2)) by

Ξ(𝑋, 𝑌, 𝑍) = 1
24𝜋2

ℎ (𝜔(𝑋),Ω(𝑌, 𝑍)) . (3.2.18)

Note that this three-form Ξ coincides with the normalized volume form on SU(2), where

volSU(2) =
1

24𝜋2
Tr (𝜑−1d𝜑 ∧ 𝜑−1d𝜑 ∧ 𝜑−1d𝜑) . (3.2.19)

Terms of this kind are of phenomenological interest since they arise in so-called near BPS variants
of the Skyrmemodel [105]. We can also explicitly write the pullback 𝜑∗Ξ in terms of the local frame
{𝜕1, 𝜕2, 𝜕3} as Ξ𝑖𝑗𝑘 = 𝜑∗Ξ(𝜕𝑖, 𝜕𝑗, 𝜕𝑘)with

Ξ𝑖𝑗𝑘 =
1

24𝜋2
ℎ (𝜔𝜑(𝜕𝑖𝜑),Ω (𝜕𝑗𝜑, 𝜕𝑘𝜑)) =

1
24𝜋2

ℎ (𝐿𝑖, Ω𝑗𝑘) =
1

48𝜋2
Tr (𝐿𝑖, [𝐿𝑗, 𝐿𝑘]) . (3.2.20)
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Then we can compute the norm of the sextic term of 𝜑∗Ξ, which reads

𝐸6(𝜑, 𝑔) = 𝑐6∫
T3
|𝜑∗Ξ|2𝑔 vol𝑔 = 𝑐6∫

T3
( 1
√𝑔

𝜖𝑖𝑗𝑘Ξ𝑖𝑗𝑘) (
1
√𝑔

𝜖𝑎𝑏𝑐Ξ𝑎𝑏𝑐) vol𝑔. (3.2.21)

Throughout, we will use the standard pion mass potential 𝑉 ∶ SU(2) → [0, ∞) given by

𝑉(𝜑) = 𝑚2Tr(Id2 −𝜑), (3.2.22)

with𝑚 the rescaled pion mass defined by (1.1.12).

Definition 3. The static energy functional of the generalizedℒ0246-Skyrme model on T3, in Skyrme
units, is given by

𝑀𝛣(𝜑, 𝑔) = ∫
T3
{|d𝜑|2𝑔 +

1
4|
\
𝑔(⋆𝑔𝜑

∗Ω)|2𝑔 + 𝑉 ∘ 𝜑 + 𝑐6|𝜑
∗Ξ|2𝑔} vol𝑔, (3.2.23)

where 𝑐6 is defined by (1.1.13).

Variation of the Field
Consider the more general case 𝜑 ∶ 𝑀 → SU(2), where𝑀 is a connected, oriented, 3-dimensional
Riemannian manifold. The metric 𝑔 on 𝑀 induces a point-wise metric ⟨⋅, ⋅⟩𝑔 on the bundle
⋀𝑝 𝑇∗𝑀 → 𝑀 of 𝑝-forms 𝜁 ∈ Ω𝑝(𝑀) = Γ(⋀𝑝 𝑇∗𝑀) on𝑀. In terms of the local frame {𝜕1, 𝜕2, 𝜕3}
on𝑀, this metric is defined by

⟨𝜂, 𝜁⟩𝑔 =
1
𝑝!

3
∑

𝑖1,…,𝑖𝑝=1
𝑔𝑖1𝑗1 …𝑔𝑖𝑝𝑗𝑝𝜂(𝜕𝑖1 , … , 𝜕𝑖𝑝)𝜁(𝜕𝑗1 , … , 𝜕𝑗𝑝). (3.2.24)

Using theHodge star operator, we define theHodge dual of 𝜁 ∈ Ω𝑝(𝑀) as ⋆𝑔𝜁 ∈ Ω3−𝑝(𝑀) satisfying
the relation

𝜂 ∧ ⋆𝑔𝜁 = ⟨𝜂, 𝜁⟩𝑔 vol𝑔. (3.2.25)

This gives a global 𝐿2-inner product,

⟨𝜂, 𝜁⟩𝐿2 = ∫
𝛭
⟨𝜂, 𝜁⟩𝑔 vol𝑔 = ∫

𝛭
𝜂 ∧ ⋆𝑔𝜁 (𝜂, 𝜁 ∈ Ω𝑝(𝑀)) , (3.2.26)

with corresponding norm ‖𝜂‖2𝐿2 = ⟨𝜂, 𝜂⟩𝐿2 . Let the operator adjoint to d with respect to the 𝐿
2-inner

product be the codifferential

𝛿 ∶ Ω𝑝(𝑀) → Ω𝑝−1(𝑀), 𝛿 = (−1)3(𝑝+1)−1 ⋆ d ⋆ . (3.2.27)

We will also need the flat musical isomorphism on𝑀, defined by
Z𝑔 ∶ 𝑇𝑀 → Ω1(𝑀), Z𝑔𝑋 = 𝑔(𝑋, ⋅ ), Z = \−1. (3.2.28)

Let𝑋 ∈ Γ(𝑇𝑀) be a vector field and its flow at time 𝑡 be 𝜑𝑡. Thenwe can define the Lie derivative
ℒ𝛸𝜂 of 𝜂 ∈ Ω𝑝(𝑀) along𝑋 by

ℒ𝛸𝜂 =
d
d𝑡 ∣𝑡=0

𝜑∗𝑡 𝜂. (3.2.29)

Denote the contraction of a vector field 𝑋 and a differential form 𝜂 by 𝜄𝛸𝜂, where 𝜄𝛸 ∶ Ω𝑝(𝑀) →
Ω𝑝−1(𝑀) is the interior product. Vector fields along 𝜑, or (infinitesimal) variations of 𝜑, are sections
Γ(𝜑−1𝑇 SU(2)) of the bundle induced by 𝜑 [103].
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Lemma 4 (Homotopy Lemma). Let 𝜂 be a closed 𝑝-form on SU(2) (i.e. d𝜂 = 0) and

𝜑𝑡 ∶ 𝑀 → SU(2) (3.2.30)

be a smooth one-parameter family of maps with variational vector field𝑋 = 𝜕𝑡𝜑𝑡|𝑡=0 ∈ Γ(𝜑
−1𝑇 SU(2)).

Then
ℒ𝛸𝜂 =

d
d𝑡 ∣𝑡=0

𝜑∗𝑡 𝜂 = d (𝜑∗𝜄𝛸𝜂) . (3.2.31)

For a proof of the homotopy lemma see, e.g., [106, p. 49].

Definition 5. A critical point (or an extremum) of the energy functional𝑀𝛣(𝜑, 𝑔) is a map 𝜑 ∶ 𝑀 →
SU(2) such that

d𝑀𝛣(𝜑𝑡, 𝑔)
d𝑡 ∣

𝑡=0
= 0 (3.2.32)

for all deformations (𝜑𝑡)𝑡∈R of the field 𝜑 = 𝜑0.

Proposition 6. Let 𝜑𝑡 be a smooth one-parameter variation of the field 𝜑 ∶ 𝑀 → SU(2), with
infinitesimal generator𝑋 = 𝜕𝑡𝜑𝑡|𝑡=0 ∈ Γ(𝜑

−1𝑇 SU(2)). Then
d𝑀𝛣(𝜑𝑡, 𝑔)

d𝑡 ∣
𝑡=0

= −∫
𝛭
⟨𝑋, 𝜏(𝜑)⟩𝑔 vol𝑔, (3.2.33)

where 𝜏(𝜑) ∈ Γ(𝜑−1𝑇 SU(2)) is the tension field of 𝜑 given by

𝜏(𝜑) = −2 𝛿d𝜑 − grad(𝑉) ∘ 𝜑 − 2 (14
\
ℎ𝜇Ω(𝜑) + 𝑐6\ℎ𝜇Ξ(𝜑)) (3.2.34)

and 𝜇𝜂(𝜑) ∈ Γ(𝜑−1𝑇∗ SU(2))maps elements 𝐴 ∈ 𝑇𝜑(𝑥) SU(2) to

𝜇𝜂(𝜑)(𝐴) = ⟨𝛿𝜑∗𝜂, 𝜄𝛢𝜑
∗𝜂⟩𝑔 . (3.2.35)

Proof. The tension field of the Dirichlet term is well known, and the variation of the Dirichlet
energy with respect to the smooth variation 𝜑𝑡 is given by (e.g. [88])

d𝐸2(𝜑𝑡, 𝑔)
d𝑡 ∣

𝑡=0
= 2∫

𝛭
⟨𝑋, − ⋆ d ⋆ d𝜑⟩𝑔 vol𝑔 = 2 ⟨𝑋, 𝛿d𝜑⟩𝐿2 . (3.2.36)

The potential and sextic term variations haven been computed by Adam et al. [107], they are
d𝐸0(𝜑𝑡, 𝑔)

d𝑡 ∣
𝑡=0

= ⟨𝑋, grad(𝑉) ∘ 𝜑⟩
𝐿2

(3.2.37)

and
d𝐸6(𝜑𝑡, 𝑔)

d𝑡 ∣
𝑡=0

= 2𝑐6∫
𝛭
⟨𝛿𝜑∗Ξ, 𝜑∗𝜄𝛸Ξ⟩𝑔 vol𝑔 = 2𝑐6 ⟨𝑋, \ℎ𝜇Ξ(𝜑)⟩𝐿2 , (3.2.38)

where we have used Stokes’ Theorem and the homotopy lemma, 𝜕𝑡|𝑡=0𝜑∗𝑡 Ξ = d(𝜄𝛸𝜑∗Ξ). Similarly,
for the Skyrme term we have

d𝐸4(𝜑𝑡, 𝑔)
d𝑡 ∣

𝑡=0
= 1
2 ∫𝛭

⟨𝛿𝜑∗Ω,𝜑∗𝜄𝛸Ω⟩𝑔 vol𝑔 =
1
2 ⟨𝑋,

\
ℎ𝜇Ω(𝜑)⟩𝐿2 , (3.2.39)

which completes the proof. 2
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Definition 7. A skyrmion is a critical point 𝜑 of the energy functional𝑀𝛣 such that 𝜏(𝜑) ≡ 0 for all
variations (𝜑𝑡)𝑡∈R, i.e. the tension field 𝜏(𝜑) corresponds to the Euler–Lagrange operator associated to
the energy functional𝑀𝛣.

Variation of the Metric

In order to find skyrmion crystals, we have to consider variations of the metric 𝑔 on T3. For now,
let us remain in the general setting 𝜑 ∶ 𝑀 → SU(2) and let 𝑔𝑠 be a smooth one-parameter family of
metrics on𝑀with initial metric 𝑔0 = 𝑔. Set �̇� = 𝜕𝑠𝑔𝑠|𝑠=0 ∈ Γ(⊙

2𝑇∗𝑀), a symmetric 2-covariant tensor
field on𝑀. Denote the inner product on the space of 2-covariant tensor fields of the tangent space
𝑇𝑥𝑀 to𝑀 at 𝑥 ∈ 𝑀 by ⟨⋅, ⋅⟩. Then for any pair of symmetric bilinear forms 𝐴, 𝐵we have [108]

⟨𝐴, 𝐵⟩𝑔 = 𝐴𝑖𝑗𝑔
𝑗𝑘𝐵𝑘𝑙𝑔

𝑙𝑖. (3.2.40)

In particular, we have the following result:

Tr𝑔(𝐴) = ⟨𝐴, 𝑔⟩𝑔 . (3.2.41)

Let us consider the rate of change of the energy of the Skyrme field 𝜑with respect to varying the
domain metric 𝑔. This enables us to define the stress-energy tensor, which is the key component of
our numerical algorithm.

Proposition 8. The first variation of the energy (3.2.23) with respect to the smooth one-parameter
family of variations 𝑔𝑠 of the metric on𝑀 is given by

d𝑀𝛣(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= ∫

𝛭
⟨𝑆(𝜑, 𝑔), �̇�⟩𝑔 vol𝑔, (3.2.42)

where 𝑆(𝜑, 𝑔) = 𝑆𝑖𝑗d𝑥𝑖d𝑥𝑗 ∈ Γ(⊙2𝑇∗𝑀) is a symmetric 2-covariant tensor field on𝑀, known as the
stress-energy tensor, given by

𝑆(𝜑, 𝑔) = 1
2 (|d𝜑|

2
𝑔 −

1
4|#𝑔(⋆𝑔𝜑

∗Ω)|2𝑔 + 𝑉 ∘ 𝜑 − 𝑐6|𝜑
∗Ξ|2𝑔) 𝑔 − (𝜑

∗ℎ − 1
4√𝑔2

𝑔ℎ𝛸𝑔) . (3.2.43)

Proof. The variation of the volume form vol𝑔𝑠 with respect to the metric 𝑔𝑠 is well known and is
given by [109, p. 82]

d
d𝑠 ∣𝑠=0

vol𝑔𝑠 =
d
d𝑠 ∣𝑠=0

√𝑔𝑠 d
𝑚𝑥 = 1

2√𝑔Tr𝑔(�̇�)d
𝑚𝑥 = 1

2 Tr𝑔(�̇�) vol𝑔 =
1
2 ⟨𝑔, �̇�⟩𝑔 vol𝑔. (3.2.44)
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The first variation of the Dirichlet energy with respect to the metric 𝑔 is given by, e.g., [110, p. 19]

d𝐸2(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= d

d𝑠 ∣𝑠=0
(∫

𝛭
|d𝜑|2𝑔𝑠vol𝑔𝑠)

= d
d𝑠 ∣𝑠=0

(∫
𝛭
𝑔𝑖𝑗(𝑠)ℎ(𝐿𝑖, 𝐿𝑗) vol𝑔𝑠)

= ∫
𝛭

d𝑔𝑖𝑗(𝑠)
d𝑠 ∣

𝑠=0
ℎ(𝐿𝑖, 𝐿𝑗) vol𝑔 +∫

𝛭
𝑔𝑖𝑗ℎ(𝐿𝑖, 𝐿𝑗)

dvol𝑔𝑠
d𝑠 ∣

𝑠=0

= −∫
𝛭
𝑔𝑖𝑙�̇�𝑙𝑘𝑔

𝑘𝑗ℎ(𝐿𝑖, 𝐿𝑗) vol𝑔 +
1
2 ∫𝛭

𝑔𝑖𝑗ℎ(𝐿𝑖, 𝐿𝑗)Tr𝑔(�̇�) vol𝑔

= ∫
𝛭
�̇�𝑛𝑚 (−𝑔

𝑖𝑛𝑔𝑚𝑗 + 1
2𝑔

𝑖𝑗𝑔𝑚𝑛) ℎ(𝐿𝑖, 𝐿𝑗) vol𝑔

= ∫
𝛭
⟨12|d𝜑|

2
𝑔𝑔 − 𝜑

∗ℎ, �̇�⟩
𝑔
vol𝑔, (3.2.45)

where we have used the identity 𝑔𝑖𝑗(𝑠)𝑔𝑗𝑘(𝑠) = 𝛿𝑖𝑘 , for all 𝑠, to deduce that

d
d𝑠 ∣𝑠=0

𝑔𝑖𝑗(𝑠) = −𝑔𝑖𝑙�̇�𝑙𝑘𝑔
𝑘𝑗. (3.2.46)

Then the corresponding variation of the Skyrme energy with respect to the metric is

d𝐸4(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= d

d𝑠 ∣𝑠=0
(14 ∫𝛭

|#𝑔𝑠(⋆𝑔𝑠𝜑
∗Ω)|2𝑔𝑠 vol𝑔𝑠)

= d
d𝑠 ∣𝑠=0

(14 ∫𝛭
1
√𝑔𝑠

2 𝑔𝑖𝑗(𝑠)ℎ (𝑋
𝑖
𝜑, 𝑋

𝑗
𝜑) vol𝑔𝑠)

= 1
4 ∫𝛭

1
√𝑔2

�̇�𝑖𝑗ℎ (𝑋
𝑖
𝜑, 𝑋

𝑗
𝜑) vol𝑔 −∫

𝛭
⟨ 1
4√𝑔2

𝑔𝑖𝑗ℎ (𝑋
𝑖
𝜑, 𝑋

𝑗
𝜑) 𝑔, �̇�⟩

𝑔

vol𝑔

+ 1
2 ∫𝛭

⟨ 1
4√𝑔2

𝑔𝑖𝑗ℎ (𝑋
𝑖
𝜑, 𝑋

𝑗
𝜑) 𝑔, �̇�⟩

𝑔

vol𝑔

= ∫
𝛭
⟨ 1
4√𝑔2

𝑔ℎ𝛸𝑔 −
1
8|(⋆𝑔𝜑

∗Ω)|2𝑔𝑔, �̇�⟩
𝑔

vol𝑔, (3.2.47)

where ℎ𝛸 = (ℎ(𝑋𝑖
𝜑, 𝑋

𝑗
𝜑)) and we have used the fact that

⟨𝑔ℎ𝛸𝑔, �̇�⟩𝑔 = (𝑔ℎ𝛸𝑔)𝑖𝑗 𝑔
𝑗𝑘�̇�𝑘𝑙𝑔

𝑙𝑖 = 𝑔𝑖𝑚ℎ(𝑋
𝑚
𝜑 , 𝑋

𝑛
𝜑 )𝑔𝑛𝑗𝑔

𝑗𝑘�̇�𝑘𝑙𝑔
𝑙𝑖 = ℎ(𝑋𝑚

𝜑 , 𝑋
𝑛
𝜑 )�̇�𝑛𝑚. (3.2.48)

The potential function 𝑉 has no dependence on the metric and so the potential term has variation

d𝐸0(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= ∫

𝛭
(𝑉 ∘ 𝜑)

dvol𝑔𝑠
d𝑠 ∣

𝑠=0

= ∫
𝛭
⟨12(𝑉 ∘ 𝜑)𝑔, �̇�⟩

𝑔
vol𝑔. (3.2.49)

However, the sextic term 𝐸6 is inversely proportional to the metric determinant 𝐸6 ∼ 1/√𝑔 and,
thus,

d𝐸6(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= ∫

𝛭
⟨−
𝑐6
2 |𝜑

∗Ξ|2𝑔𝑔, �̇�⟩
𝑔
vol𝑔. (3.2.50)
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This establishes the stress tensor (3.2.43), as required. 2

The space of allowed variations ℰ is a 6-dimensional subspace of the space of sections of the
rank 6 vector bundle ⊙2𝑇∗𝑀,

ℰ = {�̇�𝑖𝑗d𝑥𝑖d𝑥𝑗 ∈ Γ(⊙2𝑇∗𝑀) ∶ �̇�𝑖𝑗 constant, �̇�𝑗𝑖 = �̇�𝑖𝑗} . (3.2.51)

By definition, the energy𝑀𝛣 is critical with respect to variations 𝑔𝑠 of the metric if and only if

d𝑀𝛣(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= ∫

𝛭
⟨𝑆(𝜑, 𝑔), �̇�⟩𝑔 vol𝑔 = 0, (3.2.52)

that is, if and only if 𝑆 ⟂𝐿2 ℰ. Now let the orthogonal complement of 𝑔 in ℰ, the space of traceless
parallel symmetric bilinear forms, given by

ℰ0 = {𝜃 ∈ ℰ ∶ Tr𝑔(𝜃) = ⟨𝜃, 𝑔⟩𝑔 = 0} . (3.2.53)

Then the criticality condition 𝑆 ⟂𝐿2 ℰ can be reformulated as [64]

∫
𝛭
⟨𝑆(𝜑, 𝑔), 𝑔⟩𝑔 vol𝑔 = 0 and 𝑆 ⟂𝐿2 ℰ0. (3.2.54)

The first condition 𝑆 ⟂𝐿2 𝑔 is analogous to a virial constraint and the second condition 𝑆 ⟂𝐿2 ℰ0
coincides with the extended virial constraints derived byManton [111]. We can determine the virial
constraint by evaluating

∫
𝛭
⟨𝑆(𝜑, 𝑔), 𝑔⟩𝑔 vol𝑔 = ∫

𝛭
Tr𝑔(𝑆) vol𝑔

= ∫
𝛭
Tr𝑔 {(

1
2|d𝜑|

2
𝑔 −

1
8|(⋆𝑔𝜑

∗Ω)|2𝑔 +
1
2𝑉 ∘ 𝜑 −

𝑐6
2 |𝜑

∗Ξ|2𝑔) 𝑔 − (𝜑
∗ℎ − 1

4𝑔ℎ𝛸𝑔)} vol𝑔

= ∫
𝛭
{32 (|d𝜑|

2
𝑔 −

1
4|(⋆𝑔𝜑

∗Ω)|2𝑔 + 𝑉 ∘ 𝜑 − 𝑐6|𝜑
∗Ξ|2𝑔) − |d𝜑|2𝑔 +

1
4|(⋆𝑔𝜑

∗Ω)|2𝑔} vol𝑔

= 1
2 ∫𝛭

(|d𝜑|2𝑔 −
1
4|(⋆𝑔𝜑

∗Ω)|2𝑔 + 3(𝑉 ∘ 𝜑 − 𝑐6|𝜑
∗Ξ|2𝑔)) vol𝑔

= 1
2 (𝐸2 − 𝐸4 + 3(𝐸0 − 𝐸6)) , (3.2.55)

where we have used the identities (3.2.3) and

Tr𝑔 (𝑔ℎ𝛸𝑔) = (𝑔ℎ𝛸𝑔)𝑖𝑗 𝑔
𝑗𝑘𝑔𝑘𝑙𝑔

𝑙𝑖 = 𝑔𝑖𝑚ℎ(𝑋
𝑚
𝜑 , 𝑋

𝑛
𝜑 )𝑔𝑛𝑗𝑔

𝑗𝑘𝑔𝑘𝑙𝑔
𝑙𝑖 = 𝑔𝑛𝑚ℎ(𝑋

𝑚
𝜑 , 𝑋

𝑛
𝜑 ) = |(⋆𝑔𝜑

∗Ω)|2𝑔 . (3.2.56)

Hence, the condition 𝑆 ⟂𝐿2 𝑔 establishes the familiar virial constraint

𝐸2 − 𝐸4 + 3(𝐸0 − 𝐸6) = 0. (3.2.57)

To determine the extended virial constraint corresponding to the condition 𝑆 ⟂𝐿2 ℰ0, we define
a symmetric bilinear form

Δ ∶ 𝑇𝑥𝑀× 𝑇𝑥𝑀→ R, Δ(𝑋, 𝑌) = ∫
𝛭
(𝜑∗ℎ(𝑋, 𝑌) − 1

4√𝑔2
(𝑔ℎ𝛸𝑔)(𝑋, 𝑌)) vol𝑔. (3.2.58)
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Then 𝑆 ⟂𝐿2 ℰ0 if and only ifΔ is orthogonal toℰ0 with respect to the inner product ⟨⋅, ⋅⟩ℰ. Therefore,
for 𝜆 ∈ R we must have

Δ = 𝜆𝑔. (3.2.59)

Taking the trace of both sides yields

3𝜆 = ∫
𝛭
(|d𝜑|2𝑔 −

1
4|#𝑔(⋆𝑔𝜑

∗Ω)|2𝑔) vol𝑔 = 𝐸2 − 𝐸4. (3.2.60)

Thus, the condition 𝑆 ⟂𝐿2 ℰ0 produces the extended virial constraint

Δ = 1
3 (𝐸2 − 𝐸4) 𝑔. (3.2.61)

So, we see that 𝜑 ∶ 𝑀 → SU(2) is a critical point with respect to variations of the metric if and
only if the extended virial constraints hold

𝐸2 − 𝐸4 = 3(𝐸6 − 𝐸0), (3.2.62a)

Δ = 1
3 (𝐸2 − 𝐸4) 𝑔. (3.2.62b)

We will verify numerically that the extended virial constraints are being satisfied within some
tolerance, e.g. tol = 10−5. This is done by checking that

∣
𝐸4

𝐸2 + 3(𝐸0 − 𝐸6)
− 1∣ < tol and ∣

Δ𝑖𝑗

(𝐸6 − 𝐸0)𝑔𝑖𝑗
− 1∣ < tol. (3.2.63)

Now we need to show that not only is it a critical point but it is in fact a minimum.

3.3 Existence, Uniqueness and Criticality of the Metric
For fixed 𝑔 ∈ SPD3, (T3, 𝑔) is a fixed, compact oriented Riemannian 3-manifold, and it follows from
a direct application of the calculus of variations that the functional 𝜑 ↦ 𝐸(𝜑, 𝑔) attains a minimum
in each degree class in the space of finite energy maps in the Sobolev space𝑊1,2(T3, SU(2)) [101].
In this section we address the complementary variational problem: we fix a map 𝜑 ∶ T3 → SU(2)
and establish existence, and uniqueness, of a minimizer of the function SPD3 → R, 𝑔 ↦ 𝑀𝛣(𝜑, 𝑔)
which, for brevity, we will denote𝑀𝛣(𝑔).

We begin by analyzing in more detail the 𝑔 dependence of the terms in𝑀𝛣. We first note that

𝐸2(𝜑, 𝑔) = ∫
T3
|d𝜑|2𝑔 vol𝑔 = √𝑔𝑔𝑖𝑗∫

T3
d3𝑥 ℎ(𝐿𝑖, 𝐿𝑗) = √𝑔𝑔𝑖𝑗𝐻𝑖𝑗 (3.3.1)

where
𝐻𝑖𝑗(𝜑) = ∫

T3
d3𝑥 ℎ(𝐿𝑖, 𝐿𝑗) = ∫

T3
d3𝑥 𝜕𝑖𝜑𝜇𝜕𝑗𝜑𝜇 (3.3.2)

is a symmetric positive semi-definite matrix depending on 𝜑 but independent of 𝑔. Then we can
express the Dirichlet energy in terms of the trace of a matrix product, that is

𝐸2(𝜑, 𝑔) = √det 𝑔Tr(𝐻𝑔−1). (3.3.3)
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Let us assume that 𝜑 is𝐶1 (so that this matrix is well-defined) and is immersive somewhere, meaning
that there is some point 𝑝 ∈ T3 at which d𝜑𝑝 is invertible. Note that this follows immediately for
all maps with 𝐵 ≠ 0. By continuous differentiability, it follows that 𝜑 is immersive on some
neighbourhood of 𝑝. Then the matrix𝐻 is actually positive definite, for if not, there exists �⃗� ∈ R3

with �⃗� ⋅ 𝐻�⃗� = 0, whence
∫

T3
|�⃗� ⋅ �⃗�|2𝔰𝔲(2)vol0 = 0 (3.3.4)

and hence d𝜑(𝑣𝑖𝜕/𝜕𝑥𝑖) = 0 almost everywhere. This contradicts immersivity of 𝜑 on a neighbour-
hood of 𝑝. We conclude that𝐻 ∈ SPD3.

Now, we turn our attention to the Skyrme energy, 𝐸4. This is given by

𝐸4(𝜑, 𝑔) =
1
4 ∫T3

|\𝑔(∗𝑔𝜑∗Ω)|2𝑔 vol𝑔 = 1
√𝑔

𝑔𝑖𝑗∫
T3
d3𝑥 14ℎ(𝑋

𝑖
𝜑, 𝑋

𝑗
𝜑) =

1
√det 𝑔

𝑔𝑖𝑗𝐹𝑖𝑗, (3.3.5)

where we use relation (3.2.15) to express the matrix 𝐹 in terms of the Skyrme fields as

𝐹𝑖𝑗(𝜑) =
1
16𝜀

𝑖𝑎𝑏𝜀𝑗𝑐𝑑∫
T3
d3𝑥 ℎ(Ω𝑎𝑏, Ω𝑐𝑑)

= 1
4𝜀

𝑖𝑎𝑏𝜀𝑗𝑐𝑑∫
T3
d3𝑥 {(𝜕𝑎𝜑𝜇𝜕𝑐𝜑𝜇) (𝜕𝑏𝜑𝜈𝜕𝑑𝜑𝜈) − (𝜕𝑎𝜑𝜇𝜕𝑑𝜑𝜇) (𝜕𝑏𝜑𝜈𝜕𝑐𝜑𝜈)} . (3.3.6)

Once again, our non-degeneracy assumption on 𝜑 (that it is 𝐶1 and somewhere immersive) implies
that 𝐹 is positive definite. For if not, there exists �⃗� ∈ R3 such that �⃗� ⋅ 𝐹�⃗� = 0, whence �⃗� ⋅ 𝑋𝜑 = 0
and so ∗𝑔𝜑∗Ω(𝑣𝑖𝜕/𝜕𝑥𝑖) = 0. But then 𝜑∗Ω vanishes on every plane in 𝑇T3 𝑔-orthogonal to �⃗�, which
contradicts non-degeneracy ofΩ and immersivity of 𝜑.

The remaining terms of𝑀𝛣 are more straightforward.

𝐸0(𝜑, 𝑔) = ∫
T3
𝑉(𝜑)vol𝑔 = 𝐶0√det 𝑔, (3.3.7)

where
𝐶0(𝜑) = 2𝑚2∫

T3
d3𝑥 (1 − 𝜎) ≥ 0 (3.3.8)

is a constant. Finally, we note that 𝜑∗Ξ = 𝑓Ξvol0 for some real function 𝑓Ξ ∶ T3 → R independent of
𝑔. Then it is easy to see that ∗𝑔𝜑∗Ξ = 𝑓Ξ/√𝑔 and, hence,

𝐸6(𝜑, 𝑔) = ∫
T3
𝜑∗Ξ ∧ ∗𝑔𝜑

∗Ξ =
𝐶6

√det 𝑔
, (3.3.9)

where

𝐶6(𝜑) = ∫
T3
d3𝑥 𝑓2Ξ =

𝑐6𝜖
𝑖𝑗𝑘𝜖𝑙𝑚𝑛

(12𝜋2)2
𝜖𝜇𝜈𝜌𝜎𝜖𝛼𝛽𝛾𝛿∫

𝛭
d3𝑥 𝜑𝜇𝜑𝛼𝜕𝑖𝜑𝜈𝜕𝑗𝜑𝜌𝜕𝑘𝜑𝜎𝜕𝑙𝜑𝛽𝜕𝑚𝜑𝛾𝜕𝑛𝜑𝛿 ≥ 0 (3.3.10)

is a constant. Note that we allow the possibility that 𝐶0 or 𝐶6 is 0, to accommodate versions of the
model with no potential or sextic term.

In summary, for a fixed 𝐶1 map 𝜑 ∶ T3 → SU(2) which is immersive somewhere, the total
Skyrme energy as a function of the metric 𝑔 on T3 is

𝑀𝛣(𝑔) ∶= 𝑀𝛣(𝜑∣fixed , 𝑔) = √det 𝑔Tr(𝐻𝑔−1) + 1
√det 𝑔

Tr(𝐹𝑔) + 𝐶0√det 𝑔 +
𝐶6

√det 𝑔
, (3.3.11)
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where 𝐻,𝐹 ∈ SPD3 and 𝐶0, 𝐶6 ∈ [0, ∞) are constants. We wish to prove that the function𝑀𝛣 ∶
SPD3 → R attains a unique global minimum, and has no other critical points. Before doing so, we
note that𝑀𝛣 = 𝐸 ∘ 𝜎where

𝐸 ∶ SPD3 → R, 𝐸(Σ) = Tr(𝐻Σ−1) +Tr(𝐹Σ) + 𝐶0
detΣ + 𝐶6 detΣ (3.3.12)

and 𝜎 is the map
𝜎 ∶ SPD3 → SPD3, 𝑔 ↦ Σ =

𝑔
√det 𝑔

. (3.3.13)

Since 𝜎 is a diffeomorphism, we may equivalently prove that 𝐸 ∶ SPD3 → R attains a unique global
minimum and has no other critical points. We do this in two stages.

Theorem 9 (Bolzano–Weierstrass Theorem). Every bounded sequence {�⃗�𝑛}∞𝑛=1 inR𝑚 has a convergent
subsequence.

Proposition 10. The function 𝐸 ∶ SPD3 → R of equation (3.3.12) attains a global minimum.

Proof. Wewant to show that there exists a critical point of the energy functional 𝐸 ∶ SPD3 → R3.
Clearly 𝐸 is bounded below (by 0). Let 𝑓 ∶ 𝒟 → SPD3, with𝒟 = (0, ∞)3 × 𝑂(3), be a surjection
given by the mapping

𝑓 (�⃗�, 𝒪) = 𝒪𝛵𝐷�⃗�𝒪, 𝐷�⃗� = (
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

) . (3.3.14)

Then the composition 𝐸 ∘ 𝑓 ∶ 𝒟 → R is non-negative and so we define

𝐸∗ = inf
(�⃗�,𝑄)∈𝒟

(𝐸 ∘ 𝑓) ≥ 0. (3.3.15)

We must show that there exists Σ∗ ∈ SPD3 with 𝐸(Σ∗) = 𝐸∗.
The map 𝑓 ∶ 𝒟 → SPD3 is indeed surjective: given any Σ ∈ SPD3 we may take 𝜆𝑖 to be its

eigenvalues and 𝒪 to be an orthogonal matrix whose columns are its corresponding eigenvectors.
Hence, it suffices to prove that

(𝐸 ∘ 𝑓)(�⃗�, 𝒪) = Tr(𝒪𝛵𝐻𝒪𝐷−1
�⃗�
) +Tr(𝒪𝛵𝐹𝒪𝐷�⃗�) +

𝐶0
𝜆1𝜆2𝜆3

+ 𝐶6𝜆1𝜆2𝜆3 (3.3.16)

attains the value 𝐸∗. We do this by showing that there exists a sequence {(�⃗�𝑛, 𝒪𝑛)}∞𝑛=1 such that

lim𝑛→∞(𝐸 ∘ 𝑓)(�⃗�𝑛, 𝒪𝑛) = 𝐸∗. (3.3.17)

Firstly, we note that SPD3 can be smoothly embedded inR6 via themap 𝑝 ∶ SPD3 → R6 defined
by

Σ = (
𝑣1 𝑣4 𝑣5
𝑣4 𝑣2 𝑣6
𝑣5 𝑣6 𝑣3

) ↦ 𝑝(Σ) = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6) = �⃗�. (3.3.18)

We will show that the sequence {(�⃗�𝑛, 𝒪𝑛)}∞𝑛=1, corresponding to the sequence {�⃗�𝑛}∞𝑛=1 in R6 with
�⃗�𝑛 = (𝑝 ∘ 𝑓)(�⃗�𝑛, 𝒪𝑛), is bounded and thus has a convergent subsequence.
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Let Σ = 𝑓(�⃗�, 𝒪) = 𝒪𝛵𝐷�⃗�𝒪. Denote the eigenvalues of 𝐹 and 𝐻 by 𝜇𝑖, 𝜈𝑖 ∈ R>0, respectively.
Since 𝐹 and𝐻 are both symmetric and positive definite, we can diagonalize them: 𝐹 = 𝑃1𝐷1𝑃

𝛵
1 and

𝐻 = 𝑃2𝐷2𝑃
𝛵
2 , where𝐷1 = diag(𝜇1, 𝜇2, 𝜇3) and𝐷2 = diag(𝜈1, 𝜈2, 𝜈3).

Let us first consider the Skyrme term,

Tr(Σ𝐹) = Tr (𝒪𝛵𝐷�⃗�𝒪𝑃1𝐷1𝑃
𝛵
1 )

= Tr (𝐷�⃗�𝑅𝐷1𝑅
𝛵)

= 𝜆𝑖 ((𝑅𝑖𝑗)
2𝜇𝑗) = 𝜆𝑖𝛼𝑖 > 0, (3.3.19)

where we have defined 𝑅 = 𝒪𝑃1 and 𝛼𝑖 = (𝑅𝑖𝑗)
2𝜇𝑗. If we take 𝛼 ∶= min{𝛼1, 𝛼2, 𝛼3}, then it is easy to

see that
(𝐸4 ∘ 𝑓)(�⃗�, 𝒪) ≥ 𝛼

3
∑
𝑖=1

𝜆𝑖. (3.3.20)

Analogously, we can determine a 𝛽 > 0 such that

(𝐸2 ∘ 𝑓)(�⃗�, 𝒪) ≥ 𝛽
3
∑
𝑖=1

1
𝜆𝑖
. (3.3.21)

The bounds coming from the potential and sextic terms are trivial, they are

(𝐸0 ∘ 𝑓)(�⃗�, 𝒪) =
𝐶0

𝜆1𝜆2𝜆3
> 0 (3.3.22)

and
(𝐸6 ∘ 𝑓)(�⃗�, 𝒪) = 𝐶6𝜆1𝜆2𝜆3 > 0. (3.3.23)

Therefore we can always determine a pair 𝛼, 𝛽 > 0 such that

(𝐸 ∘ 𝑓)(�⃗�, 𝒪) ≥
3
∑
𝑖=1

(𝛼𝜆𝑖 +
𝛽
𝜆𝑖
) . (3.3.24)

Then there exists a𝐾 > 0 such that 0 < 𝜆𝑖,
1
𝜆𝑖
≤ 𝐾 for all 𝑖 ∈ {1, 2, 3}. Set𝐾 = 𝐸∗/min{𝛼, 𝛽, 12}, then the

sequence {(�⃗�𝑛, 𝒪𝑛)}∞𝑛=1 is confined to [ 1𝛫 , 𝐾]
3 × 𝑂(3), which is compact and bounded. Hence, by the

Bolzano–Weierstrass Theorem, there exists a convergent subsequence {(�⃗�𝑛|𝛫, 𝒪𝑛|𝛫)}∞𝑛=1, converging
to (�⃗�∗, 𝒪∗). We may assume, without loss of generality, that (�⃗�𝑛, 𝒪𝑛) itself converges to (�⃗�∗, 𝒪∗). So
(𝐸 ∘ 𝑓)(�⃗�𝑛, 𝒪𝑛) → 𝐸∗ and (�⃗�𝑛, 𝒪𝑛) → (�⃗�∗, 𝒪∗). But (𝐸 ∘ 𝑓) is continuous, so (𝐸 ∘ 𝑓)(𝜆∗, 𝒪∗) = 𝐸∗.

It follows that 𝐸(Σ∗) = 𝐸∗ where
Σ∗ = 𝒪∗𝐷�⃗�∗

𝒪𝛵
∗ , (3.3.25)

which completes the proof. 2

We note in passing that the minimizingmetricwhose existence follows from Proposition 10 is

𝑔∗ = 𝜎−1(Σ∗) =
Σ∗

detΣ∗
. (3.3.26)

It remains to prove that 𝐸 has no other critical points. We achieve this by proving that 𝐸 is
strictly convex, in the following sense:
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Definition 11. A function 𝑓 ∶ 𝑀 → R on a Riemannian manifold𝑀 is convex if, for all non-
constant geodesics 𝛾(𝑡) in𝑀, (𝑓∘𝛾)″(𝑡) ≥ 0, and strictly convex if, for all such geodesics, (𝑓∘𝛾)″(𝑡) > 0.

To apply this definition to𝐸, wemust equip SPD3 with aRiemannianmetric,𝐺. As amanifold,
SPD𝑛 is an open subset of Sym𝑛

where Sym
𝑛
is the real vector space of symmetric 𝑛 × 𝑛-matrices.

There exists a canonical immersion Id ∶ SPD𝑛 ↪ Sym
𝑛
which gives an identification between

𝑇Σ SPD𝑛 and Sym𝑛
at any point Σ ∈ SPD𝑛 via the map (IdΣ)∗ ∶ 𝑇Σ SPD𝑛

∼−→ Sym
𝑛
. Therefore, we

can consider any tangent vector 𝜉 ∈ 𝑇Σ SPD𝑛 to be a symmetric matrix with 𝜉 ≡ (IdΣ)∗(𝜉) ∈ Sym𝑛
.

Let us consider the action of general linear group GL(𝑛,R) on the space of symmetric positive-
definite 𝑛 × 𝑛-matrices SPD𝑛 given by

GL(𝑛,R) × SPD𝑛 → SPD𝑛

(𝐴, Σ) ↦ 𝐴 ∗ Σ = 𝐴Σ𝐴𝛵. (3.3.27)

There is a natural extension of this action to the tangent vectors: let Γ ∶ (−𝜖, 𝜖) → SPD𝑛 defined
by Γ(Σ,𝜉)(𝑡) = Σ + 𝑡𝜉 + 𝒪(𝑡2) be a curve through Σwith tangent vector 𝜉 = d𝛾

d𝑡 |𝑡=0, then 𝐴 ∗ Γ(Σ,𝜉)(𝑡) =
𝐴Σ𝐴𝛵 + 𝑡𝐴𝜉𝐴𝛵 + 𝒪(𝑡2) is a curve through 𝐴Σ𝐴𝛵 with tangent vector 𝐴 ∗ 𝜉 = 𝐴𝜉𝐴𝛵. Let ⟨⋅, ⋅⟩Id𝑛 ∶
Sym

𝑛
× Sym

𝑛
→ R be an inner product on𝑇Id𝑛 SPD𝑛 = Sym

𝑛
. In particular, we choose the standard

left 𝑂(𝑛)-invariant inner product

⟨𝜉1, 𝜉2⟩Id = Tr(𝜉1𝜉𝛵2 ), 𝜉1, 𝜉2 ∈ Sym𝑛
. (3.3.28)

Then we can equip SPD𝑛 with an affine invariant inner product ⟨⋅, ⋅⟩Σ ∶ 𝑇Σ SPD𝑛 ×𝑇Σ SPD𝑛 → R at
Σ ∈ SPD𝑛, defined below.

For symmetric positive-definite matrices, we define the matrix square root as

Σ1/2 = {𝑆 ∈ SPD𝑛 | 𝑆
2 = Σ} . (3.3.29)

For two arbitrary tangent vectors 𝜉1, 𝜉2 ∈ 𝑇Σ SPD𝑛 ≅ Sym
𝑛
, we require themetric ⟨⋅, ⋅⟩Σ to be invariant

under the action (3.3.27), that is: ⟨𝜉1, 𝜉2⟩Σ = ⟨𝐴 ∗ 𝜉1, 𝐴 ∗ 𝜉2⟩𝛢∗Σ for 𝐴 ∈ GL(𝑛,R). In particular, this
should be true for 𝐴 = Σ−1/2 since Σ−1/2 ∗ Σ = Id𝑛. This allows us to identify the inner product at
any point Σ ∈ SPD𝑛 with the inner product at the identity [112]:

⟨𝜉1, 𝜉2⟩Σ = ⟨Σ−1/2𝜉1Σ
−1/2, Σ−1/2𝜉2Σ

−1/2⟩Id𝑛 = Tr(Σ−1𝜉1Σ−1𝜉2), (3.3.30)

where Σ ∈ SPD𝑛 and 𝜉1, 𝜉2 ∈ 𝑇Σ SPD𝑛. It is easy to show that this metric is indeed invariant under
the action of GL(𝑛,R) on SPD𝑛, i.e.

⟨𝑃𝜉1𝑃
𝛵, 𝑃𝜉2𝑃

𝛵⟩𝛲Σ𝛲𝛵 = ⟨𝜉1, 𝜉2⟩Σ , (3.3.31)

where 𝑃 ∈ GL(𝑛,R). Thus, the correct choice of metric for our purposes is

𝐺Σ ∶ 𝑇Σ SPD3 ×𝑇Σ SPD3 → R, 𝐺Σ(𝜉1, 𝜉2) = ⟨𝜉1, 𝜉2⟩Σ = Tr(Σ−1𝜉1Σ−1𝜉2). (3.3.32)

This metric is indeed affine invariant, which means that the mapping 𝜌(𝐴) ∶ SPD𝑛 → SPD𝑛
defined by 𝜌(𝐴)(Σ) = 𝐴Σ𝐴𝛵 for all Σ ∈ SPD𝑛 is an isometry [113]. It is also inversion invariant, that
is,

𝜄 ∶ SPD𝑛 → SPD𝑛, 𝜄(Σ) = Σ−1 (3.3.33)
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is an isometry [113].
Since the metric (3.3.32), and hence the geodesics, is invariant under the group action (3.3.27),

we can use this group action to relate geodesics starting at any point Σ with geodesics through
the identity Id𝑛. Hence, a general non-constant geodesic through Σ ∈ SPD𝑛, with tangent vector
𝜗 ∈ 𝑇Σ SPD𝑛, is

𝛾(Σ,𝜗)(𝑡) = Σ
1/2 ∗ 𝛾(Id𝑛,Σ−1/2∗𝜗)(𝑡) = 𝐴 exp(𝑡𝜉)𝐴𝛵, (3.3.34)

where 𝐴 ∈ GL(𝑛,R) satisfies 𝐴𝐴𝛵 = Σ, and 𝜉 ∈ Sym
𝑛
such that 𝜉 = Σ−1/2 ∗ 𝜗 ≠ 0. Finally, it is

geodesically complete and between any pair of distinct points Σ1, Σ2, there is a geodesic, unique up
to parametrization.

Proposition 12. The function 𝐸 ∶ SPD3 → R of equation (3.3.12) is strictly convex with respect to the
metric 𝐺.

Proof. Given a constant𝑀 ∈ SPD3, consider the function

𝑓𝛭 ∶ SPD3 → R, 𝑓𝛭(Σ) = Tr(𝑀Σ). (3.3.35)

Let 𝛾 be an arbitrary non-constant geodesic, as in (3.3.34). Then

(𝑓𝛭 ∘ 𝛾)″(0) = d2

d𝑡2 ∣𝑡=0
Tr(𝑀𝐴 exp(𝑡𝜉)𝐴𝛵) = Tr(𝑀𝐴𝜉2𝐴𝛵)

= Tr((𝐴𝜉)𝛵𝑀(𝐴𝜉)) =
3
∑
𝑖=1

�⃗�𝑖 ⋅ 𝑀�⃗�𝑖 (3.3.36)

where �⃗�𝑖 are the columns of 𝐴𝜉. Since𝑀 is positive definite, it follows that (𝑓𝛭 ∘ 𝛾)″(0) ≥ 0, and
equals 0 only if �⃗�1 = �⃗�2 = �⃗�3 = 0. But 𝜉 ≠ 0 (the geodesic is non-constant) so at least one �⃗�𝑖 ≠ 0. Hence
(𝑓𝛭 ∘ 𝛾)″(0) > 0 for all non-constant geodesics 𝛾. It follows that (𝑓𝛭 ∘ 𝛾)″(𝑇) > 0 for all non-constant
geodesics and all 𝑇 ∈ R, since for all geodesics 𝛾 and constants 𝑇, 𝛾(𝑡) = 𝛾(𝑡 + 𝑇) is a geodesic.

Similarly, det ∶ SPD3 → R is convex since, for all non-constant geodesics

(det ∘𝛾)″(0) = d2

d𝑡2 ∣𝑡=0
(det𝐴)2 det exp(𝑡𝜉) = (det𝐴)2 d

2

d𝑡2 ∣𝑡=0
exp(𝑡Tr 𝜉)

= (det𝐴)2(Tr 𝜉)2 ≥ 0 (3.3.37)

It follows that
𝐸 = 𝑓𝛨 ∘ 𝜄 + 𝑓𝐹 + 𝐶0 det ∘𝜄 + 𝐶6 det (3.3.38)

is strictly convex, since𝐻,𝐹 ∈ SPD3, 𝜄 is an isometry, and 𝐶0, 𝐶6 ≥ 0. 2

Propositions 10 and 12 quickly yield the desired result.

Corollary 13. Let 𝜑 ∶ T3 → SU(2) be a fixed𝐶1 map that is immersive somewhere. Then the function
SPD3 → R mapping a flat metric 𝑔 on T3 to the Skyrme energy𝑀𝛣(𝜑, 𝑔) attains a unique global
minimum, and has no other critical points.
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Proof. As previously established𝑀𝛣(𝜑, 𝑔) = 𝐸(𝜎(𝑔)) where 𝐸 is the function defined in (3.3.12)
and 𝜎 is a diffeomorphism of SPD3. By Proposition 10, 𝐸 attains a minimum at some Σ∗ ∈ SPD3,
whence𝑀𝛣 attains a global minimum at 𝑔∗ = 𝜎−1(Σ∗). Assume, towards a contradiction, that𝑀𝛣
has a second critical point 𝑔∗∗ ≠ 𝑔∗. Then 𝐸 has a second critical point at Σ∗∗ = 𝜎(𝑔∗∗) ≠ Σ∗. Let
𝛾 ∶ [0, 1] → SPD3 be a geodesic (with respect to 𝐺) with 𝛾(0) = Σ∗ and 𝛾(1) = Σ∗∗. Then, by Rolle’s
Theorem applied to (𝐸 ∘ 𝛾)′ ∶ [0, 1] → R, there exists 𝑡 ∈ (0, 1) at which (𝐸 ∘ 𝛾)″(𝑡) = 0. But this
contradicts Proposition 12. 2

Matrix Square Root Method forℒ24-Crystals
In the case of the standard massless ℒ24-Skyrme model (𝐶0 = 0 and 𝐶6 = 0), we can find the
minimizing metric 𝑔∗ explicitly. We note that, in this case

𝐸(Σ) = Tr(𝐻Σ−1 + 𝐹Σ), (3.3.39)

whence
d𝐸Σ(𝜉) = Tr(−𝐻Σ−1𝜉Σ−1 + 𝐹𝜉) = Tr((𝐹 − Σ−1𝐻Σ−1)𝜉). (3.3.40)

Hence, the unique critical point Σ∗ of 𝐸 satisfies the matrix equation

𝐹 = Σ−1∗ 𝐻Σ−1∗ , (3.3.41)

which reduces nicely to a matrix square root problem

(𝐹Σ∗)
2 = (Σ−1∗ 𝐻)2 = 𝐹𝐻 ⇒ Σ∗ = (𝐹1/2)−1𝐻1/2. (3.3.42)

Then, from the diffeomorphism (3.3.13), we have that det 𝑔∗ = 1/(detΣ∗)2 and, therefore, the
ℒ24-energy minimizing metric is determined to be

𝑔∗ =
Σ∗

detΣ∗
= ( det𝐹det𝐻)

1/2

𝐹−1/2𝐻1/2. (3.3.43)

As a consistency check, we apply this matrix square root method to both the S1/2 and BCC1/2
crystals and obtain the same results as in Sec. 1.3.

We henceforth set 𝐶6 = 0. In the case 𝐶0 ≠ 0, which is of primary interest in this chapter, we
have not been able to solve for the minimum of𝑀𝛣(𝑔) explicitly. Instead, we resort to a numerical
method described in the next section.

3.4 The Numerical Method
We now return to the problem of primary interest: to minimize 𝐸(𝜑, 𝑔) among all smooth maps
T3 → SU(2) of fixed degree 𝐵, and all flat metrics 𝑔 ∈ SPD3. Our numerical scheme is similar
to ones introduced in [65, 114] and based on the idea of arrested Newton flow. For fixed 𝜑, we
interpret𝑀𝛣 as a potential energy on the manifold SPD3 and solve Newton’s law of motion

�̈� = −grad
𝑔
𝑀𝛣(𝜑, 𝑔) (3.4.1)
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with initial data 𝑔(0) = 𝑔0. This solution begins to run “downhill” in SPD3. Wemonitor𝑀𝛣(𝜑, 𝑔(𝑡))
and, at any time 𝑡∗ where d

d𝑡𝑀𝛣(𝜑, 𝑔(𝑡)) > 0 we arrest the flow, that is, stop and restart it at the
current position but with velocity 0. The flow converges to the unique minimizing metric 𝑔𝜑. We
minimize over 𝜑 by a similar technique, solving

�̈� = −grad
𝜑
𝑀𝛣(𝜑, 𝑔𝜑) (3.4.2)

with initial data 𝜑(0) = 𝜑0 (here grad𝜑𝑀𝛣 is the derivative in the first argument, 𝜑, with 𝑔 treated as
constant). Again, we arrest the flow if𝑀𝛣 starts to increase.

In practice, we discretize space, placing 𝜑 on a cubic grid of 𝑁3 points with lattice spacing
ℎ = 1/𝑁 and periodic boundary conditions. We replace the spatial derivatives of 𝜑 occurring
in 𝐸 by finite difference approximations. This reduces the (3.4.2) to a system of ODEs in R4𝛮3 ,
which we then solve using a 4th order Runge-Kutta scheme with fixed time step 𝛿𝑡. The arresting
criterion is that𝑀𝛣(𝑡 + 𝛿𝑡) > 𝑀𝛣(𝑡). After each iteration of the Runge-Kutta scheme, the metric 𝑔𝜑
is recalculated in a similar way by solving the ODE (3.4.1), using the metric 𝑔𝜑 from the previous
iteration as initial datum. Once the flow for 𝑔 has converged, the next iteration of 𝜑 is calculated,
and so on. Each flow is deemed to have converged to a static solution if the sup norm of grad𝑀𝛣
falls below some tolerance. The numerical results presented hereafter were obtained with𝑁 = 201.
The time steps 𝛿 used were 0.0017 for the flow in 𝜑 and 0.1 for the flow in 𝑔. The tolerances were
10−5 for the flow in 𝜑 and 10−7 for the flow in 𝑔.

Implementing the method also entails choosing (formal) Riemannian metrics on SPD3 and
𝐶∞(T3, 𝑆𝑈(2)). These are required tomake sense of both grad(𝑀𝛣) and the connexions∇ occurring
implicitly in (3.4.1) and (3.4.2). On SPD3 we choose the Euclidean metric induced by identifying
SPD3 as a subset of R9 in the obvious way, that is

(𝜉1, 𝜉2)SPD3
= Tr(𝜉𝛵1 𝜉2). (3.4.3)

Note that this differs from the metric 𝐺 used in section 3.3; it is simpler for the current purpose.
On 𝐶∞(T3, 𝑆𝑈(2))we choose the 𝐿2 metric defined by the volume form vol0,

⟨𝜂1, 𝜂2∣𝜂1, 𝜂2⟩𝐿2 = ∫
T3
ℎ(𝜂1, 𝜂2)vol0, (3.4.4)

which is independent of 𝑔.
The gradient of𝑀𝛣 = 𝐸2+𝐸4+𝐸0with respect to the field 𝜑, regarded as a function on𝐶∞(T3, 𝑆3),

is

𝛿𝑀𝛣
𝛿𝜑𝜇 = √𝑔

𝜕𝑉
𝜕𝜑𝜇 − 2√𝑔𝑔

𝑝𝑎 {𝜕𝑝𝑎𝜑
𝜇 + 𝑔𝑞𝑏 [(𝜕𝑝𝑎𝜑

𝜇𝜕𝑞𝜑
𝛼𝜕𝑏𝜑

𝛼 + 𝜕𝑝𝜑
𝜇𝜕𝑞𝑎𝜑

𝛼𝜕𝑏𝜑
𝛼 + 𝜕𝑝𝜑

𝜇𝜕𝑞𝜑
𝛼𝜕𝑏𝑎𝜑

𝛼)

− (𝜕𝑞𝑎𝜑
𝜇𝜕𝑝𝜑

𝛼𝜕𝑏𝜑
𝛼 + 𝜕𝑞𝜑

𝜇𝜕𝑝𝑎𝜑
𝛼𝜕𝑏𝜑

𝛼 + 𝜕𝑞𝜑
𝜇𝜕𝑝𝜑

𝛼𝜕𝑏𝑎𝜑
𝛼)]} . (3.4.5)

Now, let us fix the field 𝜑 ∶ T3 → 𝑆3 and think of the energy𝑀𝛣 as a function of the metric 𝑔 on
T3. That is, we define a map 𝐸𝜑 ∶ SPD3 → R such that 𝐸𝜑 ∶= 𝑀𝛣(𝜑∣fixed , 𝑔), where SPD3 is the space
of symmetric positive-definite 3 × 3-matrices. To minimize the energy functional 𝐸𝜑 with respect to
variations of the metric 𝑔𝑠, we use arrested Newton flow on SPD3 as detailed above. Now let 𝑔𝑠 be a
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smooth one-parameter curve in SPD3 with 𝑔0 = 𝐹∗𝑑. Explicitly, we are solving the system of 2nd
order ODEs

d2

d𝑠2 ∣
𝑠=0

(𝑔𝑖𝑗)𝑠 = −
𝜕𝐸𝜑
𝜕𝑔𝑖𝑗

= −∫
T3
d3𝑥√𝑔 𝑆𝑖𝑗𝜑 , (3.4.6)

with initial condition (𝑔𝑖𝑗)0 = �⃗�𝑖 ⋅ �⃗�𝑗, and where 𝑆𝜑 = 𝑆(𝑔) is the stress-energy tensor for fixed field
configuration 𝜑. Setting �̇�𝑠 = 𝜕𝑠𝑔𝑠 as the velocity with initial velocity �̇�0 = 𝜕𝑠𝑔𝑠∣𝑠=0 = 0 reduces the
problem to a coupled system of 1st order ODEs. We implement a 4th order Runge–Kutta method
to solve this coupled system. The components of the stress-energy tensor for fixed field 𝜑, given in
the metric independent integral formulation, reads

∫
T3
d3𝑥√𝑔 𝑆𝑖𝑗𝜑 = 1

2𝑔
𝑖𝑗 (√𝑔𝐶6 −

𝐶0
√𝑔

) + √𝑔 (
1
2𝑔

𝑘𝑙𝑔𝑖𝑗 − 𝑔𝑖𝑘𝑔𝑗𝑙)𝐻𝑘𝑙 +
1
√𝑔

(𝛿𝑖𝑘𝛿𝑗𝑙 − 1
2𝑔𝑘𝑙𝑔

𝑖𝑗) 𝐹𝑘𝑙. (3.4.7)

3.5 ℒ024-Skyrmion Crystals
This section presents the results of the numerical scheme just described in the charge 𝐵cell = 4
sector, concentrating on the model with normalized pion mass𝑚 = 1. Our approach is to treat the
pion mass as a continuous variable parameter𝑚2 = 𝑡 ≥ 0: we minimize the energy

𝐸(𝑡)(𝜑, 𝑔) = 𝐸2(𝜑, 𝑔) + 𝐸4(𝜑, 𝑔) + 2𝑡∫
T3
(1 − 𝜎)vol𝑔 (3.5.1)

starting in the massless case 𝑡 = 0, and then increasing 𝑡 gradually to 1.
We begin by recalling the lowest energy solution known in the masslessℒ24-case, 𝑡 = 0, that is,

the SC1/2 crystal. This crystal is obtained using the matrix square root method with initial field
configuration (1.3.20) and initial metric 𝑔 = Id3. This solution is depicted in figure 3.1. In this
orientation, it represents best a simple cubic lattice of half-skyrmions. That is, 𝜑maps each of the
eight sub-cubes of side length 𝐿/2 to either the upper (𝜑0 ≥ 0) or lower (𝜑0 ≤ 0) hemisphere of 𝑆3,
contributing charge 𝐵 = 1/2 to the total topological charge of the unit cell. For this reason, we
denote the SC1/2 crystal by (𝜑1/2, 𝑔1/2).

Aswe stressed in Sec. 1.3, it is important to note that themassless energy functional𝐸(0) = 𝐸2+𝐸4
is invariant under the natural action of SO(4) on the target three-sphere. That is, for all (𝜑, 𝑔) ∈ ℳ
and all 𝑅 ∈ SO(4), 𝐸(0)(𝑅𝜑, 𝑔) = 𝐸(0)(𝜑, 𝑔), whereℳ = 𝐶∞(T3, 𝑆3) × SPD3 is the configuration space
of skyrmion crystals, as before. Hence the solution described above is just one critical point of
𝐸(0) lying in a 6-dimensional family of critical points, its orbit under SO(4). If we now switch
on the pion mass, that is, consider 𝐸(𝑡) for small 𝑡 > 0, we may ask which (if any) of these critical
points survive the perturbation. It is useful to switch perspective slightly: rather than fixing the
perturbation and considering what happens to all points in the SO(4) orbit of the SC1/2 crystal, it
is convenient to fix the field and metric to be the SC1/2 crystal, and consider what happens to this
fixed configuration under the SO(4) orbit of the perturbation. That is, we ask for which 𝑝 ∈ 𝑆3, if
any, does the SC1/2 crystal (𝜑1/2, 𝑔1/2) lie in a curve (𝜑(𝑡), 𝑔(𝑡)) of critical points of the 𝑡-parametrized
family of functions

𝐸𝑝
(𝑡)(𝜑, 𝑔) = 𝐸2(𝜑, 𝑔) + 𝐸4(𝜑, 𝑔) + 2𝑡∫

T3
(1 − 𝑝 ⋅ 𝜑)vol𝑔. (3.5.2)
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(a) (b)

Figure 3.1: Plots of the (a) baryon densityℬ0 and (b) the 𝜎-field, where the vacuum (𝜎 = +0.9) is colored
red and the anti-vacuum (𝜎 = −0.9) blue, for the SC1/2 skyrmion crystal with unit cell charge
𝐵cell = 4. Note that the solution has been translated by 𝑥𝑖 ↦ 𝑥𝑖 + 𝐿/4.

(We recover the original function 𝐸(𝑡) by choosing 𝑝 = (1, 0, 0, 0).) To answer this question, we will
need to understand the symmetries of the SC1/2 crystal in some detail.

We recall that the energy of the masslessℒ24-Skyrme model 𝐸(0) ∶ ℳ → R is invariant under the
left action of 𝐺 = SO(4) ×Aut(T3) onℳ,

(𝑅, 𝑆) ⋅ (𝜑, 𝑔) = (𝑅 ∘ 𝜑 ∘ 𝑆−1, (𝑆−1)∗𝑔). (3.5.3)

The SC1/2 crystal (𝜑1/2, 𝑔1/2) is a critical point (in fact a minimum) of 𝐸(0). Its stabilizer Γ (the
subgroup of SO(4) ×Aut(T3) that leaves it fixed) is an order 192 group generated by

𝑅(𝜑) = (𝜑0, 𝜑2, 𝜑3, 𝜑1), 𝑆(�⃗�) = (𝑥2, 𝑥3, 𝑥1),
𝑅(𝜑) = (𝜑0, 𝜑2, −𝜑1, 𝜑3), 𝑆(�⃗�) = (𝑥2, −𝑥1, 𝑥3),
𝑅(𝜑) = (−𝜑0, −𝜑1, 𝜑2, 𝜑3), 𝑆(�⃗�) = (𝑥1 +

1
2 , 𝑥2, 𝑥3).

(3.5.4)

The image of the natural projection 𝜋 ∶ Γ → 𝑆𝑂(4) is naturally isomorphic to the octahedral group
𝑂ℎ, and the kernel is isomorphic to Z2 × Z2.

Once we turn on the perturbation, the symmetry group of the energy function 𝐸𝑝
(𝑡) is broken

to SO(3)𝑝 ×Aut(T3)where
SO(3)𝑝 = {𝑅 ∈ SO(4) ∶ 𝑅𝑝 = 𝑝}. (3.5.5)

Let us define the reduced stabilizer of the SC1/2 crystal to be

Γ𝑝 = Γ ∩ (SO(3)𝑝 ×Aut(T3)), (3.5.6)

and the set of fixed points of Γ𝑝 inℳ to be

ℳΓ𝑝 = {(𝜑, 𝑔) ∈ ℳ ∶ ∀𝑞 ∈ Γ𝑝, 𝑞 ⋅ (𝜑, 𝑔) = (𝜑, 𝑔)}. (3.5.7)



64 3. Skyrmion Crystals with Massive Pions

Formally, this is a submanifold ofℳ, and it contains (𝜑1/2, 𝑔1/2) for all 𝑝, by construction. By the
Principle of Symmetric criticality, a point (𝜑, 𝑔) ∈ ℳΓ𝑝 is a critical point of 𝐸𝑝

(𝑡) if (and only if) it
is a critical point of its restriction 𝐸𝑝

(𝑡)| ∶ ℳ
Γ𝑝 → R. For generic choices of 𝑝 ∈ 𝑆3 we expect Γ𝑝

to be trivial, so thatℳΓ𝑝 = ℳ, and this observation confers no advantage. The interesting case
is when the intersection of ℳΓ𝑝 with the 𝐺 orbit of (𝜑1/2, 𝑔1/2) is (locally) just (𝜑1/2, 𝑔1/2). Then
(𝜑1/2, 𝑔1/2) is an isolated critical point of 𝐸(0)| ∶ ℳΓ𝑝 → R. If, as seems likely, it is also a nondegenerate
critical point of 𝐸𝑝

(0)| (meaning that the Hessian of 𝐸𝑝
(0)| at (𝜑1/2, 𝑔1/2) is nondegenerate), then the

persistence of a critical point for 𝑡 > 0 sufficiently small follows from the Inverse Function Theorem
applied to d𝐸𝑝

(𝑡)|. That is, there exists 𝜀 > 0 and a (unique) smooth curve 𝛾 ∶ (−𝜀, 𝜀) → ℳΓ𝑝 such that
𝛾(0) = (𝜑1/2, 𝑔1/2) and d𝐸

𝑝
(𝑡)|𝛾(𝑡) = 0 for all 𝑡 ∈ (−𝜀, 𝜀).

To summarize, we expect (𝜑1/2, 𝑔1/2) to smoothly deform into a critical point of𝐸𝑝
(𝑡) (as 𝑡 increases

from 0) if 𝑝 is chosen so that a neighbourhoodof (𝜑1/2, 𝑔1/2) inℳΓ𝑝 intersects the𝐺orbit of (𝜑1/2, 𝑔1/2)
only at (𝜑1/2, 𝑔1/2). Let us call this condition the isolation condition. The next task is to understand
this condition on 𝑝 at an algebraic level.

Assume that 𝑝 fails the isolation condition. Then there exists a regular curve 𝑞 ∶ (−𝜀, 𝜀) → 𝐺
with 𝑞(0) = 𝑒 such that, for all 𝑡, 𝑞(𝑡) ⋅ (𝜑1/2, 𝑔1/2) ∈ ℳΓ𝑝 or, more explicitly, for all 𝑄 ∈ Γ𝑝, and
𝑡 ∈ (−𝜀, 𝜀)

𝑄 ⋅ 𝑞(𝑡) ⋅ (𝜑1/2, 𝑔1/2) = 𝑞(𝑡) ⋅ (𝜑1/2, 𝑔1/2)
⇒ [𝑞(𝑡)−1𝑄𝑞(𝑡)] ⋅ (𝜑1/2, 𝑔1/2) = (𝜑1/2, 𝑔1/2). (3.5.8)

Hence, for all𝑄 ∈ Γ𝑝 and 𝑡, 𝑞(𝑡)−1𝑄𝑞(𝑡) ∈ Γ. But Γ is discrete (in fact, finite), so for all 𝑡 and𝑄,

𝑞(𝑡)−1𝑄𝑞(𝑡) = 𝑞(0)−1𝑄𝑞(0) = 𝑄 (3.5.9)
⇒ 𝑄𝑞(𝑡)𝑄−1 = 𝑞(𝑡). (3.5.10)

The derivative of this equation at 𝑡 = 0 implies that there exists some nonzero 𝜉 ∈ 𝔤 (the Lie algebra
of 𝐺), namely 𝜉 = �̇�(0), such that 𝐴𝑑𝑄𝜉 = 𝜉. Conversely, given a nonzero 𝜉 ∈ 𝔤 such that 𝐴𝑑𝑄𝜉 = 𝜉
for all 𝑄 ∈ Γ𝑝, we can construct a curve 𝛾(𝑡) = exp(𝑡𝜉) such that 𝛾(𝑡) ⋅ (𝜑1/2, 𝑔1/2) remains inℳΓ𝑝 .
Hence, the isolation condition is that, for all 𝜉 ∈ 𝔤 \{0}, there exists some𝑄 ∈ Γ𝑝 such that𝐴𝑑𝑄𝜉 ≠ 𝜉.
More succinctly: 𝑝 satisfies the isolation condition if and only if the adjoint representation of Γ𝑝 on
𝔤 contains no copies of the trivial representation.

This reduces the problem to one in the representation theory of subgroups of 𝑂ℎ. Given a
subgroup𝐻 of 𝑂ℎ ⊂ SO(4), we determine whether its action on R4 contains copies of the trivial
representation. If not, it cannot arise as 𝜋(Γ𝑝) for any choice of 𝑝. If it does, 𝜋−1(𝐻) is a candidate
for Γ𝑝 for any 𝑝 in a one-dimensional invariant subspace of the action. This produces a short list
of candidate subgroups. For each of these we count copies of the trivial representation in the
adjoint representation of 𝜋−1(𝐻) on 𝔤. If there are none, this is a candidate for Γ𝑝 for 𝑝 satisfying
the isolation condition.

The results are summarized in table 3.1. We find 28 points 𝑝 for which (𝜑1/2, 𝑔1/2) is an isolated
critical point of 𝐸𝑝

(0) inℳ
Γ𝑝 , falling into 4 distinct classes. One class is 𝑝 ∈ {(1, 0, 0, 0), (−1, 0, 0, 0)}.

The other three classes all have 𝑝0 = 0 andhence (𝑝1, 𝑝2, 𝑝3) ∈ 𝑆2 ⊂ R3, pointing along some symmetry
line of the unit cube: towards the centre of a face (e.g. 𝑝 = (0, 0, 0, 1)), the centre of an edge (e.g.
𝑝 = (0, 1, 1, 0)/√2) or a vertex (e.g. 𝑝 = (0, 1, 1, 1)/√3).
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𝑝 |Γ𝑝| 𝜋(Γ𝑝) Description as subgroup of 𝑂ℎ 𝑔 label
(1, 0, 0, 0) 96 𝑂 Orientation preserving diag(𝑎, 𝑎, 𝑎) SC1/2 crystal
(0, 0, 0, 1) 32 𝐶4𝑣 Maps a face to itself diag(𝑎, 𝑎, 𝑏) multi-wall
(0, 0, 1, 1)/√2 16 𝐶2𝑣 Maps an edge to itself diag(𝑎, 𝑏, 𝑏) chain
(0, 1, 1, 1)/√3 24 𝐶3𝑣 Maps a vertex to itself diag(𝑎, 𝑎, 𝑎) 𝛼-crystal

Table 3.1: Points 𝑝 ∈ 𝑆3 for which the SC1/2 crystal is isolated inℳΓ𝑝 , and hence is expected to continue to a
critical point of the massive Skyrme model. The leftmost column gives one representative point
in each class. Subsequent columns record the order of the corresponding stabilizer Γ𝑝 ⊂ Γ, the
image of Γ𝑝 in 𝜋(Γ) = 𝑂ℎ, its description as a subgroup of the group of symmetries of the cube, the
most general metric consistent with the symmetry, and a descriptive label of the corresponding
crystal.

To do numerics, we switch back to the viewpoint of internally rotating the field 𝜑1/2, rather
than the energy functional, that is, we set 𝑝 = (1, 0, 0, 0) in 𝐸𝑝

(𝑡) and start with the configuration

𝜑 = 𝑄𝜑1/2, 𝑔 = 𝑔1/2, (3.5.11)

where𝑄 is anySO(4)matrixwhose top row is𝑝 (the inverse of anSO(4)matrixmapping (1, 0, 0, 0) ↦
𝑝). We then minimize 𝐸(𝑡) using arrested Newton flow for a sequence of pion masses𝑚 = 𝑡 starting
at 𝑡 = 0 and ending at 𝑡 = 1. As expected each of the 4 types of critical point smoothly continues.
Somewhat unexpectedly, they are all, as far as we can determine, local minima of 𝐸(𝑡); none are sad-
dle points. We have checked this by perturbing the solutions with random perturbations breaking
all symmetries, finding that they always relax back to the solutions presented.

The solutions at normalized pion mass𝑚 = 1 are depicted in figure 3.2, labelled as in the final
column of table 3.1. Ordered by energy, we find multi-wall < chain < 𝛼-crystal < SC1/2 crystal,
though the chain and 𝛼-crystals are so close in energy that their order is somewhat uncertain. The
energies per baryon per unit cell are

𝐸1/2
𝐵 = 1.2417 × 12𝜋2 = 147.058,

𝐸𝛼
𝐵 = 1.2368 × 12𝜋2 = 146.479

𝐸chain
𝐵 = 1.2368 × 12𝜋2 = 146.479

𝐸multi-wall
𝐵 = 1.2365 × 12𝜋2 = 146.451.

(3.5.12)

Neither the multi-wall crystal nor the chain crystal has an isotropic metric, meaning these crystals
do not have a cubic period lattice. The 𝛼-crystal and the SC1/2 crystal do have cubic period lattices,
as is consistent with our symmetry analysis (see column 5 of table 3.1). The minimal metrics are

𝑔1/2 = 𝐿2I3, 𝐿 = 3.202,

𝑔𝛼 = 𝐿2I3, 𝐿 = 3.278,
𝑔chain = diag(𝐿21, 𝐿22 , 𝐿22), 𝐿1 = 3.221, 𝐿2 = 3.312,

𝑔multi-wall = diag(𝐿21, 𝐿21, 𝐿22), 𝐿1 = 3.222, 𝐿2 = 3.442

(3.5.13)
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(a) SC1/2 crystal (b) 𝛼-crystal (c) multi-wall crystal (d) chain crystal

Figure 3.2: ℒ024-Skyrme crystals in themodelwith normalized pionmass𝑚 = 1. The top row is the isosurface
plots of the baryon density. The bottom row is isosurface plots of the 𝜑0 field, where the vacuum
(𝜎 = +0.9) is colored red and the anti-vacuum (𝜎 = −0.9) blue.

fromwhich we deduce that the unit cells for the multi-wall and chain crystals are trigonal (cuboidal
with one pair of periods equal), but with opposite types of distortion: the multi-wall’s unit cell
is a stretched cube, the chain’s a squashed cube. Interestingly, the ordering of the volumes of
the solutions’ unit cells is the reverse of the ordering of their energies, with the multi-wall crystal
occupying the greatest volume and the 1/2-crystal the least.

Restricting the kinetic energy functional of the model to the isospin orbit of a given static
solution we obtain a left invariant metric on SO(3) called the isospin inertia tensor, which is of
some significance in the method of rigid body quantization [51, 52]. The kinetic energy associated
with the potentialℒ024-energy,𝑀𝛣 = 𝐸2 + 𝐸4 + 𝐸0, is

𝑇(𝜑, �̇�) = ∫
T3
[�̇� ⋅ �̇� + 𝑔𝑖𝑗 {(�̇� ⋅ �̇�) (𝜕𝑖𝜑 ⋅ 𝜕𝑗𝜑) − (�̇� ⋅ 𝜕𝑖𝜑) (�̇� ⋅ 𝜕𝑗𝜑)}] vol𝑔. (3.5.14)

Writing �̇� = 𝑋𝑖𝐽𝑖𝜑, with 𝐽𝑖 being the basis for 𝔰𝔬(3) given by

𝐽1 = (

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

) , 𝐽2 = (

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

) , 𝐽3 = (

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

) , (3.5.15)

we find that 𝑇(𝜑, �̇�) = 1
2𝑋

𝑖𝑈𝑖𝑗𝑋
𝑗, where𝑈 is the symmetric matrix given by

𝑈𝑖𝑗 = 2∫
T3
d3𝑥√𝑔 [𝛿𝑖𝑗𝜑𝑘𝜑𝑘 − 𝜑𝑖𝜑𝑗 + 𝑔𝑘𝑙(𝛿𝑖𝑗 − 𝜑𝑖𝜑𝑗)𝜕𝑘𝜑0𝜕𝑙𝜑0

+𝑔𝑘𝑙(𝜑𝑚𝜑𝑚𝜕𝑘𝜑𝑖𝜕𝑙𝜑𝑗 + 𝜑0𝜑𝑗𝜕𝑘𝜑0𝜕𝑙𝜑𝑖 + 𝜑0𝜑𝑖𝜕𝑙𝜑0𝜕𝑘𝜑𝑗)] (3.5.16)
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Figure 3.3: Comparison of the normalized energies per baryon per unit cell of the four Skyrme crystals for
increasing pion mass𝑚. Energies are presented in units of the energy of the 𝐵 = 1 skyrmion at
the relevant pion mass (which grows monotonically with𝑚).

and repeated indices are summed from 1 to 3. We find that, except for the SC1/2 crystal, this matrix
is not isotropic:

𝑈1/2 = (
165.2 0 0
0 165.2 0
0 0 165.2

) ,

𝑈𝛼 = (
135.5 0 0
0 135.5 0
0 0 167.3

)

𝑈chain = (
135.6 0 0
0 135.7 0
0 0 167.2

) ,

𝑈multi-wall = (
135.8 0 0
0 135.8 0
0 0 166.8

) .

(3.5.17)

As far as we are aware, in addition to the SC1/2 crystal, only the 𝛼-crystal has been previously
determined in the massive Skyrme model [29]. Neither of these is the minimal energy crystal.

It is interesting to track the energy as a function of pion mass, see figure 3.3. As𝑚 increases,
all of the crystals’ energies increase relative to that of the one-skyrmion. This is an indication that
classical binding energies will be small (and hence close to experimental values) when 𝑚 is large.
Amongst the various crystal solutions, we find that the multi-wall, chain and 𝛼-crystals remain
close in energy, with stable order, but the gap to the SC1/2 crystal (which always has highest energy)
grows with𝑚.
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3.6 ℒ024-Skyrmion Crystals at Fixed Baryon Density
If we are to use Skyrme crystals as a model of dense nuclear matter (for example, in astrophysical
contexts) it is important to understand the properties of the lowest energy configuration among
all those with a fixed average baryon density, treating this density as a parameter of our system.
This problem was first approached by Hen and Karliner [72] in the context of the baby Skyrme
model. Therein they extremized the baby Skyrme energy functional with respect to variations of
the period lattice at a constant skyrmion density. This method was carried out at various densities,
producing an energy-density curve. However, they did not address the nature of the critical points
they obtained, stating that they could in fact turn out to be maxima or saddle points. Our method
is similar but it is more general and robust.

Let us fix 𝐵cell, the baryon number per unit cell. Then the average baryon density of a configu-
ration (𝜑, 𝑔) is

𝜌𝛣 =
𝐵cell

∫
T3
vol𝑔

=
𝐵cell
√det 𝑔

. (3.6.1)

Hence, finding the minimal crystal with fixed baryon density (and baryon number 𝐵cell per unit
cell) amounts to minimizing𝑀𝛣 ∶ ℳ → R over a level set of det 𝑔. Once again, we can address
the partial minimization problem where we fix the field 𝜑 ∶ T3 → 𝑆𝑈(2) (assumed to be 𝐶1 and
somewhere immersive) and a density 𝜌𝛣 = 𝐵cell/𝜈 then seek a minimum of𝑀𝛣(𝜑, ⋅) ∶ det

−1(𝜈2) → R.
It turns out that, like the unconstrainedminimization problem studied in section 3.3, this problem
has a unique global minimum and no other critical points.

Proposition 14. Let 𝜑 ∶ T3 → SU(2) be a fixed 𝐶1 map that is immersive somewhere and 𝜈 > 0 be a
constant. Then the function SPD3 ⊃ det

−1(𝜈2) → R mapping each flat metric 𝑔 on T3 of volume 𝜈 to
the Skyrme energy𝑀𝛣(𝜑, 𝑔) attains a unique global minimum, and has no other critical points.

Proof. As before, it is equivalent to prove that the associated function

𝐸 ∶ det−1(𝜈−1) → R, 𝐸 = 𝑀𝛣 ∘ 𝜎
−1 (3.6.2)

attains a unique global minimum and has no other critical points, where 𝜎 ∶ SPD3 → SPD3 is the
diffeomorphism 𝜎(𝑔) = 𝑔/√det 𝑔. Now

𝐸(Σ) = Tr(𝐻Σ−1) +Tr(𝐹Σ) + 𝐶0𝜈 + 𝐶6𝜈−1 (3.6.3)

where𝐻,𝐹 ∈ SPD3 and 𝐶0, 𝐶6 ∈ [0, ∞) are the 𝜑-dependent constants previously defined. Existence
of a global minimum of 𝐸 followsmutatis mutandis from Proposition 10, since the bound (3.3.24)
still holds irrespective of the extra constraint 𝜆1𝜆2𝜆3 = 𝜈−1 (equivalent to detΣ = 𝜈−1). This confines
the minimizing sequence to a compact subset of the hypersurface 𝜆1𝜆2𝜆3 = 𝜈−1 in (0, ∞)3 × 𝑂(3),
whence a convergent subsequence can be extracted, whose limit attains the infimum of 𝐸 by
continuity.

It remains to prove uniqueness. Assume towards a contradiction that 𝐸 ∶ det−1(𝜈−1) → R has
two distinct critical points Σ∗, Σ∗∗. Then there exists a geodesic

𝛾(𝑡) = 𝐴 exp(𝜉𝑡)𝐴𝛵 (3.6.4)
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in (SPD3, 𝐺)with 𝛾(0) = Σ∗ and 𝛾(1) = Σ∗∗. Now

det 𝛾(𝑡) = (det𝐴)2 det exp(𝜉𝑡) = (det𝐴)2 exp (𝑡Tr 𝜉) (3.6.5)

and det(𝛾(0)) = det(𝛾(1)), so Tr 𝜉 = 0 and we conclude that det(𝛾(𝑡)) is constant. Hence the
geodesic 𝛾 remains on the level set det−1(𝜈−1). Since Σ∗, Σ∗∗ are critical points of 𝐸 ∶ det−1(𝜈−1) → R,
and 𝛾 is tangent to the level set for all 𝑡, (𝐸 ∘ 𝛾)′(0) = 0 = (𝐸 ∘ 𝛾)′(1), so by Rolle’s Theorem (𝐸 ∘ 𝛾)″

vanishes somewhere on (0, 1), contradicting the convexity of 𝐸 (Proposition 12). Hence no second
critical point may exist. 2

In the course of the proof above we established that all level sets of det are connected totally
geodesic submanifolds of (SPD3, 𝐺), and hence the restriction of 𝐸 to any such level set is strictly
convex. Note that, in general, the restriction of a convex function to a submanifold may fail to be
convex, so total geodesicity of the level sets is crucial here.

We can again solve the minimization problem for 𝐸 ∶ det−1(𝜈2) → R numerically by arrested
Newton flow, but nowwemust take care to project the gradient of 𝐸 tangent to the level set. Given
a curve 𝑔(𝑡) in det−1(𝜈2), we require

d
d𝑡 ∣𝑡=0

det 𝑔(𝑡) = 𝜈2Tr(𝑔(0)−1�̇�(0)) = 0 (3.6.6)

so �̇�(0) is orthogonal to 𝑔(0)−1 with respect to the Euclidean metric ⟨𝑋, 𝑌|𝑋, 𝑌⟩ = Tr(𝑋𝛵𝑌). That
is, �̇�(0) has to be an element of the space of traceless parallel symmetric bilinear forms ℰ0. Hence
𝑇𝑔 det

−1(𝜈2) = ⟨𝑔−1∣𝑔−1⟩⟂. Now

𝐸(𝑔(𝑡)) = 𝜈Tr(𝐻𝑔−1) +
Tr(𝐹𝑔)

𝜈 + 𝐶0𝜈 +
𝐶6
𝜈 , (3.6.7)

and hence
d𝐸𝑔(𝑣) =

1
𝜈 ⟨𝐹 − 𝜈

2𝑔−1𝐻𝑔−1, 𝑣∣𝐹 − 𝜈2𝑔−1𝐻𝑔−1, 𝑣⟩ . (3.6.8)

It follows that, with respect to the metric on det−1(𝜈2) induced by the Euclidean metric,

(grad𝐸)(𝑔) = 1
𝜈 {𝐹 − 𝜈

2𝑔−1𝐻𝑔−1 −
Tr((𝐹 − 𝜈2𝑔−1𝐻𝑔−1)𝑔−1)

Tr(𝑔−1𝑔−1)
𝑔−1} . (3.6.9)

We solve the Newton flow �̈� = −(grad𝐸)(𝑔) numerically, projecting 𝑔 back onto det−1(𝜈2) after each
time step by radial dilation (𝑔 ↦ (𝜈2/det 𝑔)1/3𝑔), arresting if 𝐸(𝑔(𝑡 + 𝛿𝑡)) > 𝐸(𝑔(𝑡)), and terminating
if the sup norm of grad𝐸 falls below a prescribed tolerance. As for the unconstrained problem, we
apply this algorithm after each iteration of the arrested Newton flow for the field 𝜑 ∶ T3 → 𝑆3.

Applying this approach at various densities to the four crystals found in section 3.5 at pion
mass𝑚 = 1, we observe that the three lower energy crystals tend to finite-energy solutions at low
densities. The 𝛼-crystal tends to the 𝐵 = 4 𝛼-particle skyrmion on R3 [21], see figure 3.4. This phase
transition has already been observed by Silva Lobo [45] in the massless model and by Adam et al.
[46] in the massive model with sextic term. The multi-wall crystal tends to a double-layered square
sheet on T2 × R, similar to the 2-wall massless solution found by Silva Lobo andWard [50]. Finally,
the chain crystal becomes a linear chain on R2 × 𝑆1, which appears to be a previously unknown
solution.
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Figure 3.4: The energy per baryon per unit cell of the Skyrme crystals in the model with normalized pion
mass𝑚 = 1 as a function of cell volume.

At low densities the multi-wall solution is clearly energetically preferred over other solutions.
This qualitative result was predicted earlier in [115]. However, there are some important differences
between between our result and [115]. Our result comes from aminimization over all Skyrme fields
and lattice geometries, whereas [115] used the more restrictive Atiyah–Manton approximation for
the Skyrme field and assumed symmetric lattice geometries. Second, our minimal-energy Skyrme
multi-wall has a square geometry, whereas those constructed in [115] had a hexagonal geometry.
Finally, our results are for the model with𝑚 = 1, whereas [115] considered𝑚 = 0.

As onemight expect, the four crystals become energetically indistinguishable in the large density
limit. As far as we can determine, the curves in figure 3.4 never cross, so we assume that the crystals
maintain their energy ordering at all densities.

3.7 Concluding Remarks

In this chapter, we developed methods to obtain skyrmion crystals in a general class of Skyrme
models, and presented a detailed numerical study of crystals in the standard Skyrme model with
massive pions. To achieve this, we minimized the model’s energy with respect to variations of
both the field and its period lattice in R3. A key idea is to reformulate the latter variation as a
variation over all flat metrics on the fixed unit torus T3. We obtained strong results on the partial
minimization problem in which the field is fixed and only the metric varied: under a mild non-
degeneracy assumption on the field, there exists a unique flat metric that globally minimizes the
Skyrme energy, and no other critical metrics. This result holds also if we constrain the problem to
vary only over metrics of fixed volume, a variant relevant to constructing skyrmion crystals of fixed
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baryon density, i.e. determine an equation of state. Our methods impose no symmetry on the
period lattice a priori, and hence go beyond previous studies which imposed a cubic unit cell.

We find that theminimal energy crystal (with baryon number 𝐵cell = 4 per unit cell) has trigonal
but not cubic periodicity. At low densities it tends to a double sheet solution. The next lowest
energy crystal is also trigonal and not cubic, tending to a chain solution at low densities. Both
these crystals are new. Above them in energy are two already known solutions, the 𝛼-crystal and
the SC1/2 crystal. All these crystals, except the most energetic, the SC1/2 crystal, have anisotropic
isospin inertia tensors. The existence of four distinct crystals can be understood semi-analytically
by means of the Principle of Symmetric Criticality and the Inverse Function Theorem.

The methods detailed in this chapter can be applied to the study of isospin (a)symmetric
nuclear matter within the Skyrme model. The next step would be to investigate neutron stars by
considering the quantum corrections to the energy due to the quantization of the isospin degrees
of freedom, and improve on the work done on neutron crystals in the massless ℒ24-model by
Baskerville [51]. In particular, one could determine “nuclear pasta” phases in neutron stars [116]
by considering the quantization of generalized skyrmion crystals in the low density regime. The
chain crystal we have found could correspond to the so-called “spaghetti” phase, and the multi-wall
crystal the “nuclear lasagne”. This is what we do in the succeeding chapter.

g 0 G





Four

Generalized Skyrmion Crystals with
Applications to Neutron Stars

This chapter is based on the work in the joint paper withM. Huidobro and A.Wereszczynski [117].

4.1 Introduction
A natural field of application of the Skyrme model is to dense nuclear matter, particularly compact
stars such as neutron stars [54, 118–125] and black holes [126–133]. In the present chapter we
choose to focus on the former. The study of neutron stars can be approached by considering the
crystalline structure of nuclear matter at finite densities, a problem of which we have resolved
within the Skyrme framework in the preceding chapter. We showed that varying the density of
the unit cell (while keeping the baryon number fixed) allows one to study nuclear matter at finite
densities and, inter alia, to obtain an equation of state. Taking the advantage of the Tolman–
Oppenheimer–Volkoff construction, one then obtains neutron stars by coupling the theory to
gravity and considering the matter to be that of a perfect fluid [120].

Typically, there are five regions in a neutron star, all at different nuclear densities 𝑛𝛣. The
accretion of material onto a neutron star can form a liquid ocean of ions with electron gases. At
the bottom of this ocean material freezes and forms the denser outer crust, consisting of Coulomb
crystals and degenerate electrons. Let us delve deeper into the star, with increasing density (still
below saturation, 𝑛𝛣 < 𝑛0). At these densities, the electron Fermi energy is high and fuels electron
capture reactions 𝑒 + 𝑝 → 𝑛 + 𝜈𝑒. Thus, nuclei in outer crust become more neutron rich with
the increasing density, until they become so neutron rich that neutrons are forced out of these
ions. This density is known as the neutron drip line and is the boundary separating the inner and
outer crusts. So, the inner crust is composed of neutron rich Coulomb crystals, a relativistic and
degenerate electron gas, and a gas of almost free neutrons. Below the inner crust, we are at densities
approaching saturation 𝑛𝛣 ≈ 𝑛0, where matter is dominated by the opposing interaction of the
short range nuclear strong force and the long range Coulomb repulsion. This competition can
cause the nearly spherical nuclei to form into more complex atomic structures such as nuclear
pastas, e.g. tubes of spaghetti or sheets of lasagna [134, 135]. The most dense region is the core
(𝑛𝛣 > 𝑛0), where one expects to find a perfect fluid of neutron rich matter with electrons. For a
more in-depth review of the structure of a neutron star see, e.g., Caplan and Horowitz [136].

Previous applications of the Skyrme model to the construction of neutron stars were based
on the assumption of the SC1/2 crystal being the ground state. That, coupled with the simple
approximation of Kugler and Shtrikman [39], made it relatively straightforward to determine an

73
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EoS by restricting the period lattice to be cubic at all densities. Even if one accepts this constrained
approach, three important physical issues are still to be addressed:

i. 𝑛𝛣 > 𝑛0: the EoS is too soft, giving rise to neutron stars that are too light.

ii. 𝑛𝛣 < 𝑛0: the presence of a minimum at saturation in the EoS yields negative pressure, which
represents a thermodynamically unstable phase at low density.

iii. 𝑛𝛣 = 𝑛0: nuclear binding energies are too large, which in turn means the compression
modulus is too large.

The too softness of the standardℒ024-Skyrme model EoS was remedied by extension to the
generalizedℒ0246-Skyrmemodel. Indeed, theℒ6 termwas essential not only to significantly increase
the value of the maximal mass of neutron star (from 1.7𝑀⊙ [123] to above 2𝑀⊙ [54]), but also to
render nuclear matter more like a perfect fluid, especially at higher densities, which corresponds
very well to the standard picture of a (super-)fluid core of neutron star. These results are deeply
anchored in the mathematical properties of the sextic term. Namely, if treated together with the
(pion mass) potential term, the correspondingℒ06 energy-momentum tensor has a perfect fluid
form [137]. In addition, it enjoys a volume preserving diffeomorphism symmetry whichmeans that
the energy of a solution is degenerate for all deformations which do not change its volume [104].
On the contrary, deformations that change the volume are strongly penalized as the corresponding
EoS has a maximally stiff form [120, 121]. This agrees with a physical interpretation of the sextic
term as a part of the action which effectively arises after integration of 𝜔-mesons, a model of which
will be the focus of the next chapter.

At low density the situation is much less clear due to the appearance of thermodynamically
unstable regions. For a given classical crystal solution (which, in a natural way, is identified with
symmetric nuclear matter), the energy per unit cell 𝐸cell possesses a minimum for a certain volume
𝑉∗, which may be consistently identified with the nuclear saturation point, 𝑛0 = 𝐵/𝑉∗. Obviously,
for 𝑉 > 𝑉∗, the solution is thermodynamically unstable as it formally corresponds to negative
pressure (𝑝 = −𝜕𝐸/𝜕𝑉 < 0). However, taking into account the isospin quantum corrections and
some further contributions, the classical minimum should hopefully disappear, thereby providing
a thermodynamically stable description even in the low density regime. However, this is not always
the case. For example, consider the 𝛼-crystal [53]. Although this configuration lowered the classical
energy per cell, it did not cure the instability issue [52]. So, while the Skyrme model provided an
equation of state, it did so only in the high density regime. In order to adequately model neutron
stars, the resulting high density Skyrme EoS had to be interpolated with a low density EoS from
another model, such as the BCPM EoS [54].

In any case, a thermodynamically stable phase at lowdensity is the first necessary step in resolving
nuclear pasta phases and the crust of a neutron star within the Skyrme model. Here, we apply the
method developed in Chap. 3 to the generalizedℒ0246-Skyrme model and obtain the lattice ground
state of the generalized model at all densities, that is, above and below the nuclear saturation point
𝑛0. In our model, the nuclear matter is not necessarily treated as being homogeneous. At saturation
𝑛0, it appears as an almost homogeneous multi-wall configuration with near cubic symmetry.
At low densities (𝑛 < 𝑛0) then it is considered inhomogeneous, with distinct somewhat isolated
multi-wall configurations present. Whereas, at high densities (𝑛 > 𝑛0), e.g. in the core, it appears
even more homogeneous and as a simple cubic crystal of fractional half-skyrmions, and should
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be very well approximated by the SC1/2 crystal. This allows us, for the first time, to obtain an EoS
of the skyrmionic matter which interpolates between low and high density regimes. Further, the
multi-wall crystalline configuration appears to appropriately model the different regions of the
neutron star, unlike the homogeneous SC1/2 crystal. We obtain an EoS, under the inclusion of the
quantum corrections to the energy from the isospin d.o.f. and the assumption of 𝛽-equilibrium,
and investigate its usefulness and consequences for nuclear physics.

4.2 ℒ0246-Skyrmion Crystals at Fixed Baryon Density
The foundation for determining skyrmion crystals at finite density was laid out in the preced-
ing chapter. In the present chapter, we consider the generalization of the massiveℒ024-Skyrme
Lagrangian which yields an 𝜔-meson-like repulsion on short distances, while also allowing the
quartic Skyrme term to describe scalarmeson effects. Recall that the generalized staticℒ0246-Skyrme
Lagrangian, with metric signature (− + ++), is given by

ℒ0246 = −𝑚2Tr (Id2 −𝜑) +
1
2𝑔

𝜇𝜈Tr(𝐿𝜇𝐿𝜈) +
1
16𝑔

𝜇𝛼𝑔𝜈𝛽Tr ([𝐿𝜇, 𝐿𝜈][𝐿𝛼, 𝐿𝛽]) − 𝑐6𝑔𝜇𝜈ℬ𝜇ℬ𝜈. (4.2.1)

Likewise, the static energy (which can be identified with the classical mass of the skyrmion), for a
fixed degree 𝐵map 𝜑 ∶ T3 → 𝑆3, is defined by

𝑀𝛣(𝜑, 𝑔) = √𝑔𝑔𝑖𝑗𝐻𝑖𝑗(𝜑) +
1
√𝑔

𝑔𝑖𝑗𝐹𝑖𝑗(𝜑) + √𝑔𝐶0(𝜑) +
𝐶6(𝜑)
√𝑔

, (4.2.2)

where the metric independent integrals, in the NL𝜎M formulation (1.1.16), are given by

𝐻𝑖𝑗(𝜑) = ∫
T3
d3𝑥 𝜕𝑖𝜑𝜇𝜕𝑗𝜑𝜇, (4.2.3a)

𝐹𝑖𝑗(𝜑) =
1
4𝜀

𝑖𝑎𝑏𝜀𝑗𝑐𝑑∫
T3
d3𝑥 {(𝜕𝑎𝜑

𝜇𝜕𝑐𝜑
𝜇) (𝜕𝑏𝜑

𝜈𝜕𝑑𝜑
𝜈) − (𝜕𝑎𝜑

𝜇𝜕𝑑𝜑
𝜇) (𝜕𝑏𝜑

𝜈𝜕𝑐𝜑
𝜈)} , (4.2.3b)

𝐶0(𝜑) = 2𝑚
2∫

T3
d3𝑥 (1 − 𝜎), (4.2.3c)

𝐶6(𝜑) =
𝑐6𝜖

𝑖𝑗𝑘𝜖𝑙𝑚𝑛

(12𝜋2)2
𝜖𝜇𝜈𝜌𝜎𝜖𝛼𝛽𝛾𝛿∫

𝛭
d3𝑥 𝜑𝜇𝜑𝛼𝜕𝑖𝜑𝜈𝜕𝑗𝜑𝜌𝜕𝑘𝜑𝜎𝜕𝑙𝜑𝛽𝜕𝑚𝜑𝛾𝜕𝑛𝜑𝛿, (4.2.3d)

with the pion mass and sextic coupling constant given by, respectively,

𝑚 =
2𝑚𝜋
𝐹𝜋𝑒

, 𝑐6 =
𝜋4𝜆2𝑒4𝐹2𝜋
2ℏ3

. (4.2.4)

We maintain the same classical energy scale of �̃� = 𝐹𝜋/4𝑒 (MeV) and length scale of �̃� = 2ℏ/𝑒𝐹𝜋 (fm).
Throughout this chapter we will use the following values for the constants:

𝐹𝜋 = 122MeV, 𝑒 = 4.54, 𝑚𝜋 = 140MeV, 𝜆2 = 1MeV fm3. (4.2.5)

Qualitatively, the parameters (4.2.5) don’t have much affect on the ground state crystalline
configuration. However, quantitatively this is not true. We fit the parameters of the model to give
us approximately the binding energy at saturation and the nuclear density, while also allowing the
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symmetry energy and the pion decay constant not to deviate too much from their experimental
values. Other studies have done similar fittings to, e.g., the symmetry energy, but there is always
a trade-off where if you fix one parameter accurately then other physical quantities will suffer
in consequence. In other studies [52], the symmetry energy and saturation energy can be fitted
correctly, but the saturation density can not also be simultaneously fitted correctly. That is the
caveat of using the Skyrme model alone to model nuclear matter. For example, in our model,
the symmetry energy at saturation is lower than expected but accurately predicts the asymmetry
coefficient in the SEMF. If themodel is tuned to give the correct symmetry energy value at saturation
then the asymmetry coefficient would be off. For a more general review of the quantitative effects
of the free parameters on a ground state configuration see [52, 53].

We now briefly review the findings of the previous chapter. Skyrmion crystals have been
studied extensively in the literature, with it being previously accepted that the SC1/2 crystal found
independently by Kugler & Shtrikmann [39] and Castillejo et al. [40] is the minimum energy
skyrmion crystal. However, in the masslessℒ24-Skyrme model, this SC1/2 crystal is just one point
on an SO(4) orbit of solutions, i.e. it is not a unique critical point and all of these solutions are
all energy degenerate. When the pion mass is turned on, there is no reason to expect these energy
degenerateℒ24 critical points to extend toℒ0246 critical points upon perturbation. However, there
are four critical points which survive perturbation. These are the SC1/2, 𝛼, chain and multi-wall
crystals. Each crystal has baryon number 𝐵cell = 4 per unit cell, with three of the crystals having
lower energy classically than the SC1/2 crystal for non-zero pion mass and non-cubic (trigonal)
lattice geometry.

The SC1/2 crystal can be obtained from the Fourier series-like expansion of the fields as an
initial configuration (1.3.20). From the SC1/2 crystal, the other three crystals can be constructed by
applying a chiral SO(4) transformation𝑄 ∈ SO(4), such that 𝜑 = 𝑄𝜑1/2, andminimizing the energy
with respect to variations of the field and the lattice. These chiral transformations𝑄 ∈ SO(4) can
be determined by considering a deformed energy functional on the moduli space of critical points
of the Skyrme energy functional, and are found to be

𝑄 ∈ {Id4, (
(0, −1, 1, 1)/√3

∗
)

⏟⏟⏟⏟⏟
𝑄𝛼

, ((0, 0, 0, 1)
∗

)
⏟

𝑄multi-wall

, ((0, 0, 1, 1)/
√2

∗
)

⏟⏟⏟⏟⏟
𝑄chain

} . (4.2.6)

The other three rows of the chiral transformations𝑄𝛼,𝑄multi-wall and𝑄chain, labelled by the asterisk,
can be obtained by using the Gram–Schmidt process.

With the initial field configuration in place, we thenminimize the staticℒ0246-energy functional
(4.2.2) with respect to variations of themetric 𝑔𝑠 for fixed field configuration 𝜑∣fixed. This is achieved
by considering the energy𝑀𝛣 as a function of the metric 𝑔 on T3, and employing arrested Newton
flow on SPD3, which solves the system of 2nd order ODEs (3.4.6). The key component of the
numerical algorithm is the computation of the stress-energy tensor, which is given by (3.4.7).

In general, the dimension of SPD𝑛 is dim(SPD𝑛) = 𝑛(𝑛 + 1)/2. In our case, we are working
with SPD3 and consider the energy as a function 𝐸𝜑 ∶ SPD3 → R. So we are implementing arrested
Newton flow on a 6 dimensional manifold. After each time step 𝑡 ↦ 𝑡 + 𝛿𝑡, we check to see if
the energy is increasing. If 𝐸𝜑(𝑡 + 𝛿𝑡) > 𝐸𝜑(𝑡), we take out all the kinetic energy in the system by
setting �̇�(𝑡 + 𝛿𝑡) = 0 and restart the flow. The flow then terminates when every component of the
stress-energy tensor 𝑆𝜑 is zero to within a given tolerance (we have used 10−6).
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As the metric 𝑔𝑠 on T3 varies so too does the lattice Λ𝑠, which we have labelled Λ𝑠 = Λ(𝑔𝑠)where
Λ0 = Λ. Let �⃗�1 = (𝑥1, 𝑦1, 𝑧1), �⃗�2 = (𝑥2, 𝑦2, 𝑧2) and �⃗�3 = (𝑥3, 𝑦3, 𝑧3) be the period lattice vectors for
Λ. In order to plot isosurfaces of the baryon density of the resulting skyrmion on (R3/Λ, 𝑑), we
need to reconstruct the lattice Λ from the metric 𝑔. To do this we need to solve the following
under-determined system of equations

�⃗�1 ⋅ �⃗�1 = 𝑥21 + 𝑦
2
1 + 𝑧

2
1 = 𝑔11

�⃗�1 ⋅ �⃗�2 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 = 𝑔12
�⃗�1 ⋅ �⃗�3 = 𝑥1𝑥3 + 𝑦1𝑦3 + 𝑧1𝑧3 = 𝑔13
�⃗�2 ⋅ �⃗�2 = 𝑥22 + 𝑦

2
2 + 𝑧

2
2 = 𝑔22

�⃗�2 ⋅ �⃗�3 = 𝑥2𝑥3 + 𝑦2𝑦3 + 𝑧2𝑧3 = 𝑔23
�⃗�3 ⋅ �⃗�3 = 𝑥23 + 𝑦

2
3 + 𝑧

2
3 = 𝑔33

. (4.2.7)

This has infinitely many solutions which we can solve for by fixing a particular lattice vector, or
by setting 𝑦1 = 𝑧1 = 𝑧2 = 0, i.e. �⃗�1 = (𝑥1, 0, 0), �⃗�2 = (𝑥2, 𝑦2, 0) and �⃗�3 = (𝑥3, 𝑦3, 𝑧3). Then, for the latter
choice of period lattice vectors, the system of equations (4.2.7) has a solution given by

�⃗�1 = (√𝑔11, 0, 0)

�⃗�2 = (
𝑔12
√𝑔11

, √𝑔22 −
𝑔212
𝑔11

, 0)

�⃗�3 = (
𝑔13
√𝑔11

, 1

√𝑔22 −
𝑔212
𝑔11

(𝑔23 −
𝑔12𝑔13
𝑔11

) , √𝑔33 −
𝑔213
𝑔11

− 1

(𝑔22 −
𝑔212
𝑔11 )

(𝑔23 −
𝑔12𝑔13
𝑔11

)
2
) .

Determining phases of nuclear matter and phase transitions in the Skyrme model is a difficult
task, and is important if one wants to understand symmetric and asymmetric nuclear matter in
high/low density regimes. To study phases of matter at various densities, we consider fixed density
variations of the energy functional, i.e. we allow the lattice to vary but keep its volume fixed. Then
the volume form vol𝑔 is required to be invariant under variations 𝑔𝑠 of the metric, viz.

d
d𝑠 ∣𝑠=0

∫
T3
d3𝑥√𝑔𝑠 =

1
2 ∫T3

d3𝑥√𝑔𝑔𝑖𝑗�̇�𝑖𝑗 = 0. (4.2.8)

That is, �̇� has to be an element of the space of traceless parallel symmetric bilinear forms ℰ0.
In terms of the energy, we are dealing with a constrained minimization problem: minimize the

energy functional for fixed field configuration 𝜑 = 𝜑|fixed subject to the constraint that det(𝑔) is con-
stant. The existence and uniqueness of such a metric was proven in Sec. 3.6. In the present chapter,
we choose to approach the problem using Lagrange multipliers. Let us define the Lagrangian

𝐿(𝑔) = 𝐸𝜑(𝑔) + 𝜆 (∫
T3
d3𝑥√𝑔 − 𝑐) , (4.2.9)

where 𝜆 ∈ R is a Lagrange multiplier and 𝑐 ∈ R>0 is a constant. Consider a one-parameter curve 𝑔𝑠 in
the space of metrics on T3. Then, for any variation 𝑔𝑠 of the metric,

d𝐿
d𝑠 ∣𝑠=0

=
d𝐸𝜑
d𝑠 ∣

𝑠=0

+ 𝜆 d
d𝑠 ∣𝑠=0

∫
T3
d3𝑥√𝑔𝑠 = 0. (4.2.10)
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We note that
d𝐸𝜑(𝑔𝑠)
d𝑠 ∣

𝑠=0

= ∫
T3
d3𝑥√𝑔 ⟨𝑆(𝑔), �̇�⟩𝑔 = ∫

T3
d3𝑥√𝑔 𝑆𝑖𝑗𝜑 �̇�𝑖𝑗, (4.2.11)

where 𝑆𝜑 is the (fixed field) stress tensor appearing in (3.4.7). Thus, we can determine the Lagrange
multiplier by considering

d𝐿
d𝑠 ∣𝑠=0

= ∫
T3
d3𝑥√𝑔 (𝑆𝑖𝑗𝜑 + 𝜆

2𝑔
𝑖𝑗) �̇�𝑖𝑗 = 0 ⇒ 𝜆 = −23𝑔𝑖𝑗𝑆

𝑖𝑗
𝜑 . (4.2.12)

Hence, we find that

d𝐿
d𝑠 ∣𝑠=0

= ∫
T3
d3𝑥√𝑔 ⟨𝑆(𝑔) − 1

3 Tr𝑔(𝑆𝜑) 𝑔, �̇�⟩𝑔
= 0. (4.2.13)

Therefore, we modify the stress-energy tensor in (3.4.6) via the metric projection 𝑃𝑔 ∶ Γ(⊙2𝑇∗T3) →
Γ(⊙2𝑇∗T3), that is

𝑆𝜑 ↦ �̃�𝜑 ≡ 𝑃𝑔(𝑆𝜑) = 𝑆𝜑 −
1
3 Tr𝑔(𝑆𝜑) 𝑔 (4.2.14)

and our convergence criterion becomes max(�̃�𝜑) < tol. Likewise, to ensure numerically that �̇� is
traceless, we need to project out the component of variation vector �̇� parallel to the metric 𝑔 via the
mapping �̇� ↦ 𝑃𝑔(�̇�).

By employing this process at various volumes it enables us to determine an energy-volume curve
or, equivalently, an energy-density curve. This is key to obtaining an EoS within our framework, as
the EoS is directly related to the 𝐸 − 𝑉 curve.

Out of the four crystal configurations, the most of interest to astrophysicists are the 𝛼-crystal,
chain-crystal and the multi-wall crystal; these resemble non-uniform phases of nuclear matter,
known as nuclear “pasta”. The iron rich crust of a neutron star could be modeled by 𝐵 = 56 chunks
of 𝛼-particle crystals, such as those modeled by Feist et al. [43], describing the “gnocchi” phase.
As we descend deeper towards the outer core, the pressure due to gravity increases and nuclei
are squeezed together into long thin tubes of “spaghetti”. This spaghetti phase can be modeled
using the chain-crystal. Deeper still and the spaghetti flattens into parallel multi-walls, resembling
“lasagna”, of which the multi-wall crystal is reminiscent of. Of course, for realistic applications the
Coulomb interaction must be added. This is because of the fact that different crust phases arise
due to a balance between the strong and electrostatic forces. Nevertheless, the Skyrme model has a
built-in ability to model such phases.

Themulti-wall-crystal is the lowest energy solution at all baryon densities and also yields a lower
compression modulus than the other three crystals. This makes it an ideal candidate for nuclear
matter and an EoS at high and low densities. With 𝜑0 = 𝑄multi-wall𝜑1/2 as an initial configuration
and by considering fixed baryon density variations, as laid out above, the energy-volume curve can
be computed and an EoS obtained.

The first main result of this section is the observation that, as it is for the massiveℒ024-Skyrme
model, the multi-wall crystal is also the ground state crystalline solution for the generalizedℒ0246-
Skyrme model at all densities. In the low density regime the solution clearly exhibits a two-layer
structure, extending parallel to the 𝑥𝑦-plane with the vacuum (𝜎 = 1) occupying the regions above
and below the multi-wall. This can be seen in Fig. 4.1. Inside the multi-wall center the 𝜎-field is
approximately the anti-vacuum (𝜎 ≈ −1). Therefore, the multi-wall crystal is similar to that of a



4.2. ℒ0246-Skyrmion Crystals at Fixed Baryon Density 79

(a) (b)

Figure 4.1: ℒ0246-Skyrme multi-wall crystal at a fixed baryon density 𝑛𝛣 < 𝑛0. The isobaryon density is
depicted in (a) and isosurface plots of the 𝜎 field, where the vacuum (𝜎 = +0.9) is colored red and
the anti-vacuum (𝜎 = −0.9) blue, are shown in (b).

domain wall crystal, hence the name convention. As the density increases, the regions occupied by
the vacuum reduces and the non-cubic period lattice becomes more cubic, tending asymptotically
to the SC1/2 crystal in the zero volume limit. These are the true energyminimizers of the generalized
ℒ0246-Skyrme model at finite density under assumption that the baryon charge of the unit cell is
four, 𝐵cell = 4.

In Fig. 4.2 we plot the classical static energy per baryon 𝐸(𝑛𝛣) = 𝑀𝛣(𝑛𝛣)/𝐵 of the multi-wall
crystal as a function of the baryon density 𝑛𝛣 = 𝐵/𝑉, with the nuclear saturation density 𝑛0 defined
to be the baryon density such that (𝜕𝑀𝛣)/(𝜕𝑛𝛣)|𝑛𝛣=𝑛0 = 0. This EoS is interpreted as one of isospin
symmetric nuclear matter since the classical Skyrme model does not distinguish between protons
and neutrons.

Expansion of the isospin symmetric energy function 𝐸(𝑛𝛣) around the minimum 𝑛0 gives

𝐸(𝑛𝛣) = 𝐸0 +
1
2𝐾0

(𝑛𝛣 − 𝑛0)
2

9𝑛20
+ 𝒪 ((𝑛𝛣 − 𝑛0)

3) . (4.2.15)

The local minimum, associated to the nuclear saturation point 𝑛0, is identified with the saturation
energy𝐸0 ≡ 𝑀𝛣(𝑛0)/𝐵. The curvature of the energy curve is controlled by the compressionmodulus
𝐾0 and determines the increase in energy due to compression. For our choice of the coupling
constants (4.2.5) the saturation energy per baryon and saturation density are respectively 𝐸0 =
912MeV and 𝑛0 = 0.160 fm−3, which almost perfectly corresponds to the physical values of the
saturation energy and density [138]. An important observation is that the difference between
the energy at nuclear saturation and the classical energy at zero density is much smaller than in
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Figure 4.2: The classical static energy per baryon𝑀𝛣/𝐵 as a function of the nuclear density 𝑛𝛣. The nuclear
density at which the cusp in the symmetry energy appears is labelled by 𝑛∗. This corresponds
to the density at which the infinite crystalline multi-wall solution begins transitioning to an
isolated multi-wall configuration.

previous works. Indeed, the difference is now roughly Δ𝐸 ≈ 7MeV, which is a 0.8% difference with
respect to the total energy. Whereas, for a 𝐵 = 32 or 𝐵 = 108 𝛼-crystal the difference is found to
be approximately 3% and 1.7%, respectively. This small difference in energy between the nuclear
saturation and low-density asymptotic solutions is crucial for the existence of a purely skyrmion
generated EoS at all densities.

Unfortunately, the compressionmodulus still exceeds the experimental value by a factor of 6 ∼ 7.
Although, in comparison with studies involving the SC1/2 crystal, where 𝐾0 ∼ 1700MeV, we do
observe an improvement in the (in)compressibility by approximately 200MeV, the inhomogeneous
solution alone cannot solve the compression modulus problem in the Skyrme model. Nevertheless,
this negative result is very important as it shows that the purely pionic Skyrme model cannot lead
to a physically acceptable compression modulus. Consequently, it seems to be necessary to include
other mesonic d.o.f. which may soften the skyrmionic matter at the saturation point.

4.3 Quantum Skyrmion Crystals and the Symmetry Energy
In general, the full symmetry group of the masslessℒ24-Lagrangian is the direct product of the
Poincaré group and chiral group: �̃� = O(3) ⋉ R3 × SO(4)chiral. However, static energy minimizers
break the Poincaré symmetry group O(3) ⋉ R3 to the Euclidean subgroup 𝐸3 = SO(3) × R3, corre-
sponding to spatial translations and rotations. The resulting symmetry group of the static energy
functional (4.2.2) is thus 𝐺 = 𝐸3 × SO(4)chiral ≅ 𝐸3 × SU(2)𝐿 × SU(2)𝑅. The action of this group on
the Skyrme field is given by

𝜑(𝑥) ↦ 𝐴𝐿𝜑(𝑅𝑥 + 𝑋)𝐴
†
𝑅, 𝐴𝐿/𝑅 ∈ SU(2)𝐿/𝑅, 𝑅 ∈ SO(3), 𝑋 ∈ R3. (4.3.1)

For skyrmions on𝑀 = R3, one must impose finite boundary conditions 𝜑(𝑥 → ∞) = Id2. This
allows for the compactification of the domain R3⋃{∞} ≅ 𝑆3 and further reduces the symmetry
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group 𝐺 to the subgroup𝐻 = 𝐸3 × diag[SU(2)𝐿 × SU(2)𝑅] ≅ 𝐸3 × SU(2)𝛪, where SU(2)𝛪 is the isospin
internal symmetry group. The corresponding action of the subgroup 𝐻 on the Skyrme field is
given by the transformation (4.3.1) with 𝐴𝐿 = 𝐴𝑅 = 𝐴 ∈ SU(2)𝛪.

When considering crystals on 𝑀 = R3/Λ, one must be careful when defining the isospin
subgroup SU(2)𝛪; the vacuum boundary condition is no longer imposed and there is not a natural
way to select the diagonal isospin subgroup SU(2)𝛪, at least if you consider the masslessℒ24-model
that is. This problemwas addressed by Baskerville [51] in the context of the SC1/2 crystal in theℒ24-
model, wherein she considered full SO(4)chiral rotations. She deduced that there are two cubic point
groups that can define the SC1/2 crystal, one of which is related to the centres of the half-skyrmions.
The cubic point group symmetry corresponding to the half-skyrmion centres is reducible into the
trivial 1-dimensional irreducible representation (irrep) and a 3-dimensional irrep. We choose the
𝜎 = 𝜑0 field to transform in the 1-dimensional irrep. Then the isospin group SU(2)𝛪 can be defined
as the group of isorotations of the pion fields �⃗� = (𝜑1, 𝜑2, 𝜑3), corresponding to transformations in
the 3-dimensional irrep. If the pion mass potential termℒ0 is included then this is a natural choice
of isospin group SU(2)𝛪.

Rigid Body Quantization of a Crystal Chunk

As a field theory, the Skyrme model is non-renormalizable. One must quantize it semi-classically. It
is well-known that the classical dynamics of slowlymoving solitons corresponds to geodesicmotion
on the moduli space of static configurations [139]. Minimal energy configurations in the Skyrme
model are unique, for a givenbaryonnumber𝐵, up to actions of the symmetry group𝐻 = 𝐸3×SU(2)𝛪.
The classical configuration space𝑄 of skyrmions is split into connected components, labelled by
the baryon number 𝐵, 𝑄 = ⋃𝛣∈Z 𝑄𝛣. The covering space �̃�𝛣 of each component is a double-cover
with a two-to-one map 𝜋𝑄 ∶ �̃�𝛣 → 𝑄𝛣 [140]. It was argued by Finkelstein and Rubinstein [141]
that the wave functions Ψ ∈ ℋmust be defined on the covering space of the configuration space
�̃�, whereℋ is a formal Hilbert space such that Ψ is normalizable and square integrable. That is,
the wave functions are defined by the map Ψ ∶ �̃� → C. We make a simple approximation and
require the wave function Ψ to be non-vanishing only on minimal energy configurations and their
symmetry orbits. This quantization procedure is known as rigid-body, or zero mode, quantization.

In the zero mode quantization method, a skyrmion is treated as a rigid body that is free to
translate and rotate in physical space and also rotate in isospace, with the action defined by (4.3.1).
These solutions are all degenerate in energy and this classical degeneracy is removed when one
quantizes the theory. Wewish to quantize only the isorotational degrees of freedom andwork in the
zero-momentum frame, ignoring the translational and rotational degrees of freedom. The action of
the group of isorotations SU(2)𝛪 on the Skyrme field 𝜑 is defined by the mapping 𝜑(𝑥) ↦ 𝐴𝜑(𝑥)𝐴†.
Semi-classical quantization is performed by promoting the the collective coordinate 𝐴 ∈ SU(2) to a
dynamical degree of freedom 𝐴(𝑡) [142]. The dynamical ansatz for the Skyrme field is then given
by the transformation

𝜑(𝑥) ↦ �̂�(𝑥, 𝑡) = 𝐴(𝑡)𝜑(𝑥)𝐴†(𝑡). (4.3.2)

We define the isorotational angular velocity �⃗� to be 𝐴†�̇� = 𝑖
2𝜔𝑗𝜏

𝑗 such that 𝜔𝑗 = −𝑖Tr(𝜏𝑗𝐴†�̇�).



82 4. Generalized Skyrmion Crystals with Applications to Neutron Stars

Then, using the dynamical ansatz (4.3.2), consider

�̂�0 = �̂�†𝜕0�̂� = �̂�†𝜕0 (𝐴(𝑡)𝜑𝐴
†(𝑡))

= �̂�† (�̇�𝜑𝐴† + 𝐴𝜑�̇�†)

= 𝐴𝜑†𝐴†�̇�𝜑𝐴† − �̇�𝐴†

= 𝐴 (𝜑†[𝐴†�̇�, 𝜑]) 𝐴†

= 𝐴 (𝜑† [ 𝑖2𝜔𝑖𝜏
𝑖, 𝜑]) 𝐴†

= 𝐴𝜔𝑖 (
𝑖
2𝜑

†[𝜏𝑖, 𝜑]) 𝐴†

= 𝐴𝜔𝑖𝑇𝑖𝐴
†, (4.3.3)

where 𝑇𝑖 = 𝑖
2𝜑

†[𝜏𝑖, 𝜑] is an 𝔰𝔲(2)-valued current. In a similar but simpler fashion, the spatial
components of the Maurer-Cartan left current are given by

�̂�𝑖 = �̂�†𝜕𝑖�̂� = 𝐴𝜑†𝐴†𝜕𝑖(𝐴𝜑𝐴
†) = 𝐴𝜑†𝜕𝑖𝜑𝐴

† = 𝐴𝐿𝑖𝐴
†. (4.3.4)

Then, under the dynamical ansatz (4.3.2), the Maurer-Cartan left current transforms as

�̂�𝜇 = �̂�†𝜕𝜇�̂� = {
𝐴𝜔𝑖𝑇𝑖𝐴

†, 𝜇 = 0
𝐴𝐿𝑖𝐴

†, 𝜇 = 𝑖 = 1, 2, 3,
(4.3.5)

In the NL𝜎M formulation, the 𝔰𝔲(2) current 𝑇𝑖 is expressed by the vector quaternion

𝑇𝑖 = −𝑖𝑇𝑎
𝑖 𝜏

𝑎, 𝑇𝑗
𝑖 = 𝛿𝑖𝑗𝜑𝑘𝜑𝑘 − 𝜑𝑖𝜑𝑗 − 𝜖𝑖𝑗𝑘𝜑0𝜑𝑘. (4.3.6)

The corresponding contractions are given by

𝑇𝑘
𝑖 𝑇

𝑘
𝑗 = 𝛿𝑖𝑗𝜑𝑘𝜑𝑘 − 𝜑𝑖𝜑𝑗, (4.3.7a)

𝑇𝑘
𝑖 𝐿

𝑘
𝑗 = − 𝜖𝑖𝑘𝑙𝜑𝑘𝜕𝑗𝜑

𝑙. (4.3.7b)

The dynamical ansatz (4.3.2) induces a rotational kinetic term in the energy functional. Under
the dynamical transformation (4.3.2), the Dirichlet energy transforms as

ℒ2 =
1
2𝑔

𝜇𝜈Tr (�̂�𝜇�̂�𝜈)

= 1
2𝑔

00Tr (�̂�0�̂�0) + 𝑔0𝑖Tr (�̂�0�̂�𝑖) +
1
2𝑔

𝑖𝑗Tr (�̂�𝑖�̂�𝑗)

= − 1
2 Tr (𝑇𝑖𝑇𝑗) 𝜔𝑖𝜔𝑗 +

1
2𝑔

𝑖𝑗Tr (𝐿𝑖𝐿𝑗) , (4.3.8)

where the first term is theDirichlet energy contribution to the isospin inertia tensor, and the second
term is the static Dirichlet energy. Likewise, for the Skyrme term we have

ℒ4 =
1
16𝑔

𝜇𝛼𝑔𝜈𝛽Tr ([�̂�𝜇, �̂�𝜈][�̂�𝛼, �̂�𝛽])

= 1
8𝑔

00𝑔𝑘𝑙Tr ([�̂�0, �̂�𝑘][�̂�0�̂�𝑙]) +
1
16𝑔

𝑖𝑘𝑔𝑗𝑙Tr ([�̂�𝑖, �̂�𝑗][�̂�𝑘, �̂�𝑙])
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= − 1
8𝑔

𝑘𝑙Tr ([𝑇𝑖, 𝐿𝑘][𝑇𝑗, 𝐿𝑙]) 𝜔𝑖𝜔𝑗 +
1
16𝑔

𝑖𝑘𝑔𝑗𝑙Tr ([𝐿𝑖, 𝐿𝑗][𝐿𝑘, 𝐿𝑙]) , (4.3.9)

where the first term is the Skyrme contribution to the isospin inertia tensor. Finally, the sextic
term,

ℒ6 = − 𝑐6𝑔
𝜇𝜈 𝜖𝜇𝛼𝛽𝛾𝜖𝜈𝛿𝜌𝜎

(24𝜋2√−𝑔)2
Tr(�̂�𝛼�̂�𝛽�̂�𝛾)Tr(�̂�𝛿�̂�𝜌�̂�𝜎)

= − 𝑐6𝑔
00 𝜖𝑖𝑗𝑘𝜖𝑎𝑏𝑐

(24𝜋2√−𝑔)2
Tr(𝐿𝑖𝐿𝑗𝐿𝑘)Tr(𝐿𝑎𝐿𝑏𝐿𝑐) − 𝑐6𝑔𝑘𝑙

32𝜖𝑘𝑎𝑏𝜖𝑙𝑐𝑑

(24𝜋2√−𝑔)2
Tr(�̂�0�̂�𝑎�̂�𝑏)Tr(�̂�0�̂�𝑐�̂�𝑑)

= 𝑐6 (ℬ
0)2 − 𝑐6𝑔

𝑘𝑙 𝜖𝑘𝑎𝑏𝜖𝑙𝑐𝑑

(8𝜋2√−𝑔)2
Tr(𝑇𝑖𝐿𝑎𝐿𝑏)Tr(𝑇𝑗𝐿𝑐𝐿𝑑)𝜔𝑖𝜔𝑗, (4.3.10)

where we have used the fact that the topological current transforms as

ℬ̂𝑖 = 3
24𝜋2

𝜖𝑖𝑗𝑘Tr(�̂�0�̂�𝑗�̂�𝑘) =
1
8𝜋2

𝜖𝑖𝑗𝑘Tr(𝑇𝑙𝐿𝑗𝐿𝑘)𝜔𝑙. (4.3.11)

As the static part of the sextic term is the temporal component, we must take the negative contri-
bution of this. Putting all of this together, we find the effective Lagrangian to be

ℒeff =ℒ0 + ℒ2 + ℒ4 − ℒ6

= − 𝑚2Tr (Id2 −𝜑) +
1
2𝑔

𝑖𝑗Tr (𝐿𝑖𝐿𝑗) +
1
16𝑔

𝑖𝑘𝑔𝑗𝑙Tr ([𝐿𝑖, 𝐿𝑗][𝐿𝑘, 𝐿𝑙]) − 𝑐6 (ℬ0)2

+ 1
2 {−Tr (𝑇𝑖𝑇𝑗) −

1
4𝑔

𝑘𝑙Tr ([𝑇𝑖, 𝐿𝑘][𝑇𝑗, 𝐿𝑙]) + 𝑐6𝑔𝑘𝑙
𝜖𝑘𝑎𝑏𝜖𝑙𝑐𝑑

2(4𝜋2√−𝑔)2
Tr(𝑇𝑖𝐿𝑎𝐿𝑏)Tr(𝑇𝑗𝐿𝑐𝐿𝑑)} 𝜔𝑖𝜔𝑗

= − ℰstat +
1
2𝜔𝑖𝒰𝑖𝑗𝜔𝑗, (4.3.12)

where the isospin inertia tensor contribution from the Skyrme field 𝜑 is

𝒰𝑖𝑗 = −Tr (𝑇𝑖𝑇𝑗) −
1
4𝑔

𝑘𝑙Tr ([𝑇𝑖, 𝐿𝑘][𝑇𝑗, 𝐿𝑙]) + 𝑐6𝑔𝑘𝑙
𝜖𝑘𝑎𝑏𝜖𝑙𝑐𝑑

2(4𝜋2√−𝑔)2
Tr(𝑇𝑖𝐿𝑎𝐿𝑏)Tr(𝑇𝑗𝐿𝑐𝐿𝑑). (4.3.13)

The restriction of the induced kinetic energy functional of the model to the isospin orbit of a
given static solution defines a left invariant metric on SO(3) called the isospin inertia tensor, which
is the symmetric 3 × 3-matrix given by

𝑈𝑖𝑗 = ∫
T3
d3𝑥√𝑔𝒰𝑖𝑗. (4.3.14)

Using the NL𝜎M representation (1.1.16), this isospin inertia tensor takes the form (see App. A.1
for calculation)

𝑈𝑖𝑗 = 2∫
T3
d3𝑥√−𝑔 {(𝛿𝑖𝑗𝜑𝑘𝜑𝑘 − 𝜑𝑖𝜑𝑗) + 𝑔𝑘𝑙 ((𝛿𝑖𝑗 − 𝜑𝑖𝜑𝑗)𝜕𝑘𝜑0𝜕𝑙𝜑0 + (𝜑𝑚𝜑𝑚)𝜕𝑘𝜑𝑖𝜕𝑙𝜑𝑗

+𝜑0𝜑𝑖𝜕𝑘𝜑
0𝜕𝑙𝜑

𝑗 + 𝜑0𝜑𝑗𝜕𝑙𝜑
0𝜕𝑘𝜑

𝑖)

+
𝑐6

(4𝜋2√−𝑔)2
𝑔𝑝𝑞𝜖

𝑝𝑚𝑛𝜖𝑞𝑘𝑙 [(𝛿𝑖𝑗𝜑𝑎𝜑𝑎 − 𝜑𝑖𝜑𝑗) (𝜕𝑚𝜑
𝜇𝜕𝑘𝜑

𝜇𝜕𝑛𝜑
𝜈𝜕𝑙𝜑

𝜈 − 𝜕𝑛𝜑
𝜇𝜕𝑘𝜑

𝜇𝜕𝑚𝜑
𝜈𝜕𝑙𝜑

𝜈)

+ 𝜖𝑗𝑎𝑐𝜑𝑎𝜕𝑚𝜑
𝑐 (𝜖𝑖𝑏𝑑𝜑𝑏𝜕𝑙𝜑

𝑑𝜕𝑛𝜑
𝜇𝜕𝑘𝜑

𝜇 − 𝜖𝑖𝑏𝑑𝜑𝑏𝜕𝑘𝜑
𝑑𝜕𝑛𝜑

𝜇𝜕𝑙𝜑
𝜇)

+𝜖𝑗𝑎𝑐𝜑𝑎𝜕𝑛𝜑
𝑐 (𝜖𝑖𝑏𝑑𝜑𝑏𝜕𝑘𝜑

𝑑𝜕𝑚𝜑
𝜇𝜕𝑙𝜑

𝜇 − 𝜖𝑖𝑏𝑑𝜑𝑏𝜕𝑙𝜑
𝑑𝜕𝑚𝜑

𝜇𝜕𝑘𝜑
𝜇)]} . (4.3.15)
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Therefore, the effective Lagrangian on this restricted space of configurations is 𝐿eff = 𝐿rot −𝑀𝛣,
where𝑀𝛣 is the static mass of the skyrmion defined by (4.2.2) and 𝐿rot is the induced isorotational
part of the Lagrangian given by

𝐿rot =
1
2𝜔𝑖𝑈𝑖𝑗𝜔𝑗. (4.3.16)

The rigid-body wavefunctions will be on SU(2)with isospin half-integer if 𝐵 is odd and integer
if 𝐵 is even. The isorotation angular momentum operator canonically conjugate to �⃗� is the body-
fixed isospin angular momentum operator �⃗�, defined by

𝐾𝑖 =
𝜕𝐿rot
𝜕𝜔𝑖

= 𝑈𝑖𝑗𝜔𝑗. (4.3.17)

This is related to the usual space-fixed isospin angular momentum �⃗� by the relation

𝐼𝑖 = −𝐷(𝐴)𝑖𝑗𝐾𝑗, (4.3.18)

where 𝐴 ∈ SU(2) has been recast in the SO(3) form via the map

𝐷 ∶ SU(2) → SO(3), 𝐷(𝐴)𝑖𝑗 =
1
2 Tr (𝜏

𝑖𝐴𝜏𝑗𝐴†) . (4.3.19)

These two classical momenta (�⃗�, �⃗�) are promoted to quantum operators (�̂�, �̂�), both satisfying
the 𝔰𝔲(2) commutation relations, and the Casimir invariants satisfy �̂�2 = �̂�2. The operator �̂�2 has
eigenvalue 𝑖(𝑖 + 1) and 𝑖3 the eigenvalue for the operator �̂�3. On the double cover of the group of
isorotations SU(2)𝛪, there is a basis of rigid-body wavefunctions |𝑖, 𝑖3, 𝑘3⟩ with −𝑖 ≤ 𝑘3 ≤ 𝑖. The
rigid-body Hamiltonian takes the general form

ℋ = ℏ2

2 �̂�𝑈
−1�̂�𝛵 +𝑀𝛣. (4.3.20)

We now apply this quantization procedure to a large chunk of crystal, consisting of𝑁cell unit
cells. Consider a rigidly iso-spinning crystal chunk with total energy𝑀𝛣 = 𝑁cell𝐸cell and baryon
number 𝐵 = 𝑁cell𝐵cell. In order to calculate the isospin correction to the energy of the crystal chunk
we would need to know the quantum state of the whole crystal chunk. This is obviously a very
difficult computation since we want to model neutron stars, which would require us to consider a
crystal chunk with many unit cells. However we may impose the following restrictions to solve this
problem:

• The total isospinquantumstate of the crystal chunk |Ψ⟩ iswritten as the superpositionof each
individual unit cell state |𝜓⟩. That is |Ψ⟩ = ⊗𝛮cell

|𝜓⟩, where𝑁cell → ∞ in the thermodynamic
limit.

• The symmetry of the classical configuration in each unit cell is extended to the whole crystal
chunk, so both wavefunctions share the same point symmetry group.

Under these assumptions, we can approximate the isospin inertia tensor of the crystal chunk as
𝑈𝛮 ≃ 𝑁cell𝑈

cell, where𝑈cell is the isospin inertia tensor of the skyrmion crystal unit cell.
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For skyrmion crystals, we can always isorotate them such that the principal axes of inertia are
the usual orthogonal axes, which results in the inertia tensor being diagonal,𝑈cell

𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Let
us label the eigenvalues 𝑢𝑖 = 𝑈cell

𝑖𝑖 , then the quantumHamiltonian of a crystal chunk takes the form

ℋ𝛮 = ℏ2

2 (
�̂�2
1

𝑈𝛮
1

+
�̂�2
2

𝑈𝛮
2

+
�̂�2
3

𝑈𝛮
3
) +𝑀𝛣 =

ℏ2

2𝑁cell
(
�̂�2
1
𝑢1

+
�̂�2
2
𝑢2

+
�̂�2
3
𝑢3

) + 𝑁cell𝐸cell. (4.3.21)

The energy eigenstates of theHamiltonian (4.3.21) can be classified by 𝑖 and 𝑖3. To determine bound
states with definite energy one must solve the static Schrödinger equation corresponding to this
Hamiltonian,ℋ𝛮 |Ψ⟩ = 𝐸𝛮 |Ψ⟩. The Schrödinger equation can be expressedmore explicitly within
a particular (𝑖, 𝑖3) sector by expanding the quantum state |Ψ⟩ in terms of the total wavefunctions Ψ
as [14]

|Ψ⟩ =
+𝑖
∑
𝑘3=−𝑖

Ψ𝑘3(𝑞) |𝑖, 𝑖3, 𝑘3⟩ , Ψ⃗(𝑞) = (
Ψ−𝑖(𝑞)

⋮
Ψ+𝑖(𝑞)

) , 𝑞 ∈ �̃�, (4.3.22)

and substituting this into the Hamiltonian (4.3.21).
In previous applications of skyrmion crystals to model neutron stars (see, for example, [52,

53, 125, 143, 144]), the SC1/2 crystal was considered. This crystal has an isotropic inertia tensor
with eigenvalue 𝑢𝑖 = 𝜆, with 𝜆 some constant. However, the multi-wall crystal considered here is
anisotropic and the isospin inertia tensor generically has the eigenvalues 𝑢1 = 𝑢2 < 𝑢3. Then, we can
express the Hamiltonian as

ℋ𝛮 =
ℏ2�̂�2

3
2𝑁cell

( 1𝑢3
− 1
𝑢1
) + ℏ2�̂�2

2𝑁cell𝑢1
+ 𝑁cell𝐸cell. (4.3.23)

Since the Hamiltonian depends on �̂�3, it is not sufficient to just fix the value of 𝑖3. We would
need to explicitly compute the isospin quantum state via the Finkelstein–Rubinstein constraints.
However, the contribution to the energy from this additional term containing �̂�3 is determined by
the difference between the two inertia tensor eigenvalues, 𝑢3 − 𝑢1 = 𝜖. In general, 𝜖 ≥ 0 is relatively
small, no more than 18% of 𝑢3 at all densities 𝑛𝛣. Following [117], we nowmake the approximation
𝑢1 = 𝑢3(1 − 𝜖), with 0 < 𝜖 ≤ 1, and expand in perturbation theory. Ignoring the linear correction,
this approximation reduces the quantumHamiltonian to

ℋ𝛮 = ℏ2�̂�2

2𝑁cell𝑢3
+ 𝑁cell𝐸cell. (4.3.24)

The Schrödinger equation corresponding to such a rigidly iso-spinning crystal chunk with𝑁cell
unit cells can be written as

ℋ𝛮 |Ψ⟩ = (𝑀𝛣 + 𝐸𝑖,𝑖3) |Ψ⟩ = 𝑁cell (𝐸cell + 𝐸iso) |Ψ⟩ , 𝐸𝑖,𝑖3 =
ℏ2𝑖2

2𝑁cell𝑢3
, (4.3.25)

where the quantum correction to the energy of a unit cell, due to the isospin degrees of freedom, is
given by

𝐸iso =
𝐸𝑖,𝑖3
𝑁cell

= ℏ2𝑖2

2𝑁2
cell𝑢3

. (4.3.26)

It should be noted that in addition to the quantum numbers 𝑖, 𝑖3 being density 𝑛𝛣 dependent, the
inertia tensor is also density dependent, that is 𝑢𝑖 = 𝑢𝑖(𝑛𝛣).
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Symmetry Energy and the Cusp Structure
So far we have only considered symmetric nuclear matter, which we have described by using the
classical multi-wall skyrmion crystal. In order to study nuclear matter in neutron stars we must
consider isospin asymmetric nuclear matter, whereby a small fraction of protons are permitted.
Now let us consider asymmetric nuclear matter with baryon number 𝐵 = 𝑁 + 𝑍, where𝑁 is the
number of neutrons and 𝑍 the number of protons. The asymmetry of such matter is determined
by the isospin asymmetry parameter 𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾, where 𝛾 is the proton fraction.
Then the binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3). (4.3.27)

The two terms appearing in the asymmetric binding energy (4.3.27) are the binding energy of
isospin-symmetric matter 𝐸𝛮 and the symmetry energy 𝑆𝛮. In terms of our model, the symmetric
binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵. The symmetry energy 𝑆𝛮 dictates how the binding energy
changes when going from symmetric (𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter. We can expand
the isospin symmetric binding energy𝐸𝛮 and the symmetry energy 𝑆𝛮 around the saturation density
𝑛0 for symmetric matter [138],

𝐸𝛮(𝑛𝛣) = 𝐸0 +
1
18𝐾0𝜖

2, (4.3.28)

𝑆𝛮(𝑛𝛣) = 𝑆0 +
1
3𝐿sym𝜖 +

1
18𝐾sym𝜖

2 +O(𝜖3), (4.3.29)

where 𝜖 = (𝑛𝛣 − 𝑛0)/𝑛0, 𝐾0 is the incompressibility at the saturation point and 𝑆0 = 𝑆𝛮(𝑛0) is the
symmetry energy coefficient at saturation. We remind ourselves that, for our choice of coupling
constants (4.2.5), the nuclear saturation point is characterized by the density 𝑛0 = 0.160 fm−3 and
energy (per baryon)𝑀𝛣/𝐵 = 912MeV. The higher-order coefficients, 𝐿sym and𝐾sym, appearing in
the symmetry energy 𝑆𝛮 are defined as

𝐿sym = 3𝑛0
𝜕𝑆𝛮
𝜕𝑛𝛣

∣
𝑛0

, 𝐾sym = 9𝑛20
𝜕2𝑆𝛮
𝜕𝑛2𝛣

∣
𝑛0

. (4.3.30)

The precise values of these coefficients are not known, but are predicted to be 𝐿sym = 57.7 ± 19MeV
and𝐾sym = −107 ± 88MeV [145].

Consider now the SC1/2 crystal, which has unit cell charge 𝐵cell = 4. Then there are a finite
number of possible quantum states with allowed quantum numbers 𝑖 = 0, 1, 2 [52]. The 𝑖3 = 0 case,
which corresponds to symmetric nuclear matter, would be the one with the lowest energy since
it has no isospin energy compared to the other cases. This is obviously the most symmetric state
possible. However, it is known that inside neutron stars there is a huge asymmetry between protons
and neutrons. Baskerville [51] investigated the charge neutral case 𝑖3 = −2, corresponding to a pure
neutron crystal, and computed the quantum isospin corrections to the energy. However, a realistic
description of neutron stars would require the presence of protons. Although the concrete value is
still unknown, simulations yield values around 𝛾 ∼ 10−2 − 10−1 [146, 147]. Therefore, following
the arguments in [52] we perform a mean-field approximation considering a larger chunk of the
multi-wall crystal, enclosing an arbitrary number of unit cells𝑁cell, which is in a generic quantum
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state with fixed eigenvalue,

𝑖3 =
(𝑍 − 𝑁)

2 = −
(1 − 2𝛾)

2 𝑁cell𝐵cell. (4.3.31)

Note that in this case the nuclear density of the crystal chunk can be directly interpreted as the
nuclear density of the unit cell, since

𝑛𝛣 =
𝐵crystal
𝑉crystal

=
𝑁cell𝐵cell
𝑁cell𝑉cell

=
𝐵cell
𝑉cell

. (4.3.32)

The eigenvalue 𝑖3 is already fixed from the mean-field approximation (4.3.31), and the value of
𝑖 = 𝑖3 is the one which minimizes the isospin energy, since by definition 𝑖2 ≥ 𝑖23 . Now we obtain a
final expression for the quantum correction (per unit cell) to the energy due to the isospin degrees
of freedom,

𝐸iso(𝑛𝛣) =
ℏ2

8𝑢3(𝑛𝛣)
𝐵2cell𝛿

2. (4.3.33)

This quantum isospin energy is explicitly related to the proton fraction 𝛾, and so we will need to
include leptons if we are to allow the crystal to have a non-zero proton fraction. This is required
in order for the system to remain electrically neutral. Thus the proton fraction, and hence the
quantum state of the crystal, will be obtained by imposing 𝛽-equilibrium for each value of the
density.

From the quantum isospin energy (4.3.33), we can determine the nuclear symmetry energy of
the multi-wall crystal, which in general plays a crucial role in the structure of neutron-rich nuclei
and, of more interest to us, in neutron stars. For general skyrmion crystals the symmetry energy is
given by

𝑆𝛮(𝑛𝛣) =
ℏ2

8𝑢3(𝑛𝛣)
𝑉cell𝑛𝛣, (4.3.34)

where the eigenvalue 𝑢3 of the isospin inertia tensor (4.3.14) is implicitly dependent on the nuclear
density 𝑛𝛣. We determine the symmetry energy at saturation to be 𝑆0 = 22.7MeV, which is in okay
agreement with the experimentally observed value 𝑆0 ∼ 30MeV [138]. The resulting symmetry
energy curve 𝑆𝛮(𝑛𝛣) for the multi-wall crystal is plotted in Fig. 4.3. Having obtained the symmetry
energy curvewe candetermine its slope and curvature, which are computed at the nuclear saturation
point. We find that they are, respectively, 𝐿sym = 36.6MeV and𝐾sym = −15.1MeV.

Let us now summarize the results obtained for the multi-wall crystal. First of all, we find that at
lower densities the isospin moment of inertia, and specifically its eigenvalue 𝑢3, tends to a constant
value. This is an obvious consequence of the inhomogeneous nature of the solution which, in
the limit 𝑉cell → ∞, tends to an “isolated” multi-wall configuration on 𝑀 = 𝑆1 × 𝑆1 × R. This
simple fact has an important consequence. Namely, it leads to a non-zero value of the symmetry
energy at zero density, 𝑆𝛮(0) = 23.8MeV. At a first glance, this seems to be in contradiction with
the standard description of nuclear matter where the symmetry energy vanishes at zero density.
However, we want to argue that this is a desirable property of the Skyrme model as it indicates a
smooth transition between infinite nuclear matter and finite atomic nuclei. Indeed, the asymmetry
energy in the Bethe–Weizsäcker SEMF reads

𝐸asym = 𝑎𝛢
(𝑁 − 𝑍)2

𝐵 = 𝑎𝛢𝛿
2𝐵, (4.3.35)
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Figure 4.3: The nuclear symmetry energy 𝑆𝛮 as a function of the baryon density 𝑛𝛣, exhibiting the cusp
structure detailed in the text at 𝑛∗ ∼ 3𝑛0/4.

where 𝑎𝛢 ≈ 23.7MeV. Thus, our symmetry energy at zero density can be directly identified with 𝑎𝛢
with excellent agreement.

We remark that the assumed identification here between the zero density symmetry energy and
the asymmetry energy in the Bethe-Weizsäcker formula is not a unique possibility. In fact, in the
seminal paper by Natowitz el. al. [148] they computed the symmetry energy of the low density,
warm nuclear matter using a quantum-statistical approach. Their results agree amazingly well with
values extracted from heavy-ion collisions [149]. The symmetry energy, still taking a non-zero value
at zero density, is approximately only one fourth of its value at saturation 𝑛0. It would definitely be
very desirable to investigate whether the Skyrme model may lead to similar results or not.

Moving away from zero nuclear density towards 𝑛∗ ∼ 3𝑛0/4, the isospin energy and conse-
quently the symmetry energy slowly decreases, as can be seen in Fig. 4.3. This again is not an
unexpected result in the Skyrme model. It was noticed by Kopeliovich et al. [150] that the careful
analysis of mass splittings of nuclear isotopes leads to the symmetry energy decreasing with increas-
ing baryon number 𝐵. Here, we reproduce this result, however, using a completely different setup,
i.e. the collective coordinate quantization of the crystal ground state.

Below the nuclear saturation point 𝑛0 at the density 𝑛∗ ∼ 3𝑛0/4, the symmetry energy exhibits
a cusp structure. This cusp also seems to be a generic feature of the Skyrme model, independent
of the choice of values for the coupling parameters (4.2.5) but rather can be interpreted as the
point where the multi-wall crystal begins transitioning to an “isolated” multi-wall. On the other
hand, its position with respect to the saturation point certainly may be affected by a choice of the
model parameters. One can also expect such a cusp to be present where a crystalline configuration
transitions to an isolated configuration at zero nuclear density, e.g. for the 𝛼 and chain crystals.
It is interesting to remark that such a cusp, albeit above the saturation density 𝑛𝛣 > 𝑛0, has been
advocated in [151, 152] as an effect of an assumed topological phase transition from the FCC
crystal of 𝐵 = 1 hedgehogs to the SC1/2 crystal of fractional skyrmions as the nuclear density
grows. Although, in reality such a transition does not occur in the Skyrme model as it is found
to occur in the thermodynamically unstable regime 𝑛𝛣 < 𝑛0 [46]. To conclude our findings on
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the symmetry energy cusp, we propose that the origin of the cusp can be associated with a phase
transition between an infinite crystalline state and a somewhat isolated state that is inhomogeneous
and nucleated.

4.4 Particle Fractions of npeµ-Matter in β-Equilibrium
For a more realistic description of cold nuclear matter inside neutron stars we need to consider not
totally asymmetric nuclear matter. As was shown in the previous section, this can be achieved by
allowing a small fraction of protons over neutrons. The presence of protons gives the crystal positive
electric charge, so we need to include a background of negatively charged leptons to neutralize the
system. To determine the proton fraction 𝛾 at a prescribed nuclear density 𝑛𝛣 we impose charge
neutrality and 𝛽-equilibrium conditions, and then we solve the underlying equilibrium equation.
Additionally, the presence of protons would require the inclusion of Coulomb interaction within
the unit cell and between neighbouring cells. It has been argued [19] that the contribution of
this energy diverges in the crystal due to infinitely many interactions between the cells. However,
including a background of negatively charged particles in the system suppresses the Coulomb
interaction between neighbouring cells and hence has a negligible contribution to the energy [52].

In the neutron star interior, the interaction between leptons and nuclear matter is mediated
by the weak force. We can describe the exchange of leptons and nucleons by electron capture and
𝛽-decay processes, respectively,

𝑝 + 𝑙 → 𝑛 + 𝜈𝑙 (4.4.1a)
𝑛 → 𝑝 + 𝑙 + �̄�𝑙. (4.4.1b)

These processes take place simultaneously at the same rate, assuming that the charge neutrality,

𝑛𝑝 =
𝑍
𝑉 = 𝑛𝑒 + 𝑛𝜇, (4.4.2)

and the 𝛽-equilibrium conditions,

𝜇𝑝 = 𝜇𝑛 − 𝜇𝛪 ⇒ 𝜇𝛪 = 𝜇𝑙, 𝑙 = 𝑒, 𝜇, (4.4.3)

are satisfied [153]. Here 𝜇𝛪 is the isospin chemical potential given by

𝜇𝛪 =
𝛿𝐵ℏ2

2𝑢3
=
(1 − 2𝛾)𝐵ℏ2

2𝑢3
. (4.4.4)

Leptons inside a neutron star are treated as a non-interacting, relativistic, highly degenerate Fermi
gas. The corresponding chemical potential for such a type of lepton is given by [125]

𝜇𝑙 = √(ℏ𝑘𝐹)2 + 𝑚2
𝑙 , (4.4.5)

where 𝑘𝐹 = (3𝜋2𝑛𝑙)
1/3 is the associated Fermi momentum and𝑚𝑙 the lepton mass. For electrons we

take the ultra-relativistic approximation 𝜇𝑒 ≈ ℏ𝑘𝐹,𝑒. From the charge neutrality condition (4.4.2),
the electron number density is

𝑛𝑒 =
𝛾𝐵
𝑉 − 𝑛𝜇. (4.4.6)
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Figure 4.4: Plot of the particle number densities 𝑛𝑖 as functions of the baryon density 𝑛𝛣. The particle
number densities are normalized such that the total number density is∑𝑖 𝑛𝑖 = 1. The transition
between isospin asymmetric infinite matter and symmetric finite matter at the cusp density 𝑛∗ is
nowmanifest.

The 𝛽-equilibrium condition (4.4.3) for electrons yields the following relation

𝜇𝛪 = 𝜇𝑒 ⇒
ℏ𝐵(1 − 2𝛾)

2𝑢3
= [3𝜋2 (

𝛾𝐵
𝑉 − 𝑛𝜇)]

1/3
, (4.4.7)

and for muons gives

𝜇𝛪 = 𝜇𝜇 ⇒ 𝑛𝜇 =
1
3𝜋2

[(
ℏ𝐵(1 − 2𝛾)

2𝑢3
)
2

− (
𝑚𝜇

ℏ )
2
]
3/2

. (4.4.8)

In the low density regime the electron chemical potential will be smaller than the muon mass,
𝜇𝑒 < 𝑚𝜇. So we can solve (4.4.7) in the low density regime considering only electrons, by setting
𝑛𝜇 = 0 until 𝜇𝑒 ≥ 𝑚𝜇. Once the electron chemical potential 𝜇𝑒 reaches the muon mass𝑚𝜇 = 105.66
MeV at high densities, it will be energetically favourable formuons to appear. Thenwe solve (4.4.7)
and (4.4.8) simultaneously [125], and construct the proton fraction curve 𝛾 = 𝛾(𝑛𝛣).

In Fig. 4.4 we plot the particle fractions of 𝑛𝑝𝑒𝜇matter in 𝛽-equilibrium for the multi-wall
crystal. Note that the cusp structure present in the symmetry energy, or equivalently in the isospin
energy, results in an appearance of a similar structure in the particle fractions. This reinforces the
proposition that the cusp density point 𝑛∗ is the density at which a phase transition between isospin
asymmetric infinite nuclear matter and symmetric finite matter begins. Furthermore, the fact that
the symmetry energy 𝑆𝛮 tends to a constant value at zero density leads to a similar behavior for the
proton, neutron and electron particle fractions. Namely, they take their minimal/maximal value at
𝑛∗ then they increase/decrease as zero density is approached. This is once again a direct consequence
of a non-zero value of the isospin moment of inertia at this limit and, therefore, a generic feature of
the Skyrme model. We remark that at zero density 𝑛𝛣 = 0, which, in the Skyrme model framework,
can be interpreted as a limit where we find nuclei in the vacuum, the nuclear matter becomes totally
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isospin symmetric with 𝛾𝑝(0) = 0.5. This corresponds quite well to the proton fraction in 56Fe,
𝛾𝑝 = 0.46, which is the element expected to be present in the crust of neutron stars [154]. Further, it
appears that there is a phase transition at (𝑛/𝑛𝛣 = 0.91, 𝑝 = 0.023MeV fm−3). The 𝑛∗ density occurs
in this region of constant pressure, so it could very well be related to the liquid-gas phase transition
that is expected to occur in the low density regime of neutron stars [155].

We remark that at the high density, which corresponds to the core of neutron star, the proton
fraction is quite small. This agrees with previous computations in the Skyrme model with the
SC1/2 crystal [52]. Fortunately, inclusion of strange d.o.f. resolves this issue and brings the proton
fraction to the widely accepted ∼ 0.4 value, see [125]. We expect that the same mechanism applies
for themulti-wall crystal. Especially considering this ground state crystalline solution and the SC1/2
crystal are basically identical at high density. On the other hand, inclusion of Kaon condensates
does not have any impact on the low density regime.

We now summarize our findings and compute the total energy per unit cell in a 𝛽-equilibrated
multi-wall skyrmion crystal, that is

𝐸cell(𝛾) = 𝑀𝛣(𝛾) + 𝐸iso(𝛾) + 𝐸𝑒(𝛾) + 𝐸𝜇(𝛾), (4.4.9)

where the isospin energy for a 𝛽-equilibrated crystal is given by

𝐸iso(𝛾) =
ℏ2𝐵2cell
8𝑢3

(1 − 2𝛾)2. (4.4.10)

The lepton energies are the energies of a relativistic Fermi gas at zero temperature,

𝐸𝑙 =
𝑉

ℏ3𝜋2
∫

ℏ𝑘𝐹

0
𝑘2√𝑘2 + 𝑚2

𝑙 d𝑘

=
𝑉𝑚4

𝑙
8ℏ3𝜋2

[
ℏ𝑘𝐹
𝑚𝑙

(1 + 2 (
ℏ𝑘𝐹
𝑚𝑙

)
2

)√(
ℏ𝑘𝐹
𝑚𝑙

)
2

+ 1 − sinh−1 (ℏ𝑘𝐹𝑚𝑙
)] . (4.4.11)

The crucial observation is that, in the case of the multi-wall skyrmion crystal, the inclusion of
the 𝛽-equilibrated isospin energy and lepton energies does not completely erase the small minimum
in the classical energy𝑀𝛣. Strictly speaking there is still a very shallowminimum at a density smaller
than the saturation density, 𝑛𝛣 = 0.146 fm−3. For smaller densities the total energy grows, until a
small maximum is reached. After that the total energy decreases as the nuclear density approaches
the zero density limit, 𝑛𝛣 → 0. Importantly, the asymptotic value of the total energy per unit cell
is smaller than the energy at the minimum. This means that, although the total energy per unit
cell still possesses a thermodynamically unstable region, we can take advantage of the Maxwell
construction and derive an EoS which is valid at all densities. This is a valid construction and has a
minute affect on the EoS since the difference in energy between the asymptotic solution and the
minimum is Δ𝐸 ∼ 0.1MeV. The formulation of theMaxwell construction is detailed below and
the resulting 𝛽-equilibrated asymmetric nuclear matter is plotted in Fig. 4.5, alongside the classical
isospin symmetric matter and the pure neutron matter.

The pure neutron matter is obtained for the entirely isospin asymmetric case 𝛿 = 1with 𝐼3 = −2.
Unlike the 𝛽-equilibrated matter, the pure neutron matter approaches the asymptotic solution
from below. This is due to the non-vanishing of the quantum isospin energy contributions 𝐸iso(𝑛𝛣)
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Figure 4.5: Comparison between the isospin symmetric crystal (blue curve) and the 𝛽-equilibrated asym-
metric crystal with the MC applied (red curve).

in the zero density limit 𝑛𝛣 → 0. Consequently, the Maxwell construction cannot be used on the
pure neutron matter EoS.

We remark that for the 𝛼-crystal the total energy in the zero density limit is greater than the
energy at the minimum, so theMaxwell construction is not possible. On the other hand, for 𝐵 = 32
and 𝐵 = 108 crystals constructed from 𝛼-particles, such a construction is possible but it extends
over a non-physical range of densities and occurs for relatively high values of the pressure. For
example, the neutron stars obtained from these crystals would almost be entirely made from the
Maxwell construction phase.

TheMaxwell construction (MC), or equal area rule, is implemented as follows. We find three
points 𝑉1, 𝑉2 and 𝑉int on the 𝐸cell(𝑉cell) curve, with 𝑉1 < 𝑉int < 𝑉2, that have the same gradient/pres-
sure, i.e. 𝑝(𝑉𝑖) =∶ 𝑝MX. These three points are chosen such that the area enclosedbetween𝑝([𝑉1, 𝑉int])
and 𝑝MX is equal to the area enclosed between 𝑝([𝑉int, 𝑉2]) and 𝑝MX, where 𝑝([𝑉1, 𝑉int]) ≤ 𝑝MX and
𝑝([𝑉int, 𝑉2]) ≥ 𝑝MX. This ensures that the total energy of the thermodynamic system remains the
same while implementing this construction. Then, in the corresponding MC density regime
𝑉1 < 𝑉cell < 𝑉2, the total energy function is replaced by a straight line connecting 𝐸(𝑉1) and 𝐸(𝑉2).
The resulting total energy per unit cell function can be summarized as

𝐸MC
cell (𝑉cell) = {

𝐸cell(𝑉cell) 𝑉 ≤ 𝑉1
𝐸cell(𝑉1) − 𝑝MX(𝑉cell − 𝑉1) 𝑉1 ≤ 𝑉cell ≤ 𝑉2
𝐸cell(𝑉cell) 𝑉cell ≥ 𝑉2

. (4.4.12)

Nowwe are in a position to determine the EoS for themulti-wall configuration. Themulti-wall
crystal EoS for isospin asymmetric nuclear matter can be obtained by defining the energy density 𝜌
and pressure 𝑝 as, respectively,

𝜌 = 𝐸
𝑉 =

𝐸cell
𝑉cell

=
𝑛𝛣
𝐵 𝐸cell, (4.4.13)

𝑝 = − 𝜕𝐸
𝜕𝑉 = −

𝜕𝐸cell
𝜕𝑉cell

=
𝑛2𝛣
𝐵
𝜕𝐸cell
𝜕𝑛𝛣

. (4.4.14)
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This EoS 𝜌 = 𝜌(𝑝), generated purely from the generalized multi-wall skyrmion crystal, is valid
at all densities. In our case, the pressure at which the Maxwell construction is applied is quite
small, 𝑝MX = 0.023MeV fm−3, which corresponds to an energy difference of ≈ 0.1MeV over a large
density range (0.91𝑛0 to 0.36𝑛0). The resulting EoS is shown in Fig. 4.7, alongside the EoS without
the Maxwell construction applied.

Although the obtained equation of state covers the full range of densities one has to be aware
that the multi-wall crystal does not describe the low density regime in its entirety. As we have
already mentioned, to get a more realistic description of the crust the electrostatic interaction
should be included. This can have an impact on the structure and symmetry of the skyrmions,
which could potentially lead to the appearance of other inhomogeneous solutions with different
baryon numbers per unit cell.

4.5 Neutron Stars fromQuantum Skyrmion Crystals Coupled to
Gravity

In order to describe neutrons stars within the Skyrme framework, we need to couple the generalized
Skyrme model to gravity. We do this by introducing the Einstein–Hilbert–Skyrme action [126]

𝑆 = 1
16𝜋𝐺 ∫

Σ
d4𝑥√−𝑔𝑅 + 𝑆matter, (4.5.1)

where 𝐺 = 1.3238094 × 10−42 fmMeV−1 is the gravitational constant and 𝑅 the Ricci scalar. The
matter part of the Einstein–Skyrme action, 𝑆matter, describes matter in the interior of the neutron
star. It is well known that the interior of a neutron star is well described as a perfect fluid of nearly
free neutrons and a very degenerate gas of electrons. We exploit this and use a perfect fluid model
such that the energy-momentum tensor takes the form

𝑇𝜇𝜈 = − 2
√−𝑔

𝛿𝑆matter
𝑔𝜇𝜈 = (𝜌 + 𝑝) 𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈, (4.5.2)

where the energy density 𝜌 and the pressure 𝑝 are related by the multi-wall crystal EoS 𝜌 = 𝜌(𝑝).

The Tolman–Oppenheimer–Volkoff System
Our aim is to calculate the maximum permitted mass and radius for a neutron star described by
our system, and obtain the mass-radius curve. Therefore we have to solve the resulting Einstein
equations for some particular choice of metric ansatz. The simplest case is that of a static non-
rotating neutron star. We use a spherically symmetric ansatz of the spacetime metric, which in
Schwarzschild coordinates reads [120]

d𝑠2 = −𝐴(𝑟)d𝑡2 + 𝐵(𝑟)d𝑟2 + 𝑟2 (d𝜃2 + sin2 𝜃d𝜙2) = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈, (4.5.3)

where 𝑥 = (𝑡, 𝑟, 𝜃, 𝜙) ∈ Σ. The mass and radius of the neutron star can be calculated by inserting this
spherical metric ansatz into the Einstein equations

𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈, (4.5.4)
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where𝐺𝜇𝜈 = 𝑅𝜇𝜈−
1
2𝑅𝑔𝜇𝜈 is theEinstein tensor, and solving the standardTolman–Oppenheimer–Volkoff

(TOV) equations.
From the metric ansatz (4.5.3), we can determine the Christoffel symbols

Γ𝜆𝜇𝜈 =
1
2𝑔

𝜆𝜎 (𝜕𝜇𝑔𝜈𝜎 + 𝜕𝜈𝑔𝜇𝜎 − 𝜕𝜎𝑔𝜇𝜈) , (4.5.5)

of which the non-zero components are found to be

Γ𝑡𝑡𝑟 = Γ𝑡𝑟𝑡 =
1
2𝐴

d𝐴
d𝑟 , Γ𝑟𝑡𝑡 =

1
2𝐵

d𝐴
d𝑟 , Γ𝑟𝑟𝑟 =

1
2𝐵

d𝐵
d𝑟 , Γ𝜙𝜃𝜙 = Γ𝜙𝜙𝜃 = cot 𝜃,

Γ𝑟𝜃𝜃 = − 𝑟𝐵, Γ𝜃𝜃𝑟 = Γ𝜃𝑟𝜃 = Γ𝜙𝜙𝑟 = Γ𝜙𝑟𝜙 =
1
𝑟 , Γ𝑟𝜙𝜙 = −𝑟 sin

2 𝜃
𝐵 , Γ𝜃𝜙𝜙 = − sin 𝜃 cos 𝜃.

(4.5.6)

Thus theRiemann curvature tensor can be obtained using the non-zeroChristoffel symbols (4.5.6),

𝑅𝜎
𝜌𝜇𝜈 = 𝜕𝜇Γ

𝜎
𝜈𝜌 − 𝜕𝜈Γ

𝜎
𝜇𝜌 + Γ

𝜆
𝜈𝜌Γ

𝜎
𝜇𝜆 − Γ

𝜆
𝜇𝜌Γ

𝜎
𝜈𝜆. (4.5.7)

The Ricci tensor is given by 𝑅𝜇𝜈 = 𝑔𝜌𝜎𝑅𝜌𝜇𝜎𝜈 and the relevant components are found to be given by

𝑅𝑡𝑡 = − 1
4𝐵2

[d𝐴d𝑟
d𝐵
d𝑟 + 𝐵 (−4𝑟

d𝐴
d𝑟 + 1

𝐴 (d𝐴d𝑟 )
2

− 2d
2𝐴
d𝑟2 )] , (4.5.8a)

𝑅𝑟𝑟 =
1

4𝐴2𝐵𝑟
[𝐴d𝐵d𝑟 (4𝐴 + 𝑟d𝐴d𝑟 ) + 𝐵𝑟 ((

d𝐴
d𝑟 )

2

− 2𝐴d
2𝐴
d𝑟2 )] . (4.5.8b)

Now we can compute the Ricci scalar 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈, that is

𝑅 = 1
2𝐴2𝐵2𝑟2

[𝐵𝑟2 (d𝐴d𝑟 )
2

+ 4𝐴2 (𝑟d𝐵d𝑟 + 𝐵2 − 𝐵) + 𝐴𝑟 (𝑟d𝐴d𝑟
d𝐵
d𝑟 − 2𝐵 (𝑟d

2𝐴
d𝑟2 + 2d𝐴d𝑟 ))] . (4.5.9)

Now we have all the ingredients required to compute the Einstein tensor, 𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1
2𝑅𝑔𝜇𝜈. The

relevant components of the Einstein tensor are found to be

𝐺𝑡𝑡 =
𝐴(𝑟)

𝐵(𝑟)2𝑟2
[𝑟d𝐵(𝑟)d𝑟 + 𝐵(𝑟) (𝐵(𝑟) − 1)] , (4.5.10a)

𝐺𝑟𝑟 =
1

𝐴(𝑟)𝑟2
[𝑟d𝐴(𝑟)d𝑟 − 𝐴(𝑟) (𝐵(𝑟) − 1)] . (4.5.10b)

In the static case, and for a diagonal metric (that of which is applicable to us), we have 𝑢𝜇 =
(√−𝑔00, 0, 0, 0) and the non-zero components of the energy-momentum tensor are given by

𝑇00 = −𝜌(𝑝(𝑟))𝑔00, 𝑇𝑖𝑗 = 𝑝(𝑟)𝑔𝑖𝑗. (4.5.11)

In particular, for the spherical metric ansatz (4.5.3), the energy-momentum tensor reduces to the
four terms:

𝑇𝑡𝑡 =𝜌(𝑝(𝑟))𝐴(𝑟), (4.5.12a)
𝑇𝑟𝑟 =𝐵(𝑟)𝑝(𝑟), (4.5.12b)
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𝑇𝜃𝜃 = 𝑟
2𝑝(𝑟), (4.5.12c)

𝑇𝜙𝜙 = 𝑟
2𝑝(𝑟) sin2 𝜃. (4.5.12d)

We are now in a position to calculate the Einstein equations (4.5.4) by using the energy-momentum
tensor (4.5.12) and the Einstein tensor (4.5.10). From this, and the Bianchi identity

0 = ∇𝜈𝑇
𝑟𝜈 = 𝜕𝑇𝑟𝜈

𝜕𝑥𝜈 + 𝑇𝜎𝜈Γ𝑟𝜎𝜈 + 𝑇
𝑟𝜎Γ𝜈𝜎𝜈, (4.5.13)

we get the following TOV system of ODEs

d𝐴
d𝑟 =𝐴(𝑟)𝑟 (8𝜋𝐺𝐵(𝑟)𝑝(𝑟) − 1 − 𝐵(𝑟)

𝑟2
) , (4.5.14a)

d𝐵
d𝑟 =𝐵(𝑟)𝑟 (8𝜋𝐺𝐵(𝑟)𝜌(𝑝(𝑟)) + 1 − 𝐵(𝑟)

𝑟2
) , (4.5.14b)

d𝑝
d𝑟 = −

𝑝(𝑟) + 𝜌(𝑝(𝑟))
2𝐴(𝑟)

d𝐴
d𝑟 . (4.5.14c)

The resultingTOV system involves 3 differential equations for𝐴, 𝐵 and 𝑝, whichmust be solved
for a given value of the pressure in the centre of the neutron star (𝑝(0) = 𝑝0) until the condition
𝑝(𝑅NS) = 0 is achieved. The radial point 𝑅NS at which the pressure vanishes defines the radius of
the neutron star, and the mass𝑀 is obtained from the Schwarzschild metric definition outside the
star,

𝐵(𝑅NS) =
1

1 − 2𝛭𝐺
𝑅NS

. (4.5.15)

In order for the metric function 𝐵(𝑟) to be non-singular at 𝑟 = 𝑅NS, the pressure 𝑝(𝑟)must obey
𝑝′(𝑅NS) = 0.

The TOV system (4.5.14) is solved via a central shooting method from some initial central
pressure 𝑝0 at 𝑟 = 0 until the edge of the star has been reached (corresponding to 𝑝(𝑅NS) = 0).
The amount of matter contained at 𝑟 = 0 should be zero, which gives the boundary conditions
𝐵(0) = 𝐴(0) = 1. That is, the spacetime metric should approach the Minkowski metric towards
the neutron star core. We can simultaneously apply a 4th order Runge–Kutta method to the
system of IVPs (4.5.14b), (4.5.14c), for the initial conditions 𝐵(0) = 1 and 𝑝(0) = 𝑝0, until the
condition 𝑝(𝑅NS) = 0 is achieved. This yields the metric function 𝐵(𝑟) and the pressure profile
𝑝(𝑟) satisfying the necessary boundary conditions. Then the metric function 𝐴(𝑟) can be easily
obtained by numerically integrating (4.5.14a). The corresponding radius 𝑅 and the stellar mass
𝑀 = 𝑀(𝑅NS) can be extracted from the Schwarzschild definition (4.5.15). Increasing the central
pressure 𝑝0 in succession corresponds to determining a sequence of neutron stars of increasing
mass, until the mass limit is reached [153]. The observational mass limit is approximately 2.5𝑀⊙
[156], where the solar mass is𝑀⊙ = 1.116 × 1060MeV.

Neutron Star Properties and the Mass-Radius Curve
Now we solve the TOV equations using the EoS obtained from the isospin asymmetric multi-wall
crystal solution in the generalized ℒ0246-Skyrme model. In Fig. 4.6 we present the mass-radius
curve for the MC crystal (blue line) together with recent astrophysical observations. It can be seen



96 4. Generalized Skyrmion Crystals with Applications to Neutron Stars

8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.6: Mass-radius curves for neutron stars obtained from the multi-wall crystal EoS with (blue curve)
and without (red curve) the Maxwell construction. The maximal mass𝑀max obtained from the
MCmulti-wall crystal EoS is also shown.

clearly that the obtained mass-radius curve passes through many observational constraints. For our
choice of coupling constants (4.2.5), the Skyrme model generates an EoS which supports rather
heavy neutron stars,𝑀 > 2𝑀⊙. Indeed, the maximummass is predicted to be𝑀max = 2.0971𝑀⊙,
occurring for a neutron star of radius 𝑅 = 13.12 km. For this solution the central energy density is
𝜌(0) = 784MeV fm−3, while the central pressure is 𝑝(0) = 155.7MeV fm−3. The associated plots as
a function of the maximal neutron star radius is shown in Fig. 4.7. We find that the speed of sound
in the core is approximately half of the speed of light, 𝑐𝑠 = 0.491𝑐. The maximal mass can be further
increased if we assume higher value of the sextic term coupling constant 𝜆, at the cost of increasing
the corresponding radius.

The main improvement presented by the generalized multi-wall crystal, in comparison to
previous studies involving the SC1/2 crystal, is in the low density regime. In previous attempts,
except the pure BPS Skyrme case, neutron stars obtained from Skyrme models did not have crusts,
i.e. the EoS was only defined up to the nuclear saturation point 𝑛𝛣 ≥ 𝑛0, and not in the low density
region 𝑛𝛣 < 𝑛0. In order to obtain a crust, the SC1/2 crystal EoS can be smoothly joined with an EoS
that well describes the low density regime, e.g. the BCPM EoS, as in [54]. In the resulting hybrid
EoS, the high density region is still described by the SC1/2 crystal. This typically increases the radius
of neutron star by 1-2 km, depending on themass of the neutron star. However, such a construction
is not required here as the EoS from the multi-wall crystal with theMaxwell construction is valid at
both high and low densities, naturally giving the neuron star a crust.

4.6 Concluding Remarks

In the present chapter, for the first time, we have obtained a ground state crystalline configuration
for the generalizedℒ0246-Skyrme model at finite densities. In contrast to previous studies on the
generalized model, it has been carried out without imposing any constraints on the geometry. The
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Figure 4.7: Plots at𝑀max of the pressure 𝑝, energy density 𝜌, metric function 𝐵(𝑟) and equations of state
𝜌 = 𝜌(𝑝). The blue curve is for the crystal EoS with the Maxwell construction applied, removing
any negative pressure from the system, whereas the red curve is for the “true” crystal EoS.

only limiting assumption is the amount of the baryon charge hosted by the unit cell, which is
𝐵cell = 4. For that, we had to solve a variational problem which involves both the matter Skyrme
field 𝜑 and the metric 𝑔 of the unit 3-torus T3.

For our choice of the values for the coupling constants (4.2.5), we determine the ground state
solution in theℒ0246-model to be the multi-wall crystal, as was recently observed in the previous
chapter in the context of theℒ024-model. At low densities this solution takes the form of an isolated
and planar two-wall layer of skyrmionic matter. As the baryon density grows 𝑛𝛣 > 𝑛0 then there
appears to be a restoration of chiral symmetry, and the solution tends to the cubic SC1/2 crystal.

We have used this multi-wall crystal to investigate the three most outstanding issues of the
Skyrmemodel in its application to dense nuclearmatter and neutron stars. Namely, (i) the problem
of the thermodynamic instability at low densities; (ii) the maximal mass problem; and (iii) the
compression modulus problem.

Firstly, in comparison with the SC1/2 crystal or inhomogeneous crystals (e.g. 𝐵 = 32 or 𝐵 = 108
crystals composed of 𝛼-particles), the use of the true ground state solution allowed to resolve the
issue of thermodynamically instability at low densities. Namely, the classical energy per baryon
(of the unit cell) again reveals a minimum identified with the nuclear saturation point, but now
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the difference between the energy at this point and at zero density is less than one percent. After
inclusion of the quantum corrections to the total energy, due to the isospin d.o.f., and the lepton
energy contributions for a 𝛽-equilibrated crystal, the total energy 𝐸cell of the isospin asymmetric
multi-wall crystal as a function of the nuclear density 𝑛𝛣 was obtained. This minimum still existed
but had reduced significantly and is practically negligible. The energy difference used in the
Maxwell construction is so small that it is difficult to tell if theminimum truly exists or if it is just an
artifact of our numerical algorithm. Nevertheless, it was still present so we had to use the Maxwell
construction, which allowed us to obtain an EoS valid at all densities within the Skyrme model.

We remark that the Maxwell construction was required to avoid a thermodynamically unstable
region which formally has negative pressure. Similar regions were found in previous studies where
𝛼, 𝐵 = 32 or 𝐵 = 108-crystals were studied. However, it is worth underlining that in these cases
the Maxwell construction was impossible (c.f. the 𝛼-crystal) or extended to unacceptably large
pressure/density regions (e.g. the corresponding neutron stars would possess cores mainly filled up
by such regions). In the current work, the pressure at which the Maxwell construction is applied is
only 𝑝MX = 0.022MeV fm−3 and it extends to densities below the saturation point. Consequently,
our neutron stars are mainly governed by the part of EoS above 𝑝MX, which is described by the
multi-wall crystal EoS.

Of course, it is premature to identify the inhomogeneous low density solution found here with
nuclear pasta or lasagna phases in the crust of neutron stars. This is due to the fact that such phases
emerge due to a balance between the nuclear and electrostatic forces. However, in our study, the
Coulomb interaction has not been taken into account. In particular, we emphasize that, while
our crystal qualitatively looks like nuclear pasta, it does not model nuclear pasta. Be that as it may,
our result shows that the Skyrme model itself has a tendency to form complicated, geometrically
non-trivial and inhomogeneous structures at low density. It should be again underlined that, on
the contrary to all previous studies, we did not impose any geometry restrictions on the solutions,
e.g. by assuming particular boundary conditions as in [157, 158].

However, already at this stage of research, the multi-wall crystal in the density regime below
saturation, 𝑛𝛣 < 𝑛0, leads to novel and intriguing observations. The first is the symmetry energy’s
disclosure of its cusp structure below the nuclear saturation density, 𝑛∗ ∼ 3𝑛0/4 < 𝑛0, and, secondly,
the finite value of the symmetry energy in the zero density limit, 𝑛𝛣 → 0. A cusp in the symmetry
energy has previously been advocated for in [151], wherein they attributed the presence of this cusp
to a change in topology due to a transition between the FCC1 crystal of hedgehog skyrmions and
the SC1/2 crystal. A key component of their argument relies on this transition occurring in the high
density regime 𝑛𝛣 > 𝑛0, however, this transition is believed to take place in the low density regime
𝑛𝛣 < 𝑛0 [46]. However, we have argued that these two features are generic of the Skyrme model
and should occur for any infinite nuclear matter that undergoes a phase transition to somewhat
isolated and finite matter in the zero density limit. This asymptotic transition to finite matter in
the zero density limit is essential as the isolated solution will have a finite isospin moment of inertia
tensor. A prime example of a crystalline solution in which such a transition occurs is that of the
𝛼-crystal, which tends to the isolated 𝛼-particle solution as 𝑛𝛣 → 0. Therefore, both the presence of
the cusp and the non-zero value of the symmetry energy at the vacuum can be attributed as generic
properties of the Skyrme model.

In fact, we have observed a further key feature of the symmetry energy. That is, a direct
correspondence between the value of the symmetry energy at the vacuumand the asymmetry energy
in the Bethe–Weizsäcker SEMF for nuclear binding energies. This strengthens our suggestion that
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the Skyrmemodel can be interpreted as a natural interpolation between infinite isospin asymmetric
nuclear matter and finite (almost) symmetric atomic nuclei. This is further supported by the
observation that the proton fraction 𝛾𝑝 → 0.5 in the zero density limit 𝑛𝛣 → 0, which describes
almost totally isospin symmetric nuclear matter, and then, for small densities, decreases yielding
asymmetric matter. In this pattern one may again recognize finite nuclei. Indeed, the proton
number and neutron number are approximately equivalent (𝛿 ≈ 0) for smaller atomic nuclei while
for larger nuclei there is an asymmetry (𝛿 ≠ 0) caused by a surplus of neutrons.

The second big issue is also resolved since the inclusion of the sextic term makes the EoS
sufficiently stiff at large densities. Using this EoS we were able to compute the mass-radius curve
for the resulting neutron stars. The maximal mass was found to be𝑀max = 2.0971𝑀⊙, which is a
acceptable large mass and the mass-radius curve fits very well to known astrophysical data.

Finally, we shown that the problem of the compression modulus cannot be solved solely by
consideration of the newly discovered inhomogeneous ground state crystalline configuration.
Although reduced by approximately 200MeV, the compression modulus is still a few times larger
than the experimental value. We underline that this negative result is of high importance for the
Skyrme model. It simply shows that the the solitonic model based entirely on the lightest, pionic
d.o.f. is not able to correctly describe this quantity. Fundamentally, the compression modulus is
related to nuclear binding energies, which is also a problem within the Skyrme model. If a variant
of the Skyrmemodel has low binding energies then, naturally, the compression modulus will closer
to its accepted value. Therefore, inclusion of more massive mesons, which are known to soften the
EoS at the saturation point, seems to be unavoidable. Interestingly, this coincides with the role
playing by 𝜌mesons in reducing of the binding energies of the Skyrmions.

It should be underlined that, if compared with other effective nuclear models, the generalized
Skyrme model has an extremely small number of free parameters. It has only four coupling
constants {𝐹𝜋, 𝑚𝜋, 𝑒, 𝜆}, of which the pion mass 𝑚𝜋 and the pion decay constant 𝐹𝜋 are, from the
onset, fixed to their physical values, or as close to them as possible. The two other parameters 𝑒
and 𝜆, which, respectively, multiply the quartic (Skyrme) and sextic terms can be treated as free
parameters in this model. They can be constrained by fitting the multi-wall crystal to nuclear
observables, i.e. they can be chosen such that the symmetric energy𝑀𝛣(𝑛𝛣) and nuclear density 𝑛𝛣
at saturation 𝑛0 are close to the experimentally determined values.

There are several directions in which our study can be continued. First of all, it is widely
known that the lower density phases of nuclear matter are governed by a balance between nuclear
and Coulomb forces, which leads to a plethora of geometrically different structures. The fact
that the generalized Skyrme model, even without the inclusion of electrostatic interactions, gives
rise to the multi-wall crystal (a lasagna like structure) can be viewed as an intrinsic ability of the
model to provide such solutions. Other inhomogeneous configurations have been observed in the
Skyrme model [157, 158], however they were an effect of the imposed boundary conditions and
therefore their applications to nuclear physics remain to be clarified. Undoubtedly, inclusion of
the Coulomb interaction seems mandatory, see e.g. [18]. It seems likely that including Coulomb
interactions will not only give insight into such geometric phases but could also allow one to avoid
use of the Maxwell construction. Thus it could possibly provide a complete description of the
crust in neutron star within the Skyrme model framework.

More importantly, the inclusion of other d.o.f., like for example 𝜌 or 𝜔mesons, seems inevitable
to resolve the issue of the compressibility at nuclear saturation. This, combined with the inho-
mogeneous multi-wall crystal detailed in the paper, may possibly lead to the correct value of the
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compression modulus.
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Five

Skyrmion Crystals Stabilized by ω-Mesons
This chapter is based on work with D. Harland andM. Speight [159].

5.1 Introduction

At its core, the Skyrme model contains the NL𝜎M. This is the lowest-order term in all mesonic
effective Lagrangianmodels and it supports soliton solutions [160]. However, by simple application
of Derrick’s Theorem, the solitons are not energetically stable as the NL𝜎M is not length scale
invariant in three dimensions. Skyrme’s proposal was the inclusion of a higher fourth-order term
with opposing scaling behaviour to provide the soliton with a scale. There is, however, little
phenomenological justification for the addition of the Skyrme term. In particular, it makes the
theory non-renormalizable.

Remarkably, it was shown by Adkins and Nappi [161] that the inclusion of the 𝜔meson to
the NL𝜎M alone stabilises the solitons, without the need for the Skyrme term. This is achieved
by considering 𝜔 as a gauge particle associated to U(1)𝑉 and defining a minimally broken U(1)𝑉
Lagrangian for spin-1 mesons [162], with explicit breaking of the gauge invariance by introducing
a mass term. The abelian nature of the 𝜔-meson means it couples anomalously through the gauged
Wess–Zumino (WZ) term [163].

The 𝜔-meson variant of the Skyrme model, initially proposed by Adkins and Nappi, has only
been investigated for light nuclei with baryon numbers 𝐵 = 1, … , 8. This is in part due to the
complexity of the problem: the temporal component 𝜔0 is subject to a non-trivial constraint and
can be interpreted as a static potential generated by a source proportional to the topological charge
density. The technical reason for this is that the static energy is not bounded from below, this
renders usual gradient descent based energy minimization algorithms useless. Sutcliffe was the
first to consider the model with 𝐵 > 1 [164], using the rational map approximation to construct
(approximate) skyrmions with charges 1 to 4. Speight then considered themodel in the charge𝐵 = 1
sectorwith the addition of an (explicit) chiral symmetry breaking term, successfully reproducing the
proton–neutron mass difference [165]. A later breakthrough came when Gudnason and Speight
[88] developed a method to solve this constrained energy minimization problem. Therein, they
found true static solutions for topological charges 1 through 8, for a range of coupling constants.
At high couplings, they observed that the static solutions are qualitatively similar to those of
the standard Skyrme model with massless pions. However, at reasonably low couplings, these
skyrmions appear quite similar to those of the lightly bound Skyrme model [166, 167], at least for
charges 1 to 3, and have realistic classical binding energies.
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Thereafter Adkins and Nappi’s seminal paper, it was natural to consider generalizations of
the non-linear pion theory by replacing the ad hoc Skyrme term with explicit interactions with
vector mesons. One such approach is based on the so-called hidden local symmetry (HLS) method,
where a hidden symmetry of the NL𝜎M is gauged and the corresponding gauge particle acquires
mass through the Higgs mechanism [160]. This allows for the incorporation of 𝜌-mesons, as
well as the 𝜔-meson. An alternative option has also been proposed, wherein the 𝜌-meson was
considered instead of the 𝜔-meson [168]. Sutcliffe and Naya [169, 170] explored a slightly more
general 𝜌-Skyrme model than this, which greatly improved on the binding energies. The main
difference between coupling to 𝜔-mesons or 𝜌-mesons is that the 𝜌-mesons interact with the vector
pion current, whereas the 𝜔-mesons interacts with the baryonic current.

The HLS approach has been investigated extensively, especially in the context of dense nuclear
matter [171–175]. The ground state configuration of nuclear matter in the Skyrme model was
found, independently byKugler and Shtrikmann [39] andCastillejo at al. [40], to be a face-centred
cubic crystal of single hedgehog skyrmions. At higher density, this FCC1 crystal undergoes a phase
transition to a simple cubic crystal of half-skyrmions, the SC1/2 crystal. Within theHLS framework,
Lee et al. [176] incorporated a dilaton field to the massive Skyrme model, which is associated with
the scale anomaly of QCD. In their model the dilaton is crucial in realizing the phase transition
from the Goldstone mode (spontaneously broken chiral symmetry FCC1 phase) to the Wigner
mode (unbroken chiral symmetry SC1/2 phase) consistently with the vector manifestation (VM)
fixed point. This fixed point is characterized by the vanishing of both ⟨𝜎⟩ and the in-medium pion
decay constant 𝐹∗𝜋 , corresponding to the restoration of the spontaneously broken chiral symmetry.
Interestingly, the addition of the 𝜔-meson prevents the scale-anomaly dilaton field, and thus the
in-medium pion decay constant, from developing a vanishing vacuum expectation value at the VM
fixed point [177], resulting in a non-restoration of chiral symmetry. This is reminiscent of pseudo-
gap phenomena in condensed matter physics. They also observed that the 𝜔-meson produces not
only a strong repulsive force amongst skyrmions, but an intermediate range one as well and causes
the skyrmions to become larger in size and more massive.

In all of the aboveHLS crystal investigations, the Kugler and Shtrikmann Fourier series method
was generalized to incorporate vector mesons. However, as we have seen in Chap. 3, the SC1/2
crystal is in fact not the ground state configuration in the Skyrme model with massive pions; a
multi-wall solution is. Recall that we obtained four distinct skyrmion crystals: the SC1/2 crystal,
an 𝛼-particle crystal, a chain crystal, and a multi-wall or crystal.

We are interested in how the 𝜔-meson itself affects the description of these four crystalline
solutions and, in particular, if there is a change in the ground state configuration. Further, we
predict coefficients in the Bethe–Weizsäcker semi empirical mass formula using 𝜔-skyrmion crystals
and the 𝛼-particle approximation first considered by Baskerville [17]. Finally, we attempt to address
the compression modulus problem within the Skyrme model and determine a more acceptable
value of the nuclear matter incompressibility coefficient.

5.2 The ω-SkyrmeModel

The 𝜔-meson variant of the Skyrme model is a NL𝜎M coupled to the isoscalar 𝜔 vector meson
field. It consists of the Skyrme field 𝜑 ∶ Σ → SU(2) and the 𝜔 vector meson (a 1-form on Σ).
Spacetime is given by the (3 + 1)-dimensional Lorentzian manifold Σ = R × R3 equipped with



5.2. The ω-SkyrmeModel 103

a pseudo-Riemannian metric 𝑔 that has metric signature − + ++ and constant coefficients. Our
starting point is the 𝜔-Skyrme Lagrangian defined by Adkins &Nappi [161], which is given by

ℒ = ℒ𝜑 + ℒ𝜔 + ℒWZ, (5.2.1)

whereℒ𝜑 is the NL𝜎MLagrangian with the explicit chiral symmetry breaking pion mass term,

ℒ𝜑 = − 1
8ℏ3

𝐹2𝜋𝑚
2
𝜋Tr (Id2 −𝜑) +

𝐹2𝜋
16ℏ𝑔

𝜇𝜈Tr(𝐿𝜇𝐿𝜈). (5.2.2)

The minimally broken U(1)𝑉 Lagrangian for spin-1 mesons is given by the term

ℒ𝜔 =
𝑚2
𝜔

2ℏ3
𝑔𝜇𝜈𝜔𝜇𝜔𝜈 +

1
4ℏ𝑔

𝜇𝛼𝑔𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽, 𝜔𝜇𝜈 = 𝜕𝜇𝜔𝜈 − 𝜕𝜈𝜔𝜇, (5.2.3)

and the gaugedWess-Zumino term is

ℒWZ = 𝛽𝜔𝑔
𝜇𝜈𝜔𝜇ℬ𝜈, (5.2.4)

which describes the the coupling of the 𝜔-meson to three pions. The topological charge and
baryonic current are, respectively, still defined by (1.1.9).

The main free parameters of this model are the pion decay constant 𝐹𝜋, the pion mass𝑚𝜋, the
𝜔-meson mass 𝑚𝜔, and the coupling constant 𝛽𝜔. As before, ℏ = 197.3 MeV fm is the reduced
Planck constant, and 𝐿𝜇 = 𝜑†𝜕𝜇𝜑 is an 𝔰𝔲(2)-valued left current. We will consider different values
for the interaction constant 𝛽𝜔. This coupling constant 𝛽𝜔 can be related to the 𝜔 → 𝜋+𝜋−𝜋0 decay
rate, which is in reality enhanced by the resonance 𝜔 → 𝜌 + 𝜋, but is not included in the current
theory. The decay rate, calculated using fiducial experimental values, is found to be Γ𝜔→3𝜋 = 8.49
MeV, which gives the upper bound 𝛽𝜔 ≤ 23.9 [88].

The 𝜔-meson can be integrated out in this theory, reducing the model to an effective field
theory of pions only, which is valid in energy regimes lower than the 𝜔-meson mass 𝑚𝜔. To see
this, consider the on-shell condition for the 𝜔-meson (that is, the Euler–Lagrange field equations
associated to the Lagrangianℒ𝜔 + ℒWZ as defined by (5.2.3) and (5.2.4))

𝛿(ℒ𝜔 + ℒWZ)
𝛿𝜔𝜇

=
𝑚2
𝜔

ℏ3
𝜔𝜇 + 𝛽𝜔ℬ

𝜇 − 1
ℏ𝜕𝜈𝜔

𝜈𝜇 = 0. (5.2.5)

For sufficiently large 𝑚𝜔, such that 𝜕𝜈𝜔𝜈𝜇 ≪ 𝑚2
𝜔, the on-shell condition can be approximated (by

ignoring derivative contributions) as

𝜔𝜇 ≃ −
𝛽𝜔ℏ

3

𝑚2
𝜔
ℬ𝜇. (5.2.6)

Substituting this into the 𝜔-meson Lagrangian yields

ℒ𝜔 + ℒWZ → −𝜆2𝜋4𝑔𝜇𝜈ℬ𝜇ℬ𝜈, (5.2.7)

where
𝜆2 =

𝛽2𝜔ℏ
3

2𝑚2
𝜔𝜋4

. (5.2.8)
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In the large mass limit𝑚𝜔 → ∞with the ratio 𝛽𝜔/𝑚𝜔 kept fixed, the 𝜔-Skyrme model reduces to the
ℒ026-Skyrme model, described by the Lagrangian

ℒ026 = − 1
8ℏ3

𝐹2𝜋𝑚
2
𝜋Tr (Id2 −𝜑) +

𝐹2𝜋
16ℏ𝑔

𝜇𝜈Tr(𝐿𝜇𝐿𝜈) − 𝜆2𝜋4𝑔𝜇𝜈ℬ𝜇ℬ𝜈. (5.2.9)

For convenience, we follow Sutcliffe [164] and rescale the 𝜔meson by 𝜔 ↦ 𝜔𝐹𝜋, and choose the
classical energy scale to be �̃� = 𝐹2𝜋 /𝑚𝜔 (MeV) and the length scale to be �̃� = ℏ/𝑚𝜔 (fm). Then the
rescaled 𝜔-Skyrme Lagrangian in dimensionless units is given by

ℒ = − 1
8𝑚

2Tr (Id2 −𝜑) +
1
16𝑔

𝜇𝜈Tr(𝐿𝜇𝐿𝜈) +
1
2𝑔

𝜇𝜈𝜔𝜇𝜔𝜈 +
1
4𝑔

𝜇𝛼𝑔𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝑐𝜔𝑔
𝜇𝜈𝜔𝜇ℬ𝜈, (5.2.10)

where the rescaled pionmass and𝜔 coupling constant are, respectively,𝑚 = 𝑚𝜋/𝑚𝜔 and 𝑐𝜔 = 𝑚𝜔𝛽𝜔/𝐹𝜋.
The energy-momentum tensor (in dimensionless Skyrme units) is given by

𝑇𝜇𝜈 = − 1
8 Tr(𝐿𝜇𝐿𝜈) − 𝜔𝜇𝜔𝜈 − 2𝑐𝜔𝜔𝜇ℬ𝜈 − 𝑔

𝛼𝛽𝜔𝜇𝛼𝜔𝜈𝛽 + 𝑔𝜇𝜈 {−
1
8𝑚

2Tr (Id2 −𝜑)

+ 1
16𝑔

𝛼𝛽Tr(𝐿𝛼𝐿𝛽) +
1
2𝑔

𝛼𝛽𝜔𝛼𝜔𝛽 +
1
4𝑔

𝛼𝜌𝑔𝛽𝜎𝜔𝛼𝛽𝜔𝜌𝜎 + 𝑐𝜔𝑔
𝛼𝛽𝜔𝛼ℬ𝛽} . (5.2.11)

The usual energy functional is obtained from the temporal part of the energy-momentum tensor,
that is,

ℰstat =
1
8𝑚

2Tr (Id2 −𝜑) −
1
16𝑔

𝑖𝑗Tr(𝐿𝑖𝐿𝑗) −
1
2𝜔

2
0 −

1
2𝑔

𝑖𝑗𝜔0𝑖𝜔0𝑗 − 𝑐𝜔𝜔0ℬ0. (5.2.12)

We wish to study static Skyrme fields 𝜑 ∶ R3 → SU(2) and 𝜔-meson fields 𝜔 ∶ R3 → R that are
periodic with respect to some 3-dimensional period lattice

Λ = {𝑛1�⃗�1 + 𝑛2�⃗�2 + 𝑛3�⃗�3 ∶ 𝑛𝑖 ∈ Z} . (5.2.13)

As before, we can equivalently interpret the domain of the fields as R3/Λ, and identify this with
the unit 3-torus (T3, 𝑔) via the obvious diffeomorphism

𝐹 ∶ T3 → R3/Λ, (𝑥1, 𝑥2, 𝑥3) ↦ 𝑥1�⃗�1 + 𝑥
2�⃗�2 + 𝑥

3�⃗�3. (5.2.14)

The metric 𝑔 on T3 is the pullback of the metric 𝑑 by 𝐹, i.e.

𝑔 = 𝐹∗𝑑 = 𝑔𝑖𝑗d𝑥𝑖d𝑥𝑗, 𝑔𝑖𝑗 = �⃗�𝑖 ⋅ �⃗�𝑗. (5.2.15)

Varying the metric 𝑔𝑠 on T3 with 𝑔0 = 𝐹∗𝑑 is equivalent to varying the lattice Λ𝑠 with Λ0 = Λ. The
energy minimized over variations 𝑔𝑠 of the domain metric is equivalent to determining the energy
minimizing period lattice Λ.

Throughout, it will be convenient to use the NL𝜎M formulation (1.1.16) of the model. We
now identify the Skyrme field as the map 𝜑 ∶ (T3, 𝑔) → 𝑆3, where 𝑔 is a flat Riemannian metric.
Since we are only interested in static field configurations, only the temporal component of the
topological current remains, i.e. ℬ𝑖 = 0. Consequently, only the temporal component 𝜔0 of the
𝜔-meson survives, since the topological charge density acts as a source term for the 𝜔 field. For
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notational convenience, we will drop the subscript and denote 𝜔 ≡ 𝜔0. Then the static energy
functional is

𝑀𝛣(𝜑, 𝑔) = ∫
T3
d3𝑥√𝑔 {14𝑚

2(1 − 𝜑0) + 1
8𝑔

𝑖𝑗𝜕𝑖𝜑
𝜇𝜕𝑗𝜑

𝜇 − 1
2𝑔

𝑖𝑗𝜕𝑖𝜔𝜕𝑗𝜔 −
1
2𝜔

2 − 𝑐𝜔𝜔ℬ0} . (5.2.16)

This is the energy functional that needs to be minimized with respect to variations of the fields
(𝜑, 𝜔) and the metric 𝑔 on T3.

In any Yang–Mills theory, the canonical momentum conjugate to the temporal component of
the gauge field is always zero, leading to a constraint of the theory. The Dirac–Bergmann algorithm
ensures that the conservation of this constraint in time yields a further constraint [160]. This
constraint can then be solved to remove the constrained degree of freedom from the theory; here,
that is the temporal component 𝜔. When considering static field configurations, this constraint is
identical to the Euler–Lagrange field equations corresponding to temporal 𝜔,

(−𝑔𝑖𝑗𝜕𝑖𝜕𝑗 + 1) 𝜔 = −𝑐𝜔ℬ0. (5.2.17)

This is a linear equation for 𝜔with a source term proportional to the baryon current. The 𝜔-meson
is completely determined by the Skyrme field 𝜑 and the domain metric 𝑔. If we consider the limit
where the 𝜔-meson mass 𝑚𝜔 and the coupling constant 𝛽𝜔 becomes large, with their ratio 𝛽𝜔/𝑚𝜔
fixed, this leads to the well-known sextic term in the Lagrangian [55].

The static energy can be written more conveniently by taking the inner product of (5.2.17)
with 𝜔 and integrating by parts to find that

∫
T3
d3𝑥√𝑔 𝑐𝜔𝜔ℬ0 = −∫

T3
d3𝑥√𝑔 (𝑔𝑖𝑗𝜕𝑖𝜔𝜕𝑗𝜔 + 𝜔2) . (5.2.18)

Then the energy can be expressed as

𝑀𝛣(𝜑, 𝑔) = ∫
T3
d3𝑥√𝑔 {14𝑚

2(1 − 𝜑0) + 1
8𝑔

𝑖𝑗𝜕𝑖𝜑
𝜇𝜕𝑗𝜑

𝜇 + 1
2𝑔

𝑖𝑗𝜕𝑖𝜔𝜕𝑗𝜔 +
1
2𝜔

2} , (5.2.19)

which is bounded below (by 0).
Beforemoving on, it is interesting to note that the energy (5.2.19) subject the constraint (5.2.17)

obeys a topological energy bound. In fact, the bound is valid in the more general setting: the
Skyrme field is a map 𝜑 ∶ 𝑀 → 𝑁 between Riemannian 3-manifolds (𝑀3, 𝑔) and (𝑁3, ℎ). We have a
functional on such maps given by

𝑀𝛣(𝜑, 𝑔) = 𝑀𝜑
𝛣 (𝜑, 𝑔) +𝑀

𝜔
𝛣 (𝜑, 𝑔), (5.2.20)

with

𝑀𝜑
𝛣 (𝜑, 𝑔) = ∫

𝛭
(18 ∣d𝜑∣

2
𝑔
+ 1
4(𝑉 ∘ 𝜑)) vol𝑔, (5.2.21)

𝑀𝜔
𝛣 (𝜑, 𝑔) = ∫

𝛭
(12 ∣d𝜔∣

2
𝑔
+ 1
2𝜔

2) vol𝑔, (5.2.22)

subject to the constraint
(Δ𝑔 + 1) 𝜔 = −𝑐𝜔 ∗𝑔 𝜑

∗Ω, (5.2.23)
whereΩ is the normalized volume form on𝑁, i.e

Ω =
vol𝛮
|𝑁| . (5.2.24)
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Proposition 15. For all smooth maps 𝜑 ∶ 𝑀 → 𝑁 there exists a lower topological energy bound for
𝑀𝛣(𝜑, 𝑔), that is,

𝑀𝛣 ≥
𝐵2𝑐2𝜔
2|𝑀|. (5.2.25)

Proof. Let us define ℬ = ∗𝜑∗Ω such that 𝜑∗Ω = ℬvol0. Then, from the 𝜔-meson constraint
(5.2.23), the topological charge can be expressed as

𝐵 = ∫
𝛭
𝜑∗Ω = − 1𝑐𝜔

∫
𝛭
(Δ𝑔 + 1) 𝜔 vol𝑔 = − 1𝑐𝜔

∫
𝛭
𝜔 vol𝑔. (5.2.26)

Using the Cauchy–Schwartz inequality, we obtain the following relation

𝐵2 = 1
𝑐2𝜔
(∫

𝛭
𝜔 vol𝑔)

2
≤ 1
𝑐2𝜔
(∫

𝛭
𝜔2 vol𝑔) (∫

𝛭
1 vol𝑔) =

|𝑀|
𝑐2𝜔

∫
𝛭
𝜔2 vol𝑔. (5.2.27)

With this, we can derive a simple lower topological bound on the static energy (5.2.20), that is,

𝑀𝛣 ≥
1
2 ∫𝛭

𝜔2 vol𝑔 ≥
𝐵2𝑐2𝜔
2|𝑀| (5.2.28)

2

For the particular case of interest,𝑀 = T3, we have

𝑀𝛣 ≥ 𝐸bound =
𝐵2𝑐2𝜔
2√𝑔

. (5.2.29)

5.3 Stress-Energy Tensor
We now turn to the problem of constructing Skyrme crystals, i.e. minimizing the energy (5.2.19)
with respect to variations in 𝜑 and 𝑔. We do this numerically, using arrested Newton flow. This
algorithm works by solving Newton’s equations of motion for the energy𝑀𝛣, written formally as:

d2

d𝑡2 (𝜑
𝜇, 𝑔𝑖𝑗) = −∇𝑀𝛣. (5.3.1)

Initial conditions are chosen such that d
d𝑡 (𝜑

𝜇, 𝑔𝑖𝑗) = 0. These ensure that the flow reduces energy at
early times. If at any later time the energy begins to increase, the flow is arrested and the velocities
d
d𝑡 (𝜑

𝜇, 𝑔𝑖𝑗) are set to zero. The flow then resumes from the same position. It is deemed to have
converged when ∇𝑀𝛣 is sufficiently small.

We recall that 𝜔 appearing in the energy functional (5.2.19) depends on 𝜑 and 𝑔 through the
constraint (5.2.17). Thus computing𝑀𝛣 and its gradient entails computing 𝜔 at each time step.
As in [88], this is accomplished using a conjugate gradient method. The constraint (5.2.17) means
that the metric-dependence of the energy is much more complicated than in the standard Skyrme
model. As a result, the algorithm described here is slightly different from the algorithm used earlier
to find crystals in the standard Skyrme model [100].
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The gradient on the right hand side of (5.3.1) is understood using the calculus of variations.
We write ∇𝑀𝛣 = (Φ𝜇, 𝑆𝑖𝑗), in which Φ𝜇 and 𝑆𝑖𝑗 are defined by

d
d𝑠𝑀𝛣(𝜑𝑠, 𝑔𝑠)∣

𝑠=0
= ∫

T3
d3𝑥√𝑔 (Φ𝜇(𝜑, 𝑔)�̇�𝜇 + 𝑆𝑖𝑗(𝜑, 𝑔)�̇�𝑘𝑙𝑔𝑗𝑘𝑔𝑙𝑖) (5.3.2)

for all one-parameter variations 𝜑𝑠, 𝑔𝑠 with (𝜙0, 𝑔0) = (𝜙, 𝑔) and d
d𝑠 (𝜑𝑠, 𝑔𝑠) = (�̇�, �̇�) at 𝑠 = 0. The

calculation of Φ𝜇 and 𝑆𝑖𝑗 is delicate, because 𝜔 appearing in (5.2.19) depends on 𝜑 and 𝑔 implicitly
through the constraint (5.2.17). Using results of [88], Φ𝜇 is given (in the case of flat metrics on T3)
by

Φ𝜇 = −14(𝛿
𝜇𝜈 − 𝜑𝜇𝜑𝜈)(𝑚2𝛿0𝜈 + 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝜑

𝜈) +
𝑐𝜔

4𝜋2√𝑔
𝜖𝑖𝑗𝑘𝜖𝜇𝜈𝜌𝜎𝜑

𝜈𝜕𝑖𝜔𝜕𝑗𝜑
𝜌𝜕𝑘𝜑

𝜎. (5.3.3)

This coincides with the Euler–Lagrange equation of the original unconstrained energy functional
(5.2.12). The stress-energy tensor 𝑆𝑖𝑗 is computed in the following proposition, formulated in the
general setting of maps 𝜑 ∶ (𝑀, 𝑔) → (𝑁, ℎ) between Riemannian 3-manifolds.

Proposition 16. The stress-energy tensor 𝑆 = 𝑆𝑖𝑗d𝑥𝑖d𝑥𝑗 associated to the energy (5.2.20) is the section
of Γ(⊙2𝑇∗𝑀) given by

𝑆(𝜑, 𝑔) = ( 116|d𝜑|
2
𝑔 +

1
8(𝑉 ∘ 𝜑) − 1

4|d𝜔|
2
𝑔 −

1
4𝜔

2) 𝑔 − (18𝜑
∗ℎ − 1

2d𝜔 ⊗ d𝜔) (5.3.4)

Note that in local coordinates the formula (5.3.4) gives

𝑆𝑖𝑗 = ( 116𝑔
𝑚𝑛𝜕𝑚𝜑

𝜇𝜕𝑛𝜑
𝜇 + 1

8𝑚
2 (1 − 𝜑0) − 1

4𝑔
𝑚𝑛𝜕𝑚𝜔𝜕𝑛𝜔 −

1
4𝜔

2) 𝑔𝑖𝑗 −
1
8𝜕𝑖𝜑

𝜇𝜕𝑗𝜑
𝜇 + 1

2𝜕𝑖𝜔𝜕𝑗𝜔. (5.3.5)

This coincides with the stress tensor for the original unconstrained energy functional (5.2.12).

Proof. Let us reintroduce the notation ⟨𝐴, 𝐵⟩𝑔 = 𝐴𝑖𝑗𝐵𝑘𝑙𝑔
𝑖𝑘𝑔𝑗𝑙 for the natural inner product of two-

tensors 𝐴 = 𝐴𝑖𝑗d𝑥𝑖d𝑥𝑗, 𝐵 = 𝐵𝑘𝑙d𝑥𝑘d𝑥𝑙. On a curve 𝑔𝑠 in the space of flat metrics, the variation of the
inverse metric is found to be

d
d𝑠 ∣𝑠=0

𝑔𝑖𝑗(𝑠) = −𝑔𝑖𝑘(𝛿𝑔)𝑘𝑙𝑔
𝑙𝑗, (5.3.6)

and the variation of the volume is well-known, which is given by [109, p. 82]

d
d𝑠 ∣𝑠=0

vol𝑔𝑠 =
1
2 ⟨𝑔, 𝛿𝑔⟩𝑔 vol𝑔. (5.3.7)

The first variation of the Dirichlet energy with respect to the metric 𝑔 is given by, e.g., [110, p. 19]

d𝐸2(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= d

d𝑠 ∣𝑠=0
(18 ∫𝛭

|d𝜑|2𝑔𝑠vol𝑔𝑠) = ∫
𝛭
⟨ 116|d𝜑|

2
𝑔𝑔 −

1
8𝜑

∗ℎ, 𝛿𝑔⟩
𝑔
vol𝑔. (5.3.8)

The potential function𝑉∘𝜑 has no dependence on themetric 𝑔 and so the variation of the potential
is simply

d𝐸0(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= 1
4 ∫𝛭

(𝑉 ∘ 𝜑)
dvol𝑔𝑠
d𝑠 ∣

𝑠=0

= ∫
𝛭
⟨18(𝑉 ∘ 𝜑)𝑔, 𝛿𝑔⟩

𝑔
vol𝑔. (5.3.9)



108 5. Skyrmion Crystals Stabilized by ω-Mesons

This produces the first part of the stress-energy tensor, corresponding to the first variation of the
Skyrme energy functional (5.2.21),

𝑆𝜑(𝜑, 𝑔) = ( 116|d𝜑|
2
𝑔 +

1
8(𝑉 ∘ 𝜑)) 𝑔 − 1

8𝜑
∗ℎ. (5.3.10)

Now, let us focus on computing the first variation of the 𝜔-meson energy functional (5.2.22).
Using the constraint (5.2.23), the 𝜔-energy functional (5.2.22) can be expressedmore conveniently
in the form

𝑀𝜔
𝛣 (𝜑, 𝑔) = ∫

𝛭
(12 ∣d𝜔∣

2
𝑔
+ 1
2𝜔

2) vol𝑔 = −
𝑐𝜔
2 ∫

𝛭
𝜔𝜑∗Ω, (5.3.11)

where we note that the pullback 𝜑∗Ω ∈ Ω3(𝑀) is 𝑔-independent. Then, the first variation of this
with respect to the metric 𝑔𝑠 is found to be

d𝑀𝜔
𝛣 (𝜔𝑠, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= −

𝑐𝜔
2 ∫

𝛭
�̇�𝜑∗Ω

= −
𝑐𝜔
2 ⟨�̇�, ∗𝜑∗Ω⟩𝐿2(𝑔)

= 1
2 ⟨�̇�, (Δ𝑔 + 1) 𝜔⟩𝐿2(𝑔)

= 1
2 ⟨(Δ𝑔 + 1) �̇�, 𝜔⟩𝐿2(𝑔) , (5.3.12)

where we have denoted �̇� = d
d𝑠 ∣𝑠=0 𝜔𝑠. This can be simplified as follows. Consider the variation of

the Hodge star operator ∗𝑔 ∶ Ω3(𝑀) → Ω0(𝑀),

d
d𝑠 ∣𝑠=0

∗𝑔𝑠 = −12 ⟨𝑔, 𝛿𝑔⟩𝑔 ∗𝑔, (5.3.13)

and define Δ̇𝑔 =
d
d𝑠 ∣𝑠=0 Δ𝑔𝑠 . Then, varying the 𝜔-meson constraint (5.2.23), and using (5.3.13), yields

d
d𝑠 ∣𝑠=0

{(Δ𝑔𝑠 + 1) 𝜔𝑠} = (Δ𝑔 + 1) �̇� + Δ̇𝑔𝜔

= d
d𝑠 ∣𝑠=0

{−𝑐𝜔 ∗𝑔𝑠 𝜑
∗Ω} =

𝑐𝜔
2 ⟨𝑔, 𝛿𝑔⟩𝑔 ∗𝑔 𝜑

∗Ω. (5.3.14)

Therefore,
(Δ𝑔 + 1) �̇� = −Δ̇𝑔𝜔 +

𝑐𝜔
2 ⟨𝑔, 𝛿𝑔⟩𝑔 ∗𝑔 𝜑

∗Ω (5.3.15)

and, hence, the first variation (5.3.12) becomes

d𝑀𝜔
𝛣 (𝜔𝑠, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= −12 ⟨Δ̇𝑔𝜔, 𝜔⟩𝐿2(𝑔) +

𝑐𝜔
4 ⟨∗𝑔𝜑

∗Ω,𝜔⟩
𝐿2(𝑔)

⟨𝑔, 𝛿𝑔⟩𝑔 . (5.3.16)

We only need to deal with the first part of (5.3.16) as the second part can be re-expressed via
(5.2.23),

𝑐𝜔
4 ⟨∗𝑔𝜑

∗Ω,𝜔⟩
𝐿2(𝑔)

= −14 ⟨𝜔, (Δ𝑔 + 1) 𝜔⟩𝐿2(𝑔) . (5.3.17)
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For any compactly supported function 𝑓 ∶ 𝑀 → R,

∫
𝛭
𝑓 (Δ𝑔𝑠𝑓) vol𝑔𝑠 = ∫

𝛭
⟨d𝑓,d𝑓⟩𝑔𝑠 vol𝑔𝑠 = ∫

𝛭
𝑔−1𝑠 (d𝑓,d𝑓) vol𝑔𝑠 . (5.3.18)

Varying this gives

d
d𝑠 ∣𝑠=0

{∫
𝛭
𝑓 (Δ𝑔𝑠𝑓) vol𝑔𝑠} = ∫

𝛭
{𝑓Δ̇𝑔𝑓 +

1
2𝑓Δ𝑔𝑓 ⟨𝑔, 𝛿𝑔⟩𝑔} vol𝑔

= d
d𝑠 ∣𝑠=0

{∫
𝛭
𝑔−1𝑠 (d𝑓,d𝑓) vol𝑔𝑠}

= ∫
𝛭
{−𝛿𝑔 (∇𝑓, ∇𝑓) + 1

2|d𝑓|
2
𝑔 ⟨𝑔, 𝛿𝑔⟩𝑔} vol𝑔. (5.3.19)

This holds true for all functions 𝑓 and, in particular, the case of interest 𝑓 = 𝜔, where 𝜔 satisfies the
constraint (5.2.23). Thus,

∫
𝛭
(𝜔Δ̇𝑔𝜔) vol𝑔 = ∫

𝛭
{−12𝜔Δ𝑔𝜔 ⟨𝑔, 𝛿𝑔⟩𝑔 − ⟨d𝜔 ⊗ d𝜔, 𝛿𝑔⟩𝑔 +

1
2|d𝜔|

2
𝑔 ⟨𝑔, 𝛿𝑔⟩𝑔} vol𝑔. (5.3.20)

Finally, substituting (5.3.20) into (5.3.16), we obtain the first variation of the 𝜔-energy functional
(5.2.22),

d𝑀𝜔
𝛣 (𝜔𝑠, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= ∫

𝛭
{⟨12d𝜔 ⊗ d𝜔 − 1

4|d𝜔|
2
𝑔𝑔 −

1
4𝜔

2𝑔, 𝛿𝑔⟩
𝑔
} vol𝑔, (5.3.21)

with the corresponding stress-energy tensor given by

𝑆𝜔(𝜑, 𝑔) = 1
2d𝜔 ⊗ d𝜔 − 1

4 (|d𝜔|
2
𝑔 + 𝜔

2) 𝑔. (5.3.22)

Combining the Skyrme and 𝜔 stress-energy tensors ((5.3.10) and (5.3.22)), we arrive at the
stress-energy tensor (5.3.4) corresponding to the first variation of the energy functional (5.2.20)
with respect to the metric 𝑔𝑠, as required. 2

To summarize, in the preceding chapters the metric 𝑔 and Skyrme field 𝜑were varied somewhat
independently. Gradient descent basedmethodswere employed tominimize the energywith respect
to variations of both the field 𝜑 and metric 𝑔. Each time step of the minimization scheme for the
Skyrme field, the energy with respect to the metric (for fixed field configuration) is completely
minimized, thereby continuously determining and updating the optimal metric within the flow.
However, this is not possiblewithin the𝜔-Skyrmemodel. The𝜔-meson constraint (5.2.23) prevents
themetric and𝜔-meson frombeing varied independently. In the currentmethod, only the𝜔-meson
is fully updated each loop, whereas the field and metric minimizations are carried out in tandem.

Let us consider the particular case of interest, 𝜑 ∶ T3 → 𝑆3, and define the new metric indepen-
dent integrals

𝑉± = ∫
T3
d3𝑥 (14𝑚

2 (1 − 𝜑0) ± 1
2𝜔

2) = 𝑉𝜑 ± 𝑉𝜔, (5.3.23)

𝐿±𝑖𝑗 = ∫
T3
d3𝑥 (18𝜕𝑖𝜑

𝜇𝜕𝑗𝜑
𝜇 ± 1

2𝜕𝑖𝜔𝜕𝑗𝜔) = 𝐿𝜑𝑖𝑗 ± 𝐿
𝜔
𝑖𝑗. (5.3.24)
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(a) SC1/2 crystal (b) 𝛼-particle crystal

(c) multi-wall crystal (d) chain crystal

Figure 5.1: Baryon density ℬ0(�⃗�) and omega density 𝜔0(�⃗�) plots of the four crystalline solutions for the
coupling constant 𝑐𝜔 = 14.34.

Then the energy functional can be written simply as

𝑀𝛣(𝜑, 𝑔) = √𝑔 𝑔
𝑖𝑗𝐿+𝑖𝑗 + √𝑔𝑉

+. (5.3.25)

Likewise, the energy gradientwith respect to themetric is defined in termsof themetric independent
integrals (5.3.23) and (5.3.24) as

𝜕𝑀𝛣
𝜕𝑔𝑖𝑗

= ∫
T3
d3𝑥√𝑔 𝑆𝑖𝑗 = 1

2√𝑔 𝑔
𝑖𝑗𝑉− + √𝑔 (

1
2𝑔

𝑚𝑛𝑔𝑖𝑗 − 𝑔𝑖𝑚𝑔𝑗𝑛) 𝐿−𝑖𝑗, (5.3.26)

where the contravariant components of the stress-energy tensor are defined by 𝑆𝑖𝑗 = 𝑔𝑖𝑘𝑆𝑘𝑙𝑔
𝑙𝑗.

5.4 Skyrmion Crystals Coupled to ω-Mesons
The previous sections have described our numerical algorithm that constructs skyrmion crystals
by relaxing a choice of initial configuration (𝜑0, 𝜔0, 𝑔0). As in previous chapters, our initial con-
figurations are based on the SC1/2 crystal in the massless ℒ24-Skyrme model with no 𝜔-mesons.
The initial Skyrme field and metric are (𝜑0, 𝑔0) = (𝜑1/2, 𝑔1/2), where (𝜑1/2, 𝑔1/2)minimizes the static
ℒ24-energy functional. Following Gudnason and Speight [88], we set the initial configuration for
the 𝜔-meson to be 𝜔0 = −𝑐𝜔ℬ0. In Chap. 3, we showed that the other three crystals (𝜑𝛼, 𝜑chain and
𝜑multi-wall) can be constructed from 𝜑1/2 by applying a chiral SO(4) transformation𝑄 ∈ SO(4), with
𝑄 defined by (4.2.6).

The energy (5.2.19) and constraint (5.2.17) involve two dimensionless parameters: 𝑐𝜔 and 𝑚.
We used three different parameter choices that have been proposed in the literature [88, 161, 164].
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Crystal 𝑐𝜔 𝐹𝜋 (MeV) 𝑚𝜋 (MeV) 𝑚𝜔 (MeV) 𝐸 𝐸/𝐵 (MeV) 𝐸/𝐸bound
SC1/2 98.4 124.0 138.0 782.0 145.7761 716.6 3.6683
𝛼 98.4 124.0 138.0 782.0 145.4590 715.0 3.7315

chain 98.4 124.0 138.0 782.0 145.4526 715.0 3.7337
multi-wall 98.4 124.0 138.0 782.0 145.4477 715.0 3.7501
SC1/2 34.7 186.0 138.0 782.0 77.8067 860.6 3.8248
𝛼 34.7 186.0 138.0 782.0 77.7126 859.6 3.8699

multi-wall 34.7 186.0 138.0 782.0 77.6870 859.3 3.8954
chain 34.7 186.0 138.0 782.0 77.6758 859.1 3.9137
SC1/2 14.34 139.8 43.91 249.5 47.2632 925.6 3.8676
chain 14.34 139.8 43.91 249.5 47.0900 922.2 4.4448
𝛼 14.34 139.8 43.91 249.5 47.0867 922.1 4.5075

multi-wall 14.34 139.8 43.91 249.5 46.8397 917.5 4.9389

Table 5.1: Comparison of the four crystalline solutions for the three different sets of parameters (𝑐𝜔 = 98.4
[161], 𝑐𝜔 = 34.7 [164] and 𝑐𝜔 = 14.34 [88]).

Adkins and Nappi [161] chose the value 𝑐𝜔 = 98.4 by fitting the mass of the nucleon and the delta
resonance. Sutcliffe [164] chose the value 𝑐𝜔 = 34.7 by fitting the pion decay constant 𝐹𝜋 and the
mass of helium-4 to their experimental values. Finally, Gudnason and Speight [88] chose the value
𝑐𝜔 = 14.34 motivated by a range of considerations and, in particular, it predicted more realistic
binding energies. In all calibrations, the parameter 𝑚 = 𝑚𝜋/𝑚𝜔 is fixed to its experimental value
0.176. For more details, see Tab. 5.1.

The results of our relaxation algorithm are given in Tab. 5.1. Plots of the baryon density and
𝜔 field are shown in Fig. 5.1 for 𝑐𝜔 = 14.34 (pictures for other calibrations are similar). The SC1/2
crystal always has a higher energy than the other three, but the 𝛼, chain, and multi-wall crystals
are very close in energy and their relative ordering seems to depend on 𝑐𝜔. For 𝑐𝜔 = 14.34 and 98.4
the multi-wall crystal appears to have the lowest energy. For 𝑐𝜔 = 34.7 the chain crystal may have a
lower energy, but the numerical values are too close to be confident of this. For comparison, in the
Skyrme model with no 𝜔-meson the multi-wall-crystal has lowest energy [100].

As in Chapters 3 and 4, the fundamental domain of the lattice Λ is not cubic for the multi-wall
and chain crystals. For the multi-wall crystal the two equal side lengths are shorter than the third
side, while for the chain crystal they are longer.

Finally, we note that the energies of the crystals are all greater than the bound (5.2.29) derived
in Prop. 16 by a factor of at least 3.5. This is unsurprising, as the derivation of the bound ignores
most terms in the energy. The discrepancy seems to be greater for the lowest-energy solutions;
this is because the bound (5.2.29) depends on the volume of the lattice fundamental domain, and
solutions with lower energy happen to have large volumes. We expect the bound (5.2.29) to be
more effective when the size of the lattice fundamental domain is constrained to be small.

5.5 Bethe–Weizsäcker Semi Empirical Mass Formula
In principle, one would like to compare quantized skyrmions to nuclei and their excited states
and, in particular, predict correct binding energies using the Bethe–Weizsäcker semi empirical
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mass formula (SEMF), or liquid drop model. In this section we use skyrmion crystals to estimate
coefficients in the SEMF. This is an approximate formula for the binding energy of a nucleus with
baryon number 𝐵 and takes the form

𝐸𝑏 = 𝑎𝑉𝐵 − 𝑎𝑆𝐵
2/3 − 𝑎𝐶

𝑍(𝑍 − 1)
𝐵1/3

− 𝑎𝛢𝛿
2𝐵 + 𝛿(𝑁, 𝑍), (5.5.1)

where Z is the proton number and𝑁 = 𝐵 − 𝑍 is the neutron number. We will focus only on the
the first two terms, these are associated with the volume and surface area of the nucleus, and they
are determined from the classical mass of a nucleus. Therefore, the classical mass𝑀𝛣 of a skyrmion
plays an important role in the SEMF, so understanding the phase structure of nuclear matter in
the Skyrme model is crucial in estimating these two coefficients. Typical empirically-determined
values for their coefficients are 𝑎𝑉 = 15.7 − 16.0MeV and 𝑎𝑆 = 17.3 − 18.4MeV [178].

Very few attempts have been made at estimating any of the terms using skyrmions. Ma et al.
[18] have investigated the effect of the Coulomb energy onℒ024-skyrmions with baryon number
𝐵 = 4𝑛, by applying an 𝛼-particle approximation (APA), giving an accurate estimation of the
Coulomb coefficient. They find that 𝑎𝐶 = 0.608MeV, which is in excellent agreement with the
experimentally determined value of 𝑎𝐶 = 0.625MeV. We showed in the previous chapter that the
asymmetry coefficient 𝑎𝛢 can be identified with the symmetry energy 𝑆𝛮(𝑛𝛣) in the zero density
𝑛𝛣 → 0 limit 𝑎𝛢 ∼ 𝑆𝛮(0). It was found that 𝑆𝛮(0) = 23.8MeV, which agrees extremely well with
the experimental value 𝑎𝛢 = 23.7MeV. However, the volume 𝑎𝑉 and surface 𝑎𝑆 coefficients have
hitherto remained out of grasp.

Baskerville [17] attempted to address the volume 𝑎𝑉 and surface 𝑎𝑆 coefficients by building
skyrmions from the SC1/2 crystal. This was carried out in the masslessℒ24-Skyrmemodel. Therein,
a simple cubic approximation was employed, where the SC unit cell was layered to give 8𝑛3 half-
skyrmions with a total crystal chunk charge of 𝐵 = 4𝑛3. The surface and volume energies of a single
(cubic) half-skyrmion were estimated and then used to approximate higher charge cubic skyrmions
(𝐵 = 4, 32, 108, 256) using a power-law extrapolation and also an exponential extrapolation. How-
ever, this did not reveal promising results. They predicted that 𝑎𝑉 = 136MeV and 𝑎𝑆 = 320MeV,
which are approximately an order of magnitude too large.

As the massive 𝛼-particle crystal, in general, has lower energy than the SC1/2 crystal, we choose
to approach the SEMF using the APA with 𝑛3 𝛼-particles. This gives the correct scaling of both
terms, 𝑎𝑉 and 𝑎𝑆, with the baryon number 𝐵. Within the APA, we are considering a cubic skyrmion
built from 𝑛3 𝐵 = 4 cubic 𝛼-particles. The 𝛼-particle can be obtained by using the 𝐵 = 4 rational
map ansatz as an initial condition [23], with some appropriate profile function 𝑓(𝑟) that satisfies
the boundary conditions 𝑓(0) = 𝜋 and 𝑓(∞) = 0, and the 𝑂ℎ-symmetric rational map

𝑅(𝑧) = 𝑧4 + 2√3𝑖𝑧2 + 1
𝑧4 − 2√3𝑖𝑧2 + 1

. (5.5.2)

Using polar coordinates for R3, 𝑧 = tan(𝜃/2) exp(𝑖𝜙), with radius 𝑟, the rational map ansatz is given
by

𝜑(𝑟, 𝑧) = exp [ 𝑖𝑓(𝑟)
1 + |𝑅|2

(1 − |𝑅|
2 2�̄�

2𝑅 |𝑅|2 − 1
)] . (5.5.3)

Higher charge 𝐵 skyrmions can then be obtained by using the relativized product ansatz

𝜑 =
𝜑1𝜑2 + 𝜑2𝜑1

√det(𝜑1𝜑2 + 𝜑2𝜑1)
. (5.5.4)
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Figure 5.2: Plot of the Bethe–Weizsäcker SEMF from the 𝛼-particle approximation for the 𝜔-Skyrmemodel.

The energy of a 𝐵 = 4𝑛3 𝛼-particle crystal chunk within the APA can be estimated by decom-
posing the energy into bulk and surface contributions. The corresponding charge 𝐵 chunk energy
is then approximated by

𝐸𝛣
chunk =

𝐸𝛼
cell

𝐵𝛼cell
𝐵 + 𝐸𝑆

chunk, (5.5.5)

where 𝐸cell and 𝐵cell are the energy and charge of the 𝛼-particle crystal unit cell, respectively, and the
surface energy of the chunk is

𝐸𝑆
chunk = 6𝑛2𝐸𝛼

face =
3𝐸𝛼

face
3√2

𝐵2/3. (5.5.6)

Therefore, within the APA, the classical binding energy of an isospin symmetric chunk can be
expressed as

𝐸𝑏 = 𝐵𝑀1 − 𝐸
𝛣
chunk = (𝑀1 −

𝐸𝛼
cell

𝐵𝛼cell
) 𝐵 −

3𝐸𝛼
face

3√2
𝐵2/3. (5.5.7)

Hence, the volume and surface coefficients can be estimated, respectively, by

𝑎𝑉 = 𝑀1 −
𝐸𝛼
cell

𝐵𝛼cell
, 𝑎𝑆 =

3𝐸𝛼
face

3√2
. (5.5.8)

The volume term is relatively straight-forward to compute – we only need to know the energies
of the 𝐵 = 1 hedgehog skyrmion and the 𝛼-particle crystal. Using the method developed by Gud-
nason and Speight [88], with coupling constant 𝑐𝜔 = 14.34, we compute𝑀1 = 937.7MeV. From
Tab. 5.1, the 𝛼-crystal energy for coupling constant 𝑐𝜔 = 14.34 is given by 𝐸𝛼

cell/𝐵
𝛼
cell = 922.1MeV.

Then the volume term is determined to be 𝑎𝑉 = 937.7 − 922.1 = 15.6MeV.
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Now, computing the surface term, however, is a bit more complicated. It involves estimating
the surface energy of a face of the cubic 𝐵 = 4 𝛼-particle. In the context of the baby Skyrmemodel, a
method to determine the surface energy of a crystal chunkwas laid out inChap. 2. Therein, a crystal
slab model was developed where crystals were increasingly layered on an infinite cylinder R × 𝑆1

of width 𝐿crystal. This can be generalized to three dimensions such that 𝛼-particles are layered on
𝑀 = R×𝑆1×𝑆1 with cross-sectional area 𝐿2𝛼 , where the volume of theminimal energy cubic 𝛼-particle
crystal is 𝐿3𝛼 . The domain is still compact without boundary and, so, the baryon number is still
well-defined. We define an 𝑛-layer crystal slab to be a layered crystal consisting of 𝑛 𝛼 particles stacked
vertically as described above. Then, for an 𝑛-layer 𝛼-crystal slab, the energy can be approximated
simply as

𝐸slab = 𝑛𝐸𝛼
cell + 2𝐸

𝛼
face. (5.5.9)

By numerically computing the energies of various 𝑛-layer 𝛼-slabs with 𝑛 ∈ {1, 2, 3, 4}, the surface
energy can be approximated using a least-squares fitting. Using a trust region reflective algorithm,
the surface energy of an 𝛼-particle face is found to be 𝐸𝛼

face = 7.8MeV, which yields 𝑎𝑆 = 18.6MeV.
The resulting binding energy per nucleon curve is plotted in Figure 5.2. For comparison,

we have also plotted the energy per baryon 𝑀𝛣/𝐵 for the three cubic skyrmions with 𝐵 = 4𝑛3

and 𝑛 = 1, 2, 3which have been calculated using arrested Newton flow. These are all close to the
fitted curve, confirming the validity of the approximate formula (5.5.6). We note the emergence
of 𝛼-particle clustering, which is expected for light-medium nuclei, and was also observed in the
context of the 𝜌-meson model [169].

Further, let us use the volume 𝑎𝑉 = 15.6MeV and surface 𝑎𝑆 = 18.6MeV coefficients obtained
from our APA and take into consideration the Coulomb coefficient 𝑎𝐶 = 0.608MeV predicted
byMa et al. [18], also within the APA framework. Then, let us substitute these coefficients into
the Bethe–Weizsäcker SEMF (5.5.1) and consider only isospin symmetric nuclear matter, i.e. we
ignore the asymmetry term. The results can be compared to experimental data*, where we only
consider the subset of data consisting of isospin symmetric nuclei (𝑁 = 𝑍). These are shown in
Fig. 5.3 and it can be seen that the approximation fits the experimental data well.

The caveat with the above result is that, although we have approximated the binding energies
per nucleon 𝐸𝑏 considerably well, we have used the Coulomb coefficient obtained in the massive
ℒ024-Skyrme model. To properly consider the Coulomb effect we would need to quantize the
isospin degrees of freedom within the 𝜔-Skyrme model, and construct the isospin density from the
vectorial (Noether) current. This would, further, enable us to predict the asymmetry coefficient
also, as this is controlled by the isospin moment of inertia tensor.

5.6 Incompressibility of Nuclear Matter

In the previous sectionwe addressed binding energies in finite atomic nuclei using skyrmion crystals.
Now we use skyrmion crystals to investigate binding energies in infinitely dense nuclear matter.
Consider isospin symmetric nuclear matter at zero temperature with baryon number 𝐵 = 𝑁 + 𝑍.
The (symmetric) energy 𝐸(𝑛𝛣) ≡ 𝑀𝛣(𝑛𝛣)/𝐵 of such matter can be approximated about the nuclear

*Information extracted from the NuDat database, National Nuclear Data Center,
https://www.nndc.bnl.gov/nudat/

https://www.nndc.bnl.gov/nudat/
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Figure 5.3: The binding energies per nucleon of isospin symmetric nuclei using the Bethe–Weizsäcker
semi-empirical mass formula (5.5.1). The experimental data (red crosses) are shown alongside
the predicted values within the 𝛼-particle approximation (solid blue line).

saturation density 𝑛0 by use of a power series expansion in the baryon density 𝑛𝛣, that is [179]

𝐸(𝑛𝛣) = 𝐸0 +
1
2𝐾0

(𝑛𝛣 − 𝑛0)
2

9𝑛20
+ 𝒪 ((𝑛𝛣 − 𝑛0)

3) , (5.6.1)

where we recall that the first term, associated to the nuclear saturation point 𝑛0, is identified with
the saturation energy 𝐸0 ≡ 𝑀𝛣(𝑛0)/𝐵. There is no linear term since symmetric nuclear matter
reaches a minimum of the energy at saturation. The next term is the one of interest, it is the
nuclear incompressibility coefficient, or compression modulus,𝐾0, which can be obtained from
the expansion (5.6.1),

𝐾0 = 9𝑛20
𝜕2𝐸
𝜕𝑛2𝛣

∣
𝑛0

. (5.6.2)

This is a fundamental quantity in nuclear physics as it is a measure of nuclear resistance under
pressure at the saturation point, and imposes significant constraints on the nuclear matter equation
of state.

In order to extract information regarding the incompressibility coefficient, onemust investigate
the isoscalar giant monopole resonance (ISGMR), or the so-called breathing mode [180], a funda-
mental problem in nuclear physics, The study of the ISGMR enables one to directly investigate
the nuclear incompressibility in finite nuclear matter,𝐾𝛣. This resonance is a collective excitation
of the nucleus, in which both protons and neutrons vibrate spherically in phase. It is measured
through the low-momentum transfer in inelastic scattering collisions between isoscalar particles
(like 𝛼 particles or deuterons) andmedium-heavy nuclei 𝐵 ∼ 90 (like 90Zr, 112–124Sn and 106,100–116Cd
isotopes), and heavier nuclei (such as 144Sm and 208Pb). The energy of this resonance for a given
nucleus may be related to its compression modulus𝐾𝛣 [181],

𝐸ISGMR = ℏ√
𝐾𝛣

𝑀𝛣 ⟨𝑟2⟩
, (5.6.3)
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where ⟨𝑟2⟩ is the mean square radius of the nucleus and𝑀𝛣 is the mass of the nucleon. In relation
to medium-heavy nuclei, this expression is well-defined and the ISGMR is associated to a single
peak at the energy 𝐸ISGMR ∼ 80𝐵−1/3 [182].

The relationship between the finite nucleus incompressibility 𝐾𝛣 and the nuclear matter in-
compressibility𝐾0 is still an open problem. However, in a similar fashion to the expansion of the
liquid drop model (5.5.1), one can consider the so-called leptodermous expansion [180, 182, 183]:

𝐾𝛣 = 𝐾0 + 𝐾𝑆𝐵
−1/3 + 𝐾𝛢 (

𝑁 − 𝑍
𝐵 )

2
+ 𝐾𝐶𝑍

2𝐵−4/3, (5.6.4)

This enables the computation of the finite nucleus incompressibility𝐾𝛣 and, hence, the ISGMR
centroid energy 𝐸ISGMR. The nuclear matter incompressibility modulus 𝐾0 cannot be directly
measured, but it may be extracted from the ISGMR centroid energy 𝐸ISGMR by comparing the
experimental energies of the ISGMRwith the corresponding theoretically calculated values [184–
187]. For a recent review on current methods to determine the relationship between𝐾𝛣 and𝐾0, see,
e.g., Garg and Coló [179].

Using the abovemethod, Blaizot [180] showed in 1980 that the experimental data is compatible
with a compression modulus value of𝐾0 ∼ 210 ± 30MeV. If we consider the ratio 𝑐 = 𝐾0/𝐾𝑆 ∼ −1
then one obtains the more generally accepted fiducial value of𝐾0 ∼ 240 ± 20MeV. However, Stone
et al. [188] observed that fits are significantly improved if 𝑐 is allowed to vary and they obtain higher
values for the compression modulus, 250 < 𝐾0 < 315MeV. Many other field theoretic methods
have also been employed to predict the compressionmodulus𝐾0 using the leptodermous expansion
(5.6.4), and are detailed in [178].

Our starting point in determining the compression modulus within the Skyrme model is the
SC1/2 crystal in themasslessℒ24-Skyrmemodel. Consider a variation 𝜑𝜆 ∶ T3 ×R → 𝑆3 of the Skyrme
field 𝜑 such that 𝜑𝜆=0 = 𝜑. This has infinitesimal generator 𝜕𝜆𝜑𝜆|𝜆=0 ∈ Γ(𝜑−1𝑇𝑆3), where 𝜑−1𝑇𝑆3 is the
vector bundle over T3 with fibre 𝑇𝜑(𝑥)𝑆3 over 𝑥 ∈ T3. Explicitly, if we consider the spatial rescaling
𝑥 ↦ 𝑒𝜆𝑥, then we have a one-parameter family of maps 𝜑𝜆 = 𝜑(𝑒𝜆𝑥) such that 𝜑𝜆=0 = 𝜑. The rescaled
masslessℒ24 static energy functional is then

𝐸𝜆 ≡ 𝐸24[𝜑𝜆] = 𝑒𝜆𝐸2 + 𝑒
−𝜆𝐸4. (5.6.5)

If the Skyrme field configuration 𝜑 is a minimizer of theℒ24-energy 𝐸, then we require

d
d𝜆∣𝜆=0

𝐸24[𝜑𝜆] = 𝐸2 − 𝐸4 = 0, (5.6.6)

which yields the familiar massless virial constraint 𝐸2 = 𝐸4.
The trueℒ24-energy minimizing crystal is the cubic lattice of half-skyrmions (SC1/2 crystal)

found independently by Kugler & Shtrikmann [39] and Castillejo et al. [40]. Let us denote
this minimal energy crystalline solution of the ℒ24-Skyrme model by 𝜑1/2 ≡ 𝜑(𝐿1/2), where 𝐿1/2
corresponds to the side length of the energy minimizing cubic lattice. Under the one-parameter
variation 𝐿1/2 ↦ 𝑒𝜆𝐿1/2, the rescaled SC1/2 crystal configuration 𝜑(𝑒𝜆𝐿1/2) approximates the true
minimizer at volume 𝑉 = 𝑒3𝜆𝐿31/2 extremely well for small 𝜆. Then, the compression modulus may
be related to the second derivative of the energy with respect to the scaling factor 𝜆,

𝐾0 =
d2

d𝜆2 ∣
𝜆=0

𝐸24[𝜑(𝑒
𝜆𝐿1/2)] = 𝐸2[𝜑1/2] + 𝐸4[𝜑1/2] = 𝐸0. (5.6.7)
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Figure 5.4: The energy per baryon 𝑀𝛣/𝐵 of the multi-wall crystal for various baryon densities 𝑛𝛣 near
saturation 𝑛0. The compression modulus𝐾0 is determined by fitting a quadratic approximation
to various data points about 𝑛0, and is found to be𝐾0 = 370MeV.

Thus, one obtains the ratio 𝐾0/𝐸0 = 1. However, experimentally, this ratio is approximately
𝐾0/𝐸0 ∼ 1/4. Hence, the compression modulus is roughly four times too large in the massless
ℒ24-Skyrme model. The other three crystals slightly improves the issue, but still gives compression
modulus values𝐾0 > 𝐸0/3.

If we include the pion mass potential then the compression modulus increases further,𝐾0 ∼
1350MeV in the ℒ024-model. Things appear worse if we include the sextic term as this acts to
stiffen the equation of state, leading to neutron stars with larger maximal masses (closer to observed
masses), but at the cost of increasing the compression modulus, with coupling constant dependent
values of𝐾0 ∼ 1350 − 2300MeV. On the other hand, consider the BPSℒ06 model, where skyrmion
matter behaves as a perfect fluid. This has zero binding energies and so the compression modulus
is zero for any potential which provides a non-zero pion mass [137]. So a possible remedy to
the compression modulus problem within the Skyrme framework is consideration of a near-BPS
Skyrme model [189, 190]. We show here that this is not necessary and inclusion of vector mesons is
able to solve the issue.

In general, as we have previously motivated in Sec. 4.2, the multi-wall crystal has a lower
compression modulus than the other three crystals. To see this, we must consider the energy
at the minimum 𝑀𝛣(𝑛0) and the zero density energy 𝑀𝛣(𝑛𝛣 = 0). Then the energy difference
Δ𝐸 = 𝑀𝛣(0) −𝑀𝛣(𝑛0) is minimal for the multi-wall crystal and, so, should provide a more shallow
minimum(and, thus, a lower compressionmodulus). Further, if themodel has lowbinding energies
per nucleon then𝑀1 should be close to𝑀𝛣(0)/𝐵 and the energy difference Δ𝐸 = 𝑀𝛣(0) −𝑀𝛣(𝑛0)
optimal. So, naturally, a Skyrme model with low binding energies should be able to predict a
nuclear matter incompressibility coefficient of the correct order of magnitude. We exploit this
knowledge and use the low binding energy 𝜔-Skyrme model with coupling constant 𝑐𝜔 = 14.34 to
determine the compression modulus𝐾0. The resulting data is plotted in Fig. 5.4 and we determine
a much more acceptable compression modulus value of𝐾0 = 370MeV.
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Conclusion

In this thesis we have proposed robust methods to determine crystalline configurations in various
Skyrme models and investigated their applications to cold dense nuclear matter. We laid out the
foundations of the Skyrme model in Chap. 1 and reviewed the current literature on skyrmion
crystals. In particular, the SC1/2 and BCC1/2 crystals in the masslessℒ24-Skyrme model, and their
corresponding symmetries, were reviewed in detail, with emphasis on the SC1/2 crystal. We then
motivated the need for studying skyrmion crystals and posed the question: what happens when
the pion mass term is included and the chiral SO(4) symmetry (of which the SC1/2 crystal enjoys)
is explicitly broken to a SO(3) isospin symmetry?

However, before pursuing massive (3 + 1)-dimensional skyrmion crystals, we turned our atten-
tion to crystals in the (2 + 1)-dimensional baby Skyrme model in Chap. 2. The method developed
therein is applicable to an arbitrary choice of potential function 𝑉(𝜑), where we chose to focus on
two distinct potentials yielding quite different phenomena: the standard and easy plane potentials.
Due to the conformal invariance of the Dirichlet term in two dimensions, the problem is much
simpler than in the three dimensional case. Having obtained crystal solutions for both potentials
on T2 = 𝑆1 × 𝑆1, we then exploited this knowledge to construct layered crystal slabs on R × 𝑆1. From
this we extrapolated the surface energy of a crystal chunk and proposed a simple binding energy
formula for an arbitrary charge 𝐵 chunk, consisting of a bulk contribution and a surface term.

For (3 + 1)-dimensional skyrmion crystals we proved, in Chap. 3, the existence of a unique
critical metric. Further, we showed that this proof generalizes to fixed density 𝑛𝛣, or volume,
variations. This enabled us to investigate phases of nuclear matter and, in particular, obtain an
equation of state 𝜌 = 𝜌(𝑝) valid in all density 𝑛𝛣 regimes. Four crystalline configurations, with
unit cell charge 𝐵cell = 4, were shown to survive perturbation from the masslessℒ24-model to the
massiveℒ024-model. These are the SC1/2, 𝛼, chain and multi-wall crystals (the latter two being new
solutions). The existence of these four distinct crystals were understood semi-analytically by means
of the Principle of Symmetric Criticality and the Inverse Function Theorem. It was observed that
the multi-wall crystal is the ground state crystalline configuration at all densities 𝑛𝛣, making it the
prime candidate for the study of dense inhomogeneous nuclear matter.

In Chap. 4 we utilized the results and numerical method developed in Chap. 3 to investigate
crystals in the generalizedℒ0246-Skyrmemodel. Upon rigid body quantization of the isospin degrees
of freedom, we were able to consider isospin asymmetric neutron crystals, which are of relevance
in dense nuclear matter such as neutron stars. By allowing a small non-zero proton fraction,
an equation of state for 𝛽-equilibrated nuclear matter was constructed, with charge neutrality
maintained by screening with a constant background of negatively charged leptons. A peculiar
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120 6. Conclusion

result of this study was the presence of a cusp in the symmetry energy, which we have argued
signifies a phase transition from isospin asymmetric infinite nuclear matter to symmetric finite
nuclear matter. We reiterate that this phenomena was also observed by Lee et al. [151] in the
context of the SC1/2 crystal in the massive ℒ024-Skyrme model coupled to a scalar dilaton field.
They attributed the cusp to the “topological” phase transition from the SC1/2 crystal (SC lattice of
fractional half-skyrmions) to the FCC1 crystal (FCC lattice of 𝐵 = 1 hedgehogs) [152]. In the zero
density limit 𝑛𝛣 → 0, two interesting results were also observed/inferred. Firstly, the non-vanishing
of the symmetry energy, from which we identified with the asymmetry coefficient 𝑎𝛢 ∼ 𝑆𝛮(0) in the
SEMF. Secondly, nuclear matter becomes symmetric and the proton fraction 𝛾𝑝 → 0.5 from below
and is close to the proton fraction 𝛾𝑝 = 0.46 in 56Fe, which is abundant in the crust of a neutron
star (where 𝑛𝛣 ∼ 0). Both of these results are due to the non-vanishing of the isospin inertia tensor
component𝑈33(𝑛𝛣) in the zero density limit 𝑛𝛣 → 0. Finally, neutron stars were constructed from
the 𝛽-equilibrated multi-wall equation of state within the TOV framework. The resulting𝑀− 𝑅
curve fits the recent NICER/LIGO observational data rather well.

It was realized by Baskerville [17] that we could use skyrmion crystals to predict coefficients in
the Bethe–Weizsäcker SEMF, namely the volume 𝑎𝑉 and surface 𝑎𝑆 coefficients. The results they
obtained were off by an order of magnitude but the approach they used was not the problem. The
real inherent issue was that they considered themasslessℒ24-Skyrmemodel, which has high binding
energies and, so, one would expect the corresponding SEMF coefficients to be too large also. By
coupling the Skyrme model to the 𝜔-meson, Gudnason and Speight [88] were able to obtain a
Skyrmemodel with low binding energies. This motivated the study of crystals within the 𝜔-Skyrme
model in Chap. 5. The outcome of this chapter was the successful determination of the volume 𝑎𝑉
and surface 𝑎𝑆 coefficients in the SEMF. Additionally, we were able to extract information regarding
the nuclear matter incompressibility coefficient𝐾0 and address the compression modulus issue.
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A

Appendix

A.1 NLSM Formulation

In order to do numerics, we need to employ NL𝜎Mnotation. To do this, we write the Skyrme
field in terms of the pion fields, that is

𝜑 = 𝜑0 Id2 +𝑖𝜑𝑎𝜏𝑎. (A.1.1)

This has inverse
𝜑† = 𝜑0 Id2 −𝑖𝜑𝑎𝜏𝑎. (A.1.2)

Then the Maurer-Cartan form is

𝐿𝑖 = 𝜑†𝜕𝑖𝜑
= (𝜑0 Id2 −𝑖𝜑𝑎𝜏𝑎) (𝜕𝑖𝜑0 Id2 +𝑖𝜕𝑖𝜑𝑎𝜏𝑎)
= 𝜑0𝜕𝑖𝜑

0 + 𝜑𝑎𝜕𝑖𝜑
𝑏𝜏𝑎𝜏𝑏 − 𝑖𝜑𝑎𝜕𝑖𝜑

0𝜏𝑎 + 𝑖𝜑0𝜕𝑖𝜑
𝑏𝜏𝑏

= 𝜑0𝜕𝑖𝜑
0 + 𝜑𝑎𝜕𝑖𝜑

𝑎 + 𝑖𝜑𝑎𝜕𝑖𝜑
𝑏𝜀𝑎𝑏𝑐𝜏

𝑐 − 𝑖𝜑𝑎𝜕𝑖𝜑
0𝜏𝑎 + 𝑖𝜑0𝜕𝑖𝜑

𝑏𝜏𝑏

= −𝑖 (𝜕𝑖𝜑
0𝜑𝑎 − 𝜕𝑖𝜑

𝑎𝜑0 + 𝜀𝑎𝑏𝑐𝜕𝑖𝜑
𝑏𝜑𝑐) 𝜏𝑎. (A.1.3)

Hence, we have that

𝐿𝑖 = −𝑖𝐿𝑎𝑖 𝜏
𝑎, 𝐿𝑎𝑖 = 𝜀𝑎𝑏𝑐𝜕𝑖𝜑

𝑏𝜑𝑐 + 𝜕𝑖𝜑
0𝜑𝑎 − 𝜕𝑖𝜑

𝑎𝜑0. (A.1.4)

Now, using the relation

(𝜑𝜇𝜕𝑖𝜑
𝜇)(𝜑𝜈𝜕𝑗𝜑

𝜈) = (𝜑0𝜕𝑖𝜑
0)(𝜑0𝜕𝑗𝜑

0 + 𝜑𝑎𝜕𝑗𝜑
𝑎) + (𝜑𝑎𝜕𝑖𝜑

𝑎)(𝜑𝜇𝜕𝑗𝜑
𝜇) (A.1.5)

and the fact that 𝜑𝜇𝜕𝑖𝜑𝜇 = 0, since 𝜑 ∈ 𝑆3 and 𝜕𝑖𝜑 ∈ 𝑇𝑆3, we can write

(𝜑0𝜕𝑖𝜑
0)(𝜑𝑎𝜕𝑗𝜑

𝑎) + (𝜑𝑎𝜕𝑖𝜑
𝑎)(𝜑𝜇𝜕𝑗𝜑

𝜇) = −(𝜑0𝜕𝑖𝜑
0)(𝜑0𝜕𝑗𝜑

0). (A.1.6)
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This, and the identity Tr (𝜏𝑎𝜏𝑏) = 2𝛿𝑎𝑏, enables us to compute the term

Tr (𝐿𝑖𝐿𝑗) = (−𝑖𝐿𝑎𝑖 ) (−𝑖𝐿
𝑏
𝑗)Tr (𝜏𝑎𝜏𝑏)

= − 𝐿𝑎𝑖 𝐿
𝑏
𝑗 Tr (𝜏𝑎𝜏𝑏)

= − 2𝐿𝑎𝑖 𝐿
𝑎
𝑗

= − 2 (𝜀𝑎𝑏𝑐𝜕𝑖𝜑
𝑏𝜑𝑐 + 𝜕𝑖𝜑

0𝜑𝑎 − 𝜕𝑖𝜑
𝑎𝜑0) (𝜀𝑎𝑑𝑒𝜕𝑗𝜑

𝑑𝜑𝑒 + 𝜕𝑗𝜑
0𝜑𝑎 − 𝜕𝑗𝜑

𝑎𝜑0)

= − 2 {𝜀𝑎𝑏𝑐𝜀𝑎𝑑𝑒𝜑
𝑐𝜑𝑒𝜕𝑖𝜑

𝑏𝜕𝑗𝜑
𝑑 + 𝜀𝑎𝑏𝑐𝜑

𝑎𝜑𝑐𝜕𝑖𝜑
𝑏𝜕𝑗𝜑

0 − 𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐𝜕𝑖𝜑

𝑏𝜕𝑗𝜑
𝑎

+ 𝜀𝑎𝑑𝑒𝜑
𝑎𝜑𝑒𝜕𝑖𝜑

0𝜕𝑗𝜑
𝑑 + 𝜑𝑎𝜑𝑎𝜕𝑖𝜑

0𝜕𝑗𝜑
0 − 𝜑0𝜑𝑎𝜕𝑖𝜑

0𝜕𝑗𝜑
𝑎

−𝜀𝑎𝑑𝑒𝜑
0𝜑𝑒𝜕𝑖𝜑

𝑎𝜕𝑗𝜑
𝑑 − 𝜑0𝜑𝑎𝜕𝑖𝜑

𝑎𝜕𝑗𝜑
0 + 𝜑0𝜑0𝜕𝑖𝜑

𝑎𝜕𝑗𝜑
𝑎}

= − 2 {(𝜕𝑖𝜑
𝑏𝜕𝑗𝜑

𝑏)(𝜑𝑎𝜑𝑎) − (𝜑𝑎𝜕𝑖𝜑
𝑎)(𝜑𝑏𝜕𝑗𝜑

𝑏) − (𝜀𝑏𝑎𝑐𝜑
𝑎𝜑𝑐)𝜕𝑖𝜑

𝑏𝜕𝑗𝜑
0

+ (𝜀𝑐𝑏𝑎𝜕𝑖𝜑
𝑏𝜕𝑗𝜑

𝑎)𝜑𝑐𝜑0 + (𝜀𝑑𝑒𝑎𝜑
𝑒𝜑𝑎)𝜕𝑖𝜑

0𝜕𝑗𝜑
𝑑 + (𝜑𝑎𝜑𝑎)(𝜕𝑖𝜑

0𝜕𝑗𝜑
0)

− (𝜑0𝜕𝑖𝜑
0)(𝜑𝑎𝜕𝑗𝜑

𝑎) − (𝜀𝑏𝑎𝑐𝜕𝑖𝜑
𝑏𝜕𝑗𝜑

𝑎)𝜑0𝜑𝑐 − (𝜑0𝜕𝑗𝜑
0)(𝜑𝑎𝜕𝑖𝜑

𝑎)

+(𝜑0𝜑0)(𝜕𝑖𝜑
𝑎𝜕𝑗𝜑

𝑎)}

= − 2 {(𝜕𝑖𝜑
𝑏𝜕𝑗𝜑

𝑏)(𝜑𝑎𝜑𝑎) − (𝜑𝑎𝜕𝑖𝜑
𝑎)(𝜑𝑏𝜕𝑗𝜑

𝑏) + (𝜑𝑎𝜑𝑎)(𝜕𝑖𝜑
0𝜕𝑗𝜑

0)

+(𝜑0𝜑0)(𝜕𝑖𝜑
𝑎𝜕𝑗𝜑

𝑎) − (𝜑0𝜕𝑖𝜑
0)(𝜑𝑎𝜕𝑗𝜑

𝑎) − (𝜑𝑎𝜕𝑖𝜑
𝑎)(𝜑0𝜕𝑗𝜑

0)}

= − 2 {(𝜑𝑎𝜑𝑎)(𝜕𝑖𝜑
𝜇𝜕𝑗𝜑

𝜇) + (𝜑0𝜑0)(𝜕𝑖𝜑
𝑎𝜕𝑗𝜑

𝑎)

− [(𝜑0𝜕𝑖𝜑
0)(𝜑𝑎𝜕𝑗𝜑

𝑎) + (𝜑𝑎𝜕𝑖𝜑
𝑎)(𝜑𝜇𝜕𝑗𝜑

𝜇)]}

= − 2 {(𝜑𝑎𝜑𝑎)(𝜕𝑖𝜑
𝜇𝜕𝑗𝜑

𝜇) + (𝜑0𝜑0)(𝜕𝑖𝜑
𝑎𝜕𝑗𝜑

𝑎) + (𝜑0𝜕𝑖𝜑
0)(𝜑0𝜕𝑗𝜑

0)}

= − 2 𝜕𝑖𝜑
𝜇𝜕𝑗𝜑

𝜇. (A.1.7)

From this we get the following contraction

𝐿𝑎𝑖 𝐿
𝑎
𝑗 = 𝜕𝑖𝜑

𝜇𝜕𝑗𝜑
𝜇. (A.1.8)

Now, let us focus on the 𝔰𝔲(2) current:

𝑇𝑎 =
𝑖
2𝜑

† [𝜏𝑎, 𝜑]

= 𝑖
2 (𝜑

0 Id2 −𝑖𝜑𝑐𝜏𝑐) [𝜏𝑎, 𝜑0 Id2 +𝑖𝜑𝑏𝜏𝑏]

= 𝑖
2 (𝜑

0 Id2 −𝑖𝜑𝑐𝜏𝑐) (𝑖𝜑𝑏 [𝜏𝑎, 𝜏𝑏])

= −
𝜑𝑏

2 (𝜑0 Id2 −𝑖𝜑𝑐𝜏𝑐) (2𝑖𝜀𝑎𝑏𝑑𝜏𝑑)

= −𝑖𝜀𝑎𝑏𝑑𝜑
𝑏 (𝜑0 Id2 −𝑖𝜑𝑐𝜏𝑐) 𝜏𝑑

= −𝑖𝜀𝑎𝑏𝑑𝜑
𝑏𝜏𝑑𝜑0 − 𝜀𝑎𝑏𝑑𝜑

𝑏𝜑𝑐𝜏𝑐𝜏𝑑

= −𝑖𝜀𝑎𝑏𝑑𝜑
𝑏𝜏𝑑𝜑0 − 𝜀𝑎𝑏𝑑𝜑

𝑏𝜑𝑐 (𝛿𝑐𝑑 Id2 +𝑖𝜀𝑐𝑑𝑒𝜏𝑒)
= −𝑖𝜀𝑎𝑏𝑐𝜑

𝑏𝜏𝑐𝜑0 − 𝜀𝑎𝑏𝑐𝜑
𝑏𝜑𝑐 − 𝑖𝜑𝑏𝜑𝑏𝜏𝑎 + 𝑖𝜑𝑏𝜑𝑎𝜏𝑏

= 𝑖𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐𝜏𝑏 − 𝑖𝜑𝑐𝜑𝑐𝛿𝑎𝑏𝜏𝑏 + 𝑖𝜑𝑎𝜑𝑏𝜏𝑏 − 𝜀𝑎𝑏𝑐𝜑

𝑏𝜑𝑐



A.1. NLSM Formulation 123

= 𝑖 (𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐 − 𝜑𝑐𝜑𝑐𝛿𝑎𝑏 + 𝜑𝑎𝜑𝑏) 𝜏𝑏

= −𝑖 (𝛿𝑎𝑏𝜑𝑐𝜑𝑐 − 𝜑𝑎𝜑𝑏 − 𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐) 𝜏𝑏. (A.1.9)

Hence, we find that
𝑇𝑎 = −𝑖𝑇𝑏

𝑎 𝜏
𝑏, 𝑇𝑏

𝑎 = 𝛿𝑎𝑏𝜑𝑐𝜑𝑐 − 𝜑𝑎𝜑𝑏 − 𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐. (A.1.10)

We are now in a position to compute the following term:

Tr(𝑇𝑎𝑇𝑏) = (−𝑖𝑇𝑐
𝑎 ) (−𝑖𝑇

𝑑
𝑏 )Tr (𝜏

𝑐𝜏𝑑)

= − 𝑇𝑐
𝑎 𝑇

𝑑
𝑏 Tr (𝜏𝑐𝜏𝑑)

= − 2𝑇𝑐
𝑎 𝑇

𝑐
𝑏

= − 2 (𝛿𝑎𝑐𝜑𝑑𝜑𝑑 − 𝜑𝑎𝜑𝑐 − 𝜀𝑎𝑐𝑑𝜑
0𝜑𝑑) (𝛿𝑏𝑐𝜑𝑒𝜑𝑒 − 𝜑𝑏𝜑𝑐 − 𝜀𝑏𝑐𝑒𝜑

0𝜑𝑒)

= − 2 {𝛿𝑎𝑐𝛿𝑏𝑐𝜑𝑑𝜑𝑑𝜑𝑒𝜑𝑒 − 𝜑𝑎𝜑𝑏𝜑𝑑𝜑𝑑 − 𝜀𝑏𝑎𝑒𝜑
0𝜑𝑑𝜑𝑑𝜑𝑒

+ 𝜑𝑎𝜑𝑏𝜑𝑑𝜑𝑑 + 𝜑𝑎𝜑𝑏𝜑𝑐𝜑𝑐 + 𝜀𝑏𝑐𝑒𝜑
0𝜑𝑎𝜑𝑐𝜑𝑒

−𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐𝜑𝑑𝜑𝑑 + 𝜀𝑎𝑐𝑑𝜑

0𝜑𝑏𝜑𝑐𝜑𝑑 + 𝜀𝑐𝑑𝑎𝜀𝑐𝑒𝑏𝜑
0𝜑0𝜑𝑑𝜑𝑒}

= − 2 {𝛿𝑎𝑏𝜑𝑐𝜑𝑐𝜑𝑑𝜑𝑑 − 𝜑𝑎𝜑𝑏𝜑𝑐𝜑𝑐 − 𝜀𝑏𝑎𝑐𝜑
0𝜑𝑐𝜑𝑑𝜑𝑑 + 𝜀𝑏𝑐𝑑𝜑

0𝜑𝑎𝜑𝑐𝜑𝑑

−𝜀𝑎𝑏𝑐𝜑
0𝜑𝑐𝜑𝑑𝜑𝑑 + 𝜀𝑎𝑐𝑑𝜑

0𝜑𝑏𝜑𝑐𝜑𝑑 + 𝛿𝑎𝑏𝜑0𝜑0𝜑𝑐𝜑𝑐 − 𝜑0𝜑0𝜑𝑎𝜑𝑏}

= − 2 {𝛿𝑎𝑏𝜑𝑐𝜑𝑐(𝜑𝑑𝜑𝑑 + 𝜑0𝜑0) − 𝜑𝑎𝜑𝑏(𝜑𝑐𝜑𝑐 + 𝜑0𝜑0) − 𝜑0𝜑𝑐𝜑𝑑𝜑𝑑(𝜀𝑏𝑎𝑐 + 𝜀𝑎𝑏𝑐)

+(𝜀𝑏𝑐𝑑𝜑
𝑐𝜑𝑑)𝜑0𝜑𝑎 + (𝜀𝑎𝑐𝑑𝜑

𝑐𝜑𝑑)𝜑0𝜑𝑏𝜑𝑐𝜑𝑑}

= − 2 {𝛿𝑎𝑏𝜑𝑐𝜑𝑐 − 𝜑𝑎𝜑𝑏} . (A.1.11)

This gives the contraction
𝑇𝑎
𝑖 𝑇

𝑎
𝑗 = 𝛿𝑖𝑗𝜑𝑎𝜑𝑎 − 𝜑𝑖𝜑𝑗. (A.1.12)

In a similar fashion, consider the following term:

Tr(𝑇𝑎𝐿𝑏) = (−𝑖𝑇𝑐
𝑎 ) (−𝑖𝐿

𝑑
𝑏 )Tr (𝜏

𝑐𝜏𝑑)

= − 𝑇𝑐
𝑎 𝐿

𝑑
𝑏 Tr (𝜏

𝑐𝜏𝑑)

= − 2𝑇𝑐
𝑎 𝐿

𝑐
𝑏

= − 2 (𝛿𝑎𝑐𝜑𝑑𝜑𝑑 − 𝜑𝑎𝜑𝑐 − 𝜀𝑎𝑐𝑑𝜑
0𝜑𝑑) (𝜀𝑐𝑒𝑓𝜕𝑏𝜑

𝑒𝜑𝑓 + 𝜕𝑏𝜑
0𝜑𝑐 − 𝜕𝑏𝜑

𝑐𝜑0)

= − 2 {(𝜑𝑑𝜑𝑑)𝜀𝑎𝑒𝑓𝜕𝑏𝜑
𝑒𝜑𝑓 + (𝜑𝑑𝜑𝑑)𝜑𝑎𝜕𝑏𝜑

0 − (𝜑𝑑𝜑𝑑)𝜕𝑏𝜑
𝑎𝜑0

−𝜀𝑐𝑒𝑓𝜑
𝑎𝜑𝑐𝜑𝑓𝜕𝑏𝜑

𝑒 − (𝜑𝑐𝜑𝑐)𝜑𝑎𝜕𝑏𝜑
0 + 𝜑0𝜑𝑎(𝜑𝑐𝜕𝑏𝜑

𝑐)

−𝜀𝑐𝑑𝑎𝜀𝑐𝑒𝑓𝜑
0𝜑𝑑𝜑𝑓𝜕𝑏𝜑

𝑒 − 𝜀𝑎𝑐𝑑𝜑
0𝜑𝑐𝜑𝑑𝜕𝑏𝜑

0 + 𝜀𝑎𝑐𝑑𝜑
0𝜑0𝜑𝑑𝜕𝑏𝜑

𝑐}

= − 2 {(𝜑𝑒𝜑𝑒)𝜀𝑎𝑐𝑑𝜕𝑏𝜑
𝑐𝜑𝑑 + (𝜑𝑑𝜑𝑑)𝜑𝑎𝜕𝑏𝜑

0 − 𝜑0(𝜑𝑑𝜑𝑑)𝜕𝑏𝜑
𝑎

+ (𝜀𝑒𝑐𝑓𝜑
𝑐𝜑𝑓)𝜑𝑎𝜕𝑏𝜑

𝑒 − (𝜑𝑐𝜑𝑐)𝜑𝑎𝜕𝑏𝜑
0 + 𝜑0𝜑𝑎(𝜑𝑐𝜕𝑏𝜑

𝑐)

−𝜑0𝜑𝑎(𝜑𝑑𝜕𝑏𝜑
𝑑) + 𝜑0(𝜑𝑑𝜑𝑑)𝜕𝑏𝜑

𝑎 − (𝜀𝑎𝑐𝑑𝜑
𝑐𝜑𝑑)𝜑0𝜕𝑏𝜑

0 + (𝜑0𝜑0)𝜀𝑎𝑐𝑑𝜑
𝑑𝜕𝑏𝜑

𝑐}

= − 2 {(𝜑𝑒𝜑𝑒 + 𝜑0𝜑0)𝜀𝑎𝑐𝑑𝜕𝑏𝜑
𝑐𝜑𝑑}

= − 2𝜀𝑎𝑐𝑑𝜕𝑏𝜑
𝑐𝜑𝑑. (A.1.13)
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So we can write the contraction
𝑇𝑐
𝑖 𝐿

𝑐
𝑏 = −𝜀𝑖𝑐𝑑𝜑

𝑐𝜕𝑏𝜑
𝑑. (A.1.14)

Using the following relations,

𝑇𝑖𝐿𝑎 = (−𝑖𝑇𝑐
𝑖 𝜏

𝑐) (−𝑖𝐿𝑑𝑎 𝜏
𝑑)

= − 𝑇𝑐
𝑖 𝐿

𝑑
𝑎 𝜏

𝑐𝜏𝑑

= − 𝑇𝑐
𝑖 𝐿

𝑑
𝑎 (𝛿

𝑐𝑑 Id2 +𝑖𝜀𝑐𝑑𝑒𝜏𝑒)
= − 𝑇𝑐

𝑖 𝐿
𝑐
𝑎 Id2 −𝑖𝜀𝑐𝑑𝑒𝑇𝑐

𝑖 𝐿
𝑑
𝑎 𝜏

𝑒 (A.1.15)

and
𝐿𝑎𝑇𝑖 = −𝐿𝑐𝑎𝑇

𝑐
𝑖 Id2 −𝑖𝜀𝑐𝑑𝑒𝐿𝑐𝑎𝑇𝑑

𝑖 𝜏
𝑒, (A.1.16)

we can write

[𝐿𝑎, 𝑇𝑖] = 𝐿𝑎𝑇𝑖 − 𝑇𝑖𝐿𝑎
= (𝑇𝑐

𝑖 𝐿
𝑐
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑐
𝑖 ) Id2 +𝑖𝜀𝑐𝑑𝑒 (𝑇𝑐

𝑖 𝐿
𝑑
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑑
𝑖 ) 𝜏

𝑒

= 𝑖𝜀𝑐𝑑𝑒 (𝑇
𝑐
𝑖 𝐿

𝑑
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑑
𝑖 ) 𝜏

𝑒 (A.1.17)

and

[𝐿𝑏, 𝑇𝑗] = 𝐿𝑏𝑇𝑗 − 𝑇𝑗𝐿𝑏
= (𝑇𝑓

𝑗 𝐿
𝑓
𝑏 − 𝐿

𝑓
𝑏𝑇

𝑓
𝑗 ) Id2 +𝑖𝜀𝑓𝑔ℎ(𝑇

𝑓
𝑗 𝐿

𝑔
𝑏 − 𝐿

𝑓
𝑏𝑇

𝑔
𝑗 )𝜏

ℎ

= 𝑖𝜀𝑓𝑔ℎ(𝑇
𝑓
𝑗 𝐿

𝑔
𝑏 − 𝐿

𝑓
𝑏𝑇

𝑔
𝑗 )𝜏

ℎ. (A.1.18)

Now, using these relations and the contractions

𝑇𝑐
𝑖 𝑇

𝑐
𝑗 = 𝛿𝑖𝑗𝜑𝑎𝜑𝑎 − 𝜑𝑖𝜑𝑗, 𝑇𝑐

𝑖 𝐿
𝑐
𝑏 = −𝜀𝑖𝑐𝑑𝜑

𝑐𝜕𝑏𝜑
𝑑, 𝐿𝑑𝑎 𝐿

𝑑
𝑏 = 𝜕𝑎𝜑

𝜇𝜕𝑏𝜑
𝜇, 𝑇𝑑

𝑗 𝐿
𝑑
𝑎 = −𝜀𝑗𝑒𝑓𝜑

𝑒𝜕𝑎𝜑
𝑓,

we have that

Tr ([𝐿𝑎, 𝑇𝑖][𝐿𝑏, 𝑇𝑗]) = − 𝜀𝑐𝑑𝑒𝜀𝑓𝑔ℎ(𝑇
𝑐
𝑖 𝐿

𝑑
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑑
𝑖 )(𝑇

𝑓
𝑗 𝐿

𝑔
𝑏 − 𝐿

𝑓
𝑏𝑇

𝑔
𝑗 )Tr (𝜏

𝑒𝜏ℎ)

= − 2𝜀𝑒𝑐𝑑𝜀𝑒𝑓𝑔(𝑇
𝑐
𝑖 𝐿

𝑑
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑑
𝑖 )(𝑇

𝑓
𝑗 𝐿

𝑔
𝑏 − 𝐿

𝑓
𝑏𝑇

𝑔
𝑗 )

= − 2(𝑇𝑐
𝑖 𝐿

𝑑
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑑
𝑖 )(𝑇

𝑐
𝑗 𝐿

𝑑
𝑏 − 𝐿

𝑐
𝑏𝑇

𝑑
𝑗 ) + 2(𝑇

𝑐
𝑖 𝐿

𝑑
𝑎 − 𝐿

𝑐
𝑎𝑇

𝑑
𝑖 )(𝑇

𝑑
𝑗 𝐿

𝑐
𝑏 − 𝐿

𝑑
𝑏𝑇

𝑐
𝑗 )

= − 2 (𝑇𝑐
𝑖 𝑇

𝑐
𝑗 𝐿

𝑑
𝑎 𝐿

𝑑
𝑏 − 𝑇

𝑐
𝑖 𝐿

𝑐
𝑏𝐿

𝑑
𝑎𝑇

𝑑
𝑗 − 𝐿𝑐𝑎𝑇

𝑐
𝑗 𝑇

𝑑
𝑖 𝐿

𝑑
𝑏 + 𝐿

𝑐
𝑎𝐿

𝑐
𝑏𝑇

𝑑
𝑖 𝑇

𝑑
𝑗 )

+ 2 (𝑇𝑐
𝑖 𝐿

𝑐
𝑏𝐿

𝑑
𝑎𝑇

𝑑
𝑗 − 𝑇𝑐

𝑖 𝑇
𝑐
𝑗 𝐿

𝑑
𝑎 𝐿

𝑑
𝑏 − 𝐿

𝑐
𝑎𝐿

𝑐
𝑏𝑇

𝑑
𝑖 𝑇

𝑑
𝑗 + 𝐿𝑐𝑎𝑇

𝑐
𝑗 𝑇

𝑑
𝑖 𝐿

𝑑
𝑏 )

= − 8 (𝑇𝑐
𝑖 𝑇

𝑐
𝑗 𝐿

𝑑
𝑎 𝐿

𝑑
𝑏 − 𝑇

𝑐
𝑖 𝐿

𝑐
𝑏𝑇

𝑑
𝑗 𝐿

𝑑
𝑎 )

= − 8 (𝛿𝑖𝑗𝜑𝑐𝜑𝑐 − 𝜑𝑖𝜑𝑗) 𝜕𝑎𝜑
𝜇𝜕𝑏𝜑

𝜇 + 8𝜀𝑖𝑐𝑑𝜀𝑗𝑒𝑓𝜑
𝑐𝜑𝑒𝜕𝑏𝜑

𝑑𝜕𝑎𝜑
𝑓. (A.1.19)

Using the identity

𝜀𝑖𝑐𝑑𝜀𝑗𝑒𝑓 = 𝛿𝑖𝑗(𝛿𝑐𝑒𝛿𝑑𝑓 − 𝛿𝑐𝑓𝛿𝑑𝑒) − 𝛿𝑖𝑒(𝛿𝑐𝑗𝛿𝑑𝑓 − 𝛿𝑐𝑓𝛿𝑗𝑑) + 𝛿𝑖𝑓(𝛿𝑐𝑗𝛿𝑑𝑒 − 𝛿𝑐𝑒𝛿𝑑𝑗) (A.1.20)
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we can write the second term as

𝜀𝑖𝑐𝑑𝜀𝑗𝑒𝑓𝜑
𝑐𝜑𝑒𝜕𝑏𝜑

𝑑𝜕𝑎𝜑
𝑓 = 𝛿𝑖𝑗 (𝜑𝑐𝜑𝑐𝜕𝑎𝜑

𝑑𝜕𝑏𝜑
𝑑 − (𝜑𝑐𝜕𝑎𝜑

𝑐)(𝜑𝑑𝜕𝑏𝜑
𝑑))

− 𝜑𝑖 (𝜑𝑗𝜕𝑎𝜑
𝑐𝜕𝑏𝜑

𝑐 − 𝜕𝑏𝜑
𝑗(𝜑𝑐𝜕𝑎𝜑

𝑐)) + 𝜕𝑎𝜑
𝑖 (𝜑𝑗(𝜑𝑐𝜕𝑏𝜑

𝑐) − (𝜑𝑐𝜑𝑐)𝜕𝑏𝜑
𝑗) .

Writing 𝜕𝑎𝜑𝜇𝜕𝑏𝜑𝜇 = 𝜕𝑎𝜑
0𝜕𝑏𝜑

0 + 𝜕𝑎𝜑
𝑐𝜕𝑏𝜑

𝑐, and noting that 𝜑𝑐𝜕𝑎𝜑𝑐 = −𝜑0𝜕𝑎𝜑
0, we have that

Tr ([𝐿𝑎, 𝑇𝑖][𝐿𝑏, 𝑇𝑗]) = − 8 (𝛿𝑖𝑗𝜑𝑐𝜑𝑐 − 𝜑𝑖𝜑𝑗) (𝜕𝑎𝜑
0𝜕𝑏𝜑

0 + 𝜕𝑎𝜑
𝑐𝜕𝑏𝜑

𝑐)

+ 8 {𝛿𝑖𝑗(𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑑𝜕𝑏𝜑

𝑑 − 𝛿𝑖𝑗(𝜑𝑐𝜕𝑎𝜑
𝑐)(𝜑𝑑𝜕𝑏𝜑

𝑑)

−𝜑𝑖𝜑𝑗(𝜕𝑎𝜑
𝑐𝜕𝑏𝜑

𝑐) + 𝜑𝑖𝜕𝑏𝜑
𝑗(𝜑𝑐𝜕𝑎𝜑

𝑐) + (𝜑𝑐𝜕𝑏𝜑
𝑐)𝜑𝑗𝜕𝑎𝜑

𝑖 − (𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑖𝜕𝑏𝜑

𝑗}

= − 8 {𝛿𝑖𝑗(𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
0𝜕𝑏𝜑

0 + 𝛿𝑖𝑗(𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑑𝜕𝑏𝜑

𝑑 − 𝜑𝑖𝜑𝑗𝜕𝑎𝜑
0𝜕𝑏𝜑

0 − 𝜑𝑖𝜑𝑗(𝜕𝑎𝜑
𝑐𝜕𝑏𝜑

𝑐)}

+ 8 {𝛿𝑖𝑗(𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑑𝜕𝑏𝜑

𝑑 − 𝛿𝑖𝑗(𝜑𝑐𝜕𝑎𝜑
𝑐)(𝜑𝑑𝜕𝑏𝜑

𝑑)

−𝜑𝑖𝜑𝑗(𝜕𝑎𝜑
𝑐𝜕𝑏𝜑

𝑐) + 𝜑𝑖𝜕𝑏𝜑
𝑗(𝜑𝑐𝜕𝑎𝜑

𝑐) + (𝜑𝑐𝜕𝑏𝜑
𝑐)𝜑𝑗𝜕𝑎𝜑

𝑖 − (𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑖𝜕𝑏𝜑

𝑗}

= − 8 {𝛿𝑖𝑗(𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
0𝜕𝑏𝜑

0 − 𝜑𝑖𝜑𝑗𝜕𝑎𝜑
0𝜕𝑏𝜑

0 + 𝛿𝑖𝑗(𝜑𝑐𝜕𝑎𝜑
𝑐)(𝜑𝑑𝜕𝑏𝜑

𝑑)

−𝜑𝑖𝜕𝑏𝜑
𝑗(𝜑𝑐𝜕𝑎𝜑

𝑐) − (𝜑𝑐𝜕𝑏𝜑
𝑐)𝜑𝑗𝜕𝑎𝜑

𝑖 + (𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑖𝜕𝑏𝜑

𝑗}
= − 8 {𝛿𝑖𝑗(𝜑𝑐𝜑𝑐)𝜕𝑎𝜑

0𝜕𝑏𝜑
0 − 𝜑𝑖𝜑𝑗𝜕𝑎𝜑

0𝜕𝑏𝜑
0 + 𝛿𝑖𝑗(𝜑0𝜕𝑎𝜑

0)(𝜑0𝜕𝑏𝜑
0)

+𝜑𝑖𝜕𝑏𝜑
𝑗(𝜑0𝜕𝑎𝜑

0) + (𝜑0𝜕𝑏𝜑
0)𝜑𝑗𝜕𝑎𝜑

𝑖 + (𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑖𝜕𝑏𝜑

𝑗}
= − 8 {𝛿𝑖𝑗(𝜑𝑐𝜑𝑐 + 𝜑0𝜑0)𝜕𝑎𝜑

0𝜕𝑏𝜑
0 − 𝜑𝑖𝜑𝑗𝜕𝑎𝜑

0𝜕𝑏𝜑
0

+𝜑𝑖𝜕𝑏𝜑
𝑗(𝜑0𝜕𝑎𝜑

0) + (𝜑0𝜕𝑏𝜑
0)𝜑𝑗𝜕𝑎𝜑

𝑖 + (𝜑𝑐𝜑𝑐)𝜕𝑎𝜑
𝑖𝜕𝑏𝜑

𝑗}
= − 8 {(𝛿𝑖𝑗 − 𝜑𝑖𝜑𝑗)𝜕𝑎𝜑

0𝜕𝑏𝜑
0 + (𝜑𝑐𝜑𝑐)𝜕𝑎𝜑

𝑖𝜕𝑏𝜑
𝑗 + 𝜑0𝜑𝑖𝜕𝑎𝜑

0𝜕𝑏𝜑
𝑗 + 𝜑0𝜑𝑗𝜕𝑏𝜑

0𝜕𝑎𝜑
𝑖} .

(A.1.21)

A.2 Runge Coloring Scheme
It is conventional to visualize skyrmions by plotting an isosurface of constant energy or baryon
density, e.g. max (ℬ0) /𝑐 for some constant 𝑐. There is also a rather nice way to graphically encode
the pion fields �⃗� onto this isosurface using the Runge color sphere [43], which is detailed as follows.
At each point �⃗� on the isosurface we compute the pion fields �⃗�(�⃗�). Then we introduce a HSV color
function at each �⃗�with the hue H, saturation S and value V defined by

0 ≤ H ≤ 1 ∶ H(�⃗�) = 1
2 +

1
2𝜋 arg (𝜋1(�⃗�) + 𝑖𝜋2(�⃗�)) , (A.2.1)

0 ≤ S ≤ 1 ∶ S(�⃗�) = 1
2 (𝜋

3(�⃗�) + 1) , (A.2.2)

0 ≤ V ≤ 1 ∶ V(�⃗�) = S(�⃗�). (A.2.3)

Once the HSV color map is obtained it is then converted to an RGB color map, which is used to
color the skyrmion.

If one recasts the SU(2) isospin symmetry (1.1.8) in the SO(3) form via the map

𝐷 ∶ SU(2) → SO(3), 𝐷(𝐴)𝑖𝑗 =
1
2 Tr (𝜏

𝑖𝐴𝜏𝑗𝐴†) , (A.2.4)

then an isospin transformation 𝐴 ∈ SU(2) on the Skyrme field 𝜑 acts to continuously cycle the
pion fields from one into another, 𝜋𝑖 ↦ 𝐷(𝐴)𝑖𝑗𝜋

𝑗. In terms of the Runge coloring, an isospin
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transformation rotates the colors on the skyrmion. The Runge coloring scheme is best depicted
using the 𝐵 = 1 hedgehog skyrmion and is displayed in Fig. 1.1.

A.3 Non-Linear Conjugate Gradient Descent
Our aim is to solve the unconstrained optimisation problem:

min𝜔 𝐸(𝜔), 𝐸(𝜔) = ∫
𝛭
d3𝑥√−𝑔 {12𝑔

𝑖𝑗𝜕𝑖𝜔𝜕𝑗𝜔 +
1
2𝜔

2 + 𝑐𝜔𝜔ℬ0} .

We perform a quadratic approximation with 𝑛 ∈ Z≥0:

𝑓𝑛 = ∇𝐸(𝜔𝑛) = (−𝑔𝑖𝑗𝜕𝑖𝑗 + 1)𝜔𝑛 + 𝑐𝜔ℬ0, 𝒬 = ∇2𝐸(𝜔𝑛).

Evaluating the Hessian 𝒬 is computationally expensive, so one can implement a quasi-Newton
method such as the secant method. First, we discretize the 𝜔-energy functional on an𝑁3-grid such
that the energy is 𝐸 ∶ R𝛮 × R𝛮 × R𝛮 → R and then apply vectorization to 𝜔 ∈ R𝛮3 . Then we do a
Taylor expansion in a conjugate direction 𝑑 ∈ R𝛮3 with stepsize 𝛼,

𝐸(𝜔 + 𝛼𝑑) = 𝐸(𝜔) + 𝛼 [ dd𝛼𝐸(𝜔 + 𝛼𝑑)]𝛼=0
+ 𝛼2

2 [ d
2

d𝛼2𝐸(𝜔 + 𝛼𝑑)]
𝛼=0

= 𝐸(𝜔) + 𝛼𝐸′(𝜔)𝑑𝛵 + 𝛼2

2 𝑑
𝛵𝐸″(𝜔)𝑑

such that we can approximate the first derivative,

d
d𝛼𝐸(𝜔 + 𝛼𝑑) ≈ 𝐸′(𝜔)𝑑𝛵 + 𝛼𝑑𝛵𝐸″(𝜔)𝑑,

and the second derivative

d2

d𝛼2𝐸(𝜔 + 𝛼𝑑) ≈
1
𝜎 {[

d
d𝛼𝐸(𝜔 + 𝛼𝑑)]𝛼=𝜎

− [ dd𝛼𝐸(𝜔 + 𝛼𝑑)]𝛼=0
}

= 1
𝜎 {𝐸

′(𝜔 + 𝜎𝑑)𝑑𝛵 − 𝐸′(𝜔)𝑑𝛵} .

Then we can write

d
d𝛼𝐸(𝜔 + 𝛼𝑑) ≈ 𝐸′(𝜔)𝑑𝛵 + 𝛼

𝜎 {𝐸
′(𝜔 + 𝜎𝑑)𝑑𝛵 − 𝐸′(𝜔)𝑑𝛵} .

This can be minimised by setting

𝛼 = −𝜎 𝐸′(𝜔)𝑑𝛵

𝐸′(𝜔 + 𝜎𝑑)𝑑𝛵 − 𝐸′(𝜔)𝑑𝛵
.

The NCGD algorithm is detailed as follows. Starting at 𝜔0 = −𝑐𝜔ℬ0 compute 𝑓0 = ∇𝐸(𝜔0) and set
the initial conjugate direction to be the steepest direction 𝑑0 = −𝑓0. Then, while max(∇𝐸(𝜔𝑛)) > tol:

• Start a loop counter 𝑛 = 0.
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• Find 𝛼𝑛 that minimises 𝐸(𝜔𝑛 + 𝛼𝑛𝑑𝑛) by using:

– The Newton-Raphson method, which requires the computation of the Hessian,

𝛼𝑛 = −
𝑓𝛵𝑛 𝑑𝑛
𝑑𝛵𝑛𝒬𝑑𝑛

= −
𝑓𝛵𝑛 𝑑𝑛

𝑑𝛵𝑛 [∇2𝐸(𝜔𝑛)]𝑑𝑛
.

– Or performing a line search: use the secant method, with 𝜎0 ≈ 0,

𝛼𝑛 = −𝜎𝑛
𝑓𝑛(𝜔𝑛)

𝛵𝑑𝑛
𝑓𝑛(𝜔𝑛 + 𝜎𝑛𝑑𝑛)𝛵𝑑𝑛 − 𝑓𝑛(𝜔𝑛)𝛵𝑑𝑛

, 𝜎𝑛+1 = −𝛼𝑛.

• Update the position 𝜔𝑛+1 = 𝜔𝑛 + 𝛼𝑛𝑑𝑛.

• Compute the steepest direction 𝑓𝑛+1 = ∇𝐸(𝜔𝑛+1).

• If max(∇𝐸(𝜔𝑛+1)) < tol, break.

• Else, update the conjugate direction 𝑑𝑛+1 = −𝑓𝑛+1 + 𝛽𝑛𝑑𝑛 where the conjugate stepsize is one
of the following:

𝛽𝐹𝑅𝑛 =
𝑓𝛵𝑛+1𝑓𝑛+1
𝑓𝛵𝑛 𝑓𝑛

, (Fletcher-Reeves method)

𝛽𝛲𝑅𝛲𝑛 =
(𝑓𝑛+1 − 𝑓𝑛)

𝛵𝑓𝑛+1
𝑓𝛵𝑛 𝑓𝑛

, (Polak-Ribiere-Polyak method)

𝛽𝛮𝑅
𝑛 =

𝑓𝛵𝑛+1[∇
2𝐸(𝑔𝑛)]𝑑𝑛

𝑑𝛵𝑛 [∇2𝐸(𝑔𝑛)]𝑑𝑛
(Newton-Raphson method)

𝛽𝛨𝑆𝑛 =
(𝑓𝑛+1 − 𝑓𝑛)

𝛵𝑓𝑛+1
−(𝑓𝑛+1 − 𝑓𝑛)𝛵𝑑𝑛

, (Hestenes-Stiefel method)

𝛽𝐷𝑌𝑛 =
𝑓𝛵𝑛+1𝑓𝑛+1

−(𝑓𝑛+1 − 𝑓𝑛)𝛵𝑑𝑛
, (Dai–Yuan method).

g 0 G
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