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Abstract

Antarctica’s contribution to future global mean sea level rise is likely to be significant,
and yet the rate, magnitude, and timing of this contribution beyond 2300 is poorly
understood as predicted future melt scenarios are outside the window of modern
observations. The Last Interglacial period was the last time in Earth’s history that
the global mean sea level was higher than today, driven, in part, by a smaller than
present-day Antarctic ice sheet and could, therefore, provide constraints on scenarios
and mechanisms of future ice-sheet melt. The Last Interglacial evolution of Antarctic
ice-sheet geometry resulted in a particular global pattern, or fingerprint, of Antarctic-
driven sea-level change, subsequently recorded in records of Last Interglacial relative
sea levels. Records from certain Eurasia regions may be sensitive to this fingerprint
and could be used to help uncover Last Interglacial Antarctic ice-sheet evolution.
However, for this analysis, the complex contribution of glacial isostatic adjustment
to Eurasian Last Interglacial relative sea-level records must be quantified.

This thesis explores uncertainty in the Penultimate Glacial Maximum and subsequent
Penultimate Deglaciation of the Eurasian ice sheet, the predominant driver of
Eurasian glacial isostatic adjustment during the Last Interglacial, using a simple,
calibrated ice-sheet model, resulting in a Penultimate Glacial Maximum volume
of 48± 8 m SLE. The sensitivity of Eurasian Last Interglacial relative sea level is
quantified with respect to ice-sheet and Earth model uncertainty in which the latter
is found to be dominant. A suite of Last Interglacial Antarctic ice-sheet scenarios are
developed to determine regional sensitivity to Antarctic ice-sheet changes, revealing
a particularly strong influence in Wales, Atlantic, and English Channel regions.
Finally, Bayesian history matching is applied to compare a relative sea-level ensemble
against a Last Interglacial sea-level database, suggesting an Antarctic ice-sheet melt
contribution of 3.2 - 9.3 m (likely, 66th percentile). However, when compared against
relative sea-level data, none of the modelled scenarios are found to be implausible.
More work is needed to constrain the large model-data uncertainties before rates,
timings and East vs West contributions of the Antarctic ice sheet during the Last
Interglacial can be identified.
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Chapter 1

Introduction

1.1 Motivation

Climate change-driven global mean sea level (GMSL) rise presents a direct and
existential threat to coastal ecosystems, infrastructure, and communities around the
world. Current GMSL is rising at a rate of 3.6 mm yr−1 and accelerating, driven
primarily by anthropogenic forcings (IPCC, 2022). During the 20th century, thermal
expansion and glacier melt were the primary sources of GMSL rise, but as polar
temperatures continue to rise, ice-sheet melt is becoming the dominant contributor
(Gregory et al., 2013). By the year 2300, high greenhouse-gas emission scenarios place
plausible GMSL at 2 - 7 m above present day (IPCC, 2022), and cannot rule out
the possibility of even higher sea-level rise when poorly understood ice-sheet retreat
mechanisms are accounted for (Edwards et al., 2019). Numerical modelling studies
have reported that the Antarctic ice sheets may contribute up to 4 m of this projected
rise by 2300 (Lowry et al., 2021) but there is a high degree of uncertainty on both the
magnitude and timing of contributions predicted by Antarctic ice-sheet simulations
(DeConto et al., 2021). Global sea-level change as a result of ice-mass loss is highly
spatially variable and the spatial pattern is determined by the sources of ice-sheet
melt (Tamisiea et al., 2014). Therefore, constraining the potential location(s) and
rate of ice sheet mass loss is essential for making informed predictions about the
coastal locations most at risk of sea-level inundation.

Poorly understood mechanisms of ice-sheet retreat under a warming climate are a
major source of uncertainty for predictions of long-term ice-sheet melt derived from
numerical models, since data describing the response of such mechanisms lie outside
of the window of modern observations (Pattyn and Morlighem, 2020; Robel et al.,
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2019). However, the present day is far from the only time in Earth’s history that the
Antarctic ice sheet has been subjected to the effects of a warming climate. By turning
to the palaeo record, which contains evidence from previous such warming events, it
may be possible to undercover the past response of Antarctica under climate stresses
similar to those of today. The most recent such warm period was the Last Interglacial
(LIG) (Marine Isotope Stage (MIS) 5e; 130-116 ka) which saw GMSL between 5 -
10 m above that of present-day (IPCC, 2022). Driven by polar temperatures 3 - 5
°C above pre-industrial values (Capron et al., 2014), the LIG was the last time in
Earth’s history that the Greenland and Antarctic ice sheets were smaller than today
(Dutton et al., 2015) and so presents an opportunity to study ice-sheet behaviour
under a climate forcing similar to that projected under future emission scenarios
(Overland et al., 2014). While the Greenland and Antarctic ice sheets may have been
smaller during the LIG, questions remain as to their relative contributions to GMSL
change as well as the location and geometry of ice retreat.

Ice-sheet mass changes and global ocean geometry are intrinsically linked via the
influence of gravitational, rotational, and glacial isostatic adjustment (GIA) processes,
meaning that ice-mass change from a particular ice-sheet will generate a characteristic
spatial pattern of sea level, known as a sea-level fingerprint (Mitrovica et al., 2009;
Hay et al., 2014). Numerical predictions of sea-level fingerprints have shown that
some areas within the Eurasian region are particularly sensitive to ice-mass changes
in Antarctica while being relatively insensitive to the effects of Greenland ice-sheet
melt, meaning that sea-level records in such regions are well placed to disentangle the
LIG contributions of these ice sheets (Barnett et al., 2023). The elevation of former
LIG sea levels are recorded in sediments and geology at sites across the Eurasian
region (Rovere et al., 2023b) but values recovered from these sites are the combined
result of numerous geophysical processes, known collectively as relative sea level
(RSL), that must be corrected for in order to isolate the Antarctic fingerprint. Of
these processes, the influence of GIA from ice-sheet changes during the Penultimate
Glacial Maximum (PGM) is of particular importance to LIG RSL.

In this study, we focus on quantifying uncertainty in the Eurasian ice-sheet evolution,
in the model of the solid Earth we use, in the timing of the Penultimate deglaciation,
and in their result on northwest Eurasian GIA and RSL. We utilise this information
to isolate the Antarctic sea-level fingerprint recorded within LIG RSL records and,
as a result, constrain the possible contributions and melt-geometries of Antarctica
during the LIG. Uncovering the LIG Antarctic sea-level fingerprint would, therefore,
provide insights into the rates, magnitudes, and timings of LIG Antarctic ice-mass
loss.
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1.1.1 Research Questions

The overall objectives of this thesis can be summarised by the following research
questions:

RQ1: Can an uncertainty framework, utilising a simple ice-sheet model,
be used to explore the range of uncertainty in ice-sheet geometry
during the Penultimate Deglaciation?

RQ2: How much does uncertainty in the ice-sheet and Earth models
affect our ability to understand relative sea level during the Last
Interglacial?

RQ3: Can a regional Eurasian relative sea-level dataset be used to identify
the fingerprint of Antarctic ice-sheet melt during the Last Inter-
glacial?

1.1.2 Research Objectives

In order to investigate these research questions, my thesis research chapters (3, 4, 5)
will tackle five identified research objectives (Table 1.1).

Table 1.1: Research objectives and the relevant thesis chapters in which they are
applied.

Objective Chapter(s)

OBJ1 Generate a range of plausible Eurasian ice-sheet ge-
ometries during the Penultimate Deglaciation.

3, 4

OBJ2 Quantify the uncertainty in Eurasian LIG RSL that
arises from uncertainties in ice-sheet histories and
Earth model inputs.

4

OBJ3 Determine the spatiotemporal sensitivity of Eurasian
LIG RSL to parameterisations of ice-sheet and Earth
model inputs.

4

OBJ4 Parameterise LIG Antarctic melt scenarios and pro-
duce an ensemble of resultant LIG RSL reconstruc-
tions in order to explore the sensitivity of the Eurasian
LIG RSL to Antarctic fingerprints.

5

OBJ5 Utilise a compilation of sea-level data to produce a
best-fitting subset of the Eurasian LIG RSL ensemble
and analyse favoured Antarctic melt scenarios.

5

3
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1.2 Review of the Current Literature

1.2.1 The Last Interglacial

1.2.1.1 Climate

The LIG period was characterised by higher sea levels, smaller ice sheets and warmer
polar temperatures than present, making it an attractive period of study for the
calibration of future warming scenarios and the subject of extensive research (Dutton
and Lambeck, 2012). In contrast to the Anthropogenic forcing driving modern-day
changes, it is widely agreed upon that the primary driver of LIG surface temperature
increases was the particular configuration of Earth’s orbit at this time. Berger
(1988) first outlined the intrinsic link between orbit and climate on the timescale
of glacial-interglacial cycles and Berger and Loutre (1991) calculated that orbital
eccentricity during the LIG had a value of almost twice that of modern day. This
difference resulted in an increase in incoming solar insolation at the top of the
atmosphere for summer months in the Northern Hemisphere (Otto-Bliesner et al.,
2013), a pattern that is both stronger in magnitude and which occurred earlier in the
interglacial than during the Holocene (Yin and Berger, 2015; Shi et al., 2022). The
resulting temperature anomalies have been clearly detected in the extensive global
proxy dataset of Turney and Jones (2010), in which 263 ice, marine, and terrestrial
sequences were analysed to conclude that average surface temperature during the
LIG was 1.5 °C above present. The polar proxy compilation of Capron et al. (2014)
reveals an even greater temperature increase at the polar regions of between 3 - 5 °C
above present. Numerical modelling efforts have applied Earth-System Models of
Intermediate Complexity (EMIC) and, more recently, complex General Circulation
Models (GCM) to the reconstruction of LIG climate (Otto-Bliesner et al., 2013;
Herold et al., 2012), but, as highlighted in the model-data inter-comparison paper
by Lunt et al. (2013), there remains ongoing disagreement between simulated and
proxy reconstructions of global average surface temperature anomalies. Despite this,
Lunt et al. (2013) found the ensemble of climate models showed clear annual Arctic
and summer seasonal Northern Hemispheric warming during the LIG.

1.2.1.2 Sea Level

Accompanying higher surface temperatures, GMSL during the LIG was likely far
higher than that of today (Kopp et al., 2009; Dutton and Lambeck, 2012; Dyer
et al., 2021), but estimates vary as to the magnitude, timing, and structure of the
highstand. Kopp et al. (2009) applied a Bayesian statistical model to a selection of
42 sea-level indicators, including procedures that accounted for vertical land motion
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(VLM), to suggest that LIG GMSL reached at least 6.6 m (95% probability), likely
exceeded 8 m (67% probability) but was unlikely to have exceeded 9.4 m (33%
probability). Dutton and Lambeck (2012) compiled a database of 711 U-Th dated
LIG outcrops which, combined with numerical ice-sheet reconstructions based on
the work of Lambeck et al. (2006), supported the conclusions of Kopp et al. (2009)
to suggest a 5.5 - 9 m highstand. More recently, Dyer et al. (2021) has proposed
a lower estimate of 1.2 - 5.3 m by using Bayesian inversion techniques to infer a
posterior distribution of GMSL time series from Bahamian RSL records, rekindling
the debate on the feasibility of higher magnitude LIG highstand (the highest value
of GMSL during the LIG). The IPCC AR6 report assessed it is virtually certain that
LIG GMSL was higher than today, and likely 5 - 10 m higher (medium confidence)
(Fox-Kemper et al., 2021).

While the question of constraining maximum GMSL remains uncertain, there is
ongoing debate surrounding the timing of the LIG sea-level highstand as well as the
number of highstand peaks that occurred. Far-field records from the Seychelles and
Australia, both of which are thought to be reasonably representative of GMSL since
they are situated well away from large ice-sheet mass changes, have been interpreted
to suggest opposing models of LIG highstand timing. Dutton et al. (2015) analysed
sea-level data from Seychelles fossil corals and found that the GMSL maximum
had been reached by 128.6 ± 0.8 ka, and similar conclusions were drawn by Dyer
et al. (2021) who suggested an early highstand prior to 121 ka and likely prior
to 125 ka. However, O’Leary et al. (2013) analysed fossil coral reefs in Western
Australia and concluded, in contrast, that a large, late LIG highstand had occurred.
In studying LIG sea-level variability, Kopp et al. (2013) combined a global sea-level
database with 250 models of GIA to statistically assess the likelihood of inter-LIG
GMSL variability and concluded that a double-peaked highstand likely occurred
at some point within the LIG accompanied by a 4 m fall in GMSL. By contrast,
Barlow et al. (2018) argued that insufficient evidence was available to validate the
rapid rates of ice-sheet regrowth required to support a 4 m GMSL fluctuation, and
thus a double-peaked highstand, instead suggesting that such patterns could be
explained by uncertainties in the GIA modelling. Sea-level records from the Red
Sea, with chronologies determined by association with proxy-based age models, have
been interpreted by Rohling et al. (2019) to suggest the occurrence of many smaller
inter-LIG oscillations. While higher GMSL during the LIG can partially be explained
by the contribution of thermal expansion, with McKay et al. (2011) suggesting a
contribution of no more than 0.4± 0.3 m, all estimates of the LIG highstand point
to a sizable contribution from the Greenland Ice Sheet (GrIS) and/or Antarctic Ice
Sheet (AIS).
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1.2.1.3 Greenland and Antarctic Ice Sheets

The sea-level record points to a substantial GrIS and AIS ice-sheet contribution to
LIG GMSL rise but the relative contribution and evolution of each ice sheet remains
highly uncertain (Figure 1.1A). The AIS has long been suggested as the most likely
contributor of ice-sheet melt, primarily due to the marine-based West Antarctic Ice
Sheet (WAIS)’s proposed vulnerability to Southern Ocean warming (Turney et al.,
2020; Fogwill et al., 2014; Golledge et al., 2012). Coupled climate-ice simulations by
DeConto and Pollard (2016) suggest that the WAIS may have contributed 6 - 7.5
m to GMSL during the early LIG. Clark et al. (2020) suggests a lower contribution
of around 3 m but agrees that this was primarily due to an early WAIS collapse
between 127 ka and 124 ka, driven by subsurface ocean warming. Pan et al. (2021)
demonstrated that post-glacial rebound of bedrock under marine sectors of WAIS
may contribute up to an additional 1 m of GMSL rise via water expulsion as the
local ocean basin shrinks, and this effect may amplify the estimates of DeConto and
Pollard (2016), Clark et al. (2020), and others by up to 30%. The East Antarctic
Ice Sheet (EAIS) has typically been assumed to be relatively stable under ocean
forcing due to bedrock elevation being mostly above the elevation of the sea surface.
Work looking at the modern-day ice sheet has even suggested EAIS ice volume
growth in response to temperature forcing since changes in precipitation patterns
can cause a positive surface mass balance in the region (Harig and Simons, 2015).
However, simulations performed by Fogwill et al. (2014) have shown that changes
in Southern-Hemispheric wind patterns could drive local surface warming that can,
in turn, drive a 3 - 5 m LIG contribution from EAIS, showing that EAIS stability
cannot be assumed in all warming scenarios (Figure 1.1B).

Dynamic ice-sheet modelling of the GrIS was first applied by Letréguilly et al.
(1991) whereby a δ18O derived climate-forcing was used to suggest a 1 - 2 m GrIS
contribution to the LIG highstand. A similar conclusion was drawn by Stone et al.
(2013) in their work utilising a large ensemble of climate-driven ice-sheet simulations
of the GrIS, constrained with Greenland ice-core data, to suggest the Greenland ice
sheet likely made a small contribution of 0.6 m (90% probability) to GMSL, and no
more than 3.5 m (10% probability). Interpretation of climate-proxy records from
ice-core data remains a key source of uncertainty in GrIS modelling and was used by
Cuffey and Marshall (2000) to infer a GrIS contribution of up to 5.5 m, and thus a
relatively small AIS contribution, via a coupled ice-and-heat flow ice-sheet model
(Huybrechts et al., 1991). More recent modelling efforts have utilised data from large
GrIS ice-core proxy-data acquisition projects, such as the North Greenland Eemian
Ice Drilling (NEEM) (NEEM community members, 2013) and Greenland Ice Sheet
Project 2 (GISP2) (Meese et al., 1997), to suggest contributions ranging from 2 - 3.4
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Figure 1.1: (A) Agreement of 9 numerical models of the minimum GrIS configuration
during the LIG, including those of (Otto-Bliesner et al., 2006; Yau et al., 2016).
Figure from Haywood et al. (2019), Figure 4. (B) Rates of AIS thinning at 135
ka generated from an independent glacial cycle ocean forcing. Also shown are the
Southern Ocean temperature anomalies at 500 m depth. Image from Fogwill et al.
(2014), Figure 6.

m (Otto-Bliesner et al., 2006), 5.1 m (Yau et al., 2016), and 3 m (Sommers et al.,
2021), demonstrating the wide range of disagreement in the configuration of the GrIS
and it’s contribution to LIG GMSL.

1.2.2 Relative Sea Level

1.2.2.1 Sea-Level Records and Local Processes

While GMSL is a useful quantity for describing large-scale changes to the ocean
system, the global pattern of sea level is highly spatially non-uniform and is influenced
by processes that act on many spatiotemporal orders of magnitude (Milne et al.,
2009; Kemp et al., 2011; Dutton et al., 2015). The value of sea level at a particular
location and time is defined as the difference in elevation between the sea surface
and the Earth’s topography and is referred to as RSL (Gregory et al., 2019). A RSL
value, therefore, deviates from GMSL as it represents the summed contribution of
all sea-level processes that have acted at that location.

RSL indicators are geological data points which record the elevation of past sea
level. A single sea-level index point consists of three components: i) current elevation
and geospatial position; ii) the difference between the current elevation and past
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RSL; and iii) the age of the indicator (Rovere et al., 2016). Examples of palaeo
sea-level indicators include: marine terraces, which may contain sedimentary features
or biological indicators that indicate the presence of marine or terrestrial environment
(Muhs et al., 2021); coral reef terraces, where species of coral can be used to infer sea-
level depth from their expected living-depth range (Pedoja et al., 2018); and beach
deposits (Sainz de Murieta et al., 2021). The difference between the present-day
elevation of these features compared to the palaeo indicator can be used to infer a
RSL, resulting in a value reflecting the influence of numerous geophysical processes.

The geological record has been extensively studied for LIG RSL indicators (Cohen
et al., 2022; Rovere et al., 2016). The recently published World Atlas of Last
Interglacial Shorelines (WALIS) compilation database by Rovere et al. (2023b)
contains over 4500 globally distributed MIS 5e RSL sea-level data points, primarily
from geomorphological records such as marine terraces, shoreline angles and tidal
notches. Despite their relative abundance, the use of RSL data to draw conclusions
about the magnitude and rates of LIG global sea-level change remains inherently
difficult due to the influence of local, site-specific, geodynamic processes that cause
their sea-level value to deviate from the present day elevation of the indicator. While
the influence of a particular process is highly dependent on location, on the timescales
of glacial-interglacial cycles four processes are typically dominant in affecting changes
in RSL, each of which will be discussed in turn: active tectonics, dynamic topography,
sediment isostasy, and GIA (Figure 1.2) (Woodworth et al., 2019; Yokoyama and
Purcell, 2021).

Figure 1.2: The range of processes that can affect RSL values are shown with their
magnitude of influence over different timescales. Image from Horton et al. (2018),
Figure 1A.

Active tectonics occur on timescales O(100) - O(106) years and result in topographic
deformation due to crustal plate movement, and can contribute to RSL in areas
close to active plate margins. Pedoja et al. (2011) analysed a compilation of MIS
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5e shoreline data above global plate boundaries and found that their elevation, on
average, was 45 m above present-day sea level. Studies correcting RSL for use in
GMSL estimate often exclude sites suspected of a high active tectonics contribution
due to difficulties in isolating the contribution from other processes such as GIA. The
work by Simms et al. (2020) found that at terrace formations in southern California,
an area of high tectonic activity, the contribution from active tectonics of 0.66± 0.2

m ka−1 which, for LIG records, represents up to ∼ 90 m of VLM that must be
accounted for and, more importantly, contributes a significant additional source of
uncertainty to corrected RSL indicators. While active tectonics is restricted to plate
boundary locations, dynamic topography is the process of topographic deformation
that results from mantle flow and can have a global influence on timescales O(104.5)

- O(106) years (Flament et al., 2013). Austermann et al. (2017) demonstrated that
dynamic topography can make a multi-metre contribution to LIG RSL records and
corrections have since been applied to records at sites such as Australia (Rovere
et al., 2023a) and Madagascar (Stephenson et al., 2019).

Sediment isostasy encompasses two phenomena related to the redistribution of
sediment deposits and which act on timescales O(100) - O(104) years: subsidence,
referring to the local land subsidence that results from the build-up of sediment
load; and compaction, which is the effective land lowering that results from sediment
reducing in volume (Brain, 2016). Volume reduction can occur in situ by processes
such as; consolidation, whereby water is expelled from between the sediment grains;
self-weight, in which particles viciously rearrange; or by biochemical processes acting
on organic sediments (Brain, 2016). Wolstencroft et al. (2014) investigated the
role of sediment in controlling subsidence rates in the Mississippi Delta, which
is experiencing modern-day sea-level rise of 10 mm yr −1, and found that, while
sediment loading contributed only a fraction (∼ 0.5 mm yr−1) to the total, the
large subsidence rates could likely be explained by significant ongoing sedimentary
compaction. The influence of Holocene sediment compaction has been studied and
quantified at other river deltas sites across the world, contributing land subsidence
rates of up to 20 mm yr −1 in the Mekong Delta, Vietnam (Zoccarato et al., 2018),
15 mm yr −1 in the Po Delta, Italy (Teatini et al., 2011), and 4.5 mm yr −1 in the
Nile Delta, Egypt (Marriner et al., 2012). In another study, offshore core data from
the southern North Sea show that deltaic sediments deposited by surrounding river
basins create a large sediment load, driving rates of subsidence of up to 3 mm yr−1

since the LIG (Cohen et al., 2022). However, this is minor compared to the final and
most influential vertical-land deformation process driving RSL change at sites close
to former ice-sheet loads, GIA.
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1.2.2.2 Glacial Isostatic Adjustment

Over the timescales of glacial-interglacial cycles, the primary driver of RSL spatial
variability is GIA (Whitehouse, 2018; Farrell and Clark, 1976). More accurately, GIA
refers to a collection of geophysical processes that result in ice and water mass changes
and which drive the complex feedback between ocean water volume, perturbations of
the Earth’s rotational axis, Earth’s gravitational field, and viscoelastic deformation of
the solid Earth (Milne and Mitrovica, 1998; Mitrovica and Milne, 2003). The effects
of GIA in regions under previous ice-sheet loads are so pronounced that positive rates
of VLM of greater than 10 mm yr−1, driven by ice-sheet changes during the Last
Deglaciation, continue to this day. Such rates are so high that they can be observed
on human timescales without sophisticated scientific measurements (Whitehouse,
2018). Observations of RSL change dating back to AD 1563 are recorded in coastal
rocks around Sweden (Ekman, 2009), and which Celsius (1743) used to produce the
first GIA calculations, although which he incorrectly assumed was due to a fall in
GMSL.

After Lyell (1835) deduced that sea-level change was non-uniform across Sweden,
a catalogue of developments proceeded through the 19th and 20th centuries in
an attempt to explain the processes underpinning variations in land uplift rates.
Jamieson (1865) first suggested that ice sheets may have driven subsidence; Woodward
(1888) developed the mathematics behind geoid deformation due to the redistribution
of surface ice-sheet mass; the realisation of the importance of both ice mass changes
and the resulting deformation on sea-level change (Nansen, 1921; Daly, 1925); and the
eventual expression of complete ice-ocean loading and Earth deformation feedbacks
as expressed by Farrell and Clark (1976) in the Sea Level Equation. In modern
GIA modelling, the Sea Level Equation has been extended to account for changes
in ocean area due to the changes in ocean basin geometry as the ocean surface
geometry changes, as well as from grounded ice-sheet advance and retreat into the
ocean basin (Mitrovica and Milne, 2003). In addition, perturbations to the Earth’s
axis of rotation due to changes in the Earth’s mass distribution, which elicit complex
feedbacks between ocean mass redistribution and solid Earth deformation, have been
incorporated (Milne and Mitrovica, 1998).

1.2.2.3 Numerical Sea-Level Models

Gravitationally self-consistent numerical sea-level models are able to generate spa-
tiotemporal predictions of global RSL values by solving the Sea Level Equation
(Spada and Stocchi, 2007; Kendall et al., 2005; Farrell and Clark, 1976). Here,
we follow Spada and Stocchi (2007) to outline the key mathematical derivation of
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this equation. We begin by defining absolute sea level SL(x̂, t) at a time t and
position vector x̂ = (θ, ψ), where θ is colatitude and ψ is longitude, as the difference
between the height of two bounding surfaces, with reference to the centre of the
Earth. We define the geoid as Rss(x̂, t), the geometry of the ocean surface as a result
of self-consistent gravitational attraction and in the absence of ocean-atmosphere
dynamics; and the solid Earth surface Rse(x̂, t). SL(x̂, t) is therefore simply,

SL(x̂, t) = Rss(x̂, t)−Rse(x̂, t). (1.1)

In the context of palaeo timescales, sea-level change S is defined as the difference
between the absolute sea level at a given time t and some remote time tr such that,

S(x̂, t) = SL(x̂, t)− SL(x̂, tr), (1.2)

and defines RSL when tr is present day and t is some time in the past. For simplicity,
we now denote the time t of each quantity by a subscript and drop the explicit x̂
dependence. By Equations 1.1 and 1.2,

St = SLt − SLtr , (1.3)

= Rss
t −Rse

t −Rss
tr +Rse

tr , (1.4)

=
(
Rss

t −Rss
tr

)
−
(
Rse

t −Rse
tr

)
, (1.5)

= Nt − Ut, (1.6)

where N is the sea-surface variation and U is the vertical solid surface displacement.
This is the simplest form of the Sea Level Equation and it shows the dependence
between geoid, solid Earth, and sea-level change. To make this equation useful for
producing numerical solutions of ice-sheet-driven sea-level changes these relation-
ships must be expanded to explicitly demonstrate the bounding surface geometry
dependence for a specified Earth surface mass loading (ice sheets and the ocean).

Farrell and Clark (1976) saw that sea-surface variation could be represented as an
equipotential surface and thus take the form,

Nt =
ϕ(x̂, t)

γ
+ c(t), (1.7)

where ϕ(x̂,t)
γ

is the spatially variable geoid height variation, γ is gravity at the Earth’s
surface, ϕ is the total variation of the gravity potential, and c is a time variable
constant introduced to conserve ice-sheet mass. The Sea Level Equation can then be
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written
St =

ϕt

γ
− Ut + c(t). (1.8)

Conservation of mass can be expressed using ice-sheet change mi and ocean mass
change mo such that,

mi(t) +mo(t) = 0, (1.9)

where mi is simply the spatial integration of S which, by Equation 1.8, can be
expressed as,

mo(t) =

∫
o

ρwSdA =

∫
o

ρw

(
ϕ

γ
− U + c

)
dA, (1.10)

where dA is the area element over the Earth’s surface and ρw is the density of water.
Combining with Equation 1.9,∫

o

ρw

(
ϕ

γ
− U + c(t)

)
dA = −mi (1.11)

=⇒ A0ρwc(t) = −mi −
∫
o

ρw

(
ϕ

γ
− U

)
dA (1.12)

=⇒ c(t) = − mi

Aoρw
−

(
ϕ

γ
− U

)
, (1.13)

where A0 is the modern ocean area and the overbar represents spatially averaged
over the ocean surface. Therefore, the Sea Level Equation can be written as,

S =

(
ϕ

γ
− U

)
− mi

ρwA0

−
(
ϕ

γ
− U

)
. (1.14)

In the case of a rigid (Ut = 0), non-self-gravitating (ϕt = 0) Earth, this form of the
Sea Level Equation has the simple solution,

St = − mi

ρwA0

= SE, (1.15)

where SE is eustatic sea-level change driven purely by ice-sheet-driven ocean-volume
change.

Let I(x̂, t) be the change in ice-sheet thickness such that,

I(x̂, t) = T (x̂, t)− T0(x̂), (1.16)

where T (x̂, t) is ice-sheet thickness and T0(x̂) is a reference ice-sheet thickness such
that mi(t) can be expressed as,

mi(t) =

∫
i

ρiIdA. (1.17)
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We can then define the total Earth surface load change L as a combination of ice
and ocean-load changes,

L(x̂, t) = ρiI(x̂, t) + ρwS(x̂, t)O(x̂, t), (1.18)

where O(x̂, t) is the ocean function with value 1 where there is ocean or grounded
ice, and 0 otherwise. The solid Earth (N) and gravitational potential (ϕ) response
to this load change is given by convolution with the associated Green’s functions
such that, {

U

ϕ

}
(x̂, t) = ρi

{
Gu

Gϕ

}
⊗i I + ρw

{
Gu

Gϕ

}
⊗o S. (1.19)

By introducing the Green’s function Gs

γ
=

Gϕ

γ
−Gu we can express the gravitationally

self-consistent, Green’s function form of the Sea Level Equation,

S =
ρi
γ
Gs ⊗i I +

ρw
γ
Gs ⊗o S − mi

Aoρw
− ρi
γ
Gs ⊗i I +

ρw
γ
Gs ⊗o S. (1.20)

In this form, the Sea Level Equation is a linear (in the case of non-migrating shorelines,
in which case A0 will have S dependence), integral, implicit equation for S. Ice-sheet
load changes are represented by I, which can be decomposed as spherical harmonics
to solve for the convolution Gs ⊗i I, while the dependence of deformation on mantle
rheology appears in the load-deformation coefficients, which must be calculated to
solve Gs. Analytical solutions to this equation are not known in general. However,
the development of techniques such as the pseudo-spectral approach has enabled
general approximate numerical solutions to be developed that have also extended their
implementations to enable migrating shorelines and rotational feedback (Mitrovica
and Milne, 2003).

Numerical solutions of the Sea Level Equation for the purposes of GIA modelling
have been extensively applied in the modern literature to a variety of scientific
challenges, including: investigating the rheological structure of the Earth (Peltier
and Drummond, 2008); identifying the spatial pattern of global RSL, and how it
deviates from GMSL (Milne and Mitrovica, 2008); inverting GIA uplift rates to
reconstruct past ice-sheet changes (Mitrovica and Peltier, 1992; Peltier, 2004; Peltier
et al., 2015); interpreting palaeo sea-level records to infer GMSL (Barnett et al.,
2023; Dyer et al., 2021); to infer future ice-sheet dynamics and mass loss (Gomez
et al., 2015; Yousefi et al., 2022; Pan et al., 2021); and for correctly interpreting
modern-day ice-sheet observational data (Riva et al., 2009; Peltier, 2009). In all
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cases, GIA models rely on two pieces of information: the evolution of global ice-sheet
thickness and the rheological structure of the solid Earth.

1.2.2.4 Rheology of the Earth

If the Earth was a rigid body and topography was fixed then, on the timescales of
glacial cycles, the effects of GIA due to ice-sheet melt would be near instantaneous:
the ocean volume would increase through meltwater flux, as would the volume of
the basin via grounding line retreat, and the ocean geoid would be reshaped by
perturbation to the Earth’s gravitational field and axis of rotation. However, the
longevity, spatial complexity, and highly coupled nature of GIA effects stem from
the viscoelastic response of the solid Earth to surface load changes. Each instance of
surface mass redistribution excites deformation in the solid Earth, which compounds
with ongoing deformation from previous load changes and drives further redistribution
of surface mass.

The magnitude and duration of response of GIA to surface loading is dependent
on the viscoelastic structure of the solid Earth and yet this structure is highly
spatio-temporally complex and uncertain. Investigations into the thickness of the
lithosphere, using measurements of the seismic wave relative velocities, have found
that its thickness can vary by an order of magnitude globally (Gung et al., 2003;
Pasyanos, 2010), while models of Earth’s mantle structure find that dynamic, chaotic
convection patterns can generate four orders of magnitude difference in viscosity values
accompanied by a highly spatiotemporally variable pattern (Heister et al., 2017). If
lateral variations are neglected, Dziewonski and Anderson (1981) showed that it is
possible to estimate the radially variable, depth-averaged elastic and density structure
of the solid Earth through studying a compilation of seismological measurements,
resulting in the influential Preliminary Reference Earth Model (PREM) model.

Numerical GIA simulations typically assume the solid Earth behaves as a linear
Maxwell viscoelastic body and represent the predefined viscous structure as viscoelas-
tic Love numbers that result from a method of spectral decomposition originally
developed by Love (1909) (Peltier, 1974; Mitrovica and Peltier, 1992). The simplest
rheological models assume a purely elastic Earth (Wahr et al., 1998) and, since
elastic deformations dominate over short timescales (O(103) yr), this can be an
appropriate simplification when modelling mass changes over timescales much less
than the expected Maxwell response time, such as week-by-week ice-mass changes
observed by the GRACE satellite (Wahr et al., 1998). However, when modelled
processes occur on timescales similar to that of the Maxwell response time, viscous
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effects become non-negligible, giving rise to the need for a more complex viscoelastic
model.

1D viscoelastic models are represented by a radial viscosity profile which typically
represents the lithosphere as a region of exceptionally high viscosity of a prescribed
thickness. Refinement of viscosity values beyond the lithosphere is typically achieved
through comparison against either observed rebound rates or sea-level data. In the
first approach, Bayesian inversion is employed to invert GIA rebound data and thus
constrain a best-fitting radial viscosity profile (Peltier, 1996; Lambeck et al., 2017;
Peltier, 2004). Alternatively, viscosity values can be calibrated against compilations
of RSL records (Bradley et al., 2023). Both approaches are complicated by the
relative sparsity and high uncertainties in sea level and rebound datasets in addition
to the need to make assumptions about the evolution of past ice-sheet loads to drive
the GIA model.

The assumption of a laterally invariant viscoelastic structure made by 1D rheol-
ogy models is problematic for studies of GIA in regions such as Antarctica where
Kaufmann et al. (2005), based on seismology studies by Ritzwoller et al. (2001),
identified a large difference in mantle viscosity between the East and West portions
of the continent which can have important consequences for GIA (Powell et al.,
2020). Kaufmann et al. (2005) demonstrated that the inclusion of 3D GIA made
only a small contribution to uncertainty in Antarctic mass changes, but van der
Wal et al. (2015) expanded their approach to include uncertainty in the derivation
of 3D viscosity profiles from seismic data, and found reduced mass balance esti-
mates from GRACE satellite data as a result. More recently, Yousefi et al. (2022)
demonstrated that including 3D rheology models in Antarctica increased far-field
sea-level estimates by up to 20% for simulation runs between 2100 and 2500. A
number of studies have also found considerable influence from the inclusion of 3D
GIA on reconstructions of past RSL when compared to the use of globally-averaged
1D viscosity profiles (Bagge et al., 2021; Li et al., 2022; Pan et al., 2022; Austermann
et al., 2021). The work by Pan et al. (2022) focused on RSL reconstructions at the
Last Glacial Maximum (LGM) and, in testing a suite of 40 3D GIA configurations,
found that RSL predictions at the LGM can differ from 1D-derived reconstructions
by up to an average of 3 m at far-field sites and, in some locations, by up to 11 m.
This work agreed with the conclusions drawn by Bagge et al. (2021) in which a set
of 18 3D GIA models was used to show that 3D mantle viscosity variation can be a
significant influence on Last Deglaciation RSL reconstructions. Austermann et al.
(2021) was the first to demonstrate the potential significance of 3D viscosity and
laterally varying lithospheric thickness in the reconstruction of LIG RSL and, in
their work, 1D and 3D GIA-driven RSL reconstructions differed O(10) m in the near
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field (regions close to former ice sheets) and O(1) m in far-field locations. However,
models of 3D GIA contain considerable degrees of freedom which are difficult to
constrain, such as the prescription of mineral properties, radial viscosity profiles, and
the conversion relationship between seismic velocity and temperature variations to
estimate the Earth’s thermal structure. As such, the inclusion of 3D GIA in RSL
reconstruction has been shown to introduce significant additional RSL uncertainty
(Li et al., 2022) which, owing to the expensive computational requirements, are highly
challenging to explore. In light of these limitations, and with the suggestion that
suitable 1D radial viscosity profiles can be used to locally approximate the 3-D GIA
result at specific sites (Austermann et al., 2017), it is often sufficient to utilise 1D
reconstructions for applications to the LIG.

1.2.2.5 Sea-Level Fingerprints

The geometry of the ocean surface is intrinsically linked to the particular mass
distribution of the Earth system. Rapid ice-sheet melt acts to perturb the Earth’s
gravitational field and, through the reduced gravitational attraction between the
shrinking ice mass and the ocean, cause RSL to fall close to the melting ice sheet
while rising further afield (Mitrovica et al., 2009). The source of ice-sheet melt results
in a particular pattern of sea-level change, known as a fingerprint. Hay et al. (2014)
computed the fingerprints that would result from the collapse of GrIS, WAIS and
marine sectors of the EAIS during the LIG (Figure 1.3).

Figure 1.3: Sea-level fingerprints as a result of ice-sheet mass loss from GrIS, EAIS
and WAIS. Image from Barlow and Rush (2022), based upon the modelling by Hay
et al. (2014).
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Sea-level fingerprints, if detected in RSL records, can be inverted to uncover sources
of ice-sheet melt. Meltwater Pulse 1A, a rapid period of ice-sheet melt that occurred
during the Last Glacial Period (LGP), has been the subject of numerous fingerprint
inversion studies in attempts to isolate the dominant meltwater source. Work by
Clark et al. (2002) compared RSL records from Barbados and the Sunda Shelf against
calculated sea-level fingerprints of the North American Laurentide ice-sheet and
WAIS, concluding a small North American and large AIS contribution. Later work by
Lin et al. (2021) applied a similar approach but instead drew an opposing conclusion,
ruling out a large AIS contribution on the grounds of incompatibility with Scottish
isolation basin records, instead proposing that North American sources dominated
melt. Utilising sea-level fingerprints to identify sources of ice-sheet melt requires that
local processes affecting RSL records are quantified and corrected for, including the
significant contribution of GIA driven by past and future ice-sheet loading. Studies
have utilised the theory of sea-level fingerprints to aid the interpretation of RSL data,
such as the work by Barnett et al. (2023) in which the estimated AIS fingerprint value
in Eurasia was used to invert Eurasian RSL data points into estimated values of LIG
AIS melt. Similarly, O’Leary et al. (2013) used geospatial fingerprinting information
to draw conclusions as to the differing magnitudes of GrIS and AIS melt required to
attain their inferred LIG GMSL highstand. In both cases, such studies are limited
to utilising fingerprints via their assumed local magnitude of influence rather than
calculating their effects directly from models of AIS melt. By not reconstructing the
actual fingerprint but scaling local signals by the fingerprint’s assumed magnitude,
these studies do not explore the range of possible fingerprinting patterns that may
result from alternative evolutions of ice-sheet melt.

1.2.3 Late Quaternary Ice Sheets

The Quaternary Period (2.6 Ma - present), comprising of the current Holocene
(11.7 ka - present) and the Pleistocene Epochs, has been characterised by the
repeated cyclic inception, advance and retreat of large-scale ice sheets, known as
glacial-interglacial cycles, across much of the Northern Hemisphere (Ehlers and
Gibbard, 2004). The LGP, separating the LIG from the present day, was the
most recent and well-documented glacial period due to the relative abundance of
surviving geomorphological evidence for constraining ice-sheet extent, configuration
and evolution (Clark and Mix, 2002; Dalton et al., 2020; Hughes et al., 2016).
Batchelor et al. (2019) developed a series of Northern Hemispheric ice-sheet extents
from a compilation of over 180 previous studies looking at empirical and modelling
evidence for past ice-sheet configurations. Their work suggested that the Laurentide
ice sheet was by far the largest Northern Hemispheric ice mass at the LGM (∼ 14×106
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km2) in comparison to the Eurasian (∼ 6× 106 km2), Cordilleran (∼ 2× 106 km2)
and Greenland (∼ 3× 106 km2) ice sheets at this time. The maximum extent of the
Greenland and Antarctic ice sheets are constrained by the size of their respective
continental shelves and, as a result, their ice-sheet margins during previous glacial
periods are typically better constrained due to this physical limitation (Simpson et al.,
2009; Denton and Hughes, 2002). By contrast, the extent of Eurasian and North
American ice sheets during past glacial periods must be constrained by empirical
evidence for ice-sheet extent and, therefore, are typically more uncertain. Despite
this, the expansive North American and Eurasian ice sheet margins at the LGM
have been well documented by regional studies. The LGM Eurasian ice sheet extent
estimated by Batchelor et al. (2019) is in agreement with the previous DATED-1
empirical data compilation study by Hughes et al. (2016) which focuses on the
Eurasian region. During PGM (correlated to MIS 6, 191-123 ka), the Laurentide,
Greenland, and Cordilleran ice sheets were likely similar in extent to that of the
LGM but the Eurasian ice sheet was likely far larger, equal in size to that of the
Laurentide (∼ 14 × 106 km2) (Batchelor et al., 2019; Ehlers and Gibbard, 2004;
Ehlers et al., 2011; Toucanne et al., 2009) (Figure 1.4). There is a greater sparsity of
empirical evidence for past ice-sheet extents prior to and smaller than the maximum
LGM extent, due to this evidence being overwritten by subsequent glaciation, thus
limiting studies of the Penultimate Deglaciation ice-sheet margin evolution.

Figure 1.4: The maximum extent of Northern hemisphere ice-sheets during the LGM
and PGM as constructed by Batchelor et al. (2019).

The evolution of global ice sheet thickness forms the second essential input to the
Sea Level Equation for reconstructions of past RSL changes. Due to the long-term
impacts of GIA, ice-sheet changes can have a significant impact on RSL long after they
originally occurred and the sensitivity analysis by Dendy et al. (2017) demonstrated
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that LIG sea level was sensitive to at least three glacial cycles worth of ice-sheet
loading. While geomorphological evidence can be used to describe the extent and
provide limits on their thickness, reconstructing 3D ice-sheet geometries requires the
use of numerical models.

1.2.3.1 Numerical Ice-Sheet Models

Reconstructions of ice-sheet thickness are a vital component in the modelling of
past sea-level changes but there is little empirical evidence available to constrain
past ice-sheet geometry. Instead, work has focused on utilising available geological
constraints on ice-sheet extent, VLM and RSL data in combination with numerical
modelling to estimate ice-sheet thickness. Ice-sheet numerical modelling studies
typically adopt one of three main approaches: GIA inversion (Lambeck et al., 2017;
Peltier et al., 2015), dynamic ice-sheet modelling (Tarasov et al., 2012; Patton et al.,
2017), or simple ice-sheet modelling (Gowan et al., 2021; Fisher et al., 1985) (Figure
1.5). GIA inversion models combine modern VLM measurements with models of
Earth’s viscoelastic structure in order to estimate the ice-sheet load required to
generate recorded uplift rates. The ICE-6G global ice-sheet reconstruction of Peltier
et al. (2015) is the result of GIA inversion applied to a global set of VLM data to
produce global ice-sheet thickness history spanning from 26 ka until the present day.
In this work, Peltier et al. refined previous iterations of their ICE models, such
as ICE-5G (Peltier, 2004), by better constraining their viscoelastic Earth model
through comparison of the ice-sheet history against more extensive records of RSL
data. ICE-6G suggests maximum Eurasian and North American ice-sheet volumes
of 22 m SLE and 88 m SLE, respectively, and expanded Greenland and Antarctic
volumes of 2 m SLE and 13 m SLE, respectively, compared with modern day. This
method has been applied by Lambeck et al. (2006) for time periods earlier than the
LGM in their regional study of Eurasia. In that work, they suggest a smaller LGM
Eurasian volume of 18 m SLE but a far larger PGM configuration of 52.5 m SLE. In
later work, Lambeck et al. (2017) switch focus to the North American ice sheet and
infer LGM and PGM volumes of 68 m SLE and 85 m SLE, respectively. While GIA
inversion techniques are often consistent with empirical constraints from rebound
and sea-level data, they do not guarantee physical consistency with known ice-sheet
physics (Stuhne and Peltier, 2015), leading other studies to prefer dynamic ice-sheet
modelling.

3D thermodynamic ice-sheet models, driven by climate forcing, present an alternative
approach to reconstructing 3D time-evolving ice-sheet geometries. Spanning the
LGM to present day, the GLAC-1D ice-sheet history used for the Paleoclimate
Modelling Intercomparison Project (PMIP) 4, outlined by Ivanovic et al. (2016), has
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Figure 1.5: The LGM Eurasian ice-sheet configuration as constructed by the ICE-6G
GIA inversion (Peltier et al., 2015), GLAC-1D dynamic (Tarasov et al., 2012), and
PaleoMIST simple (Gowan et al., 2021) ice-sheet models.

adopted a combination of regional ice-sheet reconstructions each of which has been
produced by thermodynamic ice-sheet simulations strongly nudged to fit constraints
from 2D reconstructions of ice extent, near-field sea level data, melt-water history,
and climate evolution. Compared with GIA inversion modelling each of the Eurasian
and North American (Tarasov et al., 2012), Antarctic (Briggs et al., 2014), and
Greenland (Tarasov and Peltier, 2002) components have fewer degrees of freedom
available with which to best-fit observational constraints in order to enforce ice-sheet
physics and prescribed climate forcing within their models. Patton et al. (2016)
focused their dynamic ice-sheet modelling towards the build-up and, in later work,
retreat (Patton et al., 2017) of the LGM Eurasian ice sheet and concluded a volume
estimate of 17 m SLE, lower than those produced by GIA inversion.

Limited dynamic modelling studies have focused on the PGM due to large uncer-
tainties in climate forcing and available data constraints. Despite this, the PGM
model of Peyaud (2006), used by Colleoni (2009), utilised the 2D ice-sheet margin of
Svendsen et al. (2004) as a target configuration for their dynamic ice-sheet model
with which to tune a climate forcing input which resulted in a very large 70 m SLE
Eurasian and inferred 78 m SLE North American PGM ice-sheet volume (Colleoni
et al., 2016). The PMIP4 Penultimate Deglaciation protocol also utilised dynamic
ice-sheet modelling by adopting the work of Abe-Ouchi et al. (2007), this time forced
by outputs of a GCM, as boundary conditions for transient climate simulations.
While dynamic models ensure more physically plausible ice-sheet geometries, they
are also dependent on the reliability of the climate-forcing used.
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GIA inversion models can only be reconstructed where there is abundant, spatially
diverse and high quality VLM and RSL data; while dynamic ice-sheet simulations are
expensive to run and dependent on large assumptions about climate. An alternative
approach is the use of simple ice-sheet modelling in which ice-sheet geometries
are generated based upon the assumptions of steady-state, perfectly-plastic ice flow
physics without accounting for the influence of dynamic ice-sheet processes (Nye,
1952; Reeh, 1982; Fisher et al., 1985). Nye (1952) first proposed that the surface
gradient of a perfectly plastic ice sheet was directly related to shear stress at the
ice-bed interface and that, combined with a prescribed ice-sheet centre, could be used
to estimate ice-sheet thickness. The Nye (1952) method, which originally assumed
invariant topography beneath the ice sheet, was expanded on by Fisher et al. (1985)
to allow for variable topography and basal shear stress beneath the ice sheet by
enabling changes in the estimated direction of ice-sheet flowlines, the hypothetical
path that traces the flow of ice from the interior of an ice sheet to the margin. In the
same work, Fisher et al. (1985) applied their model to reconstructing the Laurentide
ice sheet. Subsequently, Gowan et al. (2016a) used this formulation to develop
the ICESHEET model which is able to generate 3D ice-sheet geometries using an
iterative process to calculate thickness profiles along flowlines that are generated at
regular intervals within the prescribed ice margin. Gowan et al. (2016b) first applied
ICESHEET to the reconstruction of the Western portion of the LGM Laurentide
ice-sheet before going on to develop the global ice-sheet history PaleoMIST (Gowan
et al., 2021) spanning 80 ka to present day.

1.3 Summary

GMSL is rising and accelerating, but as ice-sheet melt becomes the dominant
contributor to sea-level rise the uncertainty surrounding the Greenland and Antarctic
response to a warmer climate becomes more pressing to resolve. Modelling and
data studies of the LIG have helped to shed light on spatiotemporal patterns
of warm temperatures, high sea levels, and small ice sheets, helping to uncover
the value this time period presents to inform the prediction of future warming
scenarios. In particular, previous research suggests that smaller Greenland and/or
Antarctic ice sheets likely drove higher than present LIG sea levels but the source,
magnitude, and timing of their contribution remains uncertain. As the abundance of
studies generating LIG sea-level records has increased, along with their accessibility
through the development of generalised databases, so too has our understanding
of the breadth of processes that can affect our interpretation of such records. In
particular, the significant contribution of GIA to near-field sites can dominate their
RSL signal, leading to potentially large uncertainties surrounding their correction
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for such processes. Despite this, exciting developments in the modelling community
have begun to explore the theoretical possibility of identifying sea-level fingerprints
of LIG ice-sheet changes, but the largest challenge remains uncertainty in the Earth’s
rheology and ice-sheet history. While numerous ice-sheet and sea-level modelling
approaches have been developed to marry simulations with observational data, much
work still remains to understand LIG sea-level and to harness the information it may
hold about future ice-sheet melt in a warming world.

To address these research gaps, this thesis utilises the opportunity afforded by
northwest Europe’s sensitivity to the source of LIG ice-sheet melt whilst capturing
and quantifying uncertainties that result from studying a location proximal to a
former ice load. The following chapter gives an overview of the tools and techniques
required to perform this work (Chapter 2). Next, I describe the development of a
Eurasian ice-sheet load (Chapter 3 and 4) and subsequently determine the sensitivity
of LIG sea level to the range of parameters influencing regional GIA (Chapter 4).
Finally, I assess and calibrate Eurasian RSL models to European sea level data with
the aim of fingerprinting Antarctic melt during the LIG (Chapter 5).
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Chapter 2

Tools and Techniques

The work within this thesis is focused on the use of an ice-sheet and sea-level model
to produce simulations of northwest Eurasian RSL during the LIG. Various tools and
techniques were employed to produce model inputs, perform analysis, and enable a
complete model workflow, as summarised in Figure 2.1. While the details of these
methods are given in each chapter, this chapter outlines key aspects of the tools and
techniques that I utilised and developed.

2.0.1 Numerical Models

A numerical model is a mathematical representation of some real-world system for
which approximate solutions can be generated with the use of numerical methods. A
collection of computer code that implements such numerical methods is referred to
as a simulator (or model). Models often require input data to describe the physical
state of a system, determine system behaviour, or describe internal characteristics of
numerical solutions, but the true value of these inputs are often uncertain. Because
of this, it is common to decompose input data into a series of (usually scalar) values
known as model parameters. The range of possible parameter values is referred to as
a parameter range and the combined space that contains all possible combinations
of input parameters is referred to as a parameter space. For deterministic models,
this parameter space maps to the space of all possible model outputs within the
given bounds of parameter uncertainty.

Many problems that use numerical models require knowledge of the possible range of
output values across a model parameter space, but since determining the model output
that corresponds to each input parameter combination requires running the model, it
can be computationally expensive to densely explore this space. Techniques have been
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Figure 2.1: Flowchart visualising how the models and tools used in this thesis
interlink.

developed to efficiently explore a model parameter space including Latin hypercube
sampling (Mckay et al., 2000), used throughout this thesis. When generating N

samples, latin hypercube sample (LHS) works by first dividing each dimension of the
model parameter space into N equal parts. Within each division, the algorithm then
generates a random value along each dimension, producing a LHS. The space-filling
properties of this design can be further improved upon by modifying the initial
sample to maximise the distance between all points, known as a maximin LHS
(Williamson, 2015). The maximin LHS design used in this work ensures that the
parameter space is quasi-randomly but evenly explored. In this thesis, we explore
our parameter space designs for both an ice-sheet and sea-level model, which will
now be briefly described in turn.

2.0.1.1 Gowan ICESHEET Model

This thesis utilises the simple ice-sheet model known as ICESHEET, developed by
Gowan et al. (2016a), for our Penultimate Deglaciation simulations of the Eurasian
ice sheet. ICESHEET assumes a steady-state, perfectly plastic ice-sheet rheology (i.e.
the flow of ice) in order to calculate ice elevation along paths of ice flow, known as
flowlines. As detailed in Gowan et al. (2016a), the basis of this theory was originally
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developed by Nye (1952) in which ice-sheet elevation E along a flowline was related
to basal shear stress at the base of the ice τo by the surface gradient,

dE

ds
=

τo
ρigH

, (2.1)

where s is the distance along the ice flowline, g is the acceleration due to gravity, H
is the ice-sheet thickness, and ρi is the density of ice. This formulation can be used
to calculate E along a flowline if the centre of the ice sheet is known and if both
τo and bedrock topography B are assumed to be constant. These equations were
subsequently expanded by Reeh (1982) and Fisher et al. (1985) to allow for changes
in flowline direction, such that,(
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)2
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(
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+
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)2

, (2.2)

where x and y are the directions parallel and perpendicular to the ice-sheet margin
respectively.

Substituting Equation 2.1 into Equation 2.2 produces,(
Hf
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where Hf is the characteristic thickness given by,

Hf =
τo(x, y)

ρig
. (2.4)

Through the method of characteristics, Equation 2.3 can be expressed in terms of
the partial derivatives p = ∂xE and q = ∂yE, to arrive at the following system of
differential equations,
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dx
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p
, (2.5)
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)
∂Hf

∂y
. (2.7)

The ICESHEET model is a computational implementation of numerical solutions
to these three equations solved by iteratively generating ice-elevation contours
(Figure 2.2). ICESHEET works by first sampling an ice-sheet margin for a series
of coordinates to be used as flowline termination locations. For each coordinate,
ICESHEET calculates a flowline direction and elevation (for the margin, this elevation
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is assumed to be 1 m) before traversing each flowline vector until a new, specified
elevation value is reached. The flowline directions and coordinates corresponding to
these flowline vector positions are then used to assemble a new elevation contour,
with routines in place to deal with issues such as polygon crossover and separation
(Figure 2.2). This process is repeated until all flowline calculations have terminated
before the resulting series of polygons, represented as a collection of coordinates,
that describe the elevation contours of the ice sheet are outputted to a text file.

Figure 2.2: Visualisation of key steps in ICESHEET’s numerical implementation of
ice-sheet flowline profiles. From Gowan et al. (2016a), Figure 1.

ICESHEET allows the user to specify the resolution of reconstructions through
two parameters: the elevation interval, used to determine the elevation spacing
between contour calculations; and the minimum spacing, describing the minimum
distance between flowline coordinates along each polygon. In this work, the elevation
coordinate data outputted from ICESHEET is interpolated onto the same model
grid on which the input data is defined with the use of the Python-based Scipy
interpolation library.

2.0.1.2 Kendall Sea-Level Model

The sea-level model used in this work is based on the numerical implementation
described by Kendall et al. (2005) that uses a pseudo-spectral approach to calculate
numerical solutions to the Sea Level Equation (Equation 1.20) (Mitrovica and Peltier,
1991). Spectral, in this case, refers to the mathematical transformation of a quantity
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originally defined in the spatial domain (such as ice-sheet thickness and topographic
deformation) to the spectral domain. This can be especially useful for quantities
defined on the surface of a sphere since any such quantity χ(θ, ψ, t) for t is time,
colatitude θ, and longitude ψ can be expressed as,

χ(θ, ψ, t) =
∞∑
l=0

l∑
m=−l

χlm(t)Ylm(θ, ψ), (2.8)

where l is the spherical harmonic degree, m is the spherical harmonic order, Ylm is
the spherical harmonic function, χlm are time-evolving scaling factors. In the case of
the Sea Level Equation, the pseudo-spectral approach refers to the fact that solutions
to spatially variable sea-level change are computed in the spectral domain, as this is
numerically more efficient, while aspects that require spatial filtering (such as ocean
masking) are mathematically simpler to perform in the space domain (Gomez et al.,
2010). Thus, the Kendall et al. (2005) implementation performs calculations in both
domains, transforming quantities as necessary.

In general, it is not possible to retain the complete spherical harmonic representation
of a spatial quantity, as shown in Equation 2.8, since this would require storing
spherical harmonic degrees from 0 to ∞. Instead, the sea-level model allows the user
to specify a maximum spherical harmonic degree and order at which to truncate the
decomposition. To aid the spherical harmonic transformation, the sea-level spatial
model grid used for input and output quantities is defined on the Gauss–Legendre
latitudinal nodes of corresponding maximum harmonic degree order.

The spherical formulation of the Sea Level Equation solves for the deformation of the
solid Earth to an arbitrary surface load through the use of viscoelastic Love number
theory (Peltier, 1974). This theory requires expressing the spatial viscoelastic Earth
structure in terms of Love number spectra, which characterise the impulse response
of a Maxwell Earth. In this thesis, the Love number spectra are calculated up to the
same specified maximum harmonic degree via the collocation method implemented
by Jerry Mitrovica (pers comms.) and outlined in Mitrovica and Peltier (1992).

2.0.2 Python Tools

2.0.2.1 ShearPy

ShearPy is a Python-based tool that I have developed to generate shear-stress inputs
to the ICESHEET model. This tool interfaces with a database of shear-stress regions
that each consists of a region ID, time period, and geometry in order to easily
generate maps with specified shear-stress values. ShearPy allows for shear-stress map
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inputs to be generated in a layer-like fashion. Each layer of the map is treated as a
separate Python object and ShearPy implements ‘magic methods‘ in corresponding
object classes to allow arithmetic and logical operations between layers. The program
includes options to make reproducible ensembles more convenient, such as a ‘combine
pattern string‘ option that executes a pre-defined series of combination operations
that can easily be stored as metadata.

In addition, ShearPy implements a number of geospatial operations that can manip-
ulate the geographic extent of layers (such as defining a maximum internal extent
for ice streaming) and generate new layers (such as cold-based ice and hybrid ice
streaming) based on ice-sheet margin position. Other features include convenient
access to shear stress geometries by ID, region, or type; in-built plotting tools to
pre-view operations; and the ability to rapidly reprojection and rasterisation of
shear-stress vectors onto a model grid.

ShearPy is made publicly available here: https://github.com/oliverpollard/ShearPy

2.0.2.2 ShaPy

Work within this thesis required the ability to interpolate between two closed polygons.
To achieve this, I have developed a Python module for this purpose, named ShaPy,
that is able to calculate a mapping between coordinates from an exterior to an
interior polygon. This point mapping can then be used to define a corresponding set
of vectors that describe the path each exterior polygon coordinate should take to
reach its corresponding interior point. Using this method, my module can generate
an intermediary polygon for any specified interpolation value s corresponding to
a normalised distance d along the interpolation vectors with d = 0 and d = 1

corresponding to the original exterior and interior polygons respectively. In the
standard mode, the program will perform linear interpolation, such that d = s, but I
also included additional functionality in ShaPy to allow for non-linear interpolation
rates (e.g. d = s2), as shown in Figure 2.3, and variable vector interpolation rates
that depend on the angular position of the vector’s corresponding exterior coordinate.

ShaPy operation takes 6 key operations, numbered corresponding to the illustrations
in Figure 2.3:

1. The exterior and interior polygon geometries are loaded into the program.

2. Equally spaced coordinates are generated along both the interior and exterior
polygon perimeters. The number of coordinates sampled is specified by the
user through the sample_size parameter.
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3. An initial mapping of polygon coordinates, from exterior to interior, is generated
by matching each exterior coordinate to the interior point with the minimum
linear distance. This procedure does not guarantee that all interior coordinates
are mapped to an exterior coordinate.

4. For each sequence of unmapped interior coordinates, an equal number of new
exterior coordinates are inserted in an equidistant sequence between bounding
mappings, and mapped to the interior coordinates

5. Each mapping is associated with an interpolation ‘power‘ which determines
the distance along the connecting line that a new coordinate will be generated
at for a given interpolation ‘value‘.

6. An interpolated polygon is generated by joining all interpolated coordinates.

Figure 2.3: Schematic illustrating the key steps in the shape interpolation algorithm
developed and implemented with ShaPy.
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ShaPy has been developed as an object-orientated Python module that exposes the
polygon coordinate sampling methods with a user-accessible PolygonSampler object
and the polygon interpolation methods with a PolygonInterp object.

ShaPy is made publicly available here: https://github.com/oliverpollard/ShaPy

2.0.2.3 ViscoPy

In developing large ensembles of sea-level model outputs, I was required to produce
systematic variations in the viscoelastic Earth structure that respected parameter
discontinuity values imposed by the Preliminary Reference Earth Model (PREM)
(Dziewonski and Anderson, 1981). To achieve this, I developed a Python module,
named ViscoPy, that could quickly and easily generate 1D viscoelastic Earth struc-
tures with user-specified viscosity values and region divisions; depth-variable model
resolution; and imposed PREM elastic and density structure discontinuity locations.
My module is built around the ModelGenerator object that, once initialised, can be
used to rapidly generate Earth structures by providing a list of viscosity values and
boundaries to the generate method which then returns a table of Earth property
values. The module has in-built load and save functions, and uses the same file
structure as is required by the Mitrovica love-number generator (described in Section
2.0.1.2) for easy use with the sea-level model.

ViscoPy is made publicly available here: https://github.com/oliverpollard/ViscoPy

2.0.3 Uncertainty Quantification and Statistical Modelling

In the context of numerical modelling, uncertainty quantification is the process of
assessing and quantifying uncertainties associated with model output values. This
section will briefly review some key concepts that are important for this research.
First, I review the two key categories of model uncertainty: parametric uncertainty,
resulting from input parameter boundary condition uncertainty; and structural
uncertainty, as a result of mathematical assumptions, physical simplifications, missing
processes, or numerical implementations (Smith, 2013; Parker, 2013). Next, I review
three statistical modelling techniques: sensitivity analysis, used to identify the most
important parameters contributing to parametric uncertainty; history matching,
reducing the size of the model parameter space to only include regions that can best
fit observations, accounting for model parametric and structural uncertainty; and
Gaussian process emulation, a statistical model that makes this analysis possible
without the need to run thousands of numerical model simulations. These are
powerful methodologies that are commonly used to understand and quantify the
uncertainty that results from large numerical modelling experiments.
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2.0.3.1 Parametric Uncertainty

The assessment of parametric uncertainty typically requires performing a large ensem-
ble of simulations that explores different possible combinations of input parameter
values, referred to as a perturbed parameter ensemble (PPE) (Murphy et al., 2007).
The use of PPEs to quantify parametric uncertainty in palaeo ice-sheet and sea-level
models is an underdeveloped field due to the computational requirements, difficulty
in constraining parameter ranges, and lack of observational constraints. In particular,
parametric uncertainty assessments in dynamic ice-sheet models are limited by the
computational requirements of running a fully coupled climate model within a large-
ensemble framework. Such studies instead make assessments based on perturbations
to parameters controlling surface mass balance as a simple approximation to the
impacts of climate uncertainty. However, examples are more common in studies
that focus on ice-sheet changes since the Last Deglaciation, since more observational
constraints are available against which model output ranges can be compared. Recent
examples of such studies include the work by Gandy et al. (2023) in which parametric
uncertainty in the extent of the North American ice sheet at the LGM was quantified
with the use of a 280-member PPE. This ensemble was generated with a LHS of
13 parameters controlling ice sheet albedo, ice sheet dynamics, atmospheric, and
oceanic parameters within a coupled climate-ice model. Some studies have quantified
parametric uncertainty in ice-sheet models prior to the Last Deglaciation, such
as the work by Stone et al. (2013), which assessed the parametric uncertainty in
thermo-mechanical ice-sheet model simulations of GrIS during the LIG. Their work
used 500-member LHS to explore 5 uncertain parameters but were unable to assess
the impact of structural climate model error on their simulations.

2.0.3.2 Structural Uncertainty

Accurately assessing structural uncertainty can be much more challenging than
exploring parametric uncertainty. Studies often try to capture structural error by
determining the mismatch between model outputs and observed data. However, due
to uncertainties in modelled physical processes and numerical implementations, it is
not guaranteed that a numerical model can match observational constraints even
with a perfect choice of input parameters and well-constrained observations. It can
be difficult to directly compare spatiotemporal outputs from palaeo ice-sheet and sea-
level models against observation data since such data is generally sparsely available.
Despite this, methods have been developed to directly compare spatiotemporal
ice-sheet thickness outputs against geochronological data (Ely et al., 2019), ice-
sheet flow direction compared against lineations left within the geomorphological
record (Archer et al., 2023), and modelled margins against moraine positions (Li
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et al., 2008). Despite these efforts, direct comparison of spatiotemporal ice-sheet
and sea-level model outputs in order to quantify the full spatiotemporal structure
of the structural model error remains challenging. More typically, spatiotemporal
fields are summarised by some choice of metric (such as total ice-sheet volume or
RSL at a particular location) in order to be comparable against corresponding data
reconstructions, including modelled ice-sheet area and volume (Gregoire et al., 2016;
Gandy et al., 2023) and RSL reconstructions (Gowan et al., 2021; Tarasov and Peltier,
2002; Peltier, 2004). In these instances, discrepancies between modelled summary
metrics and observations are assumed to be representative of the model-structural
uncertainty. In the case of multiple sources of observation, it can be useful to apply
a method capable of combining these summaries into a single metric describing
model-data fit. One such method is known as history matching, which uses the
implausibility metric to describe the distance between the model and data, normalised
by the total model-data uncertainty (Gandy et al., 2023; Bower et al., 2010; Vernon
et al., 2022; Williamson et al., 2013).

2.0.3.3 Sensitivity Analysis

The number of simulations required for a PPE to properly assess parametric uncer-
tainty is highly dependent on the specifics of the numerical model being assessed.
Typically this number increases with the number of model parameters under as-
sessment. In order to allow for a more focused assessment of uncertainty, PPEs
can be restricted to include only those parameters that significantly contribute to
uncertainty in a model output of interest, a process known as sensitivity analysis.
Sensitivity analysis attributes model output uncertainty to input variations (Pianosi
et al., 2016) and can be used to reduce the dimensions of model parameter spaces
required to explore parametric uncertainty (Saltelli et al., 2007, 2010). Sensitivity
analysis can be performed by varying each model parameter individually (known as
one-at-a-time experiments) or through more sophisticated methods, such as Sobol
sensitivity analysis (Sobol’, 1990), that are able to quantify the relative contribu-
tion (or sensitivity index) of a parameter to the overall output variance. Examples
of sensitivity analysis performed in the context of palaeo-ice-sheet modelling include
the work by Briggs et al. (2013) quantifying sensitivity to 31 thermo-mechanical
ice-sheet model parameters governing the AIS deglaciation.

2.0.3.4 History Matching

History matching is a procedure used to identify areas of a model’s parameter space
that are able to fit observational constraints within a specified magnitude of model
and data uncertainty, referred to as the ‘not ruled out yet‘ (NROY) subset of the
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parameter space (Vernon et al., 2022; Williamson et al., 2013; Bower et al., 2010). The
first step in this procedure is to perform sensitivity analysis on the model parameters,
identifying those to which the model output of interest is most sensitive. This allows
the analysis to proceed with a reduced dimensionality parameter space, enabling
it to be explored with a greater density for the same number of samples. Next,
the parameter space is explored by running a large ensemble of simulations from
parameter combinations sampled from this space, using a space-filling design such
as LHS. Since running a numerical model can often be computationally expensive,
it is common to then explore a far larger LHS sample of the parameter space
using an approximate statistical representation of the numerical model (known as
an emulator), trained on the original LHS of model outputs. Finally, for each
parameter combination tested, each model output can then be summarised with a
scalar implausibility value, which represents the model’s ability to fit observations
for a given parameter combination, normalised by the total uncertainty. These
implausibility values can be used to identify the NROY portion of the parameter
space that is able to fit observations within some specified distance tolerance. If
needed, the NROY space can then be further refined with successive waves of history
matching (Vernon et al., 2022).

To understand the implausibility measure, first consider the true value of some
quantity of interest y that we have modelled as f(p̂) for parameter combination p̂.
We consider, here, two sources of error. First, assume we have observed at some value
z and observational error e, such that y + e = z. Next, since our numerical model is
not a perfect representation of the real world, all predictions f(p̂) are separated from
y by model structural discrepancy ϵ such that, for the hypothetical perfect parameter
combination p̂∗, y = f(p̂∗) + ϵ. The implausibility of parameter combination p̂ is
then given by,

I(p̂) =

√
(E(f(p̂))− z − E(ϵ))2

V ar(e) + V ar(ϵ) + V ar(f(p̂))
(2.9)

where E is the expectation, V ar is the variance, E(ϵ) is the expected model bias,
V ar(ϵ) is the variance of structural error, and V ar(f(p̂)) is the emulator error in the
case that f is an emulation of our original numerical model. If f(p̂) is known exactly,
that is, we have observed the actual model output, then V ar(f(p̂)) = 0. Values of
I(p̂) are then given in terms of standard deviations of the overall model and data
uncertainty. It is typical to rule out parameter combinations that have implausibility
of greater than 3, following the Pukelsheim (2012) three-sigma rule typically used
in Bayesian history matching, in order to identify the remaining NROY parameter
space best able to explain observations (Andrianakis et al., 2015; Williamson et al.,
2015).
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2.0.3.5 Gaussian Process Emulation

In performing uncertainty quantification or sensitivity analysis, it is often necessary
to perform large-ensembles of model outputs that would be computationally infeasible
to acquire directly from a numerical model. In this instance, model outputs can
be approximated with the use of a fast, surrogate statistical model referred to as
an emulator that is trained on a smaller subset of model outputs. One such type
of emulator is a Gaussian process, a non-parametric model defined as a collection
of random variables, any finite subset of which follows a multivariate Gaussian
distribution (Rasmussen and Williams, 2006; Astfalck et al., 2019). At a high level,
a Gaussian process places a probability distribution over the infinite possible set of
functions that may explain our data. This distribution first takes the form of a prior
distribution constraining the subset of the function space to those with characteristics
that we believe may best fit the process in question (such as smoothness, periodicity,
and differentiability). This prior information is encoded within a covariance matrix
Σ which is generated by a choice of covariance function, or kernel, for a given set of
function characteristic requirements. After generating some model output values,
this prior distribution and associated Σ can be updated to a posterior distribution
that further narrows the subset of functions to those that can also explain our specific
data (Rasmussen and Williams, 2006). Together, Σ and a mean function µ fully
define the Gaussian process statistical model. The need to emulate numerical models
has made the Gaussian process a popular tool within the Earth sciences and has been
used in a variety of applications that have required dense model output sampling
(Gilford et al., 2020; Pollard et al., 2016; Edwards et al., 2021).

2.1 Summary

This section has provided a brief outline of key methods and tools used throughout
this thesis for the investigation of northwest Eurasian RSL during the LIG. Chapters
3 and 4 show how the simple ICESHEET model can be applied to the Penultimate
Deglaciation of the Eurasian ice sheet while Chapters 4 and 5 apply the sea-level
model to investigate the sensitivity, uncertainty, and calibration of RSL outputs.
This work begins by investigating the range of plausible Eurasian ice-sheet geometries
at the PGM with the use of a simple ice-sheet model and refined with the use of
Bayesian history matching.
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Chapter 3

Quantifying the Uncertainty in the
Eurasian Ice-Sheet Geometry at the
Penultimate Glacial Maximum
(Marine Isotope Stage 6)

This chapter has been published as Pollard et al., 2023, Quantifying the Uncertainty
in the Eurasian Ice-Sheet Geometry at the Penultimate Glacial Maximum (Marine Iso-
tope Stage 6)., The Cryosphere, 17(11), pp.4751-4777., doi: https://doi.org/10.5194/tc-
17-4751-2023.

3.1 Abstract

The North Sea LIG sea level is sensitive to the fingerprint of mass loss from polar
ice sheets. However, the signal is complicated by the influence of glacial isostatic
adjustment driven by Penultimate Glacial Period (PGP) ice-sheet changes, and
yet these ice-sheet geometries remain significantly uncertain. Here, we produce
new reconstructions of the Eurasian ice sheet during the PGM by employing large
ensemble experiments from a simple ice-sheet model that depends solely on basal
sheer stress, ice extent, and topography. To explore the range of uncertainty in
possible ice geometries, we use a parameterised shear-stress map as input that has
been developed to incorporate bedrock characteristics and the influence of ice-sheet
basal processes. We perform Bayesian uncertainty quantification, utilising Gaussian
process emulation, to calibrate against global ice-sheet reconstructions of the Last
Deglaciation and rule out combinations of input parameters that produce unrealistic

35



CHAPTER 3. QUANTIFYING PGM EURASIAN ICE-SHEET UNCERTAINTY

ice sheets. The refined parameter space is then applied to the PGM to create an
ensemble of constrained 3D Eurasian ice-sheet geometries. Our reconstructed PGM
Eurasian ice-sheet volume is 48 ± 8 m SLE. We find that the Barents-Kara Sea
region displays both the largest mean volume and volume uncertainty of 24± 8 m
SLE while the British-Irish sector volume of 1.7± 0.2 m SLE is smallest. Our new
workflow may be applied to other locations and periods where ice-sheet histories
have limited empirical data.

3.2 Introduction

The LIG (MIS 5e; 130 - 116 ka) was the last time in Earth’s history that the Greenland
and Antarctic ice sheets were smaller than today (Dutton et al., 2015), during a
time when polar temperatures were 3-5 °C above pre-industrial values (Capron et al.,
2014), raising the global mean sea level by 5-10 m above present values (IPCC,
2022). The timing, magnitude and spatial pattern of LIG sea-level changes are, in
large part, caused by ice-mass changes during the interglacial as well as by those
that occurred during the preceding glacial (MIS 6, 191-123 ka) cycle (Dendy et al.,
2017; Rohling et al., 2008, 2019). The effect of ice-sheet melt on sea-level change is
complex due to feedbacks between ocean water volume, perturbations of the Earth’s
rotational axis, Earth’s gravitational field, and viscoelastic deformation of the solid
Earth due to changing ice and water loads (Milne and Mitrovica, 1998). Together,
these processes are termed GIA (Farrell and Clark, 1976; Mitrovica and Milne, 2003;
Whitehouse, 2018), and form the primary drivers of spatially variable RSL change
on glacial-interglacial timescales.

Regional LIG RSL changes are a consequence of the distribution and timing of
terrestrial ice-mass deglaciation during the preceding glacial. Last Deglaciation
ice-sheet histories included in GIA reconstructions are well constrained by a wealth
of geological data (Clark and Mix, 2002; Dalton et al., 2020; Hughes et al., 2016)
and tested against comprehensive RSL databases (e.g., Peltier, 2004; Shennan et al.,
2006; Stuhne and Peltier, 2017; Tarasov et al., 2012). By contrast, for glacial periods
prior to the LGM, including the Penultimate Deglaciation (typically correlated to the
end of MIS 6 and, regionally in Europe, the late Saalian glacial phase) that preceded
the LIG, a paucity of geomorphological and chronological constraints for ice extent,
thickness, and volume means that older ice-sheet reconstructions are much harder
to constrain. This presents a significant source of uncertainty for studies that focus
on ice and water loading changes during the LIG (Barlow et al., 2018; Düsterhus
et al., 2016). One notable uncertainty in the PGP ice history is the Eurasian ice
sheet, as its extent was thought to have been significantly larger during the PGM
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than the LGM (Batchelor et al., 2019; Svendsen et al., 2004) (Figure 3.1). Geological
data suggest that the preceding glacial Eurasian ice sheet was typified by more than
one period of ice advance during late Saalian. In western Europe two significant
phases of ice advance occurred; the Drenthe (ca. 175-160 ka) which extended south
of the LGM ice extent in the Netherlands, and the latter Warthe readvance (ca.
150-140 ka) which terminated within the limits of the Drenthe glacial maximum
(Toucanne et al., 2009; Ehlers et al., 2011; Ehlers and Gibbard, 2004). To the east,
a period of Saalian ice advance in central Russia deposited the extensive Moscow
till, which is now commonly ascribed to MIS 6 (Shik, 2014), although chronological
uncertainty means it remains unresolved how this glacial deposition correlates to the
advance/retreat phases in the west. It is reasonable to assume that the Penultimate
Deglaciation of the Eurasian ice sheet may have been asynchronous, as it was during
the Last Deglaciation (Patton et al., 2017), with parts of the ice sheet reaching its
maximum position at the same time as other areas retreated. This difference in
timing and extent would result in a differing pattern of solid Earth displacement
and RSL change during the LIG, in both the near and far field, compared to the
Holocene (Cohen et al., 2022; Dendy et al., 2017; Lambeck et al., 2006; Rohling
et al., 2008). However, to better constrain this, more chronological data are needed
to reconstruct the spatially variable timing and extent of the ice load during the
PGP across Europe (Lauer and Weiss, 2018).

Previous work reconstructing the configuration of the Eurasian ice sheet has primarily
focused on the Last Deglaciation (Clark et al., 2022; Gowan et al., 2021; Patton
et al., 2016; Peltier et al., 2015; Tarasov et al., 2012) with some notable exceptions
extending to the Penultimate Deglaciation (Colleoni et al., 2016; Lambeck et al.,
2006). Ice-sheet reconstructions can be categorised as either 2D, which aim to
outline the ice sheet extent, or 3D, where the geometry (thickness and extent) of
the ice sheet is estimated. Detailed 2D reconstructions of the Last Deglaciation
have been compiled from available geomorphological constraints describing the full
chronological evolution of the ice sheet at high temporal resolutions of up to 0.5
ka (Batchelor et al., 2019; Hughes et al., 2016). By contrast, 2D reconstruction
efforts for the Penultimate Deglaciation Eurasian ice sheet are more limited and
have focused on the maximum asynchronous ice limit during the Penultimate Glacial
Cycle, since intermediary deglaciation margins are difficult to constrain and date
with the available geomorphological evidence (Batchelor et al., 2019; Svendsen et al.,
2004). 2D reconstructions are limited in their application to GIA modelling since
they do not provide ice thickness information.

Three main approaches have been employed to estimate 3D Eurasian ice-sheet
geometry, and therefore ice thickness and volume: GIA inversion, dynamic ice-sheet
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Figure 3.1: LGM and PGM Eurasian ice-sheet reconstructions: (a) 26 ka ICE-6G
(Peltier et al., 2015) and (b) 21 ka GLAC-1D (Tarasov et al., 2012) reconstructed
Eurasian ice-sheet thickness at their respective maximum Eurasian ice-volume con-
figurations during the Last Glacial Maximum. PGM maximum ( 140 ka) Eurasian
ice-sheet thickness from (c) Colleoni (2009) and (d) Lambeck et al. (2006). (e)
Comparison of ice margins from Batchelor et al. (2019), with the green band showing
the area between the MIS 6 maximum and MIS 8 best-estimate margins.

modelling, and simple ice-sheet modelling. In the first, solutions to the inverse
GIA problem are calculated by tuning a combination of global ice reconstruction,
radially varying Earth viscosity, and lithospheric thickness to fit a global set of RSL
records and modern Global Navigation Satellite System (GNSS) data. This method
has been applied in the generation of numerous Eurasian ice-sheet reconstructions
during the Last Deglaciation (Lambeck et al., 2006; Peltier, 2004; Peltier et al., 2015)
while also having been applied to the Penultimate Deglaciation (Lambeck et al.,
2006). By design, GIA inversion ice-sheet load solutions are consistent with empirical
constraints on rebound and sea-level data, when combined with the corresponding
adopted viscoelastic Earth structure, but do not ensure physical consistency with
known ice-sheet physics, often leading to physically implausible reconstructions.

In the second approach, 3D thermodynamic ice-sheet models, driven by climate
forcing, are used to model 3D time-evolving ice-sheet geometry. This approach
has been applied to the PGM in combination with a prescribed climate forcing
to produce a 3D Eurasian ice-sheet reconstruction that, at equilibrium, matches
the Svendsen et al. (2004) Eurasian ice margins (Colleoni, 2009; Colleoni et al.,
2016; Peyaud, 2006). In turn, this reconstruction has been used to drive ice-sheet
sensitivity experiments (Wekerle et al., 2016). Similarly, Abe-Ouchi et al. (2007)
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used a dynamic ice-sheet model, driven by a general circulation model, to model
Northern Hemisphere ice sheets over late Quaternary glacial cycles, which are used
as boundary conditions for transient climate simulations of PMIP4 (Menviel et al.,
2019). In other work, climate-driven thermodynamic ice-sheet simulations have
been performed by Tarasov et al. (2012) and Patton et al. (2017), nudged to fit
constraints from 2D reconstructions, near-field sea-level data, meltwater history, and
climate evolution. While dynamic models ensure more physically plausible ice-sheet
geometries they are also dependent on the reliability of the climate forcing used.

Finally, the simple ice-sheet model approach is designed to generate ice geometries that
approximate the profile of a steady-state ice sheet for a given margin. This technique
has been used in both regional reconstructions, such as the Last Deglaciation of the
western Laurentide (Gowan et al., 2016b), as well as global ice-sheet margins (Gowan
et al., 2021) during the Last Deglaciation.

The large uncertainties and limited data available from which to constrain the pattern
and timing of the Penultimate Deglaciation of the Eurasian ice sheet (Rohling et al.,
2017; Ehlers et al., 2011; Hughes et al., 2011) means it must be tackled with robust
and efficient methods of uncertainty quantification and parameter sampling for the
problem to be tractable (Andrianakis et al., 2015; Astfalck et al., 2021; Williamson
et al., 2013). LGM studies show it is possible to use uncertainty quantification
techniques, combined with 3D dynamic ice-sheet modelling, to estimate a range
of plausible ice-sheet histories (Gregoire et al., 2016; Tarasov et al., 2012; Gandy
et al., 2021). However, reliance on poorly constrained rebound data required for GIA
inversion modelling (Lambeck et al., 2006) or assumptions of highly uncertain climate
data used in dynamic ice-sheet simulations (Abe-Ouchi et al., 2007; Peyaud, 2006)
make these approaches challenging to constrain for the Penultimate Deglaciation
and give only a very limited view of possible pasts with no grasp on the vast
range of plausibility. In addition, computational requirements make quantification
of uncertainties intractable if the models used are too complex. Therefore, the
fast execution speeds and small number of input parameters make simple ice-sheet
modelling a well-suited approach for tackling the challenges of the PGM within a
Bayesian uncertainty quantification framework.

In this paper, we develop a new technique to generate plausible Eurasian ice-sheet
geometries for the PGM where we have little information on ice thickness and
dynamics, accounting for uncertainty, and provide an ensemble of ice sheets that have
been systematically tested. We utilise ICESHEET, a simple ice-sheet model whose
minimal input requirements enables the production of large ensemble simulations with
controlled sources of uncertainty (Gowan et al., 2016a). We demonstrate how the 2D,
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uncertain shear-stress input to the model can be parameterised and systematically
varied to produce an ensemble of physically consistent ice-sheet geometries. We then
test and calibrate the model and input shear-stress map on the Last Deglaciation to
rule out implausible input parameters and produce a new simulation of the Eurasian
Last Deglaciation in the process. Finally, we apply the information gained from this
process to produce ensembles of ice-sheet geometries for the PGM that can serve as
input to subsequent GIA modelling to robustly quantify uncertainties.

3.3 Models and Methods

3.3.1 ICESHEET Simulator

ICESHEET is an ice-sheet model (Gowan et al., 2016a) that assumes steady-state
conditions and a simple, perfectly plastic ice-sheet rheology to rapidly generate
physically plausible ice-sheet reconstructions from only three 2D model inputs: ice-
sheet margins, regional topography, and basal shear stress (based upon the physics
first developed by Nye (1952), Reeh (1982), and Fisher et al. (1985)). Using an
iterative process, ICESHEET calculates thickness profiles along flowlines that are
generated at regular intervals within the prescribed ice margin. Flowline positions,
and thus the ice-sheet thickness profile, are dependent on the 2D input topography
and shear-stress maps (Gowan et al., 2016b). The shear-stress map serves as a tuning
input that can be calibrated or inverted to produce a target ice-sheet geometry,
although significant uncertainties exist in determining basal shear stress (Sect. 3.3.2).

The model has been applied where large uncertainty in inputs required for dynamic
ice-sheet models, such as climate, have reduced the confidence in using the outputs of
such models as inputs to sea-level models due to misfits against ice extent and volume
distributions that impact GIA, and where large numbers of runs are required making
computational efficiency paramount, such as in the exploration of variable global ice-
sheet configurations (Gowan et al., 2021). Limited constraints on climatic conditions,
the requirement for large ensemble simulations to explore the range of plausible
scenarios, and a need for well-defined sources of uncertainty make ICESHEET an
ideal choice for exploring uncertainty in ice-sheet configurations during the PGM.

Two model parameters determine the resolution of a reconstruction with ICESHEET:
contour elevation interval and flowline spacing. For our reconstructions, we use
values of 20 m and 5000 m respectively in order to balance compute time with
resolution. The 2D model inputs are defined on a Lambert Azimuthal Equal Area
(LAEA) projection centred on lat 90°, long 0°, using the WGS84 ellipsoid, and with
boundaries defined at -1265453 m to 4159547 m in the x direction and -4722734.8

40



CHAPTER 3. QUANTIFYING PGM EURASIAN ICE-SHEET UNCERTAINTY

m to 1352265.2 m in the y direction with no x or y offsets, covering the Eurasian
region at a resolution of 5 km. In the following subsections, we describe the set-up
and inputs to simulations of the Last Deglaciation and PGM.

3.3.2 Uncertainty Quantification

ICESHEET, owing to the large uncertainties in the shear-stress input, is capable
of producing a wide range of ice-sheet geometries for both the Last Deglaciation
and the PGM. While it is useful to retain some of this possible set of geometries
for the purpose of uncertainty quantification, not all simulations will fall within
our expectations of plausible Eurasian configurations. Existing GIA reconstructions
provide constraints on ice-sheet thickness during the Last Deglaciation and it is
desirable to transpose this information to the PGM through model calibration.
Bayesian uncertainty quantification techniques exist to explore uncertainty and
calibrate physical models (Astfalck et al., 2021). However, because the primary input
of ICESHEET is the 2D, extremely heterogeneous, and poorly constrained basal
shear-stress matrix, “out-of-the-box” methods for sampling uncertain model inputs
are unsuitable. Moreover, due to the major simplifications applied within ICESHEET,
this 2D input should not only represent ice basal shear stress linked with bedrock
geology, but should also encompass the effect of missing ice surface mass balance
and the influence of basal processes. Thus, a bespoke framework for quantifying past
ice-sheet uncertainty with simple ice-sheet models such as ICESHEET is needed.

We first employ ICESHEET to produce a new simulated history of the Last Deglacia-
tion that we then calibrate against independently derived, regionally aggregated
volume metrics for the Last Deglaciation by employing a Bayesian uncertainty quan-
tification method called "history matching". History matching allows us to identify
regions of the ICESHEET input parameter space for which ICESHEET simulations
are able to match the regional volume estimates that are expressed in published
reconstructions (used here as an “observation”) given the uncertainty in the model
and target data (Williamson et al., 2015). This space is referred to as the "not ruled
out yet" (NROY) space and, once identified using the Last Deglaciation constraints,
can then also be applied to refine our set of reconstructions for the PGM where
empirical constraints on published models are far more limited. This procedure
also allows us to identify systematic differences between the geometry simulated
by ICESHEET and those reconstructed through GIA modelling, thus testing the
capability of our modelling approach in providing meaningful ice geometries for use
in sea-level and climate simulators.
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3.3.3 Model Set-Up for the Last Deglaciation

We consider two spatiotemporal reconstructions of Eurasian ice-sheet thickness and
regional topography during the Last Glacial Period: GLAC-1D (Tarasov et al.,
2012) and ICE-6G (Peltier et al., 2015). These reconstructions have been selected
as they are widely used, well regarded, and more accessible than others (Ivanovic
et al., 2016; Lambeck et al., 2006; Menviel et al., 2019) while also representing two
contrasting modelling methodologies that are both independent of the ICESHEET
methodology (Gowan et al., 2021). GLAC-1D is the result of a large ensemble of
thermodynamic ice-sheet simulations driven by climate reconstructions that have
been nudged and selectively refined to fit RSL records. It is provided every 0.1 ka
at a spatial resolution of lat 0.25°and long 0.5°(Tarasov et al., 2012). ICE-6G is
a solution to the inverse GIA problem and is provided at 0.5 ka after 21 ka, and
1.0 ka before, with spatial resolution of lat 1°, long 1°(Peltier et al., 2015). ICE-6G
provides a better fit to sea-level records than GLAC-1D, but the ice geometry is
not compatible with ice-sheet physics (Stuhne and Peltier, 2017), while GLAC-1D
provides glaciological consistent ice-sheet geometries that account for ice-flow physics
and climate forcing (Tarasov and Peltier, 2002). Both reconstructions account for
GIA effects, provide accompanying topography inputs, match against RSL data, and
include a range of time slices that span the full deglaciation.

We extract the ice margin from each Last Deglaciation reconstruction, for use as
input to ICESHEET, to ensure that we are able to accurately compare the difference
between thickness slices generated by ICESHEET and those of the reconstruction
considered. To do this, we reproject and interpolate each reconstruction onto the same
model grid as ICESHEET before applying an algorithm that produces ice-margin
geometries from the gridded thickness data (Appendix 3.9.1).

When using ICESHEET to simulate past ice sheets, the input topography needs to
be adjusted for GIA. Since our aim is to reproduce ICE-6G and GLAC-1D volumes,
we simply use the topography deformation fields provided by each model, reprojected
onto our model grid. We run the ICESHEET model with topography and margins
from GLAC-1D and ICE-6G, at 22, 20, 18, and 16 ka. These times are chosen since
they capture a range of ice-sheet deglaciation thickness and extent configurations
while excluding the very thick slices >22 ka, which are poorly constrained by sea-level
data, and those of small extent after 16 ka which are less relevant for producing the
extensive PGM. We label these simulations ICESHEET1D and ICESHEET6G.
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3.3.4 Model Set-Up for the Penultimate Glacial Maximum

3.3.4.1 Ice-Sheet Margin

We generate a range of possible ice-sheet margins based on the late Quaternary
ice extent maps produced by Batchelor et al. (2019) derived from a compilation
of empirical and modelling evidence, which for MIS 6 includes 25 empirical extent
outlines, 40 empirical point-source data points, and 5 modelled ice extents. Batchelor
et al. (2019) produce minimum, best-estimate, and maximum extent margins for
MIS 6 which primarily differ in extent in Siberia (Figure 3.1). In this work we select
three margins in order to explore the uncertainty in the PGM configuration of the
Eurasian ice sheet (Figure 3.1). We use the MIS 6 best-estimate margin noting that
this represents the maximum extent the ice sheet would have reached at any one
time between ca. 190 and 132 ka; however, in the west it most likely corresponds
with the Drenthe stage (>150 ka) given the extensive southern ice sheet position
in western Europe and the North Sea. We also utilise the MIS 6 maximum margin
to explore the uncertainties in the maximum Siberian extent. Given the potential
for a smaller ice sheet during the latter part of the Saalian complex (which is not
captured in the minimum MIS 6 margin of Batchelor et al. (2019)) we use their MIS
8 best-estimate map as a proxy for a late Saalian ice extent where the maximum
ice position in western Europe was further to the north during the Warthe substage
(<150 ka). This provides a starting point by which to explore the uncertainty in
the PGM configuration, which can only be furthered with improved temporal and
spatial constraints.

Margin extent is included as a continuous parameter in our experimental design that
varies between 0 and 1, where values of 0, 0.5, and 1 correspond to the minimum (MIS
8 best-estimate), most likely (MIS 6 best-estimate), and maximum (MIS 6 maximum)
extents respectively. Values that fall between these points represent intermediary
margins between the three configurations which we generate by employing a novel
shape-interpolation algorithm we have developed for this purpose. Since the Batchelor
et al. (2019) MIS 6 best-estimate reconstruction is restricted to the subset of their
data that they judge to have the highest reliability, we apply a normal probability
distribution to our margin extent parameter, centred around 0.5, to ensure that
margins closest to this best estimate are most common in our ensemble.

3.3.4.2 Topography

For simulations of the Last Deglaciation, we employ pre-existing models of topography
changes due to GIA as provided with the adopted GLAC-1D and ICE-6G ice histories
for use as input to ICESHEET. For the PGM no such pre-existing GIA deformation
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model exists for our ice load and yet GIA-driven changes in topography beneath the
ice sheet play an important role in determining ice-sheet geometry, contributing up
to a 20% increase in total ice volume over the Penultimate Glacial cycle relative to
a simulation where topography remains fixed (Gowan, 2014). In order to account
for GIA, we first estimate the topographic deformation field that would result from
the solid Earth underneath the Eurasian ice sheet being at (or close to) isostatic
equilibrium with the ice load. To estimate this fully compensated topography
associated with a given load, we adopt the fully relaxed form of the simple Elastic
Lithosphere Relaxing Asthenosphere (ELRA) model (Huybrechts and de Wolde,
1999):

wq(r) =
qAL2

2πD
kei

( r
L

)
q = ρigh

L =

(
D

ρbg

) 1
4

where h is the thickness of the ice, g is the acceleration due to gravity (9.81 m s−2),
ρi is the density of ice (916 kg m−3), q is the applied ice load, wq is the solid earth
response to loading at a radial distance r from the load, A is the area of an applied
load cell, L is the flexural rigidity length scale, ρb is the bedrock density (3300 kg
m−3), and D is the flexural rigidity of the lithosphere (1025 N m).

The assumption of full compensation could be considered reasonable, given the lack
of constraints during this time, if the ice-sheet maximum configuration endured
for a sufficiently long duration. However, in order to account for the possibility of
partial deformation, we include a continuous scaling parameter in our ensemble that
scales the fully relaxed deformation field, ranging between 0.475 and 1, for a given
ice-sheet load such that lower values result in a smaller magnitude of deformation.
The lower bound of this parameter is constrained by comparing the (partially relaxed)
topography at 20ka predicted in the GLAC-1D model to a calculation of the fully
compensated topography that would result from inputting the GLAC-1D ice cover
at 20ka and modern topography into the equations above.

In order to approximate topography deformation at the PGM, we begin by repro-
jecting the RTopo-2 modern-day global topography (Schaffer et al., 2016), originally
provided at a 0.5 degree resolution in latitude-longitude coordinates, onto the LAEA
model domain, interpolating onto our chosen Eurasian grid at a 5 km spacing, and
applying a 1σ Gaussian blur in order to smooth any sudden changes in elevation.
This smoothing is required because ICESHEET can fail to run if large topography
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gradients are present when calculating flowline shapes. Following the approach
of Gowan et al. (2021), we run ICESHEET with this modern-day topography to
calculate an initial ice-sheet thickness which is then used as the load input to the
ELRA model in order to calculate the resulting deformed topography. This new
deformed topography is then scaled by the topography parameter before being used
as input in a second iteration run of ICESHEET in order to calculate the resulting
ice-sheet thickness.

3.4 Parameterising the Shear-Stress Input Map

The primary control and biggest source of uncertainty in ICESHEET is the 2D input
shear-stress map. The presence, composition, and thickness of deformable sediments
underneath an ice sheet impacts the friction at the ice-bed interface, which, in turn,
affects the flow of ice and thus the local ice-sheet thickness and geometry. Nye (1952)
originally related these quantities by balancing the shear stress at the base of the ice
sheet with the driving stress which, after expansion by Reeh (1982) and Fisher et al.
(1985), was modified to include the impact of topography. Studies employing this
theory have used surface geology data to develop maps of shear stress (Fisher et al.,
1985; Gowan et al., 2021, 2016b).

The shear stress values can be calibrated or inverted to match a target ice geometry
or varied to predict a range of plausible geometries. However, random sampling of
such 2D inputs within the context a Bayesian uncertainty quantification framework
presents a significant challenge since the number of independent parameters likely
make experiments computationally unfeasible. To simplify this problem, studies
typically employ one of two approaches to deal with 2D inputs: random error field
generation, or parameter decomposition. In the first approach, each value within the
2D input is modelled as having an error described by a probability density function
and spatial autocorrelation which, together, allows for the random generation of 2D
error fields. When summed with the original values, error fields represent possible
realisations of the 2D input (Zhao and Kowalski, 2020). Alternatively, the approach
of parameter decomposition aims to reduce the number of parameters by collecting
groups of values with similar properties that together could be assumed to represent
spatial collections of homogeneous behaviour, and that can therefore be varied as a
single parameter.

In a similar manner to parameter decomposition, previous studies have divided their
study area into a set of geographic regions that are each assumed to have the same
internal average shear-stress value (Gowan et al., 2021, 2016b). The shear-stress
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values are chosen to reflect a combination of known accumulation rates, with lower
values used for areas that have higher moisture scarcity; evidence of ice thickness
including GPS uplift rates; knowledge of underlying sediments which inform the
deformability of the bed; topographic elevation (Fisher et al., 1985; Gowan et al.,
2016b; Reeh, 1982); and, in some cases, modified in order to fit a database of known
RSL data (Gowan et al., 2021, 2016b). However, this approach still produces a
complex mosaic of independent regions that are too numerous to incorporate into a
Bayesian uncertainty framework. To overcome this, we also decompose our study
area into geographic regions of similar shear stress, derived from geological maps
and satellite data but we choose not to follow the approach of previous work in
converging on a single tuned shear-stress input. This is because, firstly, such an
approach results in a single ‘best-fit’ ice-sheet simulation output and, secondly,
lacks the possibility of rigorous uncertainty quantification since such analysis with
many independently varying shear-stress regions becomes intractable. Therefore,
we instead opt to incorporate the uncertainty inherent in the shear-stress values
of similar regions, enabling the production of a range of ice-sheet simulations by
propagating uncertainty through our ensemble.

3.4.1 Sediment Distribution

In this paper, we adapt a basal shear-stress map, developed for Eurasia during the
Last Deglaciation, utilised in Gandy et al. (2018) and Clark et al. (2022). This map
was constructed by dividing the bed of the Eurasian ice sheet into distinct surface
geological and geomorphological units, in consultation with geological mapping,
sediment thickness maps, and the distribution of glacial landforms observed by
satellite imagery and digital elevation models. In the original map, five landscape
categories were distinguished: i) palaeo-ice streams; ii) marine sediments; iii) thick
and iv) thin terrestrial Quaternary sediments, as indicated by subglacial bedforms
and on sediment maps; and v) exposed bedrock surface (Gandy et al., 2018).

Due to uncertainties in the identification of such sediment categories during the
PGM, we modify the original map in four ways to make it applicable to modelling
the Penultimate Deglacial history and to keep our quantification of uncertainties
tractable: (i) merging the original continuous sediment and discontinuous sediment
categories into a single ‘onshore’ category to reflect the lack of evidence to constrain
the location of regions of discontinuous sediment during the PGP; (ii) defining the
underlying sediment type for each ice-streaming region so that their length may be
altered and the underlying sediment revealed (Sect. 3.4.2); (iii) adding additional
ice-streaming regions in the eastern sector and creating a separate ice streaming layer
for the PGM (Sect. 3.4.3); (iv) expanding the southerly and easterly extent of the
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map to encompass the greater Eurasian PGM ice-sheet extent. Regions within our
adapted map are therefore categorised by their underlying sediment in the absence of
ice streaming (Figure 3.2a) as well as their potential to ice stream during the PGM
and Last Deglaciation (Figure 3.2b)

Each category has an associated shear-stress value uncertainty range, derived from
our expert judgement, and described in Table 3.1. The larger extent of the Eurasian
ice sheet during the PGP means that we require a shear-stress map that extends
further south, into Continental Europe, and further east towards Siberia. We designed
these additional regions based on a digitally compiled maps of geology (Persits et al.,
1997) alongside modern satellite imagery. Our final shear-stress map for Eurasia for
the PGP consists of 740 categorised regions (Figure 3.2).

3.4.2 Ice Streaming

Ice streams are corridors of fast-flowing ice that occur towards the exteriors of
ice sheets and significantly reduce local ice thickness (Stokes and Clark, 2001). It
is important that these regions are represented explicitly in ICESHEET, as the
model lacks the dynamic mechanisms needed to generate ice streams on its own
(Hindmarsh, 2009; Gandy et al., 2019), and thus they are instead included as areas of
very low shear stress. This enables ICESHEET to capture their main effect for GIA
models, to reduce regional ice thickness. Evidence for the configuration of historic
ice streaming relies on the identification of flow patterns, shapes, and deformed
bed conditions within the geomorphological record (Stokes and Clark, 2001, 1999).
Ice-stream margin features can be dated (e.g. radiocarbon, cosmogenic nuclide,
or optically stimulated luminescence) in order to infer the time the associated ice
stream was active (Bentley et al., 2010; Stokes et al., 2015). Identifying and dating
ice-streaming regions during the PGP poses a greater challenge compared to the
Last Glacial Period as the period pre-dates the application of 14C methods and
much of the sediment left behind by streaming has been removed by subsequent
glacial activity. This is especially true for the southern margin of the Eurasian ice
sheet (Joon et al., 1990; Laban, 1995; Sokołowski et al., 2021). By comparison, the
extent-limiting influence of the continental shelf break and topography of troughs on
the shelf increases confidence that ice streaming in the northern PGP Eurasian ice
sheet was similar to those of the Last Glacial Period.

We represented ice streams in our shear-stress map with a low shear stress value. To
reflect the differences in streaming configurations as well as the disparity in geospatial
constraints between the two glacial periods, we produce two separate maps of ice
streaming during the Last Glacial Period and the PGP. The PGP layer is identical to
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the Last Glacial Period layer in the north, except for the addition of two streaming
regions in the northeast, since the Eurasian ice sheet reached a similar extent during
both glaciations (Figure 3.1). However, we completely remove ice streaming along the
southern region in the PGM sheet stress map since evidence constraining streaming
positions during the PGP is sparse, while the larger extent of the PGM ice sheet
(Figure 3.1) means the mapped Last Glacial Period ice streams do not apply as they
would terminate within the interior of the ice sheet.

Figure 3.2: Components of the shear-stress Map: (a) Underlying sediment category,
which is used in the absence of overlying basal modification, shown for each region.
(b) Regions capable of ice streaming, which is represented in our model by a low shear
stress, for the Last Deglaciation (blue), for PGM (purple), and for both (green).

3.4.3 Ice-Sheet Influence on Basal Conditions

Prescribing shear-stress values based on geological surface type ignores the influence
of basal conditions on sliding (Tsai et al., 2015; Weertman, 1957). However, the basal
conditions can influence the effective shear stress and, in turn, affect the geometry
of an ice sheet. In order to better capture ice-sheet basal interactions we account
for the influence of three such effects: cold based ice, active ice streaming, and
hybrid ice streaming. The first approximates the effects on basal conditions when
ice becomes frozen to the surface in the central interiors of large ice sheets (Bierman
et al., 2015). Cold-based ice has a high effective shear stress whether the bed is made
of hard bedrock or soft sediment. The cold-based ice modification introduces this
idea through two parameters. The first controls the size of the cold-based region
(modelled as distance of unfrozen region from the margin), ranging from between
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300 and 1000 km (Figure 3.3b). The upper limit matches the maximum distance
from the margin at the PGM, resulting in no cold-based ice, while the lower limit
stops cold-based ice forming at the margin within the range of likely ice streaming.
Secondly, we control the shear stress value of the region with a parameter ranging
between 120 and 200 kPa.

Ice streaming occurred at different times and locations through the Last Deglaciation
of the Eurasian ice sheet (Figure 3.2b). Ice streaming is also likely to have occurred
during periods of ice-sheet advance or retreat throughout the Preceding Glacial
(Lang et al., 2018), but a limited amount of geomorphological evidence means it is
much harder to constrain when and where. As discussed above, it is not sufficient to
simply use the LGM ice-stream locations, as these ice streams may not reach the
PGM margin and it is not realistic to have an ice stream that terminates within the
ice sheet. We therefore introduce an "active ice-streaming distance" parameter for
the northern portion of the ice sheet to restrict ice streaming to within a particular
distance of the margin ranging between 0 and 1000 km, based upon work by Margold
et al. (2015), and thus induce a marginal dependence on the previously static shear-
stress input (Figure 3.3a). We also introduce a hybrid ice-streaming modification to
represent the shear-stress values that would result from streaming at the southern
margin without exact prescription of stream locations. We define a distance from
the margin that represents the average length of an ice stream ranging between 0
and 600 km (Margold et al., 2015; Stokes and Clark, 1999) (Figure 3.3c), and also
prescribe a shear-stress range whose minimum and maximum values are dependent
on the shear-stress values for ice streaming and onshore sediment respectively, acting
as a proxy for ice-stream density.

In addition to better capturing the resulting shear-stress implications of basal-driven
interactions, the introduction of these three basal modifications allows us to expand
the range of ice-sheet geometries and volumes that can be produced by ICESHEET
for a given margin; and to improve the physical plausibility of the shear-stress input
by increasing the dimension of our parameter space improving our ability to calibrate
the model output and widen the range of uncertainty that can be considered. In
total, we describe our shear-stress input through 9 parameters.
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Figure 3.3: Shear-stress basal modifications demonstrated using the PGM map and
margin: (a) Map of active PGM ice streams for different values of the interior distance
parameter. (b) Map of PGM cold-based region for a range of marginal distances,
which introduces a frozen bed sector at the interior of an ice sheet. (c) Map of PGM
hybrid ice-streaming region for a range of interior distances that approximates ice
streaming at the southern margin of the ice sheet.
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Table 3.1: Parameters controlling the model inputs for ICESHEET and their corre-
sponding value ranges sampled in our ensemble of simulations.

Parameter Name Value Unit Model Input Time Period

Margin Extent 0.0 – 1.0 1 Margin PGM

Topographic Deforma-
tion

0.475 - 1.0 1 Topography PGM

Marine Sediment Shear
Stress

10 – 30 kPa Shear Stress PGM & LD

Onshore Sediment
Shear Stress

30 – 100 kPa Shear Stress PGM & LD

Bedrock Shear Stress 100 – 150 kPa Shear Stress PGM & LD

Ice Streaming Shear
Stress

5 – 20 kPa Shear Stress PGM & LD

Ice Streaming Interior
Distance

0 – 1000 km Shear Stress PGM & LD

Cold Based Ice Shear
Stress

120 – 200 kPa Shear Stress PGM & LD

Cold Based Ice
Marginal Distance

300 – 1000 km Shear Stress PGM

Hybrid Ice Streaming
Shear Stress

5 – 100 kPa Shear Stress PGM

Hybrid Ice Streaming
Marginal Distance

0 – 600 km Shear Stress PGM
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3.5 Last Deglaciation Reconstruction and

Calibration

3.5.1 Ensemble Design

We employ a random LHS design to select a 200-member set of input parameter
values from the 7D parameter space controlling the shear-stress input (Table 3.1),
after excluding hybrid ice-streaming shear-stress and marginal distance parameters
since the position of southern margin ice streams are prescribed for the LGM (Figure
3.2b). LHS is a design method, common in Bayesian uncertainty quantification,
that efficiently explores the input parameter space to construct ensembles of model
simulations (Gregoire et al., 2016; Williamson et al., 2013, 2015). It is typical to
sample a minimum of 10x the number of parameters, but a higher sample density is
beneficial, particularly if parameter ranges are wide and poorly constrained, hence
our large sample design. For each reconstruction and time period, this parameter set
is used in combination with the extracted ice margin to generate a corresponding
shear-stress map. We run 200 simulations for each reconstruction and each of the 4
selected time periods (22, 20, 18, 16 ka), totalling 1600 simulations (Figure 3.5 and
Figure 3.10).

3.5.2 Calculating Implausibility

GIA models are sensitive to regional distributions of ice-mass loading more so
than localised differences in the ice-sheet profile. Since our work is aimed towards
developing a GIA ice-sheet input, we choose to assess and calibrate ICESHEET
against the ice-sheet volume integrated over three ice-sheet regions which allows
us to assess volume difference at a regional scale, rather than over the whole ice
sheet or cell-by-cell: Barents-Kara Sea, British-Irish, and Fennoscandia (Figure
3.10). To assess the model simulations against ICE-6G and GLAC-1D, we use an
implausibility metric routinely used in history matching (Williamson et al., 2013).
The implausibility is akin to a root mean square error normalised by a measure
of acceptable discrepancy between a given observation z and modelled value F(p̂),
where F is the model and p̂ is a set of model parameters, for a quantity of interest
(e.g ice volume) given the known uncertainty in the observation and model limitations.
The difference between an observation z and the real system y is quantified by the
observational error e, such that z = y + e, while the difference between the modelled
value at the theoretical best set of input parameters p̂∗ and y is quantified as the
structural model discrepancy ϵ, such that F(p̂∗) + ϵ = y (Vernon et al., 2022; Bower
et al., 2010; Williamson et al., 2017). Additionally, it is often necessary to be able to
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predict values of F(p̂) by training an emulator f(p̂), such that F(p̂) = f(p̂) + ω(p̂),
where ω(p̂) is the emulation uncertainty, to facilitate denser sampling of the model
parameter space than is feasible through direct model runs. Here, we emulate
multiple quantities i corresponding to volumes of the Eurasian ice sheet over each
of the three regions for each time step and margin series. For each quantity i, the
implausibility Ii of the model for a given parameter combination p̂ is expressed as

Ii(p̂) =

√
(E(fi(p̂))− E(ϵi)− zi)2

F (V ar(ei) + V ar(ϵi)) + V ar(ω(p̂))
, (3.1)

where E is the expectation (i.e. mean), V ar is the variance, and F is a scaling factor
for the model and observational uncertainties (see explanation below).

In lay terms, the implausibility represents the discrepancy between the "best guess"
(i.e. expectation) of the model emulator E(fi(p̂)) and the observation zi, accounting
for systematic model bias (represented by the term E(ϵi)) and scaled by the sum
of the uncertainties in the observation, model and emulator. Thus, implausibility
is large if the discrepancy between model and observation is large relative to the
uncertainties.

As explained at the start of this section, the quantities of interest that we emulate and
calculate implausibility for are the ice-sheet volumes at each simulated time, region,
and margin series (GLAC-1D and ICE-6G), resulting in 24 quantities. We derive
the "observed" regional ice volumes zi for each of these quantities from the ICE-6G
and GLAC-1D reconstructions; obtain each set of Fi(p̂) from the corresponding
ICESHEET model ensemble; and train a Gaussian process emulator fi for each
quantity, resulting in 24 emulators of ice volume.

E(fi(p̂)) and V ar(ω(p̂)) are calculated as the mean and variance from the emulated
volumes fi(p̂), where V ar(ω(p̂)) = 0 and E(fi(p̂)) = Fi(p̂) for values of input
parameters p̂ run in the original ICESHEET ensembles. The model bias E(ϵi)
and structural uncertainty V ar(ϵi) are estimated as the mean and variance of the
residuals from the 20 ICESHEET ensemble members with the lowest RMSE against
the corresponding GLAC-1D and ICE-6G thickness fields. Since we only have two
target reconstructions of ice volume from GLAC-1D and ICE-6G, we choose to
estimate V ar(ei) as half the difference between the GLAC-1D and ICE-6G volumes
for a given region and time, knowing that this quantity underestimates the true
uncertainty in the observations. We therefore choose to augment the observation and
model structural uncertainties by 20%, by setting F = 1.2. The choice of regional
ice-sheet volumes as our metrics, the selection of the F value, and judgement of

53



CHAPTER 3. QUANTIFYING PGM EURASIAN ICE-SHEET UNCERTAINTY

their impacts of parameter space refinement, comprise an iterative process and other
applications may choose different metrics or tolerance for model discrepancy.

Following from Equation 3.1, we combine our implausibility metrics into a single
implausibility I(p̂) for a given set of input parameters p̂ such that,

I(p̂) =
1

N

∑
i

Ii(p̂), (3.2)

where N = 24 is the total number of implausibility metrics. In other words, the
overall implausibility is set as the mean of the implausibilities calculated for each
time, region and margin.

I(p̂) is therefore an average measure of how well a particular set of input parameters
is able to produce an output via ICESHEET that matches our expectation of ice-sheet
volume for each region, time, and margin considered. We restrict our NROY space to
parameter values that correspond to model runs with implausibility I(p̂) less than 3,
following the Pukelsheim (2012) three-sigma rule typically used in Bayesian history
matching (Andrianakis et al., 2015; Williamson et al., 2015).

3.5.3 Results

GLAC-1D and ICE-6G reconstructions have volume estimates of comparable mag-
nitudes for each time considered, with ICE-6G having a volume of 105.0%, 97.0%,
112.5% and 115.3% of that of GLAC-1D for 22, 20, 18, and 16 ka respectively.
However, the extent of ICE-6G is larger with an area of 120.4%, 118.6%, 133.4%, and
143.2% of that of GLAC-1D for 22, 20, 18, and 16 ka respectively. It appears that
producing the smaller ICE-6G area-to-volume ratio is challenging for ICESHEET
when used with our shear-stress map. This means that, prior to correcting for an
estimate of model bias, nearly all ICESHEET6G ensemble members overestimate
the volume of ICE-6G margins, whereas the ICESHEET1D distributions commonly
encompass the target GLAC-1D volume. Overall, for most regions and times, the
reconstruction target ice volume falls within the distributions of modelled volumes,
often towards the lower values. There is a significant lack of overlap between the
ICE-6G target ice-sheet volume and the reconstructed volume using ICE-6G margins
in the British-Irish sector. This model-data discrepancy is accounted for in the
prescription of the model bias correction (Equation 3.1) which reduces the influence
of this misfit on the overall implausibility metric. The algorithm used to extract
ice-sheet margins from the target reconstructions leads to some differences in extent,
such as an overestimation in the Barents Sea extent at 16 ka (Figure 3.5i,j). This is
a result of the smoothing procedure applied during margin creation which can lead
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to underestimation where there are small thickness protrusions, and overestimation
at some concave margin edges.

Before applying our criteria for implausibility, we find that the 200-member ensemble
generated for the Last Deglaciation has a mean implausibility of 4±2. After removing
members with implausibility of greater than 3, we find that 116 members have been
excluded, leaving 42% of parameter points within the NROY space, and a new mean
implausibility of 2.1± 0.4. The NROY space favours reduced ice-sheet volumes with
all times considered for ICESHEET1D and ICESHEET6G exhibiting a reduction in
average total volume compared with the original distributions (Figure 3.4). In this
work, we express ice-sheet volumes in terms of sea-level equivalent (SLE) volume
which we calculate by dividing a given ice-sheet volume by modern ocean area. We
find that the largest mean percentage reduction in volume is for the Fennoscandian
region of the ICESHEET6G 18 ka margin at −16%, while the least reduced is the
British-Irish region of the ICESHEET1D 16 ka margin at −4%. The maximum
volume across all margins and times is reduced from 29.7 m to 21.1 m after history
matching, with the minimum increased slightly from 8.7 to 8.9 m SLE (Figure 3.4).

Prior to applying the bias correction fields, ice-sheet thickness in the interior of
the Barents-Kara Sea region is consistently underestimated over all margins and
times, potentially due to the lack of modelled dynamics that are important for
marine ice sheets, but shows lower variance than other regions (Figure 3.13). The
largest variance occurs in ice-sheet thickness in the centre of the Fennoscandian
region. However, thickness in this region appears to be over-estimated in ICE-6G and
under-estimated in GLAC-1D simulations. In addition, both target reconstructions
position ice-sheet domes slightly towards the marine margins and exhibit thinner
continental marginal ice. This likely reflects the larger accumulation of snow closer
to the coast and the influence of a rain shadow in reducing accumulation towards
the interior. By contrast, since ICESHEET does not see the effect of climate on the
ice-sheet geometry, our simulated position of the ice dome is very central, yet this
discrepancy is consistent between model and reconstructions and of a similar order
of magnitude to the discrepancy between the two target reconstructions. The ice
thickness at the margin is systematically greater in our simulations than in both
reconstructions. Because of our choice of metric, history matching against regional
volume, we therefore prefer ice sheets that are thinner in the interior and thicker
at the edges but a different target metric would rank simulations differently, such
as max thickness which would likely select thinner overall simulations. Regional
differences also exist in post-history matching mean model performance after removal
of the model bias field. GLAC-1D and ICE-6G remain respectively under and
overestimated, while the primary misfit is now in the centre of the Fennoscandian
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Figure 3.4: Deglacial ice-sheet volume probability density functions, derived from
a 105-member sample from the quantity’s associated Gaussian process emulator,
for each region (total, Barents-kara Sea, Fennoscandia and British-Irish) and time
(16, 18, 20, and 22 ka) after correcting for model bias. ICESHEET1D (blue) and
ICESHEET6G (green) are shown separately for both before (lighter shade, below) and
after (dark shade, above) applying the history matching NROY parameter constraint.
The blue and orange triangles show the target regional ice volumes from the ICE-6G
and GLAC-1D reconstructions respectively.

ice sheet, likely due to the large disagreement between GLAC-1D and ICE-6G in
this region.

To better understand the relationship between implausibility and the shear-stress
input parameter values, we generate an optical depth image which reveals the shape
of the NROY region within our parameter space (Figure 3.6). This image shows
the density of NROY parameter values, and the minimum implausibility, across
each of the 21 faces of the 7D parameter hypercube. Each face is associated with
a parameter pair and consists of 1600 (40x40) pixels. For a given face, each pixel
represents 2 fixed values for the 2 parameters associated with the face, and the pixel
NROY density and minimum implausibility values are derived from a 1000-member
random sample of the 5 remaining unfixed parameters. Each 1000-member sample
is evaluated using the 24 Gaussian process emulators in order to calculate their
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Figure 3.5: Comparison of the constrained NROY ensemble of ICESHEET1D and
ICESHEET6G simulations, with model bias removed, against the GLAC-1D (first
row: a-d) and ICE-6G (second row: e-h) reconstructions respectively, for the 22 ka
time slice. (a) GLAC-1D target reconstruction. (b) Mean of the NROY ensemble
of ICESHEET model outputs, with model bias removed, using the margin derived
from a. (c) Difference between our ensemble mean (b) and the target reconstruction
(a). (d) Standard deviation of this ensemble. Panels (i)-(p) are as in (a)-(h) but for
the 16 ka time slice.

associated implausibility values, meaning that each face in the 21-face image is the
result of 38.4 million emulator evaluations.

Our analysis reveals that there is a slight preference for lower ice-stream and marine
shear-stress values and a relatively strong preference for onshore shear stress values
(Figure 3.6). This is likely due to the smaller ice-sheet geometries that these lower
values result in. Bedrock shear-stress values show no clear relationship indicating
insensitivity of our regional ice-sheet volume metrics to this parameter. This may
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be due to the small relative area covered by bedrock, in contrast to other types of
shear-stress categories, resulting in a limited impact on ice-sheet volume.

We see a strong indication that lower values of onshore sediment shear stress (mean of
55.3±19.6 kPa), and higher values of cold-ice interior distance (mean of 786±138 km)
are favourable (Figure 3.6). A large value of the cold-ice interior distance parameter
will produce a smaller area of cold-based ice, since this distance is defined from the
margin inwards, and thus such runs will produce smaller ice-sheet volumes that have
lower implausibility. In addition, lower overall shear-stress values are shown to be
more realistic in most cases but we do not see the same relationship with cold-ice
shear stress and bedrock, as this model seems insensitive to these parameters. Finally,
a preference for higher values of ice-streaming interior distance (mean of 627± 244

km), indicates that longer ice streams, and therefore thinner ice, are preferred. We
find that these parameter distributions are common throughout the deglaciation,
but with a stronger influence of cold-ice interior distance for smaller ice sheets in the
later deglaciation stages. We hypothesise that is a result of the ice sheet being in a
state of climate disequilibrium in the later stages of the deglaciation which may have
caused a thick yet narrow ice-sheet geometry due to ice melt at the margins while the
thick interior is still present. We also observe a larger influence of marine sediment
shear stress on models with a greater margin extent because smaller extents have
less ice that covers marine sediments.
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Figure 3.6: Shape of the NROY parameter space (Sect. 4.2) for the Last Deglaciation.
Density of the NROY space (reds) and the minimum implausibility value (blues)
shown for each face of the 7D hypercube. Each panel is composed of 40x40 pixels,
while the value at each cell is derived from a 1000-member random sample of 24
Gaussian process volume emulators (1 for each time, margin, and region) in order to
calculate the resulting implausibility and derive a value for each pixel. Maps show
the resulting mean (a) and standard deviation (b) of the NROY shear-stress map
input averaged over ICESHEET6G and ICESHEET1D at 22 ka .
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3.6 Application to the Penultimate Glacial

Maximum

3.6.1 Initial Model of the Penultimate Glacial Maximum

Eurasian Ice Sheet

In order to model the configuration of the PGM Eurasian ice sheet, and to include
new parameters controlling hybrid ice streaming, marginal extent, and topographic
deformation, we first generate a new 1000-member, uniform LHS sample of the model
parameter ranges as detailed in Table 3.1. Our initial ensemble iteration of PGM
ice-sheet simulations is run using modern-day topography (Schaffer et al., 2016)
(initially ignoring the topographic deformation parameter), and the 1000-member
set of generated shear-stress map and ice-sheet margin inputs, based on work by
Batchelor et al. (2019) (Figure 3.1e), as described in Sect. 3.3.4.2. While the margin
extent parameter was initially sampled as uniform, in order to aid in training of the
Gaussian process emulator, the following volume estimates are reported from an
emulation-derived sample of 105 parameters using a normal range for the margin
extent parameter, centred on 0.5 with a standard deviation of 0.1.

Over the full ensemble, this produces an ice sheet with a volume of 45± 15 m SLE
(Figure 3.7a) which falls below the ≈ 70 m SLE value by Colleoni et al. (2016) and
within range of the 52.5 m SLE value of Lambeck et al. (2006) and the 33.2 m SLE
of de Boer et al. (2013), within uncertainty. Next, we apply corrections for glacial
isostatic adjusted topography to the ensemble, and utilise our Last Deglaciation
history matching (Sect. 3.5) to refine our PGM ice-sheet reconstruction.

3.6.2 Effects of Glacial Isostatic Adjustment

Previous research has shown the importance of accounting for GIA when simulating
ice sheets with the ICESHEET model (Gowan, 2014) and therefore we must account
for this in our simulations, using the approach outlined in Sect. 3.3.4.2. We find that,
after applying the simple deformation model, scaling the magnitude of deformation by
the topography deformation parameter, our mean deformed topography is depressed
by a total volume of 4±1×106 km3 compared to modern-day topography which, if this
space were filled with ice, would be equivalent to 9±4 m SLE. On average, the region
covered by ice is depressed by 0.1± 0.2 km compared with modern day, with areas
close to the interior of the ice sheet experiencing the highest levels of deformation,
with a maximum depression of 1.2±0.2 km (Figure 3.11). All topography underneath
the ice-sheet mass is depressed by applying ELRA but variation in this depression

60



CHAPTER 3. QUANTIFYING PGM EURASIAN ICE-SHEET UNCERTAINTY

is minimal at the exterior regions of the ice since the model is less sensitive to the
smaller changes in ice thickness at the peripheries of the ice sheet.

Deformed topography has a non-negligible impact on the distribution of ice volume
in our ensemble with mean volume increasing from 45 ± 15 m SLE to 50 ± 16 m
SLE (Figure 3.7). A single iteration of the ELRA topography, combined with the
deformation scaling parameter, allows us to account for the first-order effects of GIA,
with our experiments finding that subsequent iterations produce ice volume changes
of an order of magnitude less than the first.

Figure 3.7: Impact of ELRA topography deformation on PGM ice thickness. Mean
thickness across the full ensemble using modern-day topography (a) and ELRA
deformation respectively (b). (c) Difference in the ensemble mean thickness between
ELRA adjusted and modern topography simulations. (d)-(f) as (a)-(c) but showing
ensemble standard deviation. (g) Distributions of PGM ice sheet volume in the
ensemble run with modern topography (purple) and ELRA adjusted topography
(green).
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3.6.3 Reconstruction of the Penultimate Glacial Maximum

Eurasian Ice Sheet

We are now able to refine our initial 1000-member LHS ensemble of Eurasian
PGM ice-sheet geometries by utilising information gained from our previous history
matching procedure against the Last Deglaciation. As in Sect. 3.5.2, we compile our
best estimate reconstruction of the PGM with quantified uncertainty by excluding
members that have an implausibility of greater than 3. The implausibility values for
PGM sample members are derived by utilising the 24 Gaussian process emulators
trained on each volume metric, as in Sect. 3.5.2, for the 7 common parameters. We
account for the presence of a bias term in our initial implausibility by subtracting a
scalar bias of 1.76 m from all PGM volumes. This bias was calculated as a result of
scaling the NROY PGM volume mean by the mean Last Deglaciation percentage
bias at 20 ka.

Applying the NROY constraint acts to reduce the mean of our ice-sheet thickness
ensemble from 2.0 ± 0.4 km to 1.8 ± 0.3 km (Figure 3.9). Much of this reduction
in volume is from favouring ice sheets with a thinner interior (Figure 3.8). The
pre-history matched mean maximum thickness of 4.8 ± 1.0 km, occurring in the
interior, decreases to 4.3 ± 0.9 km, but with slightly thicker ice at the southern
margin, compared with the maximum ice thickness over North America at the
LGM of 3.38 km, and present-day Greenland and Antarctica at 3.14 km and 4.01

km respectively (Tarasov et al., 2012). After history matching, we see the highest
variation in thickness in the NROY subset is in the central eastern portion of the
ice sheet, except for the Barents Sea region where cold-based ice is present through
many of the accepted ensemble members (Figure 3.8). In addition, we find that
history matching favours a reduction in the shear stress value for the interior of the
ice sheet, but an increase in the Siberian sector, while the exterior shear-stress values
remain similar (Figure 3.12). Our mean PGM regional ice-sheet volume is 24± 8 m
SLE for the Barents-Kara Sea (27± 9 m SLE pre-history matching), 19± 6 m SLE
for Fennoscandia (21± 7 m SLE pre-history matching), and 1.7± 0.2 m SLE for the
British-Irish region (1.8± 0.2 m SLE pre-history matching). We find the 5th and
95th percentile of our NROY ice-sheet volume distribution for the PGM to be 35 m
SLE and 62 m SLE respectively. Our lower value is comparable to the Eurasian ice
volume simulated with dynamic ice-sheet modelling by de Boer et al. (2013) of 33.2
m SLE, and our peak probability (48 m SLE) close to the reconstruction by Lambeck
et al. (2006) (52.5 m SLE) using GIA inversion methods. The dynamic ice-sheet
model output which results in a 70 m SLE PGM Eurasian ice sheet by Colleoni
(2009) exceeds our maximum. Similarly, the simulation developed by Abe-Ouchi
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et al. (2013), and subsequently used in the PMIP protocol (Menviel et al., 2019), is
within the 99th percentile, but greater than our 95th percentile (≈ 64 m SLE).

Figure 3.8: Ensemble mean ice-sheet thickness before and after history matching
(a) full ensemble and (b) NROY subset, and the difference between these means
(c). (d)-(f) are as (a)-(c) but for the standard deviation instead of mean. Applying
constraints on the Last Deglaciation leads to ice sheets with smaller volumes in the
ice interior, but slightly thicker ice at the margins.

63



CHAPTER 3. QUANTIFYING PGM EURASIAN ICE-SHEET UNCERTAINTY

Figure 3.9: (a) PGM Eurasian ice-sheet thickness ensemble member from the con-
strained ensemble (NROY), having been refined using information leveraged from
history matching against the Last Deglaciation, with total ice-sheet volume closest
to the probability distribution mean (48 m SLE). Smallest (b) and largest (c) PGM
NROY ensemble members after history matching. (d) Probability density functions
of unconstrained (bottom, lighter shade) and history matching constrained (top,
darker shade) ice-sheet volumes for ensembles of the 20 ka GLAC-1D (blue) and 22
ka ICE-6G Last Glacial Maximum margins and the PGM (purple) compared against
published ice-sheet dynamic simulation reconstructions from the corresponding time
periods (Colleoni, 2009; Lambeck et al., 2006; de Boer et al., 2013; Peltier et al.,
2015; Tarasov et al., 2012). Dashed grey line shows alternative probability density
function when we constrain to simulations with ≤ 5 km maximum thickness.
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3.7 Discussion

ICESHEET (Gowan et al., 2016a) is able to produce simple, perfectly plastic, steady-
state ice-sheet reconstructions with minimal number of inputs. Such reconstructions
are appropriate inputs for calculating RSL change since GIA modelling is less sensitive
to the specific surface geometry of an ice sheet and more sensitive to the regional
load distribution and evolution. Utilising a history-matching approach and a large
ensemble to explore a range of controlling shear-stress parameters, we produced an
ICESHEET-derived set of simulations for the Last Deglaciation of the Eurasian ice
sheet (17 ± 2 m SLE at 22 ka, averaged across ICE-6G and GLAC-1D margins).
These results provide an alternative ice model independent of climate forcing or the
need to fit with RSL data, and provide ice-sheet thickness estimates not offered
from geomorphologically constrained margin reconstructions (Batchelor et al., 2019;
Hughes et al., 2016). These LGM outputs then help to constrain a reconstruction of
the PGM Eurasian ice sheet, where constraints on ice-sheet extent, thickness and
basal conditions are far more limited. Our final model outputs suggest an ice-sheet
volume of 48± 8 m SLE, which is 2 - 3.5 times larger than that for the Eurasian ice
sheet at the LGM. Between the LGM and PGM simulations, the Barents-Kara Sea
region has the highest average percentage increase in volume at +245% (from 7± 1

m to 24± 8 m SLE), followed by the British-Irish region at +170% (from 0.6± 0.1

m to 1.7 ± 0.2 m SLE) and the Fennoscandia at +63% (from 11 ± 2 m to 19 ± 6

m SLE). If we combine our Eurasian ice-sheet reconstruction for the PGM with
LGM values of the other ice sheets averaged from ICE-6G (Peltier et al., 2015) and
GLAC-1D (Tarasov et al., 2012) (9.5 m, 78.8 m and 72.9 m SLE excess ice volumes
of the Greenland, Antarctic, and Laurentide ice sheets respectively), we arrive at an
ice volume that is 7 m SLE higher than the value suggested by the delta 18O curve
for MIS 6 (Waelbroeck et al., 2002). This would suggest that balancing the total ice
volume during the PGM would require a ≈ 10% decrease in the size of the Laurentide
ice sheet compared to the LGM. This spatial difference in the distribution of ice
load between the LGM and PGM across Eurasia and North America has significant
implications for the pattern and magnitude of LIG sea level (Dendy et al., 2017),
compared to the Holocene. It should be noted that this simple comparison is made
to illustrate the implications of our results on the relative size of the Laurentide ice
sheet, but with the caveat that the relationship between global average sea level and
global ice-sheet volume is more complicated than implied here, due to the effects
of ocean-load-driven bathymetry changes and ice-sheet-driven topography changes
modifying ocean basin volumes. This mean that estimates of global mean sea level
are dependent on assumptions of the viscoelastic response of the Earth, and may in
fact differ by up to 20 m from the estimate used here (Gowan et al., 2021).
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One limitation of our approach is that ICESHEET does not represent dynamic
ice-sheet processes or climate information that may be important for defining spatial
variations in Eurasian ice geometry at the PGM. In our reconstruction, the location of
ice domes remain central relative to the ice-sheet margin, which in turn is prescribed
as a maximum synchronous extent and, by extension, volume. By contrast, Colleoni
(2009) do include dynamics in their ice-sheet reconstruction but a near implausible
total SLE ice-sheet volume of 70 m (since this would require a Laurentide ice sheet 40%
smaller than at the LGM which seems unlikely), combined with large uncertainties
on required climate inputs, casts doubt on the reliability of this simulation for use in
climate and GIA model inputs. By utilising a range of ice margins (Figure 3.1) our
outputs do consider the potential varying size of the Eurasian ice sheet maximum
during the late Saalian (Ehlers et al., 2011), although analysis of the consequence of
spatial and temporal variations during the Penultimate Deglaciation on GIA must
be considered in future work.

The use of a shear-stress map to represent bed friction, decomposed into key parame-
ters, provides a flexible framework for reconstruction of Quaternary Eurasian ice-sheet
geometries since the parameter space can be easily and quickly explored to produce
large ensembles of simulations that span the uncertainty in this input. Ice-sheet
processes at the bed often manifest as a change in basal shear stress (Knight, 1997)
and approximations to the basal implications of such processes can be incorporated
into this framework, for example by approximating the presence of cold-based ice.
Uncertainty in the location of sediment types, bedrock and ice streaming remains
a challenge but we find that the use of variable density regions, such as the hybrid
ice-streaming component employed in the southern sector of the ice sheet, have a
strong control on the implausibility metric and can therefore be used to effectively
explore the impact of these uncertainties. The shear-stress map is an attempt to
represent a complex distribution of basal properties (Knight, 1997). Our work has ex-
panded this methodology to include the cold-based ice and active ice-streaming basal
modifications which have had a strong impact on the implausibility metric, improving
the simulation fit during history matching when applied to the Last Deglaciation,
with the exception of the British ice sheet (Figure 3.4) where simulation mismatch is
likely due to discrepancies in ice-margin extraction. By extension, this approach also
worked to better refine our reconstructions at the PGM. The modelling framework
could be further improved by validating these modifications against other ice-sheet
models, such as for the Laurentide and Greenland ice sheets.

By employing history matching, leveraging information from models of the Last
Deglaciation, we were able to refine the ensemble mean for our PGM ensemble from
50± 16 m to 48± 8 m SLE. This approach reduced the size of our original parameter
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space, which had initially produced a broad range of ice-sheet volumes, by 58% and
revealed a tendency for our ensemble to overestimate ice-sheet thickness since our
refined ensemble preferred thinner ice sheets. This technique could be improved in a
number of ways. The average relative distance in regional volume metrics derived
between our two target reconstructions is 15.9%. However, some metrics are much
more uncertain, such as the volume of the British-Irish ice sheet at 20 ka, which has
a relative distance of 76.0%. It would be beneficial to extend the model comparisons
beyond GLAC-1D and ICE-6G, such as in the work by Patton et al. (2017). In
addition, the GLAC-1D target reconstruction is itself derived from an ensemble of
simulation (Tarasov et al., 2012). Therefore, the observation metric uncertainty
could be more accurately accounted for in our procedures if the original ensembles
from which the target reconstructions are derived could be obtained.

A possible criticism of our work is that the PGM ice sheet we are predicting with our
model is “out of sample” compared to the Last Deglaciation that we have calibrated
the model on since the PGM ice sheet is larger than at the LGM. This is a very
common situation in modelling uncertainty quantification work. We believe this
analysis is robust to this issue since the ice-sheet volume is correlated with extent
meaning that, since our simulations are based on the same shear-stress map and
modifications, the history matched parameter space is applicable for simulation of
both the Last Deglaciation and the PGM. However, given the larger PGM margin,
ICESHEET is able to generate ice-sheet thickness values that may be physically
implausible (greater than 5 km). We investigate the effect that constraining to
simulations that have a maximum thickness of ≤ 5 km has on our PGM volume
probability density function (Figure 3.9) and find that this results in a reduced
volume estimate of 45± 7 m SLE.

This work has demonstrated the benefit of using simpler ice-sheet models with a
Bayesian uncertainty quantification framework to explore the range of uncertainty in
periods when there are highly uncertain ice-sheet geometries. This workflow, using
ICESHEET and history matching, could be applied to other regions (e.g. Laurentide)
or times (e.g. the large MIS 12 ice sheets) where there are also large uncertainties in
extent, thickness and timing.

3.8 Conclusions

By employing a simple ice-sheet model we were able to investigate the range of
physically plausible PGM ice geometries for the Eurasian ice sheet. The primary
control on geometry changes are due to the 2D shear-stress map input that we
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decompose into 9 parameters controlling regional shear-stress values and the shear-
stress influence of key basal processes. By employing a Latin hypercube sampling
technique, we explore the range of possible ice-sheet thickness distributions over
this parameter space. We find that our model procedure generates a PGM ice-sheet
ensemble with a total SLE volume range of 50± 16 m SLE. In order to refine this
ensemble range, we employ a history matching procedure, leveraging information
from previously published reconstructions of the Last Deglaciation, in order to rule
out combinations of input parameter values that produce unrealistic ice sheets.

This work is aimed at producing ice-sheet simulations to be used as input to sea-level
models and thereby assess ice-sheet geometry at a regional scale that ignores local
details in the thickness profile. History matching rules out 58% of our parameter
space and heavily favoured parameter combinations that lead to smaller ice-sheet
configurations. We applied the refined parameter space (NROY space) to our original
PGM ensemble, reducing the mean and uncertainty on our range of PGM volume to
48± 8 m SLE. This refinement reflects the preference for smaller Eurasian ice sheets
found in the Last Deglaciation history matching procedure and points at the tendency
for ICESHEET driven by a parameterised shear-stress map to overestimate ice-sheet
thickness. This work is currently limited to a single synchronous maximum but can
be applied to develop reconstructions of ice extent and thickness over a full deglacial
cycle that can in turn serve as input into a GIA model for predicting changes in
RSL. The rate and timing of the deglaciation are important factors in the pattern
and magnitude of RSL change during deglaciation and the subsequent interglacial
and, despite the lack of chronological constraints, producing a full Penultimate
Deglaciation history for Eurasia remains an important challenge to overcome in
future work.

3.9 Appendix

3.9.1 Figures and Margin Extraction Algorithm

In order to perform a history matching procedure with ICESHEET we require that
the ice-sheet margins used as input be approximately equivalent to those of the
reconstructions we are comparing with. Margins are not provided explicitly with
either the ICE-6G or GLAC-1D reconstructions and thus we instead developed a
simple algorithm to extract margins from gridded ice-sheet thickness rasters. The
procedure is as follows:

For each reconstruction and time period, we first reproject and interpolate the ice-
thickness and topography fields from their native grid to our LAEA model grid using
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Figure 3.10: (a) GLAC-1D margins for 22, 20, 18, and 16 ka as extracted by the
algorithm described in Sec. 3.9.1. (b) as in (a) but for ICE-6G. British-Irish (green),
Barents-Kara Sea (yellow) and Fennoscandia (red) region divisions.

Figure 3.11: Topography deformation. Mean (a) and standard deviation (b) of
topography across the full ice-sheet ensemble and (c) difference between the ensemble
mean and modern-day topography.

bilinear interpolation. We then extract the ice margin from the gridded ice-thickness
field using an algorithm that first identifies grid cells at the edge of the ice sheet from
the ice-thickness field, then employs a pathfinding procedure to order the collected
cells into an ordered polygon structure, and finally converts the ordered cell positions
into coordinates. In addition a region mask, minimum considered thickness value,
average ice-sheet thickness value, and a median filter smoothing may be applied as
conditions.
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Figure 3.12: Ensemble mean basal shear stress before (a) and after (b) history
matching and (c) difference between these means. Panels (d)-(f) are as in (a)-(c) but
for standard deviation.

1. The 2D ice thickness is converted into a binary image (or mask), with values of
1 where ice is present, and 0 where it is not, using a minimum thickness value
defined as a parameter.

2. The binary image may be optionally filtered by another mask, such as a mask
defining the continental shelf, to restrict the area of the margin.

3. We perform a binary erosion morphology operation on the binary image, using
a structuring element with square connectivity equal to 1, to reveal the binary
shape of the ice that is 1 grid-cell smaller than the original.

4. The binary-eroded image is subtracted from the original binary image to reveal
a binary outline of the ice-sheet margin.

5. Each margin cell is then checked via a recursive procedure to identify those
cells adjacent to it that form part of a continuous path. The set and order of
cells that form each path are then stored. Once assigned to a path, a cell is
not considered by the algorithm for future paths.

6. The set of ordered cell paths is then converted, in combination with their cell
coordinates, to polygon geometry objects.
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Figure 3.13: Comparison of the constrained NROY ensemble of ICESHEET1D and
ICESHEET6G simulations, before removal of the model bias, against the GLAC-1D
(first row: a-d) and ICE-6G (second row: e-h) reconstructions respectively, for the 22
ka time slice. (a) GLAC-1D target reconstruction. (b) Mean of the NROY ensemble
of ICESHEET model outputs using the margin derived from a. (c) Difference between
our ensemble mean (b) and the target reconstruction (a). (d) Standard deviation of
this ensemble. Panels (i)-(p) are as in (a)-(d) but for the 16 ka time slice.

7. Each polygon may be optionally checked for the average ice-thickness value
it contains, specified as a parameter, in order to exclude patches of thin,
disconnected ice.

8. If an optional smoothing value is specified, an iterative smoothing procedure is
performed whereby the newly calculated margin polygons are regridded onto a
fine grid which is then smoothed with a median filter of a size specified by the
smoothing value, and then reperforms steps 1-7 to calculate a smoothed set of
margin contours.
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Chapter 4

Relative Sea-Level Sensitivity in the
Eurasia Region to Earth and
Ice-Sheet Model Uncertainty During
the Last Interglacial

4.1 Abstract

Indicators of RSL changes in northwest Eurasia during the LIG may be used to
constrain the evolution of the LIG AIS. To obtain this information, these records
must be corrected for the effects of GIA, driven by the spatiotemporal evolution of
ice-sheet loading and the configuration of the Earth’s rheological structure. However,
both past ice-sheet changes and the local 1D viscoelastic Earth model are significantly
uncertain. This paper sets out to determine the relative influence of each of these
inputs on modelled values of LIG RSL, and how this influence varies spatially. We
find that Earth model parameters are the dominant contributors to RSL uncertainty
in most Eurasian regions, but the influence of ice-sheet volume on RSL values in the
Barents-Kara and Baltic seas is non-negligible. Our results show that the magnitude
and rate of RSL change is insensitive to the specific timing of ice-sheet retreat, as
well as the configuration of the far-field North American ice sheet.
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4.2 Introduction

The LIG was the last time in Earth’s history that the Greenland and Antarctic ice
sheets were smaller than those of today (Capron et al., 2014; Otto-Bliesner et al.,
2006). Uncovering the rate, timing, and pattern of ice-sheet retreat during this period
may shed light on possible future ice-sheet evolutions in response to increased polar
temperatures and help to constrain the pattern of global sea-level change beyond
2300 (IPCC, 2022). Due to its location and bathymetry, the pattern of LIG RSL
in some northwest Eurasian regions (Figure 4.1A) is sensitive to the evolution of
the interglacial AIS, but insensitive to the melt of the GrIS, and could therefore
be used to identify sources of LIG ice-sheet melt (Hay et al., 2014). In addition,
some regions within northwest Eurasia, such as the North Sea, contain valuable
sedimentary archives in which these past sea-level changes are recorded (Cohen
et al., 2022; Zagwijn, 1983). However, such geological records reflect the cumulative
contribution of multiple geophysical processes that must be quantified if they are
to be used to isolate the fingerprint of LIG GrIS and AIS melt (Hay et al., 2014;
Mitrovica et al., 2009).

GIA is the term used to describe a collection of processes which, as a result of
surface ice-mass changes, act to modify the Earth’s topography and equilibrated
geometry of the ocean surface via the coupled influences of gravitational attraction
and viscoelastic deformation (Farrell and Clark, 1976; Mitrovica and Milne, 2003;
Whitehouse, 2018). RSL changes throughout interglacial periods are driven by both
the contribution of ice-sheet melt that occurs during the interglacial, as well as
the ongoing influence of GIA from ice-sheet mass changes that occurred in the
glacial periods prior (Whitehouse, 2018). In regions close to former ice sheets, the
contribution of ongoing GIA from previous glacial cycles to the interglacial RSL signal
is known to be significant over the timescale of glacial-interglacial cycles (Dendy et al.,
2017). Since records of RSL from these regions are essential for the identification of
ice-sheet fingerprints (Figure 4.1B), we must therefore remove the GIA signal from
such records in order to utilise them to understand interglacial ice-mass changes
(Barnett et al., 2023; Dutton et al., 2015; Dyer et al., 2021). Holocene studies in
locations close to or beneath former ice sheets have shown that the development of
regional, near-field GIA models, driven by ice-mass changes during the preceding
LGP, is an effective technique for the recovery of sea-level fingerprints from geological
observations of RSL (Lin et al., 2021).

Quantification of the GIA contribution to past RSL change is possible through the
use of numerically derived GIA models, constructed by iteratively solving the Sea

74



CHAPTER 4. SENSITIVITY OF EURASIAN LIG RSL

Level Equation. Solutions to this equation require spatiotemporal ice-sheet thickness
values as input to drive the surface loading, and a model of the Earth’s viscoelastic
response to estimate the characteristics of surface deformation (Kendall et al., 2005).
The nature of the GIA simulation is dependent on the particular combination of the
global ice-sheet history and viscoelastic Earth model used, yet both the configuration
of global ice-sheet mass changes during glacial-interglacial cycles prior to the LGP,
including the PGP (∼ 200 - 130 ka, correlated to MIS 6), and the rheological structure
of the solid Earth are highly uncertain. Previous research has shown that ice-sheet
changes during the PGP play a key role in determining the LIG near-field GIA
simulation, making the application of GIA models to fingerprinting LIG ice-sheet
melt a significant challenge (Dendy et al., 2017; Lambeck et al., 2014; Rohling et al.,
2017). Previous studies of LIG GIA have approached this problem by testing a
limited series of discrete, non-holistic scenarios for ice evolution and Earth model
parameters which do not allow for the systematic assessment of GIA model sensitivity
and uncertainty (Dendy et al., 2017; Dyer et al., 2021). In addition, the choice of
ice-sheet history and Earth model is often tuned to LIG RSL databases, creating a
circularity issue when extracting fingerprints from the same datasets.

Figure 4.1: (A) Northwest Eurasian Ocean regional divisions used in this work. (B)
Illustrative Antarctic sea-level fingerprint resulting from a complete collapse of the
WAIS.

In this work, we develop new methodologies to enable a fully systematic assessment
of RSL variability due to uncertainties in the ice-sheet evolution and viscoelastic
Earth models that drive modelled LIG RSL changes, independent of sea-level data.
In addition, we build upon work by Pollard et al. (2023) to explore the uncertainty
in the evolution of the Eurasian ice sheet during the PGP, which is of particular
importance to GIA in the North Sea and wider Eurasian region. Finally, we apply
sensitivity analysis to our large ensemble of sea-level model outputs to decompose the
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RSL variability into the relative contributions from each parameter, thus revealing
spatial patterns of sensitivity to help guide site-specific studies on the most critical
sources of RSL uncertainty.

4.3 Penultimate Deglaciation of the Eurasian Ice

Sheet

The proximity of northwest Eurasian ocean regions to the expansive PGP Eurasian
ice sheet means that their RSL signals are likely to be especially sensitive to mass
balance changes of the Eurasian ice sheet during the Penultimate Deglaciation (Long
et al., 2015). However, little is known of the ice sheet’s spatiotemporal evolution
during this time, with previous ice-sheet modelling work typically focusing on its
maximum extent or with significant uncertainty in the ice margin position (Batchelor
et al., 2019; Colleoni et al., 2016; Lambeck et al., 2006; Svendsen et al., 2004; Pollard
et al., 2023). We identify three types of uncertainty in characterising the deglaciation
of the penultimate Eurasian ice sheet: the maximum ice-sheet volume at the PGM;
asynchrony in the pattern of the deglaciation (e.g. the eastern margin experiencing
maximum extent at different times to the west); and the rate and timing of ice retreat
(Toucanne et al., 2009; Ehlers et al., 2011; Ehlers and Gibbard, 2004). In order to
account for each of these sources of uncertainty within our uncertainty quantification,
we perform dedicated numerical modelling of the Eurasian ice-sheet complex during
the Penultimate Deglaciation. This builds upon and extends the work of Pollard
et al. (2023), who solely focused on modelling at the maximum ice-sheet extent.

4.3.1 Ice-Sheet Model

We generate ice-sheet geometries using ICESHEET: a simple, steady-state ice-sheet
model that assumes a perfectly plastic ice-sheet rheology (Gowan et al., 2016a), and
which has previously been utilised to generate ice-sheet reconstructions indepen-
dently of sea-level and VLM proxy data (Bradley et al., 2023; Gowan et al., 2021).
ICESHEET takes three inputs in order to produce a single, time-independent ice
geometry: a parameterised basal shear-stress map, as detailed in Chapter 3; regional
topography, iteratively generated using a simple topographic deformation model;
and prescribed ice-sheet margin. Our methodology utilises ICESHEET to explore
uncertainty in two of the three identified sources for the Eurasian Deglaciation:
uncertainty in possible ice-sheet volume, which is explored through testing a range
of shear-stress value configurations via its influence on ice thickness; and margin
retreat asynchrony, for which we have developed a methodology for generating series
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of possible margin deglaciation scenarios, described in the following section; and
ice-sheet deglaciation timing, explored in Section 4.4.3.

4.3.2 Deglaciation Margins

The ICESHEET model is time-independent, meaning that it takes a single prescribed
margin as input and produces a single corresponding ice geometry as output, without
advancing time or evolving margin position during the course of a model simulation
(Gowan et al., 2016a). Therefore, in order to generate a series of deglaciating Eurasian
ice-sheet geometries for the PGP using ICESHEET, we require a prescribed series of
corresponding deglaciating ice-sheet margins. To do this, we first assume that the
most extensive (maximum) ice-sheet position was the MIS 6 best-estimate ice-sheet
margin from Batchelor et al. (2019) which likely corresponds to the large Drenthe
substage of the PGP (Toucanne et al., 2009), as modelled in Pollard et al. (2023).
We also assume that the ice sheet retreated in a similar way to that of the Last
Deglaciation for extents less than or equal to the LGM (Hughes et al., 2016). To
bridge the gap between the MIS 6 Batchelor and LGM Hughes margins, given the
very limited spatial-temporal constraints as documented in the Rohling et al. (2017)
database, we develop a margin interpolation algorithm (named ShaPy, described in
Section 2.0.2.2) which we use to generate 7 additional intermediary margins (Figure
4.2a).

Geological records of the deglaciation of the Eurasian ice sheet indicate that its
pattern of retreat was likely asynchronous, with the eastern sectors deglaciating
earlier than the west (Patton et al., 2017). We therefore explore the impacts of
deglacial asynchrony within this interpolation regime through the introduction of two
parameters: async angle Aθ, which controls the direction of maximum asynchrony;
and async power An, which determines the magnitude of asynchrony. A value of
An = 1 corresponds to no asynchrony (Figure 4.2a) and renders the value of Aθ

meaningless. We set the Aθ value range, expressed in radians, to between π - 1.5π
relative to the projected y-axis, spanning the full Eastern margin from the edge of
the Barents-Kara Sea (π) to the beginning of the southern-European margin (1.5π),
while An ranges from between 1 - 5 (Figure 4.2).

4.3.3 Ensemble Design

The ICESHEET model requires the input of a sheer-stress map, which is param-
eterised by 9 parameters that control regional shear-stress values as well as the
influence of basal effects such as cold-based ice and active ice streaming distance
(Pollard et al., 2023). We initially generate a 1200 member LHS of the 9 shear-stress
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Figure 4.2: (A) 7 intermediary margins between the common maximum (Batchelor
et al. (2019) MIS 6 best-estimate) and common minimum (Hughes et al. (2016) LGM)
extents are generated with a margin interpolation regime. (B-D) This scheme is
able to generate asynchronously deglaciating margin series by specifying the angle of
maximum asynchrony (orange arrow) and magnitude of asynchrony (power). (E-G)
Same as (B-D) but with a greater magnitude of asynchrony power.

parameters and 2 margin asynchrony parameters, before using the implausibility
criteria developed in Pollard et al. (2023) to rule out 668 of the parameter com-
binations as implausible, leaving 532 remaining combinations to evaluate. Each
asynchrony value pair is processed by the ice-margin interpolation algorithm to
produce 532 corresponding ice-margin series. In turn, each margin series is used
as input to ICESHEET, in combination with the corresponding shear-stress map
configuration, to generate 532 series of ice-sheet deglaciation geometries. This initial
set of ice-sheet thickness outputs was used as input to a simple deformation model
in order to deform the modern-day topography with each ice-sheet load. We then
performed an iteration of the ICESHEET ensemble with these deformed topography
inputs in order to produce our final ensemble of deglaciation geometries. Each series
of ice-sheet geometries is ordered from PGM to fully deglaciated, but the absolute
timing of each configuration is not yet fixed. In section 4.4.3, we describe how we
test a range of possible rates and timings of ice-sheet retreat using these modelled
geometries.

4.3.4 Eurasian Ice-Sheet Simulation Results

Our ensemble has a PGM volume of 53± 7 m (mean ± 1 standard deviation) SLE
(defined as the resulting GMSL change that would result from evenly distributing
the ice-sheet volume across modern-day ocean area). The Barents-Kara Sea ice-sheet
region holds the largest amount of ice by volume at 28 ± 4 m SLE, followed by
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Fennoscandia at 24± 3 m SLE and the British-Irish ice sheet at 1.8± 0.1 m SLE.
As the deglaciation progresses, the Barents-Kara Sea experiences the largest loss of
volume, shrinking by 25± 7 m SLE between the invariant PGM and LGM margin
positions. The Fennoscandian region has the largest average volume for all margins
except for the PGM, losing only 10± 7 m SLE between the PGM and LGM. Over
the full ensemble, the thickness of the eastern ice-sheet margin can be seen to rapidly
diminish, and this is, in part, due to the presence of ensemble members with less
extensive margins (larger An values). This also results in a relatively high thickness
standard deviation of 0.8 km in this region.

In subsequent sections, we characterise a particular deglaciation ensemble member by
its regional volume values at the PGM. This assumes that each member maintains a
similar position within the volume distributions for subsequent deglaciation margins
as its PGM position. In other words, an ensemble member with a particularly large
ice-sheet volume at the PGM is assumed to have a similarly large ice-sheet volume
for all subsequent margins, relative to the other ensemble members. To test this
assumption, we first express each member in terms of standard deviations from
the mean to quantify their relative positions within a particular margin volume
distribution, so that we can then analyse the change in this position throughout the
deglaciation. We find that the position of each member changes, on average, by 0.52,
0.33, and 0.30 standard deviations for the Barents-Kara Sea, Fennoscandian, and
British-Irish regions. These low values make this a reasonable assumption.
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Figure 4.3: (A) Distribution of Eurasian ice-sheet volumes generated by ICESHEET,
shown by region, for margins between the PGM Batchelor et al. (2019) and LGM
Hughes et al. (2016) configurations. The mean volume is shown by the dotted line.
Mean (B-F) and standard deviation (G-K) of ice-sheet thickness across the ensemble
of model outputs is shown for 5 margins within the deglaciation series. The maximum
extent across the ensemble for a given time slice is shown by the black contour.

4.4 Modelling Last Interglacial Relative Sea Level

Our new Eurasian ice-sheet deglaciation geometries, which address uncertainties in
deglaciation asynchrony and ice-sheet volume, must now be combined with a global
ice-sheet history and rheological Earth model as inputs to a GIA model, in order to
calculate the resulting RSL ensemble and associated sensitivities. To do this, we use
a numerical sea-level model combined with global-ice sheet scaling and Earth model
generation algorithms to test value ranges for parameters describing the deglaciation
timing, northern hemispheric ice-sheet volume, and Earth model uncertainties.

4.4.1 Glacial Isostatic Adjustment Model

We utilise a sea-level model to solve the Sea Level Equation following the imple-
mentation by Kendall et al. (2005) on a 512 by 1024 Gauss–Legendre lat-long grid
(henceforth referred to as the model grid) via a temporally iterative numerical scheme.
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We assume a 1D Maxwell viscoelastic Earth structure with characteristics determined
by the PREM (Dziewonski and Anderson, 1981) and a simple, step-wise viscosity
profile, following previous GIA models (Bradley et al., 2023; Dendy et al., 2017; Milne
et al., 2006). This viscosity structure is defined by an upper mantle viscosity, lower
mantle viscosity, and lithospheric thickness and we have developed an interpolation
algorithm (ViscoPy, described in Section 2.0.2.3) to produce any 1D viscosity struc-
ture within a continuous range of values for these three parameters while preserving
the location of PREM elastic and density structure discontinuities. We utilise the
Earth model parameter ranges used by Bradley et al. (2023) for northwest Europe of
0.1 - 1× 1021 Pa s for upper mantle viscosity, 0.1 – 5× 1022 Pa s for lower mantle
viscosity, and 71 – 96 km for lithospheric thickness. These values have been selected
based on regional published literature for the North Sea region (Shennan et al., 2006,
2018; Bradley et al., 2011, 2009).

4.4.2 Global Ice-Sheet History

Previous studies have found that ice-sheet history inputs to reconstructions of
LIG GIA should include: the PGP (194 - 130 ka) which includes the Penultimate
Deglaciation, the primary driver of GIA during the LIG; the LGP (100 - 25 ka),
which allows the model output to converge on modern-day topography; and at least
two glacial cycles prior to the PGP, in order to drive large-scale GIA disequilibrium
during the LIG (Dendy et al., 2017). We, therefore, choose to prescribe a global
ice-sheet history spanning the last four glacial cycles, from 420 ka to the present day.

We construct our global ice-sheet history to follow the global ice-sheet volume
evolution inferred from the δ18O derived GMSL curve of Waelbroeck et al. (2002),
provided at a temporal resolution of 1.5 ka, as shown in Figure 4.4. This curve
is adopted over newer reconstructions, such as Shakun et al. (2015), as it has a
more favourable alignment with the timing of the LIG (130 - 116 ka). We convert
GMSL into a global ice-sheet volume by subtracting it from an estimate of global
modern-day (pre-industrial) ice volume (72.1 m SLE), taken from the ICE-6G LGP
global ice-sheet model (Peltier et al., 2015). In order to remove the impacts of any
interglacial ice-sheet melt on our sensitivity results, we restrict the minimum value
of global ice-sheet volume to that of modern day between 129 – 116 ka. We employ
a linear interpolation procedure based upon the deglaciation portion of ICE-6G to
be able to generate global thickness slices of any given total global ice-sheet volume.
The deglaciation-only portion is chosen to avoid non-physical ice-mass changes that
might occur while interpolating between a glaciating and deglaciating slice of similar
volume. For 122 ka to present, we use the global ice-sheet volume curve of ICE-6G
(Peltier et al., 2015).
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Figure 4.4: Mean (solid line) and minimum/maximum (shaded blue region) GMSL
reconstruction of Waelbroeck et al. (2002) from 430 ka until present day. This
reconstruction was derived from δ18O records and is used in our work to infer global
ice-sheet volume changes. The approximate timing of the LIG is also shown for
comparison (shaded orange region).

We decrease the temporal resolution of time periods in which detailed ice-geometry
changes are less impactful on LIG RSL (Table 4.1), in order to improve computational
efficiency while prescribing higher resolution time steps during the Penultimate
deglaciation (0.5 ka) and LIG (1 ka). This allows us to capture shorter time-scale
mass changes and to facilitate high temporal-resolution analysis of RSL outputs
during the LIG. Since we are using ICE-6G deglaciation geometries to construct ice-
sheet histories, our current methodology has the inherent assumption that the relative
distribution of global ice-sheet volume was similar to that of the Last Deglaciation
for all glacial periods reconstructed. For periods prior to the PGP this assumption is
likely inconsequential for the purposes of LIG GIA modelling. However, as previously
discussed, it is important to account for the large difference in thickness configuration
of the PGP Eurasian and, by extension as a result of balancing the delta-18O budget,
North American ice-sheet complexes.

4.4.3 Eurasian and North American Ice-Sheet Components

Previous work has suggested that the timing and rate of deglaciation of both
the North American and Eurasian LGP ice sheets may play an important role in
controlling northwest Eurasian RSL during the Holocene (Bradley et al., 2023), and
the same may also be true for the influence of the Penultimate Deglaciation on
LIG RSL (Dendy et al., 2017). However, this is more challenging to constrain due
to the lack of geological constraints of Penultimate Deglaciation ice-sheet changes
compared to those of the Last Deglaciation (Rohling et al., 2017). To address this, we
develop an experimental design that allows us to systematically produce Penultimate
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Table 4.1: Description of changes in temporal resolution of ice-sheet history inputs
and corresponding RSL outputs to the sea-level model.

Age (ka) Time Period Time Step (ka) Motivation

420 - 220 Pre-PGP 4 Drives long-term GIA signal

220 - 145 PGP 2 PGM ‘spin up‘

145 - 142 PGM 1 PGM load

142 - 126 Penultimate
Deglaciation

0.5 Captures deglaciation signal

126 - 114 LIG 1 High-resolution output for
analysis

114 - 0 Post-LIG 2 Enables convergence iteration

Deglaciation scenarios that vary in timing and volume for both the Er and NA ice
sheets.

Each deglaciation scenario is characterised by 6 parameters, 3 for the North American
(NA) and 3 for the Eurasian (Er) ice sheet: deglaciation start time (TNA

PGM , TEr
PGM),

deglaciation end time (TNA
LIG, TEr

LIG), and PGM volume (V NA
PGM , V Er

PGM). For each ice
sheet, the deglaciation portion of the volume time series between TPGM and TLIG

is prescribed as a cosine decay function beginning at VPGM and ending at the LIG
(modern-day) configuration. In order that the deglaciation volume curve smoothly
joins with the preceding PGP curve at TPGM , we make two modifications to the
volume curve between 220 ka and TPGM : scale in volume, such that the maximum
value matches VPGM ; and stretch in time, such that VPGM aligns with TPGM . The
NA volume curve is converted into an ice-sheet thickness series by interpolating
ICE-6G, as described previously, while the Er volume curve uses a given series of
ICESHEET-generated deglaciation geometries for interpolation instead.

4.4.4 Ensemble Design

For each global ice-history ensemble member, the Eurasian component of the Penul-
timate Deglaciation is derived from the corresponding series of Eurasian ice-sheet
geometries, modelled with ICESHEET, as described in Section 4.3.4. Therefore,
V Er
PGM is calculated directly from the PGM geometry from this Eurasian ensemble

member. For North America, we derive V NA
PGM by subtracting the volume of all

other ice sheets from the total volume at the PGM, V T
PGM . Since the Waelbrock

curve has a reported minimum/maximum value range of ±13 m at the PGM, we
choose to incorporate this uncertainty by assuming V T

PGM can be described as a
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normal distribution N with a standard deviation σ of 4.3 m, such that 99.7% of the
probability density is within 13 m of the mean µ. By extension,

V NA
PGM ∼ N(µ = V T

PGM − (V Er
PGM + V Gr

PGM + V An
PGM + V Ot

PGM), σ = 4.3)

and instances of V NA
PGM are drawn from this distribution.

We design a 532-member ensemble, chosen in order to match the sample size of
the previously generated Eurasian deglaciation series (Figure 4.3), by sampling over
the 10 parameters controlling the PGM ice-sheet deglaciation timing and volume,
Eurasian margin asynchrony, and Earth model rheology. The rheological parameters
are used to calculate the Love numbers (Peltier, 1974; Kendall et al., 2005) associated
with each Earth model structure. One individual parameter combination translates
into a single RSL output via our combined model workflow (Figure 4.5). Our
parameter sample results in 532 ice-sheet history inputs that vary in North American
and Eurasian ice-sheet volumes and deglaciation patterns during the PGP (Figure
4.6).

Table 4.2: Model parameters where, for a parameter x, U(xmin, xmax) represents a
uniform distribution with a minimum (xmin) and maximum (xmax) value, N(µ, σ)
represents a normal distribution with mean (µ) and standard deviation (σ), and
HM is a history-matched distribution.

Name Symbol Distribution Unit

shear-stress map (9) HM - -

Async Power An U(1, 5) 1

Async Angle Aθ U(π, 1.5π) 1

Upper Mantle Viscosity νUM U(1× 1020, 1× 1021) Pa s

Lower Mantle Viscosity νLM U(2× 1021, 1× 1023) Pa s

Lithospheric Thickness L U(50, 120) km

Er Deglaciation Start Time TEr
PGM U(142, 136) ka

Er Deglaciation End Time TEr
LIG U(130, 126) ka

NA Deglaciation Start Time TNA
PGM U(136, 142) ka

NA Deglaciation End Time TNA
LIG U(130, 126) ka

NA + Er PGM Volume V NA+Er
PGM N(112, 4.3) m SLE
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Figure 4.5: Flowchart showing the overall experimental design used in this paper.
Key sections of work are grouped together. Numerical models (blue/yellow) are
shown with their respective data inputs (orange/green) and parameters (purple).
PD refers to the Penultimate Deglaciation.
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Figure 4.6: (A) Mean (solid line), standard deviation (shaded coloured region), and
maximum/minimum values (grey dotted lines) of the ensemble of ice-sheet volume
evolutions, shown between 150 and 120 ka, tested for the Eurasian ice sheet. (B) Same
as (A) but for the North American ice sheet. (C) The probability density function of
fitted normal distributions to the sample of Eurasian (derived from the ICESHEET
model ensemble), total Eurasian and North American (defined from uncertainty in
the Waelbroeck et al. (2002) δ18O curve), and North American (resulting from the
residual) ice-sheet volumes at the PGM.
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4.5 Results

4.5.1 Last Interglacial Relative Sea Level

Our ensemble of 532 LIG RSL simulations show that, on average, GIA induced RSL
remained significantly higher, relative to the present day (pre-industrial), throughout
the LIG under areas directly covered by the Eurasian ice sheet (Figure 4.7). In the
North Sea region, we find LIG RSL was almost exclusively higher than modern by
an average of 30 ± 10 m, and in some places over 50 ± 30 m. However, we found
that the spatial average rate of RSL change over the full Eurasian region was −2

mm yr−1 and was predominantly negative except for in the southern North Sea
and Greenland-Iceland-Norwegian (GIN) Sea, where forebulge collapse leads to a
maximum rate of change of 1 mm yr−1 and 5 mm yr−1 respectively, compared with
0 mm yr−1 and 2 mm yr−1 at present-day respectively (Kopp et al., 2015).

There is also a high level of uncertainty in our ensemble throughout the Eurasian re-
gion, particularly in locations previously covered by the PGP Eurasian ice-sheet mass.
Disequilibrated topography relaxes towards isostatic equilibrium as the interglacial
progresses and results in a reduction in the overall average uncertainty in RSL values
later in the LIG. The average RSL standard deviation across the North Sea region
reduces from ±21 m at 126 ka to ±14 m at 116 ka, reducing approximately linearly
by ≈ 0.7 m per ka. This uncertainty is highly spatially variable and we find that the
southern North Sea is has a relatively low uncertainty throughout the interglacial of
≈ ±5 m, while further north areas covered by the British-Irish ice-sheet experience
RSL uncertainties up to an order of magnitude greater.

4.5.2 Relative Sea-Level Sensitivity

We use sensitivity analysis (Sobol’, 1990) to decompose the ensemble variance at four
times throughout the LIG (126, 122, 118 and 116 ka) into per-parameter contributions,
to understand the importance of each parameter on the modelled LIG RSL, as well
as any large variations in the spatial influence of each parameter (Figure 4.7). Rather
than using the shear stress input parameters directly, we perform our sensitivity
analysis on calculated regional ice-sheet volume values for the Barents-Kara Sea,
Fennoscandian, and British-Irish sections of the PGM Eurasian ice-sheet for each
member of our ensemble. In addition, we choose to group parameters into Earth
model, ice-sheet volume, and deglaciation timing categories to aid interpretation of
our results, as detailed in Table 4.3. Our decomposition quantifies three types of
parameter contributions to the RSL output variance: first-order effects, describing
the independent contribution of each parameter; second-order effects, resulting

87



CHAPTER 4. SENSITIVITY OF EURASIAN LIG RSL

Figure 4.7: (A-F) Mean (solid line), standard deviation (shaded blue region) and
minimum/maximum (grey dotted lines) values of the RSL ensemble, relative to the
present day, shown for six selected locations that reflect the transects of RSL data
shown Cohen et al. (2022). (G) Ensemble mean rate of Eurasian LIG RSL change.
Purple points show locations of empirical RSL data from the WALIS database
(Rovere et al., 2023b). The marker for location (A-F) is also plotted on this map.
(H-K) Ensemble mean RSL shown for four times (126, 122, 118 and 116 ka), relative
to present day. (L-O) Same as (H-K), but showing the RSL standard deviation
across the ensemble.
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from parameter-pair interactions; and total-order effects, representing the summed
contribution of all interactions and the independent contributions for each parameter.

Table 4.3: Metrics used for sensitivity and uncertainty analysis.

Name Symbol Group

Upper Mantle Viscosity νUM Earth Model

Lower Mantle Viscosity νLM Earth Model

Lithospheric Thickness L Earth Model

Barents-Kara Sea Ice Volume V Er
BKS Ice-Sheet Volume

Fennoscandian Ice Volume V Er
F Ice-Sheet Volume

British-Irish Ice Volume V Er
BI Ice-Sheet Volume

NA + Er PGM Volume V NA+Er
PGM Ice-Sheet Volume

Async Power An Deglaciation Timing

Async Angle Aθ Deglaciation Timing

Er Deglaciation Start Time TEr
PGM Deglaciation Timing

Er Deglaciation End Time TEr
LIG Deglaciation Timing

NA Deglaciation Start Time TNA
PGM Deglaciation Timing

NA Deglaciation End Time TNA
LIG Deglaciation Timing

We find that the Earth model parameters make the largest first-order contribution
to LIG RSL uncertainty across the Eurasian region for all times considered. The
influence of the wide range of ice-sheet volumes in our ensemble is high in the
Barents-Kara Sea region, contributing greater than 20 m uncertainty under the
region previously loaded by the Eurasian ice sheet. However, in the Baltic Sea region,
which was previously covered by the Fennoscandian portion of the ice sheet, we find
that the contribution of ice-sheet mass to the RSL uncertainty significantly reduces
from greater than 20 m at 126 ka to less than 3 m by 116 ka. The influence of
ice-sheet deglaciation timing on uncertainty is limited to the Siberian coastline and
the northern Baltic Sea region at 126 ka (Figure 4.8I), reducing to less than 5 m by
116 ka (Figure 4.8L).

There is significant variation in the magnitude and spatial scope of the first-order
influence of individual Earth model parameters. We find that the upper mantle
viscosity is a significant source of uncertainty in a number of regions: the central North
Sea, GIN Sea, Barents Sea, and northern Kara Sea, Baltic Sea, and Siberian coastline
regions (Figure 4.9A). The lower mantle viscosity RSL uncertainty contribution
is concentrated around the northern Baltic Sea, where it contributes greater than
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20 m, and the Fennoscandian coastline. In contrast, we find that the lithospheric
thickness makes a relatively minimal contribution and, of all regions considered, is
most influential in the GIN Sea, where the total-order contribution still only equates
to 15% of the overall average RSL uncertainty (Figure 4.9F).

Parameter interaction effects, meaning that RSL is more sensitive to changes in
multiple parameters simultaneously than those same parameter changes individually,
are most influential in the Baltic Sea, Barents-Kara Sea and GIN Seas (Figure 4.12).
The upper and lower mantle viscosities are most interactive in all regions, but we
find that there is a strong interaction between the volume of the Barents-Kara Sea
ice mass and the other ice-sheet regions, perhaps due to a larger Barents-Kara Sea
ice volume co-existing with relatively large ice-sheet volumes from other regions.
While also being the most sensitive, the viscosity parameters are also responsible for
producing the most extreme ensemble members (quantified by the average standard
deviation from the ensemble mean) for most regions. However, the Barents-Kara
Sea is more influenced by the volume of the Fennoscandian and Barents-Kara Sea
ice sheets than viscosity.

4.5.3 Rate of Relative Sea-Level Change Sensitivity

The rate of RSL change may be important to consider when attempting to fingerprint
interglacial ice-sheet melt. Therefore, in addition to the magnitude of RSL at
individual times throughout the LIG, we performed sensitivity analysis on the
average rate of RSL change across the LIG. The Barents-Kara, Norwegian and Baltic
Seas have the highest uncertainty in regards to the modelled rate of RSL change,
reaching 4 mm yr−1 uncertainty in some places. The relative contributions of each
parameter to the uncertainty in RSL rate of change are of similar magnitude to
those previously discussed for the RSL uncertainty. However, differences between
the rate of change and RSL exist in the North Sea region, where the rate is far
less uncertain. We find that the Earth model contribution to uncertainty in RSL
change substantially decreases in the Barents-Kara and Baltic Sea regions, while the
ice-sheet volume influence remains concentrated around the Barents-Kara Sea.
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Figure 4.8: Decomposition of the RSL ensemble uncertainty at 126, 122, 118 and
116 ka. RSL uncertainty is shown as the summed sensitivities for three groups of
model parameters: (A-D) Earth model, (E-H) Eurasian PGM ice-sheet volume, and
(I-L) Penultimate Deglaciation timing parameters.
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Figure 4.9: (A-E) Sensitivity decomposition of RSL uncertainty, averaged over the
LIG, from the 5 most influential parameters (Table 4.3). (F) Maximum percentage
1st order parameter contribution to the time-averaged RSL variance in 5 different
marine regions (where RSL will be recorded at the coastline), with the total order
contribution shown as the lighter coloured bar.
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Figure 4.10: (A-D) Decomposition of the rate of LIG RSL change variance into
parameter groups. (E). Maximum percentage 1st order parameter contribution to
the RSL rate of change variance in 5 different ocean regions, with the total order
contribution shown as the lighter coloured bar.
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4.6 Discussion

We have systematically tested a suite of LIG RSL scenarios that vary in the configu-
ration, volume, and timing of the Penultimate Deglaciation of the North American
and Eurasian ice sheets; as well as in the configuration of the 1D solid Earth model.
We found that RSL across northwest Eurasia during the LIG had a pattern much
different to that of today due to the strong influence of GIA from ice-sheet changes
during the Penultimate Deglaciation. Areas that were directly beneath the former
PGM Eurasian ice sheet experienced high RSL values, in some places exceeding 50

m, such as in the Baltic Sea, central North Sea, and Barents-Kara Sea. In contrast,
the GIN Sea and areas of the North Atlantic Ocean had lower RSL, likely due to
the combined influence of forebulge formation and ice-mass-driven perturbation of
the Earth’s rotational axis. We found that the overall pattern of RSL is reasonably
consistent across the LIG but that the magnitude of this signal decreases substantially
in some areas due to a relaxing of the state of topographic disequilibrium set up by
the preceding ice-sheet load. By 116 ka, the previously low RSL values in the GIN
Sea and North Atlantic Ocean had relaxed to near modern levels, while the high
RSL values in the Baltic Sea, Barents Sea, southern Kara Sea, and central North
Sea persisted.

Our ensemble resulted in high levels of uncertainty in GIA induced RSL during the
LIG, with an average of 34 m uncertainty over all regions at 126 ka, reducing to an
average of 21 m by 116 ka. However, there is variability in the level of uncertainty
between regions with the English Channel, GIN Sea, and North Sea having the
lowest uncertainty (averaging 12 m, 16 m and 21 m respectively at 126 ka) while
the Barents-Kara and Baltic Seas are highly uncertain (averaging 50 m and 72 m
at 126 ka respectively). Parameter-wise sensitivity decomposition showed that, for
almost all times and regions considered, uncertainty in the Earth model parameters
dominate the RSL sensitivity and that, in particular, the upper mantle viscosity
is the most important quantity in determining regional RSL. It is only in areas
towards the centre of large ice-mass loading, such as the Barents-Kara Sea and areas
of the Baltic Sea, that the regional volumes of the Eurasian ice sheet become more
important than Earth model parameters in determining RSL. We find that the timing
of the North American deglaciation plays a negligible role in determining RSL in all
regions, while the timing of the Eurasian deglaciation plays a moderate role in the
Baltic Sea towards the start of the LIG.

Our work suggests that data records subject to the lowest GIA uncertainty are those
located in the southern North Sea, English Channel and GIN Sea regions (Figure 4.7)
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and which date towards the end of the LIG. We therefore recommend that future
RSL data collection focus on these regions if they wish to minimise the influence
of GIA uncertainty on record data. Records collected in the Baltic Sea, central
North Sea, and southern Barents-Kara Sea of any LIG age should pay particular
attention to characterising Earth model uncertainty, while samples in the Baltic
Sea and Barents-Kara Sea are also subject to uncertainty from the corresponding
regional volume of the Eurasian ice sheet. We find that the timing of the Eurasian
deglaciation plays a minor role, except for if a sample is dated at the beginning of the
LIG. We find that the North American ice-sheet complex plays a negligible role in
determining the overall uncertainty of northwest Eurasian RSL during the LIG but
that this sensitivity is likely to change if later deglaciation timings are considered.

In order to limit the size of our ensemble parameter space, we have made several
simplifying assumptions when considering the broad range of sources of uncertainty
that may contribute to uncertainty in LIG RSL. We adopt the approach of similar
studies by assuming a simple, 1D, globally uniform Earth structure for determining
the solid Earth response to ice-sheet loading (Bradley et al., 2023; Dendy et al., 2017).
We, therefore, cannot account for potential lateral variability in mantle viscosity and
lithospheric thickness over our study area that would be captured through the use of
a 3D Earth model. While the computational cost was infeasible within our ensemble
design, we recommend the influence of 3D Earth models on LIG RSL variability be
tested in future work.

Our ensemble of Eurasian ice-sheet simulations was generated assuming a single
maximum ice-sheet extent for all ensemble members and, based on work by Pollard
et al. (2023), including a variable PGM ice extent may have contributed up to an
additional 10% variability in the Eurasian PGM ice-sheet volume. However, the
inclusion of variable PGM margin would have added significant complexity to the
interpretation of asynchrony parameter sensitivity and would likely have made a
minor contribution to the overall uncertainty.

In generating global ice-sheet histories, we chose to use δ18O as a proxy for total
global ice-sheet volume due to the absence of alternative ice-volume datasets. δ18O is
a measure of the relative abundance of oxygen isotope 18O versus 16O molecules in ice
or water and records can be recovered from sediment, ice-core, or biological markers
reflecting values of δ18O at a particular location and time. The relative abundance of
oxygen isotopes in ice or water is a result of isotope fractionation during evaporation
and precipitation. Thus, changes in the magnitude and global spatial pattern of δ18O
reflect large-scale changes in global temperature and ice-sheet volume. There are
multiple sources of uncertainty in global δ18O reconstructions including: interpreting
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a global complication of δ18O while accounting for spatio-temporal variability due to
patterns of climate and ocean circulation that affect isotopic fractionation; temporal
uncertainty from dating records from which δ18O values have been derived; and
calibrating the relationship between proxy values and the true δ18O value, including
the influence of local effects, such as local ocean temperature, on these relationships
(Shakun et al., 2015; Waelbroeck et al., 2002). While it was not within the scope
of this study, the consideration of alternative reconstructions and interpretations
of δ18O in our work may have resulted in a wider range of possible timing and
magnitude changes in global ice-sheet volume and thus altered the range of possible
RSL outputs. However, incorporating uncertainty in our δ18O derived global ice-
sheet volume, included by modelling the inferred combined North American and
Eurasian PGM ice-sheet volume as a normally distributed parameter reflecting the
δ18O uncertainty assessment of Waelbroeck et al. (2002), resulted in a negligible
contribution to uncertainty in LIG RSL in all regions considered.

The overall pattern of mean and variance in LIG RSL is similar to the suite of GIA
scenarios tested by Barnett et al. (2023), which encompassed changes in Eurasian
ice-sheet volume and Earth model configuration, but our study suggests three key
findings: more extensive subsidence surrounding the British Isles, a greater RSL
uncertainty in the GIN Sea at the beginning of the LIG, and more substantial
subsidence in the Baltic and North Sea regions by the end of the LIG. We find a
similar pattern of uncertainty in the North Sea region, likely due to the presence of an
ice bridge connecting the British-Irish and Fennoscandian ice sheets, similar to that
which occurred during the LGM (Gandy et al., 2021). The sensitivity experiments
performed by Dendy et al. (2017) implicitly concluded that Eurasian RSL at the
end of the LIG was highly dependent on the volume of the Eurasian ice-sheet at the
PGM, generating absolute RSL differences of greater than 6 m in most regions when
comparing model outputs using the larger Lambeck et al. (2006) Eurasian PGM
geometry against the smaller LGM ICE-6G geometry (Peltier et al., 2015). While we
did not test Eurasian volumes as small as ICE-6G (23.5 m SLE), we found a similar 2
- 4 m variation in RSL values in the North Sea throughout the LIG due to Eurasian
volume changes, and much higher variance in regions beneath the former ice-sheet
load. Their work also suggested that, beyond the former ice margin, the influence of
ice-mass changes on the perturbation of the Earth’s rotational axis acted to reduce
RSL for larger ice sheets by greater than 6 m for an invariant Earth model. While
we do not explicitly identify the contribution of rotational effects in this work, it is
likely that the magnitude of the Earth model uncertain contribution dominates the
contribution of rotational perturbations in the near-field northwest Eurasian region.
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Utilising LIG RSL data from the near-field sedimentary archive for the purpose of
developing LIG fingerprints of ice sheet melt is a major goal for the palaeo sea-level
community (Dutton et al., 2015; Hay et al., 2014; Bradley et al., 2023). Our work
suggests that quantifying the influence of ongoing GIA driven by the preceding
deglaciation is essential to unearthing this sea-level fingerprint, but that uncertainty
surrounding GIA signal may hamper efforts to use data from the Barents-Kara and
Baltic Seas. We suggest that studies place their emphasis on well-quantified Earth
model uncertainty in all areas; focus attention on data acquired in southwestern
Eurasian regions where overall RSL uncertainty is lowest, such as the English Channel;
and avoid emphasis on quantifying deglaciation timings during the PGP.

4.7 Conclusions

Quantifying the contribution and uncertainty of GIA to LIG RSL remains a challenge
due to the significant uncertainties in past ice-sheet changes and the response of the
solid Earth, hampering research that attempts to utilise LIG sea-level record for
fingerprinting LIG ice-sheet melt. To address this, we developed a large ensemble
experimental design that, by combining ice-sheet, Earth, and sea-level models, is
able to systematically assess the uncertainty from two major sources: the volume,
configuration, and timing of the Penultimate Deglaciation of the Eurasian and North
American ice sheets; and the 1D model of the viscoelastic solid Earth structure.
Utilising our ensemble, we explored the magnitude and spatial distribution of RSL
uncertainty throughout the LIG and employed sensitivity decomposition to attribute
the relative contribution of each input parameter to this uncertainty.

We found that the Earth model parameters have the widest spatial influence on
uncertainty of both RSL and rate of RSL change, but that the Barents-Kara Sea
stands out as being most influenced by the Eurasian ice-sheet volume. We find
that the timing of the ice-sheet deglaciation is most influential on LIG RSL at the
beginning of the interglacial and that this influence is concentrated around the Baltic
Sea. Parameters controlling the timing and volume of the North American ice sheet
play little part in controlling the rate of RSL uncertainty, and the asynchrony of
the Eurasian ice-sheet deglaciation only influences small parts of the Kara Sea. To
conclude, our findings suggest that the southern North Sea and the English Channel
are regions most suitable for future data collection studies, as they are least affected
by GIA uncertainty. We suggest that future work is focused on reducing uncertainty
in the Earth model parameters, as they are most influential in quantifying LIG GIA
in all regions except those directly under the former Eurasian ice sheet. Finally,
we highlight the importance of incorporating well-quantified GIA uncertainty in
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data-driven studies of LIG RSL, particularly for those aimed at quantifying RSL
fingerprints.

4.8 Supplementary Figures

Figure 4.11: Contribution of interaction effects to RSL ensemble uncertainty at 126,
122, 118 and 116 ka. Interactions are shown as the summed sensitivities for three
groups of model parameters: (A-D) Earth model, (E-H) Eurasian PGM ice-sheet
volume, and (I-L) Penultimate Deglaciation timing parameters.
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Figure 4.12: Mean (oranges) and maximum (greens) percentage contribution of 2nd
order interaction effects between each parameter pair on LIG RSL uncertainty shown
for each Sea region.
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Chapter 5

Identifying the Antarctic Melt
Contribution to Last Interglacial Sea
Level from Eurasian Relative
Sea-Level Records

5.1 Abstract

The high GMSL during the LIG was likely to have largely been driven by Greenland
and Antarctic melt, but the timings, rates, and relative magnitudes of these contribu-
tions remain uncertain. Due to the geometry of ice-sheet fingerprints, RSL records in
the Eurasian region are likely to be sensitive to ice mass changes in Antarctica while
being relatively insensitive to changes in Greenland, making them ideal targets for
identifying scenarios of past LIG ice-sheet melt. In this work, I produce an ensemble
of Eurasian RSL models driven by regional GIA and a systematic suite of Antarctic
melt scenarios in order to compare our simulations against LIG RSL records from the
WALIS database. By performing regional sensitivity analysis, we identify Eurasian
data regions most sensitive to AIS melt, and through the use of a bespoke Bayesian
history matching framework, uncover GIA and AIS scenarios that most closely match
regional RSL data within uncertainty. Our results show that data points off the
coast of Wales, northwest France, and the English Channel are most sensitive to
AIS melt but that all modelled RSL scenarios are able to fit the suite of RSL data
within 3-sigma uncertainty. Despite this, our model-data analysis, utilising RSL data
that we have identified as strongly sensitive to AIS ice-sheet changes, reveals a clear
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preference for high magnitudes of total AIS melt, identifying an AIS contribution of
between 3.2 - 9.3 m to the LIG GMSL highstand (likely, 66th percentile).

5.2 Introduction

Modern anthropogenic activity is driving wide-scale, sustained warming of Earth’s
climate and, in response, GMSL is projected to rise by upwards of 5 m under high
emission scenarios by 2300 (IPCC, 2022). As the GrIS and AIS continue to respond
to temperature changes, ice-sheet melt has become the dominant contributor to 21st
century GMSL change (Gregory et al., 2013) and is driving a continued acceleration
in the rates of sea-level rise (IPCC, 2022). The sources, magnitudes and rates of
ice-sheet melt contributions can drastically alter patterns of RSL across the globe
and, therefore, change the risk of particular locations to sea-level inundation. It is,
therefore, vital to constrain the future evolution of individual ice sheets in order to
accurately assess the spatial pattern of the risks posed by rising sea levels (Kopp
et al., 2015). Despite this, our understanding of the response of modern-day ice sheets
to future warming remains highly uncertain beyond 2300, primarily as a consequence
of requiring numerical models to simulate ice-sheet behaviour outside of the window
of modern observations (Pattyn and Morlighem, 2020; Robel et al., 2019). However,
the Earth system has been subjected to similar warming events during previous
Quaternary interglacial periods and, of these events, the LIG represents the most
recent, well-studied, and data-rich past interglacial in which the GrIS and AIS were
thought to be smaller than those of today (Capron et al., 2014; Otto-Bliesner et al.,
2006). Constraining the evolution of the GrIS and AIS during the LIG would help to
elucidate the sensitivity and response of these ice sheets to future warming; better
quantify the likely rates and magnitudes of future GMSL rise; and evaluate the risk
posed to local coastal population, infrastructure, and ecology, to aid decision making
beyond 2300.

There is wide agreement that GMSL during the LIG was higher than those of today,
but studies differ in their estimates of its magnitude, varying between 1.2 m and
10 m above present-day values, with even higher values not currently ruled out
(Kopp et al., 2009; Dutton et al., 2015; Dyer et al., 2021; Fox-Kemper et al., 2021).
The contribution of thermal expansion to the LIG sea-level highstand has been
constrained to between 0.4± 0.3 m (McKay et al., 2011) and 0.8 m (Turney et al.,
2020), while melt from mountain glaciers may have contributed up to 0.32± 0.08 m
SLE (Marzeion et al., 2020) meaning that higher LIG sea levels cannot be explained
without large contributions from the GrIS and/or AIS. Previous work has estimated
GrIS and AIS contributions with the use of dynamic ice-sheet models driven by a
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climate forcing assumed to be representative of the LIG. Such studies applied to
the GrIS have resulted in wide-ranging estimates of its LIG GMSL contribution of
between 0.6 m SLE (Stone et al., 2013) and 5.3 m SLE (Yau et al., 2016), depending
on the climate forcing, ice-sheet model, and proxy data constraints employed in the
experimental design (Cuffey and Marshall, 2000; Stone et al., 2013; Yau et al., 2016).
These estimates are of similar magnitude to those inferred from recent data studies
that place the GrIS contribution between 0.6 - 3.5 m SLE (Dutton et al., 2015).

AIS modelling studies have placed emphasis on identifying the distinct behaviour
and drivers of the EAIS and WAIS melt. Coupled, dynamic ice-sheet simulations
of the marine-based WAIS have suggested a LIG GMSL contribution of 1 - 5 m
(DeConto and Pollard, 2016; Clark et al., 2020; Golledge et al., 2021), driven primarily
by the ice sheet’s vulnerability to Southern Ocean warming (Turney et al., 2020),
but these estimates may be under-predicted by up to 30% if water expulsion from
post-glacial rebound is accounted for (Pan et al., 2021). The majority of the EAIS is
relatively insensitive to ocean forcing, as most of the ice sheet sits on bedrock that
lies above the sea-surface elevation, and has therefore been assumed to be relatively
stable (Huybrechts, 1993). Modern-day EAIS studies suggest that a warming climate
may drive possible positive surface mass balance changes, in response to changes
in precipitation patterns, and therefore drive ice-sheet volume growth (Harig and
Simons, 2015). However, while insensitive to ocean forcing, Fogwill et al. (2014)
found that the ice sheet may be vulnerable to changes in Southern-Hemispheric wind
patterns and the resulting local surface warming, driving a 3 - 5 m LIG contribution
from the EAIS in their numerical modelling study. AIS Penultimate Deglaciation to
LIG melt scenarios in the study by Bradley et al. (2013), in which such scenarios
were evaluated against ice-core derived evidence of ice thickness, estimated that the
majority of EAIS change occur prior to 126 ka and found no more than a 1.1 m SLE
LIG contribution from the EAIS using their reference ice-sheet model, while their
adapted idealised Wilkes and Aurora basins retreat scenario contributed 1.01 m SLE.

Through the effects of GIA, the particular location and geometry of ice-sheet melt
results in a distinct spatial pattern of RSL known as sea-level fingerprints (Figure 1.3)
that, in turn, result in large differences in regional sensitivity to LIG AIS melt (Hay
et al., 2014; Mitrovica et al., 2009). Efforts have been made to derive estimates of LIG
AIS melt from records of RSL, in regions targeted for their high sensitivity to AIS
changes, through the use of statistical methods (Barnett et al., 2023; Rohling et al.,
2019). Such works rely on well-constrained chronologies, quantified contributions of
local processes, and assumptions to be made about the contribution of GrIS and, as
a result, studies typically focus on a single region or record. In one of the few studies
to apply RSL data as a constraint on LIG AIS melt contribution to GMSL, Barnett

103



CHAPTER 5. IDENTIFYING LIG AIS MELT

et al. (2023) utilised a database of 27 absolute-dated LIG data points (7 limiting, 20
sea-level index points), primarily located in the English Channel region, corrected
for regional GIA and processes driving vertical land motion, to produce a single time
series for regional LIG sea-level change. By subtracting an estimate for the GrIS
contribution, the remaining time series was attributed to AIS melt and, using an
estimate of the magnitude of the northwest Eurasia AIS fingerprint, was converted
into an estimate for LIG AIS contribution of 5.7 m (median, 50th percentile), with
a range of 3.6 to 8.7 m (central 68% probability). In other work, Dutton et al.
(2015) estimate a LIG AIS contribution of 4.6± 1.7 m by subtracting estimated GrIS,
thermosteric, and mountain glacier contributions from the sea-level signal recorded
by LIG corals in the Seychelles. Significant uncertainties remain in the rate, timing
and magnitudes of LIG AIS melt, as well as in the relative contributions of WAIS
and EAIS, and yet these constraints are vital for realising the potential of the LIG as
a rich archive of empirical ocean, ice, and climate constraints for the calibrations for
future climate models that, in turn, can directly inform present-day decision-making
and policy.

Previous work has been limited in three key areas: modelling studies have been
limited in their range of modelled AIS scenarios due to the expensive nature of
dynamic ice-sheet modelling, without the use of emulation (Gilford et al., 2020) or
simple climate assumptions; data-driven studies have not fitted their inferred AIS
melt scenarios against AIS models, instead extracting the AIS signal directly from
data; and both approaches have been limited in the size and type of data constraints
used. In this work, we develop a data-model comparison framework using a Bayesian
history matching procedure that is capable of identifying the most plausible Earth
model, GIA, and LIG AIS melt scenarios, accounting for model and data uncertainty
when compared against LIG RSL data. We apply our approach to the northwest
Eurasian region by developing a large ensemble of possible RSL patterns that we
history match against an extensive, newly complied Eurasian LIG RSL database. We
parameterise scenarios of LIG EAIS and WAIS melt in order to generate an ensemble
of possible AIS melt histories spanning a range of timings, durations, and volumes.
By combining this ensemble with a suite of possible regional GIA scenarios, driven
by an ensemble of novel Penultimate Deglaciation Eurasian ice-sheet geometries
and viscoelastic Earth models, we utilise a gravitationally self-consistent sea-level
model to produce an ensemble of RSL simulations for the northwest Eurasian region.
Sensitivity analysis of our ensemble enables us to determine the relative sensitivity of
northwest Eurasian regions to AIS melt and our history matching procedure allows
us to identify regions of our parameter space that are best able to match northwest
Eurasian records of RSL. Finally, we combine information gained from this analysis
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to focus our history-matching procedure on only those records most sensitive to
Antarctic melt in order to identify the most likely ensemble of LIG AIS evolution.

5.3 Models, Methods and Data

5.3.1 Global Ice-Sheet and Earth Models

LIG RSL values resulting from AIS melt are calculated using a gravitationally self-
consistent sea-level model that takes global ice-sheet thickness and a 1D viscoelastic
Earth model as input in order to generate solutions to the Sea Level Equation
(Kendall et al., 2005). Sea-level model calculations are performed using a pseudo-
spectral algorithm up to spherical harmonic degree 512 and, as a result, model RSL
and topography outputs, as well as ice-sheet history inputs, are provided on a 512 by
1024 Gauss–Legendre latitude-longitude grid (hereafter referred to as the model grid).
The Earth model assumes an elastically compressible 1D Maxwell structure with a
radially varying stepped viscosity profile, which is parameterised by an upper-mantle
viscosity νUM , lower mantle viscosity νLM , and lithospheric thickness L and which
preserves the location of PREM elastic and density structure discontinuities. As
demonstrated in Chapter 4, the Earth model uncertainty is a dominant contributor
to LIG RSL uncertainty in our study area and, therefore, we include systematic
exploration of the viscoelastic Earth structure in our experimental design. We adopt
the Earth model parameter ranges developed for the northwest European region by
Bradley et al. (2023) of 0.1 - 1× 1021 Pa s for νUM , 0.1 – 5× 1022 Pa s for νLM and
71 – 96 × 103 km for L, based upon regional published literature (Bradley et al.,
2023; Dendy et al., 2017; Milne et al., 2006).

Interglacial RSL values are sensitive to ice-sheet changes from at least 3 glacial
cycles prior, as shown by Dendy et al. (2017), while the sea-level model requires
the ice-sheet history to extend to modern-day to enable convergence to modern
topography. Therefore, we prescribe global ice-sheet changes from 420 ka until the
modern day by scaling the Peltier et al. (2015) ICE-6G global ice-sheet model of
the LGP to a global ice-sheet volume curve derived from the δ18O reconstruction of
Waelbroeck et al. (2002). Since the PGP ice-sheet configuration in North America
and Eurasia was likely very different to that of the LGP we modify the PGP section
of our ice history by replacing the Eurasian ice-sheet with an ensemble of deglaciation
geometries, as outlined in Chapter 4, and re-scale the North American ice-sheet in
order to match the total global ice-sheet budget at the PGM. Our previous study
demonstrated that LIG RSL in Eurasia is relatively insensitive to the timing of North
American and Eurasian deglaciation and so we prescribe a fixed PGM timing for
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both the Eurasian and North American ice sheets of 139 ka and also terminate their
deglaciations at 129 ka. In addition, we modify the LIG portion of our ice-sheet
history such that all ice sheets assume pre-industrial configuration between 129 ka
and 116 ka.

5.3.2 Last Interglacial Antarctic Melt Scenarios

We construct a range of LIG AIS melt scenarios that differ in the rate, timing, and
magnitude of both WAIS and EAIS melt contributions, to test their fingerprint on
LIG RSL. Our scenarios consider the evolution of WAIS and EAIS separately and
are constructed from time-series of ice volume change during the LIG (that prescribe
when ice is lost/gained) which are then converted into corresponding spatiotemporal
evolutions of AIS ice-thickness by interpolating a series of pre-modelled AIS thickness
configurations (the base model).

Our base model is the Representative Concentration Pathway (RCP) 8.5 high
emission, marine ice cliff instability inclusive scenario of DeConto et al. (2021),
chosen as this model spans a large range of AIS volumes, maximising the range
of melt scenarios we are able to test. The model consists of 56 model time-steps
spanning from the modern-day (pre-industrial) AIS configuration until 2500 which
we interpolate onto the same lat-long model grid as used in our study. To prepare
this model for use in our interpolation methodology, we first split the DeConto
model into separate EAIS and WAIS ice-thickness series, following the MEaSUREs
Antarctic Boundaries dataset (Rignot et al., 2013), before then calculating the
volume of grounded ice for each region and model time step. The 56 ice-thickness
configurations for EAIS and WAIS are then reordered in terms of ice-sheet volume,
removing the model time-step dimension, so that their ice-thickness values can be
interpolated with respect to ice-sheet volume. In its modern configuration and
topography, the DeConto et al. (2021) model simulation contains 5.6 m SLE and 50.2
m SLE grounded ice volume for WAIS and EAIS respectively and, in its minimum
configuration, this reduces to 1.6 m SLE for WAIS and 42.9 m SLE for EAIS. The
regionally divided DeConto ice-sheet model combined with calculated grounded
ice-sheet volumes allows for interpolating ice configurations that correspond to any
prescribed value of grounded ice volume and, by extension, melt contribution that we
require. The next step in our procedure was, therefore, to develop a methodology for
generating potential scenarios of WAIS and EAIS ice-sheet melt, which, combined
with the regional base ice model interpolation, can be used to generate corresponding
ice-sheet histories.
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We parameterise the LIG AIS melt scenarios with one set of parameters controlling
the evolution of WAIS volume and another set of parameters controlling the EAIS
that can be visualised in Figure 5.1. Our WAIS LIG ice-sheet melt scenarios begin
with the assumption that the western portion of the AIS likely melted rapidly
compared with the EAIS and may also have remained in a stable, smaller ice-sheet
configuration for some time after melting (Golledge et al., 2021). To encode this
behaviour, we describe WAIS melt with four parameters: melt start time TWA

melt,
the time at which melting from the default, present-day configuration occurs; melt
volume V WA

melt , describing the maximum magnitude of melting; duration of melt dWA
melt,

determining how long the transition from present-day to maximum melt configuration
takes; and the stability duration dWA

stable, which determines how long WAIS will remain
in the fully melted configuration before returning to modern at 116 ka. To avoid
TWA
melt + dWA

melt + dWA
stable > 116 ka we determine dWA

stable by the parameter pWA
stable which

determines the percentage of the LIG after TWA
melt + dWA

melt that should remain stable.
After sampling, we convert values of pWA

stable to dWA
stable by,

dWA
stable = pWA

stable(T
WA
melt + dWA

melt − 116). (5.1)

The transition between the modern configuration, pre-melt state and the fully melted
state follows a quarter sine decay function (see example in Figure 5.1B) reflecting
our assumption of a fast initial melting that decelerates towards V WA

melt , while a linear
transition is assumed between the end of dWA

stable and the return to the modern state
at 116 ka.

For the EAIS, we assume that changes in volume occurred more gradually and
that the ice sheet likely never equilibrated. In addition, since evidence suggests the
possibility of EAIS growth under modern-day warming (Harig and Simons, 2015), we
do not rule out the possibility of EAIS growth during the LIG. Therefore, we allow
scenarios to include negative values of EAIS volume and, for clarity, refer to EAIS
parameters as determining ice-sheet change rather than melt. We do not include a
period of stability as we do for the WAIS, but otherwise similarly describe EAIS
scenarios with three parameters: change start time TEA

change, change volume V EA
change,

and duration of change dEA
change. To reflect the assumption of a more gradual EAIS

evolution, we use a low degree (N=1.3) polynomial transition function but keep the
assumption of linear growth from V EA

change back to the modern-day configuration at
116 ka. For scenarios that test EAIS ice-sheet growth, we require EAIS ice thickness
configurations thicker than exist in the DeConto series and so, in this case, we
uniformly scale the DeConto modern (pre-industrial) grounded ice configuration to
match the required volume.
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Figure 5.1: AIS melt is parameterised by the magnitude, timing, and duration of
ice-sheet changes in both EAIS and WAIS. (A) This parameterisation divides the last
interglacial into periods of ice-sheet melt, growth, and stability. (B) An illustrative
example of an AIS melt scenario labelled with each parameter.

Table 5.1: Antarctic melt scenario parameters and their corresponding ranges.

Name Symbol Range Unit

WAIS Melt Start Time TWA
melt 129 - 124 ka

WAIS Melt Duration dWA
melt 0.5 - 3 ka

WAIS Melt Volume V WA
melt 0 - 5.5 m SLE

WAIS Stability Percentage pWA
stable 0.2 - 0.8 1

EAIS Change Start Time TEA
change 129 - 124 ka

EAIS Change Duration dEA
change 1 - 9 ka

EAIS Change Volume V EA
change −1 - 5 m SLE

5.3.3 Relative Sea-Level Ensemble Design

In addition to the 7 parameters controlling the evolution of LIG Antarctic melt
(Table 5.1), our ensemble design consists of 3 parameters describing the viscoelastic
Earth model and 3 derived parameters describing the regional ice-sheet volume of
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the Eurasian ice-sheet during the Penultimate Deglaciation (Table 5.2). Chapter
4 demonstrated that the Eurasian ice-sheet volume was, in some Eurasian regions,
the dominant contributor to uncertainty in LIG RSL. To account for this source of
uncertainty, we design our ensemble to use the suite of 532 Eurasian deglaciation
geometries as generated in Chapter 4. Alongside, we generate a 532-member LHS of
our 3 Earth model parameters (Table 5.1) and 7 AIS history parameters assuming
a uniform distribution across parameter ranges (Table 5.2) resulting in 532 Earth
models and LIG Antarctic melt scenarios to test. We run the resulting set of 532
global ice-sheet histories and Earth model configurations with the sea-level model to
produce an ensemble of RSL simulations spanning from 420 ka until the present day.

Table 5.2: Earth model and Eurasian ice-sheet model parameters where, for parameter
x, U(xmin, xmax) represents a uniform distribution with a minimum (xmin) and
maximum (xmax) value and N(µ, σ) represents a normal distribution with mean (µ)
and standard deviation (σ).

Name Symbol Distribution Unit

Upper Mantle Viscosity νUM U(0.1, 1)× 1021 Pa s

Lower Mantle Viscosity νLM U(0.1, 5)× 1022 Pa s

Lithospheric Thickness L U(71, 96)× 103 km

Barents-Kara Sea Eurasian
Ice-Sheet Volume

V Er
BKS N(28, 4) m SLE

Fennoscandian Eurasian
Ice-Sheet Volume

V Er
F N(24, 3) m SLE

British-Irish Eurasian Ice-
Sheet Volume

V Er
BI N(1.8, 0.1) m SLE

5.3.4 Last Interglacial Sea-Level Database

Empirical observations of LIG RSL were sourced from WALIS, a state-of-the-art
LIG RSL database containing 6600 RSL data points (Rovere et al., 2023b). Each
RSL value, representing RSL at a specified location, can broadly be categorised as
either: a sea-level index, representing a value that RSL attained; marine limiting,
representing a value that RSL exceeded; or terrestrial limiting, which RSL remained
below (Rovere et al., 2016). In addition, the age associated with each data point can
be categorised as: absolute, which provides a specific age value with uncertainty (e.g.
an OSL date); or relative (or floating), whereby the data point may have occurred at
any time within a time range determined by the chronological constraint to which it
is tied to (e.g. pollen biostratigraphy). We initially filtered the WALIS dataset to
only include data points: (i) at locations within the northwest Eurasian region (which
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Figure 5.2: Ensemble of Antarctic melt scenarios generated with our parameterisation.
(Top) WAIS, EAIS, and total AIS sea-level contributions during the LIG with
ensemble 5th and 9th percentile (light shading), 32 and 68th percentile (dark shading),
and median value (solid line). Individual ensemble members are shown as light grey
lines. (Bottom) AIS ice-sheet thickness ensemble mean (blue) and standard deviation
(purple) at 128, 124, 122, and 118 ka.

comprises the regional compilations of Cohen et al. (2022), and Dalton et al. (2022)),
(ii) with an age range overlapping with the timing of LIG (129 - 116 ka, (Dutton
et al., 2015)), and (iii) those data points that include a specified RSL uncertainty.
After this filtering, our dataset contains 93 sea-level index, 210 marine limiting, and
14 terrestrial limiting data points, of which 120 have absolute ages and 197 have
relative ages, at 141 unique locations, as shown in Figure 5.4. Also shown in Figure
5.4 are the 13 regions used to group the data points for regional-specific analysis and
comparison against the RSL ensemble.
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Figure 5.3: Schematic of the filtering process applied to RSL data points.

As discussed in Chapter 1.2.2.1, RSL and associated uncertainty values from WALIS
represent the observed RSL as inferred from the geological record at each study
site, and this value represents the influence of VLM from all local processes. Some
processes cannot be quantified (e.g. tidal range changes) and are assumed the same
as modern; however, in order to compare against our ensemble of GIA and Antarctic
melt scenarios, we subtract the influence of dynamic topography (VLM due to mantle
convection), and in the case of offshore North Sea data points, subsidence due to
sediment loading, from each record, assuming that active tectonics make a negligible
contribution given the distance from active plate margins. The global dynamic
topography deformation dataset provided by Austermann et al. (2017) quantifies
the magnitude and standard deviation of VLM due to dynamic topography since
125 ka. By converting the magnitude of dynamic topography since 125 ka into
a rate, we utilise the Austermann et al. (2017) dataset to estimate the dynamic
topography contribution to RSL for the WALIS data points, assuming the mean
age for absolute ages and the mid-value for relative ages. Similarly, we consider the
contribution of sediment loading in the southern North Sea where significant sediment
has accumulated over the Quaternary (Hijma et al., 2012; Lamb et al., 2018), using
the rates fields provided by Cohen et al. (2022). Figure 5.4 shows the resulting time
series of data-point values plotted for each sea-level region after correcting for the
VLM factors, with the exception of GIA. In this form, the database of sea-level
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Figure 5.4: (Top) Distribution of RSL data points across northwest Eurasia grouped
in 13 regions based upon similar RSL trends. (Bottom) For each region, marine
limiting (orange, up-arrow marker), terrestrial limiting (green, down-arrow marker)
and sea-level index points (blue, round marker) are shown with 1σ uncertainty
bounds in age and RSL for absolute dated ages (curved uncertainty) and age range
with 1σ RSL uncertainty for relative ages (square uncertainty).
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records and their corresponding values can be compared against our modelled RSL
values through a model-data comparison process known as history matching.

5.3.5 Sea-Level Data Matching Framework

History matching is a procedure used in model uncertainty quantification to rule out
areas of the model parameter space (i.e. combinations of input parameter values)
that are unable to match observational data within the bounds of model and data
uncertainty (Vernon et al., 2022; Williamson et al., 2013; Bower et al., 2010). To
compare model output and observational data, we use an implausibility metric, as
used in Chapter 3, which effectively calculates the minimum distance in space and
time between the modelled RSL time-series and a sea-level data point, normalised
by uncertainty. For each simulation we run, we calculate an implausibility value
based on the normalised distance between the model and observations. Let y be
the real-world value of some quantity and z be an observation of y that differs by
an error e such that z = y + e. Our numerical model can make a prediction of y
with some parameter combination p̂, given by f(p̂), but since our numerical model
is not a perfect representation of the real world, all predictions f(p̂) are separated
from y by model structural discrepancy ϵ such that, for the hypothetical perfect
parameter combination p̂∗, y = f(p̂∗) + ϵ. Therefore, E(ϵ), the expectation of ϵ,
represents the model bias and E(ϵ) ̸= 0 indicates that f(p̂) contains a systematic
bias from observation z. In the case that f is an emulated quantity from our original
numerical model, we additionally define the emulator uncertainty V ar(f(p̂)). The
implausibility I(p̂) of a parameter combination p̂ is therefore given by,

I(p̂) =

√
(E(f(p̂))− z − E(ϵ))2

V ar(e) + V ar(ϵ) + V ar(f(p̂))
(5.2)

A RSL data point i consists of a location x̂i, RSL value zRSL
i , an age zti , and a data

type. Implausibility calculations of RSL model outputs must, therefore, account for
the RSL implausibility IRSL

i , temporal implausibility I ti , and use a different form of
this function to account for the specific interpretation of each RSL and age data-type.
We assume that only model values at location xi are relevant for calculating the
implausibility of data point i, and therefore let fi(p̂, t) ≡ f(p̂, t, x̂ = xi), where t is a
modelled time from the discrete set of model times T . In addition, since we are only
interested in LIG simulations, we only consider the subset of modelled RSL values
that fall within TLIG, where TLIG = {t ∈ T |t ≤ 129 ka and t ≥ 116 ka}.

Beginning with the temporal implausibility, a sea-level data point can be associated
with either an absolute age or a relative age. In the case of absolute ages, we assume
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that the age probability is normally distributed centred around the reported age zti
with standard deviation given by reported uncertainty

√
V ar(eti). Using Equation

5.2 and assuming no temporal model bias or structural uncertainty, we define I ti (t)
for absolute ages to be,

I ti (t) =

√
(t− zti)

2

V ar(eti)
(5.3)

In the case of relative ages, the temporal probability distribution is assumed as
uniform between the lower bound tmin and the upper bound tmax of the reported
age range, such that,

I ti (t) =

0, if ztmin
i ≤ t ≤ ztmax

i

∞, else
(5.4)

The RSL component of a data point can either be an index point, marine limiting,
or terrestrial limiting. In the case of a sea level index point, RSL is assumed to be
normally distributed and centred around the reported RSL value zRSL

i with standard
deviation given by reported uncertainty

√
V ar(eRSL

i ). In this case, we can use
Equation 5.2 to express IRSL

i as,

IRSL
i (p̂, t) =

√
(E(fi(p̂, t))− zRSL

i − E(ϵRSL
i ))2

V ar(eRSL
i ) + V ar(ϵRSL

i ) + V ar(fi(p̂, t))
. (5.5)

5.3.5.1 Limiting Data Points

In the case of a limiting data point, a RSL observation value zRSL represents the
boundary between possible and impossible RSL values and, by extension, V ar(zRSL)

represents uncertainty in the position of this boundary. Consider a RSL value at
some distance above an uncertain marine limiting RSL boundary: the probability of
the RSL value represents the cumulative probability of all boundary values below
it whereas a RSL value above this limit is only possible for boundary positions
above it. By extension, we expect that a RSL value exactly on the mean of a
normally distributed boundary position should have a probability of 0.5. Using this
interpretation, the probability distribution of a modelled value f around this limit
can be represented as the cumulative distribution function of a normal distribution.
However, in order to include this alternative probability distribution within our
history-matching framework we must first think of the standard implausibility of a
model value f as, effectively, the distance, in terms of standard deviations, that this
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value lies away from the mean of a normal distribution given by,

N
(
µ = z + E(ϵ), σ =

√
V ar(e) + V ar(ϵ) + V ar(f(p̂))

)
. (5.6)

With this interpretation, there exists a normalised probability P associated with each
I, that can be calculated from the normalised probability density function associated
with Equation 5.6 such that,

P = e−
1
2
I2 . (5.7)

By solving Equation 5.7 for I, we can express I in terms of P such that,

I =
√

−2 log(P ). (5.8)

Let CDF be the cumulative distribution function associated with Equation 5.6 and,
therefore, for limiting data points we can express the probability Plim of a modelled
RSL value f(p̂) as,

Plim(f(p̂)) =

CDF (f(p̂)), if marine limiting,

1− CDF (f(p̂)), if terrestrial limiting.
(5.9)

Combining Equation 5.8 and Equation 5.9 we can calculate the associated I as,

I(p̂) =
√

−2 logPlim(f(p̂)). (5.10)

5.3.5.2 Combined Implausibility

The implausibility Ii(p̂, t) of a model value fi(p̂, t), representing the normalised
model-data distance in time and space, is given by,

Ii(p̂, t) =
√

(IRSL
i (p̂, t))2 + (I ti (t))

2 (5.11)

Since a sea-level model ensemble member at a location x̂ consists of a time series of
RSL values, we characterise the overall implausibility of p̂ against i as,

Ii(p̂) = min{Ii(p̂, t) : t ∈ TLIG} (5.12)

Finally, we combine implausibility from all data points i into a single average
implausibility for a given set of parameter values p̂ by,

I(p̂) = mean{Ii(p̂) : i ∈ N} (5.13)
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5.3.6 Estimating Model Structural Discrepancy

A misfit between modelled RSL and data that is common to all ensemble members
may indicate the presence of a structural model bias, such that E(ϵ) ̸= 0. We
account for this bias in our implausibility metric by defining the terms E(ϵRSL) and
V ar(ϵRSL) in Equation 5.2. We make the assumption that E(ϵRSL) and V ar(ϵRSL),
for the LIG, are time-invariant spatial fields which we can sample from at each data
location to derive E(ϵRSL

i ) and V ar(ϵRSL
i ). Intuitively, this means that we assume

modelled RSL may be more incorrect in some locations than others but that there
is no change in this error as the LIG progresses. In reality, this bias may be larger
at some times than others due to, for example, the influence of missing ice-sheet
contributions. However, spatial data sparsity, when grouped by model time step
would limit the temporal resolution at which these fields could be estimated. In
order to estimate E(ϵRSL) and V ar(ϵRSL) we first calculate the RSL discrepancy
di(p̂) at zti such that,

di(p̂) = f(p̂, t = zti)− zrsli (5.14)

with di(p̂) = 0 if i is a limiting data point and f(p̂, t = zti) falls on the ‘possible‘
side of the limit boundary. By calculating d(p̂) = mean{|di(p̂)| : i ∈ N} we can
determine the best fitting 10% of ensemble members Pbest. We then assume that
this discrepancy is representative of ϵRSL

i at each data-point location i such that
E(ϵRSL

i ) and V ar(ϵRSL
i ) are the mean and variance of the set {di(p̂) : p̂ ∈ Pbest}. In

this form E(ϵRSL
i ) and V ar(ϵRSL

i ) are only defined at locations i and so, to aid the
physical interpretation of the structural discrepancy, we spatially interpolate onto
the northwest Eurasian region using a 2D Gaussian Process with a Matern-52 kernel,
the results of which are shown in Section 5.4.3.

5.4 Results and Analysis

5.4.1 Relative Sea-Level Ensemble

Our ensemble of 532 RSL outputs shows a distinctive, Eurasian ice-sheet-driven
pattern of high RSL under areas previously loaded by the Eurasian ice sheet, with
values exceeding 100± 20 m in regions such as the White Sea, and lower RSL beyond
the former ice-sheet margins (Figure 5.5). A similar pattern of RSL was derived from
the ensemble experiments of Chapter 4; however, we find that this new ensemble has
a RSL mean that is higher in areas that are not directly under the former Eurasian
ice sheet. For example, in the Atlantic and English Channel regions mean RSL values
are higher by 5 m due to the added AIS contribution, while the standard deviation
has remained similar, while in the GIN sea region RSL has increased by 8 m. Our
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ensemble has a high rate of RSL change, averaged over the whole LIG, of up to 10
mm yr−1 in the GIN Sea region, while the English Channel, North Atlantic, and
southern North Sea regions show more moderate rates of change of 2 mm yr−1. As
the LIG progresses, areas underneath the former ice-sheet load experience RSL fall as
a result of isostatic rebound, averaging −3 mm yr−1 in the central North Sea region,
and with regions such as the Barents-Kara sea experiencing rates higher than −20

mm yr−1. Uncertainty in the rate of RSL change is highest in regions dominated by
isostatic rebound, reaching ±12 mm yr−1 in the Baltic Sea as opposed to ±3 mm
yr−1 in the GIN sea.

Figure 5.5: Resulting Eurasian RSL ensemble mean at (A) 122 ka, (B) 118 ka, and
corresponding standard deviation at (D) 122 ka and (E) 118 ka. Panels also show
the (C) mean and (F) standard deviation of the average rate of RSL change over the
LIG.

Our ensemble of AIS histories have been generated by interpolating the DeConto ice-
sheet model to match an ensemble of volume time-series for EAIS and WAIS (Section
5.3.2). This interpolation relied on calculated grounded ice-sheet volume values
for each DeConto model time step performed by assuming modern-day topography.
Since LIG topography configurations differ from modern, this assumption resulted
in a mismatch between the actual sea-level contribution from each AIS ensemble
member and the value prescribed from our parameterisation. To correct this, we
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use the series of LIG topography configurations, outputted by the sea-level model
for each ensemble member, to re-perform the grounded-ice-volume calculation at
each time step, thus correcting the ensemble of sea-level contribution values. In
this analysis, we find a near-linear relationship between the pre and post-corrected
V EA
change (gradient 0.97, R2 0.998) and V WA

melt (gradient 0.94, R2 0.997) values, with a
reduction of 0.4 m SLE and 0.3 m SLE for WAIS and EAIS volumes respectively.
Subsequent results are presented using these corrected volume values.

The variance of our ensemble spans the range of possible RSL values given the specified
uncertainty in viscoelastic Earth structure, Eurasian ice-sheet volume during the
Penultimate Deglaciation, and the LIG evolution of AIS. In subsequent sections, we
utilise this ensemble to quantify the sensitivity of each region to the evolution of AIS
(sensitivity analysis), as well as to identify the region of our input parameter space
most able to match observations of RSL (history matching). Sensitivity analysis
requires RSL model output values at specific locations within the parameter space,
while history matching is aided by far larger ensemble sizes than is feasible to directly
compute with the sea-level model. Therefore, to aid both analyses, we train a
Gaussian process emulator for each of the 141 unique data locations so that we are
able to approximate RSL values at each location, including quantified prediction
uncertainty, for arbitrary parameter input combinations.

5.4.2 Regional Sensitivity Analysis

The variance in our ensemble of Eurasian RSL results from the combined, propa-
gated uncertainty in all of our model parameters and the magnitude of each model
parameter’s contribution to this variance is likely to be spatially variable. In Chapter
4, we attributed individual model-parameter contributions to this spatial pattern
of uncertainty and found that viscoelastic Earth model parameters are typically
dominant across Eurasia, while regions directly underneath ice-sheet loads are sensi-
tive to respective regional volumes of the Eurasian ice sheet. Here, we perform an
expanded and targeted sensitivity analysis that includes AIS parameters by utilising
our suite of Gaussian process emulators to calculate Sobol sensitivity indices derived
from a 1024-member Sobol sequence sample at all site locations in the filtered RSL
database. We sum the individual parameter sensitivity indices at each site into
a single sensitivity value for our 3 parameter groups: Earth model, Eurasian ice
volume, and Antarctic ice melt scenario parameters. Finally, for each of these groups,
we calculate a mean sensitivity value for each region that represents the average
contribution of a given parameter group to uncertainty at data sites within a given
region (as defined in Figure 5.4). Crucially, this analysis allows us to determine the
sensitivity of each region’s data to AIS ice-sheet melt.

118



CHAPTER 5. IDENTIFYING LIG AIS MELT

Our results show that uncertainty in the Earth model parameters remains the
dominant contributor to RSL uncertainty in most regions with an average contribution
across all regions of 80%, compared with 12% from Eurasian ice-sheet volume and
3% from Antarctica (note that first-order contributions do not sum to 100% due
to the influence of parameter interactions) as shown in Figure 5.6. The influence
of GIA is particularly dominant in Greenland, likely due to lower influence from
Eurasian ice-sheet changes, and in the North Sea, where it averages 91% across the
Denmark, French North Sea, and Netherlands regions. The volume of the Eurasia
ice sheet contributes little first-order sensitivity in these same North Sea regions,
averaging 5%, but is far more dominant in the North Baltic Sea, South Baltic Sea,
and White Sea regions, averaging 25%. By contrast, we find that the sensitivity
to the Antarctic contribution is localised to the southwest subset of our sea-level
regions where it contributes 6% to the English Channel, 4% to the English North
Sea, 6% to the French Atlantic, and 16% to Wales.

Our sensitivity analysis results indicate that data points within the southwest subset of
our Eurasian RSL data regions (Figure 5.4) are most sensitive to our parameterisation
of AIS melt and, as such, are likely to be most informative about likely melt scenarios
in our subsequent history matching analysis. We now compare our ensemble with
our refined database of RSL data points in order to: (i) identify regions of systematic
misfit between model and data; (ii) filter out ensemble members that do not fit the
sea-level data within uncertainty; (iii) identify AIS melt scenarios and Earth model
configuration that best fit the data (Section 5.4.4).

5.4.3 Model Bias

The model bias term ϵRSL, as discussed in Section 5.3.5, is a reflection of the
systematic misfit between modelled and observed values of RSL. In this work, we
assume that ϵRSL is a spatially variable, temporally invariant field that we estimate
by calculating the discrepancy between the mean modelled RSL value of the top 10%
of ensemble members based on their fit against all data points. This field is used to
correct our ensemble of RSL values in locations where the systematic misfit causes
the RSL ensemble to be far from the data points, thus allowing all sea-level data
to fairly inform our history-matching procedure. We find that our model exhibits
spatially coherent patterns of ϵRSL, demonstrating both that the empirical RSL data
is regionally consistent in its measurements of RSL and that our model contains
biases, likely due to misrepresented ice-sheet volume and Earth model structure, on
a regional scale.
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Figure 5.6: Map showing each sea-level region (defined in Figure 5.4) coloured by
the magnitude of the relative first-order sensitivity contribution of (A) Antarctic, (B)
Eurasian ice-sheet volume, and (C) GIA model parameters. Regional mean values
are a result of mean sensitivity indices calculated at each data site.

We find that data points within the North Sea regions have a localised, negative
mean model bias of O(50) m (of the order of 50 m), indicating that our ensemble of
modelled RSL is higher than is suggested by the RSL data in these regions. However,
this negative mean bias does not extend to the adjacent English Channel, Norwegian
North Sea, or southern Baltic Sea region data points (Figure 5.7A). Within North
Sea regions, the standard deviation (or uncertainty) of the model bias (or model
structural error) is higher for data points in the Netherlands region, reaching O(10)

m, whereas the English North Sea has an uncertainty of only O(2) m (Figure 5.7B).
Both the mean and uncertainty in the model bias are negligible for data points
in the English Channel, French Atlantic, and Wales regions, indicating that there
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is a reasonable intersection between our modelled range of RSL values and data
points in these regions. Most data points in the eastern data regions of Svalbard,
the Norwegian North Sea, southern Baltic Sea, northern Baltic Sea, White Sea, and
the central Barents-Kara Sea also show negligible mean bias, although the higher
proportion of limiting data points in this region may make these data points less
able to constrain any bias. However, there is a large bias variance in the northern
Baltic Sea of O(10) m, indicating that the best-fitting subset of our ensemble has
high variability in this region. The North Barents-Kara Sea and Greenland regions
have a strong positive bias of O(50) m with low accompanying uncertainty O(2) m,
indicating that our modelled RSL values are systematically lower than expected in
this region and that this correction is reasonably uniform across the best fitting subset
of ensemble members. The discrepancy calculation used to estimate a best-fitting
subset of our ensemble and calculate a bias is a crude precursor to a full history
matching procedure as it does not account for uncertainty in RSL data, the modelled
ensemble, or the temporal data component, while also not being able to quantify the
relative implausibility of specific parameter combinations. Despite this, we choose to
investigate changes in the parameter distributions of our best-fitting subset versus
our original ensemble in order to understand which parameters most influence our
model bias. We summarise these changes by calculating a simple metric, which we
refer to as a mean shift, which quantifies the change in the position of the mean
parameter value relative to the parameter range of each parameter. A mean shift of
0 indicates no change in position, while -0.5 and 0.5 indicate a full shift to the lower
or upper bound of the parameter range respectively. We find that the best-fitting
subset is primarily characterised by lower values of νUM , associated with a mean
shift of -0.4, while other parameters display an absolute shift of no more than 0.1.
By repeating the bias calculation for each region, using only data from said region,
we are able to calculate regional parameter shift values that represent individual
regional parameter preferences. We observe large variations in these shift values
across different regions but find that the viscoelastic Earth model parameters exhibit
the strongest magnitude of mean shift in almost all regions (Figure 5.7C), meaning
that Earth model parameters are both the largest control on model-data fit as well
as having regionally variable mean parameter values.

5.4.4 Ensemble History Matching

Utilising our RSL ensemble, model-bias correction, and filtered subset of the WALIS
sea-level database, we are now able to calculate the implausibility of a given sea-level
model input parameter combination, with lower implausibility values corresponding
to a closer model-data agreement. To perform this assessment, we utilise our suite
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Figure 5.7: Maps showing the (A) mean and (B) standard deviation of the estimated
model bias field. Data points are coloured with the calculated model bias value. (C)
Matrix showing the magnitude of the shift in parameter-distribution mean in the
subset of best-fitting ensemble members when compared with data from different
sea-level data regions.

of Gaussian process emulators to perform a 104-member LHS of our parameter
space at each of the 141 unique data locations. The resulting 104 generated LIG
RSL time series are compared against the 317 data points via the history matching
methodology outlined in Section 5.3.5 to calculate the implausibility value Ii(p̂)
corresponding to each parameter sample p̂ at each location i. In order to determine
the resulting overall implausibility I(p̂) associated with each p̂ we then calculate
the mean implausibility over all i for each p̂. In addition, since our goal is to refine
parameters describing scenarios of AIS melt, we utilise the information gained from
our sensitivity analysis to perform a more selective history-matching procedure using
the subset of i that fall within regions most sensitive to AIS parameters: the English
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Channel, English North Sea, French Atlantic, and Wales. This reduced data subset
contains 70 data points (43 more than those used by Barnett et al. (2023)) consisting
of 52 sea-level index points, 6 marine limiting, and 12 terrestrial limiting points, of
which 37 and 33 are associated with absolute and relative ages respectively.

We find the average implausibility of all parameter combinations against all data
and against the AIS sensitive regional subset to be 1.4 and 1.2 respectively, while
the maximum averaged implausibility of a single parameter combination is 2.9.
This means that all parameter combinations tested have an average implausibility
within the 3-sigma uncertainty threshold Pukelsheim (2012) typically used in history
matching (Andrianakis et al., 2015; Williamson et al., 2015) and, as a result, all
parameter combinations are deemed NROY when compared against all RSL data.
However, despite the classification as NROY, differences in implausibility values
between sample members can still be used to extract useful information about
preferred parameter distributions. We, therefore, use the 10% subset of our parameter
sample with the lowest implausibility values as representative of the best-fitting
subset of parameters and refer to this subset as the refined subset.

Our refined parameter space, history matched against all data regions, shows a
clear preference for lower νUM values than our original range, with a mean value of
2.2× 1020 Pa s and an upper value of 4.1× 1020 Pa s (99th percentile), falling well
below the original uniform upper bound of 10× 1020 Pa s. We find that the higher
νLM values of our original uniform range are preferred, with the lower 1st percentile
falling at 1× 1022 Pa s compared with the original 0.1× 1022 Pa s lower bound, with
the mean value shifting to 3× 1022 Pa s. Lower values of L are preferred, but the
95th percentile still lies at 94 km and, therefore, remains close to the original upper
bound of 100 km, while the mean has shifted to 84 km. The regional subset shows
similar overall preferences for Earth model parameters but has a stronger preference
for lower νUM with a mean and 99th percentile of 1.7× 1020 Pa s and 2.9× 1020 Pa s,
respectively. We also find values close to the upper bound of νLM are less preferred
and the L refined distribution is more similar to that of the original uniform sample.

The normally distributed regional Eurasian ice-sheet volumes show varying degrees
of preference in our refined parameter set. When fitted by a normal distribution
(as shown in Figure 5.8), we find that our full-data history matching prefers larger
Barents-Kara Sea ice-sheet volume, with the VBKS distribution shifting from an
original 28± 4 m SLE (mean ± standard deviation) to 30± 3 m SLE. By contrast,
there is no change within uncertainty in the preferred VBI distribution, while the
VF shows a preference for a small regional ice-sheet load, reducing from 24± 3 m
SLE to 22± 3 m SLE. The regional subset shows no change in the refined normal
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Figure 5.8: Probability density functions of the posterior model input parameter
distributions are shown after history matching against RSL data from (blue) all
regions and (orange) the subset of regions most sensitive to Antarctica. The dashed
grey line shows the probability density functions of the original, prior parameter
sample.
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distributions for regional Barents-Kara Sea, British-Irish, or Fennoscandian Eurasian
ice-sheet volume, within uncertainty. Our history-matching procedure reveals no
significant preference for parameters controlling the timing or duration of WAIS or
EAIS LIG evolution, with TEA

change, dEA
change, TWA

melt, TWA
melt, and dWA

stable following similar
distributions as the original sample. However, refined distributions from both all data
regions and the subset of regions sensitivity to AIS changes reveal preferences for
higher ice-sheet melt contributions for both V WA

melt and V EA
change. Our sensitive subset

suggests a contribution of 0.5 - 4.9 m from the WAIS (very likely, 90th percentile) and
-0.4 - 4 m from the EAIS (very likely) but prefers higher volume contributions of 2.1 -
4.9 m from the WAIS (likely, 66th percentile) and 1.1 - 4.4 m from the EAIS (likely),
and thus a total AIS melt contribution of 3.2 - 9.3 m (likely). These results show that
high ice-sheet melt from the EAIS and/or the WAIS produce lower values of model
implausibility but may not represent data sensitivity to an East vs West source
of melt and this is investigated in Section 5.5. Our resulting posterior parameter
distributions for AIS scenarios, history matched against regionally sensitive data,
can be inverted to produce a refined ensemble of AIS melt scenarios (Figure 5.9),
demonstrating the range of tested AIS scenarios best able to match the AIS sensitive
subset of northwest Eurasian RSL data.

Figure 5.9: Ensemble of LIG AIS melt scenarios before (left, orange) and after (right,
blue) history matching against sea-level data in regions sensitive to AIS melt. Plots
show the ensemble median (solid line), 66th percentile likely (dark shaded region),
and 90th percentile very likely (light shaded region) ranges of AIS sea-level equivalent
volume contribution during the LIG.

5.5 Discussion

5.5.1 Antarctic Melt Scenario Methodology

We have produced a new ensemble of Eurasian RSL during the LIG that included a
range of possible contributions from LIG AIS changes via our new parameterisation
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of AIS melt scenarios. This parameterisation has allowed us to systematically test the
timing, duration, and magnitude of LIG WAIS and EAIS volume changes based on
ice-sheet thickness configurations from the DeConto et al. (2021) model. Our simple
approach has utilised dynamic ice-sheet model outputs in an experimental design
that differs in several ways from traditional dynamic ice-sheet modelling studies.
Firstly, by utilising a pre-existing set of ice-sheet configurations, each ice-sheet input
to our sea-level model is computationally inexpensive to assemble, allowing for
the execution of our large-ensemble experimental design that would otherwise be
computationally challenging with a coupled climate-ice model without the use of
coarse model grids (Pollard et al., 2016), simplified climate inputs (Stone et al.,
2013), or model emulation (Gilford et al., 2020). Secondly, we are able to test a
greater range of possible ice-sheet melt scenarios than may be possible with the
use of dynamic ice-sheet models since the range of ice-sheet evolutions produced
by such models is constrained by the choice of implemented model physics (Pattyn
and Morlighem, 2020). While in-built model physics provides useful constraints on
possible ice-sheet configurations, this range is dependent on the particular model’s
choice of included ice-sheet physical processes, the specific numerical implementation
of these processes, and the range of model boundary conditions tested (Cornford
et al., 2020; Seroussi et al., 2020; Goelzer et al., 2020). In the context of the LIG, a
lack of observations of the AIS physical response to changes in the ocean and climate
system, and the resulting large uncertainties on dynamic model boundary conditions
and parameterisation of physical processes, can cast doubt on the reliability of
dynamic model-based constraints from a single model on ice-sheet behaviour (Ritz
et al., 2015; Edwards et al., 2019; Crawford et al., 2021).

While our approach allows for flexibility in the range of scenarios tested it also requires
prior assumptions to be made about suitable distributions of the timing, duration,
and volume of LIG AIS changes, based upon previous work and understanding of
WAIS and EAIS dynamics. Our range of dWA

melt values allows for rapid WAIS retreat
of up to 0.5 ka and reflects the view of previous work that the WAIS has the potential
for rapid ice-sheet loss (Robel et al., 2018). The Antarctic BUttressing model
Intercomparison Project (ABUMIP) of Sun et al. (2020) investigated possible rates
of AIS mass loss from grounding line retreat, including marine ice sheet instability
and marine ice cliff instability effects, and found multi-meter retreats over O(0.5) ka
in all sensitivity experiments. While basins within the EAIS may also be subject
to rapid responses to ocean and climate forcing they make up a smaller portion of
the ice-sheet mass and, as such, we prescribe a more moderate minimum bound for
dEA
change of 1 ka since the rate of EAIS overall mass loss is likely to be lower. There

is little agreement as to the timing of initial LIG WAIS and EAIS melt, as well as
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the duration and timing of ice-sheet growth, and so we allow a 5 ka window for the
initiation of LIG retreat, beginning at 129 ka, for both ice sheets, while also allowing
a wide time window for the duration of ice growth. After running the sea-level model
ensemble, our original sample of SLE contribution parameters, ranging from 0 - 5.5
m for V WA

melt and -5 to 5 m for V EA
change, were corrected to account for LIG topography

changes, shifting their ranges to -0.25 - 5m for V WA
melt and -1.2 - 4.5 m for V EA

change

(Section 5.4.1). After this correction, our volume ranges encompass the majority
of projected ranges of mass loss from dynamic ice-sheet modelling studies of 1 - 5
m for WAIS (DeConto and Pollard, 2016; Clark et al., 2020; Golledge et al., 2021;
Turney et al., 2020) and -1 to 5 m for EAIS (Harig and Simons, 2015; Fogwill et al.,
2014), providing a independent constraint on these likely ice-sheet contributions
during the LIG. Uplift from GIA-driven Antarctic topography deformation during
the LIG may act to reduce the volume of the surrounding ocean basin thus driving
additional GMSL rise, a process known as water expulsion, which may represent an
underestimation of up to 30% from our sea-level contribution values for a given AIS
scenario (Pan et al., 2021).

5.5.2 Regional Sensitivity

In our resulting ensemble of RSL, we have quantified the relative sensitivity of
Eurasian sea-level regions to changes in the LIG AIS when compared against the
contribution of uncertainty from the viscoelastic Earth model and Penultimate
Deglaciation of the Eurasian ice sheet. We found that, in most regions, AIS uncer-
tainty was dwarfed by the considerable contribution of regional GIA uncertainty and
that AIS influence was only pronounced in the regions in our study area far from
local ice-sheet changes. Amongst these regions, Wales had the largest sensitivity
to AIS changes, likely due to the relatively small load from the British-Irish ice
sheet reducing both the direct influence of ice-sheet volume uncertainty as well as
consequential influences of viscoelastic deformation. The French Atlantic, English
Channel, and English North Sea regions also exhibit proportionally high influence
from AIS and, as they are less proximal to centres of large Eurasian ice-sheet load,
thus lowering sensitivity to Eurasian ice-sheet volume. Our conclusions suggest that
the southwest subset of our Eurasian data regions (Figure 5.4) has the potential
to be more informative about AIS than other Eurasian regions when utilised in
model-data comparison studies. This is because RSL values in these regions have a
large relative sensitivity to, and a high magnitude contribution from, AIS melt. RSL
data from these sites are, therefore, better positioned to refine possible scenarios of
AIS melt contributions than data from regions with more significant influence from
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other sources of uncertainty or from those that experienced a lower RSL contribution
from Antarctica.

5.5.3 History Matching

In order to quantify the fit of our RSL ensemble against the northwest Eurasian
subset of the WALIS sea-level database, we calculated the implausibility of our
parameter space using a bespoke Bayesian history-matching framework that accounts
for uncertainty in observed and modelled RSL values, limiting data points, and model
structural error and bias. Our results show that no areas of our explored parameter
space have an implausibility value that falls outside of the 3-sigma uncertainty range
and, therefore, we cannot rule out any of our simulations as being implausible. As
such, we concluded that current uncertainties in temporal and RSL data values,
combined with the magnitude of modelled RSL uncertainty, cannot decisively identify
implausible modelled RSL scenarios and, by extension, AIS melt scenarios. Despite
this, we have been able to deduce information within the subset of our parameter
space with the lowest 10% implausibility and, within this subset, we observed a clear
preference for the choice of viscoelastic Earth model, Eurasian ice-sheet volume, and
the magnitude of AIS melt. In particular, low νUM values in the best-fitting subset,
contain virtually no model runs with νUM greater than 5× 1020 Pa s, suggesting a
lower viscosity Earth structure and, as a result, more pronounced (and more rapid)
deformation is better able to match observational data. Our results also indicate that
a thinner Eurasian lithosphere is more likely, preferring lower values of L (70 - 85
km, 66th percentile) in our full-regional history matching, combined with low νUM ,
although these preferences are not expressed by our southwest regional subset. The
post-LGM and Holocene British-Irish ice sheet focused GIA study of Bradley et al.
(2023) also showed a slight preference for higher νLM values of between 3× 1022 Pa s
and 5×1022 Pa s but, in contrast to our results, found a slightly better model-data fit
for runs with higher νUM values of 5×1020 Pa s as opposed to 3×1020 Pa s. However,
some of this difference in viscosity preference could be explained by the differences
in British-Irish ice-sheet volumes between our PGM simulations and the Bradley
LGM model. Our full-regional history matching also showed a pronounced preference
for higher volumes of the VBKS, suggesting that RSL data in the Barents-Kara Sea
region have undergone high levels of subsidence. In contrast, a preference for lower
VF suggests that our mean ice-sheet load in Fennoscandia may be driving subsidence
rates larger than indicated by observational constraints and, thus, our ice-sheet
model may be too thick in this region.

We did not find significant preferences for parameters controlling the timing or
duration of AIS mass changes and this is likely a result of the large temporal
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uncertainties present in the RSL data points. However, we found a clear preference
for high values of melt from both V WA

melt and V EA
change, especially from the subset

of data regions sensitive to AIS melt. However, it is not clear from this analysis
whether Eurasian sea-level data is sensitive to EAIS and WAIS sea-level contributions
seperately, or simply the total AIS contribution. In order to determine whether
distinct preferences for EAIS and WAIS contributions can be disentangled, we perform
a pairwise implausibility calculation to identify any differences in implausibility
values for equal total AIS melt contributions composed of different EAIS and WAIS
contributions (Figure 5.10). Each pixel within Figure 5.10 represents the average
implausibility for fixed values of both WAIS and EAIS sea-level contribution, indicated
by cell position, over a 1000-member random sample of all other parameters. We
used a 30-part, linear discretisation of EAIS and WAIS value ranges, resulting in a
30 by 30 pixel matrix, totalling 900 pixels and representing the evaluation of 9× 105

parameter combinations with each of our Gaussian process emulators. Our results do
not show a major distinction in preference between equal total AIS contributions with
differing EAIS and WAIS contributions, and thus we conclude that it is currently
not possible to distinguish the AIS source of ice-sheet melt with our current model
framework and available data.

Figure 5.10: Pattern of average implausibility for EAIS and WAIS melt across their
respective, discretised value ranges. Each pixel represents the average implausibility
given fixed values of EAIS and WAIS sea-level contributions over a 1000-member
random parameter sample of all other parameters. A darker pixel colour refers to a
lower average implausibility value. The simple diagonal gradient pattern indicates
that similar implausibility values are observed for similar total melt contributions,
regardless of whether they are sourced from the EAIS or WAIS.
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5.5.4 Model Bias

In history matching our ensemble, we accounted for the spatial pattern of the model
structural error and bias, allowing the extraction of useful information from RSL
records even in regions where there exists a consistent model-data mismatch. Our
methodology allows us to transparently present the regional shortcomings of our
model for interpretation and targeted future improvement. Prior to correcting
for this systematic model bias, we found that the current range of ice-sheet and
viscoelastic Earth model parameters were unable to match RSL values inferred by
some rate-corrected observational records in the WALIS database. We estimated
the model bias at each location by calculating the average discrepancy between
the overall best-fitting 10% of ensemble members (against all records) and each
sea-level record. In addition, we performed a 2D interpolation procedure in order to
estimate the spatial structure of the model bias and aid interpretation, thus revealing
a strong spatial structure to the model-data discrepancy. In particular, we found
that modelled RSL in the southern North Sea region is over-estimated; RSL at sites
beneath the former Eurasian ice sheet tended to be under-estimated; and records in
the North Atlantic, English Channel and Wales regions showed good fit against our
model. We found that the mean shift in parameter ranges controlling the Earth’s
viscoelastic structure was strongly controlled by the region against which they were
compared, revealing that no one Earth model parameter combination can best match
Eurasian LIG RSL data. Instead, our work shows the importance of a spatially
varying Earth structure and, in future work, we suggest that studies may need to
incorporate 3D Earth models into their analysis.

The discrepancy between data and our modelled North Sea RSL may reflect an
overestimation of ice-sheet thickness in this region as generated by our ensemble of
Eurasian Penultimate Deglaciation geometries calculated using a simple ice-sheet
model (Pollard et al., 2023; Gowan et al., 2016a). This portion of the Eurasian ice
sheet is known to be difficult to simulate during the Last Deglaciation, even when
applying more complex ice-sheet models and available greater data constraints, due
to the strong influence of dynamic ice-sheet processes that control the separation
of the British-Irish and Fennoscandian ice sheet sectors and the influence of the
deep Norwegian channel (Gandy et al., 2021; Clark et al., 2022; Patton et al., 2017;
Bradley et al., 2011). In addition to being influenced by variation in Earth’s viscosity
structure, model-data discrepancy may also be influenced by the assumption of a
single Eurasian PGM ice-sheet margin for all ensemble members. In Chapter 4, we
found some regional sensitivity to parameters controlling the asynchrony of ice-sheet
margin retreat but, since this sensitivity was relatively localised to some areas of the
Barents-Kara Sea, we removed parameters controlling this influence to reduce the
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size of our parameter space. As a result, reintroducing this parameterisation and
expanding the assessment of margin extent and timing uncertainty to other areas of
the ice-sheet margin may help to improve model-data fit in locations proximal to the
ice-sheet margin.

5.5.5 Assumptions and Future Work

The sea-level fingerprints of GrIS and AIS mass loss make some areas in northwest
Eurasia particularly sensitive to melt from AIS and relatively insensitive to GrIS
(Hay et al., 2015; Barnett et al., 2023). We have therefore made the simplifying
assumption that the Greenland contribution is negligible across the Eurasian sea-level
regions we assess (Figure 1.3) and attribute observed and modelled values of RSL
solely to AIS melt and GIA. LIG GrIS mass-loss estimates generally are thought to
be lower than those of AIS with most studies estimating a contribution of between
0.6 and 3.5 m SLE (Letréguilly et al., 1991; Stone et al., 2013; Otto-Bliesner et al.,
2006; Sommers et al., 2021) but higher contributions from GrIS of +5 m have also
been suggested (Cuffey and Marshall, 2000; Yau et al., 2016). Mean fingerprint
values of GrIS ice-sheet melt as calculated by Hay et al. (2014), range from between
0 - 0.5 in the Eurasian data regions that we have identified as sensitive to AIS melt.
Using these values, the most likely range of GrIS melt of 0.6 - 3.5 m SLE can be
translated into a theoretical contribution of 0 - 1.8 m to RSL in these regions while
high GrIS melt scenarios of +5 m SLE would contribute up to +2.5 m RSL. If the
thermal expansion contribution estimate of 0.4± 0.3 m from McKay et al. (2011)
and mountain glacial melt contribution estimate of 0.32± 0.08 m SLE from Marzeion
et al. (2020) are considered they may, combined, lower our AIS LIG contribution
estimate by 0.7± 0.4 m, but this correction value is small compared against RSL
data uncertainty.

In order to simplify the identification of Antarctic influence, our work also assumes
that all other terrestrial ice-sheet deglaciation (e.g. Laurentide) are complete prior to
the LIG and thus do not directly contribute to ocean water volume changes. However,
Zhou and McManus (2022) have suggested that the Laurentide ice sheet may have
persisted into the LIG, indicated by a Laurentide outburst flood event at 125 ka.
Based on this work, Creel et al. (2023) have proposed that the Laurentide may have
contributed to ongoing LIG melt. It is therefore plausible that a small proportion of
our attributed AIS contribution may, in fact, be due to the combined influence of
GrIS and other LIG ice-sheet melt sources, including from the Laurentide ice sheet,
and a more comprehensive assessment of these contributions should be explored in
future work.
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5.6 Conclusions

Significant uncertainties in both observational constraints and modelled simulations
make model-data comparison studies of LIG RSL a significant challenge, particularly
when focused on identifying AIS ice-sheet melt. To address this problem, we developed
a simple parameterisation of AIS LIG evolution that specifies the timing, duration,
and magnitude of WAIS and EAIS ice-sheet changes and used this to produce a 532-
member ensemble of Eurasian LIG RSL simulations that vary in viscoelastic Earth
structure, the Penultimate Deglaciation of the Eurasian ice sheet, and AIS evolution.
We utilise sensitivity analysis to quantify the contribution of AIS uncertainty to
the variance in 15 regions of northwest Eurasian and found that AIS sensitivity was
concentrated in the southwestern sector of these study areas, particularly in the
English Channel, English North Sea, French Atlantic, and Wales. We compared
our ensemble of RSL against data contained within the state-of-the-art WALIS
RSL database (Rovere et al., 2023b) by using a comprehensive history-matching
framework that accounts for structural errors in our numerical model, parameter
space uncertainty, and both age and RSL uncertainty in observational constraints. In
addition, we expanded this framework to incorporate information from limiting RSL
data points as well as those associated with relative age constraints. Our history-
matching procedure allowed us to determine the implausibility of our parameter
space and, after correcting for regional model bias, we found that all of our model
outputs were able to fit sea-level data within 3-sigma uncertainty.

Despite not being able to explicitly rule out portions of our parameter space, individ-
ual parameter combinations could still be compared by their relative implausibility
values. When compared against RSL data within regions sensitive to AIS melt,
the best-fitting 10% subset of our parameter space shows a distinct preference for
high values of WAIS and EAIS melt. However, our pairwise implausibility analysis
shows no meaningful change in preference between equivalent melt contributions from
the WAIS or the EAIS, revealing that these contributions cannot be independently
distinguished within our model-data comparison. In addition, our refined viscoelastic
earth model parameter distributions showed a strong preference for low upper mantle
viscosity values as well as moderate preferences for thin lithospheric thickness values
and higher values of lower mantle viscosity. However, we find evidence for differences
in regional viscoelastic parameter preferences, indicating a need to account for a
spatially varying Earth structure across the Eurasian region. To conclude, our work
suggests that, of all northwest Eurasian regions that we have considered, RSL data
within the English Channel, Wales, and French Atlantic regions are most sensitive
to AIS melt and that a high total AIS melt contribution of 3.2 - 9.3 m (likely, 66th
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percentile) is best able to explain this RSL data. However, a greater quantity of high
quality, low uncertainty RSL data points in regions sensitive to the AIS sea-level
fingerprint, combined with more detailed assessments of temporal constraints, are
needed to be able to rule out models of RSL and make decisive conclusions about
the most likely patterns of LIG AIS evolution.

133





Chapter 6

Discussion

6.1 Review of Aims and Objectives

This thesis aimed to uncover information about the AIS during the LIG from records
of RSL change in northwest Eurasia. Chapter 1 provided an overview of the current
state of the literature and subdivided the overarching aim into three Research
Questions (RQs). After outlining key tools and techniques in Chapter 2, subsequent
chapters presented work devised to address these research questions by fulfilling the
five outlined Objectives (OBJs). With the use of numerical ice-sheet and sea-level
models, sensitivity and uncertainty analysis, and data-model comparison techniques,
I have been able to address the overarching aim of this thesis. This section discusses
my results, as presented in the previous chapters, and how they address the RQs.

Table 6.1: Summary of research questions and the relevant thesis chapters in which
they are addressed.

Objective Chapter(s)

RQ1 Can an uncertainty framework, utilising a simple ice-
sheet model, be used to explore the range of uncer-
tainty in ice-sheet geometry during the Penultimate
Deglaciation?

3, 4

RQ2 How much does uncertainty in the ice-sheet and Earth
models affect our ability to understand RSL during
the Last Interglacial?

4

RQ3 Can a regional Eurasian relative sea-level dataset be
used to identify the fingerprint of Antarctic ice-sheet
melt during the Last Interglacial?

3, 4, 5
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6.2 Answering the Research Questions

6.2.1 RQ1: Can an uncertainty framework, utilising a simple

ice-sheet model, be used to explore the range of

uncertainty in ice-sheet geometry during the

Penultimate Deglaciation?

Before northwest Eurasian LIG RSL records could be used for the detection of
Antarctic LIG sea-level contributions, it was necessary to quantify the spatiotemporal
pattern of LIG GIA in Eurasia. Ongoing LIG GIA was primarily driven by ice-sheet
changes from the Penultimate Deglaciation (Dendy et al., 2017) and GIA in the
northwest Eurasian region likely dominated by the influence of the Eurasian ice-sheet
during this time, thus constraining this ice sheet’s thickness during the deglaciation
required particular attention. Previous studies of Eurasian ice thickness during
the Penultimate Glacial Period had focused on reconstructing the PGM only and
the resulting estimates of total ice-sheet volume varied greatly depending on the
modelling approach employed, such as 33 m SLE from GIA inversion of crustal
rebound data (Lambeck et al., 2006), 52 m SLE from forward-dynamic-modelling
based on δ18O (de Boer et al., 2013), or 70 m from a dynamic ice-sheet model
driven by a single climate forcing (Colleoni et al., 2016). Previous work led to three
problems: (i) wide-ranging estimates of Eurasian ice-sheet volume, (ii) unquantified
uncertainty in model outputs, (iii) focus on the PGM without modelling efforts
extending to the Penultimate Deglaciation. The importance of the Eurasian ice sheet
in driving regional GIA, combined with the significant disagreement in the present
literature, led me to conclude that the propagation of ice-sheet uncertainty through
to simulations of LIG RSL needed to be an essential component of my research.

Chapter 3 presented a new large-ensemble, uncertainty-focused experimental frame-
work that could be used to assess uncertainty in ice-sheet geometries from time periods
with few direct geomorphological constraints, such as the Penultimate Deglaciation.
This framework was centred around the use of a simple ice-sheet model developed by
Gowan et al. (2016a), known as ICESHEET, which was chosen due to its rapid exe-
cution time and small number of inputs: basal shear stress, topographic deformation,
and margin extent. Chapter 3 described the parameterisation used for these inputs
and explored uncertainties in their values at the PGM and Chapter 4 expanded
this framework to include uncertainties in the spatial-temporal deglaciation pattern
of the ice-sheet complex. While the number of model inputs was small, exploring
uncertainty in the parameterisation of each input was a complex task that required
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the development of numerous tools to manipulate, modify, and expand on the small
amount of geological and geomorphological information available to constrain them.

Previous work had thought of the basal shear-stress map as a ‘flat‘, mosaic-like
input and could not easily explore spatial uncertainty in the layout of shear-stress
regions (Gowan et al., 2016b; Reeh, 1982; Gowan et al., 2021; Fisher et al., 1985).
My work utilised the Eurasian shear-stress map originally developed by Jeremey
Ely for modelling the Last Deglaciation, used in the work by Gandy et al. (2018)
and Clark et al. (2022), which was first simplified and extended for application to
the Penultimate Glacial Period. Incorporating uncertainties in the position of ice-
streaming regions (Margold et al., 2015) and basal conditions (Waller, 2001) required
this map to be re-imagined as a database-style data structure, allowing input to be
‘built‘ from successive layers thus introducing a spatially variable structure. This,
in turn, necessitated the development of a Python-based module named ShearPy
(Section 2.0.2.1) that could interface with this structure, apply geospatial algorithms,
and overlay basal modifications to the shear-stress map. While my methodology
allowed for a high degree of flexibility in shear-stress configurations, little empirical
evidence was available to constrain parameter value ranges, save for those obtained
from sparse individual sediment records, resulting in large parameter ranges derived
from expert elicitation (Table 3.1).

The maximum extent of the Eurasian ice sheet is better constrained than the position
of its margins during the subsequent PGP deglaciation (Batchelor et al., 2019; Ehlers
and Gibbard, 2004; Ehlers et al., 2011; Toucanne et al., 2009), yet it was clear
that significant uncertainty remains on the exact position of this maximum margin
(Batchelor et al., 2019). A systematic assessment of margin positional uncertainty,
as utilised within Chapters 3, required me to create a novel margin interpolation
tool that could reliably linearly interpolate between two arbitrary closed polygons
via the calculation of a coordinate mapping. I developed this tool as a Python-based
module called ShaPy (Section 2.0.2.2) made publicly available for reuse. This same
tool was used to approximate the evolution of ice margins during the Penultimate
Deglaciation from an initial PGM position.

However, geomorphological evidence has suggested the Eurasian ice sheet may have
deglaciated in a multi-phase, asynchronous fashion, including the Drenthe (ca. 175-
160 ka) extending south of the LGM ice extent and the Warthe readvance (ca. 150-140
ka) within the Drenthe glacial maximum (Toucanne et al., 2009; Ehlers et al., 2011;
Ehlers and Gibbard, 2004). Therefore some ice-sheet sectors may have reached their
maximum position at the same time as others retreated (Patton et al., 2017). To
incorporate deglaciation asynchrony, I expanded my interpolation tool to allow for
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the rate of interpolation to vary around the shape, thus enabling parameterisation of
the primary direction and magnitude of this asynchronous behaviour (Figure 2.3).
Chapter 3 made the simplifying assumption that each ice-sheet margin extent tested,
based on uncertainty in the MIS 6 ice-sheet margin reconstruction by Batchelor
et al. (2019), represented a synchronous PGM position when it may, in fact, have
been asynchronous. Yet, since our results show that incorporating margin position
uncertainty did not drastically alter the modelled regional ice-sheet volume, we infer
that the uncertainty introduced by the synchronicity of the PGM maximum extent
is unlikely to be significant in the simulation of RSL for the LIG. On the other
hand, Chapter 4 accounts for deglaciation asynchrony but, based on the negligible
impact observed in Chapter 3, assumes an invariant PGM position given by the MIS
6 best-estimate of Batchelor et al. (2019). An additional caveat of the treatment of
margin positions is that, since ICESHEET does not evolve dynamically, it is not
possible to determine the physical validity of any given margin position if ice-sheet
dynamics are considered.

Chapter 3 performed a history-matching procedure to glean insights from published
reconstructions of the Last Deglaciation in order to overcome some of the physical
limitations of a simple ice-sheet modelling approach, the wide range of possible ice-
sheet geometries resulting from large parameter ranges, and the lack of observational
constraints. The ice-sheet reconstructions of Tarasov et al. (2012) and Peltier et al.
(2015) have been calibrated against observations of VLM and RSL and, therefore, by
using history matching to rule out areas of the ICESHEET parameter space I have,
in effect, imposed this constraining information onto the range of plausible simple
ice-sheet geometries. Unfortunately, ice-sheet reconstructions often either provide
no assessment of their own model uncertainty (Peltier et al., 2015) or do not make
these assessments readily available (Tarasov et al., 2012) meaning that I have been
unable to directly account for uncertainty in model-derived constraints, and instead
used the difference between models as an approximation of this uncertainty.

Dynamic ice-sheet models are capable of resolving the evolution of the flow and
geometry of an ice sheet in response to climate forcing, thus generating time-evolving
ice-sheet geometries (Briggs et al., 2013; Rutt et al., 2009). However, the extent,
thickness, and evolution of dynamic model simulations are highly dependent on the
climate forcing used as input. Compared to the Penultimate Deglaciation, the Last
Deglaciation has a relative abundance of climate and sea-level proxy data that can be
used to inform climate and ice-sheet simulations. Despite this, dynamic simulations
of ice sheets during the Last Deglaciation are often highly biased by errors in climate
forcings (Gregoire et al., 2016). The work by Tarasov et al. (2012); Briggs et al.
(2014, 2013) has tried to overcome this problem by using a complex perturbed physics
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Figure 6.1: Distribution of ice-sheet volumes generated by ICESHEET, shown by
region, for margins between the PGM Batchelor et al. (2019) and LGM Hughes
et al. (2016) configurations. The mean volume is shown by the dotted line. Figure
reproduced from Chapter 4.

ensemble experimental design in which the climate forcing is very liberally varied to
force a dynamical ice sheet model to fit a large dataset of reconstructed ice sheet
margins, ice thickness, near field RSL data and GPS data. Such an approach cannot
be applied to the Penultimate deglaciation as there is not sufficient information on
the evolution of ice sheet extent and sea level during the penultimate deglaciation.
Stone et al. (2013) has used a large ensemble of thermodynamic ice-sheet model
simulations to quantify uncertainty in the GrIS during the LIG. While LIG climate
remains difficult to constrain (Capron et al., 2019), this work was possible due
to assumptions of a relatively stable LIG climate with the majority of variability
assumed to be as a result of interactions with GrIS geometry changes, approximated
with an interpolation regime using three GCM climate outputs. In contrast to these
studies, major uncertainties on Penultimate deglacial climate evolution, particularly
the timing magnitude and evolution of greenhouse gas concentrations, make exploring
uncertainty in climate inputs for use with dynamic ice-sheet models intractable. The
lack of observational constraints, poorly resolved climate, the high computational
expense of exploring climate uncertainty, and the over-complexity of dynamic ice-
sheet models in the face of a highly unresolved Penultimate Deglaciation make the
use of a simple ice-sheet model the most appropriate choice for this work.

In light of challenges that remain in constraining LIG climate, our approach is
able to make transparent estimates about the range of plausible Eurasian ice-sheet
geometries during the Penultimate Deglaciation for the purpose of driving a GIA
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model. However, the lack of dynamics in our simulations has a number of limitations.
Firstly, I assume that ice-sheet dynamics do not play an important role in determining
large-scale volume distributions of ice sheets and that important dynamic-driven
impacts can be approximately represented with modifications to the basal regime.
However, the presence of systematic bias in my RSL ensemble in the North Sea
region (Figure 5.7), an area known to be heavily influenced by dynamic ice-sheet
processes (Gandy et al., 2021), suggests that the lack of resolved dynamics may
impact the ability of my model to represent ice-sheet geometry and resulting RSL
in some areas. Secondly, the static nature of ICESHEET means that uncertainties
exist in the requirement to prescribe the temporal evolution of Eurasian Penultimate
Deglaciation ice-sheet margins a priori. In addition, since I have generated ice-
sheet margins using an interpolation regime, rather than as a result of ice-sheet
dynamics (Patton et al., 2017) or geomorphological reconstruction (Batchelor et al.,
2019; Hughes et al., 2016), any individual specific ice-sheet margin used may not be
physically plausible. Despite this, the use of a simple method to assess uncertainty
in margin evolution is warranted for the Penultimate Deglaciation as opposed to the
far-larger uncertainty in extent that would result from poorly constrained dynamic
ice-sheet reconstructions.

This framework has allowed the exploration of more possible scenarios than previous
work and, for the first time, quantified a probability density function for Eurasian
ice-sheet volume during the Penultimate Deglaciation (Figure 6.1), thus satisfying
OBJ1. While biases indicated by RSL data, discussed in the following section,
indicate that my simple approach is not able to match observational constraints in all
regions (such as the North Sea) it is unlikely that a more complex, dynamic modelling
approach, subject to far greater uncertainty, would improve on these issues and may,
in fact, make the problem more intractable (discussed in Section 6.3). Thus, in
answer to RQ1, I have shown that a simple ice-sheet model can, when applied within
a large-ensemble uncertainty framework, be utilised to effectively and efficiently
explore key uncertainties in Eurasian ice-sheet geometry both at the PGM (Chapter
3) and the Penultimate Deglaciation (Chapter 4), while incorporating geological
constraining information from the better resolved Last Deglaciation through the use
of a model-comparison history-matching procedure. However, I find that the lack of
ice-sheet dynamics within ICESHEET does impose limitations on the reliability of
simulation results in regions strongly influenced by ice-sheet dynamics and, therefore,
may mean it is of less value to apply such a methodology to time periods with
a better-constrained climate and ice-sheet history that could be used to drive 3D
thermo-dynamic ice-sheet models (Gandy et al., 2021; Patton et al., 2017).
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6.2.2 RQ2: How much does uncertainty in the ice-sheet and

Earth models affect our ability to understand relative

sea level during the Last Interglacial?

The pattern of northwest Eurasian LIG RSL is significantly influenced by the
contribution of GIA which, in turn, is affected by uncertain changes in ice-sheet
loads and the Earth’s structure (Dendy et al., 2017). Understanding the uncertainty
in RSL arising from model input variations was crucial before conclusions could
be drawn about how well my RSL simulations matched geological data. The work
within Chapters 3 and 4 developed the ensemble of Eurasian ice-sheet Penultimate
Deglaciation geometries that explored uncertainties in basal shear stress, topographic
deformation, and asynchrony of deglaciation. In Chapter 4, this ensemble was
incorporated into a suite of global ice-sheet histories spanning 420 ka to the present
day that varied in the magnitude of Eurasian and North American PGM volumes
as well as in the rate and timings of the subsequent deglaciation. By combining
these modelled ice-sheet histories with a set of viscoelastic Earth models, I presented
an ensemble of modelled RSL histories that explore a wide range of RSL scenarios
developed in order to quantify the magnitude of spatiotemporal LIG RSL uncertainty.
In addition, I used this ensemble to determine the primary sources of uncertainty
through the attribution of sensitivity contributions from each of the model parameters.

The results presented in this thesis showed that the combined, propagated uncertainty
in Earth model parameters, ice-sheet configurations, and timings of deglaciation
resulted in considerable levels of uncertainty in Eurasian LIG RSL, averaging O(10)

m in the North Sea region and up to 30 m in the Baltic Sea. Yet this pattern
was spatiotemporally variable, with the highest level of variance found in regions
directly under the former ice-sheet load such as the Barents-Kara and Baltic Sea
regions (Figure 4.7). The sensitivity analysis performed in Chapter 4 revealed that
the sources of uncertainty are also spatiotemporally variable, but that the Earth
model uncertainty was, averaged over all regions and times, by far the most dominant
contributor (Figure 4.8). These high magnitudes of RSL variance combined with the
results of my sensitivity decomposition reveal that uncertainty in the viscoelastic
Earth model and, in locations such as the Barents-Kara Sea, the Eurasian ice-sheet
load driven by the Penultimate Deglaciation are most likely to limit the ability of sea-
level modelling to constrain LIG scenarios of RSL as they drive the largest uncertainty
in RSL values. The work by Dendy et al. (2017) had previously demonstrated that
Eurasian ice-sheet geometry uncertainty is a major contributor to uncertainty in
records of RSL close to the former ice sheet and, while my work agrees with these
results, I find that the influence of ice-sheet geometry uncertainty is more spatially
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limited to locations directly underneath former ice-sheet loads when compared against
Earth model uncertainty, particularly upper mantle viscosity (Figure 4.9). These
differing conclusions can likely be explained by Dendy et al. (2017)’s focus on Earth
model uncertainty in the far-field locations of Bermuda and the Seychelles, combined
with their one-at-a-time experimental design making it difficult to quantify relative
parameter importance to near-field RSL. Therefore, in contrast to the Dutton et al.
(2015) suggestions that constraining near-field ice-sheet extent and climate are key,
my work suggests that constraining Earth model uncertainty is of greatest importance
for enabling the use of near-field RSL records in the reconstruction of LIG RSL
changes. However, since my study is focused on quantifying uncertainty in the
Eurasian ice sheet, these conclusions are likely limited to the northwest Eurasian
region.

Work within Chapter 5 demonstrated spatial variation in the calculated model
bias field, meaning there exist regional trends in the model’s ability to fit RSL
data. In addition, I found that, when compared against regional RSL data, the
best-fitting subset of my ensemble expressed spatially variable preferences for Earth
model parameters, particularly in the value of upper mantle viscosity (Figure 5.7).
Combined, these results suggest that the assumption of a 1D Earth structure beneath
Eurasia is limited in its ability to fit the RSL data and, as such, scenarios of Eurasian
LIG RSL, with lower discrepancies when compared with RSL data, may be obtained
with the use of a 3D Earth structure. A 3D Earth model would allow for spatial
variability in these parameters but at the expense of far greater computational
requirements and an expanded parameter space (Li et al., 2022; Bagge et al., 2021).

In answer to RQ2, my work suggests ice-sheet and Earth model uncertainty have a
considerable impact on our ability to understand LIG RSL, particularly at locations
under former ice-sheet loads, owing to the significant ice-sheet thickness uncertainty
outlined in Chapter 3. However, in completing OBJ2, Chapter 4 has shown that the
RSL uncertainty, when compared to regions such as the Barents-Kara Sea and Baltic
Sea, is lower in Eurasian regions peripheral to the former ice sheet, such as the English
Channel and French Atlantic. As a result of achieving OBJ2, I also demonstrated
that the influence of ice-sheet uncertainty is localised; indeed, uncertainty in the
Eurasian ice sheet evolution during the Penultimate Deglaciation contributed O(20)

m to the RSL variance in Baltic Sea and White Sea regions (Figure 4.8). Despite
this, the large variance in modelled LIG RSL values presented an opportunity to
identify the most important model parameters in controlling Eurasian RSL and set
the stage for refinement of these parameter ranges when subsequently compared
against observational constraints.
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Figure 6.2: Modelled RSL ensemble (A) mean and (B) standard deviation at 122 ka.
Decomposed standard deviation into first-order sensitivity contributions from param-
eters controlling (C) the viscoelastic Earth model, (D) volume of the Penultimate
Deglaciation Eurasian ice-sheet, and (E) timing of the Penultimate Deglaciation.
Figure modified from Chapter 5.
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6.2.3 RQ3: Can a regional Eurasian relative sea-level dataset

be used to identify the fingerprint of Antarctic

ice-sheet melt during the Last Interglacial?

RSL records from the LIG reflect the magnitude of global ice-sheet melt contributions,
modulated by each specific ice-sheet fingerprint at a particular data-site location
(Figure 1.3). Previous work has compared LIG RSL data, corrected for regional
GIA, to make inferences about LIG GMSL, such as work on Bahamian RSL data
by Dyer et al. (2021), but only a limited number of studies have utilised regional
RSL data to identify individual ice-sheet contributions (Barnett et al., 2023; Kopp
et al., 2009). The work by Barnett et al. (2023) used a set of 27 Eurasian sea-level
data points corrected for regional GIA, derived from a discrete set of scaled ice-
sheet geometries and Earth models; GrIS melt (estimated to contribute less than 1

m of local sea-level change); and simple assumptions about mountain glacier and
thermosteric contributions in order to infer AIS melt of 3.6 - 8.7 m (central 68%
probability) from the residual Eurasian LIG RSL signal. Previous to my study, work
was limited by using only a number of selective LIG sea-level data points, relying
on a GIA correction derived from a sparsely explored parameter space, and not
explicitly matching the resulting RSL signals to models of AIS melt. In Chapter
5, I aimed to improve on these previous methodologies in three key ways. Firstly,
I incorporating the state-of-the-art WALIS sea-level database (Cohen et al., 2022;
Dalton et al., 2022), 43 more data points than used by Barnett et al. (2023). Secondly,
I explicitly modelling the AIS and regional GIA contribution to Eurasian RSL records
by developing an ensemble of LIG AIS melt, the modelled Penultimate Deglaciation
Eurasian ice-sheet (Chapter 4), and Earth model configurations. Finally, I utilised a
history matching procedure to detect this contribution, accounting for model and
data uncertainty, thus maximising available empirical constraints on Eurasian RSL.
In doing so, Chapter 5 estimated a AIS LIG melt contribution of 3.2 - 9.3 m (likely,
66th percentile) from the Eurasian RSL data sensitive to AIS melt, a wider range
than estimated by Barnett et al. (2023) likely due to the larger, more representative
GIA uncertainty included in my study.

The first goal of Chapter 5 was to produce an ensemble of RSL values that incorpo-
rated parameters controlling the dominant sources of uncertainty in Eurasian GIA
as well as AIS melt. To achieve the latter, I produced a simple parameterisation of
EAIS and WAIS melt scenarios that, combined with the DeConto et al. (2021) AIS
model, could be used to produce ice-sheet histories matching our specifications. By
using the DeConto et al. (2021) future projection model, the RSL signal incorporates
rotational feedback from changes in the AIS centre of mass that would not have been
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possible by using a simpler uniform scaling, or ‘deflation‘, of a pre-industrial ice-sheet
configuration. However, while this approach, therefore, makes the assumption that
AIS LIG retreat is similar to that of the DeConto model, I find that Eurasian RSL
data is insensitive to the specific melt of the EAIS and WAIS ice sheets, meaning
that differences in geometries between the DeConto model and an alternative ice-
sheet reconstruction are unlikely to have affected my results. Sensitivity analysis
revealed that the English Channel, Wales, and Atlantic regions had higher relative
sensitivity to AIS melt than other Eurasian data regions (Figure 5.6). However,
the raised beach deposits that are the most commonly preserved LIG RSL data in
these regions (Bates et al., 2010; Coutard et al., 2006; Briant et al., 2019; Campbell
et al., 2012) can provide less vertical precision than sedimentary archives (Rovere
et al., 2016) preserved in the estuaries around the North Sea (Zagwijn, 1983). There
must, therefore, be a balance between geophysical modelling and the vertical RSL
constraints offered by the data when deciding on the most effective regions to target
for LIG RSL data acquisition.

Detection of AIS melt in northwest Eurasia relies on the quality and abundance of
available observational constraints. By utilising data from the WALIS database, I
was able to perform the history-matching procedure on far more data points than
previous studies, thus improving the spatial and temporal spread of constraints on
my RSL ensemble. Despite the large number of data points, the LIG sea-level data
is subject to high degrees of temporal uncertainty averaging ±7 ka (1σ) for absolute
dated sea-level data points documented in northwest Eurasia, meaning that the
average data point spans the full length of the LIG within 2σ uncertainty (Figure
6.3). The high temporal uncertainty in RSL data points likely limited the work in
Chapter 5 from being able to make deductions about the rate and timing of AIS
melt. By contrast, the relatively low average RSL data uncertainty of ±3 m (1σ)
likely resulted in greater sensitivity to the magnitude of AIS melt in the subsequent
history-matching procedure. Within my method, I make no attempt to alter the
weighting of individual constraints on the history-matching procedure beyond that
which is inferred directly from their reported RSL and age uncertainty. This approach
allows uncertainties to be honestly presented by enabling the transparent propagation
of uncertainties from data to model constraint. However, this relies on well-reported
uncertainties within the literature, which varies significantly given the geological
data collection period extends over several decades during which time techniques
and understanding have evolved. I find that 30% of Eurasian WALIS data points
have RSL uncertainties of less than 1 m, which may suggest a tendency to under-
report uncertainties (Shennan, 2015), resulting in potential biases within my history
matched LIG AIS melt estimates.
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Figure 6.3: Frequency of RSL data in the filtered WALIS database (Rovere et al.,
2023b) shown by age for (left) age uncertainty and (right) RSL uncertainty.

In order to utilise northwest Eurasian LIG data within the history-matching frame-
work, I expanded the mathematics used to describe the normalised distance between
model and observation to incorporate information from limiting data points and
relative ages (the latter not utilised in the Barnett et al. (2023) study). To achieve
this, Chapter 5 described the use of a normal cumulative density function, as opposed
to a normal distribution, as an alternative distribution representing RSL implau-
sibility for limiting data points, while the temporal implausibility for data points
associated with a relative age were represented with a uniform distribution over
their respective reported age ranges. This simple treatment of relative ages does
not account for tie-point uncertainty, which would allow for additional constraints
through the auto-correlation of relative data points tied to the same age constraint
(e.g. tephra chronohorizons) as well as to data points whose age constraint is similarly
auto-correlated.

Chapter 5 has achieved OBJ4 through the use of our simple parameterisation of
AIS melt and, by utilising the results of my sensitivity analysis, fulfilling OBJ5
by identifying the best fitting subset of AIS scenarios that fit Eurasian sea-level
data. In doing so, I have found that, in answer to RQ3, it is possible to identify the
fingerprint of LIG AIS melt within a history-matching framework from northwest
Eurasian RSL data but that this data is limited in its ability to inform understanding
of the rate and timing of this melt, as well as in differentiating between EAIS and
WAIS sources.
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6.3 Limitations and Future Work

As highlighted above, my work is limited by several assumptions I have been required
to make in order to navigate sparsely available temporal-spatial ice-sheet constraints,
computational feasibility, and large data uncertainties. Of particular relevance to the
limitations of my final modelled LIG RSL is the assumption of a 1D Earth structure.
While out of the scope of this study, I suggest that well-constrained 3D GIA modelling
over the northwest Eurasian region may lead to better model-data misfit in some
instances (Li et al., 2022). However, in other cases, 1D models have been shown to
provide a better-fit against uplift data than 3D models (Kierulf et al., 2014) and,
therefore, I caution against the use of 3D models without the computing resources
to adequately explore their much-expanded parameter space and pre-assessment of
1D model performance in the region of interest. At the time of writing this thesis,
work is ongoing to develop methods to decrease the compute time of such models
and, by extension, improve the feasibility of large ensemble 3D GIA experimental
designs, such as fast, machine-learning derived approximations to the influence of
3D GIA structure for modelled RSL values (Love et al., 2023).

Model-data comparison is an essential component of reliable modelling experiments in
order to validate a model’s ability to match observation constraints. History matching
was specifically chosen as the model-data comparison framework in this thesis so
that highly uncertain LIG RSL data could still be informative, weighted by said
uncertainty, and allowing for maximum data inclusivity. However, history matching
is therefore reliant on the accuracy of reported data uncertainty. Efforts such as the
WALIS sea-level database (Rovere et al., 2023b), and the HolSea databasing efforts
for the Holocene (Khan et al., 2019), have been developed to collate and standardise
the complex and expanding evidence of palaeo RSL data, but these efforts are often
reliant on the accuracy of uncertainties reported within the original literature. My
work is therefore subject to, and limited by, bias induced through data that may be
reported as more certain than is realistic when all the uncertainties are considered
(e.g. sediment compaction, palaeo tidal range, long-term tectonics). I, therefore,
advocate for the honest and transparent reporting of uncertainties in empirical data
studies rather than subjective filtering of data based on quality measures so that the
uncertainties themselves can inform data comparison. While the error bounds on the
vertical component of RSL data are typically O(1) m, my model-data comparison is
also limited by the high temporal uncertainties reported for the sea-level data points.
In this work, RSL values tied to relative age constraints (e.g., pollen biostratigraphy)
are assumed to be uniformly probable across the corresponding age range and this
approach could be improved in future work by assessing uncertainty in the age
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tie directly and, as a result, auto-correlating the age probabilities of data points
associated with the same age tie point. In doing so, the resulting reduced temporal
uncertainty could be used to better constrain the timing and rate of AIS melt.

In the identification of AIS melt, I have made the assumption that all interglacial ice-
sheet melt presented in Eurasia can be attributed to the AIS. While the contribution
of GrIS in regions of high AIS melt sensitivity was likely small, as discussed in
Chapter 5, the explicit calculation of this contribution with a bespoke Greenland
parameterisation was out of the scope of this thesis. To address this, and the surfacing
debate around potential ongoing interglacial contributions from North American and
Eurasian ice sheets (Creel et al., 2023), I recommend future work expand on our
experimental design to assess the impact of these ice sheets and thus improve the
robustness of the AIS contribution estimates.

This thesis required the development of methods and tools that are likely to have
applications to a variety of future work. My expanded history-matching framework is
able to account for limiting data points, relative age constraints and their uncertainties,
and systematic model bias, thus maximising available information regardless of sea-
level data uncertainty, time period of study, or systematic model regional misfit. I
recommend that future work incorporate this approach in RSL data comparison
studies, particularly for periods prior to the Last Glacial where empirical constraints
are limited. Future studies employing the ICESHEET model may wish to employ the
ShearPy shear-stress data infrastructure tool to manage and manipulate perturbations
to this input. My polygon interpolation tool, as detailed in Section 2.0.2.2, could be
applied to estimate the transition between margin positions of other ice sheets and
times with poorly constrained intermediary positions, including the ability to test
patterns of asynchronous deglaciation. This tool could also have applications to a
more general set of problems that require the use of polygon shape morphing.

In a wider context, my simulations of the Penultimate Deglaciation of the Eurasian
ice sheet may have implications for studies reconstructing LIG climate and ocean
circulation patterns, where the surface topography is a strong control on global
wind patterns and may modulate surface temperature and ocean circulation patterns
(Romé et al., 2022). Ice-sheet position and thickness can inform work understanding
the past flora, fauna, and human migration patterns and my deglaciation ensemble
may add additional constraints on the validity of such theories (Lister, 2004; Lauer
and Weiss, 2018). My constrained ensemble of past Eurasian GIA is likely to inform
the targeted development of Eurasian LIG RSL records. Finally, my deduction of
AIS ice-sheet melt contributions from model-data history matching demonstrates
the robustness of the fingerprinting framework (Hay et al., 2015) and LIG melt
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hypotheses that serve to underpin the usefulness of the LIG to inform models of
future sea-level rise. We have independently quantified AIS ice-sheet melt from a
database of RSL records that agree with current estimates of AIS melt, and highlight
the value of data records in constraining LIG ice-sheet changes.

6.4 Conclusions

In summary, this thesis has systematically and creatively explored the key, significant
sources of uncertainty controlling RSL in the Eurasian region. Uncertainty in
the spatiotemporal Eurasian ice-sheet history during the Penultimate Deglaciation
was quantified with the use of a simple ice-sheet model within a large-ensemble
framework combined with parameterisations of ice-sheet extent, basal shear stress,
and topographic deformation. My work has demonstrated the usefulness of simple
models to explore uncertainty where few empirical constraints are available and
how other sources of information, such as published reconstructions of ice histories
during the Last Deglaciation, can be used to inform and constrain uncertain model
inputs. Simulations of the Eurasian ice sheet suggest a maximum volume of 48± 8

m SLE, smaller than previous work, and I present a new model of the Penultimate
Deglaciation of the Eurasian ice sheet useful for driving models of GIA.

Sensitivity analysis performed with my ensemble of LIG RSL revealed that: (i)
the most important source of uncertainty is, typically, in the viscoelastic Earth
model, (ii) sensitivity to the volume of the Eurasian ice sheet is only dominant in
regions directly under the former ice-sheet load, (iii) variation in the timing and
nature of the deglaciation of the North American ice sheet had little overall effect.
Using information gained from this sensitivity analysis to reduce the dimensions of
our parameter space, I performed a new ensemble of simulations that included an
ensemble of melt scenarios of the LIG Antarctic ice sheet with a parameterisation
that tested the timing, duration and magnitude of East and West Antarctic melt. By
applying a bespoke history matching procedure against a state-of-the-art database
of RSL data, I found that Eurasian sea-level data in regions sensitive to Antarctic
melt suggested a contribution of 3.2 - 9.3 m (likely, 66th percentile) but that high
temporal uncertainty in RSL data limited our ability to constrain the timing or
duration of this contribution. In future work, I recommend tweaking the presented
methodology to reduce RSL bias by investigating variable Earth structure across
Eurasia as well as including scenarios that test interglacial melt from the Greenland
and, potentially, North American ice sheets.

149





Bibliography

Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for Modelling the
Northern Hemisphere Ice Sheets throughout the Ice Age Cycle, Clim. Past, p. 16,
2007.

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K.,
and Blatter, H.: Insolation-Driven 100,000-Year Glacial Cycles and Hysteresis of
Ice-Sheet Volume, Nature, 500, 190–193, doi:10.1038/nature12374, 2013.

Andrianakis, I., Vernon, I. R., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga,
R. N., Goldstein, M., and White, R. G.: Bayesian History Matching of Complex
Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV
in Uganda, PLOS Computational Biology, 11, e1003 968, doi:10.1371/journal.pcbi.
1003968, 2015.

Archer, R., Ely, J., Heaton, T., Butcher, F., Hughes, A., and Clark, C.: Assessing
Ice Sheet Models against the Landform Record: The Likelihood of Accordant
Lineations Analysis (LALA) Tool, Earth Surface Processes and Landforms, 48,
2754–2771, doi:10.1002/esp.5658, 2023.

Astfalck, L., Williamson, D., Gandy, N., Gregoire, L., and Ivanovic, R.: Coex-
changeable Process Modelling for Uncertainty Quantification in Joint Climate
Reconstruction, 2021.

Astfalck, L. C., Cripps, E. J., Gosling, J. P., and Milne, I. A.: Emulation of Vessel
Motion Simulators for Computationally Efficient Uncertainty Quantification, Ocean
Engineering, 172, 726–736, doi:10.1016/j.oceaneng.2018.11.059, 2019.

Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of a Dy-
namic Topography Signal in Last Interglacial Sea-Level Records, Science Advances,
3, e1700 457, doi:10.1126/sciadv.1700457, 2017.

151



BIBLIOGRAPHY

Austermann, J., Hoggard, M. J., Latychev, K., Richards, F. D., and Mitrovica, J. X.:
The Effect of Lateral Variations in Earth Structure on Last Interglacial Sea Level,
Geophysical Journal International, 227, 1938–1960, doi:10.1093/gji/ggab289, 2021.

Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: Glacial-
Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth
Structures, Geochemistry, Geophysics, Geosystems, 22, e2021GC009 853, doi:
10.1029/2021GC009853, 2021.

Barlow, N. L. M. and Rush, G.: Late Quaternary Relative Sea-Level Changes at
Mid-Latitudes, in: Encyclopedia of Quaternary Science, 3rd Edition, Elsevier,
2022.

Barlow, N. L. M., McClymont, E. L., Whitehouse, P. L., Stokes, C. R., Jamieson,
S. S. R., Woodroffe, S. A., Bentley, M. J., Callard, S. L., Cofaigh, C. Ó., Evans,
D. J. A., Horrocks, J. R., Lloyd, J. M., Long, A. J., Margold, M., Roberts,
D. H., and Sanchez-Montes, M. L.: Lack of Evidence for a Substantial Sea-Level
Fluctuation within the Last Interglacial, Nature Geoscience, 11, 627–634, doi:
10.1038/s41561-018-0195-4, 2018.

Barnett, R. L., Austermann, J., Dyer, B., Telfer, M. W., Barlow, N. L. M., Boulton,
S. J., Carr, A. S., and Creel, R. C.: Constraining the Contribution of the Antarctic
Ice Sheet to Last Interglacial Sea Level, Science Advances, 9, eadf0198, doi:
10.1126/sciadv.adf0198, 2023.

Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard,
P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The Configuration of Northern
Hemisphere Ice Sheets through the Quaternary, Nature Communications, 10, 3713,
doi:10.1038/s41467-019-11601-2, 2019.

Bates, M. R., Briant, R. M., Rhodes, E. J., Schwenninger, J.-L., and Whittaker, J. E.:
A New Chronological Framework for Middle and Upper Pleistocene Landscape
Evolution in the Sussex/Hampshire Coastal Corridor, UK, Proceedings of the
Geologists’ Association, 121, 369–392, doi:10.1016/j.pgeola.2010.02.004, 2010.

Bentley, M. J., Fogwill, C. J., Le Brocq, A. M., Hubbard, A. L., Sugden, D. E.,
Dunai, T. J., and Freeman, S. P.: Deglacial History of the West Antarctic Ice
Sheet in the Weddell Sea Embayment: Constraints on Past Ice Volume Change,
Geology, 38, 411–414, doi:10.1130/G30754.1, 2010.

Berger, A.: Milankovitch Theory and Climate, Reviews of Geophysics, 26, 624–657,
doi:10.1029/RG026i004p00624, 1988.

152



BIBLIOGRAPHY

Berger, A. and Loutre, M. F.: Insolation Values for the Climate of the Last 10 Million
Years, Quaternary Science Reviews, 10, 297–317, doi:10.1016/0277-3791(91)90033-
Q, 1991.

Bierman, P. R., Davis, P. T., Corbett, L. B., Lifton, N. A., and Finkel, R. C.:
Cold-Based Laurentide Ice Covered New England’s Highest Summits during the
Last Glacial Maximum, Geology, 43, 1059–1062, doi:10.1130/G37225.1, 2015.

Bower, R. G., Goldstein, M., and Vernon, I.: Galaxy Formation: A Bayesian
Uncertainty Analysis, Bayesian Analysis, 5, 619–669, doi:10.1214/10-BA524, 2010.

Bradley, S. L., Milne, G. A., Teferle, F. N., Bingley, R. M., and Orliac, E. J.:
Glacial Isostatic Adjustment of the British Isles: New Constraints from GPS
Measurements of Crustal Motion, Geophysical Journal International, 178, 14–22,
doi:10.1111/j.1365-246X.2008.04033.x, 2009.

Bradley, S. L., Milne, G. A., Shennan, I., and Edwards, R.: An Improved Glacial
Isostatic Adjustment Model for the British Isles: GLACIAL ISOSTATIC AD-
JUSTMENT MODEL FOR THE BRITISH ISLES, Journal of Quaternary Science,
26, 541–552, doi:10.1002/jqs.1481, 2011.

Bradley, S. L., Siddall, M., Milne, G. A., Masson-Delmotte, V., and Wolff, E.:
Combining Ice Core Records and Ice Sheet Models to Explore the Evolution of the
East Antarctic Ice Sheet during the Last Interglacial Period, Global and Planetary
Change, 100, 278–290, doi:10.1016/j.gloplacha.2012.11.002, 2013.

Bradley, S. L., Ely, J. C., Clark, C. D., Edwards, R. J., and Shennan, I.: Recon-
struction of the Palaeo-sea Level of Britain and Ireland Arising from Empirical
Constraints of Ice Extent: Implications for Regional Sea Level Forecasts and
North American Ice Sheet Volume, Journal of Quaternary Science, p. jqs.3523,
doi:10.1002/jqs.3523, 2023.

Brain, M. J.: Past, Present and Future Perspectives of Sediment Compaction as
a Driver of Relative Sea Level and Coastal Change, Current Climate Change
Reports, 2, 75–85, doi:10.1007/s40641-016-0038-6, 2016.

Briant, R. M., Bates, M. R., Boreham, S., Cameron, N. G., Coope, G. R., Field,
M. H., Hatch, B. M., Holmes, J. A., Keen, D. H., Kilfeather, A. A., Penkman, K.
E. H., Simons, R. M. J., Schwenninger, J.-L., Wenban-Smith, F. F., Whitehouse,
N. J., and Whittaker, J. E.: Early Ipswichian (Last Interglacial) Sea Level Rise in
the Channel Region: Stone Point Site of Special Scientific Interest, Hampshire,
England, Proceedings of the Geologists’ Association, 130, 1–26, doi:10.1016/j.
pgeola.2018.03.002, 2019.

153



BIBLIOGRAPHY

Briggs, R., Pollard, D., and Tarasov, L.: A Glacial Systems Model Configured for
Large Ensemble Analysis of Antarctic Deglaciation, The Cryosphere, 7, 1949–1970,
doi:10.5194/tc-7-1949-2013, 2013.

Briggs, R. D., Pollard, D., and Tarasov, L.: A Data-Constrained Large Ensemble
Analysis of Antarctic Evolution since the Eemian, Quaternary Science Reviews,
103, 91–115, doi:10.1016/j.quascirev.2014.09.003, 2014.

Campbell, S., Hunt, C. O., Scourse, J. D., Keen, D. H., and Stephens, N.: Quaternary
of South-West England, Springer Science & Business Media, 2012.

Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S., Otto-Bliesner,
B., Rasmussen, T. L., Sime, L. C., Waelbroeck, C., and Wolff, E. W.: Temporal
and Spatial Structure of Multi-Millennial Temperature Changes at High Latitudes
during the Last Interglacial, Quaternary Science Reviews, 103, 116–133, doi:
10.1016/j.quascirev.2014.08.018, 2014.

Capron, E., Rovere, A., Austermann, J., Axford, Y., Barlow, N. L. M., Carlson, A. E.,
de Vernal, A., Dutton, A., Kopp, R. E., McManus, J. F., Menviel, L., Otto-Bliesner,
B. L., Robinson, A., Shakun, J. D., Tzedakis, P. C., and Wolff, E. W.: Challenges
and Research Priorities to Understand Interactions between Climate, Ice Sheets
and Global Mean Sea Level during Past Interglacials, Quaternary Science Reviews,
219, 308–311, doi:10.1016/j.quascirev.2019.06.030, 2019.

Celsius, A.: Anmärkning Om Vatnets Förminskande Så i Östersiön Som Vesterhafvet,
Kongl., Swenska Wetenskaps Academiens Handlingar, pp. 33–50, 1743.

Clark, C. D., Ely, J. C., Hindmarsh, R. C. A., Bradley, S., Ignéczi, A., Fabel, D.,
Ó Cofaigh, C., Chiverrell, R. C., Scourse, J., Benetti, S., Bradwell, T., Evans,
D. J. A., Roberts, D. H., Burke, M., Callard, S. L., Medialdea, A., Saher, M.,
Small, D., Smedley, R. K., Gasson, E., Gregoire, L., Gandy, N., Hughes, A. L. C.,
Ballantyne, C., Bateman, M. D., Bigg, G. R., Doole, J., Dove, D., Duller, G.
A. T., Jenkins, G. T. H., Livingstone, S. L., McCarron, S., Moreton, S., Pollard,
D., Praeg, D., Sejrup, H. P., Van Landeghem, K. J. J., and Wilson, P.: Growth
and Retreat of the Last British–Irish Ice Sheet, 31 000 to 15 000 Years Ago: The
BRITICE-CHRONO Reconstruction, Boreas, 51, 699–758, doi:10.1111/bor.12594,
2022.

Clark, P. U. and Mix, A. C.: Ice Sheets and Sea Level of the Last Glacial Maximum,
Quaternary Science Reviews, p. 7, 2002.

154



BIBLIOGRAPHY

Clark, P. U., Mitrovica, J. X., Milne, G. A., and Tamisiea, M. E.: Sea-Level
Fingerprinting as a Direct Test for the Source of Global Meltwater Pulse IA,
Science, 295, 2438–2441, doi:10.1126/science.1068797, 2002.

Clark, P. U., He, F., Golledge, N. R., Mitrovica, J. X., Dutton, A., Hoffman, J. S.,
and Dendy, S.: Oceanic Forcing of Penultimate Deglacial and Last Interglacial
Sea-Level Rise, Nature, 577, 660–664, doi:10.1038/s41586-020-1931-7, 2020.

Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S., and Barlow, N. L. M.:
Last Interglacial Sea-Level Data Points from Northwest Europe, Earth System
Science Data, 14, 2895–2937, doi:10.5194/essd-14-2895-2022, 2022.

Colleoni, F.: On the Late Saalian Glaciation (160 - 140 Ka): A Climate Modeling
Study, Ph.D. thesis, Université Joseph-Fourier-Grenoble I; Stockholm University,
2009.

Colleoni, F., Wekerle, C., Näslund, J.-O., Brandefelt, J., and Masina, S.: Constraint
on the Penultimate Glacial Maximum Northern Hemisphere Ice Topography (≈140
Kyrs BP), Quaternary Science Reviews, 137, 97–112, doi:10.1016/j.quascirev.2016.
01.024, 2016.

Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R.,
Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D.,
Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino,
N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and
Yu, H.: Results of the Third Marine Ice Sheet Model Intercomparison Project
(MISMIP+), The Cryosphere, 14, 2283–2301, doi:10.5194/tc-14-2283-2020, 2020.

Coutard, S., Lautridou, J.-P., Rhodes, E., and Clet, M.: Tectonic, Eustatic and
Climatic Significance of Raised Beaches of Val de Saire, Cotentin, Normandy,
France, Quaternary Science Reviews, 25, 595–611, doi:10.1016/j.quascirev.2005.02.
003, 2006.

Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J. N., and Zwinger,
T.: Marine Ice-Cliff Instability Modeling Shows Mixed-Mode Ice-Cliff Failure
and Yields Calving Rate Parameterization, Nature Communications, 12, 2701,
doi:10.1038/s41467-021-23070-7, 2021.

Creel, R., Austermann, J., and Dyer, B.: Delayed Laurentide Ice Sheet Melt dur-
ing the Last Interglacial Causes Sea Level Oscillation Due to Glacial Isostatic
Adjustment, in: AGU23, AGU, 2023.

155



BIBLIOGRAPHY

Cuffey, K. M. and Marshall, S. J.: Substantial Contribution to Sea-Level Rise
during the Last Interglacial from the Greenland Ice Sheet, Nature, 404, 591–594,
doi:10.1038/35007053, 2000.

Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams, R. S.,
Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P. J., Barnett,
R. L., Batterson, M., Bernatchez, P., Borns, H. W., Breckenridge, A., Briner,
J. P., Brouard, E., Campbell, J. E., Carlson, A. E., Clague, J. J., Curry, B. B.,
Daigneault, R.-A., Dubé-Loubert, H., Easterbrook, D. J., Franzi, D. A., Friedrich,
H. G., Funder, S., Gauthier, M. S., Gowan, A. S., Harris, K. L., Hétu, B., Hooyer,
T. S., Jennings, C. E., Johnson, M. D., Kehew, A. E., Kelley, S. E., Kerr, D.,
King, E. L., Kjeldsen, K. K., Knaeble, A. R., Lajeunesse, P., Lakeman, T. R.,
Lamothe, M., Larson, P., Lavoie, M., Loope, H. M., Lowell, T. V., Lusardi,
B. A., Manz, L., McMartin, I., Nixon, F. C., Occhietti, S., Parkhill, M. A., Piper,
D. J., Pronk, A. G., Richard, P. J., Ridge, J. C., Ross, M., Roy, M., Seaman,
A., Shaw, J., Stea, R. R., Teller, J. T., Thompson, W. B., Thorleifson, L. H.,
Utting, D. J., Veillette, J. J., Ward, B. C., Weddle, T. K., and Wright, H. E.: An
Updated Radiocarbon-Based Ice Margin Chronology for the Last Deglaciation of
the North American Ice Sheet Complex, Quaternary Science Reviews, 234, 106 223,
doi:10.1016/j.quascirev.2020.106223, 2020.

Dalton, A. S., Gowan, E. J., Mangerud, J., Möller, P., Lunkka, J. P., and Astakhov,
V.: Last Interglacial Sea-Level Proxies in the Glaciated Northern Hemisphere,
Earth System Science Data, 14, 1447–1492, doi:10.5194/essd-14-1447-2022, 2022.

Daly, R. A.: Pleistocene Changes of Level, The American Journal of Science, 10,
1925.

de Boer, B., van de Wal, R. S. W., Lourens, L. J., Bintanja, R., and Reerink, T. J.:
A Continuous Simulation of Global Ice Volume over the Past 1 Million Years with
3-D Ice-Sheet Models, Climate Dynamics, 41, 1365–1384, doi:10.1007/s00382-012-
1562-2, 2013.

DeConto, R. M. and Pollard, D.: Contribution of Antarctica to Past and Future
Sea-Level Rise, Nature, 531, 591–597, doi:10.1038/nature17145, 2016.

DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez, N., Sadai,
S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li, D., and Dutton, A.:
The Paris Climate Agreement and Future Sea-Level Rise from Antarctica, Nature,
593, 83–89, doi:10.1038/s41586-021-03427-0, 2021.

Dendy, S., Austermann, J., Creveling, J., and Mitrovica, J.: Sensitivity of Last
Interglacial Sea-Level High Stands to Ice Sheet Configuration during Marine Isotope

156



BIBLIOGRAPHY

Stage 6, Quaternary Science Reviews, 171, 234–244, doi:10.1016/j.quascirev.2017.
06.013, 2017.

Denton, G. H. and Hughes, T. J.: Reconstructing the Antarctic Ice Sheet at the Last
Glacial Maximum, Quaternary Science Reviews, 21, 193–202, doi:10.1016/S0277-
3791(01)00090-7, 2002.

Düsterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V., Tarasov, L.,
Barlow, N. L. M., Bradwell, T., Clark, J., Dutton, A., Gehrels, W. R., Hibbert,
F. D., Hijma, M. P., Khan, N., Kopp, R. E., Sivan, D., and Törnqvist, T. E.: Palaeo-
Sea-Level and Palaeo-Ice-Sheet Databases: Problems, Strategies, and Perspectives,
Climate of the Past, 12, 911–921, doi:10.5194/cp-12-911-2016, 2016.

Dutton, A. and Lambeck, K.: Ice Volume and Sea Level During the Last Interglacial,
Science, 337, 216–219, doi:10.1126/science.1205749, 2012.

Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto,
R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-Level Rise Due to
Polar Ice-Sheet Mass Loss during Past Warm Periods, Science, 349, aaa4019,
doi:10.1126/science.aaa4019, 2015.

Dyer, B., Austermann, J., D’Andrea, W. J., Creel, R. C., Sandstrom, M. R.,
Cashman, M., Rovere, A., and Raymo, M. E.: Sea-Level Trends across The
Bahamas Constrain Peak Last Interglacial Ice Melt, Proceedings of the National
Academy of Sciences, 118, e2026839 118, doi:10.1073/pnas.2026839118, 2021.

Dziewonski, A. M. and Anderson, D. L.: Preliminary Reference Earth Model, Physics
of the Earth and Planetary Interiors, 25, 297–356, doi:10.1016/0031-9201(81)90046-
7, 1981.

Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.: Revisiting
Antarctic Ice Loss Due to Marine Ice-Cliff Instability, Nature, 566, 58–64, doi:
10.1038/s41586-019-0901-4, 2019.

Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H.,
Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M.,
Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne,
A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B., Asay-
Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers, C.,
Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C., Felikson, D.,
Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R.,
Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss, M., Huybrechts,

157



BIBLIOGRAPHY

P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le clec’h, S., Lee, V., Leguy,
G. R., Little, C. M., Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F.,
Morlighem, M., O’Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet,
A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer, C.,
Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L.,
Trusel, L. D., Van Breedam, J., van de Wal, R., van den Broeke, M., Winkelmann,
R., Zekollari, H., Zhao, C., Zhang, T., and Zwinger, T.: Projected Land Ice
Contributions to Twenty-First-Century Sea Level Rise, Nature, 593, 74–82, doi:
10.1038/s41586-021-03302-y, 2021.

Ehlers, J. and Gibbard, P. L.: Quaternary Glaciations - Extent and Chronology:
Part I: Europe, Elsevier, 2004.

Ehlers, J., Grube, A., Stephan, H.-J., and Wansa, S.: Chapter 13 - Pleistocene
Glaciations of North Germany—New Results, in: Developments in Quaternary
Sciences, edited by Ehlers, J., Gibbard, P. L., and Hughes, P. D., vol. 15 of
Quaternary Glaciations - Extent and Chronology , pp. 149–162, Elsevier, doi:
10.1016/B978-0-444-53447-7.00013-1, 2011.

Ekman, M.: The Changing Level of the Baltic Sea during 300 Years: A Clue
to Understanding the Earth, Åland Islands: Summer Institute for Historical
Geophysics, 2009.

Ely, J. C., Clark, C. D., Small, D., and Hindmarsh, R. C. A.: ATAT 1.1, the
Automated Timing Accordance Tool for Comparing Ice-Sheet Model Output
with Geochronological Data, Geoscientific Model Development, 12, 933–953, doi:
10.5194/gmd-12-933-2019, 2019.

Farrell, W. E. and Clark, J. A.: On Postglacial Sea Level, Geophysical Journal of the
Royal Astronomical Society, 46, 647–667, doi:10.1111/j.1365-246X.1976.tb01252.x,
1976.

Fisher, D. A., Reeh, N., and Langley, K.: Objective Reconstructions of the Late Wis-
consinan Laurentide Ice Sheet and the Significance of Deformable Beds, Géographie
physique et Quaternaire, 39, 229–238, doi:10.7202/032605ar, 1985.

Flament, N., Gurnis, M., and Müller, R. D.: A Review of Observations and Models
of Dynamic Topography, Lithosphere, 5, 189–210, doi:10.1130/L245.1, 2013.

Fogwill, C. J., Turney, C. S. M., Meissner, K. J., Golledge, N. R., Spence, P., Roberts,
J. L., England, M. H., Jones, R. T., and Carter, L.: Testing the Sensitivity of
the East Antarctic Ice Sheet to Southern Ocean Dynamics: Past Changes and
Future Implications: SENSITIVITY OF THE EAST ANTARCTIC ICE SHEET

158



BIBLIOGRAPHY

TO SOUTHERN OCEAN DYNAMICS, Journal of Quaternary Science, 29, 91–98,
doi:10.1002/jqs.2683, 2014.

Fox-Kemper, B., Hewitt, H., Xiao, C., Aealgeirsdóttir, G., Drijfhout, S., Edwards, T.,
Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki,
S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, ABA., and Yu, Y.: Ocean,
Cryosphere and Sea Level Change., in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, SL., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, MI., Huang, M., Leitzell, K., Lonnoy, E., Matthews, JBR.,
Maycock, TK., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., pp. 1211–1362,
Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA,, doi:10.1017/9781009157896.011, 2021.

Gandy, N., Gregoire, L. J., Ely, J. C., Clark, C. D., Hodgson, D. M., Lee, V.,
Bradwell, T., and Ivanovic, R. F.: Marine Ice Sheet Instability and Ice Shelf
Buttressing of the Minch Ice Stream, Northwest Scotland, The Cryosphere, 12,
3635–3651, doi:10.5194/tc-12-3635-2018, 2018.

Gandy, N., Gregoire, L. J., Ely, J. C., Cornford, S. L., Clark, C. D., and Hodgson,
D. M.: Exploring the Ingredients Required to Successfully Model the Placement,
Generation, and Evolution of Ice Streams in the British-Irish Ice Sheet, Quaternary
Science Reviews, 223, 105 915, doi:10.1016/j.quascirev.2019.105915, 2019.

Gandy, N., Gregoire, L. J., Ely, J. C., Cornford, S. L., Clark, C. D., and Hodgson,
D. M.: Collapse of the Last Eurasian Ice Sheet in the North Sea Modulated by
Combined Processes of Ice Flow, Surface Melt, and Marine Ice Sheet Instabilities,
Journal of Geophysical Research: Earth Surface, 126, doi:10.1029/2020JF005755,
2021.

Gandy, N., Astfalck, L. C., Gregoire, L. J., Ivanovic, R. F., Patterson, V. L., Sherriff-
Tadano, S., Smith, R. S., Williamson, D., and Rigby, R.: De-Tuning Albedo
Parameters in a Coupled Climate Ice Sheet Model to Simulate the North American
Ice Sheet at the Last Glacial Maximum, Journal of Geophysical Research: Earth
Surface, 128, e2023JF007 250, doi:10.1029/2023JF007250, 2023.

Gilford, D. M., Ashe, E. L., DeConto, R. M., Kopp, R. E., Pollard, D., and Rovere,
A.: Could the Last Interglacial Constrain Projections of Future Antarctic Ice Mass
Loss and Sea-Level Rise?, Journal of Geophysical Research: Earth Surface, 125,
doi:10.1029/2019JF005418, 2020.

159



BIBLIOGRAPHY

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H.,
Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander,
P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone,
J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve,
R., Humbert, A., Huybrechts, P., Le clec’h, S., Lee, V., Leguy, G., Little, C.,
Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-
J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and
van den Broeke, M.: The Future Sea-Level Contribution of the Greenland Ice
Sheet: A Multi-Model Ensemble Study of ISMIP6, The Cryosphere, 14, 3071–3096,
doi:10.5194/tc-14-3071-2020, 2020.

Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.: Dynamics
of the Last Glacial Maximum Antarctic Ice-Sheet and Its Response to Ocean
Forcing, Proceedings of the National Academy of Sciences, 109, 16 052–16 056,
doi:10.1073/pnas.1205385109, 2012.

Golledge, N. R., Clark, P. U., He, F., Dutton, A., Turney, C. S. M., Fogwill, C. J.,
Naish, T. R., Levy, R. H., McKay, R. M., Lowry, D. P., Bertler, N. a. N., Dunbar,
G. B., and Carlson, A. E.: Retreat of the Antarctic Ice Sheet During the Last
Interglaciation and Implications for Future Change, Geophysical Research Letters,
48, e2021GL094 513, doi:10.1029/2021GL094513, 2021.

Gomez, N., Mitrovica, J. X., Tamisiea, M. E., and Clark, P. U.: A New Projection
of Sea Level Change in Response to Collapse of Marine Sectors of the Antarctic
Ice Sheet, Geophysical Journal International, 180, 623–634, doi:10.1111/j.1365-
246X.2009.04419.x, 2010.

Gomez, N., Pollard, D., and Holland, D.: Sea-Level Feedback Lowers Projections
of Future Antarctic Ice-Sheet Mass Loss, Nature Communications, 6, 8798, doi:
10.1038/ncomms9798, 2015.

Gowan, E. J.: Model of the Western Laurentide Ice Sheet, North America, Ph.D.
thesis, The Australian National University, 2014.

Gowan, E. J., Tregoning, P., Purcell, A., Lea, J., Fransner, O. J., Noormets, R.,
and Dowdeswell, J. A.: ICESHEET 1.0: A Program to Produce Paleo-Ice Sheet
Reconstructions with Minimal Assumptions, Geoscientific Model Development, 9,
1673–1682, doi:10.5194/gmd-9-1673-2016, 2016a.

Gowan, E. J., Tregoning, P., Purcell, A., Montillet, J.-P., and McClusky, S.: A
Model of the Western Laurentide Ice Sheet, Using Observations of Glacial Isostatic
Adjustment, Quaternary Science Reviews, 139, 1–16, doi:10.1016/j.quascirev.2016.
03.003, 2016b.

160



BIBLIOGRAPHY

Gowan, E. J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A. L. C.,
Gyllencreutz, R., Mangerud, J., Svendsen, J.-I., and Lohmann, G.: A New Global
Ice Sheet Reconstruction for the Past 80 000 Years, Nature Communications, 12,
1199, doi:10.1038/s41467-021-21469-w, 2021.

Gregoire, L. J., Otto-Bliesner, B., Valdes, P. J., and Ivanovic, R.: Abrupt Bølling
Warming and Ice Saddle Collapse Contributions to the Meltwater Pulse 1a Rapid
Sea Level Rise: North American MWP1a Contribution, Geophysical Research
Letters, 43, 9130–9137, doi:10.1002/2016GL070356, 2016.

Gregory, J. M., White, N. J., Church, J. A., Bierkens, M. F. P., Box, J. E., van den
Broeke, M. R., Cogley, J. G., Fettweis, X., Hanna, E., Huybrechts, P., Konikow,
L. F., Leclercq, P. W., Marzeion, B., Oerlemans, J., Tamisiea, M. E., Wada, Y.,
Wake, L. M., and van de Wal, R. S. W.: Twentieth-Century Global-Mean Sea
Level Rise: Is the Whole Greater than the Sum of the Parts?, Journal of Climate,
26, 4476–4499, doi:10.1175/JCLI-D-12-00319.1, 2013.

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori,
I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer,
D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and Terminology for
Sea Level: Mean, Variability and Change, Both Local and Global, Surveys in
Geophysics, 40, 1251–1289, doi:10.1007/s10712-019-09525-z, 2019.

Gung, Y., Panning, M., and Romanowicz, B.: Global Anisotropy and the Thickness
of Continents, Nature, 422, 707–711, doi:10.1038/nature01559, 2003.

Harig, C. and Simons, F. J.: Accelerated West Antarctic Ice Mass Loss Continues to
Outpace East Antarctic Gains, Earth and Planetary Science Letters, 415, 134–141,
doi:10.1016/j.epsl.2015.01.029, 2015.

Hay, C., Mitrovica, J. X., Gomez, N., Creveling, J. R., Austermann, J., and E. Kopp,
R.: The Sea-Level Fingerprints of Ice-Sheet Collapse during Interglacial Periods,
Quaternary Science Reviews, 87, 60–69, doi:10.1016/j.quascirev.2013.12.022, 2014.

Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic Reanalysis of
Twentieth-Century Sea-Level Rise, Nature, 517, 481–484, doi:10.1038/nature14093,
2015.

Haywood, A. M., Valdes, P. J., Aze, T., Barlow, N., Burke, A., Dolan, A. M., von
der Heydt, A. S., Hill, D. J., Jamieson, S. S. R., Otto-Bliesner, B. L., Salzmann,
U., Saupe, E., and Voss, J.: What Can Palaeoclimate Modelling Do for You?,
Earth Systems and Environment, 3, 1–18, doi:10.1007/s41748-019-00093-1, 2019.

161



BIBLIOGRAPHY

Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High Accuracy
Mantle Convection Simulation through Modern Numerical Methods – II: Realistic
Models and Problems, Geophysical Journal International, 210, 833–851, doi:
10.1093/gji/ggx195, 2017.

Herold, N., Yin, Q. Z., Karami, M. P., and Berger, A.: Modelling the Climatic
Diversity of the Warm Interglacials, Quaternary Science Reviews, 56, 126–141,
doi:10.1016/j.quascirev.2012.08.020, 2012.

Hijma, M. P., Cohen, K. M., Roebroeks, W., Westerhoff, W. E., and Busschers,
F. S.: Pleistocene Rhine–Thames Landscapes: Geological Background for Hominin
Occupation of the Southern North Sea Region, Journal of Quaternary Science, 27,
17–39, doi:10.1002/jqs.1549, 2012.

Hindmarsh, R. C. A.: Consistent Generation of Ice-Streams via Thermo-Viscous
Instabilities Modulated by Membrane Stresses, Geophysical Research Letters, 36,
doi:10.1029/2008GL036877, 2009.

Horton, B. P., Kopp, R. E., Garner, A. J., Hay, C. C., Khan, N. S., Roy, K., and
Shaw, T. A.: Mapping Sea-Level Change in Time, Space, and Probability, Annual
Review of Environment and Resources, 43, 481–521, doi:10.1146/annurev-environ-
102017-025826, 2018.

Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen,
J. I.: The Last Eurasian Ice Sheets – a Chronological Database and Time-slice
Reconstruction, DATED-1, Boreas, 45, 1–45, doi:10.1111/bor.12142, 2016.

Hughes, P. D., Ehlers, J., and Gibbard, P. L.: Quaternary Glaciations - Extent and
Chronology, Part IV - a Closer Look: Introduction, in: Quaternary Glaciations -
Extent and Chronology, Part IV - A Closer Look, pp. 1–14, Elsevier BV, 2011.

Huybrechts, P.: Glaciological Modelling of the Late Cenozoic East Antarctic Ice
Sheet: Stability or Dynamism?, Geografiska Annaler: Series A, Physical Geography,
75, 221–238, doi:10.1080/04353676.1993.11880395, 1993.

Huybrechts, P. and de Wolde, J.: The Dynamic Response of the Greenland and
Antarctic Ice Sheets to Multiple-Century Climatic Warming, Journal of Climate,
12, 2169–2188, doi:10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2, 1999.

Huybrechts, P., Letreguilly, A., and Reeh, N.: The Greenland Ice Sheet and Green-
house Warming, Palaeogeography, Palaeoclimatology, Palaeoecology, 89, 399–412,
doi:10.1016/0031-0182(91)90174-P, 1991.

162



BIBLIOGRAPHY

IPCC: The Ocean and Cryosphere in a Changing Climate: Special Report of the Inter-
governmental Panel on Climate Change, Cambridge University Press, Cambridge,
doi:10.1017/9781009157964, 2022.

Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke,
A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient Climate Simulations
of the Deglaciation 21–9 Thousand Years before Present (Version 1) – PMIP4 Core
Experiment Design and Boundary Conditions, Geoscientific Model Development,
9, 2563–2587, doi:10.5194/gmd-9-2563-2016, 2016.

Jamieson, T. F.: On the History of the Last Geological Changes in Scotland, Quarterly
Journal of the Geological Society of London, 21, 161–204, doi:10.1144/GSL.JGS.
1865.021.01-02.24, 1865.

Joon, B., Laban, C., and Van Der Meer, J. J. M.: The Saalian Glaciation in the
Dutch Part of the North Sea, The Saalian glaciation in the dutch part of the North
sea, 69, 151–158, 1990.

Kaufmann, G., Wu, P., and Ivins, E. R.: Lateral Viscosity Variations beneath Antarc-
tica and Their Implications on Regional Rebound Motions and Seismotectonics,
Journal of Geodynamics, 39, 165–181, doi:10.1016/j.jog.2004.08.009, 2005.

Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., and
Rahmstorf, S.: Climate Related Sea-Level Variations over the Past Two Millennia,
Proceedings of the National Academy of Sciences, 108, 11 017–11 022, doi:10.1073/
pnas.1015619108, 2011.

Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On Post-Glacial Sea Level -
II. Numerical Formulation and Comparative Results on Spherically Symmetric
Models, Geophysical Journal International, 161, 679–706, doi:10.1111/j.1365-
246X.2005.02553.x, 2005.

Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E. L.,
Törnqvist, T. E., Dutton, A., Hijma, M. P., and Shennan, I.: Inception of a Global
Atlas of Sea Levels since the Last Glacial Maximum, Quaternary Science Reviews,
220, 359–371, doi:10.1016/j.quascirev.2019.07.016, 2019.

Kierulf, H. P., Steffen, H., Simpson, M. J. R., Lidberg, M., Wu, P., and Wang, H.:
A GPS Velocity Field for Fennoscandia and a Consistent Comparison to Glacial
Isostatic Adjustment Models, Journal of Geophysical Research: Solid Earth, 119,
6613–6629, doi:10.1002/2013JB010889, 2014.

Knight, P. G.: The Basal Ice Layer of Glaciers and Ice Sheets, Quaternary Science
Reviews, 16, 975–993, doi:10.1016/S0277-3791(97)00033-4, 1997.

163



BIBLIOGRAPHY

Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.:
Probabilistic Assessment of Sea Level during the Last Interglacial Stage, Nature,
462, 863–867, doi:10.1038/nature08686, 2009.

Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.:
A Probabilistic Assessment of Sea Level Variations within the Last Interglacial
Stage, Geophysical Journal International, 193, 711–716, doi:10.1093/gji/ggt029,
2013.

Kopp, R. E., Hay, C. C., Little, C. M., and Mitrovica, J. X.: Geographic Variability
of Sea-Level Change, Current Climate Change Reports, 1, 192–204, doi:10.1007/
s40641-015-0015-5, 2015.

Laban, C.: The Pleistocene Glaciations in the Dutch Sector of the North Sea. A
Synthesis of Sedimentary and Seismic Data, Ph.D. thesis, University of Amsterdam,
1995.

Lamb, R. M., Harding, R., Huuse, M., Stewart, M., and Brocklehurst, S. H.: The
Early Quaternary North Sea Basin, Journal of the Geological Society, 175, 275–290,
doi:10.1144/jgs2017-057, 2018.

Lambeck, K., Purcell, A., Funder, S., KJaeR, K. H., Larsen, E., and Moller,
P.: Constraints on the Late Saalian to Early Middle Weichselian Ice Sheet of
Eurasia from Field Data and Rebound Modelling, Boreas, 35, 539–575, doi:
10.1080/03009480600781875, 2006.

Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea Level
and Global Ice Volumes from the Last Glacial Maximum to the Holocene,
Proceedings of the National Academy of Sciences, 111, 15 296–15 303, doi:
10.1073/pnas.1411762111, 2014.

Lambeck, K., Purcell, A., and Zhao, S.: The North American Late Wisconsin Ice
Sheet and Mantle Viscosity from Glacial Rebound Analyses, Quaternary Science
Reviews, 158, 172–210, doi:10.1016/j.quascirev.2016.11.033, 2017.

Lang, J., Lauer, T., and Winsemann, J.: New Age Constraints for the Saalian
Glaciation in Northern Central Europe: Implications for the Extent of Ice Sheets
and Related Proglacial Lake Systems, Quaternary Science Reviews, 180, 240–259,
doi:10.1016/j.quascirev.2017.11.029, 2018.

Lauer, T. and Weiss, M.: Timing of the Saalian- and Elsterian Glacial Cycles and
the Implications for Middle – Pleistocene Hominin Presence in Central Europe,
Scientific Reports, 8, 5111, doi:10.1038/s41598-018-23541-w, 2018.

164



BIBLIOGRAPHY

Letréguilly, A., Reeh, N., and Huybrechts, P.: The Greenland Ice Sheet through the
Last Glacial-Interglacial Cycle, Palaeogeography, Palaeoclimatology, Palaeoecology,
90, 385–394, doi:10.1016/S0031-0182(12)80037-X, 1991.

Li, T., Khan, N. S., Baranskaya, A. V., Shaw, T. A., Peltier, W. R., Stuhne, G. R.,
Wu, P., and Horton, B. P.: Influence of 3D Earth Structure on Glacial Isostatic
Adjustment in the Russian Arctic, Journal of Geophysical Research: Solid Earth,
127, e2021JB023 631, doi:10.1029/2021JB023631, 2022.

Li, Y., Napieralski, J., and Harbor, J.: A Revised Automated Proximity and
Conformity Analysis Method to Compare Predicted and Observed Spatial Bound-
aries of Geologic Phenomena, Computers & Geosciences, 34, 1806–1814, doi:
10.1016/j.cageo.2008.01.003, 2008.

Lin, Y., Hibbert, F. D., Whitehouse, P. L., Woodroffe, S. A., Purcell, A., Shennan,
I., and Bradley, S. L.: A Reconciled Solution of Meltwater Pulse 1A Sources Using
Sea-Level Fingerprinting, Nature Communications, 12, 2015, doi:10.1038/s41467-
021-21990-y, 2021.

Lister, A. M.: The Impact of Quaternary Ice Ages on Mammalian Evolution, Philo-
sophical Transactions: Biological Sciences, 359, 221–241, 2004.

Long, A. J., Barlow, N. L. M., Busschers, F. S., Cohen, K. M., Gehrels, W. R., and
Wake, L. M.: Near-Field Sea-Level Variability in Northwest Europe and Ice Sheet
Stability during the Last Interglacial, Quaternary Science Reviews, 126, 26–40,
doi:10.1016/j.quascirev.2015.08.021, 2015.

Love, A. E. H.: The Yielding of the Earth to Disturbing Forces, Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, 82, 73–88, doi:10.1098/rspa.1909.0008, 1909.

Love, R., Milne, G. A., Ajourlou, P., Parang, S., Tarasov, L., and Latychev, K.: A
Fast Surrogate Model for 3D-Earth Glacial Isostatic Adjustment Using Tensorflow
(v2.8.10) Artificial Neural Networks, EGUsphere, pp. 1–25, doi:10.5194/egusphere-
2023-2491, 2023.

Lowry, D. P., Krapp, M., Golledge, N. R., and Alevropoulos-Borrill, A.: The Influence
of Emissions Scenarios on Future Antarctic Ice Loss Is Unlikely to Emerge This
Century, Communications Earth & Environment, 2, 1–14, doi:10.1038/s43247-021-
00289-2, 2021.

Lunt, D. J., Abe-Ouchi, A., Bakker, P., Berger, A., Braconnot, P., Charbit, S., Fischer,
N., Herold, N., Jungclaus, J. H., Khon, V. C., Krebs-Kanzow, U., Langebroek,

165



BIBLIOGRAPHY

P. M., Lohmann, G., Nisancioglu, K. H., Otto-Bliesner, B. L., Park, W., Pfeiffer,
M., Phipps, S. J., Prange, M., Rachmayani, R., Renssen, H., Rosenbloom, N.,
Schneider, B., Stone, E. J., Takahashi, K., Wei, W., Yin, Q., and Zhang, Z. S.: A
Multi-Model Assessment of Last Interglacial Temperatures, Climate of the Past, 9,
699–717, doi:10.5194/cp-9-699-2013, 2013.

Lyell, C.: I. The Bakerian Lecture. —On the Proofs of a Gradual Rising of the
Land Certain Parts of Sweden, Philosophical Transactions of the Royal Society of
London, 125, 1–38, doi:10.1098/rstl.1835.0002, 1835.

Margold, M., Stokes, C. R., and Clark, C. D.: Ice Streams in the Laurentide Ice Sheet:
Identification, Characteristics and Comparison to Modern Ice Sheets, Earth-Science
Reviews, 143, 117–146, doi:10.1016/j.earscirev.2015.01.011, 2015.

Marriner, N., Flaux, C., Morhange, C., and Kaniewski, D.: Nile Delta’s Sinking Past:
Quantifiable Links with Holocene Compaction and Climate-Driven Changes in
Sediment Supply?, Geology, 40, 1083–1086, doi:10.1130/G33209.1, 2012.

Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss,
M., Immerzeel, W. W., Kraaijenbrink, P., Malles, J.-H., Maussion, F., Radić,
V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R., and Zekollari, H.:
Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass
Change, Earth’s Future, 8, e2019EF001 470, doi:10.1029/2019EF001470, 2020.

Mckay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output From a Computer
Code, Technometrics, 42, 55–61, doi:10.1080/00401706.2000.10485979, 2000.

McKay, N. P., Overpeck, J. T., and Otto-Bliesner, B. L.: The Role of Ocean
Thermal Expansion in Last Interglacial Sea Level Rise: THERMAL EXPANSION
IN LIG SEA LEVEL RISE, Geophysical Research Letters, 38, n/a–n/a, doi:
10.1029/2011GL048280, 2011.

Meese, D. A., Gow, A. J., Alley, R. B., Zielinski, G. A., Grootes, P. M., Ram,
M., Taylor, K. C., Mayewski, P. A., and Bolzan, J. F.: The Greenland Ice Sheet
Project 2 Depth-Age Scale: Methods and Results, Journal of Geophysical Research:
Oceans, 102, 26 411–26 423, doi:10.1029/97JC00269, 1997.

Menviel, L., Capron, E., Govin, A., Dutton, A., Tarasov, L., Abe-Ouchi, A., Drys-
dale, R. N., Gibbard, P. L., Gregoire, L., He, F., Ivanovic, R. F., Kageyama,
M., Kawamura, K., Landais, A., Otto-Bliesner, B. L., Oyabu, I., Tzedakis, P. C.,
Wolff, E., and Zhang, X.: The Penultimate Deglaciation: Protocol for Paleoclimate

166



BIBLIOGRAPHY

Modelling Intercomparison Project (PMIP) Phase 4 Transient Numerical Simula-
tions between 140 and 127 Ka, Version 1.0, Geoscientific Model Development, 12,
3649–3685, doi:10.5194/gmd-12-3649-2019, 2019.

Milne, G., Shennan, I., Youngs, B., Waugh, A., Teferle, F., Bingley, R., Bassett, S.,
Cuthbert-Brown, C., and Bradley, S.: Modelling the Glacial Isostatic Adjustment
of the UK Region, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 364, 931–948, doi:10.1098/rsta.2006.1747, 2006.

Milne, G. A. and Mitrovica, J. X.: Postglacial Sea-Level Change on a Rotating
Earth, Geophysical Journal International, 133, 1–19, doi:10.1046/j.1365-246X.1998.
1331455.x, 1998.

Milne, G. A. and Mitrovica, J. X.: Searching for Eustasy in Deglacial Sea-Level
Histories, Quaternary Science Reviews, 27, 2292–2302, doi:10.1016/j.quascirev.
2008.08.018, 2008.

Milne, G. A., Gehrels, W. R., Hughes, C. W., and Tamisiea, M. E.: Identifying the
Causes of Sea-Level Change, Nature Geoscience, 2, 471–478, doi:10.1038/ngeo544,
2009.

Mitrovica, J. X. and Milne, G. A.: On Post-Glacial Sea Level: I. General Theory,
Geophysical Journal International, 154, 253–267, doi:10.1046/j.1365-246X.2003.
01942.x, 2003.

Mitrovica, J. X. and Peltier, W.: A Comparison of Methods for the Inversion of
Viscoelastic Relaxation Spectra, Geophysical Journal International, 108, 410–414,
doi:10.1111/j.1365-246X.1992.tb04623.x, 1992.

Mitrovica, J. X. and Peltier, W. R.: On Postglacial Geoid Subsidence over the
Equatorial Oceans, Journal of Geophysical Research: Solid Earth, 96, 20 053–
20 071, doi:10.1029/91JB01284, 1991.

Mitrovica, J. X., Gomez, N., and Clark, P. U.: The Sea-Level Fingerprint of West
Antarctic Collapse, Science, 323, 753–753, doi:10.1126/science.1166510, 2009.

Muhs, D. R., Schumann, R. R., Groves, L. T., Simmons, K. R., and Florian, C. R.:
The Marine Terraces of Santa Cruz Island, California: Implications for Glacial
Isostatic Adjustment Models of Last-Interglacial Sea-Level History, Geomorphology,
389, 107 826, doi:10.1016/j.geomorph.2021.107826, 2021.

Murphy, J., Booth, B., Collins, M., Harris, G., Sexton, D., and Webb, M.: A Method-
ology for Probabilistic Predictions of Regional Climate Change from Perturbed

167



BIBLIOGRAPHY

Physics Ensembles, Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 365, 1993–2028, doi:10.1098/rsta.2007.2077,
2007.

Nansen, F.: The Strandflat and Isostasy, Videnskapsselskapets Skrifter. 1.,
Matematisk-Naturhistorisk Klasse, Jacob Dybwad, Kristiania, Norway, 1921.

NEEM community members: Eemian Interglacial Reconstructed from a Greenland
Folded Ice Core, Nature, 493, 489–494, doi:10.1038/nature11789, 2013.

Nye, J. F.: A Method of Calculating the Thicknesses of the Ice-Sheets, Nature, 169,
529–530, doi:10.1038/169529a0, 1952.

O’Leary, M. J., Hearty, P. J., Thompson, W. G., Raymo, M. E., Mitrovica, J. X., and
Webster, J. M.: Ice Sheet Collapse Following a Prolonged Period of Stable Sea Level
during the Last Interglacial, Nature Geoscience, 6, 796–800, doi:10.1038/ngeo1890,
2013.

Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A., and
CAPE Last Interglacial Project members: Simulating Arctic Climate Warmth
and Icefield Retreat in the Last Interglaciation, Science, 311, 1751–1753, doi:
10.1126/science.1120808, 2006.

Otto-Bliesner, B. L., Rosenbloom, N., Stone, E. J., McKay, N. P., Lunt, D. J., Brady,
E. C., and Overpeck, J. T.: How Warm Was the Last Interglacial? New Model–Data
Comparisons, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371, 20130 097, doi:10.1098/rsta.2013.0097,
2013.

Overland, J. E., Wang, M., Walsh, J. E., and Stroeve, J. C.: Future Arctic Climate
Changes: Adaptation and Mitigation Time Scales, Earth’s Future, 2, 68–74,
doi:10.1002/2013EF000162, 2014.

Pan, L., Powell, E. M., Latychev, K., Mitrovica, J. X., Creveling, J. R., Gomez, N.,
Hoggard, M. J., and Clark, P. U.: Rapid Postglacial Rebound Amplifies Global
Sea Level Rise Following West Antarctic Ice Sheet Collapse, Science Advances, 7,
eabf7787, doi:10.1126/sciadv.abf7787, 2021.

Pan, L., Milne, G. A., Latychev, K., Goldberg, S. L., Austermann, J., Hoggard, M. J.,
and Mitrovica, J. X.: The Influence of Lateral Earth Structure on Inferences of
Global Ice Volume during the Last Glacial Maximum, Quaternary Science Reviews,
290, 107 644, doi:10.1016/j.quascirev.2022.107644, 2022.

168



BIBLIOGRAPHY

Parker, W. S.: Ensemble Modeling, Uncertainty and Robust Predictions, WIREs
Climate Change, 4, 213–223, doi:10.1002/wcc.220, 2013.

Pasyanos, M. E.: Lithospheric Thickness Modeled from Long-Period Surface Wave
Dispersion, Tectonophysics, 481, 38–50, doi:10.1016/j.tecto.2009.02.023, 2010.

Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., and Stroeven, A. P.:
The Build-up, Configuration, and Dynamical Sensitivity of the Eurasian Ice-Sheet
Complex to Late Weichselian Climatic and Oceanic Forcing, Quaternary Science
Reviews, 153, 97–121, doi:10.1016/j.quascirev.2016.10.009, 2016.

Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven,
A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.: Deglaciation
of the Eurasian Ice Sheet Complex, Quaternary Science Reviews, 169, 148–172,
doi:10.1016/j.quascirev.2017.05.019, 2017.

Pattyn, F. and Morlighem, M.: The Uncertain Future of the Antarctic Ice Sheet,
Science, 367, 1331–1335, doi:10.1126/science.aaz5487, 2020.

Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson, M. E.,
Kershaw, S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., and Delcaillau,
B.: Relative Sea-Level Fall since the Last Interglacial Stage: Are Coasts Uplifting
Worldwide?, Earth-Science Reviews, 108, 1–15, doi:10.1016/j.earscirev.2011.05.002,
2011.

Pedoja, K., Husson, L., Bezos, A., Pastier, A.-M., Imran, A. M., Arias-Ruiz, C., Sarr,
A.-C., Elliot, M., Pons-Branchu, E., Nexer, M., Regard, V., Hafidz, A., Robert, X.,
Benoit, L., Delcaillau, B., Authemayou, C., Dumoulin, C., and Choblet, G.: On
the Long-Lasting Sequences of Coral Reef Terraces from SE Sulawesi (Indonesia):
Distribution, Formation, and Global Significance, Quaternary Science Reviews,
188, 37–57, doi:10.1016/j.quascirev.2018.03.033, 2018.

Peltier, W.: The Impulse Response of a Maxwell Earth, Reviews of Geophysics, 12,
649, doi:10.1029/RG012i004p00649, 1974.

Peltier, W.: Mantle Viscosity and Ice-Age Ice Sheet Topography, Science, 273,
1359–1364, doi:10.1126/science.273.5280.1359, 1996.

Peltier, W.: GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-
AGE EARTH: The ICE-5G (VM2) Model and GRACE, Annual Review of Earth
and Planetary Sciences, 32, 111–149, doi:10.1146/annurev.earth.32.082503.144359,
2004.

169



BIBLIOGRAPHY

Peltier, W. and Drummond, R.: Rheological Stratification of the Lithosphere: A
Direct Inference Based upon the Geodetically Observed Pattern of the Glacial
Isostatic Adjustment of the North American Continent, Geophysical Research
Letters, 35, L16 314, doi:10.1029/2008GL034586, 2008.

Peltier, W., Argus, D. F., and Drummond, R.: Space Geodesy Constrains Ice Age
Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model: Global Glacial
Isostatic Adjustment, Journal of Geophysical Research: Solid Earth, 120, 450–487,
doi:10.1002/2014JB011176, 2015.

Peltier, W. R.: Closure of the Budget of Global Sea Level Rise over the GRACE
Era: The Importance and Magnitudes of the Required Corrections for Global
Glacial Isostatic Adjustment, Quaternary Science Reviews, 28, 1658–1674, doi:
10.1016/j.quascirev.2009.04.004, 2009.

Persits, F., Ulmishek, G. F., and Steinshouer, D.: Maps Showing Geology, Oil and
Gas Fields and Geologic Provinces of the Former Soviet Union, Report 97-470E,
U.S. Geological Survey, Reston, VA, doi:10.3133/ofr97470E, 1997.

Peyaud, V.: Rôle de la dynamique des calottes glaciaires dans les grands changements
climatiques des périodes glaciaires-interglaciaires., Ph.D. thesis, Université Joseph-
Fourier-Grenoble I, 2006.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and
Wagener, T.: Sensitivity Analysis of Environmental Models: A Systematic Review
with Practical Workflow, Environmental Modelling & Software, 79, 214–232, doi:
10.1016/j.envsoft.2016.02.008, 2016.

Pollard, D., Chang, W., Haran, M., Applegate, P., and DeConto, R.: Large Ensemble
Modeling of the Last Deglacial Retreat of the West Antarctic Ice Sheet: Comparison
of Simple and Advanced Statistical Techniques, Geoscientific Model Development,
9, 1697–1723, doi:10.5194/gmd-9-1697-2016, 2016.

Pollard, O. G., Barlow, N. L. M., Gregoire, L. J., Gomez, N., Cartelle, V., Ely,
J. C., and Astfalck, L. C.: Quantifying the Uncertainty in the Eurasian Ice-Sheet
Geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6), The
Cryosphere, 17, 4751–4777, doi:10.5194/tc-17-4751-2023, 2023.

Powell, E., Gomez, N., Hay, C., Latychev, K., and Mitrovica, J. X.: Viscous Effects
in the Solid Earth Response to Modern Antarctic Ice Mass Flux: Implications for
Geodetic Studies of WAIS Stability in a Warming World, Journal of Climate, 33,
443–459, doi:10.1175/JCLI-D-19-0479.1, 2020.

170



BIBLIOGRAPHY

Pukelsheim, F.: The Three Sigma Rule, The American Statistician, 2012.

Rasmussen, C. E. and Williams, C. K.: Gaussian Processes for Machine Learning,
vol. 1, Springer, 2006.

Reeh, N.: A Plasticity Theory Approach to the Steady-State Shape of a
Three-Dimensional Ice Sheet, Journal of Glaciology, 28, 431–455, doi:10.3189/
S0022143000005049, 1982.

Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting Around
Antarctica, Science, 341, 266–270, doi:10.1126/science.1235798, 2013.

Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh, R.
C. A.: Potential Sea-Level Rise from Antarctic Ice-Sheet Instability Constrained
by Observations, Nature, 528, 115–118, doi:10.1038/nature16147, 2015.

Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., and Leahy, G. M.: Crustal and
Upper Mantle Structure beneath Antarctica and Surrounding Oceans, Journal of
Geophysical Research: Solid Earth, 106, 30 645–30 670, doi:10.1029/2001JB000179,
2001.

Riva, R. E. M., Gunter, B. C., Urban, T. J., Vermeersen, B. L. A., Lindenbergh,
R. C., Helsen, M. M., Bamber, J. L., van de Wal, R. S. W., van den Broeke, M. R.,
and Schutz, B. E.: Glacial Isostatic Adjustment over Antarctica from Combined
ICESat and GRACE Satellite Data, Earth and Planetary Science Letters, 288,
516–523, doi:10.1016/j.epsl.2009.10.013, 2009.

Robel, A. A., Roe, G. H., and Haseloff, M.: Response of Marine-Terminating Glaciers
to Forcing: Time Scales, Sensitivities, Instabilities, and Stochastic Dynamics,
Journal of Geophysical Research: Earth Surface, 123, 2205–2227, doi:10.1029/
2018JF004709, 2018.

Robel, A. A., Seroussi, H., and Roe, G. H.: Marine Ice Sheet Instability Amplifies
and Skews Uncertainty in Projections of Future Sea-Level Rise, Proceedings of the
National Academy of Sciences, 116, 14 887–14 892, doi:10.1073/pnas.1904822116,
2019.

Rohling, E. J., Grant, K., Hemleben, Ch., Siddall, M., Hoogakker, B. A. A., Bolshaw,
M., and Kucera, M.: High Rates of Sea-Level Rise during the Last Interglacial
Period, Nature Geoscience, 1, 38–42, doi:10.1038/ngeo.2007.28, 2008.

Rohling, E. J., Hibbert, F. D., Williams, F. H., Grant, K. M., Marino, G., Foster,
G. L., Hennekam, R., de Lange, G. J., Roberts, A. P., Yu, J., Webster, J. M., and
Yokoyama, Y.: Differences between the Last Two Glacial Maxima and Implications

171



BIBLIOGRAPHY

for Ice-Sheet, δ18O, and Sea-Level Reconstructions, Quaternary Science Reviews,
176, 1–28, doi:10.1016/j.quascirev.2017.09.009, 2017.

Rohling, E. J., Hibbert, F. D., Grant, K. M., Galaasen, E. V., Irvalı, N., Kleiven,
H. F., Marino, G., Ninnemann, U., Roberts, A. P., Rosenthal, Y., Schulz, H.,
Williams, F. H., and Yu, J.: Asynchronous Antarctic and Greenland Ice-Volume
Contributions to the Last Interglacial Sea-Level Highstand, Nature Communica-
tions, 10, 5040, doi:10.1038/s41467-019-12874-3, 2019.

Romé, Y. M., Ivanovic, R. F., Gregoire, L. J., Sherriff-Tadano, S., and Valdes, P. J.:
Millennial-Scale Climate Oscillations Triggered by Deglacial Meltwater Discharge
in Last Glacial Maximum Simulations, Paleoceanography and Paleoclimatology,
37, e2022PA004 451, doi:10.1029/2022PA004451, 2022.

Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P., Gómez-Pujol, L.,
Harris, D. L., Casella, E., O’Leary, M. J., and Hearty, P. J.: The Analysis of Last
Interglacial (MIS 5e) Relative Sea-Level Indicators: Reconstructing Sea-Level in a
Warmer World, Earth-Science Reviews, 159, 404–427, doi:10.1016/j.earscirev.2016.
06.006, 2016.

Rovere, A., Pico, T., Richards, F., O’Leary, M. J., Mitrovica, J. X., Goodwin, I. D.,
Austermann, J., and Latychev, K.: Influence of Reef Isostasy, Dynamic Topography,
and Glacial Isostatic Adjustment on Sea-Level Records in Northeastern Australia,
Communications Earth & Environment, 4, 1–12, doi:10.1038/s43247-023-00967-3,
2023a.

Rovere, A., Ryan, D. D., Vacchi, M., Dutton, A., Simms, A. R., and Murray-Wallace,
C. V.: The World Atlas of Last Interglacial Shorelines (Version 1.0), Earth System
Science Data, 15, 1–23, doi:10.5194/essd-15-1-2023, 2023b.

Rutt, I. C., Hagdorn, M., Hulton, N. R. J., and Payne, A. J.: The Glimmer
Community Ice Sheet Model, Journal of Geophysical Research: Earth Surface,
114, doi:10.1029/2008JF001015, 2009.

Sainz de Murieta, E., Cunha, P. P., Cearreta, A., Murray, A. S., and Buylaert,
J.-P.: The Oyambre Coastal Terrace: A Detailed Sedimentary Record of the
Last Interglacial Stage in Northern Iberia (Cantabrian Coast, Spain), Journal of
Quaternary Science, 36, 570–585, doi:10.1002/jqs.3317, 2021.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., and Tarantola, S.: Global Sensitivity Analysis. The Primer, Wiley, 1 edn.,
doi:10.1002/9780470725184, 2007.

172



BIBLIOGRAPHY

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.:
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for
the Total Sensitivity Index, Computer Physics Communications, 181, 259–270,
doi:10.1016/j.cpc.2009.09.018, 2010.

Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem,
M., and Steinhage, D.: A Global, High-Resolution Data Set of Ice Sheet Topog-
raphy, Cavity Geometry, and Ocean Bathymetry, Earth System Science Data, 8,
543–557, doi:10.5194/essd-8-543-2016, 2016.

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi,
A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather,
R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory,
J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts,
P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little,
C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese,
R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S.,
Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao,
C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: A Multi-Model Ensemble
of the Antarctic Ice Sheet Evolution over the 21st Century, The Cryosphere, 14,
3033–3070, doi:10.5194/tc-14-3033-2020, 2020.

Shakun, J. D., Lea, D. W., Lisiecki, L. E., and Raymo, M. E.: An 800-Kyr Record
of Global Surface Ocean δ 18 O and Implications for Ice Volume-Temperature
Coupling, Earth and Planetary Science Letters, 426, 58–68, doi:10.1016/j.epsl.
2015.05.042, 2015.

Shennan, I.: Handbook of Sea-Level Research, in: Handbook of Sea-Level Research,
chap. 2, pp. 3–25, John Wiley & Sons, Ltd, doi:10.1002/9781118452547.ch2, 2015.

Shennan, I., Bradley, S., Milne, G., Brooks, A., Bassett, S., and Hamilton, S.: Relative
Sea-Level Changes, Glacial Isostatic Modelling and Ice-Sheet Reconstructions from
the British Isles since the Last Glacial Maximum, Journal of Quaternary Science,
21, 585–599, doi:10.1002/jqs.1049, 2006.

Shennan, I., Bradley, S. L., and Edwards, R.: Relative Sea-Level Changes and Crustal
Movements in Britain and Ireland since the Last Glacial Maximum, Quaternary
Science Reviews, 188, 143–159, doi:10.1016/j.quascirev.2018.03.031, 2018.

Shi, X., Werner, M., Wang, Q., Yang, H., and Lohmann, G.: Simulated Mid-Holocene
and Last Interglacial Climate Using Two Generations of AWI-ESM, Journal of
Climate, 35, 7811–7831, doi:10.1175/JCLI-D-22-0354.1, 2022.

173



BIBLIOGRAPHY

Shik, S. M.: A Modern Approach to the Neopleistocene Stratigraphy and Paleogeog-
raphy of Central European Russia, Stratigraphy and Geological Correlation, 22,
219–230, doi:10.1134/S0869593814020075, 2014.

Simms, A. R., Rood, D. H., and Rockwell, T. K.: Correcting MIS5e and 5a Sea-Level
Estimates for Tectonic Uplift, an Example from Southern California, Quaternary
Science Reviews, 248, 106 571, doi:10.1016/j.quascirev.2020.106571, 2020.

Simpson, M. J. R., Milne, G. A., Huybrechts, P., and Long, A. J.: Calibrating a
Glaciological Model of the Greenland Ice Sheet from the Last Glacial Maximum
to Present-Day Using Field Observations of Relative Sea Level and Ice Extent,
Quaternary Science Reviews, 28, 1631–1657, doi:10.1016/j.quascirev.2009.03.004,
2009.

Smith, R. C.: Uncertainty Quantification: Theory, Implementation, and Applications,
SIAM, 2013.

Sobol’, I. M.: On Sensitivity Estimation for Nonlinear Mathematical Models, Matem-
aticheskoe modelirovanie, 2, 112–118, 1990.

Sokołowski, R. J., Molodkov, A., Hrynowiecka, A., Woronko, B., and Zieliński, P.: The
Role of an Ice-Sheet, Glacioisostatic Movements and Climate in the Transformation
of Middle Pleistocene Depositional Systems: A Case Study from the Reda Site,
Northern Poland, Geografiska Annaler: Series A, Physical Geography, 103, 223–258,
doi:10.1080/04353676.2021.1926241, 2021.

Sommers, A. N., Otto-Bliesner, B. L., Lipscomb, W. H., Lofverstrom, M., Shafer,
S. L., Bartlein, P. J., Brady, E. C., Kluzek, E., Leguy, G., Thayer-Calder, K.,
and Tomas, R. A.: Retreat and Regrowth of the Greenland Ice Sheet During
the Last Interglacial as Simulated by the CESM2-CISM2 Coupled Climate–Ice
Sheet Model, Paleoceanography and Paleoclimatology, 36, e2021PA004 272, doi:
10.1029/2021PA004272, 2021.

Spada, G. and Stocchi, P.: SELEN: A Fortran 90 Program for Solving the “Sea-Level
Equation”, Computers & Geosciences, 33, 538–562, doi:10.1016/j.cageo.2006.08.006,
2007.

Stephenson, S. N., White, N. J., Li, T., and Robinson, L. F.: Disentangling Inter-
glacial Sea Level and Global Dynamic Topography: Analysis of Madagascar, Earth
and Planetary Science Letters, 519, 61–69, doi:10.1016/j.epsl.2019.04.029, 2019.

Stokes, C. R. and Clark, C. D.: Geomorphological Criteria for Identifying Pleistocene
Ice Streams, Annals of Glaciology, 28, 67–74, doi:10.3189/172756499781821625,
1999.

174



BIBLIOGRAPHY

Stokes, C. R. and Clark, C. D.: Palaeo-Ice Streams, Quaternary Science Reviews,
20, 1437–1457, doi:10.1016/S0277-3791(01)00003-8, 2001.

Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz,
R., Hättestrand, C., Heyman, J., Hindmarsh, R. C. A., Hughes, A. L. C., Jakobsson,
M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J. B., Noormets, R.,
Peltier, W. R., Peteet, D. M., Piper, D. J. W., Preusser, F., Renssen, H., Roberts,
D. H., Roche, D. M., Saint-Ange, F., Stroeven, A. P., and Teller, J. T.: On the
Reconstruction of Palaeo-Ice Sheets: Recent Advances and Future Challenges,
Quaternary Science Reviews, 125, 15–49, doi:10.1016/j.quascirev.2015.07.016, 2015.

Stone, E. J., Lunt, D. J., Annan, J. D., and Hargreaves, J. C.: Quantification of the
Greenland Ice Sheet Contribution to Last Interglacial Sea Level Rise, Climate of
the Past, 9, 621–639, doi:10.5194/cp-9-621-2013, 2013.

Stuhne, G. R. and Peltier, W.: Reconciling the ICE-6G_C Reconstruction of Glacial
Chronology with Ice Sheet Dynamics: The Cases of Greenland and Antarctica:
ICE-6G_C and ICE-Sheet Dynamics, Journal of Geophysical Research: Earth
Surface, 120, 1841–1865, doi:10.1002/2015JF003580, 2015.

Stuhne, G. R. and Peltier, W.: Assimilating the ICE-6G_C Reconstruction of the
Latest Quaternary Ice Age Cycle Into Numerical Simulations of the Laurentide
and Fennoscandian Ice Sheets, Journal of Geophysical Research: Earth Surface,
122, 2324–2347, doi:10.1002/2017JF004359, 2017.

Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R., Dumas,
C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Greve, R., Hoffman, M. J.,
Humbert, A., Kazmierczak, E., Kleiner, T., Leguy, G. R., Lipscomb, W. H., Martin,
D., Morlighem, M., Nowicki, S., Pollard, D., Price, S., Quiquet, A., Seroussi, H.,
Schlemm, T., Sutter, J., van de Wal, R. S. W., Winkelmann, R., and Zhang,
T.: Antarctic Ice Sheet Response to Sudden and Sustained Ice-Shelf Collapse
(ABUMIP), Journal of Glaciology, 66, 891–904, doi:10.1017/jog.2020.67, 2020.

Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell,
J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen,
M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H., Larsen, E.,
Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray,
A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert,
C., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late Quaternary Ice Sheet
History of Northern Eurasia, Quaternary Science Reviews, 23, 1229–1271, doi:
10.1016/j.quascirev.2003.12.008, 2004.

175



BIBLIOGRAPHY

Tamisiea, M. E., Hughes, C. W., Williams, S. D. P., and Bingley, R. M.: Sea
Level: Measuring the Bounding Surfaces of the Ocean, Philosophical Transactions.
Series A, Mathematical, Physical, and Engineering Sciences, 372, 20130 336, doi:
10.1098/rsta.2013.0336, 2014.

Tarasov, L. and Peltier, W.: Greenland Glacial History and Local Geodynamic
Consequences, Geophysical Journal International, 150, 198–229, doi:10.1046/j.1365-
246X.2002.01702.x, 2002.

Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W.: A Data-Calibrated Distribution
of Deglacial Chronologies for the North American Ice Complex from Glaciological
Modeling, Earth and Planetary Science Letters, 315–316, 30–40, doi:10.1016/j.epsl.
2011.09.010, 2012.

Teatini, P., Tosi, L., and Strozzi, T.: Quantitative Evidence That Compaction of
Holocene Sediments Drives the Present Land Subsidence of the Po Delta, Italy,
Journal of Geophysical Research: Solid Earth, 116, doi:10.1029/2010JB008122,
2011.

Toucanne, S., Zaragosi, S., Bourillet, J., Cremer, M., Eynaud, F., Van Vliet-Lanoë,
B., Penaud, A., Fontanier, C., Turon, J., and Cortijo, E.: Timing of Massive
‘Fleuve Manche’ Discharges over the Last 350kyr: Insights into the European
Ice-Sheet Oscillations and the European Drainage Network from MIS 10 to 2,
Quaternary Science Reviews, 28, 1238–1256, doi:10.1016/j.quascirev.2009.01.006,
2009.

Tsai, V. C., Stewart, A. L., and Thompson, A. F.: Marine Ice-Sheet Profiles and
Stability under Coulomb Basal Conditions, Journal of Glaciology, 61, 205–215,
doi:10.3189/2015JoG14J221, 2015.

Turney, C. S. and Jones, R. T.: Does the Agulhas Current Amplify Global Temper-
atures during Super-Interglacials?, Journal of Quaternary Science, 25, 839–843,
doi:10.1002/jqs.1423, 2010.

Turney, C. S. M., Fogwill, C. J., Golledge, N. R., McKay, N. P., van Sebille,
E., Jones, R. T., Etheridge, D., Rubino, M., Thornton, D. P., Davies, S. M.,
Ramsey, C. B., Thomas, Z. A., Bird, M. I., Munksgaard, N. C., Kohno, M.,
Woodward, J., Winter, K., Weyrich, L. S., Rootes, C. M., Millman, H., Albert,
P. G., Rivera, A., van Ommen, T., Curran, M., Moy, A., Rahmstorf, S., Kawamura,
K., Hillenbrand, C.-D., Weber, M. E., Manning, C. J., Young, J., and Cooper,
A.: Early Last Interglacial Ocean Warming Drove Substantial Ice Mass Loss from
Antarctica, Proceedings of the National Academy of Sciences, 117, 3996–4006,
doi:10.1073/pnas.1902469117, 2020.

176



BIBLIOGRAPHY

van der Wal, W., Whitehouse, P. L., and Schrama, E. J. O.: Effect of GIA Models with
3D Composite Mantle Viscosity on GRACE Mass Balance Estimates for Antarctica,
Earth and Planetary Science Letters, 414, 134–143, doi:10.1016/j.epsl.2015.01.001,
2015.

Vernon, I., Owen, J., Aylett-Bullock, J., Cuesta-Lazaro, C., Frawley, J., Quera-
Bofarull, A., Sedgewick, A., Shi, D., Truong, H., Turner, M., Walker, J., Caulfield,
T., Fong, K., and Krauss, F.: Bayesian Emulation and History Matching of JUNE,
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 380, 20220 039, doi:10.1098/rsta.2022.0039, 2022.

Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J., McManus, J., Lambeck, K.,
Balbon, E., and Labracherie, M.: Sea-Level and Deep Water Temperature Changes
Derived from Benthic Foraminifera Isotopic Records, Quaternary Science Reviews,
21, 295–305, doi:10.1016/S0277-3791(01)00101-9, 2002.

Wahr, J., Molenaar, M., and Bryan, F.: Time Variability of the Earth’s Gravity
Field: Hydrological and Oceanic Effects and Their Possible Detection Using
GRACE, Journal of Geophysical Research: Solid Earth, 103, 30 205–30 229, doi:
10.1029/98JB02844, 1998.

Waller, R. I.: The Influence of Basal Processes on the Dynamic Behaviour of
Cold-Based Glaciers, Quaternary International, 86, 117–128, doi:10.1016/S1040-
6182(01)00054-4, 2001.

Weertman, J.: On the Sliding of Glaciers, Journal of Glaciology, 3, 33–38, doi:
10.3189/S0022143000024709, 1957.

Wekerle, C., Colleoni, F., Näslund, J.-O., Brandefelt, J., and Masina, S.: Numerical
Reconstructions of the Penultimate Glacial Maximum Northern Hemisphere Ice
Sheets: Sensitivity to Climate Forcing and Model Parameters, Journal of Glaciology,
62, 607–622, doi:10.1017/jog.2016.45, 2016.

Whitehouse, P. L.: Glacial Isostatic Adjustment Modelling: Historical Perspectives,
Recent Advances, and Future Directions, Earth Surface Dynamics, 6, 401–429,
doi:10.5194/esurf-6-401-2018, 2018.

Williamson, D.: Exploratory Ensemble Designs for Environmental Models Using
K-Extended Latin Hypercubes, Environmetrics, 26, 268–283, doi:10.1002/env.2335,
2015.

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L.,
and Yamazaki, K.: History Matching for Exploring and Reducing Climate Model

177



BIBLIOGRAPHY

Parameter Space Using Observations and a Large Perturbed Physics Ensemble,
Climate Dynamics, 41, 1703–1729, doi:10.1007/s00382-013-1896-4, 2013.

Williamson, D., Blaker, A. T., Hampton, C., and Salter, J.: Identifying and Removing
Structural Biases in Climate Models with History Matching, Climate Dynamics,
45, 1299–1324, doi:10.1007/s00382-014-2378-z, 2015.

Williamson, D. B., Blaker, A. T., and Sinha, B.: Tuning without Over-Tuning:
Parametric Uncertainty Quantification for the NEMO Ocean Model, Geoscientific
Model Development, 10, 1789–1816, doi:10.5194/gmd-10-1789-2017, 2017.

Wolstencroft, M., Shen, Z., Törnqvist, T. E., Milne, G. A., and Kulp, M.: Un-
derstanding Subsidence in the Mississippi Delta Region Due to Sediment, Ice,
and Ocean Loading: Insights from Geophysical Modeling, Journal of Geophysical
Research: Solid Earth, 119, 3838–3856, doi:10.1002/2013JB010928, 2014.

Woodward, R. S.: On the Form and Position of the Sea Level, Tech. rep., Washington:
Government Printing Office, 1888.

Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki,
Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and Merrifield,
M. A.: Forcing Factors Affecting Sea Level Changes at the Coast, Surveys in
Geophysics, 40, 1351–1397, doi:10.1007/s10712-019-09531-1, 2019.

Yau, A. M., Bender, M. L., Robinson, A., and Brook, E. J.: Reconstructing the
Last Interglacial at Summit, Greenland: Insights from GISP2, Proceedings of
the National Academy of Sciences, 113, 9710–9715, doi:10.1073/pnas.1524766113,
2016.

Yin, Q. and Berger, A.: Interglacial Analogues of the Holocene and Its Natural near
Future, Quaternary Science Reviews, 120, 28–46, doi:10.1016/j.quascirev.2015.04.
008, 2015.

Yokoyama, Y. and Purcell, A.: On the Geophysical Processes Impacting Palaeo-Sea-
Level Observations, Geoscience Letters, 8, 13, doi:10.1186/s40562-021-00184-w,
2021.

Yousefi, M., Wan, J., Pan, L., Gomez, N., Latychev, K., Mitrovica, J. X., Pollard,
D., and DeConto, R. M.: The Influence of the Solid Earth on the Contribution of
Marine Sections of the Antarctic Ice Sheet to Future Sea-Level Change, Geophysical
Research Letters, 49, e2021GL097 525, doi:10.1029/2021GL097525, 2022.

Zagwijn, W. H.: Sea-Level Changes in the Netherlands during the Eemian, Sea-level
changes in the Netherlands during the Eemian, 62, 437–450, 1983.

178



BIBLIOGRAPHY

Zhao, H. and Kowalski, J.: Topographic Uncertainty Quantification for Flow-like
Landslide Models via Stochastic Simulations, Natural Hazards and Earth System
Sciences, 20, 1441–1461, doi:10.5194/nhess-20-1441-2020, 2020.

Zhou, Y. and McManus, J.: Extensive Evidence for a Last Interglacial Laurentide
Outburst (LILO) Event, Geology, 50, 934–938, doi:10.1130/G49956.1, 2022.

Zoccarato, C., Minderhoud, P. S. J., and Teatini, P.: The Role of Sedimentation and
Natural Compaction in a Prograding Delta: Insights from the Mega Mekong Delta,
Vietnam, Scientific Reports, 8, 11 437, doi:10.1038/s41598-018-29734-7, 2018.

179




	Intellectual Property
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Research Questions
	Research Objectives

	Review of the Current Literature
	The Last Interglacial
	Climate
	Sea Level
	Greenland and Antarctic Ice Sheets

	Relative Sea Level
	Sea-Level Records and Local Processes
	Glacial Isostatic Adjustment
	Numerical Sea-Level Models
	Rheology of the Earth
	Sea-Level Fingerprints

	Late Quaternary Ice Sheets
	Numerical Ice-Sheet Models


	Summary

	Tools and Techniques
	Numerical Models
	Gowan ICESHEET Model
	Kendall Sea-Level Model

	Python Tools
	ShearPy
	ShaPy
	ViscoPy

	Uncertainty Quantification and Statistical Modelling
	Parametric Uncertainty
	Structural Uncertainty
	Sensitivity Analysis
	History Matching
	Gaussian Process Emulation


	Summary

	Quantifying the Uncertainty in the Eurasian Ice-Sheet Geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
	Abstract
	Introduction
	Models and Methods
	ICESHEET Simulator
	Uncertainty Quantification
	Model Set-Up for the Last Deglaciation
	Model Set-Up for the Penultimate Glacial Maximum
	Ice-Sheet Margin
	Topography


	Parameterising the Shear-Stress Input Map
	Sediment Distribution
	Ice Streaming
	Ice-Sheet Influence on Basal Conditions

	Last Deglaciation Reconstruction and Calibration
	Ensemble Design
	Calculating Implausibility
	Results

	Application to the Penultimate Glacial Maximum
	Initial Model of the Penultimate Glacial Maximum Eurasian Ice Sheet
	Effects of Glacial Isostatic Adjustment
	Reconstruction of the Penultimate Glacial Maximum Eurasian Ice Sheet

	Discussion
	Conclusions
	Appendix
	Figures and Margin Extraction Algorithm


	Relative Sea-Level Sensitivity in the Eurasia Region to Earth and Ice-Sheet Model Uncertainty During the Last Interglacial
	Abstract
	Introduction
	Penultimate Deglaciation of the Eurasian Ice Sheet
	Ice-Sheet Model
	Deglaciation Margins
	Ensemble Design
	Eurasian Ice-Sheet Simulation Results

	Modelling Last Interglacial Relative Sea Level
	Glacial Isostatic Adjustment Model
	Global Ice-Sheet History
	Eurasian and North American Ice-Sheet Components
	Ensemble Design

	Results
	Last Interglacial Relative Sea Level
	Relative Sea-Level Sensitivity
	Rate of Relative Sea-Level Change Sensitivity

	Discussion
	Conclusions
	Supplementary Figures

	Identifying the Antarctic Melt Contribution to Last Interglacial Sea Level from Eurasian Relative Sea-Level Records
	Abstract
	Introduction
	Models, Methods and Data
	Global Ice-Sheet and Earth Models
	Last Interglacial Antarctic Melt Scenarios
	Relative Sea-Level Ensemble Design
	Last Interglacial Sea-Level Database
	Sea-Level Data Matching Framework
	Limiting Data Points
	Combined Implausibility

	Estimating Model Structural Discrepancy

	Results and Analysis
	Relative Sea-Level Ensemble
	Regional Sensitivity Analysis
	Model Bias
	Ensemble History Matching

	Discussion
	Antarctic Melt Scenario Methodology
	Regional Sensitivity
	History Matching
	Model Bias
	Assumptions and Future Work

	Conclusions

	Discussion
	Review of Aims and Objectives
	Answering the Research Questions
	RQ1: Can an uncertainty framework, utilising a simple ice-sheet model, be used to explore the range of uncertainty in ice-sheet geometry during the Penultimate Deglaciation?
	RQ2: How much does uncertainty in the ice-sheet and Earth models affect our ability to understand relative sea level during the Last Interglacial?
	RQ3: Can a regional Eurasian relative sea-level dataset be used to identify the fingerprint of Antarctic ice-sheet melt during the Last Interglacial?

	Limitations and Future Work
	Conclusions

	Bibliography

