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Abstract

Neoclassical tearing modes are resistive magnetohydrodynamic instabilities caused by filamenta-

tion of magnetic field-parallel current density, reconfiguring the field to form ’magnetic island’

structures. Islands enhance radial transport, remove parallel bootstrap current and self-amplify,

degrading confinement. Experiments indicate island growth occurs only when both a threshold

island half-width wc and poloidal beta are exceeded, the former comparable to the trapped ion

banana orbit width ρb,i. Identifying the physical influences on wc would inform NTM control

methods in future tokamaks like ITER, where NTMs are anticipated. In this work, a new numer-

ical simulation code ”kokuchou” is developed to model the plasma response to a threshold-size

magnetic island in a circular cross section, low inverse aspect ratio ϵ≪ 1 tokamak under an ITER-

like collisional banana regime, at the length scale ρb,i ∼ w ≪ rs where rs is the minor radius of

the rational surface where the island forms. Ions are iteratively tracked via a 4D drift-kinetic

equation, then combined with an analytic electron response to self-consistently derive the elec-

trostatic potential and ion flow-like momentum conservation term, both part of the 4D equation.

Objectives included: (1) validation and verification of the new code, (2) studying the ion response

from four full-scale runs at varying island half-width ŵ[rs] and plasma collisionality ν⋆, and (3)

calculating the island growth rate across varying ŵ, ν⋆ and ion poloidal gyroradius ρ̂θ,i[rs]. A

novel result for the threshold width dependence on both ion poloidal gyroradius and collisionality

is obtained: wc[rs] ≈ 0.440ρ̂θ,i[rs]+0.0178ν⋆−7.54×10−5, over the range ν⋆ = 0.005−0.020. The

interacting effects of collisions and “drift island” dynamics on island growth and their relevance

to the computational problem are explored.
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Chapter 1

Background

1.1 Fusion

Nuclear fusion is the process by which two nuclei approach close enough to overcome electro-

static repulsion, until the strong nuclear force combines them into a larger nucleus. If the total

mass of the reactants exceeds that of the products, the mass excess ∆m is directly converted

to its energy equivalent under Einstein’s formula E = ∆mc2, where c ∼ 3 × 108 ms−1 is the

vacuum light speed. Fusion is among the most energy-dense reactions per unit mass known to

physics, naturally occurring in stars [1]. Since its discovery, there have been attempts to harness

controlled nuclear fusion on Earth for energy production. Over the past two centuries, Earth’s

growing human population has increasingly relied on non-renewable fossil fuels for energy, but it

is well-understood that the environmental damage directly resulting from past and present fossil

fuel consumption is worsening [2, Sec.A1-A2]. More recent discussion highlights the prolonged

socioeconomic instability inflicted on fossil fuel-reliant economies during supply shocks, which are

only expected to worsen under rising demand and tightening supply [3] [4, Sec.2.2]. The only

scenario in which these two issues are overcome is one where fossil fuel use is phased out entirely.

Facilitating the necessary transition to alternative energy sources presents its own challenges.

Renewables including solar, wind, hydroelectric and biofuels are expected to contribute substan-

tially to the future global energy mix, but each has its own limitations pertaining to location,

variability and energy density, requiring extensive storage and transmission infrastructure to

respond to demand flexibly [4, Sec.6.6-6.7]. Nuclear fission overcomes these limitations, but in-

troduces further issues around security, cost, waste management and the scarcity of its own fuel.

Increasingly, fusion power is considered as an option, being a potentially low-carbon, low-waste,
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Sec. 1.1: Fusion Ch. 1: Background

energy-dense and abundant electricity source without the same spatial, temporal and safety con-

siderations as conventional renewables or fission [5, Sec.1.1-1.2]. While it remains an emerging

technology, interest in fusion power has been driven by recent milestone results from established

experiments [6], and a growing private sector [7, Fig.6-7].

Fusion, unlike fission, is not a runaway chain reaction and instead requires very high densities

and/or temperatures to initiate and sustain. Stars provide these confinement conditions under

immense gravitational forces; on Earth, an artificial means of confinement must instead be devel-

oped and optimised for power production. The most energetically economical fusion reaction in

lab conditions is of the hydrogen isotopes of deuterium and tritium, or D-T fusion [8]. It produces

a helium-4 nucleus and a neutron, and a total of 17.6 MeV energy:

D2 +T3 → He4(3.5 MeV) + n1(14.1 MeV) (1.1.1)

Other reactions can also occur in this same environment, including D-D and D-He3,

D2 +D2 → He3 + n1 + 3.27 MeV

D2 +D2 → T3 +H1 + 4.03 MeV

D2 +He3 → He4 +H1 + 18.3 MeV

but the collisional probability or reaction cross section ⟨σv⟩ of D-T fusion is over an order of

magnitude higher than the others at lower temperatures of T = O(10 keV), (108 K), peaking

at T = 30 keV [9]. Under these conditions, D-T fuel exists as a fully-ionised plasma that can

be manipulated with electromagnetic fields. These temperatures must firstly be reached via

external heating. Once reactions occur, the 3.5 MeV helium-4 nuclei can deliver heat back to

the D-T reactants. The 14.1 MeV neutrons rarely interact with the reactants and are instead

absorbed by the reactor walls, from which energy may be extracted for power generation via

”blanket” structures. To operate continuously, the power released from fusion Pfus must exceed

the external heating power required to maintain reaction conditions, Pext. These are used to define

a common measure of reactor performance and efficiency known as the gain Q = Pfus/Pext, where

the critical requirement for net output, known as breakeven, is Q ≥ 1. The physical criteria for

satisfying breakeven were studied by J. D. Lawson, which also requires that the D-T reaction

occurs at minimum temperature of T > 3 keV to overcome radiative power losses [10]. When

Q → ∞, the reactor enters an ignition state and fusion self-sustains without external heating.
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Reactor performance is often summarised by a single value known as the fusion triple product,

which for ignition in D-T to occur, is approximated by:

nTτE ≥
12

Eα

T 2

⟨σv⟩
(1.1.2)

where τE is the energy confinement time over which power losses occur. Taking T to be as close

as possible for peak D-T reactivity ⟨σv⟩ to occur, ignition is then reached by maximising the fuel

density n and/or confinement time τE .

The two main approaches to fusion power are magnetic confinement fusion (MCF) and inertial

confinement fusion (ICF). ICF uses high-energy lasers or particles to compress a fuel target to high

densities over an inherently short confinement time to achieve ignition. Conversely, In MCF, fuel is

heated in a vacuum chamber into a charged plasma and kept in place over long confinement times

with electromagnetic fields. A comprehensive review of progress toward breakeven and ignition

in a range of ICF and MCF devices is given in Ref [6]. Prominent examples of MCF devices

include JET (Joint European Torus) and its successor ITER, currently under construction. As of

2023, JET holds the record for gain (Q = 0.7) and confinement time (τE ≈ 0.2-0.3 s) [11]. ITER

aims to achieve Q ≥10 over a shot duration1 of ≈ 500 s, [12, 13]. Successors to ITER, including

DEMO [14] and STEP [15] plan to demonstrate electricity production in the mid-21st century. All

are a type of device known as a tokamak, covered in Sec. 1.3. As the operating conditions of MCF

devices approach the ignition criterion, preparations must be made to identify and prevent the

possible phenomena that limit further increases in plasma density and confinement time, which

necessitates a comprehensive understanding of plasma transport through theoretical modelling.

This work will cover one particular performance-limiting plasma phenomenon that is especially

relevant in the context of ITER and future devices.

1Shot duration is the controlled operating time, not determined by power losses as confinement time is.
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1.2 Plasma

1.2.1 Introduction to plasmas

Plasma is a gas-like state of matter where a significant fraction of particles are ionised, typically

at high temperatures in a vacuum [16, pp. 2–3]. The charged species in a plasma are ions and

electrons. Their motion is determined by the Coulomb force, both at short-range by collisions

and at long-range by electromagnetic fields, including those of other charged species, giving rise

to the characteristic collective behaviour of plasmas. This allows plasma particles to screen out

variations in the electrostatic potential over a characteristic scale, the Debye length λD. Beyond

this scale, the plasma charge density is near-zero and said to be quasineutral.

Throughout this work, we consider a fusion plasma in ITER-like conditions at temperatures

of T0 ∼ O(10 keV), densities of n0 ∼ O(1020 m−3) in a magnetic field of B ∼ O(5 T) [13].

Under these conditions, plasma transport is governed primarily by long-range electromagnetic

forces rather than by collisions and is considered magnetised. The phenomena of interest occur

over length scales of L ∼ 0.01−1 m (≫ λD), over which quasineutrality holds, and so descriptions

of such a system from Ref. [17] will be used. For simplicity and conformity with this theory, the

plasma is fully ionised and consists solely of hydrogen ions2 of charge number Zi = +1, mass

mi, and electrons of charge number Ze = −1 and mass me. Ion and electron quantities use

subscripts i and e respectively, while equilibrated quantities for both species have subscript 0.

Vector quantities, e.g. magnetic field B, are in bold, whose magnitude is in italic. Magnetic field-

parallel and perpendicular components of vector quantities use subscripts ∥ and ⊥ respectively.

The following sections will cover fundamentals of plasma physics that comprise the theory within

this work, much of which follows Refs. [18, 17].

2Any isotope of hydrogen will be applicable with the theory outlined here, and the quantities described later
in Ch.2 are normalised to the ion mass, hence the final result applies equally to both proton-electron plasmas and
deuteron-electron plasmas. Multi-ion systems like burning D-T plasmas would introduce complexity via collision
dynamics and differences in orbit width between ion species, and so only one ion species is considered here.
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1.2.2 Single charged particle motion

Eq.(1.2.1) describes the motion of a particle of species j, mass mj , charge eZj and velocity vj ,

in an electric field E and magnetic field B (magnitude B):

mj
dvj
dt

= eZj(E+ vj ×B) (1.2.1)

Here, eZjE is the electrostatic force, acting parallel to E. The term eZjvj × B is the Lorentz

force, which depends only on the B-perpendicular component of velocity, v⊥. It is centripetal,

causing circular motion perpendicular to B about a guiding centre, at a gyroradius ρj =
mjv⊥
eZjB

,

or Larmor radius, and gyrofrequency ωj =
eZjB
mj

. Assume the electromagnetic fields vary slowly

in time relative to ωj , and ρj ≪ LB, where L
−1
B = |∇B|/|B| is the inverse of the magnetic field

gradient length scale. It follows that Eq.(1.2.1) has two constants of motion correct to O(ρj/LB):

the total energy E (constant as
dvj

dt ⊥ vj) and magnetic moment µ =
mjv

2
⊥

2B , the latter associated

with the area enclosed by the gyro-orbit.

The particle’s trajectory is dependent on the electromagnetic field geometry. For the special

case where E = 0 and B is homogeneous and straight, a particle moving perpendicular to the

magnetic field (v⊥ ̸= 0) experiences only the Lorentz force and has a circular trajectory. When

field-parallel velocity v∥ ̸= 0, the trajectory is helical, with the guiding centre following the

magnetic field lines. If there is spatial or temporal variation in E or B, the particle’s guiding

centre will drift relative to the magnetic field lines, with examples shown in Fig.1.1.

(a) E×B drift. (b) ∇B drift. (c) Curvature drift.

Figure 1.1: Magnetic drift effects of an ion (red +) and electron (blue −) in an electromagnetic
field. Particle trajectories shown by dashed red/blue curves with arrowheads indicating one
gyro-orbit. Guiding centre trajectories shown by thick solid red/blue arrows.

The E×B drift, shown in Fig.1.1a, occurs under a finite B-perpendicular electric field E⊥. As

the gyrating particle periodically moves with and against E, its guiding centre drifts perpendicular
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to both E and B with velocity vE , noting vE is independent of charge and mass:

vE =
E×B

B2
(1.2.2)

Magnetic drifts include the ∇B and curvature drifts, shown in Fig.1.1b and 1.1c respectively.

Both are charge and mass dependent, generating current as ions and electrons drift in opposite

directions. The ∇B drift occurs under inhomogeneous B fields. As B varies along each orbit,

the perpendicular velocity v⊥ must vary to conserve magnetic moment µ, while v∥ also varies to

conserve energy E . Similarly, the curvature drift occurs under non-uniform, non-straight B fields,

and the particle experiences a centrifugal force that produces a net drift. In an axisymmetric

magnetic field, both magnetic drifts are perpendicular to both B and its gradient ∇B, and are

expressed as a combination vb, where ∇B and curvature drifts are represented by the 1
2v

2
⊥ and

v2∥ terms respectively:

vb =
v2∥ +

1
2v

2
⊥

ωj

B×∇B
B2

(1.2.3)

Polarisation drift occurs under both a B-field and a time-varying E-field, and is parallel to E with

velocity vpol =
1

ωjB

∂E

∂t
. Being charge-dependent, it induces a current known as the polarisation

current.

Another important effect that occurs under a spatially-varying magnetic field is trapping or

mirroring. Consider an axisymmetric B-field with increasing magnitude in a direction z as shown

in Fig.1.2. A particle entering the stronger region of B-field will see its gyroradius reduce, and

require v⊥ to increase to conserve magnetic moment µ. To also conserve kinetic energy E , v∥
must decrease. If the particle velocity vector’s angle of deviation from the field lines, or pitch

angle, is sufficiently large, then v∥ flips sign and the particle is reflected. Magnetic trapping leads

to significant tokamak physics that is discussed later in Sec.1.3.3.

Figure 1.2: Guiding centre trajectory of a charged particle (red, dashed) reflected at a region of
stronger B-field (grey, solid).
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1.2.3 Kinetic description of a plasma

In Sec.1.2.2, single charged particle responses to external electromagnetic fields were considered.

In modelling plasmas, every charged particle’s motion is coupled to the fields of other particles,

and vice versa. Computationally, this introduces the need for self-consistency, where particle

motions and their fields must be iteratively recalculated against each other. This is complicated

further by the very large number of particles in the system (∼ 1023 in an ITER-like case, in

a volume of ∼ O(103 m3) [19]), so a statistical description is necessary. In kinetic theory, the

distribution function fj(r,v, t) describes all particles of species j, with 3D position vector r and

3D velocity vector v at time t, as a number density per unit volume of 6D phase space near

(r,v). Each volume element d3rd3v therefore contains fj(r,v, t) d
3r d3v particles at a time t. In

general, fj(r,v, t) satisfies the 6D kinetic equation of motion:

∂fj
∂t

+ vj · ∇r(fj) +
F

mj
·
(
∂fj
∂v

)
= Cj(fj) (1.2.4)

where ∇r and ∇v are vector differential operators which, in 3D Cartesian coordinate space can

be written as:

∇r =
3∑
i=1

∂

∂ri
=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇v =

3∑
i=1

∂

∂vi
=

(
∂

∂vx
,
∂

∂vy
,
∂

∂vz

)
(1.2.5)

and Cj(fj) is the collision operator, representing short-range effects. For a plasma, taking F to

be the Lorentz force eZj(E+v×B) from Eq.(1.2.1), then Eq.(1.2.4) becomes the Fokker-Planck

equation [20]:
∂fj
∂t

+ v · ∇fj +
eZj
mj

(E+ v ×B) · ∂fj
∂v

= Cj(fj) (1.2.6)

Here, E and B now represent the macroscopic electric and magnetic fields respectively (i.e.,

over lengths L≫ λD), ignoring short-range fluctuations of individual particles which are instead

encapsulated within the Cj(fj) collision operator. Here, Cj(fj) describes interactions of species

j with all relevant species k in the system (including j itself):

Cj(fj) =
∑
k

Cjk(fj , fk) (1.2.7)

Ignoring collisions (Cj(fj) = 0), Eq.(1.2.6) becomes the Vlasov equation. Despite plasma trans-

port in this work not being collision-dominated, their role is physically significant, and the exact
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form of Cj will be discussed later after further information is given (see 2.2.1).

Because the 6D Fokker-Planck equation Eq.(1.2.6) is still computationally challenging, it is

often simplified depending on the spatial and temporal scales of interest. For example, gyrokinetic

theory accounts for variations at the scale of gyro-motion (ρj and ωj). Drift-kinetic theory

simplifies particle motion by averaging out variations in fj over the gyro-scale, provided these

are small relative to the system size L. Here, only particles’ guiding centre motion is tracked

via a gyro-averaged distribution function, f̄j . Working in the limit of small δ = ρj/L ≪ 1,

gyro-averaging Eq.(1.2.6) gives an O(δ) approximation of the drift-kinetic equation [18, p. 128]:

∂f̄j
∂t

+ v∥∇∥f̄j + (vE + vb) · ∇f̄j +
eZj
mj

(
v∥E∥

v

∂f̄j
∂v
− (vE + vb) · ∇Φ

v

∂f̄j
∂v

)
= C(f̄j) (1.2.8)

where Φ is the electrostatic potential, E∥ is the B-parallel component of the electric field, and

gradient operator ∇∥ = b · ∇, where b = B/B is the unit vector of B. The terms vE and vb

are the E×B and magnetic drifts respectively (see Sec.1.2.2). The drift-kinetic equation will be

used throughout this work to track the ion distribution function for the phenomena of interest.

1.2.4 Fluid description of a plasma

Macroscopic plasma quantities in the kinetic equation are contained within velocity moments of

the distribution function fj . The 0th moment, Eq.(1.2.9), gives the number density of species j:

nj(r, t) =

∫
d3v fj(r,v, t) (1.2.9)

and the 1st moment gives the flow:

uj(r, t) =
1

nj

∫
d3v vfj(r,v, t) (1.2.10)

Similarly, taking velocity moments of the kinetic equation itself gives the fluid equations, which

provide conservation laws for those macroscopic quantities by treating the system as a continuous

fluid. This approximation is valid, provided the collisional mean free path is small, i.e., collisions

are frequent over the timescale of interest. The 0th moment of Eq.(1.2.6) gives the continuity

equation (number density conservation in the absence of gains or losses),

∂nj
∂t

+∇(njuj) = 0 (1.2.11)

12
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and the 1st moment gives the force balance equation:

mjnj

(
∂uj
∂t

+ (uj · ∇)uj
)

= −∇pj + njeZj(E+ u×B) +Rj (1.2.12)

where pj is the pressure, andRj is a drag force originating from the collision operator of Eq.(1.2.6).

Neglecting Rj for simplicity, from Eq.(1.2.12) a fluid current arises, found by rearranging for the

perpendicular flow u⊥,j :

u⊥,j =
E×B

B2
+

B×∇pj
njeZjB2

(1.2.13)

The first right-hand term is the kinetic E×B drift vE , while the second term, the diamagnetic

drift, originates from the fluid treatment. Under a finite B-perpendicular pressure gradient,

the difference in number of gyrating particles between adjacent field lines produces a net fluid

flow, irrespective of individual particle motion. As diamagnetic drift is charge-dependent, the

diamagnetic current JD is induced perpendicular to B. The total current induced is given by:

JD =
B×∇p
B2

(1.2.14)

where p is the total plasma pressure.

The next unknown to determine is pressure pj . The 2nd moment of the kinetic equation

determines pj in terms of energy flux, itself determined by additional moments and unknowns.

Introducing a closure relation limits further ordering. A common example is the adiabatic model,

with C and γ as constants:
∂

∂t
(pjn

−γ
j ) = 0 , → pj = Cnγj (1.2.15)

1.2.5 MHD description of a plasma

The ion-electron plasma in this work can be modelled as two distinct but coupled fluids. Where

appropriate, ideal magnetohydrodynamic (MHD) theory can be employed, which uses one set of

fluid equations for both species and neglects electron inertia due to the mass difference me ≪ mi.

MHD is particularly useful for modelling small perturbations affecting an equilibrium state. Here,

the continuity equation Eq.(1.2.11) becomes the mass conservation equation, where nmi ≈ n(mi+

me) is the plasma mass density and u (≈ ui) is the flow of both species:

∂

∂t
(nmi) +∇ · (nmiu) = 0 (1.2.16)

13
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Similarly, the force balance equation Eq.(1.2.12) becomes:

nmi

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ J×B (1.2.17)

where J = ne(Ziui − ue) is the plasma current density and p is the total plasma pressure. To

close the ideal MHD system, the adiabatic equation of state Eq.(1.2.15) becomes:

∂p

∂t
+ (u · ∇)p = −γp∇ · u (1.2.18)

Plasma species, fields and currents are coupled through Maxwell’s equations:

∇×B = µ0J−
1

c2
∂E

∂t
(1.2.19)

∇×E = −∂B
∂t

(1.2.20)

∇ ·B = 0 (1.2.21)

∇ ·E =
1

ϵ0

∑
j

njeZj (1.2.22)

where c is the vacuum speed of light and µ0 is the vacuum permeability. Eq.(1.2.19) is also known

as Ampère’s law. Fields and current density are linked via Ohm’s law, for a given resistivity η:

E+ u×B = ηJ (1.2.23)

When resistivity η = 0, ∇·E = 0 and the displacement current 1
c2
∂E

∂t
of Eq.(1.2.19) is neglected,

this case is known as ideal MHD. Here, the conservation of magnetic flux through any surface

S applies, forcing the fluid elements of the plasma and the field to coevolve under the so-called

frozen-in condition. In the case of resistive MHD where η ̸= 0, collisional diffusion across field lines

becomes significant, particularly in regions of high current density, and the frozen-in condition

does not apply. Where energetically favourable, the magnetic geometry can then spontaneously

reconfigure in a field line reconnection event [16, pp. 322–324]. The sudden transfer of magnetic

energy to the plasma during reconnection can enhance the process, resulting in the growth of

resistive MHD instabilities that can modify the global equilibrium even from a small initial

state [21].

14
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1.3 Tokamaks

1.3.1 Plasma in a toroidal magnetic field

Recalling Sec.1.1, in magnetic confinement fusion, ignition criteria are achieved by keeping a

sufficiently hot, dense plasma in place with magnetic fields over long durations. It is possible to

magnetically trap a plasma in a cylindrical magnetic field between two axisymmetric magnetic

coils, but collisions will alter particles’ pitch angle and de-trap them, leading to end losses. These

losses can be avoided by joining the ends into a toroidal system, as in Fig.1.3:

Figure 1.3: Plasma ions (red +) and electrons (blue −) in a purely toroidal magnetic field Bφ
experiencing vertical magnetic drift vB and radial E×B drift vE .

Here, toroidal geometry is described by the major radius R, minor radius r, vertical direction

z. A right-handed toroidal angle φ and poloidal angle θ are used with θ = 0 at the outboard

midplane, following the convention in Ref. [22]. Key locations are the central axis (R = 0), core

(R = R0, r = 0) and edge (r = a). The aspect ratio is defined as R0/a; its inverse ϵ = a/R0 is

used in transport physics. The externally-induced B-field of Fig.1.3 is toroidal, but its strength

scales as Bφ ∝ R−1, with ∇B facing toward the central axis. This toroidal field alone does

not provide sufficient confinement, as the ions and electrons will experience ∇B and curvature

drifts in opposite vertical directions, inducing an E-field in z that causes both to E × B-drift

radially outward. To prevent this charge separation, the magnetic drifts can be averaged out by

introducing a poloidal field component Bθ to make the total field helical. This is done either

by: i) using shaped coils, as in stellarator devices, or ii) inducing a toroidal plasma current as

in the aforementioned tokamak design from Sec.1.1. However, the inherent scaling of Bφ ∝ R−1

persists, which influences transport as Sec.1.3.3 will cover.
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1.3.2 Tokamak equilibrium

In stability modelling, the equilibrium is the time-independent (∂/∂t = 0) steady state in which

the plasma is unperturbed but not necessarily stable. In the case of stationary net fluid flow

u · ∇u = 0, the ideal MHD force balance equation Eq.(1.2.17) reduces to:

J×B = ∇p (1.3.1)

To satisfy this, there must be field-perpendicular current3, and no field-parallel pressure gradient:

B · ∇p = 0 (1.3.2)

Both B and J must then lie on a set of nested, axisymmetric toroidal flux surfaces of constant

pressure [17, pp. 117–124], as illustrated in Fig.1.4. Each surface is labelled by the poloidal flux

ψ, with ψ = 0 at the core and ψ = ψa at the edge.

Figure 1.4: Poloidal cross section of a generic ideal MHD tokamak equilibrium with nested, shaped
toroidal flux surfaces and Shafranov shift. Magnetic field (green) and current density (purple)
are shown.

Conventionally, ψ is used instead of r as the radial coordinate, as pressure and other parallel

transport-dominated quantities like temperature and density become functions of ψ. Using ψ

also accounts for poloidal shaping and off-axis shifts of flux surfaces from R = R0, known as

Shafranov shift, as depicted in Fig.1.4. This Shafranov shift pushes inner flux surfaces outboard

slightly, due to the imbalance of inboard and outboard pressure per unit area on a toroidal flux

surface, as a direct result of pressure being constant on those surfaces.

3The diamagnetic current provides this, see Eq.(1.2.14)
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In the limit of small δ = ρj/L ≪ 1, to the leading order the charged particles free-stream

along the magnetic field, remaining within O(ρj) of their flux surface. Good confinement is

characterised by minimal transport between flux surfaces (e.g. via collisions), allowing high

pressures and temperatures to be sustained in the core. For optimal confinement, the plasma

pressure profile should be highest at the core to maximise reaction rate, and lowest at the edge

to minimise radial transport to the wall. A high plasma beta β, the ratio of plasma pressure to

magnetic pressure, is also desirable as it indicates the efficiency of the applied field at attaining

the required core pressure for fusion [8, pp. 115–116]:

β =
p

B2/2µ0
(1.3.3)

A similar term, the poloidal beta βθ, substitutes B for its poloidal component Bθ, and is also an

important measure of performance.

Field line helicity is described by the safety factor q, the number of toroidal turns per poloidal

turn that a magnetic field line executes around a flux surface. Rational flux surfaces are those

where q = m/n is a rational number, with m and n being the toroidal and poloidal mode numbers

respectively. The rate of change in q across flux surfaces is described by the magnetic shear length

scale L−1
q , closely linked with plasma stability. The shear is defined via the dimensionless quantity:

1

Lq
=

1

q

dq

dr
(1.3.4)

The periodicity of closed field lines on rational surfaces allows perturbations of corresponding

mode to resonate, which can develop into plasma instabilities that negatively affect confinement.

1.3.3 Neoclassical transport in a large aspect ratio tokamak

Equilibrium geometry is often simplified by working in the limit of large aspect ratio where

its inverse is small: ϵ = a/R0 ≪ 1, then neglecting terms in O(ϵ2) and smaller, including the

Shafranov shift [17, p. 123]. Similarly, if the poloidal cross section of the outermost flux surface

is assumed circular, then the inner surfaces are approximately so, as in Fig.1.5a. A further

simplification treats field strength B as near-constant on each surface, as in the classical plasma

transport model, where the primary radial transport mechanism across flux surfaces is collisional

diffusion. However, due to B ∝ R−1, the variation in field strength on flux surfaces will introduce

physics that dominates over classical transport[17, pp. 158–159].
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(a) Neoclassical equilibrium. (b) Passing and trapped particle orbits.

Figure 1.5: Poloidal cutaway of a circular cross section tokamak plasma, ϵ ≪ 1, no Shafranov
shift.

In neoclassical transport, the toroidal nature of the magnetic field geometry is retained, re-

sulting in a fraction of particles with near-perpendicular velocity vectors (|v∥|/v⊥ ≤
√
ϵ) becoming

magnetically trapped on the outboard weak-field side of flux surfaces, confined to a characteristic

banana-shaped orbit, as shown in Fig.1.5b. The poloidal extent of the trapped orbit from the

midplane is known as the bounce point θb. Non-trapped passing particles follow helical guiding

centre trajectories that are either parallel or anti-parallel to the field, while trapped orbits reverse

direction every half-orbit. Both types of orbit are shifted radially from their flux surface due to

magnetic drifts4. Each half of a banana orbit is shifted in opposite directions, giving it a finite

radial width ρb,j which, in the ϵ≪ 1 limit, is approximately:

ρb,j ≈
√
ϵρθ,j , ρθ,j =

mjvth,j
eBθ

(1.3.5)

Here, ρθ,j is the poloidal gyroradius, the projection of gyroradius ρj onto the poloidal field com-

ponent Bθ only, and vth,j is the thermal velocity of species j. Note that the poloidal gyroradius

exceeds the full gyroradius, i.e., ρθ,j > ρj , and due to the mass difference the ion banana width

greatly exceeds that of electrons, ρb,i ≫ ρb,e.

The neoclassical transport regime depends on collision frequency, as collisions can result in the

trapping or de-trapping of particles via a change in pitch angle. This is important for particles

whose velocity pitch-angle lies near the trapped-passing boundary where |v∥|/v⊥ =
√
ϵ, where

most interactions between passing and trapped particles occur. The plasma collisionality ν⋆ is

4Passing particles will deviate by O(ϵρθ,j), whereas the deviation of trapped particles is a factor O(ϵ−1/2) larger
as they slow down near the bounce points.
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defined here as the dimensionless ratio of the frequency of de-trapping collisions to the banana

orbit frequency [17, pp. 148–150]. In the Pfirsch-Schlüter regime (ν⋆ > 1), trapped particles

are de-trapped before completing an orbit, so their impact is not significant. Modern, higher-

temperature tokamaks operate in the low-collisionality banana-plateau regimes where ν⋆ < 1.

In the limit ϵ ≪ 1, the banana and plateau regimes are distinct; the banana regime is where

ν⋆ ≪ ϵ3/2 ≪ 1 and the plateau regime is where ϵ3/2 < ν⋆ < 1, though complete trapped orbits

only exist in the banana regime.

1.3.4 Bootstrap current

In the banana regime, a field-parallel self-induced current known as the bootstrap current is

induced [23]. Consider two banana orbits on two adjacent flux surfaces as in Fig.1.6, where the

outboard side of one orbit counterflows against the inboard side of another.

Figure 1.6: Two adjacent trapped particle orbits (orange, green) under a finite radial pressure
and temperature gradient, inducing the bootstrap current Jbs. Arrow size indicates the number
density of particles on each orbit.

In the presence of both a pressure and temperature gradient (i.e. inner orbit particles are more

numerous and hotter), a net flow of trapped particles occurs in opposite directions for electrons

and ions. Trapped particles then transfer momentum to passing particles through collisions,

preferentially in one direction. The resulting net field-parallel current Jbs, carried by the passing

particles, which for a ϵ≪ 1 circular cross section tokamak has the approximate form [24, 25]:

Jbs ≈ −2.44
√
ϵ

Bθ

dp

dr
(1.3.6)

The bootstrap current can be comparable to or larger than other field-parallel currents in the
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plasma, such as the Ohmic current [17, pp. 208–209]. The poloidal field it induces can benefit

confinement by supplementing the externally-induced fields or, in theory, replacing them entirely

for steady-state operation [26]. In ITER, Jbs is expected to provide > 50% of the plasma cur-

rent [27]. However, perturbations in the bootstrap current can drive the neoclassical tearing

mode MHD instability that limits the performance of the tokamak, which will be covered in the

following chapters.
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1.4 Neoclassical Tearing Modes (NTMs)

1.4.1 Introduction to NTMs

Recall the equilibrium described in Sec 1.3.2 with flux surfaces as in Fig.1.7a. Good confinement

is provided by the predominantly field-parallel transport along these flux surfaces, sustaining high

core pressures and poloidal beta βθ. While ideal MHD gives a reasonable approximation of this

system, the small but finite resistivity that does exist in the plasma allows magnetic reconnection

to occur where energetically favourable. This gives rise to resistive MHD instabilities which can

modify the global field geometry, and are often deleterious to confinement. One such instability is

the neoclassical tearing mode (NTM), characterised by the formation of magnetic island structures

as shown in Fig.1.7b.

(a) Equilibrium (b) NTM onset

Figure 1.7: Poloidal cross section of a tokamak plasma showing magnetic island formation on
a rational flux surface (red). Also shown are the magnetic field (green), island O-points where
parallel current filaments are concentrated (purple) and X-points (yellow).

NTMs are driven by a filamentation of the field-parallel current density J∥, or preferential

counter-flow on certain field lines (producing ’holes’ in the total J∥, indicated by ’O’s in Fig.1.7a)

and not others [28, 21]. The seed perturbations that trigger NTMs often follow other MHD events

including sawtooth crashes, fishbone activity and ELMs [29], though spontaneous ’triggerless’

NTMs have also been observed at high βθ [30]. NTMs occur exclusively on rational surfaces

where such a perturbation may resonate with the magnetic field geometry, with m/n = 2/1

modes usually being the largest in amplitude and the most destructive [31]. Under Ampère’s

law, the perturbed current induces a radial field perturbation at those filaments. Provided there

is finite resistivity5 near this surface, magnetic reconnection ensues, ’tearing’ the flux surface to

5We consider finite resistivity within a thin layer in r surrounding the rational surface where the island forms.
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form magnetic islands of finite radial half-width w, as in Fig.1.7b. These islands short-cut radial

transport, as particles can free-stream from one side of an island to the other. This results in

the loss of radial pressure gradient dp/dr inside islands, reducing the overall core pressure and

temperature as in Fig.1.8a. The field-parallel bootstrap current Jbs ∝ dp/dr is also lost inside

the island, as in Fig.1.8b, exacerbating the filamentation and causing the island to grow. This

continues until a saturation width is reached, at which the island is maintained at that size by the

perturbed bootstrap current. This saturation occurs as a consequence of the greater bending of

magnetic field lines as the island enlarges. The saturation island width can be a large fraction of

the tokamak minor radius a, affecting plasma transport globally as the enlarged island persists.

(a) Pressure (b) Bootstrap current

Figure 1.8: Radial profiles of tokamak plasma parameters before and after NTM onset.

NTM onset is dependent on the initial half-width w of the seed island and the poloidal beta

βθ ∝ p. Experiments on a range of devices [32] identified minimum thresholds for w and βθ,

both of which must be exceeded for a small island to grow. Otherwise, the island shrinks and

the NTM subsides. High-βθ tokamaks are therefore more susceptible to NTMs, and their onset

effectively limits the attainable βθ and gain. In severe cases, large saturated islands may induce

eddy currents extending into the reactor walls, decelerating the plasma rotation and leading to

mode locking [33, 34], triggering further growth. This often leads to confinement terminating in

a disruption, possibly damaging the reactor [35]. NTMs are thus a major concern in ITER and

other future high-βθ tokamaks [27, 19, 36], and must be mitigated if energy gain targets are to

be achieved. Ongoing work focuses on the mechanisms influencing NTM threshold physics, and

how they may be utilised to control NTMs while continuing to pursue high-βθ operation. The

threshold width wc and the factors influencing it are the subject of this study.

Elsewhere, ideal MHD applies to a reasonably good approximation.
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1.4.2 Modified Rutherford equation (MRE)

Early tearing mode theory [28, 37] considered classical transport in a ’slab’ plasma, where only

the induced parallel currents contributed to the growth of the island. The main result of [37] is

the Rutherford equation, describing the time evolution of the island half-width6 dw/dt:

2τR
r2s

dw

dt
= ∆′(w) (1.4.1)

Here, τR ∼ µ0r2s
η is the timescale of resistive diffusion, µ0 is the vacuum permeability, rs is the

minor radius of the rational surface where the island forms, and η is the resistivity there. ∆′(w)

is the classical tearing mode stability parameter, which is destabilising or driving island growth

when ∆′(w) > 0. ∆′(w) represents the free energy available in the plasma current for island-

forming magnetic reconnection to occur, which requires finite resistivity η. The method for

determining ∆′ involves solving for the perturbed poloidal flux ψ using the ideal MHD equations

outside a narrow layer of thickness l surrounding the rational surface at r = rs, where w ≪ l≪ rs.

Boundary conditions at the plasma core and wall then result in a discontinuity at r = rs, which

arises from currents flowing in the layer, and indeed the term in dw
dt of Eq.(1.4.1) arises from the

currents induced in the layer as the island grows. Then ∆′ is the size of this discontinuity, given

by Eq.(1.4.2):

∆′ = lim
l→0

1

ψ

[
dψ

dr

∣∣∣∣
r=rs+l

− dψ

dr

∣∣∣∣
r=rs−l

]
(1.4.2)

Large islands will modify the equilibrium to an extent that ∆′ < 0, resulting in a saturation width

where dw/dt = 0 [38]. For small islands (w ≪ rs), ∆
′ is determined by the global equilibrium

plasma profile and becomes independent of w.

The classical theory has since been extended into a toroidal geometry, giving rise to additional

layer currents and leading to the development of the modified Rutherford equation (MRE) [35].

This introduces local effects from neoclassical physics that become important especially for small

islands. It will be shown that, even when the classical theory predicts global stability (∆′ < 0),

that the local neoclassical physics can drive island growth, particularly at w ≪ rs, giving rise to

the neoclassical tearing mode.

6A factor 2 has been added to Eq.(1.4.1), as this work defines w as the half -width of the island rather than the
full width in the literature.
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Tokamak curvature drive

The first of these neoclassical modifications is tokamak curvature, as identified by Glasser, Greene

and Johnson in 1975. Denoted ∆cur, it is found to be purely stabilising (∆cur < 0) and scales

as ∆cur ∝ ϵ2w−1 [39]. It therefore could provide a threshold width when ∆cur balances ∆′(w).

However, ∆cur is considered insignificant in high aspect ratio analysis in the ϵ ≪ 1 limit, and

is disregarded in this study. The effect of curvature on NTMs is nonetheless an active research

area, particularly for low aspect ratio ”spherical” tokamaks [40, 41, 42, 43].

Bootstrap current drive

The second major MRE contribution comes from the bootstrap current, as presented in 1985-86

by Qu and Callen [24] and Carrera et al [25], respectively using fluid MHD and drift-kinetic theory

in the high aspect ratio banana regime. Both predicted the bootstrap current contribution to the

MRE to be:

∆bs ∝ −ϵ1/2
Lq
Lp

βθ
w

(1.4.3)

Here, Lq =
(
1
q
dq
dr

)−1
is the shear length scale and Lp =

(
1
p
dp
dr

)−1
is the pressure gradient length

scale, where normally Lq/Lp < 0 in a tokamak7, making this form of ∆bs generally destablilising.

In this form, any small island will be amplified by ∆bs, even in a classically stable plasma (∆′ < 0),

which would fundamentally limit the achievable βθ in any tokamak. This theory was tested when

NTMs were experimentally observed for the first time, during high-β banana regime operation

in the TFTR tokamak in 1995 [44]. Good agreement with the theory of [24, 25] was seen in

the island growth rate during its initial growth and saturation, though less so during its decay.

Notably, the experiment observed that only islands of initial width w ≳ O(1 − 2 cm) amplified,

providing the first evidence of a threshold width. However, the theory could not predict the size

let alone the existence of this threshold, nor could islands smaller than ∼ 0.5 cm be detected by

the experiment. Ref. [44] noted that, at this length scale, kinetic effects and diffusive transport

will become significant in influencing the evolution of small islands.

One proposed origin of the observed NTM threshold is the effect of radial diffusion [45, 46,

47]. When the island is sufficiently small, field-perpendicular diffusive transport can compete

with parallel transport, partially restoring the pressure and density gradients flattened across the

7Exclusively, Lp < 0 under the definition given here, as pressure must be highest in the core. Reverse sheared
plasmas where Lq < 0 will indeed result in ∆bs(w) < 0, but presents its own physics challenges. For further
information on reverse shear ITER scenarios, see Sec.2.5.2 in [19].
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island, weakening the bootstrap current drive. The effect is localised to a thin resistive boundary

layer8 surrounding the island separatrix and X-points where heat flux is highest. An alternative

form of Eq.(1.4.3) accounting for radial diffusion is given in [45]:

∆bs ∝
√
ϵ
Lq
Lp

βθ
w

w2

w2 + w2
χ

(1.4.4)

Here, wχ is a threshold width that is determined by balancing the field-perpendicular and parallel

diffusive transport coefficients, assuming ∆′ < 0. However, the physics governing perpendicular

transport is not well-understood, requiring a rigorous treatment of turbulence at the gyrokinetic

scale, making it unclear whether this is the dominant mechanism determining the threshold width.

Under ITER-like parameters, a threshold width of wχ ∼ 1 cm is predicted, comparable to the

expected value of the trapped ion banana width ρb,i [48]. This produces differing kinetic responses

from ions and electrons, resulting in the so-called finite orbit width effect [49, 50, 51, 52, 53] which

gives rise to another neoclassical current contribution to the modified Rutherford equation.

Polarisation current drive

The third neoclassical drive term in the MRE, denoted ∆pol, originates from a polarisation current

induced due to the poloidal rotation of a chain of small islands. Here, the propagation frequency

of this island chain relative to the E × B flow of the equilibrium plasma is denoted ωE , in

the frame where the electric field far from the island is zero. Regarding the finite orbit width

effect, when w approaches the trapped ion banana orbit width (w ∼ ρb,i = ϵ−1/2ρθ,i), the ions

and electron responses differ due to the relative sizes of their orbit widths, as ρb,i ≫ ρb,e (by

a factor
√
me/mi ≃ 40). At this scale, the ion response is dominated by the E × B drift,

while electron transport is predominantly field-parallel due to their higher thermal velocity. To

maintain quasineutrality and an overall divergence-free current density (∇·J = 0), an electrostatic

potential Φ is generated in the vicinity of the island. The E×B response of the trapped particles

to the local potential then differ; trapped electrons will experience the local variations in Φ, while

trapped ions will only respond to the average of Φ over their banana orbits. The differing E×B

responses produce an electric field dE/dt that varies sinusoidally in time with the rotating island

chain, though this rotation is generally slow relative to the particle gyro-frequencies (ωc,j ≫ ωE).

Recalling Sec.1.2.2, a finite dE/dt induces a polarisation current perpendicular to B as a return

8This separatrix boundary layer is distinct from the layer of finite resistivity defined in classical tearing mode
analysis [28], which is described by linear physical processes rather than nonlinear processes.
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current, though this is not necessarily divergence-free. In response, a further small electric field is

generated that then accelerates the electrons along field lines, creating a parallel current density

to restore ∇ · J = 0. This final induced parallel current does contribute to the MRE via ∆pol.

The polarisation current drive can be stabilising or destabilising depending on complex, in-

terconnected factors, including the ion-ion collision frequency νii and its relative size to island

propagation frequency, i.e. whether νii ≪ ϵωE [50, 54, 55]. Early approximations for ∆pol have

been derived in both a collisional fluid model [49] and a collisionless drift-kinetic model [50]:

∆pol ∝ g(ϵ, νii)
(
Lq
Lp

)2 βθ
w

(ρθ,i
w

)2
, g(ϵ, νii, ωE) =


1.64ϵ1/2 νii/ϵωE ≪ 1

ϵ−1 νii/ϵωE ≫ 1

(1.4.5)

The collision frequency and island rotation rate dependence of the two models is encapsulated

within the model coefficient g(ϵ, νii, ωE), which notably differ by O(ϵ3/2). Eq.(1.4.5) shows ∆pol ∝

w−3 will be of comparable magnitude to ∆bs within the MRE for small islands. When ∆pol is

stabilising, Ref. [50] predicted a threshold width of wc ∼ O(ρb,i) but assumed w ≫ ρb,i, neglecting

the finite orbit width effect and radial diffusion in the collisionless limit. Separate to the resistive

separatrix boundary layer discussed in Ref. [45], Ref. [50] described a dissipation layer in velocity

pitch-angle space surrounding the trapped-passing boundary, where there is a discontinuity in

the ion distribution. The width of the separatrix boundary layer is negligibly small, and so its

contribution to ∆pol was neglected by Ref.[50] in the collisionless limit. However, subsequent

works [47, 56] found that the polarisation current generated by particles in the dissipation layer

was non-negligible, being of similar magnitude to that of the equilibrium plasma but of opposite

sign, making ∆pol stabilising in certain conditions. An accurate treatment of this dissipation

layer is therefore necessary to determine the behaviour of ∆pol and its effect on the threshold

width. However, modelling these transport processes is challenging, complicated further by island

rotation with respect to the equilibrium plasma [52, 51, 57]. Other works investigated ∆pol

experimentally; [58] studies ωE dependence, finding island propagation to be in the same direction

as the ion diamagnetic drift but challenging to measure its size. Refs. [59, 60] defined an empirical

model based on measurements from the TCV tokamak describing ∆pol when w ∼ ρb,i:

∆pol ∝ g(ϵ, νii, ωE)
(
Lq
Lp

)2

βθ
wρ2b,i√
w4 + ρ4b,i

, g(ϵ, νii, ωE) =


ϵ3/2 νii ≤ 0.3

1 otherwise

(1.4.6)
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The complexity of the theory behind the polarisation current drive has meant it remains an area

of active work.

Application in NTM control

A complete predictive model of NTM growth at the threshold width scale would inform the control

and prevention of the instability from threatening high-gain confinement in future tokamaks. The

control method proposed for ITER involves driving an electron cyclotron current (ECCD) inside

magnetic islands to substitute the lost bootstrap current, as demonstrated successfully in ASDEX-

U [61, 62], DIII-D [63] and other tokamaks [19]. This would introduce a stabilising ∆ECCD term

to the MRE, which if large enough to counteract the destabilising terms, will drive the island to

lower widths until w < wc, at which point the island heals away unassisted. Such a system must

respond pre-emptively to growing islands by combining real-time modelling with the detection

of NTM triggers [64], and deliver the required current for suppression precisely into the rotating

island [65]. The high power consumption of ECCD, which can be 10− 20% or more of the total

heating power available [19], means that accurate predictions of the required current - and where

it should be delivered - would help optimise the system for long-pulse confinement.

Full modified Rutherford equation

Combining Eq.(1.4.3) and (1.4.5), the full modified Rutherford equation in the high aspect ratio

banana regime is given by:

2τR
r2s

dw

dt
= ∆′(w) + ∆cur(w) + ∆bs(w) + ∆pol(w) + ∆ECCD (1.4.7)

= ∆′(w) + acur
ϵ2

w
+ abs

√
ϵ
Lq
Lp

βθ
w

w2

w2 + w2
χ

+ apolg(ϵ, νii, ωE)

(
Lq
Lp

)2 βθ
w

(ρθ,i
w

)2
+∆ECCD

(1.4.8)

where again, τR is the resistive time scale, rs is the minor radius of the rational surface where the

island of half-width w forms, ϵ≪ 1 is the inverse aspect ratio, ρθ,i is the ion poloidal gyroradius,

wχ is the threshold width predicted by radial diffusion [45], βθ = 2µ0pB
−2
θ is the poloidal beta, p is

the plasma pressure, Bθ is the poloidal magnetic field, g(ϵ, νii, ωE) is a model term associated with

the polarisation current drive, and acur, abs and apol are numerical constants corresponding to

tokamak curvature, bootstrap current and polarisation current respectively. The threshold width

wc is determined by rearranging Eq.(1.4.7) for w at dw/dt = 0. At small w and ϵ, both ∆′ and the
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curvature drive ∆cur ∝ ϵ2 are small relative to the bootstrap and polarisation current drives and

are ignored. At large w ≫ ρθ,i, the polarisation term is small, but can compete with the bootstrap

term when w ∼ ρθ,i. Assuming the polarisation drive is stabilising (∆pol < 0) and can exceed

the bootstrap drive in magnitude, a threshold width wc occurs where ∆bs(wc) + ∆pol(wc) = 0,

yielding wc ∼ ρb,i = ϵ1/2ρθ,i in the low collision frequency limit where w ≫ wχ. This also requires

that some threshold value of poloidal beta βθ,c is also exceeded, if ∆′ < 0. For sub-threshold βθ,

there is no threshold width and magnetic islands of any size are predicted to shrink away under

this equation. In the above-threshold or ’high’ beta case, βθ > βθ,c, we note there will be two

values in w where dw/dt = 0: the stable point at the saturation width w = wsat, and the unstable

point at the threshold width wc. This study focuses on determining the latter. A sketch of dw/dt

is illustrated in Fig.1.9. Two cases are shown, where βθ is above or at its threshold, βθ,c:

Figure 1.9: Island width growth rate dw/dt vs. w for above-threshold poloidal beta (red) and
critical poloidal beta (black dashed), where ∆′ < 0 is assumed. Arrows indicate direction of
change in w.

An accurate treatment of the bootstrap and polarisation currents is essential for determining

the threshold width from the modified Rutherford equation. However, experimental observations

from various tokamaks have found wc to be approximately 1−1.5 trapped ion banana orbit widths

ρb,i [32, 66]
9. This is the length scale where much of the existing analysis no longer applies, and

requires a new theory. This thesis develops the software required to implement such a theory.

9Within Refs. [32, 66], w is defined as the full island width, not half-width.
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1.5 Objectives

This work seeks to develop a new computational model for small islands near the threshold

width wc, where ρb,e ≪ wc ∼ ρb,i, requires a kinetic treatment for the ions, with care taken

at the separatrix boundary layer and the trapped-passing boundary dissipation layer. Given

ρe ≪ ρi ≪ w, a simplification to the drift-kinetic model is reasonable, but including the required

physical detail remains a substantial computational challenge, as this thesis will investigate. The

w ∼ ρb,i limit was explored previously using a numerical particle-in-cell code to solve the ion

response [67, 55], and by a fully analytic approach focusing on passing ions only [68] (following

[46]). Both works confirmed that the ion density and pressure gradient across small islands were

partially restored, weakening the ∆bs drive term, but neglected the electron response, and also

the trapped ion response in the case of [68]. Recall in Sec.1.4 that the differing ion and electron

responses to the small island produces a perturbed electrostatic potential Φ, which needs to be

calculated self-consistently with the responses. This was included in the more recent work of

Imada et al [69, 70, 41] by combining a numerically-derived 4D drift-kinetic ion response (both

passing and trapped) with the analytic electron response of Ref. [50], using the assumption that

ρb,e ≪ w ∼ ρb,i ≪ rs, and expanding in the limit of small ∆ = w/rs ≪ 1 (not to be confused with

island growth parameter ∆′). Its associated drift-kinetic NTM code, ”DK-NTM” solves the ion

response and the electrostatic potential Φ iteratively until a self-consistent solution is obtained.

This work also extended [50] into a finite collision frequency regime, however the handling of

collisions around the thin separatrix boundary layer becomes computationally challenging as Ch.3

discusses. Dudkovskaia et al [41, 42, 43] then developed a reduced dimension 3D version of this

theory that is valid in the limit of low collision frequency. Its associated code, ”RDK-NTM”,

introduces other physical details such as a numerically-calculated electron response, relaxing the

assumption w ≫ ρb,e. The two codes were compared in Refs. [41] and [43]. Both DK-NTM and

RDK-NTM approaches captured the two layers and accounted for quasineutrality, and by doing so,

two key results were found.

Firstly, for small islands, the distribution function of passing ions follows structures of identical

topology to the magnetic island but shifted radially due to magnetic drifts, as shown in Fig.1.10.

The shift is of O(ρθ,i), where ρθ,i is the ion poloidal gyroradius. It occurs in opposite directions

depending on the sign of the field-parallel velocity v∥,i; i.e. it is opposite for co-passing and

counter-passing ions. These structures are referred to throughout this work as drift islands10.

10Similar ”drift islands” were described in Ref. [71], though far smaller islands of ρθ,e < w ≪ ρθ,i were considered,
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(a) w ≫ ρθ,i (b) w ∼ ρθ,i

Figure 1.10: Sketch of the passing ion distribution function vs poloidal flux ψ for (a) w ≫ ρθ,i
and (b) w ∼ ρθ,i. Shown are the ion populations where v∥ > 0 (red), v∥ < 0 (blue), and the
average of the two streams (black), which provides a measure of density.

When w ≫ ρθ,i the radial shift of drift islands is negligible relative to the island size; the

drift islands align with the magnetic island and the overall density gradient is flattened inside

the magnetic island, as in Fig.1.10a. When w ≃ ρθ,i, the drift islands no longer align, whose

combination results in a substantial density gradient being restored across the magnetic island,

as in Fig.1.10b. Secondly, by accounting for the electron response and the perturbed potential

required for quasineutrality, the electrons were found to provide a stabilising bootstrap current

drive term ∆bs,e that exceeded the destabilising ion bootstrap drive ∆bs,i at small island widths,

the latter being weakened by the effect of drift islands [70]. Ongoing work requires comparing the

approaches of the two codes; as the RDK-NTM code uses an analytic treatment for the separatrix

boundary layer physics, it uses the DK-NTM code as a benchmark [41, 43]. However, while the

DK-NTM model employs a complete numerical treatment for the ion response at the thin separatrix

boundary layer and the trapped-passing boundary dissipation layer, the computation is rigorous

and highly challenging, particularly at low collision frequency.

As part of this ongoing study, this thesis presents the development of a new 4D drift-kinetic

NTM numerical code and explore the effect of collisionality on both the code and result, following

three objectives that will form the chapters Ch.4, (5) and (6) respectively:

Objective (1) is to redevelop and validate the DK-NTM algorithm, resolve computational

issues, develop tests and identify limitations. This resulted in DK-NTM being rewritten as a new

code, named kokuchou, whose constituent procedures must be unit tested.

and from the perspective of electrons rather than ions.
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Objective (2) is to obtain self-consistent, numerically stable results from a small number of

simulations. This will involve conducting 4 ”case study” runs of kokuchou for two values of island

width w (≪ ρθ,i and > ρθ,i), and a new study at two values of collisionality ν⋆. Analytically-

derived results will be used to benchmark the full-size numerical result.

Objective (3) is to obtain an updated result for the threshold width scaling factor with the

ion poloidal gyroradius ρθ,i, a relationship previously explored in literature. This is accomplished

via a large-scale parameter scan in w and ρθ,i. This work will extend previous attempts by also

scanning the plasma collisionality ν⋆, and observing its influence on the layer physics.

Summary

This chapter covered the prerequisite physics for this modelling study of neoclassical tearing mode

instabilities, which degrade confinement in modern high-beta tokamaks. This section introduced

the neoclassical layer currents that influence the rate of growth for magnetic islands of near-

threshold width. We seek to identify this threshold island width that critically determines NTM

onset. The state-of-the-art of NTM research is that the existing theory needs to be adapted

into a framework targeting the length scale of w ∼ ρb,i, where the threshold width has been

observed [32, 34]. To account for the relevant phenomena, the plasma will be self-consistently

modelled using the drift-kinetic equation. Ch.2 will cover the 4D drift-kinetic theory in more

detail, including the derivation of the drift-kinetic transport equation for the ion response to

the NTM instability, and how the equation is made computationally tractable at the relevant

length scale. Ch.3 will present a new numerical code for solving this drift-kinetic NTM equation,

based on the original DK-NTM code, and will discuss the modifications made to address challenges

with the old code. The results of this thesis are split into three chapters following the project

objectives. Ch.4 will discuss the validation of the new kokuchou NTM code and the results of unit

tests, ahead of full-scale simulations to be shown in the subsequent chapters. Ch.5 will present

full results from the new code from 4 runs at 2 values in collisionality ν⋆ and 2 magnetic island

widths, representing extremes of the code’s operating parameter space. Numerical results will be

benchmarked using analytic results representing the neoclassical equilibrium far from the island.

Ch.6 will extend these results into a parameter scan of 125 runs, varying the magnetic island

width, collisionality and ion poloidal gyroradius. The key result is the threshold magnetic island

width and its relationship with the latter two parameters, which will be compared with results

from similar studies.
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Chapter 2

Theory

This chapter presents equations describing the response of a quasineutral hydrogenic tokamak

plasma to a small magnetic island during the onset of the neoclassical tearing mode (NTM)

instability. The island’s growth is driven by a perturbation in the field-parallel current density,

localised to a resistive layer in minor radius surrounding the flux surface where the island is

situated. By evaluating the currents in this layer, the island’s growth rate can be determined

from the modified Rutherford equation 1.4.7 which, in the limits of small w and ϵ, is influenced

primarily by the layer currents. This work will employ this expression to determine the threshold

island width, below which the island shrinks and the NTM subsides, and also to discuss the

mechanisms that influence this threshold. Here, we revisit the derivation of Imada et al [69, 70]

in additional detail [72], itself based on Wilson et al’s study in the collisionless limit [50] extended

to a finite collisionality banana regime, using results from Helander and Sigmar [17] and others.

We consider a small single helicity magnetic island of half-width w (in minor radius r) forming

on a m/n = 2/1 rational surface of minor radius rs in a high aspect ratio (ϵ ≪ 1) circular cross

section tokamak, neglecting Shafranov shift. The length scale ordering ρi ≪ w ∼ ρb,i ≪ rs is

assumed, where ρb,i = ϵ1/2ρθ,i is the trapped ion banana width, ρi is the ion gyroradius, ρθ,i

is the ion poloidal gyroradius based on the poloidal magnetic field only. In the limit of small

∆ = w/rs ≪ 1, we seek steady state equations of motion for the plasma response in the island’s

vicinity. At this length scale, the drift-kinetic equation is used to track the guiding centre motion

of ions, while analytic results for electrons from Ref. [50] can be used, given their small banana

width ρb,e ≪ ρb,i. As with Ref. [50], the effects of sheared plasma flows and error fields are

neglected. The derivation in Secs. 2.1-2.5 provides the basis for a numerical algorithm described

in Ch.3. Sec.2.6 summarises my contributions to the derivation made during this work.
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2.1 Magnetic topology

An orthogonal 3D {ψ, θ, φ} spatial coordinate system as in Fig.1.5a is used1, where ψ is the

poloidal magnetic flux, θ is the poloidal angle clockwise from the outboard midplane (θ = 0), and

φ is the toroidal angle, counterclockwise when viewing the torus from above. The equilibrium

helical magnetic field is:

B0 = I(ψ)∇φ+∇φ×∇ψ , (2.1.1)

where I(ψ) = RBφ, Bφ is the toroidal component of B, while the poloidal field is represented via

the 2nd term: rBθ∇θ = ∇φ×∇ψ. The magnitude of B0 in a large aspect ratio tokamak, to the

leading order in ϵ≪ 1 is approximately:

B0(θ) = Bφ(1− ϵ cos θ) . (2.1.2)

A magnetic perturbation is introduced, satisfying Maxwell’s equation ∇ ·B = 0:

B1 = ∇×
(
A∥b0

)
, (2.1.3)

where b0 = B0/B0 is the equilibrium field unit vector and A∥ is the magnetic field-parallel vector

potential that describes the perturbation. Here, the field-perpendicular component of the vector

potential is neglected. Applying the ”constant-ψ” approximation used in NTM literature [37],

we define:

A∥ = −
ψ̃

R
cosnξ , ψ̃ =

w2
ψ

4

q′s
qs
, wψ = RBθw , (2.1.4)

where ψ̃ is the amplitude of A∥ and wψ is the island half-width in ψ-space, qs = m/n (= 2/1 in

this work) is the local safety factor at the rational surface whose ψ-derivative is q′s:

q′s =
dq

dψ

∣∣∣∣
ψ=ψs

,

and ξ is the helical angle in the island rotational rest frame:

ξ = m

(
θ − φ

qs

)
. (2.1.5)

1used by Boozer [22] et al for ITER modelling, also known as the COCOS 11 tokamak coordinate convention [73]
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Expanding in terms of small ∆ = w/rs ≪ 1 and ϵ ≪ 1, the first-order perturbed magnetic field

correct to O(ϵ3/2∆2) (see Appendix Sec.8.2) is found to be:

B1 = mψ̃ sin ξ ∇θ ×∇ϕ+
∂R

∂ψ

ψ̃

R
cos ξ ∇ϕ×∇ψ +O(ϵ2∆2). (2.1.6)

The total magnetic field with the perturbation is then (with orderings below):

B = I(ψ)∇ϕ+∇ϕ×∇ψ +mψ̃ sin ξ ∇θ ×∇ϕ+
∂R

∂ψ

ψ̃

R
cos ξ ∇ϕ×∇ψ. (2.1.7)

1 ϵ ϵ∆2 ϵ∆2

For simplicity, steady state is assumed, so that ψ̃ is time-independent. Throughout this work, the

subscript s denotes quantities evaluated at the rational surface r = rs, and superscript ′ (prime)

denotes its derivative with respect to ψ. Note also that because we assume the toroidal mode

number n = 12, it will be omitted for simplicity.

When describing flux surface geometry, for convenience we switch the coordinate system from

{ψ, θ, φ} to {ψ, ξ, θ}. In the limit of small x = (ψ − ψs)/ψs, assuming a long, thin magnetic

island, Taylor expanding q(ψ) about the rational surface then integrating across a helical field

line (see Eq.(4) of [48]), the following function Ω is obtained as a constant of integration, which

satisfies B ·Ω = 0:

Ω(ψ, ξ) =
2(ψ − ψs)2

w2
ψ

− cos ξ. (2.1.8)

This perturbed flux function Ω labels the modified flux surfaces in the presence of an island. The

island’s innermost flux ’surface’ or O-point is defined as Ω = −1, while its outer boundary or

separatrix lies at Ω = +1. Perturbed surfaces outside of the separatrix have Ω > +1. Far from

the island at large ψ, the ξ-dependence of Ω becomes small and Ω(ψ, ξ) ∝ ψ2. Later in Sec.2.3.4

a similar expansion will be performed for the full drift-kinetic equation for ions.

Velocity coordinates

Alongside the {ψ, ξ, θ} spatial coordinates, we define a 2D gyro-orbit averaged velocity space

coordinate system, {λ, v;σ} where v is the total speed of a particle, λ is its pitch angle:

λ =
µ

E
=

v2⊥
v2B

, (2.1.9)

2Other modes, such as m/n = 3/2, are commonly observed, but we focus on the 2/1 mode for continuity with
Refs. [69, 70, 41] which this work follows
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Here, µ = mjv
2
⊥/2B is the magnetic moment, E = mjv

2/2 is the kinetic energy, and v⊥ is the

field-perpendicular velocity. The field-parallel velocity is: v∥ = σv
√
1− λB, and σ is its sign with

respect to the direction of B. Then, λc = B−1
max corresponds to the trapped/passing boundary.

For the trapped particles where λ > λc, bounce points θb are such that λB(θb) = 1.

2.2 Drift-kinetic equation

At the relevant length scale ρe, ρi, ρb,e ≪ w ∼ ρb,i, the drift-kinetic equation (1.2.8) can be used to

track the guiding centre motion of ions at the island width scale, while an analytic response can be

used for electrons (see Sec.2.4). In steady state in the island rest frame, neglecting gravitational,

centrifugal and Coriolis forces, the drift-kinetic equation is given by Ref. [18] Eq(4.44):

v∥∇∥fj + vE · ∇fj + vb · ∇fj −
eZj
mj

v∥∇∥Φ

v

∂fj
∂v
− eZj
mj

vb · ∇Φ
v

∂fj
∂v

= Cj(fj), (2.2.1)

where vE and vb are the E×B drift and magnetic drift velocities respectively (see Sec.1.2):

vE =
B×∇Φ
B2

, vb = −
v∥B

B
×∇

(
v∥

ωc,j

)
, (2.2.2)

and ωc,j =
eZjB
mj

is the gyrofrequency of species j, and b = B/B is the unit vector of the

total magnetic field. The perturbed electrostatic potential Φ arises from the differing ion and

electron responses (see Sec.2.5) and is obtained by applying quasineutrality. Cj(fj) is the model

collision operator, whose form is introduced in Sec.2.3. The spatial derivatives of Eq.(2.2.1) are

taken at constant kinetic energy, E = mjv
2/2, and magnetic moment, µ = mjv

2
⊥/2B. Assuming

eZjΦ/Tj ≪ 1, the distribution function fj of species j is expressed as:

fj =

(
1− eZjΦ

Tj

)
fM,j + gj , (2.2.3)

where gj is the perturbation to fj in the vicinity of the magnetic island. It is assumed the

equilibrium plasma follows a Maxwell-Boltzmann distribution given by fM,j(ψ, v):

fM,j(ψ, v) =
n0(ψ)

π3/2v3th,j(ψ)
exp

[
− v2

v2th,j
− eZjΦ

Tj

]
, (2.2.4)
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which, given eZjΦ/Tj ≪ 1, reduces the Maxwellian to a function FM,j :

FM,j(ψ, v) =
n0(ψ)

π3/2v3th,j(ψ)
e−v

2/v2th,j , (2.2.5)

where n0(ψ) is the equilibrium plasma density (equal for ions and electrons under quasineutrality)

and vth,j is the thermal velocity3 of species j:

vth,j =

√
2T

mj
. (2.2.6)

Thermal equilibrium between both species is assumed (T = Ti ≡ Te), hence vth,e = vth,i
√

mi
me
≈

40 vth,i. The derivatives of the Maxwellian function Eq.(2.2.7) in ψ and speed v are, respectively:

F ′
M,j =

∂FM,j

∂ψ
=
ωT⋆,j
ω⋆,j

n′0
n0
FM,j , (2.2.7)

∂FMj

∂v
= −2 v

v2thj
FM,j . (2.2.8)

Here, the diamagnetic frequency ω⋆,j for species j is defined as:

ω⋆,j = kθρjvth,j
dn

dr
= kθ

mjv
2
th,j

eZjB

dn

dr
(2.2.9)

where ρj is the species’ gyrofrequency,mj is its mass, Zj is its charge, and kθ = m/r is the poloidal

wavenumber (m being the poloidal mode number). In Eq.(2.2.7), the term ωT⋆,j is obtained from

the ψ-derivative of FM,j :

ωT⋆,j
ω⋆,j

= 1 +

(
v2

v2th,j
− 3

2

)
ηj , (2.2.10)

where η = Ln/LT is the ratio of the density gradient length scale Ln to temperature gradient

length scale LT for both species4, defined here as:

L−1
n =

n′0
n0

=
1

n0

dn0
dr

, L−1
T =

T ′

T
=

1

T

dT

dr
(2.2.11)

3normalised such that the Boltzmann constant kb = 1.
4Care must be taken as these length scales are defined with minus signs in Refs. [50, 74, 53, 75]
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2.2.1 Collision operator

Following Ref. [50], the following simple momentum-conserving collision operators are defined

to provide closure to the system. These are based on Eq.(3.40) in Ref. [17, p192] for a two-

fluid system where one species is a slow-moving Maxwellian. For ions we consider only ion-ion

collisions, due to the negligible effect of ion-electron collisions on ions [50]. For electrons, both

electron-electron and electron-ion collisions are considered. The same-species and electron-ion

collision operators are given by, respectively:

Cjj(fj) = 2νjj(v)

[√
1− λB
B

∂

∂λ

(
λ
√
1− λB∂fj

∂λ

)
+
v∥ū∥,j(fj)

v2th,j
FM,j(ψ)

]
, (2.2.12)

Cei(fe) = 2νei(v)

[√
1− λB
B

∂

∂λ

(
λ
√
1− λB∂fe

∂λ

)
+
v∥U∥,i

v2th,e
FM,e(ψ)

]
, (2.2.13)

where the momentum-conserving parallel flow of species j is defined as:

ū∥,j(fj) =
1

n0 ⟨νjj⟩v

∫
d3v νjj(v)v∥ fj(v) (2.2.14)

and the ion parallel flow is:

U∥,i(fi) =
1

n0

∫
d3v v∥ fi(v), (2.2.15)

where in {λ, v} velocity coordinates, the volume integral over velocity-space takes the form:

∫
d3v = πB

∑
σ

∫ ∞

0
dv v2

∫ B−1

0

dλ√
1− λB

, (2.2.16)

which is performed at fixed spatial variables ψ, θ and ξ. Within Eq.(2.2.14), the same-species 90◦

collision frequency νjj normalised to the same-species Coulomb collision frequency νCjj is given by

Eq.(3.38) in Ref. [17]5:

νjj(u) = ν
(C)
jj

ϕ(u)−G(u)
u3

→


4

3u2
√
π

u→ 0

1
u3
− 1

2u5
u→∞

, u =
v

vth,j
, (2.2.17)

5A simpler form νjj = v−3 is used in previous works [50, 74, 53, 75] and more recently in the RDK-NTM code [41].
The more complex form Eq.(2.2.17) was introduced in [69, 70] for better compatibility with neoclassical theory.
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where G(u) is the Chandrasekhar function, describing drag forces on a particle by collisions with

a slow Maxwellian particle population:

G(u) =
ϕ(u)− uϕ′(u)

2u2
→


2u
3
√
π

u→ 0

1
2u2

u→∞
(2.2.18)

and ϕ(u) is the error function, erf(u):

ϕ(u) ≡ erf(u) =
2√
π

∫ u

0
e−t

2
dt, ϕ′(u) ≡ dϕ

du
=

2√
π
e−u

2
. (2.2.19)

Also within Eq.(2.2.14) is the velocity-space average of νjj(u), whose operator ⟨...⟩v is defined by

Eq.(4.26) of Ref. [17], based on a symmetric, spherical Maxwellian (see also Ref.[76] Eq.(4.30)) is

given by:

⟨f(v)⟩v =
8

3
√
π

∫ ∞

0
dv v4e−v

2
f(v). (2.2.20)

2.3 Ion response

The guiding centre motion of the ions is tracked by the drift-kinetic equation Eq.(2.2.1). Given

w ∼ ρθ,i, the ion response will be influenced by both parallel free-streaming and magnetic drifts.

In a high-temperature banana regime plasma, the following orderings are assumed:

eZjΦ

Ti
∼ ∆, kθw ∼ ∆, ν∗ ≪ 1 ∼ O(∆). (2.3.1)

Eq.(2.2.1) is solved for ions by Taylor expanding Eq.(2.2.3) in small ∆ = w/r ≪ 1, retaining up

to O(ϵ3/2∆2). In Eq.(2.2.3), the perturbation gi is also expanded in powers of ∆:

gi =
∑
k

∆kgi,k . (2.3.2)

In the {ψ, θ, ξ} toroidal coordinate system, the parallel derivative operator is given by:

∇∥ =
B · ∇
B

=
1

Rq

∂

∂θ

∣∣∣∣
ξ,ψ

+ k∥
∂

∂ξ

∣∣∣∣
Ω,θ

(2.3.3)
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where k∥ = −m(ψ−ψs)
Rq

q′s
qs

is the parallel wavenumber. When writing out ∇∥ in full in terms of

{ψ, ξ, θ}, we note that:

∂

∂ψ
=

1

RBθ

∂

∂r
,

∂

∂r
∼


1/r on equilibrium quantities

1/w on perturbed quantities

(2.3.4)

which leads to some perturbed and equilibrium terms having different orderings. A full derivation

of these terms is given in the Appendix, Sec.8.3.1.

Written in full, the differential operators within Eq.(2.2.1) (with orderings) are:

v∥∇∥ =
v∥

Rq

[
∂

∂θ

∣∣∣∣
ψ

+m

(
1− q

qs

)
∂

∂ξ
+mψ̃ sin ξ

∂

∂ψ
+
∂R

∂ψ

ψ̃

R
cos ξ

(
∂

∂θ
+m

∂

∂ξ

)]
,

1 ∆ ∆(∆2)eqm ∆2

vb · ∇ =
Iv∥

Rq

[
∂

∂θ

(
v∥

ωc

)
∂

∂ψ
− ∂

∂ψ

(
v∥

ωc

)
∂

∂θ

]
−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc

)
∂

∂ξ
,

ϵ(∆)eqm ∆ ∆

vE · ∇ =
1

q

(
∂Φ

∂ψ

∂

∂θ
− ∂Φ

∂θ

∂

∂ψ

)
+
m

q

(
∂Φ

∂ψ

∂

∂ξ
− ∂Φ

∂ξ

∂

∂ψ

)
,

∆ ∆(∆2)eqm ∆ ∆(∆2)eqm

(2.3.5)

here, the following notation for spatial derivatives is implied (but omitted for simplicity):

∂

∂θ
=

∂

∂θ

∣∣∣∣
ξ,ψ

,
∂

∂ξ
=

∂

∂ξ

∣∣∣∣
θ,ψ

,
∂

∂ψ
=

∂

∂ψ

∣∣∣∣
ξ,θ

(2.3.6)

then, inserting Eq.(2.3.5) into (2.2.1), the ion drift kinetic equation, correct to O(ϵ3/2∆2) is:

v∥

Rq

∂fi
∂θ

∣∣∣∣
ψ

+
mv∥

Rq

(
1− q

qs

)
∂fi
∂ξ

+
v∥

Rq
mψ̃ sin ξ

∂fi
∂ψ

+
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
∂fi
∂ψ
−
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
∂fi
∂θ

∣∣∣∣
ψ

−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc,i

)
∂fi
∂ξ

+
1

q

(
∂Φ

∂ψ

∂fi
∂θ
− ∂Φ

∂θ

∂fi
∂ψ

)
+
m

q

(
∂Φ

∂ψ

∂fi
∂ξ
− ∂Φ

∂ξ

∂fi
∂ψ

)
− eZi
miv

(
v∥∇∥Φ+ vb · ∇Φ

) ∂fi
∂v

= Cii(fi),

(2.3.7)
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2.3.1 O(∆0) ion response

For the ion distribution fi, the O(∆0) terms of Eq.(2.2.1) are:

v∥

Rq

∂fi,0
∂θ

= Ci(fi,0). (2.3.8)

which, in neoclassical equilibrium analysis, is equivalent to fi,0 = FM,i, the Maxwellian function.

But assuming eZjΦ/Tj ∼ ∆ (see Eq.(2.3.1)), the Boltzmann factor containing Φ can be expanded:

fi =

(
1− eZiΦ

Ti

)
FM,i(ψ) + g1 .

1 ∆ ∆

(2.3.9)

Here, the ’perturbed’ contribution to fi from g1 is determined at the next 2 orders in ∆.

2.3.2 O(∆1) ion response

The O(∆1) contributions to Eq.(2.2.1) are:

−
v∥

Rq

eZi
Ti

∂Φ

∂θ

∣∣∣∣
ψ

FM,i +
v∥

Rq

∂g1
∂θ

∣∣∣∣
ψ

+
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
∂FM,i

∂ψ
−
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
eZi
Ti

∂Φ

∂ψ
FM,i +

Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
∂g1
∂ψ

− eZi
miv

v∥

Rq

[
∂Φ

∂θ

∣∣∣∣
ψ

+ I
∂

∂θ

(
v∥

ωc,i

)
∂Φ

∂ψ

]
∂FM,i

∂v
= 0,

(2.3.10)

Using the Maxwellian derivatives in Eq.(2.2.7), and also the following relation:

− eZj
mjv

∂FM,j

∂v
=

2eZj
mjv2th,j

FM,j =
eZj
Tj

FM,j ,

then in Eq.(2.3.10), all of the Φ terms cancel out:

v∥

Rq

[
∂g1
∂θ

∣∣∣∣
ψ

+ I
∂

∂θ

(
v∥

ωc,i

)
∂g1
∂ψ

]
+
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
ωT∗i
ω∗i

n′0
n0
FM,i

−
((((((((((((((((((
v∥

Rq

eZi
Ti
FM,i

[
∂Φ

∂ψ
+ I

∂

∂θ

(
v∥

ωc,i

)
∂Φ

∂ψ

]
+
((((((((((((((((((
v∥

Rq

eZi
Ti
FM,i

[
∂Φ

∂ψ
+ I

∂

∂θ

(
v∥

ωc,i

)
∂Φ

∂ψ

]
= 0.

(2.3.11)
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The remaining terms of the O(∆1) equation are:

∂g1
∂θ

∣∣∣∣
ψ

+ I
∂

∂θ

∣∣∣∣
ψ

(
v∥

ωc,i

)
∂g1
∂ψ

= −I ∂

∂θ

∣∣∣∣
ψ

(
v∥

ωc,i

)
ωT∗,i
ω∗,i

n′0
n0
FM,i (2.3.12)

Before proceeding to the next order, a unit conversion will be performed to simplify Eq.(2.3.12).

Transformation into toroidal canonical angular momentum

In neoclassical equilibrium transport, in addition to E and µ, there is a third constant of guiding

centre motion: the toroidal canonical angular momentum pφ:

pφ(ψ, θ) = (ψ − ψs)− ρ, ρ =
I(ψ)v∥

ωc,j
, (2.3.13)

where ρ represents the radial deviation of a particle from the flux surface at ψ (not to be confused

with gyro-radii ρj or ρθ,j) and ωc,j is the gyrofrequency. Note that when v∥ ∼ vth,j , the term

ρ ≃ RBθρθ,j , where ρθ,j is the poloidal gyroradius. Thus, particle guiding centre orbits in an

axisymmetric toroidal plasma will deviate radially from their flux surface by a factor O(ρθ,j) as a

consequence of ∇B and curvature drifts, as illustrated in Fig.2.1 for ions. While magnetic islands

disrupt the toroidal symmetry that leads to the conservation of pφ, in the limit of w ≪ rs and to

the leading order, the toroidal symmetry is approximately upheld. Utilising pφ in place of {ψ, θ},

the dimensionality of the problem can be reduced, making it more computationally tractable.

Figure 2.1: Poloidal cross section showing deviation of passing and trapped ion orbits (at constant
pφ) from a rational flux surface ψs (black dotted circle).

Transforming the spatial derivatives of the {ψ, θ, ξ} coordinates to {pφ, θ, ξ} coordinates, with
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orderings in ∆ given below:

∂

∂ψ
=
∂pφ
∂ψ

∂

∂pφ

→ ∂

∂ψ

∣∣∣∣
θ,ξ

= (1− ρ′) ∂

∂pφ
, ρ′ =

∂ρ

∂ψ
. (2.3.14)

1 : ∆

∂

∂θ

∣∣∣∣
ψ

=
∂

∂θ

∣∣∣∣
pφ

+
∂pφ
∂θ

∣∣∣∣
ψ

∂

∂pφ

→ ∂

∂θ

∣∣∣∣
ψ

=
∂

∂θ

∣∣∣∣
pφ

− I ∂
∂θ

(
v∥

ωc,i

)
∂

∂pφ
. (2.3.15)

Then, returning to the O(∆) equation (2.3.12), we transform the θ-derivative at fixed ψ to fixed

p. To do so, we use the following relation for the
(
v∥
ωc,i

)
term:

∂

∂θ

(
v∥

ωc,i

)∣∣∣∣
ψ

=
∂

∂θ

(
v∥

ωc,i

)∣∣∣∣
pφ

− I ∂

∂θ

∣∣∣∣
ψ

(
v∥

ωc,i

)
∂

∂ψ

(
v∥

ωc,i

)
, (2.3.16)

and also the following relation, where the ρ′ term is also O(∆) smaller:

∂g1
∂ψ

=
∂g1
∂pφ

(1− ρ′) . (2.3.17)

Converting {ψ, θ, ξ} to {pφ, θ, ξ} coordinates, the O(∆1) equation (2.3.12) becomes:

v∥

Rq

∂g1
∂θ

∣∣∣∣
pφ

= −
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)∣∣∣∣
pφ

ωT∗i
ω∗i

n′i
ni
FM,i. (2.3.18)

which, after omitting v∥/Rq either side, can be integrated in θ to yield:

g1 = −
Iv∥

ωci

ωT∗i
ω∗i

n′i
ni
FM,i + ḡ(1) (2.3.19)

Here, the bar on ḡ indicates the quantity is θ-independent at fixed pφ. The constant of integration

is ḡ(1)(pφ, ξ,v), to be determined from the O(∆2) contribution to the drift kinetic equation.
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2.3.3 O(∆2) ion response

Proceeding to the next order, the O(∆2) ion response is:

∗1︷ ︸︸ ︷
v∥

Rq

∂g2
∂θ

∣∣∣∣
ψ

−

∗2︷ ︸︸ ︷
v∥

Rq
I
∂

∂θ

(
v∥

ωc,i

)
ρ′
∂g1
∂pφ

+
v∥

Rq

[
m

(
1− q

qs

)
∂g1
∂ξ

+mψ̃ sin ξ
∂g1
∂pφ

]
+
v∥

Rq
mψ̃ sin ξ

∂FM,i

∂ψ
−
(((((((((((((((((((
v∥

Rq

[
m

(
1− q

qs

)
∂Φ

∂ξ
+mψ̃ sin ξ

∂Φ

∂ψ

]
eZiFM,i

Ti

−
Iv∥

Rq

[
∂

∂ψ

(
v∥

ωc,i

)(
�
�
�
��
0

∂g1
∂θ

∣∣∣∣
pφ

−

∗2︷ ︸︸ ︷
I
∂

∂θ

(
v∥

ωc,i

)
∂g1
∂pφ

)
+m

∂

∂ψ

(
v∥

ωc,i

)
∂g1
∂ξ

]
+

∗1︷ ︸︸ ︷
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
∂g2
∂ψ

−
������������������

Iv∥

Rq

[
���������������
∂

∂ψ

(
v∥

ωc,i

)(
∂Φ

∂θ

∣∣∣∣
ψ

+m
∂Φ

∂ξ

)]
eZiFM,i

Ti

+
1

q

[
∂Φ

∂ψ

(
�
�
�
��
0

∂g1
∂θ

∣∣∣∣
pφ

− I ∂
∂θ

(
v∥

ωc,i

)
∂g1
∂pφ

)
− ∂Φ

∂θ

∣∣∣∣
ψ

∂g1
∂pφ

]

+
m

q

(
∂Φ

∂ψ

∂g1
∂ξ
− ∂Φ

∂ξ

∂g1
∂pφ

)
− 1

q

(
∂Φ

∂θ

∣∣∣∣
ψ

+m
∂Φ

∂ξ

)
∂FM,i

∂ψ

− eZi
miv

∂FM,i

∂v

v∥

Rq

[
((((((((((((((((

m

(
1− q

qs

)
∂Φ

∂ξ
+mψ̃ sin ξ

∂Φ

∂ψ
((((((((((((((((((((

−I ∂
∂ψ((((((((((((((((((

v∥

ωc,i

)
∂Φ

∂θ

∣∣∣∣
ψ

−mI ∂
∂ψ

(
v∥

ωc,i

)
∂Φ

∂ξ

]

= Cii(g1).

(2.3.20)

Above, the terms marked ∗1 add together to become:

∗1 =
v∥

Rq

∂g2
∂θ

∣∣∣∣
ψ

+
Iv∥

Rq

∂

∂θ

(
v∥

ωc,i

)
∂g2
∂ψ

=
v∥

Rq

∂g2
∂θ

∣∣∣∣
pφ

the terms marked ∗2 add together into a small term that is neglected, noting ρ′ =
∂

∂ψ

(
I
(
v∥
ωc,i

))
:

∗2 = −I ∂
∂θ

(
v∥

ωc,i

)
∂

∂ψ

(
I

(
v∥

ωc,i

))
+ I

∂

∂θ

(
v∥

ωc,i

)
∂

∂ψ

(
v∥

ωc,i

)
= −I ′I ∂

∂θ

(
v∥

ωc,i

)(
v∥

ωc,i

)
⇒ O(∆) smaller.
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Recalling Eq.(2.3.19), noting that the derivatives of g1 in pφ and ξ are, respectively:

∂g1
∂pφ

= − ∂ρ

∂pφ
F ′
M,i + ḡ′, F ′

M,i =
∂FM,i

∂ψ

∂g1
∂ξ

=
∂ḡ

∂ξ
.

Then, substituting for pφ and using Eq.(2.3.16):

∂g1
∂pφ

+ F ′
M,i = (1− ρ′)F ′

M,i + ḡ′

≃ F ′
M,i + ḡ′.

Then, Eq.(2.3.20) is simplified:

v∥

Rq

∂g2
∂θ

∣∣∣∣
pφ

+
v∥

Rq

[
m

(
1− q

qs

)
∂ḡ

∂ξ
+mψ̃ sin ξ

(
∂ḡ

∂pφ
+ F ′

M,i

)]

−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc,i

)
∂ḡ

∂ξ
− 1

q

[ ∗︷ ︸︸ ︷
∂Φ

∂θ

∣∣∣∣
ψ

+ I
∂

∂θ

(
v∥

ωc,i

)
∂Φ

∂ψ

](
∂ḡ

∂pφ
+ F ′

M,i

)
+
m

q

[
∂Φ

∂ψ

∂ḡ

∂ξ
− ∂Φ

∂ξ

(
∂ḡ

∂pφ
+ F ′

M,i

)]
= Cii(g1).

(2.3.21)

Here, ∗ ≡ ∂Φ

∂θ

∣∣∣∣
pφ

, but since ḡ = ḡ(pφ, ξ), it is assumed that
∂Φ

∂θ

∣∣∣∣
pφ

= O(0). Then, the O(∆2)

equation for the ion response simplifies to:

v∥

Rq

∂g2
∂θ

∣∣∣∣
pφ

+
mv∥

Rq

[(
1− q

qs

)
∂ḡ

∂ξ
+ ψ̃ sin ξ

(
∂ḡ

∂pφ
+ F ′

M,i

)]
−
mv∥

Rq
I
∂

∂ψ

(
v∥

ωc,i

)
∂ḡ

∂ξ
+
m

q

[
∂Φ

∂ψ

∂ḡ

∂ξ
− ∂Φ

∂ξ

(
∂ḡ

∂pφ
+ F ′

M,i

)]
= Cii(g1)

(2.3.22)

To solve for ḡ from Eq.(2.3.22), the higher order g2 term must be eliminated. This is done by

taking advantage of their periodicity in θ which, for passing particles, it is known that:

g2(θ = −π) = g2(θ = +π) (2.3.23)

and for trapped particles, via the conservation of particle number at the bounce points:

g2(θ ± θb, σ = −1) = g2(θ ± θb, σ = +1), (2.3.24)

44



Sec. 2.3: Ion response Ch. 2: Theory

recalling σ = v∥/|v∥| is the sign of the particle’s field-parallel velocity. Then, the g2 terms can

be eliminated by calculating the average of Eq.(2.3.22) over a period in θ at fixed pφ, i.e., the

average over the guiding centre orbit.

For passing particles, the orbit-averaging of Eq.(2.3.22) involves multiplying by Rq/v∥, then

integrating in θ = {−π,+π} at fixed pφ, and dividing by 2π. For trapped particles, Eq.(2.3.22)

is multiplied by σ/2 × Rq/v∥, integrated in θ = {−θb,+θb} and divided by 2π, then the two

streams in σ are summed together (averaged, via the factor 1/2). Thus, any terms with odd

powers in σn will sum to their value when σ = +1, while those even in σn (or σ-independent)

will disappear from the trapped particle equation. Note that, in general, gt1(ψ, θ) is a function

of σ, as it matters whether the particle is travelling parallel or anti-parallel to the field lines; the

two such particles would be on different banana orbits, but gt1(pφ) itself is independent of σ (i.e.

all the σ-dependence is encapsulated within pφ).

To perform the orbit-averaging, the orbit paths at constant pφ (hence varying ψ) need to be

determined. Recall in Eq.(2.3.13) that the orbits of constant pφ deviate from a flux surface at

constant ψ by O(ρ(ψ)). Then, an implicit function for the variation in ψ along the integration

paths, ψ̂(θ), can be obtained by rearranging Eq.(2.3.13):

ψ̂(pφ, θ) = pφ + ρ(ψ̂, θ) (2.3.25)

Alternatively, an explicit integral form of ψ̂ can be obtained by considering:

dpφ = (1− ρ′)dψ − I ∂
∂θ

(
v∥

ωc,i

)
dθ.

Therefore, the θ-averaging operators at fixed pφ are defined as:

⟨F (ψ, θ)⟩pθ =
1

2π

∮
F (ψ̂, θ) dθ λ < λc (passing ions)

⟨F (ψ, θ)⟩tθ =
1

2π

∑
σ

σ

2

∫ +θb

−θb
F (ψ̂, θ) dθ λ ≥ λc (trapped ions)

(2.3.26)

Again, note that the trapped orbit changes direction with respect to v∥ every half-orbit, and

hence the ’σ-average’ of the integrated quantity is taken, which introduces a factor 1/2.

Returning to Eq.(2.3.22), we multiply Eq.(2.3.22) by Rq/v∥ and perform θ-averaging at fixed

pφ, annihilating the term in g2. Then, the remaining terms of the equation for ḡ for the passing
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particles:

m

〈(
1− q

qs

)〉p
θ

∂ḡ

∂ξ
+mψ̃ sin ξ

(
∂ḡ

∂pφ
+ F ′

M,i

)
−m

〈
I
∂

∂ψ

(
v∥

ωc,i

)〉p
θ

∂ḡ

∂ξ

+m

〈
R

v∥

∂Φ

∂ψ

〉p
θ

∂ḡ

∂ξ
−m

〈
R

v∥

∂Φ

∂ξ

〉p
θ

(
∂ḡ

∂pφ
+ F ′

M,i

)
=

〈
Rq

v∥
Cii(g1)

〉p
θ

(2.3.27)

For the trapped particles, the summation over σ (implied in the bracket: ⟨...⟩tθ) will eliminate any

even-σn terms, leaving:

m

〈(
1− q

qs

)〉t
θ

∂ḡ

∂ξ
−m

〈
I
∂

∂ψ

(
v∥

ωc,i

)〉t
θ

∂ḡ

∂ξ
+m

〈
R

|v∥|
∂Φ

∂ψ

〉t
θ

∂ḡ

∂ξ

−m
〈
R

|v∥|
∂Φ

∂ξ

〉t
θ

(
∂ḡ

∂pφ
+ F ′

M,i

)
=

〈
Rq

v∥
Cii(g1)

〉t
θ

(2.3.28)

Transforming the pitch-angle scattering terms

Returning to the collision operator term Eq.(2.2.12), the λ-derivatives are taken at fixed ψ, and

must be transformed to those at fixed pφ (as pφ has λ-dependence through v∥):

∂

∂λ

∣∣∣∣
ψ

=
∂

∂λ

∣∣∣∣
pφ

+
∂pφ
∂λ

∣∣∣∣
ψ

∂

∂pφ

=
∂

∂λ

∣∣∣∣
pφ

− I

ωci

∂v∥

∂λ

∂

∂pφ
,

∂v∥

∂λ
=
σv

2

−B√
1− λB

→ ∂

∂λ

∣∣∣∣
ψ

=
∂

∂λ

∣∣∣∣
pφ

+
σv

2

I

ωci

B√
1− λB

∂

∂pφ
(2.3.29)

Then, the pitch-angle scattering term transforms to:

λ
√
1− λB ∂

∂λ

∣∣∣∣
ψ

= λ
√
1− λB ∂

∂λ

∣∣∣∣
pφ

+
σv

2
λB

I

ωci

∂

∂pφ

→ ∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
ψ

=
∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
pφ

+
σv

2
B
I

ωci

∂

∂pφ
+
σv

2
λB

I

ωci

∂2

∂λ∂pφ

+
σv

2

I

ωci

B√
1− λB

∂

∂pφ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
pφ

+
σv

2

I

ωci

B√
1− λB

σv

2

∂

∂pφ

(
λB

I

ωci

∂

∂pφ

)
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Assuming
∂B

∂pφ
≈ ∂B

∂ψ
∼ B

R is small (by O(ϵ)) compared to the leading order term, and noting

also that σ2 ≡ +1:

∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
ψ

=
∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
pφ

+
σv

2
λB

I

ωci

∂

∂pφ
+ 2

σv

2
λB

I

ωci

∂2

∂λ∂pφ

+
v2

4

B√
1− λB

λB

(
I

ωci

)2 ∂2

∂p2φ

∴

√
1− λB
B

∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
ψ

=

√
1− λB
B

∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
pφ

+
1

2

Iv∥

ωci

∂

∂pφ

+
Iv∥

ωci
λ

∂2

∂λ∂pφ
+
λB

4

(
Iv

ωci

)2 ∂2

∂p2φ
.

(2.3.30)

Here,

∂

∂λ

(
λ
√
1− λB ∂

∂λ

)
=

[√
1− λB − λB

2
√
1− λB

]
∂

∂λ
+ λ
√
1− λB ∂2

∂λ2
(2.3.31)

=
(2− 3λB)

2
√
1− λB

∂

∂λ
+ λ
√
1− λB ∂2

∂λ2
. (2.3.32)

Hence:

√
1− λB
B

∂

∂λ

(
λ
√
1− λB ∂

∂λ

)∣∣∣∣
ψ

=

√
1− λB
B

(2− 3λB)

2
√
1− λB

∂

∂λ

∣∣∣∣
pφ

+

√
1− λB
B

λ
√
1− λB ∂2

∂λ2

∣∣∣∣
pφ

+
1

2

Iv∥

ωci

∂

∂pφ
+
Iv∥

ωci
λ

∂2

∂λ∂pφ
+
λB

4

(
Iv

ωci

)2 ∂2

∂p2φ
.

(2.3.33)

Inserting the above expressions into the collision operator term in Eqs.(2.3.27) and (2.3.28) gives:

Rq

v∥
Cii(g1) = 2νii

[
Rq

B

1

σv

(2− 3λB)

2
√
1− λB

∂g1
∂λ

∣∣∣∣
pφ

+
Rq

B

1

σv
λ
√
1− λB ∂2g1

∂λ2

∣∣∣∣
pφ

+
Rq

2

I

ωci

∂g1
∂pφ

+
Rq

v∥

λB

4
v2
(
I

ωci

)2 ∂g1
∂p2φ

+Rq
I

ωci
λ
∂2g1
∂λ∂pφ

+Rq
ū∥i(g1)

v2thi
FM,i

]
.

(2.3.34)
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But, B(θ) ∝ R−1(θ) (i.e. they have the same θ-dependence), so Rq/B has no θ-dependence.

Then, the θ-averaged collision term is:

〈
Rq

v∥
Cii(g1)

〉
θ

= 2νii(v)
R0q0
B0

[
1

σv

〈
(2− 3λB)

2
√
1− λB

〉
θ

∂g1
∂λ

∣∣∣∣
pφ

+
λ

σv

〈√
1− λB

〉
θ

∂2g1
∂λ2

∣∣∣∣
pφ

+
B0

2

I

ωci0

∂g1
∂pφ

+
σv

4
λB2

0

〈
1√

1− λB

〉
θ

(
I

ωci0

)2 ∂2g1
∂p2φ

+
I

ωci0
λB0

∂2g1
∂λ∂pφ

+

〈
Bū∥i(g1)

〉
θ

B0v2thi
FM,i

] (2.3.35)

Note that here, the term in
∂2g1
∂p2

corresponds with neoclassical diffusion, and is the only transport

term in the model that provides cross-field transport across pφ-orbits.

2.3.4 Expansion at the rational surface

Next, we Taylor expand g1 at the rational surface where the island forms (ψ = ψs), which further

simplifies Eq.(2.3.35). Recall the form of ion distribution function, (2.3.9) and (2.3.19):

fi =

(
1− eZiΦ

Ti

)
FM,i(ψ) + g1 + ..., g1 = −

Iv∥

ωci
F ′
M,i + ḡ, F ′

M,i =
ωT∗i
ω∗i

n′

n
FM,i.

In the vicinity of the island, the Maxwellian FM,i can be expanded in ∆ = ρθ,i/w at ψ = ψs:

FM,i(ψ) ≃ FMis(ψs) + (ψ − ψs)F ′
Mis +O(F ′′

M,i). (2.3.36)

Here, subscript s denotes quantities local to the rational surface ψs. Expanding fi, to the leading

order in ∆:

fi =

(
1− eZiΦ

Ti

)
FMis +

[
(ψ − ψs)−

Iv∥

ωci

]
F ′
Mis + ḡ+ ...

→ fi =

(
1− eZiΦ

Ti

)
FMis + pφF

′
Mis + ḡ+O(∆2). (2.3.37)

For the orbit-averaged terms in Eqs.(2.3.27) and (2.3.28), θ-averaging at fixed pφ, ⟨...⟩
pφ
θ , needs to

be applied in full to perturbed quantities (those varying on the length-scale of w or ρθ,i like ū∥,i

and Φ), but the θ-average at fixed ψ , ⟨...⟩ψθ , is sufficient for equilibrium quantities varying on the

length-scale of r, namely the pitch-angle scattering terms in Sec.2.3.3. Returning to Eq.(2.3.27)

and Eq.(2.3.28), we expand the first two terms at the rational surface, changing the θ-averaging
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operators appropriately:

1− q

qs
= 1− 1

qs

(
qs + (ψ − ψs)q′s + ...

)
= −q

′
s

qs

(
pφ +

Iv∥

ωci0

)
.

⇒
〈
1− q

qs

〉pφ
θ

= −q
′
s

qs
pφ −

q′s
qs
I

〈
v∥

ωci0

〉ψ
θ

= −q
′
s

qs
pφ −

q′s
qs
σv
IB0

ωci0

〈√
1− λB
B

〉ψ
θ

.

where above we have used
〈

v∥
ωci0

〉ψ
θ
≃
〈

v∥
ωci0

〉pφ
θ

due to its small size, and:

∂

∂ψ

(
v∥

ωci0

)
=

σv

ωci0

∂B

∂ψ

[
−λ

2
√
1− λB

−
√
1− λB
B

]
⇒

〈
∂

∂ψ

(
v∥

ωci0

)〉ψ
θ

= −σvB0

ωci0

[
1

2

〈
B′

B2

λB√
1− λB

〉ψ
θ

+

〈
B′

B

√
1− λB

〉ψ
θ

]
.

Likewise for the collision operator, the surviving terms in Eq.(2.3.35) are:

〈
Rq

v∥
Cii(g1)

〉pφ
θ

= 2νii(v)
R0q0
B0

[
1

σv

〈
(2− 3λB)

2
√
1− λB

〉ψ
θ

∂ḡ

∂λ

∣∣∣∣
pφ

+
λ

σv

〈√
1− λB

〉ψ
θ

∂2ḡ

∂λ2

∣∣∣∣
pφ

+
B0

2

I

ωci0

(
F ′
M,i +

∂ḡ

∂pφ

)
+
σv

4
λB2

0

〈
1√

1− λB

〉ψ
θ

(
I

ωci0

)2 ∂2ḡ

∂p2φ

+
I

ωci0
λB0

∂2ḡ

∂λ∂pφ
+

〈
Bū∥i(g1)

〉pφ
θ

B0v2thi
FM,i

]
.

Writing out Eqs.(2.3.27) and (2.3.28) in full,

m

[
− q′s
qs
pφΘy −

q′s
qs
σv
IB0

ωci0

〈√
1− λB
B

〉ψ
θ

+

〈
R

v∥

∂Φ

∂ψ

〉pφ
θ

− I σvB0

ωc

(
1

2

〈
B′

B2

λB√
1− λB

〉ψ
θ

+

〈
B′

B

√
1− λB

〉ψ
θ

)]
∂ḡ

∂ξ

+

[
mψ̃ sin ξ Θy −m

〈
R

v∥

∂Φ

∂ξ

〉pφ
θ

−R0q0νii
I

ωci0
Θy

](
∂ḡ

∂pφ
+ F ′

Mis

)

− σv

2
νiiR0q0λB0

(
I

ωci0

)2〈 1√
1− λB

〉ψ
θ

∂2ḡ

∂p2φ
− 2νiiR0q0

I

ωci0
λΘy

∂2ḡ

∂λ∂pφ

− νii
σv

R0q0
B0

〈
2− 3λB√
1− λB

〉ψ
θ

∂ḡ

∂λ

∣∣∣∣
pφ

− 2νii
σv

R0q0
B0

λ
〈√

1− λB
〉ψ
θ

∂2ḡ

∂λ2

∣∣∣∣
pφ

= 2νiiR0q0

〈
Bū∥,i(g1)

〉pφ
θ

B0v2th,i
FMis

(2.3.38)
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where we introduce the left-handed Heaviside step function Θy to eliminate passing-only (σ-even)

terms in the trapped region (λ ≥ λc), where:

Θy = Θ(λc − λ)


1 λ < λc

0 otherwise

. (2.3.39)

2.3.5 Normalised NTM equation

Many of the terms in Eq.(2.3.38) contain common factors including the major radius R, rational

surface minor radius rs (length), ion thermal velocity vth,i, gyrofrequency ωc,j (specifically ωcj0 at

the rational surface), and the maximum equilibrium field strength magnitude B0,max. To simplify

the equation, many of the terms are normalised to these units; the normalised terms are denoted

by a hat, e.g. ŵ. Also, in the remainder of this subsection, the subscript i for ion quantities is

omitted but implied.

The following normalisations are introduced to the coordinate system and field geometry:

ψs = RBθrs; x =
r − rs
rs

⇒ ∂

∂ψ
=

1

RBθrs

∂

∂x

u =
v

vth,i
; y = λB0,max ⇒ ∂

∂λ
= B0,max

∂

∂y

b =
B0

B0,max
=

1− ϵ cos θ
1 + ϵ

⇒ λB = yb

ν̂jj =

νjj(v)︷ ︸︸ ︷
νCjj ν̃jj(u)

Rq

vth
= ϵ3/2ν⋆ν̃jj(u),

(2.3.40)

Here, y = 1 corresponds with the trapped passing boundary at λ = λc. The ξ and θ angle

coordinates remain in units of radians. ν̃jj(u) is the velocity-dependent part of the collision

frequency (see Eq.(2.2.17)). Then, Length scales including the magnetic island width w, the ion

poloidal gyroradius ρθ,i, are normalised to rs, and Ω is also rewritten:

ŵ =
w

rs
, ρ̂θ,i =

ρθ,i
rs

=
1

rs

vth,i
ωcj0

; Ω(x, ξ) =
2x2

ŵ
− cos ξ, (2.3.41)

likewise the gradient length scales for density Ln, temperature LT , magnetic field strength LB,
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magnetic shear Lq have also been normalised to rs:

L̂−1
n =

rs
ns

dns
dr

; L̂−1
T =

rs
T

dT

dr
; L̂−1

B =
rs
B

∂B

∂r
=
−ϵ(r) cos θ

rs

L̂−1
q =

rs
qs

dq

dr

∣∣∣∣
s

≡ ψs
qs
q′s; η =

L̂n

L̂T

(2.3.42)

Then, normalising the perturbation amplitude from Eq.(2.1.4),

ψ̃ =
w2
ψ

4

q′s
qs

=
R2B2

θw
2

4

1

RBθ

dq

dr

∣∣∣∣
s

1

qs

r2s
r2s

=
1

4

ŵ2

L̂q
RBθrs. (2.3.43)

The coordinate p is the canonical toroidal angular momentum pφ normalised to RBθrs:

p = x− ρ̂θ,iu∥, (2.3.44)

⇒ pφ ≡ ψ − ψs −
Iv∥

ωc,i
= RBθx−

RBϕmivth,iu∥

eZiB
= RBθrs(x− ρ̂θ,iu∥)

∴ pφ = RBθrsp.

⇒ ∂

∂pφ
=

1

RBθrs

∂

∂p
. (2.3.45)

The ion distribution function is normalised to
π3/2v3th,i

ns
, where ns = n0(ψs):

Φ̂ =
eΦ

T (ψs)
; F̂M = e−u

2
,

∂F̂M

∂x
=
ωT⋆,i
ω⋆,i

n′s
ns
F̂M ,

ĝ =
π3/2v3th,i
ns

ḡ , ĝ1 = ĝ+ pF̂ ′
M

(2.3.46)

After extensive derivation of the normalised coefficients, given in full in the Appendix Sec.8.3.2,

the final normalised drift-kinetic NTM equation for ĝ (2.3.38) is:

−m

[
p

L̂q
Θy +

ρ̂θ,i

L̂q
ω̂D −

ρ̂θ,i
2

〈
1

u∥

∂Φ̂

∂x

〉p
θ

]
∂ĝ

∂ξ

+

[
m

4

ŵ2

L̂q
sin ξ Θy −m

ρ̂θ,i
2

〈
1

u∥

∂Φ̂

∂ξ

〉p
θ

− ν̂iiρ̂θ,iΘy

](
∂ĝ

∂p
+ F̂ ′

Ms

)
− ν̂ii

2

σu

(1 + ϵ)
ρ̂2θ,iy

〈
1√

1− yb

〉x
θ

∂2ĝ

∂p2
− 2ν̂iiρ̂θ,iyΘy

∂2ĝ

∂y∂p
− ν̂ii
σu

(1 + ϵ)

〈
(2− 3yb)√

1− yb

〉x
θ

∂ĝ

∂y

∣∣∣∣
p

− 2ν̂ii
σu

(1 + ϵ)y
〈√

1− yb
〉x
θ

∂2ĝ

∂y2

∣∣∣∣
p

= 2ν̂ii(1 + ϵ) ˆ̄U∥i(ĝ+ pF̂ ′
Ms)F̂Ms

(2.3.47)
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Here, the Heaviside step function Θy = 1 for passing particles, and Θy = 0 for trapped particles.

Eq.(2.3.47) is analogous to Eq.(A.1) of Ref. [70], but with some amendments (see Sec.2.6). Where

we have defined the normalised ion drift frequency ω̂D (a length-less drift velocity), to be the

combination of the terms in
∂ĝ

∂ξ
:

ω̂D =
σu

(1 + ϵ)

[〈√
1− yb
b

〉x
θ

− L̂q
2

〈
1

b

1

L̂B

(2− yb)√
1− yb

〉x
θ

]
. (2.3.48)

and the ion flow-like collision operator term ū∥i Eq.(2.2.14) in normalised form is given by:

ˆ̄U∥i(f̂) =
1√

π ⟨ν̂ii⟩v

〈∑
σ

σ

∫ ∞

0
du u3ν̂ii

∫ b−1

0
dy f̂

〉p
θ

. (2.3.49)

where f̂ =
π3/2v3th,i

n f is the normalised ion distribution.
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2.3.6 Boundary conditions

In solving Eq.(2.3.47) for ĝ, boundary conditions are applied in ξ-, p- and y-space. In ξ, ĝ and

its derivatives must be periodic as we concern a single-helicity island:

ĝ(ξ = −π) = ĝ(ξ = +π) ,
∂ĝ

∂ξ

∣∣∣∣
ξ=−π

=
∂ĝ

∂ξ

∣∣∣∣
ξ=+π

. (2.3.50)

For p, we assume that the island perturbation’s effect on the ion distribution must be localised

to its vicinity. This requires that ĝ must tend to a constant far from the island (p → ±∞), so

that
∂f̂i
∂p
→ F̂ ′

M,i. This results in the following Dirichlet boundary condition:

lim
p→±∞

∂ĝ

∂p
= 0, (2.3.51)

which will give a special form for the calculation of the second derivative,
∂2ĝ

∂p2
.

For y, we note that Eq.(2.3.47) has different forms for passing and trapped particles, and

also that certain equation terms have divergent behaviour as y → yc ≡ 1, specifically those with

factor v−1
∥ or (1 − yb(θ))−1/2, as b(θ → π) → 1. Therefore, ĝ cannot be solved explicitly at the

trapped-passing boundary and must be approximated using a set of matching conditions [50] that

enforce continuity between passing (σ = +1), anti-passing (σ = −1) and trapped ions across it:

∑
σ

σĝσp = 0 (2.3.52)

∑
σ

ĝσp = 2ĝt (2.3.53)

∑
σ

∂ĝσp
∂y

= 2
∂ĝt
∂y

. (2.3.54)

Here, subscripts p and t denote the solutions in passing and trapped regions, respectively.

Eq.(2.3.52) and Eq.(2.3.53) result from matching ĝ across the trapped-passing boundary, as ĝ

must be independent of σ there. Eq.(2.3.54) originates from continuity as, in steady state, the

rate at which trapped particles are scattered into the passing region must equal the passing par-

ticles scattered into the trapped region. These matching conditions are necessary as Eq.(2.3.47)

has fundamentally different forms for the passing and trapped particles, and different definitions

of the orbit-averaging operator(2.3.26). Separately in y, while there is not a strict external bound-

ary condition, we note that the
〈√

1− yb
〉
θ
term of

∂2ĝ

∂y2
in Eq.(2.3.47) vanishes at both y = 0

53



Sec. 2.4: Electron response and quasineutrality Ch. 2: Theory

and y = max(y) = 1/b, effectively resulting in a Neumann boundary condition. This will give a

special form for the first derivative,
∂ĝ

∂y
, that ensures it remains finite.

2.4 Electron response and quasineutrality

We now have an equation for the drift-kinetic ion response and have defined its boundary condi-

tions. As discussed in Sec.1.2.3 with relation to other NTM literature, the plasma response must

be self-consistent with terms dependent on the distribution function, including the normalised

electrostatic potential Φ̂ satisfying quasineutrality, and the ion flow-like momentum-conserving

collision operator term ˆ̄U∥i(ĝ + pF̂ ′
Ms), neither of which should be neglected. The ion response

Eq.(2.3.47) must therefore be solved iteratively with Φ̂ and ˆ̄U∥i(ĝ + pF̂ ′
Ms). However, Φ̂ also

requires the electron response to account for plasma quasineutrality.

Assuming the collision frequency and poloidal gyroradius of electrons are negligibly small,

i.e., ρθ,e ≪ ρθ,i ∼ w, then the analytic description of the electron response in [50] can be used.

Starting with a similar Maxwellian-based distribution function for the electrons as with the ions:

fe =

(
1 +

eZeΦ

Te

)
FM,e + (ψ − ψs)F ′

M,e + ge , FM,e(ψ) =
n0(ψ)

π3/2v3th,e
e−v

2/v2th,e , (2.4.1)

we expand in the perturbed electron distribution ge in the limit of small δe = ρθ,e/w and ∆ = w/r:

ge =
∑
l,k

= δle∆
kg(l,k)e (2.4.2)

and assuming the following orderings:

eZeΦ

T
∼ ∆ , kθw ∼ ∆ ,

k∥v∥

ω⋆,e
≫ 1 ,

ge
FM,e

∼ ∆ , νee + νei ≤ k∥vth,e (2.4.3)

then, considering the relevant terms of the O(δe∆) drift-kinetic equation (2.2.1), the electron

distribution takes the form of Ref. [70] Eq.(17):

fe =

(
1 +

eΦ

T

)
FM,e(ψ)− FM,e

n′0
n0

ωT⋆,e
ω⋆,e

[ψ − h(Ω)]
ψs

, (2.4.4)

≃
(
1 +

eΦ

T

)
FM,s +�

���F ′
M,sψ − FM,s

n′0
n0

ωT⋆,e
ω⋆,e

[��ψ − h(Ω)] (2.4.5)

=

(
1 +

eΦ

T

)
FM,s + FM,s

n′0
n0

ωT⋆,e
ω⋆,e

h(Ω), (2.4.6)
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where:

ωT∗,e
ω∗,e

= 1 +

(
v2

vth,e
− 3

2

)
η. (2.4.7)

Here, h(Ω) is the constraint equation Eq.(55) from Ref. [50], representing the density gradient of

the electron response near the island, determined using a model form of radial transport. h(Ω)

is defined to be zero both at and inside the island separatrix (Ω ≤ 1):

h(Ω) = Θ(Ω− 1)
w

2
√
2

∫ Ω

1

dΩ′

Q(Ω)
, h(Ω) =


1 Ω > 1

0 Ω ≤ 1

(2.4.8)

where Θ is the left-handed Heaviside step function, w is the island half-width, and:

Q(Ω) =
1

2π

∫ +ξb

−ξb
dξ
√
Ω(ξ) + cos(ξ) , ξb =


π Ω ≥ 1

arccos(−Ω) Ω < 1

(2.4.9)

where ξb is the helical angle bounce point on a given flux surface. The electron density is obtained

by integrating Eq.(2.4.4) across velocity-space, using Eq.(2.2.16):

ne =

∫
d3v fe,

∫
d3v = πB

∑
σ

∫ ∞

0
dv v2

∫ B−1

0

dλ√
1− λB

.

Using the following identities (see Appendix Sec.8.1):

B

∫ B−1

0

dλ√
1− λB

= 2,

∫ ∞

0
dv v2e−v

2
=

√
π

4
,

∫ ∞

0
dv v4e−v

2
=

3
√
π

8
, (2.4.10)

the normalised electron density (n̂e = ne/ns) is calculated to be:

ne = πB
∑
σ

∫ ∞

0
dv v2

∫ B−1

0

dλ√
1− λB

[(
1 +

eΦ

T

)
FM,s + FM,s

ωT⋆,e
ω∗e

n′0
n0
h(Ω)

]

= 2π
∑
σ

∫ ∞

0
dv

(
1 +

eΦ

T
+

[
1− 3

2
ηe

]
n′0
n0
h(Ω)

)
v2FM,s +

(
n′0
n0
h(Ω)ηe

)
v4FM,s

= 2n0
�
�
�π3/2

π3/2
(2)

[(
1 +

eΦ

T
+

[
1−

�
��

3

2
ηe

]
n′0
n0
h(Ω)

)
1

4
+
��

����n′0
n0
h(Ω)ηe

3

8

]

= n0

[
1 +

eΦ

T
+
n′0
n0
h(Ω)

]
.
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Introducing unit normalisations: Φ̂ = eΦ
T , L̂−1

n =
n′
0
n0
, then the electron density normalised to ns

is:

n̂e = 1 + Φ̂ +
h(Ω)

L̂−1
n,0

, (2.4.11)

By balancing the ion and electron densities, the normalised electrostatic potential perturbation Φ̂

can be determined. However, noting that a similar form of the total ion density can be obtained:

fi =

(
1− eΦ

T

)
FM,s +

ωT∗
ω∗i

FM,s

L̂n
pφ + g, (2.4.12)

n̂i = 1− Φ̂ +
x

L̂n
+ δni, (2.4.13)

by equating with Eq.(2.4.11), the perturbed electrostatic potential Φ̂ is given by:

n̂i = n̂e ⇒ Φ̂ =
δni
2

+
x− h(Ω)

2L̂n
, (2.4.14)

where Ln,0 is the density gradient length scale in the limit of zero equilibrium radial electric field

(ω̂E = 0). The normalised perturbed ion density δni is obtained from the O(∆1) perturbed ion

distribution function ĝ, the solution of Eq.(2.3.47):

δni(θ, x, ξ) = {ĝ}v =
b√
π

∑
σ

∫ ∞

0
u2du

∫ b−1

0
dy

ĝ√
1− yb

. (2.4.15)

Within Eq.(2.4.14), note that the contribution to Φ̂ from pF ′
M for ions is accounted for ({pF ′

M}v =

x/Ln,i, see 4.1.8), and that the respective contributions from the equilibrium ions and electrons

will cancel under quasineutrality. Far from the magnetic island, h(Ω) → x and δni should tend

toward a constant (under the boundary condition
∂g

∂p
= 0), and hence Φ̂ should also tend to a

constant. This would lead to
∂Φ̂

∂x
→ 0 far from the island, i.e., the perturbed electric field is

localised to the vicinity of the magnetic island.

2.5 Current density and island growth

Once a self-consistent ion response to the drift-kinetic equation is obtained, the field-parallel layer

currents and their contributions to the modified Rutherford equation can be calculated.
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Parallel currents

The total field-parallel current density of species j is simply provided by its parallel flow:

J∥,j = eZju∥,j (2.5.1)

where Zj = +1 for ions, and −1 for electrons, and e is the elementary charge. In [70, 41] and

subsequent works, the ”bootstrap current density” Jbs is the part of J∥,j that is projected out

after flux surface-averaging at fixed Ω:

Jbs,j = ⟨J∥,j⟩Ω (2.5.2)

Likewise, the ”polarisation current density” is considered to be the part that disappears after

flux-surface averaging, though technically this could comprise similar contributions from other

sources:

Jpol,j ≈ J∥,j − ⟨J∥,j⟩Ω (2.5.3)

where ⟨...⟩Ω the flux surface average operator. Here, the flux surface average of a quantity is

a volume average between two closely-neighbouring flux surfaces ψ and ψ + δψ. Based on [17]

Eq. (7.5), it is given by:

⟨...⟩Ω =
S(...)

S(1)
=

∮
dξ ... (Ω + cos ξ)−1/2∮
dξ (Ω + cos ξ)−1/2

S(...) =
1

2π

∫ +ξb

−ξb

dξ√
Ω+ cos ξ

, ξb =


π Ω ≥ 1

arccos(−Ω) Ω < 1

(2.5.4)

and ξb(Ω) is the extent of the helical angle on a given n = 1 flux surface. When computing the

flux surface average, because Ω is symmetric in ψ, S(...) must be computed for both sides in ψ,

then the average of the two sides is taken.

Analytic electron flow

The analytic result for the parallel electron flow u∥,e in Ref.[70] Eq.(22) is used to determine the

electron current6. Notably, it depends on the ion flow u∥,i, calculated numerically from Eq.(2.2.15)

6This corresponds with [50] Eq.(74) converted from the lab frame to the island rest frame by setting ω = −ωE .
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from the self-consistent ion response:

u∥,e

vth,e
=
−ft
1 + ft

ρ̂θ,e
Ln

(
1 + η(1 + 1

2kneofp)

ω⋆,e

∂h

∂x
− ωE
ω⋆,e

)
+

fp
1 + ft

u∥,i

vth,i
, (2.5.5)

where vth,e =
√

mi
me
vth,i is the electron thermal speed and ρ̂θ,e = −

√
me
mi
ρ̂θ,i is the electron

poloidal gyroradius, both using the same normalisations as ions. kneo is the coefficient of the

neoclassical poloidal flow from Helander and Sigmar’s derivation of the drift-kinetic equation for

a quasineutral ion-electron plasma in the high aspect ratio banana regime (Ref.[17], Eq.(11.26)),

acting as a constant of proportionality between the poloidal ion flow and poloidal magnetic field

Bθ:

kneo =

〈
(v2 − 5

2)ν̃jj
〉
v

⟨ν̃jj⟩v
≃ −1.173... , (2.5.6)

where ⟨...⟩v is the velocity volume integral given by Eq.(2.2.20). fp is the fraction of passing

particles in the population, approximated in a high aspect ratio, given by [17] Sec.(11) Eq.(11.24):

fp =
3B2

0

4

∫ λc

0

λ dλ

⟨1− λB⟩ψθ
≃ 1− 1.46

√
ϵ , (2.5.7)

likewise ft = 1− fp is the trapped particle fraction. Normalised and converted to ion units, the

analytic electron flow expression Eq.(2.5.5) becomes:

u∥,e

vth,i
=
−ft
1 + ft

ρ̂θ,i
Ln

(
1 + η(1 + 1

2kneofp)

ω⋆,e

∂h

∂x
− ωE
ω⋆,e

)
+

fp
1 + ft

u∥,i

vth,i
. (2.5.8)

Note that the parallel current J∥ ∝ u∥,e − u∥,i ∝ ft, as expected for the bootstrap current

density, and the factor
√

mi
me

introduced by the LHS vth,e term is cancelled out by its inverse in

ρ̂θ,e. Therefore, the choice of isotope for the ion species (whether deuterium or protons) will not

significantly affect the final result, given that the ion mass-dependent ρ̂θ,i and vth,i are parameters.

Dispersion relation

The dispersion relation that relates magnetic field with field-parallel current density J∥ is derived

from Ampère’s law. For long thin islands whose width w is much smaller than their length, as is

the case in a high aspect ratio tokamak, Ampère’s law relates ψ to J∥:

1

R

d2ψ

dr2
= µ0J∥ (2.5.9)
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Integrating Ampère’s law across real-space (while performing θ-averaging), and projecting out the

cos ξ component gives the nonlinear dispersion relation relating the current density J with the

island perturbation7. Integrating the discontinuity in ψ(r) across the island gives the parameter

∆loc, the island growth parameter due to perturbed local neoclassical layer currents in the vicinity

of the island:

∆loc = −µ0R
∫ ∞

−1
dΩ

∮
dξ
〈
J∥
〉
θ
cosnξ (2.5.10)

= −µ0R
2ψ̃

∫ +∞

−∞
dψ

∮
dξ
〈
J∥
〉ψ
θ
cos ξ (2.5.11)

= −1

2

(
w2

4

q′s
qs

)−1 ∫ +∞

−∞
dψ

∮
dξ
〈
J∥
〉ψ
θ
cos ξ (2.5.12)

Here, J∥ may be substituted for Jbs or Jpol for either species to identify that corresponding

contribution to the total ∆loc. The cos ξ component8 of J∥ is resonant with the island perturbation

and contributes to the island growth rate via the modified Rutherford equation Eq.(1.4.7), which

we rewrite as:
1

r2s

dw

dt
= − 1

τR

1

2

(
w2

4L̂q

)∫ +∞

−∞
dx

∮
dξ
〈
J∥
〉ψ
θ
cos ξ (2.5.13)

As discussed in Sec.1.4, in our working parameters, we are interested only in the bootstrap and

polarisation currents, and have neglected the small contributions from curvature effects (∝ ϵ2)

and the classical tearing parameter (∆′(w → 0)→ 0).

2.6 Amendments

This work makes the following corrections to the derivation last published in Ref. [70]:

Eq.(A.1) - Eq.(2.3.47):

• Added missing factor ρ̂θ,i to
∂2ĝ

∂p2
, thereby making the term ∝ ρ̂2θ,i. This derivative con-

trols diffusion across particle orbits and this change consequently affects the physics of the

separatrix boundary layer surrounding the island.

• Added missing coefficient ν̂iiρ̂θ,i to
∂ĝ

∂p
. This affects the behaviour of the solution near the

magnetic island.

7This corresponds with Eq.(17) in [50] (noting that Lq = qs/q
′
s is in the reverse direction in this work, hence

the inclusion of a minus sign in this work)
8The inclusion of cos ξ will also eliminate the ξ-independent component of the current far from the island in ψ,

so only the ξ-dependent perturbation contributes.
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• Added missing factor m to existing coefficients of F̂ ′
Mis, and missing ν̂iiρ̂θ,iΘy term.

• Collision operator term ˆ̄U∥i(ĝ) changed to ˆ̄U∥i(ĝ + pF̂ ′
Ms), thereby reflecting the full form

of g1. Note that the pF̂ ′
M term is eliminated in the trapped region by averaging over σ,

but the region will be affected by this change to the passing solution through the matching

condition.

• Introduced minus sign to ∆loc dispersion relation Eq.(2.5.10).

Eq.(A.11) - Eq.(2.4.14): Φ̂ has been modified to remove L−1
n from δni.
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Summary

This chapter presented a derivation for the steady state drift-kinetic plasma response to a small

magnetic island (w ∼ ρb,i ≪ rs) in a high aspect ratio (ϵ≪ 1), circular cross section tokamak in

the island rest frame. Here, a numerical approach is required for ions to account for kinetic effects

at the relevant length scale, while analytic results for electrons from Ref. [50] will be used to ensure

quasineutrality is maintained in the electrostatic potential Φ. The extended derivation included

in this section is given in the Appendix 8.3. The next chapter introduces a new numerical code,

kokuchou [77], to implement this derivation. Recalling the project aims, Objective (1) the code

is designed after the DK-NTM algorithm within Refs. [69, 70, 41]. Amendments and corrections to

the original derivation from these works have been summarised in this section, which is expected

to produce a new result that needs to be tested and verified.
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Chapter 3

Methodology

In Ch.2, the drift-kinetic ion response to a near threshold-size (wc ∼ ρb,i = ϵ1/2ρθ,i [34, 66])

magnetic island and its associated quantities were derived in the island rest frame, following

previous work [50, 70]. These will be used to determine the parallel currents in the vicinity of

the island, to predict its growth rate and the threshold width where that rate is zero. To account

for quasineutrality and momentum conservation, an iterative numerical scheme is needed for the

perturbed ion distribution ĝ to be self-consistent with the electrostatic potential Φ̂(ĝ) and the ion

flow-like momentum conservation term ˆ̄U∥i(ĝ+ pF̂ ′
Ms).

This chapter introduces a new numerical code, kokuchou[77], to perform this calculation.

Sec.3.1 outlines the stages of calculation, with specific stages covered in detail in each subsection.

The challenges of this computationally intensive calculation and the methods by which these

were addressed are discussed in Sec.3.1.6. Finally, Sec.3.2 describes the studies carried out for

this work, and the resources used.

3.1 Algorithm

DK-NTM, developed by Imada et al [69, 70, 41] is a Fortran-based simulation code developed

to iteratively solve the drift-kinetic equation and obtain a quasineutral, momentum-conserved

plasma response to a magnetic island. It has previously been used to identify the physics of

”drift island” structures exhibited by the ion response, and to determine the bootstrap current

drive to island growth[69, 70]. Originally, DK-NTM was envisaged to be used for this thesis,

building on the original published results; however, computational issues were identified. After

these were resolved, further issues arose that prevented a stable result from being obtained when

performing the usual iterative calculation [72]. As outlined in Sec.3.1.1, the stages of calculation
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are complex, with multiple operations performed in each stage. The DK-NTM code reflected this

process in its structure, consisting of large procedures and modules. However, DK-NTM lacked

testing capabilities, and the complexity of these procedures made it challenging to isolate regions

for debugging or testing. Verifying the code through its full-size result was also not viable due to

the long duration of a simulation, thus a new approach was needed. This led to the redevelopment

of DK-NTM as a new code named ”kokuchou” [72], restructuring the old code into smaller, reusable

modules and employing a test-driven development approach to validate them. This allowed any

issues that emerged during development to be resolved quickly, and to ensure the stability and

correctness of existing code as new modules were added. This thesis describes the development,

testing and usage of kokuchou, which has been my responsibility since 2020.

This section outlines the design of the code itself, including specific stages and their challenges.

Throughout this section, vector quantities are denoted in bold (e.g. g,β) while square matrices

are denoted in bold font with an underline (e.g. M,α), and subscript i for ion quantities is

omitted for simplicity.

3.1.1 Stages of calculation

The numerical scheme followed in the kokuchou simulation code broadly follows that of DK-NTM,

as outlined in the appendix of Ref. [70]. A flowchart illustrating the calculation steps is shown

in Fig.3.1.

Eq.(2.3.47) is the equation kokuchou is designed to solve. It is a 3D integro-differential

equation in {ξ, p, y} where the normalised particle speed u and magnetic field-parallel velocity

sign σ are parameters. The simulation domain used for this equation consists of two spatial

{ξ, p} and two velocity {y, u;σ} coordinates. The radial variable p couples space and velocity,

via Eq.(2.3.44). To keep space and velocity separate, the three spatial coordinates {θ, x, ξ} are also

required. These describe terms of the equation that vary along ion orbits, including Φ̂, ˆ̄U∥,i and

orbit-averages in θ at fixed x. For a given speed u, the equation is solved across {ξ, p, y} applying

boundary conditions in each dimension (see Sec.2.3.6) for the three ion populations, whose ranges

in y and σ differ. These are the passing (y < 1, σ = +1), anti-passing (y < 1, σ = −1), and

trapped ions (y > 1, σ = ±1)1. Given that Eq.(2.3.47) has different forms for passing and trapped

particles, this requires an internal boundary condition to match the solution for ĝ in y-space at

y = yc ≡ 1, the trapped-passing boundary. We seek to solve close to this boundary, due to its

1Trapped ions alternate between field-parallel (σ = +1) and anti-parallel (σ = −1) motion in their banana
orbits. When the orbit-average is taken, i.e. the θ-average at fixed p, any even-σn quantities will average to zero
and odd-σn quantities average to σ2 ≡ +1
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Figure 3.1: Stages of calculation of the perturbed ion distribution function ĝ from the kokuchou
NTM simulation code.
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importance in determining the polarisation current. However, Eq.(2.3.47) cannot be explicitly

evaluated there due to certain terms exhibiting divergent behaviour at y = 1, specifically those

with factor (1−yb(θ))−1/2 including 1/v∥. Physically, this means that
∂2ĝ

∂y2
becomes very large and

therefore collisions cannot be treated perturbatively there, as only small scatterings are needed

for particles to cross the boundary. Hence, the matching conditions given in Sec.2.3.6 are used

to couple the three ion populations across this discontinuity, and through fitting, approximate a

value for ĝ there that restores continuity.

To propagate the outer-y boundary conditions to the trapped-passing boundary for each

population, a shooting method is used. Starting from the y-limits and discretising in {ξ, p, y},

a 2D matrix form of the drift-kinetic equation in {ξ, p}-space is constructed at each y point

incrementally towards y = yc, using a linear recurrence relation to couple the neighbouring y-

points (see Sec.3.1.3). The result is a series of large, dense square matrices αl and vectors βl,

one for each point in y (index l), that are used to calculate a vector form of ĝ, denoted gl, at a

given y-point from the neighbouring point using the aforementioned linear recurrence relation.

There is a set of αl, βl for the three ion populations at a given u that are obtained separately.

These matrices and vectors are large, and of rank nξnp ∼ O(103), which imposes computational

limitations on the implementation of the algorithm (see Sec.3.1.6). Here nξ and np are the number

of the ξ- and p-mesh points in the spatial discretisation.

The first value of y where gl is solved is at the trapped passing boundary y = yc, using

quadratic fits through three points either side of (and including) y = yc for each ion population.

Applying the matching conditions, the equation for g(y = yc) is introduced later in Sec.3.1.4.

From the result for g(y = yc), the linear recurrence relations gl = αl · gl+1 + βl for passing

ions and gl = αl · gl−1 + βl for trapped ions are used to solve for gl at each y-index l, back

towards the y-limits - noting this is in the opposite direction in y to how α and β are obtained

in the respective regions. The vectorised form g is then stored in the main array for ĝ and the

full numerical calculation is repeated for each point in speed u. Once the full range of ĝ in u is

found, ĝ is remapped from {ξ, p} to {θ, x, ξ} space, from which the electrostatic potential Φ̂ and

ˆ̄U∥,i(ĝ) are calculated from Eq.(2.4.14) and (2.3.49) respectively. For Φ̂, the density contribution is

derived from the perturbed ion distribution ĝ and combined with an analytically-derived electron

density. The calculation of ĝ(Φ̂, ˆ̄U∥,i), followed by the updating of Φ̂ and ˆ̄U∥,i(ĝ) constitutes one

iteration of the model, where on the I-th iteration, ĝ(I) is calculated from Φ̂(I − 1), ˆ̄U∥(I − 1)

and so on toward convergence.

At the start of the first iteration, the initial values of the electrostatic potential Φ̂ and
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momentum-conserving ion flow term ˆ̄U∥,i are set. For Φ̂, an initial value of 0 is used2, while

the initial ˆ̄U∥,i is set to ˆ̄U∥,i(pF
′
M,s) (derived later in Eq.(4.1.9)), both conditions representing

an ’unperturbed’ toroidally-symmetric Maxwellian ion distribution. Over successive iterations,

these three quantities should each converge toward a state indicating self-consistency, satisfy-

ing quasineutrality and momentum conservation respectively from Φ̂ and ˆ̄U∥(ĝ). The criterion

for convergence and the challenges of achieving this are discussed in 3.1.5. Finally, from the

converged result, the layer currents and the island growth parameters can be found using the

equations described in 2.4.

The full process constitutes one run of the model, which gives a single value of ∆loc(w) that,

via the modified Rutherford equation Eq.(2.5.13), provides the contribution to the island growth

rate dw/dt from the resistive layer for a given input island width w. To determine the threshold

width wc where ∆loc(w = wc) = 0, runs are conducted for a range of island widths w to obtain

a fit curve from which wc is estimated. Varying a secondary parameter, such as ion poloidal

gyroradius ρθ,i, provides an estimate of the dependence of wc on that parameter. This provides

the basis for the threshold-width investigation that is discussed in Sec.3.2.

2A model form for the initial Φ̂ when ωE is finite is programmed into the code, but is unused since ωE = 0 is
used throughout this work.
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The remainder of this section covers the specific stages of the algorithm in more detail.

3.1.2 Stage (2): Simulation domain and meshes

The spatial coordinates of the algorithm and their units (see Sec.2.3.5) include helical angle

ξ [radian], poloidal angle θ [radian], radial coordinate x [rs] representing deviation from the

island-forming rational flux surface ψ = ψs, and normalised canonical toroidal momentum p [RBθrs],

that is used in place of θ and x when calculating ĝ. A further dimensionless coordinate Ω

(Eq.(2.1.8)) is also used when evaluating quantities that are flux surface functions. Velocity

coordinates include normalised pitch angle y [B−1
0,max] and velocity u [vth,i].

The angles θ and ξ are treated as uniformly-spaced meshes, as the phenomena of interest

span the full range the values of these coordinates. For a single-helicity n = 1 island, both

range from {−π,+π} radians. The spatial meshes x and p are structured into three regions, as

shown in Fig.3.2. These contain a central uniformly-spaced ’high-resolution’ region containing

the magnetic island, bounded either side by two nonuniformly-spaced regions where the mesh

spacing increases exponentially further from the island. At the outer limits in p far from the

island (generally 2-3 island widths from the inner region boundary), the ∂ĝ/∂p = 0 bound-

ary condition is applied. Both x and p are symmetric about 0. Recall in Sec.1.5 that within

DK-NTM and in a separate code RDK-NTM, it was seen that the ion distribution follows drift is-

land structures that are radially shifted from the magnetic island. The size of this radial shift

is ρshift = ρ̂θ,iω̂D(y, u;σ)L̂
−1
q Θ(yc − y), where ω̂D is the normalised drift frequency given by

Eq.(2.3.48) and L̂−1
q is the normalised inverse magnetic shear length scale, and corresponds to

the ω̂D coefficient of
∂ĝ

∂ξ
in Eq.(2.3.47). The maximum value of ρshift then determines the extent

of the inner (fine mesh) regions of x and p.

Figure 3.2: Sketch of the p-mesh, showing the magnetic island (green, solid) centred at p = 0
when u = 0, and the ’most radially-shifted’ drift islands in ĝ for passing (blue, dotted) and
anti-passing (red, dashed) ions when u = max(u). Yellow arrows illustrate the relative spacings
of mesh coordinates. The inner solid grey lines indicate the boundaries of the central uniformly-
spaced region in p.
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This scheme ensures the steep gradients of the drift islands in ĝ are resolved sufficiently without

over-resolving the slowly-varying region far from the island. The values of the region boundaries

for x and p are designed to map onto one another through the relation: p = x+ ρ̂θ,iv∥(max(u))Θy.

This means the ’most shifted’ drift island will always lie entirely within the inner regions of the

x and p meshes.

The pitch-angle mesh y has a more complex structure, having a similar uniformly spaced

’high-resolution’ region centred about y = 1 where the dissipation layer physics and trapped-

passing matching need to be resolved accurately. Outside this region, non-uniform meshes with

points concentrated at the mesh limits y = 0 and max(y) = 1/b are used, to apply the
∂2ĝ

∂y2

boundary conditions carefully.

The speed mesh u ranges from {0.1, 3.0}vth,i. Here, we note that because ion-ion collision

frequency ν̂ii(u) diverges at u → 0, the equation cannot be evaluated accurately at very low

velocities. At the same time, the maximum speed max(u) = 3vth,i is chosen as the domi-

nant contribution of ĝ to Φ̂ and ˆ̄U∥,i comes from within this range, due to the influence of

the Maxwellian. Noting that the density and flow depend on the integrals of u2ĝ and u3ĝ, the u-

mesh has most of its points in the region {1.0, 3.0}vth,i, and is uniformly spaced over this range.

Between {0.1, 1.0}vth,i, points are concentrated nearer to u = 1vth,i. Lastly, the Ω(x, ξ)-mesh

(Eq.(2.3.41)), which describes perturbed flux surface functions such as h(Ω) and the bootstrap

current (from ⟨J∥⟩Ω), contains many points concentrated near Ω = 1, the magnetic island sepa-

ratrix, where the fastest variations occur. It ranges from Ω = {0,Ωmax}, where 0 is the island

O-point and Ωmax = 2
(
xmax
ŵ

)2
+1 corresponds with the furthest extent of the x-mesh at ξ = ±π.

Integration and interpolation

For computational speed and ease of implementation, numerical integral quantities are estimated

by a simple 1D composite trapezium rule for each dimension. Here, for a general mesh X, the

definite integral between two points given by indices i1 and i2 is approximated by:

∫ Xi2

Xi1

dX f(X) ≈ 1

2

(
i2−1∑
i=i1

h(Xi+1) [f(Xi) + f(Xi+1)]

)
, h(Xi) = Xi −Xi−1. (3.1.1)

Integral quantities include the orbit-average at fixed x and p (2.3.26), the velocity average op-

erator (2.2.20) applied to the collision frequency ⟨ν̂ii⟩v in Eq.(2.3.47), and the velocity volume

integral over {y, σ, v} (2.2.16). Multidimensional integrals like Eq.(2.2.16) are nested trapezium

rule procedures. Numerical integration was tested, and used within tests in kokuchou. For ex-
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ample, a numerically-derived velocity average of ⟨ν̂ii⟩v was tested against an analytic formula

derived later in 4.1.6 using 100 u-points to within 1% relative error. The more accurate analytic

form was used in kokuchou as the term is difficult to evaluate numerically at low u, where it is

divergent.

In cases where a numerical integral cannot be evaluated in full, such as the θ−average of〈
1√

1−yb(θ)

〉ψ
θ

which in the trapped region (y > 1) has a divergent integrand near θ → θb, the

numerical integral is calculated up to a point near the asymptote (generally one mesh spacing

away), and an analytically-derived correction term is added to account for the missing part

between this θ-mesh point and θb. Here, the correction for

〈
1√

1−yb(θ)

〉ψ
θ

is obtained from a

Taylor expansion in small y/b. Where an analytic expression cannot be derived (e.g. if the

function to be evaluated is unknown), a quadratic extrapolation of the integrand is used instead.

An example of this is the velocity volume integral of the ion flow u∥,i(ĝ) that is divergent as

y → b−1 (see Appendix Sec.8.4).

Interpolation of functions over a mesh X is performed by 1D linear interpolation using the

two nearest known X-mesh points (index i) either side of a non-point X, given by Xi and Xi+1,

and the value of f(X) at those points:

f(X) ≈ f(Xi+1)(X −Xi)− f(Xi)(X −Xi+1)

Xi+1 −Xi
, Xi < X < Xi+1. (3.1.2)

Interpolation is used in various procedures, including the remapping between mesh coordinates,

such as ĝ(ξ, p)→ ĝ(x, ξ, θ), and h(Ω)→ h(x, ξ).

Both integration and interpolation methods, while fast to compute, require a fine mesh res-

olution at areas of highly-varying, localised gradients. Another potential drawback of the linear

interpolation method is that the first and second derivatives of the interpolated function are

inherently discontinuous, which can generate numerical instability if the mesh resolution is in-

sufficient at regions of rapidly-varying gradients, such as the drift island separatrix in the case

of kokuchou. More accurate numerical methods, such as Gaussian quadrature integration and

spline interpolation, have been considered as alternatives to the methods used. These would be

of interest to explore in future work.

Finite difference approximation

Derivatives of a function f are approximated using the 2nd-order accurate central finite difference

method that couples a mesh point with its two neighbours. For a general monotonically-increasing
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mesh X of size n, at an index i where the mesh spacing hi = Xi − Xi−1, the individual terms

of the m-th derivative finite difference approximation of f(Xi) are represented by terms of ∆±
mx

(not to be confused with the expansion parameter ∆ = w/rs or island growth parameter ∆loc).

The 1st derivative is approximated by:

∂f(Xi)

∂X
= ∆−

1X(i)f(Xi−1) + ∆0
1X(i)f(Xi) + ∆+

1X(i)f(Xi+1) (3.1.3)

=
−hi+1

hi(hi+1 + hi)
f(Xi−1) +

hi+1 − hi
hi+1hi

f(Xi) +
hi

hi+1(hi+1 + hi)
f(Xi+1) (3.1.4)

The 2nd derivative is approximated by:

∂2f(Xi)

∂X2
= ∆−

2X(i)f(Xi−1) + ∆0
2X(i)f(Xi) + ∆+

2X(i)f(Xi+1) (3.1.5)

=
2

hi(hi+1 + hi)
f(Xi−1)−

2

hi+1hi
f(Xi) +

2

hi+1(hi+1 + hi)
f(Xi+1) (3.1.6)

This method is used to discretise the full NTM equation, Eq.(2.3.47), in the form of matrices. At

the p-mesh limits (p = pmin ≡ pj=1), the Dirichlet boundary condition
∂ĝ

∂p
= 0 is applied:

∆+
1p1ĝ2 +∆0

1p1ĝ1 +∆−
1p1ĝ0 = 0,

where ĝ0 corresponds to the value of the solution at a ”ghost” mesh point just beyond the mesh

boundary, if it were to exist. Solving for g0:

ĝ0 =
(h22 − h21)

h22
ĝ1 +

h21
h22

ĝ2,

and substituting gives the following relation for ĝ0 at pj=1:

∂2ĝ

∂p2

∣∣∣∣
j=1

=
2

h22
(ĝ2 − ĝ1), ∆0

2p1 = −
2

h22
, ∆+

2p1 = +
2

h22
. (3.1.7)

Likewise, at p = pmax ≡ pj=np ,

∆+
1pnp

ĝnp+1 +∆0
1pnp

ĝnp
+∆−

1pnp
ĝnp−1 = 0,

⇒ ĝnp+1 = −
(hnp+1 − hnp)

h2np

ĝnp
+
h2np+1

h2np

ĝnp−1.
(3.1.8)
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∂2ĝ

∂p2

∣∣∣∣
j=np

= − 2

h2np

(ĝnp
− ĝnp−1), ∆0

2pnp
= − 2

hn2
p

, ∆−
2pnp

= +
2

hn2
p

. (3.1.9)

For the ξ-mesh edges, the periodic condition (2.3.50) applies, hence k = 1 ≡ nξ:

∂ĝ

∂ξ

∣∣∣∣
k=nξ

=
∂ĝ

∂ξ

∣∣∣∣
k=1

=
ĝk=2 − ĝnξ−1

2hξ
. (3.1.10)

Cross-derivatives, such as the
∂2ĝ

∂p∂y

∣∣∣∣
y

term, are represented by a product:

∂2ĝ

∂p∂y
= ∆+

1yl

∂ĝl+1

∂p

∣∣∣∣
j

+∆0
1yl

∂ĝl
∂p

∣∣∣∣
j

+∆−
1yl

∂ĝl−1

∂p

∣∣∣∣
j

→ ∂2ĝ

∂p∂y
= ∆+

1yl

(
∆+

1pj ĝj+1,l+1 +∆0
1pj ĝj,l+1 +∆−

1pj ĝj−1,l+1

)
+∆0

1yl

(
∆+

1pj ĝj+1,l +∆0
1pj ĝj,l +∆−

1pj ĝj−1,l

)
(3.1.11)

+ ∆−
1yl

(
∆+

1pj ĝj+1,l−1 +∆0
1pj ĝj,l−1 +∆−

1pj ĝj−1,l−1

)
.

At p-mesh limits, the boundary condition (2.3.51) applies, so
∂2ĝ

∂p∂y
= 0. At y-mesh limits, the

coefficient of
∂2ĝ

∂y2
disappears, effectively resulting in

∂ĝ

∂y
becoming constant there. Special forms

for the matrix representation of
∂ĝ

∂y
at the y-limits are derived using quadratic fitting, which are

derived later in Sec.3.1.3 after discretising the ion drift-kinetic equation.

3.1.3 Stages (4) and (6): Matrix equation

We now describe stage (4) of the calculation in Fig.3.1 in further detail. At speed u, for a given

ion population, ĝ is represented by a solution vector3, gl(p, ξ), at each y-grid point. The indices of

p, ξ, y are denoted by j{1, np}, k{1, nξ} and l{1, ny} respectively, where np, nξ and ny are the total

number of points in each mesh. The matrix equation is constructed using 2D square matrices of

rank nξnp × nξnp, which couple (p, ξ, y)-points and represent the derivatives of gl.

3In practice, gl(p, ξ) is a flattened 1D array of rank nξnp.

71



Sec. 3.1: Algorithm Ch. 3: Methodology

Converting to matrix form

The matrix form of Eq.(2.3.47) is as follows. For the convenience of avoiding 1/u in the limit

u→ 0, we begin by multiplying Eq.(2.3.47) by −u/ν̂ii:

mu

ν̂ii

[
p

L̂q
Θy +

ρ̂θ,i

L̂q
ω̂D −

ρ̂θ,i
2

〈
1

u∥

∂Φ̂

∂x

〉p
θ

]
∂ĝ

∂ξ

+
u

ν̂ii

[
−m

4

ŵ2

L̂q
sin ξ Θy +m

ρ̂θ,i
2

〈
1

u∥

∂Φ̂

∂ξ

〉p
θ

+ ν̂iiρ̂θ,iΘy

](
∂ĝ

∂p
+ F̂ ′

Ms

)
+

σu2

2(1 + ϵ)
ρ̂2θ,iy

〈
1√

1− yb

〉x
θ

∂2ĝ

∂p2
+ 2ρ̂θ,iyuΘy

∂2ĝ

∂y∂p
+ σ(1 + ϵ)

〈
(2− 3yb)√

1− yb

〉x
θ

∂ĝ

∂y

∣∣∣∣
p

+ 2σ(1 + ϵ)y
〈√

1− yb
〉x
θ

∂2ĝ

∂y2

∣∣∣∣
p

= −2u(1 + ϵ) ˆ̄U∥i(ĝ+ pF̂ ′
Ms)F̂Ms

(3.1.12)

Coefficients of ĝ, F̂Ms and F̂
′
Ms are represented by the following shorthands:

C1 =
mu

ν̂ii

p

L̂q
Θy, C2 =

mu

ν̂ii

ρ̂θ,i

L̂q
ω̂D,

C3 = −mu
ν̂ii

ρ̂θ,i
2

〈
1

u∥

∂Φ̂

∂x

〉p
θ

, C4 = −mu
4ν̂ii

ŵ2

L̂q
sin ξ Θy,

C5 =
mu

ν̂ii

ρ̂θ,i
2

〈
1

u∥

∂Φ̂

∂ξ

〉p
θ

, C6 = ρ̂θ,iuΘy

C7 =
σu2

2(1 + ϵ)
ρ̂2θ,iy

〈
1√

1− yb

〉x
θ

, C8 = 2ρ̂θ,iyuΘy,

C9 = (1 + ϵ)σ

〈
(2− 3yb)√

1− yb

〉x
θ

, C10 = 2(1 + ϵ)σy
〈√

1− yb
〉x
θ
,

CU = −2u(1 + ϵ) ˆ̄U∥(ĝ+ pF̂ ′
Ms).

(3.1.13)

Within this implementation of the algorithm, the finite difference discretisation of Eq.(3.1.12) in

y-space is described by the following matrix-vector equation, which couples gl(p, ξ) vectors at

neighbouring y-points:

Pl · gl+1 +Q
l
· gl +Rl · gl−1 + Ll · gl = Dl. (3.1.14)

Here, P, Q, and R are sparse triband square matrices of rank nξnp, whose elements are de-

noted by column q and row r4 contain the coefficients of
∂ĝ

∂y
,
∂2ĝ

∂y2
and

∂2ĝ

∂p∂y
, multiplied by the

4Here, q, r = {1, nξnp}, and for a given ξ-index j and p-index k, the conversion between ξ, p and q/r indices is
given by (j − 1)nξ + k
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corresponding ∆
−/0/+
l central difference term in y (see Eq.(3.1.3),(3.1.5)):

Pq(j,k)r(j,k) = C8
q(j,k)∆

+
1yl∆

0
1pj + C9

q(j,k)∆
+
1yl + C10

q(j,k)∆
+
2yl

Pq(j,k)r(j±1,k) = C8
q(j,k)∆

+
1yl∆

±
1pj

(3.1.15)

Q
q(j,k)r(j,k)

= C8
q(j,k)∆

0
1yl∆

0
1pj + C9

q(j,k)∆
0
1yl + C10

q(j,k)∆
0
2yl

Q
q(j,k)r(j±1,k)

= C8
q(j,k)∆

0
1yl∆

±
1pj

(3.1.16)

Rq(j,k)r(j,k) = C8
q(j,k)∆

−
1yl∆

0
1pj + C9

q(j,k)∆
−
1yl + C10

q(j,k)∆
−
2yl

Rq(j,k)r(j±1,k) = C8
q(j,k)∆

−
1yl∆

±
1pj

(3.1.17)

The general banded matrix Ll describes the ξ and p derivatives:

L
(ξ)
q(j,k)r(j,k±1) =

(
C1
q(j,k) + C2

q(j,k) + C3
q(j,k)

)
∆±

1ξk, (3.1.18)

where the periodic condition (2.3.50) replaces k = nξ + 1 with k = 2, and k = 0 with k = nξ − 1

(such that k = 1 is the same ξ-point as k = nξ). Next, the p-differential terms:

L
(p)
q(j,k)r(j,k) =

(
C4
q(j,k) + C5

q(j,k) + C6
q(j,k)

)
∆0

1pj + C7
q(j,k)∆

0
2pj

L
(p)
q(j,k)r(j±1,k) =

(
C4
q(j,k) + C5

q(j,k) + C6
q(j,k)

)
∆±

1pj + C7
q(j,k)∆

±
2pj

(3.1.19)

where the differential coefficients ∆
(...)
2pj take into account the boundary conditions, using the forms

given by Eq.(3.1.7) and Eq.(3.1.9). Lastly, Dl is a vector (rank nξnp) containing coefficients of

F̂M and F̂ ′
M:

Dq(j,k) = CUq(j,k)F̂Ms − (C4
q(j,k) + C5

q(j,k) + C6
q(j,k))F̂

′
Ms. (3.1.20)

Recurrence relation

In Fig.3.1, stage (4) of the calculation involves a shooting method that propagates the boundary

condition at the y-limits toward the trapped-passing boundary. For passing particles, the linear

recurrence relation that couples the y-point at index l− 1, with the point l towards the trapped-

passing boundary is given by:

gpl = αp
l · g

p
l+1 + βpl , (3.1.21)

⇒ gpl−1 = αp
l−1 · g

p
l + βpl−1. (3.1.22)
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Here, α is a dense square matrix of rank nξnp×nξnp, and β is a vector of equal rank, both of which

operate on gl at a y-point of index l to give gl−1 at the next point towards the deeply passing

end. Following 8.5.2, this relation can be rewritten in terms of the matrices given in Sec.3.1.3.

αp
l = −(M

p
l )

−1 ·Pp
l , βpl = (Mp

l )
−1 ·

(
Dp
l −Rp

l · β
p
l−1

)
, Mp

l = Qp
l
+ Lpl +Rp

l ·α
p
l−1

(3.1.23)

Here, M is a matrix of equal rank to α but is a common term of both α and β, and is calculated

first. Similarly, for trapped particles, this relation is in the opposite direction in y:

⇒ gtl+1 = αt
l+1 · gtl + βtl+1. (3.1.24)

which gives:

αt
l = −(Mt

l)
−1 ·Rp

l , βtl = (Mt
l)
−1 ·

(
Dt
l −Pt

l · βtl+1

)
, Mt

l = Qt
l
+ Ltl +Pt

l ·αt
l+1 (3.1.25)

Solving at the deeply passing and trapped ends

Special forms of α and β are defined at the y-limits to apply the outer boundary conditions

there. Here, quadratic fitting is performed:

g
t/p
l = ay2l + byl + c ,

∂gt/p

∂y

∣∣∣∣∣
yl

= 2ayl + b, (3.1.26)

where coefficients a and b are to be determined separately for the deeply passing and trapped

ends, respectively (finding c is not required).

At the deeply passing end, by fitting Eq.(3.1.26) across l = 1, 2 and 3:

gp1 = ay21 + by1 + c ,

gp2 = ay22 + by2 + c ,

gp3 = ay23 + by3 + c ,

(3.1.27)

then (following Sec.8.5.2), it can be shown that, equating for c:

∴ a =
(y2 − y3)gp1 − (y1 − y3)gp2 + (y1 − y2)gp3

(y1 − y2)(y2 − y3)(y1 − y3)
, b =

(gp1 − gp2)

(y1 − y2)
− (y1 + y2)a. (3.1.28)
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Using the expression in Eq.(3.1.26) for
∂g

∂y
, another relation for a and b is obtained:

∂gp

∂y

∣∣∣∣
y1

= 2ay1 + b =
(y1 − y2) + (y1 − y3)
(y1 − y2)(y1 − y3)

gp1 −
(y1 − y3)

(y1 − y2)(y2 − y3)
gp2 +

(y1 − y2)
(y2 − y3)(y1 − y3)

gp3.

(3.1.29)

Rewriting the matrix equation (3.1.14) for l = 1 (y = 0):

P1 · g3 +Q
1
· g2 +R1 · g1 + L1 · g1 = D1, (3.1.30)

then solving for g1, the results for α1 and β1 (both containing matrix M1) are:

α1 = M−1
1 ·

(
P2 ·P−1

1 ·Q1
−Q

2
− L2

)
,

β1 = M−1
1 ·

(
D2 −P2 ·P−1

1 ·D1

)
,

M1 = R2 −P2 ·P−1
1 · (R1 + L1)

(3.1.31)

Full derivations of the above are given in the Appendix, Sec.8.5.2. Similarly, at the deeply trapped

end, quadratic fitting is performed at indices l = n − 2, n − 1 and n (where n = ny). Following

the same process as with the passing end, the results for αn and βn in the deeply trapped end

are:

αn = M−1
n ·

(
Rn−1 ·R−1

n ·Qn
−Q

n−1
− Ln−1

)
,

βn = M−1
n ·

(
Dn−1 −Rn−1 ·R−1

n ·Dn

)
,

Mn = Pn−1 −Rn−1 ·R−1
n · (Pn + Ln)

(3.1.32)

Full derivations for the above are also given in the Appendix, Sec.8.5.2. After the deeply passing

and trapped forms of α and β are calculated, the recurrence relations are used to find them for

all other y-points up to but excluding the trapped-passing boundary.
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3.1.4 Stage (5): Solving at the trapped-passing boundary

To apply the matching conditions given by Eqs.(2.3.52-2.3.54):

∑
σ

σĝσp = 0 ,
∑
σ

ĝσp = 2ĝt ,
∑
σ

∂ĝσp
∂y

= 2
∂ĝt
∂y

,

the matrix equation needs to be known at the nearby points to the trapped passing boundary

y = yc ≡ 1. As illustrated in Fig.3.3, we define these near-passing/trapped points in order of

ascending y as: ypp, yp, yt and ytt:

(a) Matching of ĝ via Eq.(2.3.53). (b) Matching of
∂ĝ

∂y
via Eq.(2.3.54).

Figure 3.3: Sketch of the perturbed ion distribution profile ĝ(y) and
∂ĝ

∂y
at the trapped-passing

boundary, showing anti-passing (red, dashed), passing (blue, dotted) and trapped (orange, solid)
ions. The σ-average of passing ions is shown in (b) (green, dash-dot). Mesh points in y are shown
by crosses. ycp and yct are fictitious points infinitesimally close to y = yc. Not to scale.

To fit across the discontinuity in 3.1.12 across y = yc, we can consider a fictitious ’marginally

passing’ point ĝ±cp = ĝc−ϵ and ’marginally trapped’ ĝct = ĝc+ϵ. The first two matching conditions

imply that:

lim
ϵ→0

ĝ+cp = ĝ−cp, ĝ+cp + ĝ−cp = 2ĝct ≡ 2ĝc,

so that in the limit of ϵ≪ 1, ĝc has to be equal in value for all three ion populations, and hence

it is valid to substitute yc for ycp and yct in our fitting. Quadratic fitting is performed either side

of the discontinuity, using y-mesh points ypp, yp, yc for the passing region and yc, yt and ytt for
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the trapped region. This provides a set of three equations for each region:

g±
pp = a±y2pp + b±ypp + c gtt = aty2tt + btytt + c

g±
p = a±y2p + b±yp + c gt = aty2t + btyt + c

g±
c = a±y2c + b±yc + c gc = aty2c + btyc + c

Here, superscript ± indicates passing/anti-passing particles and t for trapped particles. Solving

for a±/t and b±/t separately for the passing, anti-passing and trapped distributions, then in-

serting the matrix equation Eq.(3.1.14) for each y-point, after a lengthy derivation (given in full

within Sec.8.5.2) we obtain a simple linear equation for gc:

A · gc = B (3.1.33)

A = 2∆cpI+ (∆pI+∆ppα
+
pp) ·α+

p + (∆pI+∆ppα
−
pp) ·α−

p

− 2∆ctI− 2(∆tI+∆ttαtt) ·αt

B = −(∆pI+∆ppα
+
pp) · β+

p − (∆pI+∆ppα
−
pp) · β−

p −∆pp(β
+
pp + β−

pp)

+ 2(∆tI+∆ttαtt) · βt + 2∆ttβtt

Here, I is the identity matrix, and:

∆cp =
hp + hcp
hphcp

, ∆ct = −
ht + hct
hthct

,

∆p = −
hcp
hphpp

, ∆t =
hct
hthtt

,

∆pp =
hp

hpphcp
, ∆tt = −

ht
htthct

and the mesh spacings of those y-points are:

hcp = yc − ypp = hp + hpp hct = ytt − yc ≡ htt + ht

hp = yc − yp ht = yt − yc

hpp = yp − ypp htt = ytt − yt

The solution of Eq.(3.1.4) is the first value of ĝ calculated from the drift-kinetic ion equation,

which is then solved elsewhere using the aforementioned linear recurrence relations.
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3.1.5 Stage (9): Iterative convergence

The terms ĝ, Φ̂ and ˆ̄U∥,i are iteratively recalculated, starting from initial guesses Φ̂ = 0 and

ˆ̄U∥,i = ˆ̄U∥,i(pF̂
′
Ms). Provided these guesses are valid and the scheme is numerically stable, all

three should converge towards values that are self-consistent. However this approach poses several

questions: i) whether convergence will occur at all, ii) whether the converged state itself is valid,

iii) how many iterations are required to reach convergence, iv) what degree of convergence is

acceptable, and v) whether it is numerically stable (i.e. the ‘converged’ state does not then

diverge on successive iterations). While there is no guarantee that i) and ii) will be fulfilled, we

can use a higher mesh resolution to improve the accuracy of the numerical methods, though there

are challenges of doing so as discussed later in Sec.3.1.6.

Regarding points iii)-v), the number of iterations that can be performed, as is the size of

the simulation domain, is also subject to computational resource limitations. However, if the

simulation is allowed to run unabated, there is also the possibility for even a slowly-changing

result to suddenly diverge due to an initially small numerical instability, an issue previously

observed in the DK-NTM code [72]. Therefore, the run needs to be stopped when some convergence

criterion is satisfied, where the relative change in ĝ, Φ̂ and ˆ̄U∥,i between iterations, the ”residual”

is acceptably small. As DK-NTM did not have a strict definition of a converged solution (the

final result over several iterations was assumed ”converged”), a new method for tracking of the

residuals was implemented into kokuchou. In kokuchou, the iterative residual R of a general

quantity X at iteration I is based on a relative difference from the previous iteration I − 1:

R(XI) =
|XI −XI−1|
|XI |+ |XI−1|

where xI can represent a single iterated quantity, e.g. ∆loc, or a point of an array. The form of

Eq.(3.1.5) ensures there is no zero denominator unless both xI and xI−1 are zero; this special case

is handled by taking R(xI) ≈ 0/0 to be 0. A similar convergence metric is used in the RDK-NTM

code of Refs. [41, 43], whose formula varies slightly, R(xI) = |xI − xn−1|/|xI | [78]. For 3D arrays

Φ̂ and ˆ̄U∥,i, R(xI) is calculated at all (θ, x, ξ) at each iteration. Note that on the first iteration

1, x0 = 0 and hence R(x1) ≡ 1 if Φ̂ or ˆ̄U∥,i are initially zero.

A simple convergence criterion was implemented within kokuchou by which the code stops

iterating when the array-averaged5 residual R̄(Φ̂) and R̄( ˆ̄U∥,i) are both below a user-defined

tolerance value, which is checked at the end of each ’iteration’ as shown in Fig.3.1. Noting

5Array average as in sum/number of points.
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that the ion drift-kinetic equation(2.3.47) itself is accurate to O(ϵ3/2), where typically ϵ = 0.1

is used [69, 70, 41], then a ϵ1 ≈ 10% relative error can be used as the tolerance value for both

residuals. However, the array average will hide individual points where R is large, so a more

representative method for tracking the convergence state will be needed in future work.

3.1.6 Challenges and limitations

The iterative calculation of the ion response from the 4D drift-kinetic equation outlined in Sec.3.1

is computationally and numerically challenging. While the three spatial dimensions {ξ, θ, x} were

conveniently reduced to a 2D {ξ, p} system in Sec.2.3.2, the code requires a high-resolution

simulation mesh geometry to accurately resolve key physical details around the island. A further

challenge is that the calculation must be iterated over for a self-consistent result. Together these

set requirements for the simulation code, which are discussed here.

Boundary layers

Recall from Sec.1.5 that two narrow boundary layers are considered within Refs. [69, 70] and [50]:

i) the dissipation layer in pitch-angle λ surrounding the trapped-passing boundary at y = yc ≡ 1,

and ii) the separatrix layer in {p, ξ} phase-space surrounding specifically the drift island separa-

trix, of width O(ρθ,i). The dissipation layer arises where there is a discontinuity in Eq.(2.3.47),

due to the differing orbit-average processes for passing and trapped ions. For these distributions

to be matched at the trapped-passing boundary, the y-mesh should be sufficiently-resolved there.

A more significant challenge, however, is posed by the separatrix layer of the drift island.

High resolution in {ξ, p} is required around this separatrix layer to accurately determine the

polarisation current, a major contribution of which is localised to the vicinity of the magnetic

island [45, 50]. However, this layer is hard to capture for three reasons. Firstly, the {ξ, p}-mesh

itself is rectilinear, while the island is rounded in shape, which in practice means some regions

will be over- or under-resolved. Secondly, we emphasise that this layer surrounds the drift island

and not the magnetic island, which is the island-shaped contour the ion distribution exhibits in

response to the magnetic island. Drift islands, as discussed in [70, 41], are of identical shape to

the magnetic island (when Φ̂ = 0) but shifted radially from it by a factor ρθ,iω̂D, where ω̂D(y, σ, u)

is the normalised drift frequency defined by 2.3.48. The drift island’s location will vary with y

and u, and so the radial x− and p-meshes must accommodate all possible locations of a drift

island, discussed further in Sec.3.1.2. The current itself is obtained from the velocity-space volume

integral of the v∥-weighted ion distribution over {y, σ, v}, and so all drift islands over this space
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be resolved accurately. Thirdly, recall that in Sec.2.6, the
∂2ĝ

∂p2
coefficient was found to scale with

ρ̂2θ,i instead of ρ̂0θ,i as in Eq.(A.1) of Ref. [70], therefore the gradients around the separatrix are

expected to vary more steeply than previously observed in DK-NTM simulations in [70], meaning

that we may be limited to a smaller parameter space than in earlier work.

Limitation on problem size

The primary limiting factor of the calculation is the availability and usage of memory. The

shooting algorithm requires large arrays for α and β to be calculated and stored at every y-point

(and for two values in σ in the passing region) when solving for ĝ at a given value in u. By far

the largest arrays used are the α arrays, which contain n2ξn
2
p points at each y. An even larger

number of linear algebra operations are performed on these arrays. The maximum mesh size

is therefore subject to limits on available memory (and runtime on an HPC service), while the

minimum mesh size is determined by the width and steepness of the separatrix gradients relative

to the drift island for a given set of plasma parameters. For example, a lower collisionality ν⋆ (i.e.

a longer mean free path) will give steeper, narrower gradients at the separatrix, thereby requiring

more p and x points to solve accurately. Likewise, a wider island in radial coordinate x[rs],

which itself determines the dimensions of the meshes in x and p, will have a relatively narrower

separatrix gradient if its collisional mean-free path is unchanged, thereby requiring more points

to resolve. This results in a trade-off between the resolution of the simulation meshes and the

available memory and runtime, and limits the range of certain plasma parameters. Flexibility

can only be afforded when executing the code on an HPC platform. However, due to the nature

by which the mesh is designed - a rectilinear {ξ, p} grid for a round island shape - the accuracy

of the solution is not expected to scale well with increasing nξ and np. The reduced-dimension

RDK-NTM code of Refs. [41, 43] avoids this issue by converting p and ξ to a single streamline

dimension valid only in the limit of very low ν⋆. The contours of the streamline then follow

the drift island structure, allowing fewer points to be used overall when resolving the necessary

separatrix gradients. However, as this work concerns finite ν⋆ plasmas and the effect on radial

diffusion around the drift island, we avoid making this dimensional reduction and must continue

to work in {p, ξ} coordinates.

The mesh sizes used in this work are nξ = 30, np = 145, ny(passing) = 49, ny(trapped) = 40,

and nu = 24. The matrix rank N = nξnp = 4350, and there are 2(49) + 40 = 138 arrays of

αl (size N × N) and β (size N) to store when operating at each u-point. For double-precision
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(8-byte) values, storing all αl and β requires ∼ 16.6 GB of memory per u-point. Solving the

recurrence relation equations (3.1.23) and (3.1.25) at one y-point for α and M using the DGESV

BLAS/LAPACK procedure [79] requires 0.67N3 ≈ O(5.5× 1010) operations. A run of this scale

takes 0.4 hrs/u-point on the ARCHER2 supercomputer.

Based on the experience of using DK-NTM, a number of changes were made to reduce the

memory usage within kokuchou to allow ξ- and p-mesh resolution to be increased. In DK-NTM,

passing and anti-passing solution vectors were stored as one combined array with a σ-dimension as

well as a ξ, p-dimension. In kokuchou, this was split into two, allowing each to be solved/stored

separately and halving the memory overhead. The core solver (stages (4-6) of Fig.3.1) was

redesigned to operate and store α and β for one u-point at a time, rather than storing multiple.

In a given iteration, Φ̂ and ˆ̄U∥,i are updated in a single loop rather than in a nested loop (in DK-NTM,

the updating of ˆ̄U∥,i is nested within iterative calculations of Φ̂), to simplify the calculation and

the saving of outputs.
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3.2 Project overview

Recalling the project objectives, for Objective (1) we have conducted tests to verify the algo-

rithm that is now part of the simulation code kokuchou. New unit tests were developed to test

procedures within the code. These are packaged within the code’s repository and are tested when

modifications to the code are made. Results from selected unit tests will be presented in Ch.4.

Next, the final result from a full-scale simulation over several iterations needs to be verified.

This is the goal of Objective (2), and will be presented in Ch.5. To do so, we will conduct 4

”case study” runs of kokuchou for two values of island width w (≪ ρθ,i and > ρθ,i), and also at

two values of collisionality ν⋆. We will qualitatively observe the physical phenomena in the ion

response ĝ and its associated quantities to look for expected features. This has been attempted

in previous studies with the DK-NTM and RDK-NTM codes [69, 70, 41, 43]. However, we will also

attempt to quantitatively verify the result we obtain by deriving predictions for the ion response

far from the island, where an analytic result for 2.3.47 can be tractably obtained. Obtaining an

accurate numerical result that agrees with this analytic benchmark requires a computationally-

intensive calculation over the simulation domain. These challenges were discussed in 3.1.6.

Finally, after verifying by exploring a small number of runs in some detail, Objective (3) will

involve obtaining an updated result for the threshold width scaling factor with the trapped ion

banana orbit width ρb,i, to be obtained from a parameter scan of w and ρθ,i. Extending objective

(2), 5 values of plasma collisionality ν⋆ are included in this scan. Previous DK-NTM simulations

at ν⋆ = 0.01 in Ref. [70] predicted a scaling of wc ∼ 2.76ρθ,i which, for the operating value of

ϵ = 0.1, gives wc ∼ 8.72ρb,i. By comparison, the cross-machine experimental observations of

Ref. [34] correlate to a value of 0.955ρb,i (in Ref. [34], the full island width is used, and this result

is given as 1.91ρb,i). Following amendments to the derivation and the development of kokuchou,

we aim to provide an updated figure that is more closely aligned with the experimental result.

Furthermore, a novel parameter scan is conducted in ν⋆, in which we will examine its influence

over the threshold island physics. We will also identify the operating window of the kokuchou

code in w, ρθ,i and ν⋆ - whose numerical stability depends on how accurately the drift island

separatrix of the ion response is solved. Results from this parameter scan will be presented

in Ch.6

3.2.1 Resources

kokuchou was written in Fortran 2018 with MPI task parallelism, such that the computation of
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ĝ described in Sec.3.1 can be computed in parallel over speed u. A number of computational and

quality-of-life improvements were made, benefiting the speed and accessibility of gathering data,

and addressing some of the computational challenges experienced with DK-NTM.

Software

As with DK-NTM, kokuchou used the Fortran-native BLAS and LAPACK libraries [79] for high-

performance matrix algebra. New additions to kokuchou included a CMake-generated build

system for compatibility across software architectures and with third-party libraries. One such

library introduced was neasy-f [80], a wrapper for the reading and writing of data to compressed

netCDF4 (.nc) files, an industry-standard multidimensional data format. This replaced the pre-

vious raw ASCII data format used by DK-NTM, significantly reducing the size and number of data

files to one per run. The .nc format has support from various libraries, notably xarray for Python,

eliminating the need for dedicated codes to unpack and visualise the data. The reduction of file

size allowed for all iterations of certain parameters to be saved.

MPI-parallelised testing used pFUnit [81, 82], a JUnit-style unit test framework. Unit tests

in test-driven software development are designed to be short and readily executable over short

timescales (i.e., seconds), rather than over the long timescales of a full simulation. These were

used to perform value checks of short procedures throughout the program. A small number of

larger tests (of 10− 20s runtime) were added to check more compute-intensive procedures, such

as the velocity volume integral calculation of Eq.(2.2.16), which require a small-size 5D mesh to

perform the base-level calculation.

Hardware

Development and testing of kokuchou was performed on the York Plasma Institute in-house Linux

cluster and University of York Viking supercomputer. Full-scale simulations were conducted on

the ARCHER2 UK National Supercomputer service [83]. Accounting for the memory structure of

ARCHER2, the most efficient scheme for kokuchou used one run per node, parallelised over the

8 NUMA regions of that node, which each contain 16 physical cores. For the required resolution,

runs were conducted solving either for 4 or 8 u-points in parallel at a time, depending on the

memory required per u-point.
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Summary

A new numerical code, kokuchou, a novel successor to the DK-NTM code of Ref. [69, 70, 41],

was written to address computational issues in the original code, and obtain an updated result

from the drift-kinetic NTM equation corrected in this work. The code was used to solve for

the steady-state plasma response to a near-threshold size m/n = 2/1 magnetic island during

the onset of a neoclassical tearing mode instability in a high aspect ratio tokamak. The code

employs a shooting algorithm to construct a finite difference discretisation of Eq.(2.3.47) at each

y-point, solve the equation at the trapped-passing boundary from a set of matching conditions,

then use this result to solve at all other y from a linear recurrence relation. Limitations of the

numerical method were discussed, particularly the scalability of meshes when resolving the steep

gradients of the separatrix boundary, and the computational overhead in storing the large α and β

arrays. The hardware requirements for this calculation (often requiring O(100 GB) RAM in total)

impose limits on the parameter ranges that can be used, and hence considerations were made

when designing the simulation domain and the algorithm. In response to computational issues

encountered in DK-NTM, various modifications were made in kokuchou intended to improve the

stability and accuracy of the result, including changes to the mesh structure, shooting algorithm

and iteration procedure. New additions include a criterion for determining the converged state

of the simulation, and unit tests to verify the intermediate steps of the calculation.

The results of this verification process will be presented in the following chapters, based on

the project objectives. Unit tests will be discussed in Ch.4. Ch.5 will present results from four

full-size iterated simulations. In Ch.6, the parameter scan experiment conducted by DK-NTM in

Refs. [69, 70, 41] will be reattempted, with a new scan across collision frequency to identify both

physical changes to the island growth physics, and any limitations of the procedure itself.
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Chapter 4

Validation of the model

As part of Objective (1), this chapter covers the tests used to validate the methods used in the

newly developed kokuchou code. Sec.4.1 discusses specific tests for the perturbed flux surface

function h(Ω), the velocity volume integration for ion density and flow, and the collision frequency

ν̂ii. Sec.4.1.4 describes the testing of the shooting algorithm on a simple 1D boundary value

problem. Sec.4.2 discusses the implementation of the trapped-passing boundary calculation that

resolves a critical numerical issue encountered during development.

4.1 Example unit tests

4.1.1 Flux surface function h(Ω)

The function h(Ω) from Ref. [50], where Ω is the perturbed magnetic flux function defined

in Eq.(2.3.41), represents the analytic electron density that contributes to the electrostatic po-

tential Φ̂ (Eq.(2.4.14)), and its x-derivative is used in the analytic electron flow ue (Eq.(2.5.8)).

Recalling Eq.(2.4.8), h(Ω) requires numerically evaluating the integral for Q(Ω) for each value

in Ω. Unit tests for h(Ω) were implemented with the mesh parameters nx = 201, nξ = 30,

nΩ = 1000, similar to full-size runs but with a larger-than-usual x-mesh extent of ±30ŵ. Com-

pared to the full-size runs presented later in Ch.5, the ξ and Ω mesh are comparable while the

x-mesh is coarser, and so this test provides an estimate of the numerical error. Fig.4.1a shows the

result for h(Ω). Re-arranging Ω in Eq.(2.3.41) for x, the corresponding value in x(Ω) for ξ = 0 is

also shown in both plots.

Fig.4.1a shows the behaviour of h(Ω) near the island based on its definition in Ref. [50], where

the function is checked to be zero inside the island and at its separatrix (Ω ≤ 1) shown by the
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(a) Limited range close to island, shown in yellow.

0 500 1000 1500
 [no unit]

0.0

0.1

0.2

0.3

h( )
x( , = 0)

(b) As in Fig.4.1a, over full range in Ω.

Figure 4.1: h(Ω) profile with x as function of Ω(ξ = 0), from unit test "test calculate hOmega"

of test analytic.pf. Island half-width ŵ = 0.01rs.

yellow region. Expanding to the full range in Ω and x, Fig.4.1b shows that far from the island

h(Ω) assumes a shape similar to its asymptote at large x, given by x(Ω)[50].

The code performs a linear interpolation to remap h(Ω) to {x, ξ}-space for its use in Φ̂. Its

profile across the island O-point, h(x, ξ = 0), is plotted in Fig.4.2. Here, a similar check is

performed within x = ±ŵ to test if h(x, ξ = 0) is zero inside the island. The x-dependence of

h(x, ξ = 0) is seen to be linear, albeit shifted vertically in opposite directions either side of the

island due to the contribution of the ξ-integral in h(Ω). As before, h(x, ξ = 0) lies parallel to x

far from the island without approaching the function.

0.10 0.05 0.00 0.05 0.10
x [rs]

0.10

0.05
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0.05

0.10
x
h(x, )

Figure 4.2: Profile of h(x, ξ = 0) in
x from subroutine test calculate hOmega of
test analytic.pf in [77]. Island of half-width
ŵ = 0.01rs highlighted in yellow.

Lastly, we test the following constraint in

Ref. [50] Eq.(52):

〈
∂2h

∂x2

〉
Ω

= 0 (4.1.1)

which uses the code’s Ω-averaging numerical

procedure. The test finds this expression to be

satisfied to within 10−7 absolute error, though

this error is expected due to the multiple lin-

ear interpolations and trapezium integrations

performed that each contribute error compa-

rable to the square of each mesh’s spacing (for

a uniform mesh).
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4.1.2 Collision frequency ν̂ii and associated terms

Recall the ion-ion 90◦ collision frequency ν̂ii normalised to the Coulomb collision frequency νCii

and ion thermal velocity vth,i, given by Eq.(2.3.40):

ν̂ii

νCii
=

Rq

vth,i
ν̃ii(u) = ϵ3/2ν⋆ν̃ii (4.1.2)

where, from Eq.(3.45) of Ref. [17]:

ν̃ii(u) =
erf(u)−G(u)

u3
; ν̃ii(u)→


4

3v2
√
π

v → 0

1
v3

v →∞

G(u) =
erf(u)− v erf ′(u)

2u2
; G(u)→


2u
3
√
π

v → 0

1
2u2

v →∞

erf(u) =
2√
π

∫ u

0
e−t

2
dt , erf ′(u) =

d

du
(erf(u)) =

2√
π
e−u

2

(4.1.3)

Fig.4.3 shows the variation of the u-dependent term ν̃ii(u) only, comparing with its asymptotes in

the limits of small and large u given in the literature: Unit tests were written for the calculation

10 4 10 3 10 2 10 1 100 101

u [vth, i]

10 1

102

105

108

1011 Collision frequency ii [ C
ii ]

4/3u2

u 3

Figure 4.3: Test result for ion-ion collision frequency ν̃ii(u) from kokuchou [77] subrou-
tine"test collisional funcs" in test funcs.pf. Asymptotes at u → 0 (green, dashed) and
at u→∞ (purple, dotted) shown.

of ν̂ii and its related terms, but as Fig.4.3 shows, care must be taken in performing numerical

integration with this term due to the logarithmic growth of ν̃ii(u) as u→ 0.

The first numerical test calculates the velocity average of ⟨ν̂ii⟩u, used in the momentum

conservation term ˆ̄U∥,i (Eq.(2.3.49)). While ν̂ii(u) is divergent at u → 0, the velocity average
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itself
∫
du u4e−u

2
ν̂ii(u) is well-behaved and can be evaluated numerically. However, we seek a

more accurate analytic expression for ⟨ν̂ii⟩uto use in the main calculation, as only nu ∼ 20 u-

points are used, which does not provide optimal accuracy. To verify that analytic expression,

we numerically calculate over nu = 100 points over a logarithmically-spaced mesh ranging from

{10−4, 102}, more points and a wider range than the u-mesh used in full-scale runs for this work.

Plasma parameters ν⋆ = 0.01 and ϵ = 0.1 are used. For the analytic expression, we start by

writing out ν̃jj(u) explicitly, substituting for G(u):

ν̃jj(u) =
erf(u)− erf(u)−u erf′(u)

2u2

u3
=

erf(u)

u3
+

e−u
2

√
πu4
− erf(u)

2u5
. (4.1.4)

Recall the normalised velocity-average operator, Eq.(2.2.20):

⟨...⟩u =
8

3
√
π

∫ ∞

0
u4e−u

2
du (4.1.5)

then the velocity-average of ν̂ii(u) = ϵ3/2ν⋆ν̃jj is:

⟨ν̂ii(u)⟩u =
8ϵ3/2ν⋆
3
√
π

∫ ∞

0
ue−u

2
erf(u) +

e−2u2

√
π
− e−u

2
erf(u)

2u
du

Using the standard integrals given in Sec.8.1:

∫ ∞

0
ue−u

2
erf(u) =

1

2
√
2
,

∫ ∞

0
e−2u2 =

1

2

√
π

2
,

∫ ∞

0
u−1e−u

2
erf(u) = ln(1 +

√
2),

the analytic expression for the velocity-averaged collision frequency is:

⟨ν̂ii(u)⟩u =
8ϵ3/2ν⋆
3
√
π

(
1

2
√
2
+

1

2
√
π

√
π

2
− 1

2
ln(1 +

√
2)

)
=

4ϵ3/2ν⋆
3
√
π

(√
2− ln(1 +

√
2)

)
(4.1.6)

During testing, using typical values for ν⋆ = 0.01, ϵ = 0.1 and evaluating the integral numerically

over the u-mesh, comparing the numerical result with Eq.(4.1.6):

Analyt i c r e s u l t f o r nu i i a v e = 1.267537E−004

Numerical r e s u l t f o r nu i i a v e = 1.267610E−004

Listing 4.1: kokuchou code output stream, displaying values of the speed-averaged collisionality

that are compared during unit testing.
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While the numerical result is in agreement with the analytic result to 0.5%, this is obtained using

nu = 100 points, and since nu is typically lower in a full-size simulation, it is more appropriate

to use the analytic expression Eq.(4.1.6) for ⟨ν̂ii⟩u within the code. Nonetheless, using both

the analytic and numerical evaluations of the expression within this test helped to validate its

representation in the code.

The second test case using ν̃ii(u) is to numerically determine the neoclassical (ϵ≪ 1 banana

regime) poloidal flow coefficient kneo, which recalling Eq.(2.5.6) contains two separate velocity-

averaged functions containing ν̃ii:

kneo =

〈
(u2 − 5

2)ν̃ii
〉
u

⟨ν̃ii⟩u
≃ −1.173... , (4.1.7)

where the above value is given in Ref.[17], Eq.(11.26). Within the unit test test funcs.pf, the

numerical result to 5 decimal places is k neo = -1.1730, in agreement with the result from the

literature.

4.1.3 Velocity volume integral

Recall Eq.(2.2.16), presented here in normalised units (nsπ
−3/2v−3

th,i):

{...}u =

∫
d3v =

b√
π

∑
σ

∫ ∞

0
du u2

∫ b−1

0

dy√
1− yb

.

In stage (7) of the algorithm (see Fig.3.1), this operator provides the density ni, flow u∥,i and

momentum-conserving collision operator term ū∥,i (whose θ-average at fixed p is ˆ̄U∥) from the

ion distribution function. This numerical integral is evaluated at each point in {x, ξ, θ}-space,

which also requires remapping of ĝ + pF̂ ′
Ms from {p, ξ}-space. A further challenge is dealing

with the divergent factor (1 − yb)−1/2 near y → b−1. Numerical error in the result must be

minimised to avoid computational instability between iterations. To validate this calculation and

determine its relative error, unit tests for {...}u within test plasma qty.pf of kokuchou [77]

involved using the 0th-order perturbed ion distribution pF̂Ms to calculate the ion density, flow

and momentum-conserving flow respectively:

ni(pF̂
′
Ms) =

{
pF̂ ′

Ms

}
u
, u∥,i(pF̂

′
Ms) = v∥(u)

{
pF̂ ′

Ms

}
u
, ū∥i(pF̂

′
Ms) =

v∥(u)ν̂ii(u)

π3/2 ⟨ν̂ii⟩u

{
pF̂ ′

Ms

}
u
,
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where p = x − ρ̂θ,iv∥ (see Eq.(2.3.44)), and F̂ ′
Ms(u) = L−1

n (1 + η(u2 − 3
2))e

−u2 . These unit tests

used ny = 89 and nu = 20 mesh points. Uniform x and p meshes are used, with nx = 55, np = 55

over an extent of size ±11ŵ.

In {x, ξ, θ}-space, the
∑

σ σ operator will eliminate any even σn terms, retain any odd σn

terms, and introduce an additional factor 2. For ni, the x survives while for u∥,i and ū∥i the

factor v∥ survives. Starting with density ni(pF̂
′
Ms), the only odd-σ term in p is x:

ni(pF̂
′
Ms) =

b√
π

∑
σ

∫ ∞

0
du u2

∫ b−1

0

pF̂ ′
Msdy√
1− yb

=
b√
π
L−1
n (2)

∫ ∞

0
du u2(1 + η(u2 − 3

2
))e−u

2

[
2x

b

√
1− yb

]b−1

0

=
4√
π
L−1
n x

∫ ∞

0
du

(
1− 3

2
η

)
u2e−u

2
+ ηu4e−u

2

=
4√
π
L−1
n x

[(
1− 3

2
η

) √
π

4
+ η

3
√
π

8

]
= L−1

n x

(4.1.8)

Taking L̂n = −1, the numerical result for ni(pF̂
′
Ms) was tested to be with this analytic result

within test plasma qty.pf to within 1% error. These are plotted in Fig.4.4a. The absolute

difference between the numerical and analytic results is shown in Fig.4.4b, which indicates less

than 1% relative error at all x-points, satisfying the test.

0.01 0.00 0.01
x[rs]

0.01

0.00

0.01 ni(pFM, s)
xL 1

n

(a) Numerical and analytic ni(pF̂
′
Ms).

0.010 0.005 0.000 0.005 0.010
x[rs]

2

0

2

1e 5

ni(pFM, s) xL 1
n

(b) Difference in numerical and analytic ni(pF̂
′
Ms).

Figure 4.4: Numerical result for ion density ni(pF̂
′
Ms) and its analytic form xL̂−1

n plotted vs x,
from unit test "test update density flow ubarpll" of test plasma qty.pf. Island half-width
ŵ = ρ̂θ,i = 0.001rs, ϵ = 0.1.

Next, for the perturbed flow u∥,i(pF̂
′
Ms), due to the introduction of factor v∥ (that also cancels
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the denominator
√
1− yb), the term in p that survives is −ρ̂θ,iv∥. Starting with the y-integral,

using the y-integral for v∥ given in 8.1.12:

u∥,i(pF̂
′
Ms) =

b√
π

∑
σ

σ

∫ ∞

0
du u3

∫ b−1

0
dy p(y, σ, v)F̂ ′

Ms(u)

=
b√
π

∑
σ

σ

∫ ∞

0
du u3F̂ ′

Ms

(
−2ρ̂θ,iσv

3b

)
=
−2ρ̂θ,i
3
√
π

∑
σ

σ2
∫ ∞

0
du u4F̂ ′

Ms

=
−4πρ̂θ,i

3

∫ ∞

0
du u4F̂ ′

Ms

Next, focusing only on the u-integral, using the identities given in the Appendix Eq.(8.1.1):

∫ ∞

0
du u4F̂ ′

Ms(u) = L−1
n

∫ ∞

0
du ωT (u)u

4e−u
2
= L−1

n

∫ ∞

0
du (1 + ηu2 − 3

2
η)u4e−u

2

= L−1
n

[
(1− 3

2
η)

3
√
π

8
+ η

15
√
π

16

]
= L−1

n

3
√
π

8
(1 + η),

and inserting the above into the full expression gives:

u∥,i(pF̂
′
Ms) =

−1
2
ρ̂θ,iL

−1
n (1 + η) (4.1.9)

For ρ̂θ,i = 10−3rs, L̂n = −1 and η = +1, this result gives u∥,i(pF̂
′
Ms) = 10−3. Within the unit

test, the numerical result is 9.857× 10−4, which is ∼ 2% of the analytic result.

Finally, the analytic expression for ū∥i(pF̂
′
Ms) is calculated. Similar to Eq.(4.1.9), but with

a different prefactor and a ν̂ii(u) term in the u-integral. Start by using the same result for the

y-integral as in u∥,i(pF̂
′
Ms), noting also that

∑
σ σ

2 = +2:

ū∥,i(pF̂
′
Ms) =

b(θ)√
π ⟨ν̂ii⟩u

∑
σ

σ

∫ ∞

0
du u3ν̂ii(u)

∫ b−1

0
dy p(y, σ, v)F̂ ′

Ms(u)

=
−4ρ̂θ,i

3
√
π ⟨ν̂ii⟩u

∫ ∞

0
du u3ν̂ii(u)F̂

′
Ms(u)

Where ν̂ii(u) = ϵ3/2ν⋆
erf(u)−G(u)

u3
, as in Eq.(2.2.17). For the u-integral, the u-dependent terms are
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u3, u (from p), ν̂ii(u) and F̂
′
Ms(u):∫ ∞

0
du u4ν̂ii(u)F̂

′
Ms(u)

= ϵ3/2ν⋆L
−1
n

∫ ∞

0
du v

(
erf(u) +

erf ′(u)

2v
− erf(u)

2u2

)
(1 + ηu2 − 3

2
η)e−u

2

Expanding the terms, using the standard definite integrals given in the Appendix, 8.1:

= ϵ3/2ν⋆L
−1
n

∫ ∞

0
du

(
1− 3

2
η

) = 1
2
√
2︷ ︸︸ ︷

ve−u
2
erf(u)+

(
1− 3

2
η

)
1√
π

=
√
π

2
√
2︷ ︸︸ ︷

e−2u2 −
(
1− 3

2
η

)
1

2

=ln (1+
√
2)︷ ︸︸ ︷

u−1e−u
2
erf(u)

+ η u3e−u
2
erf(u)︸ ︷︷ ︸

= 5
8
√
2

+
η√
π
u2e−2u2︸ ︷︷ ︸

√
π

8
√
2

−η
2
ve−u

2
erf(u)︸ ︷︷ ︸

= 1
2
√
2

⇒
∫ ∞

0
du u4ν̂ii(u)F̂

′
Ms(u) =

ϵ3/2ν⋆L
−1
n

2

[
(1− η)

√
2 +

(
3

2
η − 1

)
ln (1 +

√
2)

]

Then:

ū∥,i(pF̂
′
Ms) =

−2ρ̂θ,iϵ3/2ν⋆L−1
n

3
√
π ⟨ν̂ii⟩u

[
(1− η)

√
2 +

(
3

2
η − 1

)
ln (1−

√
2)

]
(4.1.10)

For ϵ = 0.1, ρ̂θ,i = 10−3rs, ν⋆ = 10−3 and using the analytic result for ⟨ν̂ii⟩u given in Eq.(4.1.6),

the analytic expression for ū∥,i(pF̂
′
Ms) = 4.1353 × 10−4, while the numerically-calculated result

is 4.1304 × 10−4, which is within 1% relative error. These tests demonstrate the validity and

accuracy of the velocity volume integral calculation within kokuchou. The O(1%) errors in the

numerical calculation of the
{
pF̂ ′

Ms

}
u
contribution to density and flow can be avoided by using

these analytic expressions in place of numerical calculation; this has since been implemented in

the main code. However, ĝ continues to be calculated numerically, and will likely produce errors

of similar scale in its own density and flow contributions, assuming these errors are primarily

numerical in origin.

4.1.4 Testing the shooting algorithm

The shooting algorithm of kokuchou and DK-NTM operate by applying boundary conditions in
∂2ĝ

∂y2

at the y-mesh limits, then solving the matrix equation 3.1.14 at each y-point towards y = yc to

obtain α and β there. An issue encountered previously in DK-NTM and early versions of kokuchou
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was that the boundary conditions were not implemented correctly. To address this, a special case

was developed as a unit test within kokuchou in test solution.pf, using the same procedures

for calculating α and β as in the main program. Here, a different equation without most of the

NTM physics is used, but the numerical procedures are the same as those in the full calculation.

In this test, a 1D simulation domain with y = {0, 2} where ny = 33 (indexed l = {1, 33}),

with an internal boundary yc = 1 (index 17) and 16 uniformly-spaced points either side. A simple

exponential decay boundary value problem is solved, given by:

∂ĝ

∂y
− f(y)ĝ(y) = 0 ,

∂2ĝ

∂y2

∣∣∣∣
y=0,2

= 0 ; ĝ(y = yc) = 1.5 (4.1.11)

where f(y) = 1/g(y) from the previous iteration. By numerically solving for the equation via

an iterative procedure, similar to how Φ̂ and ˆ̄U∥ are treated in the full algorithm, the equation

should converge on a solution. The solution can be derived analytically to be:

ĝ(y) = exp (1− y + ln(ĝ(y = yc))) (4.1.12)

The problem involves iteratively calculating Eq.(4.1.11) for f(y) using the passing region matrix

equations left of the y = yc boundary and trapped equations to the right. Here, f(y) = −ĝ(y)

of the previous iteration. There is no {ξ, p} dependence and the matrices/vectors are of rank 1,

making α and β scalars at each y-point. The purpose of this test is to check whether α and β

are calculated correctly from the matrix equations described in 3.1.3, and if boundary conditions

are being correctly imposed at the y-limits. The initial guess for f(y) = −ĝ(yc) = −1.5.

Similar to the full algorithm, the passing forms of α and β (Eq.(3.1.23)) are calculated over

the range y = {0 → yc} (not including yc) and the trapped forms (Eq.(3.1.25)) are calculated

over y = {yc ← 2}. Next, at y = yc, ĝ(y = yc) is explicitly set to 1.5, and ĝ is solved separately

across y = {0← yc} via Eq.(3.1.22) and y = {yc → 2} via Eq.(3.1.24). Once ĝ(y) is found across

all y, then we set f(y) = −g(y) and repeat the procedure until the solution has ’converged’, i.e.,

the residual R(ĝ(y)) < 10−3 at all y, where R is given by Eq.(3.1.5). Finally, the converged

result for g(y) is compared with Eq.(4.1.12), and the unit test checks if there is agreement with

the expected analytic result at all points to within 1% error. Fig.4.5 shows the result of this

test, where Fig.4.5a shows the profiles of ĝ on the first and last (converged) iterations with the

expected result also plotted, and Fig.4.5b showing the two values of ĝ at the y-limits versus

iteration number.
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(a) Profile of ĝ(y) at first and last iteration (7) from this
unit test. Value at y = yc = 1.0 shown by vertical line,
which is constant at all iterations.
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1
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y) y = 0
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(b) Values of ĝ(y = 0) and ĝ(y = 2) vs. iteration number
from this unit test. Expected values shown by solid lines.

Figure 4.5: Results from the boundary value problem unit test within the kokuchou simulation
code to test the forms of matrix α and vector β used in the shooting algorithm, by solving
Eq.(4.1.11) for ĝ(y).

Here g(y) did satisfy the convergence criterion at all y after 7 iterations, with all points lying

well within 1% of the expected function shown by the orange region in Fig.4.5a. Both endpoints

of ĝ(y) converged towards their expected values in Fig.4.5b, the y = 2 point showing a slightly

different trend between iterations than the y = 0 point having overshot the expected value on

iteration 1, but importantly these results indicate that the boundary conditions in y are upheld.

4.2 New solution method for the trapped-passing boundary

During development of kokuchou it was found that, given a fixed set of parameters, the result

for ĝ varied significantly by a large degree between machines. Furthermore, the distribution of

ĝ(u) also displayed large non-physical noise shown in Fig.4.6, rather than a smooth continuous

curve as expected. This critical issue rendered any iterated result invalid, as both Φ̂ and ˆ̄U∥,i

depend on the integral of ĝ in u-space.

The issue originated within the calculation of ĝ at the trapped-passing boundary. Here,

Eq.(3.1.4) was solved using the LAPACK procedure DGESV, a lower-upper (LU) decomposition

with partial pivoting, as used previously in DK-NTM[72]. The properties of the individual matrix

and vector terms were investigated, which found that the matrix1 A was highly ill-conditioned.

1This is a large rank nξnp ∼ O(1000) dense square matrix whose diagonal values are often 10 or more of orders
of magnitude larger than its smallest terms elsewhere.
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Figure 4.6: Perturbed ion distribution ĝ versus speed u at ξ = 0, p = 0.050rs, y = yc, σ = −1,
using a simple LU-decomposition method in solving the linear matrix equation Eq.(3.1.4).

Fig.4.6 was obtained from a small-scale run of kokuchou v10.4.1 on the York Plasma Institute

computer. Here, the original DGESV algorithm is substituted for DGESVX2, which yields the re-

ciprocal condition number rcond for matrix A. A lower rcond indicates greater ill-conditioning

and numerical error in the LU-factorisation. Very small values of ”rcond” close to the floating

point precision (in this case, 10−16 for a double precision float) corresponds to a near-total loss

of precision in the matrix equation solution, creating the ’noise’ observed in ĝ(u). Separately,

the determinant, det(A), was also calculated by using the LAPACK procedure DGETRF on a copy

of A to compute the LU-factorisation, then calculating the product of all diagonal points in the

factorisation, accounting for row exchanges with sign changes. This procedure for calculating the

determinant has been unit-tested3. Values of rcond and det(A) were then extracted, as shown

in Listing 4.2 which are representative of all u-space (index "iv") in a kokuchou simulation.

. . . i v = 2 ] >> g tpbdry rcond = 3.02187E−16 , detA = −0.00000E+00

. . . i v = 3 ] >> g tpbdry rcond = 5.11790E−19 , detA = I n f i n i t y

. . . i v = 4 ] >> g tpbdry rcond = 2.74914E−17 , detA = I n f i n i t y

. . .

. . . i v = 20 ] >> g tpbdry rcond = 4.01716E−18 , detA = I n f i n i t y

. . . i v = 21 ] >> g tpbdry rcond = 6.95110E−18 , detA = − I n f i n i t y

Listing 4.2: kokuchou code output stream showing matrix properties of A from Eq.(3.1.4).

2DGESVX additionally refines the solution ĝc, though here we are concerned only with the factorisation of A
which is not affected by refinement.

3The numerically-derived determinant is calculated in subroutine test solve of test solution.pf, where it
correctly obtains the expected determinant of an example rank 3× 3 matrix problem to within 10−14 accuracy.
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From the invalid determinants alone, it is clear this LU-factorisation of A will not produce a valid

inverse if numerically evaluated. The only non-infinite value of det(A) = 0 indicates singularity.

The values of rcond are notably below machine-precision (≈ 10−16) at all u-points. The sensitivity

of the ill-conditioned equation to machine precision-scale changes, such as the hardware and

implementation, would explain the variation of the erroneous result between machines. We note

that this issue was not previously observed in DK-NTM, however fixing separate numerical issues

did reproduce the issue in that code [72].

4.2.1 Truncated singular value decomposition (TSVD)

If the numerical representation of matrix A of Eq.(3.1.4) is singular and ill-conditioned, the

equation cannot be solved accurately. The LU-decomposition method was then replaced with

a singular value decomposition (SVD) method using the DGESDD algorithm of LAPACK. This

performed the factorisation A = UΣVT , where Σ is a diagonal matrix containing the singular

values of A, transformed by two separate matrices U and V. Specifically, the non-zero elements

of Σ are the square roots of eigenvalues of A∗A and AA∗. However, introducing the SVD method

alone did not fully eliminate the numerical artifacts. Instead, a truncated SVD (TSVD) method

was required, in which only the largest singular values in Σ are retained and the rest are truncated

(zeroed). In our TSVD implementation, we retained most of these elements of Σ (to keep the

factorisation as close to A as possible), but discarded those below a very small tolerance value we

denote trunc. As a starting point, this value was set to trunc = 10−7.Despite being a relatively

low tolerance level, this was sufficient to filter the singular values from Σ that caused the noise

artifacts. The result of both SVD and truncated SVD methods in g(u) is shown in Fig.4.7:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
u [vth, i]

0.0000

0.0001

0.0002

0.0003
SVD (trunc=0)
Truncated SVD (trunc=1e-7)

Figure 4.7: As in Fig.4.6, using new SVD and truncated SVD implementations.
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In practice, it was also found that only one value of Σ was truncated, as all others were of

O(0.1) − O(100), meaning the solution gc could be re-inserted into Eq.(3.1.4) to reconstruct B

to a very high degree of accuracy. This reinsertion of gc from TSVD was unit-tested within

subroutine test solve of test solution.pf on a small matrix problem to within O(10−12)

absolute error. While the use of TSVD rectified this issue, it is more computationally expensive

than LU-decomposition4 and hence is only used at the trapped-passing boundary. We emphasise

that this issue is specific to this trapped-passing boundary calculation, likely due to the asymptotic

behaviour of v−1
∥ -dependent equation terms, and that the matrix equations elsewhere do not

display extreme ill-conditioning.

Summary

This chapter presented some of the tests used to validate stages of the newly-developed numerical

code kokuchou, designed to solve the 4D drift-kinetic equation around a small near-threshold size

magnetic island. To validate stages of the algorithm presented in Ch.3, unit tests were developed

throughout development, several examples have been presented here. Tests for the numerical

result for h(Ω) checked its agreement with its literature definition. Collision-dependent quantities

including ν̂ii were tested with analytic values both from literature and new derivations from this

work. The velocity volume integral operator {...}u was used to numerically calculate the ion

density and flow using the 0th order perturbed ion distribution pF̂ ′
Ms, correct to no larger than

O(5%) of the analytic results, using similar mesh and plasma parameters to full-size simulations

presented in subsequent sections. The large size of this error led to the decision to replace

numerical calculation of the pF̂ ′
Ms contribution to density and flow within the main code to

instead use the analytic results. The matrix equations used in the shooting algorithm were tested

with a model case with an expected result to check the application of boundary conditions in

y. Together, these tests helped to develop confidence in the full-scale result of the new code

kokuchou. They also helped to identify and address critical issues that were not previously

observed in DK-NTM. Issues in the existing trapped-passing boundary procedure, for example,

were resolved by diagnosing the ill-conditioning of the matrix equation there and replacing the

procedure with a new truncated SVD method.

4The BLAS/LAPACK SVD solver DGESVD has 6.67×N3 operations (in full) compared to 0.67×N3 for DGESV
according to Table 3.13 of the LAPACK user guide [79].
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Chapter 5

Single run case studies

As part of Objective (2), presented in this chapter are numerical results from four full-scale runs

of kokuchou v10.4.1 [77], at two values in collisionality ν⋆ = {0.005, 0.02} and two values in island

width ŵ = {0.3, 0.75}ρ̂θ,i, for ion poloidal gyroradius ρ̂θ,i = 0.001rs. These two collisionalities are

extremes of the full parameter scan later in Ch.6, while the two ŵ/ρ̂θ,i values represent islands

near and above the ion banana width ρ̂b,i = ϵ3/2ρ̂θ,i ≈ 0.316ρ̂θ,i respectively.

The plasma parameters used in this work are (except where otherwise stated): inverse aspect

ratio ϵ = 0.1, local safety q-factor qs = m/n = 2/1, density gradient length scale L̂−1
n = −1,

magnetic shear length scale L̂−1
q = 1, magnetic field strength scale L̂−1

B (θ) = −ϵ cos θ. These

represent a high aspect ratio conventional tokamak plasma profile that is denser and hotter at

the core than at the edge, and using similar parameters to Ref. [70]. The mesh sizes used in these

runs are nθ = 121, nξ = 30, np = 145, nx = 337, ny = 89, nu = 24 and nΩ = 1000. Each run

included 4 iterations in which ĝ, Φ̂ and ˆ̄U∥ are updated self-consistently. Here, the convergence

criterion described in 3.1.5 was not enforced, as these runs are exploratory and their convergence

behaviour was not yet known.

From these four runs, Sec.5.1 presents the perturbed ion distribution ĝ across ξ, p and y-space

at the first and last iterations, without and with finite potential Φ̂ respectively. Sec.5.2 presents

the density and flow moments of ĝ, and plasma quantities including the perturbed electrostatic

potential Φ̂ from quasineutrality and momentum-conserving collision operator term ˆ̄U∥, both

calculated self-consistently with ĝ. Finally, the parallel ion currents from the parallel flow u∥,i are

shown, which will be used to determine the island growth rate. Both ˆ̄U∥ and u∥,i are validated by

comparing the flows far from the island with the neoclassical equilibrium. Lastly, Sec.5.3 looks

at two separate simulations under extreme values in ν⋆ and ŵ that failed to produce a convergent
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physical result. We look for potential differences in behaviours to those seen previously in the

DK-NTM code of Refs. [69, 70, 41] to assess how the recent changes to the 4D NTM equation

in Sec.2.6 have affected the physics, where the collision frequency-dependent terms in
∂ĝ

∂p
and

∂2ĝ

∂p2
were modified. This work is also more concerned with smaller near-threshold size islands

where ŵ ≤ ρ̂θ,i, whereas the islands studied in Refs. [69, 70, 41] are generally larger. Comparing

the two collisionalities, we also assess the effect of collisionality on the plasma response to the

island, and relate this to previous comparisons of DK-NTM with the RDK-NTM code of Refs. [41, 43]

that is valid in the limit of very low collisionality.
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5.1 Ion distribution function

5.1.1 Profiles of ĝ(p, ξ)

Figs.(5.1) and (5.2) show the contours of the perturbed passing ion distribution ĝ(p, ξ) for y =

0.33, σ = +1 and u = vth,i, at iterations 1 and 4 respectively. For each figure, the p-derivative

of ĝ is also shown respectively in Figs.(5.3) and (5.4). Comparing ŵ = 0.3ρ̂θ,i and ŵ = 0.75ρ̂θ,i

for a fixed ρ̂θ,i, in all figures the ion distribution forms a ’drift island’ structure resembling the

island but shifted in p by a factor O(ρ̂θ,i) due to magnetic drifts, as expected [70, 41]. For cases

(a,c), where ŵ = 0.3ρ̂θ,i, the shift is a factor 2.5 larger relative to the island than in (b,d) where

ŵ = 0.75ρ̂θ,i. The physical consequences of this shift on the island physics are discussed later

in Sec.5.1.3. Comparing in ν⋆, the effect of radial transport is seen. In the lower collisionality

ν⋆ = 0.005 cases (a,b), the gradients in p surrounding the drift island separatrix are narrower than

in the higher-collisionality ν⋆ = 0.02 cases (c,d) as expected. Simultaneously, the difference in ĝ

and
∂ĝ

∂p
with ν⋆ is greater between the small-island cases (a) and (c), as the collisional mean-free

path is now larger with respect to the island, and any variation in ν⋆ has a more significant effect

on smaller islands.

Comparing by iteration, at iteration 1 where Fig.5.1 and Fig.5.3 are in the absence of elec-

trostatic potential Φ̂, we see only the ŵ2 cos ξ and ν̂iiρ̂θ,i terms of
∂ĝ

∂p
in Eq.(2.3.47) are present.

which results in a somewhat sin ξ-like distribution in ĝ across the drift island that varies in ν⋆

between (a,c) with (b,d), changing the relative sizes of those two terms in
∂ĝ

∂p
. On iteration 4,

as shown in Fig.5.2 and Fig.5.4, the potential Φ̂ is now present and introduces a contribution

that competes with the other
∂ĝ

∂p
terms. A notable difference is the presence of a ’jump’ across

the magnetic island in p, seen mostly in the large island cases (b,d) of Fig.5.2. The finite Φ̂

introduces a background contribution in p that increases ĝ on the outboard (p > 0) side of the

rational surface and reduces ĝ on the inboard (p < 0) side, more visibly in the large-island cases

(b,d). In the p-derivative, Fig.5.4 shows this contribution from Φ̂ is localised primarily inside the

magnetic island, as contributions to Φ̂ come from the velocity volume integral of ĝ in all y and

u, including from drift islands whose shift is smaller and are closer to the magnetic island.

The results demonstrate that at the physical length scales observed, that the Φ̂-dependent

E×B drift and magnetic drifts (that leads to ’drift island’ behaviour) are the primary influences

over the distribution of ĝ, while collisionality influences the ξ-asymmetry in the absence of Φ̂, its

influence is only slight when Φ̂ is finite.
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Figure 5.1: Contour plot of perturbed ion distribution ĝ(p, ξ) at u = 1vthi, σ = +1, y = 0.33 on
iteration 1 in absence of electrostatic potential Φ̂. Magnetic island shown by white dotted curve.
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Figure 5.2: As in Fig.5.1, at iteration 4, in presence of Φ̂.
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Figure 5.3: As in Fig.5.1, showing p-derivative of ĝ in absence of Φ̂.

0.001 0.000 0.001
3

2

1

0

1

2

3

[ra
d]

(a) = 0.005, w = 0.3 , i

0.004 0.002 0.000 0.002 0.004
3

2

1

0

1

2

3
(b) = 0.005, w = 0.75 , i

0.001 0.000 0.001
p [RB rs]

3

2

1

0

1

2

3

[ra
d]

(c) = 0.02, w = 0.3 , i

0.004 0.002 0.000 0.002 0.004
p [RB rs]

3

2

1

0

1

2

3
(d) = 0.02, w = 0.75 , i

2.0

1.0

0.0

1.0

2.0
×10 1

2.0

1.0

0.0

1.0

2.0
×10 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5
×10 1

2.0

1.0

0.0

1.0

2.0
×10 1

g/ p, Iteration=4, y=0.33, u=1.0

Figure 5.4: As in Fig.5.2, showing p-derivative of ĝ in presence of Φ̂.
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5.1.2 Profiles of ĝ(p, y) and ĝ(p, u)

To study the y and u-dependence of the drift island shift in more detail, Fig.5.5 shows ĝ(p, y)

at fixed ξ = 0, σ = +1, u = 1, while Fig.5.6 shows ĝ(p, u) at y = 0.33, both at iteration 4 in the

presence of Φ̂.

In both figures, the edges of the shifted drift island are illustrated by the black dashed curve.

The size of this shift is equal to the ρ̂θ,iω̂DL̂
−1
q term of

∂ĝ

∂ξ
within Eq.(2.3.47). Corresponding

with the definition of ω̂D in Eq.(2.3.48), in Fig.5.6 the drift island shift has a linear dependence

with u, while in Fig.5.5 the y-dependence is with the θ-averaged
√
1− yb-dependent terms in ω̂D.

A similar O(ρ̂θ,i)-size drift island shift was seen in DK-NTM in Ref.[70] in which a similar coefficient

ρ̂θ,iω̂D appears in the ξ-derivative of ĝ. Ref. [41] quotes the shift factor explicitly as ρ̂θ,iω̂DL̂
−1
q .

For ĝ(p, y) in Fig.5.5, the drift island effect manifests differently for passing (y < 1) and

trapped (y > 1) ion populations. For passing ions, the σ-dependence of ω̂D is retained, and

ω̂D itself is largest in magnitude at the deeply passing end (y = 0). Recall Eq.(1.2.3) for the

∇B drift velocity, where field-parallel (and anti-parallel) particles whose pitch angle is zero will

experience the fastest drift velocity. Because the passing particles carry the bootstrap current

(see 1.3.4), the bootstrap current distribution with respect to the island (i.e. whether inside the

island within the ’hole’ it creates, or outside) will be significantly influenced by the drift island

effect, particularly as ŵ is reduced with respect to ρ̂θ,i. This will be covered later in Sec.5.2.3 and

Sec.6.2. In the trapped region, both σ streams are averaged, and ω̂D is smaller in magnitude as

their mostly field-perpendicular guiding centre trajectories are less affected by ∇B-drift as the

passing ions. The overall effect is that the trapped ion drift island, which is centred at p = 0

instead of at ρ̂θ,iω̂DL̂
−1
q , is broadened slightly.

It has been discussed previously in Sec.3.1.6 that a major computational challenge of the

scheme used in kokuchou is that when ŵ ≳ ρ̂θ,i, the ’inner region’ of the p-mesh must extend

to accommodate all positions of the drift island across y and u. Keeping the p-mesh number

of points fixed, this would reduce the resolution of this region and the ability to resolve steep

separatrix layer gradients.
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Figure 5.5: Contour plot of perturbed ion distribution ĝ(p, y) at u = 1vthi, σ = +1, across island
O-point (ξ = 0) on iteration 4. Magnetic island shown by white dotted curve. Drift island shift
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5.1.3 Density moments of fi(p)

We now examine the effect the drift island behaviour has on the density gradient, and by

extension Φ̂. 1D profiles of ion distributions across the island O-point ξ = 0 at y = 0.33 from

these same runs are shown in Fig.5.7 and (5.8), again at iterations 1 and 4 respectively. Both

figures resemble the schematic Fig.1.10 describing the physics of the drift island structures seen

in ĝ within Refs. [69, 70, 41]. Firstly, focusing on the σ = ±1 passing populations, in Fig.5.7 in

the absence of Φ̂, we see a similar flattening of ĝ across drift islands, and opposing radial shifts in

each σ due to magnetic drifts represented by the ω̂D(y, σ, u) term of Eq.(2.3.47). The size of the

shift, which is ŵ-independent, is again larger relative to the size of the island in the ŵ = 0.3ρ̂θ,i

cases than the ŵ = 0.75ρ̂θ,i cases. Comparing in ν⋆, the gradients of the drift island separatrix

are notably smoother for the higher ν⋆ = 0.02 cases than the ν⋆ = 0.005 cases, with (c) having

no flattening whatsoever compared to (a) at iteration 1.

Secondly, the σ-average of the drift island profiles combined give what we refer to as the

density moment across the magnetic island O-point, shown by the black curve in both plots.

This corresponds with the overall density gradient across the magnetic island, of which in the

absence of the perturbation would resemble pF̂ ′
Ms shown by the dashed-dotted grey curve. In

both figures, the density moment is flattened across the magnetic island (yellow region) for the

ŵ/ρ̂θ,i = 2 cases (b,d), but not for the ŵ = 0.3ρ̂θ,i cases (a,c), which roughly resemble the function

pF̂ ′
Ms that the total ion distribution far from the island approaches toward. This behaviour has

been documented previously in the DK-NTM and RDK-NTM codes in a comparison within Fig.C.2 of

Ref. [41]. However we now also observe the effect of collisionality, which contributes to further

restoration of gradient across the magnetic island by increasing cross-orbit transport in p in the

ν⋆ = 0.02 cases.

Finally, we compare iterations 1 (Fig.5.7) and 4 (Fig.5.8), respectively without and with self-

consistent Φ̂ that satisfies quasineutrality. In Fig.5.7, the passing ion profiles for w = 0.3ρ̂θ,i are

flat at low collisionality, but thoroughly smoothed out at high collisionality. Here, in the absence

of Φ̂ and E ×B drift, cross-orbit transport is primarily influenced by the ∝ ν̂ii
∂2ĝ

∂p2
neoclassical

diffusion term. In Eq.(5.8), the presence of Φ̂ has affected the vertical shift of the two passing

profiles relative to pF̂ ′
Ms, both being somewhat closer to pF̂ ′

Ms and having broader, more curved

features after 4 iterations, likely due to the presence of E×B drift providing cross-field transport.

These density moments directly affect the form of Φ̂ and vice versa, which we cover in the following

section.
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Figure 5.8: As in Fig.5.7, at iteration 4 in calculating Φ̂ and ˆ̄U∥. Here, Φ̂ from quasineutrality is
now finite.
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5.2 Plasma quantities

5.2.1 Electrostatic potential Φ̂

Fig.5.9 shows the 2D contours of the normalised electrostatic potential Φ̂(x, ξ, θ = 0) that satisfies

quasineutrality, taken at iteration 4 of each run. Fig.5.10 shows 1D profiles of Φ̂(ξ = 0, θ = 0)

across the O-point in x for all 4 iterations. In cases (a-d), Φ̂ follows the shape of the magnetic

island. The sharp boundary around the island separatrix is created by the analytic h(Ω)-like con-

tribution from electrons (see Fig.4.2), which is explicitly set to zero inside the island to represent

the electron response to the much larger ion length scales of the island. The potential Φ̂ tends to

different constants at either side far from the island due to the
∂ĝ

∂p
= 0 boundary condition, while

h(Ω)→ x and xL̂−1
n cancel each other out. Across the island, a gradient is sustained due to the

drift island effect that occurs when ŵ < ρ̂θ,i, which applies in all cases. The curved variations

in Φ̂(x) both within and just outside the magnetic island, were provided by the velocity volume

integral of the density moments of ĝ (see Fig.5.8), which is the part of Φ̂ that changed between

iterations. These curved variations were more visible in (b,d), where the drift islands were closer

to the magnetic island (for all y and u, see Fig.5.5 and (5.6)), increasing the spatial variation of

the velocity-integral of ĝ there. If ŵ ≫ ρ̂θ,i, all drift islands in y and u-space should align with

the magnetic island in x-space, flattening the density profile inside the magnetic island [70, 41].

However, it is computationally challenging to explore higher ŵ/ρ̂θ,i in kokuchou to revisit those

previous findings, as Sec.6.1 will discuss. Fig.5.10 shows how Φ̂ changes between iterations. No-

tably, the small-island cases (a,c) changed slowly between iterations, being largely unaffected by

changes in ĝ. Again, this was likely due to the large drift island shift spreading out variations of

the velocity-integral of ĝ across radial space x. Conversely, the larger island cases (b,d) did change

significantly between iterations, particularly far from the island, indicating higher sensitivity of

Φ̂ to ĝ, and vice versa. With only a
∂ĝ

∂p
boundary condition alone, the values in ĝ and Φ̂ far from

the island were able to vary significantly. Comparing in collisionality ν⋆, cases (b) and (d) also

showed greater variation with respect to each other in ν⋆ than (a,c), as Φ̂ becomes dominant over

the other ν⋆-dependent terms in Eq.(2.3.47) (see Fig.5.7). Finally, we note that ĝ is influenced by

the derivatives of Φ̂ in x and ξ representing those components of the electric field, respectively

shown in Figs.(5.11) and (5.12), which appear in Eq.(2.3.47) as coefficients of
∂ĝ

∂ξ
and

∂ĝ

∂p
. Both

derivatives have narrower and steeper gradients relative to the magnetic island at lower ν⋆ and

higher ŵ/ρ̂θ,i, adding to the challenge of resolving the narrow drift island separatrix.
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Figure 5.9: Contour plots of normalised electrostatic potential Φ̂(x, ξ)[ eZi
T (ψs)

] at θ = 0, iteration
4.

0.0010 0.0005 0.0000 0.0005 0.0010

2.0

1.0

0.0

1.0

2.0

[e
0/T

]

×10 4 (a) = 0.005, w = 0.3 , i

0.003 0.002 0.001 0.000 0.001 0.002 0.003

2.0

1.0

0.0

1.0

2.0
×10 4 (b) = 0.005, w = 0.75 , i

0.0010 0.0005 0.0000 0.0005 0.0010
x [rs]

2.0

1.0

0.0

1.0

2.0

[e
0/T

]

×10 4 (c) = 0.02, w = 0.3 , i

iter
1
2
3
4

0.003 0.002 0.001 0.000 0.001 0.002 0.003
x [rs]

2.0

1.0

0.0

1.0

2.0
×10 4 (d) = 0.02, w = 0.75 , i

Figure 5.10: As in Fig.5.9, across island O-point at ξ = 0 at each iteration (hue). The values of
the y-axis are shared between plots. The magnetic island extent is in yellow.
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Figure 5.11: As in Fig.5.9, showing
∂Φ̂

∂x
(x, ξ, θ = 0) at iteration 4.

0.001 0.000 0.001
3

2

1

0

1

2

3
(a) = 0.005, w = 0.3 , i

0.004 0.002 0.000 0.002 0.004
3

2

1

0

1

2

3
(b) = 0.005, w = 0.75 , i

0.001 0.000 0.001
x [rs]

3

2

1

0

1

2

3
(c) = 0.02, w = 0.3 , i

0.004 0.002 0.000 0.002 0.004
x [rs]

3

2

1

0

1

2

3
(d) = 0.02, w = 0.75 , i

0.3

0.2

0.1

0.0

0.1

0.2

0.3
×10 4

0.4

0.2

0.0

0.2

0.4

×10 4

0.2

0.0

0.2

×10 4

0.8

0.5

0.2

0.0

0.2

0.5

0.7
×10 4

Figure 5.12: As in Fig.5.9, for
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5.2.2 Momentum-conserving ion flow ˆ̄U∥,i

We now consider the flow-like momentum-conserving collision operator term ˆ̄U∥,i which, alongside

Φ̂, is also updated iteratively with ĝ in the kokuchou simulation code. This is obtained using the

σ-average of σĝ, which we denote as the flow moment of the ion distribution [70, 41]. Fig.5.13

shows 2D contours of ˆ̄U∥,i(θ = 0) for each of the four runs at iteration 4. Fig.5.14 shows 1D

profiles of the momentum-conserving collision operator term ˆ̄U∥,i(θ = 0, ξ = 0) at each iteration.

In all cases, the profiles assume a distribution localised to the extent of the magnetic island,

tending towards a constant at roughly 2-3 island widths away on either side.

Comparing in ŵ/ρ̂θ,i at fixed ρ̂θ,i, the distribution of ˆ̄U∥,i(θ = 0, ξ = 0) inside the magnetic

island takes the form of a single peak in the small island cases (a,c), and a trough-like distribution

in the large island cases (b,d) that evokes the separatrix gradients of the shifted passing particle

populations in ĝ. These variations and are influenced by both drift island shifting and radial

transport. Comparing in ν⋆ between (a,b) versus (c,d), the profile in the island vicinity is generally

flatter at ν⋆ = 0.005 than at ν⋆ = 0.02, a consequence of reduced radial diffusion across the island

separatrix. In Fig.5.13 we also see a ξ-symmetric distribution in (a,b), and anti-symmetry in

(c,d). This is likely due to the aforementioned dominance of the w2 cos ξ term in
∂ĝ

∂p
within

Eq.(2.3.47) when ν⋆ is lower, as is the case in (a,b). For Fig.5.14, in the low aspect ratio limit, an

analytic expression for the momentum-conserving parallel flow can be derived for the neoclassical

equilibrium [72] far from the magnetic island (see Eq.(68) of Ref. [50]) which can be compared

with the numerical result. This analytic form is:

ˆ̄U∥,i

vth,i
= −1

2
ρ̂θ,iL̂

−1
n (1 + η(1 + kneo)) , kneo =

〈
(u2 − 5

2)ν̂ii
〉
u

ν̂ii
≈ −1.173 (5.2.1)

When ρ̂θ,i = 10−3rs, L̂n = −1, η = 1 this equates to ˆ̄U∥i,eqm(x → ±∞) ≈ 4.135 × 10−4. This

analytic expression is shown in Fig.5.14 by the horizontal line, with a relative error of O(ϵ3/2)

shown by the magenta region. The size of this error ϵ3/2 ≈ 3.16% is comparable to the ∼ 5%

error observed in the numerical test calculations of ū∥,i(pF̂
′
Ms) in 4.1. In this scenario, ˆ̄U∥, the

θ-average of b(θ)ū∥,i is calculated here by using the analytic expression for ū∥,i(pF̂
′
Ms) and a the

numerically-calculated contribution from ĝ, to minimise numerical error in the final result. All

cases are within error of the analytic solution Eq.(5.2.1) far from the island in x at all iterations.
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Figure 5.13: As in Fig.5.10, showing ˆ̄U∥,i(x, ξ) at θ = 0 for iteration 4.
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Figure 5.14: As in Fig.5.10, showing ˆ̄U∥,i(x, θ = 0, ξ = 0) for each iteration. Shown in magenta is

the analytic solution of ū∥ far from the island, Eq.(5.2.1), with O(ϵ3/2) relative error bounds in
the magenta region. Magnetic island extent shown by yellow region.
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5.2.3 Ion parallel flow / Total current density J∥,i

Distinct from ˆ̄U∥, the ion parallel flow u∥,i shares the same ĝ spatial dependence as the former,

and is related to the ion parallel current density by J∥,i = eZiu∥,i, and is obtained from:

u∥,i =
b√
π

∑
σ

σ

∫ ∞

0
du u3

∫ b−1

0
dy (ĝ+ pF̂ ′

Ms). (5.2.2)

Similarly, the analytic expression for the neoclassical equilibrium [17, 72] ion flow far from the

island (see Eq.(69) of Ref. [50]) is given by:

u∥,i

vth,i
= −1

2
ρ̂θ,iL̂

−1
n (1 + η) (5.2.3)

which for ρ̂θ,i = 10−3rs, L̂n = −1, η = 1 has the value u∥,i(x → ±∞) ≈ 6.843 × 10−4. Plotting

the numerical result for u∥,i(θ = 0, ξ = 0) at iteration 4 alongside Eq.(5.2.3) for each run, again

all cases are within ϵ3/2 ≈ 3.16% relative error of the analytic result far from the island.

0.0015 0.0010 0.00050.0000 0.0005 0.0010 0.0015
4.5
5.0
5.5
6.0
6.5
7.0
7.5

u
,i

[
3/

2 v
3 th

,i/
n s

]

×10 4 (a) = 0.005, w = 0.3 , i

0.003 0.002 0.0010.000 0.001 0.002 0.003
4.5
5.0
5.5
6.0
6.5
7.0
7.5

×10 4 (b) = 0.005, w = 0.75 , i

0.0015 0.0010 0.00050.0000 0.0005 0.0010 0.0015
x [rs]

4.5
5.0
5.5
6.0
6.5
7.0
7.5

u
,i

[
3/

2 v
3 th

,i/
n s

]

×10 4 (c) = 0.02, w = 0.3 , i

0.003 0.002 0.0010.000 0.001 0.002 0.003
x [rs]

4.5
5.0
5.5
6.0
6.5
7.0
7.5

×10 4 (d) = 0.02, w = 0.75 , i

Figure 5.15: Profile of parallel ion flow u∥ in radial coordinate x. Shown in magenta is the analytic

u∥ far from the island, Eq.(5.2.3), correct to O(ϵ3/2) error as shown by the magenta region. Error

in u∥ is the iterative residual of ˆ̄U∥ at iteration 4. Magnetic island extent shown by yellow region.
The y-axis is shared between plots.
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5.3 Limit of algorithm’s operating parameters

This section considered four runs at ŵ/ρ̂θ,i = {0.3, 0.75} and collisionality ν⋆ = {0.005, 0.020} for

ρ̂θ,i = 10−3rs. Previous studies with the associated DK-NTM and RDK-NTM codes [70, 41] explored

a broader range of parameters, particularly in the range ŵ ≫ ρ̂θ,i and ν⋆ < 0.005. However,

it is computationally challenging to explore those ranges within kokuchou in its present state.

Fig.5.16 illustrates two separate cases where a similar result containing unstably-growing ’wing-

like’ profiles in Φ̂ and ˆ̄U∥ is encountered by (a) reducing ν⋆ below 0.005 while using ŵ/ρ̂θ,i = 0.75,

and (b) using ν⋆ = 0.005 but increasing ŵ/ρ̂θ,i above 0.75. In both cases, ρ̂θ,i = 10−3rs is retained.
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Figure 5.16: 1D profiles versus radial coordinate x, across the magnetic island O-point ξ = 0 at

θ = 0, for (top) electrostatic potential Φ̂ satisfying quasineutrality and (bottom) ˆ̄U∥. Two runs
are shown, (a) a lower-than-usual collisionality case, and (b) a larger-than-usual magnetic island.
Both runs show numerical instability between iterations. Magnetic island extent shown in yellow,

equilibrium value of ˆ̄U∥ far from island with O(ϵ1/2) =∼ 3% error region shown in magenta.

Here, a typical distribution in Φ̂ and ˆ̄U∥ was seen at iterations 1 and 2, which changed to a new

distribution on successive iterations with large variations as far as 8-10 island widths away. For ˆ̄U∥,

this new result does not match with the neoclassical flow result far from the island (Eq.(5.2.1)).

Similarly, Φ̂ changes from its usual sigmoid profile (see Fig.5.10) to then grow unstably outside

the island on iterations 3 and 4. Because these results vary smoothly and tend to constants far

from the island (reflecting boundary conditions for ĝ), the solution is considered numerically valid

but not physical. As this same outcome occurs at low ν⋆ and high ŵ, it is most likely due to
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insufficient mesh resolution of the separatrix boundary, as discussed in Sec.3.1.6.

Summary

This chapter presented simulated plasma quantities from four full-size kokuchou simulations for

two values in collisionality ν⋆ = 0.005, 0.02 and island width ŵ/ρ̂θ,i = 0.3, 0.75 for a fixed ion

poloidal gyroradius ρ̂θ,i = 10−3rs, where rs is the minor radius of the island-forming rational

surface. Respectively, ν⋆ and ŵ/ρ̂θ,i affect the ion response through collisional transport and

drift island physics. For each simulation, the 1st-order perturbed ion distribution ĝ, potential

Φ̂ and momentum conservation term ˆ̄U∥ were iteratively recalculated four times for sufficient

self-consistency.

The perturbed ion distribution ĝ was presented, including profiles of the passing ion distri-

bution in {ξ, p} physical space, and across {y, u} velocity space. Profiles of ĝ and its derivatives

showed that while ν⋆ affected the width of the separatrix layer relative to the island, the size of

ŵ/ρ̂θ,i had a more influential effect on the island physics. As previously observed in Refs. [70, 41],

magnetic drifts caused the passing ion response (y < 1) to resemble the island in shape but become

radially-shifted from it by a factor ρ̂θ,iω̂DL̂
−1
q . Here, the magnetic drift frequency ω̂D(y, σ, u) has

a velocity-dependence described by Eq.(2.3.48). These shifted structures were referred to as drift

islands. If ŵ/ρ̂θ,i is larger, this shift is small and all drift islands at all velocities were aligned with

the magnetic island, hence the velocity integral of ĝ at a given point in physical space contains

significant localised variations there. If ŵ/ρ̂θ,i is small, the drift islands were spread out across

physical space, and these variations are reduced. As a result, the electrostatic potential Φ̂ and

ion flow ˆ̄U∥ exhibited slower changes between each iteration. Likewise, varying the collisionality

ν⋆ only had a significant effect when ŵ/ρ̂θ,i was larger, as it determined the variations of the drift

island separatrices and such was relevant only when the drift islands overlapped. Collisionality

had a lesser but significant role when ŵ ∼ ρ̂θ,i, as the separatrix width of drift islands was made

narrower at lower ν⋆, which led to differences in the velocity-integrated quantities including Φ̂

and flow that were not as prominent at ŵ ≪ ρ̂θ,i, where drift islands of different velocities were

not closely aligned in physical space.

The results presented here are reminiscent of earlier drift-kinetic NTM studies [69, 70, 41]; a

main difference being that this work focuses exclusively on the region ŵ ≲ ρ̂θ,i and the effects of

drift island physics and collisionality there. It builds on these results by: i) studying the variation

of the ion response with collisionality and its relevance at larger ŵ/ρ̂θ,i, and ii) validating the
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model by demonstrating that the ion flow u∥,i and momentum conservation term ˆ̄U∥ tend towards

the expected analytic neoclassical flows far from the magnetic island. Lastly, Sec.5.3 examined two

additional ’extreme’ cases at low ν⋆ = 0.001 and high ŵ = 1.0ρ̂θ,i that produced erroneous results,

evidencing the challenges of using the kokuchou code to resolve the narrow island separatrix

discussed in Sec.3.1.6. Here, Φ̂ and ˆ̄U∥ grew unstably far from the island as a result. This

presents obstacles in directly comparing kokuchou with similar codes in Refs. [69, 70, 41] that

have been operated at ν⋆ = 0.001.
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Chapter 6

Parameter scan

Having studied the result for a small sample of runs, for Objective (3) a large parameter scan was

conducted to identify the threshold width wc and its relationship with respect to normalised ion

poloidal gyroradius ρ̂θ,i[rs] and plasma collisionality ν⋆. The scan consisted of 5 values in each of

ν⋆, ρ̂θ,i and ŵ, listed in Tab. 6.1, or 125 runs total.

Parameter Plasma collisionality Ion poloidal gyroradius Island half-width

Symbol ν⋆ [no unit] ρ̂θ,i [rs] ŵ [rs]

Values {1, 5, 10, 15, 20} × 10−3 {1, 2, 3, 4, 5} × 10−3 {0.3, 0.4, 0.5, 0.6, 0.75} × ρ̂θ,i

Table 6.1: kokuchou input plasma parameters varied for the Objective (3) parameter scan.

Here, ŵ was chosen to be fractions of ρ̂θ,i ranging from 0.3− 0.75, or approximately between

1 − 2 ion banana widths ρb,i = ϵ1/2ρ̂θ,i = 0.316ρ̂θ,i. This is the range over which the threshold

width wc(ρ̂θ,i) is expected to lie, as Sec.6.3 will discuss. The range of ρ̂θ,i was also chosen to

match Ref. [41] partly for the original intent of benchmarking, but also due to computational

limitations as kokuchou cannot operate at the higher values of ρ̂θ,i that were used in DK-NTM [69,

70]. This was attributed to the change of diffusion term in
∂2ĝ

∂p2
from ∝ ρ̂θ,i to ρ̂

2
θ,i withinSec.2.6

since Ref. [70], however it is unclear why this change made higher ρ̂θ,i and ŵ more numerically

challenging to resolve. These values of ρ̂θ,i are an order of magnitude lower than the typical

values of an ITER-like tokamak (O(cm)). All other mesh and plasma parameters are same as

those listed at the start of Ch.5.

A novel aspect of this scan that expands on previous attempts [70, 41, 43] is the variation

of ν⋆. A higher ν⋆ increases the rate of radial transport across the drift island separatrix, which

should partly restore lost bootstrap current and reduce its MRE drive term ∆bs for a given ŵ, ρ̂θ,i.

The lowest value in ν⋆ was chosen with the original intention of comparing directly with RDK-NTM
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results from Ref. [41], however the difficultly of resolving the separatrix boundary layers has

meant the result from kokuchou at the lowest ν⋆ is unlikely to be valid, but we attempt here

regardless to identify the known operating range.

Results in this section are organised as follows. Sec.6.1 assesses the convergence and numerical

stability of Φ̂ and ˆ̄U∥ of these runs. Sec.6.2 presents the total field-parallel current contribution

to island growth ∆loc in the vicinity of the resistive layer, and its components from ions/electrons

and polarisation/bootstrap currents. In Sec.6.3, using the results where ∆loc(ŵ = wc) = 0, the

relationship of threshold island width wc with respect to ρ̂θ,i and ν⋆ is determined and compared

with results in literature.
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6.1 Numerical stability

6.1.1 Iterative residual

The maximum value of the iterative residual R (see Eq.(3.1.5)) of the electrostatic potential

Φ̂ and momentum conservation term ˆ̄U∥ across all {x, ξ, θ}-space at each iteration are plotted

in Fig.6.1 and Fig.6.2 respectively. Here, each column denotes the iteration number, and lighter

regions denote a larger maximum iterative residual for that quantity across all {x, ξ, θ}, or a larger

relative change between iterations for the whole quantity more broadly. Regions that darken on

successive iterations indicate slower change and convergence toward a numerically stable result.

For both quantities, the maximum iterative residual is largest for runs where the absolute size

of ŵ [rs] is large at high ratio ŵ/ρ̂θ,i and high ρ̂θ,i, i.e. the top-right of each panel. Notably, the

maximum residual of Φ̂ is considerably larger than ˆ̄U∥ for most runs. There appears to be a rough

threshold at roughly ŵ ≈ 10−3rs above which the maximum iterative residual of Φ̂ becomes larger

than 100% per iteration. This does not necessarily result in the numerical drift-kinetic equation

solution ĝ being invalid, but rather more sensitive to changes in Φ̂; recall in Fig.5.10 cases (b,d)

for ŵ/ρ̂θ,i = 0.75 the profile in Φ̂ changed significantly between iterations. Likewise, higher values

of ν⋆ are also seen to have a lower maximum residual in Φ̂, as the collision-dependent terms of

ĝ are then able to compete with Φ̂ and reduce numerical sensitivity on that term. However, by

being more sensitive to Φ̂, any error in calculating the derivatives of Φ̂ that appear in the equation

for ĝ would then introduce numerical stability on successive iterations.

For ˆ̄U∥ in Fig.6.2, the array maximum of R( ˆ̄U∥) is consistently lower than 30% change per

iteration and is decreasing in most runs, indicating that ˆ̄U∥ at all {x, θ, ξ} changes slowly between

iterations, even from its initial value at the start of iteration 1, ˆ̄U∥(pF̂
′
Ms). This reflects the trends

seen in Fig.5.14, where changes in ˆ̄U∥ were mostly localised to the vicinity of the island, while

far from the island ˆ̄U∥ converged toward a constant representing neoclassical equilibrium. Here,

the main parameter affecting the convergence state of ˆ̄U∥ is ŵ/ρ̂θ,i, where the drift island shift is

the main factor affecting the distribution of ˆ̄U∥, as seen prior in 5.2.2. With relation to Sec.3.1.5,

the convergence criterion of array-averaged iterative residuals of both Φ̂ and ˆ̄U∥ did not come to

within (ϵ = 10%) relative error after the maximum of 4 iterations for any of the runs. Future

work would require more than 4 iterations for Φ̂ to converge, particularly when ρ̂θ,i and ŵ are

high. However, greater care is needed to ensure the simulation state does not then diverge or

develop numerical errors at higher iteration numbers.
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Figure 6.1: Array-maximum iterative residual of the electrostatic potential, max(R(Φ̂)) plotted
vs. ŵ/ρ̂θ,i (x-axis) and ρ̂θ,i (y-axis), for each simulation iteration (column) and collisionality ν⋆
(row) for all 125 runs.
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Figure 6.2: As in Fig.6.1, showing array-maximum iterative residual of momentum-conserving

collision operator term max(R( ˆ̄U∥)).
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6.1.2 Resolving the separatrix boundary layer

Sec.3.1.6 discussed the difficulty of iteratively solving the ion response equation (2.3.47) around

the thin separatrix boundary layer from a computational perspective, particularly when collision-

ality ν⋆ is lower. Fig.5.10 and Fig.6.1 also indicate a further challenge in attaining a result for

electrostatic potential Φ̂ that converges after several iterative recalculations within the algorithm

described. Larger changes per iteration were observed in Φ̂ at island widths ŵ close to ρ̂θ,i, which

for the case of Fig.6.1, became unstably large with each iteration.

To assess how these two computational challenges may be related, we look at the physical

terms affecting the separatrix layer in more detail. Firstly, we define the separatrix layer width in

p-space ∆p such that
∂ĝ

∂p
∼ ĝ

∆p
. Then, recalling the drift-kinetic equation Eq.(2.3.47), accounting

for the scaling of each term near the magnetic island separatrix layer where p ∼ ±ŵ:

−m


O(ŵL̂−1

q )︷ ︸︸ ︷
p

L̂q
Θy +

O(ρ̂θ,iL̂
−1
q )︷ ︸︸ ︷
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L̂q
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θ

 ∂ĝ∂ξ

+


ŵ2L̂−1

q︷ ︸︸ ︷
m

4

ŵ2

L̂q
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m
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2
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Above, the Φ̂-dependent E × B drift terms are of unknown size, as Φ̂ will change significantly

with ĝ between iterations as evidenced earlier by Fig.5.10. Focusing on the underlined terms that

are coefficients of the p-derivatives of ĝ, these are small unless
∂ĝ

∂p
becomes large, which is the

case at p ∼ ±ŵ. Likewise, if also ŵ ≲ ρ̂θ,i, as is the case in this work, then the largest terms of

the left-hand side of the above equation are of O(ŵL̂−1
q ), which are the coefficients of

∂ĝ

∂ξ
.
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Starting with these
∂ĝ

∂ξ
terms, for passing particles (Θy = 1) if ŵ ≳ ρ̂θ,i then the left-hand

side has the approximate scale:

p

L̂q
∼ ŵ

L̂q
≲
ρ̂θ,i

L̂q
⇒ LHS ∼ ŵ

L̂q
ĝ

(
∂ĝ

∂ξ
∼ ĝ

)

Next, the diffusion term in
∂2ĝ

∂p2
is O

(
ν̂iiρ̂

2
θ,i

∆2
p

ĝ

)
in the layer, and so the approximate width of the

separatrix layer is provided by its balance with the ∂ξ terms:

ν̂iiρ̂
2
θ,i

∆2
p

��̂g ∼
ŵ

L̂q
��̂g ⇒ ∆p,pass ∼

√
ν̂iiL̂q
ŵ

ρ̂θ,i

Repeating the above for trapped particles, only ρ̂θ,iω̂DL̂
−1
q ∼ O(ρ̂θ,iL̂

−1
q ) contributes to

∂ĝ

∂ξ
of the

drift-kinetic equation.

p

L̂q
∼
ν̂iiρ̂

2
θ,i

∆2
p

⇒ ∆2
p ∼ ν̂iiL̂qρ̂θ,i ∼

(
ν̂iiL̂q
ŵ

)
ŵρ̂θ,i ⇒ ∆p,trap ∼

√
ν̂iiL̂q
ŵ

√
ŵρ̂θ,i

Then, comparing the approximate separatrix width ∆p for passing and trapped ions:

∆p,pass

∆p,trap
∼
√
ρ̂θ,i
ŵ

,

hence the passing width is narrowest when ŵ ≳ ρ̂θ,i, i.e. the island is ’large’ by this work’s

scope where ŵ = (0.3 − 2.0)ρ̂θ,i is used. The p-mesh in the code must resolve a layer of width

∼
√
ν̂iiL̂qŵ−1ρ̂θ,i, which is harder for low collisionality ν⋆ or high ŵ at fixed ρ̂θ,i.

Returning to the ’unknown’ E ×B drift terms, we have previously seen
∂Φ̂

∂x
in 5.11 to be of

O(0.1), and so we may assume term is overall O(ρ̂θ,i) ∼ O(ŵ). Consider the scenario in which

E×B drift is the dominant term on the LHS:

∂Φ̂

∂x
∼ Φ̂

∆p
∼ ŵ

∆p
⇒ ρ̂θ,i

〈
1

v∥

∂Φ̂

∂x

〉p
θ

∼
ρ̂θ,iŵ

∆p
∼
ν̂iiρ̂θ,i
∆2
p

∴ ∆p,E×B ∼
ν̂iiρ̂θ,i
ŵ

(6.1.1)
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Here, ∆p is defined by the narrowest of ∆p,pass and ∆p,E×B. The latter is the case when:

ν̂ii

ŵL̂q
< 1 (6.1.2)

Therefore, if the above condition is true, then the separatrix layer width is primarily influenced

by Φ̂, and therefore the separatrix width will change between iterations as Φ̂ is recalculated. This

complicates the numerical procedure, as at any time the separatrix may become too narrow to

resolve under the existing mesh scheme.

Given ν̂ii = ϵ1/2ν⋆ν̃ii(u) (Eq.(2.2.17)), the collision frequency varies significantly over the u-

mesh used in this work, from ν̃ii(0.1vth,i) ≈ O(100) to ν̃ii(3vthi) ≈ O(0.1) (see also Fig.4.3). From

ρ̂θ{1, 5}×10−3rs, the island width in rs units ranges from ŵ = {0.3, 0.75}ρ̂θ,i, which for this range

in ρ̂θ,i gives island widths ranging from ŵ = {3× 10−4, 3.75× 10−3}rs. The range of collisionality

values used is ν⋆ = {0.001, 0.020}, therefore the condition (6.1.2) will be satisfied over at least

part of the u-mesh in all of the runs presented. This means the p-mesh will need to resolve details

at the scale of Eq.(6.1.1), but this will also vary between iterations as the numerical result for

Φ̂ then changes between iterations. Therefore any future changes made to the kokuchou should

focus on redesigning the meshing scheme to pack points around the drift island separatrix to

accommodate possible variations in its width between iterations. The remainder of this section

will present simulations over this parameter space in ŵ, ρ̂θ,i and ν⋆, however ν⋆ = 0.001 is omitted

as these results exhibited numerical instability between iterations similar to that of Fig.5.16.
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6.2 Contributions to the modified Rutherford equation

Using Eq.(2.5.10), the cos ξ projection of parallel current density J∥ from the ion and electron

flows are used to determine their contribution to the modified Rutherford equation for island

growth, Eq.(2.5.13). This section presents results for each current contribution with respect to

collisionality ν⋆, ion poloidal gyroradius ρ̂θ,i and its ratio with island width, ŵ/ρ̂θ,i. Here, the

results at ν⋆ = 0.001 were omitted.

Fig.6.3 shows the result for the total parallel current drive to island growth ∆loc as contour

plots, each column an iteration of the kokuchou code. Here, ∆loc is seen to converge stably

towards the result on iteration 4, mirroring a similar trend seen in ˆ̄U∥ within Fig.6.2 despite the

large iterative residual in Φ̂ in Fig.6.1. The contour plot indicates the location of the threshold

width wc in ŵ/ρ̂θ,i where ∆loc = 0, which occurs between roughly ŵ = 0.4− 0.6ρ̂θ,i, at higher ŵ

with increasing ν⋆. Later, 6.3 will use this data to quantify the threshold width and its variation

with respect to ν⋆ and ρ̂θ,i.

Fig.6.4 illustrates ∆loc and its contributions from ions and electrons at the final iteration 4

as a line plot. The ion contribution alone is shown more visibly in Fig.6.5. Here, the dominant

contribution to ∆loc is provided by the ions, however the electron contribution is of a similar

magnitude and able to compete with the ion term. Both the total and ion ∆loc terms increase

with ŵ/ρ̂θ,i over the range 0.3 ≤ ŵ/ρ̂θ,i ≤ 0.75, and are both stabilising (negative) at low ŵ/ρ̂θ,i

and destabilising (positive) at higher ŵ/ρ̂θ,i. The inverse is seen for the electron contribution,

which decreases with increasing ŵ/ρ̂θ,i and also changes sign over this range. As with the total

∆loc, the threshold in ŵ where each of the species’ contributions change sign is also seen to

increase with both ν⋆ and ρ̂θ,i.

The trend in ∆loc for ions is similar to the results of DK-NTM within Ref. [70] Fig.10, while

the range in ŵ/ρ̂θ,i where a sign change is observed is similar to that of RDK-NTM in Ref. [41]

Fig.8. A major difference from DK-NTM is seen within the electron contribution to ∆loc. Though

this is stabilising at ŵ ∼ ρ̂θ,i as expected, at ŵ ≪ ρ̂θ,i it becomes destabilising rather than

strongly stabilising as in Ref. [70]. Toward ŵ = 0.3ρ̂θ,i, ∆loc and its contributions do not continue

decreasing as expected [70, 41], instead flattening out and in some cases slightly increasing again.

This is seen in the full ranges of ν⋆ and ρ̂θ,i, however at the lower value of ρ̂θ,i = 0.001rs, ∆loc

is higher than at ŵ/ρ̂θ,i = 0.3 than at 0.4. These variations will be discussed later, when the

components of the total current are presented later in Fig.6.6 and Fig.6.8.
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Figure 6.3: Contour plot of the total parallel current contribution ∆loc to the modified Rutherford
equation. In each panel ∆loc (colour) is plotted vs. ŵ/ρ̂θ,i (x-axis) and ρ̂θ,i (y-axis), arranged by
iteration number (column) and ν⋆ (row).
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Figure 6.4: Line plot of the total neoclassical parallel current contribution ∆loc to island growth
and its contributions by species, including ions (red, dashed), electrons (blue, dotted) and the
total (black, dash-dot), at iteration 4 of each simulation. In each panel ∆loc is plotted vs. ŵ/ρ̂θ,i,
arranged by ρ̂θ,i (column) and ν⋆ (row).
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Figure 6.5: As in Fig.6.4, showing only the ion contribution to ∆loc. Lines added for visual aid,
line style indicates value of ν⋆.
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6.2.1 Bootstrap current drive

Fig.6.6 shows each species’ contributions to ∆loc from the flux surface-average of J∥. These

contributions to ∆loc include the bootstrap current and curvature, however in our working limit

ϵ≪ 1, only the bootstrap current is non-negligible. Here, its contribution to ∆loc is denoted ∆bs.

Over the range 0.3 ≤ ŵ/ρ̂θ,i ≤ 0.75, the total bootstrap current ∆bs is inversely proportional

to ŵ for the full range in ρ̂θ,i and ν⋆. This is in agreement with previous work [50, 46] where a

similar relationship ∆bs ∝ ŵ−3 was identified, as discussed previously in Sec.1.4. The dominant

species contributing to the total ∆bs is the electrons, whose contribution also scales inversely with

increasing ŵ, and is significantly larger in magnitude than the ion contribution over this range in

island width where ŵ ≲ ρ̂θ,i.

The ion contribution, shown by itself in Fig.6.7, increases smoothly with ŵ/ρ̂θ,i, initially

slowly at ŵ = 0.3, then changing from destabilising to stabilising above a value in ŵ within the

range 0.6−0.75ρ̂θ,i. At ϵ = 0.1, this corresponds with roughly 2 ion banana widths ρb,i = ϵ1/2ρ̂θ,i,

where the magnetic island threshold width has been previously observed [66]. At the high end

in ŵ = 0.75ρ̂θ,i, for ρ̂θ,i ≥ 4 × 10−3rs and ν⋆ ≤ 0.01, the ion term ∆bs is seen to increase more

slowly, making the ∆bs curve for ions resembles the peak-shaped profile seen in previous work [70,

41], albeit at the low end in island width ŵ. As the same trend is seen in the total ion current

contribution ∆loc within Fig.6.4, the ion bootstrap current drive term ∆bs is therefore the main

contribution to the ion ∆loc term. As collisionality ν⋆ increases from 0.005− 0.020, the threshold

width where the sign change in the ion ∆bs term slightly increases. Both of these effects are

consistent with the physical picture that the drift island behaviour of the ion distribution when

ŵ ≲ ρ̂θ,i is the primary influence over the ion bootstrap current contribution to island growth [70,

41]. At sufficiently low ŵ, the bootstrap current ’hole’ created by the magnetic island is restored,

of which a higher ν⋆ partly contributes to by enhancing cross-orbit transport across the island

separatrix, smoothing the gradients in the current profile across the magnetic island that are

otherwise flattened by the island perturbation, recalling Fig.5.15. By the same principle, the

opposite outcome is seen for the electrons, whose poloidal gyroradius ρ̂θe ≪ ρ̂θi and drift island

shift is far smaller than that of ions. The electrons will therefore continue to respond to the

perturbed electrostatic potential in the vicinity of the magnetic island, and hence the bootstrap

current perturbation carried by (passing) electrons drives the island’s growth.
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Figure 6.6: Bootstrap current contribution ∆bs to the modified Rutherford equation by species,
including ions (red, dashed), electrons (blue, dotted) and the total (black, dash-dot). In each
panel ∆bs is plotted vs. ŵ/ρ̂θ,i, arranged by ρ̂θ,i (column) and ν⋆ (row). Taken at the final
iteration 4 of the simulation.
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Figure 6.7: As in Fig.6.6, showing only the ion contribution to the bootstrap current drive ∆bs.
Lines added for visual aid, line style indicates value of ν⋆.
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6.2.2 Polarisation current drive

Fig.6.8 shows the contribution to ∆loc from currents that disappear after flux surface-averaging,

i.e. ∆loc − ∆bs. This is treated here to be the parallel return current that results from the

polarisation current, whose contribution to the modified Rutherford equation ∆pol was described

within Sec.1.4. This result was previously unseen in Refs. [70, 41]. The ion polarisation current

contribution, which is again smaller in magnitude than the total and electron contribution, is

shown by itself in Fig.6.9. Here, over the full range in 0.3 ≤ ŵ/ρ̂θ,i ≤ 0.75, the ion contribution is

destabilising and decreasing at higher ŵ/ρ̂θ,i, but its value at ŵ/ρ̂θ,i = 0.4 is noticeably smaller

than at 0.3 and 0.5, thereby producing the ’flattened’ profile seen earlier in Fig.6.6. There are

insufficient datapoints in ŵ/ρ̂θ,i to determine the appropriate shape of the profile, but this same

profile is seen across the full range in ρ̂θ,i and ν⋆, indicating a possible physical origin.

The electron polarisation current ∆pol is the largest contribution to ∆pol as well as ∆bs, and

is also inversely proportional to ŵ/ρ̂θ,i. It exceeds the electron contribution to ∆bs in magnitude

at higher ŵ/ρ̂θ,i, causing ∆loc for electrons to change sign in Fig.6.4. However, this large electron

polarisation current is not explained by the present theory [50, 46], where the ion contribution is

expected to dominate as the ions’ transport is E×B-dominated at the scale ρ̂θe ≪ ρ̂θ,i ∼ ŵ. Both

species’ contributions change relatively little over the range of collisionality ν⋆ = {0.005, 0.020}

and ion poloidal gyroradii ρ̂θ,i = {1, 5} × 10−3rs. For ions, the profiles shown in Fig.6.9 appear

to be more sensitive to ν⋆ at high ŵ/ρ̂θ,i and at low ρ̂θ,i, as indicated by the spread in values for

each profile in ν⋆.

Regarding the total ∆pol, because this exceeds the (destabilising) ∆bs term in magnitude over

the range ŵ ≲ 0.6, this produces the threshold width in ∆loc(ŵ) = ∆bs(ŵ) + ∆pol(ŵ) = 0 seen

earlier in Fig.6.6. This is the expected behaviour at low ŵ, as described in Ref. [50] for the

case where the polarisation current term for island growth is stabilising and able to surpass the

bootstrap current’s influence.

Finally, we note that presently we consider islands whose island rotation rate ωE = 0 relative

to the rotational rest frame where the electric field E∥ far from the magnetic island is zero

as Refs. [50, 70] did, as island rotation is beyond the scope of this work. To more accurately

represent the polarisation current, a scan across ωE would be required, and the valid ∆pol should

be extracted at the value in ωE that provides torque balance between the island and plasma bulk.

This has been recently attempted in the low-collisionality limit RDK-NTM code [43], and should be

considered for future work with kokuchou.

128



Sec. 6.2: Contributions to the modified Rutherford equation Ch. 6: Parameter scan

10

0

=
0.

00
5

, i = 0.001 , i = 0.002 , i = 0.003 , i = 0.004 , i = 0.005

10

0

=
0.

01

10

0

=
0.

01
5

0.3 0.5 0.7
w/ , i

10

0

=
0.

02

0.3 0.5 0.7
w/ , i

0.3 0.5 0.7
w/ , i

0.3 0.5 0.7
w/ , i

0.3 0.5 0.7
w/ , i

total
ions
electrons

Polarisation current contribution to island growth
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6.3 Threshold width scaling

6.3.1 1D linear regression of wc(ρ̂θ,i) at different ν⋆

The NTM threshold island width wc corresponds with the value of ŵ where the total drive

term ∆loc(ŵ) = 0; this is obtained via linear interpolation at fixed ρ̂θ,i and ν⋆. Fig.6.10 shows

these values of wc plotted with respect to ρ̂θ,i. For each value in ν⋆, a least-squares linear fit is

performed. The standard deviation of each fit is indicated by the shaded regions of each profile.
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Figure 6.10: Linear fit functions of threshold width / ion poloidal gyroradius ratio wc/ρ̂θ,i for
each collisionality ν⋆, fitting to points in ŵ where ∆loc(wc) = 0, versus ρ̂θ,i. Lines added for visual
aid. Error bars given by standard deviation of the least-squares fit.

For all 4 values in ν⋆, Fig.6.10 illustrates a linear relationship of wc with ρ̂θ,i, which is in

agreement with both experimental measurements of the threshold width inm/n = 2/1 NTMs [66]

in finite ϵ tokamak geometries1, and with the previous simulation results of the DK-NTM (Ref.[70]

Fig.9) and RDK-NTM models (Ref.[41] Fig.10) for 2/1 NTMs in the ϵ ≪ 1 limit. A novel result

seen here is that the gradient of wc versus ρ̂θ,i also scales proportionally with collisionality ν⋆,

as shown by the gradient in each linear least squares fit in Fig.6.10. Though the magnitude of

∆loc and its contributions in Fig.6.4 were seen to change little with collisionality over the range

ν⋆ = {0.005, 0.020}, the value of ŵ where ∆loc = 0 was seen to increase over the range in ŵ/ρ̂θ,i,

1[66] Fig.6 is an empirical fit of the full marginal island width wmarg = 2wc vs ϵ1/2 containing data from the
conventional tokamak DIII-D and the spherical (high ϵ) tokamak NSTX.
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translating into a significant, albeit gradual ν⋆-dependence of the threshold width wc.

Fig.6.11 shows the values of the gradients of each fit across wc/ρ̂θ,i from Fig.6.10 plotted with

respect to ν⋆. Shown here are previous wc/ρ̂θ,i scaling results at ν⋆ = 10−3 obtained from the 4D

DK-NTM code in Ref. [70] (blue triangle), the reduced 3D code RDK-NTM of Ref. [41] (green star).

Also shown by the magenta lines are values for the experimentally-derived result of the scaling

of wc with ρ̂θ,i (neglecting collisionality dependence) from Fig.6 of La Haye et al, Ref. [66] (solid

line) and its standard deviation (dashed lines). The experimental dataset contained two real-

world tokamaks (NSTX, DIII-D) for both m/n = 2/1 and m/n = 3/2 modes. The same data is

also shown in Fig.6.12, illustrating the kokuchou data and its collision frequency dependence more

visibly. Performing a further least-squares linear fit to the kokuchou datapoints, the threshold

width is seen to scale linearly and proportionally with collisionality ν⋆. The fitting function for

the threshold width wc with respect to ion poloidal gyroradius ρ̂θ,i and ν⋆ in the high aspect ratio

limit ϵ≪ 1, within the range ν⋆ = {5, 20} × 10−3 and 10−3rs ≤ ρ̂θ,i ≤ 5× 10−3rs is:

wc
ρ̂θ,i

= 6.247ν⋆ + 0.367 (6.3.1)

This novel result, where wc scales linearly and proportionally to ν⋆, is qualitatively in line with the

existing picture that a higher collision frequency contributes to the healing of small islands through

enhanced radial transport across the island [45, 46, 47]. Quantitatively, the linear relationship

suggests that further increases in collisionality ν⋆ (e.g. O(100) or higher) will greatly increase

the scaling of wc versus ρ̂θ,i by factors O(ρ̂θ,i), which has significant implications. However, we

stress this scaling is valid only in this range in ν⋆ and a broader range of ν⋆ would be needed

to determine the wider extent of the relationship of wc with ν⋆. Nonetheless, all points of the

kokuchou dataset lie within one standard deviation of the linear least squares fit.

Comparing this new result from kokuchou with the DK-NTM result of Ref. [70], the former is

now aligned with the reduced dimension RDK-NTM code of Ref. [41] that operates in the limit of

low ν⋆. It is also closer to the experimental fit result of La Haye et al in Ref. [66], but still lies

beyond one standard deviation of that result. This outcome is attributed to the amendments

made to the ion drift kinetic equation outlined in Sec.2.6, and careful testing and verification of

intermediate terms within kokuchou. Unlike both the DK-NTM and RDK-NTM results presented here,

no threshold width result for kokuchou was obtained at ν⋆ = 0.001, and so a direct comparison

over the same operating parameter space would be desirable for future work.
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6.3.2 2D linear regression of wc(ρ̂θ,i, ν⋆)

Previously in Fig.6.11-6.11, the scaling of wc with ρ̂θ,i at different values in ν⋆ was compared

with corresponding wc(ρ̂θ,i) results in literature. Here, the ν⋆ dependence of only the gradient of

wc/ρ̂θ,i was estimated to infer how the result may compare with the 3D code in the low-ν⋆ limit.

Instead, we consider a 2D multiparameter fit of the threshold width wc with both the variables

ρ̂θ,i and ν⋆. An ordinary least squares linear regression model2 was fitted to the dataset of 20

wc values. Given wc is expected to scale linearly with both variables over this operating space, a

planar function for the prediction of wc(ρ̂θ,i, ν⋆) is obtained:

wc[rs] ≈ 0.440ρ̂θ,i[rs] + 0.0178ν⋆ − 7.54× 10−5 (6.3.2)

Eq.(6.3.2) is plotted with the kokuchou wc data set in Fig.6.14. In Fig.6.14, each of the 20 data

points in wc(ρ̂θ,i, ν⋆) are plotted with respect to their predicted values from the regression. The

prediction is accurate, as evidenced by the low mean squared error of the regression (3.36×10−9rs)

and its coefficient of determination R2 = 0.9916 being close to the ideal value of 1. However, we

anticipate the wc dependence on ν⋆ would no longer be linear as ν⋆ approaches either extreme

of 0 (the collisionless limit) or 1, outside the collisional banana regime required for neoclassical

transport. These scenarios should be explored in future work to clarify this relationship.
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Figure 6.13: Prediction of wc(ρ̂θ,i, ν⋆) from the multivariate linear regression model.

2Using scikit-learn LinearRegression model, v.1.2.2.
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Figure 6.14: 3D plots of the simulated NTM threshold island width wc(ρ̂θ,i, ν⋆) obtained from
kokuchou (black crosses), and their corresponding predicted values (red circles) from Eq.(6.3.2),
a multiple linear regression fitted to the simulated values, plotted with respect to ion poloidal
gyroradius ρ̂θ,i and collisionality ν⋆.
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Summary

This chapter presented a parameter scan over a range of values in collisionality, ion poloidal

gyroradius and island width. The erroneous result presented in Sec.5.3 was investigated from the

perspective of the electrostatic potential Φ̂, which was identified to be a dominant influence on

the narrow separatrix layer surrounding the drift island in the perturbed ion distribution ĝ. At

lower ν⋆ and higher ŵ, ĝ became highly sensitive to changes in Φ̂ (and vice versa), effectively

imposing operating limits for these parameters within the simulation code. Valid results were

obtained for all simulations conducted except those at ν⋆ < 5× 10−3 due to numerical instability

(see Sec.5.3).

From the final iteration of each run, the contributions of the neoclassical parallel ’layer current’

density to the modified Rutherford equation for island growth were calculated, the total of these

contributions was denoted ∆loc. Its components included the so-called bootstrap (∆bs) and

polarisation (∆pol) currents, each with ion and electron parts. The total ∆loc was influenced

mostly by the ion currents, both terms changing sign over the range 0.5 ≤ ŵ/ρ̂θ,i ≤ 0.75. At

lower ŵ, the ion ∆loc term was stabilising as expected, while the electron term was destabilising.

Both species’ terms changed sign at higher ŵ/ρ̂θ,i, while at the very low value of 0.3 they were

seen to flatten. The bootstrap term ∆bs and polarisation term ∆pol were both dominated by the

electron currents, and were destabilising and stabilising over this range in ŵ/ρ̂θ,i respectively. The

ion bootstrap term ∆bs,i changed sign as ∆loc did, while the polarisation term was destabilising

and decreasing with increasing ŵ/ρ̂θ,i over this range. Notably, the ion ∆pol term contained a

jump at ŵ/ρ̂θ,i = 0.3 − 0.4 whose cause is not fully understood, but appears consistently at all

values in ρ̂θ,i and ν⋆. The electron polarisation term ∆pol was also stabilising over this range and

significantly larger in magnitude than the ion term, which cannot be explained by the existing

theory and is likely a result of the implementation used in this work where island rotation is not

considered.

From the results for ∆loc, novel results for the relationship of wc and collisionality were found.

Firstly, the 1D relationship of wc with ρ̂θ,i at different values in ν⋆ was obtained by interpolating

in ŵ/ρ̂θ,i where ∆loc = 0 and performing a 1D least-squares linear fit across those values. These

results were in alignment with the RDK-NTM code of Ref. [41] and a significant improvement over

that of the previous 4D NTM code DK-NTM of Ref. [70]. Secondly, the 2D scaling law for the

threshold width with both ρ̂θ,i and ν⋆ was estimated via multiple linear regression to a very good

degree of accuracy (see Eq.(6.3.2)). The positive correlation of wc[rs] with ν⋆ demonstrates the
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healing effect of higher collision frequency on small islands, and its synergy with the drift island

effect which scales as ∝ ρ̂θ,i.

The result of wc/ρ̂θ,i from kokuchou is also closer to the experimental result of Ref. [66] but

direct alignment remains to be achieved. Here we note that the data extracted from Ref. [66] in

Fig.6.11 contained real-world physical details that are not regarded in kokuchou, including finite

island rotation (which affects the polarisation current, see Sec.6.2.2), island widths of O(0.01rs)

that are an order of magnitude greater than used in kokuchou, a larger aspect ratio ϵ ∼ {0.4 −

0.56}, and a shaped plasma cross-section.
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Chapter 7

Conclusions

This work concerned plasma instabilities and the obstacles they present to the development of

tokamaks, toroidal magnetic confinement fusion devices which generate energy by sustaining a

high-temperature, high-pressure plasma in hydrodynamic equilibrium over long durations. Its

focus was the performance-limiting resistive MHD instability known as the neoclassical tearing

mode (NTM), characterised by the growth of magnetic island structures, driven by the filamen-

tation of magnetic field-parallel neoclassical currents including the bootstrap current. NTMs are

particularly problematic for modern ’high-gain’ tokamaks such as ITER, due to their tendency

to occur at high normalised plasma pressures or poloidal beta, and in low collisionality ’banana

regime’ scenarios where trapped particles and the bootstrap current can exist. To mitigate the

possible disruptions NTMs can cause, magnetic islands must be quickly removed from the plasma

before they grow to large size. Experiments indicated that both island width and poloidal beta

must exceed threshold values for growth to occur, otherwise the island shrinks.

The main result of this work was to develop a predictive theory for the threshold island half-

width wc, given known plasma parameters. The growth rate of the magnetic island half width w

was tracked by the modified Rutherford equation [60], where the evolution of small islands was

determined primarily by the bootstrap and polarisation currents, and also influenced by radial

diffusion across the island. Given that experimentally [32, 34, 66] the threshold width wc was

observed to be comparable to ρb,i, the trapped ion banana orbit width, a theoretical model of the

threshold width island physics must account for the guiding centre motion of ions, finite trapped

ion orbit effects and quasineutrality due to differing ion and electron responses to the island.

137



Ch. 7: Conclusions

To this effort, a new 4D numerical simulation code kokuchou was developed based on the

drift-kinetic formalism of Ref. [50] as a novel successor to the DK-NTM code of Ref. [70]. This

employed a numerically-calculated kinetic treatment for ions, while an analytic representation for

electrons [50] was used due to their smaller banana orbit width ρb,e ≪ ρb,i ∼ w. For simplicity,

we worked in the limit of low inverse aspect ratio ϵ = rs/R0 ≪ 1 and expanded the drift-kinetic

equation in terms of small ∆ = w/rs ≪ 1. Here, rs is the minor radius of the rational surface

where the simulated magnetic island was situated, and R0 is the major radius. Within these

limits, a dimensionality reduction was performed by noting the canonical angular momentum pφ

was a constant of motion along ion orbits. Higher order terms were then eliminated by taking

their average in poloidal angle θ at fixed pφ. This produced a 4D drift-kinetic equation for the

perturbed ion distribution ĝ in the vicinity of the island that is accurate to O(ϵ3/2), with different

forms for passing and trapped ions that were matched at the trapped-passing boundary in velocity

pitch angle y-space. An iterative approach was used where two equation terms that depended

on ĝ, which included the electrostatic potential satisfying quasineutrality Φ̂ and the ion flow-like

momentum-conserving collision operator term ˆ̄U∥, were both updated each time perturbed ion

solution ĝ was recalculated. This provided a degree of self-consistency between the terms of the

equation. Unit tests were developed to validate the intermediate stages of the algorithm in the

new code kokuchou. These also helped to identify and address a critical numerical issue in the

trapped-passing boundary calculation that was also identified in the DK-NTM code.

The main results consisted of kokuchou simulations over a range of island widths ŵ, ion

poloidal gyroradius ρ̂θ,i (both normalised to rs) and collisionality ν⋆. This work led to the

following conclusions, applicable to a small near-threshold size magnetic island (of the ordering

ρb,e ≪ ρb,i ∼ wc ≲ ρθ,i ≪ rs) at rest with respect to the bulk plasma on a m/n = 2/1 rational

surface in a high aspect ratio (ϵ≪ 1) circular cross section tokamak in the absence of Shafranov

shift:

• As previously studied in Refs. [70, 41], when the normalised island half-width ŵ and ion

poloidal gyroradius ρ̂θ,i (each normalised to rs) are comparable, the passing ion (y < yc)

distribution is flattened across structures described as ’drift islands’, as opposed to the

magnetic island proper.

• These drift island structures were radially shifted due to magnetic drifts. The size of the

shift was provided by the ∇B drift coefficient of
∂ĝ

∂ξ
, that scaled as ∝ ρ̂θ,iω̂DL̂

−1
q , where

ω̂D(y, σ, u) is the drift frequency and L̂q is the magnetic shear length scale normalised to rs.

138



Ch. 7: Conclusions

The drift island shift was largest when ŵ < ρ̂θ,i, and also at high speed u, zero pitch-angle

y (noting the form of ω̂D in Eq.(2.3.48)). This velocity-space dependence resulted in the

differences in profile for Φ̂ and ˆ̄U∥, both dependent on the velocity-integral of ĝ.

• Increasing the collisionality ν⋆, which enhances radial transport across the drift island sep-

aratrix, was seen to slightly broaden the ion distribution at the separatrix, but only led

to visible change at higher values of ŵ/ρ̂θ,i where the drift island shift is small and the

separatrices of all drift islands are aligned.

• The presence of the electrostatic potential Φ̂ on further iterations provided a significant

contribution to the drift-kinetic equation, particularly when ŵ ≳ ρ̂θ,i. Larger island widths

and lower ν⋆ produced greater changes in Φ̂ between iterations, as the Φ̂-dependent E ×

B drift term then competes with the other terms in
∂ĝ

∂p
that are of O(ŵ2) and O(ν⋆)

respectively.

A large scale parameter scan was then conducted, which produced the following novel results:

• A novel relationship between threshold width wc, ion poloidal gyroradius ρ̂θ,i and collision-

ality ν⋆ over the working parameter space was identified, given by wc[rs] ≈ 0.440ρ̂θ,i[rs] +

0.0178ν⋆ − 7.54 × 10−5. The threshold width wc/ρ̂θ,i scaled proportionally and linearly

with ν⋆ was over the range ν⋆ = 5 − 20 × 10−3. This is in line with the present physical

explanation that a higher collision frequency leads to enhanced radial transport across the

magnetic island via collisions, contributing to the healing of small islands thereby raising

the threshold width.

• Compared with the DK-NTM code [70], the result for wc from kokuchou was closer to that

of both the reduced-dimension low-collisionality limit RDK-NTM code of Ref. [41] and the

experimentally-derived empirical result of Ref. [66] for m/n = 2/1 modes in NSTX and

DIII-D, a spherical and conventional tokamak respectively.

• The improved result was attributed to the amendments made to the derivation of the 4D

drift-kinetic equation for ions, originally presented in Ref. [70]. Testing capabilities within

kokuchou were also critical in verifying the terms and procedures within the program.

• The amended equation introduced ρ̂2θ,i dependence to the neoclassical diffusion term in
∂2ĝ

∂p2
,

making the narrow separatrix layer more numerically challenging to resolve, particularly at
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low ν⋆ and high ŵ where the E × B drift (via Φ̂) had a significant influence over the

separatrix layer physics.

• There are limitations to the operating parameter space of kokuchou, which developed un-

stably growing broad-scale numerical instabilities when ν⋆ was too low or ŵ was too high.

Both led to the ’wing-shaped’ profiles shown in Fig.5.16, likely due to the insufficient reso-

lution of the {ξ, p} spatial mesh at the narrow drift island separatrix, exacerbated by the

large changes in Φ̂ between iteration at larger ŵ, as discussed in 6.1.

7.1 Future work

The 4D drift-kinetic NTM equation and its implementation in kokuchou demonstrated a proof-of-

concept for a predictive model for the threshold island width. Further work is required to address

prevailing computational limitations (see Sec.3.1.6) to facilitate more rigorous explorations of

parameter space and the incorporation of additional physical detail.

The first priority for future work with kokuchou should be to implement a more efficient

meshing scheme (via a finite element discretisation) that provides finer resolution around the

steep gradients of the drift island separatrix. The present Cartesian spatial mesh and finite

difference discretisation used in kokuchou does not provide the scalability necessary to explore

large islands in lower-collisionality scenarios where the separatrix width is expected to be very

narrow relative to the island. The main challenge of redesigning the spatial meshes to follow the

drift island separatrix is handling the velocity-space dependence of the radial shift of the drift

island. This may involve converting the radial pφ coordinate (Eq.(2.3.13)) to a new coordinate

[84], denoted here as p̃, that accounts for the shift of the drift island via the second term:

p̃ = ψ − I(ψ)
(
v∥(θ)

ωc,i(θ)
−

v∥(θ = 0)

ωc,i(θ = 0)

)
(7.1.1)

The form of Eq.(2.3.47) would be modified further, introducing many new terms to the y-

derivatives that would then be evaluated at fixed p̃. By accounting for the drift island shift,

the p mesh (Fig.3.2) would no longer need to span a large extent to capture islands of different

radial shift, overcoming the limitations set by the maximum velocity and ρ̂θ,i. Mesh points can

then be packed around the steep gradients of the drift island separatrix at the same location in

p̃ for all drift islands, and the drift island shift will be preserved in the other radial mesh coordi-

nate x (normalised ψ). A similar approach has been accomplished within the reduced dimension
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3D RDK-NTM code that is applicable only in the low-ν⋆ limit, where the 2D (ξ, p) phase-space

is reduced to a single ’streamline’ dimension to provide finer mesh resolution localised to the

drift island [41]. The more efficient meshing scheme also allowed for the numerical calculation

of electrons within this work, whose orbit length scales are far smaller than those of ions. This

approach however sacrifices the ability to explore finite collisionality and its effects studied within

this work, which must then be introduced analytically or via partial numerical implementations.

Another computational issue to address is related to the ’winged’ distribution in p-space

observed in Fig.5.16 where a numerically-valid non-physical result was seen on later iterations. A

more ambitious but equally valuable technical improvement would be to implement an analytic

result for Eq.(2.3.47) in the limit of large p, to use in addition to (or in place of) the
∂ĝ

∂p
boundary

condition. This may also help the algorithm avoid the non-physical ”winged” distributions seen

in Φ̂ and ˆ̄U∥ for low ν⋆ and high ŵ/ρ̂θ,i, if there are multiple numerically-valid solutions for ĝ

satisfying
∂ĝ

∂p
= 0. Computationally, this would also reduce the need for a finely resolved p-mesh

far outside the island. Improving the efficiency of the coordinate system will assist in resolving

the electrostatic potential Φ̂ and helping it to converge after several iterations. In the meantime,

a possible short-term means of addressing the issue of Φ̂ growing unstably is to reuse Φ̂ from a

’numerically stable’ run as the initial state of another run where a stable result is not obtainable

when starting with Φ̂ = 0.

Once improvements have been made to the kokuchou numerical code, there are many further

parameter studies that can be conducted for threshold-size islands. Performing experiments in

finite island rotation rate ωE would allow a stationary solution to be found where there is torque

balance between the island and the electrostatic field far from the island, thereby providing a

more accurate representation of the polarisation current’s behaviour [52]. This is represented by

the dispersion relation Eq.(18) of Ref. [50], and would involve studying the sin ξ component of

current density as opposed to the cos ξ component for ∆loc. A mode of m/n = 2/1 is assumed but

introducing n to the derivation would allow for the modelling of other common NTMs like the 3/2

mode [34]. A parameter scan in inverse aspect ratio ϵ would verify whether the wc : ρ̂θ,i scaling

result corresponds with the banana width ρbi = ϵ1/2ρ̂θ,i, and to identify the operating limit where

the low-ϵ assumption is no longer valid. If stable numerical simulations at lower collisionalities

are possible, a direct comparison or benchmarking with the low-collisionality limit RDK-NTM code

in the limit ϵ≪ 1 [41] would allow the difference between the two approaches to be quantified.

To achieve a result closer to the empirically-derived result of Ref. [66] and to experiments

more generally, future work should incorporate plasma shaping, Shafranov shift, and relaxing the
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ϵ≪ 1 working limit within kokuchou. As discussed briefly in Sec.1.4, finite curvature introduces

a stabilising drive term to the MRE which, assuming it is stabilising, would reduce the wc : ρ̂θ,i

gradient for the kokuchou dataset and bring it closer to the experimental measurement. Likewise,

a finite island rotation rate ωE that is of ∼ O(ω∗,i) will also account for the effects of island

propagation on the growth rate. Both of these pieces of important physics were introduced to the

reduced-dimension RDK-NTM code in Refs. [41, 43], within which a result in better agreement with

Ref. [66] was obtained compared to the previous ϵ≪ 1 result for that code shown in Fig.6.12.

A challenge for the wider field of NTMs is identifying the other physical mechanisms - be-

sides island rotation - that influence the polarisation current, particularly at island widths that

approach the full ion gyroradius ρθ ≪ ρθ,i. This would require a much more rigorous gyrokinetic

treatment rather than a drift-kinetic treatment, and therefore remains an active area of work.
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Chapter 8

Appendix

8.1 Useful Identities

Exponential integrals, based on Gradshteyn and Ryzhik’s Table of Integrals, Series and Products:

∫ ∞

0
dx e−ax

2
=

1

2

√
π

a
, R(a) > 0 (8.1.1)∫ ∞

0
dx x2e−ax

2
=

√
π

4a3/2
, R(a) > 0 (8.1.2)∫ ∞

0
dx x4e−x

2
=

3
√
π

8
(8.1.3)∫ ∞

0
dx x6e−x

2
=

15
√
π

16
(8.1.4)

Error function integrals, based on Ng and Murray (1969) Sec.4.3. in Ref.(J. Research. NTB B

Maths 1969):

∫ ∞

0
dx

e−x
2

x
erf(x) = sinh−1(1) = ln(1 +

√
2) (8.1.5)∫ ∞

0
dx e−x

2
erf(x) =

√
π

4
(8.1.6)∫ ∞

0
dx xe−x

2
erf(x) =

1

2
√
2

(8.1.7)∫ ∞

0
dx x2e−x

2
erf(x) =

2 + π

8
√
2

(8.1.8)∫ ∞

0
dx x3e−x

2
erf(x) =

5

8
√
2

(8.1.9)
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Integrals of some quantities within the program

The y-integral of v∥:

∫ b−1

0
dy v∥ = σu

∫ b−1

0
dy
√
1− yb

= σu

[
−2
3b

(1− yb)3/2
]b−1

0

=
2σu

3b
(8.1.10)

The y-integral of 1/v∥:

∫ b−1

0
dy

1

v∥
=

1

σu

∫ b−1

0

dy√
1− yb

=
1

σu

[
2

b
(1− yb)1/2

]b−1

0

=
2

σu
(8.1.11)

The y-integral of normalised canonical angular momentum p across all y-space, in explicit form,

using Eq. 8.1.10:

∫ b−1

0
dy p =

∫ b−1

0
dy x− σvρθiv∥ =

x

b
− 2σvρθi

3b
(8.1.12)

The y-integral of shifted canonical angular momentum p̃ across all y-space, in explicit form:

∫ b−1

0
dy p = σv

∫ b−1

0
dy x− ρθi(v∥ − v∥,0)

=
x

b
− σvρθi

∫ b−1

0
dy
√

1− yb−Θ(y − yc)
√

1− y

=
x

b
− σvρθi

(∫ 1

0
dy
√
1− yb−

√
1− y +

∫ b−1

1
dy
√
1− yb

)

=
x

b
− σvρθi

[−2
3

(
(1− yb)3/2

b
− (1− y)3/2

)]1
0

+

[
−2
3

(1− yb)3/2

b

]b−1

1


=
x

b
+

2σvρθi(b− 1)

3b
(8.1.13)
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Scalar and vector products

Cross products between the basis vectors:

∇ψ ×∇θ = |∇ψ||∇θ|
|∇ϕ|

∇ϕ =
R2Bθ
r
∇ϕ (8.1.14)

∇θ ×∇ϕ =
|∇θ||∇ϕ|
|∇ψ|

∇ψ =
1

rR2Bθ
∇ψ (8.1.15)

∇ϕ×∇ψ =
|∇ϕ||∇ψ|
|∇θ|

∇θ = rBθ∇θ. (8.1.16)

Scalar products between total magnetic field B and basis vectors:

B · ∇ψ = mψ̃ sin ξ (∇θ ×∇ϕ) · ∇ψ

= mψ̃ sin ξ
Bθ
r
. (8.1.17)

B · ∇θ = (∇ϕ×∇ψ) · ∇θ + ∂R

∂ψ

ψ̃

R
cos ξ (∇ϕ×∇ψ) · ∇θ

=
Bθ
r

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
,

Bθ
r
≡
Bϕ
Rq

(8.1.18)

B · ∇ϕ =
I

R2
. (8.1.19)

B · ∇ξ =
mBϕ
Rq

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
− m

qs

I

R2
. (8.1.20)

Cross products between B and basis vectors:

B×∇ψ = I∇ϕ×∇ψ +

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
(∇ϕ×∇ψ)×∇ψ︸ ︷︷ ︸

= (∇ϕ · ∇ψ)∇ψ − |∇ψ|2∇ϕ

→ B×∇ψ = I∇ϕ×∇ψ −R2B2
θ

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∇ϕ. (8.1.21)

B×∇θ = I∇ϕ×∇θ +mψ̃ sin ξ (∇ϕ×∇ψ)×∇ψ︸ ︷︷ ︸
= |∇θ|2 − (∇θ · ∇ϕ)∇θ

→ B×∇θ = I∇ϕ×∇θ + mψ̃

r2
sin ξ ∇ϕ. (8.1.22)
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B×∇ϕ =

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
(∇ϕ×∇ψ)×∇ϕ︸ ︷︷ ︸

=|∇ϕ|2∇ψ

+mψ̃ sin ξ (∇θ ×∇ϕ)×∇ϕ︸ ︷︷ ︸
=−|∇ϕ|2∇θ

→ B×∇ϕ =
1

R2

[(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∇ψ −mψ̃ sin ξ ∇θ

]
. (8.1.23)

B×∇ξ = mB×
(
∇θ − 1

qs
∇ϕ
)
,

→ B×∇ξ = mI∇ϕ×∇θ + m2

r2
ψ̃ sin ξ ∇ϕ

− m

qsR2

[(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∇ψ −mψ̃ sin ξ ∇θ

]
. (8.1.24)
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8.2 Perturbed magnetic field

We derive the total perturbed magnetic field in a steady-state plasma containing a single helicity

magnetic island of half-width w, expanding in the limits of small ∆ = w/rs ≪ 1 and ϵ = rs/R≪ 1.

The perturbed magnetic field satisfying Maxwell’s equation ∇ ·B = 0:

B1 = ∇×
(
A∥b0

)
(8.2.1)

where ∇ ·B1 = ∇ · [∇× (A∥b0)] = 0, since ∇ · (∇×A) = 0 for any vector field A. Here,

A∥ = −
ψ̃

R
cosnξ, ψ̃ =

w2
ψ

4

q′s
qs
, wψ = RBθw, ξ = m

(
θ − ϕ

qs

)
,

where qs = m/n is the safety factor at the rational surface, m and n are poloidal and toroidal

mode numbers respectively. The derivative of qs with respect to ψ (indicated with superscript ′)

is:

q′s =
dq

dψ

∣∣∣∣
ψ=ψs

.

Then, working in the island rest frame,

B1 = (∇A∥)× b0 +A∥∇× b0,

∇A∥ =
ψ̃

R
sin ξ ∇ξ, ∇ξ = m∇θ − m

qs
∇ϕ (8.2.2)

→ ∇A∥ × b0 =
ψ̃

RB0
sin ξ ∇ξ ×B0

=
mψ̃

RB0
sin ξ

[
I∇θ ×∇ϕ− 1

qs
∇ϕ× (∇ϕ×∇ψ)︸ ︷︷ ︸ ]

= ∇ϕ(∇ϕ · ∇ψ)− |∇ϕ|2∇ψ = − 1

R2
∇ψ

=
mψ̃

RB0
sin ξ

(
I

rR2Bθ
∇ψ +

1

qsR2
∇ψ
)

=
mψ̃Bϕ
RB0RBθ

sin ξ

(
1 +

rBθ
qsRBϕ

)
∇ψ

∴ ∇A∥ × b0 ≃
mψ̃

rR2Bθ
sin ξ ∇ψ +O(ϵ2).
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→ A∥∇× b0 = −
ψ̃

R
cos ξ ∇×

[
I∇ϕ +∇ϕ×∇ψ

B0(ψ, θ)

]
, N.B. ∇× (∇f) = 0;

∇× (∇ϕ×∇ψ) = ∇ϕ(���*
0

∇2ψ)−∇ψ(���*
0

∇2ϕ)

+������:0
(∇ψ · ∇2)ϕ−������:0

(∇ϕ · ∇2)ψ = 0;

= − ψ̃
R

cos ξ

[
∂

∂ψ

(
I

B0

)
∇ψ ×∇ϕ+

∂

∂ψ

(
1

B0

)
∇ψ × (∇ϕ×∇ψ)

+ I
∂

∂θ

(
1

B0

)
∇θ ×∇ϕ+

∂

∂θ

(
1

B0

)
∇θ × (∇ϕ×∇ψ)

]

= − ψ̃
R

cos ξ

[
− rBθ

∂

∂ψ

(
I

B0

)
∇θ +R2B2

θ

∂

∂ψ

(
1

B0

)
∇ϕ

+
I

rR2Bθ

∂

∂θ

(
1

B0

)
∇ψ

]

= +
ψ̃

R
cos ξ

[
rBθ

∂

∂ψ

(
I

B0

)
∇θ +R2B

2
θ

B2
0

∂B0

∂ψ
∇ϕ+

I

rR2B2
0Bθ

∂B0

∂θ
∇ψ

]

∴ A∥∇× b0 = +
ψ̃

R
cos ξ

[
rBθ

∂

∂ψ

(
I

B0

)
∇θ +

(
RBθ
B0

)2 ∂B0

∂ψ
∇ϕ

+
1

rRB0Bθ

∂B0

∂ψ
∇ψ

]
.

1 2

→ B1 =
mψ̃

rR2Bθ
sin ξ

(
1 +

rBθ
qsRBϕ

)
∇ψ

+
ψ̃

R
cos ξ

[
rBθ

∂

∂ψ

(
I

B0

)
∇θ +

(
RBθ
B0

)2 ∂B0

∂ψ
∇ϕ+

1

rRB0Bθ

∂B0

∂θ
∇ψ

]
.

3 4 5

(8.2.3)
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Check the ordering of terms, with ∆ = w/r as the ordering parameter:

1 2

B1

B0
=

mψ̃

RB0
sin ξ

1

rRBθ

(
1 +

rBθ
qsRBϕ

)
∇ψ

+
ψ̃

RB0
cos ξ

[
rBθ

∂

∂ψ

(
I

B0

)
∇θ +

(
RBθ
B0

)2 ∂B0

∂ψ
∇ϕ+

1

rRB0Bθ

∂B0

∂θ
∇ψ

]
3 4 5

[
1
]
: ψ̃

1

RB0

|∇ψ|
r

RBθ ∼
w2
ψ

RB0

q′s
qs

�
��RBθ

r���RBθ
∼
w2R2B2

θ

RB0

O(1)

rRBθ

1

r

∴
[
1
]
∼ ϵ∆2.

Then

2

1
:

rBθ
qsRBϕ

∼ ϵ2,

⇒
[
2
]
∼ ϵ3∆2.

3

1
:

rRBθ
|∇ψ|

rBθ
∂

∂ψ

(
I

B0

)
|∇θ| ∼

Rr2B2
θ

RBθ

∂

∂ψ

(
R��Bϕ

��B0

)
1

r
∼ rBθ
RBθ

R

r
∼ 1

⇒
[
3
]
∼ ϵ∆2.

4

1
: r

R2B2
θ

B2
0

∂B0

∂ψ
|∇ϕ| ∼

rR2B2
θB0

B2
0RBθr

∼ Bθ
B0
∼ ϵ

⇒
[
4
]
∼ ϵ2∆2.

5

1
:

r

rRB0Bθ
B0ϵRBθ ∼ ϵ

⇒
[
5
]
∼ ϵ2∆2.

Therefore, to O(ϵ3/2∆2), the magnetic field perturbation is:

B1 ≃
mψ̃

rR2Bθ
sin ξ ∇ψ +

ψ̃

R
cos ξ.rBθ

∂

∂ψ

(
I

B0

)
︸ ︷︷ ︸

∼
∂R

∂ψ

∇θ,

∇ψ = rR2Bθ∇θ ×∇ϕ, ∇θ = 1

rBθ
∇ϕ×∇ψ.

149



Sec. 8.2: Perturbed magnetic field Ch. 8: Appendix

which, recalling Eq.(8.1.15) and (8.1.16) gives:

B1 = mψ̃ sin ξ ∇θ ×∇ϕ+
∂R

∂ψ

ψ̃

R
cos ξ ∇ϕ×∇ψ +O(ϵ2∆2). (8.2.4)

The total magnetic field with the perturbation is then:

Btot = I(ψ)∇ϕ+∇ϕ×∇ψ +mψ̃ sin ξ ∇θ ×∇ϕ+
∂R

∂ψ

ψ̃

R
cos ξ ∇ϕ×∇ψ . (8.2.5)

where the ordering of terms are 1 : ϵ : ϵ∆2 : ϵ∆2.
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8.3 Extended theory derivation

This section contains additional derivation of steps covered previously in the Method chap-

ter, Ch.3.

8.3.1 Differential Operators

The parallel derivative operator is defined as:

∇∥ =
B · ∇
B

, (8.3.1)

where B is the total magnetic field given by Eq.(2.1.7). Then, using results for the scalar products

(8.1.17) ∼ (8.1.20),

v∥∇∥ = v∥
B · ∇
B

=
v∥

B

(
B · ∇ψ ∂

∂ψ

∣∣∣∣
θ,ξ

+B · ∇θ ∂

∂θ

∣∣∣∣
ψ,ξ

+B · ∇ξ ∂

∂ξ

∣∣∣∣
ψ,θ

)

=
v∥

B

[
Bϕ
Rq

mψ̃ sin ξ
∂

∂ψ
+
Bϕ
Rq

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂

∂θ

+
mBϕ
Rq

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂

∂ξ
− m

qs

I

R2

∂

∂ξ

]

But
m

qs

I

R2
=
mq

qs

Bϕ
Rq

and B ∼ Bϕ +O(ϵ2), so:

v∥∇∥ =
v∥

B

[
mψ̃ sin ξ

∂

∂ψ
+

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂

∂θ
+

(
1− q

qs

)
∂

∂ξ
+m

∂R

∂ψ

ψ̃

R
cos ξ

∂

∂ξ

]
.

Here,

∂

∂ψ
=

1

RBθ

∂

∂r
∼ 1

RBθr
on equilibrium quantities;

∼ 1

RBθw
on perturbed quantities.
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Then, for each term, checking orderings in ∆ = w/r:

ψ̃ =
w2
ψ

4

q′s
qs
∼ RBθ

w2

r
, so:[

∂R

∂ψ

ψ̃

R

]
∼ R

rBθR

RBθw
2

rR
∼ w2

r2
= ∆2.[

mψ̃ sin ξ
∂

∂ψ

]
∼ RBθw

2

r

1

RBθ

1

w(r)eqm
∼ ∆ (∆2)eqm

1− q

qs
= 1− 1

qs

(
qs + wψq

′
s + ...

)
by Taylor expansion;

≃ wψq′s + ...

∼ w

r
∼ ∆.

Therefore:

v∥∇∥ =
v∥

Rq

[
∂

∂θ

∣∣∣∣
ψ

+m

(
1− q

qs

)
∂

∂ξ
+mψ̃ sin ξ

∂

∂ψ
+
∂R

∂ψ

ψ̃

R
cos ξ

(
∂

∂θ
+m

∂

∂ξ

)]
1 ∆ ∆(∆2)eqm ∆2

(8.3.2)

Next, consider the magnetic drift response:

vb · ∇[...] = −
v∥

B
B×∇

(
v∥

ωc(j)

)
· ∇[...] =

v∥

B
B(B×∇[...]) · ∇

(
v∥

ωc

)
(8.3.3)

Using the scalar products (8.1.17) ∼ (8.1.20) and cross products (8.1.21) ∼ (8.1.24),

vb · ∇ψ =
v∥

B
(B×∇ψ) · ∇

(
v∥

ωc

)

=
v∥

B

[
I (∇ϕ×∇ψ) · ∇θ︸ ︷︷ ︸

=J−1=Bϕ/Rq

∂

∂θ

(
v∥

ωc

)
−R2B2

θ

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
|∇ϕ|2

��
���*0

∂

∂ϕ

(
v∥

ωc

) ]

by axisymmetry

=
v∥

Rq
I
∂

∂θ

(
v∥

ωc

)
.
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vb · ∇θ =
v∥

B
(B×∇θ) · ∇

(
v∥

ωc

)

=
v∥

B

[
I (∇ϕ×∇θ) · ∇θ︸ ︷︷ ︸

=−J−1

∂

∂ψ

(
v∥

ωc

)
+
mψ̃

r2
sin ξ |∇ϕ|2

�
����*0
∂

∂ϕ

(
v∥

ωc

) ]

= −
v∥

Rq
I
∂

∂ψ

(
v∥

ωc

)
.

vb · ∇ξ =
v∥

B
(B×∇ξ) · ∇

(
v∥

ωc

)

=
mv∥

B

[
I (∇ϕ×∇θ) · ∇θ︸ ︷︷ ︸

=−J−1

∂

∂ξ

(
v∥

ωc

)
+
mψ̃

r2
sin ξ |∇ϕ|2

��
���*0

∂

∂ϕ

(
v∥

ωc

)

+
mψ̃

qsr2
sin ξ |∇θ|2︸ ︷︷ ︸

=r−2

∂

∂θ

(
v∥

ωc

)
− 1

qsR2

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
|∇ψ|2︸ ︷︷ ︸
=R2B2

θ

∂

∂ψ

(
v∥

ωc

)]

But:
Rq

IBϕ

B2
θ

qs
=

q

qs

B2
θ

B2
ϕ

,
Rq

IBϕ

m

qs

ψ̃

r2R2
= m

q

qs

ψ̃

B2
ϕr

2R2
:

∴ vb · ∇ξ = −
mv∥

Rq
I
∂

∂ψ

(
v∥

ωc

)[
1 +

B2
θ

B2
ϕ

q

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)]
+
mv∥

Rq
I
∂

∂θ

(
v∥

ωc

)
q

qs

mψ̃

B2
ϕr

2R2
sin ξ.

Combining these results,

vb · ∇ =
Iv∥

Rq

[
∂

∂θ

(
v∥

ωc

)
∂

∂ψ
− ∂

∂ψ

(
v∥

ωc

)
∂

∂θ

]
−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc

)
∂

∂ξ

−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc

)
B2
θ

B2
ϕ

q

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂

∂ξ
+
mIv∥

Rq

∂

∂θ

(
v∥

ωc

)
q

qs

mψ̃ sin ξ

(BϕrR)2
∂

∂ξ
.

(8.3.4)
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Here,

B2
θ

Bϕ
∼ ϵ2, ∂R

∂ψ

ψ̃

R
∼ ∆2.

I
∂

∂θ

(
v∥

ωc

)
∂

∂ψ
∼ RBϕσv

∂

∂θ

(√
1− λB
ωc

)
︸ ︷︷ ︸
∼(ρLB)∂B/∂θ∼ϵρL

1

RBθ

1

w(r)eqm

∼ ϵ ρθ
w(r)eqm

∼ ϵ(∆eqm).

I
∂

∂ψ

(
v∥

ωc

)
∂

∂θ
∼ mI ∂

∂ψ

(
v∥

ωc

)
∂

∂ξ
∼ 1

r

v∥

ωc
∼ ρθ

r
∼ ∆.

mψ̃

(BϕrR)2
∼ RBθ

w2

r

1

r2R2B2
ϕ

∼ w2

r2
Bθ

rRB2
ϕ

→ I
∂

∂θ

(
v∥

ωc

)
mψ̃

(BϕrR)2
∼ RBϕϵρL

w2

r2
Bθ

rRB2
ϕ

∼ ϵρθ
r

w2

r2
B2
θ

B2
ϕ

∼ ϵ3∆3.

Therefore, to O(ϵ3/2∆2):

vb · ∇ =
Iv∥

Rq

[
∂

∂θ

(
v∥

ωc

)
∂

∂ψ
− ∂

∂ψ

(
v∥

ωc

)
∂

∂θ

]
−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc

)
∂

∂ξ

ϵ(∆)eqm ∆ ∆

(8.3.5)

Now consider the E×B response:

vE · ∇[...] =
B×∇Φ
B2

· ∇[...] = − 1

B2
(B×∇[...]) · ∇Φ (8.3.6)

Noting the similarity with Eq.(8.3.3), with v∥/B → −1/B2 and v∥/ωc → Φ, but also taking

into account that Φ = Φ(ψ, θ, ξ) in general:

vE · ∇ψ = − 1

B2

[
I(∇ϕ×∇ψ) · ∇θ

(
∂Φ

∂θ
+m

∂Φ

∂ξ

)
−(RBθ)2

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
|∇ϕ|2

(
−m
qs

)
∂Φ

∂ξ

]

= −
IBϕ
B2Rq

(
∂Φ

∂θ
+m

∂Φ

∂ξ

)
−
B2
θ

B2

m

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂Φ

∂ξ

= −1

q

∂Φ

∂θ
− m

q

∂Φ

∂ξ
−
B2
θ

B2

m

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂Φ

∂ξ
.
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vE · ∇θ = −
1

B2

[
I(∇ϕ×∇θ) · ∇ψ∂Φ

∂ψ
+
mψ̃

r2
sin ξ|∇ϕ|2

(
−m
qs

)
∂Φ

∂ξ

]

= +
1

q

∂Φ

∂ψ
+

m2ψ̃

qs(rRB)2
sin ξ

∂Φ

∂ξ
.

vE · ∇ξ = −
1

B2

[
mI(∇ϕ×∇θ) · ∇ψ∂Φ

∂ψ
+
m2ψ̃

r2
sin ξ|∇ϕ|2

(
−m
qs

)
∂Φ

∂ξ

− m

qsR2

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
|∇ψ|2∂Φ

∂ψ
+
m2ψ̃

qsR2
sin ξ|∇θ|2

(
∂Φ

∂θ
+m

∂Φ

∂ξ

)]

= +
I

B2

Bϕ
Rq

m
∂Φ

∂ψ
+
B2
θ

B2

m

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂Φ

∂ψ
− m2ψ̃

qs(rRB)2
sin ξ

∂Φ

∂θ

=
m

q

∂Φ

∂ψ
+
B2
θ

B2

m

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)
∂Φ

∂ψ
− m2ψ̃

qs(rRB)2
sin ξ

∂Φ

∂θ
.

Combining the results,

vE · ∇ =
1

q

(
∂Φ

∂ψ

∂

∂θ
− ∂Φ

∂θ

∂

∂ψ

)
+
m

q

(
∂Φ

∂ψ

∂

∂ξ
− ∂Φ

∂ξ

∂

∂ψ

)
+
m2ψ̃ sin ξ

qs(rRB)2

(
∂Φ

∂ξ

∂

∂θ
− ∂Φ

∂θ

∂

∂ξ

)
+
B2
θ

B2

m

qs

(
1 +

∂R

∂ψ

ψ̃

R
cos ξ

)(
∂Φ

∂ψ

∂

∂ξ
− ∂Φ

∂ξ

∂

∂ψ

)
(8.3.7)

Here,

1

q

∂Φ

∂ψ

/
v∥

Rq
∼ Rq

qv∥

Φ

RBθw
∼ eΦ

T

mv2th
eBθ

1

vthw

∼ eΦ

T

ρθ
w
∼ ρθ
w
∆.

m2ψ̃ sin ξ

qs(rRB)2
∂Φ

∂ξ

/
∂Φ

∂ψ
∼
RB2

θw
2

r3R2B2
RBθw ∼

w3

r3
B2
θ

B2
∼ ϵ2∆3.

Since the last set of terms in Eq.(8.3.7) are ϵ2 smaller than the leading term, to O(ϵ3/2∆2):

vE · ∇ =
1

q

(
∂Φ

∂ψ

∂

∂θ
− ∂Φ

∂θ

∂

∂ψ

)
+
m

q

(
∂Φ

∂ψ

∂

∂ξ
− ∂Φ

∂ξ

∂

∂ψ

)
∆ ∆(∆2)eqm ∆ ∆(∆2)eqm

(8.3.8)
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Then, the leading order terms (to O(∆2)) in v∥∇∥Φ and vb · ∇Φ are:

v∥∇∥Φ =
v∥

Rq

[
∂Φ

∂θ

∣∣∣∣
ψ

+m

(
1− q

qs

)
∂Φ

∂ξ
+mψ ˜sinξ

∂Φ

∂ψ

]
(8.3.9)

∆ ∆2 ∆2

vb · ∇Φ =
Iv∥

Rq

[
∂

∂θ

(
v∥

ωc

)
∂Φ

∂ψ
− ∂

∂ψ

(
v∥

ωc

)
∂Φ

∂θ
−m ∂

∂ψ

(
v∥

ωc

)
∂Φ

∂ξ

]
(8.3.10)

ϵ∆ ∆2 ∆2 (8.3.11)

In summary, the differential operators and their orderings in ∆ are given by:

v∥∇∥ =
v∥

Rq

[
∂

∂θ

∣∣∣∣
ψ

+m

(
1− q

qs

)
∂

∂ξ
+mψ̃ sin ξ

∂

∂ψ
+
∂R

∂ψ

ψ̃

R
cos ξ

(
∂

∂θ
+m

∂

∂ξ

)]
1 ∆ ∆(∆2)eqm ∆2

vb · ∇ =
Iv∥

Rq

[
∂

∂θ

(
v∥

ωc

)
∂

∂ψ
− ∂

∂ψ

(
v∥

ωc

)
∂

∂θ

]
−
mIv∥

Rq

∂

∂ψ

(
v∥

ωc

)
∂

∂ξ

ϵ(∆)eqm ∆ ∆

vE · ∇ =
1

q

(
∂Φ

∂ψ

∂

∂θ
− ∂Φ

∂θ

∂

∂ψ

)
+
m

q

(
∂Φ

∂ψ

∂

∂ξ
− ∂Φ

∂ξ

∂

∂ψ

)
∆ ∆(∆2)eqm ∆ ∆(∆2)eqm

(8.3.12)
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8.3.2 Coefficient normalisation

Using the normalisations given in Sec.2.3.5, returning to Eq.(2.3.38), starting with terms in
∂ḡ

∂ξ
originating from the magnetic drift:

q′s
qs
pφ =

p

L̂q
,

q′s
qs
I

〈
v∥

ωci

〉ψ
θ

=
q′s
qs
RBϕ

σvB0

ωci0

〈√
1− λB
B

〉ψ
θ

= ���RBϕ

���RBθrsL̂q
σu

vth

���:ωcθωci0 �
�
���

1/1+ϵ

B0

Bmax

〈√
1− yb
b

〉x
θ

=
σu

1 + ϵ

ρ̂θ

L̂q

〈√
1− yb
b

〉x
θ

.

I

〈
∂

∂ψ

(
v∥

ωc,i

)〉ψ
θ

= −σvB0

ωci0

[〈
B′λB

2B2
√
1− λB

〉ψ
θ

+

〈
B′√1− λB

B2

〉ψ
θ

]

= −σv
2

B0

ωci0

〈
(2− λB)√
1− λB

B′

B2

〉ψ
θ

= −σu
2

vth

���:ωcθωci0

��B0

���RBθrs�
�
���

1/1+ϵ

RBϕ
Bmax

〈
(2− yb)
b2
√
1− yb

∂b

∂x

〉x
θ

= −σu
2

ρ̂θ
(1 + ϵ)

〈
b′

b2
(2− yb)√
1− yb

〉x
θ

.

Define the normalised ion drift frequency ω̂D (a length-less drift velocity), to be the combination

of the terms above, such that:

p

L̂q
+
ρ̂θ

L̂q
ω̂D =

q′s
qs
pφ +

q′s
qs
I

〈
v∥

ωci

〉ψ
θ

+ I

〈
∂

∂ψ

(
v∥

ωc,i

)〉ψ
θ

,

ω̂D =
σu

(1 + ϵ)

[〈√
1− yb
b

〉x
θ

− L̂q
2

〈
b′

b2
(2− yb)√
1− yb

〉x
θ

]
. (8.3.13)
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Next, the electrostatic potential-dependent E×B terms in Eq.(2.3.38),
∂ḡ

∂ξ
and

∂ḡ

∂p
:

〈
R

v∥

∂Φ

∂ψ

〉pφ
θ

=
Ti

eivthi

〈
R

u∥

1

RBθrs

∂Φ̂

∂x

〉p
θ

=
mivthi
2eiBθ

1

rs

〈
1

u∥

∂Φ̂

∂x

〉p
θ

=
ρ̂θ
2

〈
1

u∥

∂Φ̂

∂x

〉p
θ

.

〈
R

v∥

∂Φ

∂ξ

〉pφ
θ

∂

∂pφ
=

Ti
eivthi

1

RBθrs

〈
R

u∥

∂Φ̂

∂ξ

〉p
θ

∂

∂p

=
ρ̂θ
2

〈
1

u∥

∂Φ̂

∂ξ

〉p
θ

∂

∂p
.

Then, the island perturbation term in
∂ḡ

∂p
:

mψ̃ sin ξ
∂

∂pφ
=
m

4
sin ξ

ŵ2

L̂q

RBθrs
RBθrs

∂

∂pφ

=
mŵ2

4L̂q
sin ξ

∂

∂p
.
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Lastly, the terms within
∂ḡ

∂p
,
∂2ḡ

∂p2
,
∂2ḡ

∂dpdy
, introduced by the collision operator:

νii
R0q0I

ωci0

∂

∂pφ
= ν̂ii

vth
Rq

RqRBϕ
ωci0

1

RBθrs

∂

∂p

= ν̂iiρ̂θ
∂

∂p
.

νii
2
σvR0q0λB0

(
I

ωci0

)2〈 1√
1− λB

〉ψ
θ

∂2

∂p2φ

=
ν̂ii
2

vth
Rq

σuvthR0q0
y

(1 + ϵ)

(
RBϕ

ωci0RBθrs

)2〈 1√
1− yb

〉x
θ

∂2

∂p2

=
ν̂ii
2

σu

(1 + ϵ)
ρ̂2θy

〈
1√

1− yb

〉x
θ

∂2

∂p2
.

2νiiR0q0
I

ωci0
λ

∂2

∂λ∂pφ
=

2ν̂ii
vth

vth
Rq

R0q0y
RBϕ
ωci0

1

RBθrs

∂2

∂y∂p

= 2ν̂iiρ̂θy
∂2

∂y∂p
.

νii
σv

R0q0
B0

〈
(2− 3λB)√

1− λB

〉ψ
θ

∂

∂λ
=

ν̂ii
σuvth

vth
Rq

R0q0
B0

Bmax

〈
(2− 3yb)√

1− yb

〉x
θ

∂

∂y

=
ν̂ii
σu

(1 + ϵ)

〈
(2− 3yb)√

1− yb

〉x
θ

∂

∂y
.

2νii
σv

R0q0
B0

λ
〈√

1− λB
〉x
θ

∂2

∂λ2
=

2ν̂ii
σuvth

vth
Rq

R0q0
B0

Bmaxy
〈√

1− yb
〉x
θ

∂2

∂y2

=
2ν̂ii
σu

(1 + ϵ)y
〈√

1− yb
〉x
θ

∂2

∂y2
.

The velocity volume integral (2.2.16) applied to some distribution function f(λ, σ, v) in normalised

units becomes:

∫
f d3v ≡ πB

∑
σ

∫ ∞

0
dv v2

∫ B−1

0

f dλ√
1− λB

= πbv3th
∑
σ

∫ ∞

0
du u2

∫ b−1

0

dy√
1− yb

. (8.3.14)
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Normalising f̂ =
π3/2v3th,i

n f , then the collision operator term (2.2.14) becomes:

ū∥j(f) =
1

ns ⟨νjj⟩v

∫
d3v νjj(v)v∥ f(v)

=
πbv4th
ns ⟨ν̂ii⟩v

∑
σ

σ

∫ ∞

0
du ν̂iiu

3

∫ b−1

0

√
1− yb√
1− yb

dy
ns

π3/2v3th
f̂

=
vthb√
π ⟨ν̂ii⟩v

∑
σ

σ

∫ ∞

0
du ν̂iiu

3

∫ b−1

0
dy f̂ . (8.3.15)

Therefore, the corresponding term in Eq.(2.3.38) becomes:

2νii
R0q0
B0

〈
Bū∥,i(g1)

〉pφ
θ

v2thi
= 2ν̂ii

vth
Rq

R0q0Bmax

B0v2th

〈
bū∥,i(gi)

〉p
θ

= 2ν̂ii
(1 + ϵ)

vth,i

vth,i√
π

1

⟨ν̂ii⟩v

〈
b2
∑
σ

σ

∫ ∞

0
du u3ν̂ii

∫ b−1

0
dy gi

〉p
θ

(8.3.16)

Define:

ˆ̄U∥i(f̂) =
1√

π ⟨ν̂ii⟩v

〈∑
σ

σ

∫ ∞

0
du u3ν̂ii

∫ b−1

0
dy f̂

〉p
θ

. (8.3.17)

Note that b2 = O(ϵ2), so
〈
b2
〉
θ
→ 1, which means that ˆ̄U∥i(f̂) can be used to approximate

Eq.(8.3.16):

⇒ 2νii
R0q0
B0

〈
Bū∥i(ĝ1)

〉pφ
θ

v2thi
= 2ν̂ii(1 + ϵ) ˆ̄U∥i(ĝ+ pF̂ ′

M).

Putting everything together, the normalised drift-kinetic NTM equation for ĝ (2.3.47) is:

−m

[
p

L̂q
Θy +

ρ̂θ

L̂q
ω̂D −

ρ̂θ
2

〈
1

u∥

∂Φ̂

∂x

〉p
θ

]
∂ĝ

∂ξ

+

[
m

4

ŵ2

L̂q
sin ξ Θy −m

ρ̂θ
2

〈
1

u∥

∂Φ̂

∂ξ

〉p
θ

− ν̂iiρ̂θΘy

](
∂ĝ

∂p
+ F̂ ′

Ms

)
− ν̂ii

2

σu

(1 + ϵ)
ρ̂2θy

〈
1√

1− yb

〉x
θ

∂2ĝ

∂p2
− 2ν̂iiρ̂θyΘy

∂2ĝ

∂y∂p
− ν̂ii
σu

(1 + ϵ)

〈
(2− 3yb)√

1− yb

〉x
θ

∂ĝ

∂y

∣∣∣∣
p

− 2ν̂ii
σu

(1 + ϵ)y
〈√

1− yb
〉x
θ

∂2ĝ

∂y2

∣∣∣∣
p

= 2ν̂ii(1 + ϵ) ˆ̄U∥i(ĝ+ pF̂ ′
Ms)F̂Ms

(8.3.18)

where Θy = 1 for passing particles, and Θy = 0 for trapped particles.
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8.4 Velocity volume integral

Recall in Sec. 1.2.4 that by taking fluid moments of the distribution function, we obtain the

density and flow. For this, we use the velocity volume integral operator, given by:

{f}v = πB
∑
σ

∫ ∞

0
dv v2

∫ B−1

0

fdλ√
1− λB

(8.4.1)

In normalised units, taking account the normalisation of the particle distribution f̂j =
π3/2v3th,i

ns
fj :

{
f̂
}
v
=

ns
v3th,i

b√
π

∑
σ

∫ ∞

0
dv v2

∫ b−1

0

f̂dy√
1− yb

(8.4.2)

8.4.1 Calculating the divergent y-integral

We note (1−yb)−1/2 is asymptotic at y → b−1, hence the integral is split into two parts for (0, y0)

and (y0, b
−1), evaluated numerically and analytically (through fitting) respectively:

∫ b−1

0

fdy√
1− yb

=

∫ y0

0

fdy√
1− yb

+

∫ b−1

y0

fdy√
1− yb

(8.4.3)

Here, y0 = b−1 − δy0, where δy0 is the spacing of the nearest mesh point to y0. For the analytic

part y = (y0, b
−1), we assume f(y) varies slowly from y0 to b−1, and approximate this as a linear

function f(y) = Ay + C. Then:

∫ b−1

y0

Ay + Cdy√
1− yb

=
2
√
1− y0b
3b2

(A(y0b+ 2) + 3bC) (8.4.4)

Within the code, this analytic expression is provided by function IinvB.
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8.5 Numerical Algorithm

8.5.1 Finite difference discretisation

The 4D drift-kinetic equation (2.3.47) and other derivatives (e.g., of Φ̂ and h(Ω)) are discretised

using the 2nd-order accurate central difference method. For a general monotonically-increasing

mesh X (not to be confused with radial coordinate x), at an index i, defining the mesh spacing

hi = Xi−Xi−1 at that point, the individual terms of the k-th derivative finite difference approx-

imation are represented by ∆±
kx (not to be confused with the expansion parameter ∆ = w/rs or

island growth parameter ∆loc). The 1st derivative is approximated by:

∂f

∂Xi
= ∆−

1X(i)f(Xi−1) + ∆0
1X(i)f(Xi) + ∆+

1X(i)f(Xi+1) (8.5.1)

=
−hi+1

hi(hi+1 + hi)
f(Xi−1) +

hi+1 − hi
hi+1hi

f(Xi) +
hi

hi+1(hi+1 + hi)
f(Xi+1) (8.5.2)

The 2nd derivative is approximated by:

∂2f

∂X2
i

= ∆−
2X(i)f(Xi−1) + ∆0

2X(i)f(Xi) + ∆+
2X(i)f(Xi+1) (8.5.3)

=
2

hi(hi+1 + hi)
f(Xi−1)−

2

hi+1hi
f(Xi) +

2

hi+1(hi+1 + hi)
f(Xi+1) (8.5.4)

For uniform meshes (ξ, θ), where hi is equal at all i, these reduce to: The 1st derivative is

approximated by:

∂f

∂Xi
= ∆−

1X(i)f(Xi−1) +∆0
1X(i)f(Xi) + ∆+

1X(i)f(Xi+1) (8.5.5)

=
−1
2h
f(Xi−1) + 0 +

1

2h
f(Xi+1) (8.5.6)

The 2nd derivative is approximated by:

∂2f

∂X2
i

= ∆−
2X(i)f(Xi−1) + ∆0

2X(i)f(Xi) + ∆+
2X(i)f(Xi+1) (8.5.7)

=
1

2h2
f(Xi−1) − 2

h2
f(Xi) +

1

2h2
f(Xi+1) (8.5.8)
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Discretised boundary conditions

At the p-mesh limits (p = pmin ≡ pj=1), the Dirichlet boundary condition
∂ĝ

∂p
= 0 is applied:

∆+
1p1g2 +∆0

1p1g1 +∆−
1p1g0 = 0,

where g0 corresponds to the value of the solution just beyond the mesh boundary, if it were to

exist. Then:

g0 = −

(
∆0

1p1

∆−
1p1

g1 +
∆+

1p1

∆−
1p1

g2

)

= −
[
−(h2 − h1)

h2h1

h1(h2 + h1)

h2
g1 −

h1h1(h2 + h1)

h2(h1 + h2)h2
g2

]
∴ g0 =

(h22 − h21)
h22

g1 +
h21
h22

g2.

Then,

∂2g

∂p2

∣∣∣∣
j=1

=
2g2

h2(h2 + h1)
− 2g1
h2h1

+
2g0

h1(h2 + h1)

=
2g2

h2(h2 + h1)
− 2g1
h2h1

+
2h21g2

h1(h2 + h1)h22
+

2(h22 − h21)g1
h1(h2 + h1)h22

= 2

[
g2
h22
− h1(h1 + h2)

h1h22(h1 + h2)
g1

]
∴

∂2g

∂p2

∣∣∣∣
j=1

=
2

h22
(g2 − g1), ∆0

2p1 = −
2

h22
, ∆+

2p1 = +
2

h22
. (8.5.9)

Likewise, at p = pmax ≡ pj=np ,

∆+
1pnp

g′np+1′ +∆0
1pnp

gnp
+∆−

1pnp
gnp−1 = 0,

⇒ gnp+1 = −

(
∆0

1pnp

∆+
1pnp

gnp
+

∆−
1pnp

∆+
1pnp

gnp−1

)

= −
(hnp+1 − hnp)

h2np

gnp
+
h2np+1

h2np

gnp−1.
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⇒ ∂2g

∂p2

∣∣∣∣
j=np

= −2
(hnp+1 − hnp)(hnp+1 + hnp)

hnp+1(hnp+1 + hnp)
gnp

+ 2
h2np

hnp+1(hnp+1 + hnp)h
2
np

gnp

−
2gnp

hnp+1h2np

+
2gnp−1

hnp(hnp+1 + hnp)

= −2gnp

(hnp+1 − hnp)

hnp+1h2np

+ 2gnp−1

(hnp+1 + hnp)

(hnp+1 + hnp)h
2
np

∴
∂2g

∂p2

∣∣∣∣
j=np

= − 2

h2np

(gnp
− gnp−1), ∆0

2pnp
= − 2

hn2
p

, ∆−
2pnp

= +
2

hn2
p

. (8.5.10)

For ξ-space, the mesh is constructed to be uniform, so:

∂g

∂ξ

∣∣∣∣
k

=
gk+1 − gk−1

2hξ
, (8.5.11)

where k is the ξ-mesh index. At the ξ-mesh edges, the periodic condition (2.3.50) implies:

∂g

∂ξ

∣∣∣∣
k=nξ

=
∂g

∂ξ

∣∣∣∣
k=1

=
gk=2 − gnξ−1

2hξ
. (8.5.12)

Cross-derivatives, such as the
∂2ĝ

∂p∂y

∣∣∣∣
y

term, are represented by a product:

∂2ĝ

∂p∂y
= ∆+

1yl

∂gl+1

∂p

∣∣∣∣
j

+∆0
1yl

∂gl
∂p

∣∣∣∣
j

+∆−
1yl

∂gl−1

∂p

∣∣∣∣
j

→ ∂2ĝ

∂p∂y
= ∆+

1yl

(
∆+

1pjgj+1,l+1 +∆0
1pjgj,l+1 +∆−

1pjgj−1,l+1

)
+∆0

1yl

(
∆+

1pjgj+1,l +∆0
1pjgj,l +∆−

1pjgj−1,l

)
(8.5.13)

+ ∆−
1yl

(
∆+

1pjgj+1,l−1 +∆0
1pjgj,l−1 +∆−

1pjgj−1,l−1

)
.

At p-mesh limits, the boundary condition (2.3.51) applies, so
∂2ĝ

∂p∂y
= 0. At y-mesh limits, the

boundary condition
∂2ĝ

∂y2
= 0 applies, and the special form for

∂ĝ

∂y
is used.

8.5.2 Matrix equation

Recall the general matrix equation coupling three general y-points:

Pl · gl+1 +Q
l
· gl +Rl · gl−1 + Ll · gl = Dl, (8.5.14)
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Recurrence relation

For Eq.(8.5.14), At a general y-point, the equation be approximated by using a linear recurrence

relation between the neighbouring y-points. For the passing region we can write:

gpl = αp
l · g

p
l+1 + βpl , (8.5.15)

⇒ gpl−1 = αp
l−1 · g

p
l + βpl−1. (8.5.16)

(Superscript p denotes passing particles.) Inserting Eq.(8.5.16) into Eq.(8.5.14) gives:

Pp
l · g

p
l+1 + (Qp

l
+ Lpl ) · g

p
l +Rp

l ·α
p
l−1 · g

p
l +Rp

l · β
p
l−1 = Dp

l . (8.5.17)

By letting:

Mp
l = Qp

l
+ Lpl +Rp

l ·α
p
l−1, (8.5.18)

rearranging Eq.(8.5.17):

gpl = −
[
(Mp

l )
−1 ·Pp

l

]
· gpl+1 + (Mp

l )
−1 ·

(
Dp
l −Rp

l · β
p
l−1

)
,

and comparing with Eq.(8.5.15), we arrive at the recursion relation for αp
l and βpl :

αp
l = −(M

p
l )

−1 ·Pp
l , βpl = (Mp

l )
−1 ·

(
Dp
l −Rp

l · β
p
l−1

)
, Mp

l = Qp
l
+ Lpl +Rp

l ·α
p
l−1

(8.5.19)

αp
l=1 and βpl=1 are to be determined using the deeply passing end y-boundary condition, as

described in next subsection.

Similarly, for trapped particles, the linear recurrence relation is in the opposite direction:

gtl = αt
l · gtl−1 + βtl , (8.5.20)

⇒ gtl+1 = αt
l+1 · gtl + βtl+1. (8.5.21)

Inserting Eq.(8.5.16) into Eq.(8.5.14) gives:

(Pt
l ·αt

l+1 +Qt
l
+ Ltl) · gtl +Rt

l · gtl−1 = Dt
l −Pt

l · βtl+1 (8.5.22)
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By letting

Mt
l = Qt

l
+ Ltl +Pt

l ·αt
l+1, (8.5.23)

rearranging Eq.(8.5.22):

gtl = −
[
(Mt

l)
−1 ·Rt

l

]
· gtl−1 + (Mt

l)
−1 ·

(
Dt
l −Pt

l · βtl+1

)
,

and comparing with Eq.(8.5.15), we arrive at the recursion relation for αp
l and βpl :

αt
l = −(Mt

l)
−1 ·Rp

l , βtl = (Mt
l)
−1 ·

(
Dt
l −Pt

l · βtl+1

)
, Mt

l = Qt
l
+ Ltl +Pt

l ·αt
l+1 (8.5.24)

αp
l=1 and βpl=1 are to be determined using the deeply trapped end y-boundary condition, as

described in next subsection.

λ-boundary conditions

To discretise the boundary conditions at y-mesh limits, quadratic fitting is performed at the

three points at each limit. By defining a quadratic function:

g
t/p
l = ay2l + byl + c, (8.5.25)

∂g

∂y

∣∣∣∣
yl

= 2ayl + b, (8.5.26)

and solving coefficients a, b and c, special forms of the finite difference for y can be obtained.

These are to be determined separately for the deeply passing and trapped ends, respectively.

Deeply passing end

At the deeply passing end (l = 1), we fit across l = 1, 2 and 3 (some subscripts and superscripts

are dropped for simplicity):

g1 = ay21 + by1 + c (8.5.27)

g2 = ay22 + by2 + c (8.5.28)

g3 = ay23 + by3 + c (8.5.29)
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Firstly, (8.5.27)−(8.5.28) and (8.5.28)−(8.5.29):

g1 − g2 = a(y21 − y22) + b(y1 − y2)

= a(y1 + y2)(y1 − y2) + b(y1 − y2)

g2 − g3 = a(y2 + y3)(y2 − y3) + b(y2 − y3)

Letting h1 = y1 − y2, h2 = y2 − y3 and h3 = y1 − y3 (= h1 + h2), (note: this deviates from the

usual definition of mesh spacing hi = yi − yi−1):

g1 − g2
h1

= a(y1 + y2) + b

g2 − g3
h2

= a(y2 + y3) + b

→ (y1 − y3)a =
g1 − g2
h1

− g2 − g3
h2

a =
g1
h1h3

− g2
h1h3

− g2
h2h3

+
g3
h2h3

=
g1
h1h3

− (h1 + h2)g2
h1h2h3

+
g3
h2h3

∴ a =
h2g1 − h3g2 + h1g3

h1h2h3
. (8.5.30)

And, trivially,

b =
(g1 − g2)

h1
− (y1 + y2)a. (8.5.31)

Then, returning to Eq.(8.5.26), at y = y1:

∂g

∂y

∣∣∣∣
y1

= 2ay1 + b

= (2y1 − y1 − y2)a+
(g1 − g2)

h1

= h1a+
h2h3(g1 − g2)

h1h2h3

=
h1h2g1 + h2h3g1 − h1h3g2 − h2h3g2 + h21g3

h1h2h3

∴
∂g

∂y

∣∣∣∣
y1

=
h1 + h3
h1h3

g1 −
h3
h1h2

g2 +
h1
h2h3

g3. (8.5.32)

Now, returning to the matrix equation (8.5.14), at l = 1 (y = y1) we couple the first 3 mesh
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points (note the offset in g indices):

P1 · g3 +Q
1
· g2 +R1 · g1 + L1 · g1 = D1, (8.5.33)

where [in the absence of the cross-differential term] the diagonal elements of P, Q and R are:

P1(qq) = C9
1(qq)∆

+
1yl=1, Q1(qq) = C9

1(qq)∆
0
1yl=1, R1(qq) = C9

1(qq)∆
−
1yl=1,

∆+
1yl=1 =

h1
h2h3

, ∆0
1yl=1 = −

h3
h1h2

, ∆−
1yl=1 =

(h1 + h3)

h1h3
.

(8.5.34)

N.B. C10
l=1 = 0 at the deeply passing end. At y = y2 the matrix equation takes the standard form,

as in Eq.(8.5.14):

P2 · g3 +Q
2
· g2 +R2 · g1 + L2 · g2 = D2, (8.5.35)

where the matrices are as defined in the previous section. Then, from Eq.(8.5.33):

P1 · g3 = D1 −Q
1
· g2 − (R1 + L1) · g1.

Multiplying both sides by P2 ·P−1
1 :

P2 · g3 = P2 ·P−1
1 ·

[
D1 −Q

1
· g2 − (R1 + L1) · g1

]
Inserting this into Eq.(8.5.35) gives:

P2 ·P−1
1 ·

[
D1 −Q

1
· g2 − (R1 + L1) · g1

]
+ (Q

2
+ L2) · g2 +R2 · g1 = D2[

R2 −P2 ·P−1
1 · (R1 + L1)

]
· g1 =

(
P2 ·P−1

1 ·Q1
−Q

2
− L2

)
· g2

+D2 −P2 ·P−1
1 ·D1

Therefore, by inspection, we arrive at the results for α1 and β1 for the deeply-passing end:

α1 = M−1
1 ·

(
P2 ·P−1

1 ·Q1
−Q

2
− L2

)
,

β1 = M−1
1 ·

(
D2 −P2 ·P−1

1 ·D1

)
,

M1 = R2 −P2 ·P−1
1 · (R1 + L1)

(8.5.36)

168



Sec. 8.5: Numerical Algorithm Ch. 8: Appendix

Deeply trapped end

At the deeply trapped end, we make the fitting across l = n − 2, n − 1 and n (here, n = ny)

(again, some subscripts and superscripts are dropped for simplicity):

gn−2 = ay2n−2 + byn−2 + c (8.5.37)

gn−1 = ay2n−1 + byn−1 + c (8.5.38)

gn = ay2n + byn + c. (8.5.39)

Then, Eq.(8.5.37)−Eq.(8.5.38) and Eq.(8.5.38)−Eq.(8.5.39) give:

gn−2 − gn−1 = a(yn−2 + yn−1)(yn−2 − yn−1) + b(yn−2 − yn−1)

gn−1 − gn = a(yn−1 + yn)(yn−1 − yn) + b(yn−1 − yn).

Letting hn−2 = yn−2 − yn−1, hn−1 = yn−1 − yn, and hn = yn−2 − yn (= hn−2 + hn−1),

gn−2 − gn−1

hn−2
= a(yn−2 + yn−1) + b

gn−1 − gn
hn−1

= a(yn−1 + yn) + b

→ (yn−2 − yn)a =
gn−2 − gn−1

hn−2
− gn−1 − gn

hn−1
a =

gn−2

hn−2hn
− (hn−1 + hn−2)gn−1

hn−2hn−1hn
+

gn
hn−1hn

∴ a =
hn−1gn−2 − hngn−1 + hn−2gn

hn−2hn−1hn
. (8.5.40)

And, trivially,

b =
gn−1 − gn
hn−1

− (yn−1 + yn)a. (8.5.41)
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Then, returning to Eq.(8.5.26), at y = yn:

∂g

∂y

∣∣∣∣
yn

= 2ayn + b

= (2yn − yn−1 − yn)a+
gn−1 − gn
hn−1

= −hn−1a+
hn−2hngn−1 − hn−2hngn

hn−2hn−1hn

=
−h2n−1gn−2 + hn−1hngn−1 + hn−2hngn−1 − hn−2hn−1gn − hn−2hngn

hn−2hn−1hn

∴
∂g

∂y

∣∣∣∣
yn

= − hn−1

hn−2hn
gn−2 +

hn
hn−2hn−1

gn−1 −
(hn−1 + hn)

hn−1hn
gn. (8.5.42)

Now, returning to the matrix equation (8.5.14), at l = n(y) (y = yn) we couple the final 3 mesh

points (note, again, the offset in g indices):

Pn · gn +Q
n
· gn−1 +Rn · gn−2 + Ln · gn = Dn, (8.5.43)

where [in the absence of the cross-differential term] the diagonal elements of P, Q and R are:

Pn(qq) = C9
n(qq)∆

+
1yl=n, Qn(qq) = C9

n(qq)∆
0
1yl=n, Rn(qq) = C9

n(qq)∆
−
1yl=n,

∆+
1yl=n = −(hn−1 + hn)

hn−1hn
, ∆0

1yl=n =
hn

hn−2hn−1
, ∆−

1yl=n = − hn−1

hn−2hn
.

(8.5.44)

N.B. C10
l=n = 0 at the deeply trapped end as well. At y = yn−1 the matrix equation takes the

standard form, as in Eq.(8.5.14):

Pn−1 · gn +Q
n−1
· gn−1 +Rn−1 · gn−2 + Ln−1 · gn−1 = Dn−1, (8.5.45)

where the matrices are as defined in the previous section. Then, from Eq.(8.5.43),

Rn · gn−2 = Dn −Q
n
· gn−1 − (Pn + Ln) · gn.

Multiplying both sides by Rn−1 ·R−1
n :

Rn−1 · gn−2 = Rn−1 ·R−1
n ·

[
Dn −Q

n
· gn−1 − (Pn + Ln) · gn

]
.
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Inserting this into Eq.(8.5.45) gives:

Pn−1 · gn + (Q
n−1

+ Ln−1) · gn−1 +Rn−1 ·R−1
n ·

[
Dn −Q

n
· gn−1 − (Pn + Ln) · gn

]
= Dn−1[

Pn−1 −Rn−1 ·R−1
n · (Pn + Ln)

]
· gn =

(
Rn−1 ·R−1

n ·Qn
−Q

n−1
− Ln−1

)
· gn−1

+Dn−1 −Rn−1 ·R−1
n ·Dn

Therefore, by inspection, we arrive at the results for αn and βn for the deeply-trapped end:

αn = M−1
n ·

(
Rn−1 ·R−1

n ·Qn
−Q

n−1
− Ln−1

)
,

βn = M−1
n ·

(
Dn−1 −Rn−1 ·R−1

n ·Dn

)
Mn = Pn−1 −Rn−1 ·R−1

n · (Pn + Ln)

(8.5.46)

Ion solution at the trapped-passing boundary

Recall the matching conditions given by Eq.(2.3.52), (2.3.53), (2.3.54):

∑
σ

σĝσp = 0 (8.5.47)

∑
σ

ĝσp = 2ĝt (8.5.48)

∑
σ

∂ĝσp
∂y

= 2
∂ĝt
∂y

, (8.5.49)

Within the code, Eqs.(8.5.47)∼(8.5.49) couple the solutions at y = yc and its neighbours. Defining

ĝ±cp = ĝc − ϵ and ĝct = ĝc + ϵ, the first two conditions imply that:

lim
ϵ→0

ĝ+cp = ĝ−cp, ĝ+cp + ĝ−cp = 2ĝct ≡ 2ĝc,

i.e. ĝc is continuous and single-valued at exactly y = yc. Using quadratic fitting, Eq.(8.5.49) links

the 5 neighbouring points, centred about yc (links three points at a time on the either side of,

and including, yc).
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On the marginally passing side, write the quadratic fitting for the solution vectors:

g±
c = a±y2c + b±yc + c

g±
p = a±y2p + b±yp + c

g±
pp = a±y2pp + b±ypp + c

Subtracting one from another:

g±
c − g±

p = a±(y2c − y2p) + b±(yc − yp)

g±
p − g±

pp = a±(y2p − y2pp) + b±(yp − ypp).

Defining hpp = yp − ypp, hp = yc − yp, and hcp = yc − ypp = hp + hpp,

gc − g±
p

hp
= a±(yp + yc) + b±

g±
p − g±

pp

hpp
= a±(yp + ypp) + b±

Subtracting one from the other:

(yc − ypp)a± =
gc − g±

p

hp
−

g±
p − g±

pp

hpp

hcpa
± =

hppgc − (hpp + hp)g
±
p + hpg

±
pp

hpphp

∴ a± =
hppgc − hcpg±

p + hpg
±
pp

hpphphcp
, (8.5.50)

and b± =
gc − g±

p

hp
− (yp + yc)a

±. (8.5.51)

Then, the y-derivative on the marginally passing side:

∂gσ

∂y

∣∣∣∣
yl

= 2aσyl + bσ,

→
∑
σ

∂gσ

∂y

∣∣∣∣
yc

= 2(a+ + a−)yc + b+ + b−. (8.5.52)
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Next, derive the quadratic fitting on the marginally trapped side:

gtt = aty2tt + btytt + c

gt = aty2t + btyt + c

gc = aty2c + btyc + c

Subtracting one from another:

gtt − gt
htt

= (yt + ytt)a
t + bt

gt − gc
ht

= (yc + yt)a
t + bt,

where ht = yt − yc, htt = ytt − yt and hct = ytt − yc ≡ htt + ht. Subtracting one from another in

the above pair of equations:

(ytt − yc)at =
gtt − gt
htt

− gt − gc
ht

hcta
t =

htgtt − (ht + htt)gt + httgc
httht

∴ at =
httgc − hctgt + htgtt

htththct
, (8.5.53)

and bt =
gt − gc
ht

− (yc + yt)a
t. (8.5.54)

Then, the y-derivative on the marginally trapped side:

2
∂g

∂y

∣∣∣∣
yc

= 4atyc + 2bt. (8.5.55)

Now the matching condition (8.5.49), together with Eqs.(8.5.52) and (8.5.55), can be used to

derive the equation for gc, starting from:

2(a+ + a−)yc + b+ + b− = 4atyc + 2bt. (8.5.56)
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Firstly, the right hand side:

RHS = 4atyc + 2bt = 4atyc − 2(yt + yc)a
t + 2

(gt − gc)

ht

= −2htat + 2
(gt − gc)

ht

= −2 ht
hthct

gc + 2
ht
hthtt

gt − 2
ht

htthct
gtt − 2

hct
hthct

gc + 2
htt
htthct

gt

Defining ∆ct = −
ht + hct
hthct

, ∆t =
hct
hthtt

, ∆tt = −
ht

htthct
,

RHS = 2∆ctgc + 2∆tgt + 2∆ttgtt.

But, by the linear recursion relation (8.5.20) and (8.5.24),

gtt = αtt · gt + βtt

→ RHS = 2∆ctgc + 2(∆tI+∆ttαtt) · gt + 2∆ttβtt,

where I is an identity matrix. But also:

gt = αt · gc + βt

→ RHS = 2∆ctgc + 2(∆tI+∆ttαtt) · (αt · gc + βt) + 2∆ttβtt,

∴ RHS = 2 [∆ctI+ (∆tI+∆ttαtt) ·αt] · gc + 2 [(∆tI+∆ttαtt) · βt +∆ttβtt] (8.5.57)

Next, the left hand side of Eq.(8.5.56):

LHS = 2(a+ + a−)yc + b+ + b− = 2yc(a
+ + a−) +

2gc − g+
p − g−

p

hp
− (yp + yc)(a

+ + a−)

= hp(a
+ + a−) +

2gc − (g+
p + g−

p )

hp

= 2
hp

hphcp
gc −

hp
hphpp

(g+
p + g−

p ) +
hp

hpphcp
(g+
pp + g−

pp) + 2
hcp
hphcp

gc −
hpp
hphpp

(g+
p + g−

p )

Defining ∆cp =
hp + hcp
hphcp

, ∆p = −
hcp
hphpp

, ∆pp =
hp

hpphcp
,

LHS = 2∆cpgc +∆p(g
+
p + g−

p ) + ∆pp(g
+
pp + g−

pp).
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But, again by the linear recursion relation (8.5.15) and (8.5.19),

g±
pp = α±

pp · g±
p + β±

pp

→ LHD = 2∆cpgc + (∆pI+∆ppα
+
pp) · g+

p + (∆pI+∆ppα
−
pp) · g−

p +∆pp(β
+
pp + β−

pp).

But also:

g±
p = α±

p · g±
c + β±

p

→ LHS = 2∆cpgc + (∆pI+∆ppα
+
pp) · (α+

p · gc + β+
p )

+ (∆pI+∆ppα
−
pp) · (α−

p · gc + β−
p ) + ∆pp(β

+
pp + β−

pp)

∴ LHS =
[
2∆cpI+ (∆pI+∆ppα

+
pp) ·α+

p + (∆pI+∆ppα
−
pp) ·α−

p

]
· gc

+ (∆pI+∆ppα
+
pp) · β+

p + (∆pI+∆ppα
−
pp) · β−

p +∆pp(β
+
pp + β−

pp).
(8.5.58)

Finally, LHS (8.5.58) = RHS (8.5.57) results in the equation for gc:

A · gc = B,

A = 2∆cpI+ (∆pI+∆ppα
+
pp) ·α+

p + (∆pI+∆ppα
−
pp) ·α−

p

− 2∆ctI− 2(∆tI+∆ttαtt) ·αt

B = −(∆pI+∆ppα
+
pp) · β+

p − (∆pI+∆ppα
−
pp) · β−

p −∆pp(β
+
pp + β−

pp)

+ 2(∆tI+∆ttαtt) · βt + 2∆ttβtt

(8.5.59)
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