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Abstract 

 

The overarching aim of this thesis, is to explore the role of visual information in the perception 

and recognition of faces. The experiments in this thesis use a combination of behavioural, 

computational and neuroimaging approaches to ask how facial representations are formed 

and what image properties are critical for perception and recognition. The thesis begins 

(Chapter 3) by investigating the process of generating a view-invariant representation from 

view-specific inputs. Using behavioural, neuroimaging and computational approaches, the 

results provide evidence of an intermediate view-symmetric representation. The emergence 

of view-symmetric representations from view-specific inputs was evident for canonical, but 

not non-canonical rotations of the face. Chapter 4 asked what visual information in the face 

(shape or texture) is important when making identity judgments. Here, it was shown that 

whilst texture properties are the dominant cue for familiar face recognition, shape properties 

provide unique and important contributions when making identity judgments, with the face-

selective areas showing an equal sensitivity to both properties. The importance of shape and 

texture was further explored in Chapter 5, which showed that there was an intermediate band 

of image dimensions that were fundamental for familiar face recognition and for learning new 

faces. In contrast, earlier and later image dimensions of ambient face images were not 

important for recognition or learning. The final study of the thesis (Chapter 6) explored how 

image properties influence other aspects of face perception. The results showed that early 

image dimensions were critical for judgments of gaze, whereas different intermediate bands 

of image dimensions were important for judgements of gender and expression. Taken 

together, the findings presented in this thesis address the questions of how image properties 

are important for the perception and neural representation of face identity and whether the 

same or different image properties are important for other aspects of face perception.  
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Chapter 1- Literature Review- How are Faces Represented? 

1.1 Information from Faces 
 

Faces provide a range of socially relevant information (Bruce & Young, 2012). For 

example, the recognition of identity - detecting whether a face belongs to an individual we 

are familiar with or whether it belongs to a stranger - is critical in guiding social interactions 

(Bruce & Young, 1986). However, human faces consist of the same basic structure, two eyes 

above a nose above a mouth (Maurer, Le Grand & Mondloch, 2002). Thus, a fundamental 

challenge for human observers is the ability to rapidly and accurately process identity. This 

thesis will explore how image properties of the face contribute to the recognition of identity. 

1.1.2 Faces as Images  

 

When considering how we recognise identity from a face, it is important to consider 

what information is available in the image. At typical viewing distances, images of faces are 

composed of different spatial frequencies (SFs), each providing unique information about the 

image (Tian et al., 2018). Low spatial frequency (LSF) information depicts the global 

characteristics of the face, whereas high spatial frequency (HSF) information conveys the finer 

grained detail of the internal facial features (Kihara & Takeda 2019; Bar, 2004). This 

information from faces can be divided into two properties: shape and surface texture (Bruce 

& Young, 1998, 2012). For example, any facial image comprises of a set of edges generated 

by (higher spatial frequency) abrupt changes in reflectance due to the shapes and positions 

of facial features. These shape properties usually arise from how the 3D geometrical 

description of the face is projected onto a 2D image. Facial images also contain a broader 

pattern of (lower spatial frequency) reflectance based on the surface properties of the face. 

Texture properties result from the pattern of reflectance of light due to the combination of 

ambient illumination, the face's pigmentation, and shape from shading cues. 

Previous research shows that texture properties play a critical role when perceiving the 

identity of a familiar face (Burton, 2013). Early studies investigating the effect of contrast 

negation suggest that texture properties (in particular pigmentation and surface brightness) 

are critical when making judgements regarding identity (Bruce & Langton, 1994; Kemp, Pike, 
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White, & Musselman, 1996). Negation reverses the contrast polarities of an image, making 

black areas white, light grey areas dark grey, and so forth. It is a reversible manipulation that 

does not remove any information from the image. Despite no information being lost, the 

ability to process texture information is affected (White, 2001). Russell and Sinha (2006), used 

two sets of faces, where the individual faces differed in either shape or texture. During a face 

matching task, they found that performance was impaired by contrast negation only when 

faces varied in texture. Moreover, Sandford, Sarker and Bernier (2018) found that this effect 

of contrast negation affecting recognition performance did not generalise to other classes of 

familiar objects (in this case company logos).  

In contrast to the role of texture, simple spatial transformations of a face suggest that shape 

information may not be critical for identity recognition. For example, when linearly stretching 

a face horizontally or vertically, recognition rates of familiar faces are unaffected (Hole, 

George, Eaves & Rasek, 2002). However, when keeping the shape of the face constant but 

altering its texture (by blurring neighbouring pixels together), successful recognition declines 

by half (Hole, George, Eaves & Rasek, 2002). Furthermore, familiar face recognition is not 

considerably affected when texture properties are presented onto a standardised shape 

(Burton, Jenkins, Hancock & White, 2005). In contrast, when presented with a facial line-

drawing (thus, removing all texture information) and a photograph, face matching becomes 

significantly worse than when using two photographs (Leder, 1999). Together, these studies 

imply that firstly, texture properties unique to an identity, provide the dominant cue to 

distinguish and recognise identities familiar to us. Secondly, shape information is seen as a 

less reliable indicator of identity, as shape cues (mainly from internal facial features) can vary 

quite dramatically across images of the same identity (Burton, 2013; Andrews, Baseler, 

Jenkins & Burton, 2016).  

Although the behavioural studies outlined above show that texture may be a more important 

cue, this does not mean that shape properties do not contribute to the recognition of identity 

recognition. Hole, George, Eaves and Rasek (2002) operationalised successful recognition as 

participants identifying if a face was famous or not. In natural viewing, however, face 

recognition relies on activating the stored mental representations of an identity (synonymous 

to a facial-recognition-unit, Bruce & Young, 1986), which can then trigger further processing 

such as activating a name code for a recognised identity. So, tasks involving judgements of 
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familiarity may not reveal how successful recognition is naturally expressed. Interestingly, 

Hole and colleagues (2002) found that non-linear vertical stretching of the face impaired 

recognition, implying that configural information from the stretched part of the face was 

influencing the process of recognition. The authors concluded that the configural information 

used as a basis for face recognition is unlikely to involve information about the absolute 

position of facial features relative to each other. However, an alternative possibility is that 

this finding implies that both shape and texture information are important for recognition 

and that the two properties are used in tandem when making recognition judgements. 

Furthermore, Leder (1999) used a face-matching task in which line-drawings and photographs 

of unfamiliar faces were presented in pairs and recognition was calculated based on hits and 

false-alarm rates. Again, this paradigm does not allow for the activation of a stored mental 

representation of identities as the images used were unfamiliar. Additionally, whilst 

recognition was worse when matching a line-drawing to a photograph compared to matching 

two photographs, performance using line-drawings containing purely shape information was 

still high. For example, A’ was 0.97 when using two photographs and dropped to 0.84 when 

matching a line-drawing to a photograph and remained stable when even matching a line 

drawing to a novel viewpoint of the face. This therefore would imply that the most basic shape 

information generated in a line-drawing can be used for making recognition judgements. 

Lastly, Galper (1970) revealed that identity recognition reduced to 50% when the images were 

contrast negated. Whilst this is a significant decrease in performance, the fact faces can still 

be recognised to some extent, implies there is good potential that shape information does 

have a role in the representation of facial identity. Taken together, it is important to note that 

whilst texture properties are important for recognising identity, the contribution of shape 

properties might have been overlooked due to methodological paradigms and conflating 

shape from shading as a purely texture component. Therefore, it is of current interest to 

explore the roles of shape and texture in familiar face recognition and how these properties 

are represented in the brain. 
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1.2 Models of Face Recognition 

1.2.1 Bruce and Young Model (1986) 
 

Bruce and Young (1986) reported an influential framework for the perception of faces. 

The framework details that after the initial encoding of the structure of a face, there is a 

functional and spatial separation of processing, for changeable and unchangeable facial 

properties. This distinction originated from neuropsychological case studies documenting the 

experiences of patients with specific localised deficits within identity recognition 

(prosopagnosia), whilst having intact expression recognition (a changeable aspect of the 

face). This processing independence of expression and identity is further supported by 

individuals who report impairments with expression identification whilst performing similarly 

to control participants in identity recognition, evidencing a face processing double 

dissociation (Humphreys, Donnelly, & Riddoch, 1993; Parry, Young, Saul & Moss, 1991; Young, 

Newcombe, De Haan, Small, & Hay, 1993).  

Under this model, the recognition of faces is based on an initial image-based representation 

followed by the activation of a view-invariant structural code. When seeing a face, it is 

proposed that an image-based or pictorial representation is generated irrespective of 

familiarity. Using this representation, basic processing occurs to determine a variety of face 

signals such as age, gender and gaze, regardless of familiarity to the face stimulus. It is 

proposed that the recognition of a familiar face relies on a match between the initial image-

based representation of the face and previously stored structural representations located 

within face recognition units (FRUs). Following this match, a cascade of responses occurs, 

including the activation of a personal identity node (if the face is sufficiently similar) to access 

identity-specific semantic codes from which name codes are subsequently recovered. If a face 

is unfamiliar or has low familiarity then only an initial viewer-centred pictorial representation 

can be accessed, reflecting the limited identity specific information obtainable.  

Evidence in support of this model stems from seminal research that has explored the key 

differences in the processing of familiar and unfamiliar faces. For example, when judging 

whether two faces belong to the same identity, participants are highly accurate for familiar 

faces, but often have difficulty deciding whether two unfamiliar identities are from the same 

or different identity (Bruce et al., 1999; Davies-Thompson, Gouws & Andrews, 2009). This 
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familiar face advantage is also exacerbated when viewpoint, orientation and expression are 

manipulated (Bruce, Valentine & Baddeley, 1987; Bruce et al., 2001). The Bruce and Young 

(1986) model accounts for these effects by suggesting that faces are first encoded pictorially, 

with this representation allowing for the recognition of both familiar and unfamiliar faces 

when the same images are used. However, when image conditions are manipulated or 

different images of the same identity are used, this initial pictorial code is not sufficient for 

recognition. For this, a more abstract and flexible representation is needed which encodes 

identity-image-invariantly.  

Whilst the function of the FRUs has provided a key theoretical underpinning to the recognition 

of identity from faces, the underlying image dimensions remain unclear. Understanding the 

nature of these facial representations, specifically how they are triggered by the many 

possible variations of someone’s face exclusively, as well as what image properties are 

important for recognition, will allow for a fuller understanding of facial recognition.  

1.2.2 Interactive Activation Competition (IAC) Model (1999) 
 

Although classical models of face recognition (Bruce & Young, 1986) recognise the 

importance of FRUs, the nature of the visual properties that are used in this structural code 

are not clearly defined. Burton and colleagues address this issue in the Interactive Activation 

Competition model (IAC, Burton, Bruce & Hancock, 1999). This model combines a perceptual 

‘front end’ based on principal component analysis (PCA) of face images and a cognitive back-

end based on a simple interactive activation and competition processes. This model was the 

first to consider what image dimensions underlie the structural representation of identity.  

PCA aims to derive statistical descriptions of image sets (Moon & Phillips, 2001; Gong et al., 

2000) and has been used to explain the variance in face images that can be related to 

perception (Turk & Pentland, 1991; O’Toole et al., 1993; Hancock, Burton & Bruce, 1996; 

Calder et al., 2001; Jozwik et al., 2022). When PCA is applied to a set of faces, it delivers novel 

dimensions (eigenfaces), which together form a multi-dimensional framework, within which 

to characterise any face image (Scheuchenpflug, 1999; Tredoux et al., 2002; Nestor et al., 

2013). Within this framework, ‘early’ dimensions capture the most variance within a learning 

set, and tend to be associated with coarse-scale image variation (for example coding changes 

in head orientation or whether an image is brighter on one side or the other). Later 
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components, capturing progressively smaller variance, tend to capture finer-scale 

information. When PCA is applied to a particular set of faces, it is important to note that, given 

a sufficiently large sample, the resulting space generalises well. So, components derived from 

one set of faces, tend to capture the variance of novel sets well – particularly if training sets 

incorporate a range of variation in face images. 

In the original version of the IAC model, Burton, Bruce and Hancock (1999) tested three 

variations of a PCA analysis: 1) raw images (not subjected to a shape-free transformation), 2) 

shape-free (texture PCA) and 3) shape-free plus shape, to ascertain which model best 

captured recognition of neutral and expressive faces. Here they found that the latter two 

models best captured identity, with a very small increase in expressive face recognition when 

shape information was added into the PCA. Thus, after subsequent testing of the shape-free 

model, it was concluded that this model, best captured the underlying structural 

representation that could drive the process of face recognition, as the additional shape 

information was seen as less reliable. However, it has been shown that in certain cases, shape 

information can be useful for the purpose of identification (McKone & Yovel, 2009; Tanaka & 

Gordon, 2011; Piepers & Robbins, 2012) and that some texture information is not diagnostic 

for recognition, for example, ambient lighting information. Taken together, it is therefore 

appropriate to ask how information about identity is carried in the components derived from 

both a shape and texture PCA, that underlies the structural representation of identity. For 

example, it remains unclear whether and to what extent certain image dimensions are more 

useful than others for capturing identity information. 

The IAC model also extends the Bruce and Young (1986) model by explaining how FRUs can 

be activated. Here, it is suggested that there are interconnected nodes representing different 

concepts or features, and the activation spreads through these nodes based on their 

connections and interactions. Nodes compete with each other for activation, leading to 

dynamic patterns of activation that can simulate cognitive processes. In addition to FRUs and 

PINs (personal identity nodes), the IAC model suggests that following PINs, there are pools of 

interconnecting nodes labelled Semantic Information Units (SIUs) and Name Information 

Units (NUIs) which code information about known individuals and their names (respectively). 

Information about a person is coded in the form of a link between the person's PIN and the 

relevant SIU. Note that many SIUs will be shared (e.g. there may be many people represented 
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with occupation "singer" or with nationality "American"). The notion is that activation of any 

of these units to a common threshold allows retrieval of that piece of information. Finally, 

there is a pool of units labelled "lexical output" which are intended to capture the first stage 

of processes involved in speech and other output modalities. Thus, this model offers a more 

distributed account of face processing whereby many factors can impact one’s ability to 

recognise identity from many sources of information. 

1.2.3 Multidimensional Face Space Model 
 

The Multidimensional Face Space Model also provides a framework to explain how 

faces are represented in memory (Valentine, 1991). Here, each face is represented by a single 

location within the multidimensional space, where each dimension maps onto either a 

specific parameter or global property of a face that varies from one face to another. Image 

based properties (such as the distance between the eyes) or more abstract properties of a 

face (such as trustworthiness), have all been considered possible dimensions of face-space. It 

is proposed that faces are normally distributed within each dimension, forming a multivariate 

Gaussian distribution within the space. There are two key models of face-space that differ in 

terms of their explanations of a face’s location within the multidimensional space. In the 

original account put forward by Valentine (1991) faces were represented as individual points 

within the space. Under this logic, faces near the origin are typical (also known as exemplar) 

having values near the central tendency on all dimensions. Here, faces that are similar in 

appearance will have a closer proximity within the face-space. The second model however 

suggests that faces are encoded relative to the central face at the origin of the 

multidimensional space, and that faces are arranged using vectors from this norm, with the 

vector’s parameters of length and direction determined by the distinctiveness and features 

of the face respectively. These variations of the face-space model have been put forward, 

each providing subtle differences and predictions about human face processing, that aim to 

account to the behavioural findings within face recognition and perception such as, 

distinctiveness, inversion, caricaturing and the other race effect. 

A key concept within face-space models is the notion of an encoding error. When a face is 

encoded into the face-space there is a degree of error associated with the encoding, whereby 

if the encoding conditions are difficult such as brief presentation time or when faces are 
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contrast negated, a relatively large encoding error will occur. In practice encoding error is 

likely to result in greater difficulty when recognising typical faces as opposed to face that are 

more distinctive in face space dimensions. This stems from exemplar-based face space 

models, where it is posited that faces that are closer to the central tendency across multiple 

dimensions (i.e. typical faces) are more densely clustered towards the centre of face-space. 

Thus, an increase in encoding error is more likely to lead to confusion and longer processing 

times for typical faces versus distinctive faces that have less neighbours in the face space. In 

contrast, for a distinctive face, when presented under conditions that provide a high encoding 

error (such as low-quality images), the target identity is more likely to be the nearest face in 

face-space. Using the example of face inversion, Valentine (1991a) found that when 

participants were shown inverted faces (increasing the encoding error) there was a smaller 

recognition impairment for distinctive faces in comparison to typical faces. This effect was 

seen for familiar and unfamiliar faces during a recognition memory task and was taken to 

reflect the notion that distinctive faces lie further from the exemplar cluster, thus supporting 

the assumptions of a multidimensional face space model where the centre of the space 

reflects the mean of each dimension. 

However, as shown by Burton and Vokey (1998) the key assumption of this exemplar-based 

face space model being that the relationship between the distance from the centre and local 

density, does not hold true for a multidimensional space that contains more than two 

dimensions. In other words, the centre of face space does not contain the highest number of 

points (faces). This was shown through a series of calculations by plotting the frequency of 

faces as a function of squared distance from the centre with more than two dimensions. 

When doing this, it was observed that the majority of faces were not at the centre of the 

space but are rather found at some distance from the centre, whereby that distance increases 

as a function of the number of dimensions sampled. This observation is also consistent with 

the finding that most faces are not rated as highly typical (Burton & Vokey, 1998).  

The face space framework described above (exemplar-based face space) was the preferred 

model described in later work by Valentine and Endo (1992). However, an alternative face-

space model was also developed from the legacy of schema theory (Goldstein & Chance, 

1980), known as the norm-based face space. Whilst similar to the exemplar-based model, it 

differs in that the facial similarity metric is proposed to be based upon a prototypical norm 
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face contained at the centre of face space. Here, when a deviation from the norm is encoded, 

the direction of the vector from the norm face is described as more important than the 

magnitude of said vector (Stevenage, 1995). This is in contrast to the exemplar-based face 

space described above, whereby an aberration is encoded as simple-point vector. The 

distinctiveness of a face is represented by the length of this vector with the direction defining 

the identity (Valentine, Lewis, Hills, 2016). This model gained popularity over the exemplar-

based face space model by being able to better account for existing behavioural effects, in 

comparison to the exemplar-based face space framework. It has previously been shown that 

there is an advantage for recognising faces that have been caricatured. Faces are found to be 

more recognisable when the features are exaggerated in directions away from an average 

face, in comparison to the veridical image (Rhodes et al., 1987). The norm-based model 

explains this effect under the notion that the caricature’s representation subtends in the 

same angle of direction as the norm face but its magnitude is larger (Rhodes, 1997). However, 

a problem with this original explanation is that it does not account for the finding that once 

the caricature level surpasses a certain level, recognition becomes worse in comparison to 

the veridical image. For example, Rhodes et al (1987) found that exaggeration beyond 16% 

for line drawings leads to a reduction in recognition.  

To account for these caricature effects, an adapted version of the exemplar-based model was 

developed- referred to as the absolute coding face space (Valentine, 1991; Byatt & Rhodes, 

1998). The key effect of caricaturing is that the face representation of an identity is shifted 

into a region of the face space that has a lower exemplar density. The argument put forward 

is that this lower exemplar density leads to caricatured images being easier to recognise 

compared to the veridical image as there is less competition from other face representations. 

However, when caricatured to a higher degree the absolute distance increases much more, 

and the caricatured image is now encoded much further away from the stored exemplar 

vector of that identity, thus is now no longer seen as being that individual. Under this 

framework, the ease to which we recognise faces is not based on just the two nearest 

exemplars (exemplar-based model) but instead on all exemplars within a certain range. The 

parameters of this range and the manner in which exemplars interact with one another is 

however unspecified.  



21 | P a g e  
 

Support for this model of face space also stems from being able to account for the other race 

effect (ORE). This effect describes the notion that faces of a viewer’s own race are recognised 

more accurately and quickly than faces of a different race, in addition to further perceptual 

advantages (O’Toole et al., 1994). In a key study by Byatt and Rhodes (1998) they compared 

the assumptions of both a norm-based coding and an absolute-based coding face space in 

explaining the ORE and caricature effects. According to a norm-based coding system, faces 

are represented in terms of deviations from a prototypical face, with caricatured faces being 

more recognisable because they exaggerate this norm deviation information and explain the 

ORE with other race faces being coded relative to an own race prototype. Contrastingly, an 

absolute-based face space suggests that faces are encoded as absolute values on a set of 

shared dimensions irrespective of a norm, with caricatures being effective as they minimise 

the exemplar density and other race faces being less recognisable as they are more tightly 

clustered. In this study, European participants’ identification of European and Chinese faces 

caricatured for both race norms was tested. Here, norm-based coding, would predict that 

caricatures of Chinese faces made by distorting differences from the European norm would 

be more effective than caricatures made relative to the Chinese norm. Whereas, an absolute 

based framework predicts that all faces would be recognised more accurately when 

caricatured against their own-race norm. It was revealed that the assumptions of the latter 

were more supported. 

Taken together, despite support for face-space models in general a number of questions still 

remain. For example, the models do not specify the overall number of dimensions within face 

space, nor is the number of image properties that might contribute to different aspects of a 

face posited. For instance, numerous image properties might be used to encode a facial 

expression and some of these components might also be utilised during the processing of 

other facial signals such as age, gender etc. However, with techniques such as principal 

components analysis-PCA (see Chapter 2, for a comprehensive review of this method) it is 

possible to explore multidimensional face spaces, whose dimensions (or principal 

components) are derived from a set of images. Thus, allowing for a data driven approach to 

help uncover what image properties are useful for the recognition of identity and other facial 

signals, and probing how faces are represented. 
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1.2.4 Deep Convolutional Neural Networks (DCNNs) 
 

In more recent years, the development of deep convolution neural networks (DCNNs) 

has made substantial progress on the complex problem of recognising faces across variations 

of viewpoint, illumination and appearance (O’Toole, Castillo, Parde, Hill & Chellappa, 2018). 

Deep convolutional neural networks mimic the neural processing of the primate visual system 

to generate a face space that preserves details regarding the categorical identity of faces and 

relevant image characteristics. Faces are represented in a DCNN through a hierarchical 

extraction of features, from simple patterns in early layers to complex facial structures in 

deeper layers, eventually leading to a classification after the fully connected layers. DCNNs 

initiate their operations with raw images that first undergo feature extraction within the early 

convolutional layers. Here, these layers scan the input image for simple features like edges, 

textures, and basic shapes. In the context of faces, these layers might detect simple patterns 

like curves or the edges of facial features. As you move deeper into the network, the 

convolutional layers build a hierarchy of features. Higher layers combine low-level features 

to represent more complex structures, possibly capturing facial parts like eyes, nose, and 

mouth. After each convolutional layer there is a process of pooling. Pooling layers are often 

used to downsample the spatial dimensions of the features, retaining the most essential 

information. This helps in creating a spatial hierarchy of features and reducing computational 

complexity. The output from the convolutional and pooling layers is often flattened to be fed 

into fully connected layers. Fully connected layers analyse the high-level abstractions of the 

features, combining information from different parts of the image. In the case of faces, these 

layers might learn to recognise holistic facial patterns and configurations. For a DCNN to be 

successful at face recognition, it must be trained on many identities where each identity is 

depicted using multiple variable images. 

Despite the widespread use of DCNNs as models of face processing in humans, the 

representation that emerges within the final layer of the DCNN is not fully understood 

(O’Toole, Castillo, Parde, Hill & Chellappa, 2018). Recent studies have found that that the top-

layer DCNN representations across image variation, retain surprisingly accurate information 

about the original input image. For example, it has been found that within the top layers of a 

DCNN it is possible to predict the viewpoint of the face (Parde et al., 2017). This result is 
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consistent with the electrophysiological recordings within IT of the macaque which similarly 

show explicit coding of viewpoint, as well as fMRI findings in the human face selective regions 

which show representations of viewpoint. However, it is yet to be determined how viewpoint 

is represented throughout the many layers of a DCNN and if these representations mirror the 

processes and representations seen in human observers. 

1.3 The Neural Representation of Faces 
 

Numerous techniques and methods have been used to probe and classify face 

selective neural populations in the brain including single-cell recordings (Baylis, Rolls, & 

Leonard, 1985; Leonard, Rolls, Wilson, & Baylis, 1985; Allison, Puce, Spencer & McCarthy, 

1999) and methods aiming to record event related potentials (ERPs) specific to faces such as 

EEG and MEG (Bentin, Allison, Puce, Perez, & McCarthy, 1996; Bötzel, Schulze, & Stodieck, 

1995). However, the most commonly employed neuroimaging method is now functional 

magnetic resonance imaging (fMRI) which tracks the measurement of blood flow assumed to 

reflect neural responses in face selective neural populations in vivo in healthy participants. 

The discovery of different face-selective regions with fMRI has led to the development of 

neural models of face perception, such as Haxby, Hoffman and Gobbini’s (2000) distributed 

human neural system for face perception. The model aims to provide an account of how 

different face regions contribute to different aspects of face perception. Here, face processing 

involves a hierarchical system consisting of several interconnected brain regions, including 

the fusiform face area (FFA), the occipital face area (OFA), and the superior temporal sulcus 

(STS). Each of these regions plays a distinct role in different aspects of face perception, such 

as facial feature analysis, holistic face processing, and the interpretation of facial expressions. 

They also connect to an extended network of regions that are not exclusively involved in 

processing faces, but are involved in processing important semantic, episodic and affective 

information from the face. 

Haxby, Hoffman and Gobbini's (2000) model emphasises the dynamic interactions between 

the core and extended regions, highlighting the importance of both bottom-up (sensory-

driven) and top-down (cognitive-driven) processes in face recognition. In the following 

sections the components of this core hierarchical network for the visual analysis of faces will 

be discussed with reference to our current understanding of what image properties are 



24 | P a g e  
 

represented within the core brain regions that are critical to the perceptual recognition of 

familiar faces.  

1.3.1 The Role of the Occipital Face Area (OFA) 

 

The Occipital Face Area (OFA), forms a core part of most neural models of face 

processing and is the first implicated region within Haxby’s (2000) model of face processing. 

It is suggested to be involved in the preliminary processing of facial features, generating an 

initial representation of a facial image. The location of the OFA being posterior to the FFA and 

STS implies that OFA performs an initial analysis of faced information that is then passed on 

to other regions for higher level facial analysis.  

A number of neuroimaging studies have found that the OFA is sensitive to the image 

properties of the face. Rotshtein, Henson, Treves, Driver and Dolan (2005) used an fMR-

adaptation paradigm to investigate the properties of the OFA. In fMR-adaptation studies, 

participants are presented with a face stimulus multiple times, leading to a decrease in neural 

response as a function of exposure (Grill-Spector & Malach 2001). When a new stimulus is 

introduced or manipulated the neural response then increases providing that, that region 

encodes the stimulus change. Rotshtein and colleagues (2005) found that adaptation in the 

OFA only occurred when the same image was repeated; there was a release from adaptation 

when the face changed in physical appearance, but retained the same identity or when the 

face changed in physical appearance but the identity changed. This suggests that the OFA is 

sensitive to the physical properties of the image. In contrast, adaptation in the FFA occurred 

when the face changed in physical appearance, but retained the same identity, only releasing 

from adaptation when the face changed in physical appearance and the identity changed. 

Fox, Moon, Iaria and Barton (2009), investigated the effects of changes in expression and 

identity on the responses of the OFA. They found that the OFA was sensitive to changes in 

physical appearance when structural changes occurred along both an axis of identity or 

expression. It was also found that this effect in the OFA was independent of task demands or 

the perceptual experience of the individual participant. It has long been suggested that 

sensitivity to spatial relations is important for successful recognition (Maurer et al., 2002), 

specifically, the variation between the second-order relational information. Rhodes, Michie, 

Hughes and Byatt (2009) reported that the OFA is sensitive to spatial encoding of facial 
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features. Taken together, these studies support the notion that the OFA has a functional 

purpose regarding the initial encoding of the face before further more higher-level analyses 

begin (such as identity or expression analysis).  

When thinking about what visual information within a face is being processed by the OFA, a 

number of related findings emerge. For example, the patterns of BOLD activity in the face 

selective regions to images of individual facial features and combinations of different features 

has been explored. Here, it has been reported that the OFA shows a preference for single 

features of the face over various combinations of features and stimulus types (objects), 

whereas the FFA shows equal sensitivity to both individual facial parts and combinations of 

features (Arcurio, Gold & James, 2012). More recently, representational similarity analysis 

was used to investigate what type of identity distinguishing information is encoded within the 

OFA when participants viewed naturalistic videos of famous faces (Tsantani et al., 2021). It 

was revealed that the representational distances in the OFA were mainly driven by differences 

in low-level image-based properties (pixel-wise and Gabor-Jet dissimilarities). Contrastingly, 

dissimilarities between face identities in FFA were accounted for by differences in perceived 

similarity of the faces, social traits and gender, but not differences in the low-level image 

properties of the faces. This suggests that the OFA and FFA utilise and process different types 

of identity information to discriminate between facial identities. Moreover, it implies that the 

FFA representation is further removed from the facial stimuli one is perceiving, encoding 

higher-level perceptual face information, in comparison to the OFA which has a stronger 

affinity for image specific properties. These findings strengthen the notion that the OFA is 

positioned spatially and functionally within a hierarchy of visual areas critical for facial 

processing.  

1.3.2 The Role of the Fusiform Face Area (FFA) 
 

The most well-known region in the human brain that responds preferentially to faces 

compared to other classes of objects is the fusiform face area (FFA). In their seminal paper, 

Kanwisher, McDermott and Chun (1997) showed participants face and non-face images. They 

found a region located in the right fusiform gyrus (FFA) that produced a significantly higher 

signal intensity during epochs in which faces were presented, rather than during epochs in 

which objects were displayed. The face selectivity of this area has been replicated across a 
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number of viewing conditions, including; whether the face is actively or passively viewed 

(Berman et al., 2010) as well as the area being shown to be modulated by task difficulty 

(increasing degradation of images), whereby performance in the face recognition task was 

linearly correlated to the activation in the FFA (Bokde et al., 2005; Weibert et al., 2015). 

Evidence supporting the role of the FFA during identity recognition, stems from Grill-Spector, 

Knouf and Kanwisher (2004) who measured the correlation between FFA activity (using fMRI) 

and behavioural outcomes during perceptual tasks designed to test face detection and within 

category identification of faces and other objects. It was found that the FFA was involved with 

the detection and identification of faces but showed little involvement in within-category 

identification of non-face objects (such as types of car and animals). Furthermore, research 

suggests that the FFA is invariant to the size, (Andrews & Ewbank, 2004), viewpoint (Pourtois 

et al., 2005; although see Andrews and Ewbank, 2004) and emotional expression (Winston, 

Henson, Fine-Goulden & Dolan, 2004) of faces. Taken together, these neuroimaging studies 

show some degree of invariance in the neural representation of the FFA. 

The neural code underlying the FFA and its functions is of particular interest when discerning 

the role of how low-level properties of facial images may interact with identity recognition. 

Central to this topic is whether the FFA is sensitive to identity changes or whether it is 

sensitive to changes in image properties (independent of identity). Xu et al (2009), scaled the 

physical similarity of view changes of the same person (using Gabor-jets) to be equivalent to 

that produced by an identity change. They found that both identity and orientation changes 

led to equivalent releases from adaptation in the FFA (relative to identical faces) thus implying 

that the FFA is sensitive to the image properties of faces rather than identity. As stated 

previously, behavioural data often finds that texture information (as opposed to shape 

properties) underpins perceptual judgments of identity. However, within the FFA similar 

releases in adaptation are observed when an adapted familiar face displays a texture change 

or a shape change (Baseler, Andrews, Burton & Young, 2011). Thus, taken together with Xu 

et al (2009), it is arguable a low-level image property code, reliant on various low-level image 

properties may underlie identity processing within the FFA, and across the face selective 

network. This findings contrast with the results found from Tsantani et al (2021), who found 

that pixel-wise and Gabor-Jet models (low-level image properties) did not underpin the 

patterns of activation within the FFA, which was instead found to encoding higher-level 
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perceptual face information. Therefore, unpacking the neural code of how faces are 

represented within the FFA is of current interest within the field.  

1.3.3 The role of the Superior Temporal Sulcus (STS) 
 

Located under the lateral fissure which separates the temporal, parietal and frontal 

lobes, the STS has been implicated to serve functions related to higher level vision as well as 

playing a role within the perception of social cues (Haxby et al., 2000; Akiyama et al., 2006). 

Within the distributed neural system for face perception (Haxby et al., 2000) the STS is 

suggested to process changeable aspects of a face including but not limited to the perception 

of eye gaze, lip movements and most notably expression changes. It is further theorised that 

the STS has reciprocal links to an extended system including the intraparietal cortex (for 

spatially directed attention), the auditory cortex (for initial speech perception) and the 

amygdala (for the processing of emotion from facial expression).  

The STS has been shown to respond more to changes in the viewpoint of a face when identity 

is kept constant compared to when the identity changes (Andrews & Ewbank, 2004; Baseler 

et al., 2014). This implies that unlike more ventral face regions (e.g. FFA) the pSTS processes 

changeable aspects of faces with similar meaning across individuals, unrelated to their 

identity. However, there was increased functional connectivity between the pSTS and FFA 

when participants viewed same identity faces compared with different identity faces (when 

expression was varied), implying that there are distinct neural pathways involved in the 

analysis of identity and expression, but there is a level of interaction to process changeable 

aspects of the face. Similarly, Harris, Young and Andrews (2012) first found a release in 

adaptation in the pSTS for changes in expression but not for identity. In a follow up study, 

fMR-adaptation was used to investigate whether the coding of expression in the pSTS was 

categorical or continuous, using expression continua generated by morphing between two 

expressions. They found an equivalent release from adaptation for within-category compared 

to between-category changes in expression, suggesting that the coding of expression in the 

pSTS is continuous rather than categorical.  

Similar to the OFA the STS has been found to show sensitivity to individual facial features 

regardless of typical feature configuration (Liu, Harris & Kanwisher, 2010). This sensitivity has 

been linked to the role the wider role of the STS during eye gaze perception (Pelphrey et al., 
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2005). For example, Puce, Allison, Bentin, Gore and McCarthy (1998) showed participants 

faces that were superimposed onto a radial background that moved inward. It was found that 

the STS did not show an increase in activation when the eyes were static, but did when the 

eyes were averted to the left or right, suggesting the STS is involved in the perception of eye 

gaze but not to motion in general. Furthermore, it has been shown that using deviated and 

frontal faces with averted and direct gaze in a combined EEG and MEG paradigm there is an 

interaction between gaze direction and head orientation between 134 and 162ms (in MEG) 

and a main effect of gaze direction between 171 and 186ms (in EEG) (Burra, Baker & George, 

2017). Importantly the locus of these effects was centred in the posterior and anterior regions 

of the STS respectively.  

1.4 Image Invariant Representations 
 

Image invariant representations are thought to be a crucial component of face 

recognition. The face of a person can generate a large number of different images due to 

changes in pose, illumination, expression, and occlusion. Image invariant representations are 

thought to be crucial for capturing the invariant features of the face that are reflect identity. 

This robustness ensures that the recognition system can identify individuals under various 

viewing conditions. It is important that these representations can be used to tell different 

faces belong to the same identity (within-person variability) as well as telling faces apart. 

Models of face perception and recognition often focus on the differences between identities 

and how a recognition system tells identities apart. However, they seldom comment on the 

natural variability of the face within an identity, often referred to as within-person variability 

(Burton, 2013). Empirically, research shows that the facial images belonging to one identity 

can often be perceived as more dissimilar than facial images of different identities, when 

these identities are unfamiliar to us (Jenkins, White, Van Montfort & Burton, 2011). In this 

study, participants were asked to freely sort two sets (one familiar and one unfamiliar) of 40 

facial photos into piles based on identity. The image sets each contained only 2 identities and 

the images were ambient in nature, referring to the fact that they were not chosen to fulfil 

any experimental requirements (such as having the face images taken with the same camera 

at the same time). It was revealed that the average number of piles (7.5) was far greater than 

the correct answer (2) for the unfamiliar faces. However, the piles rarely contained different 
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identities. This suggests that participants could tell the identities apart but often perceived 

that two images of the same person were too different to belong to the same identity. Thus, 

it is of importance to understand how within person variability is learned and adopted into 

an invariant representation allowing for a familiar observer to recognise an identity over a 

range of viewing conditions. 

 

1.4.1 The Problem of Within-Person Variability when Learning New Faces 
 

One recognition model which considers how within person variability can be used to 

create an image-invariant representation, is the averaging model (Burton, Jenkins, Hancock, 

& White, 2005; Jenkins & Burton, 2008). Here, it is proposed that a structural representation 

is created by filtering out image specific information through averaging. It has been found 

that average faces were better recognised by humans and face recognition algorithms than 

individual images of a person (Burton, Jenkins, Hancock & White, 2005). Moreover, variability 

in exposure has been shown to be fundamental to learning new faces, implying that an 

average facial representation can become more stable with a greater number of inputs 

(Devue & de Sena, 2023). Several studies have shown that, when learning new faces, 

participants are better able to recognise previously unseen faces when the learning images 

contain high variability (Murphy et al., 2015; Baker et al., 2017; Ritchie and Burton, 2017; 

Kramer et al., 2018). For example, when participants were taught to associate names with 

faces of unfamiliar individuals, using learning images that had a high degree of variability or a 

low degree of variability, participants were more accurate and quicker in verifying the names 

of identities they had learned with high variability compared to those learned with low 

variability (Ritchie & Burton, 2017). Taken together, these results are consistent with the idea 

that an average face representation could underpin our recognition of faces. Similarly, if this 

average representation is based on face images that are more representative of the natural 

variation of a person, then there will be an advantage in the recognition of novel views of a 

person.  

However, Burton, Jenkins and Schweinberger (2011) suggest that this averaging model may 

not be sufficient. Treating facial information that is less common across a series of images of 

an identity as noise and thus filtering this out of a view-invariant representation, may be 
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unhelpful when recognising a face. For example, in real life abrupt changes in appearance due 

to stylistic choices (e.g. dramatic haircuts or changes in surface properties e.g. tanning) do not 

usually impact one’s ability to recognise a familiar face. This variation in different images of a 

face could form part of one’s representation of that identity allowing for a more flexible and 

informative representation. Supporting this, Ritchie, Mireku and Kramer (2020), investigated 

the use of average images during a live face matching paradigm. They found when attempting 

to match a live target face to a single image, a 4-image array or a face average image, 

performance accuracy was comparable across all conditions. This suggests that whilst face 

averages have produced improvements in performance when image matching is performed 

using stimuli presented on a screen, this does not generalise to a real-world setting. 

1.4.2 Achieving View-Invariance from View-Symmetry 

 

Understanding the process of generating a view-invariant representation from view-

specific inputs is thought to be critical for unravelling the intricacies of face recognition. It had 

been assumed that this process involved the convergence of multiple view-specific 

representations. However, a more recent hypothesis posits a two-step process for achieving 

view-invariance, instead of a one stage process whereby view-specific inputs converge onto 

a view-invariant representation. Here it is suggested that there are two stages of 

convergence, whereby view-specific representations first converge into view-symmetrical 

representations which then further convolve into a view-invariant representation of identity 

(Freiwald & Tsao, 2010). Support for the role of view-symmetric representations in face 

recognition is elucidated by behavioural studies. These studies have demonstrated that faces 

with symmetrical viewpoints (e.g. a full left and full right profile) exhibit greater perceptual 

similarity than those with non-symmetrical viewpoints (e.g. full left profile and ¾ left view). 

Additionally, recognition accuracy is enhanced when the test viewpoint is symmetrical with 

the learned viewpoint (Troje & Bulthoff, 1998; Busey & Zaki, 2004; Flack et al., 2019).  

Parallel to these findings, neuroimaging studies have also revealed a similar representational 

hierarchy for viewpoint in face-selective regions. Firstly, fMRI studies have shown view-

selective responses to faces in the OFA (Grill-Spector et al., 1999; Andrews & Ewbank, 2004; 

Fang et al., 2007; Carlin et al., 2011; Guntupalli et al., 2017; Weibert et al., 2018). Moreover, 

studies have also reported view-symmetric representations and view-invariant 



31 | P a g e  
 

representations in regions such as the FFA (Axelrod & Yovel, 2012; Kietzmann et al., 2012; 

Guntupalli et al., 2017; Flack et al., 2019). Interestingly, these view-symmetric neural 

responses were predicted by the perceptual similarity of faces from different viewpoints, 

suggesting that they might play an important role in face recognition (Flack et al., 2019). 

Collectively, these findings suggest a functional hierarchy in facial representation within these 

regions that could underlie the process of recognition. This raises important theoretical 

questions regarding how image properties of faces contribute to the representation of faces 

that underlie the recognition of identity. For example, images of the same identity that are 

symmetrical in nature have a degree of difference in the image properties they possess, thus 

a key question remains regarding how this potential intermediate symmetrical representation 

is generated and subsequently utilised in the formation of a view-invariant representation. 

  

1.5. Thesis Aims 

 

The overarching aim of this thesis, is to further explore the role of visual information 

in the perception and recognition of faces. The experiments in this thesis use a combination 

of behavioural, computational and neuroimaging approaches to ask how facial 

representations are formed and what facial information is critical for the recognition and 

perception of faces. 

In order to address what image properties underpin facial representations, it is first important 

to consider the process of generating a view-invariant representation that is utilised for 

making identity judgements. The first experimental chapter (Chapter 3) investigates how 

view-invariant representations are generated. A key unresolved question within the 

literature, is how we generate view-invariant representations from view-specific inputs. This 

chapter explores the possibility of having an intermediate representation of view-symmetry, 

prior to achieving view-invariance. To achieve this, we compared behavioural and neural 

responses to canonical (yaw) and noncanonical (roll) rotations of the face, to interrogate how 

view-invariance emerges. Finally, we measured responses to viewpoint in a deep 

convolutional neural network trained on faces, to examine whether humans and DCNNs 

process viewpoint in similar ways.  
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Chapter 4, builds upon the previous chapter to explore what information within a view-

invariant representation is critical for familiar face recognition. As suggested previously, 

surface texture properties of the face are proposed as the dominant cue for recognition. 

However, in this chapter we explore the roles of both shape and texture information in the 

perception and neural representation of identity. This chapter uses hybrid faces in which the 

shape properties of one individual are combined with the texture properties of a different 

identity. Previous behavioural research investigating the contributions of shape and texture 

properties in recognition, have often employed tasks that can rely on perceptual matching. 

Here, we offer a different approach in which participants have to rely on their stored mental 

representations (as we do in everyday life). In the final experiment, we measured the relative 

sensitivity to shape and texture in face-selective regions of the human brain, to assess the 

similarity in the contributions of shape and texture information behaviourally and in the 

neural response. 

Upon establishing the overall relative contributions of shape and texture properties within 

familiar face recognition and the neural representation of faces, Chapter 5 aims to explore 

what specific image properties underlie this view-invariant representation. We used a 

behavioural approach in combination with principal components analysis to reveal the critical 

image dimensions for face recognition. We did this to answer two key questions using tasks 

that again, only rely on the stored mental representations of faces. Firstly, we asked which 

image dimensions were important for familiar face recognition. Secondly, we wanted to 

establish using a novel face learning paradigm, are the same image dimensions also important 

for becoming familiar to a new identity.  

Finally, experiments in Chapter 6 investigated further aspects of face processing, the 

perception of gaze, gender and emotional expression. It remains unclear within the literature, 

what image properties underlie the perception of the many signals of information available 

within a face, and whether the same image properties are critical for the perception of 

different signals. A similar approach to Chapter 5 was used, in which principal components 

were removed from faces that varied in either gaze, gender or expression, to explore the 

contributions of different combinations of image dimensions to the perception of these 

categories. We did this to examine whether a small set of image dimensions provide a unique 

or overlapping contribution to the perception of different facial signals.  
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Taken together, the experiments presented in this thesis aim to provide a cohesive account 

of how facial representations are formed, and what properties of a facial image are critical 

for the processes of face learning, face recognition and for aspects of face perception. 

Findings reported here, suggest that there are three stages of facial representation, ending 

with full view-invariance, sufficient for familiar face recognition. This latter representation 

relies on both shape and texture information from a face, with texture being the dominant 

property utilised. Furthermore, there is a critical band of shape and texture image dimensions 

that underlies both face learning and face recognition, with distinct (but overlapping to a 

small degree) bands of other image dimensions underlying the processing of different facial 

signals. 
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Chapter 2- General Methods Review 
 

2.1 The fMRI BOLD Signal 
 

Functional Magnetic Resonance Imaging (fMRI) is a widely popular technique aimed 

to measure the neural responses in the brain by tracking the changes in blood flow that are 

then associated with neural activity. As neurons increase their rate of fire, their energy 

reserves deplete and need to be replenished. Consequently, there is an increase in the 

transfer of oxygen to those neurons through the bloodstream leading to local changes in 

blood oxygenation. It has been shown that Blood Oxygenation Level-Dependent (BOLD) 

change causes a measurable change in local magnetic signal which can be detected by MRI 

(Ogawa, Lee, Kay & Tank, 1990), and used to infer the underlying brain response. Despite fMRI 

being an indirect measure of brain responses limited by the temporal resolution of the 

haemodynamic response, changes in the BOLD response do correlate well with changes in 

local field potentials and action potentials (measured using multi-unit activity) which occur 

within milliseconds (Logothetis, Pauls, Augath, Trinath & Oeltermann, 2001). Moreover, with 

fMRI having a high spatial resolution allowing for the resolution of differences in brain 

response within millimetres (voxel level), the measurement of the BOLD signal is a 

fundamental technique that can be analysed using a number of statistical techniques, 

including univariate and multivariate analyses. 

2.2 Univariate Analysis 

2.2.1 Cognitive Subtraction 
 

In order to analyse the BOLD signal, classical fMRI analyses typically employ a 

univariate general linear model (GLM) approach. A set of regressors are used to model the 

brain responses within voxels or a region of interest (ROI) to different stimulus conditions. A 

box-car model can then be used to predict zero response when the stimulus is absent and a 

non-zero response when the stimulus condition is present. This model can then be convolved 

with the hemodynamic response function (HRF) to produce an expected timeseries response 

that considers the non-abrupt changes seen in blood flow. Regressing this model against the 

collected fMRI BOLD signal on a voxel by voxel basis, results in a whole-brain statistical map 
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of regression coefficients (parameter estimates) which reflect the fit of the model at the voxel 

level. In this way, larger coefficient values reflect voxels that are activated by the stimulus 

condition; conversely, voxels that are not are not responsive to a stimulus will be predicted 

poorly and assigned a smaller coefficient value. This process can be seen in Figure 2.1.  

This analysis is typically performed on multiple stimulus conditions and can be used to infer 

the underlying properties of the brain or ROIs. For instance, parameter estimates for different 

experimental stimulus conditions (e.g. a control/baseline) can be contrasted against one 

another. In this way, the statistical significance at each voxel can be estimated (e.g. as a p-

value or a z-score) and be used to infer the underlying response (Huettel, Song, & McCarthy, 

2004). 

 

Figure 2.1. Univariate GLM analysis. A box-car function is defined that corresponds to the timing of the 

stimulus presentation. A hemodynamic-response function is used to convolve the box-car generating a 

hemodynamic regressor, which can then be regressed against the fMRI signal independently for each 

voxel. 

Whilst the univariate GLM approach is an informative technique allowing for the analysis of 

the BOLD signal there are limitations to this method. One such limitation is that when using 

GLM contrasts, only a single signal is obtained per voxel, however even voxels of 1mm3 

contain several hundred thousand neurons. This, in tandem with the assumption that 

responses which deviate significantly from zero reflect stimulus related neural activity, can 
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lead to less informative and less complex analysis. For instance, differences in response within 

a single voxel may either reflect response of all neurons within that population or greater 

change in only a subset of neurons. One resolution to differentiate these potential underlying 

sources of the BOLD signal is fMR-adaptation. 

Similarly, coherent patterns of neural response may be observed across multiple voxels which 

may include voxels showing both super- and sub-threshold positive and negative responses. 

Net neural patterns such as these may be found to differ reliably between stimulus 

conditions. In such cases it may even be that the aggregate response across voxels in a given 

brain region is near zero, but crucially this does not mean that this region does not contain 

information about the stimulus. Standard univariate analyses such as GLM, however, will not 

be sensitive to information represented in distributed neural patterns. It is for these reasons 

that it is now becoming ubiquitous to employ a variety of analyses including the use of 

multivariate methods within neuroimaging research, aiming to capture distributed neural 

patterns of activity.  

2.2.2 fMR Adaptation 
 

fMR adaptation is based on the principle that repeated stimulus presentation 

habituates the neurons which are responsive to that type of stimuli. However, if the stimulus 

or its properties are changed, only neurons which are sensitive to the change will recover 

from adaptation and increase their response. What this technique allows us to do is address 

whether or not in one voxel we have two populations of neurons coding different stimuli 

types (or stimulus properties), or whether we have one population of neurons coding both 

stimuli types (or stimulus properties) (Grill-Spector & Malach 2001). 
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Figure 2.2. Examples of a standard fMRI experiment (A) versus an fMR adaptation experiment (B). 

Adapted from Principles in Cognitive Neuroscience, Box 15B. Purves et al., (2013). Faces taken from the 

Radboud Face Database- Langner et al., (2010). 
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In a typical fMRI experiment (Figure 2.2A) we could have a voxel which contains a population 

of neurons which are selective for a particular viewpoint of a face (e.g. a frontal view). If a 

participant is shown an image of a face that is at this viewpoint, then you will generate a 

response from these neurons. Within this voxel, there could also be a population of neurons 

selective for another viewpoint of a face (e.g. left profile). If the participant is then shown an 

image depicting a left profile of a face, this population of neurons could give a similar response 

to that of a front on face. Using a standard contrast approach, we would compare the 

response of the front view and the left profile. This would give rise to no difference. One 

interpretation is that there is no selectivity to viewpoint. However, this would hide the real 

interpretation which is that there are equal numbers of neurons selective to frontal and left 

profile faces. 

However, in an adaptation paradigm (Figure 2.2B), repeated presentations of one viewpoint 

(frontal) cause the neural response to decrease because the neurons selective to frontal view 

to habituate. However, if a new viewpoint (e.g. left profile), the response increases because 

there is a separate population of neurons which are selective for this and have not been 

habituated. Therefore, using an adaptation paradigm means the underlying neural coding for 

(in this example) the processing of facial viewpoints, can be more directly addressed.  

2.3 Multivariate Pattern Analysis (MVPA) 

 

To combat the limitations of traditional univariate GLM based analyses, the use of 

multivariate methods allows for the patterns of response across multiple voxels to be 

interrogated simultaneously. One such method is multi-voxel pattern analysis (MVPA) which 

can be advantageous when two conditions may produce similar overall mean responses 

within a ROI, but crucially have different underlying neural patterns. In this case, the 

difference between the conditions would be masked using a GLM univariate analysis due to 

contrasting within an ROI leading to no significant differences. Therefore, analysing the 

patterns of neural response across voxels within an ROI can reveal differences (if present) 

between conditions.  
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2.3.1 Correlational MVPA 

 

A fairly straightforward form of MVPA is the correlational method which was applied 

in the original Haxby et al (2001) study, to demonstrate that neural patterns of response can 

be used to distinguish between object categories. To perform this method the data is first 

split into odd and even runs of the stimulus presentation for each condition (known as cross-

validation). Next, parameter estimates are generated for each condition, independently for 

each run using a univariate GLM analysis in each voxel within the ROI. The data is then 

normalised to reduce the shared variance between across the conditions. For instance, if the 

stimulus conditions were facial expressions (e.g. happy and sad faces), the parameter 

estimates generated for these conditions are expected to contain shared variance that is 

explained by all conditions using faces, attentional effects and generic responses to visual 

stimulation. Through a process of normalisation such as subtracting the mean response across 

all experimental conditions, from each individual condition on a voxel by voxel basis, we leave 

behind the pattern of response that is exclusive to the experimental conditions. Pairwise 

correlations can then be calculated between the neural response patterns for each possible 

combination of conditions across the splits of the data. This is performed for both within-

condition comparisons (e.g. happy faces-even with happy faces-odd) and between-condition 

comparisons (e.g. happy faces-even with sad faces-odd). MVPA outputs are often 

represented in correlational matrices, with the prediction that if response patterns can 

distinguish the stimulus conditions then, the within-condition correlations will be higher than 

the corresponding between-condition correlations. Haxby et al (2001), revealed higher within 

than between-category correlations for multiple object classes, indicating that different 

object categories could be discriminated through distinct patterns of response. Crucially, 

when this analysis was restricted to only those voxels which did not show a selective 

univariate response to any condition, the results remained. Thus, it was argued that while 

standard univariate analysis did not produce distinct brain responses to different categories, 

multivariate analysis was sensitive enough to reveal category-specific brain response 

patterns. 
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Figure 2.3. Schematic of a correlation-based MVPA paradigm from Haxby et al., (2001). Neural response 

patterns were estimated for faces and houses (stimulus conditions), for even and odd stimulus runs. 

Patterns are restricted to a region of interest, and correlated pairwise within and between- conditions 

across the data splits.  

2.3.2 Leave One Participant Out (LOPO) MVPA 
 

The majority of MVPA studies investigate patterns of response within participants. 

This is based on the assumption that patterns of neural response are to some degree 

idiosyncratic. However, other studies have utilised a Leave-One Participant Out (LOPO) MVPA 

paradigm (Shinkareva et al., 2008; Poldrack, Halchenko & Hanson, 2009; Kaplan & Meyer, 

2012). This LOPO paradigm has the advantage of being able to determine the consistency of 

responses across individuals. Instead of cross validating neural response patterns across runs 

within participants, it iteratively compares the neural response to all stimulus conditions 

between an individual participant and the rest of the group. To perform this method, a group 

average of the neural response to each condition is created (minus one participant), it is then 

compared to the neural response profile in the individual whose data has been left out of the 
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group analysis for those same conditions. This analysis is then iteratively repeated once for 

each participant. The outcome of this yields a number of correlation coefficients for each 

condition comparison equal to the number of participants. Significance testing can then be 

carried out in the same way as correlational MVPA (Haxby et al., 2001), by comparing the 

correlational coefficients for neural responses to within vs between category conditions. If a 

stimulus category generates a distinct pattern of activity, then the within-condition 

correlations for the individual participant and rest of the group should be higher than the 

between-condition correlations. 

 

 

Figure 2.4. Schematic diagram of a LOPO MVPA paradigm. Group analyses compare individual patterns 

of response with the group pattern of response derived from all participants except that individual, this 

process is then repeated across all LOPO iterations for all conditions.  

 

2.4 Principal Components Analysis (PCA) 

 

In addition to neuroimaging techniques, other statistical methods have been used in 

face perception and recognition- such as principal components analysis. PCA is a statistical 

method under the broad title of factor analysis. The purpose of PCA is to reduce the large 
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dimensionality of the data space (observed variables) to the smaller intrinsic dimensionality 

of feature space (independent variables), which are needed to describe the data economically 

(Jung et al., 2002). This is the case when there is a strong correlation between observed 

variables. The central idea of using PCA for face recognition is to express the large 1-D vector 

of pixels constructed from 2-D facial images into the compact principal components of the 

feature space. This can be called eigenspace projection. Eigenspace is calculated by 

identifying the eigenvectors of the covariance matrix derived from a set of facial images 

(vectors).  

Using this technique, it has been possible to model a number of perceptual facial properties, 

including face distinctiveness, the other race effect and emotional expressions (Calder, 

Burton, Miller, Young, & Akamatsu, 2001; Hancock, Bruce, & Burton, 1998; Hancock, Burton, 

& Bruce, 1996; O’Toole, Deffenbacher, Valentin, & Abdi, 1994). What makes this technique 

advantageous is its capacity to represent variability of multidimensional data in far fewer 

dimensions (known as eigenfaces). Originally shown by Kirby and Sirovich (1990) as well as 

Turk and Pentland (1991), it was revealed that face images can be reconstructed using as few 

as 50 eigenfaces compared to many thousands required in a pixel-by-pixel representation 

(Burton, Bruce, & Hancock, 1999). Another advantage of this technique is that many faces can 

be entered into the PCA analysis. Thus, natural variation across faces can be approximated 

and represent our pre-existing experience with faces in real life by using images that are 

ambient in nature- capturing variability across age, pose, lighting conditions, emotional 

expressions, image quality, and ethnicity. Similarly, varying numbers of images of different 

identities can be entered into the analysis in order to simulate different levels of familiarity. 

Eigenfaces are created once a set of face images is subjected to PCA. To do this, the face 

images due to be entered are first resampled to a common pixel resolution (r × c). Each image 

is then treated as one vector, simply by concatenating the rows of pixels in the original image, 

resulting in a single column with r × c elements. For this implementation, it is assumed that 

all images of the set are stored in a single matrix T, where each column of the matrix is an 

image. The images are mean centred by subtracting the mean image from each image vector. 

The eigenvectors and eigenvalues of the covariance matrix are then calculated. Each 

eigenvector has the same dimensionality (number of components) as the original images, and 

thus can itself be seen as an image. The eigenvectors of this covariance matrix are referred to 
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as eigenfaces (principle components). They are the directions in which the images differ from 

the mean image i.e. the directions of the new feature space, and the eigenvalues determine 

their magnitude, in other words they explain the variance of the data along the new feature 

axis. These eigenvalues are often sorted so that the first principal components explain the 

most variance within an image set. Information is lost by projecting the image on a subset of 

the eigenvectors, but losses are minimized by keeping those eigenfaces with the largest 

eigenvalues. For instance, working with a 100 × 100 image will produce 10,000 eigenvectors. 

In practical applications, most faces can typically be identified using a projection of between 

50 and 150 eigenfaces, meaning that most of the 10,000 eigenvectors can be discarded.  

A common practice when using PCA with faces is to perform shape normalisation aiming to 

separate face shape and face texture. There are a number of different ways of 

operationalising the distinction between shape and texture properties to allow them to be 

manipulated quasi-independently. For example, 3D laser scans can be used to derive the 3D 

structure of the human face and can be overlaid with a two-dimensionally defined texture 

map (O’Toole, Price, Vetter, Bartlett and Blanz 1999). However, more commonly, shape and 

surface texture properties are extracted in a 2D manner using a process of delineation. This 

process often examines the second order configural properties of face shape, those that are 

defined by the spatial layout of the features. This process requires a standard grid that is 

positioned over each face and altered to map out the key landmark fiducial points (e.g. 

corners of the mouth and eyes). To then separate the shape and texture of the face, the 

images are morphed into a standard face shape (typically the average shape of all of the faces 

in the set) generating each image into a shape-free face space, which are then used for the 

texture PCA. The shape component, therefore, codes the original position of the points in the 

grid while the texture component codes the pixel intensities in its standardised shape. After 

this separation, PCA is applied to independently to the images containing just the shape and 

texture of the faces, leading to images that are then assigned a unique set of shape and 

texture coefficients that describe the principle components (eigenfaces) that represent the 

image in this lower-dimensional space.  
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Chapter 3- The emergence of view-symmetry for faces in humans and 

deep networks 
 

This Chapter is adapted from: Rogers, D., & Andrews, T. J. (2022). The emergence of view-

symmetric neural responses to familiar and unfamiliar faces. Neuropsychologia, 172, 

108275. 

 

3.1 Abstract  
 

Successful recognition of familiar faces is thought to depend on the ability to integrate view-

dependent representations of a face into a view-invariant representation. It has been 

proposed that a key intermediate step in achieving view invariance is the representation of 

symmetrical views. However, key unresolved questions remain, such as whether these 

representations are specific for naturally occurring changes in viewpoint and whether view-

symmetric representations exist for familiar faces. To address these issues, we compared 

behavioural and neural responses to canonical (yaw) and noncanonical (roll) rotations of the 

face. Similarity judgements revealed that symmetrical viewpoints were perceived to be more 

similar than non-symmetrical viewpoints for both canonical and non-canonical rotations. 

Next, we measured patterns of neural response from early to higher level regions of visual 

cortex. Early visual areas showed a view-dependent representation for natural or canonical 

rotations of the face, such that the similarity between patterns of response were related to 

the difference in rotation. View-symmetric patterns of neural response to canonically rotated 

faces emerged in higher visual areas, particularly in face-selective regions. The emergence of 

a view-symmetric representation from a view-dependent representation for canonical 

rotations of the face was also evident for familiar faces, suggesting that view-symmetry is an 

important intermediate step in generating view-invariant representations. Next, we 

measured neural responses to non-canonical rotations of the face. We found that view-

symmetric patterns of response were also evident in face-selective regions. However, in 

contrast to canonical rotations of the face, these view-symmetric responses did not arise from 

an initial view-dependent representation in early visual areas. This suggests differences in the 

way that view-symmetrical representations emerge with canonical or non-canonical 

rotations. The similarity in the neural response to canonical views of familiar and unfamiliar 
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faces in the core face network suggests that the neural correlates of familiarity emerge at 

later stages of processing. Finally, we measured responses to viewpoint in a deep 

convolutional neural network trained on faces (VGG-Face). We found view-specific responses 

in the convolutional layers. View-symmetric responses emerged in the fully connected layers 

and were predicted by behavioural responses. Together, these findings provide new insights 

into the importance of view symmetry in human and artificial neural networks. 

3.2 Introduction  
 

Recognising the identity of a familiar face is a simple and relatively effortless process 

for most human observers. However, the appearance a face can change dramatically as a 

person moves their head. The visual system must ignore these sources of variation in order 

to recognise identity, yet at the same time be able to process these changes because of their 

role in social communication (Bruce & Young, 1986; Andrews & Ewbank, 2004; Baseler et al., 

2014). The challenge of familiar face recognition is demonstrated by the difficulty in the 

recognition of unfamiliar faces when they are seen from different views (Bruce, 1982; 

Hancock et al., 2000; Longmore et al., 2008). Cognitive models of face perception suggest that 

a solution to the problem of familiar facial recognition is through view-invariant 

representations (Bruce & Young, 1986; Young & Burton, 2017). The successful generation of 

view-invariant representations relies on variable input, and experience with multiple facial 

viewpoints (Bruce, 2017).  

How view-invariant representations are generated from view-specific representations is 

critical to understand how we recognise faces. A simple model for how a view-invariant 

representation could emerge involves the convergence of multiple view-dependent 

representations in a single step. However, a more recent suggestion is that the process of 

view-invariance occurs by a two-step process that involves the convergence of view-

dependent representations into view-symmetrical representations and then the convergence 

of these view-symmetric responses into view-invariant representations (Freiwald & Tsao, 

2010). Behavioural support for the role of view-symmetric representations in face recognition 

comes from studies that have shown that the perceptual similarity of faces with symmetrical 

viewpoints (e.g. two profiles) is greater than for non-symmetrical viewpoints (e.g. profile and 

¾ view) and also by studies that have shown that recognition judgements are more accurate 
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when the test viewpoint is symmetrical to the learnt viewpoint (Troje & Bulthoff, 1998; Busey 

& Zaki, 2004; Flack et al., 2019).  

Neurophysiological studies provide further support for a model of face recognition that is 

initially view-specific, with an intermediate view-symmetric representation before view-

invariance emerges. For example, different face-selective neurons in the temporal lobe of 

nonhuman primates have been shown to be selective for single views, symmetric views and 

invariant to changes in view (Perrett et al., 1991). Studies using fMRI guided 

neurophysiological recordings in non-human primates show that face regions at early stages 

of processing have a more view-specific representation, with intermediate face regions 

showing more view-symmetric responses and later face regions showing more view-

invariance (Friewald & Tsao, 2010). Taken together these results imply that there is a 

functional hierarchy of facial representation within these regions that could underpin 

recognition. Interestingly, these symmetrical responses were evident to naturally occurring 

or canonical rotations of the head (yaw - left to right changes in viewpoint), as well as to less 

common or non-canonical rotations (roll) that occur as a result of within-plane rotations of 

the image. The demonstration of view symmetrical responses to non-canonical rotations is 

intriguing, as it suggests that these responses might reflect a more general response to 

symmetry in the visual brain (Bertamini et al., 2018), rather than something that is directly 

linked to face recognition.  

Neuroimaging studies have also revealed a similar representational hierarchy for viewpoint 

in face-selective regions. fMRI studies have shown view-selective responses to faces in the 

OFA (Grill-Spector et al., 1999; Andrews & Ewbank, 2004; Fang et al., 2007; Carlin et al., 2011; 

Guntupalli et al., 2017; Weibert et al., 2018). However, other studies have also reported view-

symmetric representations in regions such as the FFA (Axelrod & Yovel, 2012; Kietzmann et 

al., 2012; Guntupalli et al., 2017; Flack et al., 2019). Interestingly, these view-symmetric 

neural responses are predicted by the perceptual similarity of faces from different viewpoints, 

suggesting that they might play an important role in face recognition (Flack et al., 2019). 

There are two important limitations of previous neuroimaging studies in humans. The first is 

that these studies have only used naturally occurring viewpoint changes. So, it remains 

unknown whether view symmetric neural responses are also evident to more unnatural, 

noncanonical rotations of the face (such as in plane rotation), as has been reported in 
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neurophysiological studies (see Friewald & Tsao, 2010). If view-symmetrical responses to 

faces were found for these rotations, it could be argued that they reflect a general property 

of visual cortex, rather than being directly linked to generating view-invariant representations 

for face recognition. The second limitation is that all previous neuroimaging studies have used 

unfamiliar faces (Axelrod & Yovel, 2012; Kietzmann et al., 2012; Guntupalli et al., 2017; Flack 

et al., 2019). It is not clear therefore whether view-symmetric responses are also evident for 

familiar faces. Demonstrating view-symmetric responses to familiar faces would provide 

further evidence for the role of these representations as an intermediate step toward view-

invariant representations. 

In more recent years, the development of deep convolution neural networks (DCNNs) has 

made substantial progress on the complex problem of recognising faces across variations of 

viewpoint, illumination and appearance (O’Toole, Castillo, Parde, Hill, Chellappa, 2018). 

Despite the development of DCNNs, the nature of the visual representation that emerges 

from the fully connected layers is not fully understood. For example, what properties of the 

image are still evident in the fully connected layers. Interestingly, a recent study has shown 

that, although the fully-connected layers of the DCNN are able to identity face identity across 

image variation, they also contain information about the image, such as viewpoint (Parde et 

al., 2017). However, it is yet to be determined if mirror-symmetric representations are also 

present.  

The aim of this study was to explore view-symmetry using behavioural measures, 

neuroimaging techniques and artificial neural networks. First, we wanted to determine if 

view-symmetric representations are evident for both canonical and non-canonical rotations 

of the face. If mirror-symmetric representations are an important process that precedes the 

generation of a view-invariant representation, then it might be expected that the view-

symmetric responses would only be evident for naturally occurring rotations of the face. To 

address this question, we compared the perceptual similarity to faces that were rotated 

canonically (left/right rotations of the head, yaw) with faces that were rotated noncanonically 

within the plane of the image (within plane rotation, roll). As a further test of whether view 

symmetry is important for recognition, we measured perceptual similarity of familiar faces 

for which view-invariant representations are thought to exist. Second, to determine how 

patterns of viewpoint selectivity response emerge in visual cortex, we measured the pattern 
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of response in early visual areas and in face-selective regions. Our hypothesis was that face 

images will initially be represented by a view-dependent (image based) representation in 

early visual areas, but that view-symmetric representations will emerge in higher-level face 

regions. Third, we addressed how viewpoint is represented within a DCNN that has been 

trained on millions of face images for the purpose of recognition. Here we wanted to ask 

whether view-symmetric representations are a feature of artificial neural networks and 

whether these representations are similar to those seen in human observers during fMRI. To 

do this, we compared the outputs of pairs of images with different viewpoints to ask whether 

view-symmetric responses are evident in the DCNN and in what layers of the network they 

emerge. Finally, we asked whether behavioural responses (perceptual similarity ratings for 

pairs of images) in humans could predict patterns of response in the DCNN addressing the 

question of whether humans and DCNNs compute view symmetry in similar ways. 

 

3.3 Methods 

3.3.1 Participants  
 

Participants were recruited separately for the behavioural and fMRI experiments 

(Experiment 1: n = 38, female = 26, mean age = 23.6 years, SD = 5.58; Experiment 2: n = 25, 

female = 14, mean age = 23.5 years, SD = 6.87; Experiment 3: n = 69, female = 43 , mean age 

= 21.3 years , SD = 3.27). All participants had normal or corrected to normal vision and were 

drawn from an opportunity sample of students and staff at the University of York. All 

participants gave their written informed consent. The study was approved by the Psychology 

Department Ethics Committee and the York Neuroimaging Centre Ethics Committee.  

3.3.2 Stimuli  
 

Figures 3.1 and 3.2 show the stimulus sets that were used for the behavioural and 

neuroimaging experiments, as well as the DCNN analysis. The stimuli were either familiar 

(well-known celebrities) or unfamiliar faces. There were three conditions: (1) canonical-

familiar, (2) canonical-unfamiliar and (3) noncanonical-unfamiliar. The unfamiliar faces were 

taken from the Radboud Faces Database (Langner et al., 2010). The familiar images were 
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taken from five celebrities popular to a UK student demographic (Angelina Jolie, Brad Pitt, 

George Clooney, Jennifer Aniston, Taylor Swift). Naturally occurring changes in view for the 

familiar and unfamiliar faces are shown in Figures 3.1 and 3.2. These images show canonical 

rotations (yaw) of the head at approximately − 90◦, − 45◦, 0◦, 45◦, 90◦. The symmetric views 

for the unfamiliar faces were created by different cameras being set up at precise angles and 

all photos being taken simultaneously (Langner et al., 2010). View-symmetric images of 

familiar faces were created by taking the mirror image of each viewpoint. Otherwise, it would 

have been impossible to get symmetric views with similar appearance. Non-canonical views 

were generated by taking the frontal view of each unfamiliar face and rotating it in the frontal 

plane (roll) by 45◦ and 90◦ to the left and right (Figure 3.3). All face images were superimposed 

on a 1/f amplitude mask and scaled to 500 × 500 pixels, to ensure that all images stimulated 

the same amount of the visual field despite changes in viewpoint and rotation. 
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Figure 3.1. Exemplars from the canonical-familiar condition. Images from 5 different viewpoints are 

show in columns. Images from 5 familiar identities are shown in rows. 

 

Figure 3.2. Exemplars from the canonical-unfamiliar condition. Images from 5 different viewpoints are 

show in columns. Images from 5 unfamiliar identities are shown in rows. 
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Figure 3.3. Exemplars from the non-canonical-unfamiliar condition. Images from 5 different viewpoints 

are show in columns. Images from 5 unfamiliar identities are shown in rows. 

 

3.4 Experiment 1- Behavioural responses to face view 

3.4.1 Methods 
 

To determine whether symmetrical viewpoints were perceived as being more similar 

than non-symmetrical viewpoints, participants were asked to rate the perceptual similarity of 

pairs of faces that differed in view (canonical-familiar, canonical-unfamiliar; non-canonical-

unfamiliar). Participants completed this experiment online using the Pavlovia platform 

(PSYCHOJS, Version 2020.2). Each trial began with a white fixation cross superimposed on a 
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grey background for 0.5s. This was followed by a pair of faces (from the same identity) that 

were presented for 3s. Each view was presented with every other view (10 combinations), 

there were 5 identities for each of the 3 image sets giving a total of 150 trials. Images 

subtended approximately 8◦ of visual angle. The order of trials was randomised for each 

individual participant. Participants were required to respond with a button press indicating 

how similar they perceived the images to be, on a scale of 1–7 (1 being less similar and 7 being 

more similar). Participants had an unlimited time to respond. 

3.4.2 Results 
 

Participants made perceptual similarity judgements between pairs of faces with 

different viewpoints. Figure 3.4 shows the average ratings for symmetrical (e.g. − 90◦ & 90◦) 

and asymmetrical (e.g. − 90◦ & − 45◦) face pairs for each condition (canonical-familiar, 

canonical-unfamiliar & noncanonical-orientation). An ANOVA with Symmetry (symmetrical, 

non-symmetrical) and Condition (canonical-familiar; canonical-unfamiliar; noncanonical-

unfamiliar) showed a main effect of symmetry (F(1,37) = 260.52, p < .001) and condition 

(F(1.31, 48.48) = 12.99, p < .001) as well as an interaction between symmetry and condition 

(F (2,74) = 18.83, p < .001). The effect of symmetry was a result of symmetrical views being 

more similar than non-symmetrical views for both canonical (familiar t(37) = 14.10, p < .001); 

unfamiliar: (t(37) = 6.78, p < .001) and non-canonical (t(37) = 8.88, p < .001) rotations of the 

face. The interaction between symmetry and condition was due to a greater difference 

between symmetrical and asymmetrical viewpoints in the canonical-familiar condition 

compared to both the canonical-unfamiliar (t(37) = 4.67, p < .001, d = 0.76) and the non-

canonical-unfamiliar (t (37) = 5.30, p < .001, d = 0.86). Importantly,  for symmetrical viewpoint 

combinations there was no difference in perceptual similarity between the canonical-familiar 

and canonical-unfamiliar conditions (t(37) = 1.64, p = .054). These findings show a perceptual 

similarity advantage for symmetrical views is evident for both canonical and non-canonical 

rotations and is also evident for familiar faces. 
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Figure 3.4. Average perceptual similarity ratings of symmetrical and asymmetrical viewpoints for each 

condition. For each condition, symmetrical viewpoints were rated as being more similar than 

asymmetrical viewpoints. Error bars indicate SEM. 

 

3.5 Experiment 2 - Neural responses to face view 

3.5.1 Methods 
 

The main fMRI experimental scans used a block design with 5 different stimulus 

conditions, each depicting a different rotation (− 90◦, − 45◦, 0◦, 45◦, 90◦). Images from the 

different conditions (canonical-familiar, canonical-unfamiliar; non-canonical-unfamiliar) were 

shown in separate scans. In each scan, the 5 images corresponding to each viewpoint 

(columns in Figures 3.1-3) were shown in 6s blocks. Within each block, each image was 

presented for 1s followed by a 200ms grey screen. A 9s fixation screen was presented 

between each block. There were 5 views and each was shown 6 times during the scan, giving 
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a total of 30 blocks. The order of the blocks was pseudorandomised across the scan. Images 

subtended a retinal angle of approximately 15◦ and were viewed on a screen at the rear of 

the scanner via a mirror placed immediately above the participant’s head. Participants 

maintained attention during the scans by fixating on a cross in the centre of the images and 

indicating using a response box when they saw a green cross. Accuracy on this task was very 

high during each scan (canonical-familiar: 98.3% SD 2.46, canonical-unfamiliar: 97.7% SD 4.35, 

non-canonical-unfamiliar: 98.3% SD 2.74). 

All imaging data was collected using a GE 3 T HD Excite MRI system with an eight-channel 

phased array head coil tuned to 127.4MHz, at the York Neuroimaging Centre (YNiC), 

University of York. A T1-weighted structural MRI image (1 × 1.13 × 1.13 mm voxel) was 

collected and a gradient-echo EPI was used to collect the functional images. A gradient echo 

EPI sequence with a radio-frequency coil tuned to 127.4MHz was used to acquire 38 

contiguous axial slices (TR = 3s, TE = 25ms, flip angle = 90◦, FOV = 260mm, matrix size = 128 × 

128, slice thickness = 3mm, voxel size: 2.25 × 2.25 × 3mm) in a bottom-up interleaved 

acquisition.  

Data were analysed with FEAT version 5.0.9 (http://www.fmrib.ox. ac.uk/fsl). The first 9s (3 

vol) from each scan were discarded, and MCFLIRT motion correction, spatial smoothing 

(Gaussian, FWHM 5 mm), and temporal high-pass filtering (cutoff 0.0093Hz) were applied. 

The BOLD response for each condition was modelled with a boxcar function convolved with a 

standard haemodynamic response function. To understand how the representation of facial 

viewpoint might change from early to higher levels of the visual system, we used ROIs based 

on probabilistic visual-field maps (Wang et al., 2015). These visual-field maps were generated 

using standardised retinotopic mapping, utilising colour and luminance varying flickering 

checkerboards, on a large sample of participants (N = 53). These maps were then validated 

on a separate group of participants to determine the probability of the ROI being in that 

location. Overall, we investigated 12 ROIs in each hemisphere giving a total of 24 independent 

regions. The analysis extracted mean percentage signal changes within the given ROI for each 

cope (condition) for each of the functional scans. We also used the core face-selective regions 

(FFA, STS, OFA). Face specific regions were defined at the same size (500 voxels), to allow the 

MVPA analyses to have comparable potential power to detect underlying patterns of 

response in each region. A group analysis was performed across participants comparing the 
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response to unfamiliar faces compared to baseline. Using masks from a previous study (Flack 

et al., 2019), we identified the most face-selective voxel for each ROI from the group analysis. 

ROIs were then created using a flood fill algorithm that progressively selected voxels with the 

highest face-selectivity until the mask reached 500 voxels in size (Weibert et al., 2018; Flack 

et al., 2019). 

Pattern analyses were performed using the PyMVPA toolbox (http://www.pymvpa.org/; 

Hanke et al., 2009). Parameter estimates from a univariate analysis of the main experiment 

were first normalized by subtracting the average response across the five viewpoint 

conditions (− 90◦, − 45◦, 0◦, 45◦, 90◦). The reliabilities of the neural patterns of response were 

then determined using a modified form of the correlation-based MVPA method devised by 

Haxby et al (2001), in which patterns of response from each participant were compared with 

the patterns resulting from the group analysis with that participant left out. This leave one 

participant out (LOPO) method allowed us to determine the consistency of the patterns of 

response across participants by measuring how similar each participant’s responses were to 

those for the rest of the group (Rice et al., 2014; Watson et al., 2014; Coggan et al., 2016; 

Weibert et al., 2018). The group pattern was derived by entering all but one of the 

participants’ data into a higher-level group analysis (mixed effects; FLAME, 

http://www.fmrib.ox.ac.uk/fsl). This group pattern of response for each condition was then 

correlated with the pattern from the participant who was omitted from the group. For each 

unique pair of conditions, the LOPO method was repeated 25 times, with a different 

participant being omitted from the rest of the group each time. A Fisher’s Z-transformation 

was then applied to the correlations before statistical analysis. To assess whether there were 

reliable responses to each view we compared the within-condition and between-condition 

correlations.  

Next, a representational similarity analysis (Kriegeskorte et al., 2008; Flack et al., 2019) was 

performed to determine how information regarding facial viewpoint was represented across 

the ROIs using a Viewpoint and a Symmetry model. In the Viewpoint model the value of each 

cell was proportional to the degree of difference in rotation between views. In the Symmetry 

model, cells showing symmetrical viewpoints were given a value of 1 (e.g. − 90; 90) and non-

symmetrical viewpoints were given a value 0. To prevent differences in the overall magnitude 

of within-condition and between-condition correlations artificially inflating differences in 
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correlations between matrices, our analysis was only performed on the between-cluster 

comparisons. All models were normalized using a Z-transform (mean 0, SD 1) which was then 

inputted into a linear regression analysis, with the outcomes defined as the correlation 

matrices obtained from the MVPA concatenated across LOPO iterations. For each model, 

elements within the matrix were extracted and flattened to a vector. These vectors were then 

repeated and tiled to match the number of participants. For each participant, correlation 

matrices were extracted and flattened to a vector. These vectors were then concatenated 

and entered into the model as the outcome variable. This analysis yielded a regression 

coefficient and an error that reflected variance across participants. All regression analyses 

included a constant term. From this analysis, it was possible to determine the relative fit to 

each model in each ROI. To determine how the representations emerged throughout visual 

cortex, we compared the regression coefficients for each model across different ROIs. 

Statistical values were corrected for multiple comparisons using Bonferroni-Holm. 

3.5.2 Results 
 

We measured the effect of viewpoint on the neural response to faces using LOPO 

MVPA. To determine the reliability of the patterns of response to different viewpoints, we 

first compared same-viewpoint similarity with between-viewpoint similarity. Higher same-

view compared to different-view correlations shows that the patterns of response were 

reliable. Reliable patterns of response were evident across most regions of interest (Table 

3.1). This demonstrates consistency in the patterns of response across participants to 

different viewpoints of faces (see also Weibert et al., 2018; Flack et al., 2019). 

Next, we asked whether the patterns of response in each region were better explained by a 

view-dependent model (in which the similarity in the patterns of response to different 

viewpoints is explained by the difference in rotation) or by a view-symmetric model (in which 

symmetric viewpoints elicit more similar patterns of response compared to asymmetric 

viewpoints).  
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Table 3.1. Same-view versus different-view comparisons for each condition across all ROIs. Distinct 

patterns of response were demonstrated by higher within-viewpoint correlations compared with 

between-viewpoint correlations. ***p < .001, **p < .01, *p < .05. 

 

First, we measured patterns of response to different viewpoints in the canonical familiar 

condition. Figure 3.5 (A) shows how the view-dependent model predicts patterns of response 

across different regions. The data shows that regression coefficients for the view-dependent 
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model were highest in early visual areas, but then decreased in higher visual areas. Figure 3.5 

(B) shows how the view-symmetric model predicts patterns of response across different 

regions. In contrast to the view-dependent model, regression coefficients for the view-

symmetric model were lowest in early visual areas, but increased in higher visual areas, 

particularly the face-selective regions. These findings suggest the emergence of a view-

symmetric representations from an initial view-dependent representation. To quantify the 

transition from a view-dependent to a view-symmetric representation, the regression 

coefficients were correlated across the different models. There was a significant negative 

correlation in both the left (r = -0.72, p = .003) and right (r = -0.91, p < .001) hemisphere. 

 

Figure 3.5. Regression analysis of fMRI data for canonical-familiar condition showing how different 

models predict patterns of response across ROIs. (A) The Viewpoint model predicted patterns of response 

in early visual areas. (B) In contrast, the Symmetry model predicted patterns in higher visual areas, 

including the face-selective regions. ***p < 0.001, **p < 0.01, *p < 0.05. 

Next, we measured patterns of response in the canonical unfamiliar condition. Similar to the 

pattern for familiar faces, there were high regression coefficients for the view-dependent 

model in early visual areas, but lower values in higher visual areas (Figure 3.6A). Regression 

coefficients in the view-symmetric model (Figure 3.6B) were lowest in early visual areas, but 

increased in higher visual areas, particularly the face-selective regions. Again, these findings 

show the emergence of a view-symmetric representations from an initial view-dependent 



59 | P a g e  
 

representation of faces. To quantify this change from view-dependent to view-symmetric 

patterns of response, the regression coefficients were correlated across the two models. 

Similar to the familiar faces, there was a significant negative correlation in both the left (r = -

0.63, p = .012) and right (r = -0.68, p = .005) hemispheres. 

 

Figure 3.6. Regression analysis of fMRI data for canonical-unfamiliar condition showing how different 

models predict patterns of response across ROIs. (A) The Viewpoint model predicted patterns of response 

in early visual areas. (B) In contrast, the Symmetry model predicted patterns in higher visual areas, 

including the face-selective regions. ***p < 0.001, **p < 0.01, *p < 0.05. 

Finally, we measured patterns of response to viewpoints in the non-canonical-unfamiliar 

condition (Figure 3.7). In contrast to canonical rotations of the face, regression coefficients 

for the view-dependent model were low, with only V1 (left hemisphere) having a significant 

positive regression coefficient and there was no obvious change in the magnitude of 

regression coefficients from early to higher visual areas. The regression coefficients for the 

Symmetry model were, however, significant in many of the higher visual areas. Although 

these findings demonstrate the existence of view-symmetric representations for non-

canonical rotations, this does not appear to emerge from an initial view-dependent 

representation. This is also shown by the lack of correlation between regression coefficients 

across the two models in either the left (r = 0.15, p = .589) or right (r = -0.35, p = .205) 

hemispheres. 
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Figure 3.7. Regression analysis of fMRI data for non-canonical-unfamiliar condition showing how 

different models predict patterns of response across ROIs. (A) The Viewpoint model failed to predict 

patterns of response across early and higher visual areas. (B) In contrast, the Symmetry model predicted 

patterns in higher level visual areas, including the face-selective regions. ***p < 0.001, **p < 0.01, *p < 

0.05. 

3.6 Experiment 3 – DCNN responses to face view 

3.6.1 Methods 
 

In Experiment 3 we were interested in exploring whether view symmetry would 

emerge within a deep neural network and whether this would mirror similar patterns found 

in MRI within humans. To do this we used the VGG-Face DCNN (Parkhi, Vedaldi & Zisserman, 

2015) to compare the similarity of face images. This DCNN consists of 13 convolutional layers 

and 3 fully connected (Fc) layers. The input to the network is images of size 224 x 224 pixels; 

images are cropped to a square bounding box centred on the face and rescaled to this 

resolution. Each convolutional layer is followed by one or more non-linear layers, such as 

rectified linear units or max pooling, which were not used in this analysis. The dimensions of 

the layers are as follows: Conv1 = 224 x 224 x 64 = 3,211,264; Conv2 = 112 x 112 x 128 = 

1,605,632; Conv3 = 56 x 56 x 256 = 802,816; Conv4 = 28 x 28 x 512 = 401,408; Conv5 = 14 x 

14 x 512 = 100,352; Fc6 = 4096; Fc7 = 4096; Fc8 = 1000. The DCNN was trained on over 2.6M 
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face images from over 2.6K identities. Face recognition on the Labelled Faces in Wild dataset 

(Huang et al., 2008) and YouTube Faces (Wolf et al., 2011) for VGG-Face is 99.9% and 97.4%, 

respectively. 

Here we used the five unfamiliar identities (Figure 3.2) each depicted by five different 

canonical facial viewpoints (− 90◦, − 45◦, 0◦, 45◦, 90◦) as an input for the DCNN. We compared 

the outputs of each layer of the neural network for pairs of images from different viewpoints 

(both within and between identity) to ask whether view-symmetric responses are evident in 

the DCNN and if so, in which layer(s) do they emerge. To do this, we first correlated the output 

for each combination of viewpoint within each layer of the DCNN, to generate 16 correlation 

matrices (representing the 16 layers of the DCNN). We then used a multiple regression 

analysis in which we compared the ability of two models (View-specific & View-symmetric) to 

predict the patterns shown between two viewpoints in each layer of the DCNN, to see how 

well each model explained the variance between each combination of viewpoint for each 

network layer. We did this analysis separately for within identity and between identity 

viewpoint comparisons, in order to explore how identity and viewpoint were represented 

within a DCNN. 

We next wanted to address whether human ratings of perceptual similarity of viewpoints 

could be used to predict the outputs of a deep neural network, addressing the question of 

whether humans and DCNNs compute view symmetry in similar ways. To do this, we 

replicated and extended the perceptual similarity experiment (Experiment 1) with a different 

group of participants. The key differences in the design between this experiment and 

Experiment 1, was that we compared the perceptual similarity of viewpoints both within and 

between identities, and recorded response times. 

Participants completed this experiment online using the Pavlovia platform (PSYCHOJS, 

Version 2021.1). Each trial began with a white fixation cross superimposed on a grey 

background for 0.5s. This was followed by a pair of faces that were presented sequentially 

each for 2s. In this experiment we used the same five unfamiliar identities as Experiment 1, 

each depicted by five different viewpoints, giving rise to 25 unique images. There was a total 

of 300 unique image pair comparisons (25*24/2). Images subtended approximately 8◦ of 

visual angle. The order of trials was randomised for each individual participant. Participants 

were required to respond with a button press indicating how similar they perceived the 
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images to be, on a scale of 1–7 (1 being less similar and 7 being more similar). Participants 

were instructed to make this judgment as fast and as accurately as possible. 

To assess whether human perceptual similarity ratings could be used to predict the outputs 

of a DCNN, we correlated the perceptual similarity ratings for each combination of viewpoints 

with the output of the DCNN for that combination of viewpoint (for each layer of the 

network). We did this separately for both the perceptual similarity ratings as well as the 

response times. Here we only looked at the within identity viewpoint comparisons. 

3.6.2 Results 
 

To explore if view symmetry is also a shared feature of a DCNN, we used a simple 

correlational analysis to compare the outputs of the DCNN (for each layer) for every unique 

combination of viewpoints. We did this separately for the within (Figure 3.8B) and between 

identity (Figure 3.8C) comparisons, importantly we collapsed the data into averages for each 

viewpoint combination.  

In order to quantify if view symmetry emerges within a DCNN and if so in what layer, we used 

a multiple regression analysis, in which we compared the ability of the two models to predict 

the patterns shown in different layers of the DCNN (analogous to the fMRI analysis computed 

in Experiment 2). These models can be seen in Figure 3.8A.  
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Figure 3.8. A- schematic diagram of the View specific and View symmetric models showing the expected 

similarity for all viewpoint combinations, in the output of a DCNN layer if that layer represents single 

viewpoints or symmetry (respectively). B- shows the similarity in outputs for each combination of 

viewpoint within each layer of the DCNN for the within identity comparisons. C- shows the similarity in 

outputs for each combination of viewpoint within each layer of the DCNN for the between identity 

comparisons. 

 

 

Figure 3.9. Regression analysis for the DCNN outputs, showing the ability of the View-specific and View-

symmetric models at predicting the outputs of each layer of the network, separated into within identity 

(shown in blue) and between identity (shown in orange) comparisons. Significant results are depicted by 

the filled symbols. 

The results of the regression analysis can be seen in Figure 3.9. They show that the View-

specific model was significantly able to predict the outputs for both the within and between 

identity viewpoint combinations, within the convolutional layers of the neural network. While 

the View-specific model was able to predict the patterns of response for the convolutional 

layers (in particular the earliest layers), there was limited evidence of view-symmetry. 

Instead, the View-symmetric model was better able to predict the patterns of response in the 

output of the fully connected layers (for both within and between identity comparisons). This 

shows that view-symmetry is also a shared feature of deep neural networks and that this 

emerges in the fully connected layers, where more abstract representations such as identity 
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have been found. Interestingly, the View-specific model was also able to predict the outputs 

of the fully connected layers of the network, but only for the within identity viewpoint 

comparisons, which is consistent with the representation of face identity within the fully 

connected layers.  

To address the question of whether humans and DCNNs compute view symmetry in similar 

ways, we asked whether human ratings of perceptual similarity of viewpoints could be used 

to predict the outputs of a deep neural network. Figure 3.10 shows the correlation matrix for 

the perceptual similarity responses (A) and the response time (B) for the different viewpoint 

combinations, broken down across the different image combinations. We then correlated 

these matrices the DCNN outputs for each layer of the network  

To assess if perceptual similarity ratings and response times could predict the outputs for 

each layer of the network, we correlated the perceptual measures (rating and response time) 

with the output of each layer of the neural network. This can be seen in Figure 3.11. 

Perceptual similarity ratings were moderately able to predict the outcome of the earliest 

layers of the DCNN, but were very highly correlated with the fully connected layers of the 

network. Similarly, the response time measure to make the perceptual similarity judgment 

was also significantly correlated, but only with the fully connected layer outputs. It is 

important to note that here the negative values for response time reflect the fact that shorter 

response times indicated better performance. These findings suggest that perceptual 

similarity ratings given by human observers can be used to predict the outcomes of a deep 

neural network, and that this occurs mostly for the fully connected layers. This could suggest 

that humans and artificial deep neural networks may share similar representations of 

viewpoints, and that the process of facial representation generation is solved in a similar way 

to humans within a DCNN. 
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Figure 3.10. A- Correlation matrix showing the correlations between the perceptual similarity ratings for 

each combination of viewpoint, broken down across the image combinations. B- Correlation matrix 

showing the correlations between the response times for each combination of viewpoint, broken down 

across the image combinations. 

 

Figure 3.11. Correlation analysis between the DCNN outputs for each layer with the perceptual similarity 

ratings (shown in green) and response times (shown in red), showing the ability of the perceptual 

measures to predict the outputs of each layer of the network. Significant results are depicted by the filled 

symbols. 

A) B) 
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3.7 General Discussion  
 

The aim of this study was to investigate whether view-symmetric representations are 

an important intermediate step in the generation of view-invariant representations that are 

used for the recognition of faces in human and artificial neural networks. The main findings 

from this study are: (1) The emergence of view-symmetric responses is different for canonical 

and non-canonical rotations; (2) View-symmetric representations are evident for familiar and 

unfamiliar faces; (3) View-symmetry is also a feature of DCNNs trained for face recognition. 

Together these findings argue that view-symmetric representations play an important role in 

the perception and recognition of faces, for both human and artificial neural networks. 

First, we investigated the emergence of view-symmetric patterns of response in unfamiliar 

faces following naturally occurring (canonical) rotations of the head. We found that patterns 

of neural responses to canonical rotations were view-dependent in early visual areas. That is, 

the neural response was predicted by the degree of rotation between different viewpoints. 

These findings are consistent with other neurophysiological (Perrett et al., 1991, 1998; 

Freiwald & Tsao, 2010; Dubois et al., 2015) and neuroimaging studies (Carlin et al., 2011; 

Axelrod & Yovel, 2012; Kietzmann et al., 2012; Ramírez et al., 2014; Dubois et al., 2015; 

Guntupalli et al., 2017; Flack et al., 2019) that have also found selectivity to specific viewpoints 

of the face. They also fit with behavioural studies that have shown the importance of view-

specific representations in the perception and recognition of unfamiliar faces (Bruce, 1982; 

Hill & Bruce, 1996; Fang & He, 2005; Longmore et al., 2008). However, there was a gradual 

decrease in the view-specific response from early to higher level visual areas and a 

corresponding increase in view-symmetric responses, particularly in face-selective regions. 

The importance of view-symmetrical neural responses is shown by the fact that symmetrical 

faces are perceived to be more similar than asymmetrical faces (see also, Troje & Bülthoff, 

1998; Busey & Zaki, 2004; Flack et al., 2019). 

To determine whether view-symmetric responses are specific to naturally occurring rotations 

of the face, we also measured the behavioural and neural response to non-canonical rotations 

of the face. We found there was limited evidence for the pattern of neural response in early 

visual areas being systematically predicted by changes in viewpoint, as was found with 

canonical rotations. However, we did find view-symmetric neural patterns of response for 
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non-canonical rotations in face regions, which is consistent with the behavioural finding that 

symmetrical viewpoints were perceived to be more similar than asymmetrical viewpoints. 

This suggests that the emergence of view-symmetric responses occurs differently for 

canonical and noncanonical rotations of the face. Our findings are consistent with previous 

neurophysiological studies that have reported view-symmetric responses in face regions to 

non-canonical rotations that occur as a result of within-plane rotations of the image (Friewald 

& Tsao, 2010). These findings may be more consistent with a more general preference for 

bilateral symmetry in the visual system (Corballis & Beale, 2020; Rhodes et al., 2005; Jacobsen 

et al., 2006; Bertamini et al., 2018; Keefe et al., 2018; Makin et al., 2012). 

The recognition of familiar faces requires the ability to integrate information from different 

viewpoints into an invariant representation (Bruce & Young, 1986; Young & Burton, 2017; 

Bruce, 2017). One possible mechanism for generating view invariance is the convergence of 

view-dependent responses onto a view-invariant representation (Bruce & Young, 1986; 

Burton et al., 1999). The discovery of view-symmetric neural responses suggests that they 

may provide an important intermediate computational step before full invariance is achieved 

(Freiwald & Tsao, 2010). However, a limitation of previous studies is that they have only used 

unfamiliar faces, whose representations are more closely linked to the image and do not 

generalise well to new viewpoints when compared to familiar faces (Bruce, 1982; Hancock et 

al., 2000; Longmore et al., 2008). Our current findings show that view-symmetric neural 

responses are also evident for familiar faces in core face regions despite the fact that they can 

be easily recognised across different views. This suggests that the view-invariant 

representations that are characteristic of familiar faces emerge at later stages of processing 

(Davies-Thompson et al., 2013; Weibert et al., 2016).  

We also found that symmetric views of familiar faces were perceived to be more similar than 

asymmetric views. This also fits with evidence that symmetrical views may convey an 

advantage when learning new faces. In a previous study, it was found that when participants 

were tested with novel face images that were symmetrical to learnt viewpoint, recognition 

rates were higher than when the learnt and test faces had asymmetrical viewpoints (Flack et 

al., 2019). Moreover, the pattern of recognition performance was predicted by the pattern of 

neural response in face-selective regions, such as the FFA. Together, this suggests that view-
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symmetric representations may play an important intermediate step in the recognition of 

familiar faces. 

In the final experiment we were interested in exploring whether view symmetry would also 

emerge within a deep neural network. We found that view-symmetry is a feature of a neural 

network and that this emerges predominantly within the fully connected layers. This view-

symmetric representation was found for both within and between identity comparisons. 

View-specific representations were also evident in the fully-connected layers, but to a lesser 

degree than view-symmetry. However, view-specific responses were only found for the 

within identity combinations. The change from the convolutional layers to the fully-connected 

layers is consistent with change in representation from the early visual areas to the face 

regions that was found in the neuroimaging data. Human perceptual similarity ratings were 

also able to predict the similarity of the outputs of a DCNN in the fully connected layers. Taken 

together these findings suggest that view symmetry is utilised and processed in a similar way 

for both human observers and DCNNs.  

In conclusion, this study investigated the role of view-symmetric responses in face 

recognition, for humans and within a DCNN. We show that view-symmetrical patterns of 

response to familiar faces can be found in face-selective regions for both canonical and non-

canonical rotations. However, we show distinct differences in the way that view-symmetric 

responses emerge along the visual hierarchy for canonical and non-canonical rotations of the 

face. Finally, we show that view-symmetry is also a feature of DCNNs and that view symmetry 

is computed in a similar way within human and artificial neural networks. These findings 

provide important evidence in support of the role of view-symmetry as an important 

intermediate processing stage in the perception and recognition of faces. 
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Chapter 4- The roles of shape and texture in the recognition of 

familiar faces. 
 

This Chapter is adapted from: Rogers, D., Baseler, H., Young, A. W., Jenkins, R., & Andrews, T. J. 

(2022). The roles of shape and texture in the recognition of familiar faces. Vision Research, 194, 

108013. 

 

4.1 Abstract 
 

The surface texture of the face is proposed to be the dominant cue in face recognition. In this 

study, we investigated the role of shape information in face recognition. We compared the 

roles of shape and surface texture in the recognition of face identity using familiar and 

unfamiliar faces. In the first experiment (n = 53), participants had to match the name of a 

familiar person to one of eight hybrid face images, in which the average shape from one facial 

identity was combined with the average texture of a different identity. In texture trials, all 

images had the correct shape, but only one image had the correct texture. In shape trials, all 

images had the correct texture, but only one image had the correct shape. Although 

performance was lower for the shape trials (81%) compared to texture trials (99%), both were 

significantly above chance-level (12.5%). In the second experiment (n = 110), participants had 

to name hybrid faces using a free recall paradigm. Thus, there were two potentially correct 

answers for each face image: one based on the texture and one based on the shape. 

Participants reported the correct name based on the texture information on 61% of trials and 

the correct name based on the shape information on 12% of trials. Importantly, neither task 

could be performed by perceptual matching. In the third experiment (n = 19), fMR-adaptation 

was used to measure the neural sensitivity to changes in the shape or texture. The core face-

selective regions showed a similar sensitivity to both shape and texture properties. These 

findings confirm that texture is the dominant cue utilised for face recognition, but also show 

that shape plays an important role in the recognition and neural response to familiar faces. 
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4.2 Introduction 
 

Recognising the identity of a person from their face is fundamental for appropriate 

social interactions. Processing what visual information is used to recognise faces is central to 

understanding this behaviour. In face perception, a distinction can be made between the 

texture (or surface) properties of the face and its shape properties (Bruce & Young, 1998; 

2012). Any facial image comprises of a set of edges generated by abrupt changes in 

reflectance due to the shapes and positions of facial features. These shape properties usually 

arise from how the 3D geometrical description of the face is projected onto a 2D image 

(Maurer, Le Grand, & Mondloch, 2002). Facial images also contain a broader pattern of 

reflectance based on the surface properties of the face. Surface properties result from the 

pattern of reflectance of light due to the combination of ambient illumination, the face's 

pigmentation, and shape from shading cues (Bruce & Young, 2012). 

Texture plays a critical role in the perception of a face identity (Burton, 2013). For example, 

familiar face recognition is still possible when surface properties are projected onto a 

standardised shape (Burton, Jenkins, Hancock, & White, 2005) or when linearly stretching or 

morphing a face image in a way that dramatically alters the shape of the face (Hole et al., 

2002; Sandford & Burton, 2014; Baseler et al., 2016; Itz et al., 2014; Itz et al., 2016). Changes 

to the texture of the face, on the other hand, caused by contrast negation or spatial blurring 

have a dramatic effect on recognition, even when the shape of the face is unchanged (Bruce 

& Langton, 1994; Kemp et al., 1996; Hole et al., 2002). It is also difficult to recognise line 

drawings of a familiar face that have the correct shape, but limited texture information (Leder, 

1999). Moreover, perceptual matching of facial identity has been shown to be more accurate 

when based on texture compared to shape (Andrews, Baseler, Jenkins, Burton, & Young, 

2016). 

Although these studies imply that texture information provides the dominant cue for face 

recognition, manipulations of shape can have a significant effect on the judgements of 

recognition. For example, non-linear manipulations of shape can have a significant effect on 

the ability to recognise identity (Hole et al., 2002). Further support for the role of shape in 

face recognition comes from studies that show shape information can be used to discriminate 

unfamiliar face images (O'Toole et al., 1999; Jiang et al., 2006; Russell et al., 2007; Russell & 
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Sinha, 2007; Caharel et al., 2009; Jiang et al., 2011; Lai et al., 2013; Itz et al., 2016). Although 

judgements based on texture are more accurate than judgements based on shape, it is still 

possible to make some use of shape information in matching tasks involving familiar faces 

(Andrews et al., 2016). However, in all of these studies it is possible that these tasks involving 

shape could be performed by lower-level perceptual matching of features rather than higher-

level processes critical to the recognition of identity in natural viewing conditions (Burton et 

al., 2015). Moreover, training individuals with poor face recognition skills using faces that 

have been caricatured for their shape or texture can both lead to improvements in face 

processing (Limbach, Itz, Schweinberger, Jentsch, Romanova & Kaufmann, 2022). Indeed, a 

challenge for a central role of shape in face recognition is that shape cues (particularly those 

involving the internal features of the face) can vary quite dramatically across different images 

of the same person (Burton, 2013; Burton et al., 2015). For example, the spatial distances 

between features can often vary as much within-person as between-person. 

The behavioural sensitivity to the shape and texture of faces should be mirrored by the neural 

responses of face-selective regions involved in recognition. Neuroimaging studies have 

revealed a core network of face-selective regions in the occipital and temporal lobes that are 

involved in the perception and recognition of faces (Haxby et al., 2000; Kanwisher et al., 

1997). Within this network, the fusiform face area (FFA) is held to be important for 

representing invariant facial characteristics that play an important role in the recognition of 

facial identity (Haxby et al., 2000; Grill-Spector et al., 2004; Rotshtein et al., 2005). Support 

for the importance of the FFA in processing facial identity is found in neuroimaging studies 

that have shown adaptation to repeated images of different faces in this region (Andrews & 

Ewbank, 2004; Grill-Spector et al., 1999). This suggests that the neural response in the FFA 

represents the identity of the face and that this representation is being adapted during 

exposure to repeated images. 

A more robust link between activity in the FFA and face recognition would be a demonstration 

that adaptation is still found when the images vary along a dimension that is not important 

for face recognition (i.e. changes in shape). For example, Jiang and colleagues (Jiang, Dricot, 

Blanz, Goebel, & Rossion, 2009; see also- Caharel et al., 2009; Itz et al., 2016) found an equal 

release from adaptation to identity in the FFA with changes in either the shape or texture. 

This suggests that both properties are represented in this region, which differs from 
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behavioural studies of familiar faces that show a greater sensitivity to changes in texture. 

These findings might be explained by their use of unfamiliar faces, however a similar release 

from adaptation to shape and texture with familiar faces has also been found (Andrews et al., 

2016). Although this provides further support for a dissociation between the behavioural and 

neural response to faces, it is possible that a more sensitive adaptation paradigm could show 

a difference in the neural response to shape and texture. 

The aim of this study is therefore to achieve a more detailed understanding of the relative 

roles of shape and texture in the recognition and neural response to familiar and unfamiliar 

faces. We used hybrid face images in which the surface texture from one identity is combined 

with the shape from another identity (Andrews et al., 2016). Our aim in this study was to test 

recognition directly using tasks that had no component of perceptual matching and instead 

relied on previously learnt representations for recognition. In all experiments, we compared 

familiar and unfamiliar faces as previous research has shown differences in how shape and 

texture information are used when making judgments of familiar and unfamiliar faces (Itz et 

al., 2014; Itz et al., 2017; Zhou et al., 2021). In the first experiment, a name was shown and 

participants had to match that name to one of 8 hybrid face images. The images shown varied 

in either shape or texture. In the second experiment, participants viewed individual hybrid 

images and were asked to name the person. There were two potentially correct answers for 

each familiar face: one based on texture and one based on shape. This directly compared the 

relative role of shape and texture in the representation of familiar faces. In the final 

experiment, we measured the relative sensitivity to shape and texture in face-selective 

regions of the human brain, using an fMR-adaptation paradigm that has previously been used 

to reveal invariant responses to faces in face-selective regions such as the FFA (Davies-

Thompson, Newling, & Andrews, 2013). If shape information is important for familiar face 

recognition, then we would expect: (1) there should be above chance level performance when 

matching the correct face to a familiar target name (Experiment 1); (2) there will be occasions 

when participants select the identity whose shape information is present within a hybrid face 

(Experiment 2); (3) there will be neural sensitivity to changes in shape within the face selective 

regions of the brain (Experiment 3). 
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4.3 Methods 

4.3.1 Participants 
 

Participants were recruited separately for the behavioural and fMRI experiments 

(Experiment 1: n = 53, female = 38, mean age = 26.9 years, SD = 9.8; Experiment 2: n = 110, 

female = 62, mean age = 22.7 years, SD = 6.8; Experiment 3: n = 19, female = 10, mean 

age = 25.4 years, SD = 1.39). A priori power analyses (0.9, 1-β err prob) were conducted for 

Experiment 1 (suggested N = 55) and Experiment 2 (suggested N = 110). Sample size for 

Experiment 3 was based on previous studies using similar paradigms (Andrews et al., 

2016; Baseler et al., 2016). Participants were drawn from an opportunity sample of staff and 

students from the University of York. All participants had normal or corrected to normal vision 

with no history of neurological illness and gave their written informed consent. The study was 

approved by the Psychology department Ethics Committee and the 

York Neuroimaging Centre Ethics Committee. 

 

4.3.2 Stimuli  
 

Figure 4.1 shows the stimuli sets that were used for the behavioural and neuroimaging 

experiments. The faces used were either familiar (UK celebrities) or unfamiliar (Australian 

celebrities) in the UK. The familiar images were grayscale average images that were generated 

by combining 12 different images from each of the 8 celebrities who are generally familiar to 

UK participants (Alan Sugar, Chris Moyles, Derren Brown, Gary Lineker, Jeremy Paxman, 

Jeremy Kyle, Louis Walsh). The unfamiliar images were also based on average images 

generated by combining 12 different images from each of the 8 Australian celebrities who are 

likely to be unknown to our participants (Brendan Nelson, Don Burke, Grant Hackett, Guy 

Sebastian, Kyle Sandilands, Mark Holden, Morris Iemma, Shannon Noll). 

The averaging procedure was performed using graphics software (Interface) in which key 

fiducial points on the face were defined in each image (by hand), and then connected to form 

a grid showing the shape or the second-order configural properties of the image (for details 

see Burton et al., 2005; Burton, Schweinberger, Jenkins, & Kaufmann, 2015). A common shape 

was then determined for each identity by averaging the spatial location of corresponding 
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points on the grid across all images taken of the same identity. Average textures for each 

identity were created through standard face morphing techniques, where each face is 

modified to conform to a common shape. This is achieved by warping the pixels within each 

triangle of the source image so that they match the shape of the corresponding triangle in the 

standard shape. Finally, texture averages are generated by averaging across all images with 

the same identity. For further information, refer to Beale and Keil (1995). This process enables 

separate analysis of face shape (represented by grid points before morphing) and face 

textures (shape-free faces) where the shapes and the placement of features are consistent 

across all faces in the analysis.  

The raw photo images were selected using an internet image search on the celebrities’ names. 

To generate an ambient image set, reflective of natural viewing, the only selection criteria 

were that the full face was visible in high resolution. Selecting images in this way has been 

shown to provide robust averages (Jenkins, White, Van Montfort, & Burton, 2011; Burton, 

Kramer, Ritchie, & Jenkins, 2016; Jenkins, Burton, & White, 2006). One important 

consideration when selecting images in this way, is that the colour balance between images 

can be highly variable. Here, colour balance refers to the adjustment of colours in an image 

to achieve a desired and natural appearance. It is a fundamental aspect of colour correction 

and image editing to ensure that the colours in an image are accurate and consistent, 

representing the image as it would appear to the human eye. Thus, due to this variability in 

colour balance across images, coupled with the need to average images within identities, it 

was necessary to first convert all images to greyscale. Converting images to greyscale has 

been shown to have a minimal impact on familiar face recognition (Kemp, Pike, White & 

Musselman, 1996), and no impact at all when the images are in high resolution, implying that 

colour does not provide diagnostic information for face recognition (Yip & Sinha, 2001). 

The images on the diagonal (top left to bottom right) in each panel of Figure 4.1 show shape 

and surface properties from the same identity. Because the shape and surface information 

are generated separately, it is also possible to combine them across different identities to 

generate hybrid images. Hybrid faces are shown in the off-diagonal images. Images in each 

column have the same shape, whereas images in each row have the same surface properties. 
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Figure 4.1. Familiar and unfamiliar hybrid face images. Hybrid images were created by combining the 

average shape from one identity with the average texture from another identity. The diagonal images 

(top left to bottom right) contain the average shape and texture properties of the same identity. Rows 

depict images containing the average texture of one identity and the average shapes of other identities. 

Columns depict images containing the average shape of one identity and the average textures of other 

identities.  

 

4.4 Experiment 1- Name to face matching task 

4.4.1 Methods 
 

To compare the relative roles of shape and texture in the recognition of familiar faces, 

participants had to match a name to faces that varied in either shape or texture. Participants 

completed this experiment online using the Pavlovia platform (PSYCHOJS, Version 2020.2). 

Participants were first presented with the name of an identity that was displayed centrally on 

the screen, this was followed by eight simultaneously presented hybrid face images (Figure 

4.2). There were two categories of trials, to explore the role of texture during face recognition, 

within a texture trial, all the faces had the shape of the target, but only one also had the 
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correct texture. To explore the role of shape information within a shape trial, all faces had the 

same texture as the target, but only one also had the correct shape. Participants used a button 

press to indicate which face corresponded to the target. There were 32 trials (8 familiar and 

8 unfamiliar identities x shape/texture). This experiment was self-paced and no feedback was 

given. After the task was completed, participants then completed a familiarity check to test 

their ability to recognise the familiar faces used in the main experiment. For each identity 

used in the main experiment, three novel high-resolution colour images were presented to 

participants and their task was to name (or enter sufficient biographical detail) the identity 

depicted in each image set. Overall, 88.9% of intended familiar identities were recognised; 

identities that were not familiar were removed on an individual participant basis. Only 3.3% 

of the intended unfamiliar identities were recognised; these were also removed on an 

individual participant basis.  

 

Figure 4.2. Experiment 1- Name to face matching task: Examples of shape and texture trials for familiar 

and unfamiliar faces. Participants had to match a name to one of 8 hybrid face images. In shape trials, 

all faces had the same texture, but only one face had the correct shape. In texture trials, all faces had 

the same shape, but only one shape had the correct texture. 
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4.4.2 Results 
 

Experiment 1 aimed to measure the ability to recognise faces based on either shape 

or texture. Figure 4.4 shows the recognition accuracy for familiar and unfamiliar faces, 

separated by trial type (shape or texture cue). To determine whether recognition accuracy 

differed when using a shape or texture cue, or when faces were familiar or unfamiliar, a 2 × 2 

repeated measures ANOVA with Familiarity (familiar, unfamiliar) and Cue (shape, texture) as 

the main factors was computed. Significant main effects were found for Familiarity (F(1, 52) 

= 1081.86, p < .001, np 2 = 0.954) and Cue (F(1, 52) = 28.41, p < .001, np 2 = 0.353). There was 

also a significant interaction between Familiarity and Cue (F(1, 52) = 17.48, p < .001, np 2 = 

0.253). This interaction reflects higher performance for texture compared to shape with 

familiar, but not unfamiliar faces. For familiar faces, there was a significant difference 

between accuracy between shape (mean ± SEM = 81.0 ± 13.62) and texture (mean ± SEM = 

99.4 ± 2.59) trials for familiar faces (t(52) = 9.66, p < .001, d = 1.67). For unfamiliar faces, 

recognition rates were lower (texture: mean ± SEM = 31.7 ± 17.7; shape: mean ± SEM = 30.2 

± 17.0) and there was no difference between shape and texture trials (t(52) = 0.46, p = .648, 

d = 2.10). In this experiment chance level was 12.5%, reflecting participants’ ability to select 

the correct image from the eight faces presented in each trial. To determine whether 

recognition accuracy was greater than chance level, one sample t-tests were conducted for 

all conditions. For familiar faces, recognition accuracy was greater than chance level on shape 

trials (t(52) = 36.61, p < .001, d = 5.03) and texture trials (t(52) = 244.62, p < .001, d = 33.61). 

Recognition accuracy was also greater than chance level for unfamiliar shape trials (t(52) = 

7.59, p < .001, d = 1.04) and unfamiliar texture trials (t(52) = 7.89, p < .001, d = 1.08). 
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Figure 4.3. Accuracy on shape and texture trials in Experiment 1. Accuracy for familiar faces was above 

chance (12.5%-represented by the dotted line) for both shape and texture. However, accuracy for texture 

trials was significantly higher than for shape trials. Accuracy for unfamiliar trials was substantially lower 

but still significantly above chance, despite the fact that participants were not familiar with the 

identities. However, there was no difference between shape and texture in the unfamiliar trials. Error 

bars represent SEM. 

4.5 Experiment 2- Face recognition task 

4.5.1 Methods 
 

In a complementary behavioural experiment, a separate group of participants 

performed a recognition task on the familiar and unfamiliar hybrid images used in Experiment 

1. In this task, participants viewed 16 hybrid faces (8 familiar and 8 unfamiliar). Each image 

was presented sequentially, and participants were instructed to name the identity depicted 

in the image with no time constraints. We used multiple groups of participants whereby each 



80 | P a g e  
 

group viewed different combinations of hybrid images, such that the shape and texture from 

all identities was shown equally across the participants. Moreover, the shape or texture of 

each identity was contained only once in the images shown to each participant. This 

prevented any effect of priming that might have occurred (for example, if the texture of a 

face in one hybrid increased the chance of recognising the shape of a face in another hybrid 

or vice versa). To provide a baseline of performance, one group of participants viewed non-

hybrid images in which the shape and texture were from one identity (veridical images in 

Figure 4.1). Following this, participants then completed the same familiarity test used in 

Experiment 1. Again, identities that were expected to be familiar or unfamiliar but were not, 

were removed prior to analysis on an individual participant basis. 

4.5.2 Results 
 

In this experiment, participants had to report the identity of hybrid face images that 

contained the texture from one identity and the shape from another identity, using a free 

recall paradigm relying on previously stored facial representations. For each trial, there were 

two potentially correct answers- the identity whose shape was depicted and the identity 

whose texture was depicted. Figure 4.5 shows the proportion of trials in which participants 

were able to recognise the face based on the shape or texture of the image. For familiar faces, 

participants reported the identity based on the texture (mean ± SEM = 61.2 ± 16.4 %) more 

often than based on the shape (mean ± SEM = 12.3 ± 11.4 %) of the hybrid image (t(69) = 

19.87, p < .001, d = 2.38). This shows that texture is a more dominant cue for recognition. 

Nevertheless, there were trials in which the shape was the dominant cue for recognition. The 

reported shape (t(69) = 9.08, p < .001, d = 1.08) and texture (t(69) = 31.31, p < .001, d = 3.73) 

were both significantly greater than 0. Contrastingly and rather unsurprisingly, there were no 

correct identifications based on shape or texture for the unfamiliar faces. 
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Figure 4.4. Distribution of responses for Experiment 2. Participants had to recognise the identity of 

familiar or unfamiliar hybrid faces. There were two potentially correct responses. For familiar faces, 

participants reported the identity based on the texture more often than the shape of the face. 

Nevertheless, there were a significant number of hybrid faces that were recognised from their shape. 

Error bars represent 1 SEM. Dotted line shows performance when the shape and texture were from the 

same identity (74%). 

A separate group of participants were shown veridical hybrid images in which the shape and 

the texture were from the same person. The recognition rate for this group can be seen as 

the maximum expected recognition rate for the hybrid images. After taking out identities that 

participants reported not knowing during the familiarity checklist, the accuracy rate of the 

control group was 74% of faces (Figure 4.4 – dotted line). A one-sample t-test showed there 

were significant differences between this maximal rate and the rate based on shape (t(69) = 

45.69, p < .001, d = 5.46) and texture (t(69) = 6. 70, p < .001, d = 0.80). This implies that shape 

and texture properties both carry information regarding identity. 

One possible explanation for these findings is that the responses are dominated by faces that 

have a particularly recognisable texture or shape. To address this issue, we measured the 

percentage of correct texture or correct shape responses that corresponded to each of the 8 

familiar face identities. As can be seen in Table 4.1, the shape and texture hits were evenly 
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distributed across all identities. This implies that our results do not simply reflect the 

properties of identities with a particularly dominant shape or texture. 

 

Table 4.1. Percentage of responses for each familiar identity relative to the total Shape hits or Texture 

hits. 

Identity Shape hit Texture hit 

Alan Sugar 11.6 14.0 

Chris Moyles 7.3 10.2 

Derren Brown 13.0 11.1 

Gary Lineker 14.5 13.1 

Jeremy Kyle 15.9 13.7 

Jeremy Paxman 13.0 12.5 

Jonathan Ross 11.6 13.1 

Louis Walsh 13.0 12.2 

 

4.6 Experiment 3  

4.6.1 Methods 
 

To measure the neural sensitivity to shape and texture, we used a block design fMR-

adaptation paradigm with 5 different stimulus conditions (see Figure 4.5 for familiar faces): 

(1) no change (same shape, same surface); (2) shape change (alternating between two shapes, 

same surface); (3) surface change (alternating between two textures, same shape); (4) shape 

& surface change-2 (different shape, different texture alternating between two identities) (5) 

shape & surface change-8 (different shape, different surface-alternating between eight 

identities). The shape & surface change-2 condition, was included in order to be comparable 

to the shape change and surface change conditions that alternated between two identities, 

whilst the shape & surface-8 condition, was used in order to increase the sensitivity of the 

paradigm by showing the maximum release from adaptation. Similar fMR-adaptation designs 

have been used in previous experiments to reveal invariant representations of identity in 
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face-selective regions (Davies-Thompson et al., 2013). Data were collected separately using 

this design for familiar and unfamiliar faces. 

 

Figure 4.5. FMRI experimental stimuli depicting the familiar faces (British celebrities). Each row portrays 

an example of images presented during a single 9 s block. A. No change condition; B. Shape change only, 

alternating between two shapes (AB design); C. Texture change only, alternating between two textures 

(AB design); D. Shape and texture change, alternating between two identities (AB design); E. Shape and 

texture change, 8 different identities presented in a block. 

 

In each stimulus block, 8 images were shown for 975ms followed by a 150ms blank screen. 

Blocks were 9s in duration and were separated by a 9s fixation screen (a white fixation cross 

on a mean grey background). Each of the 5 stimulus conditions was repeated 8 times, giving 

a total of 40 blocks for each scan, which were presented in a counterbalanced order. 
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Participants performed a red dot detection task during the scan, in which they were required 

to press a button when a red dot appeared on any of the images. Mean accuracy was 92% 

across all familiar conditions (mean response time-494ms) and 94% across all unfamiliar 

conditions (mean response time-493ms). Data from the fMRI experiment were collected 

using a GE 3 Tesla HD Excite MRI scanner at the York Neuroimaging Centre at the University 

of York. A gradient-echo EPI and a T1-weighted structural MRI (1 × 1.13 × 1.13 mm voxel) 

were acquired for each participant. The gradient-echo EPI sequence used a radio-frequency 

coil tuned to 127.4 MHz to acquire 38 axial slices (TR 3 sec, TE 33 msec, flip angle 90, FOV 260 

mm, matrix size = 128 × 128, slice thickness = 3 mm, voxel size: 2.25 × 2.25 × 3 mm). Data 

were analysed with FEAT version 4.1 (http://www.fmrib.ox. ac.uk/fsl). The first 9s (3 volumes) 

from each scan were discarded, and MCFLIRT motion correction, spatial smoothing (Gaussian, 

FWHM 6 mm), and temporal high-pass filtering (cutoff 0.0093 Hz) were applied. 

 A localiser scan was used to identify face-selective regions. The localiser scan images included 

faces, bodies, inanimate objects, places, and scrambled images. The identity of the faces was 

different to those used in the main experiment. Images from each category were presented 

in blocks of 10 images in which images were shown for 700ms, followed by a 200ms blank 

screen. A 9s grey screen with a central fixation cross was presented between each block. 

Stimulus blocks were repeated 4 times and were presented in a counterbalanced order. A 

boxcar function convolved with a standard haemodynamic response function was used to 

model the BOLD response. Face-selective voxels were defined by contrasting the response to 

faces with each non-face condition, then averaging the resulting statistical maps and 

thresholding at p < .001 (uncorrected). Neighbouring clusters of voxels located within the 

occipital and temporal lobes were defined as the FFA, OFA and pSTS in each participant.  

The experimental scans were analysed by measuring the time series of response to each 

condition. Across each scan, the response of each voxel was converted to % signal. A single 

time series for each ROI was then calculated by averaging across all voxels. Each block was 

then normalized by subtracting the magnitude of response at the start of the block from the 

response at each time point in the block. The normalized response to the same stimulus 

blocks was then averaged to produce a mean time series. The average of the % signal change 

at 9s and 12s post stimulus onset was taken as the peak response for each condition within 

an ROI for each participant. The peak responses were then analysed using repeated measures 
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ANOVAs and post hoc t-tests. Specific contrasts were used to compare each experimental 

condition to the no-change condition. This allowed us to determine whether there was a 

release from adaptation (or sensitivity) to each manipulation.  

To determine whether any differences in the release from adaptation could reflect 

differences between the image properties of the familiar and unfamiliar faces, we measured 

the mean change in image intensity across images. This was calculated by taking the average 

of the absolute differences in grey value at each pixel for successive pairs of images within a 

block. A 2 × 5 ANOVA with Familiarity (familiar, unfamiliar) and Condition (No change, Shape 

change, Texture change, Shape and Texture Change (2), Shape and Texture Change (8)) as the 

main factors was ran. There was a significant main effect for Condition (F(4,220) = 194.24, p 

< .001), but there was no main effect of Familiarity (F(1,55) = 0.35, p = .555) or any interaction 

between Familiarity * Condition (F (4,220) = 0.40, p = .811). The largest change in low-level 

properties was found when both shape and texture changed. However, shape and texture 

changes for familiar and unfamiliar had a similar effect on this image measure. There was also 

no difference between the shape change and texture change for familiar faces (t(55) = -1.85, 

p = .070) and unfamiliar faces (t(55) = -0.16, p = .977). These findings ensure that any releases 

in adaptation for shape and texture changes are not due to low-level image properties such 

as image intensity 

4.6.2 Results 
 

A localiser scan was performed to reveal the location of face-selective regions. The 

average location of the core face-selective regions: fusiform face area (FFA), occipital face 

area (OFA) and posterior superior temporal sulcus (pSTS), is shown in Fig. 4.6A and Table 4.2. 

We next determined how these regions responded to changes in shape or surface properties 

of faces. A 3-way ANOVA found no interaction effect of hemisphere * condition (familiar: 

F(1,14) = 2.09, p = .170; unfamiliar: F(1,15) = 2.06, p = .172), so the responses from each 

hemisphere were combined. 
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Figure 4.6. (A) Location of face-selective regions-of-interest (FFA: fusiform face area, OFA: occipital face 

area, STS: superior temporal sulcus. (B) The average timeseries for face-selective regions of interest in 

response to familiar faces. There was a significant release from adaptation (compared to no change) for 

familiar faces in all regions for all conditions. There was a similar release from adaptation to texture and 

shape. (C) There was a similar release from adaptation with unfamiliar faces in the FFA and OFA, but 

there was no effect in the STS. Time shows the response relative to the onset of the block. Grey shading 

shows the stimulus duration. Error bars show SEM. 
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Table 4.2. Mean (SEM) MNI coordinates of regions of interest (centre of gravity). Regions defined by 

localiser scan (Faces > (Bodies + Objects + Places + Scrambled images). 

Region x y z 

FFA 

L −41.94 (0.82) −55.63 (1.52) −21.66 (0.96) 

R 42.55 (0.63) −52.04 (1.34) −21.33 (1.00) 

 

OFA 

L −39.34 (1.31) −83.52 (1.01) −14.97 (1.57) 

R 41.00 (0.95) −79.20 (1.16) −13.68 (0.97) 

 

STS 

R 52.38 (1.79) −49.52 (1.91) 4.97 (1.39) 

 

Figures 4.6B and 4.6C show the time course of response to different conditions in the different 

regions when viewing familiar and unfamiliar faces respectively. The effect of condition was 

analysed using the peak responses with a 1-way ANOVA. There was a significant effect of 

condition for all face regions with familiar faces (FFA: (F(4,68) = 14.51, p < .001), OFA: 

(F(4,68) = 7.98, p < .001) , pSTS: (F(4,68) = 6.02, p < .001)). However, for unfamiliar faces, 

there was only a significant effect of condition for the FFA (F(4, 72) = 8.81, p < .001) and OFA 

(F(4,72) = 6.41, p < .001). The pSTS showed no significant effect of condition for unfamiliar 

faces (F(4,72) = 1.25, p = .297). 

To measure the release from adaptation in each region, the response to each condition was 

compared to the no change condition. In the FFA, there was a lower response (adaptation) to 

the no change condition compared to the shape change (familiar: t(17) = 6.41, p < .001, 

unfamiliar: t(18) = 3.50, p = .003), texture change (familiar: t(17) = 4.92, p < .001, unfamiliar: 
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t(18) = 3.49, p = .003), shape and texture change with 2 identities (familiar: 

t(17) = 6.12, p < .001, unfamiliar: t(18) = 2.84, p = .011), shape and texture change using 8 

identities (familiar: t(17) = 6.25, p < .001, unfamiliar: t(18) = 6.05, p < .001). However, there 

was no difference in the response when comparing a shape change to a texture change for 

either familiar or unfamiliar faces (familiar- [t(17) = 1.43, p = .170], unfamiliar [t(18) = 0.32, 

p = .754). This suggests that the FFA is equally sensitive to changes in shape and texture. 

The OFA showed a similar pattern of response to the FFA. There was a lower response 

(adaptation) to the no change condition compared to the shape change (familiar: 

t(17) = 4.50, p < .001, unfamiliar: t(18),= 2.58, p = .019), texture change (familiar: 

t(17) = 3.89, p = .001, unfamiliar: t(18) = 3.17, p = .001), shape and texture change when using 

2 identities (familiar: t(17) = 3.03, p = .001, unfamiliar: t(18),= 2.02, p = .058) and shape and 

texture change using 8 identities (familiar: t(17) = 4.15, p = .001, unfamiliar: 

t(18) = 4.54, p < .001). Similar to the FFA, there was no difference in the response when 

comparing a shape change to a texture change for either familiar (t(17) = 1.45, p = .165), or 

unfamiliar (t(18),= 0.61, p = .555) faces, suggesting the OFA is also equally sensitive to shape 

and texture changes irrespective of familiarity. 

The pSTS was only found to show an effect of condition with familiar faces. Similar to the FFA 

and OFA, there was a lower response (adaptation) to the no change condition compared to 

the shape change (t(17) = 3.94, p = .001), texture change (t(17) = 3.61, p = .002), shape and 

surface change with 2 identities (t(17) = 2.85, p = .011) and shape and texture change using 8 

identities (t(17) = 2.74, p = .014). There was no difference in response when comparing a 

shape change to a texture change (t(17) = 0.68, p = .505), suggesting a similar sensitivity to 

shape and texture. 

4.7 General Discussion  
 

In this study, we investigated the roles of shape and texture in the perceptual and 

neural representation of familiar (as compared to unfamiliar) faces. The main findings are 

that: (1) shape can contribute to the recognition of familiar faces in tasks that cannot be 

performed by perceptual matching; (2) texture is, however, the dominant source of 

information for familiar face recognition; (3) face-selective regions are equally sensitive to 

changes in shape and texture. 
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In the first experiment, we asked how shape and texture information in face images 

contribute to the recognition of person identity. To address this issue, we used hybrid images 

that were created by combining the average shape information from one identity with the 

average texture information from a different identity. We then asked to what extent shape 

or texture information could be used to match a name to a face. In a previous study (Andrews 

et al., 2016), it was possible to match a previously presented hybrid face that contained the 

shape and texture from one identity with a subsequent array in which either the shape or the 

texture varied. Andrews et al, (2016) found that it was possible to do this task for both shape 

and texture, but performance on texture trials was higher. However, the task used by 

Andrews et al, (2016) could be performed with perceptual matching between the target and 

the test array, limiting its relevance to the ways in which we recognise faces in natural viewing 

conditions. To address this issue in the current study, we used a task in which participants had 

to match a written name to an array of faces that either varied in texture or shape. This gave 

no opportunity for perceptual matching, as participants were only able to rely on previously 

stored mental representations for recognition.  

The findings from this experiment clearly show that participants were able to correctly match 

the target face with the identity name that was presented, when the identities were familiar 

to the participant. Participants were able to do this significantly above chance level when the 

distractor images varied either in shape or texture. Whilst accuracy for texture trials was 

significantly greater than accuracy for shape trials, performance on shape trials was very high 

(81%). These findings suggest that both shape and texture information can be used 

independently when making identity judgments without relying on perceptual matching, 

supporting findings of previous research (Andrews et al., 2016). 

An interesting finding in this experiment was that performance on unfamiliar faces was above 

chance for both shape and texture trials. This was unexpected because participants were not 

familiar with the identities (as shown in the post-experiment familiarity test) and hence could 

not have reflected the association between the name and the correct hybrid image. The 

accuracy on unfamiliar shape trials was similar to the accuracy on unfamiliar texture trials. 

This suggests that participants were not using a similar mechanism to that used for familiar 

faces, in which performance on texture trials was significantly higher than for shape trials. 

Rather, it would appear that participants were able to reject hybrid images (thus, inflating 
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chance-level) for which the combination of shape and texture did not appear naturally face-

like. Here the term ‘face-like’ refers to the extent to which an image of a face looks like a face 

that could be seen in an everyday environment (not the extent to which a particular image 

looks like the person depicted- Ritchie, Kramer & Burton, 2018). Due to the image 

manipulations necessary to generate hybrid images; averaging, shape landmarking and 

shape-free (texture) warping, the appearance of a resulting hybrid image can sometimes look 

less face-like than others. This typically occurs when two identities have drastically different 

shape properties to one another, for example if the size or spacing between certain facial 

features is heavily different between identities, then the resulting hybrid image can appear 

less face-like. Thus, when asked to select one out of eight images, participants might be more 

inclined to select a hybrid image that is more face-like, as this combination of shape and 

texture information is more prototypical in the real world. These findings suggest the 

importance of including unfamiliar faces as a point of comparison in studies of familiar faces. 

The difference in the use of shape and texture in familiar and unfamiliar faces that we show 

here, converges with previous studies that have also found that texture is disproportionately 

more important than shape for familiar compared to unfamiliar faces (Itz et al., 2014; Itz et 

al., 2017; Zhou et al., 2021). 

To further explore whether participants were able to use shape or texture for the recognition 

of identity, we presented participants with hybrid faces and asked them to name the person 

depicted. In a previous study (Andrews et al., 2016), participants performed a similar 

experiment in which hybrid faces were presented with a list of possible names. Included in 

those names was the name associated with the shape of the hybrid and another name that 

was associated with the texture of the hybrid. It was found that participants selected the 

identity whose texture was present on 90% of trials and the identity whose shape was present 

on only 5% of trials. However, a possible limitation of this study is that participants were not 

directly recognising the face, but were rather using a more cognitive based strategy to relate 

the appearance of the hybrid face with one of the names. To address this issue, the current 

experiment simply presented each hybrid face and asked participants to name the person. 

This task had no component of perceptual matching and could not involve any non-visual 

cognitive strategy, instead, participants relied on their stored mental representations of the 

identities. Nevertheless, we found that both shape and texture information were used in this 
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pure recognition task. Whilst more hybrid face images were recognised from their texture 

compared to their shape, there were some hybrid faces in which the shape was more 

dominant, over the identity whose texture information was displayed. We also measured 

performance in participants in which the hybrid faces contained the shape and texture from 

the same familiar identity. We found that performance with these images was best 

approximated to the sum of performance on texture or shape alone. The images used in this 

study were all grayscale because colour is known to have at best a limited role in recognition 

(Bruce & Young, 2012). An interesting question for further investigations might therefore be 

the extent to which colour can influence neural responses to surface properties. 

The importance of shape in the recognition of familiar faces has been challenged by well-

established behavioural findings that show (1) large changes in shape can leave recognition 

unimpaired, (2) large changes in texture have a significant effect on recognition, (3) texture 

dominates shape in judgements of identity (Burton et al., 2015). Across behavioural 

Experiments 1 and 2 the findings confirm the fact that texture is a more dominant cue for 

recognition, however they also show that shape can make a significant contribution to 

familiar face recognition. Previous studies that have investigated the role of shape have often 

manipulated the configuration of facial features in unfamiliar faces (Freire et al., 2000; Le 

Grand et al., 2001; Rossion, 2008). The typical task is to determine whether two faces are the 

same or different and the extent to which performance is affected by inversion. However, it 

has not been clear if this has any relevance to judgements of familiar faces in natural viewing 

in which it is necessary to recognise a face in the absence of any comparison to other faces. 

Our results provide the first evidence that shape information plays an important role in 

recognition, albeit less than for texture information. 

The aim of Experiment 3 was to investigate the neural sensitivity of face-selective regions to 

changes in shape and texture. The intention here was to reveal which regions showed a 

corresponding sensitivity to that shown in the behavioural Experiments 1 and 2. Using a fMR-

adaptation paradigm, we compared neural responses to changes in texture, shape, or both 

texture and shape with the response to a 'no change' baseline that would create maximal 

adaptation. In a previous study, the release from adaptation to shape and texture was 

measured finding that there was an equal release to both changes (Andrews et al., 2016; see 

also Jiang et al., 2006). However, the lack of any difference in sensitivity to shape and texture 
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may have resulted from a design in which 8 different images were presented in a block. In the 

current study, a more sensitive paradigm was utilised in which 2 images alternated. Previous 

research has shown that that this paradigm is able to demonstrate invariant representations 

in face-selective regions (Davies-Thompson et al., 2013). 

We found a lower response (adaptation) in the FFA and OFA to repeated images of the same 

face compared to faces that differed in both shape and texture (see also Andrews & Ewbank, 

2004; Grill-Spector et al., 1999; Weibert et al., 2016). However, the critical conditions were 

those in which either the shape or the texture changed independently. Given our behavioural 

results, our predictions were that face-selective regions responsible for the recognition of 

facial identity should show a release to both shape and texture, but that there should be more 

sensitivity to changes in texture. We did find a release from adaptation in the FFA and OFA to 

both shape and texture, but we did not find a difference between shape and texture. The 

similar sensitivity to shape and texture could not be explained by greater low-level image 

differences between these changes, as these were similar for both changes. Although, our 

results show a similar release from adaptation to shape and texture in the OFA and FFA, this 

does not mean that both regions represent information in the same way. Indeed, a recent 

study using MVPA (Tsantani et al., 2021) it was shown that the OFA and FFA encode distinct 

types of face identity information. 

There is mixed evidence for whether the FFA has an image-invariant representation of face 

identity. A number of studies have reported image dependent responses in the FFA (Andrews 

& Ewbank, 2004; Davies Thompson, Gouws, & Andrews, 2009; Grill-Spector et al., 1999; 

Pourtois et al., 2005; Weibert & Andrews, 2015; Xu et al., 2009), whereas others have shown 

varying degrees of image invariance (Davies-Thompson et al., 2013; Eger et al., 2005; Ewbank 

& Andrews, 2008; Loffler et al., 2005; Rotshtein et al., 2004). In a large-scale study of 80 

participants, we reported image-invariant adaptation to identity in face-selective regions, 

such as the FFA, but no difference in the magnitude of adaptation to familiar and unfamiliar 

faces (Weibert et al., 2016). This fits with our current findings, where we do not find any 

difference between the pattern of neural response to familiar and unfamiliar faces. Overall, 

this suggests that the FFA does not process identity to a degree by which full image invariance 

is achieved. It seems more likely that the FFA is involved in a form of image normalization that 

contributes to face recognition. This would fit with studies of developmental prosopagnosia 
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in which normal patterns of response in face regions can occur despite impaired face 

recognition (Avidan & Behrmann, 2014; Furl et al., 2011; although see Jiahui, Yang, & 

Duchaine, 2018). This should not, however, undermine the role of regions such as the FFA 

and OFA in face processing. Other studies have shown that the response in the FFA is linked 

with individual differences in familiar face recognition (Furl et al., 2011; Weibert & Andrews, 

2015) and disruption to these regions is known to affect face recognition (Barton, 2008; 

Rossion et al., 2003; Jonas et al., 2012; Parvizi et al., 2012). Rather, it seems likely that 

interactions between the core and extended face processing networks are important for 

familiar face recognition (Collins & Olson, 2014; Weibert et al., 2016). 

Models suggest that a dorsal pathway leading to the posterior superior temporal sulcus (pSTS) 

plays a key role in processing changeable aspects of faces such as emotional expression and 

gaze direction (Haxby et al., 2000). We found a different pattern of response in the pSTS 

compared to the OFA and FFA, in which there was a release from adaptation to familiar faces, 

but not unfamiliar faces. This increased sensitivity to familiar faces converges with previous 

studies that have shown that the response of the pSTS is more sensitive to familiar compared 

to unfamiliar faces (Davies-Thompson, Gouws, & Andrews, 2009). Although it is not clear why 

the pSTS is more sensitive to familiar faces, it has previously been shown that connectivity 

with the FFA may play a role in tracking meaningful changes in the face (Baseler, Harris, Young, 

& Andrews, 2014). 

In conclusion, our results demonstrate that both shape and texture are used in the 

recognition of facial identity. These findings provide the first direct evidence for the 

importance of shape in a paradigm that is similar to face recognition in natural viewing. The 

equal sensitivity to shape and texture in the neural response of core face-selective regions 

provides evidence that these regions contribute to the early stages of face recognition. 
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Chapter 5- A narrow band of image dimensions is critical for familiar 

face recognition. 
 

This Chapter is adapted from: Andrews, T. J, Rogers, D., Mileva, M., Watson, D., Wang, A., 

& Burton, A. M. (2023). A narrow band of image dimensions is critical for face recognition. 

Vision Research, 212, 108297. 

 

5.1 Abstract  
 

A key challenge in human face recognition is to differentiate information that is diagnostic for 

identity from other sources of image variation. Models of face processing suggest that the 

representation of familiar faces is based on image-invariant representations. However, it 

remains unclear what image properties underlie this image-invariant representation. Here, 

we used a behavioural approach in combination with principal components analysis (PCA) to 

reveal the critical image dimensions for face recognition. First, PCA was used to reveal the 

image dimensions of a large set of naturally varying faces. To determine which image 

dimensions were important for recognition, images of familiar faces were manipulated to 

remove specific combinations of principal components. Participants performed a naming task 

on the faces. We found that recognition of familiar faces increased when the early image 

dimensions were removed, decreased when intermediate dimensions were removed, but 

then returned to baseline recognition when only later dimensions were removed. Next, we 

asked what information is important when learning new identities. To do this, we employed 

a face learning paradigm using images that have had specific image dimensions removed. We 

found that subsequent recognition of newly learned identities, improved when the early 

image dimensions were removed, decreased when intermediate dimensions were removed 

and was not affected when the later image dimensions were removed. Together, these 

findings suggest that early image dimensions reflect ambient changes, such as changes in 

viewpoint or lighting, that do not contribute to face recognition. However, there is a narrow 

band of image dimensions that are critical for the recognition of identity and during face 

learning. 
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5.2 Introduction 
 

The ability to recognise a person from their face is fundamental to the way we interact 

with them. Models of face processing propose that faces are first represented in a pictorial 

code that contains detailed information about the image, but is then transformed into a more 

abstract structural code that can be used for perception (Bruce & Young, 1986, 2012). This 

transformation from a pictorial to a structural representation is important because, as we 

interact with faces in a natural environment, the shape and texture of a face can vary 

dramatically due to movement of the head and changes in lighting. To be useful, the cognitive 

processes involved in recognition must be able to ignore these ambient image changes to 

reveal an invariant, structural representation that can be utilised for recognition (Burton, 

2013).  

The distinction between familiar and unfamiliar faces demonstrates the transformation from 

a pictorial to a structural code. While photographs of unfamiliar faces can be remembered 

and later recognised remarkably well, recognition performance with unfamiliar faces 

degrades as soon as any changes are made between learnt and test images (Bruce, 1982; 

Hancock, Bruce, & Burton, 2000; Kemp, Towell, & Pike, 1997). In contrast, the behavioural 

hallmark of familiar face recognition is that it is remarkably stable across substantial changes 

in expression, viewing angle, and lighting conditions (Bruce, 1994; Bruce & Young, 2012; 

Burton, 2013). Models of face recognition propose key structural representations for familiar 

faces that are known as Face Recognition Units (FRUs), which selectively respond to faces 

from a particular identity (Bruce & Young, 1986; Burton et al., 1990). Although classical 

models of face recognition (Bruce & Young, 1986) recognise the importance of FRUs, the 

nature of the visual properties that are used in this structural code are not specified. 

A number of studies have used principal components analysis (PCA) to explore how the image 

properties of faces can be related to perception (Turk & Pentland, 1991; O’Toole et al., 1993; 

Hancock, Burton & Bruce, 1996; Burton, Bruce & Hancock, 1999; Calder et al., 2001; Jozwik et 

al., 2022). When PCA is applied to a set of faces, it delivers a number of dimensions that that 

can characterise any face image (Scheuchenpflug, 1999; Tredoux et al., 2002; Nestor et al., 

2013). Within this framework, ‘early’ dimensions capture the most variance within a learning 

set, and tend to be associated with coarse-scale image variation, such as changes in head 
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orientation or whether an image is brighter on one side or the other (Burton, Kramer, Ritchie 

& Jenkins, 2016). Later components, capturing progressively smaller variance, tend to capture 

finer-scale information. When PCA is applied to a particular set of faces, it is important to note 

that, given a sufficiently large sample, the resulting space generalises well. So, components 

derived from one set of faces, tend to capture the variance of novel sets adequately – 

particularly if training sets incorporate a range of variation in face images. However, it remains 

unclear whether and to what extent certain image dimensions are more useful than others 

for capturing identity information, and how certain components contribute to the process of 

learning. 

In a recent study, Andrews and colleagues (Andrews et al., 2023) used PCA to explore the role 

of different image dimensions in face recognition. They found that the ability to predict 

judgements of identity in sorting or matching tasks was improved when the early image 

dimensions were removed. They also found that the recognition of familiar faces increased 

when the early image dimensions were removed. In contrast, there was a decrease in 

performance when intermediate image dimensions were removed. Finally, there was no 

significant effect when only later dimensions were removed. Together, these findings suggest 

that early image dimensions may reflect changes in the image that do not contribute to face 

recognition, but there is an intermediate band of image dimensions that are critical for the 

structural representation that is important for the recognition. 

These findings suggest that the structural representation of faces that is used for the 

recognition of identity focuses on invariant properties of the face and ignores ambient 

changes in the image. However, an important related question is how these structural 

representations emerge. One possible mechanism could be that an invariant structural 

representation reflects face averages. Support for this possibility is evident in studies showing 

a behavioural advantage for images of familiar faces based on an average of images when 

compared to single images and the fact that the size of these effects increase as more images 

are incorporated into the average (Burton, Jenkins, Hancock & White, 2005; Jenkins & Burton, 

2011). It would appear that each image of a face helps to modify the representation, by 

strengthening prototypical properties, while discarding ambient properties of images. Thus, 

exposure to multiple images of an identity could create an average face representation that 

underpins our recognition of familiar faces. 



97 | P a g e  
 

Variability in exposure has been shown to be fundamental to learning new faces (Devue & de 

Sena, 2023). Several studies have shown that, when observers learn faces, they are better 

able to recognise previously unseen faces when the learnt faces are more variable (Murphy 

et al., 2015; Baker et al. 2017; Ritchie & Burton, 2017; Kramer et al., 2018). For example, when 

participants were taught to associate names with faces of unfamiliar individuals, participants 

were more accurate and quicker in verifying the names of identities they had learned with 

high variability compared to those learned with low variability (Ritchie & Burton, 2017). Taken 

together, these results are consistent with the idea that an average face representation could 

underpin our recognition of faces. If this average representation is built using face images that 

are more representative of the natural variation of a person, then there will be an advantage 

in the recognition of new instances of the person. However, it has been argued that face 

averages may not underpin the structural representation utilised during familiar face 

recognition. For example, when exploring the concept face likeness- which captures the 

degree to which a face image looks like the person that is depicted, face averages have been 

found to be rated poorer for face likeness than exemplar images (Ritchie, Kramer & Burton, 

2018). Moreover, only small correlations are observed between likeness ratings and 

prototypicality, indicating that these two measures are not suitable proxies for one another 

(Balas, Sandford & Ritchie, 2023). 

While it is clear that exposure and variation within images are important for face learning, a 

few questions still remain. For example, what image dimensions are important for this 

process? Under the logic of face averages, all image variation is important to learn, however, 

it is possible that certain image dimensions contribute to the recognition of identity more 

than others, and thus face learning is reliant on a process of extracting the variability in a 

subset of image properties. Moreover,  what are the temporal dynamics of face learning? 

Previous face learning paradigms often employ just one learning session to familiarise 

participants to new identities prior to testing (Murphy et al., 2015; Ritchie & Burton, 2017; 

Baker, Laurence & Mondloch, 2017). Therefore, it is possible that at test, participants rely on 

short-term memory strategies as opposed to stored mental representations of the newly 

learned identities.  

Here, we investigated which image dimensions from a PCA of shape and texture are important 

for familiar face recognition and face learning. The relative importance of different 
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dimensions on the recognition of identity was determined by measuring the effect on 

recognition of removing different combinations of dimensions from famous faces 

(Experiments 1 & 2) and the ability to recognise new instances of learnt faces (Experiment 3). 

In Experiments 1 and 2, UK participants were presented with images of familiar faces (UK 

celebrities) that had different combinations of PCs removed, using a free recall face naming 

paradigm. In Experiment 3, participants were asked to learn unfamiliar identities across two 

learning sessions using images that had different combinations of PCs removed. Participants 

were then asked to recognise images of these newly learned identities, using images that had 

no PCs removed. 
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5.3 Methods 

5.3.1 Participants  
 

Participants were recruited separately for each behavioural experiment. For each 

experiment we computed an a-priori power analysis (α = .05, power level = 0.8) using 

G*Power (3.1.9.7, Faul et al., 2007) to determine the minimum sample size required to find 

an effect (if one was present) for each experiment. We recruited 99 participants (61 female, 

mean age: 25.4) for Experiment 1 (repeated measures ANOVA-within factors, 4 

measurements, ηp
2 = .02 indicating a small expected effect size; Cohen, 2013) and 78 

participants (46 female, mean age: 26.4) for Experiment 2 (repeated measures ANOVA-within 

factors, 5 measurements, ηp
2 = .015 indicating a small expected effect size; Cohen, 2013). We 

recruited 102 participants (71 female, mean age: 22.4) for Experiment 3 (repeated measures 

ANOVA-within factors, 5 measurements, ηp
2 = .06 indicating a medium expected effect size; 

Cohen, 2013). All participants had normal or corrected to normal vision and were drawn from 

an opportunity sample of students and staff at the University of York. All participants gave 

their written informed consent. The study was approved by the Psychology department Ethics 

Committee. 

 

5.3.2 Principal Components Analysis (PCA) and image stimuli 
 

The familiar face images used for Experiment 1 and 2 were A-list celebrities, most of 

who are well-known Hollywood actors/actresses. The raw images entered into the PCA were 

collected using a Google Image Search by entering the name of a celebrity and downloading 

images classified as “large” by the search engine (size of 900 x 900 pixels and above) where 

the face was broadly front-facing and no part of it being obstructed (e.g. by other parts of the 

body, clothing or accessories). Apart from these criteria, the images varied naturally across 

lighting, emotional expressions, hairstyle, facial hair, etc.  

To approximate natural variation across faces and represent our pre-existing experience with 

faces in daily life, PCA was performed on a large image set containing 6100 images (see the 

‘background set’ described in Mileva et al., 2020). The set contained a varying number of 
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images for each identity (between 1-170 images) in order to simulate different levels of 

familiarity and all images were ambient, capturing variability across age, pose, lighting 

conditions, emotional expressions, image quality, and ethnicity. Images were rescaled to 380 

x 570 pixels. To be consistent across all image sets, we converted all images to greyscale. The 

shape of each image was determined by aligning 82 fiducial points to each face using the 

InterFace software package (Kramer, Jenkins & Burton, 2016). The x, y coordinates from each 

image were then entered into the principal components analysis for shape. The texture of 

each face was generated by warping each image to a standard shape. The intensity values of 

each pixel within the standard shape were then entered into a principal components analysis 

of texture. This procedure generated principal components that captured the ways in which 

images in the set varied, both in terms of shape and texture. We used the first 100 PCs which 

explained 99.9% of the shape variance and 91.6% of the texture variance. 

The InterFace software package (Kramer et al., 2016) was used to perform different 

manipulations to each image in order to neutralise the effect of a small number of shape and 

texture PCs. Shape and texture PCs were neutralised as both of these properties have been 

shown to be important for making recognition judgments, with texture being the dominant 

property utilised (Rogers, et al., 2022). This was done by assigning a value of 0 to each shape 

and texture component within the specified range. Three different manipulations were 

applied to create images for the first experiment, neutralising the effect of both shape and 

texture PCs 1-4, 1-8, and 1-12. Experiments 2 and 3 used narrower ranges of PCs (1-3, 4-6, 7-

9, and 10-12) to more precisely determine how these PCs related to face identity. All other 

PCs were left intact.  

In Experiment 1, we used 24 familiar face images (8 female). Figure 5.1. shows the 4 

conditions that were created by the selective removal of shape and texture principal 

components from the images: 0 (no PCs removed), 4 (PCs 1-4 removed), 8 (PCs 1-8 removed), 

12 (PCs 1-12 removed). This gave a total of 144 (24 * 4) images. From these images, we 

created 4 stimulus sets in which there were 6 images from each of the 4 conditions giving a 

total of 24 images. In each stimulus set, there was only one image from each identity. 

Participants were allocated randomly to each image set. 
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Figure 5.1. The effect of removing different bands of principal components from an example familiar 

face image (Hugh Jackman).  

In Experiment 2 (Figure 5.2) we used 20 familiar face images. There were 5 conditions that 

were created by the selective removal of shape and texture principal components from the 

images: 0 (no PCs removed), 1-3 (PCs 1-3 removed), 4-6 (PCs 4-6 removed), 7-9 (PCs 7-9 

removed) and 10-12 (PCs 10-12 removed). This gave rise to at total of 100 (20 * 5) images. 

From these images, we created 5 stimulus sets in which there were 4 images from each of the 

5 conditions giving a total of 20 images. In each stimulus set, there was only one image from 

each identity. Participants were allocated randomly to each image set.  

Figure 5.2. The effect of removing different bands of principal components from an example familiar 

face image (Daniel Radcliffe).  

In Experiment 3 (Figure 5.3) we used images from five unfamiliar identities. There were 5 

image conditions that were created by the selective removal of shape and texture principal 
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components from the images: 0 (no PCs removed), 1-3 (PCs 1-3 removed), 4-6 (PCs 4-6 

removed), 7-9 (PCs 7-9 removed) and 10-12 (PCs 10-12 removed).  

 

Figure 5.3. The effect of removing different bands of principal components from an example unfamiliar 

face image. 

 

5.4 Familiar Face Recognition Task (Experiments 1 & 2) 

5.4.1 Methods 
 

The familiar face recognition task comprised two experiments involving naming 

familiar faces. Participants completed this experiment online using the Pavlovia platform 

(PSYCHOJS, Version 2020.2). Each trial began with a white fixation cross superimposed on a 

grey background for 0.5 seconds. This was followed by a centrally positioned face. Participants 

pressed one of two buttons to indicate if the face was familiar or unfamiliar. Participants were 

instructed to respond as quickly and as accurately as possible. If participants indicated that 

the face was familiar a new screen would appear containing a response box for participants 

to type the name or biographical information of the person. When this was complete, a new 

trial began. If participants indicated that the face was unfamiliar a new trial began 

immediately. The order in which the faces were presented was randomised for each 

participant. After each experiment, participants completed a familiarity check to test their 

ability to recognise the familiar faces, in which novel high-resolution images from each 

identity was presented to participants and their task was to name the identity depicted in 

each image.  
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The responses for the familiarity check were cross referenced with the responses given for 

the main experiment. For each participant, the identities that were not recognised in the 

familiarity check were automatically removed from the main analysis. Participants entered 

biographical information about the person (instead of their name) 1.5% of the time for 

Experiment 1 and 2.8% of the time for Experiment 2. Biographical information was judged to 

be a match if it was deemed specific enough to the target identity, for example a description 

of “actor”, “musician” or “politician” would result in a non-match (even if these labels were 

true) but a description of “actor who played Harry Potter” was deemed specific enough for a 

match. 86.6% of the faces in Experiment 1 and 93.5% of the faces in Experiment 2 were 

recognised during the familiarity check. Accuracy and response time were calculated from 

these trials. 

5.4.2 Results 
 

In Experiment 1, we measured the recognition of familiar faces in which different 

numbers of PCs were removed from the image. There were 4 conditions in which either the 

first 0, 4, 8 or 12 PCs from both shape and texture were removed from the image. Figure 5.4 

shows the accuracy and response time for each condition. A repeated-measures ANOVA 

revealed a significant effect of condition for both accuracy (F(2.44, 239.1) = 225.7, p <.001, 

η2
p = .70) and response time (F(2.41, 236.6) = 619.2, p <.001, η2

p = .86). Planned comparisons 

showed that there was a significant difference between the 0 and 4 PCs, which was due to an 

increased recognition accuracy (t(98) = 2.72, p = .008, d = .27) and a decreased response time 

(t(98) = 5.94, p < .001, d = .60) for the 4 PC condition. There was also a significant difference 

between the 0 and 8 PC conditions, and between the 0 and 12 PC conditions for accuracy and 

response time. However, these differences were due to a decrease in accuracy (0:8, t(98) = 

11.43, p <.001, d = 1.15; 0:12, t(98) = 21.04, p <.001, d = 2.11) and an increase in response 

time (0:8, t(98) = 26.44, p <.001, d = 2.66; 0:12, t(98) = 28.47, p <.001, d = 2.86). These data 

show that removal of the initial PCs improves accuracy and reduces response time, whereas 

removal of later PCs reduces accuracy and increases response time. 
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Figure 5.4. Experiment 1 – The effect of cumulatively removing PCs on familiar face recognition. Removal 

of 4 PCs resulted in increased accuracy and a reduction in response time to familiar faces. However, 

removal of 8 or 12 PCs resulted in decreased accuracy and increased response time. Horizontal lines 

indicate significant differences (p < .05) relative to the 0 PCs condition (original reconstruction). Error 

bars indicate standard error of the mean. 

In Experiment 2, we investigated the effect of removing bands of PCs on familiar face 

recognition. Participants viewed images in which 0, 1-3, 4-6, 7-9 or 10-12 PCs of shape and 

texture were removed from the image. Figure 5.5 shows the accuracy and response time for 

each condition. A repeated-measures ANOVA revealed a significant effect of condition for 

both accuracy (F(4, 304) = 13.03, p < .001, η2
p = .148) and response time (F(4, 304) = 5.36, p < 

.001, η2
p = .092). Planned comparisons showed that there was a significant difference 

between the 0 and 1-3 PC conditions, which was again due to an increased recognition (t(76) 

= -1.52, p = .034, d = .18) but there was no difference in response time (t(78) = 0.48, p = .630, 

d = .057) for the 1-3 PC condition. There was also a significant difference between the 0 and 

4-6 PCs conditions, and also between the 0 and 7-9 PCs conditions for accuracy and response 

time. These differences were due to a decrease in accuracy (0:4-6, t(78) = 4.12, p < .001, d = 

.47); 0:7-9, t(78) = 4.07, p < .001, d = .47) and an increase in response time (0:4-6, t(78) = -

2.20, p = .031, d = -.26; 0:7-9, t(78) = -3.00, p = .004, d = -.37)). Finally, there was no significant 

difference in accuracy or response time between the 0 and 10-12 PCs removed conditions 

((t(78) = 1.47, p = .147, d = .17); (t(78) = 0.65, p = .519, d = .08)). These data show that removal 
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of the initial PCs improves accuracy and reduces response time, whereas the selective 

removal of intermediate bands of PCs reduces accuracy and increases response time. Finally, 

removal of later bands of PCs has a minimal effect on recognition. 

 

 

Figure 5.5. Experiment 2 – The effect of selectively removing bands of PCs on familiar face recognition. 

Removal of the PCs 1-3 again resulted in increased accuracy but not a reduction in response time to 

familiar faces. Removal of 4-6 or 7-9 PCs resulted in a significant decrease in accuracy and an increased 

response time. However, removal of PCs 10-12 had no effect on accuracy or response time. 

5.5 Face Learning Task (Experiment 3) 

5.5.1 Methods 
 

The face learning paradigm comprised of three sessions spread out equally across five 

days (Monday, Wednesday and Friday). The first two sessions consisted of a learning phase 

and feedback phase. The final session involved a face recognition test of the newly learned 

identities. Participants completed all sessions online using the Pavlovia platform (PSYCHOJS, 

Version 2020.2).  

During each learning phase, participants were asked to learn five unfamiliar female identities. 

Participants learned each of the five identities using images from one of the different image 

conditions (0 PCs removed, 1-3 PCs removed, 4-6 PCs removed, 7-9 PCs removed, 10-12 PCs 

removed). This was counterbalanced across the participant sample, so that each identity was 

learned in each of the image conditions. For the learning and feedback phases, participants 
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were shown a total of 14 different images (5 for each learning phase, which were repeated 

twice and 2 for each feedback phase), where each image was in the image condition for that 

identity, for that group of participants. 

During the learning phases, each trial began with a white fixation cross superimposed on a 

grey background for 0.5 seconds. This was followed by a centrally positioned face along with 

a corresponding name for that identity, displayed for 5 seconds. Names were selected from 

the most popular first names for baby girls in 2020 using birth registration data from the ONS. 

The selection criteria were the first five names that were two syllables and six letters in length 

(Harper, Millie, Phoebe, Sophie and Willow). Participants were instructed to learn the facial 

identity as well as the face and name association. Trials were blocked by identity, but the 

order of images within a block along with the order of the blocks was randomised for each 

participant. 

After each learning phase participants then entered a feedback phase in order to ascertain 

the levels of familiarity reached for each identity. Participants were shown 2 new 

reconstructed images of each identity, as well as the five names of the newly learnt identities. 

Participants were instructed to press a key to indicate the identity they thought was depicted 

in the image. Automated feedback was given on each trial, when the participant made an 

incorrect identification, the correct name for the identity was shown. Each feedback phase 

was self-paced by the participant. 62.6% of the faces were recognised successfully in the first 

session and this rose to 73.5% in the second session.  

The final session of this experiment was a face recognition test. During this session 

participants were shown novel images of the newly learned identities as well as foil image 

distractors. The images used during the final test phase were not manipulated to remove any 

PCs, for example; if a participant had learned ‘Willow’ with images that had 4-6 PCs removed, 

during the test session they had to recognise Willow from images that had no PCs removed. 

This was important in order to observe how learning facial identities with images that had PCs 

removed, impacted subsequent recognition of novel images that had no PCs removed but 

were captured within the PC space. During the test session 5 novel different images were 

used for each identity (25 in total, 5*5) along with 50 foil distractor images (5 images of 10 

unfamiliar identities). Each trial began with a white fixation cross superimposed on a grey 
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background for 0.5 seconds. This was followed by a centrally positioned face. Participants 

pressed one of two buttons to indicate if the face was familiar or unfamiliar. This task was 

self-paced and participants were instructed to respond as quickly and as accurately as 

possible. If participants indicated that the face was familiar, a new screen would appear 

containing a response box for participants to type the name of the person. When this was 

complete, a new trial began. If participants indicated that the face was unfamiliar a new trial 

began immediately. The order in which the faces were presented was randomised for each 

participant.  

5.5.2 Results 
 

In Experiment 3, we asked how learning identities with images that had select bands 

of PCs removed would affect subsequent recognition of novel images that had no PCs 

removed. Figure 5.6 shows sensitivity (d prime) and response time (s) for making a correct 

recognition judgment when learning an identity under each image condition. A repeated-

measures ANOVA revealed a significant effect of condition for both accuracy (F(4, 404) = 

10.91, p < .001, η2
p = .10) and response time (F(2.88, 175.41) = 7.52, p < .001, η2

p = .11). 

Planned comparisons showed that there was a significant difference between the 0 and 1-3 

PC conditions, which was due to an increase in recognition (t(101) = -2.07, p = .002, d = .21) 

for the 1-3 condition, but no difference in response time (t(74) = -.58, p = .567, d = .07). There 

was also a significant difference between the 0 and 4-6 & 7-9 conditions. These differences 

were due to a decrease in accuracy (0:4-6, t(101) = 3.13, p = .002, d =.03); (0:7-9, t(101) = 2.89, 

p = .005, d = .29) and an increase in response time (0:4-6, t(74) = -3.13, p = .003, d = .26; 0:7-

9, t(73) = -3.71, p <.001, d = .43)). Finally, there was no significant difference in accuracy and 

response time between the 0 and 10-12 conditions (t(101) = -.14, p = .889, d = .01);(t(80) = -

2.0, p = .053, d = .22)). These data show that removal of the initial PCs during face learning 

improves accuracy and reduces response time, whereas the selective removal of intermediate 

bands of PCs during face learning reduces accuracy and increases response time, when tested 

on images that have had no PCs removed. Finally, removal of later bands of PCs has a minimal 

effect on recognition. 
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Figure 5.6. In Experiment 3, removal of the PC band 1-3 from learning images, resulted in an increase in 

final recognition sensitivity (A) but no difference in response time (B). Removal of the mid bands of PCs 

(4-6 and 7-9) resulted in a significant decrease in accuracy and an increased response time. However, 

the removal of a later band of PCs (10-12) had no effect on recognition sensitivity and a limited effect 

on response time. Horizontal lines indicate significant differences (p < .05) relative to the 0 PCs condition 

(original reconstruction), and error bars represent +1 SEM. 

 

5.6 General Discussion  
 

The aim of this study was to determine what information is necessary for the 

recognition of familiar faces, and for the learning of new identities. To address these issues, 

a principal components analysis was used to reveal the underlying image dimensions of 

naturally varying face images from different identities. This allowed us to remove certain 

image dimensions from the face images to compare the importance of these image 

dimensions on the recognition of familiar identities and when learning of new identities. Our 

key finding is that the structural representation used for the recognition of identity from faces 

is dependent on a narrow band of image dimensions. 

As faces have a similar structure, the ability to discriminate identity must be based on 

encoding subtle differences between images. A further challenge for successful face 

recognition is that, as a result of changes in viewing conditions, each face can generate an 

almost infinite number of images. So, it is necessary for the recognition system to 

differentiate between information in the image that provides cues about identity from other 
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information that does not. Models of face processing propose that information about faces is 

first represented in an image-based or pictorial code, which is then transformed into a 

structural code that can be used for recognition (Bruce & Young, 1986, 2012; Burton et al., 

1990). However, the precise image properties that are used in this structural code have not 

been fully resolved. The concept of face space provides a framework for explaining how 

variance across faces (both within and between identities) might be represented in a 

structural code that is used for recognition (Valentine, 1991; Valentine et al., 2016). Within 

this framework, different properties of the face are represented along different dimensions. 

Each face is represented by a location in this multidimensional space, such that faces that are 

close together are perceived to be more similar and those that are separated by larger 

distances are perceived to be more different. Nevertheless, it has not been clear how many 

dimensions are important or what they might represent, nor has it been established how 

images of the same person could occupy different locations within a face space. 

In the first experiment, we found that removing the early image dimensions increased 

recognition and decreased response time. In contrast, the cumulative removal of more PCs 

reduced recognition and increased response time. This suggests that, while early image 

dimensions are not important (in fact removing this information increases recognition), later 

PCs are important for making identity judgments. However, these findings did not show which 

PCs are important for recognition. To address this question, Experiment 2 asked whether 

there are bands of image dimensions that are important for recognition. Again, we found that 

removing the early PCs improved recognition compared to when no PCs were removed. 

However, we found that removing intermediate bands of PCs resulted in a significant 

decrease in the recognition accuracy and increased response time. Interestingly, removing 

later (10-12) PCs had a minimal effect on recognition. These findings suggest that the initial 

PCs reflect ambient image information that is not used for recognition. However, there is an 

intermediate band of PCs that plays a key role in recognition. These intermediate image 

dimensions could reflect some of the key dimensions within a multidimensional face space 

model that is important for recognition.  

A key and surprising finding from this study was that removal of the initial image dimensions 

or PCs improved recognition of familiar faces. Previous studies have shown that texture 

information is important for face recognition (Bruce & Langton, 1994; Russell et al., 2006; 
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Harris et al., 2014; Andrews et al., 2016; Rogers et al., 2022) and that the recognition of faces 

also becomes much more difficult when texture is removed from the image (Davies et al., 

1978; Leder, 1999; Burton et al., 2005). However, the increased recognition of identity when 

the initial image dimensions were removed shows that not all texture information contributes 

to recognition. Presumably, these early image dimensions reflect ambient changes in the 

texture (e.g. illumination) that are not diagnostic of an identity. The shape or configuration of 

the face has also been suggested to be important for face recognition (McKone & Yovel, 2009; 

Tanaka & Gordon, 2011; Piepers & Robbins, 2012; Rogers et al., 2022). However, natural 

variation in face images caused by rigid changes in viewpoint or non-rigid changes (such as in 

expression or during speech) can often lead to large changes in the configuration or shape of 

the face, without changing identity. Our findings show that when the early PCs are removed 

from familiar face images, recognition of identity increases. This suggests that early principal 

components for shape reflect changes in viewpoint, which is not diagnostic of identity.  

The largest effect on recognition was found when we removed intermediate image 

dimensions. This suggests that these dimensions are critical when making identity judgments 

of faces. Burton and colleagues (2016) investigated which aspects of the image were related 

to different PCs. They found that the early principal components were typically related to rigid 

head rotations or changes in lighting. Although later PCs were much harder to define, they 

tended to reflect non-rigid changes in shape or changes in texture that are not related to 

lighting. They also found that variance in these later PCs was idiosyncratic. For example, the 

same PC could reflect a different image property in different identities. It is important to note 

that in their study, the PCA analysis and image reconstructions were performed within 

individual identities, so is dependent on the image set. However, when PCA is performed 

using large image sets that incorporates variation across individuals, the PCs can remain 

relatively stable. In any event, our results show these intermediate dimensions are critical for 

making judgments of identity.  

In the final experiment, we asked which image dimensions are important when learning new 

faces. We found that removing the early band of PCs from learnt images led to an increase in 

recognition. In contrast, removal of intermediate image dimensions from the learnt images 

decreased face recognition. This indicates that these dimensions are critical not only for the 

recognition of familiar faces, but also during the process of becoming familiar with a face. A 
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key aspect of the learning paradigm employed in this experiment was that the learning phase 

of the experiments was not immediately prior to the recognition test. Thus, participants had 

to rely on their newly acquired stored mental representations of the identities. Participants 

recognition of the newly learned identities was then tested using images that had no PCs 

removed. This was important in order to assess how certain principal components 

contributed to the process of face learning. We also used a free recall naming task to provide 

a more real-world test of recognition. These differences in design provide a more ecologically 

valid approach to understanding the process by which we become familiar with faces.  

Previous face learning research has shown that variability in the exposure of an identity is 

fundamental to facilitate the generation of a view invariant representation (Jenkins et al., 

2011; Murphy et al., 2015; Ritchie & Burton, 2017). This fits with the idea that stable face 

representations could be formed by averaging across multiple instances of a face (Burton, 

Jenkins, Hancock & White, 2005; Jenkins & Burton, 2011). This has the effect of removing 

natural or ambient fluctuations in the image, such as pose, illumination and expression. Our 

findings extend previous research by showing that removal of the early image dimensions 

(containing this coarse scale image variation) improved subsequent face learning. This 

suggests that this information is not important for establishing a stable representation for the 

recognition of identity. Our data suggest that when we are learning faces in natural viewing, 

the presence of this ambient variation makes it more difficult to generate a structural 

representation that can be used for subsequent recognition. Rather, an intermediate band of 

image dimensions appears to be important for extracting the key face information that is 

common between encounters (Burton et al., 2016; Young & Burton, 2021). Interestingly, we 

found that removal of further image dimensions had a minimal effect on our ability to learn 

new faces. Thus, it could be argued that structural representations relying upon averaging all 

image properties are not necessary for the process of familiar face recognition and face 

learning. This notion reflects more current work showing that face averages generated in this 

way are rated as having lower face likeness than exemplar images (Ritchie, Kramer & Burton, 

2018; Balas, Sandford & Ritchie, 2023). Instead, the findings here suggest that extracting and 

possibly averaging a smaller set of image dimensions that are critical for face recognition may 

underpin facial structural representations.  
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A key feature of our study was the use of ambient face images that reflect the image variation 

that occurs in natural viewing. Although the early image dimensions for both shape and 

texture explain most of the image variance, they do not appear to contain information that is 

important for the recognition of identity. In contrast, intermediate image components which 

represent more subtle changes in the image, appear to be important for face learning and 

familiar face recognition. These findings are relevant to the debate surrounding the difference 

between unfamiliar and familiar face perception (Young & Burton, 2018a, 2018b, 2021; 

Rossion, 2018; Sunday & Gauthier, 2018; Blauch, Behrmann & Plaut, 2021a; 2021b; Yovel & 

Abudarham, 2021). Our proposal is that an important aspect of the change from a pictorial 

representation that is used for unfamiliar face perception to a structural representation that 

is used for familiar face recognition involves the removal of ambient information in the image. 

The ability to recognise familiar faces would appear to depend on the ability to ignore this 

irrelevant information and focus on the image properties that are important for recognition. 

On the other hand, the difficulty in the recognition of unfamiliar faces may reflect the inability 

to ignore this information.  

In conclusion, our results suggest that an intermediate band of image dimensions contains 

the structural code that is used to not only discriminate identity, but are also fundamental 

during the process of face learning. Recent studies in face recognition have shown that the 

discrimination of identity from a PCA is improved by the addition of a classifier (Kramer et al., 

2017; Kramer et al., 2018). These results suggest that these classifiers may improve 

recognition by increasing the weight of these critical band of PCs or image dimensions. These 

findings provide a new perspective for understanding of the structural code that underpins 

the recognition of faces. 
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Chapter 6- The contributions of different image dimensions on the 

perception of gaze, gender and expression.  
 

6.1 Abstract  
 

Faces provide a wide range of information that help guide our social interactions. In this study, 

we investigated the visual information in the face that allows us to perceive gaze, gender and 

expression. First, PCA was used to reveal the image dimensions of a large set of naturally 

varying faces. To determine which image dimensions were important, images of faces were 

manipulated to remove specific combinations of principal components. Participants then 

performed behavioural tasks involving judgements of gaze, gender or expression. We found 

that the removal of the early PCs had a significant effect on the perception of gaze. On the 

other hand, the removal of intermediate bands of PCs affected the perception of gender. 

Finally, the removal of later PCs affected judgements of emotional expression. These findings 

show that distinct, but overlapping, PCs (image dimensions) in faces are important for the 

perception of gaze, gender and emotional expression. It remains to be established whether 

the neural basis of these image dimensions can be found in a generic representation of faces 

or whether distinct neural representations instantiate each aspect of face perception. 
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6.2 Introduction  
 

Faces provide a range of information that is critical for everyday social interactions 

(Bruce & Young, 1986; 2018). The unique appearance of a face allows us to recognise the 

identity of a person. However, information from the face also allows us to extract what others 

are thinking and feeling. For example, a warm smile may indicate friendliness and 

approachability, whereas an angry expression might indicate displeasure. Faces also provide 

information about the age, gender and race of a person, which can influence the way we 

interact with them. Given the range of inferences we can make from looking at a face, a 

fundamental question is what information in the image do we use to make these judgements. 

In this study, we explored which image properties are important for the perception of gaze, 

gender and emotional expression. 

The ability to perceive the direction of gaze from a face is important for social interaction 

(Perrett, Hietanen, Oram & Benson, 1992). Humans change their gaze in order to bring 

different objects onto the fovea where vision is most sensitive. Thus, the ability to perceive 

the direction of gaze allows us to know what is engaging an individual’s attention. Gaze cues 

can be given by the position of the eyes and head direction (Langton, 2000). Studies have 

shown that we are very sensitive to the small changes in eye position (Cline, 1967), which is 

thought to be determined by comparing the luminance of the sclera either side of the pupil 

(Jenkins & Langton, 2003). The perception of gaze also involves the orientation of the head 

(Jenkins et al., 2006). For example, the Wollaston illusion shows that head orientation can 

change the perceived gaze even when the position of the eyes are unchanged (Wollaston, 

1824). Indeed, studies using adaptation have shown that we integrate eye and head position 

to generate a perception of gaze (Hecht et al., 2020). 

The perception of the sex or gender of a person is equally important for guiding social 

interactions. We can categorise the gender of a person from their face quickly and accurately. 

Male and female faces often differ in both shape and texture. Female faces tend to be shorter 

and rounder than male faces, which have more angular jawlines (Brown & Perrett 1993). 

Other studies have found that the relative distance between facial features, such as the 

eyebrows are also important for gender discrimination and recognition (Campbell et al., 

1999). The texture of the face has also been shown to be important for the perception of 
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gender (Brown & Perrett 1993; Yamaguchi et al., 1995). For example, the eyes, eye brows and 

lips can be used to distinguish male and female faces. The presence or absence of facial hair 

is another important cue for gender perception (Baudouin, 2006). Thus, it seems that the 

perception of gender relies on both local and global shape information, as well as texture 

information from key features.  

The perception of facial expressions of emotion is important for understanding the internal 

state of other people. We are able to make different facial expressions of emotion through 

changes in the facial musculature (Ekman, 1992; Ekman & Cordaro, 2011; Izard, 1994; 

Levenson, 2011; Panksepp & Watt, 2011; Calvo & Nummenmaa, 2015). For example, a sad 

expression is characterised by a pulled down mouth at the corners, eyelid tightening, and a 

dropping of the outer eye corners. On the other hand, happiness is shown by the raising of 

the cheeks, lip corners and eyes. Thus, the perception of expression would appear to rely on 

changes in the shape or configuration of the face. Support for the critical role of shape 

information in the perception of facial expression is found in studies that show image 

manipulations affecting texture, but leaving shape information intact, have little impact on 

perceptual and neural responses to facial expression (Bruce & Young, 1998; Magnussen et al., 

1994; White, 2001; Pallett & Meng, 2013; Harris et al., 2014). Similarly, image manipulations 

that completely remove texture, such as line drawings of faces, also show relatively preserved 

expression perception (McKelviet, 1973; Etcoff & Magee, 1992). However, other evidence 

suggests that the texture of the face can also be used to categorise expression (Calder et al., 

2001; Sormaz, Young & Andrews, 2016). For example, the categorisation of facial expressions 

was equally dependent on variation in both the texture and shape properties of the image 

(Sormaz, Young & Andrews, 2016). 

PCA can be used to measure natural variation in the image properties of faces. It generates 

principal components or image dimensions that capture image variation within the face. In 

the previous chapter, it was found that an intermediate band of images dimensions from 

ambient face images contributed to the recognition of identity. However, it remains unclear 

as to which image dimensions contribute to the perception of gaze, gender and expression. 

The present study explored how the removal of different principal components (PCs) affected 

perception. PCs were removed in one of two ways. To first establish what range of PCs are 

important for the perception of these categories, PCs were removed cumulatively. To then 
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interrogate the finer grained contributions of PCs to the perception of these facial signals, PCs 

were selectively removed in bands. Our aim was to determine which image dimensions are 

critical for the perception of these different categories and to determine whether the same 

or different PCs contribute to the perception of different social judgements.  

 

6.3 Methods 

6.3.1 Participants  
 

A single group of participants were recruited for the behavioural experiments. We 

computed an a-priori power analysis (α = .05, power level = 0.8) using G*Power (3.1.9.7, Faul 

et al., 2007) to determine the minimum sample size required to find an effect (repeated 

measures ANOVA-within factors, 8 measurements, ηp
2 = .02 indicating a small expected effect 

size, Cohen, 2013). We recruited 73 participants (47 female, mean age: 22.4). All participants 

had normal or corrected to normal vision and were drawn from an opportunity sample of 

students and staff at the University of York. All participants gave their written informed 

consent. The study was approved by the Psychology department Ethics Committee. 

6.3.2 Principal Components Analysis (PCA) 
 

The images used in Experiments 1, 2 and 3 were all unfamiliar faces that varied in gaze, 

gender or expression, respectively. Images for each experiment were collected using a Google 

Image search by entering key words such as “quarter profile face, male face, happy face” and 

downloading images classified as “large” by the search engine (size of 900 x 900 pixels and 

above). Images were not selected if the face was obstructed by other parts of the body, 

clothing or objects. In Experiments 2 and 3, images were only selected when the face was 

broadly front-facing. Apart from these criteria, the images varied naturally across lighting, 

hairstyle, facial hair and so on. 

To approximate natural variation across faces, PCA was performed on a large image set 

containing 6100 images (see the ‘background set’ described in Mileva et al., 2020). The set 

contained a varying number of images for each identity (between 1-170 images). Images were 

rescaled to 380 x 570 pixels. To be consistent across all image sets, we converted all images 
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to greyscale. The shape of each image was determined by aligning 82 fiducial points to each 

face using the Interface software package (Kramer, Jenkins & Burton, 2016). The x, y 

coordinates from each image were then entered into the principal components analysis for 

shape. The texture of each face was generated by warping each image to a standard shape. 

The intensity values of each pixel within the standard shape were then entered into a principal 

components analysis of texture. This procedure generated principal components that 

captured the ways in which images in the set varied, both in terms of shape and texture. We 

used the first 100 PCs which explained 99.9% of the shape variance and 91.6% of the texture 

variance. 

The InterFace software package (Kramer et al., 2016) was used to perform different 

manipulations to each image in order to neutralise the effect of a small number of shape and 

texture PCs. Shape and texture PCs were neutralised as both of these properties have been 

shown to be important for making judgments of face perception (Hole & Bourne, 2010). This 

was done by assigning a value of 0 to each shape and texture component within the specified 

range. All other PCs were left intact. In each of the three experiments (Gaze, Gender and 

Expression), eight different manipulations were applied to create images for each 

experiment, neutralising the effect of both shape and texture PCs 0, 1-3, 1-6, 1-9, 1-12; , 4-6, 

7-9, 10-12.  

6.3.3 Stimuli 
 

In Experiment 1, we used 96 images, where each image was of a different person. 

There was an equal split of left and right gaze images and an equal number of male and female 

images (24*4). Gaze direction ranged from approximately 10-50˚ (yaw). Figure 6.1. shows the 

8 conditions that were created by the selective removal of shape and texture principal 

components from the images: 0 (no PCs removed), 3 (PCs 1-3 removed), 6 (PCs 1-6 removed), 

9 (PCs 1-9 removed), 12 (PCs 1-12 removed), 4-6 (PCs 4-6 removed), 7-9 (PCs 7-9 removed) 

and 10-12 (PCs 10-12 removed). This gave a total of 768 (96 * 8) images. From these images, 

we created 8 stimulus sets in which there were 12 images (6 male, 6 female) from each of the 

8 conditions giving a total of 96 images. In each stimulus set, there was only one image from 

each identity. Participants were allocated randomly to each image set. 
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Figure 6.1. Experiment 1: The effect of removing different principal components on the perception of 

gaze. The left image shows an original face with a rightward gaze. The top row of images shows the 

effect of removing PCs cumulatively, and the bottom row shows the effect of selectively removing PC 

bands.  

In Experiment 2, we used 96 images, where each image was of a different person. There was 

an equal number of male and female faces. Figure 6.2. shows the 8 conditions that were 

created by the selective removal of shape and texture principal components from the images: 

0 (no PCs removed), 3 (PCs 1-3 removed), 6 (PCs 1-6 removed), 9 (PCs 1-9 removed), 12 (PCs 

1-12 removed), 4-6 (PCs 4-6 removed), 7-9 (PCs 7-9 removed) and 10-12 (PCs 10-12 removed). 

This gave a total of 768 (96 * 8) images. From these images, we created 8 stimulus sets in 

which there were 12 images (6 male, 6 female) from each of the 8 conditions giving a total of 

96 images. In each stimulus set, there was only one image from each identity. Participants 

were allocated randomly to each image set. 
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Figure 6.2. Experiment 2: The effect of removing different principal components on the perception of 

gender. The left image shows an original female face. The top row of images shows the effect of 

removing PCs cumulatively, and the bottom row shows the effect of selectively removing PC bands.  

In Experiment 3, we used 96 images for both expressions (happy, sad). In a pilot study, we 

selected images that were rated high for happiness and sadness. 100 happy, 100 sad and 100 

neutral images were selected from a Google Image search. There was an equal split between 

male and female faces. 30 participants (19 female, mean age: 21.3) rated faces that were 

presented in two blocks. Each block contained the 100 images of each expression and a 

further 50 neutral images (150 images total per block). Participants completed this 

experiment online using the Pavlovia platform (PSYCHOJS, Version 2020.2). Each trial began 

with a white fixation cross superimposed on a grey background for 0.5 seconds. This was 

followed by a centrally positioned face. Participants were instructed to rate each face on the 

expression for that block (happy or sad) using a scale of 1-7 (where 1 equals not happy/sad at 

all, and 7 equals extremely happy/sad). Participants made this judgement using the number 

keys (1-7). Participants were instructed to respond as quickly and as accurately as possible. 

The order in which the faces were presented was randomised within each block for every 

participant. For each expression the average rating for each image was then calculated across 



120 | P a g e  
 

the participants. These images were then separated by gender for each expression and the 

highest rated 48 images were compiled into separate image sets (giving rise to 4 sets of 

images- 48 male happy, 48 female happy, 48 male sad, 48 female sad). The average rating for 

each set was as follows Happy-Male = 5.89 (SD = 0.89); Happy-Female = 6.08 (SD = 0.78); Sad-

Male = 5.67 (SD = 0.93), Sad-Female = 5.62 (SD = 0.97).  

Figure 6.3. shows the 8 conditions that were created by the selective removal of shape and 

texture principal components from the images: 0 (no PCs removed), 3 (PCs 1-3 removed), 6 

(PCs 1-6 removed), 9 (PCs 1-9 removed), 12 (PCs 1-12 removed), 4-6 (PCs 4-6 removed), 7-9 

(PCs 7-9 removed) and 10-12 (PCs 10-12 removed). This gave a total of 768 (96 * 8) images 

for both expressions. From these images, we created 8 stimulus sets in which there were 12 

images (6 male, 6 female) from each of the 8 conditions giving a total of 96 images (for both 

happy and sad expressions). In each stimulus set, there was only one image from each 

identity. Participants were allocated randomly to each image set. 

 

Figure 6.3. Experiment 3: The effect of removing different principal components on the perception of 

expression. The left image shows an original face expressing sadness. The top row of images shows the 
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effect of removing PCs cumulatively, and the bottom row shows the effect of selectively removing PC 

bands.  

6.3.4 Procedure 
 

Participants completed the study online using the Pavlovia platform (PSYCHOJS, 

Version 2020.2). Participants completed all experiments in a single session containing 384 

trials (96*4- gaze, gender, happy, sad). The session contained three blocks- gaze, gender and 

expression. The order of the blocks and the order of trials within each block was randomised 

for each participant. Each trial began with a white fixation cross superimposed on a grey 

background for 0.5 seconds. This was followed by a centrally positioned face. For each trial, 

participants made a two-alternative forced choice decision by pressing one of two buttons 

(left and right arrow keys) to indicate if the face was looking to the left/right (gaze), if the face 

was male/female (gender), or if that face was happy/sad (expression). On screen labels were 

present for each trial, reminding participants what each arrow key represented. Participants 

were instructed to respond as quickly and as accurately as possible and response times were 

recorded to make this decision. 

6.4.1 Experiment 1 – Gaze 
 

In Experiment 1, we measured the perceived direction of gaze from faces in which 

different numbers of PCs were removed from the image. Participants were asked to judge 

whether the face was looking to the left or to the right using a 2AFC paradigm. There were 

eight image conditions in which we removed principal components cumulatively or 

selectively. Figure 6.4(A,B) shows the average accuracy in performance for each image 

condition (with chance level being 50%), along with the average response time to make a 

correct judgment (Figure 6.4 C, D).  
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Figure 6.4. Experiment 1: The effect of removing principal components of the perception of gaze. (A) 

Performance accuracy when removing PCs cumulatively. (B) Response times to make a correct gaze 

decision from images that have had PCs removed cumulatively. (C) Performance accuracy when 

removing bands of PCs. (D) Response times to make a correct gaze decision from images that have had 

PCs removed in bands. Horizontal lines indicate significant differences (p < .05) relative to the 0 PCs 

condition (original reconstruction). Error bars indicate standard error of the mean. 

When removing PCs cumulatively, a repeated-measures ANOVA revealed a significant effect 

of condition for both accuracy (F(3.39, 243.76) = 2.82, p = .033, η2
p = .04) and response time 

(F(3.16, 227.45) = 7.91, p < .001, η2
p = .10). Planned comparisons showed that there was a 

decrease in the perception of gaze when PCs were removed cumulatively for all conditions 

(when compared to the control condition). However, this was only significant for the removal 

of PCs 1-3 (t(72) = 2.61, p = .011) and PCs 1-9 (t(72) = 2.14, p = .036), with the removal of PCs 

1-6 (t(72) = 1.86, p = .117) and 1-12 (t(72) = 0.44, p = .663) not having a significant decrease 

in the perception of gaze. However, the time taken to make a correct gaze judgement was 
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significantly increased for all conditions compared to when no PCs were removed (1:3 (t(72) 

= -4.01, p < .001); 1:6 (t(72) = -4.92, p < .001); 1-9 (t(72) = -4.56, p < .001); 1-12(t(72) = -4.47, 

p < .001)). These data show that the removal of the initial PCs decreases accuracy and 

increases response time.  

The contribution of PCs to the perception of gaze becomes clearer when bands of PCs were 

selectively removed. A repeated-measures ANOVA revealed a significant effect of condition 

for both accuracy (F(2.99, 214.97) = 3.39, p = .019, η2
p = .05) and response time (F(2.78, 

202.02) = 6.78, p < .001, η2
p = .09). Planned comparisons revealed that this difference in 

accuracy was due to the removal of the first three PCs only (t(72) = 2.61, p = .011). None of 

the other conditions showed a significant effect (4-6 (t(72) = 0.11, p = .915); 7-9 (t(72) = 0.34, 

p = .732); 10-12(t(72) = 0.30, p = .763)). The response time to make a correct judgment was 

significantly increased for the 1-3 (t(72) = -4.01, p < .001) and 7-9 (t(72) = -2.12, p = .037) 

conditions. However, there was no significant difference for 4-6 (t(72) = -1.44, p = .154) or 10-

12 (t(72) = -0.52, p = .608) conditions. Taken together, these data show that the first three 

principal components are most important when making judgments of gaze. 

 

6.4.2 Experiment 2 – Gender 
 

In Experiment 2, we measured the perception of gender from faces in which different 

combinations of PCs were removed from the image. Participants’ perception of gender was 

measured by indicating whether the face was male or female using a 2AFC paradigm. There 

were eight image conditions in which we removed principal components cumulatively or 

selectively. Figure 6.5 shows the accuracy and response time for each condition (with chance 

level being 50%).  
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Figure 6.5. Experiment 2: The effect of removing principal components of the perception of gender. (A) 

Performance accuracy when removing PCs cumulatively. (B) Response times to make a correct gender 

decision from images that have had PCs removed cumulatively. (C) Performance accuracy when 

removing bands of PCs. (D) Response times to make a correct gender decision from images that have 

had PCs removed in bands. Horizontal lines indicate significant differences (p < .05) relative to the 0 PCs 

condition (original reconstruction). Error bars indicate standard error of the mean. 

When removing PCs cumulatively, a repeated-measures ANOVA revealed a significant effect 

of condition for both accuracy (F(3.56, 253.33) = 95.45, p < .001, η2
p = .57) and response time 

(F(3.37, 239.24) = 5.29, p < .001, η2
p = .07). Planned comparisons showed that this is explained 

by a significant decrease in accuracy for all conditions, compared to when no PCs were 

removed (1:3 (t(72) = 3.37, p < .001); 1:6 (t(72) = 2.30, p < .001); 1:9 (t(72) = 16.74, p < .001); 

1:12 (t(72) = 12.30, p < .001)). A similar pattern of data was found for the measure of response 

time, whereby the time taken to make a correct gender judgment increased significantly for 

all PC conditions except 1-3 (1:3 (t(72) = -0.41, p = .680); 1:6 (t(72) = -2.16, p = .034); 1:9 (t(72) 

= -3.62, p = .002); 1:12 (t(72) = -3.52, p = .002)). Taken together, these data show that as more 
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PCs are removed from face images, the perception of gender becomes harder and once the 

first nine PCs are removed performance drops to just above chance level. This is mirrored by 

the response time data, suggesting that as more PCs are removed not only does performance 

decline, the response time to make a correct gender decision also increases.  

The contribution of PCs to the perception of gender becomes clearer when bands of PCs were 

removed selectively. A repeated-measures ANOVA revealed a significant effect of condition 

for both accuracy (F(3.07, 218.07) = 20.12, p < .001, η2
p = .22) and response time (F(3.36, 

238.50) = 2.17, p < .036, η2
p = .04). Planned comparisons revealed that this difference in 

accuracy was due to lower accuracy for the removal of PCs 1-3 (t(72) = 3.37, p < .001), 4-6 

(t(72) = 5.68, p < .001) and 7-9 (t(72) = 7.59, p < .001). However, there was no significant effect 

of removing PCs 10-12. The time taken to make a correct gender judgment was significant for 

the removal of PCs 4-6 (t(72) = -2.44, p = .017) and 7-9 (t(72) = -2.49, p = .014). There was no 

significant difference in response time when removing PCs 1-3 (t(72) = -0.41, p = .680) or 10-

12 (t(72) = -0.69, p = .493). These data show that the intermediate bands of image dimensions 

(PCs 4-9) are most important when making judgments of gender, both for accuracy and for 

the time taken to make a correct judgment.  

 

6.4.3 Experiment 3 – Expression 
 

In Experiment 3, we measured the perception of expression from faces in which 

different numbers of PCs were removed from happy and sad expression faces. Participants’ 

perception of expression was measured by indicating whether a face had a happy or sad 

expression using a 2AFC paradigm. Figure 6.6 shows the average accuracy and response time 

for each image condition (with chance level being 50%). 
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Figure 6.6. Experiment 3: The effect of removing principal components of the perception of emotional 

expression. (A) Performance accuracy when removing PCs cumulatively. (B) Response times to make a 

correct expression decision from images that have had PCs removed cumulatively. (C) Performance 

accuracy when removing bands of PCs. (D) Response times to make a correct expression decision from 

images that have had PCs removed in bands. Horizontal lines indicate significant differences (p < .05) 

relative to the 0 PCs condition (original reconstruction). Error bars indicate standard error of the mean. 

When removing PCs cumulatively, a repeated-measures ANOVA revealed a significant effect 

of condition for both accuracy (F(4, 288) = 110, p < .001, η2
p = .61) and response time (F(3.13, 

225.07) = 3.51, p = .035, η2
p = .05). Planned comparisons showed that the removal of the first 

3 (t(72) = -0.17, p = .605) or 6 (t(72) = 0.60, p = .549) PCs did not significantly decrease accuracy 

compared to when no PCs were removed. However, there was a significant decrease in 

accuracy when 9 (t(72) = 13.86, p < .001) or 12 (t(72) = 15.68, p < .001) PCs were removed. 

But, there were no significant differences in response time relative compared to when no PCs 

were removed (1:3 (t(72) = -0.77, p = .446); 1:6 (t(72) = -0.59, p = .556); 1:9 (t(72) = -1.57, p = 
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.121); 1:12 (t(72) = -1.80, p = .076)). Taken together these results suggest that PCs 1-6 do not 

contribute to the perception of happy and sad expressions. However, later PCs are important. 

For the selective removal of PCs, a repeated-measures ANOVA revealed a significant effect of 

condition for both accuracy (F(3.55, 255.37) = 7.45, p = .008, η2
p = .09) and response time 

(F(2.27, 158.99) = 1.90, p = .050, η2
p = .04). Planned comparisons revealed that similar to the 

cumulative findings, removing PCs 1-3 (t(72) = -0.17, p = .605), 4-6 (t(72) = 0.74, p = .459) or 

10-12 (t(72) = -0.76, p = .452) did not affect accuracy. However, there was an effect of 

removing PCs 7-9 (t(72) = 7.25, p < .001). The response time data mirrored this pattern of 

findings, with the removal of PCs 7-9 resulting in a significant increases in response time (7-9 

(t(72) = -2.20, p = .031). There were significant differences for all other conditions (1-3 (t(72) 

= -0.77, p = .446); 4-6 (t(72) = -1.92, p = .059); 10-12 (t(72) = -0.26, p = .799)). Therefore, these 

findings suggest that a band of intermediate image dimensions (PCs 7-9) is important for the 

perception of emotional expressions, and that early and later image dimensions to not 

contribute when making these decisions.  

 

6.5 Discussion 
 

The aim of this study was to determine what information is necessary for the 

perception of gaze, gender and expression. Specifically, we asked whether the same or 

different image dimensions are used to process these different aspects of face perception. To 

address these questions, a principal components analysis was used to reveal the underlying 

image dimensions of naturally varying face images from different familiar and unfamiliar 

identities. We then removed PCs or image dimensions from the faces and measured their 

effect on behaviour. Our key finding is that the perception of gaze, gender and expression is 

dependent on distinct, but overlapping, image dimensions.  

In the first experiment, we explored how different combinations of PCs relate to the 

perception of gaze. We found that removing the early PCs (1-3) significantly decreased the 

perception of facial gaze, both in accuracy and the time taken to make a correct judgment. 

Whereas, gaze judgments remained relatively stable when later PCs (4-12) were removed. 

Previous research has shown that early image dimensions for both shape and texture 
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contribute to visualisations of gaze perception (Burton et al., 2016). The first three dimensions 

of shape, typically describe a series of rigid head rotations in three-dimensional space, 

accounting for the largest proportion of shape variance within ambient images. This is 

congruent with the fact that head direction provides information about the direction of gaze. 

The position of the eyes, which is also considered a property of shape information, can also 

influence the perceived direction of the face (Langton, 2000; Burton et al., 2016). Previous 

studies have suggested that intermediate PCs for shape reflect the position of the eyes 

(Burton et al., 2016). However, in the current study, we found that removing more 

intermediate bands of components (for both and shape and texture) did not impact 

participants judgements of gaze. Whilst shape properties have been suggested to underpin 

viewpoint, the perception of gaze can also be understood from texture information. Indeed, 

when the initial texture PCs are manipulated by increasing or decreasing their variance (+/- 2 

SDs) it is observed that the visualisation shows an apparent movement of directional lighting 

from one side of the image to another, indicative of coding for a left-right rotation (Burton et 

al., 2016). Our results are consistent with these observations, showing that the perception of 

gaze becomes harder if these components are removed. Future research should aim to 

explore what information is contributing to the disruption of gaze perception, for example, is 

this effect due to changes in head direction (viewpoint), the position of the eyes (e.g. pupil), 

the changes in illumination patterns or a combination of components.  

We next explored the contribution of different combinations of image dimensions to the 

perception of gender. We first found that the perception of gender decreased as a function 

of removing more PCs in a cumulative fashion and is just above chance-level when the first 

nine components are removed. This suggests that to categorise the gender of a face, multiple 

image dimensions are used to make this judgment. When image dimensions were removed 

in bands, this effect seems to be driven by the intermediate image dimensions (4-9), with a 

return to baseline performance when the final band of dimensions are removed. The effect 

of removing PCs on the perception of gender was thus different to the perception of gaze; 

whilst both were significantly decreased when the initial components were removed, gender 

perception relies more heavily on the intermediate dimensions. This is consistent with 

previous research by Burton et al (2016), that reported notable principal component 

differences that emerge for male and female faces. For example, in female faces, 



129 | P a g e  
 

intermediate texture components corresponded with the skin becoming: more orange, lips a 

more red hue and a darkening of the eyelids; whereas, men exhibited a component reflecting 

facial hair, with darkening/lightening of the upper lip and beard area. However, the 

contribution of these image components to the perception and categorisation of gender, 

again, remained unresolved. Our research extends these findings by showing that these 

intermediate dimensions play a causal role in the perception of gender and when these image 

properties are absent in a face, categorising gender is at chance level. One possible 

explanation for these findings is that these critical components for making gender 

discriminations might code for the shape and surface properties that have been found to 

convey the gender of a face. For instance, PCs 4-9 either as individual components or in 

tandem, might reflect the global shape properties of face length, jawline angularity (Brown & 

Perrett, 1993) and the local shape and texture properties of facial hair, eyebrow 

distance/shape and their corresponding shading patterns (Baudouin, 2006). Whilst a simple 

one-to-one mapping of PCs to image properties was not possible for the current experimental 

design, future research should endeavour to explore how single PCs and combinations of PCs 

interplay with the known diagnostic facial information important for gender discrimination. 

Moreover, it is also important to explore the potential idiosyncrasy of PCs within and between 

identities. 

Finally, we investigated the impact of removing different combinations of image properties 

on the perception of facial expressions of emotion. Here we found that the first six 

components did not contribute to the recognition of expression, but once the final image 

dimensions were removed, performance decreased. When removing the PCs in bands, we 

found that this effect was driven by a narrow band of dimensions (7-9) and performance 

remained at control level when a later band of PCs was removed. These results suggest that 

there is a narrow band of intermediate image dimensions that appear to be important for 

making classification judgments of expression. These intermediate dimensions were also 

important in the perception of gender (but not gaze), suggesting that the same image 

properties can be utilised for the perception of multiple facial signals. These findings differ 

from a previous study that showed there was a range of components that were useful for 

computerised expression categorisation, with early to mid PCs for shape and mid to late PCs 

for texture observed to be the most useful (Calder et al., 2001). In the current study, we do 
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find evidence that early PCs are important in the perception of expression, but revealed that 

a much narrower band of dimensions underpinned performance. It is important to note that 

the PCA conducted by Calder et al (2001) was conducted using the emotional faces from the 

Ekman and Friesen image set (110 images). This standardised image set differs from the large 

ambient image set used in the current study. Thus, direct comparisons between the findings 

of this study and Calder et al (2001) are difficult. Nonetheless, it seems that there is a narrow 

range of dimensions important for the perception of expression in both humans and models 

of expression categorisation. Future research should continue to explore the contributions of 

image dimensions to the perception of expression, expanding this to the full range of 

emotional expressions, to better understand whether the same dimensions have a shared or 

independent contribution to multiple emotional expressions. 

A key question we asked in this study was, are the same image properties critical for the 

perception of different facial signals (namely- gaze, gender and expression). The image 

dimensions in the present experiments were generated from a PCA of a very large set of 

images compiled from multiple photos of different identities that were ambient in nature. 

Combinations of these image dimensions were then removed from images that varied in gaze, 

gender or expression. Here we found that there was a degree of overlap in the image 

dimensions critical for the perception of each of these facial signals. For example, in the case 

of gaze perception, only the removal of initial PCs (1-3) decreased performance. For gender 

judgements, early PCs affected judgements, but the intermediate and later PCs (4-9) 

appeared to be more critical. Judgements of expression recognition appeared to be most 

dependent on later PCs (7-9). The overlap of PCs is not particularly surprising, as the same 

facial properties can be diagnostic for different aspects of perception. For example, the 

appearance of the eyebrows can be diagnostic for judgements of both gender and expression. 

However, for each of these facial signals, there were distinct image dimensions. Thus, it seems 

that faces can be categorised along different perceptual dimensions using a subset of image 

properties that can be used to perceive gaze, gender, expression and recognition (as we saw 

in Chapter 5). 

Our study opens the interesting possibility that the information space derived from statistical 

techniques, like PCA, contains discrete bands capturing information about different aspects 

of the face. Focussing on the statistical information space, opens up a potentially useful route 
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for future research in face perception more generally. It is interesting to note that this 

possibility arises from a comparatively simple linear analysis such as PCA. Of course, many 

more complex, non-linear, decompositions of statistical face-space are possible, but 

nevertheless, the approach described here offers a (perhaps surprising) degree of 

interpretability. Future research could explore what image properties are important for the 

perception of race, age and trait judgments (e.g. trustworthiness and dominance).  

In conclusion, our results suggest that there are a small set of image dimensions that provide 

unique and overlapping contributions to the perception of gaze, gender and expression. Our 

findings provide novel insights into the image dimensions that are important for the 

perception of different facial signals. This provides a new perspective for understanding how 

image properties underpin different aspects of face perception.  
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Chapter 7- General Thesis Discussion 
 

The aim of this thesis was to explore the role of visual information in the perception and 

recognition of faces. The experiments use a combination of behavioural, computational and 

neuroimaging approaches to explore how faces are represented in the brain. This 

combination of methods utilised throughout the experimental chapters were employed to 

explore two key questions. Firstly, I asked what visual information is needed to generate a 

view-invariant representation. Here, I investigated the hierarchy of facial representations 

prior to achieving view-invariance (Chapter 3), as well as what visual properties of the face 

are important for generating and accessing these representations (Chapters 4 and 5). Next, I 

asked how visual information is used for different aspects of face perception. To address this 

question, I explored whether the same or different combinations of image dimensions 

underlie the perception of identity, gaze, gender and emotional expression (Chapters 5 and 

6). Together these questions allow us to extend previous theories and research concerning 

how the image properties of faces contribute to the perception and neural representations 

of faces. 

 

7.1 What visual information is needed to generate a view-invariant representation? 

 

Before considering what visual information is critical to forming view-invariant 

representations, it is first important to understand the theoretical perspectives on how view-

invariant representations are generated from view-specific inputs. In classical models of face 

processing, it is suggested that view-specific inputs converge onto a view-invariant 

representation (Bruce & Young 1986, 2012; Rolls, 2012). However, a more recent hypothesis 

posits a two-step process for achieving view-invariance. Here it is suggested that there are 

two stages of convergence, whereby view-specific representations first converge into view-

symmetrical representations which then further convolve into a view-invariant 

representation of identity (Freiwald & Tsao, 2010). Evidence for an intermediate view-

symmetric representation of faces is evident across a range of fields and studies (Guntupalli 

et al., 2017; Flack et al., 2019). Behavioural evidence is derived from studies indicating that 

faces with symmetrical viewpoints, such as two opposite profiles, are perceived as more 
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similar than those with non-symmetrical viewpoints (e.g. left profile and left ¾ view). 

Additionally, recognition judgments following face learning, demonstrate greater accuracy 

when the test viewpoint aligns symmetrically with the learned viewpoint (Favelle & 

Palmisano, 2018; Flack et al., 2019). Neurophysiological investigations further support a 

functional hierarchy of facial viewpoint processing, where early processing stages involve 

view-specific tuned neurons, intermediate face regions exhibit more view-symmetric 

responses, and later face regions display increased view-invariance (Perrett et al., 1991; 

Freiwald & Tsao, 2010). Finally, neuroimaging studies in both humans and primates have 

supported this representational hierarchy, revealing a transition from view-specific to view-

symmetric representations (Axelrod & Yovel, 2012; Kietzmann et al., 2012; Guntupalli et al., 

2017; Flack et al., 2019). 

A limitation of previous studies investigating view symmetry, is that they have predominantly 

used unfamiliar faces. A range of evidence shows that there are distinct differences between 

the perception of familiar and unfamiliar faces (Bruce, 1982; Hancock et al., 2000; Longmore 

et al., 2008). For example, when judging whether two faces belong to the same identity, 

participants are more accurate for familiar faces, with unfamiliar face matching using two 

unfamiliar identities showing the poorest results (Bruce et al., 1999; Davies-Thompson, 

Gouws & Andrews, 2009). This familiar face advantage is also exacerbated when viewpoint, 

orientation and expression are manipulated (Bruce, Valentine & Baddeley, 1987; Bruce et al., 

2001). Models of face processing suggest that these differences arise due to familiar faces 

having a mental representation that is view-invariant, whereas unfamiliar faces rely on a more 

limited pictorial code (Bruce & Young, 2012). Therefore, due to these fundamental 

distinctions between familiar and unfamiliar face processing, it was unknown whether 

familiar faces would show evidence of a view-symmetric representation as they have already 

acquired view invariance.  

Another limitation of previous studies is the focus on rotations that result from common or 

canonical rotations of the head (yaw). So, it was not yet clear if view symmetry is specific to 

this natural rotation of the head or is also evident for less common or non-canonical rotations 

(roll) of the head that are less frequently experienced in everyday life. If the same pattern of 

facial representations is seen for both canonical and non-canonical rotations, it could imply 

that view-symmetric representations are a product of face-selective areas showing general 
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responses to mirror symmetry as opposed to an intermediate facial representation, 

underpinning identity recognition. 

In Chapter 3, I explored these questions finding that view-symmetric neural responses are 

evident for both unfamiliar and familiar faces in core face regions. This supports the notion 

of a two-stage process of view-invariance with view-symmetric representations being 

generated for both familiar and unfamiliar faces. This suggests that the view-invariant 

representations that are characteristic of familiar faces emerge at later stages of processing 

(Davies-Thompson et al., 2013; Weibert et al., 2016). I also found that there was a difference 

in the way that faces generated from different rotations of the head were represented in the 

brain. For non-canonical rotations (roll) of the face, there was limited evidence for the pattern 

of neural response in early visual areas being systematically predicted by changes in 

viewpoint, as was found with canonical rotations (yaw). However, we did find view-symmetric 

neural patterns of response for non-canonical rotations in face regions, which is consistent 

with the behavioural finding that symmetrical non-canonical viewpoints were perceived to be 

more similar than asymmetrical viewpoints. This suggests that the emergence of view-

symmetric responses occurs differently for canonical and noncanonical rotations of the face. 

Thus, view-symmetric representations for yaw are not simply a product of face-selective areas 

processing general mirror symmetry, but form a functional hierarchy that emerges from view-

specific inputs being processed in early-visual regions, prior to generating full view-invariance.  

Similarly, we found a strikingly parallel pattern of findings for how viewpoint was represented 

in a DCNN, with human perceptual similarity ratings being able to accurately predict the 

outputs of the fully connected layers. Within the early convolutional layers, there was 

evidence of a view-specific representation, but view-symmetry emerged in the fully 

connected layers. In recent studies it has been shown that in the fully connected layers, there 

are clear representations of identity, and other facial signals, however within these 

representations a high degree of image information is also kept such as viewpoint/head 

direction (Parde et al., 2017). Thus, this suggests that a view-symmetry representation is 

utilised in a meaningful way within the fully connected layers to aid to some degree identity 

recognition/classification. Taken together the findings presented in Chapter 3, are consistent 

with the notion that the process of generating a view-invariant representation contains two 

discrete and connected stages. 
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Upon establishing the stages of facial representation prior to view-invariance, a full account 

of face recognition needs to consider what visual information is critical for the generation of 

a view-invariant representation that underlies identity recognition. The IAC model posits that 

a subset of image dimensions describes the appearance of a face that underlies the structural 

representation of identity, using a perceptual front-end model based on principal 

components analysis (PCA). After testing various models of this PCA front end, Burton and 

colleagues (1999) concluded that the shape-free model (containing only texture information), 

best captured the underlying structural representation that could drive the process of face 

recognition, as the additional shape information was seen as less reliable and contributed 

little to improving recognition when compared to a shape-free model. Taken together, these 

models imply that not all variability is equally important for generating a view-invariant 

representation for example, image variation uncommon to multiple images and variation in 

shape properties. However, often the behavioural tasks employed in studies of face 

recognition allows participants to use cognitive strategies instead of stored mental 

representations of faces (thus not engaging view-invariant representations) such as 

perceptual matching and recognition memory. Therefore, the importance of shape 

information in making identity judgements might have been overlooked.  

In Chapter 4, I addressed these issues by employing tasks that relied on participants’ stored 

mental representations of familiar faces as well as exploring the sensitivity of face-selective 

areas to both shape and texture properties. Here we revealed that whilst texture was the 

dominant visual property utilised when making identity judgments, shape information can 

also be used for recognition and there are occasions when shape information can override 

texture information when making identity judgments. Moreover, we found consistent 

findings with previous research that show that face selective regions show an equal sensitivity 

to both shape and texture (Andrews et al., 2016; Jiang et al., 2006). However, in contrast to 

previous research we showed there was an equal sensitivity to both properties both within 

and between identities and irrespective of the familiarity to the identity, solidifying the 

importance of both properties. Taken together, these results suggest that both shape and 

texture information contribute to the generation of a view-invariant representation. 

We next wanted to build upon these findings by exploring what specific image properties are 

fundamental to a view-invariant representation that underpins the recognition of identity. 
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Based on the findings of Chapter 4, we explored the contributions of both shape and texture 

image dimensions generated from a PCA conducted on a large ambient image set containing 

over 6100 images. Over the series of experiments presented in Chapter 5, it was found that 

there are a small set of intermediate image dimensions that contributed to the perception of 

identity. Moreover, it was revealed that coarse scale image variation such as pose and 

ambient illumination contained within the earliest PCs did not contribute to familiar face 

recognition. Indeed, removing this information resulted in familiar faces being more 

recognisable. The same pattern of findings was also found for learning new faces. When the 

early image dimensions were removed from learning images, subsequent recognition 

increased, and when the intermediate dimensions were removed subsequent recognition 

decreased. Taken together, these findings extend previous research by suggesting that, view-

invariant representations might rely on just a small subset of image dimensions. Thus, the 

process of generating a view-invariant representation can be suggested to rely upon 

extracting the degree of variability an identity can show within these components only. For 

example, as the early image dimensions were shown not to have contributed to familiar face 

recognition or face learning, understanding how a face can vary in coarse scale image 

variation is not needed for generating a view-invariant representation. This implies that not 

all variability is important for generating a view-invariant representation.  

Generating view-invariant representations when learning new identities is suggested to be 

driven by increased exposure to an identity. Specifically, variability in exposure to an identity 

has been shown to be important for learning new identities (Ritchie & Burton, 2017). This is 

consistent with findings that suggest that images of faces taken from one identity can be as 

variable as images taken from different identities (Jenkins, White, Van Montfort & Burton, 

2011). Thus, an important computational step in generating view-invariant representations 

relies on learning the degree to which an identity can naturally vary. The averaging hypothesis 

proposes that a canonical image whereby image specific information is filtered out and 

information present in multiple images is kept, is utilised as a facial representation, in essence 

an FRU. Therefore, implying that not all variability in face images of a single identity is equally 

important, with image specific variation (e.g. environmental lighting) being deemed as noise. 

The notion that not all variability is equally important for learning new identities is not a new 

concept. Burton (2013) emphasizes the importance of considering how different forms of 
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variability can affect the recognition process. In the work by Ritchie and Burton (2017), they 

made a distinction between two types of variability: systematic and unsystematic variability. 

Systematic variability involves alterations in factors like camera angles and the pose of the 

target within a consistent environment. In contrast, unsystematic variability encompasses 

changes not only in target appearance (such as hairstyle, makeup, and clothing) and the 

surroundings, but also in camera angles and target pose. Traditionally, research has primarily 

concentrated on systematic variability. In such studies, researchers make efforts to keep most 

characteristics of facial stimuli constant while selectively manipulating only the variable under 

investigation in regards to face learning and face recognition (Longmore et al., 2008; Liu et 

al., 2009). These studies have found little advantage in recognition in systematically varying 

pose or lighting information. Contrastingly, it has been argued that it is unsystematic 

variability that plays a crucial role in broadening the circumstances under which a person can 

be recognised. When observers are exposed to multiple images of an individual that capture 

the full spectrum of natural variations in changeable facial attributes like expression, facial 

hair, and age, as well as non-facial features such as hairstyle and hair colour, they exhibit 

quicker responses in verifying the name associated with a recently-learned face and enhanced 

accuracy in determining whether two photos depict the same person or not (Ritchie & Burton, 

2017). 

The experiments reported in this thesis complement previous findings, showing that 

removing systematic variation contained in the earliest image dimensions of learning images, 

can improve subsequent recognition. Furthermore, our findings extend previous research by 

revealing the image dimensions that account for the critical variance in face recognition and 

face learning. Thus, it is plausible to suggest that this band of intermediate image dimensions 

reflects the unsystematic variation that viewers must extract the range of when learning new 

identities. Nevertheless, questions still remain regarding the idiosyncrasy of variability 

between identities. For example, to what extent do identities show similar ranges of 

variability within these key image dimensions? Here we used just one PCA to generate a set 

of image dimensions to explain the variance within a large ambient image set. Provided that 

the PCA can have access to a sufficient number and variation of images during its input, it 

would be possible to conduct individual PCAs on images of just one identity. This would allow 

one to compare how different image components contribute to the recognition of individual 
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identities. However, the challenge here would be that a sufficiently large sample of images 

would be needed in order to compare the roles of bands of components, for example the 

same band of components generated from an individual PCA of one identity might not reflect 

the same image dimensions generated from another. 

Within this thesis a number of findings have illuminated what visual information is needed to 

generate a view-invariant representation. Firstly, we have solidified the process in which 

view-invariant representations are generated. This has shown that a two-stage progression is 

needed to achieve view-invariance, with view-symmetry representations being an 

intermediate step. Secondly, we showed that at the basic level of visual information, whilst 

texture information is the dominant property utilised for familiar face recognition (hence 

important for view-invariant representations), shape properties also provide discrete and 

important contributions to familiar face recognition with face-selective areas showing equal 

sensitivity to both properties. Finally, we explored the image dimensions that are critical for 

generating and utilised in view-invariant representations that underpin identity learning and 

judgments. Here, we revealed that not all variability is equally important. Systematic variation 

was shown to hinder familiar face recognition and face learning, implying that view-invariant 

representations do not rely on information such as pose, illumination and so on. However, 

we did reveal that a small band of intermediate image dimensions were critical for familiar 

face recognition and when generating view-invariant representations during face learning.  

7.2 Is the same visual information used for processing multiple facial signals? 
 

Multidimensional face space models aim to provide a framework to explain how faces 

are represented in memory (Valentine, 1991). Here, each face is represented by a single 

location within the multidimensional space, where each dimension maps onto either a 

specific parameter or global property of a face that varies from one face to another. Image 

based properties (such as the distance between the eyes) or more abstract properties of a 

face (such as trustworthiness), have all been considered possible dimensions of face-space 

(Valentine, Lewis & Hills, 2016). The number or nature of the image dimensions within a face 

space framework remains unclear, however with techniques such as PCA it has been 

suggested that face images can be reconstructed and subsequently recognised with a high 

degree of accuracy using less than 50 image components (Burton et al., 2016). Whilst there 
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have many variations of the face-space model each being able to account for different 

behavioural findings, a commonality they share is that they suggest that there is one set of 

common axes (or image dimensions) along which faces are coded. This suggests that different 

identities’ faces are represented using a unified set of dimensions.  

Burton, Kramer, Ritchie and Jenkins (2016) proposed an alternative multi-dimensional 

account of how faces are represented, in which each face is represented by its own person-

specific coding space. This considers the fact that any face can generate a range of images. In 

their study they conducted separate PCA analyses on individual identities (from 30 images of 

each identity), making several observations. They found that certain facial elements were 

coded by different principal components between identities, implying that separate face 

spaces would better characterise identity idiosyncrasies. For example, a smile on two 

individuals might transform the appearance of a face in different ways, reflecting the degree 

of idiosyncrasy between individuals. Similarly, they use the example of two individuals who 

vary in nose length, which when combined with a 10-degree head turn, has idiosyncratic 

effects for both 2D shape and texture whereby this 3D movement in the world translates the 

tip of the longer nose much further than the tip of the short nose. Thus, concluding that 

individual faces have their own idiosyncratic variability, describing that all faces vary in 

appearance, but that they vary in different ways, represented by different axes in face space. 

Therefore, in Chapter 5, it was of interest to explore whether a single set of image dimensions 

derived from a large sample of images from different identities with multiple images of 

individual identities, could underpin the recognition of multiple identities.  

The findings of Chapter 5 showed that the same image dimensions when removed from 

familiar face images impacted the recognition of multiple identities, suggesting that to a 

certain degree there are a shared set of image properties that contribute to the recognition 

of identity. Moreover, the same image dimensions were also seen to contribute to the 

learning of multiple identities. Therefore, this seems to imply that one set of image 

dimensions can underpin variability both within and between identities, when a sufficient 

image set is used to generate the image dimensions. Thus, this would suggest that a common 

set of axes can represent multiple facial identities. It is important to note that we did not 

explore the generation of image dimensions within specific identities to then compare the 
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difference in face learning between this and image dimensions generated from a larger image 

set.  

Parallel to the representation of identity, in Chapter 6 we used the same set of image 

dimensions generated using a PCA from the same ambient image set as we did for Chapter 5. 

This allowed us to explore whether the same image dimensions contribute to the perception 

of identity as well as other facial signals- gaze, gender and expression. The overarching finding 

here was that different but overlapping bands of image dimensions underpinned the 

perception of different face signals. 

Early image dimensions (PCs 1-3) were the only image dimensions shown to underpin the 

perception of gaze. This fits the notion that these dimensions represent aspects of 3D 

movement for example, head direction, the position of the eye, and the changes in 

illumination patterns. The same image dimensions were also shown to be important for 

identity recognition and face learning. However, instead of underpinning recognition, these 

components showed a negative loading, such that removing them from familiar face images 

(and learning images) improved recognition. This shows that the same image components can 

be useful for one aspect of face perception (gaze) and detrimental for another aspect of face 

perception (identity).  

An intermediate band of image dimensions (4-6) was shown to be important for gender and 

identity recognition. The Bruce and Young (1986, 2012) model propose that when face 

classification processes which do not involve any information regarding the identity of faces 

are instead made through a parallel pathway that is not mediated by the FRUs and depend 

on aspects that are different from the ones that are used for identification (Ganel & Goshen- 

Gottstein, 2002). Here, we show that the same visual information can underpin both identity 

and aspects of face perception and is consistent with findings that show that participants 

cannot selectively attend to either gender or identity without being influenced by the other, 

even when instructed to ignore the irrelevant dimension (Ganel & Goshen- Gottstein, 2002).  

A later band of intermediate image components (7-9) were found to contribute to the 

perception of identity, gender and emotional expression. This is interesting as classical models 

of face processing, often differentiate between changeable and unchangeable aspects of the 

face (namely identity and expression), however, here we show that the same image 
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properties are critical for both of these judgements. It is of course possible that although the 

same image dimensions are important for these properties, the initial encoding of these 

properties is then recruited in parallel by different systems to process the facial signals.  

Overall, the findings of Chapters 5 and 6, elucidate novel findings within this debate of facial 

signals and representations. Firstly, they show that a rather small subset of image dimensions 

is critical for multiple aspects of face processing. Secondly, they reveal that individual facial 

signals rely on an even smaller subset of image properties, in other words there are plenty of 

image properties that have no impact on the perception of identity or expression and so on. 

Next, they show that the same image properties can underlie multiple aspects of face 

processing, even those that have been suggested to run in parallel. Thus, one possible 

mechanism to explain these findings would suggest that faces are represented and initially 

encoded using just one set of axes (image properties) irrespective of familiarity to the face, 

then different systems recruit the loading of the dimensions that they are tuned to, to support 

the processing of specific facial signals. Future research should endeavour to further explore 

the potential idiosyncrasy of PCs within and between identities and how image properties 

contribute to the representation of multiple facial signals. For example, in our studies a simple 

one-to-one mapping of image dimensions to facial characteristics was not possible with the 

current experimental design. By future research exploring how individual PCs or various 

combinations of PCs contribute to the many signals available in faces a more in-depth 

construction can be made in regards to how visual information is represented and 

subsequently accessed during processing.  

7.3 Methodological Considerations  
 

Within this thesis a combination of methods and paradigms were used to investigate 

face recognition. Previous research has utilised several different behavioural measures for 

face recognition, each providing a metric for the accuracy of how well one can recognise a 

familiar face. Examples of these measures include famous face tests where participants’ 

metric of recognition is whether a face is famous or not (Fast, Fujiwara, & Markowitsch, 2005), 

face matching tasks in which a key dimension of one of the faces to be matched has been 

manipulated (Abudaraham, Shkiller & Yovel, 2019) and face memory tasks where unfamiliar 

faces are presented to participants and after a certain period of time have to identify which 
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faces they had previously seen (Duchaine & Nakayama, 2006). However, as highlighted in the 

literature, when these methods are employed to investigate familiar face recognition 

specifically, they often do not engage the stored mental representations of familiar faces in a 

naturalistic way (Herzmann et al., 2008). For example, famous face tasks do not allow us to 

distinguish whether participants are getting a correct answer by activating the relevant FRU 

(invariant representation), or simply whether they are familiar with the person to an extent 

to know that they are famous from that individual image (but would not be able to recall their 

name/biographical information). Similarly, a common theme when using face matching tasks 

to test familiar face recognition, is to manipulate one aspect of the face that is considered 

potentially important for recognition. The problem here is that these tasks can be completed 

by using elements of perceptual matching that do not engage the stored mental 

representations of the identities. Additionally, another drawback of these methods that use 

familiar faces is that across a participant sample, there will be differences in the exposure and 

frequency to the identities. Thus, creating a level of construct-irrelevant variance that will be 

captured at test, individual for each participant. One way of exploring this would be to use a 

test at the end of the main experiment to assess familiarity to the identities used. 

Alternatively, to overcome these issues would be to test familiar face recognition using faces 

that have previously been learned by participants, therefore reducing the variability in prior 

exposure across the sample. However, often this method has a relatively short period of time 

between the learning and subsequent test phases, typically spanning just one session. This is 

problematic when drawing conclusions about how we recognise faces in the natural world. 

For example, learning faces in this way is unlikely to generate a substantial representation of 

an identity, even when multiple different images of each identity are used. Having just one 

learning session prior to test, also means that the mental representations formed are likely 

to be held in short-term memory which is unreflective of what we know regarding how faces 

are represented. 

These methodological issues were addressed within this thesis. In Chapter 4 we explored the 

roles of shape and texture in familiar face recognition using two different behavioural tasks. 

We first used a matching task, in which participants had to match a name to one of eight 

familiar hybrid faces. By using a name as the probe, this allows for participants to activate 

their face recognition systems and generate a mental representation of the target identity. 
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They then have to match this stored mental representation to each of the images to decide if 

the structural code generated by each image is a match or not. Thus, this task uses a face-

matching paradigm but critically cannot be completed using perceptual matching. Likewise, 

the second paradigm was a simple free-recall design, in which upon seeing a hybrid face 

image, participants were instructed to enter the name of the identity (or sufficient 

biographical detail). This task whilst simple in nature, is deceptively harder to complete than 

a matching task relying only on stored mental representations, moreover, this was made 

harder by using hybrid faces (depicting the shape of one identity and the texture information 

of another). Despite this more challenging task, participants had a high degree of accuracy, 

thus showing that the paradigm is feasible and allows for the exploration of familiar face 

recognition using celebrity images that cannot be completed using perceptual matching 

whilst also controlling for variability in identity familiarity (using the post experiment 

familiarity test). 

This free recall paradigm was also used in Chapter 5. Following the main experiments, 

participants were then given a post-experiment familiarity test, in which multiple novel colour 

images were used. This was done to affirm which identities participants were already familiar 

with to a high degree. Upon supplementary analysis we found that an individual item analysis 

of recognition rates was similar for all identities tested. In other words, our results were not 

driven by the high or low recognition of any individual identity. A potential extension to this 

paradigm would be to include a more comprehensive measure of how well each participant 

knew each identity in the post-experiment familiarity test. This would allow for a more 

detailed understanding of the variability in the participant sample to each identity. For 

example, presenting different images of the identities in a randomised sequential order would 

be able to provide an average rating of familiarity for each identity. Equally, subjective 

measures similar to confidence ratings could be acquired in which participants self-report 

their familiarity to each identity using a Likert-scale. The research surrounding how well 

confidence ratings reflect one’s performance is somewhat mixed. However, research has 

shown that participants are more confident when making correct decisions as opposed to 

decisions that are incorrect (Devue, Wride & Grimshaw, 2018). Additionally, moderate-high 

correlations between self-reported face recognition abilities and performance on the CFMT 

have been revealed (Bowles et al., 2009), which hold up well when controlling for age, gender 
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and cross-culturally (Livingston & Shah 2018; Ventura, Livingston & Shah, 2018). Therefore, 

the inclusion of a confidence style rating would be beneficial and add another layer of analysis 

to affirm how well celebrity faces are recognised.  

Furthermore, in Chapter 5, we developed a novel paradigm for investigating face learning. 

We did this to combat the limitations of previous face learning methodological designs that 

often only employ one learning session that is immediately followed by a test session. It was 

therefore arguable that at test, participants rely on short-term memory strategies as opposed 

to stored mental representations of the newly learned identities, acquired after a period of 

consolidation. Whilst it is the case that one can recognise a face they have briefly seen in 

everyday life at a later time point, it is hard to generalise these findings more broadly to assess 

how familiarisation is achieved. In our paradigm we combatted these issues, by employing a 

longitudinal design. Here participants completed three sessions (2 learning-feedback 

sessions, 1 test session) with a 48-hour (approximately) delay between each session. Previous 

research has found that when learning new faces, sleep passively and transiently protects 

face recognition memory from interference (Sheth, Nguyen & Janvelyan, 2009). Additionally, 

an increase in connectivity between the memory centres and fusiform gyrus which indicate 

face memory formation and consolidation have been revealed to occur at later time points 

than during the encoding session (Geiger, O’Gorman Tuura & Klaver, 2016). Therefore, the 

inclusion the of these gaps between the sessions allows participants to solidify the learning 

of these facial identities and suggests that adequate time is needed to generate face 

representations that underpin identity judgments. Without these delays between learning 

phases and the final test phase, participants are required to use face representations held in 

short-term memory that would be more pictorially based, uncharacteristic of an FRU. This 

issue is mostly relevant to the time in between the final learning phase (or the only learning 

phase in previous research) and the test phase. As we showed participants multiple different 

images of each of the newly-learned identities in each session, it was critical for us to not have 

a learning or recap session on the same day of the test phase. We did this to eliminate any 

potential priming effects prior to test, so that participants had to rely on their stored mental 

representations of the newly learned identities. Future research, should consider the use of 

this more longitudinal design when investigating the process of face learning, and well as 

exploring what the optimum number of images and learning sessions is needed to achieve 
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the behavioural benefits indicative of possessing an FRU for newly learned identities. 

Additionally, exploring the more long-term memory decay of the newly learned identities 

would allow for a richer understanding of how the number of learning sessions and 

intermediate delays contribute to face learning. For example, what would the recognition 

rates of the newly learned identities be, if the test phase was a week after the final learning 

session? 

Related to this, we also explored the immediate effects of the learning sessions using our 

feedback phases. Here we used novel images of the identities and asked participants to select 

the corresponding name of the identity. This was important so that we could assess how well 

participants were learning the identities and if any additional learning would be needed. 

Overall, the findings from these feedback sessions were positive, in terms of showing a clear 

progression of learning accuracy. This was fundamental as the learning task we used did not 

involve an active learning element, participants simply learned the identities and 

corresponding names passively. Thus, being able to have this live feedback, enabled us to 

observe any potential non-engagement in the learning process, as well as giving participants 

the chance to practice recognising the newly learned identities. Future research could extend 

the use of the feedback sessions, and have these immediately prior to the second learning 

phase. This would allow us to explore the effects of consolidation from the first learning 

session in more detail.  

7.4 Conclusions 
 

The aim of this thesis, was to further explore the role of visual information in the 

perception and recognition of faces. The experiments in this thesis use a combination of 

behavioural, computational and neuroimaging approaches to ask how facial representations 

are formed and what facial information is critical for the recognition and perception of faces. 

Results in Chapter 3 supported the notion that generating view-invariant representations 

involves a two-stage process, with a representation of view-symmetry being an intermediate 

step. These findings were supported behaviourally and within the neuroimaging data, with 

view-invariance showing different neural origins for canonical vs noncanonical views of the 

face. Similar patterns also emerged from the DCNN analysis suggesting that this neural 

network represented view-symmetry in a similar way. Chapter 4, built upon these findings by 
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exploring what basic visual information in the face (shape or texture) is important when 

making identity judgments. Here, it was shown that whilst texture properties are the 

dominant cue for familiar face recognition, shape properties provide unique and important 

contributions when making identity judgments. Moreover, the face selective areas showed 

an equal sensitivity to both properties. Probing this further, Chapter 5, found that there was 

a small intermediate band of shape and texture image dimensions that that were important 

for familiar face recognition and for face learning. However, early and later image dimensions 

were not important for these processes. Finally, we investigated what image dimensions were 

important for the perception of gaze, gender and expression. Early dimensions were critical 

for gaze judgments, with unique intermediate bands of image dimensions underlying gender 

and expression decisions.  

Overall, we have shown that the visual information needed to generate a view-invariant 

representation relies on a two-stage process, that is driven by both shape and texture 

properties (with texture being the dominant property). Importantly the information that is 

critical for making identity judgments within this view-invariant representation relies on a 

small intermediate band of image dimensions. Similarly, we found that an extended but 

comparatively small subsection of the first image dimensions also were fundamental to the 

perception of gaze, gender and expression. Whilst it is the case that different facial signals 

rely on unique and discrete bands of image dimensions there is some overlap, meaning that 

the same image property can be useful for deciphering different signals. Thus, taken together, 

the work presented within this thesis extends our knowledge of the contributions that low-

level image properties have on the perception and neural representations of faces.  
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