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Abstract

In this thesis, we explore the development of autonomous tracking and interception strate-
gies for both single and multiple fixed-wing Unmanned Aerial Vehicle (UAV) pursuing
single or multiple evasive targets in 3-dimensional (3D) space. We considered a sce-
nario where we intend to protect high-value facilities from adversarial groups employing
ground-based vehicles and quadrotor swarms and focused on solving the target tracking
problem. Accordingly, we refined a min-max optimal control algorithm for fixed-wing
UAVs tracking ground-based targets, by introducing constraints on bank angles and turn
rates to enhance actuator reliability when pursuing agile and evasive targets. An intelligent
and persistent evasive control strategy for the target was also devised to ensure robust
performance testing and optimisation.

These strategies were extended to 3D space, incorporating three altitude control algorithms
to facilitate flexible UAV altitude control, leveraging various parameters such as desired
UAV altitude and image size on the tracking camera lens. A novel evasive quadrotor
algorithm was introduced, systematically testing UAV tracking efficacy against a range
of evasive scenarios while implementing anti-collision measures to ensure UAV safety
and adaptive optimisation improve the achieved performance. Using decentralised control
strategies, cooperative tracking by multiple UAVs of single evasive quadrotor-type and
dynamic target clusters was developed along with a new altitude control strategy and task
assignment logic for efficient target interception. Lastly, a countermeasure strategy for
tracking and neutralising non-cooperative adversarial targets within restricted airspace
was implemented, using both Nonlinear Model Predictive Control (NMPC) and optimal
controllers.

The major contributions of this thesis include optimal control strategies, evasive target
control, 3D target tracking, altitude control, cooperative multi-UAV tracking, adaptive
optimisation, high-precision projectile algorithms, and countermeasures. We envision
practical applications of the findings from this research in surveillance, security, search and
rescue, agriculture, environmental monitoring, drone defence, and autonomous delivery
systems. Future efforts to extend this research could explore adaptive evasion, enhanced
collaborative UAV swarms, machine learning integration, sensor technologies, and real-
world testing.
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Chapter 1

Introduction

1.1 Motivation

The continuous effort by mankind to find better and more efficient ways of performing vital
tasks has in led to an accelerated technological advancement [1]. One such effort by man to
solve the problem of faster travel by air led to research into powered aerial flights in the late
1800s. Since the first powered flight by the Wright brothers in 1903, the field of powered
aerial vehicles has experienced increasing research and development [2]. One area that has
benefited from the rapid technological growth is the design and production of autonomous
vehicles such as the Unmanned Aerial Vehicle (UAV) [3]. UAVs have attracted increasing
attention in the literature and have been applied for surveillance, intelligence gathering,
transportation of goods, agricultural activities, and target tracking [4, 5]. In particular,
the field of target tracking has attracted the interest of the research community due to the
real-world application of autonomously tracking moving targets over land and sea [6].
Due to the potential for misuse of drones for malicious and illegal activities to support
terrorism, conduct organised crime and disrupt critical national infrastructure, the tracking
of uncooperative aerial targets has become a paramount research area [7]. For instance
between 2016 to 2018, about 771 drone-related crimes were documented in which criminal
gangs used drones to smuggle illegal substances to UK prisons [8–10]. Additional statistics
of illegal drone incidences such as the disruption at Gatwick Airport in December 2018,
highlight the magnitude of the evolving risks posed by the malicious and nefarious use
of drones [9, 10]. Furthermore, the nature of these evasive drone targets presents critical
challenges in the deployment of UAVs for efficient and robust tracking within dynamic
and unpredictable environments. Moreover, as UAVs become increasingly integrated into
civilian and military operations, the need for optimal and adaptive tracking systems capable
of handling agile and elusive targets has become paramount [11].
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The pursuit of highly evasive targets, such as agile drones or manoeuvrable airborne
threats, poses a significant challenge due to their erratic movement patterns, swift changes
in trajectory, and rapid speed variations [12, 13]. Current literature on the subject of
evasive target tracking falls short in adequately modelling evasive targets as researchers
commonly use simple models to mimic real-world target evasion [14–16]. At the time of
conducting this research, we could not find any literature that implemented a 3D dynamics
and smart evasion strategy for aerial drone-type targets to evade a fixed-winged tracking
UAV. This leaves a gap as the robustness of the tracking algorithm is tested against the
evasive capabilities of the target being tracked. This research addresses this important
gap by designing and optimising algorithms for both UAV tracking and target evasion in
various scenarios and mission configurations.

The research aims to develop algorithms for single and coordinated UAVs to track agile,
manoeuvring, and evasive ground and aerial targets by investigating various approaches
and methods for effectively and persistently maintaining the targets in the UAVs Field of
View (FOV) while considering the physical and dynamic limits of the tracking vehicle(s).
This study starts by investigating the tracking problem using a 2-dimensional (2D) scenario
and solving it by assuming a randomly moving target, then extending it to a 3-dimensional
(3D) scenario. To capture the problem realistically, and to test the robustness of the tracking
algorithm being developed, this research will introduce evasive target(s) with peculiar
dynamic capabilities and constraints to that of the UAV, in the form of mobile ground
vehicles and fast-moving quadrotors.

The tracking UAV will use the information provided by onboard sensors like cameras to
identify and track the mobile target, constrained by limited FOV, control inputs and turn
radius [14]. The type of targets considered for the tracking algorithm design includes
intruder vehicles encroaching a restricted area, single or swarm of aerial quadrotor-type
targets violating a restricted area or a drone controlled by a mischievous actor, intending to
cause harm or havoc to a protected facility of building. Considering that these types of
target-tracking missions are time-sensitive and often unplanned, they would require the
quick intervention of tracking UAVs. Accordingly, this research also intends to address
UAV coordination to ensure that the target is persistently tracked, captured, or neutralised.

The outcomes of this research endeavour are anticipated to contribute to advancing the
field of UAV-based target tracking, offering robust and scalable solutions that can be
applied across various domains including security operations, surveillance, search and
rescue, precision agriculture and commercial transportation. The potential impact of this
work therefore extends to enhancing tactical operations, improving civilian safety, and
facilitating advancements in autonomous UAV systems, thereby contributing to the broader
technological evolution in aerial robotics and unmanned systems.
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1.2 Problem Statement

Tracking single or multiple manoeuvring targets using lone or cooperative UAVs is a
dynamically challenging task [13]. Designing a realistic model of the tracking and evasion
vehicles will require solving different challenges at the different stages of design [17].
Firstly, we need to mathematically design models of the aerial and ground vehicles that
accurately describe the behaviour of the vehicles in real-life scenarios while allowing for
simplicity for the design of robust controllers and navigation algorithms. Secondly, we
stabilise the translational and rotational dynamics of the UAV to cope with tracking active
and evasive targets. The last step is designing guidance systems to track moving targets
and, if cooperative aerial vehicles are utilised, to coordinate them.

1.2.1 Dynamics consideration

As a result of the considerations above, the issue is split into the following main axes:

• UAV dynamics: This research focuses on fixed-wing models when analysing the
dynamics of UAVs. These aircraft have distinct motion constraints and dynamic
constraints, causing them to behave like non-holonomic vehicles. Unlike ground
targets, fixed-wing UAVs have more difficulty stopping or changing direction, which
often results in difficulty when attempting to outmanoeuvre targets.

• Target dynamics: Non-smart manoeuvring targets are frequently designed by re-
searchers to mimic evasive target manoeuvres. In this study, the target’s behaviour
and dynamics are critical factors that must be carefully considered. The target can
move on an open field or a road network, and its movement is constrained by the
dynamics of a car model. Furthermore, the target may behave neutrally or employ
evasive tactics, introducing a tracking-evasion scenario. This tracking-evasion sce-
nario is analogous to game theoretic pursuit and evasion problems, in which the
UAV operator must make strategic decisions. As a result, understanding the target’s
dynamics and behaviour is critical in developing effective UAV tracking and pursuit
strategies.

• Cooperative UAV tracking of aerial targets: Cooperative tracking of aerial targets
considers the collaboration among multiple UAVs, to ensure efficient tracking efforts.
Understanding the dynamics of the UAVs as well as that of single and multiple
targets is vital for predicting trajectories and adapting tracking strategies in real
time. Utilising appropriate tracking algorithms and information sharing will enhance
accuracy and tracking robustness. Additionally, adaptive control algorithms empower
UAVs to dynamically manoeuvre and respond to the unpredictable movements of
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aerial targets. In general, cooperative decision-making processes will enable proper
task assignment and overall mission success.

1.2.2 Research questions

The main focus of this research is on enhancing evasive target tracking and contributing
to the field of UAV design and operations. Accordingly, the main research question is
as follows: How can we effectively track a single or multiple evasive ground or aerial
targets using single or multiple fixed-wing UAVs while considering the dynamics and
limitations of the tracking and evasion vehicles? To enable us to address the above question
thoroughly, it is broken down into four sub-research questions as follows:

a. What tracking algorithm is best suited for tracking a single or group evasive target
while considering the limitation of the tracking vehicles?

b. What consideration should be made in designing a smart target that can persistently
evade the tracking UAV?

c. What optimisation parameters need to be adjusted to enable a UAV to track an
evasive target effectively?

d. How can cooperative UAVs make a joint decision and task assignment during active
target tracking scenarios to ensure optimal tracking of targets?

1.3 Research Aim and Objectives

This research aims to develop a 3D target tracking algorithm for single and cooperative
fixed-wing UAV tracking of smart evasive ground or aerial targets while accounting for the
dynamic constraints of tracking and evading vehicles. The research objectives are outlined
below to address the research questions identified above:

a. Develop a UAV tracking and evasion model using optimal and other control concepts
and extend the UAV tracking model from 2D to 3D (addresses research question a).

b. Implement a quadrotor target algorithm that can persistently evade the fixed-wing
UAV tracking UAV 3D (addresses research question b).

c. Develop an adaptive control algorithm that selectively adjusts various optimisation
parameters online to enhance UAV target tracking (addresses research question c).

d. Implement UAV algorithm for cooperative tracking of single and multiple evasive
aerial targets (addresses research question d).
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1.4 Summary of Contributions

The main contributions of this research are outlined as follows:

• Comprehensive survey of up-to-date literature on fixed-wing UAV evasive ground
and aerial targets tracking (research objective a).

• The turn rate and bank angle limits are used to solve the 2-step prediction fixed-
winged UAV optimal control strategy by [14]. This allows for smoother target
tracking while limiting the UAV’s ability to turn excessively (research objective a).

• We extend the 2D algorithm in [14] to a 3D target tracking algorithm, accounting for
changes in terrain (research objective a).

• A Flight Path Angle (FPA) for controlling the UAV’s vertical movement is calculated
using an altitude control rule that takes into account the relationship between the
velocity vector in the 2D plane and the desired altitude above the target. A second
altitude controller is also designed using the relationship between the real and project
size of the target image on the tracking camera plane (research objective a).

• An evasive target control method is developed by solving a two-step maximisation
problem, offering realistic target movements (research objective b).

• A modified controller is developed for organising and tracking a group of evasive,
uncooperative aerial targets while avoiding mid-air collisions (research objective c).

• Using the size of the target cluster, the distances between individual targets, and
balancing the requirements for image quality and FOV coverage and autonomously
controlling the altitude for each UAV on a cooperative search mission (research
objective c).

• A task assignment and switching logic is developed to aid the tracking UAV in
choosing the sequence of targets to track (research objective d).

• To neutralise or interdict an adversarial quadrotor drone targets, we developed a novel
proportional navigation-based projectile algorithm with a retardation component
(research objective d).

From Fig. 1.1, it can be observed that contribution 1 is a result of the survey conducted
in Chapter 2. Similarly, contributions 2, 3 and 4 are from Chapter 3 while contribution 5
results from Chapter 4. Also, the research presented in Chapter 5 makes the 6th contribution
while contribution 7 is derived from Chapter 6. The last two contributions are the results
of the work presented in Chapter 7. Collectively, Chapters 2, 3 and 4 address Objective 1
of this thesis while Chapter 5 addresses Objectives 2 and 3. In the same vein, Chapters 6
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Chapter 3

Chapter 4

Chapters

Chapter 6

Chapter 2

Chapter 5

Contributions Objectives

Chapter 7
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on fixed-wing UAV 
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2. The turn rate and bank 
angle constraints for 
optimal target tracking.

3. Extension of 2D UAV 
target tracking to 3D.

4. Evasive target  strategy 
for realistic  manoeuvre.

5. UAV altitude control  
using target size and 
altitude.

6. Modified controller 
with collision avoidance  
for tracking  aerial targets.

7. Individual UAV  altitude 
control for optimised 
cooperative  tracking  and 
Task assignment.

8. Switching logic for UAV 
multi-target tracking.

9. Novel  PNG-based 
algorithm to interdict 
adversarial targets

1. Develop a UAV 
tracking and evasion 
model using optimal 
and other control 
concepts and extend the 
UAV tracking model from 
2D to 3D.

2. Implement  quadrotor 
target algorithm that can 
persistently evade the 
fixed-wing UAV tracking 
UAV 3D .

3. Develop adaptive 
controllers to  adjusts  
optimisation parameters  
for  enhanced UAV target 
tracking.

4. Implement UAV 
algorithm for cooperative 
tracking  & interdiction of 
single and multiple 
evasive aerial targets.

Fig. 1.1 Link between thesis chapters, contributions and objectives.

and 7 address objective 4 of this thesis. The chart in Fig.. 1.1 shows that the research work
presented in all the chapters is related to the thesis objectives and overall aim of designing
a fixed-wing tracking algorithm for single and cooperative tracking of both ground and
aerial evasive targets.
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1.5 Thesis Organisation

This thesis presents various modified and novel algorithms for tracking both single and
multiple evasive ground and aerial targets using single and cooperative fixed-wing UAVs.
The design considers the physical limits of small and medium-sized UAVs in deciding the
dynamics constraints and smart target control. The thesis is structured as outlined in Fig.
1.2 while the brief description of the research focus of the technical chapters is provided in
the following paragraphs.

Chapter 2 explored of recent advancements and applications in UAV target tracking
before presenting an in-depth analysis of the factors influencing target tracking. The
factors identified include environmental, dynamics, target types, and the number of targets
tracked. This chapter also reviewed state-of-the-art target tracking guidance and control
methodologies, including optimal control strategies and adaptive online control methods
that aid the effective tracking of evasive targets. Cooperative target-tracking control
strategies were also examined, highlighting collaborative efforts among multiple UAVs in
complex environments. Lastly, the chapter explored recent literature on countermeasures
against adversarial targets. The chapter identified key insights, gaps, and avenues for
further research, and laid a robust foundation for subsequent investigations into UAV target
tracking.

Chapter 3 discusses a UAV tracking algorithm to track an evasive ground-moving tar-
get using optimal control law. The UAV tracking algorithm modified the work of [14]
by considering additional constraints that ensured smooth target tracking. Additionally,
an evasive target is designed to intelligently evade the tracking UAV. Both algorithms
were extended to 3D space to simulate more realistic UAV and target engagement scenarios.

Chapter 4 developed various altitude control algorithms aimed at automatically adjusting
the altitude of the UAV to operate within an upper and lower altitude band above ground
or aerial targets. The altitude equations and algorithm assume that the UAV will adjust
its altitude in response to the altitude or elevation of the target and is used in combination
with the tracking algorithm in Chapter 3 to develop various aerial target tracking scenarios

Chapter 5 outlines the modification and development of UAV controllers for tracking eva-
sive quadrotor-type targets that are designed to constantly take evasive action to manoeuvre
away from the tracking UAV. The UAV algorithm developed in Chapter 3 is adaptively
optimised to track and keep the aerial target within the UAV’s FOV while maintaining a
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Fig. 1.2 Outline of thesis structure

predefined optimal altitude band.

Chapter 6: This chapter discusses the cooperative tracking of a single quadrotor target by
multiple UAVs. The UAV control algorithm in this chapter is developed by modifying the
algorithm presented in Chapter 3 to cooperatively track the evasive target while avoiding
collision between the UAVs and the target. The tracking algorithm is designed as decen-
tralised cooperative tracking where each UAV tracks the target independently, keeping the
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target in their respective FOVs while maintaining a safe distance between the UAVs and
the target

Chapter 7 considers a scenario where a fixed-wing UAV is tracking 3 independently ma-
noeuvring quadrotor-type adversarial targets, attempting to intrude on a restricted facility
and cause havoc. These targets are assumed to be aware of the tracking UAV and are
continuously performing evasive manoeuvres to evade the UAVs. The goal of the UAV
algorithm is to track the 3 targets independently and neutralise each target using the on-
board countermeasure. A task assignment computation is also presented to aid the UAV in
deciding which target to track first and the next target in the tracking and neutralisation
sequence. We also implement some performance metrics to compare the tracking and
neutralisation performance of our algorithm against optimal solutions in the same scenario.

Chapter 8 summarises the thesis, outlines the main contributions of this research and
presents considerations for future research.

1.6 Methodology

The methodology used for the fixed-wing tracking UAV in this research is developed using
a 2-step, min-max optimal control strategy that explores and minimises the worst-case
target evasion. This study developed a smart target evasion strategy using a similar cost
function to evade the UAV persistently, modifying the dynamics and constraints to suit
a moving ground target. To autonomously control the altitude of the UAV, this research
devised a method that computes flight path angle using velocity vectors from the 2D plane
and a PD controller that utilises the relationship between the size of the image on the UAV
camera and the actual size of the target on the ground to control the UAV to a desired
altitude.

To utilise the UAV algorithm for aerial target tracking, the research applied an adaptive
optimisation control method and designed an evasively manoeuvring quadrotor target using
PID control. To explore multiple UAV tracking of a single target, collision avoidance
computations are incorporated to prevent mid-air collision between the UAVs and the
target. This is extended to multiple target tracking by devising a method that views the
target cluster as a polygon and utilising the position of the various targets and cluster size
to develop a dynamic altitude control strategy that optimises coverage while compensating
for image quality. To complete the research, a methodology for assigning tasks to the
tracking UAVs is presented, and NMPC & optimal control methods of driving the UAV to
intercept an adversarial target. Where direct interception by the UAV would be limited,
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this research also presented a proportional navigation guidance algorithm that allows a
projectile to close up with the target and retard as it gets closer to the target to allow for
the deployment of a countermeasure net.

1.7 Publications

Parts of the research presented in this thesis have been published as a peer-reviewed
contributed paper to an international conference, while other aspects are in the process of
preparation for submission. Details of the published paper are as follows.

1.7.1 Published Article

Mbam, C.J., and Kim, J. “Optimal Tracking & Evasive Algorithms for Fixed-Wing UAV
& Target in 3D Space”, In Proceedings of IFAC World Congress. Yokohama, Japan: Japan
IFAC-PapersOnLine. 2023. pp.4938 - 4943

The above publication consists mainly of the research work presented in Chapter 3 of this
thesis.

1.7.2 Unpublished Articles

Mbam, C.J., and Kim, J. “Comprehensive survey of up-to-date literature on fixed-wing
UAV evasive targets tracking.”, In preparation for submission to Multidisciplinary Digital
Publishing Institute (MDPI) Systems.

Mbam, C.J., and Kim, J. “Single & Multiple Fixed-wing UAV Adaptive Tracking of
Evasive Aerial Target”, In preparation for submission to IEEE Transactions on Journal of

the Franklin Institute.

Mbam, C.J., and Kim, J. “Fixed-wing Cooperative Tracking and Interception of Agile
Quadrotor Swarm”, In preparation for submission to IEEE Transactions on Automatic

Control.

The content of the first paper in this subsection is drawn from a combination of the research
effort covered in Chapters 4 and 5, while the second paper presents a concise write-up of
the research covered in Chapters 6 and 7 of this thesis.



Chapter 2

Literature Review

2.1 Introduction

This Chapter reviews related work in the area of autonomous UAV target tracking in
recent years. My interest in this field of research stems from my work experience in
operations related to tracking evasive targets using aerial surveillance platforms and
the challenges observed in various mission scenarios. Furthermore, we believe that the
research would advance the development of better UAVs and algorithms to protect vital
facilities and security operations. Accordingly, this Chapter explores state-of-the-art UAV
tracking of various types of targets using different environments, UAVs, sensors, and target
types. The reviewed literature also explored the common control strategies implemented
by researchers in tracking aerial and ground targets, ranging from optimal control to
adaptive online controls. The purpose of the review in this Chapter is to explore available
information in target tracking, identify current techniques, methodologies, ideas, and
theories, and establish relationships in terms of similarities, differences, and gaps in the
existing literature to be covered in our research. Before exploring the various aspects of the
UAV target tracking problem, let’s first highlight the various applications where tracking
paths or target objects are being applied.

Military Operations. UAV target tracking is essential in the following areas of military
applications such as defence operations for surveillance, reconnaissance, and target tracking
[18].

Search and Rescue. UAVs equipped with thermal cameras and other sensors to locate and
track missing persons or disaster survivors [19, 20].
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Law Enforcement. UAVs have also been employed for tracking suspects, monitoring
crowds, and enhancing situational awareness in law enforcement operations. This is
essential in locations where tracking with human eyes or fixed assets is limited [21–23].

Environmental Monitoring. When applying target tracking in environmental monitoring,
UAVs are used to track wildlife, monitor ecosystems, and survey natural disasters or
environmental changes [24–26].

Infrastructure Inspection. UAVs equipped with cameras and sensors could also be used
to inspect infrastructure like power lines, pipelines, and buildings for defects, and damage
or to track changes [27–29].

Agriculture. UAVs are being applied for tracking crop health, pest detection, precision
agriculture, and harvesting of fruits using multi-rotor drones. This agricultural application
saves time in terms of man-hour and cost by using sensors to detect and analyse images of
leaves, fruits, and stems[30–32].

Film and Photography. Another area that has benefited from UAV target tracking is
the film and photography industry. UAVs are used in the entertainment industry for
tracking shots, aerial cinematography, and other forms of coverage that would be difficult
or impossible to film using fixed structures of manned aerial vehicles [33–35].

Having established the various applications of target tracking research efforts, the rest
of the Chapter is organised as follows. In Section 2.2, we review factors that affect
target tracking using UAVs while Section 2.3 explores target tracking guidance & Control.
In Section 2.4, we carefully review cooperative target tracking control efforts. This is
followed by exploring research efforts on countermeasures against adversarial targets in
2.5. A summary of the findings and deductions from the reviewed studies is provided in 2.6.
The process of planning, selecting appropriate literature, extracting relevant information,
and executing the literature review is depicted in Fig. 2.1.



2.2 Factors in target tracking using UAVs 13

Fig. 2.1 Depiction of literature selection and review process

2.2 Factors in target tracking using UAVs

As outlined in the previous section, target tracking using UAVs applies to and is essential
for executing vital tasks in different settings. When employing UAVs for the aforemen-
tioned roles, they could encounter non-cooperative targets, and either randomly or evasively
manoeuvring. Therefore, developing a UAV target tracking algorithm that is capable of
tracking intelligently evading targets is worth considering. To autonomously perform target
tracking roles, the UAV must be capable of predicting and responding to evasive manoeu-
vres from agile targets. Accordingly, some factors need to be taken into consideration
when modelling a target tracking scenario. These factors include simulation environment,
target characteristics, UAV dynamics & characteristics, navigation, as well as guidance
and control algorithms for tracking UAVs. Therefore, a review of these factors and how
they affect target tracking implementation is presented in the succeeding subsections with
reference to recent literature on target tracking. A flowchart of the various factors reviewed
is shown in Fig. 2.2.

2.2.1 Tracking environment

In modelling a tracking scenario, the UAV must operate in a physical environment that
accommodates the target and defines the confines of its operation. UAVs typically operate
in the air when tracking targets and can fly at low or high altitudes, depending on the
environment of operation. The environment also determines the complexity of the UAV
control strategy and the constraints that need to be taken into consideration in their
implementation. This subsection, therefore, discusses the characteristics of the environment
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Fig. 2.2 Factors considered in target tracking review

and how it affects our UAV tracking problem. The environment of operation affects the
way the UAV observes the target and how it is represented in the UAV camera FOV.

Physical and mathematical modelling of operating environment. The tracking by a UAV
and evasion by a target can only take place in an environment that allows both vehicles
to travel from an initial starting point to a desired endpoint. The operating environment
can be processed by first considering the physical environment attributes and secondly
mathematically modelling the environmental space by defining constraints utilised for the
path planning algorithm. The translation of the physical environment into a navigable space
can be achieved using graph theory. For instance, [36] designed a mathematically complex
environment in which 2 UAVs will cooperatively operate, by modelling moving airflow,
adversary radar, mountain area and anti-aircraft weapon positions into the environment
in combination with game playoff functions. Similarly, Jones et al. [37], presented a
comprehensive survey that classified the complexity of various methods of modelling a
tracking environment. Their study also highlighted challenges in the existing methods
of modelling the complexity of tracking environment, UAV path planning approaches
and suggested possible research questions and future directions. While the environmental
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models are useful, the complexity or otherwise is not the subject of this thesis. Accordingly,
we explore the physical attributes of a target tracking environment to present a broad
overview of the various aspects to consider when deciding on a tracking environment.
These physical considerations are presented in the succeeding subsections.

Bounded and continuous environment. The environment could be bounded discrete
[38–42] or a continuous environment [43–45]. In addition, the state of the environment
can be limited to 2D or 3D space. When the UAV target tracking is implemented in a
2D environment, the common assumption is that the target moves on a flat ground plane
while the UAV operates at a fixed optimal altitude throughout the tracking scenario [14].
The UAV 2D environment can be viewed as a square plane observed from a plane directly
above the camera of the tracking UAV [46]. While the 2D plane simplifies the tracking and
evasion problem, it does not allow for the altitude and some attitude changes that the 3D
environment provides [47, 48]. In the 3D environment, a more detailed operation of the
UAV aerial and target motion is facilitated, with the environment represented as a box [49].
Despite the difficulty of modelling irregular or complex environments such as spheres,
some research exists in the literature [50] with irregular environments.

Terrain. The next consideration for the UAV target tracking control environment is the
terrain of the ground. This may be flat terrain, Irregular or undulating [51]. The terrain
can also be obstacle-cluttered [52, 53], or obstacle-free surfaces [54]. The terrain type
affects the mobility of the target as well as the UAV’s tracking capability to effectively
track the target [55]. A table classifying the related research based on the characteristics of
the environment is given in Table 2.1.

Table 2.1 Types of UAV target tracking environments

Environment Discrete Continuous Hybrid
2D [45, 43, 39, 41] [43–45] [56]

3D [42, 40, 38, 44] [44] [57]

When the ground environment is cluttered with obstacles, it affects the FOV of the UAV and
restricts the movement of the target around the various obstacles [55]. In such environments,
the obstacles may be mapped to enable the UAV and target to plan their trajectories [58–60]
or without a map of obstacle positions to test how the UAV can navigate the unknown
obstacles [61–63]. Furthermore, the obstacles in a target tracking environment could be
confined or unconfined obstacles. In the confined scenario, the obstacles are restricted to
fixed positions like road paths where the targets are constrained to move on [64]. In other
scenarios, the obstacles could have fixed predefined positions, shape, and size. The shape
of the obstacles can also be used to classify the tracking environment. The common shapes
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of obstacles modelled in UAV tracking research include cylindrical [65–70], square-shaped
pillars [71–73], rectangular-shaped obstacles [74–76], and circular [74, 77–79]. Some
studies have also designed spherically shaped obstacles [80–82] and irregular obstacles
[83, 84]. In research works where the UAV tracking goal includes manoeuvring through
hoops [85, 86], tube-shaped, square, rectangular, and parallelogram openings have been
used to design the UAV tracking or navigation paths or waypoints [45]. These could be
considered as forms of obstacles in the operating environment as the UAV must manoeuvre
its way through these hoops to get to the target or a desired endpoint. On the other hand,
obstacle-free or unconfined environments do not have defined paths or obstacles in the
tracking, mission scenario. However, boundaries may be set to prevent the target or UAV
from moving in unrealistic spaces [87]. In this research, the environment used throughout
is the undefined type with no obstacles on the ground surface. This is because the scenario
being modelled is that of UAV tracking a freely evasive ground or aerial target. The
use of obstacles will limit the target manoeuvre and as such, we utilise an obstacle-free
environment to explore the limits of the UAV tracking and target evasion strategies.

Environment dynamics. The operating environment can also be static or one that evolves
dynamically. Static environments have either none or fixed obstacles within an unchanging
environment throughout the mission scenario [63, 84]. On the contrary, dynamic environ-
ments are designed to have either moving or changing obstacles that are modified in either
shape, size, or location during the mission scenario [66, 88–90]. Typically predefined
shapes and positions of the obstacles and a changing sequence will be provided to test
the UAV tracking capability in the dynamic environment. However, there are studies in
which the UAV tracking problem is executed in random or abruptly dynamic environments.
Operating in these types of environments requires the tracking UAV to dynamically adapt to
the changing environmental situation during the mission thus introducing more complexity
into the UAV tracking algorithm development [91–93]. A classification of UAV target
tracking literature based on their operating environment is given in Table 2.2.

Table 2.2 Cited references by environment type and obstacle presence

Environment Type Obstacle Presence Cited References

Static Environment
Obstacle [58–60, 63, 84]

No Obstacle [91–93]

Dynamic Environment
Obstacle [66, 88–90]

No Obstacle [87]

The table above shows that both static and dynamic environments have been designed
for target-tracking problems. However, a larger number of studies lean towards the static
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environment due to the less complexity and design considerations. While the various
environments in the reviewed literature are useful for various mission scenarios, in this
research, we focused on the 3D environment with no obstacles. This environmental type
represents our mission space for the target tracking problem using fixed-wing UAVs which
would normally be in an open space with limited or no obstacles. We therefore believe that
this type of environment is sufficient for this research.

2.2.2 Target type and dynamics

The target tracked by a UAV in a mission scenario can be classified into 3 categories. These
are target type, manoeuvre design and target dynamics.

Target Type. The target could be classified into cooperating and non-cooperating [94–96].
With cooperating targets, information from the target is transmitted to the tracking UAV.
This information may include position coordinates, speed, acceleration or identification
frequency, thus making it easier for the UAV to locate and keep track of the moving target
[97]. The target may also be fed with information about the UAV position and commu-
nication frequency [98]. On the other hand, non-cooperating targets could be grouped
into passive and active targets. Passive non-cooperating targets will normally manoeuvre
independently, without considering the UAV tracking [99]. The target may take abrupt or
pre-designed manoeuvres to accomplish its desired objective of arriving at a destination by
following some path [100, 101]. The active non-cooperating target is designed to actively
and smartly evade, or randomly manoeuvre away from the tracking UAV. These types of
targets would normally have some onboard sensor to detect when the UAV is closing up
on their location and then take evasive action to manoeuvre away from the pursuing UAV
[99]. The non-cooperative target is more difficult to track by the UAV as it must adapt to
the possible evasion by the target during the tracking scenario [102, 96, 103, 104]. For
instance, [14] developed a 2D control strategy for fixed-winged UAV autonomous tracking
of a randomly manoeuvring ground target. Unlike the random manoeuvre, [15], presented
a control algorithm designed to track a smart evading target that utilises a dipole-type
vector field around the tracking UAV to actively execute evasive action. However, these
were only implemented for 2D engagement dynamics with the main focus being on the
UAV control strategy. The reviewed literature showed that only a few UAV target tracking
studies considered active non-cooperative target dynamics and control strategy models.
Our research addresses this gap by designing and simulating active and non-cooperative
ground and aerial targets in 3D space to enable adequate simulation of the UAV tracking
algorithm developed.
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Target manoeuvre space and mobility. Targets in UAV tracking missions are constrained
by the environmental space of their operation either ground or aerial. Some research
focuses on tracking ground-moving single or multiple independent targets while others
design a group of targets that move as a dynamic cluster which changes in shape and size
depending on how close or far apart the targets are from each other. These clusters could
be in the form of cars moving a straight-line convoy, diamond shape clusters [105–109] or
even a smarm of aerial mini-drone targets [110, 111]. Tracking clustered groups of targets
requires the UAV to actively adjust its altitude to enable its camera to keep the cluster
within its FOV. Targets can also be classified based on their manoeuvre types. This could
be a simple target manoeuvre in a straight line [112, 113], along curved[114–116], circular
[117, 118], zig-zag [119, 120] or sinusoidal paths [121, 120, 122]. Other researchers
design random target movements to simulate target evasion [123–126, 79, 127, 65]. This
could be useful to assess the UAV tracking performance against unpredictable target
manoeuvres. In other cases, targets have been designed to evade the tracking UAV using
either predefined evasion strategies or intelligent manoeuvres [12]. Evasive manoeuvres
from targets are designed with the capability to use the UAV parameters in their evasion
strategy [128–131]. Despite several research efforts from different studies reviewed, more
understanding is still needed in the area of fixed-wing UAV tracking of various types of
single and clustered evasive targets. Accordingly, this research presents an algorithm for
a smart evasive target that is capable of persistently evading the tracking UAV during a
mission scenario. With the non-manoeuvring target moving in a straight line. We assume a
scenario where the UAV is tracking a ground target moving on a straight road path. The
other type of target implemented is the evasive type, which uses information about the
UAV’s position and speed to manoeuvre away from the pursuer UAV. We also implemented
both aerial and ground targets and multiple evasive quadrotor-type targets to test the UAV’s
ability to persistently track the evasive aerial vehicles.

Number of targets. In terms of the number of targets being tracked by the UAV, most
research implements a fixed number of targets while a few studies have explored a dynamic
number of targets. For studies with a fixed number of targets, single or constant multiple
targets are maintained in the tracking environment throughout the mission simulation
[132, 106, 133, 134]. In other studies, a dynamic target set where the number of targets
could increase or decrease during a mission scenario has been explored [135–139]. In such
cases, new targets may be inserted or removed from the tracking environment at a preset
time or predefined entry or exit points. Alternatively, the scenario could design targets to
appear at a random position within the UAV’s tracking range. To keep track of the targets
in these scenarios, the UAV needs to continuously scan the environment to detect changes
such as the appearance of a new target in the simulation environment.
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Table 2.3 Structured reference table of target manoeuvre space and mMobility

Category Target Type Manoeuvre Type References

Target Space

Single Targets - -

Multiple Targets - -

Clustered Targets - [105–109]

Mini-Drone Targets - [110, 111]

Target Movement

- Simple Manoeuvres [112, 113]

- Complex Manoeuvres [114–122]

- Random Manoeuvres [123–126, 79, 127, 65]

- Evasive Manoeuvres [12, 128–131]

Target Dynamics
Fixed Number of

Targets

- [132, 106, 133, 134]

Variable Number of

Targets

- [135–139]

While it may be interesting for the UAV to track targets that change in number during a
mission scenario, it will only occur in real-world scenarios where the UAV is constrained
to track targets within a defined space beyond which it loses track of the target. In this
research work, the number of targets is constant during the tracking mission. However,
in Chapter 7 of this thesis, we present a scenario where a target tracking mission starts
with multiple aerial targets which reduce in number as the UAV neutralises the targets in
sequence.

2.2.3 UAV characteristics

UAVs have emerged as versatile tools for various applications due to their ability to
navigate complex environments, access remote or hazardous areas, and perform tasks
either with human assistance or autonomously. One crucial application domain is target
tracking, where UAVs are employed to follow and monitor dynamic subjects such as
vehicles, individuals, or wildlife. The effectiveness of UAV-based target tracking hinges
on the understanding of UAV dynamics, which involves factors like agility, stability, and
control precision. In this subsection, we review the characteristics of UAVs based on their
size, capabilities, and dynamics.

UAV Size. UAVs are often categorised based on their physical dimensions and payload ca-
pabilities. Miniature UAVs (MUAVs) are characterised by their small size and lightweight
construction, making them suitable for indoor or confined space tracking scenarios. They
offer advantages such as manoeuvrability and low cost, but may be limited in terms of
flight duration and sensing capabilities [140–144]. On the other hand, Medium Altitude
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Long Endurance (MALE) [145–151] and High Altitude Long Endurance (HALE) UAVs,
which are larger and equipped with advanced sensors, are capable of prolonged flights over
vast areas. These platforms excel in tracking scenarios in which extended mission duration
and comprehensive surveillance coverage are needed [152–156].

Tracking range. Short-range UAVs are designed for tracking targets within a relatively
close distance, often in the range of a few kilometres [157–159], while medium-range
UAVs can track targets over longer distances, typically up to several tens of kilometres
[160]. Long-range UAVs can track targets over extended ranges, sometimes even hundreds
of kilometres away [161, 162]. The range of a target tracking UAV is roughly proportional
to the wingspan size as shown in Fig. 2.3.

Fig. 2.3 UAV classification by size and weight [163]

Operating altitude classification. Target-tracking UAVs are also categorised by their oper-
ating altitudes, ranging from low-altitude to high-altitude platforms. Low-altitude UAVs,
such as micro and mini UAVs, are well-suited for close-range target tracking, enabling
detailed observations and interactions [164–167]. Medium [168, 169] and high-altitude
UAVs are more suitable for tracking targets across larger geographic areas, where altitude
provides a vantage point for broader coverage and extended line-of-sight communica-
tion [170, 171]. A table showing target tracking UAV literature based on the sizes and
capabilities is shown in Table 2.4.

In this research, we consider a lightweight, medium-range fixed-wing UAV operating at
low altitudes for our tracking scenario. This is because these types of UAVs would be
best suited for the mission of intercepting and preventing adversarial targets from gaining
access to a protected facility.
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Table 2.4 Table of UAV size, altitude, and range capabilities

Category Size Range Altitude

Small UAVs

Small [140] Short-Range [157] Low-Altitude [164]
Lightweight [141]
MUAVs [142]
Manoeuvrability
[143]
Low Cost [144]

Large UAVs

Large [145] Medium-Range [160] Medium Altitude
[168]

Advanced Sensors
[146]

Long-Range [161] High Altitude [169]

Prolonged Flights
[147]

Extended Durations
[170]

Extended Coverage
[170]

Long Surveillance
[148]

2.2.4 UAV type and dynamics

Another way of classifying UAVs used in target tracking is by their design and propulsion
mechanisms. The type of UAV designed and employed for a target tracking problem
depends on various factors such as target type, operating environment, and tracking range.
A brief review of recent target tracking literature using various UAV dynamic configurations
is presented below.

Fixed-wing UAVs. Fixed-wing UAVs have a traditional aeroplane-like configuration and
are known for their efficient long-endurance flight capabilities. They are suitable for
covering large areas and conducting short, medium or extended surveillance missions,
covering long distances, and maintaining stable flight paths, which is beneficial for tracking
targets that traverse expansive areas [172, 173]. Their dynamics are optimised for efficient
cruising and high-speed dynamics. Fixed-wing UAVs must however maintain a minimum
velocity above-stall speed, below which the aircraft will stall and fall to the ground [174].
Some target-tracking research that employed fixed-wing UAVs is highlighted below.

Liao et al., [176] designed a fixed-wing UAV flight at a constant altitude and speed to
track a moving target. In [177], the fixed-wing UAV was designed to follow a circular
part while tracking a ground-moving target using loitering and following patterns. To
enable stand-off target tracking, [178] developed a small fixed-wing UAV, equipped with
target-tracking radar and addressed the challenge of designing a fixed-wing UAV flowing
from theory to practical tracking of mobile ground targets. Similarly, Pei et al., [179]
implemented fuzzy-controlled, V-empennage fixed-wing UAV for target tracking. The
UAV type was chosen due to the advantage of speed and endurance available to fixed-
wing UAVs while [180] designed a UAV algorithm for tracking a moving ground target
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Fig. 2.4 UAV types categorised by dynamics [175]

with a fixed-mounted camera. To address the issue of energy consumption by fixed-wing
UAVs during a target tracking mission, [181] developed an economic Model Predictive
Control (MPC) controlled UAV with a camera mounted on a gimbal to track moving
ground targets in a built-up urban environment. Similarly, [182] implemented an online
vision-based localisation and trajectory smoothing for a fixed-wing UAV tracking a moving
target. In a related study, [183] implemented a small low-cost fixed-wing UAV to track
moving targets. A method of conducting field experiments to integrate formation flying,
target identification, and tracking tasks within a unified structure for fixed-wing UAV
swarms was also implemented by [184, 185]. A diagrammatic chart of UAVs classified
by their design types is shown in Fig. 2.4. In this research, we implemented fixed-wing
UAVs because of their advantage of speed and endurance in tracking evasive manoeuvring
targets in 3D space.

Rotary-wing UAVs. Rotary-wing UAVs include helicopters, quadcopters, hexacopters, and
other multirotor UAVs. Several research has applied multi-rotor UAVs due to their excellent
manoeuvrability and vertical takeoff and landing capabilities, making them suitable for
tracking targets in tight spaces or areas with obstacles, cluttered environments or areas
with limited access. The choice of UAV type depends on the specific tracking requirements
and environmental constraints, which may require peculiar capabilities for the UAV to
either hover for short periods or be capable of agile manoeuvres [186]. Zhang et al., [187]
employed rotary-wing UAVs for their target tracking research due to the reduced trajectory,
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power consumption costs and patrol efficiency. Two unique capabilities of rotary wing
UAVs are reviewed below:

• 1. Hovering Dynamics: Rotary-wing UAVs, such as quadcopters and hexacopters,
have the unique ability to hover in place and perform vertical takeoff & landing.
This hovering capability allows for precise tracking and observation of targets in
confined spaces or areas with limited access. Hu et al., [188] compared the disguised
or camouflaged tracking capabilities for fixed and rotary-wing UAVs. They observed
that while limited in its maximum velocity and acceleration in comparison to the
fixed-wing, the rotary-wing UAV was capable of making sudden changes in direction
and velocity, and the ability to hover at a spot and when performing tasks that require
precise control, stationary motion, and stability. This is possible due to the different
propulsion and thrust power models available for ascending and descending in
rotary-wing UAVs. The unique dynamics of rotary wings like quadrotors make them
suitable for autonomous navigation and tracking in agricultural settings, such as
following plantation rows, crop-monitoring, and scouting operations [189].

• 2. Agile Manoeuvrability: Rotary-wing UAVs exhibit agile and responsive ma-
noeuvrability, enabling them to track targets with quick changes in direction and
altitude. This makes them well-suited for tracking dynamic targets or objects in
complex environments. Due to their agility, [190] designed a rotary-wing UAV
for target-tracking military missions. Other researchers have designed quadcopters
and quadrotors, a type of UAV propelled and lifted by four rotors due to their high
manoeuvrability and capability of performing complex tasks in crowded and static
or dynamic environments [191, 192]. Quadrotors can also be designed as small or
lightweight miniature UAVs for tracking active targets [193–195]. Xue et al., [196]
designed an underactuated quadrotor UAV to track moving targets using passive
control and artificial potential field for fixed distance target tracking.

Hybrid UAVs with Adaptive Configuration. With recent advancements in technology, ad-
vancements, a new breed of UAVs known as hybrid UAVs are increasingly being employed
for target tracking tasks. These innovative aircraft types possess the remarkable ability
to seamlessly transition between fixed-wing and rotary-wing configurations and as such
benefit from the advantages of both [197]. Due to this adaptability, hybrid UAVs have a
unique blend of capabilities, allowing them to excel in diverse operational scenarios as they
are engineered with transformative mechanisms that enable them to change their propulsion
and wing configurations on the fly. This gives them the advantages of both fixed-wing
and rotary-wing UAVs, making the hybrid platforms versatile for various tracking and
surveillance missions. One example of the hybrid UAV used for target tracking is the
Vertical Takeoff and Landing (VTOL) UAV. The common types of VTOL hybrid UAVs are
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the tail-sitter and quad-plane and are capable of landing vertically in a confined space [197].

Hybrid UAVs can transition between fixed-wing and rotary-wing configurations, combin-
ing the advantages of both dynamics. In fixed-wing mode, they can efficiently cover long
distances, and while in rotary-wing mode, they offer agile manoeuvrability and vertical
operations. This adaptability allows them to adjust their dynamics based on the tracking
requirements and environment. Dalwadi et al., [198] designed a hybrid UAV, using a
biplane quadrotor model to track stationary and moving targets while [199] developed
a conceptual design for a solar-powered MALE hybrid UAV that utilises both solar and
conventional energy sources. The hybrid-powered UAV exploited solar-powered to fly
the UAV and conventional power sources to provide the system with increased versatil-
ity and reliability. Zhang et al., [200] also developed a Quadrotor Fixed-wing Hybrid
UAV (QFHUAV). The adaptability of the UAV allowed for vertical take-off in quadrotor
mode, cruise tracking in fixed-wing mode, and landing in quadrotor mode [201]. In [202],
they developed a simplified hybrid UAV that combines multirotor and fixed-wing UAV
characteristics using 3 electric power-train propeller sets for VTOL and a fixed-wing with
a single combustion power-train set for long-range missions. Systematic categorisation
of various types of miniature hybrid UAVs based on their designs and target tracking
capabilities was presented in [203].

The UAV type used in target tracking problems, whether fixed-wing, rotary-wing, or hybrid,
depends on the specific tracking requirements and environmental constraints of a given
mission. Hybrid UAVs bridge the gap between these traditional configurations, offering
mission planners and operators enhanced flexibility in adapting to various operational
scenarios. This adaptability also leads to potential improvements in mission efficiency, as
a single hybrid UAV can fulfil roles that previously required multiple specialised platforms.
The choice of UAV also has direct implications for target tracking effectiveness. In
scenarios requiring rapid response and tight manoeuvres, rotary-wing UAVs excel due
to their agility and ability to hover. Fixed-wing UAVs, while less agile, offer efficient
endurance and can cover extensive distances. The altitude of operation impacts the FOV,
sensor resolution, and communication range, influencing the quality of tracking data and
the overall tracking process [204]. A categorisation of the literature on various UAV types
designed and employed for target tracking missions is shown in Table 2.5.

The classification of UAVs based on size, type, and operating altitude serves as a foun-
dational framework for tailoring UAV selection to specific tracking requirements. The
synergy between UAV dynamics and the chosen classification aids in optimising the track-
ing process, enabling UAVs to effectively and autonomously pursue and monitor moving
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Table 2.5 UAV type and dynamics for target tracking

UAV Type Dynamics References

Fixed-wing UAVs

Efficient Long-endurance [172, 173, 4]
High-speed Cruising [174, 176, 177]
Stable Flight Paths [179, 178]

Speed and Endurance [117, 180]

Rotary-wing UAVs

Hovering Dynamics [188, 189]
Agile Manoeuvrability [190–192]

Confined Spaces [187, 186]
Precision Control [196, 205, 206]

Hybrid UAVs

Adaptability of Fixed-wing
and Rotary-wing

[197, 198, 203]

Long-distance and Agile [199–201]
Hybrid Power Sources [202]

Enhanced Mission Flexibility

targets across diverse scenarios. In this research, we implemented the medium-range
fixed-wing UAV. We assume that the UAV is already airborne at the start of the simula-
tion and has the range and endurance to remain airborne throughout the tracking period.
Accordingly, our research does not model the takeoff and landing phases of the UAV flight.

2.2.5 Tracking methodology

The tracking methodology employed by the UAV influences its capability to track and
can be grouped into visual, sensor-based and system-based. These are reviewed in the
paragraphs below:

Visual tracking. UAVs equipped with cameras can visually track targets using computer
vision algorithms. This includes object detection, recognition, and tracking techniques.
These UAVs are equipped with high-resolution cameras for visual tracking and surveillance,
mounted on single-axis gimbals [179]. Zhou et al., [182] implemented an online vision-
based target tracking, while [172, 207] and [179] presented variants of the vision-based
UAV target tracking. A long-term visual tracking algorithm for UAVs based on kernel
correlation was utilised by [208]. In a related study to correct the errors resulting from
UAV visual tracking, [209] developed a spatial attention aberration repressed correlation
filter to stabilise tracking video feeds while [210] applied deep reinforcement learning to
optimise visual tracking images from onboard UAV cameras. In similar efforts, [211, 212]
utilised embedded visual object detection and tracking for UAV real-time tracking.

Sensor-based tracking and Multi-sensor payloads. This involves using sensors such as
radar, lidar, or thermal imaging to detect and track targets based on their characteristics
like movement, heat signatures, or reflective properties. The UAVs carry a combination
of sensors such as cameras, thermal sensors, lidar, and radar for multi-modal tracking
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[186]. For instance, [213] used a monocular Infra Red (IR) camera, to detect and track IR
emitting targets in low illuminance or at night. Similarly, [214] implemented a dual-axis
rotary tracking UAV that utilises a combination of thermal imager and full-colour camera
for aerial scanning reconnaissance. The UAV sensor tracking device also has 3 sets of
laser range finders, Global Positioning System (GPS), and a long-range antenna to ensure
accurate tracking. Chi et al., [215] developed a UAV target recognition and tracking using
a single photon array imaging lidar, while [185] used an adaptive sensor for UAV motion
and tracking control. The adaptive sensor dynamically combines visible light cameras,
infrared thermal & hyperspectral imagers, laser radar, and image transmission technology.
In another related study, the authors used intelligent waveforms based on reinforcement
learning and cognitive radar for UAV target tracking [216].

Global Positioning System/Global Navigation Satellite System tracking. Another method-
ology of UAV tracking is the GPS or Global Navigation System (GNS). The GPS and
GNS-based tracking algorithms track targets based on their geographical coordinates. This
tracking method was implemented by [197], using a monocular vision camera to estimate
the relative target position and a GPS sensor to provide position measurement to a hybrid
UAV. These UAVs were equipped with communication equipment for relaying tracking
data to ground or airborne stations. In [217], the researchers implemented an Extended
Kalman Filter (EKF)-based GNS/Ultra Wide Band (UWB) tight integration with online
time synchronisation for improved outdoor target tracking. A review of UAV target track-
ing employing GPS and GNS-based Iridium and Orbcomm satellites in the VHF-L band
was presented in [218]. The study showed that UAV target tracking and localisation could
be achieved for various scenarios using UAV-RFI detection/tracking and GPS data from
multiple UAVs. To improve the accuracy of multiple target drone tracking, [219] developed
a Markov Chain Monte Carlo Particle Filter (MCMC-PF) that overcomes data errors and
offers real-time suitability. In a related survey study, [220] explored the application of
UAV Simultaneous Localisation & Mapping (SLAM) techniques and data fusion for target
detection and navigation. A table of recent literature on UAVs and tracking methodologies
is shown in Table 2.6 below:

Table 2.6 References on various tracking sensors

Category References
Visual tracking [172, 207, 179, 182, 208–212]
Sensor-based tracking and
Multi-sensor payloads

[186, 213–215, 185, 216]

GPS/GNSS tracking [197, 217–220]

The use of sensor-based tracking could be viewed as a way of enhancing the basic visual
tracking method by making the tracking system more robust for tracking targets at night
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and in adverse weather. Additional sensors and or GPS/GNS systems could be incorporated.
Accordingly, the UAV in this thesis is designed to utilise methods that ensure it persistently
tracks the target using a visual tracking method with the assumption that its camera is
capable of identifying and isolating the tracked target. We assume that the camera is
mounted under the fuselage of the tracking UAV and uses visual and other navigation
equipment to track ground or aerial targets, using a combination of Kalman filters and
Inertial Measurement Unit (IMU) to effectively estimate the target position during a
tracking mission. Future studies will explore the use of more sophisticated tracking sensors
highlighted in the review.

2.2.6 Navigation

We now dive into key aspects of navigation within the framework of UAV operations with
the goal of robust and precise target tracking. Tracking a moving target necessitates not just
good control tactics, but also precise guidance and navigation systems that ensure the target
is always inside the UAV’s FOV [221]. Two essential factors are involved in enabling
the smooth movement of a UAV between different points or directing its continuous
trajectory toward specific targets. These factors consist of a precisely defined guidance and
a navigation system which are both seamlessly incorporated into the operational structure
of the UAV [222]. The guidance law refers to a set of mathematical rules or algorithms
that dictate how a vehicle should move from its current state to a desired state. It defines
the logic or rules governing the trajectory or path the vehicle should follow to reach its
intended destination. On the other hand, navigation is the process of determining the
UAV’s position, orientation, velocity, and trajectory of the tracking UAV relative to its
environment [222]. Navigation involves the use of various sensors, systems, and algorithms
to ensure accurate and efficient movement of the UAV during its operation. We discuss the
guidance and control in the next subsection but first, let’s address the two common types
of navigation used by target-tracking UAVs.

Waypoint navigation. Waypoint navigation is based on segmenting the UAV’s trajectory
into a sequence of carefully placed waypoints. This method requires the UAV to move from
one waypoint to another in a specified sequence. However, the waypoint-based strategy
has inherent rigidity, as it may fail to adapt to dynamic scenarios involving agile or evasive
targets [223]. Tracking manoeuvring objects that can rapidly change direction during
missions can be difficult under this system. Although GPS-based waypoint navigation is
available for automating UAV flight operations, it does not provide the accuracy required
for the exact placement of sensor payloads on structures [223, 224]. Since the waypoint
navigation does not suit the evasive target tracking, we consider the continuous navigation
alternative in the next subsection.
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Continuous navigation. The continuous navigation method takes an alternative approach
by removing the dependency on predetermined waypoints. Instead, a steady stream of
guiding inputs is generated based on specified design characteristics and limits [225]. This
method enables the UAV to dynamically navigate a trajectory aimed at obtaining desirable
positions. The adaptability of continuous navigation allows for real-time adjustments,
making it more sensitive to the complexity of monitoring agile targets [223, 225, 226].

The navigation system applied in this research is the continuous type which allows for
evasive target tracking and abrupt manoeuvres. The next subsection will explore the control
strategies used in directing the UAV toward tracking the moving target. This will provide
an understanding of the interplay between guidance, navigation, and control in UAV target
tracking settings.

2.3 UAV Target Tracking Guidance & Control

There are various strategies in the literature for tracking meandering paths as well as moving
aerial and ground targets. In this section, we review the various control methodologies
applied in recent target-tracking research to guide our decision on which system works best
and also aid the design of strategies employed in this research. The two broad categories
of target tracking control are analytical and data-driven strategies. The main focus of
the review presented in this chapter is on analytical control. However, we review a few
literature on data-driven control here to show the broad spectrum of UAV control strategies
and to serve as a reference for future research.

2.3.1 Machine learning and data-driven control strategies

Machine learning and data-based control algorithms seek to leverage on statistics data
and reinforcement learning models to optimise conventional tracking control strategies to
achieve enhanced and high-quality tracking performance [206]. For instance, the study
by [227, 228] proposed a data-guided that embeds observation data learned from local
linear models to improve tracking performance for a fixed-wing target tracking UAV. The
learning agent was guided by vision-based sensors to learn optimal policies for tracking
reference trajectories. The performance of their controller was compared with Linear
Quadratic Regulator (LQR) in the presence of sensor noise and erroneous datasets. while
this work makes a valuable contribution to data-driven research on UAV target tracking,
the controller was only implemented for 2D scenarios and the target being tracked was a
moving trajectory to mimic a moving ground target. In another related work, Tang et al.
[229] proposed a fixed-wing UAV tracking strategy using Reinforcement Learning (RL)
Deep Deterministic Policy Gradient (DDPG) framework. The RL package was trained and
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optimised for tracking a 3D trajectory environment by controlling the UAV state of flight
and rudder control input. The study also considered uncertainties such as measurement-
induced noise and sensor delays and verified the performance of the RL controller using
proportional-integral-derivative Proportional-Integral-Derivative (PID) control. While this
research considered 3D tracking, like [228] it was implemented for trajectory tracking and
did not consider evasive target dynamics.

A similar research conducted by [230] proposed RL-based UAV control for autonomous
UAV tracking and landing on a moving ground or sea-based target in a harsh environment.
A model-free Partially Observable Markov Decision Process (POMDP) was designed to
automatically learn tracking and landing manoeuvres using a neural network that combines
DDPG and heuristic rules. Simulation results from the study showed that the proposed
RL-based algorithm performed better than a PID controller in the same scenario method.
However, this study was designed for a quadrotor type UAV as opposed to the fixed-wing
UAV and the research focused more on landing on the target than tracking. In the research
carried out by [206], they presented an innovative deep RL-based strategy for correcting
the position, velocity and angular errors of a VTOL UAV despite wind disturbances. The
embedded neural networks obtained and eliminated real-time tracking control errors during
the target tracking mission. The UAV controllers were formulated as a Markov decision
process (MDP) with an appropriately designed system state, reward functions and soft
update method. To enhance tracking control in the presence of wind disturbances, the
research modelled constant, dynamic and strong gust winds into the learning environment.
Furthermore, a quantum-based experience replay strategy was implemented to improve
tracking accuracy for practical applications. The simulations in this research explored
computer-based, hardware-in-the-loop experimentation, and actual real-world flight mis-
sions to evaluate the performance and validate the proposed method. The controller was
reported to effectively perform standoff tracking of a real-life aerial target while maintain-
ing flight stability.

The control strategies reviewed in this chapter are presented in the subsequent subsections
and a chart of the control strategies reviewed is shown in Fig. 2.5. For the conventional
control strategies, we start from simple PID control and move on to more complex con-
trollers.

2.3.2 Proportional-Integral-Derivative control

In the context of UAV control for target tracking, the utilisation of PID controllers for
UAV target tracking has been implemented by various studies. With the increasing
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Fig. 2.5 Chart of common control strategies used in target tracking

need for autonomous UAV control algorithms based on Proportional-Derivative (PD),
principles have also been used to enhance the integration of intelligent systems into
tracking algorithms. A few studies using the PID, PD, and Proportional-Integral (PI)
control strategies in target tracking are presented below:

PID Control. PID controllers have been applied for several target-tracking problems.
For example, Altan et al., [231] proposed an MPC controller with a Hammerstein model
for controlling a 3-axis gimballed UAV camera and compared the performance with
conventional PID while [232] designed a PID-based control and guidance algorithm for a
novel rotorcraft UAV, enhancing target tracking efficiency using simplified image-based
visual servoing. A PID controller was implemented to compare the tracking performance
of the vision-based feedback controller tracking system developed for a rotorcraft UAV
using Kernelised Correlation Filter (KCF) tracker and a re-detection algorithm to handle
occlusions and real-time tracking challenges [233]. Similarly, [234] presented a fuzzy PID
control-based attitude control method for quadrotor UAVs and compared it with standard
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PID control via simulation experiments. The Fuzzy PID was reported to offer reduced
overshoot, quicker regulation, and better anti-interference adaptability [235]. Apart from
the PID control strategy, the PI controllers have also been applied to target tracking
problems as discussed in the next subsection.

PI control. Rabah et al., [191] created a target-tracking method based on a Fuzzy-PI
controller to track a moving target with variable speed. In [196], a tri-copter UAV with
individually tilted main wings for improved manoeuvres, using PID and PI controllers was
presented. To analyse flight control effects using PI controllers, a target tracking problem
was designed and simulated using experiments by [204]. To overcome the challenges
faced by quadcopter UAVs in tracking moving targets due to their complex dynamics
and changing target speeds, a PI controller was proposed by [236], that uses rotation
matrices to centre the target in the tracking UAV camera FOV. The control algorithm
demonstrated successful real-time tracking and disturbance rejection. Like PI controllers,
some researchers have also used PD controllers for target tracking with good tracking
results.

PD control. The PD controller utilises only the proportional and derivative gains to
control UAVs. A PD controller was employed to compare target tracking using finite time
for uncooperative vision-based UAV target tracking, subject to actuator saturation [237].
Similarly [12] developed a long-term UAV target tracking in an urban environment using
intention inference and deep reinforcement learning. When the target moves outside the
UAV’s FOV, the position-tracking mode of the UAV is guided by a PD controller to pursue
the target. In some cases, the PD controller can be used as a supporting control and a
reference for assessing the performance of the main tracking control law. For instance,
[238] utilised a UAV bounding box area and PD controller to reduce target tracking error
and create accurate control signals. The PD controller simplified the PID control by using
only the proportional and derivative terms to adjust output and predict future errors for
stability.

As showcased in the reviewed literature, the PID controllers have been extensively applied
in target-tracking scenarios due to their efficacy in various UAV control applications
[231–233]. However, while PID controllers exhibit complexity and their inherent integral
action may lead to overshoot and oscillations, prompting exploration of alternative control
strategies. Our review also showed that PI controllers have been utilized in target tracking
systems [191]. However, studies by [196, 204, 236] suggest limitations of the PI control in
addressing complex dynamics and varying target speeds. In contrast, PD control emerged
as an effective control option as highlighted by [237, 12]. Additionally, [238] utilized the
PD controller as a supporting control, simplifying PID control by leveraging proportional
and derivative terms for enhanced stability and reduced tracking error. Given the above, we
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implemented the PD control over PID and PI control in subsequent chapters of this thesis
due to its simplicity, reduced oscillations, and effective handling of specific target tracking
scenarios. In particular, Chapter 4 of this research presented a PD altitude controller that
uses a control bounding box formed by the relationship between the actual target size,
the size of the image formed on the camera image plane, and the camera focal length.
Additionally, the evasive quadrotor targets in Chapters 5 and 6 of this research work are
implemented using variations of PD control. Other types of controllers are reviewed in
succeeding paragraphs.

2.3.3 Nonlinear control

The next controller type considered in this review is nonlinear control strategies. Various
types of nonlinear control have been applied for UAV tracking of manoeuvring or eva-
sive targets as they offer a versatile approach by accommodating complex dynamics and
nonlinearities often encountered in real-world scenarios [239]. These methods focus on
designing control laws that capture the intricate relationships between the UAV’s state
variables and the target’s dynamics. Nonlinear control strategies include sliding mode,
feedback linearisation, backstepping, and Lyapunov-based control. We review a few re-
search that employed these control types in relation to target tracking.

Sliding mode control. Due to its versatility in handling uncertainties and disturbances, the
Sliding Mode Control (SMC) is considered a robust control approach widely employed
in UAV target tracking [240]. SMC creates a sliding surface for target tracking that
directs the system’s states in the direction of the intended trajectory while guaranteeing
robustness against disruptions [241, 242]. An SMC approach for tracking moving targets
and avoiding obstacles with an under-actuated quadrotor UAV was implemented by [243].
The method combines artificial potential fields and SMC for position tracking. Additionally,
they employ SMC with radial basis function networks for attitude control. The stability
of both subsystems was validated using Lyapunov theory [243]. Similar research was
carried out by [205] and [206] where SMC was utilised for various tracking mission
considerations. In [244], a target-tracking multi-rotor drone that utilises model-based
integral SMC was implemented by as a velocity controller for practical industrial UAV
tracking applications. The SMC showed reliable performance results for practical scenarios
with robustness against parameter uncertainty in comparison to an LQR-based integral
SMC. In similar research, [245] investigated tracking of mobile targets in a monitored area
by a Quadcopter UAV (QUAV). The study utilises a robust vision-based approach using
Image-Based Visual Servoing (IBVS) and SMC was proposed. Circular search and SMC
ensured effective tracking against disturbances. This was extended in another research
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to address uncooperative ground target tracking by modifying the QUAV control with
enhanced IBVS, a virtual camera, and robust control that exploits prior target information.
The modified SMC considered flight heterogeneity, uncertainties, and manoeuvrability to
improve tracking performance [246].

Feedback linearization. Feedback linearization is an approach that transforms the nonlinear
system dynamics into a linear one by applying a suitable change of coordinates [247]. In
[248], a vision-based tracking and landing of Micro Aerial vehicle (MAV) on a moving
ground target vehicle was implemented using a supervised learning algorithm that detects
the ground target while the feedback linearization controller enables effective tracking
and landing of the UAV on the moving target [248]. The research by [249] addressed the
challenge of the quadrotor’s under-actuation using static feedback linearization, focusing
on attitude and trajectory control. The simulation confirmed superior performance over
dynamic feedback, showcasing the value of feedback linearization. We now consider the
backstepping nonlinear control in the next subsection.

Backstepping control. This control type constructs a series of interconnected subsystems,
each stabilising a part of the overall system [250]. Sconyers et al., [251] designed a
rotorcraft control and trajectory generation for mobile target tracking. The flight controller
employed a backstepping approach, while the trajectory generator enhanced autonomy
in tracking to control the UAV such that it seeks out a desired position and heading.
The backstepping controller was designed using the nonlinear system model of the UAV
rotorcraft. In related research, [252] presented an approach utilising backstepping nonlinear
control for time-varying trajectory tracking in a quadrotor UAV, accounting for its full Six
Degree of Freedom (6DOF) dynamics. The control law incorporated integral action on
controlled velocities to ensure convergence to reference signals. Stability analysis was
carried out using Lyapunov Theory to validate the system stability. To reduce chattering
during tracking, [253] developed a fractional-order backstepping SMC approach that,
enhances robustness, and addresses strongly coupled dynamics. This method was reported
to have shown better UAV trajectory tracking and robustness against disturbances. A similar
problem was solved for multi-UAV tracking of targets with opposing movements. Using
backstepping control, neural network, and Uncertainty and Disturbance Estimator (UDE)
were also applied to manage uncertainties, improve precision, and reduce chattering for
the cooperative target tracking in [254]. In the next subsection, we take a Lyapunov-based
control.

Lyapunov-based control. The Lyapunov control method has been also applied for target
tracking to ensure stability and convergence to the desired trajectory. Oliveira et al., [255]
developed a Moving Path Following (MPF) control to guide UAVs to follow 3D paths with
time-varying velocities in an inertial frame. The MPF error space and Lyapunov-based
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control law were developed for fixed-wing UAVs with the control law providing the angular
velocity vector to compute the UAV’s vertical velocity and bank angle commands. In
another related research, [256], presented a controller for UAVs, using range and bearing
data for circular trajectories around constant velocity targets using Lyapunov theory and
feedback linearization proofs. Another research modified sliding mode guidance law for
fixed-wing UAVs to track ground moving target tracking, achieving finite-time convergence
through Lyapunov theory [177]. Also, [257] implemented Lyapunov Vector Field (LVF)
with curvature constraint for standoff target tracking while [258] presented a guidance law
based on Lyapunov theory for tracking reference trajectories using a centre of oscillation.
These approaches were reported to provide steady cruise speed, making them useful for a
variety of applications.

As highlighted in the review above, nonlinear control strategies, encompassing SMC,
Feedback Linearization, Backstepping, and Lyapunov-based control, present versatile
approaches accommodating the complexities and nonlinearities inherent in real-world UAV
target tracking scenarios [239]. The SMC showed robustness against uncertainties and
disturbances[240], while Feedback Linearization, transforms nonlinear system dynamics
into a linear form, exhibiting successful performance in vision-based tracking and landing
of MAVs on moving targets [248]. Similarly, Backstepping control addressed system sta-
bility via interconnected subsystems and proved effective in rotorcraft trajectory generation
and quadrotor trajectory tracking [251, 252]. Furthermore, the Lyapunov-based control
method was reported to be instrumental in ensuring stability and convergence to desired
trajectories [255, 257].

While the nonlinear controls demonstrate robust performance in various tracking missions,
challenges persist in scenarios involving parameter uncertainty [245, 243, 205, 244].
Therefore, we consider optimal control methods over these nonlinear approaches as they
offer precise trajectory optimisation, achieving superior performance in trajectory tracking
tasks. Hence, despite the benefits exhibited by nonlinear control methods in handling
complex dynamics, the specialised requirements for precise trajectory optimisation in
UAV target tracking systems drive the choice towards optimal control strategies. Although
nonlinear controllers were not implemented in this research, the reviewed literature was
considered as a reference for comparing the performance of the optimal control strategy
applied in our research and also as an option for future application. The next section
reviews optimal control literature.

2.3.4 Optimal control strategies

Optimal control strategies are policies designed to optimise a certain performance objective,
by determining the best control inputs over a specific time horizon while considering system
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dynamics, constraints, and various costs or objectives [259]. UAV optimal control aims
to compute control inputs that minimize or maximize a defined objective function while
accounting for the UAV’s dynamics, limitations, and mission-specific requirements [260].
Optimal control strategies have been widely applied to solving target tracking problems,
due to their advantage of providing a near-optimal result. A few pieces of literature on
target-tracking UAVs developed using optimal control methods are presented below:

Linear Quadratic regulator. The LQR is a control design technique used in control theory
to determine optimal control strategies for Linear Time Invariant (LTI) systems subject to
quadratic performance criteria [261]. Closed-loop control strategies were developed for a
tilting-rotor UAV using cascade PD and LQR controllers. Both controllers were applied to
both simplified and fully nonlinear models, with a focus on vision-based target tracking
using LQR control. Simulation results highlight the efficacy of the LQR controller in
enabling the VTOL UAV to track moving targets via vision-based navigation within lin-
earization limits [262]. An LQR control law was also employed to achieve stable quadrotor
flight along the planned path while carrying a payload for a quadrotor-based search and
rescue, using kinematic and dynamic analysis. Initial static and dynamic path planning
techniques were used, transitioning to centralised control for swarm formations and pay-
load lifting [263]. In a similar study, [264] presented an Air to Air Refuelling (AAR)
docking control approach by a UAV using a novel reference and disturbance observer for
enhancing LQR-based state-feedback control performance for precise trajectory tracking
amid external disturbances in complex flow conditions. An LQR control was also employed
for trajectory tracking by a quadrotor UAV filming of a moving target with adjustable
positioning, maximising visibility along the trajectory [265]. Similarly, [261] presented a
hybrid PD-LQR controller, optimised with Improvised Grey Wolf Optimiser (IGWO) for
quadrotor control which demonstrated better performance in target tracking and stability
compared to conventional methods. In a related study, [266] developed control strategies
for interconnected load-carrying drones using LQR and compared their results using an
MPC control while considering execution time and physical constraints.

Linear Quadratic Gaussian control. The Linear Quadratic Gaussian (LQG) is a form of
a linear optimal control technique that minimises quadratic state error and control effort
costs while considering Gaussian disturbances and model deviations [267]. The LQG
controller is mostly made up of the LQR and the Kalman Filter [268]. Hendrix et al., [267]
designed an LQG control for a small hovering aerial vehicle with the utilisation of an
optical tracking system. The proposed non-GPS control system employs LQG with UKF
for control and estimation, validated through simulation and flight tests. In another study,
[269] explored the use of an LQG controller with a 3D Kalman filter for target tracking and
intelligent trajectory optimisation, while [270] proposed a fast response, low overshoots,
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disturbances/noise resistant LQG controller for their motion control module to track a
reference velocity direction developed in the planning module of the UAV system. The
LQG control input was further transformed in terms of thrust acceleration to UAV attitude,
for real-world UAV systems application. In [271], an LQG controller was designed to
compute control commands for the target movements. The controller minimises target
localisation uncertainty via UAV collaboration, updating the pose measurements. In a
similar study by [272], they utilised an iterative Linear Quadratic Gaussian (iLQG) in
combination with the distributed Alternating Direction Method of Multipliers (ADMM) to
solve multi-UAV trajectory optimisation problems for tracking clustered targets.

The reviewed literature on UAV optimal control shows the prevalence of LQR and LQG in
target tracking applications due to their advantages. The LQR demonstrated effectiveness
in vision-based navigation and trajectory tracking, showcasing stability and usefulness
for in search and rescue missions, precise trajectory tracking and enhanced performance
[262–265, 261]. Similarly, the LQG integration of LQR and Kalman Filter components
was instrumental in non-GPS control systems, path planning, fast response motion control
modules, and multi-UAV trajectory optimization for tracking clustered targets [267, 269–
272].

Despite these strengths, we will be considering the MPC UAV target tracking systems due
to its unique advantages of operating on the receding horizon theory, enabling future state
predictions and optimal control determination over a defined time horizon, accommodating
system dynamics and constraints while optimising a specified objective function [273, 274].
Unlike LQR and LQG, MPC can effectively handle nonlinearities, offering the ability to
minimise an objective function and generate optimal control signals [275]. Accordingly,
we prioritise MPC over LQR and LQG for the UAV target tracking systems in this
study based on MPC’s capability to handle nonlinearities, robustness in diverse scenarios,
and its adaptability across different types of MPC controllers, aligning closely with the
requirements of UAV target tracking systems. Therefore, while LQR and LQG offer
significant advantages, the specialised features of MPC in handling nonlinearities and its
versatile nature make it the preferred choice for UAV target tracking applications.

Model predictive control . Model predictive control is another form of optimal control
strategy that employs the receding horizon theory. The algorithm employs a process model
for predicting future states and determining optimal system inputs by optimising a linear or
quadratic open-loop objective with linear constraints over a defined time horizon [273]. It
can handle nonlinearities and minimises an objective function to create the optimal control
signals [274]. The Model MPC belongs to a class of optimal-control techniques known as
open-loop optimal feedback control [275]. The common types of MPC-related tracking
controllers in the literature include linear, nonlinear, constrained, and stochastic. These are
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discussed below:

• Linear MPC: Linear MPC (LMPC) aims to optimise a linear objective function
subject to linear equality and inequality constraints[276]. Pereira et al., [66] pro-
posed an MPC with feedback linearisation to ensure accurate velocity following for
fixed-wing UAVs that use a two-layer guidance and tracking strategy. The vector
field approach was used to switch between converging to a target curve and avoiding
obstacles. The approach was validated with simulations while accounting for aircraft
constraints, wind, and measurement uncertainties. A study that explores the use of
MPC for tail-sitter VTOL UAVs, was also proposed by [277] for addressing flight
control challenges. A Successive Linearisation MPC (SLMPC) was designed and ap-
plied to indoor flight experiments, which outperformed traditional LMPC in terms of
precision and stable position holding in non-uniform windy conditions. A controller
switching mechanism and warm-up mechanism were employed to enhance envelope
control during forward and backward transitions. The research by [278] investigated
a decentralised control for a leader-follower multi-agent system using graph theory
and Tube MPC (TMPC). The study proposed a controller that tracks predefined
trajectories in the presence of noise and disturbances, enhancing robustness and
stability. Similarly, [279] presented an algorithmic architecture for systematic risk
management in autonomous transportation vehicles, encompassing low-level control,
trajectory tracking, and multi-vehicle coordination, utilising an adaptable MPC. In
related research, an autonomous UAV landing system was introduced for moving
platforms with uncertainties and disturbances. The system combined a vision-based
target detection method, EKF for position estimation, and an LMPC-based control
scheme for UAV motion coordination [273, 275].

• Nonlinear MPC: The Nonlinear MPC (NMPC) is designed for systems with non-
linear dynamics and constraints. It optimises a nonlinear objective function subject
to nonlinear equality and inequality constraints [280]. In terms of NMPC, [278]
proposed a system for coordination in autonomous systems, focusing on Unmanned
Aerial Systems (UAS). Also, a novel "Polycopter" UAS platform was developed
by exploring the challenges of local trajectory generation for multi-agent collision
avoidance, using an Interval Avoidance (IA) method. An NMPC was also im-
plemented for fixed-wing UAV attitude control during ground target tracking by
[280]. The approach accommodated real-world constraints, optimising input via a
quadratic cost function. Simulations across various scenarios demonstrated NMPC’s
superiority over LMPC in handling constraints and nonlinearities. Employing a
cooperative non-inertial MPC controller, a quadrotor controller to orbit a UGV
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along a pre-computed circular trajectory [281]. An Economic Model Predictive
Controller (EMPC) was introduced to effectively track a target while minimising
energy consumption. EMPC’s performance was reported to surpass MPC and greedy
approaches, tracking persistently with optimal energy use [181].

• Constrained MPC: The Constrained MPC (CMPC) applies to systems where con-
straints on the state, input, or both need to be enforced during control. In UAV target
tracking, the constrained MPC incorporates dynamics constraints in the control
algorithm. For instance, Wakabayashi et al., [89] developed an MPC that considers
multiple collision avoidance constraints in a constrained optimisation framework was
implemented to control multi-rotor UAVs flying in urban airspace. The control strat-
egy was developed to safely and autonomously avoid collisions with unpredictable
moving obstacles, like birds, the UAV’s relative position and the velocity of the
aerial obstacles. A Chance-Constraints based on Obstacle Velocity (CCOV) method,
was proposed that combined with previous positional chance constraint methods to
account for uncertainty in both position and velocity. Another study researched a
robust Time-varying Constrained Model Predictive Controller (TCMPC) for real
quadrotor control, accounting for various constraints. The controller was reported
to outperform PID, as well as advanced error and efficient MPC controls in wind
conditions, showcasing its robustness [282]. In similar research, [276] developed a
two-layered constrained MPC strategy to address trajectory tracking for tilt-rotor
UAVs. The first layer employs a constrained LMPC for transnational dynamics,
ensuring adherence to a reference trajectory. This enabled the generation of feasible
rotational set-points while respecting physical limitations. The second layer utilises
a constrained robust switching MPC with Mode-Dependent dwell Time (MDT) to
follow the generated trajectories from the first layer. The design also integrates actu-
ator constraints using an augmented dynamic model to enhance trajectory tracking
performance and energy efficiency.

• Stochastic MPC: The Stochastic MPC (SMPC) approach accounts for uncertainties
or stochastic disturbances in the system dynamics, constraints, or external distur-
bances affecting the system. The study by [283] presented a vision-based guidance
command for a UAV, that uses a SMPC approach to ensure that the tracked target is
located within the camera FOV. The visual servoing problem was modelled as an
SMPC framework by regarding the x and y axes’ rotational velocities as stochastic
variables. Also, [284] proposed an integrated framework for autonomous vehicle con-
trol, accounting for uncertainties that combine predictive manoeuvre and trajectory
planning using SMPC to optimise decisions. Simulation experiments were reported
to demonstrate improved adaptability and robustness without added computational
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complexity. In a similar study, [285] implemented a solution to enhance target track-
ing reliability using a framework that employs multiple pan-tilt cameras, inspired
by the chameleon visual system and MPC approach. Their scanning algorithm
optimally scanned using SMPC, while a switched controller that employs min-max
and minimum-time MPC theories was applied for the target tracking design.

While LMPC, as demonstrated in various studies [66, 277, 279], showcases effectiveness
in specific UAV control scenarios, its limitation in handling nonlinearities and constraints
compared to NMPC is apparent. NMPC, designed explicitly for systems with nonlinear
dynamics and constraints, demonstrated superior performance, as evidenced by research
works [280, 278, 281, 181]. NMPC’s optimisation of nonlinear objectives under nonlinear
constraints showcased its superiority over LMPC in handling real-world constraints and
nonlinear dynamics, a crucial factor in the dynamic and uncertain environments of UAV
control systems. Accordingly, we utilised the NMPC as a preferred control option for the
UAV target tracking algorithm presented in Chapter 3 and the countermeasure design in
Chapter 7 based on its capability to address systems characterised by nonlinear dynamics
and constraints. Additionally, we robustify the target tracking UAV control using adaptive
control strategies to handle uncertainties and disturbances.

2.3.5 Adaptive control strategies

Unlike the predictive strategy applied to the MPC as seen in the previous section, the
adaptive control strategy utilises the current information from the system to improve
performance output. Adaptive controllers can be either model-based or non-model-based.
We review a few related model-based adaptive control literature before considering the
other types.

Model reference adaptive control. Shastry et al., [286] developed a Model Reference
Adaptive Control (MRAC) applied to Load Transfer Systems (LTS) for accurate real-time
payload delivery by UAVs. Simulations within the constraints of the LTS’s physical
properties on the moving UAV were conducted to evaluate MRAC’s mission performance
effects. Similarly, an MRAC controller was also applied to VTOL UAV for LTS in [287]. A
similar strategy was implemented by [198], where an adaptive control was developed for a
hybrid UAV using multiple observers to enhance control stability in tracking a MAV. When
the interceptor UAV nears an intruding MAV, a speed-damping scheme was used to adjust
its forward speed based on a bounding box area. An adaptive model calibration method
was employed to mathematically estimate the needed speed reduction relative to changes
in distance to the target distance [288]. A related research by, [289] developed a multi-
variable MRAC scheme based on an Automatic Carrier Landing System (ACLS) proposed
to manage UAV dynamics with parametric and structural uncertainties. The approach was
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employed to develop longitudinal and lateral flight controllers for carrier-based UAVs. The
study established a realistic UAV model and obtained a linear representation for control
design. In a related target tracking study, a state feedback output tracking MRAC scheme
was implemented to ensure accurate tracking during carrier landing, even in the presence
of flight deck motion disturbances. The study by [290] employed an adaptive approach for
controlling fixed-wing UAV landing by optimising output error through real-time parameter
adjustments using MRAC.

Machine learning based adaptive control. In machine learning adaptive control, a neural
network model is used to learn the behaviour of a controller with the goal of adaptively
optimising performance using carefully crafted reward functions. For example, a novel
adaptive control approach was introduced for motion prediction by implementing a control
fusion of deep learning and adaptive reference derivatives estimation to autonomously
detect and track high-speed ground vehicles. The utilised platform involved a quadrotor
UAV equipped with minimal sensors, a stereo camera, and an IMU. Deep learning was
used to aid object detection, while adaptive reference derivatives estimation-based control
predicts movement and compensation [286]. Non-model-based adaptive control strategies
can be divided into model reference, self-tuning, and gain scheduling methods. These
subdivisions are discussed with reference to UAV target tracking in the next subsections.

Self-tuning control. Self-tuning adaptive control has also been applied to target tracking.
For instance, [291] designed a controller for fixed-wing UAV swarm formations with
coordinated flocking along a non-uniform circular path. The adaptive self-tuning algorithm
addressed parameter uncertainties, ensuring stability and practicality in diverse initial con-
ditions. While multi-rotor UAV using Multi-Layer Neural Dynamics (MLND) controllers
can achieve trajectory tracking, uncertainties in UAV parameters degrade control qual-
ity. To address this problem, adaptive self-tuning methods were incorporated to improve
control accuracy by [292].

Gain scheduling. Gain scheduling is another important method of adaptively optimising
the target tracking algorithms. Cesetti et al., [293], presented a real-time gain scheduling
approach for controller tuning. It proposed a vision-based method for guiding and landing
UAVs in a partially known environment. Natural landmarks were detected through feature-
based image matching, enhancing an autonomous behaviour-based control system for
navigation and landing. The Gain-Scheduled PID controller gave better control output
than the typical fixed gains PID controller for target tracking [191]. A novel fuzzy-gain
scheduling strategy for PID control adjustment was also developed to enhance stability
under various conditions and disturbances by maintaining effectiveness in the presence
of altitude-related errors [294]. The method enabled successful trajectory tracking and
robustness in noisy environments, outperforming conventional PID.
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While gain scheduling and model reference adaptive control methods, as highlighted in
the literature by various studies [286, 287, 289, 290, 293, 191, 294], offer significant
benefits, including precise payload delivery, addressing uncertainties in UAV dynamics,
and enhancing stability in diverse conditions, the context of UAV target tracking demands
a strategy more aligned with real-time adjustments based on observed system behaviour.
The self-tuning adaptive control strategy, as exemplified in studies such as [291, 292],
demonstrated practicality in handling parameter uncertainties and achieving stability in
varying initial conditions which are essential when dealing with real-time UAV target
tracking scenarios. The ability to dynamically adjust parameters without explicit reference
to a model or pre-defined scheduling mechanism allows for adaptability in rapidly changing
scenarios, such as those encountered in UAV target tracking missions.

In contrast, model reference adaptive control methods, while robust and offering accurate
control in specific applications like UAV landing optimisation [290], often rely on accurate
system models and might face challenges in situations with dynamic changes or uncertain-
ties. Gain scheduling methods, though effective in controller tuning and trajectory tracking
[293, 191, 294], might require extensive prior knowledge about the system behaviour or
environment. This reliance on a priori knowledge can limit their adaptability in scenarios
where real-time adjustments based on observed system behaviour are necessary, as in the
case of UAV target tracking. Therefore, considering the dynamic and real-time nature of
UAV target tracking scenarios, the decision to implement a self-tuning adaptive control
strategy was driven by its inherent adaptability and practicality in handling uncertainties
and diverse conditions, enabling the UAV system to dynamically adjust and optimize
its performance based on observed behaviour without strict dependencies on predefined
models or scheduling mechanisms.

2.3.6 Hybrid control

In some circumstances, UAV target tracking problems may require the combination of two
or more control strategies to effectively execute the tracking task. These types of combined
algorithms are presented as hybrid controls. Hybrid controllers combine different control
strategies to leverage their complementary strengths. For instance, a hybrid autonomous
visual tracking algorithm for micro aerial vehicles was implemented by [295]. Similarly,
a hybrid controller developed by [278] uses tube model MPC to track predefined paths
in the presence of noise and disturbances. In a related study, [198] presented a hybrid
control algorithm that incorporated a dual observer system consisting of an Extended State
Observer (ESO) for state approximation and a nonlinear Disturbance Observer (DO) for
external disturbance estimation to control a hybrid UAV, biplane quadrotor, applicable in
diverse fields such as agriculture, disaster management, and relief operations. The control
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strategies encompassed a Backstepping Controller (BSC), Integral Terminal Sliding Mode
Controller (ITSMC), and a Hybrid Controller (ITSMC + BSC). Additional solutions were
devised to manage variable mass changes during flight and wind gusts, employing an
Adaptive Backstepping Controller (ABSC) and an Adaptive Hybrid Controller combined
with ESO and DO.

Hybrid controllers may be designed to switch between control strategies at different phases
of a target-tracking mission or when some preset threshold is reached. For instance,
an adaptive exponential switching control that improves transient response, and yields
smoother control compared to conventional adaptive SMC was applied for a UAV-GMT
tracking by estimating uncertainties using adaptive rules [296]. Wang et al., 9[297] also
utilised switching control for hybrid UAV tracking of a ground vehicle in motion. A
non-chattering sliding mode guidance law for hybrid UAV-ground vehicle tracking that
employed adaptive second-order sliding mode switching control was implemented for
robustness and finite-time tracking by [298]. The adaptive estimation part of the hybrid
controller handled uncertainties and enhanced command state generation. In [299], a
UAV stabilisation approach using computer vision and adaptive switching controllers to
track moving ground targets was proposed. A quadrotor equipped with a camera captures
real-time images processed by a computer vision algorithm while a vision-based estimator
computes the UAV’s relative 3D position and velocity with reference to the target. These
measurements guide a microcontroller for stabilisation. The switching controllers enabled
enhanced decisions during temporary target loss or when out of the camera’s view.

The reviewed literature shows that the integration of different control strategies into hybrid
controllers allows for leveraging their complementary strengths to address complex UAV
target-tracking problems effectively. For instance, the hybrid autonomous visual tracking
algorithm for MAV by [295] and the TMPC-based controller by [278] demonstrated the
efficacy of combining strategies to achieve predefined path tracking in noisy and disturbed
environments. Moreover, the hybrid control algorithm presented by [198] showcased
the versatility of hybrid controls. Additionally, hybrid controllers also facilitate dynamic
switching between control strategies at different phases of a mission or upon reaching
preset thresholds, as exemplified in studies such as [296–299]. These switching controllers
improve transient response, robustness, and decision-making during uncertain or changing
conditions that are essential in real-time UAV target tracking scenarios. Due to these
unique attributes, we implement a hybrid optimal-adaptive control strategy in Chapter 5 of
this thesis to exploit the complementary strengths of different control methods, ensuring
robustness, adaptability, and effective performance in complex and dynamic UAV target
tracking scenarios.
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2.4 Cooperative Target Tracking Control

The use of multiple UAVs to cooperatively track a ground or aerial target would be vital in
some peculiar tracking scenarios. Accordingly, we review a few research on target tracking
using multi-UAV platforms. For instance, [300] designed a multi-UAV LVF cooperative
UAV guidance to track an intelligent target that evades detection by mathematically
maximising the UAV estimation error. Similarly, [301] devolved an evasive target tracking
algorithm using two dynamic control optimisation strategies for different target models
of evasive and stochastic motion. However, the target control policies were essentially
lookup tables of any combination of UAV and target engagement. Wolfe et al., [302] also
designed an EKF and T-Test selection model to track a target with random behaviour,
while [303] developed a non-equilibrium game theoretic algorithm for tracking an active
evasive target by two coordinated UAVs with the capability of estimating the level of
target intelligence to deploy countermeasures. The pursuer-evader game was designed to
minimise relative distance for the pursuing team of UAVs and maximise the evading target.
The UAVs in these researches were, however, assumed to fly at a constant speed and the
pursuit-evasion game was implemented for only 2D scenarios. The idea for countermeasure
deployment as highlighted in this review was presented in Chapter 7 of this thesis. Multi-
UAV tracking could be applied to single and multiple target tracking as reviewed in the
following subsections.

2.4.1 Mult-UAV tracking of single target

In [117], a self-tuning, fuzzy MRAC was employed in developing a multi-UAV, ground
target tracking algorithm for decentralised and centralised consensus based on Lyapunov
guidance vector fields. The study explored an open chain control with each UAV only
interacting with its next neighbours, cooperative leader control with a UAV formation.
Similarly, Zhou et al., [304] proposed a UAV swarm-based cooperative tracking approach
for multiple targets. Intelligent algorithms enhance accuracy, reduce tracking delay, reduce
energy consumed by the UAV, and ensure collision avoidance, surpassing deep Q-network
solutions. In a related study, [272] adopted a Belief Space iterative Linear Quadratic
Gaussian (BSiLQG) for UAV trajectory optimisation to track clustered multiple targets.
The study by [305] proposed a multi-UAV cooperative target tracking. To establish a
system, a multi-agent deep reinforcement learning approach was introduced for intelligent
flight decisions. The method used past and present target position information, alongside
spatial information entropy to enhance detection coverage.
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2.4.2 Mult-UAV tracking of multiple targets

To bolster Group Target Tracking (GTT) in UAV swarms, [306] designed an automatic
measurement partitioning method with deep learning-based manoeuvre modelling and 3D
shape estimation to enhance performance. In [306], a set of optimised criteria was proposed
for tracking group target tracking, while [307], presented a novel decentralised control
strategy, that employs a Decentralised Markov Decision Process (DMDP) framework for
UAV swarm formation and multi-target tracking control. Nominal Belief-State Optimi-
sation (NBO) was used to counteract the curse of dimensionality, enabling approximate
dynamic programming. Coordinating multiple UAVs to consecutively track diverse targets
presents challenges. To address this challenge, a cooperative tracking intelligent algorithm
was developed for consecutive tracking and collision avoidance and validated through
stable swarm behaviour in realistic scenarios [304].

The review of studies like [300, 301] highlighted the success of cooperative guidance algo-
rithms and dynamic control optimisations, enhancing tracking accuracy and adaptability.
Further insights from research by [302, 303] demonstrated the potential of multiple UAVs
in tracking elusive targets, estimating target intelligence levels, and deploying countermea-
sures. In single-target scenarios, methods from [117, 304] leveraging fuzzy MRAC and
intelligent algorithms significantly improved accuracy, reduced delay, and ensured colli-
sion avoidance, surpassing traditional solutions. For multiple targets, strategies proposed
by [306, 307] focused on enhancing group target tracking and stable swarm behaviour,
overcoming dimensionality issues, and employing decentralised control strategies. Due to
the highlighted advantages, we implement multi-UAV tracking in Chapter 6, emphasising
improved accuracy, adaptability, collision avoidance, and enhanced tracking performance,
particularly in scenarios involving intelligent or evasive targets.

2.5 Countermeasure Against Adversarial Targets

The end goal of a target tracking mission is either to continuously track and record target
movements or to execute some interception action against an intruding target. Therefore, it
may be necessary to incorporate air-to-ground or air-to-air countermeasure capability into
the tracking UAV. The development of countermeasure systems to identify and neutralise
malicious drones has gained significance as a result of the proliferation of drones. With the
increasing need for efficient counter-UAV measures, the tracking of UAVs is identified as
a vital aspect of these countermeasures [308]. Additionally, identifying the target drones is
a crucial initial phase in formulating effective counteractions [309, 310]. Counter-UAV
systems vary widely and interdicting unauthorised UAVs involves various approaches
based on vulnerabilities. These measures include hand-held devices, and anti-aircraft
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missile systems, which include laser, electronic, and kinetic systems [311]. A holistic
survey for anti-drone systems encompassing detection, tracking, and interception was
presented by [312].

In [313], they explored a multi-platform Counter Unmanned Aircraft System (C-UAS)
concept using a cooperative team of mini-drones as a countermeasure defence. Similarly,
[314], outlined the various types of countermeasures that could be applied to detect, track,
neutralise, and or destroy swarm unmanned aerial system UAS. These include Ground
lasers, anti-laser weapons, high-powered microwaves, surface-to-air missiles, and armed &
hybrid C-UAS systems equipped with jammer guns and electronic hacking, signal jam-
ming, de-authentication and cyber-attack methods. Other countermeasure considerations
include swarm versus swarm engagement, escort swarm UAVs and UAVs mounted with
net-capturing projectile systems for entangling rotors. Tokyo police have also employed
larger net-carrying UAVs to trap smaller drones. In other cases, trained eagles have been
deployed to intercept drones as employed by police in Scotland and the Netherlands [315].

Rogers et al, [316] designed a comprehensive approach that incorporates preventive and
reactive C-UAS countermeasures. The preventive measures include deterrence, suppres-
sion, and avoidance, while the reactive measure deploys detection, decision-making, and
neutralisation [317]. Additionally, the article explores a coverage-based algorithm for
defending against adversarial swarms using fixed-wing UAVs equipped with explosives.
This method encompasses impact point optimisation and MPC-driven impact time control,
with the goal of both maximising coverage within the adversary swarm and minimising
impact time, by guaranteeing the coordinated arrival of multiple UAVs at dynamically
changing impact points [318]. A novel distributed control system was also proposed by
[319] for tracking and jamming rogue drones in 3D space using a team of pursuer UAVs
equipped with radio jammers. Their approach involved estimating target existence prob-
ability, spatial density, and optimal radio transmission levels to enhance target jamming
while preventing the jamming of friendly UAVs.

2.5.1 Task assignment and aerial targets countermeasure

When a group of UAVs are cooperatively tracking targets, there may be a need to assign a
UAV to track one or some of the targets during the mission scenario. To address the issue of
task assignment when intercepting adversarial targets, the research by [320] explored task
assignment in cooperative air combat with timing continuity constraints. They established
task assignment and integer programming models, that solve the problem using integrated
linear programming software which showed viability and efficiency for enhanced coop-
erative aerial countermeasure tasks. In a similar study, task allocation and path planning
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for heterogeneous UAVs in search and destroy missions were explored by [321]. Their
approach optimised system utility by considering targets and proposing resource-aware
task allocation and coalition-based path planning using distributed cooperative particle
swarm optimisation. The path planning algorithm developed ensured safe trajectories,
satisfying kinematic and collision avoidance constraints. In [322], they proposed a solution
to address safety concerns caused by unlicensed UAVs by employing high-speed inter-
ception UAVs to neutralise rogue drones. Their approach involved precise target tracking
and optimal interceptor control through a navigation, guidance, and control architecture.
They utilised Kalman filter estimation for navigation and proportional navigation-based
guidance that incorporated thrust vectoring control. In related research, they presented a
countermeasure UCAV that launches a projectile upon operator command or time elapse
in simulations to hit an aerial target within a preset time [323].

2.5.2 Countermeasures decision processes

A novel UAV-based method for tracking dynamic targets invading an oilfield was developed
by employing trajectory prediction technique, swarm intelligence optimisation, and an
improved algorithm developed by the fusion of Fruit-Fly Optimisation Algorithm (FOA)
and Bat Algorithm (BA), termed as FOBA to maintain effective target tracking distances
[323]. In related literature, a circular formation control was implemented by [324] to create
a decentralised guidance law that commands a tracking UAV to encircle the target, using
adaptable instructions that limit the target’s movement and neutralise it by rendering it
ineffective. Similarly, [325], proposed a countermeasure that uses a swarm of surveillance
UAVs to track targets back to their origin. Reactive tracking and predictive pre-positioning
strategies were considered in their algorithm development which revealed that the cir-
cular swarm outperforms the reference randomly moving swarm, especially when using
predictive pre-positioning with a smaller number of surveillance UAVs.

In the context of countermeasures against adversarial UAVs, various methods have been
explored, encompassing a wide range of techniques and technologies [308, 311, 312].
The common counter-UAV systems highlighted from our review include ground lasers,
high-powered microwaves, surface-to-air missiles, and armed C-UAS systems, showcasing
diverse approaches [314]. Studies such as [316, 318, 319] propose preventive and reactive
countermeasures using fixed-wing UAVs equipped with explosives, coverage-based algo-
rithms, and distributed control systems. These methods aim to deter, suppress, detect, and
neutralise adversarial swarms, presenting multifaceted approaches to counter adversarial
threats [316, 318, 319]. However, within this array of approaches, the utilisation of a
countermeasure UCAV launching a projectile, as detailed by [323], stands out due to its
precision targeting and optimal control mechanisms. This method involves employing
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high-speed interception UAVs equipped with guidance and control architecture, utilising
Kalman filter estimation for navigation, and proportional navigation-based guidance with
thrust vectoring control, demonstrating precision and effectiveness in neutralising aerial
targets [323]. While various countermeasure approaches offer comprehensive coverage and
diverse functionalities, the precision targeting, optimal control, and efficacy in neutralising
targets portrayed by the projectile-based countermeasure method informed our choice for
its utilisation.

2.6 Summary

This Chapter provided a comprehensive summary of up-to-date literature related to target
tracking using UAVs. We highlighted the need to establish the type of environment in
which the tracking mission is taking place to enhance intended scenario simulations. The
environment types identified were either discreet or continuous and could be modelled in
2D planar of 3D space. The environment could also be cluttered with or free of obstacles
that are either static or dynamic. We also reviewed various types of targets employed in
a tracking mission and categorised them according to operating space, manoeuvre type,
and dynamics. The tracking UAV types used in tracking missions were also reviewed and
grouped by their size & range capabilities and dynamics of either fixed or rotary wing. We
also explored tracking methodologies that have been employed in the recent literature for
target tracking simulations, including visual, sensor-based as well as GPS/GNS. We then
considered guidance and navigation literature by highlighting the differences and unique
applications of waypoint and continuous navigation.

The reviewed literature explored a broad spectrum of control strategies applied in Un-
manned Aerial Vehicle (UAV) target-tracking scenarios. It juxtaposes the efficacy and
limitations of various control methodologies, emphasising their suitability concerning
UAV dynamics, complexities, and adaptability. The literature extensively covers PID, PI,
PD controllers, nonlinear controls, optimal control strategies, adaptive controls, hybrid
control approaches, cooperative guidance, and countermeasure methodologies. The review
converges on the effectiveness of PID controllers in UAV target tracking due to their
widespread application but acknowledges their limitations, such as overshoot and oscil-
lations. PI controllers are considered, yet studies suggest their inadequacy in addressing
complex dynamics and varying target speeds. PD control emerges as a viable alternative,
offering reduced oscillations and effective handling of specific target-tracking scenarios.
The literature extensively covers nonlinear controls, emphasising their robustness but
acknowledges challenges in scenarios involving parameter uncertainty.
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The Optimal control methods were selected as a preferred control strategy due to their
precision in trajectory optimisation, aligning closely with the requirements of UAV target
tracking systems. Adaptive control strategies, particularly self-tuning adaptive control,
stand out for their adaptability in handling uncertainties, contrasting with model reference
adaptive control, and gain scheduling methods that may rely on extensive prior knowledge.
The choice of control strategies in this thesis is justified by aligning the requirements
of UAV target tracking scenarios with the strengths of each control methodology. The
implementation of PD control over PID and PI in the research chapters is driven by its
simplicity, reduced oscillations, and effectiveness in handling specific scenarios. We
favoured the optimal control methodologies, particularly MPC, as the preferred controller
due to their adaptability, handling of nonlinearities, and precision in trajectory optimisation,
which align with UAV target tracking system requirements. The literature review informed
the selection of NMPC over LMPC due to the former’s superior handling of nonlinear
dynamics and constraints, crucial in uncertain UAV control environments. Adaptive
control strategies, specifically self-tuning adaptive control, were chosen for their dynamic
parameter adjustment capability in real-time, crucial in rapidly changing UAV target
tracking scenarios.

We also explored cooperative target tracking of single and multiple targets as well as
countermeasures against adversarial targets and target-tracking decision processes. The
reviewed literature provided a background for the platforms, dynamics, and control strate-
gies implemented in the various Chapters of this thesis. Within the introductory section of
the technical Chapters, we also provide more specific literature related to highlighting gaps
and aiding problem formulation. Regarding countermeasures against adversarial UAVs,
the review encompasses various techniques, emphasising precision targeting and optimal
control mechanisms demonstrated by a countermeasure UCAV launching a projectile. This
method stands out for its efficacy in neutralising aerial targets, informing its utilisation
despite the array of comprehensive countermeasure approaches. Overall, the review criti-
cally analyses diverse control strategies’ strengths and limitations in UAV target tracking.
It rationalises the selection of control methodologies in the thesis by aligning their spe-
cific advantages with the demands of UAV target tracking scenarios. The comprehensive
review aids in highlighting the need for adaptable, precise, and robust control strategies,
justifying the preference for certain methodologies over others. The literature informs
a strategic choice of control methods in subsequent research chapters, advocating for a
robust and adaptable control strategy combining optimal and adaptive control methods, and
acknowledging the necessity of dynamic adjustments in real-time scenarios. Additionally,
it guides the utilisation of countermeasure methodologies, favouring precision and efficacy
in neutralising adversarial UAVs.



Chapter 3

Optimal Tracking & Evasion in 3D
Space

3.1 Introduction

The UAV is increasingly being employed as an alternative to manned platforms for au-
tonomous target tracking missions as it provides better manoeuvrability, reduced opera-
tional cost and less burden on human operators [15]. To autonomously perform this role, a
fixed-winged UAV must be capable of predicting and responding to evasive manoeuvres
from agile targets. Several UAV control law designs for fixed-winged UAV tracking of ma-
noeuvring targets exist. However, researchers commonly design non-smart manoeuvring
targets to mimic evasive manoeuvres. To design a realistic UAV tracking engagement to
continuously track a smart evasive target, the dynamic constraints of the UAV and target
need to be taken into consideration. Additionally, the undulating nature of the ground
terrain would require a 3D model that enables the UAV to adjust its altitude in response
to target manoeuvre and terrain. This chapter addresses these design considerations, by
implementing an evasive ground-moving target that is optimally controlled to persistently
evade the tracking UAV. To account for the effect of target evasion and tracking perfor-
mance of the UAV in environments with undulating ground surfaces, we also implemented
a strategy to extend the target tracking simulation to 3D space.

3.1.1 UAV tracking-related work

Chen et al. [326] implemented a single UAV tracking in 2D space, with the target
manoeuvre designed as a fixed velocity moving curve. In [14], Kim developed a 2D
control strategy for fixed-winged UAV autonomous tracking of a randomly manoeuvring
ground target while [48] developed a reinforcement learning-based UAV tracking of an
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aerial evading target that uses a state-dependent statistical control policy. Although this
strategy was implemented for 3D engagement, the control actions were heuristically
determined. In [15], a control algorithm was designed to track a smart evading target
that utilises a dipole-type vector field around the tracking UAV to execute evasive action.
However, this was only implemented for 2D engagement dynamics.

Multiple and cooperative UAV controls for target tracking have also been designed and
tested. For instance, [300] designed a multi-UAV Lyapunov vector field cooperative UAV
guidance to track an intelligent target that evades detection by mathematically maximising
the UAV estimation error. [301] also devolved an evasive target tracking algorithm using
two dynamic control optimisation strategies for different target models of evasive and
stochastic motion. However, the target control policies were essentially lookup tables of
any combination of UAV and target engagement. [302] also designed an EKF and T-Test
selection model to track a target with random behaviour. Similarly, [303] developed a
non-equilibrium game theoretic algorithm for tracking an active evasive target by two
coordinated UAVs with the capability of estimating the level of target intelligence to deploy
countermeasures. The pursuer-evader game was designed to minimise relative distance
for the pursuing team of UAVs and maximise the evading target. The UAVs in these
researches were, however, assumed to fly at a constant speed and the pursuit-evasion game
was implemented for only 2D scenarios.

Despite efforts in developing UAV control strategies to track evasive targets, limited
attention has been paid to the implementation of smart evasive targets capable of initiating
intelligent evasive manoeuvres against the tracking UAV. Furthermore, the dynamic nature
of the pursuit-evasion requires that both platforms are designed with the capability to either
accelerate or decelerate within design limits while allowing the UAV to adjust its altitude
with changes in target states [327]. This Chapter addresses this gap by developing a 3D
optimal control for a UAV tracking an evasive smart ground target and accounting for the
associated dynamic constraints.

3.1.2 Contributions

The contributions of this Chapter are as follows:

• The 2-step prediction fixed-winged UAV optimal control strategy by [14], is solved
with the turn rate and bank angle constraints, enabling smoother target tracking
while restricting excessive turns of the UAV.

• An evasive target control strategy is introduced by solving the maximisation problem
and providing realistic target movements.
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• The 2D algorithm in [14] is extended to a 3D target tracking algorithm, taking into
account the terrain changes.

The rest of the Chapter is outlined as follows. In section 3.2, the UAV target tracking
problem is formulated using simplified dynamics and mathematical models of constraints
considered in the development of optimal target tracking. In section 3.2.2, the solution for
the UAV optimal target tracking problem and its cost function development is presented
while Section, 3.3 discusses the target manoeuvre control design, incorporating vehicle
constraints and cost function evaluation. A method for extending from a 2D to 3D target
tracking algorithm is presented in Section 3.4 while a simulation of sample engagement
scenarios and discussion of results is presented in Section 3.5. Section 3.6 presents
concluding remarks and plans.

3.2 UAV 2D Target Tracking

Consider a UAV with the task of tracking an evasive ground target in a 3D engagement
space. The UAV can accelerate or decelerate within specified bounds and is constrained by
a maximum turn radius. We assume that the UAV can identify the target in its camera field
of view at all times.

3.2.1 Dynamics

The UAV and target dynamics are represented as shown in Fig. 3.1. The UAV positions
are represented by xa, ya and za. and the dynamic equation of the UAV is represented by

ẋa = vax, ẏa = vay, ża = vaz, (3.1a)

vax = ∥va∥cosσa sinφa (3.1b)

vay = ∥va∥sinσa cosφa (3.1c)

vaz = ∥va∥sinσa (3.1d)

v̇ax = uax, v̇ay = uay, v̇az = uaz (3.1e)

where (˙) is the derivative with respect to time, va is the UAV velocity vector with respective
components as vax, vay and vaz in the global reference frame, indicated by x-y-z in Fig. 3.1.
The global frame used in this research is the East-North-Up coordinate frame.

Furthermore, σa and φa are the flight path and heading (course) angles respectively [328],
while uax, uay and uaz are the control acceleration input of the UAV. The body frame
is defined by xBa, yBa and zBa as shown in Fig. 3.1, where xBa is aligned with the UAV
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velocity vector, yBa is towards the right-hand-side of the wing, and zBa is given by the cross
product of xBa and yBa.

Fig. 3.1 UAV and target engagement dynamics. The coordinates (x,y,z) are global while
(xBa,yBa,zBa) and (xBg,yBg,zBg) are local. The dotted boxes around the UAV and target
indicate their respective control input magnitude constraints.

The state space representation is given by

ẋa = Aaxa +Baua =

[
03 I3

03 03

]
xa +

[
03

I3

]
ua (3.2a)

x =Caxa = [I3 03]xa (3.2b)

where 03 is the 3×3 zero matrix, I3 is the 3×3 identity matrix, Aa, Ba and Ca are defined
appropriately in the above equation, xa = [xa,ya,za,vax,vay,vaz]

T and ua = [uax,uay,uaz]
T .
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The target dynamics are given by

ẋg = vgx, ẏg = vgy, żg = vgz, (3.3a)

vgx = ∥vg∥cosσg sinφg (3.3b)

vgy = ∥vg∥sinσg cosφg (3.3c)

vgz = ∥vg∥sinσg (3.3d)

v̇gx = agx, v̇gy = agy, v̇gz = agz (3.3e)

where xg, yg and zg represent the position of the target and vgx, vgy and vgz represent the
respective components of the target velocity vector vg. The target flight path angle is σg,
and its heading angle is φg. Additionally, the target acceleration components are agx, agy

and agz respectively while its state space representation is given by:

ẋg = Agxg +Bgug =

[
03 I3

03 03

]
xg +

[
03

I3

]
ag (3.4a)

z =Cgxg = [I3 03]xg (3.4b)

where, Ag, Bg and Cg are defined appropriately in the above equation, xg = [xg,yg,zg,vgx,vgy,vgz]
T

and ag = [agx,agy,agz]
T .

We discretise the governing differential equation with the time step, ∆t, for the UAV and
target as follows:

xa(k+1) = Faxa +Gaua(k) (3.5a)

xg(k+1) = Fgxg +Ggag(k) (3.5b)

x(k) =Caxa(k) (3.5c)

z(k) =Cgxg(k) (3.5d)

where x and z represent the UAV and target position state vectors, while Ca and Cg are the
respective output matrices for the UAV and target state equations.

Fa =

[
I3 ∆tI3

03 I3

]
,Ga =

[
03

∆tI3

]
,Fg = Fa,Ga = Gg (3.6)
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The control input space of the UAV is confined by

uaxmin ≤ uB
ax ≤ uaxmax (3.7a)

uaymin ≤ uB
ay ≤ uaymax (3.7b)

uazmin ≤ uB
az ≤ uazmax (3.7c)

where uB
ax, uB

ay, and uB
az are the control input of UAV in the UAV’s body coordinates. The

control input acceleration of the ground vehicle is given by

agxmin ≤ aB
gx ≤ agxmax (3.8a)

agymin ≤ aB
gy ≤ agymax (3.8b)

agzmin ≤ aB
gz ≤ agzmax (3.8c)

where aB
gx, aB

gy, and aB
gz are the control input of the target in the body coordinates.

To simplify the tracking optimisation problem, we assume that the altitude of the UAV is
fixed and the terrain where the ground vehicle moves is flat [14]. Hence, the corresponding
dynamics given by (3.1) is used excluding za and vaz making it a 2D tracking problem,
with a simplified engagement diagram as shown in 3.2.

UAV

Target 

Fig. 3.2 Simplified 2D UAV and target engagement diagram

The velocity and control vectors in the global coordinate must satisfy the constraint, while
its turn radius must be larger than its minimum radius of turn given as rmin. The curvature
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of the UAV flight path in 2D space must be smaller than the inverse of the minimum turn
radius. These constraints are summarised as follows:

vamin ≤
√

v2
ax + v2

ay ≤ vamax (3.9a)

uaxmin ≤ uax cosφa +uay sinφa ≤ uaxmax (3.9b)

uaymin ≤−uax sinφa +uay cosφa ≤ uaymax (3.9c)

0≤ v2
gx + v2

gy ≤ v2
gmax

(3.9d)

|vaxuay− vayuax|
(v2

ax + v2
ay)

(3/2)
≤ 1

rmin
(3.9e)

curvature 
constraints

(a) UAV control input constraint (b) Target control input constraint 

Fig. 3.3 UAV and target constraints and feasible control spaces

where vamin and vamax are the respective minimum and maximum allowed UAV velocities,
φa is the aircraft heading angle measured with respect to x-axis in the global frame, while
vgmax is the maximum target velocity. Similarly, uaxmin , uaxmax , uaymin and uaymax are the
minimum and maximum control inputs of the UAV along the x-y axes in body frame.

As shown in Figure 3.3, the UAV is constrained by an outer maximum velocity solid thick
line and a minimum constraint circle represented by a dashed line. The control input
constraint box is represented by the rectangular dashed line, while the two blue parallel
lines represent the UAV curvature constraint limits. The shaded area at the intersection of
the various constraints defines the allowable control input space for the UAV. Unlike the
UAV the ground target is only constrained to a maximum velocity limit since it can operate
with zero or negative velocity by coming to a full stop or reversing backwards during a
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simulation. The control input magnitude is represented by the red dashed rectangular line
and the red shade area represents its allowable;e control input space.

In addition, sharp turns by the UAV could result in high loading to the structure of the UAV.
To prevent excessive loading,the UAV bank angle, γa, and the turn rate, ψ̇ , are constrained
as follows [257]:

γamin ≤ γa ≤ γamax (3.10a)

ψ̇min ≤ ψ̇ ≤ ψ̇max (3.10b)

where γamin and γamax are the minimum and maximum allowed bank angles respectively,
while ψ̇min and ψ̇max are the respective minimum and maximum turn rates with constraints
defined as −π/4≤ γa ≤+π/4 [257]. The bank angle and the turn rate are related to the
speed of UAV, ∥va∥, and rmin as follows [329]:

γa =
ψ̇∥va∥

g
, ψ̇ =

∥va∥
rmin

(3.11)

where g is the acceleration due to gravity. The UAV turn rate is represented as ψ̇ in rad/s.

3.2.2 UAV target tracking algorithm

To ensure the UAV tracks the target, the two-step cost function to be minimised is given
by;

Maximise
vg(t)∈Vg

Minimise
ua(t)∈Ua

J =
∫ t0

t f

[x(t)− z(t)]T [x(t)− z(t)]dt (3.12)

subject to (3.5), (3.7), (3.9) and (3.10), where t f and t0 represent the initial and final time
t while Vg and Ua represent the feasible control input sets of the target and the UAV,
respectively. This cost function can be reduced to:

Maximise
vg(0),vg(1)∈Vg

Minimise
ua(0)∈Ua

J =
2

∑
k=1

[la(k)]2 (3.13)

where la(k) is equal to ∥x(k)− z(k)∥. Note that the ground target acceleration capability
as in (3.8) is omitted in the UAV tracking algorithm design phase allowing the target to
change its velocity instantaneously. This provides an advantage for the target to evade
from the tracking algorithm’s point of view. The two-step is chosen as it is the minimum
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number of steps for providing the control input in the cost function, i.e., the relative degree
of the system.

To design a worst-case scenario, consider the problem from the target perspective and
assume the UAV has an unknown optimal tracking algorithm. The best evasive option
for the target is to maximise the sum of the relative distance from the UAV. As the UAV
approaches to the target, the evading ground target moves with maximum speed providing
the biggest advantage to maximising the distance from the UAV.

x

Fig. 3.4 UAV 2-Step tracking prediction

The two circles drawn around the target at k = 1 and k = 2 in Fig. 3.4, indicate that the
next position of the target with the maximum speed can lie in any position at the boundary
of the circles. It is assumed that the UAV will also move in a direction that minimises its
relative distance to the target. At k = 1, the distance between UAV and target is a function
of θg, the maximisation parameter used in computing the worst-case scenario for the UAV
tracking minimisation, i.e.,

la(1) = ∥∆rgoa1 + vgmax∆t(cosθgi+ sinθgj)∥ (3.14)

At k = 2, the target simply tries to drive away from the UAV with maximum velocity in an
opposite direction to the UAV velocity. The distance at k = 2 is given by

la(2) = ∥∆rg1a1∥+ vgmax∆t (3.15)
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Once the worst θg is determined by solving the maximisation problem, the minimisation
problem for the UAV is obtained. The details of the 2D tracking algorithm are found in
[14].

3.3 Smart Target Manoeuvre design

The target cost function was designed using the min-max concept to maximise its distance
from the best-case UAV minimisation effort. Similar to the UAV tracking algorithm design,
the smart target is assumed to have the position and velocity information of the UAV. The
target control cost function is given by (3.16).

Maximise
va(t)∈Va

Minimise
ag(t)∈Ug

Jg =
∫ t0

t f

[z(t)−x(t)]T [z(t)−x(t)]dt (3.16a)

The above equation can summarised as (3.17).

Minimise
va(0),va(1)∈Va

Maximise
ag(0)∈Ug

Jg =
2

∑
k=1

[lg(k)]2 (3.17)

subject to (3.5) and

v2
gx + v2

gy ≤ v2
gmax

(3.18a)

agxmin ≤ agx cosφg +agy sinφg ≤ agxmax (3.18b)

agymin ≤−agx sinφg +agy cosφg ≤ agymax (3.18c)

v2
amin
≤ v2

ax + v2
ay ≤ v2

amax
(3.18d)

ψ̇amin ≤ ψ̇g ≤ ψ̇amax (3.18e)

where Va and Ug represent the feasible control input sets of the UAV velocity and the
target acceleration, vgmax is the maximum velocities of the target, agxmin , agxmax , agymin and
agymax are its respective minimum and maximum control input components. The target turn
rate, ψ̇g, is restricted by the minimum and the maximum bounds, ψ̇amin and ψ̇amax .

In comparison to the tracking UAV, the target is designed with the consideration that it
can stop, and move backwards. Accordingly, the target is not restricted by curvature and
minimum velocity constraints as shown by the shaded feasible control space for the UAV
and target in Fig. 3.3.
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Substituting and expanding all the expressions into the cost function for the target, the
following compact function, J̄g, equivalent to the original cost function is obtained:

J̄g = a2
gx(0)+αgagx(0)+a2

gy(0)+βgagy(0)+ γg (3.19)

where αg, βg and γg are functions of the UAV initial velocity and the initial positions of
the UAV and the target.

Fig. 3.5 Target 2-Step evasion manoeuvre

Similar to the worst-case scenario for the UAV tracking algorithm design, consider the
worst-case scenario for the ground vehicle evasion manoeuvre. As shown in Fig. 3.5,
the distance between UAV and target at k = 1, is equal to lg(1) and be calculated with
respect to, θa, an optimisation parameter introduced to obtain best-case UAV tracking
minimisation.

lg(1) = ∥∆raog1 + vaopt(1)∆t(cosθai+ sinθaj)∥ (3.20)

where vaopt(1) is the UAV’s optimal speed determined by the relative distance from the
target. At k = 2, the UAV tries to close the relative distance between the two vehicles
depicted as lg(2), which is calculated by

lg(2) = ∥∆ra1g1 +∆ra(1)∥= ∥∆ra1g1∥+ vaopt(2)∆t (3.21)

where vaopt(2) is the optimal speed applied by the UAV at k = 2 to close up with the target,
dependent on the relative distance from the target given by ∥∆ra(1)∥.

To simplify the worst-case scenario for the target, we assume that both of the optimal
UAV speeds are equal to the UAV’s maximum speed. Then, the minimisation of lg(2) is
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equivalent to the minimising the following length:

l̄g(2) = ∥∆ra1g1∥= ∥∆ra0g1−∆rg(2)+∆ra(0)∥ (3.22)

The original cost function can now be represented by the following minimisation problem:

J̄g = [lg(1)]
2 +[l̄g(2)]

2 (3.23)

The evasive control input is obtained by solving the maximisation of J̄g. The target optimal
control is obtained using the same sampling or maximisation approaches used for the UAV
optimal acceleration, i.e., search for the maximisation solution at the boundary or the inside
of the control input constraints. The sampling approach enables finding optimal control
corresponding to the minimal cost along the constraint boundary, Jgbd . Similarly, optimal
cost, Jgin corresponding to minimal control effort within the constraints circle is obtained.
If Jgin ≤ Jgbd , then ugx(0) and ugy(0), corresponding to Jgin are optimal. Otherwise, these
values are used as an initial guess and solved using the Armijo gradient descent rule to
obtain the optimal control input [14]. To test the control feasibility of the UAV and target,
their cost functions were compared by simulating a sample scenario of the UAV and target
engagement and their cost and constraints. Fig. 3.6 shows the cost function contours,
constraints, and the corresponding control inputs for the UAV and the target for a sample
scenario. The plot shows that the UAV and target control limits lie within the feasible
control space and control algorithms are implementable.

The contour plot is used to visualise and analyse the optimal control trajectory. It signifies
the optimal control trajectory for the UAV in tracking the manoeuvring target and shows the
cost values for different values of the state and control variables [330, 331]. The contour
lines indicate the optimal trajectory is the one that minimises the maximum possible cost
over all possible target trajectories and can be found by tracing the minimum cost path on
the contour plot. In Fig. 3.6, the cost functions of the tracking UAV and the evasive target
are plotted by overlaying the two cost functions in the same contour plot. The resulting
contour plot shows the trade-off between the control objectives of the UAV and the target.
As indicated contour plot legend, the lines and map colours represent the values of the
cost function at different points in the control space. The contours are closer together in
areas of high cost, and farther apart in areas of low cost. The intersection of the two cost
function contour plots represents the set of control inputs that achieve a balance between
the control objectives of the UAV and the target. This shows the control inputs are for both
the UAV and the target, allowing the UAV to track the target while the target attempts to
evade the UAV.
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Fig. 3.6 Optimal control inputs and cost function contours for UAV minimisation and
target maximisation

The position of the contours in the contour plot also affects the control vectors of the
UAV and the target. When the contours of the UAV’s cost function are farther away from
the origin, it implies that the cost of the control inputs is higher, and the UAV needs
more aggressive manoeuvres to track the evasive target. Conversely, when the target cost
contours are closer to the origin, it indicates the target is more vulnerable to being tracked,
and the UAV needs to execute less aggressive manoeuvres. When the contours of the two
cost functions intersect at a point where both costs are high, it indicates that both the UAV
and the target are in a highly disadvantageous position, and the control inputs need to
be adjusted to improve the situation. However, if the contours of the two cost functions
intersect at a point where both are low, this implies that both UAV and target are in a highly
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advantageous position, and the control inputs can be maintained.

The pseudocode explaining the main step in the target evasion algorithm is presented
in a summarised format in Algorithm 1. It begins by initialising various parameters
and constraints for the UAV and the target. These parameters include time intervals ∆t,
maximum and minimum velocity limits and, minimum turn radius for the target rgmin .
Conditional checks are performed to ensure that the UAV’s velocity and acceleration stay
within specified limits. If these limits are exceeded, the algorithm adjusts the bounds
to ensure they comply with the constraints, which involves modifying the acceleration
bounds. The algorithm samples point along the constraint boundary and calculate the cost
for each sample to obtain optimal control input for the target evasion corresponding to the
minimum cost, J∗g-bd. Similarly, it samples points inside the boundary of the constraints
and calculates the cost for those samples to find the optimal control input corresponding to
the minimum cost, J∗g-in.

A decision point is reached to compare J∗g-bd with J∗g-in. If J∗g-bd is less than or equal to
J∗g-in, it means that the optimal control inputs for the boundary samples are sufficient, and
the algorithm selects agx(0) and agy(0) corresponding to J∗g-bd as the optimal controls.
However, if J∗g-bd is greater than J∗g-in, the algorithm proceeds to a minimisation step. It
takes agx(0) and agy(0) corresponding to J∗g-in as an initial guess for the minimisation of
the objective function and uses the gradient descent method with Armijo’s rule to solve
the optimisation problem. The gradient descent approach is applied in conjunction with
Armijo’s rule to solve the minimisation inside the cost function constraint of the boundary.
Armijo’s rule establishes direction by modifying the search variables αam j.
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Algorithm 1 Optimal Target Evasion Control
1: Initialise the prediction interval and the UAV/target constraints:

∆t,vgmax,vgmin,axgmax,axgmin ,aygmax,aygmin,rgmin,vamax
2: Set the initial position/velocity of UAV and the target position:

xg(0),yg(0),vgx(0),vgy(0),xa(0),ya(0)
3: Calculate vg(0) =

√
vgx(0)2 + vgy(0)2

4: if vg(0)
∆t +axgmax >

vgmax
∆t then

5: Replace agxmax bound by the arc given by the larger circle intersecting with the
control constraint box

6: end if
7: if vg(0)

∆t +axgmin <
vgmin

∆t then
8: Replace agxmin bound by the arc given by the smaller circle intersecting with the

control constraint box
9: end if

10: Sample points along the boundary of the constraints and calculate the cost for the
samples; Find the optimal control corresponding to the minimum cost, J∗g-bd, among
the samples

11: Sample points inside the boundary of the constraints and calculate the cost for the
samples; Find the optimal control corresponding to the minimum cost, J∗g-in, among
the samples

12: if J∗g-bd ≤ J∗g-in then
13: agx(0) and agy(0) corresponding to J∗g-bd are optimal
14: else
15: Let agx(0) and agy(0) corresponding to J∗g-in be the initial guess of the minimisation

of the objective function. Solve the optimisation using the gradient descent method
with Armijo’s rule to modify search variables αam j.

16: end if
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Fig. 3.7 UAV tracking and target evasion block daigram

3.4 Extension to 3D Scenario

3.4.1 2D to 3D related research

A few research literature on UAV tracking extension from 2D to 3D is presented. Mellinger
et al. [332] and [333] implemented a 2D to 3D algorithm extension by estimating future
points on a 2D tracking trajectory, closest to the current position at each time instant. Then a
unit tangent vector of the trajectory and the desired velocity vector was derived to compute
the position and velocity errors needed to calculate the commanded acceleration, using
PD feedback of the position and velocity errors. In a related research, [334] developed
a UAV path generation and tracking algorithm, by extending a 2D Dubins suboptimal
tracking algorithm to 3D, using empirical calculations. An optimal 2D path was generated
on the xy-plane and the path length within a short time interval was used to compute
command output for 3D path tracking. A similar extension from 2D to 3D motion planning
algorithm was implemented by [335], by developing a new planning heuristic algorithm
for fixed-wing UAVs using the shortest path on 2D Dubins curves, and precomputed sets
of motion primitives derived from the vehicle dynamics model. An autonomous navigation
3D algorithm was also developed for an unmanned helicopter using a 2D extension of
reactive fuzzy sensor data-based navigation [336]. The simple 2-D navigation subsystems
simultaneously combine the desired flying direction based on seven 2D subsystems to
form a 3-D solution space that is suitable for UAV tracking motion.
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In [337], a 3D Path tracking algorithm for a UAV operating in a cluttered environment was
developed by mapping a path smoothing algorithm using consecutive triplets of waypoints
in a homogeneous coordinate transformation to a 2D plane. A previously developed 2D
path smoothing algorithm was then applied and the generated command output in the 2D
plane mapped back into 3D space. Similarly, a 2D Dubins path algorithm was extended to
3D path tracking by incorporating a flight-path angle constrained by the physical limit of
the path-tracking UAV [338]. The reviewed literature all focused on 2D to 3D extension
for UAV path planning or trajectory optimisation without mention of ground or aerial
targets. This gap is addressed in this section by developing a 2D to 3D algorithm extension
that takes the tracking UAV and evasive target into consideration.

3.4.2 Application of 2D to 3D extension in target tracking algorithm

The extension of UAV tracking from 2D to 3D has significant implications and applications.
Some of them include:

• Application of UAV tracking in various scenarios beyond the initial 2D context.

• Mapping the 2D solution to a 3D context provides a practical approach to solving
tracking problems in three-dimensional space, especially when analytical solutions
in 3D are not feasible [337].

• Leveraging existing numerically attractive, well-established, and proven 2D naviga-
tion methods allows for the simulation of 3D scenarios [336] and the development
of solutions in the 3D domain.

These implications and applications highlight the importance and benefits of extending
UAV tracking from 2D to 3D, opening up new possibilities and opportunities in the field
of UAV navigation and tracking. Given the aforementioned benefits, the 2D target tracking
in [14] is extended for 3D tracking scenarios. Considering the UAV and target velocity
vectors va and vg as shown in Fig. 3.8, if the two vectors are parallel, the angle between
them is zero and can not be used for a vector transformation. However, if we assume that
the vectors are never parallel, then the angle between the two vectors can be defined as θag

and used in the formulation of a direction cosine matrix for our transformation.

We establish an instantaneous moving frame, xm-ym with the unit vector in xm-axis, aligned
to the target velocity vector vg while the unit vector towards zm-axis is orthogonal to the
plane formed by the cross product, vg×va as follows:

xm =
vg

∥vg∥
, zm =

va×vg

∥va×vg∥
(3.24)
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Fig. 3.8 2D to 3D vector transformation diagram

The unit vector ym is equal to zm×xm. The direction cosine matrix, DRm, transforming the
vectors in the moving frame to the reference frame is given by:

DRm =
[
xR

m yR
m zR

m

]
(3.25)

where xR
m, yR

m and zR
m are the moving frame unit vectors expressed in the reference frame

and DRm is the orthonormal matrix satisfying DRmDT
Rm = I3, i.e., DmR = DT

Rm.

The target tracking control input in the moving frame is the same algorithm solution as the
2D tracking problem. Once the 2D algorithm calculates the optimal tracking control input
in the moving frame, the following equation maps the 2D control input into the 3D space.

ua = DRmum
a (3.26)

where ua is the UAV global frame acceleration in 3D and um
a is the UAV tracking command

in 2D body frame expressed in the moving frame. The control output for z-axis generated
from the mapping of the 2d control input to 3D needs to be constrained to enable the UAV
to maintain a desired altitude above the target. A pseudo-code detailing the 2D to 3D
extension is summarised in Algorithm 2.
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Algorithm 2 2D TO 3D Algorithm
Require: 2D current position, velocity of UAV and target

1: for Every time step do
2: Obtain the control input um

a = [uB
ax uB

ay 0]

3: Compute transformation DRm =
[
xR

m yR
m zR

m

]
4: Convert 2D control to 3D frame uR

a = DRmum
a

5: Perform UAV & target manoeuvre in 3D
6: end for

In 3D space, the target can manoeuvre in any direction, including upwards and downwards.
To ensure the UAV is able to track and keep the target within its FOV, the assumption
used for the 2D case that the UAV always operates at an optimal altitude no longer holds.
Depending on the UAV camera resolution and cloud base, the UAV cannot operate above
a certain altitude ceiling. Similarly, due to obstacles in the operating environment, the
UAV’s altitude must exceed some threshold above the target. As a result, the UAV must be
restricted to operating within an upper and lower optimal altitude band. Altitude control
was implemented in Chapter 4.

3.5 Simulations and Results

To simulate the tracking capability of our algorithm against various target scenarios, we
first assess the effect of modifying the control using bank angle and turn rate constraints.
Relying on the assumption that the UAV can detect and estimate the position of the target,
we implement 3 scenarios. In the first scenario, the target is unaware it is being tracked
and is moving at a constant speed. In the second scenario, the UAV is tracking a target
that is aware it is being tracked and initiates a predefined zig-zag manoeuvre to escape the
tracking UAV. In the third scenario, the target is fully aware it is being tracked and is also
intelligently evading, having information about the UAV’s position, velocity, and estimated
acceleration. These simulation results for the scenarios highlighted are presented in the
following subsections.

3.5.1 Bank angle and turn rate constraint assessment

We implemented a scenario to track a manoeuvring target using a UAV algorithm without
bank angle and turn rate constraints and another UAV with the modified control. The
UAVs were initiated at the same initial position xa = [0, 0, 0], and the target commenced
manoeuvre from position xg = [500, 60, 0]. A UAV minimum turn radius of rmin = 100,
and velocity limits of vamin = 10m/s and vamax = 15m/s is used in this scenario while the
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respective minimum and maximum acceleration limits of the UAV along x,y, and z axes
are as follows:

uaxmin =−2 [m/s2], uaxmax = 4 [m/s2],

uaymin =−3 [m/s2] ,uaymax = 3 [m/s2],

uazmin =−0.5 [m/s2], uazmax = 0.5 [m/s2]

In this scenario, the maximum target velocity of vgmax = 10m/s, and the tracking and
evasion scenario is simulated for 100s. The control input magnitude limits of the target are
as follows:

agxmin = 0 [m/s2], agxmax = 0 [m/s2],

agymin = 0 [m/s2], agymax = 0 [m/s2],

agzmin = 0 [m/s2], agzmax = 0 [m/s2]

UAV and Target Trajectories with and without additional constraints
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Fig. 3.9 UAV and target trajectories with and without additional constraints

As shown in Figure 3.9, both UAVs can track the target, closing up and keeping the
target within their FOVs for the entire duration of the simulation. Their trajectories are
almost identical except for the responses to sharp target manoeuvres. This shows that the
constraints restricted the second UAV from taking very sharp manoeuvres in response to
target evasion. This is a useful safety consideration as rapid turns at high speed could lead
to wear and tear, causing mechanical damage to the control surfaces and actuators in live
tracking situations.
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3.5.2 Non-manoeuvring target

In the first scenario, we implement a constant velocity target to observe how the UAV tracks
the target moving in a straight line. The UAV is initiated at position xa = [4000, 1000, 500],
while the target initiated at xg = [0, 0, 50]. The UAV minimum turn radius, rmin, is set
at 100m with the velocity limits of vamin = 10m/s and vamax = 20m/s, while the respective
minimum and maximum acceleration limits of the UAV along x,y, and z axes are as
follows:

uaxmin =−5 [m/s2], uaxmax = 6 [m/s2],

uaymin =−5 [m/s2] ,uaymax = 5 [m/s2],

uazmin =−0.5 [m/s2], uazmax = 0.5 [m/s2]

The target velocity limits are set to vgmax = 10.7m/s, while its respective acceleration was
constrained to zero, with the target essentially moving at constant velocity. The simulation
was run for 100s

Fig. 3.10 3D plot of UAV tracking a smart manoeuvring target

As shown in 3.10, for a straight-line target, the UAV follows a trajectory that ensures it
is kept within a favourable tracking distance throughout the tracking scenario. Due to
the small turn radius constraint on the UAV, it was able to follow the tight circular path,
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preventing it from outrunning the target and ensuring that it was kept within its camera
FOV.

3.5.3 Simple manoeuvring target

To simulate the UAV tracking performance when tracking a target that manoeuvres in pre-
defined paths, we implemented a scenario where the target can accelerate while following a
somewhat zig-zag path. The UAV and target are initiated at positions xa = [200, 200, 500]
and xg = [0, 0, 50] respectively. The UAV minimum turn radius was adjusted to, rmin, is set
at 200m to see how its trajectory is affected and the velocity limits are set to vamin = 10m/s
and vamax = 20m/s. The UAV respective minimum and maximum acceleration limits of the
UAV along x,y, and z axes are set to:

uaxmin =−10 [m/s2], uaxmax = 8 [m/s2],

uaymin =−4 [m/s2] ,uaymax = 4 [m/s2],

uazmin =−0.2 [m/s2], uazmax = 0.5 [m/s2]

Similarly, the target velocity limits is set to vgmax = 12.5m/s, while its respective accelera-
tion limits along x,y,and z axes are as follows:

agxmin =−4 [m/s2], agxmax = 6 [m/s2],

agymin =−4 [m/s2], agymax = 6 [m/s2],

agzmin =−0.4 [m/s2], agzmax = 0.4 [m/s2]

similar to the constant target velocity scenario above, the simulation was run for 100secs.
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Fig. 3.11 3D plot of UAV tracking target following a manoeuvring pattern

As shown in 3.11, when the UAV tracks a target manoeuvring in a simple pattern, it follows
a trajectory that enables it to keep the target within tracking proximity. In this case, the
UAV executed a sinusoidal trajectory pattern, autonomously adjusting its acceleration and
velocity within its control bounds to keep the target within its camera FOV. The UAV
trajectory is also affected by the increased turn radius constraint which enables the UAV to
follow a less restrictive trajectory path.

3.5.4 3D evasive target

The UAV minimum turn radius, rmin, is set at 400m with the velocity limits of vamin = 20m/s
and vamax = 40m/s. Similarly, the respective minimum and maximum acceleration limits
of the UAV along x,y, and z axes are as follows:

uaxmin =−10 [m/s2], uaxmax = 8 [m/s2],

uaymin =−4 [m/s2] ,uaymax = 4 [m/s2],

uazmin =−0.2 [m/s2], uazmax = 0.5 [m/s2]
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The target velocity limits is set to vgmax = 16.7m/s, while its respective acceleration limits
along x,y,and z axes are as follows:

agxmin =−2 [m/s2], agxmax = 4 [m/s2],

agymin =−2 [m/s2], agymax = 2 [m/s2],

agzmin =−0.2 [m/s2], agzmax = 0.4 [m/s2]

Fig. 3.12 3D plot of UAV tracking a persistently evading target

The initial UAV position is set to (2000m, -2000m, 500m) while the initial target position
is set to (50m,-50m, 50m) in x-y-z respectively. As shown in Fig. 3.12, the UAV and target
manoeuvre trajectory indicate that the UAV responds to the target’s evasive manoeuvres.
The target performs an evasive manoeuvre when the UAV closes up to its location. Then,
the evasive manoeuvre results in a corresponding change in the velocity and position of
the UAV. When the target moves in a straight line, the UAV manoeuvre ensures the target
is kept within a favourable tracking distance.

Comparing the x, y and z positions with the corresponding control input responses of the
UAV and target for various engagement scenarios, we observe that the increase or decrease
of the acceleration in response to manoeuvres by the other vehicle as shown in Figs. 3.13a,
3.14a and 3.15a. Sharp spikes resulting from sudden evasive target manoeuvres and
a corresponding increase in UAV acceleration to close up with the target are shown in
the figure. These abrupt UAV manoeuvres are restricted by the turn rate and bank angle
constraints.
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Fig. 3.13 UAV and target accelerations & positions - X direction

A closer look at a sample plot comparing the UAV and target position, velocity, and
acceleration as shown in 3.16 indicates that the direction of the target control input spike is
in sync with the direction of its velocity and position. A similar pattern is also observed
when the UAV responds with the direction of the control input spike corresponding to
the velocity and position turns. We also observed that the response time of the UAV to
the target manoeuvre is dependent on the time interval of the evasive manoeuvre. The
plot shows that when the target executes a sharp turn, the response time from the UAV
is short to enable the UAV to close up to the target. However, when the target executes
a slow manoeuvre, the response from the UAV was also slower. This implies that the
UAV algorithm adjusts its control input and velocity to ensure the target is kept within a
favourable distance throughout the tracking scenario.
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Fig. 3.14 UAV and target accelerations & positions - Y direction
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Fig. 3.15 UAV and target accelerations & positions - Z direction

Fig. 3.16 Comparison of UAV and target position, velocity and acceleration for a sample
scenario
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3.6 Summary

This Chapter provides a fixed-wing UAV optimal target tracking strategy with the minimum
turn radius varying with the bank angle, which enables the generation of realistic tracking
paths for the tracking UAV. The UAV control is based on a 2 step predictive min-max
cost function where the UAV tries to persistently minimise its relative distance to the
track a target that is assumed to be evading with its best control effort within the limits
of the design constraints. In addition to the UAV control, we developed an evasive target
control strategy by maximising the same cost function, which produces smart evasive
manoeuvres for the target. The evasion cost function is designed is to continuously evade
the UAV which assumed to be optimally tracking the target. Both the dynamics of the
UAV and target are mathematically modelled and constrained to operate within allowable
limits of the tracking and evasion scenarios. We also extended the 2D target tracking
algorithm to 3D cases using a vector transformation and direction cosine matrix derived
from the UAV and the target instantaneous velocity vectors. The 2D to 3D extension
enables the utilisation of the 2D algorithm for 3D scenarios while avoiding the complexity
of implementing a new design and fills a gap in the evasive target-tracking literature. The
simulation results obtained show that the UAV persistently tracked the evading target in
various combinations of scenarios and mission configurations.

Considering the importance of UAV vertical control with variation in target altitude in an
aerial pursuit, Chapter 4 implements various options for altitude control that can be applied
to the control strategy presented for the UAV and target in this Chapter. This research
was extended in Chapter 5 by the implementation of evasive quadrotor target tracking.
In Chapter 6, we implemented a strategy for cooperative tracking evasion using multiple
UAVs while considering the effect of sensor noise as well as collision avoidance between
the UAVs and the target.



Chapter 4

UAV Altitude Control

4.1 Introduction

In Chapter 3, we implemented an algorithm for tracking UAVs and a target evasion strategy.
We also developed a vector transformation algorithm to extend a 2D target tracking
engagement to a 3D scenario. The limitation of the 3D extension algorithm is that it is
dependent on the target vector, implying that the UAV is not able to execute independent
vertical manoeuvres. We consider that there may be scenarios where the UAV is required to
execute independent vertical manoeuvres to adjust altitude and observation angle without
utilising the target parameters. In such situations, an independent vertical control algorithm
for the UAV becomes valuable. In this Chapter, we develop vertical control algorithms that
can be used with the 2D target tracking strategy presented in Chapter 3 for executing a
target tracking mission in 3D. To provide some background on fixed-wing vertical control
strategies, we review some related literature. Before that, we will quickly notify the reader
that, the terminologies vertical control and altitude control mean the same thing in this
thesis and are used interchangeably.

4.1.1 Altitude control-related work

Treil et al. [339] developed a vertical control law based on GPS data for target tracking
using a VTOL UAV which showed effective performance during simulation. However,
the dependency on GPS data limits the control versatility especially when such data is
not available. Similarly, [340] implemented a constant velocity vertical control command
for landing a MAV on a target platform. This type of control however is not sufficient
for dynamic targets that move or manoeuvre frequently. By decomposing UAV control
into vertical and horizontal movements, [341] developed an altitude control strategy that
uses visual guidance for network recovery. The vertical controller enables the fixed-wing
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UAV to adjust its pitch angle to attain and maintain a desired stable altitude, by processing
vision system information to generate control signals. The vertical control combines a
reference model-based adaptive controller with a set of feed-forward dynamics for the
UAV movement. In a similar study, [342] designed a fixed-wing UAV vertical controller
that includes a forward and a vertical motion subsystem, using a neural network model that
compensates for external uncertain perturbations and an adaptive sliding mode controller
for fault-tolerant control. In [343, 344], they implemented a hybrid MPC vertical controller
that reduces a fixed-wing UAV sink rate in proportion to the altitude. The UAV autopilot
decouples the longitudinal and vertical control, by assuming that thrust and pitch controls
are appropriately tuned to give suitable response signals. Li et al. [345], also designed an
MPC-based vertical controller to hold UAV at constant altitude using a target zero pitch
angle. However, the main focus of the aforementioned vertical controllers was either on
vertical descent, maintaining a fixed altitude, or landing the UAV. A more robust vertical
control strategy will be needed for UAV evasive target tracking.

In another related research, [346] designed an altitude control strategy that uses PI control
law to eliminate static error and maintain the desired altitude of a ground target tracking
UAV. The control law uses velocity feedback to calibrate pitch angle, enabling UAV alti-
tude control. Bao et al.[347] also developed a variable-structure controller with multiple
algorithm fusion that combines the backstepping sliding mode and adaptive controls for
UAV altitude regulation within a holding area. A PID controller uses the target altitude to
compute the required pitch angle which is then calibrated by adaptive backstepping sliding
mode law. The pitch angle is continuously fed to the hybrid PID control and adaptive
sliding mode controller to adjust the UAV altitude. When the UAV exceeds the upper limit,
the coupled altitude controller trims the UAV pitch angle and speed until it reaches within
allowable altitude limits. While the above literature research addresses the desired control
outcome in the current research, it is dependent on preset variables and does not consider
target altitude.

Despite the various research on fixed-wing UAV controls, there is no literature addressing
altitude control for fixed-wing tracking of smart evasive ground or aerial targets. This gap is
particularly important, given the complex and unpredictable nature of real-world scenarios,
where targets could employ sophisticated evasion tactics, including rapid or meandering
altitude changes, to avoid detection or interception. Consequently, there is a pressing need
for in-depth studies for autonomously adjusting UAV altitude in response to both target
evasion and altitude fluctuations. Addressing this gap holds great potential for enhancing
the effectiveness of UAV-based target tracking systems across various domains such as
military surveillance, law enforcement, and search and rescue operations. This Chapter



4.2 UAV Altitude Control Using Flight Path Angle 79

therefore addresses the highlighted literature limitation by designing a vertical control
law that can be used in conjunction with longitudinal and lateral control to autonomously
regulate UAV altitude based on target behaviour.

4.1.2 Contributions

The main contributions of this Chapter are as follows

• An altitude control law that uses the relationship between the desired altitude above
the target, and the velocity vector in the 2D plane to compute the FPA for control of
the vertical movement of the UAV is developed.

• A UAV altitude control that uses the relationship between the actual and projected
size of the target image on the tracking camera plane is designed to automatically
determine and adjust the altitude of the tracking optimal UAV.

The remaining part of this Chapter is outlined as follows. Section 4.2 presents UAV
control using flight path angle. In section 4.3, a method of controlling the UAV altitude
using target actual and image size is presented. The altitude control simulation results for
the various controller options are presented and discussed in section 4.3 while section 4.5
summarises the main points presented in the Chapter.

4.2 UAV Altitude Control Using Flight Path Angle

Consider a scenario where a fixed-wing UAV is tracking a ground target that operates on
an undulating terrain. If the UAV is to maintain an optimal altitude above the target at
all times, it needs to be capable of adjusting its altitude in response to changes in target
altitude. In addition, the UAV would need to operate within an altitude band within which
its camera can effectively capture the target. The scenario is depicted in Fig. 4.1 where za

is the UAV current altitude, zg is the target altitude, and zd is the desired UAV altitude. The
optimal altitude band can be defined as vertical space between zd−h and zd +h , where h

is an altitude value determined by the camera focal length.

To design a vertical control law for a fixed UAV tracking an evasive ground target, a
variety of methods could be applied. However, we assume that the only information
available to us is UAV tracking variables in the 2D plane. Accordingly, we designed a
vertical control law to automatically adjust the UAV altitude using the FPA represented
by σa. The UAV σa is the angle between the UAV’s velocity vector and the horizontal
plane, which determines the UAV’s climb or descent rate and is essential for maintaining a
desired altitude. Other important angles to consider in relation to the FPA, are the Angle
of Attack (AoA) and the pitch angle θpa. The AoA is the angle between the oncoming air
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Fig. 4.1 UAV altitude constraint diagram

and the aircraft’s longitudinal axis while the pitch angle is the angle between the aircraft’s
longitudinal axis and the horizon. As shown in Fig. 4.2a, the FPA, AoA, and pitch angles
are related by the formula θpa = σa +αa [348]. We decided on FPA as the vertical control
variable for our vertical controller as it simplifies our design for altitude regulation. The
FPA encapsulates both pitch and angle of attack information and directly relates to the
vertical speed component of the UAV, making it a more efficient control variable in terms
of proportional response for maintaining altitude [349]. Thus, by controlling FPA, we can
better achieve the desired rate of climb or descent.

In this section, we explore FPA determination using either the relationship between za, zg,
and zd or the velocity magnitude in the horizontal plane. These FPA computation methods
are discussed as options in the subsequent paragraphs. To ensure the UAV does not pitch
up or nose down at very steep angles, the UAV FPA is constrained by the maximum and
minimum limits as depicted in Fig. 4.4.
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Fig. 4.2 Representation of the UAV climb and decent angle dynamics
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The three options for computing the FPA needed for the vertical control are designed and
presented in the following subsection. Designing three distinct methods for computing
FPA, is strategic as the multi-pronged methodology not only enhances the robustness and
adaptability of the system but also contributes to the overall reliability of our research. This
is because different scenarios and operational conditions may require varying methods to
effectively compute FPA. Therefore, presenting multiple options, ensures that our system
can handle a broader spectrum of real-world situations and is robust for deployment in
various environments. Additionally, developing 3 options provides redundancy in our
tracking system, especially in situations where one method encounters issues or limitations,
the others can serve as reliable fallbacks, ensuring mission success. Moreover, our multiple
methods approach allows for comprehensive comparative analysis as we can objectively
evaluate the strengths, weaknesses, and trade-offs of each method, aiding in the selection
of the most suitable approach.

The normal FPA design constraint for aircraft and UAVs can vary depending on the specific
application and design requirements. However, in general, FPAs for level flight are typically
small, on the order of a few degrees, typically around 2-3 degrees [350]. The UAV’s FPA
in this research is constrained to 0.06 radians, which means that the UAV’s velocity vector
is constrained by a maximum inclination to the horizontal plane of approximately 3.4o,
where σa is in radians.

4.2.1 Option 1 - Flight path angle calculation using relative altitudes

Assuming the UAV is tracking a target moving on the ground which suddenly climbs a
hill, we want the UAV to increase its FPA above the target correspondingly to maintain
an optimal altitude above the target. If on the other hand, the target enters a valley, the
UAV should also be capable of descending downward to maintain an optimal tracking
altitude. Using the relative UAV difference between the current UAV, desired UAV, and
target altitudes, the FPA can be computed as shown in (4.1).

σa =
(zd− za)

(zd− zg)
(4.1)
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where ∥σmax∥ is the maximum allowed FPA, constrained by the physical limitation of the
UAV as given by:

σa =



σmax, if
(zd− za)

(zd− zg)
> σmax

−σmax, if
(zd− za)

(zd− zg)
<−σmax

(zd− za)

(zd− zg)
, Otherwise

(4.2)

When the FPA is calculated using the above equations, the velocity of the UAV along the
vertical axis, vaz is calculated using the following equations:

vaxy = [vax,vay]
T (4.3a)

vaxy =
√

vax2 + vay2 (4.3b)

σa = tan−1
(

vaz

vaxy

)
(4.3c)

vaz = vaxy tanσa (4.3d)

where vaxy is the velocity vector of the 2D plane, with a magnitude represented by vaxy .

4.2.2 Option 2 - Flight path angle using velocity vectors

While the method for computing the FPA in the previous subsection yields the desired
outcome, the computation may not be feasible when zd is not known. To address this
limitation, we devised an alternative method for computing the FPA using vector geometry
and the difference between UAV and target altitudes as shown in Fig. 4.3. To compute
the FPA σa, we assume that the UAV flies in a straight line for a short period resulting
in va = ∥vxy∥. With this, we can calculate σa as the ratio of the change in altitude to the
change in horizontal distance, resulting in the actual climb rate of the UAV with respect to
the ground as follows:

σa = tan−1
(

za− zg

va

)
(4.4)

where va is the magnitude of the UAV velocity in 3D space. The desired altitude of the
UAV, is then computed by ensuring that the FPA is regulated by the following equation
(4.5).
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Fig. 4.3 Flight path angle geometric vector diagram

σa =


σmax, if sin−1

(
Za−Zg

va

)
> σmax

−σmax, if sin−1
(

Za−Zg
va

)
<−σmax

sin−1
(

Za−Zg
va

)
, Otherwise

(4.5)

When σa is computed using the above equation, the vaz is determined using the formula
given in (4.3).

4.2.3 Option 3 - Direct calculation of UAV vertical velocity component

In the third option, we consider the triangle defined by△ABC in Fig. 4.4.

Let dh be the horizontal distance between the UAV and the target, and let vaxy be the
velocity component in the x− y plane. Then, we can use the Pythagorean theorem to relate
dh, vaxy , and the total velocity va as follow:

va =
√

v2
axy

+ v2
az (4.6)

where vaz is the vertical velocity component. We compute the expression for the FPA in
terms of the velocity components and the altitude difference between the UAV and the
target:
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Fig. 4.4 UAV flight path computation triangles

tanσa =
vaz

vaxy

(4.7)

The first is△ABC in which the hypotenuse forms the side between the UAV current and
desired altitudes, labelled as rad . Next is triangle△BDE, which is formed by the horizontal
distance dh and the altitude difference between UAV and target za− zg. The hypotenuse of
this triangle is the line connecting the UAV and the target rag , and its length is given by the
Pythagorean theorem:

rag
2 = dh

2 +(za− zg)
2 (4.8a)

za− zg =±
√

rag
2−dh

2 (4.8b)

Triangle△BCA is formed by the horizontal and vertical components of the UAV’s velocity,
vaxy and vaz, respectively, and the total velocity va. The hypotenuse of this triangle is the
direction of the UAV’s velocity vector, which is the FPA σa. We can use the Pythagorean
theorem to relate the horizontal and vertical velocity components to the total velocity,
Using the definition of the FPA, we can express the vertical velocity component in terms
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of the FPA and the horizontal velocity component:

v2
a = v2

axy
+ v2

az (4.9a)

v2
a = v2

axy
+ v2

az (4.9b)

vaz = va sinσa (4.9c)

Similarly, we can express the horizontal velocity component in terms of the FPA and the
vertical velocity component:

vaxy = va cosσa (4.10)

Substituting these expressions into the Pythagorean theorem, we get:

v2
a = v2

a sin2
σa + v2

a cos2
σa (4.11a)

sinσa =
vaz

va
(4.11b)

cosσa =
vaxy

va
(4.11c)

tanσa =
vaz

vaxy

(4.11d)

tanσa =
sinσa

cosσa
(4.11e)

We can now use the definition of the FPA and the expressions for the horizontal and vertical
velocity components to relate the FPA to the other variables in the problem. The third
△AOB is formed by the horizontal distance dh and the altitude difference zd − za. The
hypotenuse of this triangle is the line connecting the desired altitude zd and the UAV, and
its length, rad is given by the Pythagorean theorem:

rad
2 = d2

h +(zd− za)
2 (4.12a)

zd− za =
√

rad
2−d2

h (4.12b)

Using the altitude differences and the velocity components, we can now express the vertical
velocity component vaz in terms of the FPA σa and the altitude differences:

vaz = va sinσa (4.13a)

vaz =
√

v2
a− v2

axy
sinσa (4.13b)

To remove the FPA σa from the final equation for vaz, we used the fact that sinσa appears
in both the original equation and the substituted expressions for va and vaxy . Factoring out
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sinσa from the original equation as follows:

va =
√

(zd− za)2 +d2
h (4.14a)

vaxy =
d√

dh
2− (zd− zg)2

√
(zd− za)2 +dh

2− (zd− zg)2 (4.14b)

Substituting these expressions into the original equation gives us:

vaz =

√
(zd− za)2 +dh

2− dh
2

dh
2− (zd− zg)2

(zd− za)2 sinσa (4.15a)

vaz = sinσa

√
(zd− za)2 +dh

2− dh
2

dh
2− (zd− zg)2

(zd− za)2 (4.15b)

vaz =

√√√√(zd− za)2

(
dh

2− (zd− zg)2− (zd− za)2

dh
2− (zd− zg)2

)
(4.15c)

Simplifying and rearranging the terms, we get:

vaz =

√√√√(zd− za)2

(
v2

axy

dh
2− (zd− zg)2

−1

)
(4.16)

Note that we need to use the± sign because the FPA can be positive or negative, depending
on the direction of the UAV’s velocity vector relative to the horizontal plane. Finally, we
can use the above equation and the Pythagorean theorem to compute the FPA:

σa =± tan−1

(√
(zd− za)2

dh
2− (zd− zg)2

)
(4.17)

The equation for computing the FPA as shown above, utilises the variables za, zg, zd , and
dh. This formulation can be used to compute the FPA for any desired altitude zd and
horizontal distance dh, even if the velocity components vaxy and vaz of the UAV are not
known.

In a situation where we are unable to compute the FPA, we need an alternative way of
developing a vertical control law that is not dependent on the FPA. Consequently, we
design a vertical control algorithm to ensure that the UAV can fly to an altitude where it
can keep the target within its FOV, using a PD control method in the next subsection.
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4.3 UAV Altitude Control Using PD and Image Sizes

Consider that a UAV with a camera pointed downward is flying at a certain altitude with
the target within its field of view. We assume that the target is moving in a plane that is
orthogonal to the camera’s main axis, with an orthographic projected image. The goal
of the guidance laws is to ensure that the UAV tracks the vehicles despite its evasive
manoeuvres. Since the UAV follows 2D horizontal guidance laws to track an evasive
ground target, the target may occasionally exit the camera’s field of view. To address this
scenario, our 2D horizontal guidance scheme will be supplemented with vertical guidance
to keep the control area within the FOV and acceptable bounds.

Adjusting the altitude has a visual effect on the 2D target projection on the image plane.
The apparent size of the target image increases with a decrease in UAV altitude and
decreases as UAV altitude increases. Additionally, decreasing the UAV altitude has the
effect of migrating the target image away from the centre of the image plane, whereas an
increase in altitude tends to move the target image closer to the centre of the image plane.
The size and distance of the target image, which is both inversely proportional to the UAV
altitude. If the camera focal length is given by fc, and the size of the ground target box
frame in the world plane is xsw , then the size of the target box frame on the image plane xsi

can be computed as follows:

xsi = xsw

(
fc

za

)
(4.18)

where za is the current UAV altitude. To control the UAV altitude using its projected image
size, we define a control area for the UAV by the box bounding the projected target on the
image plane. The extreme corners of the longer diagonal of the image box are defined as
ximin and ximax . The size of the control area is therefore computed as xsi = ∥ximin− ximax∥2.
If we depict the midpoint of the image plane as xpcen and the centre of the target on the
image plane as xicen , then the Euclidean distance between the midpoint of the UAV camera
plane and the target image midpoint is represented by dci as shown in Fig. 4.5 . Using
the variables xsi , dci , and za, we can develop a vertical guidance strategy for the tracking
UAV that is dependent on the size of the image bounding box on the camera plane and the
desired altitude [105].
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Fig. 4.5 Diagram explaining target size on world plane and Image plane

The size of the target image box is governed by the following equations:

xsi = xsw

(
fc

za

)
, dci = dcw

(
fc

za

)
(4.19)

where xsw and dcw denote the size of the control area and the planar Euclidean distance
between the UAV and target centre in the world frame. Note that under orthographic
projection assumptions, dcw = rw, where rw is the distance measured along the line of sight
between the UAV and the centre of the target. Using the equation below, a relationship can
be obtained for the vertical control as follows:

dci = rw

(
fc

za

)
(4.20)

Using the multi-variable chain rule, the double derivative of the equation above is obtained,
resulting in the following equations:

z̈a =− fcxsw

(
ẍsi

x2
si

−
2ẋ2

si

x3
si

)
(4.21a)

ẍsi =−

(
x2

si

fcxsw

)
z̈a +2

ẋ2
si

xsi

(4.21b)
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If we denote z̈a = uza and ẍsi = usi, then a PD controller can be designed to drive xsi→ xsi
des.

uza = Kpzaeza +Kdza(ża) (4.22)

where Kpza and Kdza and proportional and derivative respective gains for za and eza = zd−za.
Similarly, the following holds:

usi =−
(

fcxsw

x2
si

)
Kpiesi +

(
fcxsw

x2
si

)
Kdi(ẋsi) (4.23)

where Kpi and Kdi and proportional and derivative respective gains for xil and esi =

xsi
des− xsi . The vertical guidance law above generates altitude control commands with

the lower bounds and upper constraints of −zd ≤ za ≤ +zd and −xsi
des ≤ xsi ≤ +xsi

des

respectively.

4.4 Simulation and results

The simulation results comparing the vertical control laws in different scenarios are
presented in this section. We used a Windows 10 system with an Intel Core i5-8700 CPU
and 32 GB RAM to run the simulations. All the simulations to test the performance of
the altitude controller utilised UAV minimum turn radius, rmin, is set at 100m with the
velocity limits of vamin = 15m/s and vamax = 40m/s. Similarly, the respective minimum and
maximum acceleration limits of the UAV along x,y, and z axes are as follows:

uaxmin =−10 [m/s2], uaxmax = 8 [m/s2],

uaymin =−4 [m/s2] ,uaymax = 4 [m/s2],

uazmin =−2 [m/s2], uazmax = 3 [m/s2]

The target velocity limits is set to vgmax = 16.7m/s, while its respective acceleration limits
along x,y, and z axes are as follows:

agxmin =−2 [m/s2], agxmax = 4 [m/s2],

agymin =−2 [m/s2], agymax = 2 [m/s2],

agzmin =−1 [m/s2], agzmax = 2 [m/s2]

The simulation results are presented in the next subsections



90 UAV Altitude Control

4.4.1 Altitude control using FPA

The altitude control implemented above using 2D velocity vectors was simulated to
evaluate the performance of the three FPA options. For this simulation, we use a desired
altitude zd = 300m. The UAV is initiated at position [1000, 1000, 50] while the target
[0, 50, 0]. The UAV and target velocity and acceleration initial inputs and magnitude
limits are the same as the values used in Section 3.5. The maximum value of FPA was set
to σamax = 0.06 rads and the algorithm comparing the various altitudes was simulated for
1200 s.

Fig. 4.6 Comparison of options 1, 2 and 3

In Fig. 4.6, the simulation output for the 3 altitude control options based on FPA is presented
in a stacked plot comparing FPA, vertical velocity, and change in altitude throughout the
simulation. In the comparison plot, it is observed that the FPA for option-1 responded to
the control input by slowly adjusting its value from the maximum value to a regulated
value as it smoothly attained the desired altitude. With option-2, the FPA remained at
maximum value resulting in a stable velocity towards the desired altitude. With option-3,
the response by the FPA was sharp but velocity was fairly stable. The altitude trajectory for
option 3 showed it started adjusting to the desired altitude faster. The plot shows that the 3
options can be utilised for our target tracking problem. However, due to the simplicity and
stability of option-1, it will be adopted for our FPA for the remainder of this thesis.

4.4.2 Altitude control using target size

For the PID altitude controller, we simulated a scenario where the UAV is at a lower
altitude than the desired tracking altitude above the target. The UAV was initiated a
position of [1000 ,−1000 ,180], while the target started at [50 ,−50 ,50]. The target size
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on the ground was set at xsw = 10m and the initial image size on the camera plane is set
to xsi = 0.5m. The camera focal length was assumed to be fc = 200mm. The simulation
was run for 100s with the derived altitude controller aiming to get the UAV to the desired
altitude, zd = zg+150m.

0 10 20 30 40 50 60 70 80 90 100
Time (s)

40

60

80

100

120

140

160

180

200

220

A
lt
it
u
d
e

(m
)

UAV vs. Target Altitude

UAV Altitude
Target Altitude

(a) UAV Altitude vs. Target Altitude

0 10 20 30 40 50 60 70 80 90 100
Time (s)

-3

-2

-1

0

1

2

3

4

5

V
el
o
ci
ty

(m
/s

)

UAV Velocity vs. Time

(b) UAV Velocity vs. Time

0 10 20 30 40 50 60 70 80 90 100
Time (s)

-2

-1

0

1

2

3

A
cc

el
er

at
io

n
(m

/s
2
)

UAV Acceleration vs. Time

(c) UAV Acceleration vs. Time

0 10 20 30 40 50 60 70 80 90 100
Time (s)

5.8

6

6.2

6.4

6.6

6.8

7

Im
ag

e
S
iz
e

(p
ix

el
s)

#10-3 Target Image Size vs. Time

(d) Target Image Size vs. Time

Fig. 4.7 UAV altitude control simulation

Fig. 4.8 Trajectory of target tracking using camera focal length and image size altitude
control.
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In Fig 4.7, we plot the velocity of the UAV and target, as well as the change of the image
size xil , the distance between the image plane midpoint and target image midpoint, xc, and
the altitude of the UAV za plots over the simulation time. Fig 4.7c depicts the plots of the
UAV acceleration along the x axis, while Fig 4.8 depicts UAV and target 3D trajectories.
The UAV was able to adjust its altitude from its initial position, gradually attaining the
desired altitude and remaining within the designed upper and lower limits during the
remaining part of its trajectory. The UAV acceleration can be compared to the rate of
change in the size of the control area. The change in the UAV altitude is also observed to
change the size of the target on the UAV camera plane.

4.4.3 Comparison and selection of altitude controls

The UAV vertical control strategies implemented in this section have shown the capability
to adjust the UAV altitude as needed in response to an increase or decrease in target altitude
during a tracking scenario. The vertical control laws based on FPA are computationally
simpler to implement. However, we are also mindful of situations where we are unable to
compute the FPA either due to sensor limitation, failure or non-availability of the needed
measuring equipment. Accordingly, we implemented an altitude control strategy that is
not dependent on the FPA. In our algorithm, we used the relationship between the camera
focal length, the target actual size and the size of the target image on the camera plane
to develop a control box that allows the UAV to adjust its altitude in response to target
altitude. While the image size-dependent algorithm gives the desired outcome, it involves
many variables and has higher complexity and computational cost than the FPA algorithm.
Based on the above reason, we will adopt the FPA UAV control algorithm presented in
option-1 in this section for the remaining part of this research.

4.4.4 Selected altitude control strategy

Based on the decision from our comparison, we carried out additional simulations to test
the performance of option-1 in different mission scenarios. Consider a UAV that is below
the target at the start of the simulation. In the first scenario, we assume that the UAV, while
unable to access the target state, receives these details from another UAV overhead the
target or a ground control station with the capability to obtain the target states using a
satellite. Having received this information, the UAV should be able to fly and position over
the target to get updated tracking information. The UAV and target trajectories, the FPA
and the relative altitude of the UAV and target are shown in Fig. 4.9a and 4.9b.

In the second scenario, we assume that the UAV is above the target at the start of the
simulation and away from the target. This scenario is typical and the goal is to get the UAV
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(a) UAV initial altitude is below the desired alti-
tude
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Fig. 4.9 UAV below, desired and relative target altitude

to the desired altitude while tracking the target. As shown in Fig.4.10a and 4.10b, the UAV
altitude control enables the UAV quickly arrive at the desired altitude and maintains the
relative separation in response to target lateral and altitude manoeuvres.

(a) UAV initial altitude is above the desired alti-
tude
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Fig. 4.10 UAV above desired and relative target altitude

4.5 Summary

We developed various vertical acceleration algorithms for generating altitude control for a
fixed-wing UAV starting from the 2D plane. Essentially the vertical controller is combined
with the 2D lateral and longitudinal control of the x−y axis to form 3D control of the UAV.
One of the options utilised the relationship between the target and desired UAV altitude
to compute controlled FPA changes to control the UAV altitude. The second option set
required using a relationship between UAV camera focal length, the size of the target
image on the ground, and the desired size of the image on the camera lens to geometrically
compute altitude control accelerations that control the UAV altitude above ground and the
target. Both options were tested using simulation and the results show that the altitude
control strategies are adequate for the research work. Due to its simplicity, effectiveness
and lower computational cost, we adopted the vertical controller designed based on FPA
for controlling the UAV altitude for the remaining Chapters of this research. Further
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simulation of the adopted altitude controllers shows it is sufficient for our fixed-wing UAV
target tracking problem.



Chapter 5

Single UAV Evasive Quadrotor Tracking

5.1 Introduction

Drones have become increasingly popular due to their versatility and affordability, making
them an attractive option for various applications. These flying machines have become
indispensable tools utilised in various roles, including aerial photography, target tracking,
fire fighting, aerial surveillance, and medical emergency response. However, as with
many technologies, there are downsides. The rapid technological advancement in drone
technology has led to the widespread availability of drones, raising concerns about their
potential misuse [351]. For instance, criminals and non-state actors have exploited drones
to perpetrate various forms of crimes, including drug trafficking, smuggling, and espionage.
Moreover, Kamikaze drones [352] pose a significant threat to air travel, with several near-
misses reported between commercial aircraft and drones [353–356]. These concerns have
emphasised the need for effective countermeasures that can detect, track, and intercept
rogue drones. The ability to track and intercept evasive drones in real time is critical for
ensuring the safety of our skies and mitigating the risks associated with the use of drones
for nefarious purposes.

To address this issue, this Chapter combines the fixed-wing UAV control algorithms
presented in Chapters 4 and 5 for persistent tracking of an evasive quadrotor to keep the
target within the pursuer’s camera field of view (FOV). The proposed algorithm can be
utilised to develop various countermeasure applications, mitigating the risks associated
with drones used for nefarious purposes, and contributing to military, law enforcement, and
civilian applications. To ensure the current research makes meaningful contributions, we
review some related literature on tracking evasive quadrotors to assess current knowledge
and gaps.



96 Single UAV Evasive Quadrotor Tracking

5.1.1 Aerial target tracking - related work

Dogru and Marques [357] researched target drone detection and pursuit using a bigger
drone mounted with a millimetre-wave radar antenna. However, the target developed for
this research was a non-smart aerial target assumed to fly at a constant speed. A similar
tracking strategy was implemented by [162, 358], however, the target was heuristically
modelled to test the effectiveness of the tracking algorithm. Lee et al. [359], also designed
an algorithm for tracking manoeuvring aerial targets but the tracking performance was
tested against a simple drone model making a 90-degree turn during simulation. In a related
study, Choi and Kim [360] addressed a vision-based aerial target tracking problem by
implementing a nonlinear adaptive observer UAV guidance for fixed-wing UAV tracking
of an aerial target. Similarly, [237, 361] proposed a vision-based fixed-time control for
tracking an uncooperative aerial quadrotor-type target. However, unlike the evasive target
consideration in this research, the reviewed study only implemented a constant velocity
aerial target. A drone that operates autonomously and can follow and intercept an aerial
target was also studied by [362].

In [363] a pursuer-evader game was implemented where a quadrotor UAV algorithm
attempted to intercept an evader quadrotor by tracking and getting within a distance of
0.5m from the centre of the evader quadrotor. The evader target utilised an A∗ search
algorithm to iteratively navigate through a window to return to a predefined yellow region
while avoiding the tracking quadrotor as an obstacle. However, the research only focused
on the synthesis of an advisory controller for the pursuer quadrotor, without highlighting
the tracking and evasion algorithm and their effectiveness. Similar research was carried
out by Tsoukalas in [364] and [365], for visual tracking of an evading UAV using a
pursuer-UAV. They combined principles of optical flow, deep learning, and intra-frame
homography to execute correlation-based target tracking using a computer-controlled
Pan-Tilt-Zoom (PTZ) camera. Like the previous research, the target evasion aspect was not
fully addressed. In another related study, [352] presented a method for optimising multiple-
drone pursuers’ performance to intercept Kamikaze multiple-drone evader quadrotors,
utilising a communication strategy where each pursuer can decide which evaders should
be chased and immobilised. The Multiple-Pursuers Multiple-Evaders (MPME) problem
was addressed using an Internet of Battlefield Things (IoBT) to track the evasive target.
The research did not however address the evasion strategy of the targets. In another related
study, [359] designed a strategy for quadrotor tracking a highly manoeuvrable drone aerial
target with control input unknown to the tracker. They applied an impact angle control
with prediction in combination with a weighting function that used Bayesian estimated
variance data. The target evasion strategy was not presented and they only considered a
quadrotor pursuer, without addressing a scenario where the pursuer is a fixed-wing UAV.
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While existing algorithms may be effective in tracking stationary or predictable targets, only
a few studies have addressed fixed-wing UAV tracking of manoeuvring targets performing
sudden and unpredictable manoeuvres. However, none of the literature reviewed addressed
the tracking of smart evasive quadrotor targets using fixed-wing UAVs. Considering the
current capability of recent drone design and manufacture, and the possibility of adversarial
drone pursuit using fixed-wing UAVs, this gap is important and needs to be addressed.
This Chapter contributes to addressing the highlighted gap by extending the research
from Chapters 3 and 4 and developing a quadrotor target algorithm that performs aerial
manoeuvres. The fixed-wing UAV algorithm is modified to take into consideration the
various types of manoeuvres that can be carried out by the quadrotor. Our approach
represents a significant improvement over existing methods by anticipating evasive drone
movement and adjusting the fixed-wing UAV’s position and altitude accordingly, allowing
it to stay within the field of view of the evasive drone even if it performs sudden and
unpredictable manoeuvres.

5.1.2 Contributions

The contributions of this Chapter are as follows:

• We implemented a quadrotor dynamics and control algorithm to test the performance
of our fixed-wing UAV in tracking evasive aerial targets.

• A safety controller for collision avoidance between the tracking UAV and the evasive
target was designed and applied to the tracking-evasion mission.

• To enhance the UAV tracking algorithm developed in Chapter 2, we designed an
adaptive optimisation algorithm that uses feedback from the UAV and target states
during simulation to adaptively adjust the optimisation parameters of the tracking
UAV.

• A performance assessment method was developed that computes and compares the
energy consumed by the original and adaptively optimised UAV algorithm while
tracking an evasive target.

The remaining part of this Chapter is organised as follows. We develop a quadrotor target
by designing the mathematical representation for the vehicle dynamics in Section 5.2, while
Section 5.3 discusses the quadrotor path following controllers. Our strategy for quadrotor
evasion is highlighted in Section 5.4 while a discussion on safety measures and collision
avoidance is presented in Section 5.5. In Section 5.6 we present our adaptive optimisation
consideration and evaluate the UAV tracking performance against an evasive aerial target
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in Section 5.7. Simulation results are presented in Section 5.8 followed by analysis and
discussion in Section 5.9. This Chapter concludes with a summary in Section 5.10.

5.2 Quadrotor Dynamics

In this section, we focus our attention on the dynamics and control strategy of an evasive
quadrotor, intending to develop path-following and evasive aerial targets to be tracked by
our fixed-wing UAV. We consider a quadrotor design that manoeuvres and evades based
on a PD control strategy in 3D space. Parameterised trajectories will be generated and the
quadrotor control designed to follow a path using some preset waypoints. Our fixed UAV
algorithm will then be applied to track the quadrotor while maintaining the desired altitude
above.

Consider a quadrotor with fixed body frame xB, yB, zB attached its centre of mass EB

as shown in Fig.5.1. The axis xB is aligned with the desired forward direction of the
quadrotor zB points vertically upwards and is perpendicular to the plane of rotation when
the quadrotor is in a hover position. The quadrotor operates in a global (inertial) frame
defined by x, y, z. The quadrotor state consists of position and orientation. The position
part of the state specifies the location of the quadrotor in space while the roll, pitch and
yaw angles define its orientation [366]. Accordingly, the quadrotor state is represented by
a six-dimensional vector xsq while its rate of change ẋsq in (5.1).

Fig. 5.1 Quadrotor dynamics [367].

xsq =
[
xq yq zq ϕq θq ψq

]T
(5.1)

The yaw angle rotates about the z-axis while the roll and pitch angles rotate about the x and
y axes respectively. The body frame angular rates p, q, and r are related to the derivatives
of the roll, pitch, and yaw angles The z-x-y Euler angles are used to model the rotation of



5.2 Quadrotor Dynamics 99

the quadrotor in the global frame and the rotation matrix for transforming components of
vectors in the quadrotor body frame to the global frame is presented in (5.2).

p

q

r

=

cθq 0 −cϕqsθq

0 1 sϕq

sθq 0 cϕqcθq

 (5.2)

where c and s represent cosine and sine respectively. Also, the parameters ϕq, θq and
ψq are the quadrotor row, pitch, and yaw angles respectively. Our goal is to track 3D
trajectories represented by a position vector and a yaw angle that both change with time.
The position and yaw angle are used to form a four-dimensional vector as in (5.3), which
must be differentiable so we can calculate its derivative and second derivative.

A[R]B =

cψqcθq− sϕqsψqsθq −cϕqsψq cψqsθq + cθqsϕqsψq

cθqsψq + cψqsϕqsθq cϕqcψq sψqsθq− cψqcθqsϕq

−cϕqsθq sϕq cϕqcθq

 (5.3)

Using (5.4), we compare the desired position and yaw angle with the actual values to
obtain an error vector and its derivative. The objective is for the error vector to approach
zero exponentially, allowing us to determine the required acceleration, which can be the
second derivative of either the position vector or the yaw angle.

epq = rtr(t)− rq (5.4a)

evq = ṙtr(t)− ṙq (5.4b)

(r̈tr(t)− r̈qc) = kd,xevq + kp,xepq (5.4c)

where rtr is the desired trajectory (position and yaw angle) vector and r̈qc is the commanded
acceleration to be computed by the controller. The rotor of the quadrotor are all equidistant
to the centre of mass by a distance L. Let the vector that represents the position of the
quadrotor in the global reference be represented by xq. The forces acting on the system are
the force of gravity, acting in a direction that is opposite to the positive zB axis, and the
forces exerted by each rotor, represented as Fi, which act in the positive zB direction. The
equations that determine the acceleration of the centre of mass and the hovering control
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are governed by the following forces:

mr̈ =

 0
0
−mg

+R

 0
0

F1 +F2 +F3 +F4

 (5.5)

The first control input will be defined as :

uq1 =
4

∑
i=−1

Fi (5.6)

Each rotor in the quadrotor generates a moment perpendicular to the blade’s plane of
rotation, denoted as Mi. Rotors 1 and 3 rotate in the negative direction of zB, while rotors 2
and 4 rotate in the positive direction of zB. As a result, M1 and M3 act in the direction of
zB, while M2 and M4 act in the opposite direction of zB. The distance from the centre of
mass of the quadrotor to the axis of rotation of the rotors is represented by L. The angular
acceleration determined by the Euler equations is:

I

ṗ

q̇

ṙ

=

 L(F2−F4)

L(F3−F1)

M1−M2 +M3−M4

−
p

q

r

×
p

q

r

 (5.7a)

I

ṗ

q̇

ṙ

=

 0 L 0 −L

−L 0 L 0
δ −δ δ −δ

−
p

q

r

×
p

q

r

 (5.7b)

where δ = kM
kF represents the relationship between the quadrotors lift and drag.

5.3 Quadrotor Controllers

In implementing the quadrotor controls, we consider the hover state as well as the position
and attitude controls. These are discussed in the following subsections.

5.3.1 Nominal hover state

We design the quadrotor controllers by linearising the equations of motion presented in
(5.9), at the hover state, where xq = xq0 , ϕq = 0 and θq = 0. At this state, ψq = ψ0, and
θ̇ = ϕ̇q = ψ̇q = 0, and the lift generated by the propellers is computed by:

Fi,0 =
mg
4

(5.8)
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The nominal values of the position and attitude inputs at hover are u1,0 = mg and u2,0 = 0.
If we linearise (5.5), we get:

ẍsq1 = g(θq cosψ0 +ϕq sinψ0) (5.9a)

ẍsq2 = g(θq sinψ0 +ϕq cosψ0) (5.9b)

ẍsq3 =
1
m
(uq1−mg) (5.9c)

Similarly, if we linearise (5.7), we arrive at:

ṗ

q̇

ṙ

= I−1

 0 L 0 −L

−L 0 L 0
δ −δ δ −δ




F1

F2

F3

F4

 (5.10)

Essentially, the equations that describe motion are decoupled when considering angular
acceleration. The specific component of angular acceleration is only affected by its
corresponding component of uq2 .

5.3.2 Position and attitude control

The goal of the control problem is to find the four inputs, uq1 , and uq2 that are necessary for
either hovering or following a desired trajectory, zdes. To do so, the quadrotor’s position
errors are used to control its position through the use of a position controller, which directly
determines uq1 . The position controller also allows the derivation of a desired orientation,
which is then controlled through an attitude controller. The process of converting inputs
into uq1 ,uq2 is detailed in [368].

Attitude control. We now introduce a control system for the quadrotor’s orientation (roll,
pitch, and yaw) to follow a desired path. The control system, known as a PD attitude
controller, will be based on simplified equations of motion, and it will only work effectively
when the quadrotor’s orientation is close to a stable hovering position with small roll and
pitch angles. The control laws for this system will have a specific form when the quadrotor
is near the nominal hover state. The equation for computing the attitude control is given in
(5.11)

u2 =

kp,ϕ(ϕdes−ϕq)+ kd,ϕ(pdes− p)

kq,θ (θdes−θq)+ kd,θ (qdes−q)

kx,ψ(ψdes−ψq)+ kd,ψ(xdes− x)

 (5.11)
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Position control. The next part of the discussion will focus on two methods for controlling
the position of the quadrotor. These methods use the roll and pitch angles as inputs and
aim to maintain the position or follow a specific trajectory in 3D space. The first method is
for holding the position at a set point x0, while the second one is for tracking a specified
trajectory xtr(t). The desired yaw angle can be either constant ψq or change over time
with ψtr(t), and this will be separately defined in both methods. The desired roll and pitch
angles, ϕqdes and θqdes , will be determined by the position control algorithm and will be
used to calculate the desired speeds. The desired trajectory zdes is given as follows:

zdes =

[
xtr(t)

ψtr(t)

]
(5.12)

5.3.3 Hover controller design

In the hover position, we have that xtr(t) = x0 and ψtr(t) = ψ0. Accordingly, the command
control acceleration, ẍi,des is computed using a PD controller. The position error is defined
as ei = xtri− xqi . To ensure that the errors exponentially go to zero, the following must
hold:

(ẍtri− ẍi,des)+ kd,i(ẋtri− ẋqi)+ kp,i(xtri− xqi) = 0 (5.13)

where ẋtri = ẍtri = 0. Using (5.9), we derive the relationship between the desired control
acceleration and quadrotor roll and pitch angles. If δθ = θq−θq0 and δψ = ψq−ψq0 = ψq,
then we can arrive at the following:

ẍ1,des = g(θq cosψq +ϕq sinψq) (5.14a)

ẍ2,des = g(θq sinψq +ϕq cosψq) (5.14b)

ẍ3,des =
1
m
(uq1−g) (5.14c)

In a hover situation, this results in the following:

uq1 = mg+mẍ3,des = mg−m(kd,3ẋ3 + kp,3(x3− x3,0)) (5.15)

The other two can be used to compute the desired attitude control from the roll and pitch
angles as follows:
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ϕqdes =
1
g
(ẍ1,des sinψqdes− ẍ2,des cosψqdes) (5.16a)

θqdes =
1
g
(ẍ1,des cosψqdes + ẍ2,des sinψqdes) (5.16b)

The desired velocities for the roll and pitch are pdes = 0 and qdes = 0. The yaw is
determined by the trajectory generator as follows:

ψdes = ψtr(t) (5.17a)

xdes = ψ̇tr(t) (5.17b)

The trajectory controller is designed to follow complex 3D paths with moderate accelera-
tions under the assumption that the UAV is hovering nearby. If the assumptions are valid
and the system is linear with no saturation in inputs, the controller that generates the desired
acceleration will drive the error towards zero exponentially. However, if the commanded
path is too complex to follow precisely due to errors in the model or limitations on input
thrust, a modification to the controller is proposed. This modification involves determining
the closest point on the desired trajectory to the current position and using it to define the
position and velocity errors. The unit tangent vector along the trajectory is found, and the
unit normal and bi-normal vectors are then derived by differentiating the tangent vector
with respect to time or arc length. The desired acceleration is then calculated using a
PD feedback loop, as described in (5.18). Finally, the desired roll and pitch angles are
computed using (5.17). Further details can be found in [63].

epc = ((xtr−xq).n̂)n̂+((xtr−xq).b̂)b̂ (5.18a)

evc = (xtr−xq) (5.18b)

(ẋtr− ẋdes)+kdev +kpep = 0 (5.18c)

5.3.4 Trajectory design

Various trajectory paths can be developed using minimum snap, constructed by combining
polynomials representing the motion between a pair of waypoints w0 to wn in a known
duration. These trajectories can be designed for various shapes including, circular, diamond
shape, helical and rectangular. Details on the trajectory generation can be found in
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[368]. Using the equations presented above, we implemented two quadrotor controls and
simulated scenarios for diamond and helix circle trajectories

5.4 Evasive Quadrotor Target

To test the effectiveness of the 3D UAV target tracking algorithm developed in Chapters 3
and 4, we designed a 3D evasive quadrotor to evade, while the UAV persistently tracks the
target. We develop a quadrotor heuristic evasion algorithm, by assuming that the quadrotor
is aware of the position and velocity of the UAV and then implement an algorithm to aid
the quadrotor evasively manoeuvre based on the distance and direction to the UAV. The
first step in our algorithm is to calculate the distance and direction of the quadrotor drone to
the UAV. The norm function is then used to calculate the Euclidean distance between two
points in 3D space. The direction of the UAV is calculated by subtracting the quadrotor
position vector from the UAV position vector and normalising the resultant vector. This is
used to determine the quadrotor’s movement based on the distance and direction of the
UAV.

duav = xa−xq (5.19a)

euav =
duav

∥duav∥
; (5.19b)

where, duav and euav are the displacement and direction of the quadrotor to the UAV, while
xa and xq are the positions of the UAV and target quadrotor respectively. The next step
in the sequence of the quadrotor is determined based on its distance and direction to the
UAV. If the quadrotor is far away from the UAV ∥duav∥> 50, the quadrotor maintains its
current velocity, and its position is updated using the velocity vq and time step ∆t variables.
However, if the quadrotor is close to the UAV but not too close, i.e., ∥duav∥> 20, then the
quadrotor accelerates towards the UAV with a magnitude of 2 m/s and updates its velocity
and position accordingly. The velocity is also constrained within feasible limits, which are
defined by the vqmax and vqmin variables. When the quadrotor is very close to the UAV for
instance, ∥duav∥ ≥ 20, then, the quadrotor accelerates away from the UAV in the opposite
direction, with a magnitude of −4m/s2 and updates its velocity and position. The control
input and velocity constraints are given in (5.20).
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uq =


0 if ∥duav∥> 50 ,

2euav if ∥duav∥> 10

−4euav if xa−xq ≤ 5

(5.20a)

vq =


vqc, if vqmin ≥ vq ≤ vqmax

vqmax, if vq ≥ vqmax

vqmin, if vq ≤ vqmin

(5.20b)

where uq and vq are the quadrotor control input and velocity vectors respectively while vqc

is the quadrotor velocity vector at current time step. When the simulation step reaches the
50s, the quadrotor is made to perform evasive manoeuvres consisting of three different sub-
manoeuvres. The first sub-manoeuvre is a dive manoeuvre, where the quadrotor accelerates
downwards for a duration of 4s. The second sub-manoeuvre is a controlled stall manoeuvre,
where the quadrotor accelerates upwards for a duration between 6 and 8 seconds. The
third sub-manoeuvre is an escape flight manoeuvre, where the quadrotor accelerates in
the opposite direction of the UAV for a duration of between 10 seconds. The quadrotor
velocity and position are updated based on the acceleration, maximum and minimum
velocity constraints, and the time increment ∆t. Additionally, if the timer variable is equal
to 200, the quadrotor performs a random side-step manoeuvre. The quadrotor generates
a random acceleration vector using the randn function and normalises it. The quadrotor
then accelerates in the direction of the normalised acceleration vector with an acceleration
magnitude of 1.5m/s2. The quadrotor’s position, velocity, and acceleration are updated at
every time step to reflect its current manoeuvre.

5.5 Safety Controller for Collision Avoidance

To ensure safety and prevent a collision between the tracker and the evader from occurring,
in case of unexpected events, such as wind gusts or sudden movements of the quadrotor, a
safety margin is introduced between the fixed-wing UAV and the quadrotor. The controller
safety measure adjusts the heading and velocity of the fixed-wing UAV to move away from
the quadrotor while maintaining a safe distance. If the distance between the quadrotor
and UAV is less than the minimum safe distance dsa f e, the UAV’s course is adjusted
to avoid a collision. Our collision avoidance equation utilises three inputs. These are
the velocity error between the UAV current and desired collision avoidance velocity, the
distance between the UAV and the quadrotor and the head heading angle errors between the
UAV and the obstacle. The mathematical equation for computing the collision avoidance
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command is presented below. If the positions of the UAV and the target are denoted as
xa = (xa,ya,za) and xq = (xq,yq,zq) respectively. The direction vectors of the UAV and
the target can be calculated as:

ea =
xq−xa

∥xq−xa∥
(5.21a)

eq =
xa−xq

∥xa−xq∥
(5.21b)

where ea and eq are the UAV and quadrotor target directions respectively. To ensure
collision avoidance by adjusting the UAV’s direction and increasing the error in terms of
direction between the UAV and the target, we compute the heading error and formulate the
control equation:

θerr = arccos
(

ea · eq

∥ea∥ · ∥eq∥

)
(5.22a)

derr = ∥xa−xq∥−dsafe (5.22b)

ureq = Kp

(
eq− ea∥ea− eq∥

∆t

)
+Khθerr +Kdderrea (5.22c)

where θerr and derr are the heading and distance errors respectively. Alternatively, we
can also compute the collision avoidance command utilising the heading error in the PD
controller to compute the required acceleration ureq as follows:

vdes = eqvmax (5.23a)

verr = vdes−va (5.23b)

ureq = Kpverr +Kd

(
vdes−va

∆t

)
+Khθerr (5.23c)

where Khθerr represents the influence of the heading error θerr controlled by the proportional
gain Kh in the PD controller. This term adjusts the required acceleration based on the
heading error to further refine collision avoidance manoeuvres. Also, dq is the quadrotor
distance vector, vdes is the desired velocity, and verr is the error between the desired velocity
and the current velocity of the UAV va. The required acceleration of the UAV is ureq and
uprev is the previous acceleration, while the parameters kp and kd are the PD controller
gains. The parameter ∆t is the time step used in computing the required acceleration
control.
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5.6 Adaptive Optimisation

In this section, we present a method for implementing an online adaptive optimisation
algorithm for a UAV-quadrotor system that is commonly used for aerial surveillance,
reconnaissance, and other applications. The goal of online adaptive optimisation is to
adjust the control parameters of a system in real time based on its current state. The
modified hybrid optimal-adaptive control strategy will enhance target tracking robustness
and achievement of improved performance. To this end, we consider the optimisation
parameters vmin, vmax, rmin, and nsample. We consider two ways of adaptively optimising
the UAV performance as follows:

5.6.1 Heuristic adaptive optimisation

To achieve online adaptive optimisation, we have designed the optimise-performance
function that adjusts the values of the optimisation variables based on the current state of
the simulation. We use a simple approach for optimisation as follows:

vminOp

vmaxOp

rminOp

nsamOp

=



[
vamin−1 vamax−1 rmin +0.5 nsam +50

]T
if d < 10[

vamin +1 vamax +1 rmin−0.5 nsam−50
]T

if d > 20[
vamin vaminvamax rmin nsam

]T
otherwise

(5.24)

vminOp = max(vminOp,−10) (5.25a)

vmaxOp = min(vmax,20) (5.25b)

rminOp = max(rminOp ,1) (5.25c)

nsamOp = max(nsamOp,50) (5.25d)

where vamin,vamax,rmin,nsam are the initial values of the UAV minimum and maximum
velocities, minimum turn radius and the number of control space search samples respec-
tively. While, vminOp,vmaxOp ,rminOp and nsamOp are the adaptively optimised values, d is the
distance between UAV and target.

Using (5.24), if the distance between the UAV and quadrotor is less than 10m, we decrease
the minimum and maximum velocities of the UAV by 1m/s, increase the minimum range
of the quadrotor by 0.5, and increase the number of samples by 50. If the distance is
greater than 20m, we increase the minimum and maximum velocities of the UAV by 1m/s,
decrease the minimum range of the quadrotor by 0.5, and decrease the number of samples
by 50. Otherwise, we keep the values of optimisation variables unchanged. Regardless of
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the relative distance between the UAV and quadrotor, the values of optimisation variables
must satisfy some constraints in (5.25). These equations enable the adjustment of the UAV
control parameters in real time, based on the current state of the simulation and target
behaviour, thus achieving optimal performance for the system.
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(a) Adaptively optimised performance score
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(b) Original optimised performance score

Fig. 5.2 Comparing original and adaptively optimised performance scores

Comparing the results from Fig. 5.2. A performance analysis was conducted to compare
the original and adaptively optimised UAV controllers. The performance analysis showed
that the UAV with adaptive optimisation showed better performance than the UAV with no
optimisation. This does not show a strong improvement on the original algorithm. Hence,
the adaptive optimisation was reviewed and updated to a PD controller type as discussed
in the next subsection.

5.6.2 PD adaptive optimisation

The UAV tracking parameters can be adaptively optimised to perform better based on the
current positions of the UAV and the quadrotor. A predictive PD controller is used to
adjust the original target tracking parameters in real time and improve the performance of
the UAV system. We utilise the UAV and quadrotor positions, xa and xq, as well as the
maximum UAV velocity and acceleration vamax and uamax to compute the required velocity
and acceleration.

vr = va−vq (5.26a)

vdes = euav× vamax (5.26b)

xpr = xa +va× tprd (5.26c)

dpr =
∣∣xq− xapr

∣∣ (5.26d)

vrpr = vq− (va +vr× tpr) (5.26e)

where vr is the relative velocity, vdes is the desired UAV velocity, while xprd, dprd and vrpr

are the predicted UAV position, distance and relative velocity between the quadrotor and
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the predicted position of the UAV. The velocity error between the desired velocity and the
current UAV velocity is calculated as follows:

vaerr = vdes−va + kd× vrpr (5.27a)

uareq = kp×
(

vaerr + kd×
(vaerr− vaerrp)

tpr

)
(5.27b)

where vaerr is the error between the predicted velocity and the current velocity and uareq is
the required acceleration of the UAV, computed using the PD controller while vaerrp is the
previous velocity error. The control input calculated is updated as follows:

uap =


uareq∣∣uareq

∣∣ ×uamax if
∣∣uareq

∣∣> uamax

uareq otherwise
(5.28)

where uap is the updated constrained control input of the UAV. The velocity is computed
as vreq and constrained to the maximum velocity as follows:

vreq = va +uap× tprd (5.29a)

vap =


vreq

|vreq|
× vamax if |vreq|> vamax

vreq otherwise
(5.29b)

where vap is the updated UAV velocity which is constrained to operate with maximum
limits.

5.7 Performance Evaluation

In this section, we present 3 performance evaluation methods based on energy consumption,
performance score metric, and performance during wind disturbance. We evaluated the
performance of the tracking UAV under different scenarios, by varying its speed as well as
the manoeuvre of the quadrotor. These are discussed in the following subsections.

5.7.1 Energy consumption assessment

One of the methods of assessing the performance of the tracking UAV against a manoeu-
vring target is by using the energy consumption metric. The UAV generally incorporates
several energy-consuming components, including, data processing, communication, in-
ternal and external loads as well as motor controls [113]. For this research, we are only
considering the energy consumption by the motor controls during various phases of the
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tracking mission. To Calculate the total energy consumed by the UAV, we assume that
the energy consumed is proportional to the distance travelled by the UAV during its
flight. We compute the distances covered at various speeds and the time interval at max-
imum velocity, cruise travel by the UAV and while manoeuvring at maximum velocity,.
The various phases considered in the energy consumption computation are presented below.

Energy consumed at maximum velocity. The energy consumed by the UAV while travel-
ling at maximum velocity during the tracking mission can be computed using the equation
in (5.30)

Evmax =
1
2

(
vamax

2

uamax

)
(5.30)

where Evmax represents the energy consumed while flying at maximum velocity.

Energy during deceleration. Next, we consider that the UAV will decelerate in response to
target deceleration, hover or abrupt turn. The equation for computing the energy consumed
in this phase is given in (5.31)

tst p =
vamax

uamax

(5.31a)

Edec =
1
2

(
vamax

2

uamax

)
× tst p (5.31b)

where tst p is the time taken to decelerate from maximum velocity to minimum velocity and
Edec represents the energy consumed during the deceleration phase.

Energy consumed during travel. At some point during the target tracking mission, the
UAV would operate at cruise speed. This will occur if the target being tracked travels
continuously along a straight line. Accordingly, the energy consumed during cruise travel
is computed using the set of equations in (5.32) below.

ddec = 0.5×uamax× t2
st p (5.32a)

ddrd = drem−ddec− rtgt (5.32b)

Etrv = (ddrd×uamax) (5.32c)

where dtrv is the distance travelled during the travel phase, ddrd is the remaining distance
after deceleration and the target radius rtgt while ddec is deceleration distance and drem

is the distance remaining from the current position to the target position. The energy
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consumed during the travel phase is given as Etrv.

Energy during close manoeuvres. During the close manoeuvre, the UAV will take quick
actions in response to target evasion. The energy utilised by the UAV during this phase of
the mission can be computed using the equations in (5.33).

tttg =
drem

∥vai∥
(5.33a)

tvmx =


ddrd

va max
if ddrd > 0

0 otherwise
(5.33b)

Etgt =
1
2
× (rtgt

2×uamax) (5.33c)

where tttg is the time to target, tvmx is the time during which the UAV is operating at
maximum velocity and Etgt represents the energy consumed during a close manoeuvre to
the target.

Total energy consumed. Having computed the energy consumed during the various phases
of the tracking mission, we now sum up to obtain the total energy expended for the scenario
under consideration as shown in (5.34).

ttot = tst p + tttg + tvmx (5.34a)

Etot = ∑
t
(Evmax,t +Edec,t +Etrv,t +Etgt,t) (5.34b)

where ttot is the total time of travel and Etot represents the total energy consumed during
the simulation.

To assess the performance of the PD adaptive controller, the UAV and target initial
conditions were randomly varied within allowable limits and used to run 100 Monte Carlo
simulations in which the energy consumed by the UAV in tracking the target was collated.
The results are shown in the histograms in the Fig. 5.3

A comparison of the two histograms shows that the energy expenditure by the adaptively
optimised UAV where concentrated within a few bars while the original algorithm had a
broader spread including higher value bars. This indicates that the energy consumed by
the UAV when utilising the original tracking algorithm is more than that consumed by the
adaptively optimised algorithm.
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Fig. 5.3 Comparing original and adaptively optimised performance scores

# Algorithm Type Average energy Average score Average area
1 Original Algorithm 10.5 0.78 150
2 Adaptive Algorithm 8.9 0.92 175

Table 5.1 Comparison of average energy, performance score, and area covered by UAV to
target

5.7.2 UAV performance metric score

In addition to the energy assessment presented above, we devised a second performance
metric to further assess the UAV tracking algorithm over time. The performance score
metric will compare the distance between the UAV and the target in the previous step with
the relative distance at the current step while taking into consideration the velocity utilised
in closing the relative distance as shown in (5.35).

tascore-1 = ∑
t

(
1−
∥dprv∥−∥dcur∥
∥dprv∥

)
× ∥va∥
∥vamax∥

(5.35)

where dprv is the distance covered in the previous time step and dcur is the distance in the
current step. A higher score implies that the UAV was more effective in tracking and closing
the distance to the evasive target throughout the tracking scenario. It signifies that the UAV
successfully reduced the distance to the evasive target, covered more distance relative to the
maximum possible velocity, and accomplished a better percentage reduction in distance.
Using this performance score, we compared the original and adaptively optimised UAV
tracking algorithms and obtained their scores over 100 Monte Carlo simulations as shown
in Fig. 5.4. Details of the comparison between the original and adaptive code are shown in
Table 5.1.

From the histograms comparing the adaptively optimised UAV tracking algorithm with the
original algorithm as shown in Fig. 5.4, it can be observed that the adaptively optimised
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(a) Adaptive optimised performance score
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(b) Original optimised performance score

Fig. 5.4 Comparing original and adaptive optimised performance scores

UAV performed better in various scenarios in terms of energy consumption. The energy
conservation is due a more precise tracking, reducing the distance travelled in each phase
and the number of energy-sapping manoeuvres done by the UAV using the original
algorithm in histogram Fig. 5.4b. This performance improvement by the adaptively
optimised UAV is also seen in the histogram

5.7.3 Performance evaluation in wind disturbance

We also introduce a 5s wind gust to test how well the UAV recovers to tracking the target
when displaced by a sudden wind gust. To score the UAV’s performance, we used the ratio
of the relative distance to the UAV’s velocity as in (5.36).

tascore-2 =
∥duav∥
∥va∥

(5.36)

The area histograms comparing the UAV tracking performance over 100 Monte Carlo
simulations are as shown Fig. 5.5. Fig. 5.5a on the left shows tracking performance by
the UAV without wind disturbance while Fig. 5.5b shows the tracking performance by the
UAV when a short wind gust disturbance was introduced.
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Fig. 5.5 Histograms evaluating UAV performance against quadrotor target
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The results show that the UAV tracking algorithm is robust to different scenarios and can
track the quadrotor’s trajectory accurately.

5.8 Scenario Simulations and Results

In this section, we test the performance of the UAV algorithm against non-manoeuvring
and evasive moving quadrotors. The trajectories result from the behaviour of both vehicles.
The simulation is executed on a Windows 10 computer running with an Intel Core i5
Processor and 32 GB of Memory. The UAV minimum turn radius, rmin, is set at 10m with
the velocity limits of vamin = 5m/s and vamax = 10m/s. Similarly, the respective minimum
and maximum acceleration limits of the UAV along x,y, and z axes are as follows:

uaxmin =−5 [m/s2], uaxmax = 5 [m/s2],

uaymin =−2 [m/s2] ,uaymax = 5 [m/s2],

uazmin =−0.2 [m/s2], uazmax = 0.5 [m/s2]

The target velocity limits is set to vgmax = 7m/s, while its respective acceleration limits
along x,y,and z axes are as follows:

uqxmin =−2 [m/s2], uqxmax = 5 [m/s2],

uqymin =−2 [m/s2], uqymax = 2 [m/s2],

uqzmin =−0.2 [m/s2], uqzmax = 0.4 [m/s2]

5.8.1 UAV tracking target following predefined paths

To simulate mission scenarios where the UAV is tracking a target following a predefined
helix trajectory path, we initiated the target at position [5, 0, 0], while the UAV was
initiated at a [5, 5, 2].
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Fig. 5.6 UAV tracking helix path following quadrotor.

We also simulated a mission scenario where the UAV tracks a quadrotor target following a
predefined diamond trajectory path with the UAV and target starting at the same positions
as in the helix path scenario.

Fig. 5.7 UAV tracking helix path following quadrotor.

(a) Quadrotor position (b) UAV position

Fig. 5.8 Comparison of quadrotor and UAV positions
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(a) Quadrotor velocity (b) UAV velocity

Fig. 5.9 Comparison of quadrotor and UAV velocities

From Figs. 5.6 and 5.7, we observe that the target follows the helix and diamond path,
steadily flying upward. To track the target effectively, the UAV is observed to fly upward
with an angle within the limits of the maximum FPA. The UAV trajectory shows that it
tracks the target position at each time step but does not follow the quadrotor predefined path.
When the UAV reaches the desired altitude, it flies in a circular path while maintaining
optimal tracking distance and keeping the quadrotor within its FOV. Comparing plots of
the quadrotor path, Fig. 5.8a and UAV Fig. 5.8b position in the x, y, and z direction, we
see the UAV is manoeuvring in response to the target’s path tracking manoeuvre. These
responses are also observed in the quadrotor and UAV velocities as shown in Fig. 5.9a and
UAV Fig. 5.9b, indicating that the UAV responds to the path changes by the quadrotor
target.

5.8.2 UAV tracking evading aerial target

To simulate mission scenarios where the UAV is tracking a simple evading target, the
UAV minimum turn radius, rmin, is set at 10m with the velocity limits of vamin = 5m/s and
vamax = 10m/s. Similarly, the respective minimum and maximum acceleration limits of the
UAV along x,y, and z axes are as follows:

uaxmin =−5 [m/s2], uaxmax = 5 [m/s2],

uaymin =−2 [m/s2] ,uaymax = 5 [m/s2],

uazmin =−0.2 [m/s2], uazmax = 0.5 [m/s2]
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The target velocity limits is set to vgmax = 7m/s, while its respective acceleration limits
along x,y,and z axes are as follows:

uqxmin =−2 [m/s2], uqxmax = 5 [m/s2],

uqymin =−2 [m/s2], uqymax = 2 [m/s2],

uqzmin =−0.2 [m/s2], uqzmax = 0.4 [m/s2]

The simulation time was set to 60s in time steps of 0.1, resulting in a time vector of 600
steps.

Scenario 1: Tracking a quadrotor climbing at an angle.

In the first scenario, we implement the quadrotor at the initial position of [0,0,0] and fly at
a constant angle and velocity upward. The UAV is initiated with states as described earlier
and position [20,30,20]. At the start of the simulation, the UAV flies downwards so to
maintain the desired altitude separation of 10m above the quadrotor. However, as the target
flies upwards the UAV is forced to adjust its trajectory back upward at an angle allowed by
the design constraint. The continued upward flight of the quadrotor results in continuous
adjustment and controlled manoeuvres by the UAV to keep the target within its FOV.

Fig. 5.10 UAV tracking a fast quadrotor.

Scenario 2: Tracking a quadrotor following a Z-shaped path and hovering at a predefined
altitude.

In the second scenario Fig.5.11, the quadrotor starts at the origin and makes a z-like
manoeuvre, hovering at instances during the flight. The UAV was observed to track the
target quadrotor, following a circular path at the target’s first hover point. When the
quadrotor accelerates upward, the UAV quickly makes a turn, climbing in the process
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to close up with the target, while maintaining the required separation distance. Having
attained the desired altitude, the UAV is observed to fly in a circular path around the
hovering quadrotor until the end of the simulation.

Fig. 5.11 UAV tracking a fast quadrotor making a z-manoeuvre.

Scenario 3: Tracking an evasive quadrotor in 3D space.

Using the same initial conditions in scenario 1, the quadrotor controller was modified to
persistently evade the tracking UAV in 3D space. The UAV’s goal is to maintain pursuit
while observing a minimum distance of 20m above the target to enable FOV coverage and
prevent a collision.

Fig. 5.12 UAV tracking an evasive quadrotor
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Fig. 5.13 UAV and target state parameters and relative distance

As shown in the trajectory plots in Fig.5.12, it is observed that the quadrotor takes eva-
sive manoeuvres, flying upward and then making evasive turns leading to a downward
manoeuvre. The UAV’s response was a quick change in direction to close up with the
quadrotor while maintaining the required altitude separation from the quadrotor. The
comparison of the UAV and quadrotor acceleration and velocity as shown in Fig.5.13,
shows the target maintaining a sequence of increase and decrease in acceleration while
the UAV is forced to make rapid control input changes to change direction and close up
with the quadrotor target. This trend is also observed in the velocity magnitudes of the
UAV and quadrotor, indicating the pursuit and evasion of manoeuvres. The UAV can be
observed to increase velocity while closing up to the target. The velocity is clipped when
it reaches the maximum feasible limit of the UAV design.

To check the effectiveness of the UAV control, the relative distance between the UAV and
the target is included in Fig.5.13 and shows an increase in separation distance when the
target evades the UAV. The UAV quickly closes up to the target resulting in minimised
separation. The process is repeated for every manoeuvre by the quadrotor, resulting in an
undulating relative distance curve.

5.9 Analysis and Discussion

The simulation results for UAV tracking targets in various scenarios, starting from simple
manoeuvres to more comprehensive evasion strategies indicate clearly that the UAV
algorithm is sufficient for the tracking and target pursuit. When collision avoidance was
applied, the controller showed that the fixed-wing UAV was able to track the quadrotor
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safely while avoiding collision5.5a. With the application of adaptive optimisation, the
tracking performance was observed to improve. To be sure that the results obtained are
representative of the general mission scenarios, we conducted 100 Monte Carlo simulations
with UAV and quadrotor initial positions and velocities varied randomly within feasible
bounds. The histogram used to report the Monte Carlo simulations were generated by
integrating the area under the UAV-quadrotor relative distance plot, which represents the
total distance travelled by the UAV relative to the target during the simulation. The spread of
the histogram bars as observed in Figs. 5.3 and 5.4 showed that the majority of simulations
produced similar area values, implying that the UAV travelled a relatively consistent
distance relative to the target. The shorter bars near the histogram’s edges represent
simulations that produced extreme area values, either significantly higher or lower than the
majority of simulations. With more variation and the introduction of wind gust disturbance
for 5s during the simulation, the area and performance plots showed clustered bars towards
the left of Fig. 5.5, indicating that the UAV was performing consistently well at tracking
the quadrotor with controlled speed. The few bars towards the right of the histogram show
where the UAV applied more speed to reach the target. In terms of potential applications,
the proposed approach has several practical uses in real-world scenarios. For example, the
proposed approach can be used for surveillance and monitoring of aerial targets, such as
quadrotors, gliders, birds, and other fixed-wing UAVs.

Future research could implement extensions to improve the proposed approach. Firstly,
the proposed approach can be extended to track multiple aerial objects simultaneously,
which would require the use of multiple UAVs mounted with cameras, other sensors such
as lidar or radar, to improve tracking accuracy in adverse weather conditions, and advanced
algorithms for object tracking and classification.

5.10 Summary

In this Chapter, we designed an evasive quadrotor algorithm to test the effectiveness
of the UAV tracking algorithm against an evasive quadrotor-type target. Target evasion
algorithms were designed for 3 scenarios, straight-line accelerated evasion, hover and
evade manoeuvre, and continuous aerial evasion. To Prevent the UAV from colliding with
the evasive target during aerial pursuit and evasion, we modified the UAV control algorithm
designed in Chapters 3 and 4, to incorporate anti-collision measures. To further improve
on the tracking algorithm, we introduced an adaptive optimisation and formulated a hybrid
optimal-adaptive algorithm that utilises the optimisation parameters to optimise the control
of the UAV which is dependent on the relative distance of the UAV from the target. We
also designed a performance metric of energy consumption and time-to-target metrics to
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assess the effectiveness of the UAV in tracking the target. The energy consumption metric
was used to compare the original and adaptively optimised algorithm and the simulation
results show that the adaptively optimised algorithm performed better in all scenarios. In
Chapter 6, we extend our research by exploring cooperative tracking using multiple UAVs
to track a single aerial target.





Chapter 6

Multi UAVs Evasive Quadrotor Tracking

6.1 Introduction

In Chapter 5, we discussed tracking an evasive target using a single UAV by designing
a quadrotor model with an evasion strategy. We applied some modifications to the UAV
control strategy developed in Chapters 3 & 4 and performed various simulations to test the
performance of our control strategy against the target in ideal and disturbed environments.
In this Chapter, we extend the research by looking into the tracking problem using multi-
ple tracking UAVs. The main question we intend to answer is, how can our fixed-wing
UAV control strategy be applied cooperatively to track an evasive target(s) while avoiding
collisions? This is an important question because cooperative UAV tracking provides
extended range and endurance for continuous tracking of evasive targets that may attempt
to evade detection by manoeuvring in open space or behind obstacles [106]. Additionally,
cooperative UAV tracking offers better accuracy in terms of estimation and robustness and
redundancy against temporary sensor or UAV failure [106, 369]. Cooperative or multi-UAV
tracking has the advantage of either decentralised or collaborative decision-making for
effective target tracking. We review a few research efforts related to cooperative UAV
tracking using fixed-wing UAVs and present the motivation for this Chapter. Note that
we use the terms muli-UAV, coordinated, and cooperative interchangeably in this Chapter
when referring to a group of UAVs working together to track single or multiple targets.

6.1.1 Multi UAV tracking - related research

Ragi and Chong [370] developed a multi-UAV strategy to track evasive ground targets
based on POMDP that incorporates bank angle constraints, wind disturbance, and collision
avoidance. While this study addresses some of our research considerations in this Chapter,
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the UAVs were however assumed to fly at a fixed altitude and the simulations considered
only 2D implementation. In another related study, Quintero et al. [371] implemented
an evasive target-tracking optimisation-based, min-max MPC/moving horizon estimation
strategy for two fixed-wing visual UAVs tracking a moving ground target. Similarly, [372],
designed a guidance law that controls the heading rate based on a Lyapunov Guidance
Vector Field (LGVF), for stand-off multi-UAV tracking of a ground-moving target in un-
known wind conditions. In [373], their cooperative tracking research incorporated flocking
constraints, collision avoidance, and Control Barrier Functions (CBFs) to formulate an
LGVF UAV controller, regulated by Quadratic Programming (QP). Like previous research,
these studies were also implemented for 2D UAVs and targets. In related research, [106]
implemented a vector field guidance controller for coordinated UAV tracking of ground
targets. This study also investigated localisation sensitivity to the target group to enable
better angular separations between the tracking UAVs. However, this research was only
implemented for 2D scenarios with constant altitude and UAV operation radius.

The research effort by Choi [318] implemented a control impact point/MPC strategy for
fixed-wing UAV cooperative defence against intruding adversarial swarm target drones.
The UAVs were assumed to have explosives on board to intercept the intruding swarm.
However, this research did not address the aspect of evasive swarm targets. In [374], they
developed a controller that estimates drone target states using a 3D instantaneous velocity
vector and an MPC controller for the air-to-air tracking of aerial quadrotor targets.

While these studies have made immense contributions to the literature on target tracking
using multi-UAV, none of the studies in the literature considered cooperative fixed-wing
multi-UAV tracking of single or multiple evasive quadrotor targets. Considering the serious
security threat posed by drones operated by mischievous persons, and the need for a
robust security and defence strategy, the cooperative tracking and interception of evasive
drones has become paramount. Hence, addressing the research gap highlighted above
will contribute to enhancing C-UAS operations. In this Chapter, we intend to address
this challenge by implementing a fixed-wing cooperative tracking strategy and evasive
aerial target manoeuvre control. The contributions of this Chapter are outlined in the next
subsection.

6.1.2 Contributions

The main contributions of this Chapter are as follows:

• A multi-UAV tracking strategy that incorporates collision avoidance is developed for
tracking aerial evasive quadrotor-type targets.
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• A modified controller is designed to group and cooperatively track a swarm of
uncooperative evasive aerial target targets.

• We addressed the issue of autonomously controlling the altitude for each UAV on
a cooperative search mission based on their distance to the individual targets, the
area of the target cluster, and the balance between optimal FOV coverage and image
quality requirements.

The remaining part of this Chapter is organised as follows. In Section 6.2, we discuss
the problem we will be solving in this Chapter and present a mathematical model of our
multi-UAV dynamics. We then present a cooperative control strategy for single evasive
target tracking in Section 6.3. In Section 6.4, we extend our multi-UAV tracking by
modifying our controller to track group or clustered swarm adversarial drones. Section 6.5
discusses task assignment considerations while simulations and results for the work done
in this Chapter are presented in Section 6.6. We analyse and discuss the results obtained
and conclude this Chapter by summarising the main findings in Section 6.7.

6.2 Problem formulation

Fig. 6.1 Multi-UAV tracking single quadrotor engagement diagram

Consider a scenario, where multiple fixed-wing UAVs are used to cooperatively track an
evasive moving aerial quadrotor target. This represents the tracking of non-cooperative or
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adversarial targets such as Unmanned Ground Vehicles (UGVs) or drones, equipped with
jamming or spoofing devices, that actively interfere with the UAVs’ sensors or communi-
cation.

The UAV and target dynamics are represented as shown in Fig. 6.1. The UAV positions
are represented by xai , yai and zai . and the dynamic equations of the UAVs are represented
by

ẋai = vaxi, ẏai = vayi, żai = vazi, (6.1a)

vaxi = vai cosσai sinφai (6.1b)

vayi = vai sinσai cosφai (6.1c)

vazi = vai sinσa (6.1d)

v̇axi = uaxi, v̇ayi = uayi, v̇azi = uazi (6.1e)

where (˙) is the derivative with respect to time, vai is the i-th UAV velocity vector with
respective components as vaxi , vayi and vazi in the global reference frame, indicated by
x-y-z in Fig. 6.1. Furthermore, σai and φai are the flight path and heading (course) for the
i-th UAV angles respectively [328], while uaxi , uayi and uazi are the control acceleration
input of the UAV. The body frame is defined by xi

Ba-yiBa-zi
Ba where xi

Ba is aligned with
the UAV velocity vector, yiBa is towards the right-hand-side of the wing, and zi

Ba is given
by the cross product of xBa

i and yBa
i . The state space representation is given by:

ẋa = Aaxa +Baua =

[
03 I3

03 03

]
xa +

[
03

I3

]
ua (6.2a)

y =Caxa = [I3 03]xa (6.2b)

where 03 is the 3×3 zero matrix, I3 is the 3×3 identity matrix, Aa, Ba and Ca are defined
appropriately in the above equation, xa = [xa,ya,za,vx,vy,vz]

T and ua = [uax,uay,uaz]
T .

6.3 Multi-UAV Cooperative Control Strategy

To persistently track an evasive quadrotor, the fixed-wing multi-UAVs are collaboratively
controlled using a multi-UAV min-max optimal control strategy. A decentralised control
strategy is adopted where each UAV utilises a joint cost function Jcomb to determine optimal
control action for tracking the target. The proposed cooperative control strategy aims to
improve the tracking accuracy of UAVs against evasive air targets such as quadrotors while,
maintaining the desired altitude above the target, avoiding collision and conserving energy
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expenditure. Accordingly, the combined cost function uses a weight function to assign
relative priority to the sub-functions as shown in (6.3)

Jcomb = w1Jtr +w2Javd +w3Jalt (6.3)

where Jcomb is the combined cost function for effective cooperative tracking by the multi-
UAVs, Jtr is the min-max cost function to track the evasive target quadrotor, Javd is the
collision avoidance function to keep the UAVs from colliding with the target and maintain
a safe distance between the UAVs, while Jalt controls the altitudes of the UAVs. The
weights of the functions are represented by the constants w1,w2 and w3 respectively. The
weighting function for Jcomb, determines weights based on the relative importance of each
function in achieving the overall objective of the multi-UAV tracking strategy.

Wcomb = w1 +w2 +w3 = 1 (6.4)

where Wcomb is combined weight. Let us assume that we have determined the rela-
tive importance of the individual cost functions based on some domain knowledge or
application-specific requirements. The sub-cost functions used in Jcomb are discussed in
more detail in the following subsections:

6.3.1 UAV tracking trajectory

This subsection highlights the cost function that tracks and closes up with the target during
a mission scenario Jtr. This function same as the one presented in Chapter 3 for 2D target
tracking with necessary adjustments made for multi-UAV tracking. Here, the main goal
is to minimise the relative distance between the UAV and the target by minimising the
worst-case target evasion. This cost function is presented in (6.5a).

Maximise
w(t)∈W

Maximise
u(t)∈U

Jtr =
∫ t f

t0
[y(t)i− z(t)i]T [y(t)i− z(t)i]dt (6.5a)

subject to

ẋai = Aaixai +Bai (6.5b)

ẋti = Btwi (6.5c)

y =Caixai (6.5d)

z =Ctxt (6.5e)
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and;

vamin ≤ v2
axi + v2

ayi ≤ vamax (6.6a)

uximin ≤ uxi cosφ +uyi sinφ ≤ uximax (6.6b)

uyimin ≤−uxi sinφ +uyi cosφ ≤ uyimax (6.6c)

− 1
rmin i

(
v2

xi + v2
yi
) 3

2 ≤ vxiuyi− vyiuxi ≤
1

rmin i

(
v2

xi + v2
yi
) 3

2 (6.6d)

0≤ v2
qx + v2

qy ≤ v2
qmax (6.6e)

The minimum turn radius in the above equations can be set to the same value for all the
UAVs, or specified for each of the UAVs to enhance collision avoidance. The cost used for
the tracking in coordination with the altitude and anti-collision cost above is discussed in
the succeeding paragraphs.

6.3.2 Collision avoidance

Considering that the multi-UAVs will be tracking an evasive aerial target, there is a
likelihood of a collision between UAVs and the target. This is because our tracking UAVs
do not operate on a fixed standoff circle with an angular separation between but more
realistically track the highly manoeuvring targets independently. Our goal with collision
avoidance cost function is to ensure a collision is prevented even in the event of the
UAV trajectories being affected by external disturbances like wind. The avoidance cost
therefore considers aspects of avoiding UAV-to-UAV collision and UAV-to-target collision
as follows:

Jadv = Jadvi j + Jadvit (6.7)

where Jadvi j and Jadvit are the respective functions for preventing collision between the
UAVs and the target, and Jadv is the combined collision avoidance cost function.

Collision avoidance between UAVs. We now address the cost of avoiding collision between
UAVs i and j. The cost for avoiding collision between the tracking UAVs is presented
below in (6.8) :

Jadvi j =
∫ t f

0

∫ Nu

i=1

∫ Nu

j=i+1

ka(v2
ci j
)

2di j
dt,di,d j (6.8)

Here, t f is the total simulation time, and we are integrating over the entire simulation period.
The integral represents the average cost function Jadvi j over time, for preventing collision
between the UAVs. The sum is over all unique pairs of vehicles i and j where i < j. Nu

is the total number of UAVs, di j, vci j are the distance and closing velocity between UAVs
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i and j respectively, ka is a constant for the avoidance acceleration. This cost function
represents the avoidance acceleration and velocity correction to prevent collisions between
UAVs. The goal of minimising the potential for collisions UAV-to-UAV is achieved by
maximising the minimum separation distance and is computed as follows:

di j =
[
(xai− xa j) (yai− ya j)

]
(6.9a)

si j =

[
xai yai

]
−
[
xa j ya j

]
∥di j∥

(6.9b)

vri j =
[
([vaxi vayi])− ([vax j vay j ])

]
(6.9c)

vci j = vri j · si j (6.9d)

where di j, si j, vri j and vci j are the distance, separation vector, relative velocity and closing
velocity between UAVs i and j respectively. The time to collision from UAV i to UAV j

and the corresponding avoidance acceleration can then be computed as:

tci j =
di j

vci j

(6.10a)

uavdi j =
kav2

ci j

2di j
(6.10b)

vavdi j = uavdi jtci j (6.10c)

where tci j , uavdi j and vavdi j are the time to the collision between UAVs i and j, avoidance
acceleration and correction velocity respectively. The i-th UAV velocity is adjusted by
subtracting the product of the separation vector and correction velocity from its current
velocity as follows:

vaxni = vaxi− si j(1)× vavdi j (6.11a)

vayni = vayi− si j(2)× vavdi j (6.11b)

where vaxi and vayi are the x and y components of the UAV velocity with their updated
values as vaxni and vayni . Having computed the UAV-to-UAV collision avoidance formula,
we now address the problem of preventing collision between a tracking UAV and the aerial
quadrotor target in the next subsection.

Collision avoidance between UAV and target. In the last subsection, we addressed the
avoidance of collision between UAVs. In this subsection, we consider the possibility of
a collision between any of the tracking UAVs and the aerial target. This could occur if a
sudden wind gust pushed the UAV towards the target or vice versa. Another likelihood of
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collision is that the target could intentionally try to collide with the UAV in a kamikaze

style attack if in close proximity. We, therefore, present the cost function, Jadvit , that needs
to be minimised to avoid a collision between the i-th UAV and the aerial target as follows:

Jadvit =
1
t f

∫ t f

0
(kddeit sitvrit + kpseit sdit + kiieit +αit(dit−dito))dt (6.12)

where deit is the distance error, sit is the separation vector, vrit is the relative velocity, sdit

is the desired separation vector, seit is the separation vector error, ieit is the integral error,
and kd , kp, and ki are the gains of the PID controller. The optimal distance between UAV i

and the target is given as dito . The relative velocity vrit between UAV i and the target is
calculated by subtracting the target velocity from the UAV i velocity while the closing
velocity vcit between UAV i and the target is calculated as the dot product between the
relative velocity and the separation vector. The control input to correct the UAV positions
is calculated as shown:

dit = [(xai− xq) (yai− yq)] (6.13a)

sit =
[xai yai]− [xq yq]

∥dit∥
(6.13b)

vrit =
[
(vaxi− vq) (vayi− vq)

]
(6.13c)

vcit = vrit · sit (6.13d)

The correction heading of UAV i, θci can be computed as follows:

θci = tan−1
(

dit(2)
dit(1))

)
− tan−1

(
vrit (2)
vrit (1))

)
(6.14a)

sdit = [cos(θci)sin(θci)] (6.14b)

θdi = (i−1)
2π

Nu
(6.14c)

where sdit and θdi are the desired separation vector and heading angle respectively. The
control input to correct the UAV positions is calculated as follows:
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seit = sdit − sit (6.15a)

deit = ∥dit∥−dito (6.15b)

leit (i) = leit (i)+deit ·∆t (6.15c)

uxit = kpseit (1)+ kddeit sit(1)+ kiieit (i) (6.15d)

uyit = kpseit (2)+ kddeit sit(2)+ kiieit (i) (6.15e)

where the parameters uxit and uyit are the respective x and y control input while kp, kd and
ki are the respective gains of the PID controller.

6.3.3 Altitude correction cost

In addition to preventing collision, the multi-UAV cost function incorporates an altitude
control component. As the respective altitudes of UAVs increase, their FOVs tend to
become larger, enabling coverage of a wider area. However, increasing the altitude also
results provides poorer target visibility due to limitations of the onboard camera to capture
quality images and limitations on the target state estimation by the sensors. To resolve
the problem, the UAVs are constrained to fly within an optimal band, zd±n of altitude
above the target where both visibility and state estimations sensors perform well. The cost
function equation that summarises the altitude control algorithm can be expressed as:

Jalt =
Nu

∑
i=1

[
(zd− zai)

2 +λa

(
d2

it− (zd− zai)
2

d2
it

)
+λv(vazi)

2
]

(6.16)

where Nu is the number of UAVs, zd = 200+ zq is the desired altitude, uaz is the desired
vertical acceleration computed using the flight path equation, dit is the distance between
the i-th UAV and the target, σa is the FPA, vaz is the vertical velocity component, λa and
λv are weighting coefficients for altitude and velocity, respectively and they control the
relative importance of altitude and velocity control. The cost function is a sum of squared
errors, where the first term penalises deviations from the desired altitude, the second
term penalises deviations from the desired flight path angle, and the third term penalises
deviations from the desired vertical velocity.

6.4 Cooperative UAV Tracking Quadrotor Swarm

In this section, we consider the scenario where our multi-UAVs are tracking a group of
manoeuvring mini-drone swarms. The drone swarm would ideally be clustered together
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on an adversarial mission to attack a remote protected facility, with a control strategy that
enables the target cluster to evade interception. The cooperative UAVs would therefore
aim to treat the drone swarm cluster as a geometrical object with a dynamic surface area
and a central or focal point(s) [105]. In this group-to-group scenario, our task is to decide
how the UAVs perceive and measure the size and speed of the adversarial drone swarm.
This will facilitate the tracking and keep the target cluster within the FOV of the respective
tracking UAVs.

Some of the work available in the literature on multi-target tracking includes the research
by [375, 376, 128], in which a decentralised deep reinforcement learning algorithm was
developed to learn cooperative tracking policies for a UAV swarm used for multi-target
tracking. However, little attention was given to the target cluster and evasion strategy.
In another related research. Wu et al. [377] developed a strategy for multi-fixed-wing
UAVs intercepting a group evasive adversarial fixed-wing UAV target cluster. Their re-
search focused on target isolation, clustering, and using the Apollonius circle evaluation
for assigning tasks to the UAVs in the tracking group. This research however utilised
a simple Dumbins curves path strategy for controlling the UAV interception. In [304],
they investigated the Multi-Target Tracking (MTT) for a group of cooperative UAVs
based on Lyapunov optimisation. Their multi-objective optimisation, incorporated exe-
cution delay, prediction accuracy, and physical collision avoidance. However, the target
comprised decentralised aerial targets, ground-moving vehicles, and humans. Similarly
[378] developed a heuristic search strategy to investigate how various intruder behaviours
affect the search performance of a patrolling UAV swarm. The results suggest that multi-
objective optimisation outperforms other techniques in providing patrolling performance. It
will be observed that there is limited literature on multi-target aerial tracking by multi-UAV.

6.4.1 Multi-target tracking problem

The group tracking mission scenario is depicted in Fig. 6.2.
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Fig. 6.2 Multi-UAV tracking clustered target

We assume that the drones in the target cluster are all adversarial and we aim to track
the targets as a group by assuming that the number of tracking fixed-wing UAVs Nu is
less than the number of quadrotors in the evasive drone swarm Nq, so that (Nq > Nu). To
ensure that the UAVs maintain the targets within desirable proximity, we compute the
relative speed and position of the target cluster and apply a combination of the control law
presented in Chapter 3 and the altitude controller presented in the next subsection to track
the multi-target.

6.4.2 UAV altitude control for optimal multi-target tracking

This subsection addresses the strategy for autonomously adjusting the altitudes of the
individual UAVs tracking a clustered multi-target. To ensure that the UAV can keep the
target cluster within its camera FOV while avoiding poor image quality, we will utilise
the optical range from the UAV to the target to enhance observation (visualisation) and
optimal vertical altitude to allow full coverage of all targets as our calibration parameters.
These parameters have been chosen because, without a vertical constraint, the UAV could
produce poor image quality. Assuming our tracking UAVs all have downward-looking
cameras installed under their fuselage, our design ensures that the UAVs are always at a
higher altitude than the target cluster as follows:

htc < hmin ≤ hui ≥ hmax (6.17)

where htc is the altitude of the target cluster, measured from its centre point, hui is the
altitude of the i-th UAV, while hmin minimum altitude that optimises observation and image
quality and hmax is the maximum altitude that maximises visibility coverage. Our goal is
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to keep all the tracking UAVs between the operating altitudes bounds in (6.17). Our next
consideration is to decide on how the centre of the multi-target dynamic swarm cluster is
determined. If the targets are uniformly distributed within the cluster, the simple way of
determining the central point is to compute the centre point of the circle (in 2D) or sphere
(in 3D) enclosing all the targets. However, for a dynamic evasive multi-target cluster, there
will be situations where one or two targets are further away from the others and simply
using a circle centre would be unsuitable. To enable a more representative coverage of the
target including the outer ones, a polygon centre (in 2D) or ellipsoid (in 3D) could be used.
Let’s consider the polygon scenario by assuming that the UAV camera sees the spread of
the clustered targets from a vertical elevation as a polygon on the x−y plane as depicted in
Fig. 6.3.
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Fig. 6.3 Multi-target clustered polygon

If we assume that the polygon formed by the target cluster is a convex hull where none
of the vertices points inward, then the equation for determining the centre of the polygon
enclosing the target cluster can be determined using the positions of the various targets.
The size (perimeter) of the polygon can be calculated as follows:
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S =
Nq

∑
i=1

√
(xqi− xqi+1)

2 +(yqi− yqi+1)
2 +
√
(xqNq

− xq1)
2 +(yqNq

− yq1)
2 (6.18)

where (xqi,yqi) is the position of the i-th target, while Nq is the number of targets. The
surface area of the polygon can be computed using the formula for the area of a polygon
Ap.

Ap =
1
2

∣∣∣∣∣ Nq

∑
i=1

(xqiyqi+1− xqi+1yqi)+(xqNq
yq1− xq1yqNq

)

∣∣∣∣∣ , (6.19a)

Cx =
1

6Ap

Nq

∑
i=1

(xqi + xqi+1)(xqiyqi+1− xqi+1yqi)+(xqNq
+ xq1)(xqNq

yq1− xq1yqNq
), (6.19b)

Cy =
1

6Ap

Nq

∑
i=1

(yqi + yqi+1)(xqiyqi+1− xqi+1yqi)+(yqNq
+ yq1)(xqNq

yq1− xq1yqNq
). (6.19c)

In Fig. 6.4, C is the centre of the target cluster, while lq1 and lq2 represent the horizontal
distance between quadrotor targets 1 and 2 to the centre of the cluster. Additionally,
hq1 represents the altitude of quadrotor target 1. The centre (centroid) of the polygon is
represented by coordinates (Cx,Cy). Having determined the polygon centre, the next step
is to determine how to adjust the altitudes of the various UAVs so they all operate within
desirable bounds. If we depict the i-th UAV as being directly over the cluster polygon
centre, then we compute and use the angle between its vertical separation from the centre
of the target cluster and its Euclidean distances to the various target as an input for the
vertical control as shown in Fig. 6.4.
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Fig. 6.4 Angle computation using outermost polygon targets

Our cost function for the UAV altitude control comprises two quadratic terms, one for the
UAV distance to targets with the cluster and another term for the vertical separation above
the target cluster as follows:

Jh =
n

∑
i=1

1
2
(Jxi + Jρi) (6.20)

where Jh is the cost function for determining the altitude of the i-th UAV. This has two
sub-costs to optimise the quality of target image observation and vertical coverage of the
targets in the cluster. The term to optimise vertical observation is determined as follows:

Jρi = eρ tan2(ρqi) (6.21a)

eρ =
1

tan2(ρlim)
(6.21b)

whereJρi is the vertical control term dependent on the angle made by the UAV and i-th
target ρqi , while fci is the focal length of the i-th tracking UAV and eρ is the coefficient
weighting term for this minimisation index. The verticality term, Jρi , defined above reaches
a minimum value of 0, for optimal verticality and a normalised value, 1, that represents the
worst admissible verticality limited by the ρlim. To enhance the optimal tracking for each
UAV, we can define the optical range as the ratio between the Euclidean distance to the
target and the focal length of the mounted tracking camera as follows:

d fci
=

dqi

fci

(6.22)
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where d fci
is the ratio of target distance to UAV focal length, which gives greater flexibility

to the feasible optimal solutions, as the index can automatically trade larger Euclidean
distances for longer focal lengths. The term dqi is the Euclidean distance between UAV
and i-th target. To associate the size of the target cluster in the real world to the altitude of
the i-th UAV, let’s assume that the polygon shape enclosing the target cluster area Ac[m2].
We can then develop an approximate equivalent measure that is independent of the polygon
shape as the diameter of the cycle enclosing the polygon as:

dp = 2
√

Ac/π (6.23)

where dp, is the diameter of the target cluster polygon. This enables us to design a
projection ratio as the quotient pri:

pri =
digi

dp
(6.24)

where digi is the magnitude of the projected target cluster diameter on the i-th UAV camera
image plane. The above ratio relationship depends on the distance of the UAV to the target
cluster and its camera focal length and can be approximated as the inverse of the optical
range as follows:

pri ≈
1

d fi
(6.25)

We can define limits for this parameter independent of the parameters of the tracking UAV
camera with the projection ratio limits defined as prmin , prmax as follows:

Jxi =
(d fci
− 1

prmax
)2(

1
prmin
− 1

prmax

)2 (6.26)

The optical range, Jxi is defined in a way that balances the optical range with the verticality
term introduced above. The term, Jxi has a minimum value of zero which represents the
optimal optical range and corresponds to the minimum altitude hmin. The coefficient ex

is defined to reach the normalised unitary value for the admissible limit of the specified
optical range. Since the minimum desirable altitude for any of the tracking UAVs should
not be below hmin, we can redefine the value of prmax in terms of the minimum altitude as
follows:

prmax =
fci

hmin
(6.27)
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Thus, the optical range optimisation term can be modified as follows

Jxi = ex ·
(dqi−hmin)

2

( fci− prlim ·hmin)2 (6.28a)

ex = p2
rlim

(6.28b)

where prlim is an equivalent value of prmin introduced for calibration purposes. We conclude
this UAV altitude control by computing the vertical acceleration azi that minimises the cost
function Jh based on the optimisation problem presented above while ensuring that the
altitude hui of the i-th UAV falls within the specified altitude bound of hmin and hmax.

min
azi

Jh =
n

∑
i=1

1
2
(Jxi + Jρi) (6.29)

s.t. hmin ≤ hui ≤ hmax

The pseudocode for the altitude control of each UAV in the tracking mission is presented
in Algorithm 3 below.
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Algorithm 3 UAV Altitude Control for Multi-Target Tracking
Require:

1: Set of tracking UAVs U = {xa1,xa2, . . . ,xan}
2: Altitude bounds: hmin and hmax

3: Maximum allowable angle for verticality: ρlim

4: Maximum allowable projection ratio: prlim

5: Target positions: xqi = (xqi,yqi) for i = 1,2, . . . ,n
6: Target cluster polygon centre: (cx,cy)

7: Focal lengths of tracking cameras: fci for i = 1,2, . . . ,n
8: Coefficient eρ controlling verticality term
9: Coefficient ex controlling optical range term

10: Equivalent value of prmin for calibration: prlim

Ensure:
11: Optimal vertical accelerations azi for each UAV
12: procedure UAV ALTITUDE CONTROL

13: for i = 1 to n do
14: Calculate the angle ρqi between xai and target xqi

15: Jρi = eρ · tan2(ρqi)

16: Calculate the optical range d fci
for each UAV

17: d fci
=

dqi

fci
18: Calculate the projection ratio pri for each UAV
19: pri =

digi
dp

20: Calculate prmax based on hmin: prmax =
fci

hmin

21: Calculate Jxi with prmax and prlim

22: Jxi = ex ·
(dqi−hmin)

2

( fci−prlim ·hmin)2

23: Calculate the cost function Jh for each UAV
24: Jh =

1
2(Jxi + Jρi)

25: end for
26: Minimise Jh to find optimal vertical accelerations
27: subject to hmin ≤ hui ≤ hmax

28: Output: Optimal vertical accelerations azi for each UAV
29: end procedure

6.4.3 Drone swarm evasion strategy

In this section, we describe the dynamic equations and evasion strategy for a group of
clustered quadrotor targets. Each target has its velocity, acceleration, and position but
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maintains a coordinated movement to evade a tracking UAV. The dynamic equations for
the quadrotor targets are described as follows for each quadrotor target i:

xqi = [xqxi, xqyi, xqzi] (6.30a)

vqi = [vqxi, vqyi, vqzi] (6.30b)

ẋqi = vqi (6.30c)

v̇qi = aqi (6.30d)

where xqi , vqi and aqi are the position, velocity, and acceleration vectors of the i-th of the
target. To maintain a close fit while evading the tracking UAV, the quadrotor targets employ
an evasion strategy to escape the UAVs based on the flocking controller that dynamically
adjusts their velocities and positions to avoid detection while staying within a specified
cluster radius as follows:

aqi = kp · (xqdesi
−xqi)− kv · (vqdesi

− vqi) (6.31a)

xqdesi
= w1 ·xam +∑

j ̸=i
w2 ·xq j (6.31b)

Where xqdesi
is the desired position for the i-th target while w1 and w2 are weight coeffi-

cients that determine the influence of the UAV and neighbouring targets on the desired
position. The term xa is the current position of the UAV and xq j represents the positions of
neighbouring targets j ̸= i. This equation models the behaviour of target i in a flocking-
based evasion strategy, where it adjusts its desired position to maintain certain relationships
with the positions of neighbouring targets and the UAV. The weight coefficients w1 and
w2 control the relative importance of these influences. For simplicity, we assume that the
target utilises the mean of the various UAV positions xam .

6.5 Task Assignment

We consider the assignment of tasks to some of the UAVs during tracking by starting
with the assumption that reliable communication exists between the multi-tracking UAVs.
Consider a scenario during a multi-UAV to multi-target tracking mission, where a single
target breaks away from its cluster and accelerates with high speed towards a protected
facility or to execute a Kamakazi mission. If this happens, we will want the remaining
clustered targets to be continuously tracked by some of the UAVs, while the UAV closest
to the break-out target is autonomously tasked to pursue the solo quadrotor drone. Accord-
ingly, we implement an algorithm that assigns a risk factor to each target based on their
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proximity to a restricted area or protected facility and assigns the task of single pursuit and
interception to the most suitable UAV.

Let Xq represent the set of all targets, including the break-away target, and Xa be the set
of all available UAVs. We can formulate a risk factor for each of the targets based on the
distance dr(xqi) using an exponential function as follows:

R(xqi) = e−k·dr(xqi) (6.32)

where, dr represents the distance function between a target and a restricted area and dr(xqi)

is the distance from target xqi to the restricted area while k is a parameter that controls the
rate at which the risk increases with proximity. To evaluate the suitability score S(Xa j) for
each UAV, we consider multiple criteria, including its current position, velocity, and ability
to intercept the target. The overall suitability score S(Xa j) is determined as a weighted
combination of these criteria:

S(Xa j) = w1 ·Fpos(xaj)+w2 ·Fvel(Xaj)+w3 ·Fint(Xaj) (6.33)

where w1, w2, and w3 are weighting factors that control the relative importance of each
criterion. Fpos(Xa j) is a function that assesses the position-related suitability of the UAV
based on its proximity to the target while Fvel(Xa j) is a function that evaluates the suitability
related to the UAV’s velocity, considering factors such as its speed. The function that
measures the UAV’s capability to intercept the target and is based on criteria of heading
direction and acceleration of the UAVs is presented as Fint(Xa j). The weighting factors
w1, w2, and w3 can be adjusted based on the relative significance of each criterion in the
assignment process. A pseudo-code that summarises the steps in the task assignment
algorithm is presented in Algorithm 4.
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Algorithm 4 Task Assignment Algorithm
Require:

1: Set of targets Xq = {xq1,xq2 , . . . ,xqn}
2: Set of available UAVs Xa = {xa1,xa2, . . . ,xam}
3: Distance function dr(xqi) for target xqi

4: Parameter k controlling risk increase
5: Function to calculate suitability score S(Xa j) for UAV xa j

Ensure:
6: Assignment of pursuit task to UAV xap
7: procedure TASK ASSIGNMENT

8: Calculate risk factors for each target
9: for each target xqi in Xq do

10: Calculate risk factor R(xqi) as: R(xqi) = e−k·dr(xqi)

11: end for
12: Sort targets by risk factor
13: Sort Xq based on R(xqi) in ascending order
14: Select the break-away target
15: xqb = xq[0] ◃ The first target after sorting
16: Calculate suitability scores for UAVs
17: for each UAV xa j in Xa do
18: Calculate suitability score S(Xa) using the function
19: S(Xa j)=Some function of position, velocity, and interception capability of xa j
20: end for
21: Assign pursuit task to UAV
22: xap = xa[0] ◃ The first UAV after sorting based on suitability scores
23: Output: xap is assigned to pursue the break-away target xqb

24: end procedure
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6.6 Simulation and Results

In this section, we present the initial conditions and results of simulating multi-UAV
tracking single and multiple targets.

6.6.1 Multi-UAV tracking single target simulation

To assess the performance of the multi-UAV cooperative tracking strategy against an evasive
aerial target, three UAVs tracking a single evasive aerial quadrotor target scenario were
implemented. The UAVs were initialised at random positions with xi , yi and zi positions
as 10×randn(1,3)+ [50;100;20]. The initial velocity of each UAV is va = 15m/s with
the minimum and maximum velocities as vamin = 5m/s and vamax = 20m/s respectively.
The minimum and maximum accelerations for the UAVs are set to uamin = 2m/s2 and
uamax = 5m/s2 respectively. The target minimum and maximum velocities were constrained
to vqmin = −2m/s and vqmax = 5m/s respectively while the target acceleration limits are
aqmin =−2m/s2 and aqmax = 2m/s2. The quadrotor was initialised at position [−3, 3, 3]
and initial velocity of rand(1)[−2, 4, 2]. To prevent collision between the UAVs, a
minimum safe distance of dmini j = 6m was utilised while the safety limits between each
UAV and the target is dmin = 10m If a collision is imminent, the avoidance acceleration
constant is set to ka = 2 to nudge the UAVs away from each other or the target using
the control avoidance equation presented earlier. The simulation for run for 60s using a
sampling time of 0.2s, giving 300 sample steps. Plots of the trajectories of the UAVs and
target and their control input histories are shown in 6.5.

Fig. 6.5 Trajectories of multi-UAV tracking of an evasive aerial target
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We compared the velocity of the UAVs and targets to see how they changed during the
pursuit and evasion simulation.

Fig. 6.6 Velocity histories of UAVs and target

Since the UAV velocity is dependent on the control input in the form of acceleration com-
mand from the UAV controller and target evasion strategy, we compared the acceleration of
the UAVs along the x,y and z-axis to show the effect of the control input on the trajectories
of the UAVs and the target during a simulation.

Fig. 6.7 Acceleration histories of UAVs and target

The plot in Fig. 6.5, shows that the 3 UAVs can track the single target independently
using similar tracking algorithms. The target represented by the black line in the figure
is observed to be evading the UAVs while UAVs 1, 2 and 3 are observed to continuously
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adjust their control inputs, enabling them to track the target while maintaining a safe
distance between the UAVs and target. The velocity histories of the 3 UAVs were overlaid
on the same plot with the target velocity time history as shown in Fig.6.6. The UAV
velocities show an increase and decrease in magnitude in response to the manoeuvres of the
target velocities. A similar pattern is observed with the plot comparing the control inputs
of the UAVs and the target in the x,y,z directions in Fig.6.7. The figures show that the
target made a persistent effort to evade the mult-UAVs while the UAVs were able to track
the target independently, adjusting their relative positions to prevent collision throughout
the tracking period.

6.6.2 Multi-UAV tracking multi-target simulation

We simulated a scenario where 3 UAVs are tracking a target cluster comprising seven
quadrotor targets, evading the tracking UAVs as a swarm. Similar initial values as imple-
mented in the single target tracking were applied with modifications to enable the altitude
controller implemented for the multi-UAV to autonomously track the targets at optimal
altitude for each UAV. The constraints hmin = hqc + 50, and hmax = hqc + 70, where hqc

is the altitude of the target cluster measure from its centre. This was done to provide an
altitude band of about 20m. Additionally, the value of ρlim = 70π

180 rad, prlim =
prmax

30 , while
the focal lengths of the 3 UAVs are fc = [50× 10−3 m,60× 10−3 m,70× 10−3 m] . The
plot in Fig. 6.8 shows the trajectories of the 3 UAVs tracking the multiple target quadrotor
swarm.

Fig. 6.8 Multi-UAV tracking clustered target

To compare the altitude control cost for the 3 UAVs, we plotted a histogram of their cost
function responses over the simulation time as shown in Fig. 6.9.
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Fig. 6.9 Multi-UAV altitude control cost functions comparison

The tracking algorithm for the lateral, longitudinal, and altitude controls applied to co-
operatively track single and multiple target quadrotors was observed to track the targets
regardless of evasion. Additionally, the constraints applied to the tracking algorithms
ensured that UAVs operated at an optimal altitude that balances the need for effective
coverage and the need for quality of captured images by UAV cameras. The collision
avoidance consideration was for the UAVs to maintain a minimum safe distance between
each other and also avoid collision with targets being tracked. These cost functions were
combined using weights that ensured they were all reflected in the target tracking mission.
The Plot of the cost function output for the 3 UAVs in Fig. 6.9 shows that the focal length
of the UAVs affected their cost function optimisation output and consequently affected the
tracking altitudes of the respective UAVs. The cost performance histogram also showed
that UAVs with high focal length cameras require less control input to attain desired
altitudes as compared to low focal length UAV cameras.

6.7 Summary

This Chapter presented the control algorithm for tracking a single evasive quadrotor-type
target by 3 cooperative UAVs, independently tracking the target with a decentralised control
strategy. The multi-UAV control strategy incorporates a tracking cost function, collision
avoidance cost function, and altitude control cost function, which are minimised to keep
the UAVs tracking the target at an optimal altitude, while avoiding collision between the
UAVs and between the UAVs and the target. To extend our cooperative tracking research,
this Chapter also implemented a multi-UAV to multi-target mission scenario by designing
an evasive target cluster, to evade the UAVs. Considering that the target cluster is dynamic
and constantly changing in response to the target positions, we developed a new altitude
control strategy that optimises the coverage and image capture quality relative to the cluster
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area and target positions of each UAV. To apply real-world consideration to the multi-UAV
to multi-target scenario in this research, we also presented a sample algorithm for task
assignment to one or more tracking UAVs. In particular, we considered a scenario and
implemented a logic to autonomously assign one of the tracking UAVs, the task of chasing
and intercepting a break-out quadrotor from an adversarial swarm.

Simulations were conducted to assess the performance of the cooperative tracking control
strategies for both single and multiple targets using various initial conditions and mission
scenarios. The results show that the control strategies developed for the UAVs were able
to persistently track the evading single and multiple aerial targets, at optimal altitudes
while avoiding UAV-to-UAV and UAV-to-target collisions. In Chapter 7, we extend this
thesis by exploring UAV-mounted countermeasures against adversarial single or multiple
quadrotor-type aerial targets.





Chapter 7

Countermeasures against Drone Targets

7.1 Introduction

In Chapter 6, we explored multi-UAV tracking of both single and multiple quadrotor aerial
targets to persistently capture the targets within the FOV of the tracking UAV camera. In
the sequence of protecting vital assets from unauthorised drones, after effectively tracking
the drones, the next step would be to prevent or stop the adversarial drones from causing
damage or executing their planned mission [379]. Accordingly, in this chapter, we extend
the research presented in this thesis by further considering countermeasure options. With
the recent advancements in drone technology, various types of drones have been developed
and deployed for a variety of roles, including security, commercial, and transportation
purposes. The ease of acquisition and operation of drones also means that criminal
individuals or groups can acquire and employ drones for illegal and adversarial purposes
[15]. To protect vital and protected assets from being accessed, infiltrated, or damaged
by unauthorised drones, various countermeasures are being employed. This includes
stationary and mobile countermeasures as part of the C-UAS [380]. In this chapter, we
focus on aerial countermeasures deployed by fixed-wing UAVs against adversarial targets
due to the advantage of being able to pursue and close up to the target. We now review
related literature on UAV-mounted countermeasures.

7.1.1 Related Literature

Several countermeasure options could be applied to intercept, disrupt, incapacitate, or
capture rogue adversarial single or multiple drone swarms. Some of these methods are
reviewed below:
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Electro-Magnetic Net. This countermeasure is based on deploying a specialised net
equipped with electromagnetic capabilities to disable the quadrotor’s motors and electron-
ics, causing it to fall or rendering it incapacitated [381]. The goal of the net could be to
form an enclosed bag-like container upon contact with a group of target vehicles operating
as a swarm.

Laser Dazzler. In this countermeasure method, a high-powered laser or microwave system
is used to temporarily blind or disable the quadrotor’s cameras or sensors, disrupting its
flight and rendering it vulnerable to capture [382, 383].

Microwave Electromagnetic Weapons. UAV-mounted microwave electromagnetic weapons
can be utilised as a countermeasure against adversary drones. Microwave electromagnetic
weapons, also known as radio-frequency weapons or Directed Energy Weapons (DEWs),
utilise microwave frequencies to generate and direct electromagnetic energy for various
purposes. These weapons can be designed to emit High-power Microwave (HPM) pulses
or Continuous Wave (CW) beams [384, 385]. When deployed against adversary drones,
microwave electromagnetic weapons can target and interfere with the communication,
navigation, and control systems of the UAV, causing temporary or permanent disruption.
The range of such weapons can vary depending on the specific system, power output, and
antenna design.

High-Precision Projectile. Employ a miniaturised projectile launcher on the UAV that
can accurately launch projectiles to physically disable the quadrotor’s propellers or vital
components, causing it to crash [386].

Glue Dispenser. Equip the UAV with a glue dispenser that can release a quick-drying
adhesive substance to disable the quadrotor’s rotors or immobilise its moving parts, causing
it to crash or be easily captured.

These are some examples of countermeasures that can be used to neutralise or disable a
quadrotor drone. In the next section, we expand option 1 and develop the dynamics of
UAV tracking evasive quadrotors.

7.1.2 Electro-Magnetic Net with UAV Deployment

The countermeasure involves equipping the UAV with a net launcher. When the target
quadrotor is within range, the UAV will deploy the net to capture and disable the quadrotor
using electromagnetic capabilities. To deploy countermeasures against an adversarial
target, we assume that the UAV can identify the target quadrotor using sensors and tracking
algorithms. Using onboard countermeasures, the UAV will then determine the optimal time
and distance for net deployment based on the quadrotor’s trajectory and position. When
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the condition is right and the deployment parameters are met, the UAV activates the net
deployment mechanism by launching a projectile containing the net towards the evasive
quadrotor. Once the net makes contact with the quadrotor, the electromagnetic capabilities
embedded in the net are activated which generates an Electromagnetic Field (EMF). The
EMF interferes with the quadrotor’s motors and electronics, causing it to fall or become
incapacitated. Thereafter, the status of the captured quadrotor is observed to determine
if necessary actions need to be taken for further containment or retrieval. The literature
search shows they are scanty information on projectile-launched countermeasures against
adversarial drones. This shows that despite literature contributions, gaps still exist in the
area of UAV tracking and autonomous airborne countermeasure application. We intend to
close this gap by designing an algorithm that tracks and gets the UAV within proximity to
single or multiple aerial targets.

7.1.3 Contributions

The main contributions of this chapter are highlighted below:

• A task assignment logic is designed to enable the tracking UAV to decide on which
target to track and a system for switching to the next target after neutralising the first
target.

• A cost function is developed for the tracking UAV to close up and intercept the target
using NMPC and optimal control solutions.

• We presented a high-precision projectile algorithm to destroy, incapacitate or deploy
a projectile-launched net to capture aerial adversarial aerial targets.

The remainder of this chapter is organised as follows. In section 7.2, we formulate the
countermeasure problem by designing a decision logic for the tracking UAV. Section 7.3
presents the UAV dynamics and control development while Section 7.4 highlights the
target dynamics. To simulate the deployment of an electronic net, we develop a projectile
guidance controller in Section 7.5 before presenting our simulation results and comparative
plots in Section 7.6. The obtained results are discussed in Section 7.7 followed by a
concluding summary in Section 7.8.

7.2 Problem Formulation

From the review of the various forms of UAV deployed anti-drone measures, we observe
that the UAV needs to get within proximity to deploy the countermeasure. With this in
mind, let us consider a scenario where a lone fixed-wing UAV is tasked with tracking and
destroying or incapacitating 3 adversarial quadrotor targets operating independently within
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the same environment. A decision problem arises for the UAV in deciding which of the 3
targets it should track and destroy first. The decision solution should also determine the
sequence of tracking the remaining targets. We can simplify this complex mixed integer
optimisation problem by designing a simple task assignment logic.

Fig. 7.1 Single UAV and multi-target engagement diagram

We begin by assuming that the UAV can estimate the current positions and velocities of
various targets within the operating environment. To determine which target the UAV
should track next, we calculate a weighted tracking score for each target based on their
relative distances to the UAV, their distances to a static protected facility, and the estimated
time it will take each target to reach this facility. Let Xq be the set of targets representing n

number of targets in the sequence, and let (xa,ya,za) be the current position of the UAV.
The relative distance between the UAV and a target xqi is denoted as d(xqi), and it is
calculated as:

d(xqi) =
√

(xa− xqi)
2 +(ya− yqi)

2 +(za− zqi)
2 (7.1)

The estimated time for each target to reach the facility is computed using the target’s
velocity vqi and the position of the facility (x f ,y f ,z f ):

t fa(xqi) =
d fa(xqi)

vqi

(7.2)

where t fa(xqi) is the estimated time for target i to reach the facility, while d fa(xqi) is the
distance between the target and the facility, which is calculated as:
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d fa(xqi) =
√

(xqi− x f )2 +(yqi− y f )2 +(zqi− z f )2 (7.3)

If we define the threshold distance and time to the protected facility as d fo and t fo respec-
tively, then we can compute the normalised values of our decision parameters as follows:

d̂r(xqi) =
d(xqi)

deng
(7.4a)

d̂ fa(xqi) =
d fa(xqi)

d fo
(7.4b)

t̂ fa(xqi) =
t fa(xqi)

t fo
(7.4c)

where deng is the engagement distance of the UAV to the target, while d̂r(xqi), d̂ fa(xqi)

and t̂ fa(xqi) are the normalised distance of the UAV to the i-th target, normalised distance
of the i-th target to the facility and the normalised time of the i-th target to the facility
respectively. The decision score can therefore be computed as follows:

Si = wd
(
d̂r(xqi)

)
+w f

(
d̂ fa(xqi)

)
+wt

(
t̂ fa(xqi)

)
(7.5)

where wd , w f , and wt for the weights for UAV distance to target, target distance to facility
and approximate time it will take target to get to facility respectively. The weights are used
to assign relative importance to each of the scoring parameters. The next target to track,
xtrack, can be determined as:

xtrack = argmin
i
{Si} (7.6)

Where xtrack is the target to be tracked next, and argmin is the operator that returns the
index i corresponding to the target xi with the maximum weighted tracking score. The
scoring formulation enables the UAV to decide based on the calculated weighted scores, the
order in which targets are tracked. Having determined the sequence of tracking the various
targets, the next goal of the UAV is, to get within engagement range to the designated
target deng to neutralise it. For simplicity, if the UAV is within the engagement range
for 5 seconds or more, a high-level manoeuvre is initiated to mimic the launching of a
countermeasure and destruction of the evading quadrotor as shown in (7.7).
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Countermeasure =

Launch, if dqi < deng, for t > 5 seconds

Keep Tracking, otherwise
(7.7)

When the countermeasure has been applied to the first target in the tracking sequence, the
UAV is automatically reassigned to track the second target in the sequence by calculating
its relative distances to the targets and deciding which one to track next based on the target
closest to the UAV and then the third target in that order. A sketch diagram describing the
engagement scenario is shown in 7.1

7.3 UAV Dynamics and Control

To accurately and efficiently track an aerial target, it is essential to apply a control law
capable of driving the UAV toward the desired outcome. This section presents the UAV
dynamics and control options applied to persistently track and close up with an evasive
target to deploy a countermeasure. Here, we consider the NMPC technique due to its ability
to handle complex dynamics and optimise control inputs in real time. As a model-based
control approach, the NMPC uses a dynamic model of the system to predict its future
behaviour to optimise control actions over a finite time horizon. One of the advantages
that the NMPC has over traditional control methods, is that it considers system constraints
and optimisation objectives simultaneously, which allows for precise and robust control,
even in the presence of disturbances and uncertainties.

We start by defining the UAV dynamic model and then, we formulate an NMPC for a
tracking UAV, using its state and control vectors, defining an appropriate optimisation
problem, and implementing the control algorithm. We will also discuss key considerations
such as adaptive weighting and constraining the target movements to further enhance the
performance and robustness of the tracking system. The dynamic equations of the UAV
are the same as the set of equations provided in Chapter 3 of this work.

7.3.1 NMPC formulation

The NMPC control design below incorporates dynamic trajectory prediction that factors
changes in the mission environmental conditions such as wind disturbance and the rogue
quadrotor’s dynamics. This involves continuously updating the predicted trajectory of
the target drone within the prediction horizon. These updates consider evolving factors
such as wind speed, direction changes, and any observed variations in the drone’s flight
behaviour. Additionally, our control parameters are dynamically adjusted based on the
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detected drone’s specific characteristics, including its speed, agility, and other attributes.
This adaptability allows the NMPC controller to fine-tune its response strategy, ensuring
optimal control inputs that are tailored to the behaviour and capabilities of different types
of target quadrotors. The NMPC algorithm integrates these adaptations into its predictive
control loop, enabling the fixed-wing UAV to track the rogue drone in 3D space while
continuously optimising its trajectory prediction and adjusting control parameters to ensure
effective countermeasures. The cost function aims to minimise the tracking error between
the UAV and the rogue drone while considering control effort and ensuring convergence.
The cost function penalises the deviation from the desired trajectory and control effort,
while also accounting for the terminal state penalty to ensure proper convergence towards
the final state. The optimisation problem takes the following form:

min
u,x

J =
∫ t f

t0

(
w1Qp∥ep∥2 +w2Ru∥u∥2)dt +w3Q f ∥e f ∥2 (7.8a)

subject to ẋ = f (x,u) (7.8b)

x(t0) = x0 (7.8c)

x(t f ) = x f (7.8d)

umin ≤ u(t)≤ umax (7.8e)

where w1, w2, and w3 are weighting factors for position errors, control efforts, and final
prediction errors, respectively, x is the state vector, u is the control input vector, f (·)
represents the dynamic equations of the UAV, ep is the position error vector and e f signifies
the final prediction error at t f . Qp and Q f are positive definite weighting matrices for
position errors and Ru is a positive definite weighting matrix for control efforts. The
adaptive weighting matrices Qp, Q f and Ru are updated based on the tracking error during
the optimisation process, allowing the controller to adjust the relative importance of
position error and control effort based on the tracking performance. The position error to
the target being tracked as follows:

ep =
√

(xq− x)2 +(yq− y)2 +(zq− z)2 (7.9)

where ep is the position error while the values (xq,yq,zq) represent the target position.
The problem is subject to constraints for the dynamics of the system ẋ = f (x,u), initial
state x(t0) = x0, final state: x(t f ) = x f , control input constraints: umin ≤ u(t) ≤ umax

and constraints on adaptive control parameters φua, ψua, and θua. The time variables t0
and t f represent the initial and final times, respectively. To apply NMPC, we discretise
the time horizon from t0 to t f into N equally spaced time intervals ∆t, and we introduce
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the control trajectory U = [u(t0),u(t0 +∆t), . . . ,u(t f −∆t),u(t f )] and the state trajectory
X = [x(t0),x(t0 +∆t), . . . ,x(t f −∆t),x(t f )].

We now discretize the integral over the time horizon [t0, t f ] into N intervals. Let’s denote
the time step as ∆t = t f−t0

N . The discretized cost function can be written as follows:

min
u,x

J =
N−1

∑
k=0

(
w1Qp∥ep(k∆t)∥2 +w2Ru∥u(k∆t)∥2)

∆t +w3Q f ∥e f ∥2 (7.10)

where, k represents the discrete time steps, and ∥ep(k∆t)∥ and ∥u(k∆t)∥ represent the
position error and control input at each time step k∆t, respectively. The objective function
is the sum of the individual costs over each time interval, while the last term w3Q f ∥e f ∥2

remains continuous, representing the final prediction error at time t f .

The optimisation process is performed at each time step, and the first control input of the
optimal trajectory is applied to the UAV. The process is then repeated in a receding horizon
fashion, allowing the controller to adapt to changes in the UAV’s state and environment
over time. A pseudocode showing steps used in solving our NMPC problem, by itera-
tively updating the control inputs u, using the gradient descent method is presented in
Algorithm 5:

Algorithm 5 NMPC Solution
1: Step 1: Initialise control inputs and other parameters:
2: u0,α,ε

3: where u0 is the initial guess for control inputs,
4: α is the step size, and ε is the convergence criterion.
5: Step 2: Initialise the optimisation horizon and time index k = 0.
6: Step 3: Repeat
7: Step 4: Predict the system’s state trajectory over the optimisation horizon using

the current control inputs:
8: Compute xk

1,x
k
2, . . . ,x

k
N .

9: Step 5: Compute the cost function for the predicted trajectory:
10: Jk = ∑

N
i=1
(
w1Qp∥ep(i∆t)∥2 +w2Ru∥u(i∆t)∥2)∆t +w3Q f ∥e f ∥2.

11: Step 6: Compute the cost function gradient ∇Jk with respect to the control inputs:
12: ∇Jk = ∑

N
i=1

∂J
∂u(x

k
i ,u

k
i ).

13: Step 7: Update the control inputs using the gradient descent update rule:
14: uk+1 = uk−α∇Jk.
15: Step 8: Increment the time index: k← k+1.
16: Step 9: Until convergence criterion is met.
17: Step 10: Consider the optimal control inputs: uopt = uk.
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7.3.2 Optimal Control Formulation

The NMPC controller developed in the previous section needs to be assessed for perfor-
mance. For the assessment to be valuable, a reference controller is needed. Accordingly,
we implement an optimal control algorithm using the same cost function in the NMPC
solution to compare the two control algorithms. The Gradient descent-based optimal
control is an iterative optimisation method that searches for the optimal control inputs by
iteratively updating the control inputs in the direction of the steepest descent of the cost
function [259]. In relation to our target tracking problem, the optimal control problem
aims to find the control inputs u∗(t) that minimise the cost function Jum.

min
u,x

∫ t f

t0

(
w1Qp∥ep∥2 +w2Ru∥u∥2)dt +w3Q f ∥e f ∥2 (7.11)

where ep represents the position error vector. The adaptive weighting matrices Qp,Ru are
updated based on the tracking error during the optimisation process. To find the optimal
solution, we can use optimisation techniques such as gradient descent or numerical solvers
to solve the problem numerically. The solution involves iteratively updating the control
inputs and propagating the dynamics until convergence. The detailed solution can be
obtained by applying the necessary optimisation algorithms to minimise the cost function
J while satisfying the given constraints. The simplified UAV tracking cost function was
chosen for its quadratic form, which enables efficient optimisation, and its ability to balance
position error and control effort using weighting matrices. It considers the cumulative
effect over the entire time horizon and accommodates constraints, providing a flexible
framework for various UAV tracking applications.

To solve the optimal control problem and find the control inputs u that minimise the
cost function J, we will use the Euler-Lagrange equation. The Euler-Lagrange equation
states that the partial derivatives of the Lagrangian concerning the state variables and their
derivatives must be equal to the time derivative of the corresponding partial derivatives
with respect to the derivatives of the state variables.

Let’s define the Lagrangian L as follows:

L = w1Qp∥ep∥2 +w2Ru∥u∥2 +w3Q f ∥e f ∥2 (7.12)

where ep = [epx,epy,epz]
T is the position error vector, u = [ux,uy,uz]

T is the control input
vector, Qp is the positive definite weighting matrix for the position error vector, and Ru is
the positive definite weighting matrix for the control input vector.
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The gradient descent algorithm iteratively updates the control inputs u(t) using the follow-
ing update rule:

uk+1(t) = uk(t)−α ·∇J (7.13)

where uk(t) is the control input vector at iteration k, α is the learning rate, and ∇J is the
gradient of the cost function with respect to the control inputs. A pseudocode summarising
the steps for solving the optimal control problem is presented in Algorithm 6.
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Algorithm 6 Optimal Control using Gradient Descent
Step 1: Initialisation
Initialise control inputs and parameters:

u0,α,ε

// u0: Initial guess for control inputs
// α: Step size
// ε: Convergence criterion

Step 2: Compute Gradient
Compute the cost function gradient with respect to control inputs:

∇J =


∂J
∂V
∂J

∂ωx
∂J

∂ωy
∂J

∂ωz


Step 3: Iterative Update
Iteratively update control inputs using the gradient descent rule:

For k = 0,1,2, . . .:
uk+1 = uk−α∇J

// uk+1: Control inputs at iteration k+1
// uk: Control inputs at iteration k

Step 4: Compute New Cost
Compute the new cost function value J(uk+1) with updated control inputs.
Step 5: Check Convergence
Check for convergence by comparing changes in the cost function:

∆J = |J(uk+1)− J(uk)|
// ∆J: Change in cost function
// J(uk+1): Cost function value with updated control inputs
// J(uk): Cost function value with previous control inputs
If ∆J < ε:

Stop iteration and consider uk+1 as the optimal solution.
Else:

Go back to Step 2.
Repeat Steps 2 to 5 until convergence is achieved.

7.4 Target Dynamics

To implement a scenario where a UAV intercepts 3 evasive targets that are operating
independently, we need to design the target algorithms so they operate in the space. The
dynamics and equations of motion for the target-1 in the tracking sequence are defined as
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follows. Position and velocity equations:

ẋq1 = vqx1, ẏq1 = vqy1, żq1 = vqz1, (7.14a)

vqx1 =
1
m
(Fxq−gsinθuaq1) (7.14b)

vqy1 =
1
m
(Fyq +gcosθuaq1 sinφuaq1) (7.14c)

vqz1 =
1
m
(Fzq +gcosθuaq1 cosφuaq1)−g (7.14d)

uqx1 = v̇qx1, uqy1 = v̇qy1, uqz1 = v̇qz1 (7.14e)

where (xq1, yq1, zq1) represents the quadrotor’s position in the world frame, and (vqx1, vqy1, vqz1)

represents the quadrotor’s linear velocity in the world frame, m denotes the mass of the
quadrotor, and (Fxq,Fyq,Fzq) represent the forces acting on the quadrotor in the body frame
along the quadrotor’s x, y, and z axes, respectively. The term g represents the acceleration
due to gravity while (φuaq1,θuaq1,ψuaq1) represent the roll, pitch, and yaw angles of the
quadrotor, respectively, and (ωxq1,ωyq1,ωzq1) represent the angular velocities around the
body-fixed x, y, and z axes, respectively. ωz represents the angular velocity around the
vertical axis (yaw rate). The attitude equations is as shown below:

˙φuaq1 = ωxq1 (7.15a)

˙θuaq1 = ωyq1 (7.15b)

ψ̇uaq1 = ωzq1 (7.15c)

where uqx, uqy, and uqz represent the control inputs for the quadrotor

Position control:

uqx1 = Kp(xa− xq1)+Kd(ẋa− ẋq1) (7.16a)

uqy1 = Kp(ya− yq1)+Kd(ẏa− ẏq1) (7.16b)

uqz1 = Kp(za− zq1)+Kd(ża− żq1) (7.16c)

The equations for quadrotor target-2 and target-3 are computed similarly to (7.14a) to
(7.15a).

7.5 Countermeasure Projectile

In this section, we consider a scenario where a UAV is within close range of a target being
tracked and is prepared to deploy a countermeasure. The countermeasure deployed is an
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electromagnetic net propelled by a guided rocket projectile equipped with a proximity
sensor, activating the net’s deployment within 2m of a single or group of aerial targets, as
depicted in Fig 7.2.

Fig. 7.2 Sketch of UAV-launched projectile anti-drone net deployment

The countermeasure needs to be agile and evasive, requiring the guided projectile to
autonomously manoeuvre within the deployment range. Therefore, a control algorithm
based on the proportional navigation guidance law is developed to guide the projectile to
the target in 3D space. The guidance law is represented by the following equations:

γ̇p =
vq

rp
sin(γp) (7.17a)

ψ̇ua p =
vq

rp
cos(γp)cos(ψuap) (7.17b)

˙θua p =
rp

vq
cos(γp)cos(ψuap) (7.17c)

˙φua p =
rp

vq
sin(γp) (7.17d)

Here, γp is the Line of Sight (LOS) angle between the projectile and the target, ψuap

denotes the projectile’s course angle, vq is the target’s velocity, and rp represents the LOS
range between the projectile and the target. The angles θuap and φuap correspond to the
projectile’s elevation and azimuth angles, respectively.

To control the projectile and achieve target proximity, a proportional control law is applied:

up = Np · γ̇p · vc− kpr · (deng− rp) (7.18)
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Here, up denotes the projectile’s acceleration command, Np represents the proportional
gain, γ̇p is the LOS angle rate, vc is the closing velocity of the projectile, kpr is a positive
constant for retardation, and deng denotes the engagement distance.

The calculation of γp and rp involves:

γp = tan−1
(

yq− yp

xq− xp

)
(7.19a)

rp =
√

(xq− xp)2 +(yq− yp)2 +(zq− zp)2 (7.19b)

θuap = tan−1

(
(xq− xp)√

(yq− yp)2 +(zq− zp)2

)
(7.19c)

φuap = tan−1
(
(yq− yp)

(xq− xp)

)
(7.19d)

Here, (xp,yp,zp) represents the current projectile position, and (xq,yq,zq) denotes the
quadrotor target’s position.

The objective is to integrate the projectile’s dynamic equations along with the guidance
law, updating the course angle using the proportional control law, to iteratively adjust
the projectile’s position and velocity in 3D space. This aims to achieve the projectile’s
proximity within 2m of the target.

7.6 Simulation and Results

7.6.1 Target interception simulation

To simulate the behaviour of the NMPC-controlled UAV in tracking the independent
multi-targets, we initialised a scenario with the following parameters for the UAV and the
target quadrotors:

UAV parameters: The UAV’s initial position was set as xa = 30, ya = 10, and za = 20. Its
initial velocities were vxa = 5, vya = 3, and vza = 2. Additionally, the UAV had control
inputs uax = 2, uay = 2, and uaz = 2.

Target quadrotor 1 parameters: The first target quadrotor’s initial position was xq1 = 15,
yq1 = 30, and zq1 = 40. Its initial velocities were vqx1 = 2, vqy1 = 1, and vqz1 = 2. The
target quadrotor’s control inputs were uqx1 = 1.5, uqy1 = 2, and uqz1 = 1.

Target quadrotor 2 parameters: The second target quadrotor’s initial position was
xq2 = 20, yq2 = 60, and zq2 = 20. Its initial velocities were vqx2 = 2, vqy2 = 1, and vqz2 = 2.
The target quadrotor’s control inputs were uqx2 = 1.5, uqy2 = 2, and uqz2 = 1.
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Target quadrotor 3 parameters: The third target quadrotor’s initial position was xq3 = 50,
yq3 = 60, and zq3 = 40. Its initial velocities were vqx3 = 2, vqy3 = 1, and vqz3 = 2. The
target quadrotor’s control inputs were uqx3 = 1.5, uqy3 = 2, and uqz3 = 1.

By specifying these parameter values, we were able to simulate the behaviour and inter-
actions between the UAV and the target quadrotors. The subsequent analysis and results
provide insights into the performance and effectiveness of the implemented control and
evasion strategies.

Fig. 7.3 Single UAV and multi-target positions

Fig. 7.4 Single UAV and multi-target position, velocity and acceleration comparison

From the plot of the UAV and multi-target trajectories in Fig.7.3, The UAV represented
by the blue line, started by tracking and closing up to the target-1, depicted by the red
line. When the UAV was within a 2m radius of target-1, the quadrotor was deemed as
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captured. The UAV then switched to tracking the second target to track target-2, the green
line, closing up to within 2m before a final switch to track target-3 represented by the pink
line. The relative distance between the UAV and the 3 targets when plotted alongside their
velocities and control input accelerations is shown in Fig.7.4. The relative distance between
the UAV and target-1 started from 13m and gradually reduced as the UAV accelerated
towards the target and eventually closed up to capture the target. In the same vein, the
UAV acceleration was observed to have a sharp increase as it changed direction to track
target-2. Again, the relative distance between the UAV and target-2 reduced as the UAV
got closer to the target and increased when the target evaded the UAV. A similar pattern is
observed as the UAV changes direction to track target-3 after intercepting target-2.

7.6.2 Tracking comparison and performance assessment

To test the performance of the UAV control algorithm in various mission scenarios, we
modified some parameters using random variables within the allowable range. We utilised
the average relative distance drel of the UAV to the target as an efficiency factor computed
as the ratio of the total distance covered by the target currently being chased to the
total distance covered by the UAV. The performance metric pmet, was developed using
the relationship between the UAV to target relative distance, which represents the UAV’s
ability to maintain proximity to the target while tracking it, the total time taken to neutralise
the 3 targets tnt, and the total distance covered by the UAV. The closer the UAV can stay to
the target within that threshold, the higher the efficiency factor would be. The equation for
computing the efficiency and performance metric is as follows:

Fig. 7.5 UAV and target path length and relative distance
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sutot = ∑su(t) (7.20a)

sqtot = ∑sq(t) (7.20b)

ε f =
sqtot

sutot

(7.20c)

dtot =
1

ttot
·
∫ ttot

0
drel(t)dt (7.20d)

pmet =
sutot

ε f · ttot ·drel
(7.20e)

where su(t) and sq(t) are the UAV and target paths at each time t while drel(t) is the relative
distance between UAV and target a particular time t∗. The efficiency factor ε f represents
the overall efficiency of the tracking algorithm or system. Also, sutot is the total length
of the path travelled by the UAV while sqtot is the total path length of the tracked target
trajectory cumulatively during the simulation. The simulation time ttot is the total duration
of the simulation. The purpose of this efficiency factor is to assess the efficiency of the
UAV’s movements in relation to the tracked target’s movements. It provides a measure of
how far the UAV has travelled compared to the target. A higher value of ε f indicates that
the UAV has covered a larger distance relative to the target’s movement, suggesting more
active tracking behaviour. Conversely, a lower value suggests that the UAV has covered a
shorter distance compared to the target.

This metric takes into account the relative distance drel between the UAV and the target,
which represents the UAV’s ability to maintain proximity to the target while tracking it.
A high score for the performance metric pmet indicates that the UAV control algorithm
has performed well in terms of tracking efficiency and effectiveness. It suggests that the
UAV has covered a large portion of the target’s cumulative distance while maintaining
proximity to the target within the defined threshold. This implies that the algorithm is
efficient in tracking the target, achieving a good balance between distance covered and
proximity maintained. On the other hand, a low score for pmet suggests that the UAV
control algorithm struggled to track the target efficiently. It may have covered less distance
or deviated significantly from the desired proximity, indicating a lower level of tracking
performance.

Comparison between NMPC and optimal control tracking and performances

To compare the NMPC and optimal control algorithms presented in the problem formula-
tion section, we designed a scenario where the two UAVs operating independently with
the different controllers, are initiated with the same initial conditions used in the previous
section to track and neutralise the 3 quadrotor targets. A sample simulation plot showing
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the trajectories of the 2 UAVs in tracking the targets are superimposed on the same plot,
while their control inputs and position histories are compared as shown in Fig. 7.6.

Fig. 7.6 NMPC and optimal control tracking trajectories

In addition to simulation UAV tracking using two control types, we also compared the
NMPC control and the optimal control algorithms, using the performance metric developed
earlier. By randomly varying the initial conditions and control parameters within allowable
limits, we ran 100 Monte Carlo simulations to test the performance of the two control types
in tracking and neutralising the 3 targets in sequence, starting from quadrotor target-1,
followed by target-2 and then target-3. For all the simulations conducted, we computed the
tracking algorithm efficiency factor and the performance metrics and recorded the average
results in Table 7.1 below:

Table 7.1 Tracking metrics comparison for NMPC and optimal control UAV tracking
strategies

Control Type dutot dqtot ε f Average drel ttot pmet
NMPC 957.2 947.6 0.65 33.3 101 0.49
Optimal 800.2 700.5 0.80 28.7 85 0.65

A histogram showing the comparative performance of the 2 control laws is shown in figure
7.7 below:
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(a) Histogram of NMPC total distance tracking
performance

(b) Histogram of optimal control total distance
tracking performance

Fig. 7.7 Histograms of total distance tracking performance for NMPC and optimal control

As shown in the histogram in Fig. 7.7, the cumulative distance covered by the NMPC
controller in tracking the targets over 100 Monte Carlo simulations is greater than that of
the optimal control. While the optimal control total distance covered was concentrated
around 800 and 1000m, the NMPC controller had a wider spread with results concentrating
between 800 - 1200m. This implies that while both controllers could track the targets,
the NMPC controller was adapting to the variations in the initial conditions during the
simulations. On the other hand, the optimal control gave more consistency in the distance
travelled.

7.6.3 Projectile deployment simulation

The projectile was launched from the UAV when it got within 50m of the target and had
a maximum acceleration upmax = 10m/s and a maximum velocity limit of vpmax = 20m/s.
Considering the projectile is being launched from the same position as the UAV at the
time of launch, its initial position was simulated as the position and speed of the UAV at a
launch threshold of 50m to the target. The simulation result showing the performance of
the projectile is as shown in Fig. 7.8.
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Fig. 7.8 Trajectory of projectile to target

7.7 Analysis and Discussion

It can be observed that the relative distance between the UAV and the target fell to zero
as soon as the target was captured as shown in Figs. 7.4 and 7.6. This is also depicted
in the trajectory plots by the dotted lines showing that the captured quadrotor has fallen
to the ground. In reality, the relative distance does not remain at zero throughout the
simulation but because we assume that the target is no longer available for tracking, its
relative distance is depicted as zero. It was also shown that even when the UAV was close
to target-2, it maintained tracking of target-1 and only moved on to track the next adversary
target in its control sequence.

while both controllers tracked and closed up with the 3 independent targets in our mission
scenario, the comparison, 7.7 of the total distance covered during target tracking over
100 Monte Carlo simulations with varied initial conditions showed different results for
both controllers. The difference in performance is also reflected in Table 7.1 with the
optimal control algorithm performing averagely better than the NMPC controller in terms
of distances covered by UAV and target, efficiency score, and performance metric. In
addition to the performance, the NMPC also consumed longer computation time when
compared to the optimal control. This is because of the repeated optimisation at each time
step in the NMPC controller. However, the adaptive performance of the NMPC shows its
robustness, and tracking accuracy. The optimal control law exhibited superior tracking
abilities concerning the overall distance travelled during tracking, efficiency, and enhanced
performance. Despite the NMPC requiring more simulation time due to its optimisation
horizon, it demonstrated increased adaptability to changes, a crucial aspect for ensuring
robustness.
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The results from the net dispensing projectile simulation as seen in Fig. 7.8, indicate the
projectile can respond and close up with the target. The simulation was terminated when
the projectile got to within 2m of the target, as we expected that the proximity sensor
within the projectile would deploy the net. For further research, an algorithm could be
developed to simulate and optimise the net deployment in the presence of disturbances like
wind and precipitation.

7.8 Summary

This chapter developed a countermeasure strategy for the UAV to track and neutralise a
non-cooperative adversarial target, intruding into restricted air space. The countermeasure
algorithm assumes that the UAV is tracking 3 different targets, one target at a time. We
implemented a decision logic to aid the UAV in deciding which target to track first and
the next target using the same logic. We also implemented an NMPC controller for
tracking UAVs and an optimal controller using the same cost function to compare their
performances. The UAV controllers penalise the position error between the UAV and
the target, while the target is evading using a smart PD control law. We also developed
a performance metric to compare the performances of the NMPC and optimal control.
Simulation results show that the UAV NMPC and optimal control laws were able to track
the target. However, the optimal control law showed better tracking performance in terms
of total distance covered during tracking, efficiency, and better performance. Although
the NMPC consumed more time during simulation due to its optimisation horizon, it was
observed to be more adaptive to changes which is essential for robustness.





Chapter 8

Conclusions and Future Work

Consider a scenario where we received credible intelligence information that a mischievous
adversarial group is planning to attack a protected high-value facility using a ground-based
vehicle and single or multi-quadrotor swarm. In addition to other security arrangements,
we have been tasked to design algorithms to identify, track, and intercept the adversarial
platforms before they intrude or access a protected facility. To simplify the problem, in
this thesis, we assumed that the identification aspect has been solved and focused on the
tracking aspect. Accordingly, we started by reviewing and modifying a min-max optimal
control algorithm designed for planar UAV tracking of a ground-based target, by incorpo-
rating bank angle and turn rate constraints to reduce the chance of actuator failure on our
UAV when tracking an evasively agile target. To ensure the tracking UAV can perform
the task, we also designed an evasive control strategy for the target to intelligently and
persistently evade.

Since 3D space is more representative of the real world, we devised a method to extend the
2D tracking and evasion strategies to 3D space using vector manipulation. Having done
this, we considered that the UAV controller would require a more flexible altitude controller.
Accordingly, we implemented 3 controller options for autonomously controlling the altitude
of the UAV. Since some of the intruding vehicles are likely to be agile drones, we designed
a quadrotor dynamics and evasion algorithm and further modified the UAV tracking
controller to track the adversarial aerial target. We also considered the advantages of
multi-UAV tracking and developed an algorithm for tracking single and multiple quadrotor
swarms while optimally adjusting the UAV altitudes depending on the cluster size and
relative distances of the individual quadrotors to the tracking UAV. Having considered
these fixed-wing UAV tracking control strategies, we proceeded to explore and implement
strategies to drive the UAVs close to the target to apply countermeasures and also developed
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a control algorithm to launch and deliver a net-bearing projectile to within 2m proximity of
the evasive single or multiple quadrotors, to deploy an electromagnetic net upon activation
by an embedded proximity sensor. The remainder of this Chapter provides a summary
of the technical chapters of this thesis and outlines the major contributions and future
direction of the research.

8.1 Research Summary

In Chapter 3, we presented a fixed-wing UAV optimal target tracking strategy with the
minimum turn radius varying with the bank angle, which enables the generation of realistic
tracking paths for the tracking UAV. The optimal UAV control was based on a 2 step
predictive min-max cost function where the UAV tries to persistently minimise its relative
distance to the track a target assumed to be evading with its best control effort within the
limits of the design constraints. Traditionally, most research focuses on the development
of algorithms and controllers for the pursuing UAVs and implements a simplistic model
like a curved path, or predefined or random target manoeuvres. In a few studies, evasive
targets have been developed to manoeuvre away from the tracking UAV using a semi-smart
controller. However, there are scanty studies on evasive aerial target pursuit and neutrali-
sation. To address this, the chapter implemented a smart evasive target that is capable of
initiating and persistently evading the tracker, thus enabling realistic tests, optimisation,
and simulation of the pursuing UAV for robust performance. The evasive target control
strategy was developed by maximising the same cost function, to generate smart evasive
manoeuvres for the target. A method for extending the 2D target tracking algorithm
to 3D cases using a vector transformation and direction cosine matrix derived from the
UAV and target instantaneous velocity vectors was also implemented while avoiding the
complexity of implementing a new design. The simulation results obtained show that the
UAV persistently tracked the evading target in various scenarios and mission configurations.

In Chapter 4, we developed 3 vertical acceleration algorithms for generating altitude
control for a fixed-wing UAV starting from the 2D plane. Essentially the vertical controller
is combined with the 2D lateral and longitudinal control of the x and y axis to form 3D
control of the UAV. One of the options utilised the relationship between the target and
desired UAV altitude to compute controlled FPA changes to control the UAV altitude.
The second option utilised the relationship between the UAV camera focal length, the
size of the target image on the ground, and the desired size of the image on the camera
lens to geometrically compute altitude control accelerations that control the UAV altitude
above the target. Both options were tested using simulation and the results show that the
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altitude control strategies are adequate for the research work. Due to its simple design
demand, effectiveness and lower computational cost, we adopted the vertical controller
designed based on FPA for controlling the UAV altitude for the remaining chapters of this
research. Further simulation of the adopted altitude controllers shows it was sufficient for
our fixed-wing UAV target tracking problem.

Chapter 5 presented a design for an evasive quadrotor algorithm to test the effectiveness of
the UAV tracking algorithm against an evasive quadrotor-type target. Simple target evasion
algorithms were designed for 3 scenarios, straight-line accelerated evasion, hover and
evade manoeuvre, and continuous aerial evasion. To Prevent the UAV from colliding with
the evasive target during aerial pursuit and evasion, we modified the UAV control algorithm
designed in Chapters 3 and 4, to incorporate anti-collision measures. We also designed a
performance metric to measure and test the effectiveness of the UAV in tracking the target.
To further improve on the tracking algorithm, we introduced an adaptive optimisation algo-
rithm that utilises the optimisation parameters to optimise the control of the UAV which
was dependent on the relative distance of the UAV from the target. Energy consumption
comparison was used to compare the original and adaptively optimised algorithm. The
simulation results show that the adaptively optimised algorithm perfumed better in all
scenarios.

In Chapter 6, we implemented an algorithm for tracking of a single evasive quadrotor-type
target by 3 cooperative UAVs, independently tracking the target with a decentralised control
strategy. The multi-UAV control strategy incorporated a tracking cost function, collision
avoidance cost function, and altitude control cost function, which were minimised to keep
the UAVs tracking the target at an optimal altitude, while avoiding collision between
the UAVs and the target. To extend our cooperative tracking research, this Chapter also
implemented a multi-UAV to multi-target mission scenario by designing an evasive target
cluster, to evade the UAVs. Considering that the target cluster is dynamic and constantly
changing in response to the target positions, we developed a new altitude control strategy
that optimises the coverage and image capture quality relative to the cluster area and
target positions of each UAV. To apply real-world consideration to the multi-UAV to multi-
target scenario in this research, we also presented a sample algorithm for task assignment
to one or more tracking UAVs. In particular, we designed and implemented a logic to
autonomously assign one of the tracking UAVs, the task of chasing and intercepting a
break-out quadrotor from an adversarial swarm.
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In Chapter 7, we developed a countermeasure strategy for the UAV to track and neutralise a
non-cooperative adversarial target, intruding into restricted air space. The countermeasure
algorithm assumed that the UAV was tracking 3 different targets, one after the other. We
implemented a decision logic to aid the UAV in deciding which target to track first and to
determine the next target in the sequence using the same logic. We also implemented an
NMPC controller to drive the tracking UAV within countermeasure deployment distance
and an optimal controller using the same cost function to compare their performances. The
UAV controllers penalise the position error between the UAV and the target, while the
target is evaded using a smart PD control law. A performance metric was also designed
to assess the performances of the NMPC and optimal control. Simulation results show
that the UAV NMPC and optimal control laws were able to track the target. However, the
optimal control law showed better tracking performance in terms of total distance covered
during tracking, efficiency, and better performance. Although the NMPC consumed more
time during simulation due to its optimisation horizon, it was observed to be more adaptive
to changes which is essential for robustness.

8.1.1 Application in real world

The proposed approach has several practical uses in real-world scenarios as follows:

• Surveillance and Security: The algorithms developed for tracking the ground-
based and aerial targets in this thesis can be employed in surveillance and security
systems. This would enable autonomous tracking and interception of potential
adversarial platforms, such as intruding vehicles or evasive drones, to protect critical
infrastructure and secure key facilities.

• Drone Defence Systems: As the use of drones for various purposes becomes more
rampant, the ability to track and intercept or capture evasive hostile or unauthorised
drones is paramount. The research presented in this thesis can be adapted for drone
defence systems to protect sensitive facilities like airports, security installations,
events centres and routes and government facilities.

• Search and Rescue Operations: The research findings will also be valuable in
search and rescue missions, where locating and tracking individuals or objects is
paramount. The algorithms designed can be used and modified to suit specific
mission requirements to aid in efficient search and tracking of missing persons or
vehicles in challenging environments, such as urban areas, remote deserts or open
sea.

• Agriculture and Environmental Monitoring: The algorithms developed in this
research can also find applications in agriculture and wildlife tracking and envi-
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ronmental monitoring. UAVs equipped with tracking and evasion strategies can
be applied to enhance precision agriculture and tracking wildlife like birds and
nocturnal animals.

• Autonomous Delivery Systems: The algorithms developed for tracking and inter-
ception could be utilised in autonomous delivery systems. UAVs delivering packages
or medical supplies can navigate through dynamic environments like water bodies
or evasive targets such as speedboats.

8.2 Future Research Directions

The research conducted in this thesis lays a foundation for future research in the following
areas:

1. Adaptive Evasive Strategies: The evasive target algorithm developed in Chapter 3
could be modified by considering more advanced and self-tuning adaptive evasion
strategies to enable targets to make smarter decisions to create more challenging
scenarios for tracking algorithms robustness modification.

2. Collaborative UAV Swarms: The cooperative fixed-wing UAV tracking algorithm
introduced in Chapter 5 could be extended in further research to include improved
coordination and communication capabilities between the collaborative UAVs, to
allow for more efficient task assignment and tracking of multiple targets.

3. Machine Learning Integration: Future research could leverage machine learn-
ing techniques to improve the adaptability and learning capabilities of tracking
algorithms to optimise performance energy consumption, tracking time and counter-
measure deployment in dynamic and complex evolving mission scenarios.

4. Integration of Sensor Technologies: Future studies could explore the use of more
sophisticated tracking sensors highlighted in the review. Integrating advanced sensors
like lidar, radar and hyperspectral imaging systems to enhance tracking precision
and robustness in diverse environments. Furthermore, using sensors like infrared and
thermal cameras will enable tracking in low-light conditions and enhance detection
capabilities, particularly for nocturnal operations.

5. Real-World Testing: Lastly future work could explore building fixed-wing UAVs
and conducting field experiments to validate or enhance the target tracking and
countermeasure algorithms presented in this thesis in practical applications while
addressing real-world disturbances such as wind, precipitation, poor visibility and
sensor noise.
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