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Abstract

The density functional theory (DFT) code, HFODD, was used to calculate magnetic dipole

µ and electric quadrupole Q moments, with emphasis on the former, of the odd neighbours of

eight doubly magic nuclei (16O, 40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 132Sn and 208Pb).

In our approach, we made use of pure Hartree-Fock using the Skyrme and Gogny func-

tionals while aligning the angular momenta along the axial-symmetry axis and breaking time-

reversal symmetry, which allowed for a full analysis of the spin polarization effects due to the

unpaired nucleon. In order to restore the broken symmetries, the projection-after-variation

(PAV) method was used which provides us with the spectroscopic moments. Our results were

achieved by adjusting one coupling constant in the time-odd mean-field sector of the nuclear

functional, namely the time-odd spin-spin isovector Landau parameter g′0. The results were

compared with experimental data, where available, to determine the validity of our work.

From the analysis, we have concluded that our approach is promising and stands as a solid

base for further work into the area and allowing the opportunity to refine the work through

additional approaches e.g. deformed-configuration interaction. We note that as a consequence

of our work, we determined that the use of effective charges and effective g-factors are not

needed to describe the nuclear moments.
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Chapter 1

Introduction

1.1 History

Ernest Rutherford’s discovery of the atomic nucleus in his famous α-particle scattering experi-

ment in 1911 led to the birth of nuclear physics [Rut11]. This in turn allowed for the proposal

of one of the earliest models of nuclear structure, the so-called liquid drop model, which then

led to the formulation of the semi-empirical mass formula by Carl Friedrich von Weizsäcker

[Wei35]. This formula allows for a simple calculation producing a fairly good approximation

for the binding energy of the nucleus, which we know to be a complex quantum many-body

system.

These advancements led to the study of nuclear moments, starting with the measurements of

magnetic moments in the 1950’s with the development of nuclear magnetic resonance (NMR)

spectroscopy and then later the measurements of electric moments in the 1970’s from the

hyperfine structure of muonic x-rays [Ney03].

This has aided in our understanding of the structure of the atomic nucleus and has led to

the development of many theoretical models describing the properties of the nucleus, including

those discussed in this thesis.

1.2 Past Research

There have been multiple contributions to the study of nuclear structure with regards to nuclear

moments using nuclear density functional theory (DFT) and had great success. However, these

studies have had limitations with which regions of the nuclear landscape that can be modelled

and most often require adjustments to describe different regions. The following list shows the

groups, to date, that have done major work in the field relating to this subject.
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Chapter 2

Nuclear Structure

2.1 Nuclear Shell Model

2.1.1 Magic Numbers

To begin with, the inspiration for the nuclear shell model came from the atomic shell model for

the electrons in the atom. One of the main indicators for a shell structure in the nucleus is the

very apparent maxima of neutron separation energies of specific numbers of nucleons [VHZ01].

This indicated closed shells at specific numbers; 2, 8, 20, 28, 50, 82 and 126.

Further evidence to suggest a shell model and these magic numbers is the experimental

data on the excitation energy of the first excited states of even-even nuclei [Hey04], further

confirming these magic numbers (126 for neutrons only) and a shell structure.

2.1.2 Spherical Shell Model

The spherical shell model is produced by solving the three-dimensional Schrödinger equation:[
− ℏ2

2m
∆i + U(r)

]
ϕi(r⃗) = Eϕi(r⃗) , (2.1)

where U(r) is a radial-symmetric potential, ϕi(r⃗) is the single-particle wavefunction of the i-th

particle, E is the energy and ∆ is the Laplace operator, defined as, ∆ = ∇⃗2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
.

When choosing a potential, it is wise to look to experimental data to determine which will

model the physics the best. A suitable and widely used potential is the Woods-Saxon potential

UWS [WS54]:

UWS =
−U0

1 + e
r−R
a

, (2.2)

14



Spherical Shell Model

where U0 is the depth of the potential, r is the distance from the nucleus, R is the nuclear radius

and a represents the skin thickness. These are usually chosen as R = 1.25A1/3fm, a = 0.524fm

and U0 ≈ 50MeV.

This is regarded as a good approximation for the potential as it reflects the properties of

the matter distribution measured in electron scattering experiments. The only problem with

this potential is that it can only be solved numerically. Due to this, an easily solvable harmonic

oscillator potential, UHO = mω2r2

2
, is usually used and conserves most of the physics. This is

seen by the harmonic oscillator predicting the low magic numbers [Kra88].

After solving the three-dimensional Schrödinger equation using the harmonic oscillator po-

tential, we get the energy eigenstates which are only dependent on the radial quantum number

n and orbital angular momentum l:

Enl = (2(n− 1) + l)ℏω +
3

2
ℏω , (2.3)

where 3/2ℏω is present due to the uncertainty principle (n ̸= 0).

This approach only produces the lower magic numbers and produces a degeneracy for differ-

ent levels where n = l, however this can be improved on by introducing a residual interaction to

the potential in the form of the spin-orbit interaction governed by l⃗ · s⃗. Through this method,

we are able to split all levels dependent on their orbital angular momentum l and spin s.

As the spin-orbit interaction is mainly the scalar product of the orbital angular momentum

and spin operators, the total angular momentum j⃗ = l⃗ + s⃗ is introduced to deal with this.

Therefore, the expectation value is determined using the eigenvalues of each of the operators

[Hey04]:

⟨⃗l · s⃗⟩ = ℏ2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] . (2.4)

Our spin s = 1
2
system results in couplings j+ = l + s = l + 1

2
and j− = l − s = l − 1

2
.

Hence:

j+ = l + s = (l + 1
2
) · (l + 3

2
)− l(l + 1)− 3

4

= l , (2.5)

and,

15



Chapter 2. Nuclear Structure

j− = l − s = (l − 1
2
) · (l + 1

2
)− l(l + 1)− 3

4

= −(l + 1) .

(2.6)

Therefore:

⟨⃗l · s⃗⟩ =

{
ℏ2
2
l, for j+

−ℏ2
2
(l + 1), for j− .

(2.7)

From Equation (2.7), it is easy to see that spin-orbit splitting increases as the orbital angular

momentum l increases.

Therefore the energy eigenstates become:

Enl = (2(n− 1) + l)ℏω +
3

2
ℏω −

{
l for j+

−(l + 1) for j− .
(2.8)

It is now possible to construct an accurate shell model by using modifications from the

realistic Woods-Saxon potential and adding the spin-orbit splitting, shown in Figure (2.1).
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Spherical Shell Model

Figure 2.1: The nuclear shell model showing the full splitting of all levels from the spin-orbit
interaction [BD21].
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Chapter 2. Nuclear Structure

2.2 Nilsson Model

To account for deformations in nuclei, we shall introduce varying parameters on the spatial

coordinates of a potential to best represent the deformation by an ellipsoidal distribution. This

was first introduced by Sven Gösta Nilsson in 1955 [Nil55]. Using the harmonic oscillator, we

see that the oscillators frequency of each axis can be differed and will produce this desired

ellipsoidal distribution.

Therefore, using Cartesian coordinates, we have the potential as follows:

V (r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) . (2.9)

The basic Hamiltonian can now be written as follows:

Ĥ = − ℏ2

2m
∆+

m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) . (2.10)

We must choose these frequencies ω carefully, these are determined to be proportional to

the inverse of the half axes of the ellipsoid [Hey04]:

ωi = ω̊0
R0

ai
, (i ≡ x, y, z) , (2.11)

with, R0 = 1.25fm and ai is the distance from the origin to the i-axis intercept.

We can state the eigenstates (nx, ny, nz) and eigenvalues from the 1D-Harmonic Oscillator:

ϵo(nx, ny, nz) = ℏωx(nx +
1
2
) + ℏωy(ny +

1
2
) + ℏωz(nz +

1
2
) . (2.12)

Due to the incompressibility of nuclear matter, we are required to preserve the condition of

volume conservation [GM96]. This is as follows:

ωxωyωz = ω̊3
0 = constant . (2.13)

As our specific cases have axial symmetry around the z-axis, we can use cylindrical coordi-

nates to simplify the derivation of the eigenvalues. We are now able to define small deviations

on each axis by the use of a deformation parameter:

ω2
x = ω2

y = ω2
0(1 +

2
3
δ) , (2.14)

ω2
z = ω2

0(1− 4
3
δ) , (2.15)

18



2.2. Nilsson Model

with, ω0 = ω̊0(1− 4
3
δ2 − 16

27
δ3)−

1
6 .

Here we now define a new parameter, b(δ) = (ℏ/mω0(δ))
1
2 , which will give the coordinates of

the system a representation in which they are dimensionless, expressed with a prime, r′ = r/b.

This is referred to as a deformation dependent oscillator length and the Hamiltonian is now

able to be expressed, with a term relating to quadrupole deformation containing the relevant

spherical harmonic Y20(r̂
′) [Hey04]:

Ĥ(δ) = ℏω0(δ)

(
−1

2
∆′ +

r′2

2
− 1

3

√
16π

5
δr′2Y20(r̂

′)

)
. (2.16)

From the liquid drop model, we can relate the deformation parameter, β, with this new

parameter, δ. As we have ellipsoidal surfaces, we can say that the dimensionless coordinate, r′,

can be expressed as:

r′ ∼ (1 + βY20(θ
′, ϕ′)) , (2.17)

where,

β ≈ 1

3

√
16π

5
δ ≈ 1.057δ , (2.18)

therefore, it can be said that β ≈ δ.

We have to now define the eigenstates using new quantum numbers:

N = nx + ny + nz = nz + 2nρ +ml , (2.19)

where ml is the projection of the orbital angular momentum on the z-axis.

Therefore, by using Equation (2.12), we can now get the eigenvalues:

ϵδ(nz, nρ,ml) = ℏωz(nz +
1
2
) + ℏω⊥(2nρ +ml + 1)

≃ ℏω̊0

[
(N + 3

2
) + δ(N

3
− nz)

]
.

(2.20)

From the axial symmetry, ml becomes a good quantum number and therefore so is the spin

component, sz. Hence, the eigenvalue for the total angular momentum projection, jz ≡ Ω, can

be defined:

Ω = ml +ms = ml ±
1

2
. (2.21)

Now we are able to characterise a deformed eigenstate of the Hamiltonian in the cylindrical

19



Chapter 2. Nuclear Structure

basis by this set of quantum numbers, also known as Nilsson quantum numbers [RS04]:

Ωπ[Nnzml] , (2.22)

where π is the parity, calculated as π = (−1)l = (−1)N .

This model presented so far is very good at showing the major effects of nuclear deformation,

however, it is unable to produce a realistic single-particle spectrum. In order to achieve this,

more terms must be added to the Hamiltonian. We must add the spin-orbit to reproduce the

magic numbers and add the l2 − ⟨l̂2⟩N term to ’flatten’ the potential at higher l values, near

the surface, as the harmonic oscillator potential fails to give the correct compression of these

states.

We now define this new upgraded Hamiltonian [Hey04]:

ĤNilsson = ℏω0(δ)

(
−1

2
∆′ +

r′2

2
− βr′2Y20(r̂′)

)
− κℏω̊0

(
2l̂ · ŝ+ µ(l̂2 − ⟨l̂2⟩N)

)
, (2.23)

where, κ is a parameter describing the spin-orbit strength and µ is an adjustable parameter

used to shift the higher l states. For large deformations, the l2 and ⟨l̂2⟩N terms are neglected

due to the over-powering effect that the quadrupole deformation has.

Presented below are all Nilsson plots used in the analysis to confirm the occupied states.
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2.2. Nilsson Model
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Figure 4.  Nilsson diagram for protons or neutrons, Z or N ≤ 50 (ε4 = 0).
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Figure 2.2: Nilsson diagram for protons or neutrons, Z or N ≤ 50 [Fir97].
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Figure 5.  Nilsson diagram for neutrons, 50 ≤ N ≤ 82 (ε4 = ε2
2/6).
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Figure 2.3: Nilsson diagram for neutrons, 50 ≤ N ≤ 82 [Fir97].
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Figure 7.  Nilsson diagram for neutrons, 82 ≤ N ≤ 126 (ε4 = ε2
2/6).
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Figure 2.4: Nilsson diagram for neutrons, 82 ≤ N ≤ 126 [Fir97].
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Figure 9.  Nilsson diagram for neutrons, N ≥ 126 (ε4 = ε2
2/6).
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Figure 2.5: Nilsson diagram for neutrons, N ≥ 126 [Fir97].

24



2.2. Nilsson Model

H-13

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

5.0

5.5

6.0

ε2

Figure 11.  Nilsson diagram for protons, 50 ≤ Z ≤ 82 (ε4 = ε2
2/6).
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Figure 2.6: Nilsson diagram for protons, 50 ≤ Z ≤ 82 [Fir97].
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Figure 13.  Nilsson diagram for protons, Z ≥ 82 (ε4 = ε2
2/6).
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Figure 2.7: Nilsson diagram for protons, Z ≥ 82 [Fir97].

26



Chapter 3

Nuclear Moments

3.1 Magnetic Moment

The magnetic moment is a quantity that represents the magnitude and orientation of a magnetic

field of a nucleus. As is the nature of the work presented, we will discuss theory based on

closed shell ±1 nucleon nuclei and should be assumed unless stated otherwise. We will also

use the standard unit for magnetic moments, the nuclear magneton µN = eℏ
2mπ

. Where e is the

elementary charge, ℏ is the reduced Planck’s constant and mπ is the mass of the proton.

3.1.1 Magnetic Dipole

The magnetic moment of nuclei arises from the induction of magnetic fields due to the orbting

charged particles (protons π) and the intrinsic spin s = 1
2
of the nucleons (protons π and

neutrons ν) in the nucleus. The strength of the orbital magnetic field will be proportional to

the orbital angular momentum l of the valence proton.

The bare proton and neutron orbital and spin gyromagnetic factors are [NIS19]:

gπl = µN , gνl = 0 . (3.1)

gπs = +5.586µN , gνs = −3.826µN . (3.2)

Following from this, we get the single-particle magnetic dipole moment operator:

µ̂ = gπl · l̂p + gνs · ŝn + gπs · ŝp , (3.3)

where l̂p is the proton orbital angular momentum operator, ŝn and ŝp are the neutron and proton

spin operators respectively and the neutron orbital contribution excluded due to gνl = 0.
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Chapter 3. Nuclear Moments

Now if we wish to find the value of the magnetic moment, we must apply this operator to the

state with total spin I and projection m in which we are studying. As only the projection onto

an axis can be measured, we use the standard quantization axis and can find the z-component

of the magnetic moment or the magnetic dipole moment µz. Therefore the expectation value

of µ̂z is the magnetic dipole moment µ:

µ(I) = ⟨I,m(m=I)|µ̂z|I,m(m=I)⟩ . (3.4)

In the single particle picture of a doubly magic core with a valance nucleon, with total

angular momentum j around a stable core, we have the following relations that allow for the

calculation of the magnetic dipole moment [Ney03]:

Proton:

µ(j) =

{
j − 1

2
+ µπ for j = l + 1

2

( j
j+1

)(j + 3
2
− µπ) for j = l − 1

2
.

(3.5)

Neutron:

µ(j) =

{
µν for j = l + 1

2

−( j
j+1

)µν for j = l − 1
2
.

(3.6)

Here we use the free proton and neutron moments, µπ = +2.793 and µν = −1.913.

The values calculated for j = l ± 1
2
of each nucleon, are the so called Schmidt moments

and/or Schmidt limits [Sch37]. These are, to an extent, the limits in which most dipole moments

of closed shell ±1 nucleon nuclei fall between. This can be seen in Figure (3.1).

Figure 3.1: Diagram showing the Schmidt limits of dipole moments of closed shell ±1 nucleon
nuclei [McG05].
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3.2. Electric Moment

In our case where the total angular momentum Î =
∑

i=ν,π(l̂i+ŝi) of the system is conserved,

it is possible to subtract the total angular momentum IµN
from the spectroscopic magnetic

dipole moments of odd-Z nuclei only. This allows for us to define a spin magnetic dipole

moment µs and therefore we can compare odd-Z and odd-N dipole moments in an identical

manner:

µs
oddZ ≡ ⟨µ̂⟩ − IµN

= gν′l · ⟨l̂n⟩+ gν′s · ⟨ŝn⟩+ gπ′s · ⟨ŝp⟩, (3.7)

µs
oddN ≡ ⟨µ̂⟩ = gπl · ⟨l̂p⟩+ gνs · ⟨ŝn⟩+ gπs · ⟨ŝp⟩. (3.8)

where ⟨⟩ represents the standard matrix elements and:

gν′l = −µN , gν′s = −4.4826µN , gπ′s = +4.586µN . (3.9)

3.2 Electric Moment

The electric quadrupole moment is a measure of the deviation of charge distribution from

sphericity and the standard units are barns b = 10−28m2.

3.2.1 Electric Quadrupole

The electric quadrupole moment is a quantity that is used to describe the shape of the nuclear

charge distribution of the atomic nucleus. In many cases, this shape is not spherical and

appears to be ellipsoidal, hence we introduce the parameter Q to represent the deviation from

a spherical shape. Here we define the classical electric quadrupole moment operator:

Q̂ = e
Z∑
i=1

(3z2i − r2i ) , (3.10)

where e is the usual electric charge, Z is the total number of protons (proton number) and z

and r are the Cartesian coordinate position of the ith nucleon.

Similar to the case for the magnetic dipole moment, we can calculate the spectroscopic

electric quadrupole moment Qs by finding the expectation value of the Q̂z and applying the

Wigner-Eckart theorem [dT63] (shown in Appendix A):

Qs(I) = ⟨I,m(m=I)|Q̂z|I,m(m=I)⟩ =

√
I(2I − 1)

(2I + 1)(2I + 3)(I + 1)
⟨I||Q̂z||I⟩, (3.11)
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Chapter 3. Nuclear Moments

where ⟨I||Q̂z||I⟩ is the electric quadrupole reduced matrix element.

From this, it is easy to see that for states with I = 1
2
the spectroscopic quadrupole moment

will be zero.

Now that we have formalism for the measured spectroscopic moment Qs, we can include

the theoretical intrinsic moment Q0. These two are related by the following, on the condition

that we assume that the deformation is large and axially symmetric and we have a defined

orientation of the total spin [Ney03]:

Qs =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0 , (3.12)

Q0 = ⟨K|Q̂|K⟩ , (3.13)

where K is the projection of the total spin I onto the z symmetry axis and |K⟩ is the intrinsic
state determined from the Hartree-Fock method in Chapter 5.

Therefore, a non-zero value for the quadrupole moment indicates deformation. If Q0 is

negative the shape is oblate and if Q0 is positive the shape is prolate, shown in Figure (3.2)

where the vertical axis represents the z symmetry axis.

Figure 3.2: Diagram showing basic examples of oblate and prolate quadrupole deformed nuclei
with respect to the z symmetry axis.
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Chapter 4

Density Functional Theory

Density functional theory (DFT) is a computational modelling method whose basis stems from

the variational principle and that uses observables as variational parameters such as the one-

body densities as degrees of freedom. The principle of density functional theory is simply

the constrainted minimisation of an observable, followed by a minimisation in function of the

constraint. DFT is a tool which we can apply across the whole nuclear landscape for the study

of nuclear structure.

We first begin with the definition of a functional. A functional is simply defined as a function

of a function, which mathematically means that it maps a function into a number.

4.1 Variational Principle

The variational principle states that the ground-state energy E0 of a system will be less than

or equal to the expectation value of the Hamiltonian Ĥ using a normalised trial wavefunction

Ψ:

E0 ≤ ⟨Ψ|Ĥ|Ψ⟩ . (4.1)

By varying the wavefunction Ψ until we find the minimum for the expectation value of the

Hamiltonian Ĥ, we can then assume that an approximation of the ground-state energy E0 and

wavefunction Ψ0 has been found:

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ . (4.2)
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4.2 Constrainted Variation

We are able to find the energy E of a system as a function of a select observable Q. This is

done by the means of a constrainted variation.

First we take a set of parameters p⃗ such that they parameterise the whole Hilbert space

|Ψ(p⃗)⟩. Hence we can define:

E(p⃗) = ⟨Ψ(p⃗)|Ĥ|Ψ(p⃗)⟩ , (4.3)

Q(p⃗) = ⟨Ψ(p⃗)|Q̂|Ψ(p⃗)⟩ . (4.4)

We then want to minimise the energy under a constraint given that the observable has a

specific value. This can be done through the minimisation of the Routhian R̂ [Dob16]:

R̂ = Ĥ − λQ̂ , (4.5)

where λ is a constant called a Lagrange multiplier.

The minimisation of the Routhian is done by solving the derivative of the Routhian with

respect to the parameters equal to zero:

∂R̂

∂p⃗
= ∇⃗E − λ∇⃗Q = 0 . (4.6)

From this, we can solve for all λ and obtain p⃗(λ) and therefore we can redefine the energy

and observable:

E(p⃗(λ)) = E(λ), Q(p⃗(λ)) = Q(λ) . (4.7)

Hence we can get the energy as a function of the observable E(Q), now a functional, and

find the ground-state energy E0 and value of the observable Q0 by solving the following:

∂

∂Q
E(Q) = 0 . (4.8)

There are multiple observables that can be chosen and hence will have their own specific

representations in DFT due to the forms of the observables. This could be multiple observables

used together or the observables are defined by a function and therefore complicating the

calculations.

An example is that of the density ρ of spin σ 1
2
and isospin τ 1

2
particles [Dob16]:
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4.3. The Kohn-Sham Method

E = E(ρ̂(r⃗;στ, σ′τ ′)) ⇒ δ

(
Ĥ +

∑
στ,σ′τ ′

∫
dr⃗ U(r⃗;σ′τ ′, στ)ρ̂(r⃗;στ, σ′τ ′)

)
= 0 . (4.9)

4.3 The Kohn-Sham Method

We can now discuss a method developed by Walter Kohn and Lu Jeu Sham in 1965 [KS65].

They propsed that the density can be represented by specific orbitals ϕ for the system. Their

method is essentially the same as that of Hartree-Fock discussed in Chapter 5, however the

Kohn-Sham method is solved using a fixed external potential built using a functional and the

Hartree-Fock method uses a potential built with two-body interactions [Dob16].

We first consider the many-body Kohn-Sham Hamiltonian ĤKS:

ĤKS =
A∑
i=1

ĥKS,i =

∫
dr

[(
ℏ2

2m
+MKS(r⃗)

)
τ̂(r⃗) + UKS(r⃗)ρ̂KS(r⃗)

]
, (4.10)

where ĥKS is the one-body Kohn-Sham Hamiltonian:

ĥKS = −∇
(

ℏ2

2m
+MKS(r⃗)

)
· ∇+ UKS(r⃗) . (4.11)

It is known that the eigenstates of the one-body Kohn-Sham Hamiltonian are the specific

orbitals of the system and hence:

ĥKSϕ
KS
h (r⃗) = ϵKS

h ϕKS
h (r⃗) , (4.12)

where ϵKS
h are the Kohn-Sham eigenenergies and ϕKS

h (r⃗) are the Kohn-Sham orbitals.

From Equation (4.10), ρKS(r⃗) is the particle density and τKS(r⃗) is the kinetic density defined

as:

ρKS(r⃗) =
A∑

h=1

ϕKS
h (r⃗)ϕKS∗

h (r⃗) , (4.13)

τKS(r⃗) =
A∑

h=1

(
∇ϕKS

h (r⃗)
)
·
(
∇ϕKS∗

h (r⃗)
)
, (4.14)

and therefore, we can defineMKS(r⃗) the Kohn-Sham mass function and UKS(r⃗) the Kohn-Sham

potential:
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MKS(r⃗) =
δV [ρ, τ ]

δτ(r⃗)
, UKS(r⃗) =

δV [ρ, τ ]

δρ(r⃗)
. (4.15)

Finally, we are able to get the total energy, known as the Kohn-Sham energy EKS defined

as:

EKS[ρKS, τKS] =

∫
dr

[(
ℏ2

2m
+MKS(r⃗)

)
τKS(r⃗) + UKS(r⃗)ρKS(r⃗)

]
. (4.16)

In order to calculate the energy we must solve the Kohn-Sham equations by means of a

self-consistent iterative process:

1. Start with a sensible approximation for the potentials MKS(r⃗) and UKS(r⃗).

2. Diagonalise the one-body Kohn-Sham Hamiltonian ĥKS to get the Kohn-Sham orbitals

ϕKS
h (r⃗).

3. Occupy the orbitals with particles from the lowest energy state to the Fermi level.

4. Then calculate the Kohn-Sham densities, ρKS(r⃗) and τKS(r⃗), and Kohn-Sham potentials,

MKS(r⃗) and UKS(r⃗).

5. Recycle the new densities and potentials back into the process until convergence is

achieved.
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Chapter 5

Hartree-Fock Method

The Hartee-Fock (HF) method is a method used to approximate the ground state wavefunction

and energy of a stationary, many-body quantum system.

5.1 Hartree-Fock Approximation

We need to begin with the general Hamiltonian in which only two-body interactions are con-

sidered in order to describe the nucleus in terms of its nucleons. The following is the mentioned

Hamiltonian in second quantization form (detailed in Appendix B):

Ĥ =
∑
ij

tij â
†
i âj +

1

4

∑
ijkl

v̄ijkl â
†
i â

†
j âlâk , (5.1)

where tij is the usual kinetic energy, â† and â are the creation and annihilation operators

respectively and vijkl are the matrix elements of the nucleon-nucleon interaction. The indices

i, j, k, l are the labels used to represent the single-particle states.

In the Hartree-Fock method, we work under the assumption that the nuclear wavefunction

can be expressed as a product of single-particle states [GM96]:

|Ψ⟩ = â†1 . . . â
†
i |0⟩

=
A∏
i=1

â†i |0⟩ .
(5.2)

This is commonly known as a Slater determinant and can also have the following form,

which we shall call the Hartree-Fock wavefunction:
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Chapter 5. Hartree-Fock Method

|Ψ⟩ = Φi(r1 . . . rA) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) . . . . . . ϕ1(rA)

ϕ2(r1) ϕ2(r2) . . . . . . ϕ2(rA)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

ϕA(r1) ϕA(r2) . . . . . . ϕA(rA)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.3)

where i = 1, . . . , A, and the single-particle wavefunctions, ϕi, are to be determined by the

variational principle [RS04].

5.2 Hartree-Fock Equations

By calculating the Hartree-Fock energy, we are able to introduce an average single-particle

potential used to deal with long-range effects of the nuclear interaction and a single-particle

density matrix to simplify the method.

By using Wick’s theorem [Wic50] (shown in Appendix C), we are able to calculate the

Hartree-Fock energy EHF given by the following expression:

EHF =
∑
ij

tijρji +
1

2

∑
ijkl

v̄ijklρkiρlj . (5.4)

From this we can define the density matrix ρ (in second quantization) and the Hartree-Fock

potential h:

ρij = ⟨Ψ|â†j âi|Ψ⟩ , (5.5)

hij = tij + Γij , (5.6)

where the self-consistent field Γ is:

Γij =
∑
kl

v̄iljkρkl . (5.7)

Now we can express the Hartree-Fock energy in the simple form:

EHF = Tr tρ+
1

2
Tr Γρ , (5.8)

where Tr is the trace of a matrix and owing to the fact that ρ2 = ρ and Trρ = A, due to the

density and Hartree-Fock potential being diagonal [RS04].
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This then leads to the solving of the Hartree-Fock equations by means of a self-consistent

iterative process:

1. Start with an intitial set of trial wavefunctions.

2. Construct the density and find the Hartree-Fock potential.

3. Solve the Hartree-Fock equations to generate new states.

4. Recycle the new wavefunctions into the process until convergence is achieved.

Convergence is achieved in the process by if the new wavefunctions fed into the method no

longer change. Figure (5.1) shows a basic schematic of the process.

Figure 5.1: Basic schematic of the Hartree-Fock iterative process for solving the Hartree-Fock
equations and calculating the wavefunctions.
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Chapter 6

Energy Density Functionals

We begin by introducing the equipment required to build an energy functional. The functional

can be build from the basic single-particle density matrix ρ̂ with the spatial r, spin σ and

isospin τ coordinates of the wavefunction [Ben02]:

ρ̂ = ρ(r, σ, τ, r′, σ′, τ ′) = 1
4

[
ρ00(r, r

′)δσσ′δττ ′ + s00(r, r
′) · σσσ′δττ ′

+δσσ′

+1∑
t3=−1

ρ1t3(r, r
′)τ t3ττ ′

+
+1∑

t3=−1

s1t3 · σσσ′τ t3ττ ′

]
,

(6.1)

where σσσ′ and τ t3ττ ′ are the matrix elements of the spin and isospin Pauli matrices respectively.

Therefore we can now define the local density ρ, the spin density s, the kinetic density τ ,

the kinetic spin density T , the current j and the spin-orbit tensor
↔
J [Ben02]:

ρtt3(r) = ρtt3(r, r) , (6.2)

stt3(r) = stt3(r, r) , (6.3)

τtt3(r) = ∇ · ∇′ρtt3(r, r
′) |r=r′ , (6.4)

Ttt3(r) = ∇ · ∇′stt3(r, r
′) |r=r′ , (6.5)

jtt3(r) = − i

2
(∇−∇′)ρtt3(r, r

′) |r=r′ , (6.6)
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6.1. Skyrme Interaction

↔
J tt3,ij(r) = − i

2
(∇−∇′)istt3,j(r, r

′) |r=r′ . (6.7)

6.1 Skyrme Interaction

The Skyrme interaction is an effective interaction first proposed in 1956 by Tony Hilton Royle

Skyrme [Sky56]. The interaction was originally designed to be used in Hartree-Fock calulations,

however it is possible to be used with the Kohn-Sham method due to both methods being

similar.

The interaction can be written as a potential Υ consisting of two parts. First being a

two-body term υij and the second being a three-body term υijk [VB72]:

Υ =
∑
i<j

υ
(2)
ij +

∑
i<j<k

υ
(3)
ijk , (6.8)

These terms can be written in the following form using notation from [Ben02]:

υSkyrme(r1, r2) = t0(1 + x0P̂σ)δ(r1 − r2) +
1
2
t1(1 + x1P̂σ)

×
[
k̂′2δ(r′1 − r′2) + δ(r1 − r2)k̂

2
]

+t2(1 + x2P̂σ)k̂′ · δ(r1 − r2)k̂

+1
6
t3(1 + x3P̂σ)δ(r1 − r2)ρ

α
(
r1+r2

2

)
+iW0(σ̂1 + σ̂2) · k̂′ × δ(r1 − r2)k̂ ,

(6.9)

where P̂σ = 1
2
(1 + σ̂1 · σ̂2) is the spin-exchange operator, 1

6
t3(1 + x3P̂σ)δ(r1 − r2)ρ

α
(
r1+r2

2

)
represents the three-body term reduced to a two-body density-dependent interaction, k̂ =

−( i
2
)(∇1−∇2) is the operator acting to the right and k̂′ = ( i

2
)(∇′

1−∇′
2) is the operator acting

to the left.

6.2 Skyrme Functional

The Skyrme energy functional E is given by the three-dimensional integral of the energy density

H [DD95]:

E =

∫
d3rH(r) . (6.10)

The energy density can now be broken down to three parts; a kinetic part Hkinetic, a Skyrme

part HSkyrme which is further broken down into time-even and time-odd terms, and an electro-
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magnetic part Hem which uses the coulomb interaction:

HSkyrme =
∑
t=0,1

t∑
t3=−t

(Heven
tt3

+Hodd
tt3

) . (6.11)

Using definitions and notation from [DD95], we get the following for the Skyrme energy

functional (all coupling constants C are shown in Appendix D):

HSkyrme =
∑
t=0,1

t∑
t3=−t

[
Cρ

t ρ
2
tt3

+ Cs
t s

2
tt3

+ C∆ρ
t ρtt3∆ρtt3

+C∆s
t stt3 ·∆stt3 + Cτ

t (ρtt3τtt3 − j2tt3)

+CT
t (stt3 · Ttt3 −

↔
J2

tt3) + C∇J
t (ρtt3∇ · Jtt3 + stt3 · ∇× jtt3)

+C∇s
t (∇ · stt3)2

]
.

(6.12)

6.3 Skyrme Parameterisations

There are multiple parameterisations that can be used for the functionals, with them being de-

termined by fitting or constraining parameters to reproduce certain observables and/or nuclear

properties. We briefly mention each parameterisation used in this work and how they differ

from one another. It should be mentioned that the UNEDF1, SLy4 and SkO′ functionals have

all been fitted to ground state masses, radii and nuclear matter properties.

6.3.1 UNEDF1

The UNEDF1 is a Skyrme parameterisation which was developed by mainly removing centre-

of-mass corrections in the functional which allowed for the global description of multiple nuclear

properties, with the main being the ability to reproduce masses, separation energies and the

empirical fission barriers in the actinide region [Kor12].

6.3.2 SLy4

The SLy4 is a Skyrme parameterisation which was developed by corrections to the centre-

of-mass correlations and the spin-orbit interaction. This allowed for the parameterisation to

reproduce the binding energy of doubly magic nuclei and the rms radii for each [Cha98].
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6.3.3 SkO′

The SkO′ is a Skyrme parameterisation which was developed by changes done to the effective

interaction. This has allowed the parameterisation to reproduce total binding energies and

nuclear densities for nuclei, and by constraining certain observables can produce single-particle

energies for the magic nuclei [Rei99].

6.4 Additional Functionals

There are multiple other functionals that use different methods and parameterisations. For the

work presented in this thesis, we used two additional functionals for some variation with our

research.

6.4.1 Gogny - D1S

The Gogny is a different functional to the Skyrme due to its construction, the difference being

that the two-body part is explicitly finite-ranged and has the form of a Gaussian [BGG91].

This specific Gogny parameterisation for the D1S interaction has the following form:

υD1S
12 =

2∑
j=1

exp
(
− (r1−r2)2

µ2
j

)
×(Wj +BjPσ −HjPτ −MjPσPτ )

+t3(1 + x0Pσ)δ(r1 − r2)

[
ρ

(
r1+r2

2

)]α
+iWLS∇12δ(r1 − r2)×∇12 · (σ1 + σ2)

+(1 + 2τ1z)(1 + 2τ2z)
e2

|r1−r2| .

(6.13)

6.4.2 Regularized - N3LO

The regularized N3LO is another functional different from Skyrme and Gogny, where it uses

finite-range pseudopotentials to produce the functional. This functional uses the spin-orbit and

density to provide good values of the binding energies and radii of nuclei [Ben20b].

6.5 Landau Parameters

The Landau Parameters are constants that govern the values of other coupling constants in the

Skyrme functional. All Landau parameters are dependent on a normalization factor N0 defined
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as the level density at the Fermi surface of the system and takes the form:

1

N0

=
π2ℏ2

2m∗kf
≈ 150

m

m∗MeV fm3 , (6.14)

where m∗ is the effective mass.

There are eight total Landau parameters, however for our research only two were of any

significance. These two Landau parameters are constants that govern the isoscalar g0 and

isovector g′0 time-odd, spin-spin channels of the calculations that were performed. These pa-

rameters specify certain values used to calculate time-odd coupling constants in which are used

to calculate densities and potentials and are defined as follows:

g0 = N0(2C
s
0 + 2CT

0 βρ
2/3
00 ) , (6.15)

g′0 = N0(2C
s
1 + 2CT

1 βρ
2/3
00 ) . (6.16)
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Chapter 7

Symmetry Restoration

Not discussed in previous Chapters, the method which we use to get solutions may break

certain symmetries of the system. We can however choose what symmetries we wish to break,

or impose, for desired outcomes and we have the methods to restore these symmetries when

needed. A simple way of thinking about the wave functions in this sense of symmetries is; if

we are referring to the intrinsic reference frame, this can be interpreted as the symmetries have

been broken but not restored and if we are referring to the laboratory/spectroscopic reference

frame, this can be intepreted as the symmetries have been broken and restored [She21].

7.1 Relevant Symmetries

7.1.1 Parity, Signature and Time-reversal

Parity is simply the operation of inverting the spacial coordinates of the polar vector such as

position r and momentum p, therefore acting on each with the parity operator P̂ results in:

P̂r = −r, P̂p = −p . (7.1)

The parity operator is its own inverse (P̂ 2 = 1), easily seen by applying the operator twice

and returning to the original coordinates, and therefore its eigenvalues π can only be the values

±1.

Signature is defined as the rotation of a system with total angular momentum J about the

axis perpendicular to the symmetry axis by π (180◦). Similar to parity, applying the signature

operature R̂ = exp(−iπJ) twice will result in the system returning to its original orientation

hence it is also its own inverse (R̂2 = 1). The eigenvalues r of this operator depend on the

number of particles A in the system. If A is even, r = ±1, and if A is odd, r = ±i.
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Time-reversal reverses the time component of terms. This will only affect certain quantities

such as momentum p. The time-reversal operator is defined as T̂ = −il̂K̂, where l̂ is the

intrinsic angular momentum operator and K̂ is the complex conjugate operator.

7.2 Restoration Methods

We can restore the symmetries broken by the calculation of the wave functions within our

approach using two methods; variation-after-projection (VAP) or projection-after-variation

(PAV).

7.2.1 Variation-after-projection (VAP)

The VAP method is one which minimises the projected energy of the symmetry restored wave-

function Φ [RS04]:

δ
⟨Φ|H|Φ⟩
⟨Φ|Φ⟩

= δ
⟨ϕ|P̂HP̂ |ϕ⟩
⟨ϕ|P̂ P̂ |ϕ⟩

= 0 , (7.2)

where |ϕ⟩ is the product wavefunction and the projection operator P̂ is a combination of

multiple projection operators.

7.2.2 Projection-after-variation (PAV)

The PAV method is one which minimises the energy of the product wavefunction |ϕ⟩, then the

projection operators are applied to restore the symmetries [RS04]:

δ
⟨ϕ|H|ϕ⟩
⟨ϕ|ϕ⟩

= 0 , (7.3)

where we then apply the projection operator P̂ to get the final wavefunction Φ:

|Φ⟩ = P̂ |ϕ⟩ . (7.4)
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Chapter 8

Methodology

In this section, we will detail the methods used in previous studies by past groups and the

methods we have employed for our research presented in this thesis.

8.1 Previous Research Methods

As mentioned in Chapter 1, the groups that have previously studied nuclear moments will have

their methods detailed and will be referred to as ‘Borrajo and Egido’, ‘Péru et al’, ‘Bonneau et

al’, ‘Li et al’ and ‘Co’ et al’ for convienience.

In all papers published by ‘Borrajo and Egido’ in the subject (exclusively Mg isotopes)

[BE16] [BE17] [BE18a] [BE18b], they have used the Hartree-Fock-Bogoliubov (HFB) approach

using the Gogny interaction with the D1S parameterisation. In their calculations, the symme-

tries they have conserved are parity, signature and time-reversal. They have also done their

calculations using triaxial deformation and they have used blocking in order to get the correct

spin and parity states. They have implemented the use of collective mixing by means of sym-

metry conserving configuration mixing (SCCM). This group also employs the use of angular

momentum projection (AMP), in which they use the variation after projection (VAP) approach.

The ‘Péru et al’ group (exclusively Hg isotopes) [Pér21] used the Hartree-Fock-Bogoliubov

(HFB) approach with the Gogny interaction implementing the D1M parameterisation. This

group has conserved parity/inversion, signature and time-reversal symmetries and used axial

deformation. This group has used a spin quenching factor (effective spin g-factor) of 0.75 in

order to fit experimental data. They have also employed blocking of neutron states to try

achieve the correct ground state of the nuclei. There has been no use of angular momentum

projection, however they have used a correction to the magnetic moment which stems from

their aim to include collectivity.
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As for the ‘Bonnaeu et al’ group (various nuclei) [Bon12] [Bon15], their approach was to use

the Hartree-Fock Bardeen-Cooper-Schrieffer model (BCS) with the Skyrme interaction using

the SIII and SLyIII.0.8 parameterisations. They conserve parity/inversion, while breaking time-

reversal and as a consequence, signature is broken too. They have used axial deformation in

their calculations. Just like ‘Péru et al’, they have implemented the use of effective spin g-factors

ranging from 0.7-0.9 in their calculations and have implemented blocking of the lowest Kπ state

above the even-even core. They have not performed any angular momentum projection (AMP)

in their work.

In the papers by ‘Li and Meng’ (various nuclei) [WLM12] [LM18], they have used a more

complex method which takes into consideration relativistic effects, the so called covariant den-

sity functional theory (CDFT) which we can consider as another type of functional. With this

approach, they incorporate certain corrections such as meson exchange currents and 1st order

(spin polarization effect) and 2nd order (quadrupole polarization effect) configuration mixing.

This group has restricted themselves to spherical calculations as they state that these nuclei

are “usually spherical”.

In the paper by ‘Co’ et al’ (various nuclei) [Co15], they used pure Hartree-Fock (HF) in their

approach, however have opted to using a single-particle (s.p.) basis. They have imposed spher-

ical symmetry on the systems, hence conserving parity, signature and time-reversal. They have

not used any effective g-factors in their work and have relied on a residual interaction through

the implementation of random phase approximation (RPA). They have also used corrections in

their work in determining the magnetic moment, meson exchange currents.

8.2 Our Approach

In our work we use nuclear density functional theory (DFT) to determine the magnetic dipole

µ and electric quadrupole Q moments of 32 nuclei, where the pure Hartree-Fock (HF) ap-

praoch was used using the Skyrme (UNEDF1 [Kor12], SLy4 [Cha98] and SkO′ [Rei99]), Gogny

(D1S [BGG91]) and regularized (N3LO [Ben20b]) interaction, with emphasis on Skyrme using

the UNEDF1 parameterisation and secondary focus on the SLy4 and SkO′ parameterisations.

Within the calculations we used the Cartesian deformed harmonic-oscillator basis with the

spherical basis of N0 = 16 oscillator shells. We used pure HF for our calculations as the 32

nuclei we have chosen are one-particle and one-hole neighbours of 8 doubly magic nuclei (16O,
40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 132Sn and 208Pb), therefore we need not worry about pairing

contributions or collectivity. The time-reversal and signature symmetries were broken in our

calculations, which induced polarisation effects, and we implemented angular momentum pro-
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jection (AMP) to restore these symmetries with the projection-after-variation (PAV) approach.

Relative to the doubly magic nuclei, configurations of odd-particle (odd-hole) nuclei were fixed

by occupying (emptying) deformed substates that originated from a given spherical orbital and

had the highest-positive (lowest-negative) value of Ω. The chosen single-particle occupations

thus always corresponded to the maximally aligned total angular momenta, Ω = +I. Such

occupations yielded the oblate (prolate) self-consistent intrinsic shapes for odd-particle (odd-

hole) I > 1
2
nuclei and vice versa for I = 1

2
. The main aspect of the work was to study the

dependance of the results on the isovector time-odd spin-spin Landau parameter g′0. We also

studied the dependance of the isoscalar time-odd spin-spin Landau parameter g0, however this

parameter proved to show no relevance in the calculations and was set to g0 = 0.4 recommended

from [Ben02].

The following table shows each group and their methods.

Borrajo and Egido Pèru et al. Bonneau et al. Li and Meng Cò et al. Sassarini et al.

Nuclei Region Mg isotopes Hg isotopes A≈50, 100, 178, 236 A≈16, 40, 208 Doubly magic All doubly magic

HF ✓ ✓ ✓
HF-BCS ✓
HFB ✓ ✓

Single-particle Operator ✓ ✓ ✓ MEC MEC ✓
Eff. Spin g-factor ✓ ✓
Core contribution Microscopic Model Microscopic Model Model Microscopic

Collective Mixing (BMF) ✓
Blocking ✓ ✓ ✓ N/A N/A N/A

AMP ✓ ✓
Skyrme SIII, SLyIII.0.8 UNEDF1, SLy4, SkO′

Gogny D1S D1M D1S, D1M D1S

Regularized N3LO

Relativistic Lagrangian ✓
HO Basis Spherical Deformed Cylindrical Spherical Single-particle Spherical

Oscillator Shells 8 19 13 not specified N/A 16

Parity ✓ ✓ ✓ ✓ ✓ ✓
Signature ✓ ✓ ✓ ✓

Time-reversal ✓ ✓ ✓ ✓
Spherical ✓ ✓
Axial ✓ ✓ ✓

Triaxial ✓
Reference Frame Intrinsic Intrinsic Intrinsic Laboratory Laboratory Intrinsic

Table 8.1: Tabular comparison of the differences of work done by other groups and our own,
detailing the methods and symmetries imposed.
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Chapter 9

Results

9.1 Ground States

All the results for our calculations of the ground states of all nuclei studied are displayed in

Table (9.1) for the magnetic dipole moments and in Table (9.2) for the electric quadrupole

moments. In these tables we have included the Nilsson labels for each with the occupied

orbitals and spin and parity of the level, the experimental data and the reference for each, all

the results of our calculations for each functional and the average and RMS deviations for all

the functionals. It should be noted that for 101Sn and 47K using the SkO′ parameterisation, we

were unable to get converged solutions hence their values are missing from the tables. Also, the

expected ground state for 131Sn was the 2d3/2 state as seen in calculations from [Ben20a] and

from the Nilsson plot Figure (2.3), however for our study we used the 1h11/2 state in accordance

to available experimental data.
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Magnetic dipole moment µ (µN)

Nuclide Iπ [NnzΛ]K orbital EXP Ref. UNEDF1 SLy4 SkO′ D1S N3LO Average

15O 1
2

−
[101]1/2 1p1/2 0.71951(12)∗ [Sto05] 0.6366 0.6372 0.6384 0.6369 0.6352 0.6369(10)

17O 5
2

+
[202]5/2 1d5/2 −1.89379(9)∗ [Sto05] −1.9081 −1.9092 −1.9090 −1.9098 −1.9091 −1.9090(6)

15N 1
2

−
[101]1/2 1p1/2 −0.2830569(14)∗ [Ant05] −0.2632 −0.2638 −0.2651 −0.2632 −0.2616 −0.2634(12)

17F 5
2

+
[202]5/2 1d5/2 4.7223(12)∗ [Sto05] 4.7878 4.7890 4.7881 4.7895 4.7889 4.7887(6))

39Ca 3
2

+
[202]3/2 1d3/2 1.02168(12) [Sto05] 1.1465 1.1468 1.1476 1.1472 1.1469 1.1470(4)

41Ca 7
2

−
[303]7/2 1f7/2 −1.5942(7) [Sto05] −1.9088 −1.9099 −1.9098 −1.9098 −1.9098 −1.9096(4)

39K 3
2

+
[202]3/2 1d3/2 0.39147(3) [Sto05] 0.1259 0.1256 0.1249 0.1251 0.1255 0.1254(4)

41Sc 7
2

−
[303]7/2 1f7/2 5.431(2)∗ [Sto05] 5.7886 5.7897 5.7888 5.7896 5.7895 5.7892(5)

47Ca 7
2

−
[303]7/2 1f7/2 −1.4064(11) [Gar15] −1.4113 −1.3232 −1.2991 −1.4894 −1.4248 −1.39(7)

49Ca 3
2

−
[301]3/2 2p3/2 −1.3799(8) [Gar15] −1.6506 −1.6494 −1.6530 −1.7090 −1.6607 −1.66(2)

47K 1
2

+
[220]1/2 2s1/2 1.933(9) [Sto05] 2.2040 2.0786 2.2958 2.4801 2.5769 2.33(18)

49Sc 7
2

−
[303]7/2 1f7/2 5.539(4) [Bai22] 5.3409 5.4636 5.6621 5.6127 5.4734 5.51(11)

55Ni 7
2

−
[303]7/2 1f7/2 −0.98(3)∗ [Ber09] −1.1009 −1.0923 −1.0309 −1.3596 −1.1638 −1.15(11)

57Ni 3
2

−
[301]3/2 2p3/2 −0.7975(14)∗ [Sto05] −1.3267 −1.4371 −0.4178 −1.5227 −1.4261 −1.43(7)∗∗

55Co 7
2

−
[303]7/2 1f7/2 4.822(3)∗ [Sto05] 4.9296 4.8991 4.8016 5.1811 4.9969 4.96(13)

57Cu 3
2

−
[301]3/2 2p3/2 3.1759 3.2968 2.0319 3.4081 3.2944 3.29(8)∗∗

77Ni 9
2

+
[404]9/2 1g9/2 −1.2069 −1.1768 −1.1414 −1.4322 −1.2563 −1.24(10)

79Ni 5
2

+
[402]5/2 2d5/2 −1.5128 −1.5542 −1.4924 −1.6529 −1.5754 −1.56(6)

77Co 7
2

−
[303]7/2 1f7/2 4.9185 4.9234 4.7569 5.1730 4.9936 4.95(13)

79Cu 3
2

−
[301]3/2 2p3/2 3.2102 3.3391 3.3742 3.4565 3.3927 3.35(8)

99Sn 9
2

+
[404]9/2 1g9/2 −1.2018 −1.1918 −1.1477 −1.4448 −1.2608 −1.25(10)

101Sn 5
2

+
[402]5/2 2d5/2 −1.4674 −1.4968 −1.5824 −1.4956 −1.51(4)∗∗

99In 9
2

+
[404]9/2 1g9/2 6.0398 6.0097 5.9342 6.2765 6.1021 6.07(12)

101Sb 7
2

+
[404]7/2 1g7/2 2.2721 2.1716 2.1604 2.1313 2.1465 2.18(5)

131Sn 11
2

−
[505]11/2 1h11/2 −1.267(1) [Yor20] −1.2443 −1.2301 −1.2174 −1.4868 −1.3184 −1.30(10)

133Sn 7
2

−
[503]7/2 2f7/2 −1.410(1) [Rod20] −1.5391 −1.5607 −1.5775 −1.6580 −1.5713 −1.58(4)

131In 9
2

+
[404]9/2 1g9/2 6.312(14) [Ver21] 6.0340 6.0133 5.9055 6.2650 6.0926 6.06(12)

133Sb 7
2

+
[404]7/2 1g7/2 3.070(2) [Lec21] 2.2813 2.1792 2.2088 2.1125 2.1379 2.18(6)

207Pb 1
2

−
[501]1/2 3p1/2 0.5906(4) [Adr16] 0.6059 0.6021 0.6129 0.6120 0.5972 0.606(6)

209Pb 9
2

+
[604]9/2 2g9/2 −1.4735(16) [Sto05] −1.5270 −1.5539 −1.6222 −1.6556 −1.5664 −1.59(5)

207Tl 1
2

+
[400]1/2 3s1/2 1.876(5) [Sto05] 2.5797 2.6036 2.6051 2.6475 2.6135 2.61(2)

209Bi 9
2

−
[505]9/2 1h9/2 4.092(2) [Skr18] 3.2065 3.1027 3.1249 3.0136 3.0522 3.10(7)

∗sign not measured; calculated sign was assigned.

∗∗functional SkO′ excluded.

Table 9.1: Experimental values of the magnetic dipole moments µ of the ground states compared
with those calculated for functionals UNEDF1, SLy4, SkO′, D1S, and N3LO [Sas22].
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Electric quadrupole moment Q (b)

Nuclide Iπ [NnzΛ]K orbital EXP Ref. UNEDF1 SLy4 SkO′ D1S N3LO Average

17O 5
2

+
[202]5/2 1d5/2 −0.0256(2)∗ [Sto16] −0.0108 −0.0087 −0.0086 −0.0085 −0.0098 −0.0093(9)

17F 5
2

+
[202]5/2 1d5/2 −0.076(4)∗ [Sto16] −0.0712 −0.0721 −0.0720 −0.0730 −0.0691 −0.0715(13)

39Ca 3
2

+
[202]3/2 1d3/2 0.036(7) [Sto16] 0.0075 0.0070 0.0070 0.0073 0.0072 0.0072(2)

41Ca 7
2

−
[303]7/2 1f7/2 −0.0665(18) [Sto16] −0.0323 −0.0270 −0.0270 −0.0263 −0.0288 −0.028(2)

39K 3
2

+
[202]3/2 1d3/2 0.0585(6) [Sto16] 0.0546 0.0580 0.0565 0.0576 0.0555 0.0564(13)

41Sc 7
2

−
[303]7/2 1f7/2 −0.145(3)∗ [Sto16] −0.1199 −0.1255 −0.1218 −0.1266 −0.1211 −0.123(3)

47Ca 7
2

−
[303]7/2 1f7/2 0.084(6) [Gar15] 0.0460 0.0395 0.0441 0.0379 0.0415 0.042(3)

49Ca 3
2

−
[301]3/2 2p3/2 −0.036(3) [Gar15] −0.0104 −0.0084 −0.0094 −0.0079 −0.0103 −0.0093(10)

49Sc 7
2

−
[303]7/2 1f7/2 −0.159(8) [Bai22] −0.1545 −0.1455 −0.1496 −0.1408 −0.1393 −0.146(6)

55Ni 7
2

−
[303]7/2 1f7/2 0.1637 0.1486 0.1661 0.1274 0.1336 0.148(16)

57Ni 3
2

−
[301]3/2 2p3/2 −0.0685 −0.0511 −0.1622 −0.0434 −0.0518 −0.054(9)∗∗

55Co 7
2

−
[303]7/2 1f7/2 0.2254 0.2241 0.2371 0.2086 0.2091 0.221(11)

57Cu 3
2

−
[301]3/2 2p3/2 −0.1207 −0.1143 −0.1919 −0.1077 −0.1096 −0.113(5)∗∗

77Ni 9
2

+
[404]9/2 1g9/2 0.1600 0.1305 0.1555 0.1197 0.1275 0.139(16)

79Ni 5
2

+
[402]5/2 2d5/2 −0.0797 −0.0601 −0.0825 −0.0513 −0.0581 −0.066(13)

77Co 7
2

−
[303]7/2 1f7/2 0.2075 0.1847 0.2121 0.1874 0.1778 0.194(13)

79Cu 3
2

−
[301]3/2 2p3/2 −0.1033 −0.0962 −0.0853 −0.0940 −0.0910 −0.094(6)

99Sn 9
2

+
[404]9/2 1g9/2 0.1719 0.1628 0.1773 0.1507 0.1575 0.164(10)

101Sn 5
2

+
[402]5/2 2d5/2 −0.0927 −0.0842 −0.0788 −0.0920 −0.0870(6)∗∗

99In 9
2

+
[404]9/2 1g9/2 0.2848 0.2935 0.3040 0.2865 0.2848 0.291(7)

101Sb 7
2

+
[404]7/2 1g7/2 −0.2936 −0.2975 −0.2858 −0.2921 −0.2903 −0.292(4)

131Sn 11
2

−
[505]11/2 1h11/2 0.203(4) [Yor20] 0.1737 0.1616 0.1780 0.1507 0.1596 0.165(10)

133Sn 7
2

−
[503]7/2 2f7/2 −0.145(10) [Rod20] −0.0919 −0.0845 −0.0979 −0.0815 −0.0941 −0.090(6)

131In 9
2

+
[404]9/2 1g9/2 0.31(1) [Ver21] 0.2615 0.2664 0.2815 0.2712 0.2589 0.268(8)

133Sb 7
2

+
[404]7/2 1g7/2 −0.304(7) [Lec21] −0.2549 −0.2566 −0.2503 −0.2609 −0.2508 −0.255(4)

209Pb 9
2

+
[604]9/2 2g9/2 −0.27(17) [Sto16] −0.1514 −0.1450 −0.1348 −0.1325 −0.1510 −0.143(8)

209Bi 9
2

−
[505]9/2 1h9/2 −0.47(5)∗∗∗ [Sto16; Skr21] −0.3710 −0.3736 −0.3661 −0.3835 −0.3643 −0.372(7)

∗sign not measured; calculated sign was assigned.

∗∗functional SkO′ excluded.

∗∗∗average of −0.516(15) [Sto16] and −0.418(6) [Skr21] with the error bar reflecting uncertainties of the atomic theory.

Table 9.2: Experimental values of the electric quadrupole moments Q of the ground states
compared with those calculated for functionals UNEDF1, SLy4, SkO′, D1S, and N3LO [Sas22].
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9.1. Ground States

In Figure (9.1) we show all the data from our calculations of the quadrupole and dipole

moments compared with currently available experimental data. It can be easily seen that our

approach of using DFT is successful in producing the data without the use of effective charges

or g-factors.

Figure 9.1: Calculated electric quadrupole moments Q, panel (a), compared with 15 experi-
mentally measured values (the inset shows values that are outside the area of the main plot,
as visualized by the dashed-line square drawn inside). Panel (b) shows analogous results ob-
tained for the magnetic dipole moments µ compared with 23 experimentally measured values
(the arrows mark the outlier cases discussed in the text). Full circles (squares) show results
obtained for N -odd (Z-odd) nuclei. Calculated values shown in this figure were derived within
the Bayesian Model Averaging (BMA) analysis. Apart from one point, the corresponding
theoretical error bars are always smaller than the sizes of symbols [Sas22].

In Figure (9.2) we show the full dependence of the parameter g′0 on the spin magnetic dipole

moment |µS| for the UNEDF1 functional. As discussed in Chapter 3.1, using the spin magnetic

moments, we are able to compare our results in a simple manner. We have also shown in

Figure (9.3) the dependence with the residuals µthe − µexp which helps to visualise how the

parameter effects the moments.

In Figures (9.2) and (9.3), we have 3 distinct groups of nuclei that we have seperated using

solid, dashed and dotted lines.

The first group (dashed lines in Figure (9.2)) contains the eight lightest nuclei around 16O

and 40Ca, which are characterized by all spin-orbit partners located on the same side of the

Fermi energy. In these nuclei, irrespective of whether an odd proton or an odd neutron, or

a hole or particle state, or a high or low spin state are occupied, no tangible polarisation of

the spin distribution is obtained and no ensuing dependence of the magnetic dipole moment

on the isovector spin-spin interaction is visible. As a result, in this group, all magnetic dipole
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Chapter 9. Results

Figure 9.2: Absolute values of the UNEDF1 spin magnetic dipole moments |µS| calculated
in function of the Landau parameter g′0 for N -odd-Z-even (a) and Z-odd-N -even (b) nuclei.
Dashed, solid, and dotted lines denote nuclei belonging to the first, second, and third group
discussed in the text, respectively. Values obtained for 17O and 17F are hidden behind those
obtained for 41Ca and 41Sc, respectively. Doubled ground-state spin and parity are given in the
legends. Full and empty symbols denote particle and hole states, respectively [Sas22].

moments stay quite rigidly fixed at the Schmidt limits shown in Figure (3.1).

The second group (solid lines in Figures (9.2) and (9.3)) contains nuclei around heavier

doubly magic nuclei, which are characterized by the Fermi energies separating pairs of the

spin-orbit partners from one another, and by a hole or a particle created in one of the spin-

orbit partners. In all such nuclei, irrespective of whether the nucleus contains an odd-proton

or an odd-neutron, the dependence of the magnetic dipole moments on the isovector spin-spin

interaction is strong. Two exceptions from this rule are the cases of 47Ca and 49Sc, where only

the neutron pair of spin-orbit partners is available for polarisation and the response to the

isovector spin-spin interaction is somewhat weaker. With increasing values of g′0, the calculated

magnetic dipole moments significantly depart from the Schmidt limits.

Finally, the third group (dotted lines in Figures (9.2)) contains nuclei in which particles or

holes are created in non-intruder states or their partners. Then, the spin polarisation of the

spin-orbit partners becomes weaker and, as a result, the dependence of the magnetic dipole

moments on the isovector spin-spin interaction weakens too. For 1
2

±
states, such dependence is

particularly weak.
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9.1. Ground States

Figure 9.3: The UNEDF1 magnetic dipole moments µ calculated in function of the Landau
parameter g′0 relative to the experimental values. Panels (a) and (b) show results that do and
do not cross the line of µthe = µexp, respectively. Solid and dotted lines denote nuclei belonging
to the second and third group discussed in the text, respectively. Symbols ×1/3 denote outlier
values multiplied by a factor of 1/3 to fit in the scale of the figure [Sas22].

From the other two Skyrme functionals used, SLy4 and SkO′, the same pattern of depen-

dence was recognised for the dipole moment with respect to the Landau parameter. We show

this in Figure (9.4(a)) by plotting the RMS deviations of all Skyrme functionals and then de-

termining the optimal values for the Landau parameter from the minima of the curves. These

were found to be g′0 = 1.0, 1.3, and 1.7 for SkO′, SLy4, and UNEDF1, respectively.

In Figure (9.5) we present a full results for only the UNEDF1, the D1S and the N3LO

functionals using the previously determined optimal values for the Landau parameter g′0, where

we have plotted the spin magnetic dipole moment |µS| for all the nuclei aand compared them

with the Schmidt values and experimental data.
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Figure 9.4: RMS (a) and average (b) deviations δµ between the calculated and experimental
values of magnetic dipole moments [Sas22].

As seen in Figure (9.6) we show values of the effective spin g-factors geff that would need

to be used for each nuclei in order to reproduce the experimental values of the magnetic dipole

moments µ for the UNEDF1 functional. This effective spin g-factor is an addition to the spin

gyromagnetic factors in Equation (3.2) where they are mulitplied together to better reproduce

experimental data:

gns = −3.826µN × geff, gps = +5.586µN × geff. (9.1)

From our work, we can confidently say that our method does not support the need for any

effective spin g-factors to reproduce the magnetic dipole moments for atomic nuclei. Further

analysis shows that if we were to introduce this g-factor, a value of geff = 0.98(10) would be

needed, with the outlier cases (dashed circles in Figure (9.6)) not included. For these outliers

a value of geff ≤ 0.7 would be needed and raises the question of additional methods in our

approach to explain this discrepancy.
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9.1. Ground States

Figure 9.5: Absolute values of the spin magnetic moments |µS| calculated for D1S, N3LO and
UNEDF1 functionals and compared with the Schmidt values and experimental data [Sas22].
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Figure 9.6: Effective spin g-factors geff that would have been needed for bringing the calculated
UNEDF1 magnetic dipole moments µ to the 23 experimentally measured values [Sas22].
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9.2. Excited States

9.2 Excited States

Further calculations were done, using an almost identical procedure to the ground states, as

theoretical predictions for magnetic dipole moments µ and electric quadrupole moments Q of so

called excited states as there is currently no experimental data available. We occupied all the

single-particle states of one shell above and depopulated all one-hole states of one shell below

the closed shells for the doubly magic nuclei. This was achieved by specifying which states we

wish to occupy/depopulate using the Nilsson plots in Chapter 2.2 to confirm the single-particle

levels. In Tables (9.3) and (9.4) we show the magnetic dipole moments and in Tables (9.5) and

(9.6) we show the electric quadrupole moments for the UNEDF1 functional only using g′0 = 1.7.

The tables include the Nilsson labels for each with the occupied orbitals and spin and parity

of the level. It should be noted that we were unable to get converge solutions for four nuclei;
57Ni(5

2

−
), 57Cu(5

2

−
), 79Ni(7

2

+
) and 79Ni(11

2

−
). It is suspected that configuration mixing may be

a factor for the unstable solutions of the nuclei.
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µ (µN) µ (µN)

Nuclide Iπ [NnzΛ]K orbital UNEDF1 Nuclide Iπ [NnzΛ]K orbital UNEDF1

15O 3
2

−
[101]3/2 1p3/2 -1.9073 55Ni 1

2

+
[220]1/2 2s1/2 -0.6149

17O 1
2

+
[200]1/2 2s1/2 -1.9107 55Ni 3

2

+
[202]3/2 1d3/2 0.8265

15N 3
2

−
[101]3/2 1p3/2 3.7871 55Ni 5

2

+
[202]5/2 1d5/2 -1.2159

17F 1
2

+
[200]1/2 2s1/2 2.7909 57Ni 1

2

−
[301]1/2 2p1/2 0.5617

39Ca 1
2

+
[200]1/2 2s1/2 -1.9088 57Ni 9

2

+
[404]9/2 1g9/2 -0.5102

39Ca 5
2

+
[202]5/2 1d5/2 -1.9086 55Co 1

2

+
[200]1/2 2s1/2 2.486

41Ca 1
2

−
[301]1/2 2p1/2 0.6371 55Co 3

2

+
[202]3/2 1d3/2 0.4702

41Ca 3
2

−
[301]3/2 2p3/2 -1.9101 55Co 5

2

+
[202]5/2 1d5/2 4.0466

41Ca 5
2

−
[303]5/2 1f5/2 1.3674 57Cu 1

2

−
[301]1/2 2p1/2 -0.2194

41Ca 9
2

−
[404]9/2 1g9/2 -1.9074 57Cu 9

2

+
[404]9/2 1g9/2 5.3005

39K 1
2

+
[200]1/2 2s1/2 2.789 77Ni 1

2

−
[301]1/2 2p1/2 0.6009

39K 5
2

+
[202]5/2 1g5/2 4.7884 77Ni 3

2

−
[301]3/2 2p3/2 -1.5235

41Sc 1
2

−
[301]1/2 2p1/2 -0.2638 77Ni 5

2

−
[303]5/2 1f5/2 0.9795

41Sc 3
2

−
[301]3/2 2p3/2 3.7905 77Ni 7

2

−
[303]7/2 1f7/2 -1.2481

41Sc 5
2

−
[303]5/2 1f5/2 0.8614 79Ni 1

2

+
[400]1/2 3s1/2 -1.784

41Sc 9
2

+
[404]9/2 1g9/2 6.7875 79Ni 3

2

+
[402]3/2 2d3/2 1.0159

47Ca 1
2

+
[200]1/2 2s1/2 -1.7024 77Co 1

2

+
[200]1/2 2s1/2 2.4814

47Ca 3
2

+
[202]3/2 1d3/2 0.9562 77Co 3

2

+
[202]3/2 1d3/2 0.447

47Ca 5
2

+
[202]5/2 1d5/2 -1.4493 77Co 5

2

+
[202]5/2 1d5/2 4.0537

49Ca 1
2

−
[301]1/2 2p1/2 0.6096 79Cu 1

2

−
[301]1/2 2p1/2 -0.193

49Ca 5
2

−
[303]5/2 1f5/2 1.0542 79Cu 5

2

−
[303]5/2 1f5/2 1.4535

49Ca 9
2

+
[404]9/2 1g9/2 -1.536 79Cu 9

2

+
[404]9/2 1g9/2 5.4184

47K 3
2

+
[202]3/2 1d3/2 0.2497

47K 5
2

+
[202]5/2 1d5/2 4.4579

49Sc 1
2

−
[301]1/2 2p1/2 -0.2341

49Sc 3
2

−
[301]3/2 2p3/2 3.5489

49Sc 5
2

−
[303]5/2 1f5/2 1.049

49Sc 9
2

+
[404]9/2 1g9/2 6.2545

Table 9.3: Theoretical values of the magnetic dipole moments µ of the excited states for the
functional UNEDF1.
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9.2. Excited States

µ (µN) µ (µN)

Nuclide Iπ [NnzΛ]K orbital UNEDF1 Nuclide Iπ [NnzΛ]K orbital UNEDF1

99Sn 1
2

−
[301]1/2 2p1/2 0.5949 131In 1

2

−
[301]1/2 2p1/2 -0.2209

99Sn 3
2

−
[301]3/2 2p3/2 -1.5041 131In 3

2

−
[301]3/2 2p3/2 3.3642

99Sn 5
2

−
[303]5/2 1f5/2 0.9568 131In 5

2

−
[303]5/2 1f5/2 1.2903

99Sn 7
2

−
[303]7/2 1f7/2 -1.2608 131In 7

2

−
[303]7/2 1f7/2 5.0898

101Sn 1
2

+
[400]1/2 3s1/2 -1.7238 133Sb 1

2

+
[400]1/2 3s1/2 2.5782

101Sn 3
2

+
[402]3/2 2d3/2 0.9373 133Sb 3

2

+
[402]3/2 2d3/2 0.3677

101Sn 7
2

+
[404]7/2 1g7/2 0.9578 133Sb 5

2

+
[402]5/2 2d5/2 4.3117

101Sn 11
2

−
[505]11/2 1h11/2 -1.2433 133Sb 11

2

−
[505]11/2 1h11/2 7.1093

99In 1
2

−
[301]1/2 2p1/2 -0.2221 207Pb 3

2

−
[501]3/2 3p3/2 -1.6301

99In 3
2

−
[301]3/2 2p3/2 3.3870 207Pb 5

2

−
[503]5/2 2f5/2 1.1294

99In 5
2

−
[303]5/2 1f5/2 1.2913 207Pb 7

2

−
[503]7/2 2f7/2 -1.5168

99In 7
2

−
[303]7/2 1f7/2 5.0949 207Pb 9

2

−
[505]9/2 1h9/2 1.079

101Sb 1
2

+
[400]1/2 3s1/2 2.6199 207Pb 13

2

+
[606]13/2 1i13/2 -1.2613

101Sb 3
2

+
[402]3/2 2d3/2 0.3279 209Pb 1

2

+
[600]1/2 4s1/2 -1.8021

101Sb 5
2

+
[402]5/2 2d5/2 4.3508 209Pb 3

2

+
[602]3/2 3d3/2 1.0216

101Sb 11
2

−
[505]11/2 1h11/2 7.1124 209Pb 3

2

+
[602]5/2 3d5/2 -1.6508

131Sn 1
2

+
[400]1/2 3s1/2 -1.7284 209Pb 7

2

+
[604]7/2 2g7/2 1.219

131Sn 3
2

+
[402]3/2 2d3/2 0.9852 209Pb 11

2

+
[606]11/2 1i11/2 1.094

131Sn 5
2

+
[402]5/2 2d5/2 -1.5156 207Tl 3

2

+
[402]3/2 2d3/2 0.297

131Sn 7
2

+
[404]7/2 1g7/2 1.0424 207Tl 5

2

+
[402]5/2 2d5/2 4.3495

133Sn 1
2

−
[501]1/2 3p1/2 0.6104 207Tl 7

2

+
[404]7/2 1g7/2 2.2108

133Sn 3
2

−
[501]3/2 3p3/2 0.4463 207Tl 11

2

−
[405]11/2 1h11/2 7.0651

133Sn 5
2

−
[503]5/2 2f5/2 1.1491 209Bi 1

2

−
[501]1/2 3p1/2 -0.1824

133Sn 9
2

−
[505]9/2 1h9/2 1.0711 209Bi 3

2

−
[501]3/2 3p3/2 3.4641

133Sn 13
2

+
[606]13/2 1i13/2 -1.2962 209Bi 5

2

−
[503]5/2 2f5/2 1.1693

209Bi 7
2

−
[503]7/2 2f7/2 5.3239

209Bi 13
2

+
[606]13/2 1i13/2 8.1359

Table 9.4: Theoretical values of the magnetic dipole moments µ of the excited states for the
functional UNEDF1 (Table 9.3 continued).

59



Chapter 9. Results

Q (b) Q (b)

Nuclide Iπ [NnzΛ]K orbital UNEDF1 Nuclide Iπ [NnzΛ]K orbital UNEDF1

15O 3
2

−
[101]3/2 1p3/2 0.0039 55Ni 3

2

+
[202]3/2 1d3/2 0.0584

15N 3
2

−
[101]3/2 1p3/2 0.0305 55Ni 3

2

+
[202]3/2 1d3/2 0.0984

39Ca 5
2

+
[202]5/2 1d5/2 0.0183 57Ni 9

2

+
[404]9/2 1g9/2 -0.6183

41Ca 3
2

−
[301]3/2 2p3/2 -0.0072 55Co 3

2

+
[202]3/2 1d3/2 0.0961

41Ca 5
2

−
[303]5/2 1f5/2 -0.023 55Co 5

2

+
[202]5/2 1d5/2 0.1498

41Ca 9
2

−
[404]9/2 1g9/2 -0.0468 57Cu 9

2

+
[404]9/2 1g9/2 -0.6995

39K 5
2

+
[202]5/2 1g5/2 0.0758 77Ni 3

2

−
[301]3/2 2p3/2 0.0283

41Sc 3
2

−
[301]3/2 2p3/2 -0.0857 77Ni 5

2

−
[303]5/2 1f5/2 0.0994

41Sc 5
2

−
[303]5/2 1f5/2 -0.1219 77Ni 7

2

−
[303]7/2 1f7/2 0.1167

41Sc 9
2

+
[404]9/2 1g9/2 -0.1775 79Ni 3

2

+
[402]3/2 2d3/2 -0.0259

47Ca 3
2

+
[202]3/2 1d3/2 0.0145 77Co 3

2

+
[202]3/2 1d3/2 0.0884

47Ca 5
2

+
[202]5/2 1d5/2 0.028 77Co 5

2

+
[202]5/2 1d5/2 0.138

49Ca 5
2

−
[303]5/2 1f5/2 -0.0352 79Cu 5

2

−
[303]5/2 1f5/2 -0.1958

49Ca 9
2

+
[404]9/2 1g9/2 -0.0669 79Cu 9

2

+
[404]9/2 1g9/2 -0.4974

47K 3
2

+
[202]3/2 1d3/2 0.062

47K 5
2

+
[202]5/2 1d5/2 0.0949

49Sc 3
2

−
[301]3/2 2p3/2 -0.0819

49Sc 5
2

−
[303]5/2 1f5/2 -0.1308

49Sc 9
2

+
[404]9/2 1g9/2 -0.2151

Table 9.5: Theoretical values of the electric quadrupole moments Q of the excited states for
the functional UNEDF1.

60



9.2. Excited States

Q (b) Q (b)

Nuclide Iπ [NnzΛ]K orbital UNEDF1 Nuclide Iπ [NnzΛ]K orbital UNEDF1

99Sn 3
2

−
[301]3/2 2p3/2 0.0251 207Pb 3

2

−
[501]3/2 3p3/2 0.025

99Sn 5
2

−
[303]5/2 1f5/2 0.0984 207Pb 5

2

−
[503]5/2 2f5/2 0.073

99Sn 7
2

−
[303]7/2 1f7/2 0.1045 207Pb 7

2

−
[503]7/2 2f7/2 0.1065

101Sn 3
2

+
[402]3/2 2d3/2 -0.0259 207Pb 9

2

−
[505]9/2 1h9/2 0.1868

101Sn 7
2

+
[404]7/2 1g7/2 -0.1732 207Pb 13

2

+
[606]13/2 1i13/2 0.2245

101Sn 11
2

−
[505]11/2 1h11/2 -0.2479 209Pb 3

2

+
[602]3/2 3d3/2 -0.0195

99In 3
2

−
[301]3/2 2p3/2 0.094 209Pb 3

2

+
[602]5/2 3d5/2 -0.0637

99In 5
2

−
[303]5/2 1f5/2 0.1837 209Pb 7

2

+
[604]7/2 2g7/2 -0.1094

99In 7
2

−
[303]7/2 1f7/2 0.2137 209Pb 11

2

+
[606]11/2 1i11/2 -0.2401

101Sb 3
2

+
[402]3/2 2d3/2 -0.131 207Tl 3

2

+
[402]3/2 2d3/2 0.1336

101Sb 5
2

+
[402]5/2 2d5/2 -0.2068 207Tl 5

2

+
[402]5/2 2d5/2 0.205

101Sb 11
2

−
[505]11/2 1h11/2 -0.393 207Tl 7

2

+
[404]7/2 1g7/2 0.2826

131Sn 3
2

+
[402]3/2 2d3/2 2.5345 207Tl 11

2

−
[405]11/2 1h11/2 0.3742

131Sn 5
2

+
[402]5/2 2d5/2 0.0593 209Bi 3

2

−
[501]3/2 3p3/2 -0.1427

131Sn 7
2

+
[404]7/2 1g7/2 0.1293 209Bi 5

2

−
[503]5/2 2f5/2 -0.2463

133Sn 3
2

−
[501]3/2 3p3/2 0.0193 209Bi 7

2

−
[503]7/2 2f7/2 -0.2922

133Sn 5
2

−
[503]5/2 2f5/2 -0.0611 209Bi 13

2

+
[606]13/2 1i13/2 -0.4495

133Sn 9
2

−
[505]9/2 1h9/2 -0.1711

133Sn 13
2

+
[606]13/2 1i13/2 -0.2086

131In 3
2

−
[301]3/2 2p3/2 0.0999

131In 5
2

−
[303]5/2 1f5/2 0.1742

131In 7
2

−
[303]7/2 1f7/2 0.2034

133Sb 3
2

+
[402]3/2 2d3/2 -0.1202

133Sb 5
2

+
[402]5/2 2d5/2 -0.1804

133Sb 11
2

−
[505]11/2 1h11/2 -0.3456

Table 9.6: Theoretical values of the electric quadrupole moments Q of the excited states for
the functional UNEDF1 (Table 9.5 continued).
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Chapter 10

Conclusions

In our approach we have shown that nuclear DFT can accurately describe the electric quadrupole

and magnetic dipole moments in one-particle and one-hole neighbours of doubly magic nuclei.

As we have not constrained our work to specific regions of the nuclear landscape, we can con-

fidently say that we have developed a global desciption baseline for these moments. This was

achieved by adjusting one coupling constant in the time-odd mean-field sector of the func-

tional. It should be emphasised that we were able to reproduce such results without the need

for effective spin g-factors. These results now provide a perfect base for further work into the

time-odd mean-field sector, which may eliminate the outliers we found in our research. Work

has already taken place using our approach as a basis to calculate nuclear moments of paired

states in nuclei [Bon23].
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Appendix A

Wigner-Eckart Theorem

The Wigner-Eckart theorem is a mathematical tool that allows for the separation of the ge-

ometric/directional part (projection quantum numbers) and radial/spatial properties of the

operators and wavefunctions [BS15].

The theorem states, given a spherical tensor operator T̂
(k)
κ of rank k:

⟨JM |T̂ (k)
κ |J ′M ′⟩ = (−1)J−M ·

 J k J ′

−M κ M ′

 · ⟨J ||T̂
(k)
||J ′⟩ . (A.1)

From the theorem, a Wigner 3j-symbol and a new matrix element are produced. This

new matrix element is called a reduced matrix element. The separation of the parts of the

wavefunction is shown by the double bars in the expression above in the reduced matrix element

[Hey04].
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Appendix B

Second Quantization

We introduce a concept for many-particle systems called second quantization. Emphasis will

only be on fermions as we are working with nucleons, however it should be noted that there

are equivalent relations for bosons.

We start with generic creation (ĉ†) and annihilation (ĉ) operators. We need expressions that

allow us to create and annihilate particles in allowed states. With these operators we wish to

change the occupation number (number of particles that can occupy such state), n, which for

fermions can be 0 or 1. For normalisation of the these states we are required to have:

⟨n|ĉ†ĉ|n⟩ = 1 . (B.1)

However, in our situation we have:

⟨n|ĉ†ĉ|n⟩ = n , (B.2)

as in the case of n = 0, we will have ĉ acting on |0⟩ producing a non-physical state, | − 1⟩. We

require that ĉ|0⟩ = 0 and from this we introduce the ansatz, ĉ|n⟩ =
√
n|n−1⟩, hence producing

the matrix element [GM96]:

⟨n− 1|ĉ|n⟩ =
√
n , (B.3)

and taking the hermitian conjugate of this, we produce,

⟨n|ĉ†|n− 1⟩ =
√
n . (B.4)

From Equations (B.3) and (B.4), it is easily seen that ĉ lowers the particle number by 1 and

ĉ† raises the particle number by 1.
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As we are dealing with fermions, we must abide by the Pauli principle. This means that

n can only have the values of 0 or 1, stated earlier. Taking this condition into consideration,

it suffices that we cannot act on a state with the same operator twice without it vanishing,

therefore it must return 0. We now define such relations to account for this, ĉ†2 = 0 and ĉ2 = 0.

Another condition we must abide by is that particles in different states, the wavefunctions

must be anti-symmetric under particle exchange, e.g. ĉ†i ĉ
†
j = −ĉ†j ĉ

†
i .

To represent this in a condensed form for all combinations, we can use the anti-commutation

relations as follows [GM96]:

{ĉi, ĉj} = 0 , {ĉ†i , ĉ
†
j} = 0 , {ĉi, ĉ†j} = δij . (B.5)

We will eventually show that these relations hold true for fermions, however with a notation

change defining the creation and/or annihilation of particles, c → a.

Now we define a new operator, n̂, the number operator:

n̂ = â†â . (B.6)

This has the property of returning the number of particles occupying a state and/or the

total number of occupied states, dependant on your choice of definition [GM96].

If we compute n̂2, we arrive at the conclusion that the eigenvalues of the number operator

can only be 0 or 1, since n̂2 = n̂. Hence, there are only two eigenstates, the vacuum state |0⟩
and the one-particle state |1⟩.

Here we show the action of the operators on such states:

n̂|0⟩ = 0 , â†|0⟩ = |1⟩ , â|0⟩ = 0 ,

n̂|1⟩ = |1⟩ , â†|1⟩ = 0 , â|1⟩ = |0⟩ .

(B.7)

We continue by evaluating the matrix elements:

n̂|n⟩ = n|n⟩ , â†|n⟩ = (1− n)|n+ 1⟩ , â|n⟩ = n|n− 1⟩ . (B.8)

And the anti-commutation relations are exactly the same as in (B.5):

{âi, âj} = 0 , {â†i , â
†
j} = 0 , {âi, â†j} = δij . (B.9)
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Appendix C

Wick’s Theorem

Wick’s theorem is a technique that is used in which it is possible to simplify a product of

annihilation (ĉ) or creation (ĉ†) operators into a sum of product pairs [RS04].

First we begin with defining a contraction:

ĉĉ† = ⟨Ψ|ĉĉ†|Ψ⟩ , (C.1)

where |Ψ⟩ is the vacuum (|0⟩ for the case of the annihilation and creation operators).

Therefore, we can define the possible contractions:

ĉiĉ
†
j = ⟨0|ĉiĉ†j|0⟩ = δij , (C.2)

ĉ†i ĉj = ĉ†i ĉ
†
j = ĉiĉj = 0 . (C.3)

Hence we can now state Wick’s theorem for any product of n fermionic operators O as

[Suh07]:

⟨Ψ|O1O2 . . . On|Ψ⟩ =
∑

all contraction combinations

(−1)no. of contraction line crossings

× product with all pairs contracted .

(C.4)
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Appendix D

Skyrme Coupling Constants

Here we present all the isoscalar C0 and isovector C1 coupling constants from Chapter 6 [Ben02]:

Cρ
0 =

3

8
t0 +

3

48
t3ρ

α
0 , (D.1)

Cρ
1 = −1

4
t0(

1

2
− x0)−

1

24
t3(

1

2
+ x3)ρ

α
0 , (D.2)

Cs
0 = −1

4
t0(

1

2
− x0)−

1

24
t3(

1

2
− x3)ρ

α
0 , (D.3)

Cs
1 = −1

8
t0 −

1

48
t3ρ

α
0 , (D.4)

Cτ
0 =

3

16
t1 +

1

4
t2(

5

4
+ x2) , (D.5)

Cτ
1 = −1

8
t1(

1

2
+ x1) +

1

8
t2(

1

2
+ x2) , (D.6)

CT
0 = ηJ

[
− 1

8
t1(

1

2
− x1) +

1

8
t2(

1

2
+ x2)

]
, (D.7)

CT
1 = ηJ

[
− 1

16
t1 +

1

16
t2

]
, (D.8)

C∆ρ
0 = − 9

64
t1 +

1

16
t2(

5

4
+ x2) , (D.9)
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Appendix D. Skyrme Coupling Constants

C∆ρ
1 =

3

32
t1(

1

2
+ x1) +

1

32
t2(

1

2
+ x2) , (D.10)

C∆s
0 =

3

32
t1(

1

2
− x1) +

1

32
t2(

1

2
+ x2) , (D.11)

C∆s
1 =

3

64
t1 +

1

64
t2 , (D.12)

C∇J
0 = −3

4
W0 , (D.13)

C∇J
1 = −1

4
W0 , (D.14)

C∇s
0 = 0 , (D.15)

C∇s
1 = 0 . (D.16)
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