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Abstract

We develop methods for computing arithmetic invariants associated to mod p Galois

representations over imaginary quadratic �elds. These invariants (period polynomi-

als, Selmer groups) are conjectured to �t into the classical landscape of the Langlands

program in analogous ways. In particular, the vanishing of coe�cient(s) of the period

polynomial should capture the non-vanishing of an associated Selmer group.
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Notation

K A number �eld.
F An extension of K.
L A Galois extension of K, cut out by the image of a Galois representation.
OE The ring of integers of a number �eld E.
p Rational prime, usually the characteristic of a representation.
ρ A Galois representation.
[g, h] The commutator g−1h−1gh of group elements g, h.
MG For M a G-module, the submodule of the G-�xed elements of M .
A |X The restriction of A to X.
rank(E) The rank of the elliptic curve E (coe�cient �eld usually implicit).
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1. INTRODUCTION

1.1 Background

Let E be an elliptic curve over a number �eld K. The celebrated theorem of Mordell

and Weil tells us that the abelian group of K-points of E, written E(K), is �nitely

generated. Thus it can be written

E(K) ' T ⊕ Zr

where T is a �nite subgroup of torsion elements, and Zr is free. Over a given number
�eld, one has a good understanding of T ; it is the value r, known as the rank of

E, that is much more mysterious and has attracted a great deal of study in modern

number theory.

One approach to study the rank of E, introduced by Cassells [Cas62], is the Selmer

group (named in honour of Ernst Selmer). Writing E[m] for the group of m-torsion

points in E(K), the m-Selmer group of E is de�ned (per Section X.4 of [Sil09]) as

Selm(E/K) = ker

(
H1(Gal(K/K), E[m])→

∏
p

H1(Gp, E(K))

)

where Gp is the decomposition group of GK = Gal(K/K) at p, and the product is

taken over all places p of K. See Chapter 2 for details on these constructions.

The utility of the Selmer group is that it lies in an exact sequence with other quan-
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tities of interest coming from E: that is, we have

0→ E(K)/mE(K)→ Selm(E/K)→X(E/K)→ 0.

Here X(E/K) is the Shaferavich-Tate group, de�ned also in Section X.4 of [Sil09].

If E(K) ' T ⊕ Zr, then

E(K)/mE(K) ' T/mT ⊕ (Z/mZ)r,

and so the rank of E can be computed from the rank of Selm(E/K), assuming

su�cient knowledge about T and X(E/K). In fact, the Shaferavich-Tate group is

deeply mysterious; it is conjectured to be �nite, but very little is concretely known.

Assuming its order can be computed, �nding the rank of E for a given curve becomes

tractable by using the Selmer group.

The rank of E is also predicted to be connected to another deep arithmetic object,

namely the L-function of E. Writing #E(Fp) for the number of points on E over a

�nite �eld Fp ' OK/p for p a prime ideal of the ring of integers OK of K, one can

de�ne the quantity

ap := 1 +N(p)−#E(Fp).

The (Hecke) L-series attached to E is the function of the complex variable s given

by

L(E, s) =
∏
p

Lp(E, s)
−1,

where the local Euler factors Lp is de�ned as

Lp(E, s) = 1− apN(p)−s +N(p)1−2s

when p does not divide the conductor of E (see see Section VIII.11 of [Sil09]); for the

�nite number of primes that do, more precise de�nitions of the local Euler factors are

needed, see Appendix C.16 of [Sil09] for details. An important aspect of the theory

of the elliptic curve L-series is that it should have a �special value� at s = 1. In
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fact, the product above only converges for Re(s) > 3
2
, but it is conjectured that the

L-series of an elliptic curve should have an analytic continuation to all of C. This

is known in general for K = Q, and follows when E is modular, meaning there is a

suitably de�ned modular form over K whose L-series matches that of E. See e.g.

Section 5.9 of [DS16] for details when K = Q.

The special value L(E, 1) is predicted to vanish with multiplicity equal to the rank

of E. This is the weak form of the Birch & Swinnerton-Dyer conjecture (BSD):

Conjecture 1.1.1 (Weak BSD). Let E be an elliptic curve as above. Then L(E, s)

has a Taylor series around s = 1, with

L(E, s) = c(s− 1)r +O((s− 1)r+1),

where r = rank(E).

The strong form of BSD gives an exact expression for the coe�cient c in terms of

invariants of E and K.

Since its proposition, BSD has in�uenced a more general pattern of conjectures

in number theory, for which evidence continues to build. The general concept is

as follows: given an arithmetic object, the vanishing value of an L-function should

detect the non-vanishing of a Selmer group, appropriately de�ned. The broadest

version of this conjecture is the Bloch-Kato conjecture (BK). This is applied to a

p-adic representation ρ of GK , and states exactly this idea: there is a notion of an

L-function and a Selmer group attached to ρ such that the critical L-value vanishes

exactly when the Selmer group has non-zero rank. This re�ects the classical case of

an elliptic curve, up to some contribution to Selm(E/K) from the m-torsion in T .

Since we are not interested in the speci�cs of the Bloch-Kato conjecture, or p-adic

Galois representations, we will not make explicit much of the theory�the interested

reader should consult [Bel09].

The purpose of this thesis is to apply this philosophy to mod p Galois representations.
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1.2 This thesis

The work in this thesis was initiated to re�ne and explore a question of Calegari and

Venkatesh, posed in Section 10.3 of [CV12], which asks

Question 1.2.1. Do periods of torsion classes detect classes in Galois cohomology?

The authors go on to speculate that such a relationship should hold. We interpret

the question as follows.

Let K be an imaginary quadratic �eld, with Γ = PSL2(OK). There is an in�nite

family of commuting operators Tn = {Tp | p - n} acting on H1(Γ0(n), V (C)) called

Hecke operators. Here V = V s,t,χ
k,l is a weight module as de�ned in Section 4.1.2,

with V 0,0,1
0,0 (C) ' C. These Hecke operators have simultaneous eigenvectors, giving

rise to eigenvalue systems. Galois representations are (conjecturally) connected to

these eigenvalue systems in the following way: for a Galois representation ρ, one

expects there to be a Hecke eigenvalue system {ap : p - n} such that

ap = trace(ρ(Frobp)),

where Frobp is a Frobenius element, as de�ned in Section 2.1.1.

For modular elliptic curves E/K, there exist classes [f ] in H1(Γ0(n),C), where n

is the conductor of E (see Example 2.2.6) and Γ0(n) is a congruence subgroup (see

Section 4.1.1), such that L(E, 1) can be computed by evaluations of the Kronecker

pairing

H1(Γ0(n),C)×H1(Γ0(n),C)→ C,

given by

([f ], [γ]) 7→ f(γ).

Here we are interpreting f as a homomorphism Γ0(n) → C, and γ as a matrix in

Γ0(n). Such an evaluation is called a period of f . The particular expression giving

L(E, 1) is given in Section 5.3.1.
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Since we care about mod p Galois representations, we want to compute eigenvalue

systems1 in H1(Γ0(n), V (Fp)) for prime ideals p of K, called a mod p eigenvalue

system. An eigenvalue system in H1(Γ0(n), V (C)) is comprised of a series of al-

gebraic integers, and their reductions modulo p appear as an eigenvalue system in

H1(Γ0(n), V (Fp)).

However, not every mod p eigenvalue system must arise this way. One aspect of

the theory of Bianchi groups is the presence of torsion classes in H2(Γ0(n), V (OK)),

which can prevent the lifting to characteristic 0 of mod p eigenvalue systems. The

torsion classes mentioned in the question of Calegari and Venkatesh correspond to

these non-lifting mod p eigenvalue systems.

The non-lifting eigenvalue systems in H1(Γ, V (Fp)) are mysterious objects, only re-

cently proven to have associated Galois representations, in 2015 by Scholze [Sch15].

The construction in Section 5.3.1 used to extract information about L(E, 1) from a

class [f ] ∈ H1(Γ0(n),C) can be performed just as well on a class [g] ∈ H1(Γ0(n),Fp),

although the mod p computation loses its direct connection to the L-series of E, even

when performed on the class whose Hecke eigenvalues are the mod p reduction of a

class in H1(Γ0(n),C). When performed on a class not lifting to characteristic 0, its

meaning is even less clear, as there is not an L-series one can obviously associate to

the class.

However, per Question 1.2.1, one expects the vanishing (or not) of this value for a

class [f ] to behave very much like the vanishing (or not) of L(E, 1)�there should be

some group attached to [f ] which is rank 0 when the period value is non-zero, and

have positive rank when it is zero. This group should be a Selmer group, matching

the broad theme described above. This is exactly what Question 1.2.1 means when it

refers to �Galois cohomology classes��although this description is slightly backwards;

a more re�ned view of the premise starts with a mod p Galois representation ρ (a

necessary ingredient for de�ning the Selmer group) and associates both a class in

1 The Hecke operators acting on H1(Γ0(n), V (Fp)) are not simultaneously diagonalisable in gen-
eral. One must settle for the slightly weaker so-called generalised eigenvectors.
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H1(Γ0(n), V (Fp)) and a Selmer group, in the hopes that the two are compatible

in this way. We will refer to this hypothetical compatibility as the period-rank

relationship.

The purpose of this thesis, then, is to explore the properties of mod p Galois rep-

resentations over K, hoping to de�ne appropriately a period of the (conjecturally)

associated class in mod p cohomology, and a Selmer group, such that the two satisfy

the period-rank relationship. Throughout we will occasionally make reference to a

hypothetical �correct� notion of the period and Selmer group, one that should satisfy

this relationship (in a non-trivial fashion).

In the process of exploring this question, we have come to believe the appropriate

quantity taking the role of the period should be some coe�cient (or combination

thereof) of the period polynomial of a class in H1(Γ, V (Fp)). Computing period

polynomials associated to a particular Hecke eigenclass requires an action of Hecke

matrices on the space of period polynomials, which we develop in Chapter 5. In

doing so, we also �nd some interesting results on period polynomials associated to

characteristic 0 classes, using them to detect and prove new congruences between

Bianchi modular forms.

On the Selmer side, we develop algorithms to compute Selmer groups associated

to a large class of representations, the so-called nearly-ordinary representations2,

which arise naturally from considering �ltrations on the image of a Galois represen-

tation. Selmer groups such as the nearly-ordinary Selmer group are arithmetically

interesting objects in their own right, often studied absent their possible connections

to automorphic forms. With this in mind, we perform some arithmetic-statistical

computations with mod 2 Selmer groups over Q and �ve imaginary quadratic �elds.

2 It should be noted, this terminology is not yet standardised, and the phrase �nearly-ordinary�
can be used to mean several di�erent things. For our exact formulation, see Chapter 2.
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1.3 Structure of the thesis

In Chapter 2 of this thesis, we cover some important aspects of in�nite Galois theory,

mod p Galois representations ρ over a �eld K, and invariants of these representations

that are used to associate to a class in the mod p cohomology of Γ to ρ. None of the

content of this chapter is original.

In Chapter 3, we de�ne group cohomology and use it to de�ne Selmer groups at-

tached to representations ρ. The general theory of Selmer groups we use is built

around mirroring the constructions for p-adic Galois representations used to de�ne,

for example, the Selmer group appearing in BK, following standard constructions

such as those in e.g. [Rub00]. We then use a connection between Galois cohomology

and class �eld theory to derive methods for computing our Selmer groups explicitly.

The derivation of this method and its implementation are original.

In Chapter 4, we record many useful results on the computation of the cohomology

of Γ = PSL2(OK) for �ve choices of imaginary quadratic �eld K. These results are

well-known and none are original.

In Chapter 5, we prove facts about spaces of period polynomials associated to Γ, in

the manner of [Kar22], [Wil17]. The construction of these spaces is not original; our

contribution is to de�ne a Hecke action there and prove it is compatible with the

standard notion of Hecke operators on H1 and H2. This allows us to compute pe-

riod polynomials associated to Bianchi modular forms in characteristic 0. This work

was originally initiated to obtain information about period polynomials in charac-

teristic p, however as we explored the situation in the (relatively) simpler case of

characteristic 0, we found methods to use period polynomials to detect congruences

of Bianchi modular forms. This chapter (and results quoted in the previous chapter)

form the basis of the paper Bianchi period polynomials: Hecke action and congru-

ences [Com23] (under review at time of submission, now accepted for publication

Research in Number Theory). The only portion of this chapter not appearing in

that paper is Section 5.3, which gives some philosophical justi�cation for the kinds
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of choices of period one might wish to make when trying to extract arithmetic infor-

mation from a Bianchi period polynomial.

In Chapter 6, we bring together the computational tools of Chapters 3, 4 and 5 to

study some examples of Galois representations over K, computing Selmer groups and

period polynomials. We also report on arithmetic-statistical studies of the average

ranks of our Selmer groups over various �elds, and study the �ner points of rami�-

cation in nearly-ordinary Selmer groups as an attempt to detect to the hypothetical

�correct� Selmer rank. This Chapter contains all original work, using data from the

LMFDB [LMF23].

In the Appendices, we give all of the code used to compute the various quantities of

interest. This comprises more than half the length of the text, although this is only

in the interest of completeness. The reader can also �nd all the code on GitHub.

The code to compute the �rst cohomology of Bianchi groups can be found in the

repository BianchiFirstCoho, at

https://github.com/lewismcombes/BianchiFirstCoho.

The version used to compute in this thesis is commit 4888a34.

The code to compute period polynomials of Bianchi modular forms can be found in

the repository BianchiPeriodPols, at

https://github.com/lewismcombes/BianchiPeriodPols.

The version used to compute in this thesis is commit 9726bf3.

The code used to compute mod p Selmer groups can be found in the repository

ModpSelmerGroups, at

https://github.com/lewismcombes/ModpSelmerGroups.

The version used to compute in this thesis is commit 7a0c614.

https://github.com/lewismcombes/BianchiFirstCoho
https://github.com/lewismcombes/BianchiPeriodPols
https://github.com/lewismcombes/ModpSelmerGroups
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1.4 Future work

Though we made progress in this thesis towards a precise statement of the conjectured

period-rank relationship, we were limited somewhat by computational bottlenecks.

In particular, the class �eld theory computations required to compute Selmer groups

are expensive, and are not feasible to run on reasonable timescales for |im(ρ)| bigger
than about 30.

There are also theoretical hurdles to pinning down the exact right period. Period

polynomials of mod p representations need not have a central coe�cient (in analogy

with the classical case, see Section 5.3), and there are often several polynomials

attached to the same representation, coming from di�erent weights. The present

iteration of the Selmer group computation doesn't take account of the weight; if it

did, it should likely be in the form of a mod p version of the Tate twist (i.e. twisting

V by the mod p cyclotomic character). If this is the case, the computation which

makes no use of the Tate twist should correspond to the trivial weight system, but

the images of these representations are generically big (at least all of SL2(Fp)), and
so are computationally very costly.

In future work, we hope to encode mod p Tate twists to allow di�erent weights

to be incorporated into Selmer computations. The development of speedups for

these computations would also allow larger images to be tackled. Finally, further

re�nement of local conditions over p is expected to lead to a more robust Selmer

group that could capture fully the conjectured relationship between periods and

ranks.



2. GALOIS REPRESENTATIONS

2.1 Basics of in�nite Galois theory

In order to make notions of in�nite Galois theory precise, we will de�ne pro�nite

groups, using inverse limits. We follow [Koc02].

An inverse system of groups is a family G = (Gi)i∈I of groups, indexed by some

directed1 poset I, and a family of homomorphisms Φ = (φi,j : Gj → Gi)i≤j, satisfying

1. φi,i : Gi → Gi is the identity map,

2. φi,k = φi,j ◦ φj,k for all i ≤ j ≤ k.

The inverse limit of (G,Φ) is the subset of the direct product of the Ai given by

lim←−
i∈I

(G,Φ) =

{
(gi) ∈

∏
i

Gi

∣∣∣∣ φi,j(gj) = gi for all i ≤ j

}
.

Informally, to de�ne an element of the inverse limit, one needs to specify an element

of each of the Gi, chosen in such a way as to be �compatible� with the maps φi,j.

A pro�nite group is the inverse limit of an inverse system of �nite groups, where

each �nite group is equipped with the discrete topology. It is a topological group,

meaning a group equipped with a topology such that multiplication and inversion

are continuous.

1 Meaning any pair of elements i, j ∈ I has a shared upper bound k: i ≤ k, j ≤ k.
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Example 2.1.1. The p-adic integers can be de�ned using an inverse limit. Using the

directed poset N with the usual ordering, set Gi = Z/piZ, and choose the morphism

φi,j to be the �reduction mod pi� map Z/pjZ→ Z/piZ. Then

Zp = lim←−
n∈N

(G,Φ).

Using the theory of pro�nite groups, one can also construct the absolute Galois group

of a �nite �eld Fp:
Example 2.1.2. The �nite Galois extensions of Fp are exactly the �elds Fpn , with
Fpi ⊆ Fpj if and only if i | j. This gives the required partial ordering, coming

from the divisibility ordering on N. The groups Gal(Fpn/Fp) are cyclic of order n,

generated by the Frobenius element Frobp : x 7→ xp, of order n. The restriction

Gal(Fpj/Fp)→ Gal(Fpj/Fp) sends Frobp to itself, so the restriction maps are

φi,j(σ) = σ (mod i).

The limit of this inverse system is Ẑ, the pro�nite completion of Z.

The next example is the most important for us.

Example 2.1.3. Let K be a number �eld, and I the set of �nite Galois extensions

of K, ordered by inclusion. This is a directed set since any two �elds F1, F2 ∈ I ex-
tending K are both a subset of their compositum F1F2, also a �nite Galois extension

of K. Further, for F1 ⊂ F2, we have restriction maps sending σ ∈ Gal(F2/K) to

σ |F1∈ Gal(F1/K), so we get an inverse system of �nite groups. The inverse limit of

the system is the absolute Galois group of K, written GK = Gal(K/K).

Remark 2.1.4. HereK is a choice of algebraic closure ofK. In general, the algebraic

closure of K is only de�ned up to an K-automorphism, but up to that automorphism

it is unique. We will study Gal(K/K) via its representations, so this choice will not

matter.

As GK is a topological group, it is natural to ask exactly what the topology looks

like.
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De�nition 2.1.5. We de�ne the Krull topology on GK by giving a base B of open

neighbourhoods of the identity element:

B =
{

Gal(K/F ) | F/K �nite
}
.

These are the normal subgroups of Gal(K/K) of �nite index. A base of open neigh-

bourhoods for g is then given by gB.

Alternatively, one can de�ne the Krull topology by giving each �nite Galois group the

discrete topology, giving
∏

Gal(F/K) the product topology, then giving Gal(K/K) ⊂∏
Gal(F/K) the subspace topology. These two de�nitions are equivalent.

Under the Krull topology, two elements σ, τ ∈ GK are �close� if they agree on a

large �nite extension F/K. It is used to de�ne a modi�ed version of the Galois

correspondence for �nite extensions: there is a bijection between closed subgroups

H ≤ GK and intermediate Galois extensions K/F/K given by

H 7→ K
H
, F 7→ Gal(K/F ). (2.1)

2.1.1 In�nite Galois theory

Here we summarise some important aspects of in�nite Galois theory over number

�elds, continuing to follow [Koc02].

We �x once and for all a choice of algebraic closure K of K.

De�nition 2.1.6. An absolute value on K is a function | · | : F → R satisfying

1. Non-negativity: |x| ≥ 0 for all x ∈ K;

2. Positive-de�niteness: |x| = 0 if and only if x = 0;

3. Multiplicativity: |xy| = |x| · |y| for all x, y ∈ K;

4. Triangle inequality: |x+ y| ≤ |x|+ |y| for all x, y ∈ K.
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De�nition 2.1.7. An absolute value is trivial if it sends everything to 0. Two

absolute values | · |1, | · |2 on K are equivalent if | · |1 = | · |r2, for some real r > 0.

Alternatively, an absolute value de�nes a metric by d(x, y) = |x−y|, and two absolute
values are equivalent if their metrics de�ne the same open sets.

De�nition 2.1.8. A place p of K is an equivalence class of non-trivial absolute

values on K.

Remark 2.1.9. There is a bijection

{places of K} ↔ {prime ideals of K} ∪
{

embeddings of K
up to complex conjugation

}
.

The places of K corresponding to prime ideals p are called �nite places, and their

associated absolute values give rise to p-adic completions of K. The places cor-

responding to embeddings of K (either a real embedding, or a pair of conjugate

complex embeddings) give rise to R or C as completions of K, and are called real

or complex accordingly.

Remark 2.1.10. We will use the same notation p to refer to a place and its corre-

sponding ideal in K when p is �nite. When p is in�nite, there is no corresponding

ideal, but we will still write it as p for uniformity.

Since p de�nes an absolute value on K, we can de�ne the �eld Kp as the completion

of K with respect to p. When K = Q, these completions are R (corresponding to

the usual absolute value on Q, coming from the embedding Q ↪→ R), and the �elds

Qp for all primes p. For a general number �eld K, the completions are R or C, and
�nite extensions of Qp.

The notion of a place extends naturally to K, where it is again an equivalence class

of non-trivial absolute values. For an extension F/K, we say a place q of F extends

p if q |K= p.

We �x a place P of K that extends p. This has the e�ect of �xing a place q of F

that extends p for all �nite Galois F/K: the place q is exactly P |F . These choices
are all compatible, in the sense that, if F1/F2/K is a tower of �elds Galois over K,
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then (P |F1) |F2= P |F2 .

If we instead chose, for every �nite Galois F/K, a place q extending p in a manner

compatible with the inverse system2 from Example 2.1.3, we would get a place P of

K that restricts to each place q for F/K as above.

When p is �nite, the choice of an extension q of p to F/K can be written as ideals

as q | p. So for a �nite place p, the choice P �xes prime ideals over p for all �nite

Galois F/K.

The completion of K with respect to P is KP :=
⋃
FP|F , where the union runs over

all �nite Galois F/K. This gives a canonical embedding K ↪→ KP, allowing us to

de�ne decomposition and inertia groups at a place p of K.

De�nition 2.1.11. Let p be a �nite place of K, and P a place of K extending p.

The embedding K ↪→ KP induces an embedding GKp = Gal(KP/Kp) ↪→ GK . This

GKp is the decomposition group of K at p. When K is clear from context we

will also write GKp = Dp.

Remark 2.1.12. The group Dp is de�ned only up to the choice of place P extending

p. The group GK acts transitively on these places (per e.g. Section 2 of the appendix

to [Was96]), so Dp is only de�ned in GK up to conjugacy. Our main interest in these

groups will be in the context of representations of GK , where this is less of a problem.

For practical purposes, we will �nd it su�cient to choose a particular extension of a

place and compute with that particular decomposition subgroup.

For a �nite Galois extension F/K, we can de�ne the decomposition group alternately:

Dp(F/K) = {σ ∈ Gal(F/K) | σ(q) = q} . (2.2)

This group also depends on the ideal q, and is only de�ned up to conjugacy in

Gal(F/K). Since this is determined by our choice of P, taking the inverse limit

lim←−Dp(F/K) recovers the decomposition group Gal(KP/Kp). Each individualDp(F/K)

2 Meaning that, for two �elds F1, F2 �nite Galois over K with respective places q1, q2, the asso-
ciated place extending p of the compositum F1F2 we choose is exactly the one that restricts to qi
on Fi.
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is the Galois group of the p-adic extension Fq/Kp.

Next, we de�ne the inertia subgroup of GK at a place p.

De�nition 2.1.13. We write Fp for the residue �eld of Kp; then the residue �eld of

KP is Fp, and there exists a surjection

Gal(KP/Kp)� Gal(Fp/Fp).

The inertia subgroup of GK at p, denoted IKp (or Ip whenK is clear from context)

is the kernel of this map.

As with the decomposition group, the inertia group can be de�ned for a �nite Galois

extension F/K:

Ip(F/K) = {σ ∈ Gal(F/K) | σ(x)− x ∈ q for all x ∈ OF} .

This group is again only de�ned up to conjugacy in Gal(F/K). Since we use the same

q to de�ne the decomposition and inertia subgroup, there is an inclusion Iq(F/K) ≤
Dq(F/K). Taking the inverse limit lim←− Iq(F/K) over �nite Galois extensions again

yields the group Ip and the inclusion Ip ≤ Dp.

Remark 2.1.14. The decomposition and inertia groups Dp(F/K) and Ip(F/K)

depend on the choice of place q of L extending p. As we will usually work with a

speci�c (implicit) choice of q, we will omit the choice from the notation. In the rare

instances where we want to consider decomposition or inertia groups for a particular

choice of q, we will write them as Dq
p(F/K) and Iqp(F/K).

De�nition 2.1.15. A place p of K is unrami�ed in a �nite extension F/K if

Ip(F/K) = 1, i.e. if the inertia subgroup is trivial. We also say that F/K is

unrami�ed at p. If F/K is in�nite, p is unrami�ed if the inverse limit lim←− Iw(F ′/K)

over �nite Galois subextensions F ′/K of F/K is trivial.

We will also use the notions of inertia and decomposition for in�nite places, which

are simpler.
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De�nition 2.1.16. We have the above inclusion

Gal(KP/Kp) ↪→ Gal(K/K).

For an in�nite place p, we de�ne Dp = Ip to be the image of this map. For a �nite

extension F/K, the place p is unrami�ed if Fq = Kp.

An in�nite place of K is either a real or a complex embedding. This de�nition says

such a place p is rami�ed in F/K if and only if p is real in K, and extends only to

complex places q in F . Diagrammatically, we can represent this as

R R

C C

with the diagonal arrow being the only possible rami�cation of p when extended to

q.

Within the inertia subgroup for a �nite extension, there exist higher rami�cation

groups we will need in Section 2.3.1.

De�nition 2.1.17. Let i ≥ 0. The ith rami�cation group of F/K at p is the

subgroup of Gal(F/K) given by

Gp,i(F/K) =
{
σ ∈ Gal(F/K) | σ(x)− x ∈ qi+1 for all x ∈ OF

}
.

We have Gp,0(F/K) = Ip(F/K).

Finally, we note some useful results from in�nite Galois theory.

Proposition 2.1.18. Let F/K be a �nite extension. Then

Dp(F/K) = Gal(F/K) ∩Dp,

Ip(F/K) = Gal(F/K) ∩ Ip.
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2.2 Mod p Galois representations

We introduce mod p Galois representations and recap some important invariants in

the 2-dimensional case.

De�nition 2.2.1. A mod p Galois representation over K is a homomorphism

ρ : GK → GL(V ),

where V is a vector space over F, for F a �nite �eld of characteristic p.

We will restrict our attention to continuous Galois representations, meaning ρ is

continuous with respect to the Krull topology on GK and the discrete topology on

V . When ρ is continuous, the identity element in GL(V ) is open, so its preimage

(the kernel of ρ) must be open. It is a standard result of the theory of topological

groups that open subgroups are also closed, so there is a �nite Galois extension L/K

such that ker(ρ) contains Gal(K/L), and

L = K
ker(ρ)

, ker(ρ) ' Gal(K/L)

by the Galois correspondence (2.1).

De�nition 2.2.2. We call the above L the splitting �eld of ρ.

Basic group theory tells us that im(ρ) ' GK/ ker(ρ). For a �nite extension of number

�elds L/K, we always have that L = K, so Gal(K/L) = Gal(L/L) =: GL; the Galois

correspondence then tells us that

Gal(L/K) ' im(ρ) ' GK/GL. (2.3)

We will use this identi�cation frequently throughout Chapter 3.

Since im(ρ) is �nite, we can realise GL(V ) as a vector space over a �nite �eld of

characteristic p.

De�nition 2.2.3. The dimension of a continuous mod p Galois representation is the
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dimension of V as an Fq-vector space.

The local behaviour of a Galois representation is important for understanding and

identifying it. To that end, we introduce the notions of rami�cation of representa-

tions, and Frobenius elements.

De�nition 2.2.4. A Galois representation ρ : GK → GL(V ) is unrami�ed at a

place p if it is trivial on the inertia at p; i.e.

ρ(Ip) = 1.

Equivalently, ρ is unrami�ed at p if Ip(L/K) = 1. Since L/K is a �nite Galois

extension, it is only rami�ed at �nitely many places, so ρ is unrami�ed at all but

�nitely many places of L. We also say ρ is unrami�ed almost everywhere3.

Recall from Example 2.1.2 that Gal(Fp/Fp) ' Ẑ. We write Frobp for a generator of

Gal(Fp/Fp). The preimage of Frobp is a coset of Ip in Gal(KP/Kp), and it is common

to refer to any element of this coset as a Frobenius element at p, also denoted Frobp.

If a representation ρ is unrami�ed at p, then ρ(Frobp) is independent of this choice.

We now list some examples of Galois representations.

Example 2.2.5 (mod p cyclotomic character). For a prime p, write µp for the group

of the pth roots of unity in C. Choose a generator ζ of µp. The group GQ acts on µp
by automorphisms, so for σ ∈ GQ, we have

ζ · σ = ζkσ ,

for some kσ ∈ F×p . The mod p cyclotomic character is the map χp : GQ → F×p
de�ned by σ 7→ kσ. It is a continuous 1-dimensional Galois representation, unrami�ed

for all primes ` 6= p.

Example 2.2.6 (Mod p representation of an elliptic curve). This example is the

most important for our purposes, and will be used extensively in Chapter 6. Let E

3 Here we are using �almost all� to mean �all but �nitely many�, i.e. �almost all with respect to
the counting measure�.
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be an elliptic curve over K, that is, a smooth projective curve over K of genus 1 with

a distinguished K-point O. We write E(F ) for the set of F -points on E for �elds

F/K. The set E(F ) forms a group under the standard tangent-chord construction

(see e.g. Chapter III of [Sil09]).

The curve E has a model over K

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai ∈ K. The group GK acts on E(K) co-ordinate-wise, that is,

σ((x, y)) = (σ(x), σ(y))

for σ ∈ GK , (x, y) on the a�ne part4 of E(K). The set E[p] of points (x, y) in E(K)

such that p · (x, y) = 0 is a subgroup of E(K), since the addition operations for K

are de�ned by K-rational functions and so are �xed by GK . In fact, the group is

�nite:

E[p] ' Fp ⊕ Fp.

This gives a continuous two-dimensional Galois representation of GK , written ρE,p.

The splitting �eld of ρE,p is the result of adjoining the co-ordinates of every point

in E[p] to K, sometimes written K(E[p]). This �eld can be computed explicitly,

which we will do for many later examples. We accomplish this with code written by

Andrew Sutherland in [Sut16].

The conductor of E is an ideal n/OK divisible only by the primes of bad reduction

of E, see Section VIII.11 of [Sil09]. The representation ρE,p is unrami�ed at primes

q - np, and, for these primes, we have

trace(ρ(Frobq)) = N(q) + 1−#E(Fq) =: aq.

4 The projective part can be shown to contain only one point, and when this is taken to be the
identity of the group operation, it is �xed by the action of GK .
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2.3 Invariants

In order to compute �automorphic� information associated to Galois representations,

we need a way to associate cohomology classes (see Chapter 4) to a given representa-

tion ρ. To do this, we de�ne various invariants that (conjecturally) pin down exactly

where to �nd cohomology classes that correspond to ρ, in the manner described in

Section 4.4.

The speci�c pieces of information required are the Serre conductor, the Serre weight(s),

the character, and the traces of Frobenius elements. From here we will assume that

ρ is a 2-dimensional Galois representation over K an imaginary quadratic �eld.

We write L = K
ker(ρ)

. In the following, we will make various references to concepts

introduced in Chapter 4, indicating in which speci�c section the concept is used when

we do so.

Our exposition here owes much to that of [Tor12], which we follow closely.

2.3.1 Serre conductor

The Serre conductor of a Galois representation over K is an ideal in OK , used to

de�ne the level of associated cohomology classes (Section 4.4).

De�nition 2.3.1. Let p be a prime of K, and write Gp,i for the ith rami�cation

group of ρ at p. Writing

Vp,i = {v ∈ V | ρ(g) · v = v for all g ∈ Gp,i}

for the subspace of V of points invariant under the action of Gp,i, we de�ne the Serre

exponent of ρ at p as

ep(ρ) =
∞∑
i=0

1

[Gp,0 : Gp,i]
dim(V/Vp,i).
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Since rami�cations groups are eventually trivial, the dimension of V/Vp,i is eventually

0, so the sum is �nite. When ρ is unrami�ed at p, the Serre exponent is 0.

De�nition 2.3.2. The Serre conductor of ρ is the ideal

n(ρ) =
∏

p prime
p-p

pep(ρ).

Since ρ is unrami�ed almost everywhere, the product is over �nitely many terms,

with �nite exponents ep(ρ), so this expression de�nes an ideal of K.

2.3.2 Serre weight(s)

A Serre weight attached to a representation tells one which weight module to use

to �nd associated cohomology classes. When K = Q, there is one Serre weight

that is typically used, which is the minimal such weight. When K is an imaginary

quadratic, there is no obvious notion of a minimal weight, so a representation ρ

usually has several weights associated to it.

De�nition 2.3.3. A Serre weight over K is an irreducible Fp-representation V of

GL2(OK/pOK).

Per [Tor12], for K an imaginary quadratic �eld the Serre weights are of the form

V =
⊗
p|p

Vp,

where p is the rational prime over which p lies. Here, the Vp are the modules

Vp =
⊗
τ∈Sp

(det aτ ⊗Fp Symkτ (F2
p))⊗τ Fp,

where Sp is the set of embeddings τ : Fp ↪→ Fp, and Symk(F2
p) is the k

th symmetric

power of the standard representation on F2
p of GL2(O/pO). The values aτ and kτ

vary between 0 and p−1, as when aτ ≥ p, the determinant power is just aτ (mod p),
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and when kτ ≥ p, the representation is no longer irreducible.

These modules are the Fp-versions of the weight modules described in Section 4.1.2.

2.3.3 Character

The representation ρ : GK → GL2(Fq) has a character associated to it, �rst given by

Serre in [Ser87] for representations of GQ�the same principle works in general. The

determinant of ρ is a 1-dimensional Galois representation (i.e. a character)

det ρ : GK → F×q .

We will de�ne the character of ρ (also known as its nebentype) by removing the

p-part of the determinant. More precisely, class �eld theory reinterprets det ρ as a

character

det ρ : (OK/pn(ρ))× → Fp
×
,

which then factors as χε, with

χ : (OK/pOK)× → Fp
×
, ε : (OK/n(ρ))× → Fp

×
.

We take ε to be the character of ρ.

2.3.4 Traces of Frobenius elements

For each prime p of OK , we have a choice of Frobenius element in Dp(L/K) ≤
Gal(L/K), where L is again the splitting �eld of ρ. When ρ is unrami�ed, the trace

of ρ(Frobp) does not depend on the choice, hence we take the traces of Frobenius for

all primes p - pn(ρ) as an invariant.

Under the correspondence predicted by Serre's conjecture, the trace of Frobenius of ρ

at a prime p - pn(ρ) should match the Hecke eigenvalue of the associated cohomology

class at p. To identify such a class, we compute these traces up to some bound. This
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does not strictly prove the association, but until Serre's conjecture is proven this is

considered su�cient for its veri�cation.



3. SELMER GROUPS

In this chapter, we introduce Galois cohomology groups H1(GK , V ). Selmer groups

are special subgroups of Galois cohomology groups, de�ned using local information

arising from the completions Kp. We introduce three Selmer groups we can associate

to mod p representations, and, using the in�ation-restriction sequence in Galois co-

homology, we translate the problem of computing a Selmer group into a problem in

class �eld theory, which can then be solved using existing algorithms.

3.1 Group cohomology

We will �rst de�ne group cohomology generally (as we will also need it for Chapter

4), before specifying to Galois cohomology. The theory of group cohomology can be

developed abstractly from complexes and Ext functors, but we will only be using the

explicit description of cohomology in terms of cocycles and coboundaries, so that is

what we develop here. We follow the expositions of [Har20] and [Bro12], presenting

the results we need without proof.

Let G be a group and M a right G-module�we will denote the action of g ∈ G on

m ∈M by m · g. For i ≥ 0, write Ai for the abelian group of functions f : Gi →M ,

with the convention that A0 = M , the space of functions {1} → M . De�ne the

coboundary map di : Ai → Ai+1 as
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(dif)(g1, . . . , gi+1) =f(g1, . . . , gi) · gi+1 +
i∑

j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gi+1)

+(−1)i+1f(g2, . . . , gi+1).

De�nition 3.1.1. The space of i-cocycles is

Zi(G,M) := ker(di).

De�nition 3.1.2. The space of i-coboundaries is

Bi(G,M) := im(di−1).

A simple calculation shows that di ◦ di−1 = 0, and so we have

Bi(G,M) ≤ Zi(G,M).

De�nition 3.1.3. The ith cohomology group of G with coe�cients in M is

the space

H i(G,M) =
Zi(G,M)

Bi(G,M)
.

The advantage of this formulation of group cohomology is that it can be very explic-

itly written down. For example, when i = 0, a quick calculation shows that

H0(G,M) = MG.

When i = 1, the de�nition of d1 shows that Z1(G,M) is the space of functions

f : G→M satisfying

f(gh) = f(g) · h+ f(h).

Such functions are sometimes called crossed homomorphisms. We will call this the
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1-cocycle property. Meanwhile, the space B1(G,M) is the space of functions

fm : g 7→ m · g −m

for some m ∈ M . These are sometimes called principal crossed homomorphisms.

When the action of G on M is trivial, the 1-cocycle condition becomes f(gh) =

f(g) + f(h), and the 1-coboundary condition de�nes only the zero map, so we have

that the cohomology group H1(G,M) is just Hom(G,M).

The description of second cohomology in terms of cocycles and coboundaries is a

little less useful than �rst cohomology, though we still note it here for completion.

The space Z2(G,M) is made up of all functions f : G2 →M satisfying

f(g, h) · k − f(gh, k) + f(g, hk)− f(h, k) = 0.

The space B2(G,M) is, in turn, made up of all functions f : G2 → M such that

there is a function ψ : G→M satisfying

f(g, h) = ψ(g) · h− ψ(gh) + ψ(h).

One useful property of cohomology is that it turns short exact sequences into long

exact sequences; we have the following.

Proposition 3.1.4. Let A,B,C be right G-modules with

0→ A→ B → C → 0 (3.1)

exact. Then there is an exact sequence of cohomology groups

0→H0(G,A)→ H0(G,B)→ H0(G,C)→

H1(G,A)→ H1(G,B)→ H1(G,C)→

H2(G,A)→ . . .
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The maps between cohomology groups of the same degree are induced by the maps

between the underlying modules, e.g. H1(G,A) → H1(G,B) comes from the map

φ : A → B in (3.1): the class [f ] ∈ H1(G,A) is taken to [φ ◦ f ]. We write the map

between cohomology groups φ∗, and say it is induced by φ. The maps between

groups of di�erent degrees are called the connecting homomorphisms, and prov-

ing these exist and give rise to the exact sequence is the main content of the proof

of the proposition.

If G,G′ are groups with a homomorphism ϕ : G′ → G, and M is a G-module, we can

make M a G′-module by setting

m · g′ := m · ϕ(g′).

This gives rise to a homomorphism in cohomology

ϕ∗ : H i(G,M)→ H i(G′,M). (3.2)

WhenG′ = H ≤ G, this map is called restriction. The analogue of Proposition 3.1.4

is the in�ation-restriction sequence, which we describe below in De�nition 3.1.10.

In Section 4.1.1, we will relate the cohomology of a subgroup H ≤ G to the coho-

mology of G itself. To do this, we introduce the induced and coinduced modules.

De�nition 3.1.5. For H ≤ G and M an H-module (over a ring R), de�ne the

induced module

IndGH(M) = R[G]⊗R[H] M

and the co-induced module

CoIndGH(M) = HomR[H](R[G],M).
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Assuming [G : H] <∞, we can write

G =
n∐
i=1

Hri

where {ri} are representatives of H\G, giving the decomposition

IndGH(M) =
⊕

ri∈H\G

ri ⊗M,

where g ⊗M = {g ⊗m | m ∈M}. We can rewrite this as

IndGH(M) = R[H\G]⊗M.

Here R[H\G] has the right G-action induced by the permutation of {Hri} by ele-

ments of G.

Remark 3.1.6. There is a lack of consensus about which way around the notions of

induced and co-induced module ought to be. We have opted to follow the exposition

of [Bro12] in this regard. As the following proposition shows, there is often little

need for the distinction.

Proposition 3.1.7. When [G : H] <∞, we have

IndGH(M) ' CoIndGH(M).

To relate the cohomology of subgroups and their supergroups, we have the following

result:

Proposition 3.1.8 (Shapiro's lemma). The map ψ : CoIndGH(M) → M sending f

to f(1) (equivalently, the coe�cient of the coset H) is a homomorphism of modules

compatible with the inclusion map H → G. It gives rise to the map in cohomology

ψ∗ : H i(G,CoIndGH(M))→ H i(H,M),

which is an isomorphism.
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The proof is given as (6.6) in [Bro12]. We will only be using this result in the context

of subgroups such that [G : H] <∞. So, in particular, we will be using the modi�ed

version of Shapiro's lemma, with the isomorphism

ψ∗ : H i(G,R[H\G]⊗M)→ H i(H,M).

De�nition 3.1.9. A Galois cohomology group is a group H i(Gal(F/K),M),

where F/K is a Galois extension of number �elds, restricted to only those (classes

of) cocycles that are continuous with respect to the topologies on Gal(F/K) and M .

As all our M will be of the form GL(V ) with V a vector space over Fp, we always
take the discrete topology on M .

When F/K is �nite, this coincides with the normal cohomology group above. When

F/K is in�nite, the continuity condition ensures we have the relation

H i(Gal(F/K),M) = lim←−H
i(Gal(F ′/K),M),

where the limit runs over all �nite Galois F ′/K, and M is made an Gal(F ′/K)-

module by restriction.

Finally, we will also need the in�ation-restriction sequence.

De�nition 3.1.10. Let N ≤ G be a normal subgroup, and M a G-module. Then

the sequence

0→ H1(G/N,MN)
inf−→ H1(G,M)

res−→ H1(N,M)G/N → H2(G/N,MN)→ . . .

is exact. See [Wei94], Section 6.7.

The map inf : H1(G/N,MN) → H1(G,M) is called the in�ation map, and is in-

duced by the map Gi → (G/N)i, noting that MN ⊂ M ; the map res : H1(G,M)→
H1(N,M)G/N is the restriction map, as in (3.2). The group G/N acts on H1(N, V )

by conjugation: for f ∈ H1(N,M) and g ∈ G/N , we have

(g · f)(n) = f(g−1ng)g−1.
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3.2 Selmer systems and Selmer groups

For the rest of the chapter, we will study the Galois cohomology groups H1(GK , V )

for K some number �eld and ρ : GK → V a continuous 2-dimensional mod p rep-

resentation of GK . We also make the additional restriction that V is absolutely

irreducible. The group H1(GK , V ) is, in general, in�nite-dimensional and di�cult to

work with directly. A Selmer group is a particular subgroup of H1(GK , V ), chosen

in such a way as to be �nite, easier to compute with exactly, and ideally carrying

some important arithmetic information about the representation V . They are de�ned

using local conditions, coming from the completions of K at its various places.

We recall the embeddings Dp ↪→ GK from De�nition 2.1.11. They give rise to the

restriction morphisms of cohomology groups

H1(GK , V )→ H1(Dp, V )

for all places p of K.

De�nition 3.2.1. A local condition at p is a subgroup Lp ≤ H1(Dp, V ).

There are many local conditions one could de�ne, but we will focus on just a few.

The most important local condition is the following.

De�nition 3.2.2. The unrami�ed condition is the subgroup

H1
unr(Dp, V ) := ker(H1(Dp, V )→ H1(Ip, V )).

This is the subgroup of H1(Dp, V ) consisting of all cocycle classes that vanish on

inertia. Such a cocycle class is called unrami�ed. This is the only local condition

we need to de�ne a Selmer group.

De�nition 3.2.3. A Selmer system for V is a set of L of local conditions Lp,

indexed by places p of K, such that all but �nitely many Lp are the unrami�ed

condition.

Remark 3.2.4. The in�nite places ultimately don't �nd themselves heavily involved
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in these calculations, although a little work is needed to see why. If p is an in�nite

place, its completion corresponds to either R or C, which both algebraically close to

C, giving possible decomposition groups

Gal(C/R) ' C2, Gal(C/C) ' C1.

Thus, unless p is real and p = 2, we will have H1(Gal(KP/Kp), V ) = 0, per Remark

3.7 of [Rub00]. For mod 2 Selmer groups, we will allow any amount of rami�cation

at the real places.

De�nition 3.2.5. Given a Selmer system L, the Selmer group attached to L is

the subgroup of H1(GK , V ) given by

SelL(ρ) := ker

H1(GK , V )→
∏
p-∞

H1(Dp, V )

Lp

 .

That is, we keep a class in H1(GK , V ) if it is in every Lp after restriction to Dp.

We will see in Section 3.3.3.1 that a Selmer group of a mod p representation is �nite.

In particular, it is a �nite-dimensional vector space over Fq, where V = Fq ⊕ Fq.
De�nition 3.2.6. The rank of SelL is its dimension as a vector space over Fq.

We will focus on three Selmer systems. For all three systems we will take Lp =

H1
unr(Dp, V ) for p not over the characteristic p of V , mimicking the de�nition of the

Bloch-Kato Selmer group from Section 3 of [BK07].

3.2.1 The relaxed system

De�nition 3.2.7. The relaxed Selmer system Lrel is de�ned by

Lp =

H1
unr(Dp, V ) when p - p

H1(Dp, V ) when p | p.
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This condition is the most permissive of the three we consider, meaning it de�nes

the largest Selmer group, which we denote Selrel(ρ). This is because we make no

condition at places over p: everything in H1(GK , V ) restricts to 0 in the quotient,

because the quotient is trivial.

The relaxed condition is, in general, too permissive to capture �interesting� arithmetic

information about ρ; when we transfer Selmer systems to class �eld theory in Section

3.3, we will see the relaxed system captures extensions of the �xed �eld of ker(ρ) that

are unrami�ed away from p.

The relaxed Selmer group is still useful, because it is fairly easy to compute. In our

algorithms, it exists as a sort of �stepping stone�, a group we compute easily that

contains a Selmer group de�ned by �ner conditions, whose elements we can examine

more closely to �cut down� to our desired group.

3.2.2 The nearly-ordinary system

To de�ne the nearly-ordinary system (see, for example, [EPW05]), we require the

following: for each p | p, the restriction of ρ : GK → V to Dp �xes a 1-dimensional

subspace `p ≤ V , i.e. a line. Note that these lines `p need not be the same subspaces

of V for each of the p | p. If such a line exists for a given p, we say ρ is nearly-ordinary

at p.

If ρ is nearly-ordinary, there is a choice of basis of V such that

ρ |Dp'
(
∗ ∗
0 ∗

)
.

This also means ρ∗ = ρ |Dp : Dp → V/` is a character of Dp.

De�nition 3.2.8. The nearly-ordinary Selmer system associated to ` is

Lp =

H1
unr(Dp, V ) when p - p

ker(H1(Dp, V )→ H1(Ip, V/`)) when p | p.
.
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Since Ip ⊂ Dp, the action of Ip on V/` is well-de�ned; this system keeps in the Selmer

group all those classes that are unrami�ed under the restriction to ρ∗.

Remark 3.2.9. It is possible for ρ|Dp to �x more than one line in V ; in the most

extreme case, Dp is trivial and so ρ|Dp �xes all q + 1 lines in V . The Selmer group

one obtains from any given �xed line need not be the same as that obtained from

any other. In Section 6.3.1 we give an example of a mod 2 representation with three

nearly-ordinary Selmer groups, of ranks 1, 2 and 3.

When the speci�c line used to compute the Selmer group is clear from context, we will

write it SelNO(ρ); when there are multiple lines `i being considered simultaneously,

we will write SelNO(`i)(ρ) for the Selmer group attached to `i.

Remark 3.2.10. The phrase �nearly-ordinary� is used by di�erent authors to mean

di�erent things. In some treatments, it is used to describe the slightly stronger

condition that ρ|Dp �xes a line in V and is unrami�ed on the quotient V/`. We

make no such imposition on the behaviour of ρ|Dp , but we do examine the di�erence

in ranks between the rami�ed and unrami�ed action on the quotient in Section 6.3.2.

In the case that K has more than one place p over p, and that ρ is nearly-ordinary

for all of them, we take the nearly-ordinary condition for all of them. Depending

on the decomposition groups involved, we can end up with many di�erent Selmer

groups, coming from taking di�erent combinations of the various lines �xed by the

ρ |Dp .

3.2.3 The unrami�ed system

De�nition 3.2.11. The unrami�ed Selmer system Lunr takes, for each p, the

local condition Lp = H1
unr(Dp, V ).

In contrast to the relaxed condition, the unrami�ed condition is, in general, too re-

strictive to capture all the �interesting� arithmetic information about ρ. Its elements

correspond to everywhere-unrami�ed extensions of the �xed �eld of ker(ρ), which

are rare.
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3.3 Cohomology to class �eld theory

In this section, we prove an equivalence between lines in SelL(ρ) and extensions of

the �xed �eld of ker(ρ) satisfying certain properties, coming from the local conditions

in L.

3.3.1 In�ation-restriction revisited

Recall the in�ation-restriction sequence for a G-module M and N / G normal:

0→ H1(G/N,MN)
inf−→ H1(G,M)

res−→ H1(N,M)G/N → H2(G/N,MN)→ . . .

For a mod p representation ρ : GK → GL(V ), we set G = GK , N = ker(ρ) and

M = V . Writing L = K
ker(ρ)

, we note that GL = ker(ρ) acts trivially on V , so

H1(GL, V ) ' Hom(GL, V ). Substituting everything in and recalling the isomorphism

Gal(L/K) ' GK/GL from (2.3), we get the exact sequence

0→ H1(Gal(L/K), V )→ H1(GK , V )→ HomGal(L/K)(GL, V )→ H2(Gal(L/K), V ).

The utility of this sequence comes from the fact that it relates cocycles in H1(GK , V )

to homomorphisms, and that H i(Gal(L/K), V ) is very often trivial for i = 1, 2, see

Section 3.4.3. When both are, the middle map

H1(GK , V )→ HomGal(L/K)(GL, V ) (3.3)

is an isomorphism. In particular, when H1(Gal(L/K), V ) vanishes, the map is injec-

tive, and we can bound our Selmer groups from above. Similarly, whenH2(Gal(L/K), V )

vanishes, the map is surjective, and we can bound our Selmer groups below. When

both vanish, we can compute the exact rank of our Selmer groups by understand-

ing them as subgroups of HomGal(L/K)(GL, V ), which is easier to work with than

H1(GK , V ).
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Remark 3.3.1. While H i(Gal(L/K), V ), i = 1, 2, does not vanish for all possible

Galois modules V of L/K, it is theoretically possible to work around the fact the

non-vanishing prevents an isomorphism. In practice, this will never happen, as we

only examine cases where vanishing holds. Thus we may always assume (3.3) is

an isomorphism. We have also computed exactly the subgroups for which these

cohomology groups do not vanish for some small primes, in Section 3.4.3.

3.3.2 Homomorphisms to number �elds

Assuming we can move between H1(GK , V ) and HomGal(L/K)(GL, V ) freely, we will

now realise elements of the latter as �nite extensions M/L satisfying certain proper-

ties. In particular, we show the following.

Theorem 3.3.2. Let V be a Galois representation over Fp. Non-trivial lines in

HomGal(L/K)(GL, V ) are in bijection with extensions M/L satisfying

1. The extension M/L is Galois, with Gal(M/L) ' V (as an additive group);

2. The extension M/K is Galois;

3. The action of Gal(L/K) on Gal(M/L) is via ρ.

The main advantage of this theorem is that extensions M/L satisfying points (1-3)

are abelian extensions, and once we translate the local conditions, we will see the

M/L are unrami�ed for primes of L not over p, meaning they can be found using

class �eld theory, for which extensive and e�ective algorithms already exist.

Before we prove the theorem, we need to de�ne the action of Gal(L/K) on Gal(M/L).

Assume that M/K is also Galois, as in the theorem.

De�nition 3.3.3. An extension of σ ∈ Gal(L/K) to Gal(M/K) is any σ̃ ∈
Gal(M/K) such that σ̃(x) = σ(x) for all x ∈ L.

We have an exact sequence of Galois groups

1→ Gal(M/L)→ Gal(M/K)→ Gal(L/K)→ 1,
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so there are |Gal(M/L)| choices of extension of σ ∈ Gal(L/K).

To de�ne how σ ∈ Gal(L/K) acts on τ ∈ Gal(M/L), choose any extension σ̃ of σ to

Gal(M/K), and set

(τ · σ)(x) := (σ̃−1 ◦ τ ◦ σ̃)(x).

We can prove this is an action in the following way: two extensions σ̃1, σ̃2 ∈ Gal(M/K)

agree on L, so σ̃1σ̃
−1
2 �xes L, and so is in Gal(M/L); since Gal(M/L) is abelian, we

are free to rearrange as below to get:

(σ̃−1
1 ◦ τ ◦ σ̃1) ◦ (σ̃−1

2 ◦ τ ◦ σ̃2)−1 = σ̃−1
1 ◦ τ ◦ (σ̃1 ◦ σ̃−1

2 ) ◦ τ−1 ◦ σ̃2

= σ̃−1
1 ◦ (σ̃1 ◦ σ̃−1

2 ) ◦ τ ◦ τ−1 ◦ σ̃2

= 1.

Thus the action is independent of the choice of extension.

This is a speci�c instance of a more general phenomenon: if G is a group with H E G

abelian, then G/H acts on H by conjugation.

Remark 3.3.4. This action can be reinterpreted at the level of the absolute Galois

groups GK , GL and GM as follows: take σ ∈ Gal(L/K) and τ ∈ Gal(M/L). Using

the isomorphisms Gal(L/K) ' GK/GL (via ρ) and Gal(M/L) ' GL/GM (via a

homomorphism f in HomGal(L/K)(GL, V )), we can lift these to σ̃ ∈ GK and τ̃ in GL.

Since GL / GK , the conjugation σ̃−1τ̃ σ̃ is still in GL, and so lies in the domain of f .

Since GK acts on GL by conjugation, we get

τ · σ := f(σ̃−1τ̃ σ̃).

Remark 3.3.5. The condition that V be a representation over Fp, rather than Fq
for some prime power q, is important. Without this condition, the theorem as-stated

would not work. We only perform Selmer computations over Fp in this thesis, so we

do not need to worry about Fq complications.

Proof of Theorem 3.3.2. We start with an element f ∈ HomGal(L/K)(GL, V ). This
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is a homomorphism GL → V invariant under the action of Gal(L/K) ' GK/GL,

which acts on f via this identi�cation: take σ̃ ∈ GK and write σ for its image in the

quotient. Then we have

(σ · f)(τ) = f(σ̃−1τ̃ σ̃)σ−1

for all τ̃ ∈ GL. We note that the action on the right by σ is by ρ. Since f is invariant

under this action, we have

f(τ̃) · σ = f(σ̃−1τ̃ σ̃). (3.4)

We write Mf = K
ker(f)

, and note the following consequences of (3.4):

(I) The group im(f) is a GK-stable subspace of V , since f(τ̃) · σ = f(σ̃−1τ̃ σ̃) ∈
im(f).

(II) The group ker(f) is normal not only in GL, but also in GK . To show this,

choose τ̃ ∈ ker(f). Then f(σ̃−1τ̃ σ̃) = f(τ̃) · σ = 0 · σ = 0 for all σ ∈ GK .

From point (I) we see that Mf/L is Galois, with Galois group im(f) ≤ V . Since V

is assumed to be an irreducible GK-module, and im(f) ≤ V is also a GK-module,

it must either be V or 0. The homomorphism GL → V sending everything to 0

corresponds to the trivial extension L/L, so discounting this option (i.e. assuming

Mf/L is non-trivial),Mf/L must have Galois group V . If α ∈ Fp, we have ker(αf) =

ker(f), so every element in the line αf maps to the same extension Mf/L = Mαf/L.

This gives condition (1) in the theorem.

From point (II) we see that Mf/K is also a Galois extension, giving condition (2) in

the theorem.

Finally, to prove condition (3), take τ ∈ Gal(M/L). We have Gal(Mf/L) ' f(GL),

so we can take some τ̃ ∈ GL such that f(τ̃) = τ . We want to act on τ by the

conjugation action of Gal(L/K) on Gal(M/L). Recall from Remark 3.3.4, we can

write this as

τ · σ = f(σ̃−1τ̃ σ̃)



3. Selmer groups 38

for some lift of σ ∈ Gal(L/K) to GK . By (3.4), we get that

τ · σ = f(τ̃) · σ

where the right-hand-side action is via ρ. But τ̃ is de�ned such that f(τ̃) = τ , so

the left-hand-side action must be via ρ.

For the reverse inclusion, let M/L be an extension satisfying (1-3). To de�ne the

required homomorphism, we note that there is an isomorphism ϕ : Gal(M/L) →
V , and that Gal(M/L) ' GL/GM . We claim the required homomorphism is the

composition

fM : GL −→→ Gal(M/L)
ϕ−→ V.

Certainly this is a homomorphism GL → V ; it is Gal(L/K)-invariant if

fM(τ̃) = fM(σ̃−1τ̃ σ̃) · σ−1

for all τ̃ ∈ GL, all σ ∈ Gal(L/K) with lift σ̃ ∈ GK . In other words, if

fM(τ̃) · σ = fM(σ̃−1τ̃ σ̃).

We have fM(τ̃) · σ = τρ(σ), since σ ∈ Gal(L/K) and τ = fM(τ̃) ∈ V . Meanwhile,

we have σ̃−1τ̃ σ̃ ∈ GL, so fM(σ̃−1τ̃ σ̃) = σ′−1τσ′, with σ′ here denoting a lift of

σ ∈ Gal(L/K) to Gal(M/K). This is exactly the de�nition of the action of Gal(L/K)

on Gal(M/L): lifting, then conjugating. Thus, the two actions match, and fM is

Gal(L/K)-invariant.

3.3.3 Translating local conditions

The next step is to turn the local conditions de�ned in cohomology into properties

of the extensions Mf/L = M/L given by Theorem 3.3.2. We tackle the unrami�ed

condition �rst. Recall, for a given place p of K, we have an implicitly chosen primes

q of L and P of K respectively, such that P |L= q, P |K= p, and (P |L) |K= p.
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Proposition 3.3.6. The inertia group Iq ≤ Gal(K/K) can be written

Iq = Ip ∩GL.

Proof. We write Fp, Fq and Fp for the residue �elds of Kp, Lq and KP respectively.

Recalling De�nition 2.1.13 of the inertia group, we obtain a commutative diagram

Gal(KP/Lq) Gal(Fp/Fq)

Gal(KP/Kp) Gal(Fp/Fp)

with horizontal kernels giving Iq and Ip. We clearly have Iq ≤ Ip; meanwhile, the

commutativity of the diagram (coming from the compatibility of the underlying

maximal ideals mp/OKp and mq/OLq) gives that Ip∩GL = Ip∩Gal(KP/Kp) ≤ Iq.

3.3.3.1 The unrami�ed condition

Here we hope to translate the condition of a cocycle class in H1(GK , V ) being in

H1
unr(Dp, V ) to a condition on the number �eld extension M/L. The naive hope is

that the extension itself will be unrami�ed at places of L over p; this is exactly what

happens.

Recall from Section 2.1.1, for each place p of K and every F/K Galois, we have

made a choice of place q of F in a compatible way, giving a place P of K such that

P |F= q. We write q for the restriction P |L, and q′ for the restriction P |M .

The identi�cation Gal(L/K) ' GK/GL lets us write the inertia subgroup Ip(L/K)

as

Ip(L/K) = im(Ip ↪→ GK
ρ−→→ GK/GL ' Gal(L/K)) = ρ(Ip), (3.5)
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so, in particular, we have

Ip(L/K) ' Ip
Ip ∩GL

=
Ip
Iq
.

Then the restriction map

res : H1(GK , V )→ H1(Ip, V )

induces a commutative diagram

H1(GK , V ) HomGal(L/K)(GL, V )

H1(Ip, V ) HomIp(L/K)(Iq, V ).

res res

Let f ∈ H1(GK , V ) and denote by f̃ the corresponding element in HomGal(L/K)(GL, V ).

Assume f ∈ H1
unr(Dp, V ), so that res(f) = 0 in H1(Ip, V ). Then, by the commuta-

tivity of the diagram, res(f̃) = 0. So we have

Iq ≤ ker(f̃).

Similarly to (3.5), the identi�cation Gal(M/L) ' GL/GM allows us to write

Iq(M/L) = im(Iq ↪→ GL
f̃−→→ GL/GM ' Gal(M/L)) = f̃(Iq).

Thus, Iq(M/L) = f̃(Iq) = 0. If q1 is a place of L other than q = P |L, it is GL-

conjugate to q and so is also in the kernel of f̃ . So, in fact, Iq(M/L) = 0 for all

places over p.

Thus we have the following.

Proposition 3.3.7. Let f ∈ H1
unr(Dp, V ). Then Mf/L is unrami�ed for all places q

of L extending p.
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As an immediate consequence, we note the following result.

Theorem 3.3.8. The group SelL(ρ) is �nite.

This follows from the classical result that there are only �nitely many extensions of

a �xed degree with a �xed �nite set of ramifying primes. This, in turn, gives us only

�nitely many possible extensions corresponding to lines in any Selmer group, since

one is required to take the unrami�ed condition almost everywhere.

Remark 3.3.9. This argument is technically incomplete if the map (3.3) is not

injective. However, since H1(Gal(L/K), V ) is �nite, the kernel of this map is at

most �nite, so there is no possibility of in�nitely-many elements of SelL(ρ) being

killed, so the result still follows in this case.

In order to compute the rank of the Selmer group exactly, we require the converse

result.

Proposition 3.3.10. Suppose M/L satis�es the conditions of Theorem 3.3.2, and

M/L is unram�ed at all places q extending p. Then the corresponding homomor-

phism f̃ ∈ HomGal(L/K)(GL, V ) is unrami�ed at p.

Proof. Recall the homomorphism f̃M : GL → V associated to M is

f̃M : GL → GL/GM ' Gal(M/L) = V.

It is unrami�ed at p if f̃M(Ip ∩GL) = 0. Proposition 3.3.6 tells us that GL ∩ Ip = Iq,

and in the proof of Proposition 3.3.7 we showed that Iq(M/L) = f̃M(Iq), so we are

done.

3.3.3.2 The nearly-ordinary condition

We proceed in essentially the same manner as for the unram�ed condition in Section

3.3.3.1. Recall that ρ is nearly-ordinary if ρ |Dp �xes a 1-dimensional line ` ≤ V .
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Equivalently, we have an exact sequence of Dp modules

0→ `→ V → V/`→ 0.

The nearly-ordinary condition is then

Lp = ker(H1(Dp, V )→ H1(Ip, V/`)).

This induces a commutative diagram

H1(GK , V ) HomGal(L/K)(GL, V )

H1(Ip, V ) HomIp(L/K)(Iq, V )

H1(Ip, V/`) HomIp(L/K)(Iq, V/`)

where we are again using that Iq = Ip ∩ GL. Let f ∈ Lp, i.e. the image of f in

H1(Ip, V/`) vanishes. Then, by the commutativity of the diagram, the correspond-

ing homomorphism f̃ ∈ HomGal(L/K)(GL, V ) vanishes in HomIp(L/K)(Iq, V/`). Thus,

f̃(Iq) ≤ `.

As in Section 3.3.3.1, we have, for the place q = P |L of L, that

Iq(M/L) = f̃(Iq) ≤ `.

So M/L satis�es the nearly-ordinary condition at q if Iq(M/L) ≤ `. Note, the prime

q needs to be the same prime used to de�ne the decomposition group Dq that gives

rise to the line ` ≤ V . If a di�erent q′ is used, we get a (possibly) di�erent �xed line

`′ and a (possibly) di�erent inertia group Iq′(M/L). Due to the Galois action, we

have Iq(M/L) ≤ ` if and only if Iq′(M/L) ≤ `′.

We again need the converse result to properly compute the rank of the nearly-
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ordinary Selmer group.

Proposition 3.3.11. Suppose M/L satis�es the conditions of Theorem 3.3.2, and

Iq(M/L) ≤ `. Then the corresponding homomorphism f̃M ∈ HomGal(L/K)(GL, V ) is

trivial in HomIp(L/K)(Iq, V/`).

Proof. The proof is essentially already done. The homomorphism f̃M is

f̃M : GL → GL/GM ' Gal(M/L) = V.

If f̃M(Iq) = Iq(M/L) ≤ `, then f̃M is the zero homomorphism in HomIp(L/K)(Iq, V/`).

3.4 Miscellaneous

3.4.1 Comparing Selmer groups

Clearly, Selunr(ρ), SelNO(ρ) ≤ Selrel(ρ). In fact, we have

Selunr(ρ) ≤ SelNO(ρ) ≤ Selrel(ρ).

This follows from the following observation: the unrami�ed condition is

Lunr
p = ker(H1(Dp, V )→ H1(Ip, V )),

and the nearly-ordinary condition is

LNO
p = ker(H1(Dp, V )→ H1(Ip, V/`)).

If ρ is nearly-ordinary at a place p over p, then a class f ∈ Lunr
p is automatically

in LNO
p , since f being the zero class in H1(Ip, V ) means f is also the zero class in

H1(Ip, V/`).
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3.4.2 Dimension of vector space from number of lines

The following lemma is very easy to prove; we include it for completeness, as we use

it extensively in later chapters.

Lemma 3.4.1. Let W be an Fq-vector space of dimension n. The number of lines
in W is qn−1

q−1
.

3.4.3 Non-vanishing H1, H2

Here we note which subgroups of H ≤ GL2(Fp) have non-vanishing H i(H, V ), where

V ' Fp⊕Fp is given an H action by restriction of the standard action of GL2(Fp), for
small primes p = 2, 3, 5 and i = 1, 2. Recall, the non-vanishing of these H i prevents

the map (3.3) from being an isomorphism. So, if a subgroup H ≤ GL2(Fp) does not
appear here, that map is an isomorphism, and the methods of this chapter can be

used to exactly compute ranks of Selmer groups attached to representations ρ with

im(ρ) = H.

All computations were performed in Magma, using H1H2_testing.m, in Section

A.2.7.

We list subgroups according to their LMFDB labels, as the isomorphism class of the

subgroup is generally not enough to distinguish it as problematic. For more details

on the naming conventions for abstract groups and their subgroups in use on the

LMFDB, see https://lmfdb.org/Groups/Abstract/.

We write hi for dimFp(H
i(H, V )).

3.4.3.1 The case p = 2

No subgroup H ≤ GL2(F2) has H i(H,V ) 6= 0, for i = 1, 2.

https://lmfdb.org/Groups/Abstract/
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3.4.3.2 The case p = 3

The group GL2(F3) has LMFDB label 48.29. It has three subgroups where at least

one of H1 and H2 does not vanish.

Name Order LMFDB h1 h2

C3 3 16.a1.a1 1 1
S3 6 8.b1.a2 0 1
S3 6 8.b1.a1 1 0

3.4.3.3 The case p = 5

The group GL2(F5) has LMFDB label 480.218. It has �ve subgroups where at least

one of H1 and H2 does not vanish.

Name Order LMFDB h1 h2

C5 5 96.a1.a1 1 1
D5 10 48.b1.a1 0 1
D5 10 48.b1.a2 1 0
F5 20 24.d1.a1 0 1
F5 20 24.d1.b2 1 0

3.4.3.4 Primes p > 5

For primes p > 5, no subgroup data of GL2(Fp) is currently available in the LMFDB.

We don't perform any Selmer group computations for these primes, although prob-

lematic subgroups can still be found easily using the code referenced above.

https://lmfdb.org/Groups/Abstract/48.29
https://lmfdb.org/Groups/Abstract/sub/48.29.16.a1.a1
https://lmfdb.org/Groups/Abstract/sub/48.29.8.b1.a2
https://lmfdb.org/Groups/Abstract/sub/48.29.8.b1.a1
https://lmfdb.org/Groups/Abstract/480.218
https://lmfdb.org/Groups/Abstract/sub/480.218.96.a1.a1
https://lmfdb.org/Groups/Abstract/sub/480.218.48.b1.a1
https://lmfdb.org/Groups/Abstract/sub/480.218.48.b1.a2
https://lmfdb.org/Groups/Abstract/sub/480.218.24.d1.a1
https://lmfdb.org/Groups/Abstract/sub/480.218.24.d1.b2


4. COHOMOLOGY OF BIANCHI GROUPS

In this chapter, we overview some important results concerning the cohomology of

Bianchi groups. Via the Eichler-Shimura isomorphism, these cohomology groups

capture important arithmetic information coming from Bianchi modular forms�

modular forms over imaginary quadratic �elds. We recap methods to compute both

H1 and H2 of these groups, and de�ne the Hecke action on both.

4.1 Bianchi groups

Let K = Kd = Q(
√
−d) for d > 0 and squarefree, be an imaginary quadratic �eld

with ring of integers Od := OK .
De�nition 4.1.1. A Bianchi group is one of the groups

Γd = PSL2(Od) =

{(
a b
c e

) ∣∣∣∣ a, b, c, e ∈ Od, ae− bc = 1

}/
{±I}.

When the �eld K (and so d) is obvious from context, we will also simply write Γ

for PSL2(ZK). We will restrict our attention to the Euclidean Bianchi groups, i.e.

those for which Od is a Euclidean ring. These are exactly the Kd corresponding to

d ∈ {1, 2, 3, 7, 11}. We make this restriction for a few reasons, see Remark 4.2.3 and

Remark 4.3.1.
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We �x the following notation throughout:

ω = ωd :=



√
−1, d = 1,
√
−2, d = 2,

1+
√
−3

2
, d = 3,

1+
√
−7

2
, d = 7,

1+
√
−11

2
, d = 11.

Note that {1, ωd} forms a Z-basis of Od.

4.1.1 Congruence subgroups of Bianchi groups

The most important subgroups of Bianchi groups (for our purposes) are congruence

subgroups, which we now de�ne. Let n be an ideal of OK .
De�nition 4.1.2. The principal congruence subgroup of level n is the group

of matrices

Γ(n) =

{(
a b
c d

)
≡
(

1 0
0 1

)
(mod n)

}
≤ PSL2(OK).

A congruence subgroup of level n is a subgroup of Γ containing Γ(n). Of partic-

ular interest to us is the group Γ0(n):

Γ0(n) =

{(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod n)

}
≤ PSL2(OK),

We develop the theory of cohomology of Bianchi groups with a general module M ,

though we are really interested in the groups H1(Γ0(n),M) for some Γ0(n)-module

M . The main tool in computing H1 and H2 of Γ is its group presentation, and while

presentations for Γ0(n) do exist, they are much more cumbersome to work with.

The alternative to this is to use Shapiro's lemma (Proposition 3.1.8), which we may
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do since [Γ : Γ0(n)] <∞. Recall, the modi�ed Shapiro lemma gives an isomorphism

H i(Γ, R[Γ0(n)\Γ]⊗M) ' H i(Γ0(n),M)

for all Γ0(n)-modules M . We now describe the coset space Γ0(n)\Γ. This is a

standard part of the theory and can be found in many places, see e.g. Section 2.2

of [Cre84].

De�nition 4.1.3. For a commutative ring R with identity, the projective line over

R is the set of ordered pairs (c, d) ∈ R2, modulo the equivalence relation

(a, b) ≡ (c, d)⇔ a = uc, b = ud

for some u ∈ R×. We write (c : d) for the equivalence class of (c, d), and P1(R) for

the projective line.

Proposition 4.1.4. The right cosets of Γ0(n) in Γ are in bijection with elements of

P1(O/n). The bijection is given by(
a b
c d

)
7→ (c : d).

The bijection respects the usual action of Γ on Γ0(n)\Γ (multiplication on the right),

and the action on the projective line de�ned by

(c : d)

(
r s
t u

)
= (rc+ td : sc+ ud)

The proof can be found in [Cre84].

4.1.2 Modules of Bianchi groups

We recap some important modules relevant to the cohomology of Bianchi groups.

De�nition 4.1.5. The level n module of Γ is the space R[Γ0(n)\Γ] ' R[P1(O/n)].

It is so named because it is used to compute with Bianchi modular forms of level
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higher than 1 when computing Bianchi modular forms in cohomology, per Section

4.1.4.

In the same manner, we introduce the weight module.

De�nition 4.1.6. Let Vk(R) denote the space of polynomials in two variables X and

Y over a ring R, homogeneous of degree k. The space Vk(C) is a right GL2(C)-module

by the action

Xk−iY i ·
(
a b
c d

)
= (aX + bY )k−i(cX + dY )i.

We will also write Vk when the ring is clear from context. The (complex) weight

(k, l) module is the space

Vk,l(C) := Vk(C)⊗ Vl(C),

where the bar on the second component signi�es that the action of GL2(C) is twisted

by complex conjugation. This module is so named as it allows one to de�ne Bianchi

modular forms of higher weight, and compute with them again using the Eichler-

Shimura isomorphism (Section 4.1.4).

We can realise this module as complex polynomials in four variables, X, Y,X and

Y , homogeneous in each of the pairs X, Y and X,Y , of degrees k and l respectively.

Using this representation, we have the action on the second component Vl:

X
l−i
Y
i ·
(
a b
c d

)
= (aX + bY )l−i(cX + dY )i.

In Section 5.4.4 we will also use the modules Vk,l(F ), for number �elds F/K. This

is a vector space over K, which receives the action of GL2(K) as above, identifying

the non-trivial Galois automorphism of K with complex conjugation.

Finally, we will also use the modules Vk,l(Fq), where q = pr for some prime p. In

order to de�ne the twisting on the second component, these modules, we start with

an ideal p | pOK , (or pOF for some extension F/K), act on Vk,l(OK), then reduce

modulo p.
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The space Vk,l(C) comes equipped with a natural pairing, arising from the pairings

on its component spaces. On Vk we have the pairing given by

(Xk−αY α, Xk−βY β) 7→ (−1)α
(
k

α

)−1

δα+β,k.

The space Vl has the analogous pairing, and their product gives the pairing 〈·, ·〉 on
Vk,l

〈Xk−αY αX
l−γ
Y
γ
, Xk−βY βX

l−ε
Y
ε〉 = (−1)α+γ

(
k

α

)−1(
l

γ

)−1

δα+β,kδγ+ε,l.

It can alternatively be described by the formula

〈
(aX + bY )k(eX + fY )l, (cX + dY )k(gX + hY )l

〉
= (ad− bc)k(eh− fg)l, (4.1)

from which follows the relation

〈P · g,Q〉 = 〈P,Q · gι〉, (4.2)

where g ∈ GL2(C) and gι = det(g)g−1. In particular, the dual of g ∈ SL2(C) is g−1,

so the pairing is Γd-invariant for all our d.

Remark 4.1.7. The same pairings can be de�ned on Vk,l(Fp) for some prime p of

OK , however one must make the restriction that p - k, l, so that the pairing is actually
de�ned. In general, one is only interested in the modules Vk,l(Fp) when 0 ≤ k, l < p,

as beyond this range they are no longer irreducible.

We will also use several twists of the weight module. The �rst kind of twists are the

determinant twists: for two integers s, t, we twist the action of γ on Vk,l by the

determinant of γ:

Xk−iY iX
l−i
Y
i · γ = det(γ)s(Xk−iY i · γ)det(γ)

t
(X

l−i
Y
i · γ). (4.3)

We write the twisted module V s,t
k,l . Note that V

0,0
k,l = Vk,l.
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Finally, we will also need to incorporate the action of a Dirichlet character of (OK/n)×.

For γ = ( a bc d ) ∈ Γ0(n), we de�ne the action of γ on V s,t,χ
k,l (C) by the action (4.3) of

γ on V s,t
k,l (C), twisted by the value χ(γ) := χ(d):

Xk−iY iX
l−i
Y
i · γ = χ(γ) det(γ)s(Xk−iY i · γ)det(γ)

t
(X

l−i
Y
i · γ).

Any Dirichlet character χ : (OK/n)× → C can be realised as a mod p character

χ : (OK/n)× → F×q by realising its values in the ring of integers of a cyclotomic �eld

F , then reducing modulo an ideal p | p. In this way, we can de�ne the weight module
V s,t,χ
k,l modulo p.

4.1.3 Hyperbolic 3-space

Write H3 for the model of hyperbolic 3-space given by

H3 = {(z, t) | z ∈ C, t ∈ R>0}.

The Bianchi groups Γd inherit an action on H3 from a transitive isometric action of

SL2(C). To de�ne this action, we can realise H3 as a subspace of the Hamiltonian

quaternions

H =

(
−1,−1

R

)
= {a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}

by sending (z, t) to τ = z+tj. Then the action is via fractional linear transformations(
a b
c d

)
· τ = (aτ + b)(cτ + d)−1.

Our primary use of this action is in Section 4.3.2.
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4.1.4 The Eichler-Shimura isomorphism

For the most part, we will not use Bianchi modular forms considered as harmonic

di�erential forms on H3, instead simply considering cohomology classes. We do

this using the Eichler-Shimura isomorphism, proved for Bianchi modular forms by

Harder [Har75], which we note here for the sake of completeness.

Theorem 4.1.8 (Generalised Eichler-Shimura isomorphism). Write Sk+2(Γ′) for the

weight (k + 2, k + 2) Bianchi modular forms (k ≥ 0) for Γ′ ≤ Γd = PSL2(Od) a

congruence subgroup. Then

Sk+2(Γ′) ' H1
par(Γ

′, Vk,k(C)) ' H2
par(Γ

′, Vk,k(C))

as Hecke modules. Here the subscript par indicates we are working with the parabolic

cohomology, see Section 4.2.2.

This justi�es our treatment of classes in H i(Γ′, Vk,k(C)) (or with coe�cients in

Vk,k(Od)) as essentially equivalent to Bianchi modular forms. See Sections 4.2, 4.3

for the de�nitions of H1 and H2.

4.1.5 Presentations of Bianchi groups

For the �ve d giving Euclidean Bianchi groups, we record a presentation of Γd. In

all cases, we will make the identi�cations of generators

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, Tω =

(
1 ωd
0 1

)
.

The matrix S has order 2 in PSL2(OK), and T, Tω have in�nite order. Additionally,

in the cases d = 1, 3, the unit group of OK is larger than {±1}. Writing ωd for the

generator of O×K , the presentations for d = 1, 3 will include the additional generator

L =

(
ωd 0
0 ω−1

d

)
.
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This matrix has order 2 when d = 1 and order 3 when d = 3. All presentations come

from [Fin89] unless otherwise speci�ed.

4.1.5.1 The case d = 1

Γ1 ' 〈S, T, Tω, L | S2 = L2 = (SL)2 = (TL)2 = (TωL)2 =

(TS)3 = (TωSL)3 = [T, Tω] = 1〉.

Remark 4.1.9. Once in matrix form it can be easily veri�ed that L is not strictly

necessary for the presentation, as it can be written ST−1
ω STωST

−1
ω . However, this

substitution makes the presentation more complicated, so we leave it as-is.

4.1.5.2 The case d = 2

Γ2 ' 〈S, T, Tω | S2 = (TS)3 = [T, Tω] = [S, Tω]2 = 1〉.

4.1.5.3 The case d = 3

Γ3 ' 〈S, T, Tω, L | S2 = (TS)3 = (SL)2 = (T−1TωSL)3 = L3 =

L−1T−1TωLT
−1 = L−1TLTω = [T, Tω] = 1〉

We note that this presentation is slightly di�erent than the one appearing in [Fin89].

This di�erence comes from the di�erent basis for OK used, and amounts to replacing

occurrences of U in their presentation with T−1Tω. Our choice of basis of OK comes

from matching conventions in use on the LMFDB [LMF23].

Remark 4.1.10. As in the case d = 1, the generator L is not strictly necessary, as

it can be written STSTωST−1
ω ST−1, but for the same reason we leave it as-is.
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4.1.5.4 The case d = 7

Γ7 ' 〈S, T, Tω | S2 = (TS)3 = [T, Tω] = (T−1
ω STωST )2 = 1〉.

4.1.5.5 The case d = 11

Γ11 ' 〈S, T, Tω | S2 = (TS)3 = [T, Tω] = (T−1
ω STωST )3 = 1〉.

4.2 First cohomology�H1

The �rst cohomology of any �nitely-presented group G with coe�cients in a �nite-

dimensional G-module M is explicitly computable in �nite time. This is done using

Fox calculus, to turn relations in the presentation into conditions on the cocycles.

We illustrate the method on Γ = Γ2; the general treatment is given in detail in, e.g.

Section 8.2 of [�08].

Recall from Section 3.1, �rst cohomology H1(G,M) is the quotient of the space of

1-cocycles

Z1(G,M) = {f : G→M | f(gh) = f(g) · h+ f(h) for all g, h ∈ G}

by the space of 1-coboundaries

B1(G,M) = {fm : G→M | fm : g 7→ m · g −m for some m ∈M, all g ∈ G} .

Writing 1G for the identity of G, the 1-cocycle condition implies

f(1G) = f(12
G) = f(1G) · 1G + f(1G) = 2f(1G),

so f(1G) = 0 for all 1-cocycles f . This process of applying the cocycle relation is the

essence of the Fox calculus.
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Example 4.2.1. Let K = Q(
√
−2), with OK = Z[ω], where ω =

√
−2, with associ-

ated Bianchi group

Γ2 ' 〈S, T, Tω | S2 = (TS)3 = [T, Tω] = [S, Tω]2 = 1〉.

Using relations from the group, we can �nd conditions on the values of a cocycle

f : Γ2 →M . For example, the relationship S2 = 1 translates to

0 = f(S2) = f(S)S + f(S) = f(S)[1 + S].

So whichever m ∈ M is mapped to by S under f , it must satisfy m = −mS.
Similarly, we can translate the other relations of the Bianchi group into conditions

on cocycles:

• f(S)[1 + S] = 0

• f(T )[S((TS)2 + TS + 1)] + f(S)[(TS)2 + TS + 1] = 0

• f(T )[TωT
−1T−1

ω − T−1T−1
ω ] + f(Tω)[T−1T−1

ω − T−1
ω ] = 0

• f(S)[TωST
−1
ω STωST

−1
ω + T−1

ω STωST
−1
ω + TωST

−1
ω + T−1

ω ]

+f(Tω)[ST−1
ω STωST

−1
ω − T−1

ω STωST
−1
ω + ST−1

ω − T−1
ω ] = 0

Here we have made use of the identity

f(g−1) = −f(g)g−1

which, again, follows from the cocycle relation. In practice, these conditions can be

simpli�ed using the relations de�ning Γ2.

These conditions exactly de�ne the space of cocycles on Γ2: if f is any function that

happens to satisfy these relations, it must be a cocycle, since any element in the

group is a word in the generators S, T and Tω; conversely, if f is a cocycle, it must

be in this space since it satis�es the cocycle relationship for every word in the group,

so in particular, it satis�es the cocycle relationship for the words giving each of the
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four relations used here.

Since M is �nite-dimensional, its elements can be represented by vectors with coef-

�cients in its base ring R, so each of the values f(S), f(T ), f(Tω) can be viewed as

vectors over R. By computing the action of Γ2 on M explicitly with respect to this

basis, we can �nd a block vector (f(S) | f(T ) | f(Tω)) that is in the kernel of the

block matrix (
r1,T r2,T r3,T r4,T

r1,S r2,S r3,S r4,S

r1,Tω r2,Tω r3,Tω r4,Tω

)
where we have rewritten the cocycle condition coming from the ith relation as f(T )ri,T+

f(S)ri,S + f(Tω)ri,Tω = 0 (so that r1,S = 1 + S, r2,Tω = T−1T−1
ω − T−1

ω , etc.)

This matrix is explicitly computable, and its kernel is isomorphic to the space

Z1(Γ2,M). To compute the 1-coboundaries, we use a similar trick. For every m ∈M
we get a coboundary of the form g 7→ mg−m, and every coboundary is of this form.

So every element of the space B1(Γ2,M) is captured by a vector lying in the image

of the block matrix

(1− T | 1− S | 1− Tω).

This can also be explicitly computed, and the quotient of the two spaces gives

H1(Γ2,M).

4.2.1 Hecke action on H1

We now describe how to compute the Hecke action on the space H1(Γ,M), specialis-

ing the general account of [AS86]. Let q be a prime ideal of OK , generated by some

element π ∈ OK . Here we assume that, if M has any level structure coming from

Γ0(n), we have gcd(q, n) = 1.

We write g = ( π 0
0 1 ), and note that Γ0(q) = g−1Γg ∩ Γ, and, writing Γ0(n) for the

subgroup of matrices with top-right entry ≡ 0 (mod n), we have Γ0(q) = gΓg−1 ∩ Γ.
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The two groups are related by conjugation:

Γ0(q) = g−1Γ0(q)g.

The double coset ΓgΓ decomposes as a disjoint union over representatives gri, where

ri are a set of right coset representatives of Γ0(q) in Γ:

ΓgΓ =
k∐
i=1

Γgri.

The Hecke operator Tq is de�ned as the composition of the maps res, conj and cores

as in the diagram

H1(PSL2(OK),M) H1(PSL2(OK),M)

H1(Γ0(q),M) H1(Γ0(q),M)

res

Tq

conj

cores

The maps are as follows:

• res is the map induced by the restriction map PSL2(OK)→ Γ0(q).

• conj is the map induced by the conjugation map γ 7→ gγg−1.

• cores is the map sending f ∈ H1(Γ0(q),M) to the cocycle

cores(f) : γ 7→
k∑
i=1

f(riγr
−1
j )rj,

where rj is the coset representative such that Γ0(q)riγ = Γ0(q)rj.

Putting all this together, we have

f · Tq : γ 7→
k∑
i=1

f(griγr
−1
j g−1)grj.



4. Cohomology of Bianchi groups 58

The set of all Hecke operators for primes q coprime to the level of M are known to

commute, and in fact can be simultaneously diagonalised. We say f ∈ H1(Γ,M) is a

Hecke eigenclass if it is a simultaneous eigenvector for all Tq for q coprime to the

level.

Remark 4.2.2. In fact, the above construction is carried out on cocycle classes. The

Hecke action stabilises the space B1(Γ,M), so one computes it in practice by starting

with a class [f ] ∈ H1(Γ,M), lifting it to a representative cocycle f , computing f ·Tp,
and writing the class [f · Tp] ∈ H1(Γ,M) in terms of a chosen basis of H1(Γ,M).

Remark 4.2.3. Since we compute the cocycle f as its image on only the generators

of Γ, evaluating f(M) for arbitraryM ∈ Γ requires a word decomposition algorithm.

This is one of the places we use the Euclidean property of Γ; the Euclidean algorithm

on OK can be extended to a word decomposition algorithm, see Section 8.2.4 of [�08].

4.2.2 Parabolic cohomology

De�nition 4.2.4. The parabolic subgroup of a Bianchi group Γ is the group of

upper-triangular elements:

Γ∞ =

{(
a b
c d

)
=

(
∗ ∗
0 ∗

)}
≤ Γ.

This group gets its name from the action of Γ on the hyperbolic 3-space. Under this

action, the parabolic elements �x the point at in�nity.

De�nition 4.2.5. A parabolic 1-cocycle is an f ∈ Z1(Γ,M) such that f(g) =

0 for all g ∈ Γ∞. Similarly, a parabolic 1-coboundary is an f ∈ B1(Γ,M)

vanishing on all parabolic elements. We write the spaces of parabolic 1-cocycles and

1-coboundaries as Z1
par(Γ,M) and B1

par(Γ,M) respectively.

It is immediate consequence that

B1
par(Γ,M) ≤ Z1

par(Γ,M)
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De�nition 4.2.6. The parabolic cohomology of G with coe�cients in M is

the space

H1
par(Γ,M) =

Z1
par(Γ,M)

B1
par(Γ,M)

.

We will use parabolic cohomology in Section 5.1 to de�ne the space of period poly-

nomials over K.

Remark 4.2.7. To de�ne H2
par, one de�nes parabolic cocycle and coboundaries in

the analogous way, via vanishing on Γ∞. Our treatment of second cohomology in the

next section will not proceed via cocycles and coboundaries, however, so we will not

go into further detail here.

4.3 Second cohomology�H2

Here we introduce the second cohomology of Bianchi groups as quotients of their

coe�cient modules, relate these groups to modular symbols, and introduce the Hecke

action via Heilbronn matrices. In Chapter 5, this will be used to derive a duality

between H2 and period polynomials, giving a Hecke action there.

4.3.1 Second cohomology groups as quotients

We will not use the description ofH2(G,M) in terms of 2-cocycles and 2-coboundaries

from Section 3.1, as it does not lend itself well to explicit computation. Instead, spe-

cialising to our groups Γd, we will use expressions forH2(Γ,M) as particular quotients

of M . These come from spectral sequences arising from geometric data relating to

the action of Γd on the hyperbolic 3-space H3. For details, see [SV83] and [�11].
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4.3.1.1 The case d = 1

Let E = TωSL = ( −1 ω
ω 0 ), which has order 3. For any Γ1-module M , we have

H2(Γ1,M) 'M/(MS +MSL +MU +ME). (4.4)

4.3.1.2 The case d = 2

Let A = T−1
ω STωS = ( 1 ω

ω −1 ), which has order 2, and satis�es A = TωAT
−1
ω . For any

Γ2-module M , we have

H2(Γ2,M) 'M/(MU +MS +MA(1− T−1
ω )) (4.5)

4.3.1.3 The case d = 3

In Γ3, both SL and LS have order 2. For any Γ3-module M , we have

H2(Γ3,M) 'M/(MLS +MU +MSL).

4.3.1.4 The case d = 7

Let A = ST−1
ω STωT

−1, which has order 2, and g = ST−1
ω , which satis�es g−1Ag = A.

For any Γ7-module M , we have

H2(Γ7,M) 'M/(MS +MU +MA(1 + g)).
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4.3.1.5 The case d = 11

Let A = ST−1
ω STωT

−1, which has order 3, and g = ST−1
ω , which satis�es g−1Ag = A.

For any Γ11-module M , we have

H2(Γ11,M) 'M/(MS +MU +MA(1 + g)).

4.3.2 Modular symbols

We de�ne the spaceM2 of weight 2 modular symbols to be the quotient of the

complex vector space with basis given by the symbols {α, β}, for α, β ∈ P1(K) =

K ∪ {∞}, by the subspace spanned by the elements of the form {α, β}+ {β, α} and
{α, β}+ {β, γ}+ {γ, α}. Put more compactly,

M2 := C[{α, β}]
/ 〈

{α, β}+ {β, α}, {α, β}+ {β, γ}+ {γ, α}
〉
.

The group PSL2(K) acts naturally onM2 on the right via the formula

{α, β} · g = {g−1α, g−1β}

where g−1α and g−1β are the linear fractional transformations of Section 4.1.3.

Theorem 2.6 of [Moh14] tells us1 that the linear map

Φk,l = Φk,l
d : Vk,l −→ (M2 ⊗C Vk,l)Γd

, (4.6)

given by

Φk,l(v) = [{0,∞}⊗ v]

is a surjection. Here the right hand side is the space of coinvariants

(M2 ⊗C Vk,l)Γd
=M2 ⊗C[Γd] Vk,l = (M2 ⊗C Vk,l)/〈u− ua | a ∈ C[Γd]〉,

1 In our case, his r = 1 and his σ1 equals our matrix S.
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with Γd and C[Γd] acting diagonally onM2 ⊗C Vk,l. Moreover, [{0,∞}⊗ v] denotes

the class of {0,∞}⊗ v. For convenience, we will call the above map Φk,l
d the Manin

surjection of weight (k, l) for Γd. Note that this is not standard terminology.

Remark 4.3.1. It is here also that we use the restriction to the Euclidean �elds. The

Manin surjection is de�ned using all the non-parabolic generators of the associated

Bianchi group. For a non-Euclidean imaginary quadratic �eld, there are more non-

parabolic generators than just S. For example, for K = Q(
√
−19), there are two

non-parabolic generators, and so the Manin surjection has Vk,l ⊕ Vk,l as its domain,
per Sections 2.1, 2.2 of [Moh14]. In principle, it should be possible to extend the

methods we use to the non-Euclidean cases, however we leave this as a possibility

for future work.

4.3.3 Borel-Serre duality

The (complex) Steinberg module St of an arithmetic group G is the C[G]-module

Hvcd(G,C[G]) where vcd is the virtual cohomological dimension of G. The Steinberg

module is the dualising module of G in the sense that it implements the duality

theorem of Borel-Serre (Theorem 11.4.3 of [BS73]): for any C[G]-module M , we

have an isomorphism

Hj(G, St⊗C M) ' Hvcd−j(G,M).

This isomorphism respects the action of Hecke operators.

For Bianchi groups Γ, the virtual cohomological dimension is 2, and we get the

following corollary: for all k, l

H0(Γ, St⊗C Vk,l) ' H2(Γ, Vk,l). (4.7)

We will use this fact below.

The Steinberg module is well-known to be related to modular symbols; in our case of
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Bianchi groups, the Steinberg module is isomorphic to the space of weight 2 modular

symbols that we de�ned above (see e.g. [Ash94], De�nition 4 of [Tor12]). We record

this below.

Lemma 4.3.2. For our Bianchi groups Γ, we have an isomorphism St ' M2 of

Γ-modules.

The details of this proof can be found in [Moh14], Section 4.1.1, although the de�ni-

tion of the Steinberg module is di�erent to what we use here; the equivalence of the

two de�nitions can be found in Section 1 of [Ash94].

4.3.4 The kernel of Φk,l
d

We will now argue that the kernel of the Manin surjection is exactly the subspace

that was quotiented out in the previous explicit description of the second cohomology

group in Section 4.3.1. See also Proposition 1 of [Tor12].

We begin with a lemma.

Lemma 4.3.3. Let g ∈ Γd be an element of �nite order, say n. Let v ∈ Vk,l be �xed
by g. Then v lies in the kernel of Φk,l

d .

Proof. Let us put A = 1− g and B = (1 + g + . . .+ gn−1) for convenience. Observe

that since BA = 0 in the group algebra C[Γd], the kernel of A, as a linear map on

Vk,l equals the image of B. As v is �xed by g, it lies in the kernel of A and hence

there is v′ such that v = v′B. We have

Φ(v) = [{0,∞}⊗ v] = [{0,∞}⊗ v′B] = [{0,∞} · A⊗ v′BA] = [0]

as claimed. Note, the penultimate equality follows from the fact that the image of

Φk,l
d lies in the space (M2 ⊗C Vk,l)Γd

of coinvariants, and so x = x · A (with the

diagonal action) for all x.
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4.3.4.1 The cases d = 1, 3

First, we treat d = 1, by showing that

ker(Φk,l
1 ) = V S

k,l + V SL
k,l + V U

k,l + V E
k,l, (4.8)

where the right hand side is as in the right hand side of (4.4).

Since the elements S, SL, U , and E are all of �nite order, Lemma 4.3.3 implies that

the right hand side of (4.8) is a subspace of the left hand side. To show equality, we

will argue that they have the same dimension. We �rst employ Lemma 4.3.2 to view

Φ1
k as a surjection onto

H0(Γ1, St⊗C Vk,l) ' H0(Γ1,M2 ⊗C Vk,l) ' (M2 ⊗C Vk,l)Γ1
.

Now, it follows from the isomorphisms (4.7) and (4.4) that the dimension of ker(Φk,l
1 )

has to be equal to that of its subspace V S
k,l +V SL

k,l +V U
k,l +V E

k,l. For d = 3, exactly the

same logic applied to LS, U and SL gives the result.

4.3.4.2 The cases d = 2, 7, 11

These cases are essentially the same, only also relying on the following lemma.

Lemma 4.3.4. Let A,B, g ∈ Γ such that g−1Bg = A. Then V A = V Bg.

Proof. First we show V A ⊆ V Bg. Take v ∈ V A. Then v = v · A = v · g−1Bg.

Multiplying by g−1 on both sides, we get v · g−1B = v · g−1, i.e. v · g−1 ∈ V B, so

v ∈ V Bg. The reverse inclusion follows the same argument, interchanging A with B

and g with g−1.

For d = 2, it is noted in Section 4.5 that A = TωAT
−1
ω , and a quick check shows

A2 = A
2

= 1, so V A
k,l(1−T−1

ω ) = V A
k,l+V

A
k,l by Lemma 4.3.4, and so the same argument
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as above shows

ker(Φk,l
2 ) = V S

k,l + V U
k,l + V A

k,l(1− T−1
ω ).

For d = 7, 11 the same argument works, again noting the relations between A and A

given in Sections 4.3.1.4, 4.3.1.5, giving

ker(Φk,l
7 ) = V S

k,l + V U
k,l + V A

k,l(1 + ST−1
ω )

and

ker(Φk,l
11 ) = V S

k,l + V U
k,l + V A

k,l(1 + ST−1
ω ).

4.3.5 Hecke action on H2

The construction for Hecke operators acting on cohomology classes in H2 analogous

to that in Section 4.2.1 works, but 2-cocycles and 2-coboundaries are generally much

less convenient to work with, so we instead compute the Hecke action on H2 using

Heilbronn matrices.

Following Section 3.2 of [Moh14] and Chapter 2 of [Cre97], for a given prime element2

π ∈ OK , we de�ne the associated set of Heilbronn matrices as

Hπ =

{(
a b
c d

)
∈M2(O)

∣∣∣∣ N(a) > N(b) ≥ 0, N(d) > N(c) ≥ 0, ad− bc = π

}

Then, for v ∈ Vk,l, we de�ne the operator T̃π as

v · T̃π :=
∑
g∈Hπ

v · g.

It is proven by Mohamed in [Moh14] that for any prime element π ∈ O, we have a
2 Recall K has class number 1.
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commutative diagram

Vk,l (M2 ⊗ Vk,l)Γd

Vk,l (M2 ⊗ Vk,l)Γd

Φk,ld

T̃π Tπ

Φk,ld

where the horizontal arrows are the Manin surjection Φk,l
d , see (4.6). One can see this

result as a transfer of the Hecke action from modular symbols to Vk,l. Alternatively

we can say that when we equip Vk,l with Heilbronn Hecke operators and modular

symbols with the usual Hecke operators, the map Φk,l
d becomes �Hecke equivariant�.

The Hecke equivariance of Φk,l
d implies that ker(Φk,l

d ) is stabilised by the Heilbronn

Hecke operators (since the trivial subspace of the right hand side is Hecke stabilised).

Thus the action descends to the quotient and we obtain an isomorphism

Vk,l/ ker(Φk,l
d ) ' (M2 ⊗C Vk,l)Γd

of Hecke modules.

4.4 Serre's conjecture

Serre's conjecture was originally formulated for Galois representations over Q, in
[Ser87]. However, since then it has been generalised to many more settings. Of

interest to us is Serre's conjecture over imaginary quadratic �elds, whose statement

we take from [Tor12].

Let ρ : GK → GL(V ) be a continuous 2-dimensional mod p representation, and

write n for its Serre conductor. Serre's conjecture predicts the existence of weights

k, l and twists a, b in {0, . . . , p − 1}, and a Dirichlet character χ of conductor n

(this is the character of Section 2.3.3) such that there is a Hecke eigenclass class

f ∈ H i(Γ0(n), V s,t,χ
k,l (Fq)), where i = 1, 2, corresponding to ρ in the following way:
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for all primes p - pn, we have

trace(ρ(Frobp)) = ap(f),

where ap(f) is the eigenvalue of the pth Hecke operator Tp when applied to f .

Much work has been done verifying Serre's conjecture for imaginary quadratic �elds,

see e.g. [�08], [Tor12]. We will assume the truth of the conjecture, often starting

with a Galois representation ρ and �nding the associated cohomology classes with

the level, character and weight recipes in Section 2.3.



5. PERIOD POLYNOMIALS AND CONGRUENCES OF

MODULAR FORMS

In this chapter, we de�ne the spaceWk,l of period polynomials of weight (k, l) over an

imaginary quadratic �eldK. This space is a subspace of Vk,l, the space of polynomials

in homogeneous of degree k in X and Y and homogeneous of degree l in X and

Y . By relating period polynomials to modular symbols, we de�ne an action of the

Hecke algebra onWk,l, allowing us to �nd explicit expressions for period polynomials

attached to particular Bianchi Hecke eigenforms over K. We then perform certain

computations on the polynomials in the space W10,10 over Q(
√
−11) to demonstrate

methods for detecting and proving the existence of congruences of Bianchi modular

forms.

5.1 Period polynomials

Let Γ = Γd be one of the �ve Euclidean Bianchi groups. Consider the linear map

Z1
par(Γ, Vk,l) −→ Vk,l, f 7→ f(S) (5.1)

where the left hand side is the space of parabolic 1-cocycles, de�ned in Section 4.2.2.

The space Wk,l of period polynomials of weight (k, l) for Γ is de�ned as the

subspace of Vk,l given by the image of this map.

In Section 5 of [Kar22], Karabulut gives explicit descriptions of the spaces of period

polynomials for our Bianchi groups, in terms of kernels of elements of the group ring
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C[Γ], which we now recall.

Remark 5.1.1. The paper of Karabulut [Kar22] actually de�nes the space of period

polynomials in the parallel weight case, and only proves the de�ning equations for

the space of period polynomials in that setting. However, the proofs themselves make

no speci�c use of the parallel weight, and work exactly the same in the non-parallel

weight case.

Recall in Section 4.1.5 we de�ned the matrices S = ( 0 −1
1 0 ), T = ( 1 1

0 1 ) and Tω = ( 1 ω
0 1 ),

where {1, ω} form a Z-basis for ZK .

5.1.1 The case d = 1

In this case, we have

Wk,l = ker(1 + S) ∩ ker(1− L) ∩ ker(1 + U + U2) ∩ ker(1 + E + E2), (5.2)

where E = TωSL = ( −1 ω
ω 0 ).

5.1.2 The case d = 2

In this case, we have

Wk,l = ker(1 + S) ∩ ker(1 + U + U2) ∩ ker(1 + STω + TωS + T−1
ω STωS). (5.3)

5.1.3 The case d = 3

In this case, we have

Wk,l = ker(1 + S) ∩ ker(1− L) ∩ ker(1 + U + U2) ∩ ker(1 + E + E2),

where E = T−1TωSL = ( −1 ω−1
ω 0 ). As in Section 4.1.5.3, we note that this de�nition

is slightly di�erent to that found in [Kar22], again due to our choice of basis for O3.
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5.1.4 The case d = 7

In this case, we have

Wk,l = ker(1 + S) ∩ ker(1 + U + U2) ∩ ker(T + TωST + ST−1
ω STω + STω).

5.1.5 The case d = 11

In this case we have

Wk,l = ker(1 + S) ∩ ker(1 + U + U2)∩

ker(T + TωST + ST−1
ω STω + STω + TT−1

ω STωST + STωT
−1ST−1

ω STω).

5.2 Period polynomials and modular symbols

We now discuss the relationship between modular symbols and period polynomials.

More precisely, we will prove that for each of our Euclidean Bianchi groups,

Wk,l =
(
ker(Φk,l)

)⊥
is the orthogonal complement of ker(Φk,l) under the pairing 〈·, ·〉 (4.1). The proof

in each case essentially boils down to checking certain relations (coming from the

group algebra C[Γd]) are satis�ed. We will make copious use of the following basic

fact from linear algebra:

Lemma 5.2.1. Let F be an algebraically closed �eld of characteristic p, V a �nite-

dimensional vector space over F , and g an F -endomorphism of V of �nite order n,

such that gcd(n, p) = 1. Then

im(1− g) = ker(1 + g + . . .+ gn−1)
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and

ker(1− g) = im(1 + g + . . .+ gn−1).

Remark 5.2.2. We use this result to relate spaces Wk,l of period polynomials to

cohomology groups. In the de�nitions of Wk,l for each of the �ve �elds we consider,

there are matrices of orders 2 and 3, meaning this result cannot be used to guarantee

an isomorphism in the cases of characteristic 2 and 3. In practice, we �nd that the

dimensions and Hecke eigenvalue systems given by the spaces Wk,l in these cases

seem to still match those of H2.

5.2.0.1 The case d = 1

Recall from (4.8) that the kernel of Φk,l
1 is equal to V S

k,l + V SL
k,l + V U

k,l + V E
k,l which we

will denote V for compactness. We rewrite

V = ker(1− S) + ker(1− SL) + ker(1− U) + ker(1− E),

and note that it follows from (4.2) that the kernel of T is orthogonal to the image of

T ∗ for any element T ∈ C[Γ1], and that g∗ = g−1 for g ∈ Γd. Therefore, we have

V⊥ = im(1− S−1) ∩ im(1− (SL)−1) ∩ im(1− U−1) ∩ im(1− E−1),

and using Lemma 5.2.1, we get

V⊥ = ker(1 + S) ∩ ker(1 + LS) ∩ ker(1 + U + U2) ∩ ker(1 + E + E2).

Recalling the explicit description (5.2) of Wk,l as

Wk,l = ker(1 + S) ∩ ker(1− L) ∩ ker(1 + U + U2) ∩ ker(1 + E + E2),

we see that, to prove Wk,l = V⊥, we just need to prove that every P ∈ Wk,l satis�es

P · (1 + LS) = 0, and that every Q ∈ V⊥ satis�es Q · (1− L) = 0.



5. Period polynomials and congruences of modular forms 72

Let P ∈ Wk,l, so P = −P · S and P = P · L. Noting that SLS = L, we �nd

P · (1 + LS) = P + P · LS

= P − P · SLS

= P · (1− L) = 0.

Hence, Wk,l ⊆ V⊥, and the same argument in reverse shows that V⊥ ⊆ Wk,l.

5.2.0.2 The case d = 2

We proceed in the same way as the previous case. The kernel of Φk
2 is V = V S

k,l +

V U
k,l +V A

k,l(1−T−1
ω ), where A = T−1

ω STωS has order 2. We want to use the same trick

as before to compute the orthogonal complement, but in this case there is the extra

factor of 1− T−1
ω on the last term. So we rewrite ker(1− A) as im(1 + A), to get

V = ker(1− S) + ker(1− U) + im(1 + A− T−1
ω − AT−1

ω ). (5.4)

Then, taking complements and turning images to kernels with Lemma 5.2.1, we get

V⊥ = ker(1 + S) ∩ ker(1 + U + U2) ∩ ker(1 + A− Tω − TωA).

Again recalling the explicit description ofWk,l in (5.3), we see that provingWk,l = V⊥

amounts to showing that P ∈ Wk,l satis�es P · (1−Tω +T−1
ω STωS−STωS) = 0, and

that Q ∈ V⊥ satis�es Q · (1 + STω + T−1
ω STωS + TωS) = 0.

Since P · (1 + S) = 0, we can expand to get

P · (1− Tω + ST−1
ω STω − STωS) = P − P · Tω + P · ST−1

ω STω − P · STωS

= P + P · STω + P · ST−1
ω STω + P · TωS

= P · (1 + STω + ST−1
ω STω + TωS) = 0,

and, since Q · (1 + S) = 0 also, the same logic works in reverse to give Wk,l = V⊥.
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5.2.0.3 The case d = 3

Proceeding as before, writing V = ker(Φk,l
3 ), we get

V⊥ = ker(1 + LS) ∩ ker(1 + SL) ∩ ker(1 + U + U2).

First, we showWk,l ⊆ V⊥. This amounts to showing P ·(1+SL) = P ·(1+LS) = 0 for

all P ∈ Wk,l. To prove the �rst identity, we note that P ·(1+S) = 0, so P ·(1+S)L = 0.

Expanding and using that P = P · L, we get 0 = P + P · SL = P · (1 + SL). The

second is proved in the same way, swapping the roles of S and L.

To show V⊥ ⊆ Wk,l, we must show

Q · (1 + S) = Q · (1− L) = Q · (1 + E + E2) = 0,

for Q ∈ V⊥. If Q is in V⊥, it satis�es Q · SL = Q · LS, and since LSL = S and

SL2 = LS, we have

Q · (1 + S) = Q · (1 + LSL)

= Q+ (Q · LS) · L

= Q+Q · SL2 = Q · (1 + LS) = 0.

Using this, we also obtain

Q · (1− L) = Q−Q · L

= Q+Q · SL = Q · (1 + SL) = 0.

Finally, we show Q ∈ ker(1 + E + E2), where E = T−1TωSL. A quick computation

shows E can also be written LTLS, and E2 = LTSTLS. Using Q = Q · L, we get

Q · (1 + E + E2) = Q+Q · LTLS +Q · LTSTLS

= Q+Q · TLS +Q · (TS)TLS.
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Now we use that Q · TS = −Q−Q · TSTS to get

Q · (1 + E + E2) = Q−Q · TSTSTLS.

Now, using that (ST )3 = 1, as well as a �nal use of Q = −Q · S, we get

Q · (1 + E + E2) = Q+Q · STSTSTLS

= Q+Q · LS = Q · (1 + LS) = 0.

5.2.0.4 The case d = 7

As before, write V = ker(Φk,l
7 ). We have

V⊥ = ker(1 + S) ∩ ker(1 + U + U2) ∩ ker(1 + TωS + ST−1
ω STωT

−1 + STωT
−1),

with the �nal kernel coming from (V A
k,l(1 + g))⊥ = ker((1 + g−1)(1 +A)), in the same

manner as (5.4). Here A = ST−1
ω STωT

−1 and g = ST−1
ω .

The only di�erence between V⊥ and Wk,l is the third kernel of each space. For Wk,l,

this is ker(T + TωST + ST−1
ω STω + STω). But T acts on Vk,l injectively, so the two

kernels are equal.

5.2.0.5 The case d = 11

We have

V⊥ = ker(1 + S) ∩ ker(1 + U + U2)∩

ker(1 + TωS + ST−1
ω STωT

−1 + STωT
−1 + TT−1

ω STωS + STωT
−1ST−1

ω STωT
−1).

Again, the �nal kernel comes from (V A
k,l(1 + g))⊥. In this case it is equal to ker((1 +

g−1)(1 + A + A2)), where A = ST−1
ω STωT

−1 and g = ST−1
ω . Comparing to the
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corresponding kernel for Wk,l, which is

ker(T + TωST + ST−1
ω STω + STω + TT−1

ω STωST + STωT
−1ST−1

ω STω),

we again see the equality V⊥ = Wk,l from the injectivity of T .

5.2.1 Hecke operators on period polynomials

Recall that in Section 5.2, we showed that the space of period polynomials Wk,l is

the orthogonal complement of the kernel of the Manin surjection:

Wk,l = ker(Φk,l)⊥.

with respect to the symmetric bilinear form (4.1). Note that as (4.1) is non-degenerate,

we have

Vk,l = Wk,l ⊕ ker(Φk,l). (5.5)

Recall that for g ∈ GL2(C) and v, w ∈ Vk,l, we have

〈v · g, w〉 = 〈v, w · gι〉

with gι = det(g)g−1. Therefore, for a Heilbronn Hecke operator T̃π, we have

〈v · T̃π, w〉 = 〈v, w · T̃ ∗π 〉 (5.6)

where the operator T̃ ∗π is given as

w · T̃ ∗π :=
∑
g∈Hp

w · gι. (5.7)

Since the Heilbronn Hecke operators T̃π stabilise the kernel of Φk,l and the space

Wk,l is orthogonal to this kernel, it follows from (5.6) that the adjoint operators T̃ ∗π
stabilise Wk,l. We record this discussion within the following corollary.
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Corollary 5.2.3. For the Euclidean Bianchi groups, the space Wk,l is equipped

with an action of the adjoint Heilbronn Hecke operators as in (5.7). The canonical

isomorphism

φ : Wk,l ' Vk,l/ ker Φk,l
d

arising from the orthogonal decomposition (5.5) is Hecke equivariant, that is,

φ(w · T̃ ∗π ) = φ(w) · T̃π

for any prime element π ∈ Od.

5.3 Choosing a period of signi�cance

Let f ∈ H1(Γ0(n), V ) for some weight module V . In this section, we speculate on

how to choose and compute a period of f that �ought� to capture information about

the ranks of Selmer groups of representations ρf .

5.3.1 The classical case (trivial weight)

In the classical case, the Birch & Swinnerton-Dyer conjecture suggests that the rank

of an elliptic curve E/Q (and so the rank of its p-Selmer group) should be captured

by the vanishing of the special L-value L(E, 1) (see Section C.16 of [Sil09]). In coho-

mology, there is a Hecke eigenvector [fE] ∈ H1(Γ0(N),C), where N is the conductor

of E, such that 〈f, {0,∞}〉 is this L-value (up to some scalar factor depending on

the choice of eigenvector fE).

This pairing can be computed explicitly using a �closing the path trick� (see [Cre97],

Section 2.8), which amounts to averaging the cocycle fE (really just a homomorphism

Γ0(N)→ C) over certain matrices. Let q - N be a prime. Then

〈f, {0,∞}〉 =
1

1 + q − aq

q−1∑
k=0

f(Mk),



5. Period polynomials and congruences of modular forms 77

whereMk ∈ Γ0(N) is a matrix taking 0 to k/q under fractional linear transformation.

This value is independent of the choice of cocycle representing the class f , as the

sum vanishes on coboundaries. We call this value the period average of f .

When C is replaced with Fp, the same computation works and again gives a well-

de�ned output. The only extra consideration to make is that 1 + q 6≡ aq (mod p),

which ensures we can invert 1 + q − aq.

We denote the value of this average for f ∈ H1(Γ0(N),C) by P(f), as the value is

independent of the prime q chosen to compute it.

To compute the reduction of fE modulo p, it su�ces to �nd an eigenvector f̃E in

H1(Γ0(N),Z) whose Hecke eigenvalues match those of fE. This integral cocycle class

is simply fE, scaled by some period of E. Then this integral class can be reduced

modulo a prime p to get fE ∈ H1(Γ0(N),Fp).

Not all classes can be reduced mod p without a�ecting the period information. For

example, let E be the elliptic curve

E : y2 + y = x3 − x2.

This is the curve 11.a3. The associated Hecke eigenform has eigenvalues

q 2 3 5 7 11 13 17

aq −2 −1 1 −2 1 4 −2

Tab. 5.1: Eigenvalues of the unique cuspidal modular form of weight 2, level Γ0(11).

and one can prove that aq ≡ 1 + q (mod 5) for all primes q - 11. Thus the period

average of fE ∈ H1(Γ0(11),F5) cannot be de�ned for any choice of the prime q.

It should be clear that, if P(fE) = 0, then P(fE) = 0 as well (when it is de�ned).

However, it is not always the case that a non-zero period stays non-zero on reduction

modulo p, see Example 5.3.1 below.

https://www.lmfdb.org/EllipticCurve/Q/11/a/3
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It is also possible to compute this period without averaging. The space of pe-

riod polynomials for the trivial weight module V0 and level N is just a subspace

of C[P1(Z/NZ)]; for non-trivial weight is is a subspace of C[P1(Z/NZ)] ⊗ Vk. The

period polynomial of a classical weight k cusp form f is a polynomial with coe�cients

expressed in terms of the critical L-values of f . These are obtained by integrals of

f(z)zi for i ∈ {0, . . . , k− 2}. In [PP13], the vector representing f in the space of pe-

riod polynomials of level N and weight k is called the extended period polynomial ; we

use the same terminology here in the Bianchi case. The coe�cients of the extended

period polynomial are again obtained by integrals of f(z)zi, but for each element

γ = (c : d) ∈ P1(Z/NZ), f is replaced with f(γ · z)(cz+d)−k. Here we are implicitly

treating γ as a coset representative in Γ0(N)\Γ.

In Section 5.5 of that paper, a numerical example is given, showing how the classical

period polynomial of a weight k modular form can be extracted from its extended

period polynomial in cohomology. This amounts to restricting to (0 : 1) ∈ P1(Z/NZ),

which corresponds to the identity coset in Γ0(N)\Γ. The passage from the extended

period polynomial to the classical one can then be viewed as the evaluation map of

the Shapiro lemma.

5.3.2 The Bianchi case (trivial weight)

The analogous theory still holds in the case of our Euclidean imaginary quadratic

�elds, see [CW94], Section 2.8. In particular, we replace the level N with an ideal

n /OK and the prime q with a prime ideal q - n to obtain

P(F ) = 〈F, {0,∞}〉 =
1

1 +N(q)− aq

∑
α (mod q)

F (Mα),

where F is now a Bianchi form and Mα takes 0 to α/π (where π generates q) under

the action of Equation (4.1.3). As in the classical case, it is also possible to compute

P(F ) without averaging, by instead computing the space of period polynomials, and
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identifying the period polynomial rF (de�ned in Equation (5.8)) by its eigenvalues.

Then P(F ) is again the coe�cient of rF coming from the identity component (0 : 1)

of the projective line P1(OK/n).

Since either method involves a choice of generator for the 1-dimensional space of

either F or rF , we cannot pin down an exact canonical value for P(F ) without more

information. However, we are only really interested in whether the period vanishes

or not, and scaling has no e�ect on this. Even for mod p classes, the only way to

scale F or rF to be 0 is by multiplying by p, which kills the whole class anyway.

Example 5.3.1. Let K = K3 = Q(ω3), where recall ω3 = ω = 1+
√
−3

2
, and let

n = (8ω− 16) (norm 192). There is one form in F ∈ H1(Γ0(n),C), corresponding to

the Bianchi modular form 192.1-a. Its Hecke eigenvalues begin

p (ω − 2) (ω − 3) (ω + 3) (ω − 4) (−2ω + 5) (2ω + 3) (5)

N(p) 7 7 13 13 19 19 25

ap 0 0 −2 −2 −4 −4 −6

Tab. 5.2: Hecke eigenvalues of the unique Bianchi modular form over Q(
√
−3) of weight 2

and level (8ω − 16).

The exact value of its period average depends on the choice of scaling, but in par-

ticular, it does not vanish. The form F generates a 1-dimensional subspace of

H1(Γ0(n),C); if we choose the integral scaling (meaning we take a generator F̃ of

〈F 〉 ∩H1(Γ0(n),ZK)), we �nd P(F̃ ) = 3
4
.

Meanwhile, there are three linearly independent classes in H1(Γ0(n),F3). By com-

puting eigenvalue systems, we �nd a multiplicity 1 class whose eigenvalues are the

reduction modulo 3 of F . We compute its period average to be 0. In some sense we

expect this result, as the reduction mod 3 map is de�ned

H1(Γ0(n),ZK)→ H1(Γ0(n),F3)

and P(F̃ ) has a 3 in its numerator.

https://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/192.1/a/
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5.3.3 Non-trivial weight

The choice of period is trickier in the higher weight case; for f a modular form over

Q, the pairing 〈f, {0,∞}〉 gives an algebraic period polynomial, rather than a single

value. When the weight of f is even, the usual choice, as in for example [DSW04],

is to take the middle coe�cient of the period polynomial.

This becomes more complicated for Bianchi modular forms, as the period polyno-

mial now has two degrees of freedom, coming from the pairs of variables X iY k−i

and X
j
Y
l−j

. In characteristic 0, the only �interesting� examples come from parallel

weight, i.e. k = l, and when k is even there is again a middle coe�cient, coming

from the Xk/2Y k/2X
k/2
Y
k/2

term. See, for example, Figure 5.2, an example of a

weight (10, 10) period polynomial, whose central coe�cient vanishes. In fact, all the

coe�cients along the main anti-diagonal vanish.

In characteristics bigger than 0, interesting period polynomials can come from non-

parallel weights, making the question of exactly which coe�cient, if any, should carry

the interesting information unclear. In examples, we simply note the whole period

polynomial, and leave the question of which coe�cients are signi�cant alone.

5.4 Congruences of period polynomials

In this section, we report on our numerical investigations into the Hecke module

structure of some spaces of Bianchi period polynomials. From the point of view

of number theory, it is better to work with the group PGL2(O), as only then the

Hecke operators associated to the prime elements π and uπ are the same for any

unit u ∈ O×, allowing one to associate Hecke operators to prime ideals. From the

perspective of period polynomials, this amounts to computing the plus-subspaces

that we now de�ne.
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5.4.1 The plus-space

Let ε be a generator of the group O×d . The element J = ( ε 0
0 1 ) normalises Γ and

thus gives rise to an involution1 δ on cohomology and homology groups of Γ which is

well-known to commute with the Hecke operators. The involution δ on a 1-cocycle

f ∈ H1(Γ, Vk,l(C)) is given by

δ(f)(g) = f(JgJ−1) · J.

Thus f takes values in Vk,l(C), and the action of J is the usual action de�ned previ-

ously in 4.1.2. When ε = −1, we have that JSJ−1 = S, and so the map (5.1) tells

us that the corresponding involution on the space of Bianchi period polynomials is

given by

δ(P )(X, Y,X, Y ) = P (X, Y,X, Y ) · J = P (−X, Y,−X,Y ).

When ε 6= −1 it is less obvious that δ is an involution, although it is�see the

comment in Section 2.4 of [CW94] for details. We de�ne the plus-space W+
k,l of

Bianchi period polynomials to be the �xed subspace of the involution δ on Wk,l:

W+
k,l := {P ∈ Wk,l | δ(P ) = P}.

Notice that, as the involution δ on the space of Bianchi period polynomials commutes

with the action of Heilbronn Hecke operators, the plus-space W+
k,l is stabilised under

the Hecke action. For the rest of the chapter, we will assume k = l.

In [FGT10], the authors veri�ed that, for the �ve Euclidean Bianchi groups, among all

the spaces Sk+2(PGL2(Od)) of cuspidal Bianchi modular forms of full level PGL2(Od)
and weight k within the scope given in the below table

1 This involution is actually nothing but the Hecke operator associated to the double coset of J .
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−d 1 2 3 7 11
k ≤ 104 141 116 132 153

Tab. 5.3: Ranges of weights computed in [FGT10].

there is a unique space which contains non-base-change (�genuine�) Bianchi modular

forms; S12(PGL2(O11)) is a 3-dimensional space, containing a pair F1, F2 of Galois

conjugate genuine forms, alongside the base-change lift of the classical discriminant

modular form ∆.

In this section, using computer programs we developed to compute the spaces of

Euclidean Bianchi period polynomials and the action of the associated Heilbronn

Hecke operators, we exhibit two di�erent congruences concerning the genuine Bianchi

cuspforms living in S12(PGL2(O11)); in the �rst, F1, F2 are congruent to (the base-

change lift of) an Eisenstein series E12 mod 173, and in the second, they are congruent

to ∆ mod 43. We summarise these congruences, along with a congruence between

the base-change lifts of ∆ and E12, in the below congruence graph, with vertices

representing forms and edges representing moduli:

A B

C

∆ E12

F1, F2

691

43 173

Fig. 5.1: Congruence graph of Hecke eigenvalue systems in S12(PGL2(O11)).

The congruences involving F1 and F2 are, as far as we know, the �rst congruences in

the literature between higher weight genuine cusp forms and base-change cusp forms,
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Eisenstein series. A novelty concerning these congruences is that we �detect� them

using Bianchi period polynomials, as we describe below.

We will often refer to Hecke eigenvectors in the space of Bianchi period polynomials

as Bianchi modular forms. This is justi�ed under the embeddings discussed in the

introduction and our results concerning the Hecke action.

5.4.2 Cusp forms and algebraicity

Let us start the discussion by summarising some algebraicity results for our Bianchi

period polynomials which follow from well-known results of Hida, see Sections 3, 6

and 8 of [Hid94].

Let f ∈ Sk+2(PGL2(O)) be a level 1 Bianchi cusp form of weight k + 2. As proven

by Harder, and explicated by Hida, there is a Vk,k(C)-valued harmonic di�erential 1-

form ωf on the arithmetic 3-fold XΓ (given by the orbit space of Γ on the hyperbolic

3-space H3 = C×R+). The Eichler-Shimura map Θ mentioned in Section 4.1.4 takes

f to the class of the 1-cocycle

Θ(f) : Γ→ Vk,k(C), γ 7→
∫ γ·z

z

ωf

by integrating the form ωf over the geodesic from z to γ · z. Here z is a �xed point

in H or in the rational boundary P1(K) = K ∪ {∞} of H3. Changing the point z

changes the cocycle by a coboundary. Note that, if we choose z =∞, the cocycle we

obtain is parabolic.

Using the �evaluation at S� map (5.1), we can obtain a period polynomial from a

parabolic cocycle. The canonical2 period polynomial associated to f ∈ Sk+2(PGL2(O))

is de�ned as

rf :=

∫ ∞
0

ωf ∈ W+
k,k(C). (5.8)

2 This polynomial is canonical because ωf is canonical once f is appropriately scaled.
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Remark 5.4.1. As in the case of classical cusp forms, the coe�cients of the canonical

period polynomial of f are related to the special values of the L-function of f : the

critical values L(f, s + 1) with 0 ≤ s ≤ k appear in the coe�cients of the diagonal

terms Xk−sY sX
k−s

Y
s
, whereas o�-diagonal terms are related to values of the twisted

L-functions of f , see Theorem 2.11 of [Wil17] for details.

Now assume that f is a simultaneous eigenvector for all the Hecke operators. It is a

classical result that the �eld extension obtained by adjoining all the Hecke eigenvalues

of f to Q is a number �eld which we will denote by Q(f). We will also use the �eld

K(f) := KQ(f), which is the �eld over which period polynomials over K are de�ned.

It follows from results of Hida that there is a �nite extension F/K(f) and a complex

period Ωf ∈ C× such that
1

Ωf
rf ∈ Wk,k(F )+. (5.9)

Our computer programs compute the space Wk,k(K)+, which is stabilised by Hecke

operators. Since we have

W+
k,k(K)⊗K C ' W+

k,k(C),

our Hecke operators capture all of the Hecke module information of W+
k,k(C), and

hence of Sk+2(PGL2(O)). By suitably replacing the coe�cient �eld K with a �nite

extension (coming from the characteristic polynomials of the Hecke operators) we

obtain algebraic period polynomials (spanning a K-line) which realise the Hecke

eigenvalue systems that we observe.

5.4.3 Eisenstein series

It is important to note that the space Sk+2(PGL2(O)) does not account for all of

W+
k,k(C); there is a one-dimensional complement which �sees� an Eisenstein series.

Here is one way to explain this.
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In Section 5.2 we established that there is a Hecke equivariant isomorphism

W+
k,k(C) ' H2(Γ, Vk,k(C));

in turn, it is well-known that there is also a Hecke equivariant isomorphism

H2(Γ, Vk,k(C)) ' Sk+2(Γ)⊕ Eisk+2(Γ),

where, for k > 0, the space Eisk+2 is the one-dimensional3 space generated by the

Eisenstein series Ek+2 of weight k + 2 associated to the single cusp (since K has

class number 1) of the arithmetic hyperbolic 3-fold XΓ. This is a consequence of the

relation

H2
par(Γ, Vk,k(C)) ' Sk+2(Γ),

appearing in Section 5.1 of [Gha99] (albeit in the form of cuspidal cohomology of

Γ\H3), combined with the above observation that the single Eisenstein series for

weight k + 2 > 2 comes from the single cusp of Γ\H3.

We therefore see that there is a one-dimensional complement to the image of Sk+2(Γ)

inW+
k,k(C), coming from Ek+2 and realising the eigenvalue system {N(p)k+1+1}. One

can show that this one-dimensional complement is spanned by the period polynomial

XkX
k−Y kY

k
, corresponding to the image of the one-dimensional space of parabolic

coboundaries B1
par(Γ, Vk,k(C)) ⊂ Z1

par(Γ, Vk,k(C))→ Wk,k(C).

This is the Bianchi counterpart of the classical period polynomial Xk − Y k, which

is well-known (going back to [Man73], see also Theorem 1 of [KZ84]) to realise the

Eisenstein eigenvalue system {pk+1 + 1}. We will not prove this as we do not need

it; however we will see that it holds in the speci�c Bianchi period polynomial space

that we will compute with in the rest of the chapter.

3 For k = 0, the space is trivial, see Proposition 1 of [Rc13].



5. Period polynomials and congruences of modular forms 86

5.4.4 Congruences of period polynomials

Two algebraic period polynomials rf and rg each have their own �eld of de�nition,

K(f) and K(g) respectively. Both polynomials can be de�ned over the compositum

of these �elds, K(f, g) := K(f)K(g), and can therefore be scaled to have coprime4

coe�cients in the ring of integers Of,g of K(f, g). We write Rf and Rg for the

resulting integral polynomials. For any prime ideal q of Of,g, there is a mod q

reduction map

Wk,k(Of,g)→ Wk,k(Fq)

induced by the map reduction mod q map Of,g → Fq ' Of,g/q. The polynomials

Rf and Rg are congruent mod q if their images in Wk,k(Fq) are equal. When

two polynomials are congruent and neither of their images is the zero polynomial

in Wk,k(Fq), their Hecke eigenvalues are automatically congruent modulo q, as the

reduction map is Hecke equivariant. We will use this fact to prove the existence of

congruences between Bianchi modular forms of level 1 in the rest of this section.

Remark 5.4.2. In Sections 5.4.7, 5.4.8, we show that two integral polynomials are

congruent modulo a prime q in a number �eld L′, and use this to conclude that

Hecke eigenvalues are congruent modulo a prime p in a sub�eld L. In this instance,

it happens that the primes p in L are inert in L′, and since the Hecke eigenvalues

live in L, we can conclude that the eigenvalues are congruent modulo a prime in L,

rather than L′ as the above would suggest.

5.4.5 The space

For the remainder of this section, we set K = Q(
√
−11) and Γ = PGL2(O11). We

compute that the space

W := W+
10,10(K)⊗K C ' W+

10,10(C)

4 Meaning the ideals generated by the coe�cients are coprime.
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is 4-dimensional using the code in B, agreeing with the computations of [FGT10].

Using the Hecke action, we �nd W consists of: the base-change of the classical cusp

form ∆, which we still denote by ∆, the Eisenstein series E12, which is the base-

change of the classical level 1 weight 12 Eisenstein series, and two genuine Bianchi

cusp forms F1, F2. The genuine forms have Hecke eigenvalues in the �eld L = Q(β),

where β =
√

81829, and are conjugate by the non-trivial automorphism of L. We

note that the primes that ramify in L are exactly {11, 43, 173}. We record the Hecke

eigenvalues of the forms for the �rst few primes of K in Figure 5.4. Note that the

Hecke eigenvalues for the genuine forms agree with those computed in Section 6.2.2

of [FGT10].

p ω 1− ω 2 1 + ω 2− ω
N(p) 3 3 4 5 5

ap(∆) 252 252 -3250 4830 4830
ap(E12) 177148 177148 4194305 48828126 48828126
ap(F1) β − 350 −β − 350 −80 26β − 5103 −26β − 5103

ap(F2) −β − 350 β − 350 −80 −26β − 5103 26β − 5103

Tab. 5.4: Hecke eigenvalue systems captured in S12(PGL2(O11)).

5.4.6 Congruence between ∆ and E12

It immediately follows from the recipe5 describing the behaviour of Hecke eigenvalues

under base-change lifting that the famous congruence mod 691 (see e.g. [Man73])

between the classical modular forms ∆ and E12 continues to hold between their

base-change lifts.

The eigenvalue system associated to E12 cuts out a one-dimensional subspace of

W+
10,10(K) which we see to be spanned by X10X

10 − Y 10Y
10
.

Now consider the one-dimensional subspace of W+
10,10(K) cut out by (the eigenvalue

5 Which can be found, e.g. here
https://www.lmfdb.org/knowledge/show/mf.bianchi.base_change

https://www.lmfdb.org/knowledge/show/mf.bianchi.base_change
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system associated to) ∆. We pick any non-zero Bianchi period polynomial in this

one-dimensional subspace, and scale it6 so that the �rst coe�cient (i.e. the coe�cient

of the monomial X10X
10
) is 1. Let us call this polynomial P and write

P =
∑

0≤i,j≤k

ci,jX
10−iY iX

10−j
Y
j
.

We represent P as an 11× 11 coe�cient matrix (ci,j)0≤i,j≤10:

1 0 55280
31203

0 5528
10401

0 3455
55472

0 691
218421

0 0

0 − 7082750
1965789

0 − 193480
93609

0 − 34550
93609

0 − 65645
2246616

0 0 0
55280
31203

0 4892971
1497744

0 79465
93609

0 8983
93609

0 0 0 − 691
218421

0 − 193480
93609

0 − 21044405
15726312

0 − 13820
93609

0 0 0 65645
2246616

0
5528
10401

0 79465
93609

0 156857
499248

0 0 0 − 8983
93609

0 − 3455
55472

0 − 34550
93609

0 − 13820
93609

0 0 0 13820
93609

0 34550
93609

0
3455
55472

0 8983
93609

0 0 0 − 156857
499248

0 − 79465
93609

0 − 5528
10401

0 − 65645
2246616

0 0 0 13820
93609

0 21044405
15726312

0 193480
93609

0
691

218421
0 0 0 − 8983

93609
0 − 79465

93609
0 − 4892971

1497744
0 − 55280

31203

0 0 0 65645
2246616

0 34550
93609

0 193480
93609

0 7082750
1965789

0

0 0 − 691
218421

0 − 3455
55472

0 − 5528
10401

0 − 55280
31203

0 −1



Guided by our desire to �nd a congruence with E12, we let D denote the gcd of all

the rational numbers that appear as �middle coe�cients� (i.e. all the coe�cients

except for the �rst (i, j) = (0, 0) and the last (i, j) = (10, 10)). That is,

D =
gcd

(
{numerator(ci,j) | (i, j) 6= (0, 0), (10, 10)}

)
lcm
(
{denominator(ci,j) | (i, j) 6= (0, 0), (10, 10)}

) =
691

31452624
,

so that when we scale P by 1/D, the middle coe�cients all become integers with

overall gcd 1, giving the scaled period polynomial

6 In fact, Magma by default gives us an eigenvector whose leading coe�cient is 1.
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

31452624
691

0 80640 0 24192 0 2835 0 144 0 0
0 −164000 0 −94080 0 −16800 0 −1330 0 0 0

80640 0 148701 0 38640 0 4368 0 0 0 −144
0 −94080 0 −60910 0 −6720 0 0 0 1330 0

24192 0 38640 0 14301 0 0 0 −4368 0 −2835
0 −16800 0 −6720 0 0 0 6720 0 16800 0

2835 0 4368 0 0 0 −14301 0 −38640 0 −24192
0 −1330 0 0 0 6720 0 60910 0 94080 0

144 0 0 0 −4368 0 −38640 0 −148701 0 −80640
0 0 0 1330 0 16800 0 94080 0 164000 0
0 0 −144 0 −2835 0 −24192 0 −80640 0 − 31452624

691


Fig. 5.2: The �normalised� algebraic period polynomial of ∆ over Q(

√
−11).

In analogy with the classical case (see Section 7.1 [Man73]), we expect the denom-

inator of the �rst (or last) coe�cient to give the modulus of a congruence. In this

case we see a congruence modulo 691, and a 691 in the denominator.

This scaling gives the normalised algebraic period polynomial r∆. To detect a con-

gruence with the Eisenstein series E12, we need the integrally scaled polynomials R∆

and RE12 . We obviously have RE12 = rE12 = X10X
10 − Y 10Y

10
, and R∆ = 691r∆.

From the above representation of r∆, it is clear every coe�cient of R∆ except the

�rst and last is divisible by 691. So the reduction of R∆ modulo 691 is

R∆ ≡ 377X10X
10 − 377Y 10Y

10 ≡ 377RE12 (mod 691).

Thus (although we already knew this), we have

∆ ≡ E12 (mod 691).

Remark 5.4.3. The representation of our Bianchi period polynomials as square

matrices has no particular signi�cance; the polynomial is a vector in the space

W10,10(K)+ and has no reasonable interpretation as a matrix that we know of. It

is an aesthetic decision, as this representation �ts more easily on the page, and

its symmetries re�ect some obvious symmetries of the polynomial under the ac-

tion of PSL2(O). For example, the matrix S = ( 0 −1
1 0 ) acts on polynomials by

P (X, Y,X, Y ) · S = P (−Y,X,−Y ,X), which �ips the matrix along the horizon-

tal and vertical lines of symmetry and negates entries (i, j) with i + j odd. Since
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r∆ · (1− J) = 0, where J = ( −1 0
0 1 ), all such entries are 0.

Remark 5.4.4. It may be worth noting that it appears to be possible to detect the

prime 691 using only the �diagonal� coe�cients of the period polynomial, i.e. those

corresponding to the monomials X10−iY iX
10−i

Y
i
, for 0 ≤ i ≤ 10. Per Remark 5.4.1,

these correspond to critical values of the L-function of ∆, and come from Magma

unscaled as

(
1,−7082750

1965789
, 4892971

1497744
,−21044405

15726312
, 156857

499248
, 0,−156857

499248
, 21044405

15726312
,−4892971

1497744
, 7082750

1965789
,−1

)
.

Taking gcds as before reproduces the previous scaling, again putting a 691 in the

denominator of the �rst and last coe�cients.

5.4.7 Congruence between the genuine cusp forms and E12

In the same manner as the base-change congruence, our goal is to compute the

normalised period polynomial rF1 and use it to detect a congruence with E12. As

the Hecke eigenvalues of F1 live in the quadratic �eld L = Q(
√

81829), any alge-

braic eigen-polynomial P realising the Hecke eigenvalue system of F1 will live in

W10,10(L′)+, where L′ is the compositum LK, a �eld of degree 4. We compute one

such polynomial P and as before write

P =
∑

0≤i,j≤10

ci,jX
10−iY iX

10−j
Y
j
.

Again, we scale P so that its leading coe�cient is 1. In our next step, we would like

to take the gcd of all the middle coe�cients, however, since these coe�cients lie in

the number �eld L′ whose class number7 is not 1, we have to consider the gcd8 of

7 The �eld L′ has class number 116.
8 Here the notion of gcd for fractional ideals is the straightforward generalisation of the same for

rational numbers used in Section 5.4.6.
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the fractional ideals generated by the middle coe�cients:

D =
gcd

(
{〈numerator(ci,j)〉 | (i, j) 6= (0, 0), (10, 10)}

)
lcm
(
{〈denominator(ci,j)〉 | (i, j) 6= (0, 0), (10, 10)}

) .
We �nd that the fractional ideal D is principal, generated by the element

D = (245047560419778865 · T 3 + 491449950388685970467 · T )/15099638400 ∈ L′,

where T is a root of the polynomial x4 + 3725x2 + 3448449 so that Q(T ) ' L′. Now

multiplying our period polynomial P by 1/D, we obtain the normalised algebraic

period polynomial rF1 , whose middle coe�cients all lie in the ring of integers of L′

and generate ideals that are all pairwise coprime.

The key observation now is that the leading coe�cient of our �nal polynomial is

1/D, which has norm

NL′/Q(1/D) =
228 · 34 · 58 · 74 · 118

1732
.

This indicates the existence of a congruence modulo 173. To detect such a congruence

at the level of period polynomials, we need to scale rF1 such that all its terms are

integral and coprime. A quick calculation shows that

D = α/8131200,

where 〈α〉 is the unique prime of L′ of norm 1732, and so RF1 = αrF1 . As we saw

for the previous congruence, all the middle coe�cients of RF1 are divisible by α, so

modulo 〈α〉, RF1 is in the space generated by RE12 . Writing p173 for the unique prime

of norm 173 in L, another quick calculation shows that 〈α〉 ∩ OL = p173, i.e. p173 is

inert in L′/L. In particular, we have

RF1 ≡ 27RE12 (mod 〈α〉).
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From this we conclude that

F1 ≡ E12 (mod p173).

Remark 5.4.5. As in Remark 5.4.4, we also examine the unscaled diagonal entries

of F1: (
1,−3287

924
,
42039

13552
,−173

154
,
173

968
, 0,−173

968
,
173

154
,−42039

13552
,
3287

924
,−1

)
This choice of scaling is rather non-intrinsic, although it is surprising that there is

any choice of scaling such that all the diagonal coe�cients are rational, as they a

priori should be algebraic integers in L (per Hida's result in (5.9)). Scaling them as

before (to clear gcds into the denominators of the �rst and last entries), we get(
40656

173
,−836, 729,−264, 42, 0,−42, 264,−729, 836,−40656

173

)
.

Although this choice of scaling does not reproduce the scaling obtained from consid-

ering the whole polynomial, we do see the factor of 173 reappearing the denominator

of the �rst and last terms. We don't know if scaling via the diagonal coe�cients

should always be su�cient to detect a congruence, or if one can expect there to be

a choice of scaling that makes the diagonal rational in all cases.

The interested reader can �nd all the unnormalised algebraic period polynomials

(including those corresponding to F1 and F2, which we cannot display here due to

their size) in the associated GitHub repository, in the �le Q11_periodPols.m.

5.4.8 Congruence between the genuine cusp forms and ∆

Finally, we look to detect congruences between the genuine cusp forms F1, F2 and the

lifted form ∆. It is a well-known result of Hida that such congruences are controlled

by the size of a certain �congruence module� which, by a result of Urban [Urb95]

for Bianchi cusp forms, is captured by the algebraic part of the value of the adjoint
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L-function at s = 1 (which is obtained by factoring out suitable pair of complex

periods).

Further, it is well-known that the adjoint L-function at s = 1 is closely related to

the Petersson norm. In turn, a result of Haberland [Hab83], see also [KZ84,PP13],

tells us that one can compute the Petersson norm of a classical cusp form via its

canonical period polynomial. This motivates us to try to detect congruences between

our genuine cusp forms and ∆ using our Bianchi period polynomials.

Let f ∈ Sk+2(Γ) be a Bianchi cusp form and let ωf be its Vk,k(C)-valued harmonic

di�erential form on the associated hyperbolic 3-fold XΓ. Recall that the Petersson

norm of f is given by

(f, f) =

∫
XΓ

ωf ∧ ∗ωf

where ∗ωf is the harmonic 2-form given by the Hodge-star of ωf .

We believe that a suitable analogue of Haberland's formula which expresses the

Petersson norm of f in terms of its canonical period polynomials ought to exist,

however our preliminary e�orts failed to establish such a formula. Instead, we have

developed a computational approach that we believe captures the algebraic part of

the Petersson norm. We explain this approach now.

Any Bianchi cusp eigenform f ∈ Sk+2(Γ) gives rise to a class in H1(Γ, Vk,k(C)) as we

have discussed earlier, but also to a class9 in H2(Γ, Vk,k(C)). As previously discussed,

an algebraic period polynomial can be associated to the class of f in H1. For the

second cohomology class, we use the fact that there is a Hecke-module isomorphism

H2(Γ, Vk,k(C)) ' Vk,k(C)/V(C).

(see Section 4.3). Using computer programs that we developed, we can compute an

algebraic vector vf in Vk,k(K(f)) such that the class of vf in Vk,k(K(f))/V(K(f))

realises the Hecke eigenvalue system of f . Thus, the class of vf corresponds to the

9 The description of the Vk,k(C)-valued harmonic di�erential 2-form associated to f can be found
in Section 3 of [Hid94].
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cohomology class associated to f in H2. We then take the pairing 〈rf , vf〉. We note

that the value of 〈rf , vf〉 does not change if we replace vF with vF +v for any v ∈ V,

since V and Wk,k are orthogonal under 〈·, ·〉. Our expectation is that the algebraic

quantity 〈rf , vf〉 captures the algebraic part of the Petersson norm of f .

We now apply this strategy to the forms inW10,10(PGL(O11)), looking �rst at ∆. We

have already written down a normalised algebraic period polynomial corresponding

to ∆ in Section 5.4.6. We also compute an algebraic vector v∆ in V10,10(K) whose

class in V10,10(K)/V(K) realises the Hecke eigenvalue system of ∆:

v∆ = −358X10X
8
Y

2
+ 3080X10X

6
Y

4
+ 22253X10X

4
Y

6
.

It is not clear exactly how to normalise v∆. The most natural way would be to match

what we do for period polynomials, making all coe�cients (except possibly the �rst

and last) integral. But the quotient by V(K) throws away a lot of information, and

it is plausible that terms with denominators don't show up in v∆.

For lack of a better convention, we have stuck to eliminating denominators and

making the gcd of all (except the �rst and last) coe�cients 1. We then compute

〈r∆, v∆〉 =
72 · 13 · 43

2
. (5.10)

Since 7 is less than the weight 10, we do not expect to see a congruence at that prime.

There is no cusp form in W10,10 congruent to ∆ modulo 13, but we do observe that

∆ ≡ F1 (mod p43),

for the �rst few primes p of K, with p43 the unique prime of L of norm 43. To show

this congruence holds for all primes of K, we need to check the integrally scaled

period polynomials R∆ and RF1 live in the same space modulo q43, the ideal of norm

432 in L′, which satis�es q43 ∩ OL = p43. As before this just means that p43 is inert

in L′/L.
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We already have the scaled period polynomials, and reducing them both modulo q43,

we �nd

R∆ ≡ 5RF1 (mod q43),

and so

∆ ≡ F1 (mod p43),

as indicated by the copy of 43 appearing in the pairing in (5.10).

The fact that 43 appears both in the pairing and as the modulus of a congruence

here could be a coincidence, so we compute the same pairing, this time with F1.

Again computing, we have

N(〈rF1 , vF1〉) = 22 · 54 · 74 · 134 · 434 · 1732

We again discard the primes less than the weight 10. We again see 43 appearing,

suggesting this construction does capture congruence moduli. We also note that

F1 ≡ F2 (mod p),

where p ∈ {p11, p43, p173}, since F1 and F2 are L-conjugate, and each of {11, 43, 173}
rami�es in L. As they come from the structure of the coe�cient �eld L, these

congruences are much less interesting the others.

Meanwhile, the reappearance of 13 in the product is, again, mysterious, and we

cannot account for it. We note that it does not come from a congruence with a

torsion class mod 13, as there is no 13-torsion in H2(Γ11, V10,10(O11)), per Table 13

of [�11].



6. COMPUTATIONS WITH GALOIS REPRESENTATIONS

This chapter mainly concerns the practical implementation of the theory of Selmer

groups given in Chapter 3. To this end, we will make frequent reference to code

contained in Appendix A, and commands from the computer algebra package Magma

[BCP97]. We will cover the details that makes the algorithm e�ective, and give

examples that illustrate the methods. The aim of this chapter is to give as complete

an account as we can as to how to associate Selmer groups and period information

to a given Galois representation over K = Q or an imaginary quadratic �eld, as well

as gather data around the distribution of ranks of Selmer groups, and speculate on

possible connections between the two.

6.1 Computing Selmer groups

6.1.1 Class �eld theory

We collect some results from class �eld theory we will need. Good references are

[Lan14], [Coh12]. For this section, L is a general number �eld.

De�nition 6.1.1. A modulus in L is a formal product

m =
∏
q

qeq

over all primes q of L, both �nite and in�nite, with all exponents satisfying eq ≥ 0.
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Additionally, we require eq = 0 for all but �nitely many q, and, at in�nite primes q,eq = 0 when q is complex,

eq ≤ 1 when q is real.

A modulus can therefore be written as a (formal) product m0m∞, where m0 is an

ideal of OL and m∞ is a formal product of real places. By convention, we take the

empty product (i.e. when all eq = 0) to be the trivial ideal OL.
De�nition 6.1.2. The ray class group associated to m is the group Clm(L),

de�ned as the quotient of

Im(L) = {n E OL | gcd(n,m) = 1},

the group of fractional ideals of L coprime to m, by

Pm(L) = {n E OL | gcd(n,m) = 1, n = αOL, α ≡ 1 (mod ∗m)},

the subgroup of principal fractional ideals of L coprime to m, generated by an element

α congruent to 1 (mod m0) and positive at all embeddings of m∞. This �nal condition

is denoted by α ≡ 1 (mod ∗m) in the de�nition.

It is a classical theorem of class �eld theory (see Chapter 3 of [Coh12]) that Clm(L)

is a �nite abelian group, and that there is an abelian extension L(m)/L such that

1. The extension L(m)/L is unrami�ed for q - m;

2. There is an isomorphism of Galois groups

Clm(L) ' Gal(L(m)/L)

sending a prime q to Frobq ∈ Gal(L(m)/L). This is the Artin map.

The modulus m = 1 gives rise to Clm(L) = Cl(L), the usual class group of L, and

the ray class �eld is H/L, the Hilbert class �eld of L.
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Finally, we can bound the rami�cation of a prime p of L using Proposition 3.3.22

of [Coh12], which gives the largest possible exponent we need to take a given prime

p to in order to get the maximal abelian p-extension of L, unrami�ed outside of p.

For our �elds L, we �nd this maximal exponent E(p) to be

E(p) =

⌈
2e+

e

p− 1
+ 1

⌉
, (6.1)

where e is the rami�cation index of p in L, p the characteristic of ρ.

6.1.2 Galois representations, again

Let ρ : GK → GL(V ) be a continuous 2-dimensional irreducible mod p Galois repre-

sentation. By making a choice of basis of V we have that GL(V ) ≤ GL2(Fq) for some
q = pr. This choice is arbitrary, but for computational purposes it doesn't matter

which choice we make. Recall from De�nition 2.2.2 the splitting �eld of ρ:

L = K
ker(ρ)

,

satisfying Gal(L/K) ' im(ρ) ' GK/GL. We use the extension L/K to compute

with ρ. To do this, we use Magma's IrreducibleModules command. This �nds all

irreducible representations of Gal(L/K) over a �nite �eld F. We can further �lter

by dimension, leaving us with a list of irreducible 2-dimensional representations of

Gal(L/K) over F, which can then be disambiguated by their traces of Frobenius. We

also require the representation to be faithful, to ensure im(ρ) ' Gal(L/K), rather

than just a subgroup.

The code to do this is contained in get_rep.m, in Section A.2.2, and was originally

written by Aurel Page, adapted somewhat to our speci�c situation.
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6.1.3 Computing the relaxed Selmer group

Let L be a Selmer system for ρ. Recall from Theorem 3.3.2 and Section 3.3.3, lines

in SelL(ρ) are in bijection with extensions M/L satisfying

1. The extension M/L is Galois, with Gal(M/L) ' V (as an additive group);

2. The extension M/K is Galois;

3. The action of Gal(L/K) on Gal(M/L) is via ρ;

4. The rami�cation of primes in M/L is controlled by the local conditions in L.

Using this theorem, we can compute the rank of SelL(ρ) exactly. In practice, we �rst

compute the relaxed Selmer group, which we recall puts the unrami�ed condition on

all places of of L not over the characteristic p, and no condition over p. In terms of

extensions as in point (4) above, M/L must be unrami�ed primes of L away from p

only. For simplicity of exposition, we will assume V = Fp ⊕ Fp, but the same works
for V = Fq ⊕ Fq, if one interprets Fq = Fpr ' Frp as Fp-vector spaces.

From Equation 6.1, we know we can �nd a modulus m such that L(m) is the maximal

abelian extension of L unrami�ed away from p. We can then �nd a sub�eld A =

Am ⊂ L(m) such that A/L is also unrami�ed away from p, and Gal(A/L) ' Fkp.
Thus, any extension M/L satisfying conditions (1-4) is a sub�eld of A.

Practically, this is all accomplished using the Magma commands RayClassGroup to

�nd Clm(L) and AbelianExtension to �nd L(m). We then �nd A as the �xed �eld

of the largest elementary p-subgroup of Clm(L). To satisfy condition (2), we use

Magma's NormalSubfields command, which �lters out only those M/L that are

also normal M/K; by passing in the additional parameter Quot:=[p,p], we can

further �lter for only those M/L with Galois group isomorphic to V ' Fp ⊕ Fp. As
sub�elds of an abelian extension, all the M/L are automatically Galois, satisfying

condition (2). Finally, during the computation of A, Magma automatically gives the

action of Gal(L/K) on Gal(A/L), so we can compare with the action of Gal(L/K)

on V we have already computed and check the two are conjugate.
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Often, the action of Gal(L/K) on an extension satisfying conditions (1,2,4) will not

be via ρ, and in fact, will not even necessarily have image equal to im(ρ). We will

see this in numerous cases, including, for example, Example 6.1.3.

Example 6.1.3. Let K = K3 = Q(
√
−3), with ω = ω3 = 1+

√
−3

2
. Let

E : y2 + xy + ωy = x3 + (ω + 1)x2

be the elliptic curve with LMFDB label 4219.1-a1. Its associated 2-torsion repre-

sentation is cut out by the �eld L/K, de�ned by the polynomial

x6 + (−2ω + 8)x5 + (−17ω + 43)x4 + (−52ω + 128)x3+ (6.2)

(−85ω + 206)x2 + (−74ω + 168)x− 24ω + 46,

so we have Gal(L/K) ' S3 ' GL2(F2). Since S3 is generated by an element τ of

order 2 and an element σ of order 3 such that τστ = σ2, we can describe the action

of the whole Galois group in terms of two such elements. Let α be a root of (6.2).

Then we can de�ne τ and σ to be

τ : α 7→ 1

9813
((−2998ω + 2102)α5 + (−17800ω + 7865)α4+

(−89194ω + 29504)α3 + (−214598ω + 75421)α2+

(−259530ω + 81459)α + (−115570ω + 18401))

σ : α 7→ 1

19626
((1201ω + 1567)α5 + (−1085ω + 15130)α4+

(−16391ω + 72871)α3 + (−62857ω + 171614)α2+

(−122412ω + 176442)α + (−52664ω + 14824)).

Per Section 3.4.3, we have

H1(GL2(F2), V ) = H2(GL2(F2), V ) = 0,

https://lmfdb.org/EllipticCurve/2.0.3.1/4219.1/a/1
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so lines in the Selmer group correspond exactly to extensions M/L satisfying condi-

tions (1-4) above.

In K/Q, the prime 2 is inert, and in L/K it splits into 3 primes: 2OL = p2
1p

2
2p

2
3. By

Equation 6.1, we can take the modulus m = (p1p2p3)7. Magma gives

Clm(L) ' (Z/2Z)2 ⊕ (Z/4)2 ⊕ (Z/8Z)5.

Thus, we have

Gal(Am/L) ' (Z/2Z)9.

When doing class �eld theory with Magma, we keep all extensions of L in the data

type FldAb. Computationally, it is much quicker to leave everything as this type;

converting to number �elds and performing arithmetic there tends to be much slower.

For example, �nding the sub�elds A/M/L that are normal overK is computationally

very taxing when A is converted to a number �eld. As a FldAb, the action of

Gal(L/K) on Gal(A/L) is already computed, and so we can use standard techniques

to �nd the subgroups of Gal(A/L) that correspond to such �elds. In particular, to

compute Selrel(ρ), we only need to �nd the subgroups that are also submodules with

respect to the Gal(L/K) action, which Magma does with ease.

The action of Gal(L/K) on Gal(Am/L) is given by

τ 7→



0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 1
0 0 0 0 1 0 0 1 1
1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0


, σ 7→



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1
1 1 0 1 1 0 0 0 1
0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 0
1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0


.

Using Magma's Submodules command, we �nd ten submodules of Gal(Am/L) iso-

morphic to (Z/2Z)7, which map, under the Galois correspondence, to extensions
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M/L with Galois group V . These ten extensionsM/L break down into classes based

on the image of the action of Gal(L/K) on Gal(M/L): seven have image S3, two

have image C2, and one has image C1.

All of the seven extensions with S3-action have that action conjugate to ρ, so from

Lemma 3.4.1, we �nd that

rankFp(Selrel(ρ)) = 3.

This computation is performed with NormalSubfields_K.m, in Section A.2.4.

6.1.4 Computing the nearly-ordinary Selmer group

To compute SelNO(ρ), we will assume we have already computed Selrel(ρ). Recall

that ρ is nearly-ordinary at a place w of K if ρ |Dw �xes a 1-dimensional subspace

` ≤ V . The de�nition of SelNO(ρ) requires that ρ be nearly-ordinary at all places

over p.

Recall also that the corresponding extra condition on extensionsM/L satisfying con-

ditions (1-3) in Theorem 3.3.2 that marks out elements of SelNO(ρ) is that Iq(M/L) ≤
` for all places q | p. Here we are implicitly using the identi�cation of Gal(M/L)

with V (as an additive group). In fact, we will see that having Iq(M/L) ≤ ` for one

place q of L is su�cient.

Proposition 6.1.4. Let ρ be nearly-ordinary at p. Then, for two choices q and q′

of places of L above p, if Iq(M/L) is in the line �xed by Dq
p(L/K), then Iq′(M/L) is

in the line �xed by Dq′

p (L/K).

Proof. The group Gal(L/K) acts transitively on the primes of L, so there is some

σ ∈ Gal(L/K) such that q = σq′. Then we have

Dq′

p (L/K) = σ−1Dq
p(L/K)σ.

Call ` the line �xed by Dq
p(L/K). A quick calculation shows that Dq′

p (L/K) �xes

` · ρ(σ). The result follows from the fact that Iq(M/L) · ρ(σ) = Iq′(M/L), which we
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now prove.

Take τ ∈ Iq(M/L) and x ∈ OM/L. Recall from Section 3.3.2 that ρ(σ) acts on

Gal(M/L) by conjugation by some extension σ̃ of σ to Gal(M/K). Write y = σ̃(x);

then we have

(τ · ρ(σ))(x)− x = (σ̃−1τ σ̃)(x)− x

= (σ̃−1τ)(y)− σ̃−1(y)

= σ̃−1(y + q)− σ̃−1(y)

= σ̃−1(q).

where q ∈ q̃, a place of M extending q. The action of σ̃−1 takes elements of q̃, to

elements of q̃′, a place of M extending q′.

We want to argue that τ · ρ(σ) ∈ Iq′(M/L), but this group a priori depends on

the choice of a place extending q′, with the groups coming from these choices all

conjugate in Gal(M/L). But Gal(M/L) is abelian, so this choice isn't really a choice

(conjugacy classes have size 1), and so τ · ρ(σ) ∈ Iq′(M/L) as required.

Testing whether a representation is nearly-ordinary at a place p is easy: the decom-

position group can be computed using (2.2), and we can test directly whether the

�xed points of ρ |Dp form a line in V .

Similarly, we can test whether an inertia group Iq(M/L) lies in ` directly. To compute

the inertia subgroup of M/L at q, we �nd the maximal unrami�ed subextension M ′

of M . This is exactly M Iq(L/K), and it can be found by intersecting M with the

maximal abelian extension of L unrami�ed at every place not over p, and unrami�ed

at q.

This �eld is the ray class �eld attached to the modulus m/qeq�the same as the

modulus de�ning A, but with every copy of q excised. Then we have

M Iq(M/L) = M ∩ L(m/qeq).
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Meanwhile, we can �nd the extension M ` by �rst computing a generator of the line

`, then using the isomorphism V ' Gal(M/L). We have Iq(M/L) ≤ ` if and only if

M ` ≤M Iq(L/K), which can be checked directly in Magma.

This computation is performed with NO_selmer_lines.m, in Section A.2.5.

Example 6.1.5. We continue with the representation ρ from Example 6.1.3. We

pick the prime p1 = (2, β) to compute decomposition and inertia groups, where

β =
1

19626
((ω − 17198)α5 + (−10010ω − 11105795)α4+

(16867ω − 65046950)α3 + (25334ω − 56392243)α2

+ (24786ω + 136309662)α + (−9146ω + 44855554)).

A quick calculation in Magma shows that

D2(L/K) = 〈τσ〉 ' C2,

We identify Gal(L/K) with GL2(F2) by

ρ : τ 7→
(

1 0
1 1

)
, σ 7→

(
0 1
1 1

)
,

so that ρ(τσ) = ( 0 1
1 0 ), and ρ |D2(L/K) �xes the line ` = 〈(1, 1)〉. Of the seven

extensionsM/L from Example 6.1.3, three satisfy Ip1(M/L) ≤ `, so again by Lemma

3.4.1, we have that

rankFp(SelNO(ρ)) = 2.

If we had chosen to compute our decomposition and inertia groups with p2 = p1σ,

we would have found that

D2(L/K) = 〈τσ2〉 ' C2,

and therefore ρ |D2(L/K) instead �xes the line `
′

= 〈(0, 1)〉 = `ρ(σ). Then the same

three �elds again have Ip2(M/L) ≤ `
′
by the compatibility of the Gal(L/K) action
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everywhere.

6.1.4.1 Computing the unrami�ed Selmer group

This Selmer group is easy to compute if one is also computing the nearly-ordinary

group, since that computation requires �nding M Iq(M/L) for all q over p. The un-

rami�ed Selmer group is then found by counting all those M for which

[M Iq(M/L) : L] = [M : L]

i.e. those for which the inertia group is trivial.

This calculation is also performed by NO_selmer_lines.m.

Example 6.1.6. Again we continue with the representation ρ from Examples 6.1.3,

6.1.5. Since we have already computed the M Iq(M/L), we only need to check the list.

Of the seven, only one has degree 4 over L, corresponding to M Iq(M/L) = M , so we

have

rankFp(Selunr(ρ)) = 1.

6.1.5 The p-Selmer group of an elliptic curve

For an elliptic curve E over a number �eld K, there is a notion of the p-Selmer

group of E. It is de�ned similarly to our Selmer groups (see Section X.4 of [Sil09],

for example), and is used in computing the rank of E. We should not, in general,

expect the ranks of our mod p Selmer groups for representations coming from an

elliptic curve E to match the rank of the p-Selmer group of E, or indeed the rank of

E itself.

The relaxed Selmer group generally over-estimates the rank of E, and the unrami�ed

Selmer group generally under-estimates it. The nearly-ordinary Selmer group, sitting

between the two, has the best chance of giving the rank of E, but there exist many

examples where it does not.
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The elliptic curve E appearing in Examples 6.1.3-6.1.6 happens to have rank 2,

matching this nearly-ordinary rank of its mod 2 representation.

6.2 Computing period data

Having explored the Selmer side, we now want to associate period data to a Galois

representation. To do this, we compute its Serre conductor, Serre weights and its

character, and �nd the (conjecturally) associated eigenvalue system(s) in cohomology.

Example 6.2.1. Let K = K7 = Q(ω), where ω = 1+
√
−7

2
. Let ρ : GK → GL2(F5) be

the representation that cuts out the �eld extension L = K(α), where α is a root of

x8−4x7+8x6−10x5+(−6ω+18)x4+(12ω−24)x3+(−12ω+21)x2+(6ω−10)x−ω+2.

We choose this extension because it has a relatively small Serre conductor, meaning

we can compute the cohomology groups where its (conjecturally) associated eigen-

value system is found with ease.

The �eld L has Galois group Gal(L/K) ' D4 = 〈σ, τ〉, where σ4 = τ 2 = (στ)2 = 1.

We make the explicit identi�cations:

σ : α→ 1

1562
((−216ω − 732)α7 + (756ω + 2562)α6 + (−1208ω − 4788)α5

+ (1130ω + 5565)α4 + (3004ω − 13944)α3 + (−5258ω + 16632)α2

+ (5134ω − 12453)α− 1671ω + 4360)

and

τ : α→ 1

1562
((516ω − 1896)α7 + (−1806ω + 6636)α6 + (3580ω − 11992)α5

+ (−4435ω + 13390)α4 + (16948ω − 21880)α3 + (−21890ω + 22748)α2

+ (19149ω − 13076)α− 6031ω + 3816).
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We also realise the map ρ by

ρ : σ 7→
(

0 1
4 0

)
, τ 7→

(
0 4
4 0

)
.

To �nd the associated eigenvalue system in cohomology, we need to compute the

invariants from Section 2.3.

Serre conductor: Recall that the Serre conductor is the ideal

n(ρ) =
∏

p prime
p-p

pep(ρ),

where ep(ρ) is an exponent de�ned using the higher rami�cation groups of im(ρ), and

p is the characteristic of ρ. In particular, ep(ρ) = 0 when ρ is unrami�ed at p, which

happens exactly when L/K is. The discriminant of OL is p4
5p

4
29, where p5 = (5) has

norm 25, and p29 = (1− 4ω) has norm 29. Since ρ has characteristic 5, we only need

to know ep29(ρ).

Choosing a prime q29 of L over p29, we compute the higher rami�cation groups

Gp29,0 = 〈σ3τ〉 ' C2, Gp29,1 = C1.

The image of Gp29,0 under ρ is ( 1 0
0 4 ), which �xes the 1-dimensional subspace 〈(1, 0)〉

of F5 ⊕ F5 pointwise. So we compute ep29(ρ) = 1, and so

n = n(ρ) = (1− 4ω).

All of this computation is performed by conductor.m, in Section A.1.2.

Character: The character χ of the representation ρ is a (mod 5) Dirichlet character

of the group (OK/n)×, such that

χ(π) = det ρ(Frob(π))
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for prime elements π ∈ OK not dividing np. Recall we can make this identi�cation

between ideals an elements since K has class number 1. There are 28 characters to

check against in this case, and we �nd that χ is the unique quadratic character of

(OK/n)×, reduced modulo 5.

This computation is performed by character.m, in Section A.1.1.

Traces of Frobenius: Having computed the Frobenius elements to �nd the char-

acter χ, we also note their traces here.

p (1 + 2ω) (9− 2ω) (7 + 2ω) (7− 6ω) (13) (1− 10ω)

N(p) 11 71 71 79 169 191

trace(Frobp) 3 2 3 3 2 2

Tab. 6.1: Traces of Frobenius of ρ from Example 6.2.1.

For all other primes p of norm ≤ 200, we have trace(Frobp) = 0.

This computation is performed by the function ComputeTraces, in get_rep.m, Sec-

tion A.2.2.

Weights: Since p = 5 is inert in K, we compute cohomology groups for the weight

modules V s,t,χ
k,l (F25). Here we realise F25 as F5(µ), where µ2 + 3µ+ 4 = 0.

With the level and character in hand, we can compute the spacesH1(Γ0(n), V s,t,χ
k,l (F25))

for all k, l, s, t ∈ {0, . . . , 4}, and �nd these traces as an eigenvalue system for (k, l, s, t)

equal to

1. (1, 1, 0, 0)

2. (1, 1, 2, 2)

3. (1, 1, 4, 4)

4. (2, 2, 1, 4)

5. (2, 2, 4, 1).
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Period polynomials: Each occurrence of the eigenvalue system ap = trace(Frobp)

is multiplicity 1, meaning its associated period polynomial can be determined, up to

scaling by F25. For the weights (1-3), we �nd the period polynomial

rρ = XX + Y Y .

For the weights (4, 5) we �nd the period polynomial

rρ = XYX
2

+X2XY + µY 2XY + µXY Y
2
.

As in Section 5.4.6, we can represent these period polynomials as matrices, which

makes some of their symmetries more obvious:

(
1 0
0 1

)
,

(
0 1 0
1 0 µ
0 µ 0

)
.

These period polynomials are computed using the code in Chapter B.2.

6.3 Interesting examples

The phenomena surrounding relaxed, nearly-ordinary and unrami�ed Selmer groups

of mod p Galois representations is relatively unexplored. As such, there are many

examples displaying interesting behaviour for which little theory exists to account.

6.3.1 Di�erent nearly-ordinary ranks

The elements we choose to include in the nearly-ordinary Selmer group depend on

which line �xed by the decomposition group at p we choose. In the case of only one

�xed line, the choice is made for us, but there are some representations with trivial

decomposition group, meaning ρ |Dp �xes all possible lines.
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Example 6.3.1. Let K = K11 = Q(
√
−11), with ω = 1+

√
−11

2
. The elliptic curve

E : y2 + ωxy + y = x3 + (−ω + 1)x2 − ωx

has LMFDB label 17713.1-a1. Its mod 2 representation ρ cuts out the splitting

�eld L, de�ned by the polynomial

x6 − 3x5 + (−6ω + 22)x4 + (12ω − 39)x3 + (−6ω + 79)x2 − 60x+ 16,

so im(ρ) ' GL2(F2). We note that L has no real places. There is only one prime

of K over 2, which is 2OK , and it factors as a product of 6 primes, 2OL = q1 . . . q6

in L. Per Equation (6.1), we can compute the maximal 2-extension A/L unrami�ed

outside q | 2OK with the modulus m = (2OK)4. From Magma, we get

Gal(A/L) ' (Z/2Z)13.

Further, we �nd �fteen extensions M/L with action of Gal(L/K) on Gal(M/L) via

ρ. Thus, we have

rankFp(Selrel(ρ)) = 4.

Next, we look at the nearly-ordinary Selmer groups. The decomposition group is the

trivial group C1 ≤ GL2(F2), so ρ |D2OK
�xes every line of V ' F2 ⊕ F2. These lines

are

`1 = (1, 0), `2 = (1, 1), `3 = (0, 1).

Let q = (2, β) be an ideal of L over 2OK , with

β =
1

1676
((−1750ω − 377)α5 + (−15306ω + 15629)α4+

(26666ω − 17762)α3 + (−55590ω + 97855)α2+

(43528ω − 84305)α− 12260ω + 26708).

Then we count the extensions M/L such that Iq1(M/L) ≤ `i. For `1 we count 3, for

https://lmfdb.org/EllipticCurve/2.0.11.1/17713.1/a/1


6. Computations with Galois representations 111

`2 we count 1, and for `3 we count 7. This gives

rankFp(SelNO(`1)(ρ)) = 2, rankFp(SelNO(`2)(ρ)) = 1, rankFp(SelNO(`3)(ρ)) = 3.

This example illustrates that the rank of the nearly-ordinary Selmer group need

not be constant across di�erent lines. We also note that only one of the M/L is

unrami�ed at primes q over 2OK , and so

rankFp(Selunr(ρ)) = 1.

Finally, we also note that the rank of E is 2.

6.3.2 Rami�ed and unrami�ed quotient

In this subsection we are motivated by comments made in Section 5.1 of [EPW05],

where the relationship between the Greenberg and Bloch-Kato Selmer groups of

a p-adic representation coming from a classical modular form is discussed. The

Greenberg Selmer group is de�ned in Section 4.1 of that paper, and can be applied

to representations that are

• nearly-ordinary in the exactly analogous way as outlined in Section 3.3.3.2;

• unrami�ed at p on the quotient V/`, where ` is the space �xed by ρ |Dp .

It is noted that the Greenberg Selmer group always contains the Bloch-Kato Selmer

group with corank at most 1.

In the search for a local condition for mod p representations that shares the (con-

jectural) relationship between periods and ranks as outlined in Section 1.2, we in-

vestigate whether a such a property holds here. That is, for a nearly-ordinary mod

p representation ρ with �xed line ` providing a quotient character ρ∗ : GK → V/`

unrami�ed at p, is it the case that the rank of SelNO,`(ρ) is non-zero when a period

of the mod p cohomology class is 0?
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We analyse this situation for mod 3 representations of GQ, coming from elliptic

curves, with image SD16 ≤ GL2(F3). The group SD16 has order 16, and has presen-

tation

SD16 ' 〈σ, τ | σ2 = τ 8 = 1, σ−1τσ = τ 3〉.

This can be realised as a subgroup of GL2(F3) by, for example,

σ 7→
(

2 0
2 1

)
, τ 7→

(
0 2
2 2

)
.

Up to conductor 500,000, we �nd 186 such representations coming from elliptic curves

that are nearly-ordinary at 3. In each case, we found that ρ |D3 �xed two lines `1, `2,

with V/`1 unrami�ed at 3, and V/`2 rami�ed. So for each representation, we compute

an unrami�ed nearly-ordinary rank and a rami�ed one. We note the di�erence

between the unrami�ed nearly-ordinary (hereafter, �UNO�) rank and the unrami�ed

rank; the latter captures those elements of the Selmer group that are unrami�ed

everywhere, not just on the quotient V/`1. We summarise the data gathered in the

table below.

rank(E) Relaxed Unrami�ed N.O. Rami�ed N.O. Unrami�ed
0.6701 1.5876 0.9587 0.7525 0.2371

Tab. 6.2: Average ranks associated to SD16 mod 3 representations coming from elliptic
curves.

We note that the UNO rank is larger than the rami�ed nearly-ordinary rank on

average.

We now test the naive generalisation of the comments of [EPW05] to our mod 3

representations. We compute rankF3(SelNO,`(ρE,3)) in the case of the unrami�ed

quotient, and match this against period information. The speculation states that

this rank should overestimate the �true� rank by at most 1.

In order to verify this speculation with the UNO Selmer group, we must do the

following.
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1. Compute the period P(fE);

2. Compute the rank of the UNO Selmer group.

3. Compare the two. If the period is

(a) zero, then the rank should be at least 1.

(b) not zero, then the rank should be at most 1 (as the hypothesised �true

rank� should be 0, and the UNO Selmer group should overestimate this

quantity by at most 1)

For an elliptic curve E with rank ≥ 1, the value P(fE) is predicted to be 0 by the

Birch and Swinnerton-Dyer conjecture; for all curves in the LMFDB this has been

veri�ed to hold, so we can take it as read that P(fE) = 0.

When E has rank 0, the value P(fE) is non-zero for the same reason: all the curves

we consider have the Birch and Swinnerton-Dyer conjecture veri�ed. However, the

value P(fE) can be 0, which can happen when the integrally scaled fE has a 3 in its

numerator.

In order to comport with the speculation that the UNO rank should overestimate

the �true� rank by at most 1, in the case of a rank 0 curve, we should see a UNO

rank of at most 1, assuming P(fE) does not vanish.

In practice, we �nd several examples of elliptic curves with rank 0 with UNO rank

2, seemingly violating this principle. One such curve is

E : y2 + xy + y = x3 + x2 − 1048096x+ 551582926,

with LMFDB label 24649.a1. However, this curve (conjecturally) has non-trivial

Shaferavich-Tate group; in this case, the value |X(E)| = 9 is predicted by the

(conjectural) formula for L(E, 1), and is likely contributing a factor of 3 to the value

P(fE). The spaces H1(Γ0(24649), F ) for F = C,F3 are outside our computational

capability, so we cannot verify these speculations.

https://www.lmfdb.org/EllipticCurve/Q/24649/a/1
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For the 186 representations considered, we �nd 6 curves where the di�erence between

the UNO rank and the rank of E is larger than 1, seeming to violate this speculation.

However, in each case, a factor of 3 appears in the numerator of the ratio L(E,1)
ΩE

.

Four of the curves (24649.a1, 264992.dm1, 288800.ba1 and 453152.bq1) have a

factor of 3 coming from the order of X(E); the other two curves (94178.bb1 and

153760.d1) have a factor of 3 coming from a Tamagawa number. In all cases, we

expect then that the value P(fE) vanishes, meaning the �true� rank should be at

least 1, and thus the UNO rank 2 only overestimates by 1, as predicted.

6.3.3 Elliptic curves with large rank

Let E be the elliptic curve 111061427.a1, given by

E : y2 + xy = x3 − 245x+ 1366.

This curve has rank 5, and is nearly-ordinary at 2. Computing its Selmer groups, we

�nd

rank(Selrel(ρE,2)) = 5,

rank(SelNO(ρE,2)) = 5,

rank(Selunr(ρE,2)) = 4.

For the hypothetical �correct� Selmer system for mod 2 representations, one should

expect the rank to be close to the rank of E. Here the two match, and it is notable

that most of the rank comes from the unrami�ed portion of the Selmer group, with

only one extra dimension truly coming from the nearly-ordinary condition.

https://www.lmfdb.org/EllipticCurve/Q/24649/a/1
https://www.lmfdb.org/EllipticCurve/Q/264992/dm/1
https://www.lmfdb.org/EllipticCurve/Q/288800/ba/1
https://www.lmfdb.org/EllipticCurve/Q/453152/bq/1
https://www.lmfdb.org/EllipticCurve/Q/94178/bb/1
https://www.lmfdb.org/EllipticCurve/Q/153760/d/1
https://www.lmfdb.org/EllipticCurve/Q/111061427/a/1
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6.4 Statistics on nearly-ordinary ranks

For each of the �ve K = Kd we consider, and the rationals K = Q, we present

statistics on the ranks of nearly-ordinary Selmer groups coming from elliptic curves

over K. To collect the data, we started with the LMFDB elliptic curve databases

over K. From this, we kept every elliptic curve satisfying the following properties:

1. The conductor n(E) is not divisible by any prime of K over 2;

2. The image of ρE,2 is GL2(F2)

3. The representation ρE,2 is nearly-ordinary at all primes of K over 2.

Next, using �eld isomorphism testing, we sorted the representations into isomorphism

classes. As a �rst pass, we computed the traces of Frobenius for each curve for primes

less than 1000, to create probable isomorphism classes. After this, we ran over each

class and isomorphism tested each member to �nd exact isomorphism classes. In

practice, no probable isomorphism class ever split.

Recall from Section 6.3.1, a mod p Selmer group can have di�erent nearly-ordinary

ranks associated to each �xed line; for a small proportion of representations (∼ 5%),

the decomposition group over 2 vanished, �xing all lines. We count each of these as

a separate Selmer group.

Lastly, of the �ve �elds, 2 splits only in Q(
√
−7), and so it is possible to get up

to 9 di�erent nearly-ordinary Selmer groups, which occurs when the decomposition

groups of both primes over 2 vanish. In practice, we did not see this occur.

We present the data gathered in the following table.
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Field Q Q(
√
−3) Q(

√
−1) Q(

√
−7) Q(

√
−2) Q(

√
−11)

2 − inert rami�ed split rami�ed inert
Max conductor 500000 150000 100000 50000 50000 50000

Reps 75445 3342 1530 441 1200 1711
Proportion N.O. 0.5103 0.7101 0.6895 0.1723 0.7067 0.7078

N.O. reps 38497 2373 1055 76 848 1211
N.O. Selmer groups 48927 2573 1105 94 894 1307

Vanishing 0 131 26 4 38 137
Proportion van. 0 0.0509 0.0235 0.0426 0.0425 0.105
Mean relaxed 2.493 3.054 3.028 4.118 3.037 3.059
Mean N.O. 1.517 1.383 1.877 1.947 1.488 1.284

Mean unrami�ed 0.409 0.0737 0.0569 0.0790 0.0637 0.0751

Tab. 6.3: Various statistics for nearly-ordinary representations over Q and �ve imaginary
quadratic �elds K.

6.4.1 Features of the data

Here we comment on some notable features of the collected data.

6.4.1.1 Proportion of nearly-ordinary representations

Firstly, it appears that a representation over Q is nearly-ordinary around half of the

time. Meanwhile, it appears that the probability of a representation satisfying (1-3)

above being nearly-ordinary is around 70% when there is one prime in K above 2,

and somewhere around 17% when there are two. It is �harder� for a representation

to be nearly-ordinary over the �eld where 2 splits, since it must have decomposition

groups that �x a line for two primes, rather than one.

If the probability of a decomposition group �xing a line over K7 is also around 70%,

as it appears to be for the �elds where 2 is inert or rami�ed, and the probabilities for

the two primes over 2 inK7 are independent, one would expect that the proportion of

nearly-ordinary representations there would be around 0.49 = 0.72. But the observed
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proportion is much lower. We conclude that some aspect of this naive interpretation

is clearly not correct, though we do not know which.

6.4.1.2 Proportion of vanishing nearly-ordinary ranks

We note that the nearly-ordinary Selmer group seems to never vanish over Q; the
same is not true for these K, although the proportion still remains low, around 1-5%.

6.4.1.3 Average ranks

The nearly-ordinary rank across the �ve number �elds sits somewhere between 1 and

2. It is largest for K7, although this may just be a result of the much smaller data set

there. The relaxed rank and unrami�ed ranks are also larger for this �eld, possibly

for the same reason.

Over Q, the rank is very close to 1.5. We note that the nearly-ordinary rank seems to

never vanish, meaning it is overestimating the rank of the underlying elliptic curves

of rank 0 by at least 1. The current consensus seems to be that the average rank

of elliptic curves (ordered by conductor) should be 1
2
; it is possible, then, that the

nearly-ordinary rank is overestimating the elliptic curve rank by 1 on average.

In general, the relaxed rank seems to sit very close to 3, and the unrami�ed rank

is small, around 0.06. In particular, we saw no Selmer group with unrami�ed rank

above 1 across the �ve �elds. The largest relaxed rank we see is 5, from a few

representations over K7, for example the 2-torsion representation of the elliptic curve

1269.2-a1. No representation over another �eld reaches this relaxed rank in this

data range, although examples such the one in Section 6.3.3 indicate this may be

just because of the ranks of the underlying curves not being large enough.

As a possible alternative explanation for the higher ranks seen over K7, we make the

following observation: the size of the ray class �eld of a modulus m tends to increase

as its number of factors does (with multiplicity). Since there are two primes over 2

https://www.lmfdb.org/EllipticCurve/2.0.11.1/1269.2/a/1
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in K7, the modulus we de�ne in Section 6.1.1 has more factors, and so ought to lead

to a larger number of possible extensions corresponding to lines in the Selmer group.
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Appendix A

CODE FOR GALOIS REPRESENTATIONS

A.1 Invariants

A.1.1 character.m

// assuming we a l r eady have the r ep r e s en t a t i on rho , the f r ob en i u s data

// from aure l ' s code , i t s conductor cond ,

// and the c h a r a c t e r i s t i c p o f the r ep r e s en t a t i on

RepChar:= func t i on ( rho , frob , cond , p)

ZK:=Order ( cond ) ;

DG1:=Dir ich letGroup ( cond ) ;

DG2:=Dir ich letGroup (p∗ZK) ;

E1:=Elements (DG1) ;

E2:=Elements (DG2) ;

// we f i nd the order o f the determinant cha rac t e r

// when the rep l i v e s in some non−prime f i n i t e f i e l d

frob_order :=1;

frob_dets :=[u [ 3 ] : u in f rob ] ;
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f rob_tes t :=[u^1 : u in frob_dets ] ;

whi l e not &and [ u eq 1 : u in f rob_tes t ] do

frob_order+:=1;

f rob_tes t :=[u^frob_order : u in f rob_tes t ] ;

end whi le ;

pos s ib l e_char s : = [ ] ;

// now we run over a l l the cha r a c t e r s in both , l ook ing

// f o r d1 and d2 such that t h e i r product g i v e s the determinant

// cha rac t e r . then d1 i s the cha rac t e r o f the rep as p r ed i c t ed by Ser r e

f o r d1 in E1 do

f o r d2 in E2 do

i f LCM(Order ( d1 ) , Order ( d2 ) ) eq frob_order then

t e s t :=[ d1 (u [ 1 ] ) ∗ d2 (u [ 1 ] ) : u in f rob ] ;

kk:=Rat iona l s ( ) ;

f o r u in t e s t do

par :=Parent (u ) ;

i f Type ( par ) ne RngInt then

kk:=Compositum(kk , Parent (u ) ) ;

end i f ;

end f o r ;

Zkk:=MaximalOrder ( kk ) ;

pp:= Fac to r i z a t i on (p∗Zkk ) [ 1 , 1 ] ;

f f , down:=Res idueClas sF i e ld (pp ) ;

i f [ down(u) : u in t e s t ] eq frob_dets then

Append(~ poss ib l e_chars ,<d1 , Index (E1 , d1 ) >);

end i f ;

end i f ;

end f o r ;

end f o r ;

i f #pos s ib l e_char s eq 1 then

return pos s ib l e_char s [ 1 ] [ 1 ] , po s s ib l e_char s [ 1 ] [ 2 ] ;
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e l i f #pos s ib l e_char s eq 0 then

p r i n t "no charac t e r found " ;

re turn −1;
e l s e

p r i n t "mul t ip l e p o s s i b l e cha ra c t e r s found " ;

p r i n t "more determinants o f f r ob en iu s needed to disambiguate " ;

r e turn pos s ib l e_char s ;

end i f ;

end func t i on ;

A.1.2 conductor.m

// given a r ep r e s en t a t i on rep , returned by Aurel ' s g a l r ep s funct ion ,

// a prime P o f ZLL ( the r ing o f i n t e g e r s o f L/K, entry 3 in rep ) , and an

// index i , r e tu rn s the h igher r am i f i c a t i o n group ( lower numbered )

// o f P o f index i

HigherRamGroup:= func t i on ( rho ,P, i )

A:=Domain( rho [ 1 ] ) ;

ram_group : = [ ] ;

B:=Bas i s ( rho [ 3 ] ) ;

Q:= Fac to r i z a t i on ( Parent (1∗ rho [ 3 ] ) ! P ) [ 1 , 1 ] ;

CC:=rho [ 4 ] ;

f o r g in A do

keep := true ;

f o r j in [ 1 . .#B] do

i f not ( rho [ 2 ] ( g ) (B[ j ])−B[ j ] ) ∗CC[ j ] in Q^( i +1) then

keep := f a l s e ;

break j ;

end i f ;
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end f o r ;

i f keep then

Append(~ram_group , g ) ;

end i f ;

end f o r ;

r e turn sub<A| ram_group>;

end func t i on ;

// g iven a r ep r e s en t a t i on rho and a prime P o f ZLL ,

// r e tu rn s the exponent o f P in the Ser r e conductor o f rho

SerreExponent := func t i on ( rho ,P)

ram_groups :=[HigherRamGroup ( rho ,P , 0 ) ] ;

i :=1;

whi l e #ram_groups[#ram_groups ] ne 1 do

Append(~ram_groups , HigherRamGroup ( rho ,P, i ) ) ;

i +:=1;

end whi le ;

ind :=0;

f o r R in ram_groups do

Kers : = [ ] ;

f o r r in R do

m:=rho [ 1 ] ( r ) ;

S:=Kernel (m−m^0) ;

Append(~Kers , S ) ;

end f o r ;

d:=Dimension(&meet Kers ) ; // dimension o f the space they a l l f i x

ind+:=#R/#ram_groups [1 ]∗(2−d ) ;
end f o r ;

r e turn In t e g e r s ( ) ! ind ;
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end func t i on ;

SerreConductor := func t i on ( rho )

K:=BaseFie ld ( NumberField ( rho [ 3 ] ) ) ;

ZK:=MaximalOrder (K) ;

p:= Cha r a c t e r i s t i c (Codomain ( rho [ 1 ] ) ) ;

primes_over_char :=[u [ 1 ] : u in Fac t o r i z a t i on (p∗ZK) ] ;

ZLLdisc :=Discr iminant ( rho [ 3 ] ) ;

cond :=1∗ZK;

f o r P in Fac to r i z a t i on ( ZLLdisc ) do

i f &and [ Valuat ion (P [ 1 ] , u ) eq 0 : u in primes_over_char ] then

// exc ludes primes over the c h a r a c t e r i s t i c

cond∗:=P[ 1 ]^ SerreExponent ( rho ,P [ 1 ] ) ;

end i f ;

end f o r ;

r e turn cond , Fac t o r i z a t i on ( cond ) ;

end func t i on ;

A.2 Selmer groups

A.2.1 CFT_utility.m

// QOL funct ion , g i v e s the ve r s i on o f Q( sq r t (−d ) )
// such that the ba s i s o f K i s a Z−ba s i s o f ZK

QuadFld:= func t i on (d)

_<x>:=PolynomialRing ( I n t e g e r s ( ) ) ;
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i f d in [ 1 , 2 ] then

return NumberField (x^2+d ) ;

e l i f d in [ 3 , 7 , 1 1 ] then

return NumberField (x^2−x−I n t e g e r s ( ) ! ( ( −d−1)/4)) ;
e l s e

re turn "d = " cat Spr int (d) cat " cu r r en t l y not supported " ;

end i f ;

end func t i on ;

// r e tu rn s the map mm: R2 −> \{ i d e a l s o f ZL\} that cuts out the p subext

// o f RayClassFie ld (m) . so RayClassFie ld (mm) should g ive a group (Z/p)^n

MaxlPExt:= func t i on (R,m, p)

h:=hom< R−> R | [ p∗R. i : i in [ 1 . . Ngens (R) ] ] > ;

Q,mq:=quo<R | Image (h) >;

qm:= Inve r s e (mq) ;

mm:=qm ∗ m;

return mm;

end func t i on ;

// takes the a l i s t o f a c t i on s and re tu rn s the s t a t s on what groups the

// a c t i on s encode on the vec to r space (Z/p)\^{}2

Prof i leNSF := func t i on (ACT, p)

group\_stats : = [ ] ;

group\ _ l i s t : = [ ] ;

f o r u in ACT do

H:=MatrixGroup<2,GF(p ) | u>;

name:=GroupName(H) ;

names :=[ g [ 1 ] : g in group\_stats ] ;

i f not name in names then
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Append(\~{} group\_stats , [ ∗ name , 1 ∗ ] ) ;
e l s e

group\_stats [ Index (names , name ) ] [ 2 ]+ :=1 ;

end i f ;

Append(\~{} group\_l i s t , name ) ;

end f o r ;

r e turn group\_stats , group\ _ l i s t ;

end func t i on ;

A.2.2 get_rep.m

Remark A.2.1. We note that this code was adapted from code originally written

by Aurel Page.

f unc t i on i s f a i t h f u l ( rho )

G := Domain( rho ) ;

MR := Codomain ( rho ) ;

f o r g in G do

i f g ne G!1 and rho ( g ) eq MR!1 then

return f a l s e ;

end i f ;

end f o r ;

r e turn t rue ;

end func t i on ;

func t i on f f s s 2 d r e p s (G, q ) // f a i t h f u l semis imple

F<w>:=GF(q ) ;

L i r r := I r r educ ib l eModu l e s (G,F ) ;

i f I sAbe l i an (G) then

Ldim1 := [M : M in L i r r | Dimension (M) eq 1 ] ;

Ldim2 := [ Representat ion (M) : M in L i r r | Dimension (M) eq 2 ] ;

Lreps := [ Representat ion (DirectSum (Ldim1 [ i ] , Ldim1 [ j ] ) ) :

j in [ i . .#Ldim1 ] , i in [ 1 . .#Ldim1 ] ] ;

Lreps cat := Ldim2 ;
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e l s e

Lreps := [ Representat ion (M) : M in L i r r | Dimension (M) eq 2 ] ;

end i f ;

Lreps := [ rho : rho in Lreps | i s f a i t h f u l ( rho ) ] ;

r e turn Lreps ;

end func t i on ;

func t i on ga l r ep s (F ,K, q )

G,_, f := AutomorphismGroup (F,K) ;

i f #G ne AbsoluteDegree (F) div AbsoluteDegree (K) then

p r in t "not Galois , e a r l y abort " ;

r e turn [ ] ;

end i f ;

L := f f s s 2 d r e p s (G, q ) ;

FF:=Re l a t i v eF i e l d (K,F ) ;

ZFF:=MaximalOrder (FF) ;

CC:= [ ] ;

PP:=PseudoBasis (Module (ZFF ) ) ;

f o r u in PP do

tt , gg := I sP r i n c i p a l (u [ 1 ] ) ;

Append(~CC, gg ) ;

end f o r ;

r e turn [<rho , f ,ZFF,CC> : rho in L ] ;

end func t i on ;

func t i on i s f r o b ( basisZL , aut ,N, pro j )

f o r x in basisZL do

i f p ro j ( x)^N ne pro j ( aut ( x ) ) then

return f a l s e ;

end i f ;

end f o r ;

r e turn t rue ;

end func t i on ;
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f unc t i on f r ob en iu s (ZL , f , pr ) // f : G −> Aut_K(L)

G := Domain( f ) ;

a , b := TwoElement ( pr ) ;

f a c t o := Fac to r i z a t i on ( id ea l <ZL |ZL ! a , ZL ! b>);

PR := fa c t o [ 1 , 1 ] ;

i f f a c t o [ 1 , 2 ] ne 1 then

return 0 ; // rami f i ed !

end i f ;

N := Norm( pr ) ;

Q, pro j := Res idueClas sF i e ld (PR) ;

ba s i s :=Bas i s (ZL ) ;

f o r g in G do // could be improved

aut := f ( g ) ;

i f i s f r o b ( bas i s , aut ,N, pro j ) then

return g ;

end i f ;

end f o r ;

p r i n t " should not be reached ! " ;

r e turn 0 ;

end func t i on ;

func t i on f robmatr ix (ZL , ga l rep , pr )

rho := ga l r ep [ 1 ] ;

f := ga l r ep [ 2 ] ;

g := f r ob en i u s (ZL , f , pr ) ;

r e turn rho ( g ) ;

end func t i on ;

detect_hnf := func t i on (J ,M)

N:=Norm(J ) ;

a:=M[ 1 , 1 ] ; d:=M[ 1 , 2 ] ;

b:=M[ 2 , 1 ] ; c :=M[ 2 , 2 ] ;
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i f (d eq 0) and (N eq a∗c ) and (b in [ 0 . . a−1]) then

return 1 ;

e l s e

re turn 0 ;

end i f ;

end func t i on ;

HNF_basis:= func t i on ( J )

N:=Norm(J ) ;

M:=BasisMatr ix ( J ) ;

Mt:=Matrix ( I n t e g e r s ( ) , 2 , 2 , [M[ 1 , 2 ] ,M[ 1 , 1 ] ,M[ 2 , 2 ] ,M[ 2 , 1 ] ] ) ;

HN:=HermiteForm (Mt ) ;

H:=Matrix ( I n t e g e r s ( ) , 2 , 2 , [HN[ 2 , 2 ] ,HN[ 2 , 1 ] ,HN[ 1 , 2 ] ,HN[ 1 , 1 ] ] ) ;

c :=H[ 2 , 2 ] ; b:=H[ 2 , 1 ] ; a:=H[ 1 , 1 ] ;

i f c l t 0 then

c:=−c ; b:=−b ;
end i f ;

b :=(b mod a ) ;

a s s e r t 1 eq detect_hnf (J , Matrix ( I n t e g e r s ( ) , 2 , 2 , [ a , 0 , b , c ] ) ) ;

r e turn [Norm(J ) , b , c ] ;

end func t i on ;

ComputeFrob:= func t i on (ZL ,K, rho , max)

ZK:=MaximalOrder (K) ;

PP:=[ J : J in IdealsUpTo (max ,K) | IsPrime ( J ) and GCD(J , Discr iminant (ZL)∗ZK) eq 1∗ZK ] ;

i f Degree (K) ne 1 then

HNF:=[HNF_basis ( J ) : J in PP ] ;

P a r a l l e l S o r t (~HNF,~PP) ;

end i f ;

t r a c e s :=[∗ ∗ ] ;
f o r i in [ 1 . .#PP] do

J:=PP[ i ] ;

t , g:= I sP r i n c i p a l ( J ) ;
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M:= frobmatr ix (ZL , rho , J ) ;

Append(~ t race s ,<g , Trace (M) , Determinant (M)>);

end f o r ;

r e turn t r a c e s ;

end func t i on ;

A.2.3 nearly_ordinary.m

// ac t s on an i d e a l by an automorphism

AutIdeal := func t i on ( aut , i d e a l )

gens :=Generators ( i d e a l ) ;

R:=Ring ( Parent ( i d e a l ) ) ;

r e turn idea l <R | [ aut ( g ) : g in gens ] >;

end func t i on ;

// computes decomp group

DecompGroup:= func t i on ( rep ,P)

G:=Domain( rep [ 1 ] ) ;

decomp : = [ ] ;

gens :=SetToSequence ( Generators (G) ) ;

f o r g in gens do

i f AutIdeal ( rep [ 2 ] ( g ) ,P) eq P then

Append(~decomp , g ) ;

end i f ;

end f o r ;

r e turn sub<G| decomp>;

end func t i on ;

// c r e a t e s the p r o j e c t i v e l i n e over F_p.

// r e tu rn s l i n e s ( a , b ) with a , b in GF(p) cover ing a l l such p o s s i b l e l i n e s
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// in p r o j e c t i v e space , and a func t i on r that r e c o gn i s e s a l i n e ( c , d ) in

// i t s " canon i ca l " form

ProjLineFp := func t i on (p)

F:=GF(p ) ;

l i n e : = [ ] ;

f o r i in [ 0 . . p−1] do

Append(~ l i n e , Vector ( [ F ! 1 ,F ! i ] ) ) ;

end f o r ;

Append(~ l i n e , Vector ( [ F ! 0 ,F ! 1 ] ) ) ;

r := func t i on (v )

i f v [ 1 ] eq 0 then

return Vector ( [ F ! 0 ,F ! 1 ] ) , 1 /F ! v [ 2 ] ;

e l s e

re turn Vector ( [ 1 , v [ 2 ] /F ! v [ 1 ] ] ) , 1 /F ! v [ 1 ] ;

end i f ;

end func t i on ;

r e turn l i n e , r ;

end func t i on ;

// computes the ac t i on o f a matrix on the p r o j e c t i v e l i n e PL

ProjActionV := func t i on (mat ,PL, r )

p:= Cha r a c t e r i s t i c ( Coe f f i c i en tR ing (mat ) ) ;

M:=ZeroMatrix (GF(p ) , p+1);

f o r i in [ 1 . . p+1] do

ind :=Index (PL, r (PL[ i ]∗mat ) ) ;

M[ i , ind ] :=1 ;

end f o r ;

r e turn M;

end func t i on ;

// f o r rep a rep , D the decomposit ion group under cons ide ra t i on , PL
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// and r coming from ProjActionV , computes the l i n e s in F_p^2 f i x ed

// by a l l e lements o f D

FixedLines := func t i on ( rep ,D,PL, r )

spaces :=[ Kernel ( ProjActionV ( rep [ 1 ] (D. i ) ,PL, r )−1) : i in [ 0 . . Ngens (D ) ] ] ;

S:=&meet spaces ;

l i n e s : = [ ] ;

F:=Coe f f i c i en tR ing (PL [ 1 ] ) ;

p:= Cha r a c t e r i s t i c (F ) ;

vz :=Vector ( [ F! 0 : i in [ 1 . . p+1 ] ] ) ;

f o r i in [ 1 . . p+1] do

v:=vz ;

v [ i ] :=1 ;

i f v in S then

Append(~ l i n e s ,PL[ i ] ) ;

end i f ;

end f o r ;

r e turn l i n e s ;

end func t i on ;

// ZL r ing o f i n t e g e r s o f extens ion , P a prime i d e a l o f ZL

// t e l l s you i f rho |D_P f i x e s any 1 dim ' l spaces , and what the

// spaces are i f i t does

IsNearlyOrdinaryP := func t i on ( rep ,P)

D:=DecompGroup( rep ,P) ;

p:= Cha r a c t e r i s t i c (Codomain ( rep [ 1 ] ) ) ;

PL, r :=ProjLineFp (p ) ;

l i n e s :=FixedLines ( rep ,D,PL, r ) ;

i f #l i n e s ne 0 then

return true , l i n e s ;

e l s e

re turn f a l s e , [ ] ;

end i f ;
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end func t i on ;

// t e l l s you i f the mod p rep i s near ly ord inary at a l l p l a c e s over p

// does a bunch o f redundant s t u f f , we only need to check one prime per

// i d e a l o f K over p , s i n c e Galo i s a c t i on s h u f f l e s the f i x ed l i n e s around

// a l s o r e tu rn s the f i x ed l i n e s

IsNear lyOrdinary := func t i on (ZL , rep )

p:= Cha r a c t e r i s t i c (Codomain ( rep [ 1 ] ) ) ;

f a c :=[ f [ 1 ] : f in Fac t o r i z a t i on (p∗ZL ) ] ;
nearly_ord := true ;

s s :=0;

f o r P in f a c do

t , s s := IsNearlyOrdinaryP ( rep ,P) ;

i f not t then

nearly_ord := f a l s e ;

break P;

end i f ;

end f o r ;

r e turn nearly_ord , s s ;

end func t i on ;

A.2.4 NormalSubfields_K.m

Remark A.2.2. We note that this code is adapted from Magma's own code to

compute normal sub�elds. Our main contribution has been to �x compatibility

issues so that relative �elds could be used, which took no original mathematical

thought.

// turns a vec to r to a group element , p re t ty s t r a i gh t f o rwa rd

// in p a r t i c u l a r i t i s compatible with the r e s t o f the f unc t i on s here

VecToGroup:= func t i on ( vec , grp )

e l t := Id ( grp ) ;
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f o r i in [ 1 . . Ncols ( vec ) ] do

e l t+:=In t e g e r s ( ) ! vec [ i ]∗ grp . i ;
end f o r ;

r e turn e l t ;

end func t i on ;

CreateHom := func t i on (G, GG, mp)

m1 := Matrix ( I n t e g e r s ( ) , [ E l t s eq (x [ 1 ] ) : x in mp ] ) ;

m1 := Ve r t i c a l J o i n (m1, DiagonalMatrix ( [ Order (G. x ) : x in [ 1 . . Ngens (G) ] ] ) ) ;

_, t := EchelonForm (m1) ;

m1 := Matrix ( I n t e g e r s ( ) , [ E l t s eq (x [ 2 ] ) : x in mp ] ) ;

t := Matrix ( I n t e g e r s ( ) , [ E l t s eq ( t [ i ] ) [ 1 . .#mp] : i in [ 1 . . Nrows ( t ) ] ] ) ;

m1 := t ∗m1;
mp := [ GG! El t seq (m1[ i ] ) : i in [ 1 . . Ngens (G) ] ] ;

h := hom<G −> GG | mp>;

re turn h ;

end func t i on ;

InducedMap_K:= func t i on ( r1 , r2 , h , Coprime )

pp := NextPrime ( 1 0 0 ) ;

l i := [ ] ;

l g := [ ] ;

G := Domain( r1 ) ;

H := Domain( r2 ) ;

o := Ring (Codomain ( r1 ) ) ;

HEval:= func t i on (h , I )

gens :=Generators ( I ) ;

R:=Order ( I ) ;

h_gens :=[h( g ) : g in Generators ( I ) ] ;
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h_ideal := idea l <R | h_gens>;

re turn h_ideal ;

end func t i on ;

r epeat

repeat

pp := NextPrime (pp ) ;

u n t i l Gcd(pp , Coprime ) eq 1 ;

lp := Decomposition (o , pp ) ;

f o r i in lp do

i f Degree ( i [ 1 ] ) gt 1 and Norm( i [ 1 ] ) gt 1000 then

cont inue ;

end i f ;

Append(~ lg , i [ 1 ] @@ r1 ) ;

Append(~ l i , HEval (h , i [ 1 ] ) @@ r2 ) ;

end f o r ;

u n t i l sub<G| lg> eq G;

re turn CreateHom(G, H, [< l g [ i ] , l i [ i ]> : i in [ 1 . .# l g ] ] ) ;

end func t i on ;

func t i on convert_K ( e l t , Mk, M, mo)

X := Domain(M) ;

Z := Domain(Mk) ;

phi := Mk( e l t ) ;

aut := InducedMap_K(M,M, phi , mo) ;

r e turn Matrix ( [ E l t s eq ( aut (X. i ) ) : i in [ 1 . . Ngens (X ) ] ] ) ;

end func t i on ;

CohomologyModule_K:= func t i on (F , Sub ,K)
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k := BaseFie ld (F ) ;

g , _, p := AutomorphismGroup (k ,K) ;

i f Sub cmpne f a l s e then

g := Sub ;

end i f ;

A, mo := NormGroup(F ) ;

mo := AbsoluteNorm (mo) ;

AA := Invar i an tRepre s enta t i on (Domain(A) ) ;

mAA := Coercion (AA, Domain(A) ) ;

inv := Abe l i an Invar i an t s (AA) ;

mats := [ convert_K (g . i , p , mAA∗A, mo) : i in [ 1 . . Ngens ( g ) ] ] ;

C := CohomologyModule ( g , inv , mats ) ;

Zm := RSpace ( I n t e g e r s ( ) , Ngens (AA) ) ;

mp := map<Zm −> AA | x :−> AA! El t seq (x ) , y:−> Zm! El t seq (y)>;

re turn C, p , mAA∗A, mp;

end func t i on ;

// g iven GalMats ac t ing on Q and a subgroup S , f i nd the ac t i on on

// the space Q/S

GalMatsQuo:= func t i on (Q, S , GalMats )

Mats : = [ ] ;

Q1 , down:=quo<Q| S>;

up:= Inve r s e (down ) ;

p:=Exponent (Q) ;

f o r gg in GalMats do
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N:=Ngens (Q1 ) ;

vecs :=[down(VecToGroup(ChangeRing ( Vector ( ElementToSequence (

up(Q1 . i ) ) ) ,GF(p ) )∗ gg ,Q) ) : i in [ 1 . .N ] ] ;

Append(~Mats , Matrix (GF(p ) ,N,N, [ ElementToSequence (v ) : v in vecs ] ) ) ;

end f o r ;

r e turn Mats ;

end func t i on ;

NormalSubfields_K:= func t i on (A, Quot ,K)

Al l := true ;

Over:= f a l s e ;

N := NormGroup(A) ;

p r i n t " f i nd i n g Aut (L/K) . . . " ;

g , _, mg := AutomorphismGroup ( BaseFie ld (A) ,K) ; // t h i s i s Gal (L/K)

p r in t " c r e a t i n g cohomology module ( us ing c l a s s group data ) . . . " ;

q1 , q2 , q3 , q4 := CohomologyModule_K(A, f a l s e ,K) ;

// t h i s part g i v e s us the ac t i on o f Gal (L/K) on the ray c l a s s group Q

// t h i s i s s t o r ed in the GalMats l i s t

Q:=Domain(N) ;

p:=Exponent (Q) ;

G := Group ( q1 ) ;

a := [Q. i : i in [ 1 . . Ngens (Q) ] ] ;

ChangeUniverse (~a , Domain(N) ) ;

ChangeUniverse (~a , Domain( q3 ) ) ;

b := [ ChangeUniverse ( [ ActionOnVector ( q1 , x@@q4 , G. i )@q4 :

x in a ] , Domain(N) ) : i in [ 1 . . Ngens (G) ] ] ;

GalMats :=[ Matrix (GF(p ) , [ ElementToSequence ( e ) : e in u ] ) : u in b ] ;
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QInv:= Inva r i an t s (Q) ;

p r i n t " f i nd i n g submodules o f chosen s i z e . . . " ;

GM:=GModule ( g , MatrixAlgebra<GF(p) ,#QInv | GalMats >); // makes the Gal (L/K) module e x p l i c i t l y

LL:=Submodules (GM) ;

// we want a l l those submodules which l eave Quot as the quot i ent

k:=#QInv − #Quot ;

keeps : = [ ] ;

f o r u in LL do

i f Dimension (u) eq k then

Append(~keeps , u ) ;

end i f ;

end f o r ;

gens : = [ ] ;

f o r u in keeps do

Append(~gens , [ VecToGroup(GM! u . i ,Q) : i in [ 1 . . k ] ] ) ;

end f o r ;

subgroups : = [ ] ;

f o r u in gens do

Append(~ subgroups , sub<Q| u>);

end f o r ;

l := [ Abe l i anSub f i e ld (A, x : IsNormal , Over := Over ) : x in subgroups ] ;

a c t i on s :=[GalMatsQuo (Q, s , GalMats ) : s in subgroups ] ;

r e turn l , ac t i ons , g ,mg, gens ;

end func t i on ;

// t h i s f e t c h e s the ac t i on o f G(L/K) on G(M/L ) . I t r e tu rn s

// 1) G(L/K) as a group o f permutat ions
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// 2) the ac t i on o f the se permutat ions on G(M/L) as matr i ce s

// 3) and a l s o as permutat ions

GetAction := func t i on (F ,K)

k := BaseFie ld (F ) ;

g , _, p := AutomorphismGroup (k ,K) ;

A, mo := NormGroup(F ) ;

mo := AbsoluteNorm (mo) ;

AA := Invar i an tRepre s enta t i on (Domain(A) ) ;

mAA := Coercion (AA, Domain(A) ) ;

Autos : = [ ] ;

Mats : = [ ] ;

f o r i in [ 1 . .# g ] do

Append(~Autos , InducedMap_K(mAA∗A,mAA∗A, p( g . i ) , mo ) ) ;

Append(~Mats , convert_K ( g . i , p , mAA∗A, mo) ) ;

end f o r ;

r e turn <g ,Mats , Autos>;

end func t i on ;

A.2.5 NO_selmer_lines.m

// given a l i s t o f numbers [ a_1 , a_2 , . . . , a_n ] , r e tu rn s the l i s t o f a l l

// [ u_1 , u_2 , . . . , u_n ] such that 1 =< u_i =< a_i

LineCombos:= func t i on ( l i s t )

i f #l i s t eq 1 then

return [ [ i ] : i in [ 1 . . l i s t [ 1 ] ] ] ;

e l s e

combos : = [ ] ;

prev :=$$ ( l i s t [ 2 . .# l i s t ] ) ;
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f o r u in prev do

f o r i in [ 1 . . l i s t [ 1 ] ] do

Append(~combos , [ i ] cat u ) ;

end f o r ;

end f o r ;

r e turn combos ;

end i f ;

end func t i on ;

// takes the number N o f l i n e s , and the degree q o f F_q

// and re tu rn s the rank

NumToRank:= func t i on (N, q )

qr :=(q−1)∗N+1;

b:=Floor (Log (q , qr ) ) ;

B:=Ce i l i n g (Log (q , qr ) ) ;

i f ( q^b−1)/(q−1) eq N then

return b ;

e l i f ( q^B−1)/(q−1) eq N then

return B;

e l s e

p r i n t "bad number o f l i n e s " cat Spr int (N) ;

r e turn −N;

end i f ;

end func t i on ;

// Takes a vec to r r ep r e s en t a t i n g a l i n e in V, and re tu rn s the

// s u b f i e l d o f M corre spond ing to M̂ V, i . e . the e lements f i x ed by V

// cu r r en t l y only doing t h i s f o r F_p reps , i . e . V = F_p + F_p

VecToSubfield := func t i on (M, vec )

GM:=Domain(NormGroup(M) ) ; // Gal (M/L)

Z:= In t e g e r s ( ) ;
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r e turn Abe l i anSub f i e ld (M, sub<GM|Z ! ( vec [ 1 ] ) ∗GM.1 + Z ! ( vec [ 2 ] ) ∗GM.2 >);

end func t i on ;

// g iven two i d e a l s I and J , r e tu rn s the automorphisms that send

// I to J

Ident i fyAutFromIdea ls := func t i on ( I , J , rep )

auts : = [ ] ;

G:=Domain( rep [ 1 ] ) ;

f o r i in [ 1 . . Ngens (G) ] do

i f AutIdeal ( rep [ 2 ] (G. i ) , I ) eq J then

Append(~ auts ,G. i ) ;

end i f ;

end f o r ;

r e turn auts ;

end func t i on ;

PrimeTranslate := func t i on (P,Q, rep )

G:=Domain( rep [ 1 ] ) ;

gs : = [ ] ;

f o r i in [ 1 . . Ngens (G) ] do

i f AutIdeal ( rep [ 2 ] (G. i ) ,P) eq Q then

Append(~gs ,G. i ) ;

end i f ;

end f o r ;

r e turn gs ;

end func t i on ;

// g iven a l i n e L f i x ed by a prime P, and another prime Q,

// f i n d s an element g o f the g a l o i s group such that the l i n e g∗L
// i s f i x e d by Q. t h i s i s a l l wrt the ac t i on o f rep . the l i n e L i s
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// rep re s en ted by i t s canon i ca l gene ra to r from the near ly_ordinary code

// package . r e tu rn s g and the vec to r v r ep r e s en t i ng L in canon i ca l form

LineTrans la te := func t i on (L ,P,Q, rep )

G:=Domain( rep [ 1 ] ) ;

p:=Minimum(P) ;

PL, r :=ProjLineFp (p ) ;

g:=−1;
v:=−1;

f o r i in [ 1 . . Ngens (G) ] do

i f AutIdeal ( rep [ 2 ] (G. i ) ,P) eq Q then

g:=G. i ;

v:= r (L∗ rep [ 1 ] (G. i ) ) ;

break i ;

end i f ;

end f o r ;

r e turn g , v ;

end func t i on ;

// g iven one o f our g a l o i s rep ob j e c t s and the primes over i t s

// c h a r a c t e r i s t i c in L , r e tu rn s the equ iva l ence c l a s s e s o f i t s

// l i n e s under the ac t i on o f Gal (L/K) . the order o f the l i n e s

// matches the order o f the primes in the l i s t g iven so i f you

// pass rad ( the r a d i c a l ) i t should a l l l i n e up n i c e l y

FixedLineOrbits := func t i on ( rep , rad )

t ,VP:= IsNearlyOrdinaryP ( rep , rad [ 1 ] ) ;

o r b i t s : = [ ] ;

i f t then
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f o r L in VP do

new_orbit : = [ ] ;

f o r Q in rad do

g , v:=LineTrans late (L , rad [ 1 ] ,Q, rep ) ;

Append(~new_orbit , v ) ;

end f o r ;

Append(~ o rb i t s , new_orbit ) ;

end f o r ;

end i f ;

r e turn o r b i t s ;

end func t i on ;

// i f rep1 and rep2 are conjugate and have the same domain , r e tu rn s the

// element o f G by which they are conjugate . i f they aren ' t , r e tu rn s "bad"

// t h i s should never happen when used in REL_NO_UR.

ConjReps := func t i on ( rep1 , rep2 )

G:=Domain( rep1 [ 1 ] ) ;

p:= Cha r a c t e r i s t i c (Codomain ( rep1 [ 1 ] ) ) ;

act1 :=[ rep1 [ 1 ] (G. i ) : i in [ 1 . . Ngens (G) ] ] ;

act2 :=[ rep2 [ 1 ] (G. i ) : i in [ 1 . . Ngens (G) ] ] ;

V:=GL(2 , p ) ;

f o r h in V do

i f [ h^−1∗u∗h : u in act1 ] eq act2 then

return h ;

end i f ;

end f o r ;
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pr in t " something went wrong with con jugat ion " ;

r e turn "bad " ;

end func t i on ;

// r e tu rn s the ranks o f the re laxed , near ly−ord inary and

// unrami f i ed Selmer groups

REL_NO_UR:= func t i on (S : Verbose := f a l s e , Fast := true , RamQuo:= f a l s e )

PL, r :=ProjLineFp (S ` p ) ;

// we c o l l e c t the f i x ed l i n e s over each prime over p

f i x ed_ l i n e s : = [ ] ;

f o r r in S ` rad do

tt , l l := IsNearlyOrdinaryP (S ` rep , r [ 1 ] ) ;

Append(~ f i x ed_l ine s , l l ) ;

end f o r ;

unr_l ines :=0;

// t h i s b ig l i s t c o l l a t e s a l l the in fo rmat ion about which

// i n e r t i a groups l i e

// in which l i n e s , which we then pass to a func t i on that checks

// a l l the combos

Al lF i e ld s_Al lL ine s : = [ ] ;

f o r i in [ 1 . .#S `NSF] do

t r :=[ Trace (u) : u in S `ACT[ i ] ] ;

M:=S `NSF[ i ] ;

// we only keep the ex t en s i on s with the r i g h t t r a c e s
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// t h i s means the r ep r e s en t a t i on o f Gal (L/K) on Gal (M/L)

// i s conjugate to S ` rep

i f S ` t r a c e s eq t r then

M_Inertia : = [ ] ;

// c o l l e c t s a l l the f i x ed f i e l d s o f i n e r t i a f o r comparison

f o r r in S ` rad do

PP:= r [ 1 ] ;

N, m, minf := NormGroup(S `A) ;

Mur := RayClassFie ld (m/PP^Valuat ion (m,PP) , minf ) ;

MI:=Mur meet M;

Append(~M_Inertia ,MI ) ;

end f o r ;

// whi l e we have the i n e r t i a groups , we do the checks f o r

// the unrami f i ed Selmer group too

is_unr := true ;

f o r u in M_Inertia do

i f not Degree (u) eq Degree (M) then

is_unr := f a l s e ;

break u ;

end i f ;

end f o r ;

i f is_unr then

unr_l ines +:=1;

end i f ;

// we need to see how a given f i x ed l i n e behaves i n s i d e

// Gal (M/L) \ simeq V so we f i g u r e out t h i s isomorphism and

// t r a n s l a t e the l i n e ac co rd ing ly

repM:=<Representat ion (GModule (S `AUT, S `ACT[ i ] ) ) , S ` rep [2 ] >;
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h:=ConjReps (S ` rep , repM ) ;

LineForP : = [ ] ;

f o r j in [ 1 . .#S ` rad ] do

l l_con j :=[ r (u∗h) : u in f i x ed_ l i n e s [ j ] ] ;

L i n e I n I n e r t i a : = [ ] ;

// i f the s u b f i e l d o f M f i x ed by the l i n e u i s i n s i d e the

// f i x ed f i e l d o f i n e r t i a , the i n e r t i a group i s in the l i n e

f o r u in l l_con j do

Append(~ L ine In Ine r t i a , VecToSubfield (M, u) subset

M_Inertia [ j ] ) ;

end f o r ;

Append(~LineForP , L i n e I n I n e r t i a ) ;

end f o r ;

Append(~Al lF ie lds_Al lL ines , LineForP ) ;

end i f ;

end f o r ;

// f i n a l l y we go over A l lF i e ld s_Al lL ine s and c o l l e c t the Selmer s t a t s

// we check a l l p o s s i b l e combination o f f i x ed l i n e s over each prime

LineNums:=LineCombos([#u : u in Al lF i e ld s_Al lL ine s [ 1 ] ] ) ;

i f Verbose then

p r i n t "Number o f f i x e d l i n e combinat ions to check : " , #LineNums ;

end i f ;

NO_lines : = [ ] ;

f o r u in LineNums do

l i n e s :=0;
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f o r R in Al lF i e ld s_Al lL ine s do

conta ined : = [ ] ;

f o r i in [ 1 . .#u ] do

Append(~ contained ,R[ i ] [ u [ i ] ] ) ;

end f o r ;

i f &and conta ined then

l i n e s +:=1;

end i f ;

end f o r ;

Append(~NO_lines , l i n e s ) ;

end f o r ;

i f Verbose then

p r i n t "Fixed l i n e i n c l u s i o n s f o r each " cat

Spr int (GroupName(S `AUT) ) cat " f i e l d : " ;

A l lF i e ld s_Al lL ine s ;

"" ;

end i f ;

i f RamQuo then

// we compute the image o f the i n e r t i a group o f L/K at p

// in the quot i ent V / l , where l i s a f i x ed l i n e

chars : = [ ] ;

f o r j in [ 1 . .# f i x ed_ l i n e s ] do

I I := Inert iaGroup (S ` rad [ j ] [ 1 ] ) ;

new_list : = [ ] ;

R:=RSpace (GF(S ` p ) , 2 ) ;

f o r l in f i x ed_ l i n e s [ j ] do

QQ, d:=quo<R| l >;

Append(~new_list , [ d ( Inve r s e (d ) (QQ.1 )∗S ` rep [ 1 ] ( u ) ) [ 1 ] :

u in I I ] ) ;

end f o r ;

Append(~ chars , new_list ) ;
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end f o r ;

r e turn [∗NumToRank(#Al lF ie lds_Al lL ines , S ` p ) , [NumToRank(u , S ` p) :

u in NO_lines ] ,NumToRank( unr_lines , S ` p ) ∗ ] , chars ;
e l s e

re turn [∗NumToRank(#Al lF ie lds_Al lL ines , S ` p ) , [NumToRank(u , S ` p) :

u in NO_lines ] ,NumToRank( unr_lines , S ` p ) ∗ ] ;
end i f ;

end func t i on ;

A.2.6 selmer_ranks.m

SEL:= rec format <

NSF : SeqEnum ,

ACT : SeqEnum ,

AUT : GrpPerm ,

t r a n s f e r : Map,

group_l i s t : SeqEnum ,

p : RngIntElt ,

L : FldNum ,

K : FldNum ,

A : FldAb ,

mm : Map,

rad : SeqEnum ,

t r a c e s : SeqEnum ,

rep : Tup

>;

load "NormalSubfields_K .m" ;

load "CFT_utility .m" ;

load " near ly_ordinary .m" ;

load "NO_selmer_lines .m" ;

load "get_rep .m" ;
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// f o r polynomial f over Q de f i n i n g a number f i e l d L , with L/K the

// image o f a mod p Galo i s r ep r e s en ta t i on , r e tu rn s the ranks o f

// the re laxed , near ly−ord inary & unrami f i ed Selmer groups

// Rami f i cat ion a l l ows one to supply the rami fy ing primes o f rho

// ahead o f time , which can speed up MaximalOrder computations .

// Se lVerbose makes the Selmer computation p r i n t more to the

// te rmina l about what i t ' s doing . SelRamQuo makes the Selmer

// computation a l s o supply the images o f the i n e r t i a group in F_p∗
// under the quot i ent rho ∗ : G_K \ to V/ l . The order o f the l i s t s

// matches the order o f the l i n e s , a l l ow ing one to i d e n t i f y which

// near ly−ord inary Selmer groups correspond to unrami f i ed quo t i en t s .

// USeGRH al l ows one to s p e c i f y whether to use c l a s s group bounds

// pred i c t ed by the gene ra l Riemann hypothes i s , which o f t en speeds

// up the computation .

SelRanks := func t i on ( f , p ,K : Rami f i cat ion := [ ] , Se lVerbose := f a l s e ,

SelRamQuo:= f a l s e , UseGRH:= true )

_<x>:=PolynomialRing ( I n t e g e r s ( ) ) ;

ZK:=MaximalOrder (K) ;

L:=NumberField ( f ) ;

a s s e r t I s S ub f i e l d (K,L ) ;

// L i s the f i e l d such that Gal (L/K) = Im( rho )

i f #Rami f i cat ion eq 0 then

ZL:=MaximalOrder (L ) ;

e l s e

ZL:=MaximalOrder (L : Rami f i cat ion :=Rami f i cat ion cat

PrimeFactors ( Discr iminant (K) ) ) ;

end i f ;
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// the next few b locks compute the r i g h t modulus f o r our ray

// c l a s s computation

D:=Decomposition (ZL , p ) ;

// t h i s should be the s t r u c tu r e o f V as an abe l a in group

G:=AbelianGroup ( ElementaryAbelianGroup (GrpGPC, p , 2 ) ) ;

// we a l s o need the primes in L over i nd i v i dua l primes in K

// that l i e over p . when K = Q th i s should be a l i s t with one

// sub− l i s t , e t c

facK:= Fac to r i z a t i on (p∗ZK) ;

radL := [ [PP [ 1 ] : PP in f f ] : f f in

[ Fac t o r i z a t i on ( Parent (1∗ZL ) ! u [ 1 ] ) : u in facK ] ] ;

n:=#G;

v := Valuat ion (n , p ) ;

ee :=Max( [ u [ 2 ] : u in Fac t o r i z a t i on (p∗ZL ) ] ) ;
// t h i s i s the exponent we w i l l need

max_exp:=Ce i l i n g ( ee ∗v + ee /(p−1)+1);

I :=(&∗[&∗u : u in radL ] )^max_exp ;

i f UseGRH then

SetClassGroupBounds ("GRH" ) ;

end i f ;

// when max_exp i s b ig t h i s can take a long time .

time R, m :=RayClassGroup ( I , [ 1 . .# RealPlaces (L ) ] ) ;

// here i s our maximal (Z/p)^n f i e l d , which conta in s a l l the

// e lements o f our Selmer group

mm:=MaxlPExt (R,m, p ) ;

A:=Abel ianExtens ion (mm) ;
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time NSF,ACT,AUT, t r a n s f e r :=NormalSubfields_K (A, Inva r i an t s (G) ,K) ;

p r i n t #NSF, " s u b f i e l d s to check " ;

// t e l l s us what ac t i on each element o f NSF encodes

group_stats , g roup_l i s t :=Prof i leNSF (ACT, p ) ;

i f Se lVerbose then

group_stats ;

end i f ;

// we need to choose a p a r t i c u l a r i n s t ance o f the r ep r e s en t a t i on

// so that we can spot i t in ex t en s i on s

reps := ga l r ep s ( Re l a t i v eF i e l d (K,L) ,K, p ) ;

ranks : = [ ] ;

rams : = [ ] ;

f o r rho in reps do

tt , f f := Is I somorph ic (AUT,Domain( rho [ 1 ] ) ) ;

// we precompose rho here f o r c ompa t i b i l i t y reasons

// sometimes rho i t s e l f w i l l not r e c ogn i s e AUT as i t s

// domain , but a group isomorphic to i t .

rep:=< f f ∗ rho [ 1 ] , f f ∗ rho [ 2 ] , rho [ 3 ] , rho [4 ] >;

t r a c e s :=[ Trace ( rep [ 1 ] ( Domain( rep [ 1 ] ) . i ) ) : i in

[ 1 . . Ngens (AUT) ] ] ;

// packages a l l o f the i n f o in to one easy−to−use source

// we w i l l be messing around with the cond i t i on over p , so

// SelNoP i s l i t e r a l l y "Selmer with no cond i t i on on p"

SelNoP:= rec<SEL | NSF:=NSF,

ACT:=ACT,

AUT:=AUT,

t r a n s f e r := t r an s f e r ,

g roup_l i s t := group_l i st ,

p:=p ,
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L:=L ,

K:=K,

A:=A,

mm:=mm,

rad :=radL ,

t r a c e s := trace s ,

rep := rep

>;

i f SelRamQuo then

RR, ram:=REL_NO_UR(SelNoP : Verbose :=SelVerbose ,

Fast := true , RamQuo:=SelRamQuo ) ;

Append(~rams , ram ) ;

e l s e

RR:=REL_NO_UR(SelNoP : Verbose :=SelVerbose , Fast := true ,

RamQuo:=SelRamQuo ) ;

end i f ;

Append(~ ranks ,RR) ;

f rob_traces :=ComputeFrob (ZL ,K, rho , 5 0 ) ;

p r i n t "Ranks : " ;

p r i n t RR;

p r i n t "Traces o f Frobenius : " ;

p r i n t f rob_traces ;

end f o r ;

r e turn RR, rams ;

end func t i on ;

A.2.7 H1H2_testing.m

TestSubgroupsOfGL2p:= func t i on (p)

G:=GL(2 , p ) ;
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S:=Subgroups (G) ;

f o r i in [ 2 . .#S ] do

H:=S [ i ] ` subgroup ;

M:=GModule (H) ;

C:=CohomologyModule (H,M) ;

dims :=[ CohomologicalDimension (C, i ) : i in [ 1 , 2 ] ] ;

i f not dims eq [ 0 , 0 ] then

i ;

GroupName(H) ;

dims ;

"" ;

end i f ;

end f o r ;

end func t i on ;



Appendix B

CODE FOR MODULAR FORMS

B.1 First cohomology

Remark B.1.1. Much of this code was adapted from code originally written by

Haluk �engün. To point out every place where code has been changed would be

completely impractical; it su�ces to say that his in�uence on the code was large and

holistic.

B.1.1 GetFormVals.m

GetFormVals := func t i on ( space ,HECKEMATS,HECKEPRIMES, g )

// gather s the e i g env e c t o r s

der :=space ` der ;

inn :=space ` inn ;

mforms , p i :=quo<der | inn >;

g:= Inve r s e ( p i ) ;

EVs , l i s t :=GET_EV(HECKEMATS) ;

// gather s the gene ra to r s o f the hecke ope ra to r s

gens : = [ ] ;
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f o r i in HECKEPRIMES do

t , gen := I sP r i n c i p a l ( i ) ;

Append(~gens , gen ) ;

end f o r ;

EV_systems:=[∗<EVs [ i , 2 ] , EVs [ i ,3] > : i in [ 1 . .#EVs ] ∗ ] ;

form_vals : = [ ] ;

f o r i in [ 1 . .#EVs ] do

e :=EVs [ i ] ;

i f I sRat ionalSystem ( e [ 3 ] ) then

i f i gt 1 then

o f f s e t :=&+[EVs [ j , 2 ] : j in [ 1 . . i −1 ] ] ;
e l s e

o f f s e t :=0;

end i f ;

f o r j in [ 1 . . e [ 2 ] ] do

Append(~ form_vals , [ ∗ g ( l i s t [ o f f s e t+j ] ) , e [ 3 ] , gens ∗ ] ) ;
end f o r ;

end i f ;

end f o r ;

r e turn EV_systems , form_vals ;

end func t i on ;

B.1.2 Hecke.m

//TP i s the prime i d e a l f o r the Hecke operator

HECKE:= func t i on (TP, DIMdata )

JJ:=DIMdata ` l e v e l ;

c o e f f_ s i z e :=DIMdata ` coeff_dim ;

char :=DIMdata ` char ;
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weight :=DIMdata ` weight cat DIMdata ` det_twists ;

DER:=DIMdata ` der ;

INN:=DIMdata ` inn ;

d:=DIMdata ` d ;

K:=Quadrat icFie ld (−d ) ;
O<z>:=MaximalOrder (K) ;

A, Ai ,B,U, Ui , J:=StandardMats (d ) ;

t , s := I sP r i n c i p a l (TP) ;

D:=Matrix (O, 2 , 2 , [ s , 0 , 0 , 1 ] ) ;

i f char eq 0∗O then

F:=K;

e l s e

F<t>:=Res idueClas sF i e ld ( char ) ;

end i f ;

PD:=ProjMat (F , JJ ,D, DIMdata `PL, DIMdata ` r , DIMdata ` ch i ) ;

TD:=Recurs iveMatr ix (PD,ModuleMat ( char , weight ,D) ) ;

// time saved here by computing co s e t reps and permutat ions once

cc :=CosetMats (K,TP) ;

CosetPerm:= func t i on ( reps ,mat , I ) // I i s the l e v e l d e f i n i n g reps

perm : = [ ] ;

f o r R in reps do

M:=R∗mat ;

f o r i in [ 1 . .# reps ] do

conj :=M∗ reps [ i ]^(−1) ;
i f conj [ 2 , 1 ] mod I eq 0 and conj in Parent (M) then
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Append(~perm , i ) ;

end i f ;

end f o r ;

end f o r ;

r e turn perm ;

end func t i on ;

permA:=CosetPerm ( cc ,A,TP) ;

permB:=CosetPerm ( cc ,B,TP) ;

permU:=CosetPerm ( cc ,U,TP) ;

permJ:=CosetPerm ( cc , J ,TP) ;

// t h i s a l gebra i s used f o r the polynomia l s

SSS:=MatrixAlgebra (F , c o e f f_ s i z e ) ;

// X,Y, Z ,W rep r e s en t f (A) , f (B) , f (U) , f ( J ) c o e f f i c i e n t s are matr i ce s

PRR<X,Y,Z ,W>:=PolynomialRing (SSS , 4 ) ;

poly_A:=PRR! 0 ;

poly_B:=PRR! 0 ;

poly_U:=PRR! 0 ;

poly_J:=PRR! 0 ;

// we w i l l get the summation that d e f i n e s the Hecke operator ' s

// image on A, B, U and J

f o r i in [ 1 . . Norm(TP)+1] do

poly_A:= PRR! poly_A + PRR!POLY(A, permA , cc ,TP, i , DIMdata ,TD, d ) ;

poly_B:= PRR! poly_B + PRR!POLY(B, permB , cc ,TP, i , DIMdata ,TD, d ) ;

poly_U:= PRR! poly_U + PRR!POLY(U, permU , cc ,TP, i , DIMdata ,TD, d ) ;

poly_J:= PRR! poly_J + PRR!POLY(J , permJ , cc ,TP, i , DIMdata ,TD, d ) ;

end f o r ;

H11:=Monomia lCoef f i c i ent (poly_A ,X) ;
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H21:=Monomia lCoef f i c i ent (poly_A ,Y) ;

H31:=Monomia lCoef f i c i ent (poly_A ,Z ) ;

H41:=Monomia lCoef f i c i ent (poly_A ,W) ;

C1:=Ve r t i c a l J o i n ( [ H11 , H21 ,H31 , H41 ] ) ;

H12:=Monomia lCoef f i c i ent (poly_B ,X) ;

H22:=Monomia lCoef f i c i ent (poly_B ,Y) ;

H32:=Monomia lCoef f i c i ent (poly_B ,Z ) ;

H42:=Monomia lCoef f i c i ent (poly_B ,W) ;

C2:=Ve r t i c a l J o i n ( [ H12 , H22 ,H32 , H42 ] ) ;

H13:=Monomia lCoef f i c i ent (poly_U ,X) ;

H23:=Monomia lCoef f i c i ent (poly_U ,Y) ;

H33:=Monomia lCoef f i c i ent (poly_U ,Z ) ;

H43:=Monomia lCoef f i c i ent (poly_U ,W) ;

C3:=Ve r t i c a l J o i n ( [ H13 , H23 ,H33 , H43 ] ) ;

H14:=Monomia lCoef f i c i ent ( poly_J ,X) ;

H24:=Monomia lCoef f i c i ent ( poly_J ,Y) ;

H34:=Monomia lCoef f i c i ent ( poly_J , Z ) ;

H44:=Monomia lCoef f i c i ent ( poly_J ,W) ;

C4:=Ve r t i c a l J o i n ( [ H14 , H24 ,H34 , H44 ] ) ;

H0:=Hor i zonta lJo in ( [ C1 ,C2 ,C3 ,C4 ] ) ;

R, f :=quo<DER| INN>;

B:=Bas i s (R) ;
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pB : = [ ] ;

g:= Inve r s e ( f ) ;

f o r b in B do

Append(~pB, g (b ) ) ;

end f o r ;

Mat : = [ ] ;

f o r b in pB do

Append(~Mat , ElementToSequence ( f (b∗H0 ) ) ) ;
end f o r ;

r e turn Matrix (F ,Mat ) ;

end func t i on ;

B.1.3 Hecke_poly.m

POLY:= func t i on (M,permM, reps ,TP, i , DIMdata ,TD, d)

JJ:=DIMdata ` l e v e l ;

TA:=DIMdata ` ta ;

TB:=DIMdata ` tb ;

TU:=DIMdata ` tu ;

TJ:=DIMdata ` t j ;

c o e f f_ s i z e :=DIMdata ` coeff_dim ;

char :=DIMdata ` char ;

weight :=DIMdata ` weight cat DIMdata ` det_twists ;

K:=Quadrat icFie ld (−d ) ;
O<z>:=MaximalOrder (K) ;

Z:= In t e g e r s ( ) ;
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A, Ai ,B,U, Ui , J:=StandardMats (d ) ;

i f char eq 0∗O then

F:=K;

e l s e

F<t>:=Res idueClas sF i e ld ( char ) ;

end i f ;

t , s := I sP r i n c i p a l (TP) ;

D:=Matrix (K, 2 , 2 , [ s , 0 , 0 , 1 ] ) ;

SSS:=MatrixAlgebra (F , c o e f f_ s i z e ) ;

N:=SSS ! 0 ;

ID:=SSS ! 1 ;

PRR<X,Y,Z ,W>:=PolynomialRing (SSS , 4 ) ;

IDD:=Matrix (O, 2 , 2 , [ 1 , 0 , 0 , 1 ] ) ;

hM:=D∗ reps [ i ]∗M∗ reps [ permM[ i ] ]^(−1)∗D^(−1);

g:=PRR! 0 ;

i f hM eq IDD then

return ( g ) ;

end i f ;

i f hM eq −IDD then

return ( g ) ;

end i f ;

decomp:=WORD(hM, d ) ;

t_decomp : = [ ] ;
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// c r e a t e s the same decomposit ion , but with the T matr i ce s

f o r i in [ 1 . .# decomp ] do

i f decomp [ i , 1 ] eq A then

Append(~t_decomp ,MatPow(TA, decomp [ i , 2 ] ) ) ;

e l i f decomp [ i , 1 ] eq B then

A ppend(~t_decomp ,MatPow(TB, decomp [ i , 2 ] ) ) ;

e l i f decomp [ i , 1 ] eq U then

Append(~t_decomp ,MatPow(TU, decomp [ i , 2 ] ) ) ;

e l i f decomp [ i , 1 ] eq J then

Append(~t_decomp ,MatPow(TJ , decomp [ i , 2 ] ) ) ;

e l s e

Append(~t_decomp ," you stop that " ) ;

end i f ;

end f o r ;

// does the f i d d l y co cyc l e c a l c u l a t i n g

f o r i in [ 1 . .# decomp ] do

i f decomp [ i ] [ 1 ] eq A then

g+:=HeckeMatP(N,TA, decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ]∗X;

e l i f decomp [ i ] [ 1 ] eq B then

g+:=HeckeMatP(N,TB, decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ]∗Y;

e l i f decomp [ i ] [ 1 ] eq U then

g+:=HeckeMatP(N,TU, decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ]∗Z ;
e l i f decomp [ i ] [ 1 ] eq J then

g+:=HeckeMatP(N,TJ , decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ]∗W;

e l s e

g:="you stop that " ;

end i f ;

end f o r ;

Rj:= reps [permM[ i ] ] ;

PRj:=ProjMat (F , JJ , Rj , DIMdata `PL, DIMdata ` r , DIMdata ` ch i ) ;
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TRj:=Recurs iveMatr ix (PRj , ModuleMat ( char , weight , Rj ) ) ;

r e turn Monomia lCoef f i c i ent ( g ,X)∗TD∗TRj∗X+
Monomia lCoef f i c i ent ( g ,Y)∗TD∗TRj∗Y+
Monomia lCoef f i c i ent ( g , Z)∗TD∗TRj∗Z+
Monomia lCoef f i c i ent ( g ,W)∗TD∗TRj∗W;

end func t i on ;

B.1.4 LevelData_pgl.m

ToSpace:= rec format <

l e v e l : RngOrdIdl ,

projmatA : Lis t ,

projmatAi : L i s t ,

projmatB : Lis t ,

projmatU : Lis t ,

projmatUi : L i s t ,

projmatJ : L i s t ,

d : RngIntElt ,

char : RngQuadIdl ,

PL : SetIndx ,

r : UserProgram ,

ch i : GrpDrchNFElt >;

LEVELDATA:= func t i on ( l e v e l , d , char , ch i )

K:=Quadrat icFie ld (−d ) ;
O<z>:=MaximalOrder (K) ;

char :=char∗O;

i f char eq 0∗O then
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F:=K;

e l s e

char := Fac to r i z a t i on ( char ) [ 1 , 1 ] ;

F<t>:=Res idueClas sF i e ld ( char ) ;

end i f ;

PL, r := Pro j e c t i v eL in e ( quo<O| l e v e l >);

A, Ai ,B,U, Ui , J:=StandardMats (d ) ;

DG:=Dir ich letGroup ( l e v e l ) ;

ch i :=Elements (DG) [ ch i ] ;

i f l e v e l ne 1∗O then

PA:=ProjMat (F , l e v e l ,A,PL, r , ch i ) ;

PAi:=ProjMat (F , l e v e l , Ai ,PL, r , ch i ) ;

PB:=ProjMat (F , l e v e l ,B,PL, r , ch i ) ;

PU:=ProjMat (F , l e v e l ,U,PL, r , ch i ) ;

PUi:=ProjMat (F , l e v e l , Ui ,PL, r , ch i ) ;

PJ:=ProjMat (F , l e v e l , J ,PL, r , ch i ) ;

e l s e

PA:= [ ∗ ∗ ] ;
PAi := [ ∗ ∗ ] ;
PB:= [ ∗ ∗ ] ;
PU:= [ ∗ ∗ ] ;
PUi := [ ∗ ∗ ] ;
PJ := [ ∗ ∗ ] ;

end i f ;

Data:= rec< ToSpace | l e v e l := l e v e l , projmatA:=PA, projmatAi :=PAi ,

projmatB:=PB, projmatU:=PU, projmatUi :=PUi , projmatJ :=PJ ,

d:=d , char :=char , PL:=PL, r :=r , ch i := ch i >;
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r e turn Data ;

end func t i on ;

B.1.5 loading_script_pgl.m

AttachSpec (" Art inAlgebras /Art inAlgebras . spec " ) ;

load "ProjAct ion .m" ;

load "ModuleAction .m" ;

load "Recurs iveMatr ix .m" ;

load " U t i l i t y .m" ;

load "LevelData_pgl .m" ;

load "space_mat .m" ;

load "Space_pgl .m" ;

load "Hecke_poly .m" ;

load "Hecke .m" ;

load "Uti l i ty_Hecke .m" ;

load "GetFormVals .m" ;

load "Per iods .m" ;

//

// Change th ing s here

//

// f i e l d o f d e f i n i t i o n

d :=1;

K:=Quadrat icFie ld (−d ) ;
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O<z>:=MaximalOrder (K) ;

// l e v e l , weight , tw i s t s (TBA) , number o f e i genva lue s , d i r i c h l e t cha rac t e r

N:=−4∗z + 3 ;

l e v e l :=N∗O;

wt := [ 0 , 0 ] ;

tw := [ 0 , 0 ] ;

ch i :=1;

HB:=40;

char :=0;

LD:=LEVELDATA( l e v e l , d , char , ch i ) ;

space :=DIM(LD, wt [ 1 ] , wt [ 2 ] , tw [ 1 ] , tw [ 2 ] ) ;

p r i n t " Fu l l dimension : " , space ` dim ;

p r i n t "Cocycle dimension : " , Dimension ( space ` der ) ;

p r i n t "Coboundary dimension : " , Dimension ( space ` inn ) ;

p r i n t " E i s en s t e i n dimension : " , CuspNumber_SL(K, l e v e l ) ;

der :=space ` der ;

inn :=space ` inn ;

mforms , p i :=quo<der | inn >;

g:= Inve r s e ( p i ) ;

i f char eq 0 then

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ) eq 1∗O] ;

//HP:=[TP : TP in PrimesUpTo (HB,K) ] ;

e l s e

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ∗ char ) eq 1∗O] ;

end i f ;

HNF:=[HNF_basis ( J ) : J in HP ] ;
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Pa r a l l e l S o r t (~HNF,~HP) ;

time HH:= GetHeckeMatrices ( space ,HP) ;

EV_systems , form_vals :=GetFormVals ( space ,HH,HP, g ) ;

EV_systems ;

B.1.6 ModuleAction.m

ModuleMat:= func t i on ( char , weight ,M)

R:=Coe f f i c i e n tR ing ( Parent (M) ) ;

K:=NumberField (R) ;

i f char eq 0∗R then

F:=K;

down:=IdentityHomomorphism (R) ; // compa t i b i l i t y

e l s e

F<t>,down:=Res idueClas sF i e ld ( char ) ;

end i f ;

P<x , y>:=PolynomialRing (F , 2 ) ;

p:= Cha r a c t e r i s t i c (F ) ;

k:=weight [ 1 ] ;

l :=weight [ 2 ] ;

d1:=weight [ 3 ] ;

d2:=weight [ 4 ] ;

Symm:= func t i on (k , d ,T)

ST:=ZeroMatrix (F , k+1,k+1);

f o r i in [ 0 . . k ] do
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Q:=(down(T[ 1 , 1 ] ) ∗ x+down(T[ 1 , 2 ] ) ∗ y )^(k−i )∗ ( down(T[ 2 , 1 ] ) ∗ x+
down(T[ 2 , 2 ] ) ∗ y )^( i ) ;

f o r j in [ 0 . . k ] do

ST [ i +1, j +1]:=Monomia lCoef f i c i ent (Q, x^(k−j )∗y^( j ) ) ;
end f o r ;

end f o r ;

r e turn down( Determinant (T))^d∗ST;

end func t i on ;

Mc:=Matrix (R, 2 , 2 , [R! Conjugate (M[ 1 ] [ 1 ] ) ,R! Conjugate (M[ 1 ] [ 2 ] ) ,

R! Conjugate (M[ 2 ] [ 1 ] ) ,R! Conjugate (M[ 2 ] [ 2 ] ) ] ) ;

TM:=TensorProduct (Symm(k , d1 ,M) ,Symm( l , d2 ,Mc) ) ;

r e turn TM;

end func t i on ;

B.1.7 Periods.m

// Returns 1+M+M^2+...+M^(m−1) ( or the c o r r e c t v e r s i on f o r an i nv e r s e )

MatP:= func t i on (M,m)

Z:= In t e g e r s ( ) ;

W:=M−M;

i f m l t 0 then

f o r j in [ 0 . . ( −m−1)] do

W:=W+M̂ j ;

end f o r ;

W:= −W∗M̂ Z ! (m) ;

end i f ;

i f m gt 0 then

f o r j in [ 0 . . Z ! (m−1)] do

W:=W+M̂ j ;

end f o r ;
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end i f ;

r e turn W;

end func t i on ;

// Returns a matrix in Gamma0(N) which takes 0 to k/p

PathMat:= func t i on (K,N, k , p)

O<z>:=MaximalOrder (K) ;

J:=N∗O;

ord:=#UnitGroup (quo<O| J>);

a:=p^(ord−1) mod N;

t :=(a∗p−1)/N;

c o e f f s :=Bezout (p , k ) ;

u:=−t ∗ c o e f f s [ 1 ] /GCD(p , k ) ;
v:= t ∗ c o e f f s [ 2 ] /GCD(p , k ) ;

M:=Matrix (O, 2 , 2 , [ a+u∗N, k , v∗N, p ] ) ;
a s s e r t Determinant (M) eq 1 ;

a s s e r t M[ 2 , 1 ] mod N eq 0 ;

re turn M;

end func t i on ;

// Given f a co cyc l e and W a matrix , r e tu rn s f (w)

EvaluateCocycle := func t i on ( space , f ,W)

K:=space ` f i e l d ;
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O<z>:=MaximalOrder (K) ;

d:=space ` d ;

A, Ai ,B,U, Ui , J:=StandardMats (d ) ;

der :=space ` der ;

inn :=space ` inn ;

TA:=space ` ta ;

TB:=space ` tb ;

TU:=space ` tu ;

TJ:=space ` t j ;

n:=space ` coeff_dim ;

f_A := [ ] ;

f_B : = [ ] ;

f_U := [ ] ;

f_J : = [ ] ;

// f i l l s the f_A , f_B , f_U vec to r s with t h e i r r e s p e c t i v e par t s

// o f the f u l l vec to r o f f

f o r i in [ 1 . . n ] do

Append(~f_A , f [ i ] ) ;

Append(~f_B , f [ n+i ] ) ;

Append(~f_U , f [ 2∗n+i ] ) ;

Append(~f_J , f [ 3∗n+i ] ) ;

end f o r ;

f_A:=Vector (n , f_A ) ;

f_B:=Vector (n , f_B ) ;

f_U:=Vector (n , f_U ) ;

f_J:=Vector (n , f_J ) ;
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Z:= In t e g e r s ( ) ;

decomp:=WORD(W, d ) ;

// c r e a t i n g the decomposit ion e . g . [A, 3 ] , [ B , 1 ] , [U, −4 ] , [B, 1 ]
// −> TA^3 ,TB,TU^−4,TB
t_decomp : = [ ] ;

f o r i in [ 1 . .# decomp ] do

i f decomp [ i ] [ 1 ] eq A then

Append(~t_decomp ,TA^(Z ! decomp [ i ] [ 2 ] ) ) ;

e l i f decomp [ i ] [ 1 ] eq B then

Append(~t_decomp ,TB^(Z ! decomp [ i ] [ 2 ] ) ) ;

e l i f decomp [ i ] [ 1 ] eq U then

Append(~t_decomp ,TU^(Z ! decomp [ i ] [ 2 ] ) ) ;

e l i f decomp [ i ] [ 1 ] eq J then

Append(~t_decomp ,TJ^(Z ! decomp [ i ] [ 2 ] ) ) ;

e l s e

p r i n t "you stop that " , "t_decomp " ;

end i f ;

end f o r ;

image :=f_A−f_A ; // zero vec to r

N:=Parent (TA) ! 0 ; // zero matrix

// adding on each term in the co cyc l e decomposit ion

f o r i in [ 1 . .# decomp ] do

i f decomp [ i ] [ 1 ] eq A then

image+:=f_A∗MatP(TA, decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ] ;

e l i f decomp [ i ] [ 1 ] eq B then

image+:=f_B∗MatP(TB, decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ] ;

e l i f decomp [ i ] [ 1 ] eq U then

image+:=f_U∗MatP(TU, decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ] ;

e l i f decomp [ i ] [ 1 ] eq J then
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image+:=f_J∗MatP(TJ , decomp [ i ] [ 2 ] )∗&∗ t_decomp [ i +1..#t_decomp ] ;

e l s e

p r i n t "you stop that " ,"decomp " ;

end i f ;

end f o r ;

r e turn image ;

end func t i on ;

// Ca l cu l a t e s the per iod sum f (M_a) f o r a in Z_K/P

PeriodAverage := func t i on ( space , form , r )

d:=space ` d ;

K:=Quadrat icFie ld (−d ) ;
O<z>:=MaximalOrder (K) ;

l e v e l := space ` l e v e l ;

t ,N:= I sP r i n c i p a l ( l e v e l ) ;

p:=form [ 3 ] [ r ] ;

// i n t e g r a l from 0 to 0 doesn ' t contr ibute , so we ignor e i t

ModPoints :=Exclude ( Elements ( quo<O| p∗O>) ,0) ;

mats : = [ ] ;

images : = [ ] ;

image :=EvaluateCocycle ( space , form [ 1 ] , Matrix (O, 2 , 2 , [ 1 , 0 , 0 , 1 ] ) ) ;

f o r k in ModPoints do

Append(~mats , PathMat (K,N, k , p ) ) ;

Append(~ images , EvaluateCocycle ( space , form [ 1 ] , mats[#mats ] ) ) ;

image+:=images [#images ] ;

end f o r ;

R:=Parent ( form [ 1 ] [ 1 ] ) ;

i f R!(1+Norm(O! p)−form [ 2 ] [ r ] ) ne 0 then
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r e turn form [ 3 ] [ r ] , " good " , image [ space ` id_index ]/(1+Norm(O! p)−form [ 2 ] [ r ] ) ,

[ images [ i ] [ space ` id_index ] : i in [ 1 . .# images ] ] ;

e l s e

re turn form [ 3 ] [ r ] , "bad" , image [ space ` id_index ] ,

[ images [ i ] [ space ` id_index ] : i in [ 1 . .# images ] ] ;

end i f ;

end func t i on ;

B.1.8 ProjAction.m

// For i n t e g e r s x & y with GCD(x , y ) = d , g i v e s i n t e g e r s [ a , b ]

// such that ax+by = d

Bezout := func t i on (x , y )

Q:=Rat iona l s ( ) ;

i f y eq 0 then

return [ Sign (Q! x ) , 0 ] ;

end i f ;

q1:=x div y ;

r := x − q1∗y ;
i f r eq 0 then

i f Norm( q1 ) ge 0 then

return [ 1 , 1 − q1 ] ;

e l s e

re turn [ 1 , −1 − q1 ] ;

end i f ;

e l s e

q2:=$$ (y , r ) ;

r e turn [ q2 [ 2 ] , q2 [1]−q2 [ 2 ] ∗ q1 ] ;
end i f ;

end func t i on ;

ProjMat:= func t i on (K, J ,M,PL, r , ch i )
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O:=Coe f f i c i e n tR ing ( Parent (M) ) ;

// sometimes M i s de f ined over K ra the r than O, t h i s d ea l s with

// that case

i f Type (O) ne RngQuad then

O:=MaximalOrder (O) ;

end i f ;

SS:=MatrixAlgebra (O, 2 ) ;

M:=SS !M;

FacMatrix := [ ∗ ∗ ] ;

pro j_act ion := func t i on (M, i )

t , im , sca := r (PL[ i ]∗M, true , t rue ) ;

i f t then

return [∗ Index (PL, im ) , sca ∗ ] ;
e l s e

re turn [∗ −1 ,0∗ ] ;
end i f ;

end func t i on ;

perm : = [ ] ;

s c a l a r s : = [ ] ;

f o r i in [ 1 . .#PL] do

PA:=proj_act ion (M, i ) ;

Append(~perm ,PA[ 1 ] ) ;

Append(~ s c a l a r s ,PA [ 2 ] ) ;

end f o r ;

l :=#PL;

Mat : = [ ] ;

f o r i in [ 1 . . l ] do
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new_row : = [ ] ;

f o r j in [ 1 . . l ] do

i f j eq perm [ i ] then

Append(~new_row , ch i ( s c a l a r s [ i ] ) ) ;

e l s e

Append(~new_row , 0 ) ;

end i f ;

end f o r ;

Append(~Mat , new_row ) ;

end f o r ;

Append(~FacMatrix , ChangeRing (Matrix (Mat ) ,K) ) ;

I n s e r t (~FacMatrix ,1 ,#PL) ;

r e turn FacMatrix ;

end func t i on ;

// Computes co s e t r e p r e s e n t a t i v e matr i ce s f o r Gamma0( J ) in PSL(Z_K)

CosetMats := func t i on (K, J )

O<z>:=MaximalOrder (K) ;

PL, r := Pro j e c t i v eL in e ( quo<O| J>);

t , j := I sP r i n c i p a l ( J ) ;

coset_reps : = [ ] ;

f o r i in [ 1 . .#PL] do

bottomRow :=[PL[ i ] [ 1 ] , PL [ i ] [ 2 ] ] ;

// moving to a rep with gcd = 1

whi l e Abs (Norm(GCD(bottomRow [ 1 ] , bottomRow [ 2 ] ) ) ) ne 1 do

bottomRow[1]+:= j ;
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end whi le ;

topRow:=Bezout (bottomRow [ 1 ] , bottomRow [ 2 ] ) ;

newMatrix :=Matrix (O, 2 , 2 , [ topRow [2] ,− topRow [ 1 ] , bottomRow [ 1 ] ,

bottomRow [ 2 ] ] ) ;

u:=Determinant ( newMatrix ) ;

i f u ne 1 then /∗ t h i s makes the determinant 1 always ∗/
newMatrix :=Matrix (O, 2 , 2 , [ newMatrix [ 1 ] [ 1 ] / u ,

newMatrix [ 1 ] [ 2 ] / u , newMatrix [ 2 ] [ 1 ] , newMatrix [ 2 ] [ 2 ] ] ) ;

end i f ;

a s s e r t Determinant ( newMatrix ) eq 1 ;

Append(~ coset_reps , newMatrix ) ;

end f o r ;

r e turn coset_reps ;

end func t i on ;

// Computes the matr i ce s t_i (M) and co s e t r e p r e s e n t a t i v e s f o r Gamma_0(P) ,

// where P i s a prime i d e a l g i v i ng the Hecke operator

CoresMat:= func t i on (K,P,M)

O<z>:=MaximalOrder (K) ;

SS:=MatrixAlgebra (O, 2 ) ;

PL, r := Pro j e c t i v eL in e ( quo<O|P>);

l e v e l :=#PL;

coset_reps := [ ∗ ∗ ] ;
permuted_reps := [ ∗ ∗ ] ;

pro j_act ion := func t i on (M, i )

t , im := r (PL[ i ] ∗ ( SS !M) , true , f a l s e ) ;

r e turn Index (PL, im ) ;

end func t i on ;

coset_reps :=CosetMats (K,P) ;
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f o r i in [ 1 . .#PL] do

t_iM:= coset_reps [ pro j_act ion (M, i ) ] ;

Append(~permuted_reps , t_iM ) ;

end f o r ;

r e turn [∗ coset_reps , permuted_reps ∗ ] ;
end func t i on ;

CoresMatAlt := func t i on (K,P,M, space )

O<z>:=MaximalOrder (K) ;

SS:=MatrixAlgebra (O, 2 ) ;

PL:=space ` PLleve l ;

r := space ` r p l ;

l e v e l :=#PL;

coset_reps := [ ∗ ∗ ] ;
permuted_reps := [ ∗ ∗ ] ;

pro j_act ion := func t i on (M, i )

t , im := r (PL[ i ] ∗ ( SS !M) , true , f a l s e ) ;

r e turn Index (PL, im ) ;

end func t i on ;

coset_reps :=CosetMats (K,P) ;

f o r i in [ 1 . .#PL] do

t_iM:= coset_reps [ pro j_act ion (M, i ) ] ;

Append(~permuted_reps , t_iM ) ;

end f o r ;

r e turn [∗ coset_reps , permuted_reps ∗ ] ;
end func t i on ;
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// Returns the index o f ( 0 , 1 ) in Proj Line

PLIndex:= func t i on (K, l e v e l )

O<z>:=MaximalOrder (K) ;

PL, r := Pro j e c t i v eL in e ( quo<O| l e v e l ∗O>);

pos :=−1;
f o r i in [ 1 . .#PL] do

i f PL[ i ] [ 1 ] eq 0 and PL[ i ] [ 2 ] eq 1 then

pos := i ;

break i ;

end i f ;

end f o r ;

r e turn pos ;

end func t i on ;

B.1.9 RecusriveMatrix.m

Recurs iveMatr ix := func t i on ( Matr ixList ,A)

// the f i r s t entry o f the Matr ixLis t i s supposed to be the s i z e

// o f the f u l l p r o j e c t i v e l i n e

M:=TensorProduct ( Matr ixLis t [ 2 ] ,A) ;

f o r j in [ 3 . .# Matr ixLis t ] do

M:=TensorProduct ( Matr ixLis t [ j ] ,M) ;

end f o r ;

r e turn Matrix (M) ;

end func t i on ;

B.1.10 space_mat.m

space_mat_pgl := func t i on (d ,TA,TAi ,TB,TU,TUi ,TJ)

ID:=TA^0;
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N:=ID−ID ;

TAB2:=TA∗TB∗TA∗TB;
TAB:=TA∗TB;

i f d eq 1 then

TU2:=TU^2;

TJ2:=TJ^2;

TJi :=TJ^(−1);

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ,N ] ) ;

E4:=Ve r t i c a l J o i n ( [N, TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗
TU ∗ TB ∗ TUi + TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB

∗ TUi + TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi + TUi ∗ TB ∗ TU

∗ TB ∗ TUi + TU ∗ TB ∗ TUi + TUi , TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TB ∗ TU ∗ TB ∗ TUi − TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗
TU ∗ TB ∗ TUi + TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi − TUi ∗ TB ∗
TU ∗ TB ∗ TUi + TB ∗ TUi − TUi , N ] ) ;

E5:=Ve r t i c a l J o i n ( [N, TU2 ∗ TB ∗ TUi ∗ TB ∗ TU2 ∗ TB ∗ TUi + TUi ∗
TB ∗ TU2 ∗ TB ∗ TUi + TU2 ∗ TB ∗ TUi + TUi , TU ∗ TB ∗ TUi ∗
TB ∗ TU2 ∗ TB ∗ TUi + TB ∗ TUi ∗ TB ∗ TU2 ∗ TB ∗ TUi − TUi ∗
TB ∗ TU2 ∗ TB ∗ TUi + TU ∗ TB ∗ TUi + TB ∗ TUi − TUi , N ] ) ;

E6:=Ve r t i c a l J o i n ( [ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TA ∗ TU ∗ TB ∗ TA ∗
TUi ∗ TB + TUi ∗ TB ∗ TA ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB + TU ∗
TB ∗ TA ∗ TUi ∗ TB + TUi ∗ TB, TA ∗ TUi ∗ TB ∗ TA ∗ TU ∗ TB ∗
TA ∗ TUi ∗ TB + TA ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB + TA ∗ TUi ∗
TB + ID , TB ∗ TA ∗ TUi ∗ TB ∗ TA ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB −
TUi ∗ TB ∗ TA ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB + TB ∗ TA ∗ TUi ∗
TB − TUi ∗ TB, N ] ) ;
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J0:=Ve r t i c a l J o i n ( [N, N, N, TJ∗TJ2 + TJ2 + TJ + ID ] ) ;

J1:=Ve r t i c a l J o i n ( [ −TAi ∗ TJi ∗ TU, N, ID , TAi ∗ TJi ∗ TU − TJi

∗ TU ] ) ;

J2:=Ve r t i c a l J o i n ( [ ID , N, TJi ∗ TA, TU ∗ TJi ∗ TA − TJi ∗ TA ] ) ;

J3:=Ve r t i c a l J o i n ( [ N, TJ ∗ TB ∗ TJ ∗ TB ∗ TJ ∗ TB ∗ TJ + TJ ∗
TB ∗ TJ ∗ TB ∗ TJ + TJ ∗ TB ∗ TJ + TJ , N, (TB ∗ TJ)^3 +

(TB ∗ TJ)^2 + TB ∗ TJ + ID ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , E5 , E6 , J0 , J1 , J2 , J3 ] ) ;

e l i f d eq 2 then

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ,N ] ) ;

E4:=Ve r t i c a l J o i n ( [ N, TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TU + TU ∗
TB ∗ TUi ∗ TB ∗ TU + TUi∗ TB ∗ TU + TU, −TUi ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TB ∗ TU + TB ∗ TUi ∗ TB ∗ TU − TUi∗ TB ∗ TU + ID , N ] ) ;

J0:=Ve r t i c a l J o i n ( [N,N,N, ID+TJ ] ) ;

J1:=Ve r t i c a l J o i n ( [ TJ ∗ TA + ID , N, N, TA ∗ TJ ∗ TA + TA ] ) ;

J2:=Ve r t i c a l J o i n ( [ N, TJ ∗ TB + ID , N, TB ∗ TJ ∗ TB + TB ] ) ;

J3:=Ve r t i c a l J o i n ( [ N, N, TJ ∗ TU + ID , TU ∗ TJ ∗ TU + TU ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , J0 , J1 , J2 , J3 ] ) ;

e l i f d eq 3 then

TJi :=TJ^(−1);

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ,N ] ) ;
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E4:=Ve r t i c a l J o i n ( [ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗
TA ∗ TB + TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB + TUi ∗ TA ∗
TB + TB, TUi ∗ TA ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗
TA ∗ TB + TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB + TUi ∗ TA ∗ TUi

∗ TA ∗ TB + ID , TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi

∗ TA ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗
TA ∗TUi ∗ TA ∗ TB + TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB − TUi ∗
TA ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB, N ] ) ;

E5:=Ve r t i c a l J o i n ( [TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi

∗ TA ∗ TB + TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB, TUi ∗ TA ∗
TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB +

(TU ∗ TB ∗ TUi ∗ TA ∗ TB)^2 + TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TB + TU ∗ TB ∗ TUi ∗ TA ∗ TB + TUi ∗ TA ∗ TB +

ID , TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗
TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA

∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗
TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗
TB + TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB, N ] ) ;

E6:=Ve r t i c a l J o i n ( [ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TAi ∗ TU ∗ TB ∗
TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗ TAi ∗ TU ∗ TB ∗ TAi ∗ TU

∗ TB ∗ TUi ∗ TA ∗ TB − TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TUi ∗
TA ∗ TB − TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB, TUi ∗ TA ∗ TB

∗ TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TAi ∗
TU ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TAi ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TB + TUi ∗ TA ∗ TB + ID , TB ∗ TUi ∗ TA ∗ TB ∗
TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗
TB ∗ TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗
TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗ TUi ∗ TA ∗ TB −
TUi ∗ TA ∗ TB, N ] ) ;

J0:=Ve r t i c a l J o i n ( [N, N, N, TJ^5 + TJ^4 + TJ^3 + TJ^2 + TJ + ID ] ) ;

J1:=Ve r t i c a l J o i n ( [ TJi ∗ TUi , N, −TUi , TA ∗ TJi ∗ TUi − TJi
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∗ TUi ] ) ;

J2:=Ve r t i c a l J o i n ( [ ID , N, TJi ∗ TUi ∗ TA − TUi ∗ TA, TU ∗ TJi

∗ TUi ∗ TA − TJi ∗ TUi ∗ TA ] ) ;

J3:=Ve r t i c a l J o i n ( [ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TAi ∗ TB − TAi ∗
TB, TJi ∗ TB ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TAi ∗ TB +

TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TAi ∗ TB + TU ∗ TB ∗ TUi

∗ TB ∗ TAi ∗ TB + TUi ∗ TB ∗ TAi ∗ TB + TAi ∗ TB + ID ,

TB ∗ TUi ∗ TB ∗ TAi ∗ TB − TUi ∗ TB ∗ TAi ∗ TB, TB ∗ TJi

∗ TB ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TAi ∗ TB − TJi ∗
TB ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TAi ∗ TB ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , E5 , E6 , J0 , J1 , J2 , J3 ] ) ;

e l i f d eq 7 then

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) , (TAB2+TAB+ID ) ,N,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ ( TAi∗( ID−TUi ) ) ,N, ( TAi−ID)∗TUi ,N ] ) ;

E4:=Ve r t i c a l J o i n ( [ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗
TU + TUi∗TB∗TU, TA ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗
TU + TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TA ∗ TUi ∗ TB ∗ TU +

TU, −TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TB ∗ TA ∗
TUi ∗ TB ∗ TU − TUi∗TB∗TU + ID ,N ] ) ;

J0:=Ve r t i c a l J o i n ( [N,N,N, ID+TJ ] ) ;

J1:=Ve r t i c a l J o i n ( [ TJ ∗ TA + ID , N, N, TA ∗ TJ ∗ TA + TA ] ) ;

J2:=Ve r t i c a l J o i n ( [ N, TJ ∗ TB + ID , N, TB ∗ TJ ∗ TB + TB ] ) ;

J3:=Ve r t i c a l J o i n ( [ N, N, TJ ∗ TU + ID , TU ∗ TJ ∗ TU + TU ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , J0 , J1 , J2 , J3 ] ) ;

e l i f d eq 11 then
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E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ,N ] ) ;

E4:=Ve r t i c a l J o i n ( [ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU ∗
TB ∗ TA ∗ TUi ∗ TB ∗ TU +TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗
TB ∗ TU + TUi∗TB∗TU, TA ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi

∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TU ∗ TB ∗ TA ∗ TUi

∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TA ∗ TUi ∗ TB ∗
TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗TU + TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗
TU + TA ∗ TUi ∗ TB ∗ TU + TU, −TUi ∗ TB ∗ TU ∗ TB ∗ TA

∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU +

(TB ∗ TA ∗ TUi ∗ TB ∗ TU)^2 − TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗
TUi ∗ TB ∗ TU + TB ∗ TA ∗ TUi ∗ TB ∗ TU − TUi∗TB∗TU + ID ,

N ] ) ;

J0:=Ve r t i c a l J o i n ( [N,N,N, ID+TJ ] ) ;

J1:=Ve r t i c a l J o i n ( [ TJ ∗ TA + ID , N, N, TA ∗ TJ ∗ TA + TA ] ) ;

J2:=Ve r t i c a l J o i n ( [ N, TJ ∗ TB + ID , N, TB ∗ TJ ∗ TB + TB ] ) ;

J3:=Ve r t i c a l J o i n ( [ N, N, TJ ∗ TU + ID , TU ∗ TJ ∗ TU + TU ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , J0 , J1 , J2 , J3 ] ) ;

e l s e

re turn "you stop that " , "space_mat_pgl " ;

end i f ;

r e turn E;

end func t i on ;

space_mat_psl := func t i on (d ,TA,TAi ,TB,TU,TUi)

ID:=TA^0;
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N:=ID−ID ;

TAB2:=TA∗TB∗TA∗TB;
TAB:=TA∗TB;

i f d eq 1 then

TU2:=TU^2;

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ] ) ;
E4:=Ve r t i c a l J o i n ( [N, TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi

∗ TB ∗ TU ∗ TB ∗ TUi + TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB

∗ TU ∗ TB ∗ TUi + TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi

+ TUi ∗ TB ∗ TU ∗ TB ∗ TUi + TU ∗ TB ∗ TUi + TUi ,

TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi

− TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi + TB

∗ TUi ∗ TB ∗ TU ∗ TB ∗ TUi − TUi ∗ TB ∗ TU ∗ TB ∗
TUi + TB ∗ TUi − TUi ] ) ;

E5:=Ve r t i c a l J o i n ( [N, TU2 ∗ TB ∗ TUi ∗ TB ∗ TU2 ∗ TB ∗ TUi +

TUi ∗ TB ∗ TU2 ∗ TB ∗ TUi + TU2 ∗ TB ∗ TUi + TUi ,

TU ∗ TB ∗ TUi ∗ TB ∗ TU2 ∗ TB ∗ TUi + TB ∗ TUi ∗ TB ∗
TU2 ∗ TB ∗ TUi − TUi ∗ TB ∗ TU2 ∗ TB ∗ TUi + TU ∗ TB ∗
TUi + TB ∗ TUi − TUi ] ) ;

E6:=Ve r t i c a l J o i n ( [ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TA ∗ TU ∗ TB

∗ TA ∗ TUi ∗ TB + TUi ∗ TB ∗ TA ∗ TU ∗ TB ∗ TA ∗ TUi

∗ TB + TU ∗ TB ∗ TA ∗ TUi ∗ TB + TUi ∗ TB, TA ∗ TUi

∗ TB ∗ TA ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB + TA ∗ TU ∗ TB

∗ TA ∗ TUi ∗ TB + TA ∗ TUi ∗ TB + ID , TB ∗ TA ∗ TUi ∗
TB ∗ TA ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB − TUi ∗ TB ∗ TA ∗ TU

∗ TB ∗ TA ∗ TUi ∗ TB + TB ∗ TA ∗ TUi ∗ TB − TUi ∗ TB ] ) ;
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E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , E5 , E6 ] ) ;

e l i f d eq 2 then

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ] ) ;
E4:=Ve r t i c a l J o i n ( [ N, TUi ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TU

+ TU ∗ TB ∗ TUi ∗ TB ∗ TU + TUi∗ TB ∗ TU + TU, −TUi ∗
TB ∗ TU ∗ TB ∗ TUi ∗ TB ∗ TU + TB ∗ TUi ∗ TB ∗ TU −
TUi∗ TB ∗ TU + ID ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 ] ) ;

e l i f d eq 3 then

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ] ) ;
E4:=Ve r t i c a l J o i n ( [ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi

∗ TA ∗ TB + TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB + TUi

∗ TA ∗ TB + TB, TUi ∗ TA ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TUi ∗ TA ∗ TB + TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗
TA ∗ TB + TUi ∗ TA ∗ TUi ∗ TA ∗ TB + ID , TB ∗ TUi ∗ TA

∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB

− TUi ∗ TA ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi

∗ TA ∗ TB − TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TUi ∗
TA ∗ TB + TB ∗ TUi ∗ TA ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗
TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB ] ) ;

E5:=Ve r t i c a l J o i n ( [TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TB + TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB,

TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TB + (TU ∗ TB ∗ TUi ∗ TA ∗ TB)^2 + TUi ∗
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TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TU ∗ TB ∗ TUi ∗ TA

∗ TB + TUi ∗ TA ∗ TB + ID , TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB

∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗
TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗
TB + TB ∗ TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB

− TUi ∗ TA ∗ TB ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗ TUi

∗ TA ∗ TB − TUi ∗ TA ∗ TB ] ) ;

E6:=Ve r t i c a l J o i n ( [ TU ∗ TB ∗ TUi ∗ TA ∗ TB ∗ TAi ∗ TU ∗ TB ∗
TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗ TAi ∗ TU ∗ TB ∗
TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB − TAi ∗ TU ∗ TB ∗ TAi ∗
TU ∗ TB ∗ TUi ∗ TA ∗ TB − TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗
TB + TB, TUi ∗ TA ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗ TB

∗ TUi ∗ TA ∗ TB + TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TUi ∗
TA ∗ TB + TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TUi ∗ TA ∗ TB

+ ID , TB ∗ TUi ∗ TA ∗ TB ∗ TAi ∗ TU ∗ TB ∗ TAi ∗ TU ∗
TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB ∗ TAi ∗ TU ∗ TB ∗
TAi ∗ TU ∗ TB ∗ TUi ∗ TA ∗ TB + TB ∗ TAi ∗ TU ∗ TB ∗
TUi ∗ TA ∗ TB + TB ∗ TUi ∗ TA ∗ TB − TUi ∗ TA ∗ TB ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 , E5 , E6 ] ) ;

e l i f d eq 7 then

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) , (TAB2+TAB+ID ) ,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ ( TAi∗( ID−TUi ) ) ,N, ( TAi−ID)∗TUi ] ) ;
E4:=Ve r t i c a l J o i n ( [ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗
TU + TUi∗TB∗TU, TA ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗
TB ∗ TU + TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TA ∗ TUi ∗
TB ∗ TU + TU, −TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗
TU + TB ∗ TA ∗ TUi ∗ TB ∗ TU − TUi∗TB∗TU + ID ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 ] ) ;
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e l i f d eq 11 then

E1:=Ve r t i c a l J o i n ( [N,TB+ID ,N,N ] ) ;

E2:=Ve r t i c a l J o i n ( [TB∗(TAB2+TAB+ID ) ,TAB2+TAB+ID ,N ] ) ;

E3:=Ve r t i c a l J o i n ( [ TAi∗( ID−TUi ) ,N, ( TAi−ID)∗TUi ] ) ;
E4:=Ve r t i c a l J o i n ( [ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗
TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TUi ∗ TB ∗ TU ∗ TB ∗
TA ∗ TUi ∗ TB ∗ TU + TUi∗TB∗TU, TA ∗ TUi ∗ TB ∗ TU

∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU

+ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB

∗ TU + TA ∗ TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU

+ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU + TA ∗ TUi ∗ TB ∗ TU

+ TU, −TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU ∗ TB

∗ TA ∗ TUi ∗ TB ∗ TU + (TB ∗ TA ∗ TUi ∗ TB ∗ TU)^2

− TUi ∗ TB ∗ TU ∗ TB ∗ TA ∗ TUi ∗ TB ∗ TU +

TB ∗ TA ∗ TUi ∗ TB ∗ TU − TUi∗TB∗TU + ID ] ) ;

E:=Hor i zonta lJo in ( [ E1 , E2 , E3 , E4 ] ) ;

e l s e

re turn "you stop that " ," space_mat_psl " ;

end i f ;

r e turn E;

end func t i on ;

B.1.11 Space_pgl.m

ToHecke:= rec format <

der : ModTupFld ,

inn : ModTupFld ,

dim : RngIntElt ,
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coeff_dim : RngIntElt ,

ta : Mtrx ,

tb : Mtrx ,

tu : Mtrx ,

t j : Mtrx ,

weight : SeqEnum ,

l e v e l : RngOrdIdl ,

f i e l d : FldQuad ,

id_index : RngIntElt ,

d : RngIntElt ,

char : RngQuadIdl ,

det_twists : SeqEnum ,

PL : SetIndx ,

r : UserProgram ,

ch i : GrpDrchNFElt >;

// g iven l e v e l i d e a l J and weight (k , l ) , we compute the f i r s t

// cohomology f o r PSL(2 ,Z_K) with c o e f f i c i e n t s in coinduced−module

// t enso r V_(k , l )

DIM:= func t i on ( level_data , k , l , a , b )

l e v e l := level_data ` l e v e l ;

PA:= level_data ` projmatA ;

PAi:= level_data ` projmatAi ;

PB:= level_data ` projmatB ;

PU:= level_data ` projmatU ;

PUi:= level_data ` projmatUi ;

PJ:= level_data ` projmatJ ;

weight :=[k , l , a , b ] ;

d:= level_data ` d ;
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char := level_data ` char ;

PL:= level_data `PL;

r := level_data ` r ;

K<z>:=Quadrat icFie ld (−d ) ;
O:= In t e g e r s (K) ;

A, Ai ,B,U, Ui , J:=StandardMats (d ) ;

i f char eq 0∗O then

F:=K;

e l s e

F<t>:=Res idueClas sF i e ld ( char ) ;

end i f ;

i f l e v e l ne 1∗O then

TA:=Recurs iveMatr ix (PA,ModuleMat ( char , weight ,A) ) ;

TAi:=Recurs iveMatr ix (PAi , ModuleMat ( char , weight , Ai ) ) ;

TB:=Recurs iveMatr ix (PB,ModuleMat ( char , weight ,B) ) ;

TU:=Recurs iveMatr ix (PU,ModuleMat ( char , weight ,U) ) ;

TUi:=Recurs iveMatr ix (PUi , ModuleMat ( char , weight , Ui ) ) ;

TJ:=Recurs iveMatr ix (PJ ,ModuleMat ( char , weight , J ) ) ;

e l s e

TA:=ModuleMat ( char , weight ,A) ;

TAi:=ModuleMat ( char , weight , Ai ) ;

TB:=ModuleMat ( char , weight ,B) ;

TU:=ModuleMat ( char , weight ,U) ;

TUi:=ModuleMat ( char , weight , Ui ) ;

TJ:=ModuleMat ( char , weight , J ) ;

end i f ;
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E:=space_mat_pgl (d ,TA,TAi ,TB,TU,TUi ,TJ ) ;

DER:=Kernel (E) ;

ID:=TA^0;

F:=Hor i zonta lJo in ( [ ID−TA, ID−TB, ID−TU, ID−TJ ] ) ;
INN:=Image (F) meet DER;

dimension :=Dimension (DER)−Dimension (INN ) ;

t ,N:= I sP r i n c i p a l ( l e v e l ) ;

Data:= rec< ToHecke |

der :=DER,

inn :=INN,

dim:=dimension ,

coeff_dim:=#Rows(TA) ,

ta :=TA,

tb :=TB,

tu :=TU,

t j :=TJ ,

l e v e l := l e v e l ,

weight :=[k , l , a , b ] ,

f i e l d :=K,

id_index :=PLIndex (K,N) ,

d:=d ,

char :=char ,

det_twists :=[ a , b ] ,

PL:=PL,

r :=r ,

ch i := level_data ` ch i
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>;

return Data ;

end func t i on ;

B.1.12 Utility.m

StandardMats := func t i on (d)

K:=Quadrat icFie ld (−d ) ;
O<z>:=MaximalOrder (K) ;

A:=Matrix (O, 2 , 2 , [ 1 , 1 , 0 , 1 ] ) ;

Ai :=Matrix (O, 2 , 2 , [ 1 , −1 , 0 , 1 ] ) ;
B:=Matrix (O, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ; /∗ order 2 ∗/
U:=Matrix (O, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;

Ui :=Matrix (O,2 ,2 , [ 1 , − z , 0 , 1 ] ) ;

i f d in {2 ,7 ,11} then

J:=Matrix (O, 2 , 2 , [ −1 , 0 , 0 , 1 ] ) ;
e l i f d in {1 ,3} then

J:=Matrix (O, 2 , 2 , [ z , 0 , 0 , 1 ] ) ;

e l s e

J:=" stop that " ;

end i f ;

r e turn A, Ai ,B,U, Ui , J ;

end func t i on ;

DEWORD:= func t i on ( l i s t )

M:= l i s t [ 1 , 1 ] ^ 0 ;

Z:= In t e g e r s ( ) ;
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f o r i in l i s t do

M∗:= i [ 1 ] ^Z ! i [ 2 ] ;

end f o r ;

r e turn M;

end func t i on ;

// Write W as a word in [A, i ] , [B, 1 ] , [U, j ] , [ J , k ]

WORD:= func t i on (W, d)

K:=Quadrat icFie ld (−d ) ;
O<z>:=MaximalOrder (K) ;

A, Ai ,B,U, Ui , J:=StandardMats (d ) ;

i f d eq 1 then

w:=W;

S : = [ ] ;

i f Determinant (W) eq z then

Append(~S , [ ∗ J , 1 ∗ ] ) ;
W:=J^(−1)∗W;

e l i f Determinant (W) eq −z then

Append(~S , [ ∗ J , −1∗ ] ) ;
W:=J∗W;

e l i f Determinant (W) eq −1 then

S cat := [ [ ∗ J , 1 ∗ ] , [ ∗ J , 1 ∗ ] ] ;
W:=J^2∗W;

end i f ;

i f Abs (Norm(W[ 2 , 1 ] ) ) ge Abs(Norm(W[ 1 , 1 ] ) ) then

W:=B∗W;

Append(~S , [ ∗B, 1 ∗ ] ) ;
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end i f ;

whi l e Norm(W[ 2 , 1 ] ) ne 0 do

q:=O!W[ 1 , 1 ] div O!W[ 2 , 1 ] ;

seq :=Elt seq (O! q ) ;

Append(~S , [ ∗A, seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U, seq [ 2 ] ∗ ] ) ;
Append(~S , [ ∗B, 1 ∗ ] ) ;
Q:=Matrix (O,2 ,2 , [ 1 , −q , 0 , 1 ] ) ;

W:=B∗Q∗W;

end whi l e ;

i f W[ 1 , 1 ] eq z then

S cat := [ [ ∗B, 1 ∗ ] , [ ∗U, −1∗ ] , [∗B, 1 ∗ ] , [ ∗U, 1 ∗ ] , [ ∗B, 1 ∗ ] , [ ∗U, −1∗ ] ] ;
W:=U^(−1)∗B∗U∗B∗U^(−1)∗B∗W;

e l i f W[ 1 , 1 ] eq −z then

S cat := [ [ ∗U, −1∗ ] , [∗B, 1 ∗ ] , [ ∗U, 1 ∗ ] , [ ∗B, 1 ∗ ] , [ ∗U, −1∗ ] , [∗B, 1 ∗ ] ] ;
W:=B∗U^(−1)∗B∗U∗B∗U^(−1)∗W;

end i f ;

i f W[ 1 , 1 ] eq 1 then

seq :=Elt seq (O!W[ 1 , 2 ] ) ;

Append(~S , [ ∗A, seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U, seq [ 2 ] ∗ ] ) ;

e l s e

seq :=Elt seq (O!W[ 1 , 2 ] ) ;

Append(~S , [ ∗A,− seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U,− seq [ 2 ] ∗ ] ) ;

end i f ;

a s s e r t (DEWORD(S) eq w or DEWORD(S) eq −w or DEWORD(S) eq z∗w
or DEWORD(S) eq −z∗w) ;
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e l i f d eq 3 then

w:=W;

S : = [ ] ;

whi l e Determinant (W) ne 1 do

Append(~S , [ ∗ J , 1 ∗ ] ) ;
W:=J^(−1)∗W;

end whi le ;

i f Abs (Norm(W[ 2 , 1 ] ) ) ge Abs(Norm(W[ 1 , 1 ] ) ) then

W:=B∗W;

Append(~S , [ ∗B, 1 ∗ ] ) ;
end i f ;

whi l e Norm(W[ 2 , 1 ] ) ne 0 do

q:=O!W[ 1 , 1 ] div O!W[ 2 , 1 ] ;

seq :=Elt seq (O! q ) ;

Append(~S , [ ∗A, seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U, seq [ 2 ] ∗ ] ) ;
Append(~S , [ ∗B, 1 ∗ ] ) ;
Q:=Matrix (O,2 ,2 , [ 1 , −q , 0 , 1 ] ) ;

W:=B∗Q∗W;

end whi l e ;

R:=Matrix (O, 2 , 2 , [ z , 0 , 0 , z ^ 5 ] ) ;

whi l e W[ 1 , 1 ] ne 1 do

S cat := [ [∗B, 1 ∗ ] , [ ∗A, 1 ∗ ] , [ ∗B, 1 ∗ ] , [ ∗U, 1 ∗ ] , [ ∗B, 1 ∗ ] ,
[∗U, −1∗ ] , [∗B, 1 ∗ ] , [ ∗A, −1∗ ] ] ;

W:=R^(−1)∗W;

end whi l e ;
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seq :=Elt seq (O!W[ 1 , 2 ] ) ;

Append(~S , [ ∗A, seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U, seq [ 2 ] ∗ ] ) ;

M:=DEWORD(S ) ;

unitmats :=[ z^k∗w : k in [ 1 . . 6 ] ] ;

a s s e r t M in unitmats ;

e l i f d in {2 ,7 ,11} then

w:=W;

S : = [ ] ;

i f Determinant (W) eq −1 then

Append(~S , [ ∗ J , 1 ∗ ] ) ;
W:=J∗W;

end i f ;

i f Abs (Norm(W[ 2 , 1 ] ) ) ge Abs(Norm(W[ 1 , 1 ] ) ) then

W:=B∗W;

Append(~S , [ ∗B, 1 ∗ ] ) ;
end i f ;

whi l e Norm(W[ 2 , 1 ] ) ne 0 do

q:=O!W[ 1 , 1 ] div O!W[ 2 , 1 ] ;

seq :=Elt seq (O! q ) ;

Append(~S , [ ∗A, seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U, seq [ 2 ] ∗ ] ) ;
Append(~S , [ ∗B, 1 ∗ ] ) ;
Q:=Matrix (O,2 ,2 , [ 1 , −q , 0 , 1 ] ) ;

W:=B∗Q∗W;
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end whi le ;

i f W[ 1 , 1 ] eq 1 then

seq :=Elt seq (O!W[ 1 , 2 ] ) ;

Append(~S , [ ∗A, seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U, seq [ 2 ] ∗ ] ) ;

e l s e

seq :=Elt seq (O!W[ 1 , 2 ] ) ;

Append(~S , [ ∗A,− seq [ 1 ] ∗ ] ) ;
Append(~S , [ ∗U,− seq [ 2 ] ∗ ] ) ;

end i f ;

a s s e r t (DEWORD(S) eq w or DEWORD(S) eq −w) ;

e l s e

re turn "you stop that " ;

end i f ;

r e turn S ;

end func t i on ;

// i d e n t i f y i n g i d e a l s v ia t h e i r magma prime f a c t o r i z a t i o n s

get_idea l := func t i on ( l i s t ,K)

f i n a l :=1∗ I n t e g e r s (K) ;

f o r item in l i s t do

I := item [ 1 ] [ 1 ] ∗ I n t e g e r s (K) ;
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J:= Fac to r i z a t i on ( I ) [ item [ 1 ] [ 2 ] ] [ 1 ] ;

f i n a l := f i n a l ∗J^item [ 2 ] ;

end f o r ;

r e turn f i n a l ;

end func t i on ;

ident i fy_pr ime := func t i on ( J )

p:=Pr imeDiv i sors (Norm(J ) ) [ 1 ] ;

f a c := Fac t o r i z a t i on (p∗Order ( J ) ) ;

i f J eq f a c [ 1 ] [ 1 ] then

return <p,1 >;

e l s e

re turn <p,2 >;

end i f ;

end func t i on ;

// f a c t o r i z e s and i d e n t i f i e s f a c t o r s with exponents

i d e n t i f y := func t i on ( I )

f a c := Fac t o r i z a t i on ( I ) ;

l i s t : = [ ] ;

f o r f a c t o r in f a c do

Append(~ l i s t ,< ident i fy_pr ime ( f a c t o r [ 1 ] ) , f a c t o r [ 2 ] >) ;

end f o r ;

r e turn <Norm( I ) , l i s t >;

end func t i on ;

// i d e n t i f y i n g i d e a l s v ia t h e i r HNF bases

detect_hnf := func t i on (J ,M)

N:=Norm(J ) ;

a:=M[ 1 , 1 ] ; d:=M[ 1 , 2 ] ;
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b:=M[ 2 , 1 ] ; c :=M[ 2 , 2 ] ;

i f (d eq 0) and (N eq a∗c ) and (b in [ 0 . . a−1]) then

return 1 ;

e l s e

re turn 0 ;

end i f ;

end func t i on ;

HNF_basis:= func t i on ( J )

N:=Norm(J ) ;

M:=BasisMatr ix ( J ) ;

Mt:=Matrix ( I n t e g e r s ( ) , 2 , 2 , [M[ 1 , 2 ] ,M[ 1 , 1 ] ,M[ 2 , 2 ] ,M[ 2 , 1 ] ] ) ;

HN:=HermiteForm (Mt ) ;

H:=Matrix ( I n t e g e r s ( ) , 2 , 2 , [HN[ 2 , 2 ] ,HN[ 2 , 1 ] ,HN[ 1 , 2 ] ,HN[ 1 , 1 ] ] ) ;

c :=H[ 2 , 2 ] ; b:=H[ 2 , 1 ] ; a:=H[ 1 , 1 ] ;

i f c l t 0 then

c:=−c ; b:=−b ;
end i f ;

b :=(b mod a ) ;

a s s e r t 1 eq detect_hnf (J , Matrix ( I n t e g e r s ( ) , 2 , 2 , [ a , 0 , b , c ] ) ) ;

r e turn [Norm(J ) , b , c ] ;

end func t i on ;

get_ideal_hnf := func t i on (K, l i s t )

O<w>:=In t e g e r s (K) ;

N:= l i s t [ 1 ] ; /∗ norm ∗/
gen1 :=O! (N/ l i s t [ 3 ] ) ;

gen2 :=O! ( l i s t [2 ]+w∗ l i s t [ 3 ] ) ;
r e turn idea l <O| gen1 , gen2>;

end func t i on ;
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// given a sequence G o f a l g e b r a i c i n t e g e r s a+bw and index r ,

// r e tu rn s the f i r s t coo rd ina te "a" o f the r ' th element o f G

R:= func t i on (G, r )

h:=El t seq (G[ r ] ) [ 1 ] ;

h:= In t e g e r s ( ) ! h ;

r e turn h ;

end func t i on ;

// r e tu rn s the second coord inate "b"

I := func t i on (G, r )

h:=El t seq (G[ r ] ) [ 2 ] ;

h:= In t e g e r s ( ) ! h ;

r e turn h ;

end func t i on ;

// needs to be here f o r s t range compa t i b i l i t y reasons

MatPow:= func t i on ( matrix , pow)

mat_list : = [ ] ;

i f pow eq 0 then

return matrix ^0;

end i f ;

f o r i in [ 1 . . Abs (pow ) ] do

Append(~mat_list , matrix^Sign (pow ) ) ;

end f o r ;

r e turn &∗mat_list ;

end func t i on ;

// Given a square matrix M and m, i t w i l l r e turn 1+M+..+M^(m−1)
// or −M̂ m∗(1+M+...+M̂ (−m−1)) i f k i s negat ive and 0 i f k=0
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HeckeMatP:= func t i on (N,M,m)

W:=N;

i f m l t 0 then

f o r j in [ 0 . . ( −m−1)] do

W:=W+MatPow(M, j ) ;

end f o r ;

W:= −W∗MatPow(M,m) ;

end i f ;

i f m gt 0 then

f o r j in [ 0 . . (m−1)] do

W:=W+MatPow(M, j ) ;

end f o r ;

end i f ;

r e turn W;

end func t i on ;

B.1.13 Utility_Hecke.m

// This func t i on gather s ONLY RATIONAL e igenva lue systems from a

// given s e t o f commuting matr i ce s .

// needs to be loaded a f t e r Hecke f u n c t i o n a l i t i e s and Artin Algebras

GET_EV_RAT:= func t i on ( l i s t )

A:=Parent ( l i s t [ 1 ] ) ;

D:=Decomposition (A) ;

EV_List:=<>;

f o r j in [ 1 . .#D] do

TT:=[ BaseChange (T,D[ j ] ) : T in l i s t ] ;

m:=NumberOfRows(TT[ 1 ] ) ;
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ev_size : = [ ] ;

f o r M in TT do

t o t a l :=0;

f o r item in Eigenva lues (M) do

t o t a l := t o t a l+item [ 2 ] ;

end f o r ;

Append(~ ev_size , t o t a l ) ;

end f o r ;

i f m eq Min( ev_size ) then

Zx<x>:=PolynomialRing ( I n t e g e r s ( ) ) ;

fx :=Zx ! Def in ingPolynomia l ( BaseRing (TT[ 1 ] ) ) ;

mult :=SetToSequence ( Eigenva lues (TT [ 1 ] ) ) [ 1 ] [ 2 ] ;

ev :=[ SetToSequence ( Eigenva lues (M) ) [ 1 ] [ 1 ] : M in TT] ;

Append(~EV_List ,<fx , mult , ev >);

end i f ;

end f o r ;

r e turn EV_List ;

end func t i on ;

// gather s a l l e i g enva lu e s from a s e t o f commuting matr i ce s in l i s t .

// r e c u r s i v e l y c a l l s i t s e l f and takes l a r g e compositums o f number f i e l d s

// so can be VERY slow

GET_EV:= func t i on ( l i s t )

char := Cha r a c t e r i s t i c ( Coe f f i c i e n tR ing ( l i s t [ 1 ] ) ) ;

i f char eq 0 then

F<w>:=OptimizedRepresentat ion ( S p l i t t i n gF i e l d (

&∗[MinimalPolynomial (m) : m in l i s t ] ) ) ;

e l s e

F<w>:=Sp l i t t i n gF i e l d (&∗ [ MinimalPolynomial (m) : m in l i s t ] ) ;

end i f ;
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l i s t :=[ ChangeRing (h ,F) : h in l i s t ] ;

A:=MatrixAlgebra ( l i s t ) ;

i f Dimension (A) eq 0 then

EV_list :=[<Def in ingPolynomial (F) , Ncols ( l i s t [ 1 ] ) ,

[ 0 : i in [ 1 . .# l i s t ] ] > ] ;

b a s i s :=Bas i s ( Kernel ( l i s t [ 1 ] ) ) ;

e l s e

D:=Decomposition (A) ;

EV_list:=<>;

f o r j in [ 1 . .#D] do

TT:=[ BaseChange (T,D[ j ] ) : T in l i s t ] ;

m:=NumberOfRows(TT[ 1 ] ) ;

ev_size : = [ ] ;

f o r M in TT do

t o t a l :=0;

f o r item in Eigenva lues (M) do

t o t a l := t o t a l+item [ 2 ] ;

end f o r ;

Append(~ ev_size , t o t a l ) ;

end f o r ;

i f m eq Min( ev_size ) then

Zx<x>:=PolynomialRing ( I n t e g e r s ( ) ) ;

i f char eq 0 then

fx :=Zx ! Def in ingPolynomia l ( BaseRing (TT[ 1 ] ) ) ;

e l s e

fx :=Def in ingPolynomia l ( BaseRing (TT[ 1 ] ) ) ;

end i f ;

mult :=SetToSequence ( Eigenva lues (TT [ 1 ] ) ) [ 1 ] [ 2 ] ;

ev :=[ SetToSequence ( Eigenva lues (M) ) [ 1 ] [ 1 ] : M in TT] ;
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Append(~EV_list ,<fx , mult , ev >);

end i f ;

end f o r ;

b a s i s :=&cat [ Rows(D[ i , 1 ] ) : i in [ 1 . .#D ] ] ;

end i f ;

r e turn EV_list , b a s i s ;

end func t i on ;

// Takes a l i s t o f i d e a l s and re tu rn s the r e l e van t Hecke matr i ce s

GetHeckeMatrices := func t i on ( space , l i s t )

i f space ` dim ne 0 then // doing hecke s t u f f

heckes : = [ ] ;

f o r TP in l i s t do

time Append(~ heckes ,HECKE(TP, space ) ) ;

end f o r ;

r e turn heckes ;

e l s e

re turn [ ] ;

end i f ;

end func t i on ;

I sRat ionalSystem := func t i on ( evs )

i s i t r a t i o n a l := true ;

f o r e in evs do

i f not e in I n t e g e r s ( ) then

i s i t r a t i o n a l := f a l s e ;

end i f ;

end f o r ;

r e turn i s i t r a t i o n a l ;

end func t i on ;
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B.2 Period polynomials

B.2.1 H2.m

// computes H2

H2quo:= func t i on ( spec )

ZK:=MaximalOrder ( spec ` f i e l d ) ;

z :=spec ` f i e l d . 1 ;

d:=spec ` d ;

i f d eq 1 then

E:=Matrix (ZK,2 ,2 , [ −1 , z , z , 0 ] ) ;
S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
SL:=Matrix (ZK, 2 , 2 , [ 0 , z , z , 0 ] ) ;

U:=Matrix (ZK, 2 , 2 , [ 1 , −1 , 1 , 0 ] ) ;
J:=Matrix (ZK, 2 , 2 , [ z , 0 , 0 , 1 ] ) ;

TE:=Act ( spec ,E ) ;

TS:=Act ( spec , S ) ;

TSL:=Act ( spec , SL ) ;

TU:=Act ( spec ,U) ;

TJ:=Act ( spec , J ) ;

KER:=Kernel (1−TE) + Kernel (1−TS) + Kernel (1−TSL) +

Kernel (1−TU) + Kernel (1+TJ ) ;

e l i f d eq 2 then

A:=Matrix (ZK, 2 , 2 , [ 1 , z , z , −1 ] ) ;
S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
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U:=Matrix (ZK, 2 , 2 , [ 1 , −1 , 1 , 0 ] ) ;
Tz:=Matrix (ZK, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;

J:=Matrix (ZK, 2 , 2 , [ −1 , 0 , 0 , 1 ] ) ;

TA:=Act ( spec ,A) ;

TS:=Act ( spec , S ) ;

TU:=Act ( spec ,U) ;

TTzi:=Act ( spec , Tz^−1);
TJ:=Act ( spec , J ) ;

KER:=Kernel (1−TA)∗(1−TTzi ) + Kernel (1−TS) +

Kernel (1−TU) + Kernel (1+TJ ) ;

e l i f d eq 3 then

LS:=Matrix (ZK,2 ,2 , [ 0 , − z ,1−z , 0 ] ) ;
U:=Matrix (ZK, 2 , 2 , [ 1 , −1 , 1 , 0 ] ) ;
SL:=Matrix (ZK,2 ,2 , [0 ,−1+z , z , 0 ] ) ;

J:=Matrix (ZK, 2 , 2 , [ z , 0 , 0 , 1 ] ) ;

TLS:=Act ( spec , LS ) ;

TU:=Act ( spec ,U) ;

TSL:=Act ( spec , SL ) ;

TJ:=Act ( spec , J ) ;

KER:=Kernel (1−TLS) + Kernel (1−TU) + Kernel (1−TSL) +

Kernel (1+TJ ) ;

e l i f d eq 7 or d eq 11 then

i f d eq 7 then

A:=Matrix (ZK,2 ,2 , [1 ,−1+z , z , −1 ] ) ;
e l s e
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A:=Matrix (ZK,2 ,2 , [1 ,−1+z , z , −2 ] ) ;
end i f ;

g:=Matrix (ZK,2 ,2 , [0 ,−1 ,1 ,− z ] ) ;

S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
U:=Matrix (ZK, 2 , 2 , [ 1 , −1 , 1 , 0 ] ) ;
J:=Matrix (ZK, 2 , 2 , [ −1 , 0 , 0 , 1 ] ) ;

TA:=Act ( spec ,A) ;

TS:=Act ( spec , S ) ;

TU:=Act ( spec ,U) ;

Tg:=Act ( spec , g ) ;

TJ:=Act ( spec , J ) ;

KER:=Kernel (1−TS) + Kernel (1−TU) + Kernel (1−TA)∗(1+Tg) + Kernel (1+TJ ) ;

end i f ;

V:=RSpace ( Coe f f i c i en tR ing (KER) , Degree (KER) ) ;

H2 ,m:=quo<V|KER>;

return H2 ,m;

end func t i on ;

// computes hecke ope ra to r s on H2

H2Hecke:= func t i on ( spec ,H2 ,m,P)

T:=Hei lbronn (P, spec ` l e v e l ) ;

H:=[Act ( spec , Matrix ( spec ` f i e l d , 2 , 2 , t ) ) : t in T ] ;

M:= Matrix ( [m( Inve r s e (m) (H2 . i ) ∗ &+H) : i in [ 1 . . Dimension (H2 ) ] ] ) ;

r e turn M;

end func t i on ;
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B.2.2 Hecke.m

// Haluk ' s code f o r computing Hei lbronn matr i ce s

// p r ev i ou s l y used magma' s Quadrat icFie ld f u n c t i o n a l i t y

Hei lbronn := func t i on (J , l e v e l )

ZK:=Order ( l e v e l ) ;

K:=NumberField (ZK) ;

// t h i s s e c t i o n t r a n s l a t e s between number f i e l d and quadrat i c f i e l d

DD:=Discr iminant (K) ;

Z:= In t e g e r s ( ) ;

i f DD in [−4 ,−8] then

K1:=Quadrat i cFie ld (Z ! (DD/4 ) ) ;

e l s e

K1:=Quadrat i cFie ld (Z !DD) ;

end i f ;

O:=MaximalOrder (K1 ) ;

t ,m:= Is I somorph ic (K,K1 ) ;

t , g:= I sP r i n c i p a l ( J ) ;

w:=O. 2 ;

J:=O∗m(K! g ) ;

t , p i := I sP r i n c i p a l ( J ) ;

p i :=O! p i ;

a:=Z ! p i [ 1 ] ;

b:=Z ! p i [ 2 ] ;

q:=Norm(J ) ;

L i s t := [ ∗ ∗ ] ;
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i f IsPrime (q ) then

f o r s in [ 0 . . q−1] do

x1 := pi ; x2 := −s ; y1 := 0 ; y2 := 1 ;

Append(~ List , [ x1 , x2 , y1 , y2 ] ) ;

a:=−pi ; b:= s ;

whi l e b ne 0 do

r := a mod b ;

q:= O! ( ( a−r ) / b ) ;

x3:= −x1+q∗x2 ;
x1 := x2 ; x2 := x3 ;

y3 := −y1+q∗y2 ;
y1 := y2 ; y2 := y3 ;

Append(~ List , [ x1 , x2 , y1 , y2 ] ) ;

a:=−b ; b:= r ;

end whi l e ;

end f o r ;

Append(~ List , [ 1 , 0 , 0 , p i ] ) ;

e l s e

p:=PrimeDiv i sors ( q ) [ 1 ] ;

f o r s , t in [ 0 . . p−1] do

x1 := pi ; x2 := −(s+t ∗w) ; y1 := 0 ; y2 := 1 ;

Append(~ List , [ x1 , x2 , y1 , y2 ] ) ;

a:=(−pi ) ; b :=( s+t ∗w) ;

whi l e b ne 0 do

r := a mod b ;

q:= O! ( ( a−r ) / b ) ;

x3:= −x1+q∗x2 ;
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x1 := x2 ; x2 := x3 ;

y3 := −y1+q∗y2 ;
y1 := y2 ; y2 := y3 ;

Append(~ List , [ x1 , x2 , y1 , y2 ] ) ;

a:=−b ; b:= r ;

end whi l e ;

end f o r ;

Append(~ List , [ 1 , 0 , 0 , p i ] ) ;

end i f ;

// t h i s t r a n s l a t e s back

L i s t 2 : = [ ] ;

mm:= Inve r s e (m) ;

f o r l in L i s t do

Append(~ List2 , [mm( l [ 1 ] ) ,mm( l [ 2 ] ) ,mm( l [ 3 ] ) ,mm( l [ 4 ] ) ] ) ;

end f o r ;

r e turn L i s t 2 ;

end func t i on ;

// Computes the ac t i on o f the Hecke operator at the prime i d e a l P.

// r e tu rn s the operator as i t a c t s on the ba s i s o f W given by

// (1 0 . . . 0 ) , (0 1 0 . . . 0 ) , . . . (0 0 . . . 1 ) , and the operator

// as i t a c t s on the ac tua l v e c t o r s o f W as we l l . Both are u s e f u l

// depending on what you want to do with them , so we keep both .

Hecke:= func t i on (W,P)

T:=Hei lbronn (P,W` l e v e l ) ;

H:=[Act (W` spec , Matrix (MaximalOrder (W` f i e l d ) , 2 , 2 ,

[ t [4 ] ,− t [2 ] ,− t [ 3 ] , t [ 1 ] ] ) ) : t in T ] ;
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HPB:=&+H;

// f o r c e s compat ib i l i t y , should always come back true

t t := Is I somorph ic ( Coe f f i c i en tR ing ( Parent (HPB) ) ,

NumberField (Domain(W` down ) ) ) ;

i f W` char ne 0 then

HPB:=W` down(HPB) ;

end i f ;

BW:=Bas i s (W` space ) ;

HP:=Matrix ( [ So lu t i on (Matrix (BW) , b∗HPB) : b in BW ] ) ;

// in case one wants to do th ing s mod p

i f W` char eq 0 then

F:=BaseRing (W` space ) ;

e l s e

F:=Coe f f i c i en tR ing (W` space ) ;

end i f ;

r e turn ChangeRing (HP,F) ,HPB;

end func t i on ;

// Simple i t e r a t i n g func t i on that r e tu rn s the Hecke matr i ce s attahed

// to W as s o c i a t ed to the prime i d e a l s in l i s t

GetHeckeMatrices := func t i on (W, l i s t )

HH:= [ ] ;

HHB:= [ ] ;

f o r P in l i s t do

time T,TB:=Hecke (W,P) ;

Append(~HH,T) ;

Append(~HHB,TB) ;
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end f o r ;

r e turn HH,HHB;

end func t i on ;

// Given a l i s t o f commuting matr i ce s ( coming in our case from

// Hecke ope ra to r s ) , r e tu rn s the s imultaneous e i g enva lu e s o f the

// matr ices , as we l l as t h e i r f i e l d o f d e f i n i t i o n and t h e i r

// m u l t i p l i c i t i e s . Uses Wiese ' s Art inAlgebras .

// can sometimes take a long time to run , i f the re are e i g enva lu e s

// in a l a r g e degree f i e l d . t h i s i s pa r t l y because i t i s not wr i t t en

// with e f f i c i e n c y in mind .

GET_EV:= func t i on ( l i s t )

char := Cha r a c t e r i s t i c ( Coe f f i c i e n tR ing ( l i s t [ 1 ] ) ) ;

A:=MatrixAlgebra ( l i s t ) ;

// re turn the 0 e i g enva lue system with maximum mu l t i p l i c i t y

i f Dimension (A) eq 0 then

F:=Coe f f i c i en tR ing ( l i s t [ 1 ] ) ;

P<x>:=PolynomialRing (F ) ;

EV_list :=[<x−1,Ncols ( l i s t [ 1 ] ) , [ F ! 0 : i in [ 1 . .# l i s t ] ] > ] ;

b a s i s :=Bas i s ( Kernel ( l i s t [ 1 ] ) ) ;

e l s e

D:=Decomposition (A) ;

EV_list:=<>;

i f #D ne 1 then

p i e c e s := [ ∗ ∗ ] ;
f o r j in [ 1 . .#D] do
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TT:=[ BaseChange (T,D[ j ] ) : T in l i s t ] ;

i f char eq 0 then

F:=OptimizedRepresentat ion ( S p l i t t i n gF i e l d (

&∗[MinimalPolynomial (u) : u in TT] ) ) ;

e l s e

F<w>:=Sp l i t t i n gF i e l d (&∗ [ MinimalPolynomial (u) : u in TT] ) ;

end i f ;

TT:=[ ChangeRing (T,F) : T in TT] ;

// we re−c a l l t h i s func t i on but with one fewer " p i e c e "

// t h i s r e c u r s i v e n e s s i s probably not good f o r the

// e f f i c i e n c y o f the program

EVs:=$$ (TT) ;

f o r e in EVs do

Append(~ p i ece s , e ) ;

end f o r ;

end f o r ;

r e turn p i e c e s ;

e l s e

// in the case the re i s only one e i g enva lue system , t h i s

// part i s used

f o r j in [ 1 . .#D] do

TT:=[ BaseChange (T,D[ j ] ) : T in l i s t ] ;

m:=NumberOfRows(TT[ 1 ] ) ;

ev_size : = [ ] ;

f o r M in TT do

t o t a l :=0;

f o r item in Eigenva lues (M) do

t o t a l := t o t a l+item [ 2 ] ;

end f o r ;

Append(~ ev_size , t o t a l ) ;
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end f o r ;

i f m eq Min( ev_size ) then

Zx<x>:=PolynomialRing ( I n t e g e r s ( ) ) ;

i f char eq 0 then

fx :=Zx ! Def in ingPolynomia l ( BaseRing (TT[ 1 ] ) ) ;

e l s e

fx :=Def in ingPolynomia l ( BaseRing (TT[ 1 ] ) ) ;

end i f ;

mult :=SetToSequence ( Eigenva lues (TT [ 1 ] ) ) [ 1 ] [ 2 ] ;

ev :=[ SetToSequence ( Eigenva lues (M) ) [ 1 ] [ 1 ] : M in TT] ;

Append(~EV_list ,<fx , mult , ev >);

end i f ;

end f o r ;

b a s i s :=&cat [ Rows(D[ i , 1 ] ) : i in [ 1 . .#D ] ] ;

end i f ;

end i f ;

r e turn EV_list ;

end func t i on ;

// Given a l i s t o f commuting matr i ce s and va l s in the form

// <pol , mu l t i p l i c i t y , e i g s >, f i n d s a ba s i s o f s imultaneous

// g en e r a l i s e d e i g env e c t o r s .

GenEigVecs := func t i on (W,HH, va l s )

n:=Ncols (HH[ 1 ] ) ; //matr i ce s in l i s t are always sqaure and the same s i z e

d:= va l s [ 2 ] ; // dimension o f the space we want

e := va l s [ 3 ] ;

FF:= Sp l i t t i n gF i e l d (ChangeRing ( va l s [ 1 ] , Coe f f i c i en tR ing (W` space ) ) ) ;

HHe:=[ ChangeRing (HH[ i ] ,FF) : i in [ 1 . .#HH] ] ;
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SP:= [ ChangeRing (HH[ i ] , Parent ( e [ i ]))− e [ i ]∗ChangeRing (HH[ i ]^0 ,
Parent ( e [ i ] ) ) : i in [ 1 . .#HHe ] ] ;

MM:= [ ] ;

f o r M in SP do

M1:=M;

i :=1;

whi l e Rank(M1) gt (n−d) or i l t 100 do

M1∗:=M;

i +:=1; // j u s t in case

end whi le ;

Append(~MM,M1) ;

end f o r ;

r e turn Bas i s (&meet [ Kernel (m) : m in MM] ) ;

end func t i on ;

// Given Hecke matr i ce s HH and t h e i r a s s o c i a t ed primes HP,

// r e tu rn s ve c t o r s o f W, along with t h e i r Hecke e i g enva lu e s

// at the primes in HP, and the gene ra to r s o f the primes in HP.

//This uses Wiese ' s Art inAlgebras .

GetPolVals := func t i on (W,HH,HP)

KK:=Kernel (ChangeRing (HH[1]−HH[ 1 ] , Coe f f i c i e n tR ing (W` space ) ) ) ;

h:=hom<W` space −> KK | [KK. i : i in [ 1 . . Dimension (KK) ] ] >;

g:= Inve r s e (h ) ; // map from <(1 0 . . . 0) . . . (0 0 . . . 1)> to W

// f i r s t we get the e i g enva lu e s themselves , with no ta l k

// o f mu l t i p l i c i t y

EVs:=GET_EV(HH) ;

EVs_nomult := [ ∗ ∗ ] ;
f o r e in EVs do

f o r i in [ 1 . . e [ 2 ] ] do
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Append(~EVs_nomult , e [ 3 ] ) ;

end f o r ;

end f o r ;

l i s t := [ ∗ ∗ ] ;

// now we gather the ( g e n e r a l i s e d ) e i g env e c t o r s cor re spond ing to

// each EV system

f o r e in EVs do

LL:=GenEigVecs (W,HH, e ) ;

f o r l in LL do

Append(~ l i s t , l ) ;

end f o r ;

end f o r ;

// gather s the gene ra to r s o f the hecke ope ra to r s

gens : = [ ] ;

f o r i in HP do

t , gen := I sP r i n c i p a l ( i ) ;

Append(~gens , gen ) ;

end f o r ;

// puts everyth ing toge the r

pol_vals : = [ ] ;

f o r i in [ 1 . .# l i s t ] do

l := l i s t [ i ] ;

WW:=ChangeRing (W` space , Parent (EVs_nomult [ i , 1 ] ) ) ;

l l :=ElementToSequence ( l ) ;

Append(~ pol_vals , [∗&+[ l l [ j ]∗WW. j : j in [ 1 . .W` dim ] ] , EVs_nomult [ i ] , gens ∗ ] ) ;
end f o r ;

EV_systems := [ ∗ ∗ ] ;
f o r e in EVs do
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Append(~EV_systems,<e [ 1 ] , e [ 2 ] , e [ 3 ] >) ;

end f o r ;

r e turn EV_systems , pol_vals ;

end func t i on ;

// some u t i l i t y f unc t i on s f o r putt ing i d e a l s i n to normal form

detect_hnf := func t i on (J ,M)

N:=Norm(J ) ;

a:=M[ 1 , 1 ] ; d:=M[ 1 , 2 ] ;

b:=M[ 2 , 1 ] ; c :=M[ 2 , 2 ] ;

i f (d eq 0) and (N eq a∗c ) and (b in [ 0 . . a−1]) then

return 1 ;

e l s e

re turn 0 ;

end i f ;

end func t i on ;

HNF_basis:= func t i on ( J )

N:=Norm(J ) ;

M:=BasisMatr ix ( J ) ;

Mt:=Matrix ( I n t e g e r s ( ) , 2 , 2 , [M[ 1 , 2 ] ,M[ 1 , 1 ] ,M[ 2 , 2 ] ,M[ 2 , 1 ] ] ) ;

HN:=HermiteForm (Mt ) ;

H:=Matrix ( I n t e g e r s ( ) , 2 , 2 , [HN[ 2 , 2 ] ,HN[ 2 , 1 ] ,HN[ 1 , 2 ] ,HN[ 1 , 1 ] ] ) ;

c :=H[ 2 , 2 ] ; b:=H[ 2 , 1 ] ; a:=H[ 1 , 1 ] ;

i f c l t 0 then

c:=−c ; b:=−b ;
end i f ;

b :=(b mod a ) ;

a s s e r t 1 eq detect_hnf (J , Matrix ( I n t e g e r s ( ) , 2 , 2 , [ a , 0 , b , c ] ) ) ;

r e turn [Norm(J ) , b , c ] ;
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end func t i on ;

B.2.3 loading_script_H2.m

AttachSpec (" Art inAlgebras /Art inAlgebras . spec " ) ;

load "ProjAct ion .m" ;

load "WeightAction .m" ;

load "Space .m" ;

load "Hecke .m" ;

load "H2 .m" ;

d :=11;

l e v e l := [ 1 , 0 ] ;

weight :=[10 , 10 , 0 , 0 ] ;

HB:=30;

ch i :=1;

K:=QuadFld (d ) ;

ZK:=MaximalOrder (K) ;

l e v e l :=(K! l e v e l )∗ZK;

PL, r := Pro j e c t i v eL in e ( quo<ZK| l e v e l >);

ch i :=Elements ( Dir i ch letGroup ( l e v e l ) ) [ ch i ] ;

SpecData := rec format <

d : RngIntElt ,

l e v e l : RngOrdIdl ,

weight : SeqEnum ,

ch i : GrpDrchNFElt ,

PL : SetIndx ,

r : UserProgram ,

cha r_f i e l d : FldNum ,
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f i e l d : FldNum >;

spec := rec<SpecData | d:=d ,

l e v e l := l e v e l ,

weight :=weight ,

ch i := chi ,

PL:=PL,

r :=r ,

cha r_f i e l d :=Compositum(Codomain ( ch i ) ,K) ,

f i e l d :=K >;

p r i n t "computing H2 . . . " ;

time H2 ,m:=H2quo( spec ) ;

i f Dimension (H2) eq 0 then

p r in t "No EV systems found " ;

e l s e

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ) eq 1∗ZK ] ;

HNF:=[HNF_basis ( J ) : J in HP] ;

P a r a l l e l S o r t (~HNF,~HP) ;

HH:= [ ] ;

p r i n t " f i nd i n g Hecke matr i ce s . . . " ;

f o r P in HP do

time Append(~HH, H2Hecke ( spec ,H2 ,m,P ) ) ;

end f o r ;

p r i n t " f i nd i n g e i g enva lue systems . . . " ;

EV_systems:=GET_EV(HH) ;

p r i n t " found the f o l l ow i n g e i g enva lue systems : " ;

p r i n t EV_systems ;

end i f ;
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B.2.4 loading_script_pols.m

AttachSpec (" Art inAlgebras /Art inAlgebras . spec " ) ;

load "ProjAct ion .m" ;

load "WeightAction .m" ;

load "Space .m" ;

load "Hecke .m" ;

load "Per iodPols .m" ;

d :=11;

l e v e l := [ 1 , 0 ] ;

weight :=[10 , 10 , 0 , 0 ] ;

char :=0;

HB:=30;

ch i :=1;

type :="GL" ;

p r i n t "computing space o f per iod polynomia l s . . . " ;

time W:=PolSpace (d , l e v e l , weight , char , type , ch i ) ;

K:=W` f i e l d ;

ZK:=W` ord ;

l e v e l :=W` l e v e l ;

i f W` dim eq 0 then

p r in t "No EV systems found " ;

e l s e

i f char eq 0 then

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ) eq 1∗ZK ] ;

e l s e

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ∗ char ) eq 1∗ZK ] ;
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end i f ;

//HP:=PrimesUpTo (HB,K) ;

//HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ) eq 1∗ZK ] ;

HNF:=[HNF_basis ( J ) : J in HP] ;

P a r a l l e l S o r t (~HNF,~HP) ;

p r i n t "computing Hecke matr i ce s . . . " ;

HH,HHB:=GetHeckeMatrices (W,HP) ;

p r i n t "computing e i g enva lue systems and a l g e b r a i c

e igen−polynomia l s . . . " ;

EV_systems , pol_vals :=GetPolVals (W,HH,HP) ;

p r i n t " found the f o l l ow i n g e i g enva lue systems : " ;

EV_systems ;

end i f ;

B.2.5 PeriodPols.m

PeriodPol := func t i on (W, vec : ind :=W` id_index )

// i f the user wants a d i f f e r e n t component polynomial , they can ask

// f o r i t , o the rw i s e we g ive them the component a s s o c i a t ed to the

// i d e n t i t y element . t h i s i s the same as the polynomial attached

// to {0 ,\ i n f t y }

i f not a s s i gned ind then

ind :=W` id_index ;

end i f ;

weight :=W` weight ;

k:=weight [ 1 ] ;

l :=weight [ 2 ] ;

R:=Coe f f i c i e n tR ing (W` space ) ;

D:=(k+1)∗( l +1);
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c o e f f s :=[ vec [D∗( ind−1)+ i ] : i in [ 1 . .D ] ] ;

M:=Matrix (R, k+1, l +1, c o e f f s ) ; // turns the c o e f f s i n to a k+1−by−l+1 matrix , which i s more p l ea sant to look at

re turn M;

end func t i on ;

// Returns the c en t r a l c o e f f i c i e n t ( s ) o f the per iod polynomial

Cent ra lCoe f f s := func t i on (W, vec )

weight :=W` weight ;

k:=weight [ 1 ] ;

l :=weight [ 2 ] ;

pol ,M:=PeriodPol (W, vec ) ;

k2:=k mod 2 ;

l 2 := l mod 2 ;

i :=(k−k2 ) div 2 + 1 ;

j :=( l−l 2 ) div 2 + 1 ;

re turn Submatrix (M, i , j , k2+1, l 2 +1);

end func t i on ;

// pa i r s two monomials

PairMon:= func t i on ( weight ,mon1 ,mon2)

PP1:=Parent (mon1 ) ;

PP2:=Parent (mon2 ) ;

degx1 :=Degree (mon1 ,PP1 . 1 ) ;

degxb1 :=Degree (mon1 ,PP1 . 3 ) ;
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degx2 :=Degree (mon2 ,PP2 . 1 ) ;

degxb2 :=Degree (mon2 ,PP2 . 3 ) ;

k:=weight [ 1 ] ;

l :=weight [ 2 ] ;

i f degx1+degx2 eq k and degxb1+degxb2 eq l then

return (−1)^(degx1+degxb1 ) ∗ Binomial (k , degx1 )^(−1)
∗ Binomial (k , degxb1 )^(−1);

e l s e

re turn 0 ;

end i f ;

end func t i on ;

// breaks two polynomia l s up in to monomials , p a i r s them a l l ,

// then adds i t a l l up

PairPol := func t i on ( weight , pol1 , po l2 )

mons1:=Monomials ( pol1 ) ;

mons2:=Monomials ( pol2 ) ;

c o e f f s 1 := Co e f f i c i e n t s ( pol1 ) ;

c o e f f s 2 := Co e f f i c i e n t s ( pol2 ) ;

pa i r :=0;

f o r i in [ 1 . .#mons1 ] do

f o r j in [ 1 . .#mons2 ] do

pa i r+:=c o e f f s 1 [ i ]∗ c o e f f s 2 [ j ]∗PairMon ( weight , mons1 [ i ] ,

mons2 [ j ] ) ;

end f o r ;

end f o r ;
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r e turn pa i r ;

end func t i on ;

// input a vec to r ( from pol_vals , or e l s ewhere ) and get a polynomial

VecToPol:= func t i on (W, vec : ind :=W` id_index )

P<X,Y,Xb,Yb>:=PolynomialRing ( Coe f f i c i en tR ing ( vec ) , 4 ) ;

c :=ElementToSequence ( vec ) ;

po l :=0;

k:=W` spec ` weight [ 1 ] ;

l :=W` spec ` weight [ 2 ] ;

f o r i in [ 1 . . k+1] do

f o r j in [ 1 . . l +1] do

pol+:=c [ ( i −1)∗k+j+( i −1)]∗X^(k−i +1)∗Y^( i −1)∗
Xb^( l−j +1)∗Yb^( j −1);

end f o r ;

end f o r ;

r e turn pol ;

end func t i on ;

Sca l ePo l := func t i on ( weight , po l )

F:=Coe f f i c i en tR ing ( Parent ( po l ) ) ;

ZF:=MaximalOrder (F ) ;

// here we make sure to not in c lude the f i r s t and l a s t terms in

// the s c a l i n g . t h i s needs to work f o r any polynomial , not j u s t

// those coming from pol_vals , hence we de f i n e the two monomials ,

// then take them away

PP:=Parent ( po l ) ;

f irst_mon :=(PP.1∗PP.3)^ weight [ 1 ] ;

last_mon :=(PP.2∗PP.4)^ weight [ 2 ] ;
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pol2 :=pol − Monomia lCoef f i c i ent ( pol , f irst_mon )∗ f irst_mon −
Monomia lCoef f i c i ent ( pol , last_mon )∗ last_mon ;

c o e f f s := Co e f f i c i e n t s ( pol2 ) ;

i d e a l s :=[ id ea l <ZF | c o e f f s [ i ]> : i in [ 1 . .# c o e f f s ] ] ;

D1:=GCD( i d e a l s [ 1 ] , i d e a l s [ 2 ] ) ;

f o r i in [ 3 . .# i d e a l s ] do

D1:=GCD(D1 , i d e a l s [ i ] ) ;

end f o r ;

r e turn D1 ;

end func t i on ;

B.2.6 ProjAction.m

// Gives the ac t i on o f M on the p r o j e c t i v e l i n e P^1(ZK/J ) .

ProjMat:= func t i on (J ,M)

ZK:=Coe f f i c i e n tR ing ( Parent (M) ) ;

i f Type (ZK) ne RngOrd then

ZK:=MaximalOrder (ZK) ;

end i f ;

SS:=MatrixAlgebra (ZK, 2 ) ;

M:=SS !M;

// t h i s l i n e cover s weird magma compa t i b i l i t y problems that

// can sometimes a r i s e

t := Is I somorph ic ( NumberField ( Coe f f i c i en tR ing ( Parent (M) ) ) ,

NumberField ( Order ( J ) ) ) ;

PL, r := Pro j e c t i v eL in e ( quo<ZK| J>);

pro j_act ion := func t i on (M, i )
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t , im := r (PL[ i ]∗M, true , f a l s e ) ;

i f t then

return Index (PL, im ) ;

e l s e

re turn −1; // t h i s p i ck s out the bad elements

end i f ;

end func t i on ;

perm : = [ ] ;

f o r i in [ 1 . .#PL] do

Append(~perm , proj_act ion (M, i ) ) ;

end f o r ;

l :=#PL;

Mat : = [ ] ;

f o r i in [ 1 . . l ] do

new_row : = [ ] ;

f o r j in [ 1 . . l ] do

i f j eq perm [ i ] then

Append(~new_row , 1 ) ;

e l s e

//we ignor e the e lements with problems at p , per Wang 94

// t h i s a l l ows f o r computing Hecke ope ra to r s at primes d i v i d i ng J

Append(~new_row , 0 ) ;

end i f ;

end f o r ;

Append(~Mat , new_row ) ;

end f o r ;

r e turn ChangeRing (Matrix (Mat ) , NumberField (ZK) ) ;

end func t i on ;
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// This i s the usua l ProjMat we know and love . Gives the ac t i on o f M

// on the p r o j e c t i v e l i n e P^1(ZK/J ) . We supply the p r o j e c t i v e l i n e and

// i t s d e c i s i o n func t i on r because Magma sometimes gene ra t e s d i f f e r e n t

// o rde r i ng s o f e lements in the PL

ProjMatChi := func t i on ( spec ,M)

ZK:=Coe f f i c i e n tR ing ( Parent (M) ) ;

i f Type (ZK) ne RngOrd then

ZK:=MaximalOrder (ZK) ;

end i f ;

SS:=MatrixAlgebra (ZK, 2 ) ;

M:=SS !M;

PL:=spec `PL;

r :=spec ` r ;

pro j_act ion := func t i on (M, i )

t , im , s c a l := r (PL[ i ]∗M, true , t rue ) ;

i f t then

return Index (PL, im ) , s c a l ;

e l s e

re turn −1 ,0; // t h i s p i ck s out the bad elements

end i f ;

end func t i on ;

perm : = [ ] ;

s c a l a r s : = [ ] ;

f o r i in [ 1 . .#PL] do

pa , sc :=proj_act ion (M, i ) ;

Append(~perm , pa ) ;
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Append(~ s c a l a r s , sc ) ;

end f o r ;

l :=#PL;

Mat : = [ ] ;

f o r i in [ 1 . . l ] do

new_row : = [ ] ;

f o r j in [ 1 . . l ] do

i f j eq perm [ i ] then

Append(~new_row , spec ` f i e l d ! spec ` ch i ( s c a l a r s [ i ] ) ) ;

e l s e

//we ignor e the e lements with problems at p , per Wang 94

Append(~new_row , spec ` f i e l d ! 0 ) ;

end i f ;

end f o r ;

Append(~Mat , new_row ) ;

end f o r ;

r e turn ChangeRing (Matrix (Mat ) , spec ` f i e l d ) ;

end func t i on ;

// A simple func t i on that r e tu rn s the index o f (0 : 1) so we know

// where to look f o r our per iod polynomial

IdIndex := func t i on ( l e v e l )

ZK:=Ring ( Parent ( l e v e l ) ) ;

PL, r := Pro j e c t i v eL in e ( quo<ZK| l e v e l >);

r e turn Index (PL, Vector ( [ZK! 0 ,ZK ! 1 ] ) ) ;

end func t i on ;

// f o r c ompa t i b i l i t y reasons , we use the same f i e l d s that the LMFDB uses

QuadFld:= func t i on (d)
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_<x>:=PolynomialRing ( I n t e g e r s ( ) ) ;

i f d in [ 1 , 2 ] then

return NumberField (x^2+d ) ;

e l i f d in [ 3 , 7 , 1 1 ] then

return NumberField (x^2−x−I n t e g e r s ( ) ! ( ( −d−1)/4)) ;
e l s e

re turn "d = " cat Spr int (d) cat " cu r r en t l y not supported " ;

end i f ;

end func t i on ;

B.2.7 Space.m

// Combines the ac t i on on the p r o j e c t i v e l i n e and the ac t i on on

// the polynomial space V_{k , l }(C) . Covers both t r i v i a l c a s e s .

Act:= func t i on ( spec , mat)

PM:=ProjMatChi ( spec , mat ) ;

WM:=WeightMat ( spec , mat ) ;

r e turn TensorProduct (PM,WM) ;

end func t i on ;

// Handles s e t t i n g up the var i ous spaces f o r d in {1 ,2 ,3 ,7 ,11}

StandardMats := func t i on ( spec )

ZK:=Coe f f i c i e n tR ing ( spec `PL [ 1 ] ) ;

K<z>:=NumberField (ZK) ;

d:=spec ` d ;

i f d eq 1 then

T:=Matrix (ZK, 2 , 2 , [ 1 , 1 , 0 , 1 ] ) ;
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S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
Tz:=Matrix (ZK, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;

L:=Matrix (ZK, 2 , 2 , [ z ,0 ,0 ,− z ] ) ;

J:=Matrix (ZK, 2 , 2 , [ z , 0 , 0 , 1 ] ) ;

TT:=Act ( spec ,T) ;

TS:=Act ( spec , S ) ;

TTz:=Act ( spec , Tz ) ;

TL:=Act ( spec , L ) ;

TJ:=Act ( spec , J ) ;

ID:=TT^0;

TE:=Act ( spec , Tz∗S∗L ) ;

r e turn [

ID+TS, ID−TL, ID+TT∗TS+(TT∗TS)^2 , ID+TE+TE^2 , ID−TJ
] ;

e l i f d eq 2 then

T:=Matrix (ZK, 2 , 2 , [ 1 , 1 , 0 , 1 ] ) ;

S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
Tz:=Matrix (ZK, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;

Tzi :=Matrix (ZK,2 ,2 , [ 1 , − z , 0 , 1 ] ) ;

J:=Matrix (ZK, 2 , 2 , [ −1 , 0 , 0 , 1 ] ) ;

TT:=Act ( spec ,T) ;

TS:=Act ( spec , S ) ;

TTz:=Act ( spec , Tz ) ;

TTzi:=Act ( spec , Tzi ) ;

TJ:=Act ( spec , J ) ;

ID:=TT^0;
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TTzS:=TTz∗TS; //a l i t t l e b i t o f time sav ing

re turn [

ID+TS, ID+TT∗TS+(TT∗TS)^2 , ID + TS∗TTz + TTzS + TTzi∗TS∗TTzS ,
ID−TJ

] ;

e l i f d eq 3 then

T:=Matrix (ZK, 2 , 2 , [ 1 , 1 , 0 , 1 ] ) ;

S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
Tz:=Matrix (ZK, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;

L:=Matrix (ZK, 2 , 2 , [ z ,0 ,0 ,− z ^ 2 ] ) ;

J:=Matrix (ZK, 2 , 2 , [ z , 0 , 0 , 1 ] ) ;

TT:=Act ( spec ,T) ;

TS:=Act ( spec , S ) ;

TTz:=Act ( spec , Tz ) ;

TL:=Act ( spec , L ) ;

TJ:=Act ( spec , J ) ;

ID:=TT^0;

TE:=Act ( spec ,T^−1∗Tz∗S∗L ) ;

r e turn [

ID+TS, ID−TL, ID+TT∗TS+(TT∗TS)^2 , ID+TE+TE^2 , ID−TJ
] ;

e l i f d eq 7 then

T:=Matrix (ZK, 2 , 2 , [ 1 , 1 , 0 , 1 ] ) ;

S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
Tz:=Matrix (ZK, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;
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J:=Matrix (ZK, 2 , 2 , [ −1 , 0 , 0 , 1 ] ) ;

TT:=Act ( spec ,T) ;

TS:=Act ( spec , S ) ;

TTz:=Act ( spec , Tz ) ;

TJ:=Act ( spec , J ) ;

ID:=TT^0;

re turn [

ID+TS, ID+TT∗TS+(TT∗TS)^2 , TT+TS∗TTz+TTz∗TS∗TT+TS∗TTz^−1∗TS∗TTz,
ID−TJ

] ;

e l i f d eq 11 then

T:=Matrix (ZK, 2 , 2 , [ 1 , 1 , 0 , 1 ] ) ;

S:=Matrix (ZK, 2 , 2 , [ 0 , −1 , 1 , 0 ] ) ;
Tz:=Matrix (ZK, 2 , 2 , [ 1 , z , 0 , 1 ] ) ;

J:=Matrix (ZK, 2 , 2 , [ −1 , 0 , 0 , 1 ] ) ;
E:=Tz^−1∗S∗Tz∗S∗T;
F:=Matrix (ZK,2 ,2 , [ −1 ,0 ,0 , −1 ] ) ;

TT:=Act ( spec ,T) ;

TS:=Act ( spec , S ) ;

TTz:=Act ( spec , Tz ) ;

TE:=Act ( spec ,E) ;

TEi:=Act ( spec ,E^−1);
TJ:=Act ( spec , J ) ;

ID:=TT^0;

re turn [

ID+TS, ID+TT∗TS+(TT∗TS)^2 , TT + TS∗TTz + TT∗TE + TS∗TTz∗TEi
+ TTz∗TS∗TT+TS∗TTz^−1∗TS∗TTz, ID−TJ
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] ;

e l s e

p r i n t "bad cho i c e f o r Q( sq r t (−d ) ) " ;
r e turn −1;

end i f ;

end func t i on ;

// De f ine s the space o f po lynomia l s i nva r i an t under the ac t i on o f

// Gamma_0( l e v e l ) . Uses the matr i ce s in Sengun ExpMath .

PolSpace := func t i on (d , l e v e l , weight , char , type , ch i )

// t h i s w i l l be the f i n a l format we output the modular form space in

PolData := rec format <

space : ModTupFld ,

l e v e l : RngOrdIdl ,

ch i : GrpDrchNFElt ,

weight : SeqEnum ,

dim : RngIntElt ,

id_index : RngIntElt ,

d : RngIntElt ,

f i e l d : FldNum ,

ord : RngOrd ,

char : RngIntElt ,

down : Map,

spec : Rec >;

// t h i s format type a l l ows us to package up a l l the data s p e c i f y i n g

// which space we care about : d f o r the f i e l d , l e v e l , weight ,

// character , p r o j e c t i v e l i n e , and the f i e l d a l l o f the matr i ce s

// are going to l i v e in
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SpecData := rec format <

d : RngIntElt ,

l e v e l : RngOrdIdl ,

weight : SeqEnum ,

ch i : GrpDrchNFElt ,

PL : SetIndx ,

r : UserProgram ,

f i e l d : FldNum >;

K<z>:=QuadFld (d ) ;

ZK:=MaximalOrder (K) ;

l e v e l :=ZK! l e v e l ;

PL, r := Pro j e c t i v eL in e ( quo<ZK| l e v e l >);

// f o r c ompa t i b i l i t y reasons these l i n e s needs to be here

// otherwi se ProjActionChi can ' t eva luate ch i at the

// s c a l a r g iven by r .

l e v e l :=Parent (1∗ Coe f f i c i e n tR ing (PL [ 1 ] ) ) ! l e v e l ;

ZK:=Order ( l e v e l ) ;

K:=NumberField (ZK) ;

DG:=Elements ( Dir i ch letGroup ( l e v e l ) ) ;

ch i :=DG[ ch i ] ;

spec := rec<SpecData | d:=d ,

l e v e l := l e v e l ,

weight :=weight ,

ch i := chi ,

PL:=PL,

r :=r ,

f i e l d :=Compositum(Codomain ( ch i ) ,K) >;
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M:=StandardMats ( spec ) ;

// in c h a r a c t e r i s t i c p we want to send a l l o f our matr i ce s that

// g ive the ac t i on to the r e s i du e c l a s s f i e l d o f a prime over p∗ZK.

// i t doesn ' t r e a l l y matter which

i f char ne 0 then

KK:=Compositum(BaseRing (M[ 1 ] ) , Codomain ( ch i ) ) ;

ZKK:=MaximalOrder (KK) ;

F , down:=Res idueClas sF i e ld ( Fac t o r i z a t i on ( char∗ZKK) [ 1 , 1 ] ) ;

e l s e

down:=IdentityHomomorphism ( Parent (M[ 1 ] ) ) ;

end i f ;

// we always put the [ e , 0 , 0 , 1 ] r e l a t i o n at the end o f the l i s t

// so we can do SL c a l c u l a t i o n s i f we want by j u s t omitt ing the

// l a s t r e l a t i o n . here e gene ra t e s the un i t group o f ZK

i f type eq "GL" then

W:=&meet [ Kernel (down(u ) ) : u in M] ;

e l i f type eq "SL" then

W:=&meet [ Kernel (down(u ) ) : u in M[1 . .#M−1 ] ] ;
end i f ;

W:= rec<PolData | space :=W,

l e v e l := l e v e l ,

ch i := chi ,

weight :=weight ,

dim:=Dimension (W) ,

id_index := IdIndex ( l e v e l ) ,

d:=d ,

f i e l d :=K,

ord :=ZK,

char :=char ,

down:=down ,
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spec := spec

>;

re turn W;

end func t i on ;

B.2.8 WeightAction.m

// Computes the ac t i on o f mat on the weight module . Var iab le weight

// i s a 4 entry l i s t [ k , l , a , b ] , where k and l are the degree s o f the

// polynomia l s and a and b are the tw i s t s on the two spaces V_k, V_l

// r e s p e c t i v e l y .

WeightMat:= func t i on ( spec , mat ) ;

weight :=spec ` weight ;

R:=Coe f f i c i e n tR ing ( Parent (mat ) ) ;

K:=NumberField (R) ;

P<x , y>:=PolynomialRing ( spec ` f i e l d , 2 ) ;

Symm:= func t i on (k , d ,T)

ST:=ZeroMatrix ( spec ` f i e l d , k+1,k+1);

f o r i in [ 0 . . k ] do

Q:=(T[ 1 , 1 ] ∗ x+T[ 1 , 2 ] ∗ y )^(k−i )∗ (T[ 2 , 1 ] ∗ x+T[ 2 , 2 ] ∗ y )^( i ) ;
f o r j in [ 0 . . k ] do

ST [ i +1, j +1]:=Monomia lCoef f i c i ent (Q, x^(k−j )∗y^( j ) ) ;
end f o r ;

end f o r ;

r e turn Determinant (T)^d∗ST;

end func t i on ;

k:=weight [ 1 ] ;
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l :=weight [ 2 ] ;

a:=weight [ 3 ] ;

b:=weight [ 4 ] ;

con :=Automorphisms (K) [ 2 ] ;

matc:=Matrix (R, 2 , 2 , [R! con (mat [ 1 ] [ 1 ] ) ,R! con (mat [ 1 ] [ 2 ] ) ,

R! con (mat [ 2 ] [ 1 ] ) ,R! con (mat [ 2 ] [ 2 ] ) ] ) ;

TM:=TensorProduct (Symm(k , a ,mat ) ,Symm( l , b , matc ) ) ;

r e turn TM;

end func t i on ;

B.2.9 example.m

AttachSpec (" Art inAlgebras /Art inAlgebras . spec " ) ;

load "ProjAct ion .m" ;

load "WeightAction .m" ;

load "Space .m" ;

load "Hecke .m" ;

load "Per iodPols .m" ;

load "H2 .m" ;

d :=11;

l e v e l := [ 1 , 0 ] ;

weight :=[10 ,10 , 0 , 0 ] ;

char :=0;

HB:=30;

ch i :=1;

type :="GL" ;
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time W:=PolSpace (d , l e v e l , weight , char , type , ch i ) ;

K:=W` f i e l d ;

ZK:=W` ord ;

l e v e l :=W` l e v e l ;

i f W` dim eq 0 then

p r in t "No EV systems found " ;

e l s e

i f char eq 0 then

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ) eq 1∗ZK ] ;

e l s e

HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ∗ char ) eq 1∗ZK ] ;

end i f ;

//HP:=PrimesUpTo (HB,K) ;

//HP:=[TP : TP in PrimesUpTo (HB,K) | GCD(TP, l e v e l ) eq 1∗ZK ] ;

HNF:=[HNF_basis ( J ) : J in HP] ;

P a r a l l e l S o r t (~HNF,~HP) ;

p r i n t " f i nd i n g Hecke matr i ce s . . . " ;

HH,HHB:=GetHeckeMatrices (W,HP) ;

p r i n t " f i nd i n g e i g enva lue systems . . . " ;

EV_systems , pol_vals :=GetPolVals (W,HH,HP) ;

EV_systems ;

end i f ;

// now we do computations with the per iod polynomia l s

F:=NumberField (EV_systems [ Index ( [ Degree (u [ 1 ] ) : u in EV_systems ] , 4 ) ] [ 1 ] ) ;

ZF:=MaximalOrder (F ) ;

// the per iod polynomial o f d e l t a
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r_Delta :=VecToPol (W, pol_vals [ Index ( [ u [ 3 ] [ 1 ] : u in EV_systems ] , 2 5 2 ) ] [ 1 ] ) ;

i r r_po l s :=[ pol_vals [ i ] : i in [ 1 . .W` dim ] | I s I somorph ic (

Coe f f i c i e n tR ing ( pol_vals [ i ] [ 1 ] ) , F) ] ;

// the per iod polynomia l s o f F1 and F2

r_F1:=VecToPol (W, i r r_po l s [ Index ( [ u [ 3 ] [ 1 ] : u in EV_systems |

I s I somorph ic ( Parent (u [ 3 ] [ 1 ] ) , F) ] , 2∗F.1^2 + 3 3 7 5 ) ] [ 1 ] ) ;

r_F2:=VecToPol (W, i r r_po l s [ Index ( [ u [ 3 ] [ 1 ] : u in EV_systems |

I s I somorph ic ( Parent (u [ 3 ] [ 1 ] ) , F)] ,−2∗F.1^2 − 4 0 7 5 ) ] [ 1 ] ) ;

// c r e a t e s the H2 space

H2 ,m:=H2quo(W` spec ) ;

// we only need one hecke operator to s p l i t up the space

HH3:=H2Hecke (W` spec ,H2 ,m,HP[ 1 ] ) ;

// now we c o l l e c t the var i ous cor re spond ing polynomia l s from H2

v_Delta :=VecToPol (W, Inve r s e (m) ( Kernel (HH3−252 ) . 1 ) ) ;

// f o r c ompa t i b i l i t y reasons , Inve r s e (m) won ' t accept a vec to r

// de f ined over F

// so we can cheat and do i t s job f o r i t

v1:=Kernel (HH3−(2∗F.1^2 + 33 7 5 ) ) . 1 ;

v_F1:=VecToPol (W,&+[v1 [ i ]∗ChangeRing ( Inve r s e (m) (H2 . i ) ,F) : i in [ 1 . . 4 ] ] ) ;

v2:=Kernel (HH3−(−2∗F.1^2 − 4 0 7 5 ) ) . 1 ;

v_F2:=VecToPol (W,&+[v2 [ i ]∗ChangeRing ( Inve r s e (m) (H2 . i ) ,F) : i in [ 1 . . 4 ] ] ) ;

// f i r s t we do Delta

tt , gg := I sP r i n c i p a l ( Sca l ePo l ( weight , r_Delta )∗ Sca lePo l ( weight , v_Delta ) ) ;

D:=Rat iona l s ( ) ! gg ;

De l taPair :=PairPol ( weight , r_Delta , v_Delta ) / D;

p r i n t " Pa i r ing o f r_Delta and v_Delta : " , De l taPair ;
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pr in t " Fac t o r i z a t i on o f numerator : " ,

Fac t o r i z a t i on ( I n t e g e r s ( ) ! Numerator ( DeltaPair ) ) ;

// next we do F1

F1Pair :=PairPol ( weight , r_F1 , v_F1)∗ZF / ( Sca l ePo l ( weight , r_F1) ∗
Sca lePo l ( weight , v_F1 ) ) ;

p r i n t "(Norm of numerator o f ) Pa i r ing o f r_F1 and v_F1 : " ,

Fac t o r i z a t i on ( I n t e g e r s ( ) ! Numerator (Norm( F1Pair ) ) ) ;

// and F2 , which i s e s s e n t i a l l y the same

F2Pair :=PairPol ( weight , r_F2 , v_F2)∗ZF / ( Sca l ePo l ( weight , r_F2)

∗ Sca lePo l ( weight , v_F2 ) ) ;

p r i n t "(Norm of numerator o f ) Pa i r ing o f r_F2 and v_F2 : " ,

Fac t o r i z a t i on ( I n t e g e r s ( ) ! Numerator (Norm( F2Pair ) ) ) ;

// f o r the e i s e i n s t e i n −genuine−cusp congruences , we note the f o l l ow i ng :

p r i n t "(Norm of ) Denominator o f l e ad ing c o e f f o f Delta : " , Fac t o r i z a t i on (

Numerator (Norm( Sca l ePo l ( weight , r_Delta ) ) ) ) ;

p r i n t "(Norm of ) Denominator o f l e ad ing c o e f f o f F1 : " , Fac t o r i z a t i on (

Numerator (Norm( Sca l ePo l ( weight , r_F1 ) ) ) ) ;
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