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Abstract

Precision agriculture relies heavily on the crucial components of plant image segmen-

tation and classification. The application of image classification is particularly related

to disease identification and plant recognition, contributing to heightened accuracy

and operational efficiency. Concurrently, image segmentation plays a pivotal role in

extracting plant objects, facilitating yield prediction, disease localization, and weed

detection.

The thesis starts with the development of innovative deep learning algorithms for

autonomous precision agriculture. A novel framework for imbalanced semantic segmen-

tation is proposed in Chapter 3, based on fully convolutional network architecture, a

feature learning of weight update approach and an effective data balance scheme. Apart

from the dynamic weight updates, learning holistic feature knowledge emerges as a piv-

otal factor in enhancing overall performance. Chapter 4 introduces a novel learning

network based on the Squeeze and Excitation Network, specifically designed for fine-

grained plant pathology classification. This architecture integrates label knowledge

and feature knowledge to represent plant diseases, surpassing the capabilities of single

learning networks. It excels in the self-distillation of additional feature knowledge,

addressing potential losses after multiple convolutional layers. In Chapter 5, a novel

dataset and a semi-supervised annotation method are proposed, leveraging the faster

region-based convolutional neural network. A deep learning architecture for seman-

tic segmentation is developed to navigate challenges posed by complex backgrounds,

demonstrating efficacy in both practical scenarios and benchmark datasets.

All proposed methodologies undergo testing on benchmark datasets across diverse
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environments, affirming their capacity for precise plant segmentation and classification.
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Chapter 1

Introduction

Autonomous Plant Image Segmentation and Classification play a vital role in preci-

sion agriculture [7]. With the advancements in computer vision and deep learning

techniques, the automation of image analysis tasks has become essential for efficient

and accurate decision-making in crop management. By analyzing plant images, farm-

ers can identify diseases, nutrient deficiencies, or pest infestations at an early stage,

allowing for timely interventions and targeted treatments. This proactive approach

helps prevent yield losses and ensures crop quality, leading to optimized production

and reduced economic losses. Moreover, autonomous plant image segmentation and

classification enable precise resource allocation. By accurately describing different com-

ponents of plants, farmers can optimize the application of fertilizers, pesticides, and

water. This targeted approach minimizes resource wastage, reduces environmental im-

pact, and promotes sustainable farming practices. In summary, the indispensability of

autonomous plant image segmentation and classification in precision agriculture lies

in its multifaceted contributions. By automating the analysis of plant images, farmers

can proficiently monitor plant health, streamline resource allocation, alleviate manual

burdens, and embrace sustainable agricultural methodologies. This technology-driven

paradigm shift revolutionizes crop management, fostering improvements in productiv-

ity, profitability, and the overall sustainability of modern agricultural practices.

1
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1.1 Background and Motivation

Deep learning has revolutionized the field of precision agriculture by enabling accurate

segmentation and classification of plant images. With the advancements in computer

vision and deep neural networks, researchers have been able to develop sophisticated

models that can analyze and understand the intricate details of plant images, leading

to precise agricultural practices. For instance, the application of deep learning for

plant disease detection has achieved accuracy rates exceeding 95% in some studies,

highlighting its potential to significantly reduce crop losses [110]. Deep learning aids

in sustainable agriculture practices by optimizing resource use and reducing waste.

For instance, deep learning models that manage irrigation systems can significantly

reduce water usage. A UNESCO report highlighted that smart irrigation systems could

increase water efficiency by up to 70%, showcasing the critical role of deep learning

in promoting sustainability[123]. One of the significant applications of deep learning

in precision agriculture is plant image segmentation [88, 106]. Recent research works

highlight that image segmentation methods can detect plant diseases with an accuracy

rate of over 90% [106, 60]. Early detection and accurate identification of diseases can

significantly reduce crop losses. In fact, the Food and Agriculture Organization (FAO)

[8]estimates that up to 40% of global crop yields are lost to pests and diseases annually,

underscoring the potential impact of effective detection technologies. By segmenting

plant images into different regions, such as leaves, stems, fruits, and weeds, farmers can

gain valuable insights into plant health, growth patterns, and weed infestation levels.

Deep learning models, such as convolutional neural networks (CNNs) [57], can learn

to differentiate between various plant components and accurately delineate them in

images, enabling targeted interventions and resource allocation. For instance, targeted

application of agricultural inputs, guided by image classification insights, can reduce

water usage by up to 30% and chemical usage by 20%, contributing to more sustainable

farming practices [143]. Another crucial aspect of precision agriculture is plant image

classification [97, 140]. By training deep learning models on large datasets, these



1.1 Background and Motivation 3

models can classify plant images into different classes, such as healthy plants, diseased

plants, nutrient-deficient plants, or different plant species. This information assists

farmers in making informed decisions regarding crop management, disease prevention,

and optimizing resource utilization.

Figure 1.1: The application of precision agriculture and deep learning.

The incorporation of deep learning-driven plant image segmentation and classifica-

tion within precision agriculture heralds a transformative approach to the cultivation

and management practices of crops [7]. This innovative approach offers a multitude

of benefits, transforming the landscape of agricultural practices. First and foremost,

this integration empowers farmers and agricultural practitioners to monitor the health

and growth status of their plants on a large scale with precision and efficiency. By

harnessing the capabilities of deep learning models, early detection of diseases, stres-

sors, or nutrient deficiencies becomes not only possible but also highly effective. As

a result, swift and targeted interventions can be applied, ensuring the well-being of

the crops and safeguarding against potential yield losses. Furthermore, the advantages
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of deep learning in plant image segmentation and classification extend to the domain

of resource management and conservation. Through the seamless integration of these

technologies, precision agriculture can significantly reduce waste and environmental im-

pact. The precise identification of areas affected by diseases or pest infestations allows

for surgical and targeted spraying, minimizing the need for excessive use of chemicals.

Additionally, the optimized application of fertilizers, guided by deep learning insights,

ensures that nutrients are distributed efficiently, fostering healthier plants and reduc-

ing excess runoff, which can contaminate nearby ecosystems. This not only benefits

the environment but also optimizes resource usage, saving both time and money for

farmers and contributing to sustainable agricultural practices [46]. Lastly, deep learn-

ing models play a pivotal role in disease detection and elimination. By accurately

identifying affected plants, these models enable targeted interventions, preventing the

spread of diseases and reducing the competition for resources among plants. This, in

turn, maximizes crop yield and quality, ensuring a bountiful harvest for farmers. Con-

sequently, this optimizes both crop yield and quality, guaranteeing a plentiful harvest

for farmers.

This thesis develops deep learning methods for autonomous plant image segmenta-

tion and classification. The proposed methods provide farmers with valuable insights

and tools for effective crop management and resource allocation. These advancements

contribute to more efficient and sustainable agricultural practices.

1.2 Aim and Objectives

The aim of this thesis is the accurate segmentation and classification of plant images

in precision agriculture using indistinguishable plant dataset and publicly available

datasets based on computer vision and deep learning methods. Validating a proposed

method across different datasets ensures its robustness and ability to generalize to

various real-world scenarios, beyond the specific conditions of a single dataset. The

evaluation demonstrates its competitiveness and effectiveness across diverse applica-
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tions. The main objectives are listed below:

• Develop deep learning algorithms for plant image classification and segmentation.

• Explore and develop deep learning algorithms which can alleviate the problem of

imbalanced datasets based on comprehensive feature learning.

• Develop an effective classification framework based on knowledge distillation

which reduces the model’s complexity and computational costs while maintaining

performance.

• Create a comprehensive plant dataset and perform detailed annotations to im-

prove model robustness by including plant pixels under complex backgrounds.

• Develop an innovative segmentation framework trained using diverse plant images

to precisely depict plant diversity across varying environmental conditions.

• Evaluate and validate thoroughly the proposed approaches over real images and

benchmark datasets with respect to the state-of-the-art algorithms.

1.3 Contributions and Outline of the Thesis

The dissertation is described as six chapters. A brief overview of the content in each

chapter is presented.

Chapter 2.

This chapter provides an overview of the concepts and algorithms pertaining to

plant segmentation and classification. Additionally, it offers a brief introduction to the

background knowledge of data annotation and detection, which are relevant to the work

proposed in this thesis. The approaches to plant segmentation and classification are

categorized into two main groups: (i) methods based on traditional computer vision

and deep learning, and (ii) semantic segmentation algorithms and data annotation.



1.3 Contributions and Outline of the Thesis 6

Both sets of techniques are comprehensively reviewed and discussed, with detailed in-

troductions to some of the widely employed schemes.

Chapter 3.

A fully convolutional network with cross dropout focal loss for semantic segmenta-

tion analysis and comparison in this chapter. This chapter focuses on the development

of fully convolutional networks and the experience of different loss functions. The loss

function of segmentation algorithm updates weights through dropout. The proposed

algorithm can be applied to general semantic segmentation tasks. A novel deep learning

framework for semantic segmentation is proposed in the chapter.

The main contributions of this work are as follows.

• A novel improved fully convolutional network algorithm is introduced. The im-

provement of the fully convolutional network not only depends on the weights

to adjust the loss but also keeps the statistic capability of the cross-entropy loss

function.

• It is introduced that cross dropout focal loss updates weights based on the seg-

mentation output per class after T dropout times.

• The proposed algorithm improves the segmentation performance, which is demon-

strated over two popular semantic segmentation datasets, City-scapes [27] and

PASCAL [38]. The results show that the improved fully convolutional network

achieves better performance than the well-known fully convolutional network and

other variations.

Chapter 4.

This chapter considers the problem of plant pathology classification and self-distillation

methods in precision agriculture. The proposed holistic self-distillation method em-

ploys the Squeeze and Excitation Network (SENet) for feature extraction from images.

SENet is an attention mechanism that adjusts the weights of features based on their im-

portance, thereby enhancing classification accuracy. The approach begins by utilizing
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SENet for feature extraction from images, followed by comprehensive self-distillation

to optimize the network. Comprehensive self-distillation is a training technique that

improves classification performance by using pseudo-labels generated by the network

itself during training.

The main contributions of this work are as follows:

• The Holistic Self-Distillation (HSD) is a novel method to learn holistic knowledge

from the teacher network through distilling feature maps and soft labels.

• The proposed HSD method employs the Squeeze and Excitation (SE) network to

integrate feature information and soft labels. It can be applied on all SE networks

due to similar constructions, e.g. SE-Residual networks.

• Extensive experiments are conducted on fine-grained publicly available plant

pathology benchmark datasets to evaluate the performance of the HSD method.

The efficiency of the HSD framework in providing a new direction of self-knowledge

distillation is demonstrated.

Chapter 5.

A novel deep learning-based method is proposed for semantic segmentation of morn-

ing glory plant leaves. The method utilizes state-of-the-art Convolutional Neural Net-

works (CNNs) to extract hierarchical features and accurately classify each pixel of the

leaf image. To facilitate the development and evaluation of various segmentation algo-

rithms, a comprehensive benchmark dataset containing annotated morning glory plant

leaf images is introduced. This dataset provides a standardized platform for researchers

to compare the performance of different segmentation methods.

The main contributions of this chapter are the following:

• A new deep learning architecture, called D-SegNet is proposed, where the new

feature is the use of dense blocks to augment the standard SegNet architecture.

A concatenation between the layers in the dense block is introduced. The main
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advantage of D-SegNet consists of the improved feature maps extracted from the

images.

• A new and comprehensive dataset for the morning glory plant is collected by us

and made public, which is beneficial for reproducible research. The data [79, 81],

available on GitHub, contains original and mask images, which are ready for

training and testing of algorithms for semantic image segmentation.

• Experimental analysis on the morning glory plant dataset and ImageCLEF (Pl@n-

tleaves) dataset [49] using the proposed approach and other semantic segmenta-

tion techniques.

• The performance of D-SegNet algorithm is evaluated and thoroughly validated

over several metrics such as precision, recall, F1-score and Intersection over Union

(IoU). Comparative results with the standard SegNet architecture are presented.

Chapter 6. This chapter summarizes the main findings for all methods and the

main contributions presented in the dissertation. The direction and ideas of future

work are proposed based on the previous work analyses.

1.4 Associated Publications

The author’s work presented in this thesis has been published. These papers are the

following:

• Journal Papers

[J1] Jingxuan Su, Sean Anderson, Mahed Javed, Charoenchai Khompatraporn,

Apinanthana Udomsakdigool, Lyudmila Mihaylova, “Plant leaf deep semantic

segmentation and a novel benchmark dataset for morning glory plant harvesting”,

Neurocomputing, vol. 555, October 2023. Impact Factor: 6.
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Chapter 2

Literature Review

This chapter delves into a series of interconnected methodologies. The core contri-

butions of this thesis are fundamentally grounded in the concepts and algorithms ex-

pounded upon within this chapter. The journey of image analysis commences with

the manipulation of raw data, traversing through a sequence of distinct tasks such as

segmentation and classification. Section 2.1 serves as a precursor, providing an over-

arching framework for understanding image processing. Section 2.2 rounds off this

chapter by offering an overview of the classification method as applied in the realm

of plant pathology, a subject expounded upon in greater detail in Chapter 3. The

image segmentation as a pixel level classification will be reviewed following. In Section

2.3, a comprehensive survey unfolds, focusing on traditional image segmentation algo-

rithms, which subsequently find practical application in Chapter 5. Section 2.4 unveils

a panoramic exploration of contemporary deep learning approaches in the domain of

image segmentation, meticulously considered in Chapters 3, 4, and 5. As a cornerstone

of our work, it paves the way for modern techniques in this field.

10
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2.1 Outline of Image Processing

Image processing involves converting an image into digital format and executing op-

erations to extract valuable information, incorporating preprocessing and pixel classi-

fication as critical steps in this transformation [76]. The primary objective of image

pre-processing is to eliminate irrelevant information in an image, restore useful real

information, enhance the detectability of relevant information, and simplify data to

improve the reliability of feature extraction, image segmentation, matching, and recog-

nition. This includes tasks such as contrast enhancement and noise removal. Image

augmentation is a crucial step in computer vision and plays a significant role in various

applications such as medical imaging, industrial inspection, remote sensing, and plant

disease detection. Image augmentation is the process of adjusting the contrast of ac-

quired images to address issues related to variations in brightness, such as sunlight and

shadows [74]. Colour transformations are employed to tackle lighting issues in image

scenes. For instance, researchers used the normalized difference index (utilizing only

the green and red channels) to reduce lighting effects and differentiate between plants

and the background [120]. Filtering is another vital component of image augmenta-

tion. In agricultural applications, colour transformations and histogram equalization

are utilized for plant leaf disease detection [162]. For instance, homomorphic filtering

is a technique that minimizes lighting issues to a great extent and has been successfully

applied to outdoor images in various environmental conditions [116].

Image pre-processing serves as a critical preparatory step for subsequent image

analysis tasks. By eliminating noise, enhancing contrast, and addressing lighting vari-

ations, it ensures that the relevant information in an image is more pronounced and

easier to detect. In the context of plant disease detection, this is particularly impor-

tant as it enables accurate identification and segmentation of diseased areas on plant

leaves. The application of image augmentation techniques like colour transformations

and filtering has a wide range of implications beyond agriculture, including in the

medical field, where it aids in the identification of anomalies in medical images, and in
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industrial quality control for defect detection in manufactured products. The ability

to improve the visibility of essential features in images is a fundamental aspect of com-

puter vision, making image augmentation a vital tool in the field of image processing.

Chapters 3, 4, and 5 each apply image pre-processing techniques, with comprehensive

practical details elucidated in Chapter 5.

At its essence, image classification involves the assignment of a label to an image

within a predefined classification set. In practical terms, our objective is to scruti-

nize an input image and furnish a label that accurately categorizes it. While the

human visual system effortlessly discerns image classes, computers face the challenge

of acquiring semantic information as seamlessly as the human eye. Traditional im-

age classification relies on feature description and detection methods. While effective

for straightforward image categorization, the complexity of real-world scenarios often

overwhelms these traditional classification approaches. The image classification process

encompasses key stages such as image preprocessing, extraction of image features, and

the application of classifiers. Among these, image feature extraction stands out as a

pivotal step. Traditional image classification approaches struggle with the enormity of

image data, falling short of meeting the demands for both accuracy and speed in image

classification. The advent of deep learning-based image classification methods marks a

breakthrough, overcoming the limitations posed by traditional methods. Deep learn-

ing, a subset of machine learning, adeptly amalgamates low-level data features into

abstract high-level representations, proving indispensable in domains like computer

vision and natural language processing within the realm of artificial intelligence.

2.2 Traditional Image Classification Algorithms

Traditional image classification usually completely establishes an image recognition

model, which generally includes basic steps such as input image data set, image pre-

processing, feature extraction, training classifier and image classification and recogni-

tion [97]. Among traditional machine learning algorithms, image classification requires
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extracting image features to describe the image, which is shown in Fig. 2.1. When the

entire image is used as the input of the classification algorithm, the amount of data

calculated by the algorithm is huge. Secondly, the image contains redundant informa-

tion such as background, which will lead to a reduction in classification efficiency and

accuracy. The main purpose of feature extraction is to reduce the dimension of the

original image, map the original image to a low-dimensional feature space, and obtain

low-dimensional sample features that can best reflect the essence of the image or dis-

tinguish it. After extracting different features, the features need to be fed into different

machine learning algorithms as input. There are many traditional image classification

algorithms, like the K-nearest neighbour (KNN) algorithm.

Figure 2.1: Traditional image classification processing

The KNN algorithm, short for K-nearest neighbor algorithm, functions as a super-

vised learning technique [56]. In essence, it entails identifying the K instances closest to

a specific test sample A within a provided training set. Subsequently, it tallies the class

counts among these K instances and assigns the class of sample A based on the class

with the highest count. KNN is an online learning method, meaning each classification

requires traversing all training samples. Three key elements define KNN: the value of

K, the measure of distance, and the decision rule of classification. The K value is a

pivotal hyperparameter directly influencing the model’s performance. Optimal K value

selection is crucial. A smaller K yields a more intricate and accurate model, albeit with

a higher risk of overfitting, while a larger K results in a simpler model. An extreme

scenario occurs when K equals the number of training samples (K=N), where the final

test result corresponds to the class with the highest number of test samples, regardless

of the test sample’s inherent class. The distance measure determines the closeness
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between a test sample and a training sample, forming the foundation for the selection

of K samples. In KNN, when dealing with continuous features, the distance function

typically employs either Manhattan distance (L1 distance) or Euclidean distance (L2

distance). Conversely, for discrete features, Hamming distance is commonly utilized.

The classification decision rule in KNN involves selecting K training samples closest to

the test sample, utilizing the concepts of K and distance mentioned earlier. The clas-

sification decision is then based on these K samples. The prevalent rule in KNN is the

majority voting rule, where the class of the test sample is determined by the class with

the highest count among the selected samples. However, it is important to note that

this rule’s efficacy heavily depends on the number of training samples. While KNN is

a practical machine learning classification algorithm with a simple and easily under-

standable model, offering high classification accuracy for straightforward problems with

minimal training time complexity, its drawbacks are apparent. The algorithm involves

extensive calculations, leading to prolonged processing times, and demands significant

storage space, making it inefficient as the number of feature dimensions increases.

2.3 Deep Learning Based Image Classification

In contrast to traditional image classification methods, deep learning approaches elim-

inate the need for manual feature description and extraction from target images. In-

stead, they autonomously learn features from training samples through neural net-

works, extracting higher-dimensional, abstract features. These features exhibit a close

correlation with the classifiers, effectively addressing challenges related to manual fea-

ture extraction and classifier selection. Deep learning methods operate as end-to-end

models. This chapter delves into a comprehensive analysis of key deep learning tech-

niques in image classification, exploring the structure, advantages, and limitations of

convolutional neural networks.
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2.3.1 AlexNet

The concept of convolutional neural networks (CNN) comes from scientists at 1906s [146].

It lays the foundation for the development of image classification networks. The pro-

cess involves taking original data as input and systematically abstracting it into feature

representations for the target task layer by layer. This is achieved through a sequence

of operations such as convolution, pooling, and nonlinear activation function mapping.

The fundamental structure of CNN comprises an input layer, convolution layer, pooling

layer, fully connected layer, and output layer. In image classification tasks, the output

layer typically functions as a classifier, with commonly employed classifiers including

Softmax, SVM, and others. LeCun et al. [89] proposed the LeNet-5 network, which

contains 7 layers with Sigmoid activation function. It achieves a 0.8% false rate high

performance on MNIST dataset. However, it has the disadvantages of small training

data set size, weak generalization ability, and high training overhead. Continually,

Krizhevsky et al. [84] proposed an AlexNet network with 5 convolutional layers. It

uses ReLU activation function to solve the gradient vanishing problem caused by Sig-

moid function since the network goes deeper. Following the emergence of the AlexNet

network, the fundamental network structure is defined as a combination of convolution,

ReLu nonlinear activation, MaxPooling and fully connected layers, which is shown at

Fig. 2.2. The evolution of convolutional neural networks can be categorized into two

distinct trends: the augmentation of network depth and the refinement of network

architecture. Two GPUs are used to run separately, and the interaction between the

two only exists at a specific network layer [84].

2.3.2 VGG

Simonyan et al. [149] introduced the Visual Geometry Group (VGG) network as an

extension of the AlexNet, emphasizing the consequential impact of heightened network

depth on ultimate performance outcomes. The VGG architecture incorporates two

pivotal enhancements: 1) In contrast to AlexNet, VGG not only broadens the network
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Figure 2.2: The architecture of AlexNet [84].

but also deepens it, exemplified by VGG-19’s inclusion of 19 convolutional layers, a

notable advancement beyond AlexNet’s 5 layers. 2) VGG strategically underscores

the effectiveness of employing multiple 3x3 convolutional filters as replacements for

AlexNet’s larger 7x7 or 11x11 filters. This design choice not only achieves superior

performance but also mitigates computational costs. This architectural elegance has

established VGG as the foundational network for seminal advancements in diverse

computer vision tasks, including FCN for semantic segmentation and Faster R-CNN

for object detection. The overarching objective of these architectural refinements is

to augment network depth and enhance neural network efficacy while preserving a

consistent receptive field.

The receptive field, as expounded by Luo et al. [100], is conceptually defined as

the spatial extent within which pixels on the feature map, generated by each layer of

a convolutional neural network, are correspondingly mapped back to the input image.

An illustrative example is presented in Fig. 2.3. A commonly invoked analogy posits

that a specific point on the feature map, relative to the size of the original image,

delineates the region wherein the convolutional neural network features comprehend

the input image. Opting for stacked small convolution kernels within a given receptive

field proves more advantageous than employing larger counterparts. This strategic

choice not only fosters the augmentation of network depth through the integration of

multiple nonlinear layers but also ensures the development of a more intricate learning
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model characterized by a reduced parameter count.

Figure 2.3: The calculation of the receptive field is shown above.

VGGNet distinguishes itself through the simplicity of its architectural design, char-

acterized by consistent employment of 3x3 convolution kernels and 2x2 maximum pool-

ing throughout the entire network. This methodological uniformity not only enhances

the overall structural coherence but also serves as a pivotal element in underscoring the

effectiveness of utilizing multiple small filter (3x3) convolutional layers in contrast to a

singular, larger filter (5x5 or 7x7) convolutional layer. If the size of the input image is

5*5, after two 3*3 convolution kernels (with stride=1, padding=0), the receptive field

size is 5*5.

In conclusion, the strengths of VGG lie in its architectural simplicity, methodolog-

ical consistency, and the empirical substantiation that continuous expansion of the

network’s depth, particularly through the utilization of smaller convolutional filters,

engenders discernible enhancements in both performance and feature representation.

VGG, while exemplifying notable architectural advantages, is associated with increased

computational demands and augmented parameterization, leading to heightened mem-

ory utilization. A significant proportion of the parameters is attributed to the initial

fully connected layer, a facet accentuated by VGG’s incorporation of three such fully

connected layers. This characteristic contributes to the network’s substantial resource

requirements, particularly in terms of computational processing and memory alloca-
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tion. The increased parameter count, predominantly emanating from the fully con-

nected layers, necessitates a more judicious consideration of resource allocation and

computational efficiency when deploying the VGG architecture in practical applica-

tions.

2.3.3 ResNet

He et al. [63] proposed a Residual Neural Network (ResNet), namely ResNet V1, to

solve the degradation problem of deep network training, which is a milestone event

in the history of deep learning. In 2014, the VGG architecture comprised a total of

19 layers, whereas the subsequent ResNet introduced in 2015 featured a substantially

deeper configuration, extending to 152 layers. However, it is essential to recognize that

superiority in network performance is not solely contingent on increased depth. ResNet

introduces innovative architectural strategies that synergize with network depth. No-

tably, the incorporation of residual learning constitutes a pivotal architectural inno-

vation within ResNet. This approach strategically leverages the residual connections,

enabling the network to effectively utilize its depth for enhanced learning capabilities.

Empirical evidence underscores the critical influence of network depth on model

performance. An increased number of network layers theoretically enables the extrac-

tion of more intricate feature patterns, suggesting improved results with deeper models.

As the depth of the network increases, its expressive capacity becomes more potent.

The convolutional kernel’s primary function is to extract image features, however, a

single convolutional kernel is inherently limited in representing the entirety of an image.

Given this constraint, the utilization of multiple convolutional kernels becomes imper-

ative. These diverse kernels can capture distinct features within the image, thereby

enhancing the model’s capability to learn intricate image characteristics. Consequently,

employing an ample number of convolutional kernels and parameters proves essential

for effectively characterizing the nuanced aspects of the original image. Consequently,

the advantages of deep networks manifest in two key aspects. The hierarchical features
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become more sophisticated as the network depth increases and greater network depth

correlates with heightened expressive prowess.

Nevertheless, practical experiments reveal a phenomenon known as the degradation

problem in deep networks. As network depth augments, there is an observed saturation

or even a decline in network accuracy.

There are two primary factors contributing to this phenomenon. The first factor

is associated with the deepening of the network, leading to the vanishing or explod-

ing of the backpropagation gradient. Backpropagation [24] serves as the mechanism

for adjusting the weights of the network, encompassing parameters such as the con-

volutional kernel values, weights of hidden layers, and biases. These adjustments are

facilitated through the computation of the gradient, which involves the calculation of

partial derivatives of the objective function, the sum of squares of the difference be-

tween the predicted and true values, with respect to the weights of each layer. This

computation relies on the chain rule during the backpropagation process. The gradient

undergoes a series of successive multiplications, potentially resulting in significant con-

traction or expansion. Assuming the error gradient for each layer is a value less than

1, during backpropagation, each forward propagation is scaled by an error gradient

less than 1. With increasing network depth, the cumulative effect of multiplication

by values less than 1 results in a gradient that converges toward zero. Conversely, if

the gradient for each layer exceeds 1, a gradient explosion occurs, impeding conver-

gence. The second factor contributing to the challenges is the degradation problem,

even when the issue of gradient vanishing is addressed. Despite the mitigation of gradi-

ent disappearance, a deep layered network may exhibit reduced effectiveness compared

to a shallower network. The original layers are derived from a shallower model that

has undergone training. Although the original layers with attachment layers are set

a constant value as previous model, a discernible disparity still emerges between the

shallow and deep layers, resulting in distinct errors. These reasons are attributed to

challenges related to gradient vanishing or explosion, thereby impeding the effective

training of deep learning models.
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ResNet introduces the concept of residual learning as a solution to the degradation

problem observed in deep networks. A residual block encompasses two distinct paths:

the first is denoted as F (x), representing the residual component and is aptly termed

the residual path, while the second, designated as x, constitutes an identity mapping

and is referred to as the shortcut. The symbol
⊕

in the accompanying diagram signifies

’element-wise addition’, necessitating a prerequisite condition that the dimensions of

both F (x) and x, engaged in the operation, must be identical. This ensures the viability

of the element-wise addition operation, crucial for maintaining consistency in the sizes

of the residual and identity paths within the residual block.

Within a stacked layer structure, where several layers are sequentially arranged, let

the input be denoted as x. The learned features are recorded as H(x). The objective

is to enable the learning of the residual, denoted as F (x) = H(x)− x. In essence, the

original learning feature becomes F (x) = H(x)+x. The reason behind this approach is

that learning the residual is comparatively more straightforward than directly learning

the original features. In instances where the residual is zero, the stacked layer merely

performs identity mapping, ensuring, at the very least, that the network’s performance

does not degrade. In practice, the residual is not zero, allowing the stacked layer to learn

new features based on the input, consequently yielding enhanced performance. Fig. 2.4

illustrates the structure of residual learning, characterized by a shortcut connection.

ResNet incorporates an identity input x to the output, ensuring that each residual

module retains access to the original input. This strategic inclusion prevents the loss

of essential information in the learning process. Notably, the fundamental departure

from conventional approaches lies in the ResNet’s objective. Instead of expecting each

layer to directly conform to the desired feature map, the residual module is designed to

learn the disparity between the output and the input. This paradigm shift simplifies

the learning task, requiring less information gain for effective model training.

ResNet leverages deep neural networks while concurrently circumventing challenges

associated with gradient dissipation and degradation. Despite the apparent depth of

ResNet, a substantial portion of its network layers does not significantly contribute
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Figure 2.4: A general residual block of residual learning.

to the learning process due to their primary role in preventing model degradation

and mitigating substantial errors. Furthermore, it is crucial to note that while the

residual connections in ResNet alleviate issues related to gradient disappearance or

explosion and network degradation, they do not provide a complete solution but rather

a mitigating mechanism.

2.3.4 DenseNet

Cornell University’s Densely Connected Convolutional Networks (DenseNet) [68] fur-

ther extends the idea of ResNet, which not only provides the connection between layers

but also provides the bypass connection for all previous layers. He et al. [63] posited a

fundamental assumption when introducing ResNet: if a deeper network encompasses

several additional layers compared to a shallower network and is proficient in learning

identity mapping, the performance of the model trained by the deeper network should

not be inferior to that of the shallower network. Simply, augmenting a network with ad-
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ditional layers capable of learning identity mapping results in the new network’s worst-

case scenario being that these layers, post-training, essentially function as identity

mappings without detrimentally affecting the original network’s performance. When

numerous layers are discarded throughout the training process, the ability of ResNet’s

convergence remains activated, indicating the obvious redundancy in the ResNet ar-

chitecture. A similar assumption was made with the introduction of DenseNet: rather

than redundantly learning features multiple times, extracting features through feature

reuse offers a more efficient approach.

DenseNet employs a distinctive paradigm of dense connectivity wherein every layer

within the network establishes a direct connection with its antecedent layer, facilitat-

ing the efficient reuse of features. Simultaneously, each layer is purposefully crafted

to exhibit a characteristic narrowness, thereby mitigating redundancy; this design phi-

losophy ensures that only a minimal set of features is acquired. The process of con-

catenation puts all output feature maps emanating from layers x0 to xl−1 through

channel-wise connections. The employed nonlinear transformation H in this context

is a composite operation comprising Batch Normalization (BN), Rectified Linear Unit

(ReLU), and a Convolutional layer (Conv) with a kernel size of 3×3 [68].

The initial impression conveyed by the term ”dense connectivity” may lead one to

anticipate a substantial augmentation in the parameters and computational load of

the network. However, the operational efficiency of DenseNet surpasses that of other

networks. This efficiency is grounded in the optimization of computational load at

each network layer and the judicious reuse of features. In practice, each layer within

the DenseNet architecture is tasked with acquiring a limited set of features, thereby

effecting a noteworthy diminution in both parameter quantity and computational de-

mand. This strategic reduction in the scope of feature acquisition per layer contributes

significantly to the network’s overall efficiency, countering the intuitive expectation of

heightened computational complexity associated with dense connections.

Notably, the dense connectivity constitutes a marked departure from conventional

network architectures. The extremity of this approach is exemplified by the scenario
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Figure 2.5: The process of concatenation [68].
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where each layer exclusively learns a solitary feature map. These dual attributes,

namely the dense connectivity and the intentional narrowness of each layer, constitute

the principal difference between DenseNet and other extant networks. It is imperative

to underscore that the deliberate narrowness of layers within the network would be

unattainable without the incorporation of dense connectivity.

Given that the concatenation operation is requisite for the integration of feature

maps from distinct layers within the DenseNet framework, it becomes imperative to

uphold uniformity in feature size across these diverse layers. This condition, however,

imposes constraints on the integration of down sampling procedures within the network.

To circumvent this limitation and facilitate down sampling, the author strategically

divides DenseNet into multiple dense blocks, as depicted below:

Figure 2.6: A deep DenseNet predicts a horse image, which includes
three dense blocks and transition layers [68].

Maintaining a consistent feature size within each dense block is imperative, prompt-

ing the introduction of transition layers between distinct dense blocks to facilitate down

sampling. In the experimental framework devised by the author, the transition layer

is structured to include Batch Normalization (BN), a Convolutional layer (Conv) with

a kernel size of 1×1, and a subsequent 2×2 average-pooling operation. This configura-

tion ensures the effective implementation of down sampling between consecutive dense

blocks. The convolution layer serves to reduce the dimension of the input feature maps

to half of their original size, while the pooling layer further decreases the dimension

of the feature maps by half. This collective reduction in dimension is strategically

employed to curtail the size of feature maps transferred between Dense Blocks, thereby

enhancing computational efficiency.

DenseNet, as an alternative convolutional neural network characterized by increased
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layer depth, encompasses several notable advantages. It exhibits a reduced parameter

count compared to ResNet. In attaining equivalent accuracy levels on the ImageNet

classification dataset, DenseNet necessitates fewer than half the parameters required

by ResNet. This characteristic bears practical significance for industry applications,

wherein the deployment of more compact models not only serves to conserve band-

width but also alleviates storage overhead substantially. Additionally, the introduction

of dense connectivity augments feature reuse through bypass connections. Certain fea-

tures extracted by earlier layers retain direct utility for subsequent, deeper layers in

the network architecture. Even the transition layer extensively incorporates features

of all layers in previous dense blocks. Moreover, the network demonstrates enhanced

trainability and imparts a discernible regularization effect. It effectively mitigates is-

sues associated with gradient vanishing and model degradation. The features derived

from each layer within the neural network represent a nonlinear transformation of the

input data. With increasing depth, the compounding of nonlinear functions leads to

a progressive escalation in the complexity of the overall transformation. In contrast

to conventional neural network classifiers that predominantly rely on the features of

the final layer characterized by maximal network complexity, DenseNet possesses the

distinctive ability to comprehensively exploit shallow features characterized by lower

complexity. This characteristic facilitates the extraction of a smoother decision func-

tion, thereby contributing to enhanced generalization performance.

2.4 Traditional Image Segmentation Algorithms

Machine vision technology has been widely applied and researched in agriculture for the

identification and detection of plants, including species and disease classification. De-

spite some significant challenges to be discussed below, it has demonstrated promising

success in many case studies of plant pathology identification systems [61, 4]. Af-

ter decades of research, machine vision has enhanced the quality management of plant

pathology identification. Machine vision technology is also utilized in other agricultural
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applications, such as grading and harvesting fruits [152, 169, 1]. Numerous researchers

have developed image processing techniques and deep learning methods as guidance

for machine vision, working in different fields and environments.

Threshold-based Segmentation

The fundamental concept behind the threshold method [12] involves determining one

or more grayscale thresholds based on the grayscale characteristics of the image. These

thresholds are then used to compare the grayscale values of each pixel within the image.

Subsequently, the pixels are categorized into appropriate groups based on the results of

these comparisons. Consequently, the pivotal step in this methodology is to determine

the optimal grayscale threshold according to a specific criterion function. The thresh-

old method is particularly well-suited for images in which the target and background

exhibit distinct grayscale ranges. If the image contains only two classes, the target and

the background, then a single threshold suffices for segmentation. In this scenario, it

becomes a single-threshold segmentation. However, when the image contains multiple

targets that require extraction, using a single threshold leads to mixed results. In such

cases, multiple thresholds must be employed to separate each target effectively. This

approach is referred to as multi-threshold segmentation. The advantage of the thresh-

old segmentation method is straightforward and efficient in the calculation process.

It relies solely on the gray values of individual pixels, which simplifies the method.

The Otsu algorithm, also recognized as the threshold-based method, was introduced

by the Japanese scholar Otsu in 1979 [114, 125, 41]. This algorithm offers an efficient

approach to image binarization, leveraging thresholds to partition the original image

into two distinct components: the foreground and the background. The essential idea

of the algorithm is to maximize the inter-class variance. From the preceding discus-

sion, it is evident that the crux of the threshold segmentation method lies in selecting

the appropriate threshold. One promising direction for enhancing this method is the

integration of intelligent genetic algorithms for optimizing threshold selection. This

may represent the future evolution of image segmentation methods based on threshold
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segmentation.

Edge-based Segmentation

Image segmentation algorithms based on edge detection [183] aim to address the seg-

mentation challenge by identifying boundaries that separate distinct regions. This

method can be considered one of the earliest and most extensively explored techniques

in the field. Typically, the gray values of pixels at the boundaries of different areas

exhibit significant changes. When an image is transformed from the spatial domain

to the frequency domain using Fourier analysis, these boundaries correspond to high-

frequency components, making edge detection a relatively straightforward algorithm.

Edge detection techniques can be broadly categorized into two approaches: serial edge

detection and parallel edge detection. Serial edge detection relies on the verification

outcomes of prior pixels to determine if the current pixel belongs to an edge point.

In contrast, parallel edge detection assesses a pixel’s edge membership based on the

pixel itself and some neighbouring pixels. The simplest edge detection method is the

parallel differential operator method, like Canny operator [112, 164] and Sobel opera-

tor [118, 175]. It capitalizes on the abrupt transitions in pixel values between adjacent

regions and utilizes first-order or second-order derivatives to identify edge points. In re-

cent years, alternative methods have been developed, including those based on surface

fitting, boundary curve fitting, reaction-diffusion equations, serial boundary search,

and deformation models. The advantages and drawbacks of edge detection are note-

worthy. It excels in precise edge localization and rapid processing speed. However,

it falls short in ensuring edge continuity and closure. Moreover, it tends to produce

numerous broken edges in high-detail areas, hindering the formation of large coher-

ent regions and is unsuitable for dividing intricate regions into smaller, manageable

fragments. These two challenges value that edge detection yields only edge points,

falling short of a comprehensive image segmentation process. As such, post-processing

or the integration of complementary algorithms is necessary to achieve the complete

segmentation task. In future research, key areas of focus will include the selection of
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adaptive thresholds for initial edge point extraction, the identification of larger regions

for hierarchical image segmentation, and the development of techniques to distinguish

significant edges. These aspects will prove pivotal in advancing image segmentation

methodologies.

Region-based Segmentation

The region-based segmentation method [59] is a segmentation technique that involves

directly identifying regions within an image. There are two fundamental approaches to

region-based extraction methods: one is region growing, which initiates from a single

pixel and progressively merges neighbouring pixels to form the desired segmentation

region. The other approach begins with the overall image and progressively partitions

it into the required segmented areas. Region growth [112] initiates from a set of seed

pixels representing different growth areas. It proceeds by merging eligible neighbour-

ing pixels into the growth area represented by the seed pixels and continues using the

newly added pixels as new seed pixels. This merging process continues until no new

pixels meeting the specified conditions are found. The crucial aspects of this method

involve selecting the appropriate initial seed pixels and establishing sensible growth cri-

teria. The region growth algorithm addresses three fundamental challenges: selecting

or determining a set of seed pixels that accurately represent the desired area; defining

the criteria for incorporating adjacent pixels during the growth process; and establish-

ing conditions or rules for terminating the growth process. Region growing commences

from a specific pixel or a set of pixels, ultimately culminating in the entire region’s iden-

tification, facilitating the extraction of the desired target. Conversely, region splitting

and merging [6] can be considered as the inverse procedure of region growth. Starting

with the entire image, this approach involves continuously splitting it into sub-regions.

Subsequently, the foreground regions are merged to isolate the foreground target that

requires segmentation, ultimately resulting in the successful extraction of the target.

In practical applications, it is common to combine the region growing algorithm with

the region splitting and merging algorithm. This hybrid approach proves more effective
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in segmenting complex scenes characterized by intricate objects or natural scenes, as

well as other image segmentation scenarios where prior knowledge is limited.

The watershed algorithm [186, 31, 142] is a straightforward and intuitive region-

based method for image segmentation. It operates by considering the image as a

representation of topological features, akin to a landscape with mountains and lakes.

In this analogy, the mountains are surrounded by water, forming a watershed. The

watershed segmentation method is rooted in mathematical morphology and topology

theory. It treats the image as a topological terrain, where each pixel’s gray value

corresponds to its elevation. In this context, each local minimum and its associated

influence area are referred to as catchment basins, and the boundaries between these

basins are the watersheds. The concept of watersheds is best understood through

the metaphor of an immersion process. That means puncturing a small hole at the

site of each local minimum and slowly submerging the entire model in water. As

immersion deepens, the influence areas of local minima expand, and watersheds form

where basins converge. The watershed algorithm is particularly effective at detecting

weak edges in images. While it can sometimes lead to over-segmentation due to noise

or subtle grayscale variations on object surfaces, it excels at ensuring the capture of

closed and continuous edges. Moreover, the closed catchment basins obtained through

the watershed algorithm provide analyzable characteristics of regional images.

Clustering-based segmentation

Clustering-based segmentation [26] is a prevalent technique within the realm of medical

image segmentation and is akin to a statistical approach that operates independently of

a training sample set. Commonly employed clustering methods encompass the K-means

clustering method, the fuzzy c-means clustering algorithm, the maximum expectation

algorithm, and more. Nevertheless, while the clustering method doesn’t necessitate

a training dataset, it crucially depends on the specification of initial parameters, and

the resulting segmentation outcomes are notably susceptible to the initial parameter

settings. K-means clustering [35, 113] stands as one of the most frequently employed
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clustering algorithms, with its roots tracing back to signal processing. The primary ob-

jective of this algorithm is to partition data points into K clusters, identifying the centre

of each cluster while minimizing a designated metric. Its paramount advantage lies in

its simplicity, ease of comprehension, and expeditious processing speed. Nonetheless, a

notable drawback of K-means is its applicability exclusively to continuous data, requir-

ing the user to pre-define the number of clusters before initiating the clustering process.

The K-means clustering algorithm offers a significant advantage due to its speed, sim-

plicity, and remarkable efficiency, making it highly suitable and scalable for handling

large data sets [23]. It exhibits a time complexity that approaches linearity, rendering

it exceptionally well-suited for mining extensive datasets. However, the K-means algo-

rithm also presents certain disadvantages. Foremost, it lacks explicit selection criteria

for determining the number of clusters, making it a challenging task to estimate the

optimal value of K. Additionally, within the K-means algorithm framework, each iter-

ation involves traversing all the samples, resulting in substantial computational costs.

Lastly, K-means is rooted in a distance-based partitioning approach, restricting its ap-

plicability to convex datasets and rendering it less suitable for clustering non-convex

clusters.

2.5 Regional Proposal-based Deep Learning Seg-

mentation

Recent years, convolutional networks drive the development of recognition [84, 149]. It

improves the image classification and object detection. However, the task of semantic

segmentation is different from the above tasks. It is a space-intensive prediction task

in computer vision. Semantic segmentation is a classification at the pixel level. Pixels

belonging to the same class are classified into one class. Therefore, semantic segmen-

tation understands images from the pixel level. That means each pixel needs to be

predicted. Previously, each pixel’s label method is complicated, which has excellent

defects in terms of speed and accuracy. Before deep learning methods became popu-
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lar, semantic segmentation methods such as TextonForest and random forest classifiers

were more commonly used methods. However, after the popularity of deep convolu-

tional networks, deep learning methods have improved a lot compared to traditional

methods. This section focuses on the state-of-the-art deep learning algorithms, such

as Fully Convolutional Networks, and SegNet.

2.5.1 Region-based Convolutional Neural Network (R-CNN)

In 2012, Ciresan[25] used CNN to challenge the semantic segmentation task. Cire-

san adopts a sliding window method, taking a small image patch centered on each

pixel and inputting it into CNN to predict the semantic label of the pixel. This is a

very meaningful attempt, breaking the precedent of CNN only being used for target

classification, and the author also achieved state-of-art achievements that year. How-

ever, the shortcomings of this method are obvious. It is necessary to traverse each

pixel to extract patches for training and prediction, which is slow and time-consuming.

Meanwhile, the appropriate window size is hard to set. If it is too small, it will lack

contextual information; if it is too large, it will increase the amount of calculations;

there are undoubtedly a lot of redundant calculations between many windows. The

shortcomings of the sliding window method also exist in the field of target detection,

and researchers use region based methods to solve this problem. In the field of seman-

tic segmentation, several algorithms based on region selection have gradually extended

to the field of semantic segmentation from previous work on target detection. The

R-CNN meticulously picks through the input image, confirming region proposals, and

employs the formidable CNN framework to make precise predictions about the objects

within each proposed region [25].

In 2015, Professor Girshick of the University of Berkeley and others jointly proposed

the first deep learning model applied in the direction of target detection: Region-based

Convolutional Neural Network (R-CNN)[48]. The R-CNN architecture is shown in Fig.

2.7. The main process of R-CNN is extracting 2000 region proposals using selective
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Figure 2.7: The R-CNN framework [25].

search[48, 168]. For each proposal, it is warped into a fixed size for a CNN model.

As a feature extractor, the CNN produces a 4096-dimensional vector to fed into linear

Support Vector Machine (SVM). Finally, the object is predicted in each region and

classified as a class. However, there still have obvious drawbacks with R-CNN. It is

time-consuming as 2000 region proposals need to be classified in each image. Testing

per image expends 47 seconds. Thus, real-time implementation is impossible. There

has no learning for the selective search stage, which could generate the awful candidate

for region proposals.

Figure 2.8: The architecture of Fast R-CNN network [47].
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2.5.2 Fast R-CNN

In 2015, R. Girshick et al. proposed an advancement detector, Fast R-CNN[47]. It

is similar to the R-CNN, but with high accuracy and faster prediction. Instead of

extracting region proposals, the input image is fed into CNN that achieves a convolu-

tional feature map. Thus, the convolution operation for each image only needs to do

once. It decreases the computation times. Then, the region proposals are identified

from the convolutional feature map. For each proposal, a fix-length feature vector is

generated from the feature map on the Region of Interest (RoI) pooling layer, which

fed into a fully connected layer. The class of proposals is predicted in the softmax layer

and the offset value of the bounding box. Detector and bounding box regressor are

training simultaneously, as shown in Fig. 2.8. The architecture of Fast R-CNN net-

work starts from feature extraction, omitting the selection of region. It directly uses a

neural network to perform operations on the entire image. This network can efficiently

complete feature extraction and predict aim objects [48]. Fast R-CNN successfully

exceeds R-CNN in performance [62]. On VOC07 dataset [37], Fast R-CNN improve

11.5% in MAP. Meanwhile, the speed is 200 times faster than R-CNN. However, the

speed still is limited due to the detection of region proposals. Both of the R-CNN

and Faster R-CNN algorithms identify region proposals by the selective search. The

selective search slows down the processing speed. Therefore, S. Ren et al. came up

with Faster R-CNN detector that erases the selective search process and detects the

network’s region proposals.

2.5.3 Faster R-CNN

The Faster R-CNN proposed in 2016 made breakthrough progress that replaced the

most time-consuming and fatal part of its predecessors: the selective search algorithm.

Faster R-CNN is an end-to-end real-time detector [131]. This object detection system

is composed of a deep fully convolutional network, Region Proposal Network (RPN),

and Fast R-CNN detector, as shown in Fig. 2.9. It replaces the selective search al-
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Figure 2.9: The diagram of Faster R-CNN network [131].

gorithm with region proposal network to select regions and reduces the time from 2s

to 10ms [131]. As a CNN based object detection approach, Faster R-CNN extra fea-

ture maps from an image using fundamental convolutional layers. The feature map is

shared with the RPN layer and the Fully Convolutional (FC) layer. RPN generates

the region proposals, which decides the property of anchors, positive or negative. The

bounding box regression will fix anchors to get the precise proposals. The RoI pooling

layer collects feature maps from convolutional layers and fixed proposals. After inte-

grating this information, the proposal feature maps are extracted, which are conveyed

to FC layers. Finally, it is calculated the proposal class and obtained the final precise

bounding box simultaneously. The RPN, as the main contribution, brings down the

processing time of region proposals. It tells the Fast R-CNN were to detect using the

‘attention mechanisms. Meanwhile, it shares layers to the following detection steps.

Although Faster R-CNN breaks the speed bottleneck of algorithms mentioned above,

the redundancy computation still exists in the following detection stage.
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2.6 Encoder-Decoder Based Deep Learning Segmen-

tation

The Encoder-Decoder based Segmentation Model is a popular architecture in deep

learning for semantic segmentation tasks. It comprises two main components: the

encoder and the decoder. The encoder component is typically a convolutional neural

network (CNN) that processes the input image in a hierarchical manner. It extracts

high-level features by passing the input image through a series of convolutional lay-

ers. Each layer captures increasingly complex and abstract features from the image.

The decoder component is designed to generate a segmentation mask or map that

corresponds to the original input image. It takes the high-level features extracted by

the encoder and progressively upsamples or expands them using techniques such as

transposed convolutions or bilinear interpolation. The goal is to recover the spatial

information lost during the encoding process. The final output of the model is a seg-

mentation map, where each pixel is assigned a label corresponding to a particular class

or class. The encoder-decoder architecture allows for end-to-end training, where the

model learns to extract meaningful features from the input image and reconstruct the

segmentation mask. This architecture is effective for segmentation tasks as it combines

the feature extraction capabilities of the encoder with the spatial recovery capabilities

of the decoder, enabling accurate and detailed segmentation of objects or regions within

the input image.

2.6.1 Fully Convolutional Network

Typically, in convolutional neural network (CNN) architectures, several fully connected

layers follow the convolutional layer to transform the feature map into a fixed-length

feature vector. The conventional CNN structure, as exemplified by AlexNet, is well-

suited for tasks such as image-level classification and regression. These tasks inherently

seek to derive a numerical depiction, specifically a probability distribution, for the entire
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input image. For instance, in the case of AlexNet’s ImageNet model, the output is a

1000-dimensional vector signifying the probability of the input image belonging to each

class, determined through softmax normalization.

Fully Convolutional Network (FCN) [96] addresses semantic segmentation chal-

lenges by enabling pixel-level classification of images. In classical CNN architectures,

the standard fully connected layer condenses the original image, converting a two-

dimensional matrix into a one-dimensional vector, causing the loss of valuable spatial

information. This yields a scalar output denoting the classification label. In contrast,

FCN is adept at handling inputs of varying dimensions. Through the use of decon-

volution layers, it undertakes upsampling on the feature map derived from the final

convolutional layer, thereby restoring the output dimensions to match the original im-

age. Particularly noteworthy is FCN facilitates the generation of predictions for each

pixel, all the while preserving the spatial information inherent in the original input

image. Ultimately, the pixel-wise classification is executed on the upsampled feature

map. Fig.2.10 denotes the schematic of fully convolutional neural network. Fully

convolutional networks can efficiently upsampling via deconvolutional layers and im-

prove upsampling roughness through skip connection. This network structure largely

helps in dense predictions like semantic segmentation [96]. However, directly sampling

the image size from the final feature map results in a notably coarse accuracy. This

phenomenon stems from the deeper layers of the network, which can learn intricate

features but, concurrently, risk the loss of crucial spatial location information. No-

tably, shallower layers retain more precise location information in their output. To

enhance results, the skip connection is introduced that combines both deeper and shal-

lower layer outputs, which is shown in Fig. 2.11. The process of feature extraction

is referred to as the encoder, which is the phase in FCN where the preceding feature

maps become smaller. The process of upsampling or deconvolution carried out later

is referred to as the decoder. Within the decoder, the image is restored to its original

size [96].

In essence, FCN distinguishes itself from CNN by substituting the final fully con-
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Figure 2.10: The Fully convolutional networks [96].

nected layer of CNN with a convolutional layer, resulting in an output that comprises

an image with assigned labels. The FCN recovers the categorization of each pixel from

abstract features, thereby extending the classification from the image level to the pixel

level. The principal distinction between fully connected layers and convolutional lay-

ers lies in the fact that neurons within the convolutional layer establish connections

solely with local regions in the input data, with parameter sharing among neurons

within the same convolutional column. Despite this structural variance, both layer

types share a commonality in their computation of dot products by neurons, rendering

their functional forms analogous. Consequently, it becomes plausible to reciprocally

convert between these layer types. For any given convolutional layer, a corresponding

fully connected layer exists capable of executing an equivalent forward propagation

function. The weight matrix associated with such a fully connected layer is charac-

terized by its substantial size, comprising predominantly zero elements with specific

non-zero blocks. Notably, within the majority of these non-zero blocks, the elements

share uniform values. Conversely, any fully connected layer can be transformed into

a convolutional layer. Specifically, the input data volume’s size is treated as a filter

volume, resembling the spatial arrangement of the original fully connected layer. This
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transformation ensures that the output from the convolutional layer aligns closely with

the output of the initial fully connected layer.

Figure 2.11: The process of feature extraction [96].

The forefront of deep learning models for semantic segmentation is largely char-

acterized by architectures rooted in the FCN, which contributes to the substantial

advancement in overall accuracy. Functioning as a pioneering model in semantic seg-

mentation, FCN is purposefully constructed as an end-to-end network tasked with

predicting pixel-level information, effectively translating input pixels into correspond-

ing output pixels. This innovation marked a paradigm shift by fundamentally altering

the conventional approach that necessitated window-based transformations for seman-

tic segmentation tasks, effectively transforming the task into an image classification

problem. Notably, FCN eliminates the reliance on fully connected layers tradition-

ally employed in image classification, like CNNs, opting instead for the exclusive use

of convolutional layers throughout the network architecture. However, the results of

FCN, even with an 8x upsampling, remain insufficiently precise. While this represents

a notable improvement compared to a 32x upsampling, the results remain character-

ized by blurriness and smoothness, lacking sensitivity to intricate details within the

image. The classification of each pixel occurs without a comprehensive consideration

of inter-pixel relationships. Moreover, the network omits the conventional spatial reg-
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ularization step commonly applied in pixel classification-based segmentation methods,

resulting in a notable absence of spatial consistency.

2.6.2 SegNet

SegNet is an open-source project focused on image segmentation [10], developed by the

team at Cambridge University. This initiative aims to accurately identify and segment

areas within images where various objects are present, such as cars, roads, pedestrians,

and more, down to the pixel level. The implementation of image segmentation utilizes a

convolutional neural network, primarily consisting of two key components: the encoder

and the decoder. The encoder follows the VGG16 architecture and primarily analyzes

object-related information. On the other hand, the decoder translates the analyzed

information into the final image representation, assigning each pixel a specific colour

or label corresponding to its respective object information. Subsequent chapters will

delve into the expansion and enhancement of the SegNet model.

Figure 2.12: The architecture of SegNet [10].

As depicted in the above figure, SegNet is a symmetric network comprising an en-

coder (on the left) and a decoder (on the right). Upon input of an RGB image, the

network categorizes objects within the image (e.g., ”road,” ”car,” ”building,” etc.) by

leveraging the semantic information associated with these objects. Ultimately, it pro-

duces a segmented image representing the identified objects [10]. Although it boasts a

sophisticated name, the encoder is essentially a series of convolutional networks. The

network primarily comprises volume-based layers, pooling layers, and BatchNormaliza-
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tion layers. The volume-based layer extracts local features from the image, the pooling

layer reduces the image dimensions and conveys scale-invariant features to the sub-

sequent layer, and BatchNormalization normalizes the distribution of training images

while expediting the learning process.

To sum up, the encoder’s role involves categorizing and scrutinizing the image’s

low-level local pixel values to derive high-level semantic information (”car,” ”road,”

”pedestrian”). The decoder then assimilates this semantic information, associating

each object with its corresponding pixel points and representing each object with a

distinct colour.

With the encoder having acquired comprehensive objects and approximate posi-

tional information, the subsequent task involves mapping these objects to precise pixels.

This task is handled by the decoder. The decoder involves upsampling the downsized

feature image and subsequently applying convolutional processing to the upsampled

image. This process aims to enhance the geometric shape of the objects and compen-

sate for the loss of details caused by the pooling layer in the encoder, which reduces

the object’s granularity. The encoder analyzes the image to determine the type of

object present in a specific area, while the decoder identifies the pixels in the original

image that correspond to this object. Through this process, an image is successfully

segmented. Following each round of maximum pooling and downsampling, the spatial

resolution of the feature map decreases, which poses a challenge for accurately seg-

menting boundary contours. As a solution, one option is to store all feature maps, but

this would significantly strain memory resources. Consequently, the SegNet proposes a

more memory-efficient approach by exclusively recording the indices of the maximum-

pooled values. While this storage method may result in a minor loss of precision, it

remains suitable for practical applications with more modest memory constraints.

SegNet employs a technique called Pooling Indices to retain the original informa-

tion of pooling points. During processing in the encoder’s pooling layer, the system

records the source area of each 1×1 feature point pooled from the preceding 2×2 area.

This information is referred to as Pooling Indices in the research paper. In the decoder
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phase, these Pooling Indices come into play. Given SegNet’s symmetrical structure,

the corresponding pooling layer’s Pooling Indices can be utilized to determine where

a specific 1 × 1 feature point should be positioned within the upsampled 2 × 2 area

during the upsampling of the feature map in the decoder. The final layer of the en-

coder comprises the pooling layer, continuing the downsampling process. With this,

the encoder’s role concludes, and the decoding phase ensues. In essence, each decoding

layer undertakes the inverse of the encoding process, albeit with some distinctions.

This process is illustrated in the figure below. Initially, the prior pooling results are

reinstated based on the stored maximum pooling positions. Upon this restoration, the

feature map expands in size, necessitating the placement of zeros in other locations.

Subsequently, the resulting feature map undergoes convolution with the kernel, gener-

ating a dense feature map, which is then subjected to batch processing. These steps

are iteratively applied to each mapping.

Figure 2.13: The computation procedure of SegNet.

2.7 Evaluation Metrics

The mean Intersection over Union (IoU) [132] characterizes the balance between preci-

sion and recall performance measures. This section also shows both precision and recall

results and demonstrates that the performance of the FCN with the cross dropout focal

loss function gives very good segmentation results.



2.7 Evaluation Metrics 44

• Mean Intersection over Union, mIoU : In semantic segmentation, this eval-

uation metric calculates the intersection ratio of two sets. These two sets are

annotated data and predicted outputs [44]. It is computed by

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

, (2.1)

where pij and pji represents false positive and false negatives for class i and class

j respectively. The value of pii is the number of true positives. The value of k is

the total number of classes.

• Mean Accuracy: It computes two sets, which are the number of the correct

pixels pii and the total number of pixels per class [44]. After getting per-class

accuracy, the mean accuracy mAcc averages the total k + 1 classes:

mAcc =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

. (2.2)

• Precision It [106] refers to the proportion of the total number of true positives

(TPs) divided by the sum of all TPs and false positives (FPs):

Precision =
TP

TP + FP
. (2.3)

The average of per-class precision [155] is

PrecisionM =
1

l

l∑
i=1

Precision, (2.4)

which is the arithmetic mean of all the summary precision values by the number

of classes l.

• Recall It [106] defines the number of correct positive predictions, which are

achieved from all the positive predictions. False negatives and true positives
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denote total samples:

Recall =
TP

TP + FN
. (2.5)

The average per-class recall is identified as

RecallM =
1

l

l∑
i=1

Recall. (2.6)

• F1-score The RecallM [155] focuses on the per-class effectiveness of class labels.

A good model expects to get high values on both precision and recall. However,

it is difficult to decide the model performance when the precision and recall are

reaching different extremums. Thus, it is necessary to use the F1-score in the

evaluation. The F1-scoreM [155], on the other hand, summarizes the PrecisionM

and the recall of a classifier system into a single metric

F1− scoreM = 2× (PrecisionM ×RecallM)

(PrecisionM +RecallM)
. (2.7)

• TP rate and FP rate The TP rate reflects the model’s ability to correctly

identify positive cases (e.g., diseased samples). It measures the proportion of

actual positives that are correctly identified as positive by the model out of all

actual positives. The FP rate reflects the model’s tendency to incorrectly identify

negative cases (e.g., healthy samples) as positive. It measures the proportion of

actual negatives that are wrongly labeled as positive by the model out of all actual

negatives. These rates vary by adjusting the model’s decision threshold, which

determines the probability score at which outcomes are classified as positive or

negative.
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FP rate =
FP

FP + TN
,

TP rate =
TP

TP + FN
.

(2.8)



Chapter 3

Explore Loss Function for

Imbalanced Data Problem in

Semantic Segmentation

Deep learning methods have proven their potential in semantic segmentation. However,

they depend on the data quality and training process. Usually, the data corresponding

to the objects to be segmented are of different sizes and this creates difficulties for

the segmentation method. Objects are segmented and associated with classes during

the training process. Data imbalance is a challenging problem, which often results

in unsatisfactory segmentation performance. This chapter proposes a solution to this

task based on a novel deep learning approach based on the fully convolutional network,

which expresses well the learning weight of features providing a balance of the uniform

distribution of classes within the dataset. The performance of the considered fully con-

volutional network (FCN) with different various is considered and carefully evaluated.

The proposed method improves efficiently the semantic segmentation performance over

other well-known methods. It is demonstrated on Cityscapes and PASCAL VOC 2010

publicly available datasets. The implementation is over relatively large data sets. The

47
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achieved mean accuracy of the proposed improvement network with cross dropout

focal loss function (CDFL) on Cityscapes dataset is 76.41% and on PASCAL VOC

2010 dataset is 79.63% which is approximately 2.5% improvement compared with the

network implemented with the improvement functions.

3.1 Imbalanced Semantic Segmentation Analysis

Semantic segmentation is defined as the pixel-level classification [173, 44, 57]. The

results depend to a large extent on the dataset balance. When one label data is in the

minority class while millions of labels are in the majority class, it can lead to a slight

bias or severe imbalance in the predictive results [72]. This means data imbalance is

a fundamental problem in semantic segmentation tasks, which restricts the accuracy

and precision of the image segmentation. The imbalanced dataset poses a challenge

for prediction since many semantic segmentation algorithms assume an equal number

of each class. However, in semantic segmentation datasets, the class imbalance is

inevitable. For instance, in Cityscapes datasets [27], a traffic sign and a person are

considered as the minority of the segmentation classes, while a large number of classes

correspond to buildings, roads and the sky. Commonly, models need to pay sufficient

attention to the minority of classes for safety reasons. However, models naturally have

a bias towards the majority classes in the training process, which leads to low accuracy

and precision results, especially on a small number of classes. The choice of the loss

function and how it is linked to the labels plays an important role in improving the

image segmentation performance.

A series of significant works show how to alleviate the impact of the data imbalance

on the segmentation results [44, 127]. The majority of the methods focus on the

design of loss functions that consider well both the minority and majority classes.

There are three types of loss functions [165, 77, 151]. Firstly, the region-based loss

function directly optimizes the intersection-over-union (IoU) [129]. This type of loss

function mainly applies to medical segmentation. Secondly, the statistics-balanced loss

This chapter corresponds to the publication-Jingxuan Su, Sean Anderson, and Lyudmila S.
Mihaylova, “A Deep Learning Method with Cross Dropout Focal Loss Function for
Imbalanced Semantic Segmentation”, In Proceedings of the 2022 Sensor Data Fusion:
Trends, Solutions, Applications (SDF), Bonn, Germany, IEEE, 2022.
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Figure 3.1: The sketch of imbalanced dataset problem.

function adjusts the weight of class distribution based on its margin or size, i.e. class-

balanced loss [28] and a label-distribution-aware margin (LDAM) loss function [17].

It encourages overfull false positives in the small number of classes. However, this

approach could undermine the learning capability in feature extraction [191]. Thirdly,

the performance-balanced loss function adds factors to weight the distribution of each

class, i.e. as it is in the focal loss function [91]. However, its applications face challenges

sometimes [28] since it cannot balance between the small and large number of classes

that up-weight the minority class [191].

This work develops a novel data-balanced driven semantic segmentation solution

consisting of a fully connected convolutional neural network and a cross dropout focal

loss function. The cross dropout focal loss function down-weights, respectively up-

weighs a class based on the output for this class. Unlike the statistics-balanced losses,

the cross dropout focal loss has dynamic weight components based on per-class network

outputs, compared to the statistics-balanced losses. In our experiments, the cross

dropout focal loss can effectively address data imbalance and improves the accuracy

This chapter corresponds to the publication-Jingxuan Su, Sean Anderson, and Lyudmila S.
Mihaylova, “A Deep Learning Method with Cross Dropout Focal Loss Function for
Imbalanced Semantic Segmentation”, In Proceedings of the 2022 Sensor Data Fusion:
Trends, Solutions, Applications (SDF), Bonn, Germany, IEEE, 2022.
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and IoU.

3.2 The Fully Convolutional Network Architecture

for Semantic Segmentation

Deep learning methods have witnessed a significant surge in popularity for semantic

segmentation tasks [96, 20, 44]. However, despite the advancements, challenges persist

in achieving precise pixel-level image segmentation, primarily due to the presence of

imbalanced datasets. Among the pioneering algorithms, the fully convolutional network

(FCN) [96] has emerged as a versatile leader and is frequently chosen as the core

component in numerous deep learning approaches [29, 145]. FCNs are characterized by

their use of skip layers, enabling them to learn representations effectively. Furthermore,

the efficiency of fully convolutional networks extends to other well-known architectures

such as U-Net [135] and SegNet [10, 9]. These architectures possess various attractive

properties, including smooth predictions and straightforward visualizations of feature

activations in the pixel label space [60, 88].

To balance computational efficiency and accuracy, this work picks the fully convo-

lutional network architecture as the deep learning backbone. Nonetheless, despite the

capabilities of these state-of-the-art networks, they still encounter challenges in solving

the data imbalance problem inherent in semantic segmentation tasks.

The quality of the training datasets plays a pivotal role in achieving effective seman-

tic segmentation models. Deep learning methods, such as FCN [96], U-Net [135], and

more recent techniques like Deeplab [20], often face the issue of class imbalance. When

neural networks are trained predominantly on easy examples, the learning process may

suffer, leading to overall suboptimal accuracy. To address this problem, increasing the

number of hard examples has been a common approach [39, 148, 170]. However, in

contrast to these existing works, this work proposes a novel solution: the cross dropout

focal loss function, which effectively tackles the data imbalance issue without requiring

complex computations or extensive sampling.
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Various loss functions have been utilized for semantic segmentation tasks. Among

them, the cross-entropy [181] measures the difference between two probability distri-

butions and has found widespread use. The weighted cross-entropy [122] addresses the

imbalance problem by assigning appropriate weights to positive and negative examples,

resulting in improved performance compared to conventional cross-entropy for imbal-

anced classes. Another approach, the balanced cross entropy [176], is motivated by the

weighted cross-entropy and optimizes the utilization of the number of samples in each

class. The focal loss function [91], on the other hand, allows training on a sparse set

of hard examples and has shown effectiveness in object detection tasks.

The proposal of these various loss functions stems from the motivation to improve

the weighting of class labels [103, 72]. However, it’s worth noting that some of these

loss functions may lead to the introduction of excessive false positives and adversarial

results [165].

Evaluation metrics are essential in the context of segmentation networks, and the

Intersection over Union (IoU) is one of the most commonly used indicators. Lovasz

Softmax [11] directly optimizes the IoU using the Lovasz convex extension, while the

Dice similarity coefficient [161] controls the trade-off between false positives and nega-

tives in image segmentation. In contrast to these methods, our proposed cross dropout

focal loss function takes a different approach by considering the balance between dif-

ferent classes and not solely relying on label weights.

In conclusion, deep learning methods have gained immense popularity for semantic

segmentation tasks, but imbalanced datasets present ongoing challenges in achieving

accurate pixel-level image segmentation. The fully convolutional network architecture

is employed as the backbone while introducing a novel cross dropout focal loss function

to address the data imbalance issue. Various loss functions have been explored, each

with its own merits, driven by the motivation to improve the weighting of class labels.

By carefully considering the balance between different classes, our proposed approach

aims to achieve more accurate and efficient semantic segmentation results.
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3.3 The Proposed Method in Multi-class Segmen-

tation

3.3.1 Cross Entropy for Multi-class Segmentation

Cross-entropy serves as a crucial metric for assessing the disparity between the prob-

ability distribution derived from current training data and the actual distribution. It

quantifies the gap between the observed output probabilities and the desired output

probabilities. In essence, a lower cross-entropy value indicates a greater similarity be-

tween the two probability distributions. The cross-entropy [72] has been widely applied

in many semantic segmentation tasks [72, 106]. It uses the number of pixels for each

class to optimize the geometric mean confidence of each weighted class. The formula

for the cross-entropy CE is the following:

CE = −
M∑
c=1

yc log (pc) , (3.1)

where M denotes the class number, pc represents the corresponding value of the c-th

class in the output of the softmax activation function, and yc denotes the value of true

predictions in the class c. If the class of prediction and label are the same, then the

value of 1 is assigned, otherwise, it is 0. However, this approach with the cross-entropy

has an obvious drawback that it applies to a balanced dataset. When the number of

pixels in the minority class is much smaller than the number of pixels in the majority

class for the same image, the yc = 0 in the function will dominate. Thus, the number

of pixels influences the value of yc. In other words, if the number of yc = 0 is much

larger than the number of yc = 1, this situation will make the model heavily biased

towards the main label which results in poor results.

The balanced cross entropy (BCE) [72] adds a weight parameter for each class

to solve the data imbalance problem. The balanced cross entropy BCE for muti-

segmentation is represented with the equation:
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BCE = −
M∑
c=1

wcyc log (pc) . (3.2)

The weight parameter wc calculation formula is wc =
N−Nc

N
, where N denotes the

total number of pixels, and Nc shows the number of pixels in the ground truth per

class. The variable yc still has the same meaning as in the cross-entropy expression.

In this way, the balanced cross entropy can represent well the different classes with

different weights for small or large classes. However, it did not consider the easy-hard

imbalance in per class. The balanced cross entropy cannot address the data imbalance

issue effectively when facing a big semantic segmentation dataset.

3.3.2 Focal loss for Multi-class Segmentation

Focal loss was first proposed by He Kaiming and was initially used in the image field

to solve model performance problems caused by data imbalance [91]. In contrast to

balanced cross-entropy, focal loss aims to address the issue of model training resulting

from sample imbalance. The latter introduces weight factors into the loss function,

considering the distribution of samples. The former, on the other hand, tackles the

challenge of classifying samples by focusing the loss on those that are particularly

difficult to distinguish.

Focal loss addresses model training challenges arising from sample imbalance by

starting with the perspective of classifying difficult samples. The issue associated with

sample imbalance is that classes with a limited number of samples are inherently harder

to classify. Consequently, by prioritizing challenging samples in terms of classification

difficulty, focal loss effectively alleviates the problem of low classification accuracy

within classes having few samples.

It is worth noting that challenging samples are not exclusive to classes with limited

samples. In other words, focal loss not only mitigates the sample imbalance problem

but also contributes to enhancing the overall model performance. However, simply

directing the loss toward difficult-to-classify samples is insufficient for effective model
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training, as the model parameter updates during training rely on the gradients of the

loss function.

In [91] the focal loss function is proposed for binary segmentation. The idea for

the focal loss is inspired by the cross-entropy. The focal loss has two hyperparameters,

γ and α that are introduced for balancing between the easy and hard examples. This

work extends the focal loss to the multi-segmentation task. The activation function can

only be the softmax [91, 109] function. The multi-focal loss with the softmax function

FLsoftmax is defined as:

FLsoftmax = −
M∑
c=1

αc (1− pc)
γ log (pc) , (3.3)

where αc indicates the weight of the c-th class label, pc denotes the output of the c-th

class after the softmax function. The value of pc can reflect the degree of difficulty of

the sample in segmentation. When pc > 0.5, it belongs to an easy-segmented region,

otherwise is a hard-segmented region. If the value of pc is big, the prediction results

will be more accurate. The parameter γ adjusts the rate of easy label down-weighted

labels. The parameter α represents the adjustment weight of the corresponding positive

sample. However, this loss function only considers the easy-hard imbalance, without

considering the imbalance class.

3.4 Cross Dropout Focal Loss for Multi-class Seg-

mentation

The proposed dropout cross focal loss function aims to improve the model performance

and weight well the balance per class for easy-hard segmentation. In the proposed

approach the input data are considered with T dropout times into the segmentation

architecture. Thanks to the Monte Carlo dropout procedure [42], deep neural network

output ŷt will be different after dropout at each time. Then an indicator variable u(ŷ)

is introduced which depends on the network predicted output ŷt and can be expressed
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by the following equation:

u(ŷ) ≈ 1

T

T∑
t=1

(ŷt)
2 −

(
1

T

T∑
t=1

ŷt

)2

. (3.4)

The value of the indicator variable u(ŷ) represents the easy-hard degree of segmenta-

tion from the dropout output per class perspective. Motivated by the focal loss, the

value of the indicator variable u(ŷ) can replace the modulating factor (1− pt) from

equation (3.3). Thus, the focal loss is updated to the dropout focal (DF) loss shown

in the following equation:

DF = − 1

N

N∑
i=1

αi (ui(ŷ))
γ log (ŷi) . (3.5)

When the value of u(ŷ) is close to 0, the value of the dropout focal loss function

will reduce. That means the easy-segmented labels are down-weighted. In this work,

the T value was set equal to 5 to keep an efficient computational time and sufficient

accuracy.

The cross-entropy and focal loss functions face challenges with the imbalanced

dataset. Thus, a novel loss function is proposed, the cross dropout focal loss (CDFL).

Based on the cross-entropy, the dropout focal loss is added with a weighted index ω as

a modulating factor to solve the data imbalance problem. The cross dropout focal loss

CDFL is represented with the following equation:

CDFL = CE + ωDF

= −
N∑
i=1

yi log (pi)− ω[
1

N

N∑
i=1

αi (ui(ŷ))
γ log (ŷi)].

(3.6)

This work sets up the values of the γ and α parameters respectively equal to 2 and

0.75, which is the same choice as in [91]. The weight factor ω balances the impact of the

cross-entropy and of the dropout focal loss. For the purpose of performance validation,

various values of ω were tested, including 0.1, 0.01, and 0.001. It was found that
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the best performance was obtained when the value of ω was set to 0.01. As a result,

the cross dropout focal loss function avoids excessive weighting of hard-segmented

examples or of the minority classes which could cause undesirable results. Meanwhile,

the CDFL provides a suitable training weight for the different inputs. Therefore, the

cross dropout focal loss achieves a higher balancing ability than the cross-entropy. It

can handle both class and easy-hard segmentation imbalance situations.

3.5 Implementation and Analysis

The experiments are performed with the Ubuntu 20.04 system. The server environment

uses Python 3.7, Pytorch 1.12.1 and CUDA 10.1.

3.5.1 Datasets and Implementation Details

In order to evaluate the proposed loss function, the performance of a FCN with different

loss functions is evaluated over two popular semantic segmentation datasets, Cityscapes

for outdoor driving and PASCAL VOC 2010.

Cityscapes

Cityscapes [27] is a popular data set for semantic segmentation, which comprises urban

street scenes. It is a large-scale driving database that contains fine annotated data and

coarse annotated data of around 25000. There are 8 groups with 30 classes. Data

was captured from 50 cities under different environmental conditions. In this work,

the dataset adopts 3475 fine annotations images for train and validation sets and 1525

images for the test set. It has 19 classes shown in Fig. 3.4.

The data imbalance within Cityscapes dataset can be inferred from a few key points.

The dataset encompasses images from 50 different cities and under various environmen-

tal conditions. This diversity is crucial for developing robust semantic segmentation

models but can also introduce data imbalance if certain environmental conditions or

city-specific features are underrepresented. With 19 classes but a fixed total number
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of images (3,475 for training/validation and 1,525 for testing), there is an inherent

risk of data imbalance if the distribution of images across these classes is not even.

For instance, some classes might be overrepresented in the dataset, while others might

have significantly fewer examples. The dataset contains both fine and coarse anno-

tations, with a specific focus on fine annotations for training and validation. If the

fine annotations are not evenly distributed across the 19 classes, this could lead to

a data imbalance where models might perform better on classes with more detailed

annotations compared to those with less.

PASCAL VOC 2010

Pattern Analysis, Statical Modeling and Computational Learning (PASCAL) Visual

Object Classes (VOC) [38] is a computer vision challenge for five different competitions

and provides ground truth annotated datasets. This work only focuses on the PASCAL

VOC 2010, which is a two dimensional (2D) segmentation dataset. Especially, the

dataset supports pixel-level segmentation. It contains 540 classes divided into 3 groups

(objects, stuff, and hybrids). The dataset contains 4998 images for training and 1550

for validation. It has 20 classes: aeroplane, bag, bed, bedclothes, bench, bicycle, bird,

boat, book, bottle, building, bus, cabinet, car, cat, ceiling, chair, cloth, computer, cow

and others.

Considering the dataset’s characteristics, several factors suggest the potential for

data imbalance within the PASCAL VOC 2010 dataset. While the dataset encompasses

540 classes divided into 3 groups, it specifically focuses on 20 classes for segmentation

tasks. This selection process might not equally represent the diversity within the

larger group of classes, potentially leading to an imbalance. The inherent challenge in

datasets with a wide range of classes, like the PASCAL VOC 2010, is ensuring that

each class is adequately represented. With 20 classes identified for segmentation, the

degree of imbalance would depend on how evenly the images are distributed across

these classes. If certain classes, such as ’aeroplane’ or ’cat’, have significantly more

images compared to others like ’bench’ or ’cloth’, this could lead to a model bias
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towards the more represented classes. The classes included vary significantly in terms

of visual complexity and size. For example, ’building’ and ’bus’ are likely to be larger

and more visually complex than ’book’ or ’bottle’. This variability can contribute to

data imbalance, as simpler objects might be easier to segment and therefore might

appear more frequently or with more annotations compared to complex ones.

Evaluation metrics

The cross dropout focal loss based on FCN [96] is implemented for the segmentation

task on the two above mentioned datasets. In semantic segmentation, the mean accu-

racy (mACC) and the mean IoU (mIoU) [17, 191, 95, 78] are important metrics. Here

this work employs them to evaluate the image semantic segmentation performance.

The next subsection presents results over the considered public data and evaluates the

segmentation results.

3.5.2 Validation Results and Analysis

This work conducted a comprehensive evaluation by comparing the performance of the

fully convolutional network using three widely recognized loss functions for imbalanced

semantic segmentation. The loss functions under scrutiny were the cross-entropy, focal

loss [91], and Lovasz Softmax loss function [11]. However, our research introduced a

novel loss function, which outperformed the others on two diverse datasets.

Table 3.1: Quantitative FCN performance with different losses on
Cityscapes

loss mIoU (%) mAcc (%) mPre (%) mRec (%)
Cross-entropy 66.51 76.33 80.78 77.86
Focal loss 62.1 74.47 79.25 72.75
Lovasz softmax loss 57.14 70.51 75.22 70.51
CDFL 66.62 76.41 81.23 78.11

Table 3.1 serves as a valuable repository of segmentation results obtained from the

Cityscapes outdoor driving dataset. These results offer critical insights into the perfor-
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(a) The Frankfurt cityroad from Cityscapes
database

(b) The fine annotation image of Frankfurt
cityroad

(c) The Lindau cityroad from Cityscapes (d) The fine annotation image of Lindau
cityroad

(e) The Munster cityroad from Cityscapes (f) The fine annotation image of Munster
cityroad

Figure 3.2: The original cityroad images and the corresponding fine
annotation images
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(a) The segmented Frankfurt cityroad image
by FCN model with cross entropy loss

(b) The segmented Frankfurt cityroad image
by FCN model with focal loss

(c) The segmented Frankfurt cityroad image
by FCN model with cross dropout focal loss

(d) The segmented Lindau cityroad image
by FCN model with cross entropy loss

(e) The segmented Lindau cityroad image by
FCN model with focal loss

(f) The segmented Lindau cityroad image by
FCN model with cross dropout focal loss

(g) The segmented Munster cityroad image
by FCN model with cross entropy loss

(h) The segmented Munster cityroad image
by FCN model with focal loss

(i) The segmented Munster cityroad image
by FCN model with cross dropout focal loss

Figure 3.3: Visualization of segmentation results on Cityscapes with
FCN.
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mance of various loss functions in the realm of imbalanced semantic segmentation. This

work assessed these metrics across several dimensions, including the mean accuracy and

Intersection over Union (IoU). The outcomes were rather striking, as they revealed sig-

nificant enhancements in segmentation quality when employing the cross-entropy, focal

loss, and cross dropout focal loss, in contrast to the Lovasz softmax loss. This empiri-

cal evidence highlights the importance of selecting the appropriate loss function in the

context of image segmentation, especially when dealing with imbalanced datasets.

Cross-entropy has long been a foundational loss function in the field of deep learn-

ing, and its effectiveness was clearly evident in our results. However, the introduction

of the focal loss, a concept introduced by Lin in 2017 [91], showed promise in fur-

ther improving the quality of segmentation. This loss function, designed to address

the problem of class imbalance, gives more weight to misclassified examples, thereby

concentrating the network’s attention on the challenging instances, which ultimately

boosts the overall segmentation performance. Moreover, the cross dropout focal loss,

an innovative hybrid approach that incorporates the best aspects of both cross-entropy

and focal loss, emerged as a standout performer in our evaluation.

What sets the cross dropout focal loss (CDFL) apart from the other loss func-

tions is its remarkable balance between precision and recall. With a precision rate of

81.23% and a recall rate of 78.11%, CDFL demonstrates an admirable ability to strike

a harmonious equilibrium between correctly identifying relevant objects in the images

(precision) and avoiding false negatives (recall). This characteristic is of immense sig-

nificance, especially in applications where false positives or missed detections can have

significant consequences.

In the context of semantic segmentation, achieving high precision is crucial to ensure

that the identified objects are indeed the objects of interest, and CDFL’s precision rate

attests to its ability to excel in this regard. Similarly, its robust recall rate indicates that

CDFL is capable of capturing a substantial portion of the true positives, minimizing

the risk of overlooking important objects or regions within the images.

The importance of these findings is not only applicable to the scope of our research
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but extends to broader applications in computer vision, autonomous driving, and any

domain where accurate object recognition in images is pivotal. Choosing the most

suitable loss function can be the point of success in machine learning tasks, and our

evaluation underlines the potential of the cross dropout focal loss to significantly impact

the field.

In conclusion, the results presented in Table 3.1 underscore the promising advance-

ments in semantic segmentation achieved by the cross-entropy, focal loss, and cross

dropout focal loss when compared to the Lovasz softmax loss. Among these, the cross

dropout focal loss, with its remarkable precision and recall rates, has the potential to

achieve high performance in other image segmentation tasks, offering a valuable tool

for researchers and practitioners seeking to enhance the quality and accuracy of their

computer vision applications. The implications of these findings extend to a wide ar-

ray of real-world scenarios, making this research a crucial stepping stone toward more

effective and reliable image segmentation solutions.

Figure 3.4: Mean IoU per class on Cityscapes with FCN

In terms of overall performance, the cross dropout focal loss function emerged as

the top performer while maintaining a commendable mean IoU and accuracy. Fig. 3.4

displays the mean IoU values for individual classes, showcasing the cross dropout focal
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loss’s ability to effectively enhance the weight of smaller classes like trains and buildings

while maintaining high precision and recall.

Furthermore, this work visualized the segmentation results in Fig. 3.3, illustrating

that both the cross-entropy and focal loss produced incorrect predictions, misclassifying

the black class as the blue class at the bottom. On the other hand, the focal loss and

cross dropout focal loss exhibited precise predictions, especially evident in the second

row of Fig. 3.3, where traffic signs were accurately identified.

To further illustrate the benefits of the Cross Dropout Focal Loss, a histogram

graph is constructed in Fig. 3.4, showcasing its ability to encourage correct predictions

for small classes, such as trains.

Overall, the novel Cross Dropout Focal Loss has emerged as a powerful tool for

improving semantic segmentation performance. It not only outperforms other loss

functions while maintaining good mean IoU and accuracy but also excels in accurately

predicting small classes, significantly enhancing the overall segmentation results.

Table 3.2: Quantitative FCN performance with different losses on
PASCAL VOC 2010

Algorithms mIoU (%) mAcc (%) mPre (%) mRec (%)
FCN + Cross-entrop(Original) 66.72 76.85 80.32 76.23
FCN + Focal loss 62.45 75.74 76.45 70.57
FCN + Lovasz 59.43 64.16 69.56 63.24
FCN + CDFL(Ours) 67.74 79.63 81.85 79.63

This work further shows the performance of the proposed loss function and of other

state-of-the-art loss functions on the PASCAL VOC 2010 segmentation dataset. The

table below (Table 3.2) presents the performance metrics for four distinct loss functions,

each evaluated in the context of imbalanced semantic segmentation. These metrics,

which include mIoU (mean Intersection over Union), accuracy, precision, and recall,

serve as essential benchmarks to gauge the effectiveness of the loss functions in question.

The cross-entropy loss function delivered a commendable mIoU of 66.72%, indicating

its effectiveness in achieving a balanced intersection over union metric. With an accu-
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racy of 76.85%, it showcases its ability to correctly classify objects in the segmentation

task. The precision value of 80.32% demonstrates its capability to minimize false pos-

itives, while a recall of 76.23% underscores its efficiency in minimizing false negatives.

Focal loss, a loss function specifically designed to address class imbalance, yielded a

slightly lower mIoU at 62.45%. Its accuracy of 75.74% signifies its competence in ac-

curate classification. Precision and recall scores of 76.45% and 70.57%, respectively,

show its effectiveness in both minimizing false positives and false negatives, albeit at

a slightly lower level than cross-entropy. The Lovasz softmax loss function achieved a

mIoU of 59.43%, signaling a moderate performance in terms of intersection over union.

While its accuracy is at 64.16%, indicating a reasonable level of correct classifications,

precision and recall values of 69.56% and 63.24%, respectively, signify its capacity to

mitigate false positives and false negatives, though not as effectively as the previous

two loss functions. The CDFL loss function demonstrates impressive results with an

mIoU of 67.74%. It excels in accuracy, achieving 79.63%, showcasing its strong classifi-

cation capabilities. With a precision of 81.85%, it minimizes false positives effectively.

Furthermore, the recall value is also 79.63%, highlighting its ability to minimize false

negatives. CDFL combines the strengths of cross-entropy and focal loss, resulting in a

balanced and high-performing loss function.

In summary, the choice of loss function is a critical determinant in the success of im-

age segmentation tasks. In this evaluation, CDFL emerges as the standout performer,

offering a remarkable balance between precision and recall. It not only achieves a high

mIoU and accuracy but also excels in minimizing false positives and false negatives.

These findings have significant implications for the field of computer vision, as they

underscore the potential of loss functions to significantly impact the quality and accu-

racy of segmentation results. Researchers and practitioners can consider these results

when selecting the most suitable loss function for their specific applications.
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3.6 Summary

This chapter introduces a novel approach known as the data-balanced fully convolu-

tional network (FCN) algorithm, specifically tailored for semantic image segmentation.

The original FCN network, when combined with innovative Cross Dropout Focal Loss

(CDFL), serves as a compelling solution to mitigate the challenges posed by imbalances

in class datasets, thereby enhancing the overall model performance. What sets this loss

function apart is its unique design perspective, which originates from the model’s out-

put. It incorporates dynamic weights that adapt to the relative classes, effectively

segmenting the corresponding objects within images. The Cross Dropout Focal Loss

offers several notable advantages:

1) Effective Data Balancing: It efficiently addresses the data imbalance issue by

dynamically weighting the dropout output for each class. This adaptive approach

ensures that underrepresented classes receive the attention they deserve, fostering a

more equitable and accurate segmentation.

2) Dynamic Weight Updates: The loss function dynamically updates weights based

on the results of multiple dropout iterations (denoted as T ). These dropout results

serve as a reflection of the segmentation’s level of complexity, helping in the generation

of well-suited weightings that optimize the segmentation process.

3) Enhanced Performance: Validation of the proposed Cross Dropout Focal Loss

on Cityscapes and PASCAL datasets reveals substantial performance gains. With an

approximate 2.5% improvement in accuracy when compared to state-of-the-art loss

functions, it showcases the robustness and effectiveness of our novel approach.

This chapter’s findings not only underscore the importance of addressing data im-

balances in semantic image segmentation but also provide a clear path towards sig-

nificantly improving model accuracy and robustness. The data-balanced fully con-

volutional network algorithm represents a groundbreaking development in this field,

offering a practical and efficient solution for enhancing the quality of image segmenta-

tion results. The following chapter will solve the fine-grained classification to discover
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the learning strategy in deep learning methods.



Chapter 4

Explore Learning Strategy with the

Squeeze and Excitation Network

for Fine-grained Plant Pathology

Classification

Fine-grained plant pathology classification is an important task for precision agricul-

ture, but at the same time, it is challenging due to the subtle differences in plant

classes. Variances in the lighting conditions, position, and stages of disease symptoms

usually lead to degradation of classification accuracy. Knowledge distillation is a popu-

lar method to improve the model performance to deal with the indistinguishable image

classification problem. It aims to have a well-optimised small student network guided

by a large teacher network. Existing knowledge distillation methods mainly consider

training a teacher network that needs a high storage space and considerable computing

resources. Self-knowledge distillation methods have been proposed to distil knowledge

from the same network. Although self-knowledge distillation saves time and space com-

pared with knowledge distillation, it only learns label knowledge. This chapter pro-

67
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posed a novel self-distillation method to recognize the fine-grained plant class, which

considers holistic knowledge based on the Squeeze and Excitation Network. This new

method is labelled as holistic self-distillation because it captures knowledge through

spatial features and labels. The performance validation of the proposed approach is

performed on two public fine-grained plant datasets: Plant Pathology 2021 and Plant

Pathology 2020 with the accuracy of 98.22% and 90.72% respectively. The experi-

ments present on the state-of-the-art algorithm (ResNet-50). The classification results

demonstrate the effectiveness of the proposed approach with respect to accuracy.

4.1 Precision Agriculture for Fine-grained Plant Pathol-

ogy

Precision agriculture seeks to improve the production of plants and control environmen-

tal variations such as diseases that impact the production and quality of plants [54, 190].

Plant classification is an important technological challenge in precision agriculture [2]

that aims to classify different subordinate classes under coarse large classes, e.g. plant

diseases [163]. Plant classification tasks can be subdivided into coarse-grained and fine-

grained [117] images. While coarse-grained image classification is interested in repre-

senting generic classes characterised with a large degree of dissimilarities, fine-grained

image classification is a sub-field of object recognition that aims at representing classes

with a large degree of similarity and is concerned with the problem of distinguishing be-

tween images of closely related entities, for instance, different species of plants from the

same class. The focus work of this chapter is on fine-grained plant class classification

for plants.

Fine-grained image classification [180] is a process that begins by discerning fun-

damental classes and subsequently delves into finer, more specific subclasses. It en-

compasses the ability to differentiate between various plant diseases, bird species, car

models, dog breeds, and more. This approach is currently being applied in both in-

dustrial and real-world settings, serving a diverse array of business requirements and

This chapter corresponds to the publication-Jingxuan Su, Sean Anderson, and Lyudmila S.
Mihaylova, “Holistic Self-Distillation with the Squeeze and Excitation Network for
Fine-grained Plant Pathology Classification”, In Proceedings of the 2023 26th International
Conference on Information Fusion (FUSION), (pp. 1-7), Charleston, USA, IEEE, 2023.
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Figure 4.1: The coarse-grained and fine-grained image classification.

application scenarios. Fine-grained images pose a unique challenge compared to their

coarse-grained counterparts. These images exhibit greater similarity in appearance and

characteristics within the same broad class. Moreover, factors such as posture, perspec-

tive, illumination, occlusion, and background interference come into play during data

collection, introducing substantial variations between classes and comparatively minor

distinctions within classes. Intuitively, the fine-grained plant classes look very similar

and are hard to distinguish, as shown in Fig. 4.4. Specifically, the inter-class variance is

much smaller than the intra-class variance. Apparently, the fine-grained plant dataset

increases the difficulty of classification. Moreover, the classification performance could

directly affect society communities such as the farmers. The misclassification of plant

diseases can lead to improper use of chemicals, decreased yield, and potentially harm-

ing the entire farm [158, 119]. Currently, manual scouting based disease classification is

time–consuming and expensive. While many deep learning methods have achieved re-

markable success in classification [85, 93, 94, 156], their application to fine-grained plant

classification is still less satisfactory. This situation is even worse for great pathology
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variances due to genetic variations, and light conditions.

These complexities significantly heighten the difficulty of accurate classification in

the fine-grained image domain. The journey of fine-grained image classification research

has evolved over an extensive period since its inception. Confronted with this intricate

challenge, researchers have dedicated themselves to a comprehensive exploration and

refinement of approaches, primarily building upon coarse-grained image classification

models.

This research trajectory can be broadly categorized into two primary branches:

traditional algorithms founded on feature extraction and algorithms rooted in deep

learning [174]. In the early stages, algorithms reliant on feature extraction encountered

notable limitations, primarily stemming from their constrained capacity to express

intricate features. However, in recent years, the advent of deep learning has ushered in

a remarkable transformation. The formidable feature extraction capabilities inherent

in neural networks have propelled significant advancements within the realm of fine-

grained image classification. This newfound prowess has accelerated progress in the

field, marking a pivotal turning point in the pursuit of more accurate and nuanced

image classification.

Enhanced fine-grained image classification algorithms have evolved over time, de-

parting from early approaches rooted in artificial features that emphasized the analy-

sis of local image attributes [174]. Initially, specific local characteristics were isolated

from the image, followed by their encoding via relevant models. This method, how-

ever, proved cumbersome and somewhat limited in its expressive capacity, primarily

because it failed to account for the interplay between various local attributes and their

spatial relationships with global features. Consequently, these limitations hindered the

attainment of satisfactory results.

To enhance classification accuracy, researchers introduced the notion of the ”Bag

of Visual Words” (BOVW) based on local attributes [179]. This approach involves

quantifying the image’s overall information, using quantified image segments as visual

words, and describing the image’s content through the distribution of these visual
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words. The bag-of-words model was integrated with a range of feature extraction

techniques, resulting in some progress. Nevertheless, practical application requirements

remained unmet, and the construction of a bag of words remained a complex process

necessitating additional work.

Both local attributes and visual word bags exhibited limited connections to global

features, focusing their semantic mining efforts on specific image regions. In response,

the concept of feature localization emerged, which involves leveraging key points’ po-

sitional information to uncover the most valuable image data. The incorporation of

location information did improve classification accuracy to some extent. However, ac-

quiring accurate location data demands high-precision algorithms and precise manual

annotation, which can be costly.

Deep learning provides the CNNmodel has achieved a historic breakthrough, and its

effect greatly exceeds that of traditional methods. The difficulty of fine-grained plant

classification comes from identifying subtle feature differences in particular regions.

Residual network[63] as a state-of-the-art algorithm provides an effective architecture

in general image classification. Squeeze and Excitation (SE) networks [67] have been

proposed to focus on the feature details of specific regions, which won first place at

the ILSVRC 2017 classification [136]. The main contribution of SE networks consists

in the introduced Squeeze and Excitation (SE) block that finds the interdependencies

between channels and adaptively pays attention to important features. The SE block

can be stacked with any convolutional neural network, such as SE-ResNet-50, SE-

Inception and others [67]. The SE network trains the binary assigned data (named

hard label [153]). However, the performance of SE network may be restricted, since

hard labels cannot provide sufficient feature information and the spatial features are

lost in the SE block.

Knowledge distillation (KD) methods [64] aim at providing a well-optimised small

student network guided by a large teacher network. The KD guides the student to learn

the probability of each class (named soft labels [187, 189]) generated by the teacher

network. Existing KD methods mainly consider training a teacher network that needs a
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high storage space and considerable computing resources. Self-KD methods [50] have

been proposed to distil their own knowledge without a pretrained teacher network.

These approaches help the network to enhance classification performance. However,

these methods often rely on extra networks and soft labels to capture additional knowl-

edge, which loses the spatial features.

To address these challenges in existing classification methods, a novel self-distillation

approach is proposed, Holistic Self-Distillation (HSD). The proposed approach is de-

signed to extract spatial feature information before the SE block. The HSD is demon-

strated superior to state-of-the-art (SOTA) method and other SE network approaches

on plant image classification tasks. Extensive experiments on two public datasets fur-

ther show the superiority of HSD in learning knowledge comprehensively from spatial

feature information and soft labels.

4.2 Squeeze and Excitation Networks

Inspired by the significant improvements of the Squeeze and Excitation network in

feature spatial encoding and classification tasks, the Squeeze and Excitation Residual

network 50 (SE-ResNet-50) [67, 75, 32] is applied on the fine-grained classification to

extract the holistic feature knowledge. It consists of two main parts, Residual frame-

work [63] and Squeeze and Excitation block. This network captures the interdepen-

dencies between feature channels that obtain the importance of each feature channel

through learning. The core idea is that useful features are promoted and the other fea-

tures are suppressed. Fig. 4.2 shows the schematic of SE-ResNet-50 with feature maps

computation. Formally, the Squeeze operation Fsq (µ) transforms the size of feature

map H ×W × C to the size of feature map 1× 1× C, which is calculated by:

Fsq (µc) =
1

H ×W

H∑
i=1

W∑
j=1

u(i, j), (4.1)
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where H denotes the height, W is the width and C is the channel dimension of the

feature map and µ is the shrink operate.

The Excitation component’s role is to ascertain the characteristic weight of each

channel, necessitating three key considerations: It must exhibit flexibility to ensure

the acquired weights hold a higher value. It should maintain simplicity to prevent

a substantial decrease in network training speed following the incorporation of SE

blocks. The interplay between channels should be non-exclusive, meaning that the

learned features can enhance significant attributes while mitigating less essential ones.

According to the above requirements, SE blocks use a two-layer fully connected gate

mechanism. The calculation method of the gated unit s (i.e. the feature vector 1×1×C

in Fig. 4.2) is expressed as:

s = Fex(z,W) = σ(g(z,W)) = σ (W2δ (W1z)) (4.2)

where σ denotes sigmoid function, δ is ReLu function. W1 ∈ RC
r
×C , W2 ∈ RC×C

r are

the weight matrices of the two fully connected layers respectively. r is the number of

hidden layer nodes in the middle layer, the reference paper [67] points out that this

value is 16. After obtaining the gate control unit s, the final output X̃ is expressed as

s and M that is a group matrix of µ. The scale operation Fscale (·, ·) in Fig. 4.2:

x̃c = Fscale (µc, sc) = sc · µc (4.3)

where x̃c is a feature map of a feature channel of X̃, X̃ = [x̃1, x̃2, ..., x̃c], the activation sc

is a scalar value in the gating unit s. Fscale (µc, sc) denotes channel-wise multiplication

between the sc and the feature map µc.

The aforementioned content constitutes the entirety of the SE blocks algorithm. SE

blocks can be comprehended from two distinct viewpoints: SE blocks learn dynamic

priors for each Feature Map. SE blocks can be viewed as attention mechanisms applied

in the context of feature maps. This is due to the core principle of the attention

mechanism, which also involves learning a set of weights.
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4.3 Knowledge Distillation

Knowledge distillation (KD) is a robust technique employed in network compression,

encompassing the utilization of a sophisticated pre-trained teacher network to impart

a guiding signal for training a more lightweight student network [16, 184]. This ap-

proach addresses the challenge of producing efficient models without significant loss in

performance. Within KD, two primary methodologies emerge: logits distillation and

feature distillation, both geared towards conveying the teacher network’s knowledge to

the student network. Logits distillation, sometimes referred to as soft-label or target

distillation, is a well-known approach.

A seminal work by Hinton et al. [64] introduced the concept of using the softmax

outputs of the teacher network as soft labels for training the student network. The

crux of this method revolves around minimizing the Kullback-Leibler (KL) divergence

between the soft labels generated by the teacher network and the hard labels produced

by the student network. This technique allows the student network to gain insights into

the teacher network’s decision-making process, leading to enhanced performance. On

the other hand, feature distillation focuses on learning the intermediate-level features of

the teacher network and transferring them to the student network [134]. This approach

delves deeper into the teacher’s insights by considering not only the final predictions

but also the internal representations. By doing so, feature distillation seeks to achieve

a more comprehensive transfer of knowledge.

While knowledge distillation offers a potent solution for network compression, it’s

worth noting that the training of the teacher network itself can be demanding in terms

of time and computational resources [144]. This factor sometimes limits the practicality

of knowledge distillation in scenarios where resource constraints are prominent. Despite

this limitation, KD’s benefits are clear: it facilitates the creation of more efficient

models with the potential to rival the performance of their larger counterparts. In

conclusion, knowledge distillation serves as a bridge between complex teacher networks

and leaner student networks. By leveraging insights from the teacher’s soft labels
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or intermediate features, the student network can learn in a more efficient manner.

However, the overhead of training the teacher network remains a consideration in the

broader application of this technique, warranting exploration of strategies to mitigate

such challenges while reaping the benefits of network compression.

4.4 Self-knowledge Distillation

In the realm of enhancing effectiveness and improving performance, Self-knowledge

Distillation (Self KD) offers a unique approach that eschews the need for training

additional networks [187, 50]. Instead, Self KD harnesses self-generated knowledge to

elevate the capabilities of the student network. This approach is particularly intriguing

as it taps into the inherent insights and nuances within the data itself to bolster the

learning process. The crux of Self KD lies in its utilization of mixed soft and hard labels

to train the student network. When relying solely on hard labels, there is a risk of losing

valuable information present in the original data. This susceptibility to overfitting

not only hampers the model’s ability to generalize but also leads to a decrement in

overall performance. Soft labels emerge as a key solution to this quandary, acting

as a bridge to counteract the degradation of model generalization. These soft labels

provide supplementary knowledge, furnishing the model with additional cues about the

relationships between closely related labels, thereby contributing to improved learning

outcomes [172, 21].

Diverse strategies have been devised to enhance Self KD methodologies. For in-

stance, a self-attention distillation approach [66] leverages attention maps as soft tar-

gets, enriching the learning process for tasks like lane detection. Snapshot distilla-

tion [178] emerges as a potent technique to prevent underfitting, effectively amplify-

ing the dissimilarity between teacher and student networks, thereby facilitating more

robust learning. A novel Self KD method has even been proposed, which involves

redefining the probabilities of soft labels throughout the training process [58]. These

variations in self-distillation techniques [157, 182, 192] all revolve around the concept
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of soft labels and regularization, highlighting their significance in enhancing knowledge

transfer. However, a caveat emerges when dealing with deeper teacher networks. As

the teacher network’s depth increases, the knowledge encapsulated within both soft

and hard labels becomes less sufficient. The complexity of deeper architectures calls

for more sophisticated mechanisms to ensure effective knowledge transfer. This opens

up avenues for future research to explore innovative approaches that can bridge the

gap between complex teacher networks and the learning capacity of student networks.

In summation, Self KD presents a compelling proposition by tapping into self-

generated knowledge to enhance learning. Through the strategic use of mixed soft and

hard labels, this approach not only combats overfitting but also enriches the learn-

ing process. As the field of Self KD advances, addressing the challenges posed by

deeper teacher networks will undoubtedly be a key focal point, with the potential to

unlock even more effective knowledge transfer mechanisms. However, the classical self-

knowledge distillation focuses only on soft label knowledge distillation [64]. The student

network could ignore spatial feature information. Therefore, holistic self-distillation is

proposed to learn the knowledge of the teacher network from both soft labels and

spatial features.

4.5 Holistic Self-Distillation

Consider a batch of the K-class labelled dataset D = {(xi, yi)}Ni=1, where N represents

the number of training instance in the dataset, xi is the input data and yi is the

corresponding label of xi.

The hard labels are fed into the Squeeze and Excitation network H (yi,pi). The

cross-entropy loss function is defined as follows

LCE =
1

n

n∑
i=1

H (yi,pi) . (4.4)

The predictive distribution pi is computed through the softmax layer that compares
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the logit fk (xi) with other logits. It is formulated as

pi(k) =
exp (fk (xi) /τ)∑K
j=1 exp (fj (xi) /τ)

, (4.5)

where fk (xi) represents the corresponding logit of the k and the temperature con-

stant τ is normally set to 1, , which represents the standard Softmax function without

any modification. Setting the temperature τ to 1 in the Softmax function during

knowledge distillation ensures the preservation of the teacher model’s original predic-

tion confidence levels, serving as a baseline for evaluating the effects of temperature

scaling. This standard setting avoids the over-smoothing of probability distributions,

maintaining the integrity of the teacher’s high-confidence predictions. It is particularly

useful in scenarios where the direct guidance of the teacher model’s raw predictions is

deemed optimal for the student’s learning. Using τ=1 allows for a clear comparison

between the original teacher model outputs and the effects of applying temperature

scaling to distil knowledge to the student model.

Using the Kullback-Leibler (KL) divergence, it optimizes the student network [64],

which minimizes the loss between soft label pt
i and ps

i generated by student and teacher

respectively:

LKD =
1

n

n∑
i=1

τ 2 ·DKL

(
ps
i∥pt

i

)
. (4.6)

Feature maps often contain the context and spatial information of images. Instead

of training mixed soft and hard labels alone, our proposed method utilizes feature

map information. The proposed method encourages the student network to learn

discriminative features between soft label xi and hard label xj. Motivated by the

hint loss from FitNet [134], the squared l2-norm is employed for teacher feature maps{
Ft

k (x) ∈ RH×W×C
}K
k=1

and student feature maps
{
Fs

k (x) ∈ RH×W×C
}K
k=1

. Since the

same size, the feature maps can directly compute with each other. Consequently,

feature fusion is defined as:
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Lfeature =
K∑
k=1

1

HWC

∥∥Ft
k (x)− Fs

k (x)
∥∥2 . (4.7)

A good student network is able to learn holistic knowledge from feature fusion and

probabilities of soft labels. The student network is trained to optimize two stages of

loss:

Lstage1 = LCE + LKD,

Lstage2 = LCE + Lfeature.
(4.8)

The LCE is the cross-entropy (CE) loss between hard labels and results. In short,

the Squeeze and Excitation network distil soft labels and feature maps. The Squeeze

and Excitation network is trained by a new training dataset with mixed soft and hard

labels. Meanwhile, the distilled feature map is involved in the loss function. The whole

training process is the holistic distillation visualized in Fig. 4.3.

4.6 Experimental Results and Discussion

4.6.1 Datasets and Implementation Details

The plant pathology datasets [163] are available at the Kaggle community and are a

part of the Computer Vision and Pattern Recognition (CVPR) Fine-Grained Visual

Categorization (FGVC) workshop 2020 and 2021. The Plant Pathology 2020 dataset

contains 3,651 high-quality RGB images of four apple foliar classes: healthy, scab, rust

and multiple diseases. These images are captured under different illumination, angle,

surface and noise conditions (Fig. 4.4). The plant pathology of FGVC 2021 increased

the images to the number of 23,249 and added two classes of disease powdery mildew

and frog eye leaf spot.

The proposed method is evaluated over these two datasets. The 3,651 images of

Plant Pathology 2020 are used to train the model. The model performance is tested

on the hidden dataset of the Kaggle leaderboard. The Plant Pathology 2021 dataset is
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(a)

(b)

Figure 4.3: The diagram of the holistic self-distillation method
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divided into train and test data with a ratio of 6:4. The teacher network is essentially

the same as the SE-ResNet-50. The network is used in all experiments and is pre-

trained by ImageNet [137].

In the first stage, the networks of teacher and student have trained simultaneity

through the same dataset with random data augmentation. The 12 types of data aug-

mentation are randomly applied, such as compose, resize, random brightness, different

blur and flip etc. The networks will generate different feature maps for the same image.

The student network is trained by minimising feature loss. Meanwhile, the teacher net-

work generates soft labels. Then, this work adopt 30% soft label and 70% hard label to

train the student network that is pre-trained by stage one. The whole stage is named

holistic self-distillation.

Table 4.1: A performance of different classes on Plant Pathology 2021.

classes Precision (%) Recall (%) F1 score (%) Test number
Healthy 93.34 97.69 95.46 1950
Multiple diseases 86.56 73.91 79.74 1142
Powdery mildew 90.65 89.45 90.04 455
Scab 92.73 93.34 93.03 1846
Rust 88.58 89.54 89.05 736
Frog eye leaf spot 88.30 92.44 90.32 1323
Macro avg 90.03 89.39 89.61 7452
Weighted avg 90.62 90.73 90.58 7452

4.6.2 Performance Validation Results and Analysis

his section will test the performance of the holistic self-distillation on Plant Pathology

2020 and 2021 datasets with the SE-ResNet-50 network. All these experiments were

run under the PyTorch framework over two NVIDIA Tesla K80 GPUs.

The performance of the method is shown with different datasets in Table 4.2.

ResNet-50 (SOTA) achieved accuracies of 97.34% for Plant Pathology 2020 and 89.98%

for Plant Pathology 2021, serving as a strong baseline for comparison. SE (teacher

model) shows a slight improvement over the SOTA, with accuracies of 97.96% and
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Figure 4.4: Sample images from the fine-grain plant pathology
datasets [163] showing the different symptoms (a) healthy leaf, (b)multiple
diseases(red with rust, yellow with scab), (c) apple rust, (d)apple scab.
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90.48% for the 2020 and 2021 datasets respectively, indicating the effectiveness of the

Squeeze and Excitation networks in capturing relevant features. SE + KD (Knowl-

edge Distillation) marginally improves upon the teacher model, reaching accuracies of

97.97% for 2020 and 90.51% for 2021, demonstrating that traditional knowledge distil-

lation contributes to performance enhancement. SE + HSD (Holistic Self-Distillation),

the proposed method, outperforms all the other models with accuracies of 98.22% for

2020 and 90.72% for 2021. This indicates a significant improvement and highlights the

effectiveness of the holistic self-distillation approach in leveraging both spatial features

and soft label knowledge for fine-grained classification tasks. The incremental im-

provements in accuracy from the ResNet-50 model to the SE + HSD model illustrate

the effectiveness of integrating Squeeze and Excitation networks with knowledge dis-

tillation techniques, and especially the proposed holistic self-distillation method. The

highest accuracy achieved by the proposed method underscores its potential for en-

hancing fine-grained classification performance, particularly in the challenging domain

of plant pathology where subtle differences between classes must be accurately dis-

cerned. This analysis reinforces the contribution of the proposed method to advancing

the state-of-the-art in plant pathology classification.

Table 4.2: A performance comparison on Plant Pathology 2020 and 2021
in terms of accuracy (%).

Method Plant Pathology 2020 Plant Pathology 2021
ResNet-50 (SOTA) 97.34% 89.98%
SE (teacher) 97.96 90.48
SE + KD 97.97 90.51
SE + HSD 98.22 90.72

Table 4.1 shows the experimental results of the HSD method for each class in Plant

Pathology 2021. Three metrics [52] are applied to each class, which is computed by

True Positive (TP), False Positive (TP), True Negative (TN), and False Negative (FN).

The precision [177] indicates the predicted positive is the true positive. The recall [51]

represents the correct prediction in positive samples. The F1 score finds a balance
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between both precision and recall. Combining the above metrics, the macro average

computes the arithmetic mean of the metrics of each class. The weighted average

takes into account the weight of each class [124]. Among them, HSD achieves brilliant

performance in all the classes. The healthy class gets the best results within three

metrics over 1,950 test images. The multiple diseases class are prone to be misclassified.

This work further visualizes the performance of the HSD method in Fig. 4.5. The

Receiver Operating Characteristics (ROC) curve is usually used to measure the per-

formance of a model by True Positive (TP) rate and False Positive (FP) rate [69].

The ROC curve has robustness even though the imbalanced positive and false samples

hardly change the shape of curves [107].

Figure 4.5: The ROC curves of the Plant Pathology 2021. The AUC
(Area Under Curve) is defined as the area under the ROC curve [107].

Apparently, if the ROC curve closes to the upper left corner with a high value of
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TP and a low value of FP, it represents the high performance of the classifier. As

shown in curves of Fig. 4.5, the HSD method can effectively classify the diseases with

robust ability. The multiple diseases ROC curve is obvious fluctuations that match

the class accuracy in Table 4.1. the macro-average and micro-average ROC curves are

calculated to evaluate the overall characteristics.

Additionally, the confusion matrix is used to visualize the performance of the pro-

posed method. Each row of the confusion matrix indicates the true label and each

column indicates the predicted label [171]. As seen in Fig. 4.6, the confusion matrix

serves as a vital instrument in data analysis, offering a comprehensive view of the

relationships between classes within a given dataset.

Figure 4.6: The confusion matrix on the Plant Pathology 2021 dataset.

In the context of the Plant Pathology 2021 dataset, this matrix provides valuable

insights into the performance of an algorithm designed for disease classification. In
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the matrix, the diagonal represents true predictions, effectively showcasing instances

where the algorithm correctly identified the disease class. For instance, it’s noteworthy

that the rust disease class exhibits strong performance, with 1,723 images correctly

classified. This indicates a high level of accuracy in recognizing rust disease. However,

it’s also crucial to examine the elements outside the diagonal, as they represent cases of

misclassification. For rust disease, these misclassifications are particularly interesting.

The matrix shows that 73 images were misclassified as multiple diseases, suggesting that

the algorithm sometimes struggles to distinguish rust disease from other classes. This

is an area that may warrant further investigation and algorithm refinement. This issue

isn’t unique to rust disease. The confusion matrix reveals that there are other classes

that are susceptible to misclassification. For example, it’s evident that powdery mildew

and scab diseases can be mistaken for one another. Similarly, instances of healthy plants

are sometimes incorrectly labelled as having frog eye leaf spot. These misclassifications

underscore the complexity of disease classification, where subtle visual cues can lead

to erroneous associations.

Notably, all diseases in the dataset seem to be prone to misidentification as multiple

diseases. This suggests the existence of shared visual characteristics among different

plant diseases. Identifying these shared traits and developing more sophisticated al-

gorithms capable of making nuanced distinctions is an ongoing challenge in this field.

What’s particularly promising is that the HSD method method performs well across

all classes. This could be attributed to its learning ability of distillation to handle the

intricacies of disease classification and reduce the risk of misclassifications.

4.7 Summary

This chapter delves into the innovative concept of holistic self-distillation (HSD), a

method that emerges as a promising solution to address the longstanding bottleneck

associated with fine-grained classification within the realm of plant pathology. The

main idea is to leverage the capabilities of a squeeze and excitation network in order to
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tackle the intricate challenges posed by this specialized field. Fine-grained classification

is a crucial task in plant pathology, one that demands a high level of precision and an

in-depth understanding of subtle differences among various plant diseases. Achieving

this precision often requires advanced machine learning techniques, and HSD presents

a novel approach to meet these demands. The HSD method utilizes the Squeeze and

Excitation (SE) network to take a unique approach by incorporating both soft and hard

labels from the training dataset. These labels are used to guide the network towards

a more comprehensive understanding of the subtle characteristics that distinguish dif-

ferent plant diseases. It is important to note that the feature of the HSD network is

not only learned from label information but also extracted from an SE teacher net-

work. This teacher network acts as a source of valuable feature knowledge, which is

then distilled into the SE student network. One of the most significant advantages of

the HSD method is its ability to simultaneously harness label knowledge and feature

knowledge. While label knowledge helps the network understand the specific classes

and classifications of plant diseases, feature knowledge enables the network to identify

the key characteristics and patterns that differentiate these diseases. This dual-source

learning strategy enhances the network’s comprehension of fine-grained distinctions,

making it a highly effective tool in plant pathology. The student network, which is

trained using the HSD method, becomes a master of holistic knowledge. By combin-

ing label and feature knowledge, it is equipped to explore intricate details within the

dataset. This holistic approach sets the HSD method apart from traditional classifica-

tion techniques and empowers it to make nuanced and accurate predictions regarding

plant diseases. To validate the efficacy of the HSD method, it has been rigorously

tested on two public plant pathology datasets. The results have been nothing short of

impressive, demonstrating that this approach significantly enhances the performance

of fine-grained classification. These positive outcomes underscore the potential of the

HSD method in contributing to the advancement of plant pathology research and ap-

plications.

In conclusion, the Holistic Self-Distillation (HSD) method, built upon the foun-
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dation of the squeeze and excitation network, represents a significant leap forward in

the field of fine-grained plant pathology classification. By combining label and feature

knowledge and training the student network to grasp holistic insights, HSD shows great

promise in the way of disease recognition and classification in the plant sciences. Its

successful application in public Plant Pathology 2021 and 2022 datasets with the accu-

racy of 98.22% and 90.72% respectively, and ongoing research will undoubtedly bring

forth even more innovative self-distillation deep learning methods, pushing the bound-

aries of knowledge and expertise in plant pathology. After exploring the loss function

and learning strategy in deep learning methods, the following chapter will design a

novel deep neural network framework to solve the semantic segmentation task.



Chapter 5

Explore Deep Learning

Architecture for Semantic

Segmentation in Automating

Morning Glory Plant Harvesting

Computer vision and deep learning have made substantial progress in the areas of

agriculture and smart farming, particularly for enhancing crop production using image

segmentation techniques for crop yield prediction. Further improvements to crop yield

prediction results can be achieved by developing accurate and efficient methods. In

response to such demands, this chapter proposes a novel convolutional neural network

architecture, called Densely Connected SegNet (D-SegNet) and demonstrates its ad-

vantages on plant segmentation using a new morning glory plant dataset, and also on a

complimentary publicly available dataset to promote research in this direction. The D-

SegNet is evaluated using 10-fold cross validation. It achieves performance better than

the state-of-the-art SegNet algorithm. The evaluated precision, recall and F1-score val-

ues are 98.20%, 90.64% and 94.26%, respectively, for the morning glory plant dataset.

89
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The intersection over union (IoU) value in the image segmentation tasks is 90.56%.

A series of experiments on the morning glory plant dataset as well as on the publicly

available dataset were conducted. The results show that the proposed method achieves

accurate segmentation results and can be useful for assessing the plant weight during

harvesting. In summary, this new plant segmentation network, D-SegNet, could form

an important component of future cloud-based machine learning systems to predict

crop yield from noisy smartphone images taken in the field.

5.1 Semantic Segmentation Based on Deep Learn-

ing Methods

As the global population increases it is vital to tackle the challenges of agricultural

production to improve food security and make production efficient [46]. Smart farming

[167] is one promising area that supports the growth of agriculture production and its

efficiency by leveraging technological advances in sensing, monitoring, and artificial in-

telligence [7, 140]. Within the broad area of smart farming, crop planning, monitoring,

and yield prediction [111] have been considered some of the dominant challenges in pro-

moting coordinated efficiency and maximizing the economic potential of modernizing

agriculture.

Yield prediction is one particularly important aspect of an agricultural business

for the following reasons. The buyers of fresh products often plan the procurement

based on the sale estimates or customers’ orders. Suppose the buyers are aware that

there will be a shortage or excess of production from the farmers. In that case, they

can plan ahead of time by seeking additional products from retailers and buying or

selling the excess to other buyers. By gaining more accurate yield information, the

buyers can manage their incoming stock effectively. This can result in keeping the

price for the farmers high and at the same time the management cost for the buyers

low. With an accurate yield prediction, the buyer of the product can save costs through

better planning their sourcing strategy and simultaneously better serve the needs of the

This chapter corresponds to the publication-Jingxuan Su, Sean Anderson, Mahed Javed,
Charoenchai Khompatraporn, Apinanthana Udomsakdigool, Lyudmila Mihaylova, “Plant
leaf deep semantic segmentation and a novel benchmark dataset for morning glory plant
harvesting”, Neurocomputing, vol. 555, October 2023.
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customers. This further promotes the buyer’s business, leading to close collaboration

between farmers and buyers.

This chapter presents a solution for crop yield prediction using computer vision

and image processing methods. Image processing methods can assist precision agri-

culture, for example in plant phonology [166], automatic segmentation of leaf images

[175, 15] and yield prediction [140]. However, current methods for segmentation are

not sufficiently accurate to be reliable and useful in yield prediction [3], especially using

simple methods such as k-means clustering [80]. There is a wealth of machine learning

methods for image analysis [30, 141] - from support vector machines (SVM) [55] and

artificial neural networks (ANN) [139] to deep learning (DL) [87]. The conventional

neural learning methods [108] mentioned above aim at solving different tasks, including

object detection and segmentation. Due to the accuracy demands of yield prediction,

image-based, semantic segmentation at a pixel level is an appealing approach and is

becoming popular in this application domain [83, 13]. However, standard convolutional

neural networks [53] face often problems such as slow convergence, and loss of vital

feature information when using several convolutional layers, leading to inaccurate seg-

mentation results. Thus, an optimized network architecture needs to be proposed. At

present, most semantic segmentation methods conduct research on expanding the depth

[149, 160] or width [154, 185] of network architectures. Deep learning methods [188, 45],

as data-driven methods, provide efficient solutions for big data and automated feature

extraction, with high performance and accuracy [141, 150].

This chapter proposes a new type of semantic segmentation architecture for yield

prediction, which comprises encoder-decoder [22] and dense block [68] structures. The

encoder is comprised of thirteen convolutional layers of a VGG-16 network [149]. Each

encoder is linked to a decoder and hence there are thirteen corresponding decoders.

Typically, the convolutional layers of the encoder comprise batch normalization and

rectified linear unit (ReLU) non-linear operations, followed by non-overlapping max

pooling and sub-sampling layers. The sparse encoding due to the pooling process is

up-sampling in the decoder using the max pooling indices in the encoding sequence.
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This has the important advantage of retaining class boundary details in the segmented

images and also reducing the total number of model parameters. The model is trained

end to end using the stochastic gradient descent method [14].

The structure of a dense block includes a concatenation between layers. The con-

catenation enhances feature reuse, which directly connects every layer. This connection

pattern not only propagates features to the next layer but to every layer in a dense

block. A novel deep learning architecture is proposed here for dense semantic seg-

mentation, which extends the standard SegNet architecture with dense blocks, hence

this architecture is called D-SegNet. This new type of architecture is demonstrated

to outperform the state-of-the-art algorithms and achieve high accuracy on crop yield

prediction.

5.2 D-SegNet Architecture

This section presents a new architecture called D-SegNet for semantic segmentation,

which augments the encoder-decoder architecture of SegNet [22] with dense blocks

[68]. The D-SegNet architecture combines the improved capability of feature extraction

from the dense block with the computational efficiency of the SegNet encoder-decoder

architecture, including efficient memory use and fast computation. The encoders are

based on the 13 convolutional layers of the VGG-16 network [149]. The decoder places

corresponding layers in reverse. Dense blocks are added after each encoder or decoder.

5.2.1 Encoder-Decoder Framework

The encoder-decoder architecture of D-SegNet is illustrated in Fig. 5.1. The encoder

consists of five blocks which include ’Convolution (Conv)+Batch Normalisation (BN)+

Rectified Linear (ReLU)’ operations and they form the Downsample Blocks. In each

Downsample Block, a convolutional layer uses a 3 × 3 kernel and a stride equal to 1.

Batch normalization is then applied to the output of the convolutional layer. Mean-

while, the max pooling with 2× 2 window and stride 2 achieve translation invariance.
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Therefore, the size of feature maps is changed regularly from 224× 224 to 7× 7 after

the image is passed through five Downsample Blocks. The role of the encoder is to

generate feature maps with semantic information.

The decoder which contains five Upsample Blocks upsamples the feature maps from

the encoder output by using the memorized max-pooling indices to produce sparse

feature maps. The size of these sparse feature maps is rescaled to the size of the

original image. The purpose of the rescale operation in the decoder is to map the

sparse feature maps to the input image to implement pixel-by-pixel classification.

5.2.2 Dense Block

Recent CNNs benefit from very deep convolution layers to capture rich feature rep-

resentations, due to the fact that ‘the deeper the network, the better [63]. However,

training deep neural networks may need a huge amount of time and computational

resources, due to redundant feature maps. The dense block proposed in [68] is con-

sidered an effective method to address this challenge. It encourages feature reuse and

makes it efficient to train a very deep network. The dense block improves the flow of

features throughout the network by connecting all layers with each other. In addition,

it also enhances feature propagation. The dense connectivity in a dense block can be

formulated as follows:

xd = Hd ([x0, x1, . . . , xd−1]) , (5.1)

where x0 to xd are feature maps from layer 0 to layer d in a dense block, respectively.

Here [x0, x1, . . . , xd−1] refers to the concatenation of feature maps from x0 to xd−1, Hd

denotes a non-linear transformation, including BN [70], ReLU, and Conv operations.

The BN size is set up to 4 to keep a lightweight network. In this way, each layer within

a dense block has direct connections with all subsequent layers, as shown in Fig. 5.2.

According to (5.1), the channel number of feature maps in the dth layer of each dense

block is k0 + k× (d− 1), where k0 is the number of input channels. The growth rate is
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termed k, following the same notation as in [68]. In [68], due to the feature map size,

k is set up equal to 32. Each dense block has 4 layers with a growth rate of k = 32.

Table. 5.1 gives all parameters of the D-SegNet algorithm.

5.2.3 Optimal Semantic Segmentation Model (D-SegNet)

The D-SegNet as a novel architecture has an outstanding framework and computational

capability. This powerful segmentation engine consists of a deep convolutional encoder-

decoder architecture, dense blocks, and a pixel-level classification layer. Table. 5.1

lists the details of D-SegNet architecture. From the Table. 5.1, Dense Block is directly

connected to Downsample/Upsample Blocks. Specifically, 1 × 1 conv layers are set

before the 3 × 3 conv layers to avoid increasing the model parameters. Therefore,

the D-SegNet is a lightweight network architecture. (see Table. 5.1). The number of

feature maps of an output remains 4 · k, which is the same as in [68]. Note that the

feature map size only changes in the Downsample/Upsample Blocks. Thus, the feature

map size remains the same in all dense blocks, which contains large spatial information

in small feature maps.

Different from other semantic segmentation architectures, the D-SegNet encourages

feature reuse and prevents gradient vanishing problems. The main reason is that the

D-SegNet is a lightweight network, which benefits from dense blocks. Its network

structure is narrow, and only needs a few parameters. The number of feature maps of

each convolutional layer output in the dense block is very small, instead of hundreds

of thousands of outputs like in other networks. Within the dense block, each layer has

direct access to the gradients from the loss function and the original input signal. On

the other hand, a dense connection is equivalent to directly connecting an input and

loss at each layer. Thus, it can mitigate the phenomenon of gradient vanishing when

the depth of the network is deep.
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Table 5.1: D-SegNet architecture for plant segmentation. The growth
rate of k for the whole network is 32. Note that each Up/Down sampling

block shown in the table corresponds to the sequence
Conv+BN+ReLU+Pooling or Upsampling.

Layers Output size D-SegNet (k=32)

Input layer 224× 224

Downsample Block (1) 112× 112 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Downsample Block (2) 56× 56 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Dense Block (1) 56× 56

[
1× 1 conv
3× 3 conv

]
× 12

Downsample Block (3) 28× 28 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Dense Block (2) 28× 28

[
1× 1 conv
3× 3 conv

]
× 24

Downsample Block (4) 14× 14 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Dense Block (3) 14× 14

[
1× 1 conv
3× 3 conv

]
× 16

Downsample Block (5) 7× 7 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Upsample Block (1) 14× 14 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Dense Block (4) 14× 14

[
1× 1 conv
3× 3 conv

]
× 16

Upsample Block (2) 28× 28 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Dense Block (5) 28× 28

[
1× 1 conv
3× 3 conv

]
× 8

Upsample Block (3) 56× 56 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Dense Block (6) 56× 56

[
1× 1 conv
3× 3 conv

]
× 4

Upsample Block (4) 112× 112 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Upsample Block (5) 224× 224 3× 3 conv, stride 1, 2× 2 max pool, stride 2

Output layer 224× 224
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5.2.4 Loss Functions Used for D-SegNet Training

This section discusses the loss functions used to train the D-SegNet architectures. The

output from the proposed architecture is a four-dimensional (4D) tensor Z ∈ RN,C,H,W ,

where N denotes the batch size of the output tensor, C represents the number of

channels (or depth), H is the height and W the tensor width. Color images have three

channels (i.e. C=3) for each channel red, green, and blue, also known as the red, green,

blue (RGB) representation. For brevity, Z is considered to be a two-dimensional (2D)

matrix of size N , C, containing elements zn,c, which is a 2D matrix of size H,W . Prior

to computing the cross-entropy loss, the segmented label map output Z needs to be

converted to probabilities through the softmax function ϕsoft(zn,c) in the compression

layer as follows

ϕsoft(zn,c) =
exp (zn,c)∑C
i=1 exp (zn,i)

. (5.2)

The threshold value of the softmax function is set up to 0.6. The output of the softmax

layer is then used to compute the cross-entropy loss Lcross which can be calculated from

Lcross(zn,c, ŷn,c) = −
C∑
c=1

ŷn,c log(ϕsoft(zn,c)). (5.3)

The softmax output is computed by considering the exponent of the output zn,c

from the final layer. This is divided by the sum of the exponential outputs across the

channel dimension C. Then, considering the outputs from the softmax layer ϕsoft(zn,c),

the respective target label for that output ŷn,c is used to compute the cross-entropy

loss. Here, the term log refers to the natural logarithm of the softmax layer element.

The cross-entropy loss is averaged across all N mini-batches of segmented label

outputs and target labels, e.g.
∑N

n=1 Lcross. The averaged loss is then backpropagated

for updating the layers of the D-SegNet end-to-end using the chain rule and the update

rule. The update rule sums the old weights and biases of a specific layer with the

differential of the cross-entropy error with respect to the weights and biases of all
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the convolutional layers multiplied by the learning rate. The learning rate set during

training of the D-SegNet is 0.1.

5.3 Experimental Results and Discussion

This section describes the data used to evaluate the D-SegNet architecture and the

data pre-processing steps. In order to evaluate the performance of D-SegNet, the

image data needs to be annotated, which is a complex and time-consuming process,

involving the training-validation data. To annotate the data, a semi-automatic labeling

method was used consisting of Faster Region-based Convolutional Neural Network

(Faster R-CNN) [131] and K-Means clustering [80], which are described specifically

in the following Section 3.1.2. This approach improves the efficiency and accuracy of

annotation. The original and labelled dataset are available on GitHub [79, 81] .

5.3.1 Morning Glory Plant Images

A total of 2,018 images of the morning glory plant were collected during different

phases of the plant growth. These images and the developed deep learning approaches

are aimed at helping farmers to decide when to harvest the plant, at the period when

the plant is with the desired size and weight. In each of the images, there are 4 or 5

morning glory plants. The plants were laid on white space with tick marks on three

edges to indicate the size of the plants. Each side tick mark is 50 centimetres long.

The plants in each image were weighed and the total weight was recorded (in grams).

The hardware specifications used for data collection and their relevant distances from

the target (height) are summarised in Table 5.2.

Each image was taken by two smartphones, a Samsung Galaxy J4 and an iPhone 7

plus. The Samsung Galaxy J4 was installed at 65 centimetres above the plants, while

the iPhone 7 Plus was installed at 75 centimetres above the plants. The images are of

size 4, 032× 3, 024 or 4, 128× 3, 096. The Samsung Galaxy J4 mobile phone has a 13

MP rear camera with f/1.9 aperture, and the iPhone 7 Plus has a 12 MP rear camera
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(a) (b)

(c)

(d)

Figure 5.3: Environment and construction of image acquisition.
(a)Plant culture environment; (b) and (c) Mature plant; (d) Side view of

image acquisition construction.

Table 5.2: The specification of the data collection devices and their
distances from the target

Device Height Illuminance Rear camera Aperture
Samsung Galaxy J4 65cm 620-680 LUX 13MP f/1.9
iPhone 7 plus 75cm 620-680 LUX 12MP f/1.8
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with f/1.8 aperture. Fig. 5.3 shows the plant environment and image acquisition

device. All images were taken in a laboratory with an illuminance of approximately

620-680 LUX. The light was mainly from the fluorescent lightbulbs installed in the

laboratory with some effect from natural light through the windows. There were only

a few images in that the illuminance that fell below or above the range mentioned.

This could perhaps be due to the sensitivity of the device or the shadow from the

experimenters.

The experiments of automatic plant segmentation are conducted on this dataset.

The dataset was collected by the team from King Mongkut’s University of Technology

Thonburi, at the geographical location with latitude and longitude 13.39◦N, 100.29◦E)

in Thailand.

Image Pre-processing

In recent years, deep learning models have made remarkable strides in computer vision

tasks [34]. Typically, they heavily rely on extensive data and powerful computation

resources [147]. However, numerous fields have limited data availability, such as farm

imagery. A widely adopted solution is data augmentation, encompassing various al-

gorithms like geometric transformations and kernel filters. Data augmentation signifi-

cantly enhances model robustness and generalization capabilities.This section primar-

ily focuses on geometric transformations, known for their ease of implementation and

safety for project images [84]. For example, rotations and flips maintain the safety of

cat and dog images, but alter the digital numbers to 6 and 9. Hence, label-preserving

transformations are prioritized in geometric augmentation. Horizontal axis flipping is

a standard practice, validated on datasets like ImageNet and MNIST. Rotation aug-

mentation involves rotating the image to the right or left along its axis. Translation

shifts the image horizontally or vertically, effectively mitigating positional bias.

Generally, data augmentation includes the generation of additional images based on

random flips, flexible rotation and different illumination. Fig. 5.4 shows the augmented

data. Fig. 5.4(a) and Fig. 5.4(b) have different noise and illumination backgrounds,
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(a) (b) (c)

Figure 5.4: Morning glory plant images: (a) original image, (b) image
with added noise and (c) image with a different illumination background.
Images (b) and (c) are obtained as a result of the data augmentation.

respectively. Fig. 5.4(c) is obtained after a rotation of the original image at 180◦. These

operations expand the original data set from 2,018 to 6,054 images, which will help to

train and evaluate the segmentation networks.

Image Data Annotation

The overlap and thickness of leaves make manual annotation difficult and create chal-

lenges to the training of convolutional neural networks. Thus, a semi-automatic anno-

tation method is applied, whose main steps are summarized in Fig. 5.5.

The Faster R-CNN algorithm [131] is applied to detect the plant. Faster R-CNN

is a state-of-the-art object detection network, which consists of region-based proposal

algorithms able to find the object location [40]. R-CNN is composed of a feature

extraction network followed by two networks. The feature extraction network is a

pre-trained CNN that forms the feature map. The first network ResNet-50 [63] is the

feature extraction network of the detector. The second network is a region proposal

network (RPN), which generates object proposals. The RPN decides the positive or

negative of anchors by the softmax function. The bounding box regression is used to

fix anchors and get precise accuracy.

The region of interesting (ROI) pooling layer processes features maps and proposals

for further prediction. The area outside of the region box is set up as a black back-

ground. Next, the k-means clustering algorithm [80, 98] is applied to annotate the
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Figure 5.5: Image data annotation steps

(a) (b)

Figure 5.6: Images of the morning glory plant. (a) Original image; (b)
Annotated image.
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Table 5.3: The pseudo code of k-clustering

Algorithm 1 K-means clustering
1: Initialize the image as input pixels p(x, y) and set the number of k

repeat
2: Calculate the Euclidean distance d between centre and each pixel, as the following equation.

d = ∥p(x, y)− ck∥
3: According to the distance d all pixels are sort firstly to the nearest cluster
4: The centroid need be recalculated with the pixels of each cluster

ck =
1
k

∑
y∈ck

∑
x∈ck p(x, y)

until The error tends to converge
5: Resolute the pixels to the image

leaves within the bounding box area. Clustering, as a fundamental algorithm, parti-

tions images into specific groups. Within this algorithm, there are various branches,

with the most popular being k-means clustering. K-means clustering is a classical

unsupervised learning algorithm recognized for its speed and straightforward compu-

tation [33]. In k-means clustering, it randomly selects k clusters as centroids from all

classes. This algorithm comprises two distinct modules. Firstly, k centroids need to be

calculated. Secondly, each point is assigned to the cluster of the nearest centroid. The

Euclidean distance is the most commonly used method to determine centroid distances.

Let’s demonstrate the algorithm using an image. Despite the ease of implementation,

k-means still exhibits shortcomings in terms of both quality and computation [90]. The

primary drawback lies in the determination of the number of clusters, k. The quality

of segmentation relies on the arbitrary choice of k. Additionally, computational com-

plexity, which depends on the data volume, k, and iteration numbers, also needs to be

taken into account. In this work, a fixed number k is set equal to 2.

To avoid complex data processing [101], the annotated data consider leaf pixels

as white and the other as black, as shown in Fig. 5.6. It is saved in a PNG format

with high resolution 4, 128 × 3, 096. The high-resolution image is stored but it is not

processed by the convolutional neural network since such an image would require a

large amount of memory space. This would require significant computational power

from the GPU. Therefore, the size of original and annotated images is processed as
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224× 224× 3 and 224× 224.

(a) (b)

Figure 5.7: ImageCLEF dataset: a herbarium sheet

5.3.2 Benchmark Dataset

A popular public dataset from ImageCLEF 2021 (Pl@ntLeaves), [49] is used to evaluate

our proposed segmentation method. This dataset consists of leaf herbarium and com-

prises 1956 images, from which 1190 images are used for training, and 256 for testing.

Sample leaf images are shown in Fig. 5.7.

5.3.3 K-fold Cross Validation

Cross-validation is a resampling method that is used to evaluate models on a limited

data sample [130]. In K-fold cross-validation, the entire dataset is split into K groups

randomly. For every fold, one out of K subsets is chosen as the validation set and K-1
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subsets are used for training. It helps to avoid the overfitting problem and to improve

Figure 5.8: The process of K-fold cross validation in training the deep
learning model

model performance with a small dataset. The diagram of K-folder cross validation is

shown in Fig. 5.8.

Experiments are conducted for 10-fold cross-validation with the morning glory plant

dataset and ImageCLEF dataset. Each dataset is divided into 10 subsets stochastically.

For each cross-validation iteration, the model is trained using 9 subsets and is tested

to the other subset as the validation set. The procedure is then repeated for 10-folder

cross-validation. Each subsample is used once as a validation subset.

5.4 Results and Discussion

5.4.1 Evaluation Metrics

This section presents the evaluation metrics used for the performance validation of the

D-SegNet algorithm. These include precision, recall, and the F1 score. The precision-

recall metrics [51] allow further evaluation for classification beyond simple accuracy

measures that do not take into account the problem of class imbalance.
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First, the number of true positives (TP), false positives (FP), true negatives (TN)

and false negatives (FN) samples are calculated. The TP are predictions that are clas-

sified correctly for the inspected class. The TN are other predictions that are correct

but for negative samples (i.e. not inspected). Then, false positives are miss-classified

negative samples and the true negatives are negative samples that are correctly clas-

sified. In addition, the IoU is also an important metric and it is used to evaluate the

algorithms’ performance.

The precision metric [36] is used to compute the number of correctly predicted

positive classes of a classification system. The recall metric is used to define the

number of correct positive predictions that are achievable from all of the positive

predictions. The model evaluation should not only use the statistic metrics but also

need a qualitative evaluation from the actual segmentation view. The intersection over

union (IoU) [129] as an important evaluation index in semantic segmentation measures

the overlap of the ground truth and prediction region. The IoU is generally calculated

based on classes, which is to accumulate the IoU value of each class. The IoU value is

to average the sum IoU results of each class to obtain a global evaluation. Therefore,

the IoU is actually the mean value, that is, the average crossover ratio (mean IoU).

In the next section, the performance of the segmented results is discussed in detail

while comparing different architectures.

5.4.2 Experimental Results

In order to evaluate the performance of the D-SegNet algorithm, it is compared with

traditional edge-based segmentation and with the standard SegNet algorithm.

From Fig. 5.9, D-SegNet provides quite clear contours of the segmented plant,

whereas the classical Sobel edge-based segmentation [43] visually gives less accurate

results. Morphological operations [104, 121] are used to connect the edge pixels into

meaningful edges.

There are two steps in morphological operations: erosion and dilation. Dilation
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(a) (b) (c)

Figure 5.9: Segmentation results. (a) Original image; (b) Segmentation
based on edge detection with Sobel operator

; (c) D-SegNet

Table 5.4: Performance of different segmentation methods in morning
glory plant

Metrics Based on edge Detection SegNet-Basic SegNet D-SegNet
PrecisionM 67.38% 96.57% 97.48% 98.31%
RecallM 62.25% 88.74% 89.64% 90.92%
F1-scoreM 64.71% 92.48% 93.39% 94.47%

expands the image boundaries to make sure the boundary pixels are connected. Erosion

shrinks the image pixels slightly, which removes noise pixels from the object boundary.

Finally, the object is segmented from the image. However, it cannot provide a coherent

and precise leaf shape. Although this does not mean traditional methods become

obsolete, D-SegNet indeed solves complex segmentation problems with super-human

accuracy. The big data training and plentiful feature computation provide descriptive

and salient features to predict the underlying patterns. Thereby D-SegNet gets a better

performance than the traditional computer vision method.

In this chapter, the proposed approach, SegNet-Basic [9] and SegNet [10] methods

are trained. In order to provide a fair comparison of the performance of the considered

deep learning architectures, the same GPU and environment system configurations are

applied to all of them. A 10-fold cross-validation strategy is applied to each data set.

Then 9 folds are used for training, and the other one fold is used for testing. The
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(a) (b)

(c) (d)

Figure 5.10: Results of transitional steps in proposed model for
automating the segmentation process. (a) Original image; (b)

SegNet-Basic; (c) SegNet; (d) D-SegNet;

Table 5.5: Performance of different segmentation methods in
ImageCLEF (Pl@ntleaves) dataset

Metrics Based on edge detection SegNet-Basic SegNet D-SegNet
PrecisionM 46.35% 90.98% 93.79% 96.57%
RecallM 41.68% 84.87% 87.03% 88.54%
F1-scoreM 43.89% 87.81% 90.28% 92.38%
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procedure is repeated 10 times to make sure each fold has been used for testing once.

Fig. 5.10 displays a group of segmented images. Based on subjective observation,

the two framed parts in each figure show different segmentation results. SegNet-Basic

and SegNet are hard to segment the curve leaf, while D-SegNet gives a clear shape. It

is expected that the proposed approach can capture many features through the dense

block. Obviously, the D-SegNet achieves higher performance than the other algorithms.

The SegNet-Basic [9] is a more lightweight network than SegNet, which comprises 4

pairs of encoder-decoders. As shown in Fig. 5.10(b), SegNet-Basic can take the coarse

contour. Several pixels of leaf edge have been lost. In addition, SegNet as the state-

of-the-art algorithm [10] is selected for comparison. It is a fully convolutional network

with a pixel-level classification network that has 5 pairs of encoder-decoders. SegNet

segments well the plant from the lab background compared with SegNet-Basic as seen

in Fig. 5.10(c). However, when SegNet compares with the D-SegNet segmentation

method in this chapter, it can be found that the SegNet segmentation method loses

some details, as shown in Fig. 5.10(c). The SegNet method is sensitive to the close

areas between plants, leaves overlapping and interference with light conditions. Thus,

SegNet loses some features on leaves, and it cannot segment the special position of

the plant in the original image. In this chapter, the D-Segnet method solved these

problems, which can extract plant boundary contour from the complex background

accurately.

Tables 5.4 and 5.6 list average quantitative segmentation results calculated over

10-fold cross-validation on the morning glory plant dataset. The numerical results

denote precision, recall, F1-score and IoU in the four segmentation methods. There

is a significant difference between segmentation based on edge detection and other

deep learning algorithms. All mean metric values of deep learning algorithms are

higher than that of the traditional image processing algorithm. The performance of D-

SegNet outperforms that of SegNet-Basic and SegNet with respect to both visual and

numerical results. Both SegNet-Basic and SegNet are encoder-decoder networks. The

size of the feature map is going small after each convolution. The common problem is
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Network mean IoU
Based on edge detection 56.37%
SegNet-Basic 90.56%
SegNet 88.58%
D-SegNet 90.64%

Table 5.6: Comparison of different segmentation methods in performance

the convolution operation between layers may lose important features. The D-SegNet

is designed to break this bottleneck. This is thanks to the concatenation between layers

of the dense block in the D-SegNet. It makes the feature extracted from the encoder-

decoder, which directly connects to each layer in the dense block. The D-Segnet will

learn more features than the SegNet-Basic and SegNet, which makes D-SegNet lead the

performance competition. The performance differences are obvious from Table 5.5. It

shows the mean values of precision, recall and F1-score with four different algorithms

on the ImageCLEF dataset. The D-SegNet gives accurate segmentation results on both

datasets.

5.4.3 Additional Considerations

The accuracy of plant pixel identification in smartphone images is a fundamental con-

cern. These images capture plants at different stages of growth, and leaves often appear

in a non-uniform manner due to their discrete growth patterns. Each group of plants is

photographed four times, resulting in multiple images for analysis. However, the inher-

ent randomness in leaf arrangement can lead to variations in pixel labelling within the

same group of plants. This complexity is further compounded when leaves overlap, as

pixel counts for overlapping leaves are consolidated into a single entity. Understanding

the relationship between plant pixels and weight prediction is important for effective

automatic yield estimation.

Addressing this intricate issue requires a multifaceted approach, and two primary

methods have been proposed. First, the challenge of labelling overlapped leaves pixel

by pixel is acknowledged as a cumbersome task, prompting alternative strategies. Sec-
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ond, the sample diversity within each group of plants is significantly increased. This

increase in sample diversity stems from the multiple images captured from various

plant positions within the same group. This strategy leverages the variation in leaf

arrangement to enhance the robustness of the pixel labelling process.

The D-SegNet algorithm, as introduced in this research, excels at segmenting plants

in their mature stages, surpassing the performance of state-of-the-art algorithms like

SegNet [10]. However, it is crucial to note that the algorithm doesn’t comprehensively

capture plant growth at every stage. The timing of harvesting continues to rely on

manual labour, as the morning glory plant’s physical shape undergoes dynamic changes

as it matures. Future research aims to delve deeper into the diverse morphological

shapes that the morning glory plant exhibits. Understanding the morphological and

physiological characteristics of the plant at various growth stages is pivotal for more

precise and automated harvesting strategies.

This research is the reliance on smartphone images. The utilization of smartphone

imagery underscores the potential of this technology in agriculture, given its widespread

accessibility and affordability to a broad spectrum of farmers. The envisioned applica-

tions extend beyond yield prediction, as images captured by farmers can be seamlessly

integrated into automated systems designed for predictive analytics. This initial study

showcases the feasibility of processing noisy smartphone images and using them to

predict yields with reasonably high accuracy. It constitutes the first step toward de-

veloping a comprehensive and automated system for yield prediction, one that holds

immense promise for enhancing smart-farm planning and monitoring practices.

Furthermore, the D-SegNet algorithm exhibits versatility beyond yield prediction.

Its capabilities extend to weed detection, disease identification and differentiation, and

various related tasks within the realm of precision agriculture. The algorithm’s adapt-

ability and robust performance make it a valuable asset in tackling multifaceted chal-

lenges associated with crop management.

To ensure a robust and fair comparison, the evaluation metrics in this research are

meticulously averaged over a 10-fold cross-validation process. The results and eval-
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uation techniques employed in this study firmly substantiate the superiority of the

proposed approaches. Not only does the D-SegNet algorithm excel in its segmenta-

tion capabilities, but it also shines in terms of reliability. These findings bolster the

algorithm’s potential as a pivotal tool in the field of agriculture, where precision and

accuracy are paramount for effective yield estimation, disease control, and sustainable

farming practices.

5.5 Summary

This chapter introduces a deep learning-based segmentation method known as D-

SegNet, which holds significant promise for applications in automated yield predic-

tion and precision agriculture. In contrast to traditional computer vision approaches,

D-SegNet excels in providing pixel-level segmentation, offering a more detailed and

accurate analysis of agricultural data.

One of the standout features of D-SegNet is its employment of a dense block struc-

ture, which significantly enhances feature propagation. This architecture surpasses

existing deep learning algorithms like SegNet, establishing itself as a superior tool for

segmentation tasks. The concatenation of feature maps within D-SegNet further im-

proves the extraction of object information, making it particularly well-suited for han-

dling sequential data. The network, once trained, exhibits remarkable proficiency in

identifying intricate segmentation details, including very small and overlapping leaves

within plant images. To validate the effectiveness of D-SegNet, comprehensive ex-

periments were conducted, employing four metrics for performance evaluation and

comparison against competing methods. The results were striking, with D-SegNet

achieving precision, recall, and F1-score values of 0.9820, 0.9064, and 0.9426, respec-

tively. Furthermore, the Intersection over Union (IoU) metric was calculated for 2,421

untrained plant images, yielding a remarkable score of 0.9056. These findings unequiv-

ocally establish D-SegNet as a highly accurate and efficient tool for plant segmentation,

substantially outperforming prior methodologies.
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The focus of this research is on the morning glory plant, a staple crop in the

agriculture industry, and its potential applications for yield prediction. This research

holds particular promise for small-scale and community-based farms, offering them a

powerful tool to estimate their crop yields accurately. Accurate yield predictions enable

the buyers of agricultural products to optimize their sourcing strategies, reduce costs,

and better meet the demands of their customers. This, in turn, promotes a healthier

and more cooperative relationship between farmers and buyers, fostering a mutually

beneficial partnership in the agricultural sector.

Experiments show that D-SegNet has the potential to improve the field of preci-

sion agriculture and yield prediction. This advanced plant segmentation network could

become an integral component of machine learning systems, enabling the precise esti-

mation of crop yields from smartphone images captured in the field. Such technology

has the potential to enhance the efficiency and profitability of agricultural operations,

benefiting farmers, buyers, and the entire agricultural supply chain.



Chapter 6

Conclusions

6.1 Summary and Contributions

The thesis presents a comprehensive exploration of deep learning techniques applied

to autonomous plant image segmentation and classification. This research domain

has gained remarkable traction due to its distinct advantages when compared to con-

ventional image processing methods for plant imagery. In contrast to the traditional

coarse feature extraction, deep learning-based approaches revolutionize image segmen-

tation and classification by harnessing the power of precision convolution calculations.

These approaches excel in capturing an array of features, employing various method-

ologies. This innovative approach equips farmers and retailers with a valuable tool

for seamlessly adapting their plant management and marketing strategies. Moreover,

these deep learning models outshine their predecessors by delivering superior precision

in plant image segmentation and classification. This marks a significant departure

from the labor-intensive and time-consuming practices associated with traditional im-

age processing and manual inspection. The results are not only faster but also more

accurate in the realm of plant image analysis.

While the promising deep learning techniques for plant image segmentation and

classification are advancing rapidly, several challenging problems remain to be ad-

115
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dressed. The inherent similarity and complex backgrounds in plant images increase

the difficulty of accurate segmentation and classification. Furthermore, enhancing pre-

diction performance is a daunting task, owing to numerous sources of interference.

Among these challenges, dealing with overlapped plants or imbalanced data poses one

of the most formidable obstacles. Overlapping plants obscure the objects, blending

features from different plants and making distinctions challenging. Additionally, dis-

tinguishing plants in an imbalanced dataset, which predominantly emphasizes learning

features from a large amount of data while neglecting features with limited occurrences,

is equally demanding. Furthermore, the fine-grained classification tasks in plant pathol-

ogy present their own set of challenges, characterized by high intra-class variation and

low inter-class differences.

To address the issues outlined above and elevate the performance of plant image

segmentation and classification, this thesis introduces several frameworks rooted in

deep learning methods. Although deep learning algorithms have achieved remarkable

performance, this thesis aims to optimize the deep learning framework, focusing on

refining the loss function, enhancing layer design, and improving learning strategies.

These optimizations are summarized as follows:

In Chapter 3, a deep learning method with a novel loss function is proposed based

on the fully convolutional network architecture specifically for addressing imbalanced

datasets in semantic segmentation tasks. The cross dropout focal loss function system-

atically updates the weights assigned to each class based on the outcomes of dropout

iterations. the proposed method dynamically adjusts the importance of dropout out-

puts from each class, effectively capturing the gradient of segmentation difficulty. This

dynamic weighting approach ensures that small, subtle features are treated with the

same significance as the more prominent, obvious features, leading to more compre-

hensive and accurate segmentation results. The framework performance is assessed

on two distinct benchmark datasets. The results are promising, indicating an overall

improvement of 2.5% in segmentation accuracy when applied to larger datasets.

In Chapter 4, a novel learning strategy of deep learning algorithm is developed
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based on the squeeze and excitation (SE) network for the precise classification of fine-

grained plant pathology. Fine-grained images of plant diseases pose a unique challenge

due to the subtle symptoms they exhibit on the leaves, often defying accurate classifi-

cation even by human experts. The holistic self-distillation imparts both soft and hard

labels to guide the SE network in capturing the intricate nuances of these diseases.

In this process, the teacher SE network imparts valuable feature knowledge, which is

then transferred to the student SE network, along with crucial hard label information.

This dual-source learning strategy equips the SE network with the ability to assimi-

late both label knowledge and feature knowledge, resulting in a robust classification

framework. This powerful SE network can now distinguish between various plant dis-

eases within the complex environmental context, moving beyond mere error diagnosis

and significantly contributing to the overall classification accuracy. Consequently, ex-

periments demonstrate that the proposed method surpasses the performance of other

state-of-the-art methods, establishing its superiority in the realm of fine-grained plant

pathology classification.

In Chapter 5, an innovative deep learning framework and a meticulously curated

morning glory dataset take centre stage as the focal points of our research, addressing

the challenging task of semantic segmentation. The dataset has been meticulously cu-

rated from original plant data, and meticulously captured using two distinct devices

operating under identical environmental conditions, ensuring a comprehensive and re-

liable source of information. The corresponding labelled data is thoughtfully generated

using a semi-supervised methodology, providing an essential foundation for our seman-

tic segmentation approach. The D-SegNet framework embraces an encoder-decoder

architecture enriched with dense blocks, significantly enhancing the propagation of

essential features throughout the network. This design choice allows for robust and

efficient information extraction, especially advantageous when dealing with sequential

data or complex plant structures. A key innovation lies in the concatenation of feature

maps, which augments the extraction of critical object-specific information, enhancing

the model’s ability to discriminate between different plant components and structures.
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This unique feature makes our framework particularly well-suited for handling the intri-

cate and intricate nuances within the plant world. The proposed framework to the test,

subjecting it to rigorous evaluation on two distinct plant datasets. The results speak

to its promise and potential, as it consistently demonstrates improved segmentation

performance compared to existing methods. This not only emphasizes the effectiveness

of our D-SegNet framework but also opens up possibilities for enhancing the under-

standing and analysis of plant images and beyond.
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6.2 Future Work

In this section, some promising deep learning algorithms are able to deal with sparse

data and at the same time estimate the uncertainties of the developed solutions. Dif-

ferent ways of fusion of the features from the images will be considered. Multimodal

information fusion is another area of future work, especially visual and audio features

in changeable dynamic environments.

• Evaluating the uncertainty of the D-SegNet on the area of sparse

datasets. A sparse image dataset refers to an image dataset that contains many

sparse regions. Only a small portion of pixels contain useful information, while

other pixels are typically vacant or contain background. This kind of dataset com-

monly arises in image segmentation tasks. For instance, the COCO dataset [92]

encompasses a substantial number of images for object detection and image seg-

mentation, where objects usually manifest solely in a fraction of the image, while

the rest constitutes the background. This results in sparsity since the majority of

pixels lack object-related information. Handling such datasets necessitates spe-

cialized image segmentation and object detection algorithms to effectively extract

information and address the sparse regions. The model may generate indistinct

predictions for segmented objects, emphasizing the need for robust uncertainty

assessment.

• The holistic self-distillation can be used to classify tasks with distinct

features, especially those whose characteristics pose a challenge for a conven-

tional model to differentiate. In theory, the holistic self-distillation learning strat-

egy holds the potential to enhance the performance of any model. The proposed

approach harnesses holistic insights directly from the framework itself and lever-

ages self-teaching through labelling. It offers models the opportunity to leverage

their own knowledge and self-learn, resulting in enhanced performance. This form

of self-guided learning fosters a robust and self-sufficient model, capable of out-

performing the initial student framework and achieving state-of-the-art results.
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• Integrating the Feature Pyramid Network (FPN) into the D-SegNet

framework to attain multi-scale segmentation capabilities. Multiscale

image segmentation is a methodology geared towards enhancing the precision of

object or region segmentation in images by simultaneously incorporating data

from various scales or resolutions. This approach is particularly adept at ad-

dressing intricate scenarios in plant segmentation tasks, where objects exhibit

varying sizes, shapes, and boundaries in different areas of the image. To facili-

tate this process, image features, including colour, texture, edges, and more, are

meticulously extracted at each scale. These extracted features play a pivotal role

in enabling algorithms to gain a deeper comprehension of the structural nuances

of objects across diverse scales. Furthermore, the feature information extracted

at different scales is amalgamated to generate the ultimate segmentation output.

The Feature Pyramid Network (FPN) follows the principle of simultaneously inte-

grating data from multiple scales, thereby enhancing the accuracy and resilience

of segmentation. This adaptability equips the algorithm to effectively handle a

multitude of scenes and objects with varying characteristics.

• Incorporating visual-audio features into the existing framework of plant

to enable multimodal feature fusion. Multimodal fusion represents a potent

strategy for building cross-media information retrieval systems. This technology

empowers users to initiate a query using a plant image and seamlessly access asso-

ciated information, encompassing both audio and textual data. It brings together

the power of both visual and audio information to offer a more comprehensive and

holistic understanding of plant-related content. Whether it is audio clips describ-

ing the plant’s unique features or textual descriptions of its growth stages, this

technology empowers users to access a complete and multi-dimensional perspec-

tive of the plant in question. It significantly encourages farmers to move beyond

the constraints of traditional, empirically driven methods. Instead, it motivates

them to delve deeper into the realms of professional agricultural knowledge, lead-
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ing to more informed decisions when it comes to tasks like seed sowing, pesticide

application, and plant care. Simultaneously, it equips agricultural students with

a powerful tool to swiftly and accurately grasp the characteristics and contextual

background of plants within the real-world farming environment.
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Appendix A

Forward Propagation

This appendix presents a comprehensive description of the forward and backward prop-

agation equations for VGG-16 network, a component integral to the design of D-SegNet

presented in Chapter 5.

VGG-16 has a total of 13 convolutional layers, 5 pooling layers and 3 fully con-

nected layers. The first two layers of fully connected networks use dropout and L2

regularization to prevent overfitting, and use batch gradient descent and Momentum

to use cross entropy as Target loss for training optimization.

Given the number of network nodes (convolution kernels) in layer l as nl, the kernel

between the layer l and l − 1 as klp,q, b
1
p denotes the bias of the p node at layer l.

The weight of fully connected network at layer l is W1, z1 presents the forward input

without through activity function at layer l, while a1 represents the forward input

through activity function at layer l.

The convolutional operates at layer l in math following:

zlp(i, j) =
nl−1∑
q=1

l∑
u=−1
alp(i,j)

l∑
v=−1

al−1
q (i− u, j − v)kl

p,q(u, v) + blp,

alp(i, j) = ReLU
(
zlp(i, j)

)
.

(A.1)

The max pooling function is
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zlp(i, j) = max
(
al−1
p (2i− u, 2j− v)

)
u, v ∈ {0, 1}. (A.2)

A feature map of size 7 × 7 × 512 is obtained after 18 times the above operation,

which needs to be converted into a 25,088-dimensional vector as the input of the fully

connected layer. This output is a18:

a18 = F
({

z18p
}
p=1,2,··· ,512

)
. (A.3)

The front two layers of fully connected network adopt dropout, set as d. The

connection of layer l is indicated rl, which follows Bernoulli distribution [128]:

rl ∼ Bernoulli (d). (A.4)

Thus, the process of forward propagation can be expressed as

ãl = rl ⊙ al,

zl+1 = W l+1ãl + bl+1,

al+1 = ReLU
(
zl+1

)
.

(A.5)

The activity function of the output layer is softmax:

aLi = softmax
(
zLi
)
=

ez
L
i∑nL

k=1 e
zLk
. (A.6)

The loss function picks cross entropy:

L = −
nL∑
i=1

yi log a
L
i . (A.7)
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Back Propagation

The δ1 error of the layer l indicates the gradient of loss for the forward input of layer

l as ∂L
∂zl

. The partial derivative of softmax is formulated as:

when i = j, it is

∂

∂zj

(
ezj∑n
k=1 e

zk

)
=

ezj
∑n

k=1 e
zk − (ezj)2

(
∑n

k=1 e
zk)

2 = aj (1− aj) ; (B.1)

when i ̸= j, it is

∂

∂zj

(
ezi∑n
k=1 e

zk

)
=

−eziezj

(
∑n

k=1 e
zk)

2 = −aiaj. (B.2)

The error of the output layer at node j is
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δLj =
∂L

∂zLj

=
nL∑
i=1

∂L

∂aLi

∂aLi
∂zLj

=
∂L

∂aLj

∂aLj
∂zLj

+
∑
i ̸=j

∂L

∂aLi

∂aLi
∂zLj

= − yj
aLj

aLj
(
1− aLj

)
+
∑
i ̸=j

− yi
aLi

(
−aLi a

L
j

)
= −yj

(
1− aLj

)
+ aLj

∑
i ̸=j

yi

= aLj − yj.

(B.3)

Thus, the error of the back propagation at layerl is

δl =
(
Wl+1

)T
δl+1 ⊙ r1 ⊙ ReLU

(
zl
)′
. (B.4)

The error of back propagation from the fully connected layer to the pooling layer

is

δ18 = F−1
((

W19
)T

δ19
)
. (B.5)
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