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Abstract

Quantitative analysis in perfusion magnetic resonance imaging
(MRI) has shown real potential for extracting clinically relevant
diagnostic information. Integration of quantitative perfusion MRI
into clinical care is limited, in part due to issues in parameter
reproducibility between centres. An assessment of 10 typical
dynamic contrast-enhanced MRI analysis software packages is
presented across clinical and synthetic datasets in terms of accuracy,
repeatability, and reproducibility. Results show differences in Ktrans

quantification between the 10 software packages dependent on
multiple methodology choices. While reduction of manual
methodology steps and improved documentation is recommended,
development of spatiotemporal modelling is proposed as a potential
paradigm change to improve perfusion analysis. A literature review
of early contributions within spatiotemporal modelling for perfusion
MRI is carried out, identifying the multi-compartment problem as
the most critical and open challenge.
A novel gradient descent-based algorithm is proposed which uses
both one- and two-compartment toy-models to determine system
identifiability. The whole 1D spatial system is fitted at once from
in-silico data. Results across 3 systems for each model showed
identifiability of transport and system influx for one-compartment
systems. Multiple solutions were reported in two-compartment
systems. The long computational times observed restricted the
extension of this approach to higher dimensional systems.
The suitability of Physical Informed Neural Networks (PINNs) for
spatiotemporal modelling in perfusion MRI has been investigated as
a solution for decreased computational times. Implementation of
PINNs reports similar outcomes in one- and two-compartment
systems compared with the standard approach. Boundary condition
enforcement in two-compartment systems is recommended in future
developments. Results showed decreased computational time
compared to standard optimisation, with straightforward extension
into higher spatial dimensions.
The proposed algorithms show spatiotemporal one-compartment
models are readily identifiable from 1D toy-models. This work
reports multiple solutions for two-compartment systems, indicating
further work on fundamental identifiability and optimisation
strategies is required.
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Chapter 1

Introduction

1.1 Context and Motivations

This thesis investigates different aspects relevant to perfusion Magnetic

Resonance Imaging (MRI). Perfusion MRI techniques include Dynamic

Contrast-Enhanced MRI (DCE-MRI), Dynamic Susceptibility-Enhanced MRI

(DSC-MRI), and Arterial Spin Labelling (ASL). For DCE and DSC-MRI

intravascular indicators are introduced into patients, while magnetically labelled

water is applied in ASL. Applications of perfusion MRI are aimed towards

clinical practice and drug development.

Over the years, analysis of both contrast-based (DCE and DSC-MRI) and

ASL techniques have developed from inherently subjective qualitative methods

to more objective quantitative measures. One of the core aims for analysis in

any branch of medical imaging is actionable patient outcomes, via the use of

biomarkers which can be reliably applied across different centres (O’Connor et al.,

2017).

Biomarkers are defined characteristics which can be measured quantitatively

as an assessment of usual biological or pathogenic processes (FDA-NIH

Biomarker Working Group, 2016). The interest in developing biomarkers for

clinical use stems from the objectivity of quantitative measures. Examples of

patient outcomes from non-imaging biomakers are numerous, with urine and

blood tests routinely used to assess sugar, protein or hormone levels to aid the

diagnosis of conditions such as diabetes and kidney disease. Equal value could

be contributed to clinical decisions from the development of imaging-based

biomarkers which have the ability to deduce values of interest in-vivo.
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A potential biomarker that has been of interest within the DCE community

is the transfer rate of contrast agent (CA) from the blood plasma into the

extracellular extravascular space, usually referred to as the volume transfer

constant or Ktrans parameter (Dickie et al., 2023). Ktrans has been shown to be

a useful quantitative parameter in several applications, such as tumour grading

(Zhang et al., 2012) and assessment of tumour treatment response

(Kickingereder et al., 2015). Despite several decades of development, advanced

quantitative analysis of perfusion MRI is very limited in standard clinical

practice. This is due in part to issues in standardisation between centres and

research teams (Kim, 2018). Even when based on the same underlying models

and physiological assumptions, different software implementations or algorithms

can return different values for target parameters such as Ktrans (Beuzit et al.,

2016).

Development of analysis techniques by incorporating spatiotemporal

approaches to increase modelling sophistication could allow for more accurate

extraction of parameters such as perfusion and blood flow velocity. Access to

such parameters and any heterogeneity across tissues would be invaluable for

future biomarker developments in order to report meaningful results where

dysfunction or disease are not homogeneous. For example, a spatial assessment

of liver function could help offer liver surgery to patients with underlying liver

disease who are currently ruled out by default (Elsharif et al., 2021). Knowledge

of the heterogeneity behind overall liver functionality would help inform risk

assessments and potentially allow more patients access to this curative option

(Elsharif et al., 2021).

This thesis will focus on the motivation for moving towards spatiotemporal

models, away from current standard methods in perfusion MRI. Additionally,

this thesis aims to contribute to the development of inverse approaches for

spatiotemporal models and investigate their application on synthetic test

systems.
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1.2 Overview of Thesis Aims

The overall focus of this thesis is to provide insight into several areas that could

contribute to the progression of quantitative analysis in perfusion MRI. This work

has four main aims (Aims I-IV), as outlined below.

Aim I: Evaluate Ktrans quantification in current DCE-MRI perfusion

analysis software.

Quantitative analysis techniques for DCE-MRI have been incrementally

developed over the past 30 years (Lohrke et al., 2016). However, it is recognised

that varied implementation approaches can influence modelling outcomes

(O’Connor et al., 2007; Beuzit et al., 2016). To this end the thesis outlines an

investigation of Ktrans quantification from 10 current software packages in the

context of brain tumours. This was an international collaboration project,1

where 10 entry teams submitted Ktrans values from analysis of one standard set

of data. The 10 packages are assessed in terms of accuracy, repeatability and

reproducibility. From this evaluation it is shown there are large differences in

reported values between software packages. This variation suggests a step

change is needed, either from further standardisation work to ensure

cross-centre parameter agreement or development of more advanced modelling

approaches.

Aim II: Review previous contributions of spatiotemporal modelling in

perfusion MRI.

Current standard analysis considers voxels in isolation and utilise a global

input. In contrast, advanced modelling accounting for the spatiotemporal

nature of perfusion treats scanning voxels as a set of interacting spaces. This,

therefore, is a much more realistic framework for transport processes, such as

convection, diffusion, perfusion and cellular uptake within the body (Sourbron,

2014). Historically, spatiotemporal modelling has been inaccessible due to the

complex nature of the problem. This thesis explores the current state of the art

work within spatiotemporal modelling for perfusion MRI. While work within

1Please see “Joint Publications” on Page ii for contribution details.
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the field has previously been sparse (Thacker et al. (2003); Frank et al. (2008);

Pellerin et al. (2007)) there is increased interest in development of novel

techniques (Sinno et al., 2021, 2022; Zhou et al., 2021; Zhang et al., 2022, 2023;

Liu et al., 2021a; Naevdal et al., 2016), after the introduction of a

comprehensive framework (Sourbron, 2014). The literature review carried out

within this thesis identifies that recovery of one-compartment systems has been

the main focus of previous studies, with extremely limited implementation of

multi-compartmental systems (Naevdal et al., 2016).

Aim III: Investigate identifiability of one- and two-compartment

spatiotemporal models.

In order to address the current lack of multi-compartment implementations,

this thesis develops and tests a gradient descent-based optimisation method for

simple one- and two-compartment spatiotemporal toy-models. These

investigations show there may be system identifiability issues with multiple

solutions found to provide acceptable data fitting. Long computational times

were also needed, even for these small systems. To make analysis of clinically

relevant datasets feasible, this work identified a need for more efficient

optimisation approaches.

Aim IV: Assess Physics Informed Neural Networks for suitability in

scaling up spatiotemporal methods.

Physics Informed Neural Networks (PINNs) (Raissi et al., 2019) have been

used in both forwards modelling and inverse approaches, by constraining

outputs to adhere to defined physical laws. These are attractive due to their

generalised setup and ability to handle large volumes of data efficiently. This

thesis explores the use of PINNs within spatiotemporal perfusion modelling as a

potential solution to reduce computational time when compared to standard

optimisation methods. An initial PINN is designed and applied to the simple

one- and two-compartment spatiotemporal toy-models previously investigated.

The investigations showed promising outcomes and raise important questions to

be addressed in future work.
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1.3 Thesis Organisation

This thesis presents a study into the development of perfusion MRI analysis as

detailed above in Section 1.2. The organisation of chapters within this thesis is

detailed below.

Chapter 2 comprises a background of relevant topics to equip the reader with

vital information key to the rest of the thesis matter. This consists of a brief

overview of MRI, DCE-MRI, standard analysis techniques of DCE-MRI data,

spatiotemporal theory for DCE-MRI analysis and PINNs.

Chapter 3 presents the reported Ktrans values across 10 software packages

applying typical single-voxel tracer kinetics (TKs). These software packages are

applied to the same clinical and synthetic data sets with metrics calculated to

assess the accuracy, repeatability and reproducibility of each package.

Chapter 4 details an in-depth review, lacking in the current literature, of the

current advances in the spatiotemporal TK field. This chapter gives a coherent

description of models and implementation details in terms of the transport

mechanisms at work and the number of compartments addressed.

Chapter 5 details a proof of concept study applying a gradient descent-based

method for the inversion problem for both one- and two-compartment

spatiotemporal systems. This chapter investigates the feasibility of recovering

spatiotemporal parameters from DCE-MRI data using in-silico toy-models. This

is particularly centred on the reconstruction of two-compartment systems

without the need for additional constraints or assumptions which is currently

absent from the literature landscape. The resulting parameter retrievals are

illustrated for noiseless, noisy and under-sampled systems.

Chapter 6 presents a novel application of a PINNs-based approach for multi-

compartment spatiotemporal systems modelled via TKs. This chapter builds on

the work in Chapter 5 by utilising the same toy-models. The resulting parameter

recovery is illustrated for noiseless, noisy and under-sampled systems, showing a

varied response. An initial investigation into a 2D one compartment system is

also presented.

Chapter 7 provides a summary of this thesis with conclusions of the work
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presented, and details recommendations for future work within the perfusion

imaging community.
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Chapter 2

Background

This Chapter summarises the relevant background material for this thesis. This

includes an overview of DCE-MRI, single voxel analysis techniques of DCE-MRI

data, spatiotemporal theory for DCE-MRI analysis and physics-informed neural

networks.

2.1 Magnetic Resonance

Both quantum and classical mechanics may be used to build a descriptive

picture of the Nuclear Magnetic Resonance (NMR) phenomenon. Adequate

description and interpretation of the phenomena in MRI is possible using the

classical mechanics treatment, and will be considered here. An intuitive

explanation of the theory with consistency between quantum and classical

mechanics formalism can be found in Levitt (2013, Chp. 2 and 10) and Hanson

(2015), with Hanson (2008) addressing common myths that persist in the topic.

The overview of MRI principles included in this section summarises ideas from

Levitt (2013, Chp. 2), Hanson (2015), and Pickens (2000).

2.1.1 Individual Magnetic Moments

When presenting the underlying physics of NMR it can be useful to appreciate

the quantum description of atomic nuclei. This was detailed by Dirac in the

1930s, which predicted an intrinsic angular momentum known as spin.

A nucleus also has an intrinsic magnetic moment1, m, related proportionally
1A magnetic moment, m, is the strength and orientation of the magnetic field associated

with an object. The magnetic moment is employed to relate the torque, τ , experienced by an
object in an external field, B0 by the cross product τ = m × B0.
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2.1 Magnetic Resonance

to the spin angular momentum, S, by the gyromagnetic ratio, γ:

m = γS. (2.1)

The direction of the magnetic moment is either positioned along, γ > 0, or in

the opposite direction, γ < 0, to the spin. The direction of the spin angular

momentum will be referred to by the spin polarisation axis following from the

description in Levitt (2013).

In a system unaffected by external magnetic fields the magnetic moments

are distributed isotropically, with all orientations equally likely (Levitt, 2013). A

representation of isotropic spin polarisation axes is shown in Figure 2.1. When an

external magnetic field, B0, is applied the nuclei spin polarisation axis precesses

around the field direction. The relation stated in (2.2) describes a nuclei with a

gyromagnetic ratio, γ, precessing in the applied field, B0, at the Larmor frequency,

ω (Levitt, 2013).

ω = −γB0 (2.2)

Here γ is a characteristic of the nucleus dependent on mass, charge and spin,

allowing calculation of the Larmor frequency which describes the number of

nucleus precessions per second within a magnetic field. This precession is a

consequence of the angular momentum property of spin coupled with the torque

experienced by the magnetic moment. The idea is analogous to a spinning top

precessing about the gravitational field direction. Precession describes a cone

like shape, only varied by the initial angle of the spin polarisation to the applied

field direction, shown in the middle pane of Figure 2.1. Very weak local

variation in magnetic field causes a slight wandering effect in the precession

angle. This effect is not isotropic with a higher probability to drift towards a

lower magnetic energy state where the spin polarisation axis and field direction

are aligned (Levitt, 2013).

It is essential to understand that this anisotropic distribution is in thermal

equilibrium, with individual spins precessing and wandering continuously. This

distribution gives rise to the macroscopic net magnetisation. If a sample has a

magnetic field instantaneously applied, the net magnetisation grows along the
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2. Background

field direction from zero through this “biased wandering motion” (Levitt, 2013).

2.1.2 Macroscopic Precession of Bulk Magnetisation

For a classical description, nuclei are described by small bar magnets. When

exposed to an external magnetic field there is a tendency to align along this field.

For a system at a finite temperature thermal agitation constantly changes the

alignment of these bar magnets, but a preference along the external field remains

(Hanson, 2008). This produces a net magnetisation in a sample of nuclei as shown

in Figure 2.1.

Each nucleus behaves with quantum nature and exist in a superposition of spin

states while unobserved. Conducting a measurement on a single spin-1
2 nucleus

results in collapse to one of the two eigenstates; either parallel or anti-parallel to

the applied magnetic field. These spin states correspond to two energy states,

where ‘spin-up’ (parallel) is more energetically favourable. During MRI many

nuclei are measured simultaneously for their bulk properties so single nuclei are

not forced into this measurement state, as laid out in the Appendix of Hanson

(2008). This gives rise to the representation shown in Figure 2.1 which is a helpful

visualisation of both the quantum and classical description (Levitt, 2013; Hanson,

2008).

Response of protons in the body to external magnetic fields can be fully

described by the macroscopic Bloch Equations proposed in 1946 (Bloch et al.,

1946). These phenomenological relationships describe nuclear magnetism and

the response to externally applied fields. The full Bloch equation is defined by

(2.3) in terms of the magnetisation, M, external magnetic field, B, relaxation

times T1 and T2.

dM(t)
dt

= γ(M(t) × B(t)) − Mxy(t)
T2

+ M0 − Mz(t)
T1

k̂ (2.3)

Where γ is the gyromagnetic ratio of the nuclei, M0 describes the

magnetisation in the steady state (t → ∞), and Mz and Mxy are the

longitudinal and transverse components of the magnetisation, respectively.

These relations form the basis of MRI. For the special case of free relaxation,

9



2.2 Magnetic Resonance Imaging

Figure 2.1: Useful representation of the spin distribution in various external
conditions. Left: no external magnetic field. Middle: static external magnetic field
in the upwards direction, with precession shown by the green arrow. The bulk
magnetisation shown by the wide vertical black arrow. Right: The rotation of the
spin distribution from an RF pulse on resonance.

(2.3) may be simplified with the relaxation of the magnetisation components in

a static magnetic field described by (2.4) and (2.5) (Pickens, 2000).

Mz(t) = Mz(0)e− t
T1 + M0(1 − e

− t
T1 ) (2.4)

Mxy(t) = Mxy(0)e− t
T2 (2.5)

2.2 Magnetic Resonance Imaging

The independent works of Bloch et al. (1946) and Purcell et al. (1946) detailed

the discovery of magnetic resonance processes in bulk matter (Pickens, 2000,

p.375). These and future works on NMR led to the emergence of MRI, a

medical imaging technique exploiting the same nuclei behaviour. Relaxation

time differences between healthy tissue and tumours shown by Damadian (1971)

highlighted promising medical applications. The use of NMR for imaging

purposes was first shown by Lauterbur (1973) where water tubes were imaged.

Notably, Mansfield & Maudsley (1977) presented the first cross sectional image

of a human hand, which they remarked revealed “considerable anatomical

detail, particularly of the soft tissue regions".
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Since these early developments, including the first body scanner (Damadian

et al., 1977), many types of MRI have evolved to exploit different aspects of nuclei

behaviour during NMR. Examples include DCE-MRI which utilises the effect of

CAs on signals to extract perfusion information, and Diffusion Weighted Imaging

which uses differences in water diffusion to create images.

2.2.1 Excitation Pulse

Relaxation processes, defined by (2.4-2.5), may be investigated by system

excitation with a radio frequency (RF) pulse. When a resonant circularly

polarised RF pulse is applied, the net magnetisation tilts away from the

equilibrium position along B0. With the net magnetisation no longer aligned

along B0, a torque force produces a precession of the net magnetisation at the

Larmor frequency (Hanson, 2008).

As soon as the RF pulse is switched off, the protons in the body will undergo

free relaxation processes detailed in (2.4-2.5). The longitudinal component, Mz,

exponentially grows back to its maximal equilibrium value (2.4) characterised

by the T1 relaxation time. This T1 relaxation captures the effect of the “biased

wandering motion” described in Section 2.1.1. Simultaneously, the transverse

component, Mxy, undergoes an exponential decay (2.5) characterised by the T2

relaxation time.

The reduction in the transverse component is due to the dephasing of spins

relative to each other and direct interactions between protons. This is a

consequence of variation in the immediate local environment of the protons,

resulting in a distribution of precessional frequencies. This variation is a

combination of purely local effects from the unique physical environment (T2)

and also imperfection of the applied field (T ′
2), each causing a relaxation effect

(Pickens, 2000). As both T2 and T ′
2 relaxation affect the transverse component,

the combined effect T ⋆
2 is measured. The free induction decay (FID) detected by

the receiver is created by the precession of the net magnetisation in the

transverse plane (van Geuns et al., 1999). The relaxation times T1, T ⋆
2 and T2

may be extracted from FID results.
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2.2.2 Spatial Encoding

Gradient fields are used to encode spatial information into signals produced from

T1 and T2 relaxation processes. A field gradient along the body varies the Larmor

frequency, allowing selective excitation of a slice using a narrow RF pulse (Pickens,

2000). Frequency and phase encoding gradients are used to localise signals within

the slice. The phase encoding gradient is applied between excitation and detection

for a short time period, producing additional phase differences proportional to

position. Repetition of the process with a varying time period collects signals

with different phase encoding (van Geuns et al., 1999). Frequency encoding is

used to differentiate between identical phase encoding, with the gradient applied

during the detection of signals. Combination of phase and frequency information

allow a grid of unique points to be produced, called the K-space. A 2D Fourier

transform is applied to process this raw data into spatial intensities. The details

of spatial encoding discussed here have been summarised from van Geuns et al.

(1999).

2.3 Dynamic Contrast Enhanced MRI

The notion that paramagnetic ions could modify proton relaxation times was

proposed in the late 1970s (Lauterbur et al., 1978), just after the development

of the first body MRI scanners (Damadian et al., 1977). These concepts have

grown into the technique of DCE-MRI, which is widely applied for clinical

purposes (Lohrke et al., 2016). The field of DCE-MRI has grown hugely since

the first approved Gadolinium-based CAs became available. A detailed overview

of key developments in DCE-MRI can be found in Lohrke et al. (2016), with

advances in organ specific techniques highlighted. The change in T1 over a

tissue allows a dynamic output, as the paramagnetic ions are distributed

throughout the body through perfusion processes. A review of perfusion

imaging principles and techniques may be found in Jahng et al. (2014).

A broad group of CAs are employed across imaging modalities to provide

enhanced image information. These CAs fall into two distinct groups: tracers
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and indicators. Historic definitions of “foreign indicators” and “native tracers”

in Perl et al. (1975) define these as introduced substances which are detectable:

“foreign indicators” are defined as chemically different to any systemic

substance, with “native tracers” being chemically equivalent to a systemic

substance. For example, magnetically labelled water in ASL would be

considered a tracer, and Gadolinium-based CAs an indicator. Generally, these

terms are used interchangeably within the field as the modelling is equivalent

when the systemic substances and indicators undergo the same transport

processes (Bergner et al., 1967). This thesis follows the general convention

within the field which names these models as TK modelling regardless of CA

type.

2.3.1 Safety Concerns

Generally, Gadolinium-based CAs are considered safe but some safety concerns

are noteworthy. The major concerns are of Gadolinium retention and nephrogenic

systemic fibrosis (NSF).

Gadolinium retention is a phenomenon where the molecules from the CA

remain within the patient. Although Gadolinium-based enhancement can provide

valuable information, the clinical impact of Gadolinium retention is unclear and

remains under monitoring (Al-Muhanna, 2022).

NSF is usually observed in patients with already compromised kidney function

and is a disease characterised by the hardening of connective tissues (Schieda

et al., 2019). Inability to evacuate Gadolinium agents effectively can act as a

trigger for NSF (Shah & Olivero, 2017). As such, for these compromised patients

indicator-based investigations are not usually recommended. However, studies

using newer iterations of Gadolinium agents show this recommendation could be

revised after further investigation (Bhargava et al., 2021).

2.3.2 Conversion from Signal to Concentration

Direct measurement of CA concentration is not possible in MRI and must be

calculated from the resulting effect on relaxation times. As discussed in
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Section 2.3 the introduction of a CA has a resultant impact on the signal

acquired within a scan. In order to utilise these signal changes the

concentration of the CA must be extracted.

In the low-concentration regime, it is usually valid to assume a linear

relationship between concentration and relaxation time (Pintaske et al., 2006).

Pre-contrast relaxation times (T10, T ⋆
20) may be inverted to describe the

pre-contrast relaxation rates:

R10 = 1/T10; R⋆
20 = 1/T ⋆

20 (2.6)

For signal-enhancing CAs the resulting relaxation rates can be expressed in terms

of the pre-contrast relaxation rates, the relaxivity of the agent (r1, r⋆
2) and the

concentration of the agent (C).

R1 = R10 + r1C; R⋆
2 = R⋆

20 + r⋆
2C (2.7)

Relaxation rates contribute to the measured DCE-MRI signal. A typical

acquisition sequence for DCE-MRI is a spoiled gradient echo (SPGR) with the

theoretical equation for signal evolution given by (Mansfield & Morris, 1982; Fram

et al., 1987):

S(t) = A0 sin (ϕ) 1 − e−TRR1(t)

1 − cos (ϕ)e−TRR1(t) eTER∗
2(t) (2.8)

Here, A0 is scaling term dependent on scanner setup and proton density, ϕ is the

flip angle, TR and TE are the repetition and echo times, respectively. To produce

T1-weighted images, TE is chosen to be short to suppress T ∗
2 effects. Choice of TR

and ϕ is determined by required sampling interval and signal magnitude.

Assuming a proportional affect of concentration on the signal, S(t), the

indicator concentration, C(t), may be defined utilising the pre-contrast

relaxation time, T10, and averaged pre-contrast signal, S0, with r1, by:

C(t) = 1
r1T10

(
S(t)
S0

− 1
)

, (2.9)

as quoted in Wake et al. (2018). Here, r1 is a measured quantity specific to the
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CA used, determined experimentally using approaches outlined in Pintaske et al.

(2006). Alternatively, a non-linear relationship between signal and concentration

is derived from equation 2.7 where R1(t) can be found via solution of equation 2.8.

The T10 baseline or T1 relaxation time prior to the introduction of contrast

may be estimated ahead of the main scanning sequence. A variable flip angle

approach is usually applied, which acquires two or more SPGR sequences with

distinct flip angles.

DCE-MRI data contains the time evolution of tissue CA concentration in the

scan volume, which is an average over each measurement voxel and as such does

not reflect any internal structures that may be present at a sub-voxel scale. In

clinical DCE-MRI research voxel size varies dependent on the type of scanner; in

recent work on liver perfusion, voxels from 0.7 × 0.7 × 2mm3 to 1.4 × 1.4 × 2mm3

have been used (Simeth et al., 2018). Compared to these voxel dimensions many

biological features are indistinguishable. This sub-structure may be represented

via a compartment model based on the physiology of the tissue type concerned.

These approaches are usually referred to as TK modelling and are discussed

further in Sections 2.3.3 and 2.4.

2.3.3 Physiological parameters from concentration

To extract useful features, such as blood-brain barrier leakage or CA uptake into

tissues, from the DCE-MRI data the resulting concentration-time curves must

be analysed further. The analysis methods that can be applied are qualitative,

semi-quantitative or fully quantitative. The former two techniques are discussed

here as they are straightforward, the latter will be explored in the next section.

Qualitative Methods

For qualitative analysis, a human observer will classify the concentration-time

curves based on the initial rise and delayed phase behaviours. These classifications

while of use for diagnosing breast cancer and synovial sarcoma (Kuhl et al., 1999;

van Rijswijk et al., 2001; Teo et al., 2014), are hindered by high variability in

classification between observers due to the subjective nature of the technique.
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Figure 2.2: Diagram showing examples of various semi-quantitative parameters for
DCE-MRI analysis. The concentration curve is denoted by the green line, with the
corresponding AUC in green dots. The BAT and TTP are also indicated alongside the
initial rates of enhancement and washout (IRE, IRW).

Additionally, no spatial data can be extracted unless shape characterisation is

applied on a voxel-wise basis.

Semi-Quantitative Methods

For semi-quantitative analysis the concentration or signal time courses are

interrogated to produce numerical values that define certain properties. Some

examples of these features are the time-to-peak (TTP), the area under the curve

(AUC), the bolus arrival time (BAT) and the mean transit time (MTT)

(Cuenod & Balvay, 2013). These features are indicated for a representative

signal in Figure 2.2.

A distinct advantage of this semi-quantitative approach is in the simplicity of

application to any DCE-MRI data regardless of the system type. By contrast,

fully quantitative analysis requires a significant amount of additional work. In

this respect, it is of note that quantities such as area under the curve relate to

clinically relevant quantitative parameters (Chih-Feng et al., 2012), while being

much easier to acquire.
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Quantitative Methods

The framework of TK modelling is used to determine physiological quantities in

tissues such as blood flow and volume, diffusion and extracellular space volume

(Perl et al., 1975; Lassen & Perl, 1979; Koh et al., 2011). It is a technique

applied to model the spatial distribution and evolution of CA concentrations.

TK approaches model the region of interest (ROI) or tissue as a volume with

separate internal compartments. The number of compartments and interactions

between them is chosen dependent on the type of tissue being described and the

properties of the CA.

In the 1990s, Larsson, Tofts, Brix and their collaborators applied TK

principles to extract parameters useful in quantifying blood brain barrier

permeability from DCE-MRI results (Larsson et al., 1990; Tofts & Kermode,

1991; Brix et al., 1991). These approaches had a widespread impact on the

collection and analysis techniques used for DCE-MRI data.

Advances in DCE-MRI technology have improved temporal resolution and

contrast-to-noise ratio of the scan data. This has allowed models to include

both Permeability-Surface Area Product (PS) and plasma flow (Fp), which

were previously indistinguishable (Sourbron & Buckley, 2011). Since these

developments, TK models have been used for analysis in many aspects of

DCE-MRI, including motion correction (Flouri, 2016).

2.3.4 Compartmental Modelling

The technique of compartmental modelling uses the premise that a space can be

modelled accurately by well mixed interacting sub-spaces. For the case of

medical modelling, for example, a space may have venous and arterial

contributions. These contributions can be represented as different

compartments that themselves are not well mixed but undergo interactions

based on their individual concentrations. A summary of processing steps

between DCE-MRI data and compartment modelling approaches is detailed in

Figure 2.3.
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Figure 2.3: Illustrative pipeline for the analysis of DCE-MRI data. Showing an
example slice of brain DCE-MRI (Barboriak, 2015) (a) that has a signal extracted
across each voxel (b) which can be converted into a CA concentration (c). A model
matching the physiology of the region should be selected for fitting (d). The voxelwise
concentration-time data can then be analysed using an appropriate spatiotemporal or
single voxel approach (e).

Local and Tissue Concentrations

As DCE-MRI data is only acquired at the voxel level, the tissue concentration

for each compartment is calculated from the distributed volume fractions, v, and

summed to give the average tissue concentration of the voxel, given generally by

(Sourbron, 2014):

Ci(t) =
Q∑

q=1
Cq

i (t) =
Q∑

q=1
vqcq(t). (2.10)

In (2.10) there are a total number of Q compartments in voxel i, with tissue,

C, and local, c, concentrations.The local compartment concentration, cq, is the

concentration within compartment q, the tissue compartment concentration, Cq,

is the concentration of compartment q spread over the voxel volume according

to the compartmental volume fraction. Descriptions may be detailed in terms of

either c or C, which will be referred to as the local or tissue concentration picture,

respectively.
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Two Compartment Exchange Model

The two compartment exchange model (2CXM) equations (2.11-2.12) describe

the evolution of concentration in the plasma, cp, and extracellular volume, ce,

compartments:

vp dcp(t)
dt

= Fpca(t) + PSce(t) − (Fp + PS)cp(t) (2.11)

ve dce(t)
dt

= PS(cp(t) − ce(t)) (2.12)

The arterial input function (AIF) is represented by ca(t) in (2.11). This input

concentration-time curve is usually a measured quantity from a large upstream

artery. A comprehensive review of use and measurement of the AIF can be

found in Calamante (2013). When measurement of the AIF is not possible a

high-resolution population averaged AIF can be applied (Parker et al., 2006).

Alternative work towards an inferred AIF from measurements is shown in Jiřík

et al. (2019, 2022). At present, the analysis based on the compartmental model

makes use of the AIF, assuming every voxel in the ROI receives this inflow.

Consequently, this neglects local exchange between and within voxels in the ROI.

Tofts Models

One of the most widely applied compartmental models, the Tofts model (Tofts,

1997), includes one tissue compartment as well as a vascular compartment. This

is a simplification of a general 2CXM, with the plasma volume, vp, taken as

negligible. The model is described as:

C(t) = Ktranse−t Ktrans

ve ∗ ca(t) (2.13)

This has since had more complexity introduced to form the Extended-Tofts model

(Tofts et al., 1999), by allowing an intravascular contribution, by inclusion of vp:

C(t) = vpca(t) + Ktranse−t Ktrans

ve ∗ ca(t) (2.14)
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2.4 Spatiotemporal Tracer Kinetics

The extension of the model allowed more highly vascularised physiology to be

modelled, such as cancerous tissues. A comprehensive overview of different TK

models, the associated parameters and physical interpretations can be found in

Sourbron & Buckley (2012, 2013).

Here Ktrans represents the volume transfer constant defining the leakage of

indicator from the plasma into the extracellular extravascular space. These

models are only accurate when applied to weakly vascularised (Tofts and

Extended-Tofts) or highly perfused tissues (Extended-Tofts) (Sourbron &

Buckley, 2011).

In a non-MRI context the Kety (1951) model was proposed for measurement

of blood flow via the exchange of inert gas within the body. The Kety model is

mathematically equivalent to the Tofts model, as such the general approach in

the literature is referred to as the Tofts-Kety, Tofts or Kety model. In this thesis,

the Kety model is only discussed in Chapter 4 due to its specific use within one

of the articles considered.

Implementation for Model Fitting

There are two main approaches for the implementation of compartmental

modelling in order to return physiological parameters. Firstly, approaches may

apply non-linear least squares methods which fit the model outcome to the

measurement data. These approaches typically apply a gradient descent-based

method that sequentially update initial guesses for parameter values. Secondly,

approaches may apply linear least squares methods which solve for parameters

based on a system of linear equations. These linear methods are increasing in

popularity due to minimised computational time and no required initial guesses.

Applications of linear methods have been illustrated for the Tofts models

(Murase, 2004) and the 2XCM by Flouri et al. (2016).

2.4 Spatiotemporal Tracer Kinetics

Many standard methods apply the central volume theorem (Perl et al., 1975)

which assumes the accessible tissue volume can be calculated using the incoming
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Figure 2.4: Illustration of potential tissue physiology including arterial, venous, lymph
tissue and interstitial spaces (a) that may be modelled via compartments in either single
voxel (b) or spatiotemporal approaches (c).

flow and MTT. This theorem is only valid for linear stationary tissues with a

singular inlet where transport proceeds in a purely convective manner. Systems

with multiple inlets which have no equivalent single inlet, and either diffusive or

asymmetric transport (such as the kidney (Sourbron & Buckley, 2012)) cannot be

described by this approach. To model transport parameters with a high spatial

resolution, voxels should be treated as interacting spaces (i.e. multiple inlets)

which could have non-convective transport meaning methods applying the central

volume theorem are no longer appropriate.

The mathematical framework applied throughout the majority of work

within this thesis adheres to the theoretical basis set forward for spatiotemporal

TKs by Sourbron (2014). A notable and useful feature of this framework is the

generality of the descriptions which allow flexibility to define any system that

may be of interest. The following sections detail the key principles of

spatiotemporal TK theory as defined by Sourbron (2014). An illustration of

single voxel and spatiotemporal compartment modelling approaches is detailed

in Figure 2.4.
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Figure 2.5: Illustration of the scaling problems with definition of perfusion from
volume based flow (left) and the removal of this for surface flow density approaches
(right).

2.4.1 Transport Processes

CA is transported throughout the body after injection into the vascular system.

Within the body there are many different physiologies with different transport

processes controlling the evolution of concentration. In the vascular system

transport is convection dominated and diffusion has a negligible impact on the

transport. Conversely, in the interstitial space convective transport is reduced

and both diffusive and convective transport can play a role. Transport by

diffusion or active transport can occur across cell membranes. Within the

lymphatic system, skeletal muscle and vessel wall contractions produce

convective flow in collecting vessels, while in lymph nodes both convection and

diffusion processes are relevant (Don et al., 2024; Thorup et al., 2023).

With advective transport, appropriate physical interpretations of the blood

flow must be put forward. Definition of perfusion as the volume per unit time into

a voxel, as shown in Figure 2.5 (left), produces values that depend on the voxel

volume itself. Henkelman (1990) highlighted this as a problematic definition.

Conversely, if the surface flow density, or volume per unit time per unit area, is

considered perfusion can be defined as independent of the voxel size (Figure 2.5

(right)), as in Sourbron (2014). Surface flow densities are applied within the

spatiotemporal models defined below.
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The advective flux, j⃗, in the local and tissue concentration picture is

represented in (2.15) and (2.16), respectively.

j⃗(r⃗, t) = f⃗(r⃗)c(r⃗, t) (2.15)

j⃗(r⃗, t) = u⋆(r⃗)C(r⃗, t) (2.16)

Where f⃗ represents the surface flow density, and u∗ = f⃗
v

the blood velocity. The

diffusive flux is shown by equations 2.17 and 2.18. Diffusion can be described in

both the local and tissue concentration referred to as molecular, D⋆, or pseudo,

D, diffusion, respectively.

j⃗(r⃗, t) = −D⋆(r⃗)∇⃗c(r⃗, t) (2.17)

j⃗(r⃗, t) = −D(r⃗)∇⃗C(r⃗, t) (2.18)

Here c and C are related as defined in (2.10). The conversion shown in

equations 2.17 and 2.18 is only valid for systems with a constant v, which may

be moved through the gradient operator, so the pseudo diffusion is defined by

(2.19).

D(r⃗) = D⋆(r⃗)
v

(2.19)

2.4.2 Consequence of Representation

While the local concentration picture is more intuitive as v is explicitly included,

the tissue concentration picture is more useful for numerical description of the

system. For example, when considering C it is unnecessary to track the flow

incompressibility (Sourbron, 2014).

As the diffusive flux is dependent on the spatial gradient of the

concentration, transforming between the local and tissue concentration pictures

has consequences when the volume fraction is not constant and v = v(r⃗). For

heterogeneous v(r⃗) it is no longer valid to extract as a constant through the

gradient operator as in (2.18), the correct relation to be considered is shown by
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2.4 Spatiotemporal Tracer Kinetics

(2.20).

j⃗(r⃗, t) = −D⋆(r⃗)∇⃗
(

C(r⃗, t)
v(r⃗)

)
(2.20)

Expansion of (2.20) gives (2.21), where, due to the spatial gradient in the

volume fraction, a pseudo advection term is created on application of the

gradient operator. The direction of this term follows the gradient of v(r⃗).

j⃗(r⃗, t) = −D⋆(r⃗)C(r⃗, t)∇⃗
(

1
v(r⃗)

)
− D⋆(r⃗)

v(r⃗) ∇⃗C(r⃗, t) (2.21)

To account for these compound effects generally the total flux may be written as:

j⃗(r⃗, t) = u⃗(r⃗)C(r⃗, t) − D(r⃗)∇⃗C(r⃗, t). (2.22)

With the coefficients u and D described by the relations in (2.23).

u⃗(r⃗) = f⃗(r⃗)
v(r⃗) + D⋆(r⃗)

v(r⃗)2 ∇⃗v(r⃗) ; D(r⃗) = D⋆(r⃗)
v(r⃗) (2.23)

This picture collapses to the constant uniform volume picture for isotropic

fractions as the gradient and resulting pseudo advection term vanishes. Only

the pseudo diffusion term associated with moving from the local into the tissue

concentration representation remains.

2.4.3 System Examples

Following the above discussion it is straightforward to produce spatiotemporal

TK equations which capture systems with any number of compartments or

transport processes present. For the subject matter of this thesis, focus is given

to one-compartment vascular systems and two-compartment perfusion systems.

Spatiotemporal equations governing each system type are described within this

section, giving details of systems with either diffusive and advective transport,

or solely advective transport. One-compartment systems considering solely

diffusive transport can be used for appropriate physiology such as regions of

necrosis.
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One-Compartment Vascular System

For singular or one-compartment systems description is rather simple. For

description in the local concentration picture this results in:

v(r⃗)∂c(r⃗, t)
∂t

= −∇⃗ · f⃗(r⃗)c(r⃗, t) + ∇⃗ · D∗(r⃗)∇⃗c(r⃗, t) (2.24)

Within vascular systems of negligible diffusion, all definitions within sections 2.4.1

and 2.4.2 are adjusted by setting D = 0. Therefore, without diffusive transport,

equation 2.24 would be reduced to:

v(r⃗)∂c(r⃗, t)
∂t

= −∇⃗ · f⃗(r⃗)c(r⃗, t) (2.25)

For the tissue concentration picture the conversion yields these to give:

∂C(r⃗, t)
∂t

= −∇⃗ · u⃗(r⃗)C(r⃗, t) + ∇⃗ · D(r⃗)∇⃗C(r⃗, t) (2.26)

∂C(r⃗, t)
∂t

= −∇⃗ · u⃗(r⃗)C(r⃗, t) (2.27)

Additionally, total flow in these listed one-compartment systems is assumed

incompressible, i.e. ∇⃗ · f⃗ = 0. Therefore, 3 degrees of freedom are illustrated for

the local concentration picture: with 4 scalar fields (v, f⃗), and one degree of

freedom removed by flow incompressibility. Similarly, for the tissue

concentration picture there are 3 degrees of freedom without constraint as only

the velocity with 3 scalar fields (u⃗) is applied (Sourbron, 2014).

Two-Compartment Perfusion System

For a description of two-compartment systems, there is a need for additional

transport processes to define interactions which exist between each of the two

compartments within the system. Within this thesis, spatiotemporal

two-compartment systems are specifically limited to arterio-venous systems with

mono-directional exchange mediated via perfusion. This perfusion definition

emerges naturally within the theoretical setup (Sourbron, 2014) as the
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2.4 Spatiotemporal Tracer Kinetics

divergence of the arterial flow.

F = −∇⃗ · f⃗a (2.28)

Here, as in the one-compartment systems, the total flow remains incompressible,

i.e. ∇⃗ · (f⃗a + f⃗ v) = 0.

Explicitly these two-compartment systems are described for the local

concentration picture as:

va(r⃗)∂ca(r⃗, t)
∂t

= −∇⃗ · f⃗a(r⃗)ca(r⃗, t) + ∇⃗ · Da∗(r⃗)∇⃗ca(r⃗, t) − Fca (2.29)

vv(r⃗)∂cv(r⃗, t)
∂t

= −∇⃗ · f⃗ v(r⃗)cv(r⃗, t) + ∇⃗ · Dv∗(r⃗)∇⃗cv(r⃗, t) + Fca (2.30)

With the corresponding tissue concentration equations given straightforwardly,

using the additional relation F = Kvava, by:

∂Ca(r⃗, t)
∂t

= −∇⃗ · u⃗a(r⃗)Ca(r⃗, t) + ∇⃗ · Da(r⃗)∇⃗Ca(r⃗, t) − KvaCa (2.31)

∂Cv(r⃗, t)
∂t

= −∇⃗ · u⃗v(r⃗)Cv(r⃗, t) + ∇⃗ · Dv(r⃗)∇⃗Cv(r⃗, t) + KvaCa (2.32)

For systems with negligible diffusion these can be condensed in the same way

as the one-compartment systems, to give the local concentration relations in

Equations 2.33-2.34.

va(r⃗)∂ca(r⃗, t)
∂t

= −∇⃗ · f⃗a(r⃗)ca(r⃗, t) − Fca (2.33)

vv(r⃗)∂cv(r⃗, t)
∂t

= −∇⃗ · f⃗ v(r⃗)cv(r⃗, t) + Fca (2.34)

With the corresponding tissue concentration equations given straightforwardly,

using the additional relation F = Kvava, by:

∂Ca(r⃗, t)
∂t

= −∇⃗ · u⃗a(r⃗)Ca(r⃗, t) − KvaCa (2.35)

∂Cv(r⃗, t)
∂t

= −∇⃗ · u⃗v(r⃗)Cv(r⃗, t) + KvaCa (2.36)
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2.5 Physics Informed Neural Networks

Within this thesis, Chapter 6 concerns the application of PINNs for the retrieval

of parameters in spatiotemporal systems. This section details some supporting

background material to aid the reader in defining terms and ideas generally found

in many machine learning approaches and specifically within standard and more

advanced neural networks (NNs) of which PINNs are an example.

2.5.1 Neural Networks

Standard NNs have a structure consisting of an input layer, some hidden layers

and an output layer: an overview of a typical setup is shown in Figure 2.6. The

inputs usually take the form of system coordinates such as spatial or temporal

points (x, y, z, t). The hidden layers are the bulk of the network that pass the

values from the input layer through the network, via weighted connections and

activation functions that act at each node within the network (Mehlig, 2021).

At the final layer, the output is exposed as an array of values resulting from

the effect of the network on the input values. The outputs typically represent a

measurable quantity, or a quantity that may be derived from available data. A

cost function is defined using the output layer values and the known measurement

or simulation values, LData. This cost function is then minimised by carrying out

a backpropagation step across the network in order to update the weights to

reduce the defined cost function (Brunton & Kutz, 2019, Chp. 6).

In this way, the neural network can act as a complex operator that ‘learns’ to

transform input coordinates into the observed quantity (Cybenko, 1989). These

network types are highly reliant on the training data that is used during the initial

phase where weights are updated. As such, sparse or unrepresentative training

sets can bias the network and reduce the robustness of outputs. Additionally, in

some cases the network will not converge.
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Figure 2.6: Representation of a standard neural network.

2.5.2 Automatic Differentiation

All differentiation within a PINN is carried via automatic differentiation (Baydin

et al., 2018). This relatively ’new’ approach has been around for about 40 years

(Rall, 1981) but has gained attention through its application in the machine

learning field (Griewank & Walther, 2008). It is a clever numerical technique

which enables exact derivatives to be calculated and differs from symbolic or

numerical differentiation.

Within automatic differentiation, a dual number, Ndual is defined.

Ndual = x + ϵ (2.37)

Where ϵ is an abstract number with the defined property ϵ2 = 0. Expanding a

function f(x) about ϵ using a typical Taylor’s series results in a familiar equation.

f(Ndual) = f(x + ϵ) = f(x) + ϵ
df

dx
+ 1

2!ϵ
2 d2f

dx2 + 1
3!ϵ

3 d3f

dx3 + ... (2.38)

Due to our previously defined behaviour of ϵ all terms after the first two are

automatically equal to zero and are therefore eliminated. Following the outcome

of a dual number for the expansion in a typical function, we see the derivative
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term emerge with ϵ as a coefficient (Baydin et al., 2018).

f(x) = x2 + 2x (2.39)

f(x + ϵ) = (x + ϵ)2 + 2(x + ϵ) (2.40)

f(x + ϵ) = x2 + 2x + ϵ(2x + 2) = f(x) + ϵ
df

dx
(2.41)

∴
df

dx
= 2x + 2 (2.42)

This approach is applied throughout a PINN for calculating derivative terms

with respect to input coordinates and also for back-propagating the effect of the

weight at each neuron on the overall loss function.

2.5.3 Activation Functions

Each node in the network takes incoming values from every other node in the

previous layer. Each connection has its own trainable weight that adjusts the

value incoming to the node. The summation of all these inputs at a node is passed

to an activation function to then be transmitted to the next layer (Mehlig, 2021).

There are several different types of activation functions that have been employed

during the advent of standard NNs and PINNs. Activation functions are a way to

introduce non-linearity into the network: without them all hidden layers collapse

as the final layer is just a linear function of the first layer thus discounting any

additional layer found in between (Brunton & Kutz, 2022, Chp. 14). Indeed, the

non-linearity of activation functions has been proved to allow NNs to function as

universal function approximations (Cybenko, 1989).

Binary Activation Functions

Binary activation functions act by returning -1 until a threshold value is reached

and then returning 1, a classic step function (McCulloch & Pitts, 1943). The

problem in the network comes from the poorly defined gradient segment at the

step change, and the flat gradients at all other points rendering this a poor choice

for activation functions (Snyman, 2005).
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Continuous Activation Functions

Many different types of activation functions that have been developed over the

years (Figure 2.8). The popular choices have been the sigmoid, ReLU (Nair

& Hinton, 2010) and tanh activation functions. Recently, the swish function,

as proposed by researchers at Google (Ramachandran et al., 2017), has shown

promise for fixing the vanishing gradient problem.

σ(x) = 1
1 + e−x

(2.43)

tanh(x) = ex − e−x

ex + e−x
(2.44)

ReLU(x) = max(0, x) (2.45)

swish(x) = x

1 + e−x
(2.46)

2.5.4 Addition of Physical Laws

A significant drawback with classical machine learning techniques is the way the

network arrives at the optimum, as the underlying physics of a system is not

taken into account, with only the overall cost function being reduced. This has

the potential to return unphysical solutions if outputs are not fully interrogated.

In many systems, the underlying physics or governing equations could be a key

component in arriving at the optimum physically acceptable solution.

2.5.5 PINNs Development

Since the introduction of PINNs in the now seminal paper from Raissi et al.

(2019), interest in applications for this new technique has been widespread and

numerous. Indeed at the time of writing the original manuscript has gathered

over 5,800 citations and counting. Ideas put forward in this paper collect work

from their previous two-part preprint (Raissi et al., 2017a,b), which details not

only a method for the solution of forward modelling but also the inverse problem

of parameter recovery in non-linear systems.
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Figure 2.9: Representation of a PINN architecture.

2.5.6 PINNs Implementaion

From an implementation perspective, a PINN very closely resembles a standard

NN, except with additional operations on the output layer (Raissi et al., 2019;

Cuomo et al., 2022). Here any necessary derivatives are taken of parameters in

the output layer with respect to the physical coordinates describing the system.

These terms are then used to define residual equations that fully characterise the

underlying physics of the system. Equations must be cast in residual form so that

minimisation is straightforward. There may be any number of residual equations

that can describe not only the overall physics of the system but also any known

initial and boundary conditions.

A summation of these residual terms is then carried out to define the physics

loss function LP hysics:

LP hysics =
∑

i

ϕi (2.47)

This additional loss term is then combined with LData to give a new overall loss

function for the system:

L = LData + LP hysics (2.48)
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2.6 Summary

This chapter has provided a summary of background material relevant for the

research presented within this thesis. Specifically, an overview of DCE-MRI,

single voxel analysis techniques of DCE-MRI data, spatiotemporal theory for

DCE-MRI analysis and principles underlying PINNs approaches have been

covered.
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Chapter 3

The OSIPI-DCE challenge

Pharmacokinetic (PK) analysis techniques have historically been developed as

in-house research codes with implementation differences between studies. These

methods are often developed with and applied to clinical datasets which are not

freely accessible due to data protection concerns. The lack of widely accessible

clinical datasets has hindered the comparison of PK modelling outcomes (Carp,

2012). Differences in reported parameters from differing implementation

methods (O’Connor et al., 2007) require further characterisation to ensure

quantitative evaluation of DCE-MRI can yield reproducible results. Initiatives

such as the Cancer Imaging Archive (TCIA) (Clark et al., 2013) are invaluable

for benchmarking PK modelling by allowing different research groups free access

to de-identified datasets.

This chapter1 is comprised of a detailed investigation of 10 separate software

packages to measure and characterise differences in the Ktrans parameter when

applied to the same DCE-MRI datasets. Metrics based on accuracy,

repeatability and reproducibility are utilised in order to provide quantitative

insight into differences which appear in the resulting Ktrans values. The

associated scoring and synthetic data production codes to the material

presented can be accessed via Github2.

1The work in this chapter has been published (Shalom et al., 2024b), this is defined in
‘Joint Publications’ with contribution details on Page ii. Some Figures (3.5,3.6,3.9,3.10,3.7)
and Tables (3.4) from the original Supporting Information are included in the main text. Large
data tables from the original Supporting Information are included in Appendix A.

2https://github.com/OSIPI/TF6.2_DCE-DSC-MRI_Challenges
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3.1 Introduction

DCE-MRI provides physiological parameters associated with the exchange of a

CA between intravascular space and extravascular spaces (Bell et al., 2021). In

patients with glioblastoma, Ktrans has been proposed as a marker for

characterising tumour pathophysiology, which can aid in grading (Zhang et al.,

2012), assessment of treatment response (Kickingereder et al., 2015), and

differentiation of recurrence from radiation necrosis (Thomas et al., 2015).

Quantitative DCE-MRI through PK modelling is intended to yield

reproducible parameters across different studies and institutions (Zhu et al.,

2005). However, the variation in the AIF, chosen PK models, and stability in

model fitting adversely affect the quantification of Ktrans values (O’Connor

et al., 2007). Therefore, the reported Ktrans values differ among studies, making

it currently unsuitable as a marker in multi-institutional clinical trials.

Furthermore, a small number of studies have measured repeatability. Based on

this limited literature, current QIBA guidelines state that a change of Ktrans

above 21.3% may indicate true Ktrans change with 95% confidence in

glioblastoma (QIBA MR Biomarker Committee, 2020; Shukla-Dave et al.,

2019), if no repeatability data is available for the study. Therefore, methods

with a repeatability coefficient (%RC) (Shukla-Dave et al., 2019) above this

threshold cannot reliably detect tumour progression in longitudinal studies,

further contributing to the limitations of quantitative DCE-MRI in clinical

trials.

Over the past decade, more attention has been brought to the replication

of research studies, the so-called reproducible research (Lindquist, 2020; Stikov

et al., 2019). While researchers make their best effort to report accurate data, the

choices they have to make about different aspects of data collection and analysis

methods could influence the outcome of their significance tests and therefore, the

derived conclusions (Simmons et al., 2011; Wicherts et al., 2016). This “researcher

degrees of freedom” issue imposes challenges for the reproducibility of the results

when reanalysing the same data, or generalisability of the findings to independent

data (Simmons et al., 2011; Wicherts et al., 2016).
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For quantification of Ktrans from DCE-MRI, there is an extensive list of

available tools from which to choose although no “gold standard” analysis

technique exists for clinical data. Evaluation and validation of these tools in the

reported literature are based on datasets collected by authors, rendering it

difficult to perform a fair comparison between them (Carp, 2012). When

provided with a wide range of possible (well-grounded) options for analysis

methods, researchers may select or report methods that yield more favourable

results for their data (Simmons et al., 2011; Wicherts et al., 2016). Despite

researchers’ best intentions, the inclination to show statistically significant

results, referred to as “selective analysis reporting”, could accompany false

positive errors (Carp, 2012). To avoid such errors, which hinder reproducibility,

it is critical to provide comprehensive and open/transparent details about the

study design and analysis approaches. The International Society for Magnetic

Resonance in Medicine Open-Science Initiative for Perfusion Imaging

(ISMRM-OSIPI), referred to hereafter as "OSIPI"), an ISMRM perfusion study

group initiative, was founded to promote reproducible research and open science

in perfusion imaging and to facilitate the translation of software tools into

clinical practice. The OSIPI task force on DCE and DSC challenges (Task Force

6.2), was formed in February 2020 with a group of medical physicists,

radiologists, and biomedical engineers to address the current issues of

benchmarking perfusion quantification methods by organising community

challenges. The OSIPI-DCE, as an ISMRM challenge, was the first of such

challenges. OSIPI- DCE aims to design and build a systematic and controlled

framework to benchmark the quantification of Ktrans as a diagnostic or

prognostic biomarker in glioblastomas, and to apply this framework to

submissions from the community. This setup allowed the evaluation and

validation of software packages in a single setting with synthetic and real-world

clinical data. For the first time in a challenge setting, accuracy, repeatability,

and reproducibility of various methods were assessed for Ktrans quantification in

brain tumours. This study describes the challenge data, design, results of

evaluating different analysis methods, and obstacles in the assessment of

reproducibility.
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3.2 Methods

The OSIPI-DCE challenge was launched at the ISMRM Annual Meeting, May

15, 2021, upon presentation of the abstract on the outline of the challenge during

this annual meeting.

3.2.1 Challenge Setup

This challenge aimed to assess the results and analysis methods submitted by

the participating teams according to the OSIPIgold score (Table 3.1) for their 1)

accuracy in the quantification of Ktrans using a set of synthetic data designed for

this challenge, 2) repeatability using open access test-retest scans of eight patients

with glioblastoma (Clark et al., 2013; Barboriak, 2015), and 3) reproducibility

based on an independent re-analysis of the data by a neutral evaluator team.

The challenge design was submitted as an abstract (Kazerooni et al., 2021a)

for peer-review at the 2020 ISMRM Annual Meeting. The researchers in the

perfusion MRI community were invited by email to participate through the

ISMRM Perfusion Study Group, LinkedIn, Twitter, or via direct contact.

Interested teams registered on the ISMRM Challenges website and received

submission guidelines via an automated email. The participants were asked to

submit their results along with a report about the analysis approach, as

described below:

• Matrices of voxelwise Ktrans maps (in the original space) for all slices in the

synthetic and clinical DCE-MRI (2 visits per subject) in NIfTI format.

• Standard Operating Procedures (SOPs) with sufficient detail to allow a

neutral evaluator team to reproduce the results without interaction with

the challenge participants. The SOPs should explain software access and

installation and provide a step-by-step guide to reproduce the analysis. It

is essential that the synthetic and patient data are analysed with the same

approach. Copies of each submission SOP are contained within the OSIPI

DCE-Challenge Github.1

1https://github.com/OSIPI/TF6.2_DCE-DSC-MRI_Challenges/tree/main/Ch
allengeTeamData.
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3. The OSIPI-DCE challenge

No requirement was placed on the challenge participants to release their

source codes or to base their submissions on open-source or open-access

software. However, for commercial or in-house software that was not freely

available, the participants were asked to provide a trial license or an executable

file for the independent replication of the results. The license could be

temporary, allowing sufficient time for re-analysis. Instructions on how to

obtain the license should have been included in the SOPs without requiring

interactions between submitters and neutral evaluator teams.

The challenge was open for submissions through to the end of the year 2021.

The task force reached out to experienced DCE-scientists to help in evaluating the

submissions in terms of procedural reproducibility and the reported Ktrans maps,

after the challenge was closed. The evaluators had either more than one (Ivan

A. Wolansky), five (Zaki Ahmed, Samuel Bobholz) or ten (Peter S. LaViolette,

John Virostko, Hendrik O. Laue, Kyunghyun Sung) years of experience in DCE

analysis. At the end of the challenge, the SOPs and software tools for each

submission were provided to the independent evaluators.

3.2.2 Data Description

Two sets of data were provided in our challenge repository (Kazerooni et al.,

2021b).

Clinical Data

A set of repeat DCE-MRI and T1-mapping scans with accompanying T1

CE-FLASH and T2 CE-FLAIR from 8 patients with glioblastoma, selected from

RIDER Neuro MRI database (Clark et al., 2013; Barboriak, 2015) and

renamed, acquired on a 1.5T Siemens scanner at two scan dates, typically 1-2

days apart. Sequence details are provided in Appendix A.

Synthetic Data

Two synthetic DCE-MRI patient datasets were generated from RIDER subjects

(Clark et al., 2013; Barboriak, 2015) to be analysed with the same processing
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pipeline as the clinical data. For this reason, the synthetic DCE-MRI data were

integrated into an original DICOM study, including also the anatomical reference

data from the same RIDER subjects.

Synthetic data were created following two steps: first, an inverse model was

applied to the DCE-MRI and variable flip angle (VFA) data set to obtain

parameter maps for pre-contrast relaxation rate (R10), rate constants

(Ktrans, kep), capillary plasma volume per unit volume of tissue (vp), and an

AIF; subsequently these parameter maps had thresholds and filters applied to

produce an unknown ground truth. The forward model was applied to produce

synthetic DCE-MRI and VFA signal intensity curves. All details of the inverse

modelling remained undisclosed during the submission period. The challenge

guideline detailed the PK model used for the forward modelling, as well as the

assumed concentration and relaxation rate relationships. Also, it defined the

creation of VFA data using R10 maps and a constant R∗
20 throughout.

For the inverse approach, initial parameter values were recovered from the

RIDER data using matrix form (Murase, 2004). A partial volume correction was

applied using the sagittal sinus signal. Thresholds were then applied to the output

to discard negative values produced during the least squares fitting process and

limit maximal volume fraction values to 1. Smoothing of the fitted values was

carried out using a 3x3 median filter. The AIF signal (corrected with hematocrit

0.45 (Brix et al., 2004)) was selected from the middle cerebral arteries and scaled

to have a realistic peak value of 6 mM (Parker et al., 2006).

For the forward model, the extended Tofts model was applied with the AIF

and parameter maps (Ktrans, kep, vp). The resulting tissue concentration-time

curves were converted into R1(t)(= 1/T1(t))) and R∗
20(t(= 1/T ∗

2 (t))), assuming a

linear relationship between concentration and the relaxation rates according to

the r1 and r∗
2 relaxivities of Gd-DTPA respectively (3.9 and 10 Hz/mM (Pintaske

et al., 2006; Siemonsen et al., 2008)), and by making use of the R10 and R∗
20 maps.

To deduce the precontrast relaxation rates, the signal evolution was modelled

as a SPGR sequence in steady state. This was applied to express the signal

everywhere at the initial time and the initial sagittal sinus signal. These relations

were combined in order to give a calculated R10 map using the reference T1 of

40



3. The OSIPI-DCE challenge

1.48 s in the sagittal sinus at 1.5T (Zhang et al., 2013). The constant precontrast

R∗
20 applied was 17.24 Hz (Siemonsen et al., 2008). Scan-specific constants match

the original scan values with FA= 25°, TR= 3.8 ms, TE= 1.8 ms; using a 1x1x5

mm3 voxel size.

Subsequently, these relaxation rates were converted into DCE-MRI signal time

curves again modeling signal evolution as an SPGR sequence. A multiplicative

constant was defined to give the synthetic data similar maximal signal values to

the original RIDER dataset. This produced synthetic data with a 16-slice volume

captured with a temporal resolution of 4.8 s.

Finally, Rician noise was added to the signal-time data by assessing the

standard deviation across the pre-contrast time steps within each voxel from the

original RIDER dataset. Voxelwise noise values were then applied from

randomly sampled Gaussian distributions with the voxelwise standard

deviation; the absolute resulting signal was taken. Across all voxels, signal noise

applied had a mean and standard deviation (µ ± σ) of 5.65±3.21 and 5.51±3.14

for synthetic patients 1 and 2, respectively. The VFA data were recreated using

the same signal model and R10 maps with FAs of 5°, 10°, 15°, 20°, 25°, and 30°.

Synthetic signal intensity-time data were exported in DICOM file format

and the original DICOM DCE-MRI data were replaced by the synthetic data.

The patient identifiers were overwritten to avoid confusion with the original

RIDER data from which the synthetic data was derived. The parameter maps

(Ktrans, kep, vp) were then changed to create the second visit data through the

same process with identical AIF. No guarantee was offered that the second visit

data were identical to the first, and some substantial differences were

deliberately introduced. The differences between visits helped assess accuracy

while also penalising methods that over-constrained visits to have repeatable

values.

3.2.3 Tumour Segmentation

Segmentation of brain tumours for each visit in the clinical and synthetic data

was performed on the last time series of DCE-MRI scans, by comparing to the
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anatomical post-contrast T1 and FLAIR images to delineate the enhancing

tumour region. The regions of interest (ROIs) were not released to the

challengers. The segmentations were carried out using the ITK-SNAP software

(Yushkevich et al., 2016) by an experienced neuroimaging researcher (Reyna

Patel) under the supervision of a senior neuroradiologist (Leland S. Hu). These

mask data were output in NIfTI format to be overlaid on the submitted Ktrans

NIfTI matrices.

3.2.4 Leaderboard Evaluation

The entry submissions were evaluated using the OSIPI scoring metrics as defined

in Table 3.1.

Segmentation Overlay

The segmentation masks were overlaid in Python using the Nibabel library

(Brett et al., 2020) onto the ground-truth data and submitted Ktrans maps for

all datasets. The extracted arrays from all submissions were visualised within

Python to ensure correct alignment with the segmentation masks. It was found

that the NIfTI files submitted had varying alignment quality due to the nature

of the analysis techniques in stripping array data from DICOM files. Any

submissions with alignment issues were transformed without interpolation using

NumPy 90°rotations or axis reflection to ensure full overlap with the correct

ROIs within the tumour segmentation masks (Harris et al., 2020). Mean Ktrans

values were calculated by considering the average values – including negative

and zero values but excluding NaN values - within the tumour mask ROIs

(TM-ROIs) and used within the scoring metrics (Table 3.1).

OSIPI Scoring

The entries were planned to be scored over three main scoring metrics (Table 3.1):

accuracy, repeatability, and reproducibility. The three metrics were multiplied to

produce a single final score, which implies that a method needs to score well

against all three criteria in order to score well overall. Methods should return
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values in a repeatable way to allow tracking of any changes which occur and give

accurate values for this. Reproducible methods are of pivotal importance to allow

dependable use across centres or collaborators. These scoring metrics (Table 3.1)

are defined similarly to conventional definitions of accuracy and repeatability. It

is worthwhile to mention that we opted for a novel definition of accuracy in this

challenge as an alternative to the conventional definition (1-bias), to overcome

the limitations such as negative scores. These new metric definitions enable the

separate metrics to be combined into one overall score that is equally influenced

by the three criteria.

Preliminary Evaluation of the Challenge

An independent team of two scientists, David A. Hormuth II and Julie C.

DiCarlo, were invited to perform a test run for the whole challenge process. One

of these scientists (David A. Hormuth II) used their in-house Ktrans

quantification software on the DCE-MRI scans of all subjects and visits in the

synthetic and clinical cohorts, according to the challenge guidelines. They

provided the Ktrans maps along with SOP of the analysis approach. The second

scientist (Julie C. DiCarlo) from the same institution followed the SOP to

reproduce the results. The final results by the two scientists were used to test

our scoring metrics and revise the challenge guidelines where necessary. As

these results may be biased, they are not reported.

3.2.5 Statistical Analysis

To take full advantage of the data submitted for the challenge, submissions were

evaluated by several voxelwise approaches; complementing the Scoreaccuracy and

Scorereproduce. This provides vital information, as similar TM-ROI mean Ktrans

values may stem from vastly different distributions (Matejka & Fitzmaurice,

2017).

For accuracy, a voxelwise Bland-Altman analysis was applied to assess the

differences between each entry and ground truth Ktrans values. The mean

difference and standard deviation were calculated for all the synthetic visits
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Table 3.1: Summary of OSIPI scoring metrics.

Global OSIPI Scoring Metric
OSIPIgold = 100 × (Scoreaccuracy · Scorerepeat · Scorereproduce)

OSIPIsilver = 100 × (Scoreaccuracy · Scorerepeat)
Component Scoring Metrics

Scoreaccuracy =

exp
(

−1
4

4∑
n=1

σ(K̄trans
i , K̄trans

exact )
µ(K̄trans

i , K̄trans
exact )

)

Accuracy Score: A measure for
the accuracy of the Ktrans values of
submissions (K̄trans

i ) by comparison with
exact values (K̄trans

exact ) in the synthetic
data. The bar here denotes a mean
Ktrans value over the tumour mask in
each scan, with averaging over the four
synthetic data sets. (σ and µ represent
sample standard deviation and mean,
respectively, between the two scans.)

Scorerepeat =

exp
(

−1
8

8∑
n=1

σ(K̄trans
i,v1 , K̄trans

i,v2 )
µ(K̄trans

i,v1 , K̄trans
i,v2 )

)

Repeatability Score: A measure for
the repeatability of the Ktrans values
of submissions. This score compares
the submitted Ktrans values for the test
(K̄trans

i,v1 ) and retest (K̄trans
i,v2 ). The bar

here denotes a mean Ktrans value over the
tumour mask in each scan, with averaging
over the eight clinical patient data sets.
(σ and µ represent sample standard
deviation and mean, respectively, between
the two scans.)

Scorereproduce =

exp
(

− 1
20

20∑
n=1

σ(K̄trans
i , K̄trans

i,neutral)
µ(K̄trans

i , K̄trans
i,neutral)

)

Reproducibility Score: A measure
that quantifies to what extent the
submitted Ktrans values are independently
reproducible. The metric compares
the submitted Ktrans values (K̄trans

i ),
calculated for the two visits of each of
the ten cases (i.e., two synthetic and eight
patient data), against the same values
reproduced independently (K̄trans

i,neutral) by
experienced neutral evaluators, based on
the SOPs provided. The bar here denotes
a mean Ktrans value over the tumour mask
in each scan, with averaging over the
twenty visit data sets. (σ and µ represent
sample standard deviation and mean,
respectively, between the two scans.)
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combined. Additionally, the proportional change in Ktrans values within the

TM-ROI between the two visits (Ktrans
v1 and Ktrans

v2 ) in synthetic patients was

computed.

dKtrans
prop = Ktrans

v1 − Ktrans
v2

Ktrans
v1

(3.1)

For reproducibility, a voxelwise analysis was applied to deduce the differences

between the submission and neutral teams’ Ktrans. The mean difference, standard

deviation details were calculated for all patient visits combined.

To allow a more detailed conclusion about the repeatability outcomes from

the submissions, two metrics were extracted: 1) TM-ROI mean Ktrans difference

between clinical patient visits calculated for each of the 8 clinical patients; 2)

repeatability coefficient for TM-ROI mean Ktrans (%RC = 2.77 × wCV ; where

wCV denotes the within-subject coefficient of variation, defined by the root

mean square of µ/σ) (Shukla-Dave et al., 2019) to measure repeatability

between clinical visits within the same submission.

3.3 Results

Ten submissions, identified by a team name, were received from May 15, 2021

through December 30, 2021. SOPs of four submissions could not be reproduced

due to runtime errors or extensively long computational time. Therefore, the

reproducibility score was calculated only for six submissions and OSIPIgold was

only reported for them. For comparing the methods in terms of accuracy and

repeatability, OSIPIsilver was used for the remaining submissions, ranked below

those with OSIPIgold score.

3.3.1 Overview of Challenge Entries

An overall summary of the procedures used for each submission is provided in

Table 3.2, which includes preprocessing methods (brain masking, denoising,

co-registration), PK model, AIF selection method, and the DCE-MRI image

quantification tool applied. There was a wide variety of AIF selection methods

ranging from manual to fully- automatic, but most teams opted to apply the
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extended Tofts PK model.

3.3.2 OSIPI Scores

The OSIPI scores, as defined in Table 3.1, for each received entry are shown in

Table 3.3 (see Table A.4 for component score confidence intervals). The highest

overall score was obtained by the DCE-NET submission with OSIPIgold = 78%,

followed by Maydm and PerfLab with 73% and 61%, respectively. OSIPIgold

scores ranged from 12 − 78% across submissions with a 59% median score. The

Scoreaccuracy, Scorerepeat and Scorereproduce ranged from 0.54 − 0.92, 0.64 − 0.86

and 0.65 − 1.00, with median values of 0.69, 0.81 and 0.95, respectively.

3.3.3 Further Evaluation

A summary of the mean Ktrans values extracted from the TM-ROIs for the

clinical patient datasets are included in Table A.1 (Appendix A), with the

values for the synthetic patient sets reported alongside the ground-truth in

Table A.2 (Appendix A). Figure 3.1 shows the distributions of Ktrans values

within the TM-ROIs for all patients across the submissions. Different methods

lead to vastly different mean values and distributions.

An example of the clinical data received from each submission can be seen

in Figure 3.2. This details the Ktrans (min−1) map for both visits in the same

slice. The estimations within the TM-ROI and the rest of the brain are highly

variable between submissions. A similar plot is detailed in Figure 3.3, where

the Ktrans (min−1) maps are displayed for synthetic patient 2, indicating the

variability among different tools. Small visual differences that were picked up by

each software between the two visits can be observed.

Accuracy

Figure 3.4 summarises the voxelwise differences between ground-truth and

submitted Ktrans values for the TM-ROI in the synthetic patients. This figure

illustrates the wide range of accuracy of the tools in the synthetic data. Some

entries (DCE-NET, Madym, ROCKETSHIP and PerfLab) have largely
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3. The OSIPI-DCE challenge

Figure 3.1: Boxplots showing the distribution of Ktrans values within the tumour
mask for each patient visit in each challenge submission. The filled dots denote the
mean Ktrans values over the tumour region with the boxed region and central line
showing the interquartile range and median, respectively. Whiskers show the 5th to
95th percentile values. The panels are arranged by the submission team, with grey
lines separating each of the clinical patients, and visit 1 (blue) and visit 2 (yellow) both
shown. The Ktrans axis is limited to 0.3 min−1 for clarity of comparison.

49



3.3 Results

Figure 3.2: Ktrans values for clinical patient 3 over all submissions. Set A and B
correspond to visit 1 and 2, respectively. The maximum Ktrans value is restricted
to 0.1 min−1 for comparison. NaN values are set to 0 in this figure for visualization
purposes.

50



3. The OSIPI-DCE challenge

Figure 3.3: Ktrans maps for synthetic patient 2 for both visit 1 (A) and 2 (B) over all
submission teams and the ground truth (GT). The maximum Ktrans value is restricted
to 0.1 min−1 for comparison. NaN values are set to 0 in this figure for visualization
purposes.
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3.3 Results

Table 3.4: A summary of the proportional change in mean TM-ROI Ktrans values
(dKtrans

prop ) in synthetic patient 2 for all submissions and the ground truth (GT). To
compare the dKtrans

prop values from each submission, the absolute difference from the GT
dKtrans

prop was calculated.

Synthetic P2 (dKtrans
prop ) Absolute difference from GT

GT 0.363 -
MADYM 0.338 0.025

ImageJ/MRIcron 0.331 0.032
UW QBI lab 0.331 0.032
DCE-NET 0.307 0.056
FireVoxel 0.437 0.074

OHSU 0.218 0.145
ROCKETSHIP 0.517 0.154

ALICE 0.089 0.274
MRI-QAMPER -0.006 0.369

PerfLab -0.09 0.453

symmetric difference distributions while others (MRI-QAMPER, OHSU,

FireVoxel and UW QBI lab) show a tendency to under or overestimate the

ground-truth values. Bland-Altman plots of both the TM-ROI mean

(Figure 3.5) and voxelwise Ktrans values (Figure 3.6) reflect trends seen in

Scoreaccuracy and Figure 3.4. It should be noted that as Figure 3.4 illustrates,

while the Scoreaccuracy from MRI-QAMPER and PerfLab are comparable, the

voxelwise Ktrans values are more variable in MRI-QAMPER, suggesting that

the voxels with high values in MRI-QAMPER are averaged out in the

calculation of Scoreaccuracy (see Figure 3.7).

A summary of dKtrans
prop for synthetic patient 2 can be found in Table 3.4. This

also includes the absolute difference from the dKtrans
prop of the synthetic ground

truth, ranging from 0.025 to 0.453.

Repeatability

Figure 3.8 shows the distribution of relative changes in Ktrans values between

patient visits, which correspond well with the repeatability score (Table 3.3). A

higher mean relative difference of Ktrans values between the clinical visits

corresponds to a lower repeatability score. Within Figure 3.1, the summary of

clinical data analysis provides a patient-wise insight on the overall submission
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3. The OSIPI-DCE challenge

Figure 3.4: Boxplot of voxel-wise differences in Ktrans values within tumour ROIs
between the ground truth and entry values. Filled point shows the value bias (mean
difference between entry and ground truth values), with the box and central line showing
the IQR and median of the distribution. Whiskers show the 5th to 95th percentile
values.
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3.3 Results

Figure 3.5: Bland-Altman plots showing comparison between the submissions and the
ground truth for all synthetic patient visits for mean tumour ROI Ktrans values. Any
zero values within the tumour ROI were included in the analysis. Coloured dashed line
and black dashed lines in each panel show the mean difference (bias) and upper/lower
limits of agreement (bias±1.96σ), respectively.
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3. The OSIPI-DCE challenge

Figure 3.6: Bland-Altman plots showing the comparison between the submissions
and the ground truth for all synthetic patient visits for voxelwise Ktrans values. Any
zero values within the tumour ROI were included in the analysis. Red dashed lines
show a general linear fit bias with black dashed lines giving the upper/lower limits of
agreement (bias±1.96σ).
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3.3 Results

Figure 3.7: Voxelwise Ktrans values for the synthetic patients across the MRI-
QAMPER and PerfLab submissions. In each panel, the black line shows visit tumour
mask mean and the red dashed line at 0.1 shows Figure 3.3 cut off value. Different
Ktrans ranges are reported for synthetic patient 1 (top 4 panels) and 2 (bottom 4 panels)
to match the range of Ktrans values present in each patient across both submissions.
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3. The OSIPI-DCE challenge

Figure 3.8: Boxplots showing the distribution of absolute relative change in Ktrans

(min−1) values within tumour ROIs
between visit 1 and visit 2 for each submission team. The filled dots denote the
mean Ktrans values over the tumour region with the boxed region and central
line showing the interquartile range and median, respectively. Whiskers show

the 5th to 95th percentile values.

distributions (Figure 3.8). A Bland-Altman analysis of test-retest TM-ROI

mean Ktrans values (Figure 3.9) reports test-retest variability within

submissions.

Table 3.5 shows the %RC values with a range of 0.56-1.45% in the clinical

patients comparing the mean TM-ROI Ktrans between the test and retest visits.

The OSIPI repeatability score (Table 3.3) showed strong negative correlation

with %RC values between clinical visits, with a Pearson correlation coefficient

of -0.986 (p<0.001), thereby supporting the validity of the defined repeatability

metric (Table 3.1) across these submissions.
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3.3 Results

Figure 3.9: Bland-Altman plots showing the comparison between the submissions
visit 1 and visit 2 mean tumour ROI Ktrans values across all clinical patient cases. Any
zero values within the tumour ROI were included in the analysis. Coloured dashed line
and black dashed lines in each panel show the mean difference (bias) and upper/lower
limits of agreement (bias±1.96σ), respectively.
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3. The OSIPI-DCE challenge

Table 3.5: %RC values for the clinical test-retest visits, applied to tumour ROI mean
values, for each of the submissions.

Submission %RC ± 95% CI
MRI-QAMPER 0.56 0.26

DCE-NET 0.57 0.24
Madym 0.59 0.27
ALICE 0.62 0.32

UW QBI lab 0.73 0.32
OHSU 0.75 0.23

PerfLab 0.76 0.29
FireVoxel 0.79 0.27

ImageJ/MRIcron 1.29 0.5
ROCKETSHIP 1.45 0.51

Table 3.6: Comparison of original submissions and reproduced Ktrans values.
Columns 1 and 2 shown the mean Ktrans values across every voxel within masked
regions for the original and reproduced results. Columns 3-5 give summary statistics of
the differences between the submission and reproduced values calculated within each
voxel.

Submission Mean Ktrans (min−1) Voxelwise differences Ktrans (min−1)
Original Reproduced Mean SD ± 95% CI

Madym 5.4E-2 5.4E-2 -3.9E-13 1.9E-9 9.4E-12
ROCKETSHIP 5.2E-2 5.3E-2 -1.8E-4 1.0E-1 5.2E-4

DCE-NET 4.2E-2 4.2E-2 -1.9E-4 3.2E-3 1.6E-5
PerfLab 4.5E-2 4.4E-2 3.6E-4 2.5E-2 1.2E-4

MRI-QAMPER 1.7E-1 1.7E-1 -5.1E-4 4.7E-1 2.3E-3
FireVoxel 1.6E-1 8.7E-2 6.9E-2 3.1E-1 1.6E-3

Reproducibility

To complement the overall reproducibility scores, shown in Table 3.3, the

TM-ROI voxelwise differences between the original and reproduced entry are

summarised in Table 3.6 in order of magnitude. The values differ by several

orders of magnitude. The ranking in these data largely follows the

Scorereproduce, but for some submissions their rank is slightly improved or

worsened. A Bland-Altman plot comparing the TM-ROI mean Ktrans in each

patient visit between the reproduced and original entry (Figure 3.10) follows

similar trends to the voxelwise analysis (Table 3.6).
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3.3 Results

Figure 3.10: Bland-Altman plots showing the comparison between the submissions
and the neutral evaluators for all visits mean tumour ROI Ktrans values. This is
displayed only for submissions that were reproduced. Any zero values within the
tumour ROI were included in the analysis. Coloured dashed line and black dashed
lines in each panel show the mean difference (bias) and upper/lower limits of agreement
(bias±1.96σ), respectively.
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3. The OSIPI-DCE challenge

3.4 Discussion

In this work, we systematically evaluated variability in quantification of Ktrans

obtained by different analysis pipelines using a standardised benchmark. The

submissions were assessed in terms of a scoring model that measured accuracy,

repeatability and the ability to reproduce results independently.

3.4.1 Accuracy

Submissions employing population-based AIF (DCE-NET, Madym) scored

highly for accuracy. This is interesting as population-based AIFs do not account

for between-subject differences and are typically seen as a means of trading off

accuracy against precision (Parker et al., 2006; Port et al., 2001). The results

indicate that this trade-off is favourable even in terms of accuracy - possibly

indicating that AIF measurement biases in this application area are larger than

typical between-subject differences. On the other hand, the results may have

been biased by the synthetic data generation, for which the maximal value of

the widely-used population-based AIF (Parker et al., 2006), though not its

functional form, was applied to scale the selected AIF. The other highest

scoring methods for accuracy after these submissions were from

ImageJ/MRIcron and PerfLab which employed fully automatic AIF methods.

Due to the data-driven approach, these software tools should be more robust

compared to the methods that utilise population-based AIF in synthetic data

that has been developed with a different AIF.

The synthetic data were purposefully different between the ‘test’ and ‘retest’

visits to enable detection of any method which attempted to enforce the

repeatability between visits if distinct differences in values were present. It

should be noted that the synthetic data were not evaluated in the repeatability

scoring. This was potentially observed in the ALICE submission, which had a

high Scorereproduce but a low Scoreaccuracy. The ability to detect these changes

in Ktrans was further investigated using dKtrans
prop to compare to the synthetic

data. Based on absolute difference from dKtrans
prop in the synthetic data, Madym

showed the lowest deviation from the known change. This metric aimed to
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3.4 Discussion

provide an overview of accuracy less biased to systematic offsets in Ktrans values

which may have resulted from differences in concentration-signal conversion

parameters and transit time handling.

Synthetic patient 1 was based on a RIDER patient with no obvious

enhancing tumour region, though this information was not revealed to

participants; therefore, the ROI was placed within the normal-appearing white

matter (NAWM). Ktrans values in NAWM have been shown to be small but

non-zero in several studies at high field strengths (Larsson et al., 2009; Taheri

et al., 2011; Cramer et al., 2014), with a distinguishable difference in values also

reported between some patient groups with healthy controls. As Ktrans is

expected to be minimal in NAWM, this selection of the synthetic data was

meant to evaluate how the analysis tools perform in the absence of blood-brain

barrier disruption or the regime of low Ktrans. This choice could have biased the

score against methods that are not optimised to return Ktrans in NAWM as

some of the tools are developed and applied to the enhancing tumour regions.

Additionally, methods that cover a wide range of Ktrans values through

estimating more free parameters may overfit a scenario where a priori

knowledge exists. However, this evaluation was considered necessary for

absolute quantification of Ktrans and standardisation of values across different

studies. Closer quantification of low Ktrans values was observed in synthetic

patient 1 in ImageJ/MRIcron, Madym, DCE-NET and PerfLab compared to

other submissions (Table A.2); these packages also achieved closer

quantification of the tumour region in synthetic patient 2.

3.4.2 Repeatability

In all submissions, %RC values for clinical patients test-retest visits were below

the 21.3% threshold (QIBA MR Biomarker Committee, 2020), suggested

currently by QIBA as an estimate of true change in assessment of glioblastoma

for studies with no repeatability measures. Therefore, with any of these

packages, in follow-up studies on treatment response assessment in

glioblastoma, any measured changes of Ktrans that exceed the reported %RC
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3. The OSIPI-DCE challenge

values (Table 3.5), can be attributed to treatment response with 95%

confidence. High repeatability of Ktrans is essential for longitudinal monitoring

of tumour’s response to treatment or its progression (Shukla-Dave et al., 2019),

as the reconstruction of the same conditions reliably could help show detection

of changes should the values deviate. Although high repeatability should not

come at the expense of sensitivity to actual changes, this balancing act is crucial

for longitudinal studies.

Some or all of the mean TM-ROI Ktrans values in the MRI-QAMPER,

ALICE, and FireVoxel submissions are outside the IQR of the TM-ROI

distribution, indicating heavy influence by voxels with outlier values. This may

be due to the choice of masks for analysis by these submissions, as some

methods are solely designed to return values within tumour regions. If outlier

thresholding was applied, these entries may have performed better on this

metric as the central IQR distributions appear much more consistent between

visits. In spite of this, the repeatability and %RC scores for MRI-QAMPER

and ALICE were not overly affected, although this may not hold if the methods

were applied to different datasets with more prevalent outliers.

Lower repeatability scores in FireVoxel, ROCKETSHIP, and

ImageJ/MRIcron tools may have been associated with their denoising routines

within the methodology. Application of this preprocessing step may have

influenced differences that have been reported between the visits, potentially

applying different amounts of denoising and affecting the resulting parameter

retrieval

3.4.3 Reproducibility

The evaluators were able to reproduce six entries with no or limited

interactions1 with the participants. For the remaining entries, interactions

consisted of concerns and issues of software malfunction or image processing

time. In three out of four teams that remained unreproduced, there were some

manual steps involved, namely fully manual (UW QBI lab and ALICE) or
1Limited interactions were defined as a small number of interactions on simple issues e.g.

resolution of installation problems.
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semi-automatic (OHSU) AIF selection.

Specifically, the evaluators encountered software malfunction for

ImageJ/MRIcron and OHSU, and incomplete software in UW QBI lab. Finally,

due to fitting several PK modelling strategies, long computational time (an

estimated ≈100 days) was an issue for the ALICE submission as the timeline

available to the evaluators was insufficient to reproduce the results.

Issues highlighted suggest the need for clear guidelines about the level of

detail in the SOPs that is required to allow the straightforward replication of

the methods for widespread use. SOPs may contain video tutorials walking

through each step, clarifying where the installation or runtime errors may stem

from. In addition, it would be helpful to combine all software modules into a

single executable file so that future users would download the entire software

package at once. Besides, it is necessary to minimise any manual decisions that

can vary across different operators for higher reproducibility. For example, the

software packages requiring manual interaction within the AIF present lower

reproducibility in this study, with ROCKETSHIP and FireVoxel receiving the

lowest reproducibility scores. In addition, the submissions with the highest

reproducibility scores (Madym, DCE-NET and PerfLab) used population- based

or fully-automatic AIF selection processes, thereby eliminating most user-

specific interactions.

In general, software packages should ideally be developed with community

distribution in mind using best practice guidelines (Wilson et al., 2017, 2014; van

Houdt et al., 2022), concerning usage guidance, documentation and issue logging.

To ensure this, testing with users equipped with a range of expertise and operating

systems as well as between institutes is essential. If a software package only runs

under a certain system requirements, it should be clearly mentioned in the SOP

so that the users can address this prior to installation. Then, the software may

be utilized regardless of the users depth of their experience in quantitative DCE-

MRI.
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3. The OSIPI-DCE challenge

3.4.4 Implication on Future Challenge Design

The design of the metric based on the mean Ktrans values could be biased towards

methods with outlier handling, suggesting a score using the median could be more

representative of the majority of values produced via these methods. The analysis

was rerun using the median Ktrans values but this did little to change the ranking

order; it caused the greatest improvement in accuracy scores from ALICE and

FireVoxel.

A second issue encountered was the encoding of NaN values. After

preliminary analysis of all submissions, it was discovered that FireVoxel

presented values of 1 × 1060 upon extraction with Nibabel package in Python

(Brett et al., 2020). After discussion with the authors of this submission, it

became clear these were intended to encode NaN values. Therefore, it was

decided that these values were treated as NaN and excluded from further

analysis. Prior to this correction FireVoxel produced substantially different

scores of 0.40, 0.54 and 0.56, for accuracy, repeatability, and reproducibility,

respectively demonstrating the importance of proper attention to NaN handling

in the challenge design. Inclusion of a specific section within the SOP outlining

the NaN handling processes is recommended to avoid this in future, to exclude

unphysical or missing values from score calculation. Particularly, masked zero

values would artificially lower the TM-ROI mean and may improve OSIPIgold

and %RC values.

Our synthetic data was produced using a single-voxel approach. While this

approach provides value in terms of benchmarking, giving an equal comparison

from known parameters to score the entries, for future work, the use of an

interacting voxel simulation would be beneficial (Hanson et al., 2018). This

approach would only have been of concern if the entries were hitting perfect

accuracy levels suggesting a bias created by the production method. Also,

values used for concentration-signal conversions may be beneficial to provide to

avoid systematic effects in Ktrans estimation. Additionally, r∗
2 has been shown

to vary,(Blockley et al., 2008) but was assumed constant for synthetic data

production due to short TE. An interesting extension of the modelling for

65



3.4 Discussion

future challenges would reduce such assumptions.

For future challenges, scoring should ideally include a reproducibility score

for all submitted entries. An alternative setup for reproducibility could be more

efficient; perhaps requiring submission of an independent reproduction along with

the entry method. However, this may be preventative in the number of received

submissions. A checklist for inclusion in the SOP could be of value including

a detailed summary of pipeline components, total run time and any licensing

requirements.

While our proposed scoring metric for assessment of accuracy measures the

bias of the submitted methods in estimating Ktrans reliably, as noted in the

results section, the voxelwise variability in Ktrans quantification may be averaged

out when calculating the TM-ROI mean. Future challenges may account for the

voxel-by-voxel differences (instead of TM-ROI mean) between the submitted and

ground-truth Ktrans values.

3.4.5 Study Limitations

The scope of the challenge is limited to Ktrans and does not necessarily present a

full report on the state of the tissue under study. In the case of the extended Tofts

model, parameters Ktrans, ve and vp (kep = Ktrans/ve) are required to report the

full state of the tissue by including the relative volumes of the compartments

within the model. The participants were asked to submit Ktrans values with no

requirement to fit any specific PK model, although the extended Tofts model was

almost universally applied in the submissions. In future challenges, definition of

a PK model to use and requiring submission of all parameter maps (Ktrans, vp,

kep) would allow for an improved analysis particularly focusing on co-variance of

model parameters. Additionally, requesting AIF details would be recommended

to compare the effect of AIF amplitude on variances in parameter estimation

between the different approaches. This has been shown to be a factor for Ktrans

estimation (Cheng, 2008) and would inform discussion on the influence of AIF

type on parameter accuracy.

The results of this study highlight the variability of pipeline choices in the
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3. The OSIPI-DCE challenge

submissions received. The presented results and discussions are not able to fully

untangle the relative impact of each methodology choice on the resulting Ktrans

values. To address this, future challenges should design methodology to

investigate specific pipeline choices. For example, a challenge might supply a

smaller data set but ask for several pipeline options.

In this challenge, no commercial software was submitted to the challenge,

which was unfortunate and may potentially reflect difficulties in the provision of

licenses for the evaluators. Even with the disclaimer that there was no

expectation of making code packages or software freely available beyond the

evaluators, potentially the open science aspect dissuaded interested parties from

the outset. Perhaps including this disclaimer in the advertisement could bring

in more commercial packages. Additionally, the risk of reputational damage is

speculated to be a factor for the lack of participation by commercial packages.

The monetary value of any participating software could be compromised by

poor performance against equivalent open-source or free software. Interested

parties are encouraged to analyse the OSIPI-DCE challenge data with any

commercial packages they hold licenses to enable benchmarking between all

software types.

In this study, variabilities in quantitating Ktrans using different tools were

reported. While the submitted tools were ranked using OSIPIgold and

OSIPIsilver, the OSIPI-DCE challenge did not aim to find the “best” tool for

analysis of DCE-MRI, rather to provide a platform for comparing the methods.

The submitted tools may not have been specifically designed and validated for

quantification of Ktrans in brain gliomas, or they may not have been tailored to

the design of the challenge or the specific scoring metrics used. Nevertheless,

the proposed OSIPIgold score remains beneficial as a benchmark. Other

research groups working on DCE-MRI analysis tools are encouraged to apply

their methods to our provided dataset and evaluate their results using our

scoring metrics.

These results raise concerns in relation to the accuracy and reproducibility

of some software packages, particularly in terms of the validity of their historic

application. There is a risk that erroneously fitted values may be present
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historically within the field. These may be referred to as literature values, or

used to inform choices in future research studies. External reproducibility of

modelling remains the gold standard for verification of prior methodologies, and

usage of pipelines with proven accuracy, repeatability and reproducibility

metrics is essential.

3.5 Conclusion

In conclusion, the OSIPI-DCE challenge highlighted the variability in Ktrans

quantification between submissions and how the choice of methods in analysis

pipelines affect Ktrans estimations. Further developments and consensus are

needed within the community to standardise pipeline selection in different

clinical settings to estimate Ktrans at a standard biomarker level. Some aspects

that can be improved were identified as: greater detail in description of analysis

methodology to enable dissemination of approaches beyond the immediate

developers, outlier handling, and the level of manual interactions as in the AIF

and brain tissue mask selection. Benchmarking efforts, such as the presented

challenge, aid translation of Ktrans from research to clinical application

(O’Connor et al., 2017). Moreover, as the field moves towards increasingly

complex PK and signal modelling, and application of deep learning to replace

model- based approaches, benchmarking the tools that produce reliable Ktrans

estimations can provide a base for comparison of other advanced markers. To

this end, the challenge data and assessment methodology will persist, providing

an ongoing benchmarking tool for software development and pipeline selection.
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Chapter 4

Review of Spatiotemporal

Analysis in Perfusion MRI

As illustrated in the preceding chapter (Chapter 3), analysis of perfusion MRI

via typical single voxel methods requires further benchmarking efforts. Further

work will help to unravel the causes behind differences observed between different

software packages. An avenue of growing interest is the application of more

complex models that better represent the underlying physiology of the system

being investigated. The application of compartmental modelling principles in a

spatiotemporal setting is considered in this thesis. Such modelling efforts have the

potential to provide a more accurate characterisation of parameters such as blood

flow velocity or perfusion. Additionally, improvement of fitting accuracy from

treatment as spatially interacting spaces could lead to enhanced reproducibility,

as methods with higher accuracy may provide more reproducible results.

In perfusion MRI, image voxels form a spatially organised network of

systems, all exchanging indicator with their immediate neighbours. Yet the

current paradigm for perfusion MRI analysis treats all voxels or

regions-of-interest as isolated systems supplied by a single global source. This

simplification not only leads to long-recognised systematic errors but also fails

to leverage the embedded spatial structure within the data.

Since the early 2000s, a variety of models and implementations have been

proposed to analyse systems with between-voxel interactions. In general, this

leads to large and connected numerical inverse problems that are intractable with

conventional computational methods. With recent advances in machine learning,

however, these approaches are becoming practically feasible, opening up the way
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4.1 Introduction

for a paradigm shift in the approach to perfusion MRI.

This chapter1 seeks to review the work in spatiotemporal modelling of

perfusion MRI using a coherent, harmonised nomenclature and notation, with

clear physical definitions and assumptions. The aim is to introduce clarity in

the state-of-the-art of this promising new approach to perfusion MRI, and help

to identify gaps of knowledge and priorities for future research.

4.1 Introduction

Perfusion MRI includes the subfields T1-weighted DCE-MRI (Khalifa et al.,

2014; Petralia et al., 2020), T ∗
2 -weighted DSC-MRI (Shiroishi et al., 2015;

Boxerman et al., 2020), and ASL (Alsop et al., 2015; van Osch et al., 2018;

Hernandez-Garcia et al., 2019). All three methods use an indicator or tracer2

which modifies the MRI signal in proportion to its concentration - either MR

indicators (DCE-MRI or DSC-MRI) or magnetically labelled water (ASL).

Rapid dynamic MRI is then used to track the spatiotemporal variations in

signal induced by the indicator. After deriving indicator concentration from the

measured signal changes, these methods then apply PK models to obtain maps

or ROI based measurements of perfusion parameters. This review discusses

advanced PK modelling and therefore applies to DCE-MRI, DSC-MRI and ASL

alike.

The conventional approach to PK modelling in perfusion MRI describes the

concentration in each voxel or ROI independently by a 1D (temporal) PK

model. Conceptually this builds on the fundamental assumption that each voxel

or ROI acts as an isolated system with a single, global inlet of indicator (Tofts

& Kermode, 1991; Tofts et al., 1999; Sourbron & Buckley, 2012, 2013; Petralia

et al., 2020). The concentration in the inlet is typically assumed to be known

and referred to as the AIF. This assumption effectively separates the problem of

modelling a single large 4D dataset into a large number of small and

1The work in this chapter has been accepted for publication as (Shalom et al., 2024a), this
is defined in ’Joint Publications’ on Page ii. The text has been edited to conform with UK
spelling conventions, and replaces a singular reference to ‘this paper’ with ‘this review’.

2Used in ASL.
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Figure 4.1: Timeline of contributions within the literature landscape leading towards
developing spatiotemporal TKs. The studies listed are grouped by the theme of the
work or model applied using distinct colours as indicated by the key.

independent 1D problems. This makes the analysis highly scalable,

parallelisable, and computationally efficient. On the other hand, the assumption

is obviously invalid and it has been known for over 20 years that this leads to

significant systematic errors (Calamante et al., 2000; Buckley, 2002; Calamante,

2013; Willats & Calamante, 2013; Hanson et al., 2018; Petralia et al., 2020).

In principle, the problem can be resolved by dropping the isolated-systems

assumption and modelling all voxels in the imaged volume as connected systems

that all exchange directly with their neighbors (Henkelman, 1990; Thacker

et al., 2003; Sourbron, 2014). Unfortunately, this approach presents significant

computational challenges that have so far proven insurmountable. Yet with the

increase in computational power and the advance of machine-learning (Raissi

et al., 2019, 2020), solutions are becoming practically feasible. New approaches

to spatiotemporal modelling of DCE-MRI are increasingly proposed, but

comparing methods and models between papers presents a significant challenge

due to differences in physical concepts, terminology and notations.

The aim of this review is to summarise all relevant developments on

spatiotemporal PK modelling of perfusion MRI data in a common framework.

This will establish a firm foundation for future developments, facilitate

identification of knowledge gaps, and lower the barrier for entry in the field for

new researchers.
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4.2 History and scope

The discussion about the foundations of perfusion MRI is as old as the field

itself. In 1990, Henkelman (1990) argued that the very definition of perfusion as

inflow per unit volume is not physically justifiable in an imaging setting because

fluid flow scales with area rather than volume. While undeniably true, these

objections were largely ignored until the early 2000’s when Thacker et al. (2003)

presented a technique for DCE-MRI that introduced the concept of cerebral blood

flow orientation in terms of spatial gradients in mean transit time. Similar ideas

were proposed by Christensen et al. (2008) in DSC-MRI using the gradient of

arterial delay times to derive information about the directionality and orientation

of perfusion. Within ASL, an experimental approach for measuring perfusion

orientation was proposed which involved labelling planes in different orientations

(Frank et al., 2008). From a different angle, the idea of spatial coherence between

neighbouring voxels has been exploited to estimate AIFs from tissue-level data by

a joint fitting of multiple voxels (Fluckiger et al., 2009; Jiřík et al., 2019, 2022).

While these ideas go some way to demonstrate the potential of using spatial

information in the analysis, they are limited by the lack of a clear underlying

theoretical framework that can be used to build models of spatiotemporal

indicator propagation. Since the early 2010’s increasing numbers of papers have

proposed concepts borrowed from continuum mechanics, computational fluid

dynamics (CFD) or porous media theory to build spatiotemporal generalisations

of classic 1D PK models. The earliest proposal dates back to Pellerin et al.

(2007) using a spatial model of intervoxel diffusion but retaining the concept of

a global AIF to model indicator delivery to the voxel through the vasculature.

A first step towards a more general formulation, albeit conceptually confused,

can be found in a self-published report from 2013 (Pautot, 2013).

In 2014 these ideas were placed on a more rigorous footing including also

multi-compartmental systems (Sourbron, 2014). One of the consequences is the

natural emergence of a formal definition of perfusion (F , in units of mL/min/mL)
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as the divergence of the arterial flow (fa, in units of mL/min/cm2):

F = −∇ · fa (4.1)

In words, this states that the perfusion of a piece of tissue is the part of the

arterial flow into the tissue that is converted into venous flow out of the tissue.

In particular, this does not include the contribution of blood vessels (arterial or

venous) that pass through the tissue without feeding its capillaries. This formal

definition therefore correctly formalises the true physiological notion of perfusion

as ‘feeding flow’ or ‘capillary flow’ into a given tissue. Moreover, since divergences

scale with volume, this fully resolves Henkelman’s original objection (Henkelman,

1990) to the conventional definition of tissue perfusion as inflow per unit volume.

The main barrier to a more widespread adoption of spatiotemporal models is

the computational challenges in applying these to the inverse problem of deriving

perfusion parameters from data. While the number of free parameters per voxel is

similar to standard 1D models, the voxels can no longer be solved independently.

Spatiotemporal models therefore present a single global inverse problem with, for

a typical 3D time series, millions of free parameters. And while the problem is

linear for the simplest 1-compartmental spatiotemporal models, it is non-linear

in the more general setting of multi-compartment models.

The scope of this review is therefore restricted to studies applying

spatiotemporal modelling to the inverse problem. This excludes a substantial

body of literature using spatiotemporal models as forward models to simulate

data. Often these papers aim to generate digital reference objects to investigate

and quantify the error caused by neglecting spatial coherence. An example is a

study by Barnes et al. (2014) investigating the impact of intra-voxel diffusion on

the accuracy of conventional DCE-MRI parameters. Another example is a

model of the circulation designed to determine the accuracy of conventional

perfusion analysis as a function of ROI size (Hanson et al., 2018). Incidentally,

the latter provides in-silico support for Henkelman’s objection, showing that the

classic definition of perfusion creates a dependence on voxel size, with increasing

bias for smaller voxels. Another application of CFD-type forward models is to

73



4.3 Model classification

help predict and understand drug delivery to tissues, informed by DCE-MRI

data (Steuperaert et al., 2019; Wu et al., 2020, 2021). Often these models are

multi-scale, coupling flow in large blood vessels to microvascular flow and

interstitial transport. This is part of a wider literature on multi-scale

computational modelling of the circulation and biological transport mechanisms

(Peyrounette et al., 2018). While these models may be informed by perfusion

MRI, they are out of scope for this review unless the models are used to fit the

spatial perfusion parameter fields from measured data.

4.3 Model classification

A timeline of the publications in scope for this review is shown in Figure 4.1.

Comparison of the model architectures described in these papers reveals 9 nested

spatiotemporal models of increasing complexity, illustrated in Figure 4.11 and

defined using harmonised notations in Table 4.1. These 9 nested models can

be classified as either one-, two- or three-compartment models depending on the

number of distinct compartments in each tissue voxel. Within each group they

can be further differentiated based on (1) the transport mechanisms described,

such as diffusion, convection, or exchange; (2) the compartment types such as

interstitial, arterial, or venous space; and (3) whether an external input function

is utilised.

The symbols and notations in this review have been modified from the

original publications and harmonised as shown in Table 4.1 following the

definitions in (Sourbron, 2014). The aim is to reveal the structural differences

and similarities between models more clearly. The total tissue concentration,

C(r⃗, t), is a directly measurable quantity and is defined as number of CA

molecules per volume of tissue (mmol/mL). If the tissue is built up of multiple

compartments, the contribution of a compartment γ to the tissue concentration

is given as Cγ(r⃗, t), and physically defined as the number of CA molecules in

the compartment γ, relative to the volume of the entire tissue (mmol/mL).

Examples are the tissue concentration in interstitium Ce(r⃗, t), plasma Cp(r⃗, t),

arteries Ca(r⃗, t) or veins Cv(r⃗, t). With this definition, the total tissue
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concentration C(r⃗, t) is always the direct sum of the concentrations in the

individual compartments. For instance, if a tissue is modelled as consisting of

plasma and interstitial compartments, the total tissue concentration is:

C(r⃗, t) = Cp(r⃗, t) + Ce(r⃗, t) (4.2)

The volume fractions do not appear in these equations because concentrations

are defined relative to the total tissue volume rather than the compartmental

volume. While the equations can be recast to an alternative picture involving

volume fractions, flows, and perfusion explicitly (see (Sourbron, 2014) for details),

this introduces additional free parameters that then have to be constrained by

adding new constraints. The total blood flow per unit surface area (f , in units

of mL/min/cm2) is defined from velocity (u, in units of cm/min) and volume

fraction (v, in units of mL/mL), by f = vu. As f is incompressible the systems

are constrained as:

∇ · f = v∇ · u + u · ∇v = 0 (4.3)

Using tissue concentrations up front simplifies the equations and numerical

challenges, and ensures the models are defined using the least number of free

parameters. After solving for the models in this picture, any missing markers

such as volume fraction, perfusion or blood flow can then be derived as described

in (Sourbron, 2014).

The indicator in a compartment γ is transported between voxels by velocity

fields, uγ(r⃗), and diffusion fields, Dγ(r⃗). Indicator exchange within a voxel

between compartments β and γ is denoted by rate constants Kγβ(r⃗), describing

exchange from β to γ. Some models have an AIF, cin(t), without a positional

coordinate r⃗, that represents a global vascular input.

The following sections provide a more detailed description of the 9 models

identified including numerical implementations, and important results. For

clarity, the models are detailed in order of increasing model complexity.
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4.4 One-compartment models

In one-compartment systems, the compartmental indicator concentration is

simply the tissue concentration and is therefore directly accessible through

measurement. The implications are that one-compartment models with

convection and diffusion can be recast as a first-order linear system of

equations. The majority of the work on inverse approaches for spatiotemporal

models has focused on one-compartment systems. These effectively describe the

voxel as a single compartment with a uniform concentration, and model the

exchange of indicator between voxels using diffusion and convection either

separately or concurrently. Beyond the precise type of contrast mechanisms,

these models differ in the physical compartment that is modelled (intravascular

or extravascular), or, equivalently, which tissue spaces are assumed to carry

negligible amounts of indicator.

An increasing body of evidence using forward models has demonstrated that

ignoring between-voxel interstitial exchange can lead to significant bias on

parameters such as Ktrans (Egeland et al., 2008, 2011; Cho et al., 2009; Egeland

et al., 2012; Barnes et al., 2014; Woodall et al., 2018). Initial developments in

spatiotemporal analysis of perfusion MRI therefore aimed to eliminate this bias

by modelling interstitial convection and diffusion. Additionally, the introduction

of interstitial convection enables the accurate representation of tumour regions

with significant interstitial fluid pressure gradients that drive detectable

advective transport (Boucher et al., 1990; Milosevic et al., 2001; Zachos et al.,

2001; Milosevic et al., 2014). Only more recently, attention has turned to

spatiotemporal models of vascular transport by convection and diffusion.

4.4.1 Interstitial diffusion

Pellerin et al. (2007) introduced a one-compartment model with interstitial

diffusion and a global vascular input function (Figure 4.4(a)). The model

introduces a new interstitial diffusion parameter, De, which acts to transport

CA through the interstitium between adjacent voxels. The model does not

incorporate vascular transport between voxels, instead retaining the assumption
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that CA is delivered to the voxel through a global AIF. Effectively the model,

therefore, extends the standard Tofts model(Tofts & Kermode, 1991; Tofts

et al., 1999) with between-voxel diffusion in the interstitial space. As in the

standard Tofts model it is assumed that the concentration in the plasma space

is negligible compared to that in the interstitial space, so the measured

concentration is made up of the interstitial concentration only (C = Ce).

Pellerin et al. (2007) reduce the computational challenge of the inverse

problem by considering a 2D system only, and assuming De everywhere is a

known parameter. All De values were fixed to a constant (in the simulations) or

spatially dependent but derived from a measured apparent diffusion coefficient

(ADC) of water (in data). Optimisation was implemented using a simulated

annealing algorithm (Aarts & Korst, 1989), a stochastic optimisation method

that improves parameter recovery in systems with local minima (Kirkpatrick

et al., 1983).

Experiments include a synthetic data set and 2D slices of mouse DCE-MRI

data. The synthetic data modelled 2D circular tumour with a highly perfused

rim and necrotic core. Ktrans was defined to be zero at the core so the only means

of CA transport in the core is via interstitial diffusion. The conventional Tofts

model produced unphysical ve > 1 in the necrotic core, underestimated Ktrans in

the rim, and overestimated it in the core. These biases disappear after adding

the interstitial diffusion terms, allowing a non-vascular transport pathway to the

tumour core.

In 2013 (Fluckiger et al., 2013), the same team reduced the computational

complexity of the model by assuming the differences in ve and the diffusion

coefficient between adjacent voxels are negligible. These assumptions decouple

the equations of individual voxels, allowing for a voxel-by-voxel analysis of the

data. This also implies that the interstitial diffusivity of the CA can be fitted as

a free parameter.

The result is a drastic reduction in computation time compared to the original

model from Pellerin et al. (2007): on the same reference object and using the same

optimisation method, computation time was reduced from 70hrs to 52s - almost

reaching the efficiency of standard Tofts modelling (11s). Unfortunately, the

77



4.4 One-compartment models

results also showed large spatial gradients in diffusivity and Ktrans, indicating that

the assumptions do not capture the true behaviour of the system. Additionally,

due to the voxel-wise fitting approach the control over global CA conservation is

eliminated. This drawback is recognised within the work (Fluckiger et al., 2013),

and it is proposed that future iterations of the method should seek to enforce

global mass conservation.

Also in 2013, Koh et al. (2013) proposed a one-compartment model with

interstitial diffusion (Figure 4.2(a)). This simplifies the model proposed by

Pellerin et al. (2007), by removing CA delivery through a global input followed

by extravasation. As such, between-voxel diffusion remains the sole mechanism

for indicator transport through the system. The model equations can in

principle be solved directly for the diffusion coefficient by dividing the

time-derivative of the concentration by its Laplacian. Experiments for this

method (Koh et al., 2013) included 14 sets of 3D mice xenograft DCE-MRI data

of varying cancer types. In practice, stability in the presence of noisy data was

improved by clustering voxels with similar contrast-enhancement patterns, and

solving for a single diffusion coefficient in each cluster. While this approach is

obviously limited by the strong assumption of diffusion-only transport, it

presents an elegant solution for areas such as homogeneous necrotic tumour

cores where these assumptions are justified.

4.4.2 Interstitial convection and diffusion

In 2019, Elkin et al. (2019) introduced a one-compartment model with interstitial

convection and diffusion (Figure 4.3(a)). The model applies interstitial diffusion

and convection parameters to distribute CA through the interstitium between

adjoining voxels. A global vascular input is not included in the model, effectively

assuming that all transport between voxels takes place via the interstitium.

Elkin et al. (2019) reduce the scale of the inverse problem by asserting the

CA mass density can be written as a function of velocity. For optimisation, an

operator splitting method followed by a Gauss-Newton minimisation is applied

(Steklova & Haber, 2017). Uniquely, a forward flux is defined as the average
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C

E F

G H I

D

BA

Figure 4.11: Diagrams of the 9 spatiotemporal models proposed in the literature
(model equations are given in Table 4.1). Each model is illustrated for a central voxel
and 4 neighbors, with interstitial (green) and/or vascular compartments (red for arterial
or total blood compartments, and blue for venous). Solid coloured lines and double-
ended arrows show between-voxel transport by convection and diffusion, respectively,
within a given compartment. Black arrows show within-voxel exchange between
different compartments. Shown are (A) A one-compartment system with interstitial
diffusion; (B) A one-compartment system with interstitial convection and diffusion; (C)
A one-compartment system with interstitial diffusion and a vascular input; (D) A one-
compartment system with interstitial convection and diffusion and a vascular input; (E)
A one-compartment system with vascular convection; (F) A one-compartment system
with vascular convection and diffusion; (G) A two-compartment system with vascular
convection, interstitial convection and diffusion with bidirectional exchange; (H) A
two-compartment system with vascular convection and mono-directional exchange;
(I) A three-compartment system with interstitial convection and diffusion, vascular
convection, and directional exchange.
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velocity magnitude over an initial time period and a backward flux for the

remaining time interval.

Experiments included 10 sets of 3D head and neck squamous cell carcinoma

patient DCE-MRI data. While both the standard Tofts model Ktrans parameter

and proposed forward flux follow similar trends, abrupt changes between

neighbouring slices and voxel are present in the Ktrans maps. Accounting for

between voxel transport helped maintain the integrity of the forward flux

estimations in the same regions.

Recently, Sinno et al. (2021) explored parameter recovery in tumour regions

using a one-compartment system with interstitial convection and diffusion with

a global vascular input. This model is an extension of the standard Tofts model

with additional diffusion and convection terms for CA transport through the

interstitium between neighbouring voxels (Figure 4.5(a)). For vascular input,

the model applies an AIF-based approach. It, therefore, extends the approach

proposed by Pellerin et al. (2007) with interstitial convection, or generalises the

model in Elkin et al. (2019) with a global AIF.

Sinno et al. (2021) reduce the complexity of the inverse problem by assuming

radial symmetry, fitting 1D ROIs extending from the tumour centre. Within each

ROI diffusion is further assumed to be constant. The optimisation approach is

largely standard, applying a MATLAB ® nonlinear solver.

Experiments detail a set of 2D synthetic radially symmetric tumour models

(Sinno et al., 2021), and a set of 2D human cervical carcinoma xenograft

DCE-MRI data (Sinno et al., 2022). Their results highlighted a successful

differentiation of increased tumour periphery velocities along with considerable

diffusivity at the tumour core. Due to assumed symmetry, indicator flow is

restricted to along the radial direction only. Within the xenograft study ve is

assumed constant, in contrast to their synthetic study where it was a free

parameter. A sensitivity analysis showed no evidence of an impact on transport

parameter fits for a fixed ve between 0.5 and 1. However, for smaller fixed ve the

results became significantly different. As such, the validity of fixing ve is highly

dependent on the influence it exerts on its co-variant parameters.
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4.4.3 Vascular convection

Several studies from a group at Cornell have developed a one-compartment model

with vascular convection (Zhou et al., 2021; Zhang et al., 2023). The model

introduces a spatially variable velocity coefficient, up, which acts to transport

CA through the vascular space between adjacent voxels (Figure 4.6(a)). Any

diffusive transport between voxels is neglected due to the large magnitude of

blood velocity.

For the inverse problem, this group (Zhou et al., 2021; Zhang et al., 2023)

uses least-squares optimisation on the concentrations to fit for up in each voxel.

Specifically, an alternating direction method of multipliers with a conjugate

gradient algorithm is applied. A regularisation term based on the velocity

gradient is employed, acting to enforce smoothness in the recovered velocity

field.

Experiments comprise 3D synthetic data sets and 3D clinical data covering

varied physiologies such as liver (Zhang et al., 2023) and kidney (Zhou et al.,

2021). For synthetic data production, a 1D non-linear network of cylindrical

models - solved using Poiseuille’s law - are employed to represent the 3D

microvascular network. To compare against the ground truth the convection

and Navier-Stokes velocities are assumed to be equivalent.

For the synthetic data sets in Zhou et al. (2021) the introduced method

achieved a smaller up error than the Kety’s method blood flow when compared

with the ground truth up values. While these approaches are clearly limited by

an assumption of convection-only transport, for intravascular indicators or

highly vascularised well-mixed systems this may well be justified.

4.4.4 Vascular convection and diffusion

The Cornell group, applying a similar inverse approach (Zhou et al., 2021; Zhang

et al., 2023), developed their method to include diffusive transport (Zhang et al.,

2022). Experiments include 3D clinical breast DCE-MRI data, where Zhang et al.

(2022) reported a more statistically significant distinction between malignant and

benign breast tumours in up than Ktrans from the Tofts model.
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Sourbron (2015) introduced a one-compartment model with both vascular

convection and diffusion (Figure 4.7(a)). The inclusion of vascular diffusion

increases the number of free parameters per voxel compared to convection

alone, but actually simplifies the numerical problem by allowing for

bi-directional exchange at every voxel interface.

With this generalisation, the inverse problem becomes linear and can be solved

with standard matrix inversion methods. The unknowns of the discrete inverse

system are rate constants at each voxel surface, which represent a combination of

the diffusive and convective transport parameters. After solving the linear system

for these rate constants, the results can then be converted back to convection and

diffusion fields.

Experiments include a 2D synthetic data test case with a population AIF at

selected boundary voxels, and the transport equations are solved by forward

propagation of the linear system. Results showed that while the concentrations

were reconstructed accurately from the data, the fitted parameter maps showed

a deviation from the ground truth. These results indicate that the inverse

problem in spatiotemporal modelling of DCE-MRI is not in general well-posed

and multiple possible solutions exist that are compatible with the data.

Strategies to resolving the degeneracy include refining the experimental

conditions (e.g. faster injections or sampling), and/or adding regularising

constraints to select solutions with particular properties.

Within the DSC community, Liu et al. (2021a) also propose a

one-compartment model with both vascular convection and diffusion

(Figure 4.7(a)). The model introduces spatially variable velocity and diffusion

coefficients, up and Dp, respectively, which act to transport CA through the

vascular space between adjacent voxels.

To reduce the complexity of the estimation Liu et al. (2021a) assume up is

incompressible. In consequence, this effectively constrains the system to have

a constant volume fraction (Equation 4.3). For the inverse problem, Liu et al.

(2021a) use a stochastic gradient descent method to minimise the mean square

error between the model and measurement concentration. Regularisation terms

based on gradients in diffusion and velocity are employed to enforce smoothness
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in recovered transport parameter fields. Their approach returns 3D maps of up

and Dp.

Experiments consist of 2 synthetic and 43 human stroke lesion DSC-MRI data

sets, both in 3D. Their synthetic data sets comprise of (1) purely convective and

(2) purely diffusive transport, with various noise levels. The ground truth maps

used for up are derived using the inverse technique on a brain DSC-MRI data set,

while Dp are derived from ADC values.

Their synthetic investigations report a low error recovery of up and Dp that is

robust to noise level increase. Within the stroke lesion study, Liu et al. (2021a)

consistently report lower velocity and diffusion values within lesion regions than

normal regions. Additionally, their feature maps report a similar or improved

interpretation of the stoke lesions when compared to standard perfusion maps.

The same group utilise partially supervised Convolutional Neural Networks

(CNNs) fitting the same system type (Figure 4.7(a)) to decrease computational

time (Liu et al., 2021b, 2022). These methods (Liu et al., 2021b, 2022) also apply

velocity incompressibility and parameter regularisation as in the original study

(Liu et al., 2021a). Across 10 of the same ischemic stroke data sets the new CNN-

based methodology showed greater distinction between lesion and normal regions

than their previous work (Liu et al., 2021a) or standard perfusion metrics.

4.5 Multi-compartmental models

While one-compartment models have some practical utility, it is well-known

that most tissues require at least two compartments for an accurate description

of their indicator concentrations. For instance, the assumption that intra- and

extravascular spaces are well-mixed, is in general not justified. Unfortunately,

moving from one-compartment to multi-compartment spatiotemporal models

comes with a step change in computational complexity.

In a multi-compartment setting, the concentrations in the individual

compartments are hidden and only the total concentration is directly accessible

to measurement (Equation 4.2). Hence the multi-compartment spatiotemporal

model inherently requires solving a non-linear system with hidden variables, or
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a linear system of higher order.

The literature is extremely sparse. Most spatiotemporal equivalents of

standard multi-compartment models only exist as theoretical proposals, or still

rely on a global temporal input function, which does not model between-voxel

transport in the vasculature.

4.5.1 Interstitial diffusion and vascular input

Sainz-DeMena et al. (2022) report a two-compartment system with interstitial

diffusion and a vascular input. This model applies a diffusion coefficient, D,

which acts on the total tissue concentration. The vascular component is a non-

negligible plasma space vp with spatial variation and supplied by a global AIF.

Sainz-DeMena et al. (2022) reduce the computational complexity of the inverse

problem by considering 2D systems only, and assuming D everywhere is a constant

known parameter. Minimisation was implemented using a Trust Region Reflective

algorithm, which handles sparse matrices efficiently.

Experiments include the 2D circular synthetic tumour previously proposed

(Pellerin et al., 2007; Fluckiger et al., 2013) and a 2D heterogeneous synthetic

tumour with various noise levels. The proposed diffusion term enabled the method

to consistently outperform the extended Tofts model for parameter accuracy in

noise-free scenarios. For systems with low measurement noise, the method showed

significantly reduced fitting accuracy, particularly for vp, compared to the relative

stability of the extended Tofts model.

4.5.2 Vascular convection with exchange

Naevdal et al. (2016) implemented a two-compartment system defined by

Sourbron (2014), modelling blood flow in arterial- and venous compartments

and mono-directional transport from arteries to veins by perfusion. Their

implementation employs a Darcy flow approach to define the arterial and

venous velocities, with the intravoxel exchange from artery to vein mediated by

a porous capillary space. Darcy flow is commonly used in porous media to

describe pressure-driven fluid flow. (Whitaker, 1986). To relate this model to
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biology, porosity and permeability are interpreted in terms of compartmental

volume fractions and the transport between compartments.

Concerning the inversion problem, Naevdal et al. (2016) decrease the

computational complexity by applying a priori knowledge of either the

permeabilities or porosity values to reduce the number of free parameters. For

optimisation, an Ensemble Kalman filtering method is applied, a popular

method for parameter estimation in geoscience (Iglesias et al., 2013).

Experiments included two synthetic 2D systems. The proposed method was

applied for 2 separate investigations, either using known porosity values, or

known permeability values. While the accuracy of the recovered porosity and

permeability values are encouraging, the special cases presented apply very

specific assumptions that would be inaccessible from a clinical DCE-MRI data

set.

4.5.3 Three-compartment models

A theoretical three-compartment system has been proposed(Sourbron, 2014)

characterised by separate arterial and venous compartments with convective

transport and an interstitial compartment with both convective and diffusive

transport. These compartments interact with a mono-directional exchange from

artery to vein or interstitium and interstitium to vein (Figure 4.10(a)), following

the picture of microvascular exchange involving extravasation at arterial ends of

capillaries and reabsorption at venous ends. All the previously presented lower

complexity compartment models are special cases of this general description. To

the best of the authors’ knowledge, there currently exists no implementation of

a three-compartment system.

4.6 Discussion

This review has presented 9 nested compartmental approaches that currently

exist within the community. Of these 9 models, 7 have existing numerical

implementations to recover between-voxel transport coefficients, covering
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systems from pure interstitial diffusion to dual vascular convection with

exchange. The presented approaches differ in complexity and applied

assumptions, but all seek to extract spatial information that is inaccessible to

single voxel modelling.

While all approaches build in methods of transport between voxels, either by

diffusion and/or convection, some still assume a global vascular input to supply

each voxel (Pellerin et al., 2007; Fluckiger et al., 2013; Sinno et al., 2021, 2022).

While convenient, this in some sense bypasses the key challenge of modelling

transport to a voxel via exchange with neighbouring voxels. Most recent work

therefore has focused on removing the assumption of a global source (Koh et al.,

2013; Sourbron, 2015; Zhang et al., 2022, 2023). Looking forwards, the further

development of methods that do not require a global input is critical to achieve

realistic models of indicator propagation across larger distances.

A prevailing problem limiting progression within this topic, is the

availability of software implementations from previous studies. To the best of

the authors’ knowledge, there are no freely available software implementations

for any of the presented methods. Consequently, in order to apply or develop

any of the previously implemented approaches, researchers are faced with the

major challenge of replicating the synthetic data and inversion methodology.

Such re-implementation is a significant time investment and acts as a barrier to

the future development of otherwise promising methodologies. Moving forwards,

increased efforts to publish algorithm and software details via open-source

sharing platforms such as GitHub would be invaluable. Not only will open

science enable fast external implementation of existing methods but it can also

help boost citations and collaboration opportunities (McKiernan et al., 2016).

In recent years, there has been increased focus on open science within the

perfusion imaging community via the forming of the International Society for

Magnetic Resonance in Medicine Open Science Initiative for Perfusion Imaging

(ISMRM-OSIPI) an initiative and activity of the ISMRM Perfusion study group

(OSIPI, 2023). Contributions from OSIPI and related projects cover challenges,

code libraries (van Houdt et al., 2023), standardised data formats (Clement

et al., 2022), and recommended lexicon naming conventions for DCE, DSC and
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ASL (Dickie et al., 2023; OSIPI Taskforce 4.1, 2023). Application of these and

other software development guidelines (Wilson et al., 2014, 2017; Hunter-Zinck

et al., 2021) to new contributions within the field will help to accelerate the

pace of progression.

Another major hurdle to the development of useful spatiotemporal TKs

modelling is the runtime of newly developed methods. Moving from single voxel

modelling where each voxel may be fit independently, to a scenario where all

voxels must be concurrently fit requires increased computational power. Some

of the newly developed techniques apply assumptions within their models to

reduce the number of free parameters per voxels, to reduce the computational

requirement. While a useful exercise, new developments should focus on a

reduction of physically inaccessible assumptions. Presenting an overview of

computational runtimes for the implementations discussed in this review is not

feasible without replicating the studies: apart from two studies (Pellerin et al.,

2007; Fluckiger et al., 2013) reported runtimes are unavailable.

Spatiotemporal TK analysis would benefit from a fully generalised method

for parameter reconstruction of any specified compartment model from tissue

concentration data. Going forward, research in the field should focus on the

development of methods that tackle the multi-compartment inversion problem

from small in-silico test systems up to 4D in-vivo data sets. This development

to increasingly complex systems will incur a heavy computational load. For

example, a fully spatial model with just two compartments has up to 5 free

parameters to fit per voxel - compartmental convection and diffusion coefficients

and an inter-compartment exchange term. Such a high number of target

parameters alongside a large volume of data appears to lend itself to machine

learning approaches, such as the CNN methods proposed (Liu et al., 2021b,

2022). A relatively new branch of the machine learning field is PINNs (Raissi

et al., 2019; Sharma et al., 2023), which incorporate the underlying system

physics within the loss function to avoid unphysical solutions. The most

applicable advance from the PINNs field is a method developed to identify

parameters of the Navier-Stokes equations from concentration-time data (Raissi

et al., 2020). A promising future direction for this work would be the
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adjustment of the PINNs network architecture to handle compartmental

structures and TKs equations. Such a network would need to output the

compartmental concentrations alongside relevant transport coefficients. To

construct the physics-informed aspect of the network, governing equations

would be specified (e.g. any system in Table 4.1) and used to form residual

equations. Appropriate steps for non-dimensionalisation would be required,

alongside suitable activation functions and weighting schemes (Jagtap et al.,

2020; Wang et al., 2020). Due to the PINNs layout, modification of the output

fields and system dimensions should be relatively straightforward, thereby

creating a general inversion framework.

On a fundamental theoretical level, the spatiotemporal field currently lacks

some broader understanding of the uniqueness of solutions, and to what extent

this is affected by experimental conditions. This has been identified as a problem

in several studies (Sourbron, 2015; Sinno et al., 2021), and is pivotal to the

future development of inversion methods. Especially in multi-compartmental

systems, proof of unique solutions would increase confidence in results where

recovered parameters show good agreement with concentration data. The extent

to which an AIF is recoverable from the available measurement data, or whether

it needs to be separately measured, is of particular interest. Additionally, further

investigation into the dependence of uniqueness on experimental design is needed

to reliably define solvable systems and conditions. Similar work on system design

in standard perfusion quantification demonstrates that solutions degenerate if

the indicator is not injected rapidly, or if sampling is too slow or too limited in

duration (van Osch et al., 2003; Klawer et al., 2018). It is likely that similar

limitations are valid for spatiotemporal models, but no data currently exists to

guide experimental design.

4.7 Conclusions

Nine nested model architectures for vascular-interstitial tissues have been

identified, although two of those have only been described theoretically. The

most complex model currently implemented is a spatiotemporal
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two-compartment exchange model. While these developments show promise,

there exist unmet needs for model assumptions that apply to real-world

problems and for robust computational approaches to the inverse problem.
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Chapter 5

Identifiability of Spatiotemporal

Tissue Perfusion Models

Over the last decade, there has been building interest in new methods for fitting

spatiotemporal TK parameters DCE-MRI data to replace typical single-voxel

approaches. The previous chapter (Chapter 4) summarises contributions and

advances made within the spatiotemporal field. This overview identifies several

gaps within the research landscape, mainly the need for inverse methods focused

on two-compartment systems. This chapter presents a proof of concept for

fitting the kinetics of 1D spatial systems with one and two compartments,

without assuming a measured AIF.

For each of the two models, identifiability is explored theoretically and in-silico

for three systems. Concentrations over space and time are simulated by forward

propagation. Different levels of noise and temporal undersampling are added to

investigate sensitivity to measurement error. Model parameters are fitted using a

standard gradient descent algorithm, applied iteratively with a stepwise increasing

time window. Model fitting is repeated with different choices for the initial values

to probe uniqueness of the solution. Reconstruction accuracy is quantified for

each parameter by comparison to the ground truth. This chapter1 reports positive

outcomes in recovering arterial inputs and compartmental parameters.

1The work in this chapter has been published (Shalom et al., 2024c), this is defined in ‘Joint
Publications’ with contribution details on Page ii. Figures from the Supporting Information
are included in the main thesis text.

91



5.1 Introduction

5.1 Introduction

Conventional PK modelling of perfusion imaging typically quantifies indicator

transport parameters using an isolated single-voxel approach. Although these

methods are highly scalable and computationally efficient, they suffer from the

fundamental assumption that each voxel acts as an isolated system with a known

global inlet concentration - the AIF. This approximation leads to significant model

errors which increase with spatial resolution (Buckley, 2002; Calamante, 2013;

Willats & Calamante, 2013; Hanson et al., 2018).

In theory, this bias can be removed by the use of spatiotemporal PK models

(Sourbron, 2014). Implementations of this approach have mainly focused on one-

compartment models with transport by diffusion (Koh et al., 2013), convection

(Zhou et al., 2021; Zhang et al., 2022, 2023), or both (Elkin et al., 2019; Sourbron,

2015). Hybrid approaches have also been proposed, coupling a one-compartment

spatiotemporal model for interstitial transport with vascular delivery modelled

by a single, global AIF (Pellerin et al., 2007; Fluckiger et al., 2013; Sinno et al.,

2021, 2022; Sainz-DeMena et al., 2022). Experience with fully spatiotemporal

two-compartment systems is extremely limited (Naevdal et al., 2016).

All the above implementations apply additional constraints on the

reconstructed model parameters, for instance an assumption that diffusion is

constant in space (Pellerin et al., 2007), that the diffusion gradient between

adjacent voxels is negligible (Fluckiger et al., 2013), that parameter fields have

small spatial gradients (Zhou et al., 2021; Zhang et al., 2022, 2023; Liu et al.,

2021a), that transport is only radial in a lesion (Sinno et al., 2021, 2022), that

perfusion is modelled by Darcy flow Naevdal et al. (2016), or that parameter

fields are in a known relationship to each other Naevdal et al. (2016).

Constraints of this type are included to reduce the computational complexity,

but it is not always clear that they are physically justified, creating a risk of

new biases. For instance, it has been suggested that Darcy flow (Whitaker,

1986) cannot capture the complete physiology of the capillary bed without

further modification (Peyrounette et al., 2018).

Previous studies did not investigate whether such additional constraints, and
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the biases they produce, are actually necessary. A simple parameter-counting

exercise suggest they might not be: a 3D spatiotemporal model is massively

overdetermined, with the data points vastly outnumbering the unknowns. The

aim of this chapter, therefore, was to investigate whether unconstrained

spatiotemporal PK models are fundamentally identifiable. The study addresses

the question in 1D toy models for intravascular indicator where solutions can be

generated efficiently with simple optimisation routines.

5.2 Methodology

The question of identifiability is investigated for two nested models of increasing

complexity: a one-compartment convective blood flow model, and a

two-compartment perfusion model with convective blood transport Sourbron

(2014). The perfusion model was selected as it presents challenging conditions

for model fitting due to the relative similarity between the two compartments

(arterial- and venous).

The whole pipeline from forward modelling to inversion method is contained

within the tkspace python package (Shalom, 2023). This is available in a GitHub

repository1 containing example scripts used to produce data detailed in this paper

and general usage information.

5.2.1 Theory

One-compartment blood flow model

The one compartment blood flow model is defined by the transport equation

v(x⃗)∂c

∂t
(x⃗, t) = −∇⃗ · f⃗(x⃗)c(x⃗, t) (5.1)

Here 0 < v < 1 (dimensionless) is the blood volume fraction, and f⃗ in units of

mL/min/cm2 is the flow of blood (mL/min) through a unit tissue area (cm2).

The local tissue concentration c (mmol/mL) measures the amount of CA (mmol)

110.5281/zenodo.10056112 or https://github.com/EShalom/tkspace
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per mL of blood, and is not directly measurable. Rather, what is measured in

MRI is the tissue concentration C (mmol/mL), or the amount of CA per mL of

tissue:

C(x⃗, t) = v(x⃗)c(x⃗, t) (5.2)

It is assumed throughout that blood and tissue are incompressible, so that f⃗ is

divergence free:

∇⃗ · f⃗(x⃗) = 0 (5.3)

This model therefore has 3 free parameters per interior voxel, with 4 scalar

fields (v, f⃗), and one degree of freedom removed by the flow incompressibility.

Expressing the transport equation in terms of the tissue concentration shows

this more explicitly:
∂C

∂t
= −∇⃗ · u⃗C (5.4)

Here the blood velocity u⃗ = f⃗/v is introduced, which represents 3 degrees of

freedom and is not divergence-free unless the blood volume fraction v is constant.

Without further constraints, the solution for (v, f⃗) can only be determined up

to a constant: if (v, f⃗) solve the transport equations, then (αv, αf⃗) are solutions

too, for any constant α. Therefore an additional constraint is needed to pin down

the values unambiguously, for instance by assuming the volume fraction in one

particular reference location is known. One approach could be to ensure that

the spatial resolution is sufficiently high so that some voxels can be found which

lie entirely inside a venous vessel. If these voxels are at location x⃗0, one can

safely assume that v(x⃗0) = 1. Alternatively, if the velocity u⃗ provides sufficient

information for the particular application, and volumes or blood flows are not

required, the model can be solved in the tissue concentration picture directly

(Eq. 5.4).

Two-compartment perfusion model

The two-compartment perfusion model involves an arterial (a) and venous (v)

blood compartment, with mono-directional exchange from a to v by a perfusion

field F (x⃗). Dropping coordinates from the definitions from here on for simplicity,
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the system is defined by:

va ∂ca

∂t
= −∇⃗ · f⃗aca − Fca (5.5)

vv ∂cv

∂t
= −∇⃗ · f⃗ vcv + Fca (5.6)

Where superscript indicates compartmental transport coefficients,

concentrations, and volume fractions. The total volume fraction in these

systems is constrained as 0 ≤ va + vv ≤ 1. Since the total blood flow is

incompressible, this results in:

∇⃗ · (f⃗a + f⃗ v) = 0 (5.7)

Incompressibility of blood in the arterial compartment entails that the perfusion

field (F ) can be derived from the arterial flow (fa):

F = −∇⃗ · f⃗a (5.8)

The model has 7 free parameters per interior voxel: 8 scalar fields (va, f⃗a; vv, f⃗ v),

with one degree of freedom again removed via the flow incompressibility. The

measurable quantity is the total tissue concentration:

C = vaca + vvcv (5.9)

The transport equations can be written in terms if the tissue concentrations

Ca = vaca and Cv = vvcv by defining arterial- and venous velocities u⃗a = f⃗a/va

and u⃗v = f⃗ v/vv and the perfusion rate constant Kva = F/va:

∂Ca

∂t
= −∇⃗ · u⃗aCa − KvaCa (5.10)

∂Cv

∂t
= −∇⃗ · u⃗vCv + KvaCa (5.11)

This representation expresses the models directly in terms of 7 unconstrained

scalar fields. As for the one-compartment case, the volumes and flows are only
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Figure 5.1: Illustration of the discretised compartment models. (A) A one-
compartment blood flow model, showing a system with a positive flow direction (left-
to-right). (B) A two-compartment perfusion model with arterial influxes and venous
outfluxes at either end.

determined up to a constant: if (va, f⃗a) and (vb, f⃗ b) solve the equations, then

(αva, αf⃗a) and (αvb, αf⃗ b) are solutions too, for any constant α. As before, the

solution can be pinned down by adding a constraint such as vv(x⃗0) = 1 for some

suitably chosen location x⃗0 in a large venous vessel.

5.2.2 Discrete one-dimensions systems

Since the delivery of nutrients to tissue is a function of blood flow rather than

blood velocity, clinical utility most likely hinges on the ability to measure flow.

Hence all systems are simulated using the (v, f⃗) representation. In order to

apply the spatiotemporal compartment models to a system of N voxels measured

at K time points, an upwind discretisation is applied in space and first-order

discretisation in time. The result is illustrated in figure 5.1.

One-compartment blood flow model

After discretisation, the one-compartment spatiotemporal model reduces to an

N-compartment temporal model Sourbron (2014):

ci(t + ∆t) = ci(t) + ∆t

vi

{ki,i−1ci−1(t) + ki,i+1ci+1(t) − kici(t)} (5.12)
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Where ∆t denotes the timestep, and quantities ci(t) and vi defined at the voxel

centre. The rate constants kij from j to i are positive and defined by:

ki,i−1 =


fi

∆x
, fi > 0

0, fi ≤ 0
ki−1,i =


0, fi ≥ 0
−fi

∆x
, fi < 0

(5.13)

Here the flow fi is defined at the left interface of voxel i, and ki = ki−1,i + ki+1,i.

Additional free parameters to the model are the concentrations c0(t) and cN+1(t)

at the left and right boundary of the system, respectively. System influxes (J+(t)

and J−(t)) are defined using these boundary concentrations (c0(t) and cN+1(t))

with the corresponding rate constants. In a 1D scenario, the incompressibility of

flow implies that it is constant: fi = f . Hence the 1D one-compartment model

is fully defined by the 1 + N quantities (f, vi). For numerical stability, the time

step ∆t must be chosen to be smaller than the smallest voxel mean transit time:

∆t < min
i

{
vi

ki

}
(5.14)

Two-compartment perfusion model

After discretisation, the two-compartment spatiotemporal model becomes a

system of 2N temporal compartments:

ca
i (t + ∆t) = ca

i (t) + ∆t

va
i

{
ka

i,i−1c
a
i−1(t) + ka

i,i+1c
a
i+1(t) − (ka

i + Fi)ca
i (t)

}
(5.15)

cv
i (t + ∆t) = cv

i (t) + ∆t

vv
i

{
kv

i,i−1c
v
i−1(t) + kv

i,i+1c
v
i+1(t) − kv

i cv
i (t) + Fic

a
i (t)

}
(5.16)

Additional free parameters to the model are the arterial- and venous

concentrations ca
0(t), cv

0(t) and ca
N+1(t), cv

N+1(t) at the left and right boundary of

the system, respectively. System influxes (Ja
+(t) and Ja

−(t)) are defined using the

arterial boundary concentrations (ca
0(t) and ca

N+1(t)) with the corresponding

rate constants. In 1D systems, the incompressibility of the flow implies that the

total flow is constant (fa
i + f v

i = f) and that the arterial flow at the right

97



5.2 Methodology

boundary of a voxel is that at the left boundary minus the loss by perfusion:

fa
i+1 = fa

i − Fi∆x (5.17)

This implies that the arterial flow at any boundary i is fully defined by the field

Fi and the arterial flow fa
0 at the left boundary. For given total flow f the venous

flow is then also determined everywhere (f v
i = f − fa

i ). Hence in the flow picture

the discrete system is fully defined by the 3N + 2 quantities (va
i , vv

i , Fi, fa
0 , f v

0 ).

For numerical stability, the time step must be smaller than the smallest voxel

mean transit time:

∆t < min
i

{
va

i

ka
i + Fi

,
vv

i

kv
i

}
(5.18)

5.2.3 Parameter reconstruction

The measured data consist of a 2D tissue concentration matrix Cmeas
ik with one

value for each voxel i and each time point k. For given values of the discrete

model parameters (volume fractions, flows and boundary concentrations), a

predicted concentration Cpred
ik is generated by iterating the discrete equations

(5.12 or 5.15, 5.16) with a time step ∆t satisfying Eqs. (6.17, 5.18). The

resulting concentrations at high temporal resolution are then downsampled to

the measured temporal resolution and scaled with the volume fractions (Eq. 5.2

or 5.9).

Optimal values for the model parameters are determined by minimising the

root-mean-square difference between Cmeas
ik and Cpred

ik . The initial guesses for

the total volume fraction (v) and the boundary concentrations are estimated

from the data. The unknown boundary concentrations are estimated from the

concentrations at the voxel nearest to the boundary. The volume fraction, up to

a scaling constant, is estimated from the concentration at the last time point.

Assuming state-state has been reach at this time, tissue concentrations are

directly proportional to v.

The optimisation is performed iteratively over time: parameters are first

optimised using only data up to an initial time t0 - chosen to be after the initial

peak of concentration has entered the system; subsequently the next time point
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is added and the parameters are optimised again, using the solutions from the

previous step as initial values. This process is repeated until all time points are

added.

The optimisation for each time step is performed by a second-order gradient

descent, after normalising the parameters to dimensionless quantities in the range

[0, 1]. For parameter values at the lower or upper bounds, a first-order method is

applied. For flow values close to zero, the gradient is evaluated at zero. For a given

gradient, the parameters are updated using an Adams update based linesearch

(Kingma & Ba, 2015). In this Adams update based approach, the moving averages

of gradient and squared gradient are used to guide the optimisation. The resulting

update is scaled to restrict parameter updates crossing zero.

The algorithm is implemented in python and can be found on GitHub.1

5.2.4 Simulations

The parameter reconstruction was evaluated for the one-compartment blood flow

model and the two-compartment perfusion model. For each model, three digital

reference objects were evaluated, detailed in Table 5.1 and Table 5.2. Models

have total spatial dimensions of 25.6cm with ∆x=0.8cm, evolved to a total time

of 80s. Uniqueness and sensitivity of the solution were estimated by repeating the

reconstruction with different initial guesses, noise levels and levels of temporal

undersampling. Reconstruction accuracy was measured for each parameter field

P by the difference between reconstruction (Prec) and ground truth (Pgt) as a

percentage the mean absolute parameter value:

Erel(P ) =
∣∣∣∣∣Prec − Pgt

µ(|Pgt|)

∣∣∣∣∣× 100. (5.19)

For comparison, the mean and standard deviation of the resulting Erel(P )

distributions are reported denoted by Ērel.

Since volume fractions and flows are only determined up to a constant,

reconstruction accuracy is measured only for the velocities and rate constants,

which are not subject to this redundancy.
110.5281/zenodo.10056112 or https://github.com/EShalom/tkspace
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Table 5.1: Ground truth values for the one-compartment systems. All x values used
are in cm. PAIF is a population AIF (Parker et al., 2006) with a defined delay (d) and
a scaling factor (0 ≤ sf ≤ 1)

Ground Truth Case
Parameter 1 2 3

f (ml/s/cm2) 1 0.5 -0.6

v (ml/ml) 0.24 sin2(0.3x)
+0.36 cos2(0.15x) + 0.3

0.3 sin2(0.1x)
+0.36 cos2(0.2x) + 0.3

0.24 sin2(0.3x)
+0.36 cos2(0.15x) + 0.3

J+ (mM/s) PAIF (d = 10s, sf = 1) PAIF (d = 15s, sf = 1) 0
J− (mM/s) 0 0 PAIF (d = 15s, sf = 1)

Reconstructions of noiseless data with 2 second temporal resolutions were

repeated for several sets of initial values. For the one-compartment cases, these

were f=±(11, 9, 7, 4, 3, 1). For the two-compartment systems the initial value sets

are detailed in Table 5.3.

Sensitivity to temporal undersampling was tested by reconstructing the

noiseless systems with data sampled at 2, 4, 6, 8, and 10s. Sensitivity to noise

was tested by repeating reconstructions on data with signal-to-noise ratio

(SNR) levels of 5, 10, 15, and 20. Gaussian noise was added with a standard

deviation (σ) derived from the mean concentration:

σ = C̄meas

SNR
(5.20)

The SNR lower limit of 5 was chosen to reflect the typical lower limit used in DCE-

MRI protocols (Banerji et al., 2012). For each SNR level, reconstructions are run

with a given set of initial values for 5 realisations to calculate 95% confidence

intervals on the reconstructed parameters.

Computations are run on a single CPU (Intel(R) Xeon(R) Gold 6152 CPU

2.10GHz), with a maximum of 10,000 iterations at each time iteration, and a

gradient evaluation step 1 × 10−4 for one-compartment systems and 5 × 10−5 for

two-compartment systems.

5.2.5 Sensitivity Analysis

To deduce the sensitivity of the two-compartment forward model to changes in

the model parameters a simple univariate based analysis was carried out. This
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Table 5.2: Ground truth values for the two-compartment systems. All x values used
are in cm. PAIF (d, sf ) is a population-based AIF (Parker et al., 2006) with a defined
delay (d) and a scaling factor (0 ≤ sf ≤ 1); G(w, h) denotes a centred Gaussian with
width (w) and height (h); and Q(a, b, e) denotes a quadratic starting at a passing b at
system centre and ending at e.

Ground Truth Case
Parameter 1 2 3

fa
1 (ml/s/cm2) 0.9 0.512 0.3

fv
1 (ml/s/cm2) -0.5 -0.512 -0.6

F (ml/s/ml) G(0.5Lx, 0.0626) G(0.16̇Lx, 0.1)
0.0336 sin2((20000

−6266.25π)x)
+0.021

v (ml/ml)
0.24 sin2(0.3x)

+0.36 cos2(0.15x)
+0.3

va + vv
0.3 sin2(0.2x)

+0.36 cos2(0.3x)
+0.3

λa 0.3 cos2(0.01x) + 0.3 va/v 0.3 sin2((0.007x) + 0.3
va (ml/ml) λav |fa|/Q(19, 4.9, 19) λav

vv (ml/ml) v − va |fv|/Q(7.1, 1.5, 7.1) v − va

Ja
+ (mM/s) PAIF (10s, 0.6) PAIF (10s, 1) PAIF (10s, 1)

Ja
− (mM/s) PAIF (15s, 0.4) PAIF (10s, 1) PAIF (15s, 1)

Table 5.3: Initial guesses for parameters applied over all two-compartment cases.

Guess Set
Parameter 1 2 3 4 5

fa
1 (ml/s/cm2) 1.2 1.2 0.5 0.8 0.3

f v
1 (ml/s/cm2) -1.2 -0.3 -1.0 -0.8 -1.2
F (ml/s/ml) 0.065 0.055 0.045 0.035 0.025

λa 0.4 0.45 0.5 0.55 0.6
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analysis adjusted each parameter (3N+2+2T total) by 5% of the ground truth

value in each case, with the impact on the resulting total tissue concentrations

calculated relative to the maximum system tissue concentration (Equation 5.21).

∆Ci,k
rel =

(Ci,k
gt − Ci,k

adjusted)
max(Cgt)

(5.21)

Here, i and k denote each spatial and temporal point, respectively. The differences

are scaled as a percentage of the tissue concentration maximum for comparison

between cases.

To deduce the covariance (X) of the two-compartment model the approach

from Scipy curve_fit (Virtanen et al., 2020) was used. This applies a Moore-

Penrose pseudoinverse (Moore, 1920; Penrose, 1955) to compute the covariance

matrix from the Hessian matrix, H, comprising of the second derivatives of the

object function and the model parameters. The covariance is defined as standard

in a least squares problems as the matrix inverse of the Hessian matrix (Gejadze

et al., 2008).

X = H−1 (5.22)

The Moore-Penrose pseudoinverse method to caluclate this requires the

formation of a Jacobian matrix (J) with terms for the gradient of the object

function at every coordinate point with respect to each individual parameters.

The Jacobian matrix constructed therefore has NT rows for each total tissue

concentration coordinate value and 3N + 2 + 2T columns for the model

parameters (fa
0 , f v

0 , F (x), va(x), vv(x), Ca
+(t), Ca

−(t)). The Jacobian matrix takes

the form:

J =


∂C0
∂P0

. . . ∂Cm

∂P0
... . . . ...

∂C0
∂Pn

. . . ∂Cm

∂Pn

 (5.23)

The singular value deposition (SVD) (Stewart, 1993) of the resulting

Jacobian matrix was then calculated using scipy.linalg.svd which factorises
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J into unitary matrices U, V and a diagonal matrix S defined by:

J = USV T ; JT = V ST UT (5.24)

Where the pseudoinverse of the Jacobian matrix and its transpose are defined

using the results from the SVD via:

J−1 = V S−1UT ; (JT )−1 = U(ST )−1V T (5.25)

The Jacobian matrix can be used to provide an estimate for the Hessian matrix

by matrix multiplication with its transpose (JT ). Using the definitions of J and

JT above the Hessian can then be estimated directly from the SVD matrices

(Strang, 1980):

H−1 ≈ (JTJ)−1 = J−1(JT )−1 = V S−1S−1V T (5.26)

Due to parameter magnitude differences the covariances are converted to

correlation coefficients, ρ, using the product of the parameter standard

deviations (Equation 5.27):

ρ = D−1XD−1; with D = diag(
√
X) (5.27)

The resulting correlation coefficient matrix has a central diagonal of +1 as all

parameters self correlate exactly, with correlation between different parameters

shown by the off-diagonal elements.

5.3 Results

Results from both one-compartment and two-compartment systems are

summarised within this section. Additional data tables of Ērel values are

included in Appendix B.
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Figure 5.2: Parameter reconstructions for all noise-free one-compartment system
cases. The solid black line indicates the ground truth, and the coloured dots show
reconstructions with different initial guesses.

5.3.1 One-compartment blood flow model

Results for the noise-free one-compartment systems are summarised in Figure 5.2,

showing the solutions are accurate and independent of the initial guesses. The

average error Ērel (mean ± standard deviation) across all cases is 2.9 ± 4.7% and

0.4 ± 0.3% for J and u respectively.

Concentration-time data reconstructed from recovered parameter values at

one of the initial guesses are shown in Figure 5.3. Deviations between the ground

truth concentration and recovered parameter profiles are not visually detectable

and are between ±2.5% of the maximal concentration in each case.

The effect of SNR and sampling interval on parameter reconstruction is

summarised in Figure 5.4(a). Subject-level results are included in

Figures 5.9-5.14. Average Ērel across all simulations at SNR 5 is 2.4 ± 2.8% and

16.1 ± 15.6% for u and J , respectively. Average Ērel across all simulations at Dt

8s is 14.4 ± 15.3% and 24.6 ± 47.3% for u and J , respectively. The results show

the expected behaviour with increasing accuracy and precision at higher SNR

and smaller Dt in all parameters. Velocities are substantially more robust to
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Figure 5.3: Comparison of the recovered concentration values from the retrieved
parameters against the ground truth, alongside the percentage difference for the
maximal concentration. Shown are cases 1, 2 and 3 in rows (a), (b), and (c),
respectively. Differences above or below ±2.5% of the maximum concentration value
are shown by dark red or dark blue, respectively.
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Figure 5.4: Box plots of reconstruction errors for all one-compartment parameters as
a function of SNR (a) and temporal sampling Dt (b).

noise than the influxes, and more accurate and precise at smaller Dt levels.

5.3.2 Two-compartment perfusion model

Results for the noise-free two-compartment systems are summarised in Figure 5.5,

showing that the solutions are generally less well determined than in the one-

compartment case. Reconstruction of arterial velocity (ua) and influx (Ja) is

most accurate with lowest Ērel of 27.1 ± 82.0% and 13.0 ± 38.1%, respectively.

The perfusion rate (Kva) and venous velocity (uv) are least precise with Ērel of

44.7% ± 76.5%, and 54.9% ± 121.4% across all cases, respectively.

Ground-truth and reconstructed concentrations for initial guess 4 and

noise-free data are shown in Figure 5.6. Despite the substantial errors in the

reconstructed parameters, the reconstructed concentration is close to the ground

truth and visually virtually indistinguishable. Since an accurate fit to the data

is obtained with inaccurate parameters, this shows that multiple solutions are

compatible with the observations.

Figures 5.7 and 5.8 shows the impact of SNR and undersampling on parameter

accuracy and precision, showing the expected trend of increasing accuracy and

precision at higher SNR and smaller Dt. The magnitude of the error is generally

comparable between parameters except for the perfusion rate Kva, which is more

sensitive to noise than the other parameters, and the venous velocity uv, which

appears particularly sensitive to undersampling. Figures 5.15- 5.20 illustrate these

effects in more detail for all three example cases.
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Figure 5.5: Parameter reconstructions for all noise-free two-compartment system
cases. The solid black line indicates the ground truth, and the coloured dots show
reconstructions with different initial guesses.
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Figure 5.6: Comparison of the recovered concentration values from the retrieved
parameters against the ground truth, alongside the percentage difference for the
maximal concentration. Shown are cases 1, 2 and 3 in rows (a), (b), and (c), respectively
for initial guess 4. Differences above or below ±5% of the maximum concentration value
are shown by dark red or dark blue, respectively.
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Figure 5.7: Distribution of each parameter error for the two-compartment system
relative to the absolute mean parameter value within each system. The distribution is
shown across all 3 cases for all noise realisations at each SNR.
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Figure 5.8: Distribution of each parameter error for the two-compartment system
relative to the absolute mean parameter value within each system. The distribution is
shown across all 3 cases for all undersampling rates.

Figure 5.9: Parameter fitting results for SNR 5, 10, 15, 20 in one compartment for
Case 1. The shaded area denotes the 95% confidence interval extracted from 5 noise
realisation runs.

Figure 5.10: Parameter fitting results for SNR 5, 10, 15, 20 in one compartment for
Case 2. The shaded area denotes the 95% confidence interval extracted from 5 noise
realisation runs.
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Figure 5.11: Parameter fitting results for SNR 5, 10, 15, 20 in one compartment for
Case 3. The shaded area denotes the 95% confidence interval extracted from 5 noise
realisation runs.

Figure 5.12: Parameter fitting results for time sampling resolution of 2, 4, 6, and 8s
in one compartment for Case 1.

Figure 5.13: Parameter fitting results for time sampling resolution of 2, 4, 6, and 8s
in one compartment for Case 2.

110



5. Identifiability of Spatiotemporal Tissue Perfusion Models

Figure 5.14: Parameter fitting results for time sampling resolution of 2, 4, 6, and 8s
in one compartment for Case 3.

5.3.3 Sensitivity Analysis

Results for the two-compartment forward model sensitivity analysis are

summarised in Figures 5.21 and 5.22. These illustrate the relative concentration

difference distribution for the test cases. Parameters in the model are adjusted

by a 5% increase or decrease from their ground truth values in Figures 5.21 and

5.22, respectively. Due to the large number of individual parameters

Figures 5.21 and 5.22 report results by parameter group. All forward model

differences for each individual voxel or time point value permutation are shown.

For example, the arterial volume fraction (va) group distribution shown within

Figure 5.21 consists of all ∆Ci,k
rel values for each va

i adjustment. Within

Figures 5.21 and 5.22 the influence of adjusting individual parameters within

the forwards model by ±5% produced similar ∆Ci,k
rel, apart from the arterial

boundary flow fa
0 which shows a much larger effect. The differences produced in

the concentration-time data are largely indistinguishable between many of the

individual parameters (Figure 5.23). Apart from fa
0 which shows ∆Ci,k

rel values ≈

20%, other parameters show ∆Ci,k
rel values below 5% as illustrated for Case 1

(Figure 5.23).

The derived covariance analyses of the model parameters are illustrated by

the correlation coefficients (Equation 5.27) for each of the 3 test cases (Figures

5.24-5.26). Each of the individual cases have slightly different trends in
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Figure 5.15: Parameter fitting results for SNR 5, 10 , 15, 20 in two-compartment
Case 1. The shaded area denotes the 95% confidence interval extracted from 5 noise
realisation runs.
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Figure 5.16: Parameter fitting results for SNR 5, 10, 15, 20 in two-compartment
Case 2. The shaded area denotes the 95% confidence interval extracted from 5 noise
realisation runs.
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Figure 5.17: Parameter fitting results for SNR 5, 10 , 15, 20 in two-compartment
Case 3. Here the black lines denote the ground truth parameter values with the shaded
area showing the 95% confidence interval of parameter reconstructions extracted from
the 5 noise realisation runs.
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Figure 5.18: Parameter fitting results for time sampling resolution of 2, 4, 6 and 8s
in two-compartment Case 1.
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Figure 5.19: Parameter fitting results for time sampling resolution of 2, 4, 6 and 8s
in two-compartment Case 2.
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Figure 5.20: Parameter fitting results for time sampling resolution of 2, 4, 6 and 8s
in two-compartment Case 3. Here the black lines denote the ground truth parameter
values, with the dotted points showing the recovered parameter values.
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correlation between parameter groups. Figures 5.24-5.26 indicate some

correlation between different parameter types and within parameter types.

Correlations can be seen between the boundary flow values with the volume

fractions (negative correlation), and boundary concentrations (positive

correlation). This is expected due to the determination of flow and velocity up

to a scaling constant as discussed (5.2.1), and the system influx definition which

uses both boundary flow and concentration.

There are strong diagonal elements in Cases 1 and 3 (Figures 5.24 & 5.26,

respectively) between the spatial parameters, indicating a relationship between

parameters within voxels and the model output. Within Case 1 (Figure 5.24) a

strong diagonal of negative correlation coefficients can be seen between vv and va,

indicating values within a voxel have an inverse relationship on the solution. Such

an inverse relation would indicate that increases in vv shows similar outcomes to

decreases in va and vice versa.

Within Case 2 (Figure 5.25) strong correlation coefficients are reported

between different time points for the boundary concentrations (Ca
+, Ca

−).

Interpretation of this suggests that increases/decreases of boundary

concentrations at earlier and later time points give similar changes to the

solution. This could be due to an overall effect on the system of more or less

concentration entering over the entire time course. Also indicated in Figure 5.25

are correlations between va and vv values both within and between these

parameter groups. These correlations have a strongly symmetric shape

indicating correlation within the left and right sides of the system separated by

the flow crossing point, suggesting this might be related to the extremely

symmetric nature of Case 2. Cases 1 and 3 (Figures 5.24 & 5.25) do not report

strong correlations between the boundary concentrations and the spatial

parameters as reported for Case 2, potentially due to higher flow and perfusion

values present in Case 2.
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Figure 5.21: Violin plots of resulting changes to the system tissue concentration of
adjusting voxelwise parameter values by + 5%. The distributions are shown for each
parameter type showing the difference at every coordinate point when adjusting the
parameter value.

Figure 5.22: Violin plots of resulting changes to the system tissue concentration of
adjusting voxelwise parameter values by − 5%. The distributions are shown for each
parameter type showing the difference at every coordinate point when adjusting the
parameter value.
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Figure 5.23: Changes in the resulting tissue concentration for the two-compartment
sensitivity analysis of Case 3. Changes are coordinate wise one parameter value
is adjusted by +5% (x=12.4cm for spatial parameters or t=30s for boundary
concentrations) at a time, each pair of panels relates to a different parameter type.
Panels show the concentration evolution with the updated parameter (1st and 3rd

columns) and the relative different as a percentage of the maximal system concentration
(2nd and 4th columns). The ground truth concentration is shown in the top right hand
panel.
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Figure 5.24: Correlation coefficient values derived for model parameters in two-
compartment Case 1. Each parameter type is separated by the vertical and horizontal
black lines, with every pixel within the plot corresponding to a single parameter e.g.
fa

0 or F (xi).
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Figure 5.25: Correlation coefficient values derived for model parameters in two-
compartment Case 2. Each parameter type is separated by the vertical and horizontal
black lines, with every pixel within the plot corresponding to a single parameter e.g.
fa

0 or F (xi).
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Figure 5.26: Correlation coefficient values derived for model parameters in two-
compartment Case 3. Each parameter type is separated by the vertical and horizontal
black lines, with every pixel within the plot corresponding to a single parameter e.g.
fa

0 or F (xi).
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5.4 Discussion

The aim of this in-silico study was to determine if unconstrained

spatio-temporal models for DCE-MRI are fundamentally identifiable. The data

indicate that this is the case for one-compartmental blood flow models, but not

for two-compartmental perfusion models.

In the absence of significant measurement error, parameters of the

one-compartment model can be reconstructed accurately without imposing

additional constraints on the model. They are identical even with widely

different choices of the initial guesses, suggesting the solution is also unique.

Reconstructions of the influxes at the boundary of the system are also accurate,

confirming the idea that spatio-temporal models remove the need for a separate

measurement of an AIF.

While the analysis in this study used non-linear optimisation, the uniqueness

of the one-compartmental solutions aligns with the fact that the model equations

can be recast in a linear form (Sourbron, 2014) - in a similar way as for standard

temporal one-compartmental models (Flouri et al., 2016). Here implementation

of the model in linear form was not chosen as this is known to be more noise-

sensitive, and does not translate as easily to the two-compartmental scenario.

Measurement error (noise and undersampling) naturally reduces the accuracy and

precision of the parameters, but in a predictable and expected manner. One open

question is how the parameter accuracy and precision compares to a conventional

analysis using measured input functions and standard voxel-by-voxel temporal

models.

Parameter reconstructions are significantly less accurate for the

two-compartmental perfusion model. Multiple solutions have been found that

are compatible with the data, and therefore a single optimal solution cannot be

identified using a goodness-of-fit criterion alone. Correlation coefficients also

suggest the existence of some strong correlations within and between the

different parameter groups effect on the resulting model solutions, particularly

within the same voxel. Coupled with the sensitivity analysis which shows that

most individual parameters have a minimal impact on solutions, these
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interactions may contribute to the reported degeneracy.

One approach to resolving the degeneracy in the two-compartmental model

may involve modifying the experimental conditions to increase the structure in

the data. However, the options in DCE-MRI are limited. The smallest sampling

interval considered in this study was 2 seconds, and therefore there may be

some room for improvement by considering faster scan sequences. Beyond that,

the only additional variable that can be modified substantially is the injection

protocol. The current setup uses a single bolus injection, and while this can

easily be modified in practice to split the dose over two injections (Ingrisch &

Sourbron, 2013), there is currently little evidence that this translates to more

accurate solutions.

Hence this may indicate that additional constraints are needed to pin down

multi-compartmental spatio-temporal models. Possible solutions previously

proposed for one-compartment systems may well translate to two-compartment

systems, such as the use of Darcy flows or other physical constraints to reduce

the number of free variables (Naevdal et al., 2016), adding regularisation to

impose smoothness of the solution (Zhou et al., 2021; Liu et al., 2021a), fixing

less critical parameters to literature values (Pellerin et al., 2007), or reverting to

a measured AIF at the boundaries of the imaging slab. The use of physical

constraints derived from principles of fluid dynamics and porous media theory

presents a particularly attractive approach as it also provides a mechanism for

studying the mechanical properties of physiological flow. While such constraints

may not be necessary for one-compartmental systems, they may prove essential

in the multi-compartment case.

Beyond modifying experimental conditions or imposing additional

constraints, another strategy for reducing the degeneracy in the solutions may

well be to improve the optimisation itself. Setting suitable initial conditions, for

instance, may well help to bias the solution towards the correct value, and may

be feasible without loosing generality. For instance, exploratory simulations

with the 1D toy models suggest that initial values where the arterial velocity is

higher than the venous velocity leads to better parameter recovery than

randomly chosen initial values, and this is consistent with physical reality. An
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alternative approach, common for instance in other inverse problems in imaging

such as coregistration (Studholme et al., 1996; Maes et al., 1999), may be to

employ a multi-resolution approach, fitting parameters initially at coarse

resolution and then stepwise refining the estimates until the image resolution is

reached. Additionally, considering the observation that estimates are most

accurate in the arterial parameters, an improvement may be possible by

reparameterising the model in terms of the arterial flow field fa(x) rather than

using the perfusion field F (x) as a primary variable. Finally, solutions proposed

for temporal model fitting in DCE-MRI may well help in spatiotemporal

modelling as well, such as the use of model selection, which can potentially be

generalised to a voxel-by-voxel approach, and/or using the results of

one-compartment fits to initialise a two-compartment analysis.

The optimal strategy may also depend on the parameter that is the primary

interest of the measurement. As shown, results are considerably more reliable in

the properties of the upstream (arterial) compartment compared to the distal

(venous) compartment and particularly the exchange parameter (perfusion)

itself. Hence in clinical applications where the primary aim is to characterise

the arterial system, issues of uniqueness identified in this study may be less

critical. Unfortunately, the interest in many key clinical applications of

perfusion imaging, such as acute stroke (Demeestere et al., 2020) or cancer (van

Dijken et al., 2019), is primarily in a measurement of perfusion as this is a key

metric to understanding tissue viability or metabolic activity. While the result

in this study has shown that measurement of perfusion comes with significant

numerical error, the use of spatiotemporal modelling does remove the equally

substantial error that comes from assuming a single upstream feeding artery

(Calamante et al., 2006). It is currently unknown whether, and to what extent,

this offsets the numerical reconstruction errors observed in the spatiotemporal

model.

This study is obviously limited by the use a of a one-dimensional toy model.

In reality, fully unconstrained spatiotemporal modelling for DCE is only

relevant when applied to 3D data, as through-plane exchange of indicator

cannot be excluded in realistic scenarios. However, application of
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multi-compartmental modelling in 3D comes with significant computational

challenges that are currently largely unresolved. Standard gradient-descent type

optimisation as performed in this study is unlikely to be practically feasible in

3D, though this has not yet been fully explored. The use of 1D models allows

for a flexible exploration of fundamental issues of parameter identifiability, but

there is no guarantee that the findings translate to the 3D scenario. Indeed, 3D

data are significantly more entangled due to the spatial connections in the other

dimensions, and this may well help to resolved any degeneracies found in 1D.

Future studies should therefore focus in the first place on developing

computational methods that are able to solve spatiotemporal two-compartment

models in reasonable computation times, before the issue of parameter

identifiability can be investigated in-silico in 3D data. Recent developments in

deep learning, specifically the use of PINNs and their successful application in

related problems, has offered some hope that a solution may be technically

feasible.

5.5 Conclusions

This chapter provides proof of concept that one-compartmental blood flow

models are fully identifiable and do not require a separate measurement of the

AIF. Arterial properties of two-compartmental perfusion models have

comparable accuracy but perfusion fields and venous flows are cannot be

measured reliably. Future studies should focus on exploring the use of physical

constraints, improved optimisation and on development of computational

solutions for the 3D case.
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Chapter 6

Physics Informed Neural

Networks for Tracer Kinetics

6.1 Introduction

Throughout the research presented in this thesis, the sheer number of

parameters needed to characterise a spatiotemporal TKs model present a

constant challenge. A step change in the number of parameters is needed to

increase the compartmental complexity, and is also a prerequisite for moving to

higher dimensional systems (Section 4.6 and Section 5.4). The advancement of

methodologies that can handle this parameter increase is essential for

widespread application of complex spatiotemporal models to 3D clinical

perfusion MRI data.

Within Chapter 5, the classical gradient descent technique for the inverse

approach shows a good reconstruction of system influxes and compartmental

velocities for noiseless and high SNR measurements (Section 5.3.2). However,

the runtime even at this 1D proof of concept stage would become quickly

prohibitive when moving towards 2D and 3D systems (Section 5.4). There is a

motivation for moving directly to 3D systems rather than bridging this gap via

2D systems. When addressing clinical DCE-MRI scan data, erroneous

spatiotemporal parameter fitting will occur if only a 2D slice is considered due

to the unaccounted indicator transport into or out of the slice. As a

consequence, the spatiotemporal problem requires a new optimisation approach

designed for large numbers of parameters and large data sets.

More recently, machine learning has been applied in the field of spatiotemporal
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TKs with a convolutional NN approach proposed by Liu et al. (2021b). This

method utilises a U-Net (Ronneberger et al., 2015) based architecture where

the parameters are evolved through a finite volume simulation framework and

compared to the DSC-MRI data. The approach by Liu et al. (2021b) is aimed at

one-compartment systems with both convective and diffusive transport. Although

this is not a PINNs implementation, the robustness of the reported parameters

in the presence of noise certainly adds promise to an approach based on neural

networks.

The PINNs framework was proposed by Raissi et al. (2017a,b). This was

paradigm-shifting work which the authors proceeded to develop: providing

solutions to the Navier-Stokes equations specifically (Raissi & Karniadakis,

2018) and later presenting a generalised framework exploiting the methodology

for both forwards and inverse problems (Raissi et al., 2019). The PINNs use

residual functions based on the physical laws of the system, for example, mass

conservation or incompressibility of flow. Recent developments in the field of

PINNs include: adaptive activation functions for use in both forward and

inverse modelling (Jagtap et al., 2020); and the use of a deep neural network to

interpret spatio-temporal data (Koeppe et al., 2020).

The subsequent use of PINNs has been widespread and numerous (Sharma

et al., 2023). Raissi et al. (2018, 2020) further showcase the capability of PINNs

through the sole use of concentration data to solve for ‘hidden’ or unmeasurable

velocity and pressure fields governing the Navier-Stokes equations. This latter

study (Raissi et al., 2020) is the most promising approach in the application of

PINNs for the recovery of spatiotemporal TK parameters. Other studies have

established the suitability of this approach, with real clinical data applied to

extract arterial wall pressures from 4D flow MRI via a PINNs-based method

(Kissas et al., 2020). Kissas et al. (2020) uses sparse measurement of blood

velocity and arterial vessel cross sectional area within a simplified pulsatile flow

model. More recently, van Herten et al. (2022) have applied PINNs for standard

isolated voxel fitting of DCE-MRI data. This study (van Herten et al., 2022)

applied the 2CXM to myocardial blood flow DCE-MRI data.

To the best of the author’s knowledge, application of PINNs to a spatial

130



6. Physics Informed Neural Networks for Tracer Kinetics
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Figure 6.1: Illustrative network setup for convection only one-compartment systems.
The number of internal nodes and hidden layers are reduced for clarity.

multi-compartment modelling setup has yet to be realised. Usually, approaches

applying PINNs for fluid mechanics or MRI-imaging purposes consider systems

comparable to a one-compartment setup. In these cases, the concentration or

similar transport marker is directly accessible by measurement (Kissas et al.,

2020) or voxels are assessed as isolated systems (van Herten et al., 2022).

The overall aims of this chapter are three-fold. Firstly, to produce a PINN

implementation to recover spatiotemporal TK parameters for both one and

two-compartment systems in 1D. Secondly, to investigate the robustness of the

parameter recovery outcomes in the presence of increasing measurement noise

and sampling intervals. Finally, a one-compartment 2D system parameter is

also detailed with limited methodology adjustment to illustrate the

straightforward extension of the developed PINN implementation.
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Figure 6.2: Illustrative network setup for convection only two-compartment systems.
The number of internal nodes and hidden layers are reduced for clarity.

6.2 Methodology

6.2.1 Network Architecture

The network architecture follows similar setup to the proposed network detailed

by Raissi et al. (2020). The implementation of this work is freely available via

GitHub under the MIT license1. These implementations have been restructured

for compatibility with Tensorflow version 2 (Abadi et al., 2015) by the Centre

for Environmental Modelling And Computation (CEMAC) at the University of

Leeds. These updated implementations of the original work by Raissi et al. (2019,

2020) are presented as a set of jupyter iPython notebooks hosted on the CEMAC

GitHub2 under the Creative Commons Attribution 4.0 International license.

The setup to apply PINNs with TK equations uses a modified version of

the CEMAC notebook produced to implement Raissi et al. (2020). Most notably,

the spatiotemporal TK PINN (tkPINN) implementation uses two separate neural

networks that are optimised in tandem via the same loss function. The networks

are separated due to the vastly different parameter field sizes. The first network
1https://github.com/maziarraissi/HFM/tree/master
2https://github.com/cemac/LIFD_Physics_Informed_Neural_Networks/tree/

main
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6. Physics Informed Neural Networks for Tracer Kinetics

takes both spatial and temporal inputs and so returns spatiotemporal fields as an

output. The second takes only a spatial input and as such returns outputs that

are constant in time. An overview of this general setup is shown for the one- and

two-compartment system parameters in Figures 6.1 and 6.2.

6.2.2 Loss Terms

Within the tkPINNs method, there are two passes through the network to

produce the data and physics loss terms for the overall loss function. First, the

data coordinate points or “experimental points” are passed through the

networks and the resulting tissue concentration is compared to the measurement

tissue concentration. Secondly, the physics coordinate points or “collocation

points” are passed through the networks with all resulting parameters used to

define several residual equations defining the ‘hidden’ TKs of the system. These

points are denoted as collocation points as numerical solutions of differential

equations are known as collocation methods. It is not necessary to have

matching experimental and collocation points. In instances with sparse data it

is usual to have increased resolution for the physics coordinates (Raissi et al.,

2020).

For the one-compartment systems, physics residual equations for the tkPINNs

setup are as follows:

Φ1 : 0 =∂C

∂t
+ ∇⃗ · (uC) (6.1)

Φ2 : 0 =|C| − C (6.2)

Φ3 : 0 =1 − C − d (6.3)

Here, d is defined by d = 1 − C to be the adjoint of the tissue concentration.

This extra parameter is applied in Raissi et al. (2020) to help guide the network

optimisation. With the residuals similarly given for the two-compartment systems
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as:

Φ1 : 0 =∂Ca

∂t
+ ∇⃗ · (uaCa) + KvaCa (6.4)

Φ2 : 0 =∂Cv

∂t
+ ∇⃗ · (uvCv) − KvaCa (6.5)

Φ3 : 0 =C − Ca − Cv (6.6)

Φ4 : 0 =|Ca| − Ca (6.7)

Φ5 : 0 =|Cv| − Cv (6.8)

Φ6 : 0 =|Kva| − Kva (6.9)

Φ7 : 0 =1 − C − d (6.10)

Within the residual terms any differential terms are calculated using the

inbuilt automatic differentiation functions in Tensorflow (e.g.
∂C
∂x

=tf.gradient(C,x)). These residuals are collected into the physics loss

term using the mean squared error of each residual:

LP hysics =
∑

i

µ(Φ2
i ) (6.11)

Similarly, the data loss term is calculated using the mean squared error between

the network output concentration, CNet, and the measurement concentration, C:

LData = µ((CNet − C)2) (6.12)

Within a simple PINNs setup there is enforcement of soft constraints only.

Soft constraints are allowed to be violated as they are merely a part of the loss

function to be minimised rather than an enforced hard constraint. For flow

incompressibility the soft constraint would prescribe:

min(∇ · f⃗a) (6.13)

However, this minimisation (Equation 6.13) cannot be guaranteed to equal

exactly zero - as would be the case for a true incompressible system. To avoid

problems stemming from the soft constraint, fitting is carried out in the tissue
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concentration parameters (u, ua, uv, Kva).

For network training both spatial and temporal inputs are supplied in

dimensionless form. The input array sizes must match so for a given spatial

input length N and temporal input length T a mesh grid is created (NxT) which

is then flattened giving two (NTx1) inputs. Collocation and experimental points

are produced separately for the physics and data loss. For investigation of fully

sampled measurements (Dt=2s) the same set of coordinate points is used to

evaluate the data and physics loss terms. For undersampled measurements

(Dt>2s), the experimental points for the data loss term are reduced accordingly,

while the physics collocation points remain at 2s intervals. The ordering of the

data and physics training points are randomised for each separate iteration.

The only data supplied to the network is for the tissue concentration.

Therefore, the only way the constrain the arterial and venous concentration is

through the physics residual equations that contribute to the loss function.

The network detailed can be easily adjusted to handle problems with

additional dimensions. To demonstrate this the tkPINNs is extended to include

a y-coordinate. The physics residuals can be extended to reflect advective

transport in both x and y-directions.

6.2.3 Models for Investigation

The outcome of the PINN methodology is investigated on systems setup in both

one- and two-dimensions.

One-Dimension Models

The tkPINNs method is investigated on 1D for a one-compartment convective

blood flow model, and a two-compartment perfusion model with convective

blood transport. Definitions of both the one-compartment and

two-compartment models are set out in Chapter 5 (Section 5.2) based on the

theoretical framework as defined in Chapter 2 (Section 2.4). The ground truth

data is produced via the same finite difference scheme using the local

concentration picture defined from Equations 5.12-5.16. The same 3 systems of
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each model type defined in Chapter 5 are run using the tkPINNs method, to

enable comparisons to be made.

Two-Dimension Models

The tkPINNs method is further investigated in 2D for a one-compartment

convective blood flow model. The theoretical definitions match to general

equations used for the one-compartment convective blood flow model in

Chapter 5.

After discretisation, the one-compartment spatiotemporal model in two

dimensions reduces to an NxNy-compartment temporal model (Sourbron, 2014):

ci,j(t + ∆t) =ci,j(t) + ∆t

vi,j

((kij,i−1jci−1,j(t) + kij,i+1jci+1,j(t)

+ kij,ij−1ci,j−1(t) + kij,ij+1ci,j+1(t)

− (ki−1j,ij + kij−1,ij + ki+1j,ij + kij+1,ij)ci,j(t))

(6.14)

kij,i−1j =


fx,ij

∆x
, fx,ij > 0

0, fx,ij ≤ 0
ki−1j,ij =


0, fx,ij ≥ 0
−fx,ij

∆x
, fx,ij < 0

(6.15)

kij,ij−1 =


fy,ij

∆y
, fy,ij > 0

0, fy,ij ≤ 0
kij−1,ij =


0, fy,ij ≥ 0
−fy,ij

∆y
, fy,ij < 0

(6.16)

Here the flow in the x-direction fx,ij is defined at the left interface of voxel

ij, and flow in the y-direction fy,ij is defined at the bottom interface of voxel ij.

Total outgoing transport from a voxel is kij = ki−1j,ij + ki+1j,ij + kij−1,ij + kij+1,ij.

Additional free parameters of the model are the concentrations cl(y, t), cr(y, t),

ct(x, t) and cb(x, t) at the left, right, top and bottom boundary of the system,

respectively. For numerical stability, the time step ∆t must be chosen to be
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Table 6.1: Ground truth values for the 2D one-compartment system. All x values
used are in cm. PAIF is a population AIF (Parker et al., 2006) with a defined delay
(d) and a scaling factor (0 ≤ sf ≤ 1). G(c, h) denotes a Gaussian with center (c) and
height (h).

Parameters Case 1
v(ml/ml) 0.3sin2(0.2x) + 0.3cos2(0.2y)) + 0.3

fx,0j(ml/s/cm2) 1.2
fy(ml/s/cm2) 0.3sin2(0.2x) + 0.2cos2(0.15y) + 0.25

cl(mM) PAIF (8s, G(0.5Ly, 1))
cb(mM) PAIF (5s, G(0.5Lx, 1))
cr(mM) 0
ct(mM) 0

smaller than the smallest voxel mean transit time:

∆t < min
i

{
vij

kij

}
(6.17)

In a 2D scenario, the incompressibility of flow restricts the flow pattern. An

incompressible flow is produced via the definition of the left-hand boundary x

component of the flow, with the y component defined at all voxels. The remaining

x component flow values are determined by obeying incompressibility as:

kij,ij−1 + kij,i−1j + kij,ij+1 + kij,i+1j = kij−1,ij + ki−1j,ij + kij+1,ij + ki+1j,ij (6.18)

The 2D system ground truth values are shown in Table 6.1.

6.2.4 Setting hyperparameters

As with many optimisation strategies, several hyperparameters must be chosen

through the tkPINNs method. For the tkPINNs method presented the

hyperparameters used are defined in Table 6.2. A full investigation of the

interplay and optimisation of hyperparameter choice is out of the scope of this

thesis.

The initial weights in the network are assigned drawing from a normal

Gaussian distribution, implemented using the numpy random.normal module.

For reproducibility the random seed is assigned to ensure repeat runs are

identical for the same computational setup.
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Table 6.2: Hyperparameters used within the tkPINNs setup across different system
types.

System Type

Hyperparameters One-compartment
1D

Two-compartment
1D

One-compartment
2D

Hidden Layers 10

Nodes per
Hidden Layer 100 150 100

Learning Rate 1 × 10−3

Training
Iterations 7,500 250,000 100,000

Batch Size NxT

Activation
Function Swish

Optimisation
Strategy Tensorflow Adams Optimiser

Initial Weights Random allocation for normal distribution

Loss Function
Weighting Unity
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6.2.5 Simulation Systems

The tkPINNs setup defined in this chapter is applied to the 3 example cases for

both the one- and two-compartment models previously investigated in Chapter 5.

The 2D one-compartment system is defined based on parameters in Table 6.1,

with system dimensions of 25.6×25.6cm over 80s for ∆x = ∆y = 0.8cm. For each

1D case the PINNs method reports the parameter fitting for noiseless data with

2 second temporal resolutions. Sensitivity to measurement noise was investigated

using SNR levels of 5, 10, 15, 20. Sensitivity to measurement undersampling was

assessed by applying noiseless data with temporal sampling resolution of 2, 4, 6,

8, 10s. For the single 2D one-compartment blood flow system, parameter fitting

is investigated for noiseless data with 2 second temporal resolution.

Each instance of the tkPINNs methodology was run across 16 CPUs

(Broadwell E5-2650v4 CPUs 2.2GHz)1 until the maximum iteration was

reached. All main runs were completed using the settings defined in

Section 6.2.4.

As in Chapter 5, the Ērel (Equation 5.19) error metric is applied to determine

the accuracy of recovered parameters gained from the tkPINNs method.

6.3 Results

Parameter recovery results from the tkPINNs method in both one-compartment

and two-compartment systems across all test cases are summarised in this section

and compared to the ground truth parameter values. Additional data tables of

Ērel values are included in Appendix C.

6.3.1 Hyperparameter Tuning

To decide the maximum training iterations needed, several test runs for one

and two-compartment 1D cases using a high number of training iterations were

carried out. To extract the performance of the network over the initial training

iterations both Ērel values (Figures 6.3 and 6.4), and the total loss function values
1Provided by arc3, a research computing resource provided by the University of Leeds.
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Figure 6.3: Ērel values across 50,000 test training iterations for one-compartment
systems in 1D. Left: Case 1 with noiseless data, middle: Case 1 with measurement
SNR 5, and right: parameter change for Case 1 with noiseless data.

(Figures 6.6 and 6.7) were investigated.

For the 1D one-compartment systems, Case 1 is shown using 50,000 test

iterations for both a noiseless and noisy system. Figure 6.3 details the Ērel in

both noise regimes, as well as the average update to u at each iteration in the

noiseless case. A minimum in Ērel is observed after 5,000 iterations in both

investigations. As parameter updates in the noiseless case also stayed constant

after this point, 7,500 iterations were chosen to be comfortably in this optimised

region. All further 1D one-compartment system were run to 7,500 training

iterations.

For the 1D two-compartment system, both Cases 1 and 3 are shown over

500,000 test iterations for noiseless measurement data. The Ērel values across

ua, uv and Kva are shown (Figure 6.4) where a trend of improving followed by

worsening parameter accuracy is seen most strongly in Case 3. Interestingly,

over this area, the loss function shows a decrease (Figure 6.7) while the solution

becomes less optimal. To inform an appropriate stopping iteration, the number

of iterations needed before a loss function decrease is extracted (Figure 6.5).

This shows that the area between 200,000 and 300,000 sees increases above 1,000

iterations before descent. Therefore, training iterations were set to 250,000 for

all 1D two-compartment systems.
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Figure 6.4: Ērel values of the two-compartment systems across 500,000 test training
iterations. left: Case 1 with noiseless data and right: Case 3 with noiseless data.

Figure 6.5: Number of iterations since last loss function descent against iteration at
these descent points over the 500,000 training iterations in two-compartment systems.
Left: Case 1 with noiseless data and right: Case 3 with noiseless data.

Figure 6.6: Progression of the loss function in one-compartment systems in 1D over
the 50,000 training iterations. Left: Case 1 with noiseless data, and right: Case 1 with
measurement SNR 10.
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Figure 6.7: Progression of the loss function in two-compartment Case 1 from the
tkPINNs network with swish activation over iteration number during training.

6.3.2 One-compartment systems in One Dimension

Results from the one-compartment systems in 1D are detailed here, summarising

the influence of system noise and measurement sampling. Runtimes for the one-

compartment systems in 1D were between 15 and 35 minutes.

Noiseless Systems

When evaluating noise-free measurement data the tkPINNs method recovers

parameters to a low error, reflected in the close match seen to the ground truth

parameters (Figure 6.8). This is also reflected in the low Ērel values seen across

all one-compartment cases both for the overall distribution (Figure 6.9) and the

voxelwise values (Figure 6.10). The mean Ērel values are in the range of

4.3 ± 4.4% to 6.7 ± 5.5%. The variation of Ērel across the system (Figure 6.10)

shows some trend towards higher error in higher velocity places, which follows

partially from the definition of Ērel using the percentage of the parameter mean

value rather than the percentage of ground truth at each point. The behaviour

is relatively consistent across each case (Figure 6.8).
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Figure 6.8: Parameter retrieval for one-compartment 1D noiseless measurement
data. The black and blue data sets show the ground truth and retrieved parameters,
respectively. Cases shown left to right are 1, 2, 3, respectively.
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Figure 6.9: Boxplots illustrating the distribution of u Ērel values for each one-
compartment 1D case when applying noiseless measurement data. The whiskers denote
the 5th-95th percentile, with the box region indicating the interquartile range. The
medians are shown as the solid black line with the means shown as dark red points.

Figure 6.10: Spatial variation in Ērel values (purple) for each 1D one-compartment
case compared to the ground truth values (black) when applying noiseless measurement
data. To allow for comparison of different scales, the left hand axis shows the Ērel range,
while the right hand axis shows the ground truth parameter range.
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Figure 6.11: Boxplots illustrating the distribution of Ērel values for each 1D one-
compartment case with varying measurement SNR. The whiskers denote the 5th-95th

percentile, with the box region indicating the interquartile range. The medians are
shown as the solid black line with the means shown as dark red points.

Figure 6.12: 1D one-compartment systems parameter retrieval results from tkPINNs
for 7,500 training iterations for measurement data with SNR 5, 10, 15 and 20. The
noiseless case parameters are also displayed. Each noise level is displayed in a different
colour.

Measurement Noise

The resulting impact on decreasing measurement noise is summarised in

Figure 6.11 showing boxplot distributions of the Ērel values across varying SNR

levels. Figure 6.11 shows a robust response to SNR with mean Ērel values

staying largely constant across SNR 5 to 20, showing comparable values to the

noiseless recovery. This is reflected by the very similar u retrievals shown

against the ground-truth values in Figure 6.12.

Temporal Undersampling

The resulting impact on decreasing measurement sampling is summarised in

Figure 6.13 showing boxplot distributions of the Ērel values across varying

sampling intervals. Figure 6.13 shows a robust response to undersampling with

mean Ērel values staying largely constant (5-6%) between sampling intervals of

4 to 8s, showing comparable values to the 2s recovery. This is reflected by the
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Figure 6.13: Boxplots illustrating the distribution of Ērel values for each 1D one-
compartment case with varying measurement undersampling. The whiskers denote the
5th-95th percentile, with the box region indicating the interquartile range. The medians
are shown as the solid black line with the means shown as dark red points.

Figure 6.14: 1D one-compartment parameter retrieval results from tkPINNs for 7,500
training iterations for measurement data with temporal sampling measurements of 2,
4, 6, 8 and 10s. The ground-truth case parameters are also displayed. Each sampling
level is displayed in a different colour.

very similar u retrievals shown against the ground-truth values in Figure 6.14.

6.3.3 Two-compartment systems in One Dimension

Results from the two-compartment systems are detailed here, summarising the

influence of system noise and measurement sampling. Runtimes for the two-

compartment systems in 1D were between 6 and 8 hours.

Noiseless Systems

The 3 test cases reported varied parameter retrieval outcomes using the tkPINNs

framework when evaluating systems with no measurement noise. Figure 6.15

details the parameter recovery result across each case separately. In Cases 1 and

3, the parameters were recovered close to the ground truth values, while Case

2 showed strong deviations. Distributions of Ērel are displayed for each test

case for ua, uv and Kva separately, as shown in Figure 6.16. For Cases 1 and
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Figure 6.15: Parameter retrieval for 1D two-compartment noiseless measurement
data. The black and blue data sets show the ground truth and retrieved parameters,
respectively.
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Figure 6.16: Boxplots illustrating the distribution of Ērel values for each 1D two-
compartment case when applying noiseless measurement data. The whiskers denote
the 5th-95th percentile, with the box region indicating the interquartile range. The
medians are shown as the solid black line with the means shown as dark red points.
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Figure 6.17: Spatial variation in Ērel values (purple) for each 1D two-compartment
case compared to the ground truth values (black) when applying noiseless measurement
data. To allow for comparison of different scales, the left-hand axis shows the Ērel range,
while the right-hand axis shows the ground truth parameter range.

3 recovery of ua, uv and Kva achieved low Ērel values. In Case 1, ua, uv and

Kva are recovered with average Ērel values of 10.1 ± 11.9%, 11.85 ± 7.1%, and

28.8±34.8%, respectively. Similarly, in Case 3, ua, uv and Kva are recovered with

average Ērel values of 9.1 ± 6.5%, 16.28 ± 14.7%, and 35.1 ± 54.9%, respectively.

For Case 2 the recovery is unsuccessful, with large deviations shown between the

recovery and ground truth parameter values (Figure 6.15). This is reflected in

high Ērel values across all parameter groups of 239.9 ± 162.9%, 53.4 ± 11.6%, and

239.4 ± 88.0% for ua, uv and Kva, respectively. The mismatch in results between

Case 2 and the other test cases creates a heavily biased distribution when looking

at parameter recovery trends across all of the test cases. Therefore, each case is

displayed separately when considering the parameter trends (Figure 6.16).

The tissue concentration reconstruction for the noiseless two-compartment

cases (Figure 6.18) showed very low error when compared to the ground truth

data. As illustrated in Figure 6.18 the network concentration and the ground

truth are visually identical with the maximum error as a percentage of peak

concentration below ±1%, with the mean percentage difference below ±0.2%.
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6.3 Results

Figure 6.18: Tissue concentration evolution in tkPINNs recovery and ground truth
systems for each 1D two-compartment case. First column shows Cinv recovered by
network, second column shows ground truth Cmeas with final column showing the
difference between the two as a percentage of the maximal ground truth concentration.
Cases 1, 2 and 3 are shown by rows (a) (b) and (c), respectively.
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6. Physics Informed Neural Networks for Tracer Kinetics

Measurement Noise

A summary of parameters retrieved from the tkPINNs method from systems

with varying measurement SNR are shown in Figure 6.19. Variable agreement

is shown between the ground truth parameter sets (black lines) and the retrieval

at a variety of SNRs (coloured points). Broadly, across Cases 1 and 3 increased

accuracy is seen for decreasing measurement noise. A detailed distribution of Ērel

by each case and SNR is shown in Figure 6.20 for each parameter type.

At the highest SNR there is a marked decrease in parameter accuracy in

comparison to the noiseless data recovery. At low SNR the parameter recovery

appears to trend towards zero solutions, indicated in Figure 6.19 by the flattening

of the parameter line close to zero, and also in Figure 6.20 by mean Ērel values

close to 100%.

It is seen from Figures 6.19 and 6.20 Case 2 shows a poor parameter recovery

with high Ērel values reported across all SNRs and parameter groups. A marked

increase in Ērel is seen at SNR 20 for ua and Kva parameters (Figure 6.20).

Conversely, uv parameter recovery shows stable Ērel values regardless of the SNR

investigated.

Reduced Sampling

Parameter retrievals across each undersampling rate are detailed in Figure 6.21.

A general trend of increasing parameter accuracy for higher time resolution

measurements is shown. These trends are illustrated from the boxplots

capturing the distribution of Ērel values reported in Figure 6.22.

Assessing the Ērel distributions (Figure 6.22), Case 2 showed high variability

between different undersampling levels: a rise in Ērel between 2 and 6s followed

by a subsequent fall for 8-10s. Conversely, Cases 1 and 3 showed Ērel values

increasing under a decrease in sampling rate. The best and most consistently

recovered parameter is ua which has an Ērel range from 8.4-30.0% between

sampling rates of 2-10s when across Cases 1 and 3.

Case 1 returns typically lower Ērel values in the presence of this undersampling

across recovery for Kva and uv than is shown in Case 3 (Figure 6.22). Across ua,
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6.3 Results

Figure 6.19: Parameter retrieval results from tkPINNs for 250,000 training iterations
for measurement data with SNR 5, 10, 15 and 20 from each 1D two-compartment case.
The noiseless case parameters are also displayed. Each noise level is displayed in a
different colour.
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Figure 6.20: Distribution of each parameter error for each 1D two-compartment case
relative to the absolute mean parameter value within each system. The distribution
is shown across each measurement SNR. The whiskers denote the 5th-95th percentile,
with the box region indicating the interquartile range. The medians are shown as the
solid black line with the means shown as dark red points.
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6.3 Results

Figure 6.21: Parameter retrieval results from tkPINNs for 250,000 training iterations
for measurement data with sampling resolution 2, 4, 6, 8 and 10s for each 1D two-
compartment case. Each sampling level is displayed in a different colour.

the observed Ērel values for Cases 1 and 3 showed a similar range from 8.4-30.0%

in Case 1 and 9.1-21.7% in Case 3.

6.3.4 One-Compartment in Two Dimensions

The resulting parameter retrieval is shown in Figure 6.24 using a 2D colourmap

to denote velocity magnitude with a quiver plot overlaid to show the direction.

The ground truth is shown with the colour bar and quiver arrows set to the same

scale. The runtime for this two-compartment system in 2D was 88 hours.

Overall the recovery shows a promising reconstruction of the velocity pattern

(Figure 6.24). This is also seen in the component-specific recoveries shown in

Figure 6.25. Notably, the extreme areas in the velocity field are overestimated

by the network, with high-velocity areas being overestimated while low-velocity

areas are underestimated. Figure 6.26 indicates an inverse relationship between
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Figure 6.22: Distribution of each parameter error for each 1D two-compartment case
relative to the absolute mean parameter value within each system. The distribution
is shown across each undersampling rate. The whiskers denote the 5th-95th percentile,
with the box region indicating the interquartile range. The medians are shown as the
solid black line with the means shown as dark red points.
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6.3 Results

Figure 6.23: Tissue concentration evolution of tkPINNs network parameters using
forwards model with true boundary influxes and ground truth systems for each 1D two-
compartment case. First column shows Cinv from network parameters, second column
shows ground truth Cmeas with final column showing the difference between the two as
a percentage of the maximal ground truth concentration. Cases 1, 2 and 3 are shown
by rows (a) (b) and (c), respectively.
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Figure 6.24: Overlaid colourmap and quiver plot showing the recovered velocity
field for the one-compartment system in 2D with noiseless data. Left: network
reconstruction and right: ground truth velocity.

the overall concentration seen by a voxel over the measurement time course and

the error in the recovered velocity values at that point.

6.3.5 Loss Function Weighting Investigation

The resulting impact of small methodology adjustments are reported here.

Alterations of weighting between the physics and data terms within the loss

function is investigated. A full systematic evaluation of all tkPINNs network

hyperparameters is out of the scope of this thesis. However, the following

results shed light on an avenue that may be promising for future development.

Two alternative loss function weighting schemes are investigated. The

resulting recovery for Case 1 at SNR 5 was assessed in both cases. The resulting

parameter recoveries for data weighting of 1, 0.01, and 0.001 are shown in

Figure 6.28. From these resulting parameter retrievals (Figure 6.28) it is seen

that: ua values are improved, Kva values are significantly reduced but remain

inaccurate, and uv values are largely unchanged. More aggressive

down-weighting reversed this positive impact. Unfortunately, even the increased

parameter accuracy from down-weighting the data by a factor of 0.01 does not

produce comparable parameter recoveries for the noiseless cases.
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6.3 Results

Figure 6.25: Velocity components for the two-compartment system in 2D. Left: x
component velocity and, right: y component velocity. For each component, top: ground
truth values, middle: network prediction and, bottom: error between network and
ground truth values.
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Figure 6.26: Correlation of x (top) and y (bottom) velocity component percentage
errors for the two-compartment system in 2D compared against the integrated
concentration in each voxel.
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Figure 6.27: Tissue concentration evolution in tkPINNs recovery and ground truth
systems for each 2D one-compartment case. First column shows CNet recovered by
network, second column shows ground truth Cmeas with final column showing the
difference between the two as a percentage of the maximal ground truth concentration.
Each row shows the results from a different time point t = 16, 26, 36, 46s, top to bottom,
respectively.

Figure 6.28: Parameter recovery for Case 1 of the two-compartment systems for
different data weighting.
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6.4 Discussion

The tkPINNs approach presented here allows for successful reconstruction of

spatiotemporal parameters in some systems. One-compartment systems in both

one and two dimensions showed low error parameter retrieval.

Two-compartment systems gave more variable outcomes, particularly observed

in Case 2. Across all system types, the concentration reconstructed from the

network had a very low error. This close agreement to the measurement data,

however, does not ensure a successful parameter-fitting outcome in

two-compartment systems.

6.4.1 Hyperparameters

As outlined in Section 6.2.4, hyperparameters have to be chosen to implement a

network. In the presented method, maximum iterations are chosen based on

trends seen where parameter error appears to achieve a minimum. The loss

function however (Figures 6.6 and 6.7) continued to decrease even though the

parameter solutions were optimising away from the known solution. Ideally, exit

conditions would be more data led. For example, estimation of SNR from

measurement data could be applied to relax the data loss constraint.

Additionally, relative parameter updates between iterations could also be used.

Potential for this can be seen in Figure 6.3, where parameters remained

consistent between iterations for optimal values. Implementation of such exit

conditions, could be challenging due to randomised coordinate points used

during training.

Other hyperparameters (summarised in Table 6.2) are chosen based on

previous PINN implementations for a similar problem setup (Raissi et al.,

2020). There is no guarantee that these hyperparameters are the most

optimised for spatiotemporal TK systems. While an indepth investigation into

interplay and impact of hyperparameters was out of scope for this work, it is

highlighted as a critical step needed in the future. A systematic study to assess

the relative significance of hyperparameter variation on parameter accuracy is

recommended for future work.
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6.4.2 One-compartment

All one-compartment cases in 1D systems presented throughout this chapter

showed low error parameter recoveries. This has been illustrated in the presence

of increasing measurement noise and undersampling. The solutions produced

indicate that these single-compartment systems are highly identifiable, which

was previously observed in Chapter 5 with standard gradient descent

optimisation. Additionally, several studies (Zhou et al., 2021; Zhang et al., 2022,

2023; Liu et al., 2021a) covering similar one-compartment systems showed

successful recovery, albeit with constraints placed on the spatial gradients of the

velocity fields. An encouraging advancement presented within this chapter is

recovery of such systems without the application of regularisation methods.

A preliminary extension of the network to higher spatial dimensions also

provided encouraging results. The outputs achieved from this simple PINNs

network setup for a one-compartment system in 2D showed that trends in

velocity magnitude and direction are well recovered for the tested in-silico

system (Figure 6.24). The increase in computing power needed to scale up to

2D using a full-sized batch is large even using this method, with

one-compartment 1D systems taking ≈30 minutes, and one-compartment 2D

systems taking ≈88 hours. Determination of an optimal batch size which

decreases runtime, while preserving parameter accuracy, is a crucial step for

future work.

6.4.3 Two-compartments

Parameter reconstructions are significantly worse within the two-compartment

systems. Multiple solutions are seen across investigations where the network

produces concentrations compatible with measurement data, and therefore a

single optimal solution cannot be identified using only a goodness-of-fit

assessment. The presence of multiple solutions is particularly seen when

assessing data with measurement error (Figures 6.19 and 6.21), where recoveries

produce entirely separate sets of solutions when compared to the known ground

truth. The low sensitivity of the model to parameter perturbations and
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covariance effects between model parameters as demonstrated in Chapter 5

could also contribute to these degenerate solutions.

Overall, the presence of noise appears a significant hindrance in the two-

compartment systems for accurate parameter recovery solutions. The Ērel values

associated with decreasing SNR are generally higher than Ērel values associated

with decreased sampling resolution. This indicates that the method is not robust

to noise and enforces strict requirements on appropriate data quality. As the

method is shown to be more stable when temporal sampling is reduced, it may

be appropriate to collect higher SNR data at a lower time resolution. This is a

speculative recommendation as time undersampling still reduces accuracy of the

retrieved parameters.

All two-compartment cases showed good agreement between the network

and measurement concentrations when using noiseless fully sampled data

(Figure 6.18). However, while the Case 2 network concentration shows very

good agreement with measurement concentration (differences < 1%Cmax), the

parameter recovery has a high Ērel (>200). To assess the accuracy of parameter

solutions the original forwards model (Chapter 5) was applied showing a worse

concentration reconstruction than the network output (Figure 6.23). As Cases 1

and 3 show close reconstruction to ground truth parameters most differences

observed will be due to interpolation of transport parameters to the voxel

interfaces. However, Case 2 showed large differences due to poorly recovered

velocity values. This reinforces that the optimal solution cannot be identified

from a close fit between measurement and network concentrations.

Boundary conditions are usually applied as additional data or physics loss

terms in PINNs implementations. Unfortunately, boundary constraints are

needed for separate compartments which are not directly accessible from

measurement data. Lack of enforced boundary conditions is identified as a key

issue within the tkPINNs setup. Adjustment of the network to allow estimation

of compartmental influx could improve accuracy for other parameters. This was

pursued during development, but a functional network was not realised due to

unresolved compatibility issues with automatic differentiation. Alternatively,

specifically designed systems with arterial-only regions at the boundaries could
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be investigated, or regions with clear arterial input from scan data might be

used.

Generally, poor reconstructions in the two-compartment systems have velocity

in one compartment reconstructed more accurately than the other. While use of

the velocity picture avoids soft constraint of flow incompressibility, definition in

the flow picture could be useful. Recasting the network to use flows could leverage

the interlinked changes in compartment blood flow, rather than the use of two

independent velocity fields. However, with more parameter fields to solve, zero-

value solutions (a common problem with PINNs) may become more prevalent.

An ever-present issue within PINNs are zero-value solutions. Networks can

return zero-value solutions as by default they return ‘perfect’ physics loss terms.

This hinges on the way the physics-based residual terms are calculated using

automatic differentiation to determine if the physics fits at any point, rather than

the standard method where physics is enforced via a full time course simulation.

Constraints on the gradient of the physics loss term could be applied, which has

been shown to improve identification of non-trivial solutions recovery in some

PINNs applications (Leiteritz & Pflüger, 2021).

Alternative weighting strategies have been shown to improve outputs’

convergence and accuracy from PINNs networks (Jagtap et al., 2020). This is

reflected in the presented results (Section 6.3.5) where the effect of

down-weighting the data portion of the loss function by a factor of 0.01 and

0.001 is investigated.

6.4.4 General Observations

It is noteworthy to highlight differences between the internal working of the

physics residuals calculated within the tkPINNs approach and the forwards

model used to calculate the voxel-wise concentration evolution. As with any

finite difference method forward model, the produced solution suffers from the

effect of numerical diffusion (Kajishima et al., 2017). Additionally, TKs

describes the underlying mechanisms in an averaged sense rather than the exact

underlying blood flow within blood vessels according to the full fluid dynamics
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equations. Conversely, PINNs applies automatic differentiation at the

collocation points with the system treated as continuous.

Recent forward modelling with PINNs (Krishnapriyan et al., 2021) has

identified that optimisation landscapes produced using soft constraints as a

common failure mode which leads to poor solution identification. Alternative

strategies, such as sequential training with temporal data showed error

reduction of 1-2 orders of magnitude (Krishnapriyan et al., 2021).

6.5 Conclusion

This chapter outlines a positive application of a PINNs-based method for the

spatiotemporal retrieval of both 1D and 2D one-compartment systems. Across

all tested 1D one-compartment systems the recovery appears robust to

undersampling and increasing measurement noise. The presented tkPINNs

method showed low error recovery with noiseless data for some

two-compartment systems. This illustrates an encouraging preliminary

application of PINNs methodology to the spatiotemporal TK problem. Multiple

solutions are observed for two-compartment systems, indicating identifiability

issues. Additional boundary condition constraints could help suppress multiple

or incorrect solutions in two-compartment systems. Generally, hyperparameter

optimisation is recommended to optimise the approach and reduce trivial

solutions.
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Chapter 7

Conclusions and

Recommendations for Future

Work

7.1 Conclusions

Here, the overall thesis conclusions are summarised and assessed in relation to

the four main aims. Individual chapters contain detailed specific conclusions

associated with the work presented within them.

Aim I: Evaluate Ktrans quantification in current DCE-MRI perfusion

analysis software.

Deviation in Ktrans quantification is reported across 10 popular single voxel

analysis pipelines currently available for DCE-MRI analysis (Chapter 3). This

research highlights that there is some way to go in order to standardise Ktrans

quantification fully. However, due to the wide-scale uptake and considerable

literature relating these PK quantities to a range of pathologies, these current

techniques remain incredibly useful. Furthermore, the scalability of such methods

cannot be overlooked due to the sheer amount of data present in DCE-MRI data

sets.

Aim II: Review previous contributions of spatiotemporal modelling in

perfusion MRI.

A set of 9 nested models of increasing complexity was identified within the
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spatiotemporal literature review (Chapter 4). Implementations within the field

were found to commonly target one-compartment systems with very sparse

contributions for two-compartment systems. This work identified the need for

new implementations, applying physically relevant assumptions, which target

two-compartment systems. Such developments are important to appropriately

model more complex biological systems.

Aim III: Investigate identifiability of one- and two-compartment

spatiotemporal models.

For one-compartment systems this thesis illustrates good reconstruction of

spatiotemporal parameters when considering data with and without measurement

error (Chapters 5 and 6). This shows that these one-compartment systems can be

readily characterised by their full spatial nature. When approaching fitting using

standard optimisation strategies this research also details good reconstruction of

concentration influx at the boundaries (Chapter 5).

For two-compartment perfusion systems this work highlights some

identifiability issues in the form of multiple solutions (Chapters 5 and 6). When

applying standard optimisation strategies in high SNR or noiseless data,

concentration influx and velocity within the arterial compartment can be

recovered well (Chapter 5).

Aim IV: Assess Physics Informed Neural Networks for suitability in

scaling up spatiotemporal methods.

During work on standard optimisation for spatiotemporal systems, long

computational runtimes are identified as a barrier for application to realistic

datasets (Chapter 5). The potential suitability of a PINNs-based approach is

demonstrated by several positive parameter reconstructions. A promising

outcome for future application to realistic data volumes is the straightforward

scalability of the method into 2D. It is proposed in this work that inability to

properly integrate boundary conditions into the network causes additional

identifiablity issues within the PINNs setup. Lack of boundary condition control

reduces the suitability of the presented approach for multi-compartment
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systems.

7.2 Overall Conclusions

Work within this thesis makes good progress towards addressing the

multi-compartment problem by identifying concerns surrounding multiple

solutions. Previous work in the field has focused on one-compartment systems

or two-compartment systems with unrealistic assumptions to reduce the number

of free parameters. The work on two-compartmental models with perfusion

exchange (Chapters 5 and 6) provides an important addition to the field. This

work has generated new open questions on fundamental system identifiability.

Spatiotemporal models show real promise as a paradigm change within

perfusion MRI. However, further progression is needed to develop techniques

appropriate for two-compartment models of full 4D DCE-MRI data sets.

Additionally, parameters resulting from spatiotemporal approaches will require

validation and benchmarking efforts before translation to any routine clinical

setting is possible.

7.3 Recommendations for Future Work

To aid efforts in the standardisation of single voxel approaches, Chapter 3 offers

several suggestions for future investigation. Questions that emerge about the

origin of differences observed between software packages are critical to address

in work going forward. For example, analysis of co-variance between model

parameters and global input function influence are raised as an issue in

Chapter 3. Further comparison of different software packages on single common

datasets would be a useful approach to investigate this. Alternatively,

individual software packages with variable pipeline setups could analyse

differences produced by applying a variety of options to the same data set.

Work is required on increasing identifiability of two-compartment systems.

This could be pursued via the modification of experimental conditions, to provide

higher temporal resolution of data, or enhanced spatial information from multiple
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bolus injections. Additionally, further development of the optimisation method is

required, from underlying assumptions to implementation strategies. This could

include fixing less important parameters to literature values, or appropriate use

of regularisation to improve system identification.

Future work for the PINNs implementation should address scaling up the

application to handle full 4D clinical DCE-MRI data, with 4D synthetic data

produced for accuracy verification. Fundamentally, work on appropriate

implementation of boundary conditions for PINNs based approaches is also

required. This is especially crucial in multi-compartment systems where

compartment concentrations are not accessible from measurement. Integration

of system inputs as network produced quantities should be investigated. In

terms of method design, the PINNs approach requires additional work on

hyperparameter tuning, especially when fitting systems with appreciable

measurement noise.

7.4 Summary

Overall this research has provided useful insights into future directions for

perfusion imaging. It develops a spatiotemporal approach for one- and

two-compartment systems from a standard gradient descent method to include

machine learning techniques in the form of PINNs. Critically, it has detailed

that two-compartment perfusion systems can have multiple possible solutions

leading to identifiability issues. The PINNs approach is potentially suitable for

transition into clinically relevant data sizes, although boundary conditions

should be investigated in multi-compartment systems. This work sets the stage

for future developments and identifies that further constraints on data quality

and optimisation choices should be explored for more robust identification of

two-compartment perfusion systems.
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Appendix A

Additional Information for

Chapter 3

Details contained in the supporting information from Shalom et al. (2024a) which

were unsuitable for the main body of this thesis are include within this appendix.

A.1 RIDER NEURO Sequence Details

Content in this appendix section is included from Supporting Information 1 from

Shalom et al. (2024a).

RIDER NEURO General Information:

• All MRI data sets were collected on the same 1.5T imaging magnet.

• All the patients within the full RIDER NEURO data set including the sub-

set selected for the challenge have recurrent glioblastoma.

• For the test and retest visits, the images were taken 2 days apart, except

for RIDER Neuro MRI-1086100996 which was not a part of the sub-set

selected for the challenge or used for generation of either synthetic dataset.

The details of the main RIDER NEURO sequences are as follow:

• For T1 mapping variable flip angle (VFA) 3D FLASH images in the axial

plane were obtained using flip angles of 5°, 10°, 15°, 20°, 25°, and 30°TR of

4.43 ms, TE of 2.1 ms, 2 signal averages.
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• DCE-MR images acquired using a 3D FLASH technique in the axial plane

were obtained during the intravenous injection of 0.1 mmol/kg of magnevist

at 3 mL/second, started at 24 seconds after the scan had begun. The

dynamic images were obtained with a flip angle (FA) of 25°, TR of 3.8

ms, TE of 1.8 ms using a 1x1x5 mm3 voxel size. The 16-slice volume was

obtained every 4.8 sec (temporal resolution).

Accompanying data:

• Contrast-enhanced 3D FLASH: The patients underwent whole brain 3D

FLASH imaging in the sagittal plane after the administration of magnevist

with the following parameters: TR= 8.6 ms, TE= 4.1 ms, FA= 20°, number

of averages= 1, matrix size= 256x256, voxel size= 1 mm3.

• Contrast-enhanced 3D FLAIR: The patients have 3D FLAIR sequences in

the sagittal plane after the administration of magnevist with the following

parameters: TR= 6000 ms, TE= 353 ms, TI= 2200 ms, FA= 180°, number

of average= 1, matrix size= 256x256; voxel size = 1 mm3.

For additional information, see the RIDER NEURO homepage

(https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI).

A.2 Supplementary Data Tables

Data tables included in this appendix section are from Supporting Information

2, 3 and 4 from Shalom et al. (2024a).
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A.2 Supplementary Data Tables
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A. Additional Information for Chapter 3

Table A.3: Values of the recovered Ktrans values (min−1) over the tumour mask for
each visit from the neutral evaluators in all reproduced submissions. Here C1v1 and
S1v1 denote clinical and synthetic patient 1 at visit 1, respectively. The naming system
follows directly for the remaining sets.

Visit ROCKET
SHIP

MRI-
QAMPER Maydm DCE-

NET FireVoxel PerfLab

C1v1 1.0E-1 1.9E-1 3.4E-2 2.7E-2 8.6E-5 2.5E-2
C1v2 4.1E-2 1.4E-1 6.2E-2 4.9E-2 1.2E-2 6.0E-2
C2v1 1.4E-2 7.6E-2 4.7E-2 3.6E-2 7.0E-2 3.7E-2
C2v2 3.7E-2 1.8E-1 3.0E-2 2.3E-2 6.0E-2 2.7E-2
C3v1 2.6E-2 1.9E-1 6.3E-2 5.0E-2 9.5E-2 3.4E-2
C3v2 1.3E-2 2.0E-1 6.1E-2 4.9E-2 5.7E-2 5.8E-2
C4v1 2.5E-2 8.0E-2 3.2E-2 2.3E-2 1.2E-1 2.9E-2
C4v2 2.5E-2 1.6E-1 3.0E-2 2.2E-2 1.3E-1 2.0E-2
C5v1 2.6E-2 1.7E-1 4.5E-2 3.2E-2 9.7E-2 2.9E-2
C5v2 2.8E-2 1.4E-1 4.3E-2 3.3E-2 8.8E-2 2.6E-2
C6v1 2.2E-2 2.3E-1 6.0E-2 3.2E-2 3.5E-1 5.4E-2
C6v2 2.0E-2 2.5E-1 2.5E-2 1.7E-2 2.9E-1 1.9E-2
C7v1 4.9E-2 4.2E-1 3.8E-2 2.5E-2 1.7E-1 4.4E-2
C7v2 5.9E-2 3.2E-1 6.2E-2 4.9E-2 6.0E-3 3.2E-2
C8v1 3.1E-2 2.5E-1 3.1E-2 2.1E-2 6.2E-2 1.8E-2
C8v2 2.6E-2 2.2E-1 3.4E-2 1.7E-2 1.4E-1 2.2E-2
S1v1 3.2E-7 8.6E-2 1.7E-2 1.4E-2 1.6E-2 2.0E-2
S1v2 8.0E-6 2.2E-1 7.5E-3 5.5E-3 5.4E-3 1.1E-2
S2v1 1.6E-1 9.2E-2 1.2E-1 1.1E-1 4.2E-4 1.0E-1
S2v2 1.2E-1 1.0E-1 8.2E-2 7.4E-2 4.4E-2 1.1E-1
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A.2 Supplementary Data Tables

T
able

A
.4:

A
sum

m
ary

of
O

SIPI
scores

for
allentries.

95%
confidence

intervals
for

S
core

a
ccu

r
a

cy ,
S

core
r
ep

ea
t ,and

S
core

r
ep

r
o
d
u

ce
are

show
n

w
ith

±
notation.

C
onfidence

intervals
are

generated
using

scores
for

each
σ

µ
term

in
the

sum
m

ations
(Table

3.3)
separately.

Subm
ission

R
ank

S
core

a
ccu

r
a

cy
S

core
r
ep

ea
t

S
core

r
ep

r
o
d
u

ce
O

S
I
P

I
silv

er

(%
)

O
S

I
P

I
g
o
ld

(%
)

D
C

E-N
ET

1
0.92

±
0.06

0.85
±

0.08
1.00

±
0.00

78
78

M
adym

2
0.85

±
0.07

0.85
±

0.08
1.00

±
0.00

73
73

PerfLab
3

0.78
±

0.11
0.80

±
0.08

0.98
±

0.01
62

61
M

R
I-

Q
A

M
PER

4
0.72

±
0.18

0.86
±

0.08
0.93

±
0.06

62
57

FireVoxel
5

0.57
±

0.04
0.78

±
0.07

0.65
±

0.09
45

29
RO

C
K

ET
SH

IP
6

0.59
±

0.28
0.64

±
0.12

0.74
±

0.05
37

28

Im
ageJ/

M
R

Icron
7

0.85
±

0.04
0.68

±
0.12

N
/R

58
N

/R

O
H

SU
8

0.67
±

0.04
0.79

±
0.07

N
/R

53
N

/R
U

W
Q

IBlab
9

0.61
±

0.05
0.81

±
0.09

N
/R

50
N

/R
A

LIC
E

10
0.54

±
0.17

0.86
±

0.09
N

/R
46

N
/R

174



Appendix B

Data Tables for Chapter 5

Data tables in the following appendix detail the mean (µ) and standard deviation

(σ) of Erel values from parameter recoveries in Chapter 5.

B.1 One-Compartment Systems

Table B.1: Erel values for one-compartment system across all cases in noiseless data
using the standard optimisation approach.

Case
Erel

u J
µ σ µ σ

1 0.26 0.20 2.51 4.31
2 0.38 0.25 3.13 4.93
3 0.48 0.37 3.01 4.92

Overall 0.37 0.30 2.88 4.73

Table B.2: Erel values for one-compartment system Case 1 for each initial guess using
the standard optimisation approach.

Case Guess
Erel

u J
µ σ µ σ

1 1 0.26 0.20 2.53 4.29
1 2 0.27 0.20 2.53 4.29
1 3 0.26 0.20 2.48 4.29
1 4 0.26 0.20 2.49 4.33
1 5 0.26 0.20 2.50 4.33
1 6 0.26 0.20 2.52 4.32

!
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B.2 Two-Compartment Systems

Table B.3: Erel values for one-compartment system Case 2 for each initial guess using
the standard optimisation approach.

Case Guess
Erel

u J
µ σ µ σ

2 1 0.38 0.25 3.09 4.95
2 2 0.39 0.26 3.18 4.91
2 3 0.40 0.27 3.20 4.91
2 4 0.38 0.25 3.14 4.91
2 5 0.37 0.24 3.06 4.94
2 6 0.38 0.26 3.11 4.95

Table B.4: Erel values for one-compartment system Case 3 for each initial guess using
the standard optimisation approach.

Case Guess
Erel

u J
µ σ µ σ

3 1 0.47 0.37 3.01 4.92
3 2 0.48 0.37 2.99 4.94
3 3 0.49 0.38 3.06 4.90
3 4 0.47 0.36 2.99 4.92
3 5 0.48 0.37 3.02 4.91
3 6 0.48 0.37 3.01 4.91

B.2 Two-Compartment Systems

Table B.5: Erel values for all one-compartment system cases across each SNR level
using the standard optimisation approach.

SNR
Erel

u J
µ σ µ σ

5 2.42 2.78 16.08 15.57
10 1.15 1.26 8.54 8.34
15 0.82 0.90 6.47 6.71
20 0.67 0.66 5.18 5.38
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B. Data Tables for Chapter 5

Table B.6: Erel values for one-compartment system Case 1 across each SNR level
using the standard optimisation approach.

Case SNR
Erel

u J
µ σ µ σ

1 5 2.26 2.84 11.51 10.78
1 10 1.22 1.32 6.43 6.03
1 15 0.81 0.82 5.52 5.01
1 20 0.66 0.69 4.40 4.51

Table B.7: Erel values for one-compartment system Case 2 across each SNR level
using the standard optimisation approach.

Case SNR
Erel

u J
µ σ µ σ

2 5 2.70 3.22 19.57 18.76
2 10 1.13 1.46 10.14 9.26
2 15 0.80 0.99 7.95 8.06
2 20 0.65 0.63 6.11 6.11

Table B.8: Erel values for one-compartment system Case 3 across each SNR level
using the standard optimisation approach.

Case SNR
Erel

u J
µ σ µ σ

3 5 2.29 2.17 17.15 14.99
3 10 1.10 0.95 9.05 8.90
3 15 0.85 0.90 5.94 6.44
3 20 0.70 0.67 5.02 5.27

Table B.9: Erel values for all one-compartment system cases across each
undersampling level using the standard optimisation approach.

Dt
Erel

u J
µ σ µ σ

2 0.37 0.29 2.85 4.74
4 0.43 0.54 7.60 11.97
6 2.15 1.97 12.65 16.20
8 14.40 15.28 24.64 47.34
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B.2 Two-Compartment Systems

Table B.10: Erel values for one-compartment system Case 1 across each
undersampling level using the standard optimisation approach.

Case Dt
Erel

u J
µ σ µ σ

1 2 0.26 0.19 2.48 4.30
1 4 0.34 0.46 6.60 11.29
1 6 4.70 0.79 12.13 14.18
1 8 33.19 12.35 55.23 72.26

Table B.11: Erel values for one-compartment system Case 2 across each
undersampling level using the standard optimisation approach.

Case Dt
Erel

u J
µ σ µ σ

2 2 0.32 0.23 2.79 4.65
2 4 0.38 0.40 7.42 11.88
2 6 2.61 2.19 12.70 15.83
2 8 18.50 17.15 31.87 56.37

Table B.12: Erel values for one-compartment system Case 3 across each
undersampling level using the standard optimisation approach.

Case Dt
Erel

u J
µ σ µ σ

3 2 0.37 0.29 2.85 4.74
3 4 0.43 0.54 7.60 11.97
3 6 2.15 1.97 12.65 16.20
3 8 14.40 15.28 24.64 47.34

Table B.13: Erel values for all two-compartment system cases across all initial guesses.

Parameter Erel
mean std

Kva 44.65 76.52
ua 27.06 82.04
uv 54.87 121.37
Ja 12.99 38.05
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B. Data Tables for Chapter 5

Table B.14: Erel values for two-compartment system Case 1 for each initial guess.

Case Guess
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
1 1 6.28 7.98 3.19 4.50 23.84 27.96 4.26 4.19
1 2 6.08 7.78 3.30 4.67 22.72 28.70 4.38 4.22
1 3 8.34 9.01 16.69 15.10 35.86 37.67 4.44 3.97
1 4 19.11 25.82 273.54 186.44 77.69 72.13 12.71 12.25
1 5 19.04 25.80 273.73 186.68 77.17 72.55 12.62 12.20

Total 11.77 18.54 114.09 175.98 47.46 57.60 7.68 9.31

Table B.15: Erel values for two-compartment system Case 2 for each initial guess.

Case Guess
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
2 1 9.08 9.14 6.15 5.42 32.32 50.32 4.92 3.04
2 2 9.11 9.03 6.77 6.15 47.67 128.49 4.93 3.10
2 3 11.04 17.71 7.30 8.02 40.24 79.14 5.01 4.06
2 4 274.88 177.86 157.55 136.38 115.51 165.35 93.54 117.93
2 5 15.64 29.55 7.64 9.43 40.80 69.00 5.24 5.58

Total 63.95 133.14 37.08 85.98 55.31 111.41 22.73 63.63

Table B.16: Erel values for two-compartment system Case 3 for each initial guess.

Case Guess
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
3 1 5.42 7.54 13.94 17.99 34.66 38.42 8.36 8.15
3 2 5.41 7.71 13.09 16.53 30.31 39.50 8.60 8.16
3 3 5.46 7.66 13.02 16.32 30.37 39.27 8.60 8.10
3 4 5.51 7.62 13.21 16.60 30.33 39.27 8.55 8.03
3 5 5.44 7.79 13.99 18.32 30.32 39.18 8.70 8.33

Total 5.45 7.66 13.45 17.18 31.20 39.17 8.56 8.16

Table B.17: Erel values for all two-compartment systems at each SNR.

SNR
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
5 49.79 95.26 83.30 158.33 95.16 151.94 37.03 23.26
10 35.72 72.77 32.16 47.15 89.47 184.74 2.53 1.86
15 27.94 63.00 23.57 47.20 69.13 114.24 11.55 6.41
20 22.47 50.92 24.06 52.26 60.44 74.40 6.59 2.38
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B.2 Two-Compartment Systems

Table B.18: Erel values for two-compartment system Case 1 at each SNR.

Case SNR
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
1 5 19.76 20.06 123.05 176.07 83.35 69.81 33.70 32.54
1 10 15.62 17.64 27.23 28.94 74.56 63.68 17.69 16.19
1 15 11.82 12.84 22.10 24.23 52.47 49.22 10.76 10.34
1 20 10.27 13.73 11.58 14.08 48.37 46.72 8.96 7.40

Table B.19: Erel values for two-compartment system Case 2 at each SNR.

Case SNR
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
2 5 115.68 141.69 95.85 196.87 130.83 242.84 63.34 71.74
2 10 80.14 111.53 44.79 70.73 137.56 302.24 40.00 51.88
2 15 63.15 98.71 26.96 72.46 99.63 181.11 14.65 14.77
2 20 48.91 80.14 32.63 80.37 83.79 104.74 20.46 22.42

Table B.20: Erel values for two-compartment system Case 3 at each SNR.

Case SNR
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
3 5 13.95 14.79 30.98 31.13 71.29 58.59 23.94 20.64
3 10 11.38 12.93 24.46 24.18 56.30 57.84 14.98 12.29
3 15 8.84 11.65 21.65 28.80 55.30 50.32 10.59 9.60
3 20 8.24 10.87 27.97 35.92 49.16 51.36 10.33 9.16

Table B.21: Erel values for all two-compartment systems at each undersampling rate
using the standard optimisation approach.

Dt
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
2 30.27 40.23 6.93 8.40 7.76 12.04 6.78 5.79
4 67.85 94.47 14.42 16.97 220.43 371.22 16.27 13.91
6 73.07 62.93 33.96 33.84 138.48 178.73 34.82 29.11
8 81.68 110.28 53.18 46.22 159.43 181.11 67.97 50.68
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B. Data Tables for Chapter 5

Table B.22: Erel values for two-compartment system Case 1 at each undersampling
rate.

Case Dt
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
1 2 6.28 7.98 3.19 4.50 23.84 27.96 4.26 4.19
1 4 13.10 8.75 595.99 446.69 69.63 41.84 20.26 16.75
1 6 30.80 33.47 329.84 188.00 92.09 80.26 23.89 22.33
1 8 41.42 41.49 344.64 132.39 56.26 44.51 56.64 50.49

Table B.23: Erel values for two-compartment system Case 2 at each undersampling
rate using the standard optimisation approach.

Case Dt
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
2 2 9.08 9.14 6.15 5.42 32.32 50.32 4.92 3.04
2 4 20.74 25.05 26.96 24.54 73.49 139.59 13.91 13.20
2 6 57.29 33.52 47.72 38.90 48.44 44.05 47.20 37.21
2 8 78.53 38.05 110.41 158.74 94.89 167.19 59.72 49.92

Table B.24: Erel values for two-compartment system Case 3 at each undersampling
rate using the standard optimisation approach.

Case Dt
Erel

ua uv Kva Ja

µ σ µ σ µ σ µ σ
3 2 5.42 7.54 13.94 17.99 34.66 38.42 8.36 8.15
3 4 9.43 9.68 38.33 40.45 60.41 73.82 9.49 8.98
3 6 13.80 15.22 37.87 63.24 78.69 49.98 20.30 17.67
3 8 39.59 47.67 23.25 20.73 93.88 74.72 42.24 56.33
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B.2 Two-Compartment Systems
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Appendix C

Data Tables for Chapter 6

Data tables in the following appendix detail the mean (µ) and standard deviation

(σ) of Erel values from parameter recoveries in Chapter 6.

C.1 One-Compartment Systems

Table C.1: Erel values assessed across one-compartment cases for noiseless data using
tkPINNs method.

Case
Erel

u
µ σ

1 4.28 4.41
2 6.68 5.46
3 4.97 3.58

Table C.2: Erel values assessed across all one-compartment cases at each SNR level.

SNR
Erel

u
µ σ

5 6.61 5.25
10 5.36 4.58
15 5.27 4.67
20 5.25 4.68

C.2 Two-Compartment Systems
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C.2 Two-Compartment Systems

Table C.3: Erel values assessed across one-compartment Case 1 at each SNR level
using tkPINNs method.

Case SNR
Erel

u
µ σ

1 5 7.50 6.52
1 10 4.79 4.58
1 15 4.25 4.41
1 20 4.15 4.31

Table C.4: Erel values assessed across one-compartment Case 2 at each SNR level
using tkPINNs method.

Case SNR
Erel

u
µ σ

2 5 6.23 4.49
2 10 6.29 5.19
2 15 6.48 5.40
2 20 6.52 5.49

Table C.5: Erel values assessed across one-compartment Case 3 at each SNR level
using tkPINNs method.

Case SNR
Erel

u
µ σ

3 5 6.10 4.33
3 10 5.02 3.70
3 15 5.08 3.79
3 20 5.09 3.76

Table C.6: Erel values assessed across all one-compartment at each undersampling
level using tkPINNs method.

Dt
Erel

u
µ σ

2 5.31 4.66
4 5.27 4.60
6 5.81 4.87
8 5.86 5.18
10 7.96 6.67
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C. Data Tables for Chapter 6

Table C.7: Erel values assessed across one-compartment Case 1 at each undersampling
level using tkPINNs method.

Case Dt
Erel

u
µ σ

1 2 4.28 4.41
1 4 4.27 4.37
1 6 5.48 5.02
1 8 5.00 4.86
1 10 11.74 8.38

Table C.8: Erel values assessed across one-compartment Case 2 at each undersampling
level using tkPINNs method.

Case Dt
Erel

u
µ σ

2 2 6.68 5.46
2 4 6.75 5.43
2 6 6.70 5.50
2 8 6.71 5.58
2 10 7.03 4.89

Table C.9: Erel values assessed across one-compartment Case 3 at each undersampling
level using tkPINNs method.

Case Dt
Erel

u
µ σ

3 2 4.97 3.58
3 4 4.81 3.41
3 6 5.25 3.81
3 8 5.87 4.93
3 10 5.09 4.01

Table C.10: Erel values for each two-compartment systems case for noiseless data.

Case
Erel

ua uv Kva

µ σ µ σ µ σ
1 10.13 11.86 11.85 7.16 28.79 34.75
2 239.85 162.92 53.39 11.58 239.37 88.03
3 9.09 6.54 16.28 14.73 35.12 54.93

Overall 86.36 143.84 27.18 21.93 101.09 116.44
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Table C.11: Erel values assessed across all two-compartment system cases at each
SNR level.

SNR
Erel

ua uv Kva

µ σ µ σ µ σ
5 95.89 52.76 94.37 49.59 92.21 105.91
10 65.28 49.43 86.02 45.01 73.58 105.86
15 58.71 91.96 80.54 42.29 99.74 114.91
20 1329.19 2410.84 80.80 44.55 1304.21 1840.66

Table C.12: Erel values assessed across two-compartment Case 1 at each SNR level
using tkPINNs method.

Case SNR
Erel

ua uv Kva

µ σ µ σ µ σ
1 5 93.74 50.13 103.88 55.33 98.23 54.50
1 10 65.05 49.10 85.71 45.89 70.67 57.44
1 15 22.55 22.99 74.69 39.04 48.99 57.34
1 20 18.60 21.75 76.40 42.61 48.98 52.00

Table C.13: Erel values assessed across two-compartment Case 2 at each SNR level
using tkPINNs method.

Case SNR
Erel

ua uv Kva

µ σ µ σ µ σ
2 5 99.94 50.69 98.98 44.58 98.93 166.88
2 10 97.30 47.64 97.25 40.94 100.36 165.97
2 15 142.31 119.09 93.73 40.19 201.35 133.23
2 20 3953.11 2666.15 94.14 42.41 3819.52 817.76

Table C.14: Erel values assessed across two-compartment Case 3 at each SNR level
using tkPINNs method.

Case SNR
Erel

ua uv Kva

µ σ µ σ µ σ
3 5 94.00 56.97 80.27 44.91 79.48 50.86
3 10 33.50 24.79 75.10 45.30 49.72 38.43
3 15 11.28 10.65 73.20 44.31 48.89 55.57
3 20 15.87 11.92 71.86 45.40 44.13 49.69
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Table C.15: Erel values assessed across two-compartment Case 1 at each
undersampling level using tkPINNs method.

Case Dt
Erel

ua uv Kva

µ σ µ σ µ σ
1 2 10.13 11.86 11.85 7.16 28.79 34.75
1 4 8.35 10.85 7.31 4.31 19.23 23.02
1 6 14.35 17.89 36.57 15.78 43.85 40.31
1 8 19.21 20.38 61.15 32.56 52.10 42.43
1 10 29.96 22.70 75.75 47.15 49.56 35.57

Table C.16: Erel values assessed across two-compartment Case 2 at each
undersampling level using tkPINNs method.

Case Dt
Erel

ua uv Kva

µ σ µ σ µ σ
2 2 239.85 162.92 53.39 11.58 239.37 88.03
2 4 344.13 225.67 50.60 10.10 313.04 116.65
2 6 460.36 302.33 44.65 7.52 406.99 159.95
2 8 358.04 241.90 40.36 7.36 352.75 131.93
2 10 160.87 116.22 70.34 23.22 177.42 63.87

Table C.17: Erel values assessed across two-compartment Case 3 at each
undersampling level using tkPINNs method.

Case Dt
Erel

ua uv Kva

µ σ µ σ µ σ
3 2 9.09 6.54 16.28 14.73 35.12 54.93
3 4 17.91 15.69 50.29 24.41 53.51 56.07
3 6 15.35 10.72 40.81 15.35 77.84 122.04
3 8 21.74 18.03 109.44 79.32 143.63 162.84
3 10 18.71 17.71 22.06 15.69 61.25 61.91
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Appendix D

Paper Abstracts

In the interest of thesis flow the abstract from the OSIPI DCE-Challenge paper

(Shalom et al., 2024a) is not included in Chapter 3. The structured abstract as

accepted for publication is included below for completeness.

Abstract; The ISMRM Open Science Initiative for

Perfusion Imaging (OSIPI): Results from the OSIPI-DCE

Challenge.

Purpose: Ktrans has often been proposed as a quantitative imaging biomarker

for diagnosis, prognosis, and treatment response assessment for various tumors.

None of the many software tools for Ktrans quantification are standardized. The

ISMRM OSIPI-DCE challenge was designed to benchmark methods to better

help the efforts to standardize Ktrans measurement.

Methods: A framework was created to evaluate Ktrans values produced by

DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI

community was invited to apply their pipelines for Ktrans quantification in

glioblastoma from clinical and synthetic patients. Submissions were required to

include the entrants’ Ktrans values, the applied software, and a standard

operating procedure (SOP). These were evaluated using the proposed OSIPIgold

score defined with accuracy, repeatability and reproducibility components.

Results: Across the 10 received submissions, the OSIPIgold score ranged

from 28-78% with a 59% median. The accuracy, repeatability and

reproducibility scores ranged from 0.54-0.92, 0.64-0.86 and 0.65-1.00,

respectively (0-1=lowest-highest). Manual arterial input function (AIF)
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selection markedly affected the reproducibility and showed greater variability in

Ktrans analysis than automated methods. Furthermore, provision of a detailed

SOP was critical for higher reproducibility.

Conclusions: This study reports results from the OSIPI-DCE challenge and

highlights the high inter-software variability within Ktrans estimation, providing a

framework for ongoing benchmarking against the scores presented. Through this

challenge, the participating teams were ranked based on the performance of their

software tools in the particular setting of this challenge. In a real-world clinical

setting, many of these tools may perform differently with different benchmarking

methodology.
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