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Abstract

Radar sensors are nowadays an integral part of a road vehicle for their
ability of detecting targets and extracting information about their motion and
location. However, little research has been done on the ability of a vehicle to
operate such application when the transmitter is located externally, a setup
commonly referred to as bistatic. This thesis incorporates the communication
potential of new radio with the merits of bistatic radar to advance the exist-
ing automotive sensing technology. It proposes an application envisioned
in a smart highway where a vehicle switches to an economic mode, and the
long-range radar module relies on cooperative roadside transmitters to lo-
cate other road targets. Firstly, a proof of concept is developed using existing
Fourier techniques to show the advantage of the bistatic setup over the popu-
lar monostatic counterpart. It is proven that a theoretical bistatic range up to
twice the monostatic one may be achieved, as well as the ability of correctly
locating targets with elevated noise levels (up to 3 dB). A sparse represen-
tation of the bistatic automotive radar signal model is then developed and
a sparsity-based method for two-dimensional location and Doppler estima-
tion is proposed. After that, an extension of this application to a multistatic
scheme is proposed by deploying multiple cooperative roadside sensors, and
adopting the group-sparsity concept for parameter estimation. Two methods
for data association with varying complexity and performance are proposed
with both achieving 100% pairing probability at typical noise levels in the
presence of 2 targets. Finally, a rigorous signal model for the wideband case
is derived and the associated artefacts are identified. A sparsity-based solu-
tion for decoupled motion parameter estimation is proposed which naturally
resolves such unwanted artefacts. Extensive computer simulations were con-
ducted to mimic a real automotive scenario and verify the capability of the
proposed methods. It was shown through Monte Carlo trials, under different
operational settings, that the proposed solutions can outperform the state-of-
art bearing an added computational cost. In most cases the improvement in
estimation accuracy is at least 1 resolution cell, and can range up to 20 res-
olution cells in some cases, meanwhile up to 40 folds increase in processing
run-time was recorded with the proposed algorithms.
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Chapter 1

Introduction

Radio detection and range finding (Radar), is a system that uses radio-waves
to determine distance, direction and and radial velocity of objects in its vicin-
ity. As with many other technologies, initial radar trials were for military use
and were kept a secret during World War II. However, it has since found in-
terest in many different civilian applications, as well as military ones. In this
thesis, the focus is on the automotive application of radar, rapidly accelerated
by the evolution of electric vehicles and autonomous driving. Recently, mar-
ket leaders in automotive radar development and production, such as Con-
tinental, Bosch, and ZF, announced their flagship radar modules providing
four-dimensional (4D) imaging, to support the ever anticipated level 5 driv-
ing with full automation capability [1, 2, 3]. Offering unprecedented techni-
cal specifications despite the miniaturisation of the radar modules, some sys-
tems are said to achieve up to 300 metres of range with their front long-range
radar modules, ultimately placing them on the forefront of sensor supremacy.

The physics behind the basic operation of these radar modules is very
well understood. A radio-wave which is transmitted through the air, gets
reflected back after hitting an object, and is then collected via a sensor. The
time difference between transmitted and the received signal relates to the
distance of the illuminated object. So, the rationale behind achieving longer
range without consuming more power is simply by minimising the losses in
the travelling signal strength. What is interesting, however, is that no matter
how much we reduce the losses inside the electrical circuits and improve the
propagation medium for radar signals, we will always be limited by the natu-
ral expansion of radio-wave fronts, leading to what is known as propagation
loss. In other words, the minimum power required to achieve 300 metres
of range with the current geometry of the said state-of-art radar modules is
in fact fixed. Nonetheless, what if it was possible to place either the trans-
mitter or the receiver somewhat closer to the illuminated object, with the
transmitter having more relaxed limitations on its operating power? It seems
trivial that breaking the boundaries with radar range is theoretically possible
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by separating the transmitter from the receiver in a geometry that signifi-
cantly reduces the radio-wave’s travel distance (and consequently reduces
the inevitable propagation losses), and offers extra flexibility and added op-
erational benefits compared to the widely adopted monostatic radar that en-
capsulates both transmitters and receivers in one unit.

Improving performance in terms of resolution and accuracy is another
area that has seen significant improvement in automotive radar. Yet, the chal-
lenge remains that illuminating an object using a single radio-wave source
from a fixed angle can only achieve an asymptotic level of performance until
some radical improvement comes into place. In this thesis, an alternative ap-
proach to automotive radar sensing is proposed. The commonly used mono-
static radar, containing a transceiver system formed by a transmitter and re-
ceiver in a singular module, is replaced by a bistatic radar system where the
transmitter operates independently and is physically separated from the re-
ceiver. In this proposed approach, the transmitters are incorporated with
the road infrastructure and the vehicle’s radar module is in a purely receiv-
ing mode. When multiple transmitters are considered, each transmit-receive
pair forms a bistatic setup with the overall system forming what is known as
a multistatic radar.

1.1 Aim and Objectives

In the wake of electrification and automation of vehicles, a great mass of
research has been drawn into automotive radar sensing, being an integral
part of such evolution. This inevitably motivates exploring the prospects
of its application in a world of emerging wireless communication super-
infrastructures, namely new radio (NR). Briefly, the aim of this research is
to review the existing applications of automotive radar, and to provide some
answers to the ever-lasting question of "What can be done better?". More
concisely, we aim to improve the performance of automotive radar by tar-
geting one or more of the following key areas: transmitted waveform, mode
and geometry of transmission, and signal processing techniques.

Accordingly, the objectives of this research can be stated as follows.

1. Formulate the radar problem and determine the parameters to be esti-
mated. This entails solving the geometry of the application and relating
its parameters to the ones within the radar’s deterministic capability.
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2. Following the choice of desired radar waveform, transmission mode,
and geometry, derive a rigorous mathematical signal model based on
real-world considerations and permissible assumptions.

3. Propose a signal processing method for estimating the desired parame-
ters from the raw signal data based on the model previously derived. In
most cases, the proposed method should outperform the state-of-art in
estimation performance and/or computational cost. However, in some
cases, due to the uniqueness of the problem, matching the performance
of the state-of-art either by direct adoption of its implementation or a
modified approach is sufficient.

4. Test the radar application through computer simulations and generate
the performance metrics under different settings in various scenarios.

5. Evaluate the performance of the application and suggest directions for
future work.

The research conducted in this thesis naturally extends the literature in
two well-developed areas: automotive radar sensing and bistatic radar. It
also fills a gap created by combining the idea of bistatic radar with automo-
tive sensing since such proposal not only presents a proof of concept based on
the existing signal processing techniques, but further advances the state-of-
art techniques through novel sparsity-based signal recovery. While the area
of bistatic and multistatic radar is massively understudied, particularly for
automotive applications, literature on wideband multi-dimensional motion
parameter estimation in this framework is evidently limited. Here, the pro-
posed application of bistatic automotive radar is extended to the wideband
case with proposed motion parameter estimation methods falling under the
category of advanced signal processing techniques. Moreover, to realise the
bistatic operation of this application, a certain level of time synchronisation
is required. This work does not explicitly focus on this scope of research, yet
it provides pointers to some areas in the literature that would mutually bene-
fit from turning some of the assumptions into research questions, ultimately
translating to more advancement and development overall.

1.2 Structure of Thesis

This thesis, overall, is structured in a standard format where Chapter 2 re-
views the existing literature around the topic, and the remaining Chapters
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3-6 embody the contributions this research has added to the literature.
Chapter 2 is divided into two major sections. The first Section reviews

automotive radar sensing from the early days to current applications and
challenges. It offers the reader a broad insight into radar sensing ranging
from the popular and commercial applications in the automotive industry,
to the technical aspects of their functionality. The second Section reviews
bistatic radar by highlighting its history, applications, and challenges. While
both sections provide a rich review of their correspondent scopes, plenty of
direction to relevant literature is provided for interested readers.

Chapters 3-6 follow a similar structure that inherently fulfils the objec-
tives stated in Section 1.1. Each Chapter starts with an introduction that pro-
vides some brief literature review and formulates the problem, after which
the content of each Section is highlighted. The remaining sections contain the
signal model, the proposed data processing method, simulation results, and
concluding remarks, respectively.

1.3 Contributions and Published Work

• Chapter 3 :

– A novel application of bistatic radar is proposed for automotive
sensing. The improvement to existing automotive radar is related
to the mode and geometry of transmission.

– A signal model is derived for the case of a single transmitting sen-
sor and a single receiver for range, Doppler, and DOA estima-
tion. The novelty here stems in the solution to the geometry of
the bistatic automotive scenario and modelling the radar signal to
allow unambiguous estimation of the motion parameters.

– A bound on the acceptable time synchronisation is determined,
and the unique conditions for such synchronisation task are for-
mulated.

The contributions of this Chapter are published in

A. Moussa and W. Liu,“Enhanced Detection in Automotive Applica-
tions Using Bistatic Radar with Cooperative Roadside Sensors,”2021
CIE International Conference on Radar (Radar), Haikou, Hainan, China,
2021, pp. 1649-1653.

• Chapter 4 :
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– Following the application of bistatic radar to automotive sensing
proposed in Chapter 3, a sparsity-based method for joint range,
Doppler, and DOA estimation is proposed. The improvement to
existing automotive radar is related to the signal processing tech-
nique.

– The Cramer-Rao bound is derived for this estimation problem and
is used as the benchmark for the estimation performance.

The contributions of this Chapter are published in

A. Moussa and W. Liu, “A Two-Stage Sparsity-Based Method for Loca-
tion and Doppler Estimation in Bistatic Automotive Radar,” 2023 IEEE
Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, 2023, pp.
487-491.

• Chapter 5

– More novelty is introduced by extending this proposed applica-
tion to multistatic configuration with multiple transmitting sen-
sors. The improvement to existing automotive radar is related to
the mode and geometry of transmission.

– The drawbacks the state-of-art signal processing techniques face
due to the inability of fusing multiple incoherent sources of infor-
mation on the data level are discussed.

– An algorithm employing group sparsity is proposed for motion
parameter estimation by processing multistatic measurements si-
multaneously.

– Two data association techniques are proposed for the case of mul-
tiple targets to allow pairing of the estimated location and Doppler
parameters.

The contributions of this Chapter are published in

A. Moussa, W. Liu, Y. D. Zhang and M. S. Greco, “Multi-Target Loca-
tion and Doppler Estimation in Multistatic Automotive Radar Applica-
tions,” in IEEE Transactions on Radar Systems, vol. 2, pp. 215-225, 2024.

• Chapter 6

– A rigorous signal model is derived for the wideband case in the
proposed application.
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– The artefacts associated with the wideband problem are identified
and their effect on parameter estimation is discussed.

– Upper bounds on the modulation bandwidth are derived for each
measurement domain to provide a criterion under which narrow-
band assumptions are no longer valid.

– A general approach for processing wideband signals in bistatic au-
tomotive radar is proposed using estimation in decoupled mea-
surement domains.

– An algorithm based on group sparsity is proposed for processing
wideband bistatic measurements for range, Doppler, and DOA es-
timation separately alongside solutions for pairing the estimated
parameters from the decoupled domains.

The contributions of this Chapter are published in

A. Moussa and W. Liu, “Fast and Accurate Range-Doppler Estimation
in Multi-Target Wideband Automotive FMCW Radar,” in Proceedings
of the 2020 International Conference on UK-China Emerging Technologies
(UCET), Glasgow, UK, 2020, pp. 1-4.
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Vietnam, 2023, pp. 487-491.
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1.4 Notations

Notations used in this thesis are as follows:
Vectors and matrices are represented as lowercase and uppercase bold-

face letters, respectively. Subscripts in Italic font used with variables (only)
denote the index of the corresponding variable (such as θk, θh, θh,k, θgp , etc.),
whereas any other subscripts or superscripts written in boldface font or used
with constant predefined parameters are merely part of the notation.
{.}∗, {.}T, and {.}H denote the complex conjugate, transpose, and Her-

mitian transpose of a vector or matrix, respectively.
◦, ⊗, and ⊙ denote the outer product, the Kronecker product, and the

element-wise (Hadamard) multiplication, respectively.
diag{.} returns a diagonal matrix, arg{.} returns the argument of a com-

plex number, eignval{.} returns the eigenvalues, det{.} returns the matrix
determinant, vec{.} is the vectorisation operation, E{.} is the expectation
computation, ℜ{.} is the real part extraction operation, |.| is the absolute
value, and O(.) is the asymptotic notation.
∥.∥1, ∥.∥2, ∥.∥2,1, and ∥.∥F are the ℓ1-norm, ℓ2-norm, ℓ2,1, and the Frobenius

norm, respectively.
The range parameters and Cartesian coordinates are in metres (m), veloc-

ity parameters in metres per second (m/s), and DOA/angle parameters in
degrees (◦).
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Chapter 2

Background Literature

2.1 Automotive Radar Sensing

2.1.1 History and Applications

The first literature on automotive radar sensing traces back to 1964 when [4]
proposed using a RF system for prevention of vehicle collisions. More inves-
tigations on the use of radar for automotive sensing followed in endeavours
supported by the U.S Department of transportation [5, 6, 7, 8, 7, 9, 10, 11, 12,
13], and meanwhile other efforts originated from some Japanese car manu-
facturers [14, 15]. In addition to that, the German Ministry of Science and
Technology supported related work which was solely based on technologies
and devices available at the time [16, 17, 18, 19].

In 1998, Mercedes Benz introduced the first commercial 76 GHz radar
module for passenger vehicles, manufactured by Macom in the USA [20].
The post-prototype era continued with Jaguar, Toyota and BMW employing
systems manufactured by Delphi, Bosch, and Denso, respectively, to support
adaptive/autonomous cruise control (ACC) and brake assist [21]. In the early
2000s, most manufactures in the automotive industry offered a radar system
at least in their flagship models. While the early promises focused on col-
lision avoidance through the development of distance radar, these systems
then allowed active comfort features in the integration of ACC and assisted
braking [22].

Thus far the commercialisation of automotive radar was only about to
take off. Driven by the evolution in hardware manufacturing, integration,
and packaging encompassed by the silicon technology, the market volume
boomed in the 2010s. The market demand for next generation radar sensors,
lead to advanced front-end architecture showcased in Bosch’s 5th genera-
tion radar sensor which includes a multiple-input multiple-output (MIMO)
antenna array, a surface-mounted monolithic microwave integrated circuit
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(MMIC), a 76-77 GHz voltage-controlled-oscillator (VCO) alongside a fre-
quency sweep phase-locked loop (PLL), and analogue-to-digital converter
(ADC) [2]. This sensor is used for the advanced driver assistance system
(ADAS) including applications such as automatic emergency braking, ACC,
Bosch driving assist, and road signature. A revolution that was once fuelled
by the active safety mandate in the new car assessment program (NCAP) is
now projected to achieve full-scale automated driving in the 2020s [23].

2.1.2 Motion Parameter Estimation: The Concept

Consider a transceiver1 system with one transmitter and one receiver on
a planar field transmits one frequency-modulated (FM) radio-wave pulse
of known physical characteristics. Suppose this pulse hits an object and
bounces back following the same trajectory to the transceiver which is ca-
pable of storing the signal in a digital buffer. It is trivial that the returning
wave has a different time stamp to the original transmitted one after travel-
ling a certain distance. Fortunately, the science has enabled us to estimate
these time stamps due to the change in the original wave characteristics at
the time of arrival. Since the travel time-difference is directly related to the
distance between the transceiver and the scatterer, a simple signal process-
ing task can accurately estimate the scatterer down-range. The estimated
travel time-difference often referred to as round-trip time delay, by means
of Fourier representation for instance, can then be expressed as an estimated
frequency which is directly proportional to the distance [24].

Now consider a case where the scatterer is moving at a constant velocity
which is much smaller than the speed of light c (speed at which radio-waves
propagate). Suppose the transceiver transmits two pulses which are then re-
flected from the same object. Assume that the displacement caused by this
moving scatterer does not change the estimated round-trip delay in the time
domain by a margin sufficient to change the range-dependant estimated fre-
quency of the two pulses. Thinking of the impinging waves as a series of
complex numbers allows us to model the basic characteristics of the signals
as frequencies and then more generally as phases (phasor representation for
sinusoidal functions [25]). Although, the small displacement caused by the
moving scatterer does not change the estimated frequency for both received
pulses, the phasor representing the second pulse incurs a constant shift with
respect to the first pulse. Assuming the original position of the phasor is

1A transceiver is a combination of transmitter and a receiver in a single package.
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known, the phase difference can be mapped to estimate the velocity of the
moving scatterer [26, 27].

The same concept of micro-displacement caused by the motion of the scat-
terer which enables the estimation of velocity can be implemented to estimate
the azimuth of the scattered signal. Suppose there exists a second receiver
carefully placed next to the first one. It follows that it receives the scattered
signal with a very small-time delay (presumably equal to the that at the first
receiver) that does not change the estimated frequency, yet it changes the
phase. Assuming the phase is known at the first receiver, the phase differ-
ence between the signals at the two receivers can then be mapped to estimate
the azimuth of the scatterer, also known as the DOA [28, 29].

If a third receiver was placed in a plane perpendicular to the previous
one, the same theory leads to the ability of estimating the elevation of the
scatterer, which in essence is another form of DOA albeit in a different plane
[30, 31].

To summarise, the range of the scatterer can be estimated by the frequency
difference between the transmitted and received pulses. The velocity can
be estimated using the phase difference between two consecutive pulses re-
flected from the moving scatterer. The azimuth can be estimated by the phase
difference between pulses received at more than one co-located receivers.
[32] provides a very straightforward explanation to these three concepts.

2.1.3 Transmission Waveforms

In the context of automotive radar, various waveforms have been studied
and applied. They have diverse specifications and performance metrics. A
summary of five popular waveforms is included in Table 2.1 [33]. With radar
waveform design, emphasis is usually on the ability and mechanism of ex-
tracting range and/or Doppler information and the resolution metrics associ-
ated with each. Continuous wave (CW) is the most simple waveform which
can also be transmitted in the form of pulses (Pulsed CW). In addition, dif-
ferent forms of modulation can be applied including frequency modulated
(FM)-CW, stepped frequency (SF)-CW, orthogonal frequency-division multi-
plexing (OFDM).

• The CW radar signal of carrier frequency f0 received from a moving
target results in Doppler frequency shift fd which can be extracted by
conjugately mixing the received signal with the transmitted one. There-
fore Doppler resolution increases with the duration of signal capture,
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TABLE 2.1: Radar waveforms

Waveform Type Transmit Waveform s(t) Resolution

CW ej2π f0t δ fd = 1
T

Pulsed CW Π(Tp)ej2π f0t δR =
cTp
2 , δ fd = 1

Tp

FMCW ej2π( f0t+0.5µt2), µ = B
Tc

δR = c
2B , δ fd = 1

MTc

SFCW ej2π fnt, fn = f0 + (n− 1)δ f δR = c
2B , δ fd = 1

MTc

OFDM ∑N−1
n=0 I(n)ej2π( f0+n∆ f )t δR = c

N∆ f , δ fd = 1
MTN

denoted by T. Such signals do not carry range information due to the
continuous nature and lack of time stamping [34].

• Pulsed CW radar signals offer range estimation capability since the CW
is now transmitted as a rectangular pulse Π(Tp) with known time pe-
riod Tp and repetition intervals. Correlation allows estimating the time
stamp of the received pulse which directly corresponds to the range
of the target. Shorter pulses lead to better range resolution and worse
Doppler resolution.

• FMCW, also known as chirp, allows accurate and simultaneous range
and Doppler estimation, hence its popularity in the automotive indus-
try. It offers high range resolution, which is inversely proportional
to the modulation bandwidth B, thanks to pulse compression. Un-
like pulsed CW radar, frequency modulation allows mapping the time
stamping task to the frequency domain. Conjugate mixing then per-
mits extracting this range-dependent frequency information at a low
sampling rate. The resolution in Doppler frequency depends on num-
ber of pulses M used and their width Tc.

• In SFCW, the frequency varies in a discrete manner with increments
of ∆ f and the range information is extracted via inverse Fourier trans-
form. The maximum range is therefore dictated by ∆ f .

• OFDM is popular for the coexistence of radar features with commu-
nication capability, hence the suitability for vehicle-to-vehicle commu-
nication [35]. The cyclic prefix and sub-carrier spacing ensure orthogo-
nality in the time and frequency domains, respectively, which improves
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spectral efficiency [36]. As well as frequency modulation, the wave-
form is formed from an N-point arbitrary sequence I(n) and detection
is done via frequency domain channel estimation.

2.1.4 Narrowband vs Wideband

In wireless communications, the term narrowband refers to channels where
the frequency response is flat over the coherence time. On the contrary, wide-
band channels are ones where the information bandwidth is larger than the
coherence bandwidth. The latter is related to the delay spread profile of a chan-
nel and can only be statistically modelled. Wideband channels can produce
higher data rates compared to narrowband ones while requiring more power
to do so.

The classification of signals in radar terms is not as distinctive as in wire-
less communications. It is well known that wideband signals have many
advantages over narrowband ones, but such classification criterion is merely
comparative. Wideband signals carry higher bandwidths, offer better range
resolution, higher signal-to-noise ratio (SNR) within a resolution cell, more
secrecy of illumination, and better immunity to active and passive interfer-
ence/jamming [37]. However, at what point does a narrowband radar signal
become wideband/ultra-wideband?

A thorough search through the radar literature leads to no direct answer
to the question above. In [38], three criteria for signal-band classification are
presented, and are purely based on predefined thresholds recommended by
the regulating authorities rather than their signal processing and application-
level implications. In reality, in range and Doppler domains a practical clas-
sification of these signals is directly related to the Doppler effect imposed by
the scattering environment. In other words, reflections from stationary tar-
gets can be treated identically from a signal processing perspective regardless
of modulation bandwidth. In DOA estimation, narrowband assumptions are
independent of the Doppler effect, and therefore the criteria for wideband
classification are related to the geometry of the antenna array and its resolu-
tion capability.

To summarise, in radar literature, the notion of wideband is associated
with signals carrying bandwidths relatively larger than conventional ones for
high performance applications. Technical papers working on signal process-
ing schemes for wideband applications usually consider more complex sig-
nal models that take into account the effect of micro-Doppler and increased
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bandwidth on range and DOA profiles. One dilemma remains that high per-
formance techniques with super-resolution capabilities are obliged to wide-
band assumptions for signals that may otherwise be treated as narrowband
using conventional Fourier-based methods for instance.

2.1.5 The Motion Parameter Estimation Problem

In the sequel, focus will be on the narrowband representation and process-
ing of FMCW signals. Without loss of generality, in the context of automo-
tive radar, a chirp is a pulse of a frequency-varying wave modulated linearly
around a centre frequency f0 spanning a pre-defined bandwidth B. Con-
ventionally, the chirp signal is generated in an analogue way via a voltage
controlled oscillator (VCO). A frame of multiple identical chirps is tradi-
tionally transmitted in order to detect multiple targets followed by range-
Doppler estimation. Multiple receiving antennas, often in a form of a linear
antenna array, are used for DOA estimation. Once received, the analogue
chirp signals are conjugately mixed with the transmitted ones in a process
called dechirping. Fortunately, the dechirped signals carry frequencies much
lower than the modulation bandwidth. This makes the use of digital data
acquisition (DAQ) systems very convenient in low cost applications. The
dechirped signals at each antenna of the antenna array are then digitally pro-
cessed. Accordingly, the three main tasks of motion parameter estimation for
automotive radar sensing are: range estimation, relative velocity (Doppler)
estimation , and DOA/azimuth estimation.

Range Estimation: A stationary target placed at range R from the radar
produces a round-trip delay τ such that

τ =
2R
c

, (2.1)

where c is the propagation speed. Assuming the transmitted chirp is s(t), the
received chirp becomes

x(t) = as(t− τ) + w(t), (2.2)

where the magnitude of a represents the gains and losses incurred from diffrac-
tion (RCS), propagation (path-loss), and receiving (antenna gain), and w(t)
is the additive white Gaussian noise (AWGN). With complete knowledge of
s(t), conjugately mixing the latter with the delayed version x(t) and filtering
out the unwanted mixing products results in the dechirped signal y(t) such
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that
y(t) = x(t)s∗(t) (2.3)

It is important to note that dechirping which typically occurs in the analogue
domain is an alternative to match filtering due to its inexpensive implemen-
tation and the significant reduction in the bandwidth of what is known as the
beat signal.

After some mathematical expansion and simplification, y can be written
as

y(t) ≈ a exp
{
−j2π

[
2 f0R

c
+

2µR
c

t
]}

+ w(t), (2.4)

where µ = B/Tc denotes the modulation rate with Tc being the modula-
tion period. A simple dimensional analysis of the terms inside the exponen-
tial show that 2 f0R

c is dimensionless and 2µR
c is a range dependent frequency.

Therefore, any frequency estimation technique applied on y allows estimat-
ing the range R of the target. Following the Rayleigh criterion of interferom-
etry [39], the range resolution can then be defined as

δR =
c

2B
. (2.5)

In practice, the signal y is sampled for digital implementation. So, time t
is replaced with n/ fs where n = 0, 1, . . . , N − 1 is the sampling index and N
is the total number of samples collected at a rate fs. According to the Nyquist
theorem, in order to recover the range without ambiguity, the sampling rate
should be at least twice the range dependent frequency. So, the maximum
unambiguous range is

Rm =
fsc
2µ

. (2.6)

Velocity Estimation: When the target is non stationary, and moving with
radial velocity v, the round-trip delay of the received signal becomes

τ(t) =
2(R + vt)

c
, (2.7)

where v is positive when the target is moving away from the receiver and
negative when it is approaching the receiver. This time dependent delay
leads to what is known as the Doppler effect. Multiple chirps periodically
transmitted with a repetition interval T are then needed to estimate the Doppler
frequency. Denote by m = 0, 1, . . . , M− 1 the chirp index (widely known as
the slow-time index), with M being the total number of collected chirps. The
sampled real time can then be defined as t = n

fs
+ mT and n now denotes
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the fast-time index. To account for these extensions, the received signal y
becomes

y[m, n] ≈ a exp
{
−j2π

[
2 f0R

c
+ ( fr + fd)

n
fs
+ fdmT

]}
+ w[m, n], (2.8)

where fr =
2µR

c and fd = 2 f0v
c . From the term ( fr + fd)

n
fs

, the original range
frequency fr is now shifted by a Doppler frequency fd in the fast time. In
most cases fd is much smaller than fr and is typically discarded in that term,
but we keep it here for the sake of generality. From the term fdmT it is trivial
that any frequency estimation technique applied across the slow time allows
estimating the velocity of the target. Similarly to range estimation, Rayleigh
and Nyquist considerations dictate the resolution and the maximum unam-
biguous velocity respectively as

δv =
c

2 f0MT
(2.9)

and
vm =

c
4T f0

. (2.10)

DOA Estimation: The measurement system described previously can be
extended to include multiple receiving antennas co-located linearly in a so-
called uniform linear array (ULA) [40]. Under certain target assumptions
such as point sources and far-field approximation [41], the round-trip delay
defined before can now be modified to include the extra delay incurred at
each antenna of the antenna array. By letting the first antenna antenna be
a reference and the spatial index be l = 0, 1, . . . , L− 1 with L being the total
number of antennas, the round-trip delay at the l-th antenna due to one target
can be written as

τ(t, l) =
2(R + vt)− ld sin θ

c
, (2.11)

where d is the adjacent antenna spacing and θ denotes the DOA. For K tar-
gets, the three-dimensional (3D) FMCW radar output signal can be written
as

y(l, m, n) ≈
K

∑
k=1

ak exp
{
−j2π

[
2 f0Rk

c
+ ( fr,k + fd,k)

n
fs
+ fd,kmT +

f0d sin θk
c

l
]}

+ w(l, m, n), (2.12)

The term f0d sin θk
c l induces a uniform phase shift across L antennas allowing
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the estimation of θ through frequency estimation in the spatial domain. Note
that one should not confuse the said with the need for phase estimation to
recover the DOA information. What is explicitly needed here is to estimate
the frequency at which the phase changes across the antennas. The DOA
resolution can be defined as

δθ =
c

f0Ld cos θ
. (2.13)

Typically, d is chosen to be equal to λ/2, where λ denotes the wavelength,
which achieves the maximum unambiguous DOA range [−90◦, 90◦].

2.1.6 Signal Processing Techniques: The State-of-Art

Discrete Fourier Transform

It is now clear from (2.12) that the range, Doppler and DOA information can
be extracted through frequency estimation in the fast-time, slow-time, and
antenna domains, respectively. The discrete Fourier transform (DFT) can be
applied in all three domains simultaneously. The fast Fourier transform (FFT)
[42] is an efficient implementation of the DFT and provides an optimal ap-
proach for calculating a 3D periodogram [43]. The low complexity of the
FFT-based estimation, O(LMN log LMN), makes it an attractive candidate
for motion parameter estimation, hence its wide use in the automotive in-
dustry.

After applying a 3D FFT to (2.12), the resulting spectrum can be repre-
sented as [44]

Y[l f , m f , n f ] =
L−1

∑
l=0

M−1

∑
m=0

N−1

∑
n=0

y[l, m, n] exp
{
−j2π

( l f l
L

+
m f m

M
+

n f n
N

)}
.

(2.14)
Accordingly, the indices of the spectrum peak |Y(l f , m f , n f )| attain the range,
Doppler and DOA information according to the following relations respec-
tively:

l f =
f0Ld sin θ

c
, m f = fdMT, n f =

( fr + fd)N
fs

. (2.15)

Conventionally, constant false alarm rate (CFAR) methods to deal with time-
varying noise and interference [34] are used in the detection stage. A target
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is therefore declared present in a particular 3D cell when the following con-
dition is satisfied:

|Y[l f , m f , n f ]|2 > ϵT + σ2
v [l f , m f , n f ] ∀ l f , m f , n f , (2.16)

where ϵT is the CFAR threshold and σ2
v [l f , m f , n f ] is the noise variance around

the cell. The main drawback of the DFT is that resolution is dictated by
the Rayleigh criterion. Sub-grid accuracy may however be achieved post-
processing. [45] provides an overview of such frequency refinement tech-
niques and emphasises their sensitivity to the time-domain window used.
Interpolation can also be used for subgrid DFT-based estimation by using
the two adjacent values around a periodogram peak [46].

Maximum Likelihood

An intuitive approach to determining the unknown parameters Rk, θk and vk

is by solving the following maximum likelihood (ML) problem

min
R,θ,v,a

L−1

∑
l=0

M−1

∑
m=0

N−1

∑
n=0

∣∣∣∣y[l, m, n]−
K

∑
k=1

ak exp
{
− j2π

[
2 f0Rk

c
+
(

fr,k + fd,k
) n

fs

+ fd,kmT +
f0d sin θk

c
l
]}∣∣∣∣2,

(2.17)

where R, θ, v, and a are the vectors containing Rk, θk, vk and ak for all tar-
gets, respectively. (2.17) is clearly a non-linear least squares (NLS) problem
and since w[l, m, n] has Gaussian distribution, it naturally falls under the ML
framework [43]. This estimator can offer resolution beyond the Rayleigh
limit but is practically very difficult to solve due to the computational com-
plexity that increases with the granularity of the search space. Due to such
prohibitive computational cost, alternative method with lower computational
cost and super-resolution capability have been developed.

Subspace-based Algorithms

This class of signal processing requires sufficient SNR in large sample spaces
in order to exploit the eigenstructure of signals for high resolution parame-
ter estimation. It can be seen as a suboptimal alternative to (2.17) since es-
timating the sample covariance matrix provides a good ML estimate of the
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eignvalues and the associated eigenvectors. Two popular algorithms are re-
viewed here: multiple signal classification (MUSIC) [47] and estimation of
signal parameters via rotation invariant technique (ESPRIT) [48].

MUSIC: 1D MUSIC can be applied directly to either of the dimensions in
(2.12) for parameter estimation; however this approach requires further sig-
nal processing in multi-target scenarios in order to associate the parameters
with each other [41]. This has led researchers to develop multi-dimensional
versions of MUSIC for joint parameter estimation [49]. Recently, 2D MUSIC
was used in [50] for joint Doppler-DOA estimation, in [51] for range-DOA
estimation, and in [52] for range-Doppler mapping. In [53] tensor decompo-
sition was implemented for the realisation of 3D MUSIC to jointly estimate
range, Doppler and DOA. The main drawback in multi-dimensional MUSIC
is the computational complexity which lies in the cost of eigenvalue decom-
position (EVD) (O(LMN)3 for the 3D case). In the following, an application
of 1D MUSIC for DOA estimation is presented

1. Firstly, the antenna and fast-time domains are considered and the col-
lected data y[l, m, n] is arranged in a 2D matrix Y ∈ CL×N, the sample
covariance matrix R ∈ CM×M is estimated as

R =
1
N

N−1

∑
n=0

y[n]yH[n], (2.18)

where {.}H is the conjugate transpose, and y[n] is the n-th column of Y.

2. EVD is then derived according to

R ≈ QΛQH (2.19)

where Λ contains the eigenvalues and Q contains the signal and the
noise eigenvectors. Q can be sorted such that the signal eigenvectors
correspond to the largest eigenvalues which allows separating the noise
eigenvectors Qn from the signal eigenvectors Qs assuming the number
of targets K that form the signal subspace is known. Accordingly, Qn

can be written as

Qn = [Q[K + 1], Q[K + 2], . . . , Q[M]] (2.20)
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3. Denote by a the vector containing the DOA information for the k-th
target such that

a(θk) =

[
1, e−j2π

f0d sin θk
c , . . . , e−j2π

f0d sin θk(L−1)
c

]
. (2.21)

The orthogonality property between a(θk) and Qn can be exploited and
the DOA pseudospectrum can be calculated as

P(θ) =
1

a(θ)HQnQn
Ha(θ)

, θ ∈ [−90◦, 90◦] (2.22)

whose K peaks correspond to the DOAs of the targets.

ESPRIT: This method relies on the shift invariance property in the measure-
ment domain hence its emergence as a suitable technique for DOA estimation
in ULAs where all the antennas have the same pattern. Denote by A ∈ CL×K

the antenna array steering matrix and then consider the follow decomposi-
tion

A2 = A1Ψ, (2.23)

where A1 and A2 are constructed from the rows of A of indices 0, 1, . . . , N− 2
and 1, 2, . . . , N − 1, respectively; Ψ is a diagonal matrix containing the com-
plex exponentials of the radial rotations. Similarly, the signal subspace Qs

can then be decomposed as

Qs2 = Qs1Φ, (2.24)

where Φ and Ψ have the same eigenvalues. Since Qs1 and Qs2 have full
column rank, it follows that the matrix Φ is uniquely given by

Φ =
(

Qs
H
1 Qs1

)−1
Qs

H
1 Qs2. (2.25)

The DOA estimates can finally be determined as

θ = arcsin [arg(eignval(Φ))/(−2π f0d/c)] , (2.26)

where arg{.} returns the argument of a complex number and eignval{.} re-
turns the eigenvalues.
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Compressive Sensing

The compressive sensing (CS) theory was first introduced and developed in
[54] and [55]. It stems from the idea that signals may be in reality be sparse
in some domain. To illustrate this, a superposition of 6 distinct sinusoids is
shown in Figure 2.1. Clearly, the samples occupy the whole time domain
whereas only a few non-zeros are present in the frequency spectrum. It
follows that sampling may be done below the rates imposed by the well-
celebrated Shannon-Nyquist theorem [56] such that the recovery is dictated
by the sparsity of the signal rather than the bandwidth [57]. This revelation
was followed by a wide adoption of sparse representation for source locali-
sation in sensor arrays, mainly for DOA estimation [58, 59]. Then, motivated
by the super-resolution capability and the incorporation of parameter-based
optimisation techniques, the CS framework became a popular topic in the
field of radar imaging with many exhibits that it can outperform the state-
of-art [60, 61, 62, 63]. The automotive industry was thereby fast to conduct
extensive research on the applicability of sparse sensing for high resolution
motion-parameter estimation and interference reduction [64, 65, 66, 67, 68,
69].

In a sparse representation, the received radar signal is represented as pro-
jection on a basis comprising of a linear combination of K basis vectors. In
the case of DOA estimation, the length of the measurement domain is L and
the N fast-time samples are referred to as snapshots. Recall Y which can be
written in a matrix format as

Y = AX + W (2.27)

where X ∈ CK×N contains the complex amplitudes of the targets, and W ∈
CL×N is the AWGN. Sparsity is then introduced by generating a DOA search
grid of length Kg from all the potential incident angles such that Kg >> K.
A steering matrix Ag ∈ CL×Kg is then constructed such that its kg-th column
corresponds to a DOA in the search grid. Accordingly, Y can be rewritten as

Y = AgXg + W (2.28)

where Xg ∈ CKg×N is a column-sparse matrix whose n-th column only con-
tains K non-zero values corresponding to the DOAs of the targets. So, the
latter can be estimated by reconstructing Xg from Y and Ag. That is equiv-
alent to estimating a support set S containing the indices of the non-zero
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FIGURE 2.1: Samples of 6 sinusoids in time (top) and frequency
(bottom) domains.
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entries. A common assumption in the narrowband framework is that DOAs
of the targets are exactly consistent among all snapshots. In other words,
all columns in Xg share the same support. This problem falls under the so-
called multiple measurement vectors (MMV) framework, and may be solved
in two ways. A simple approach is to consider each column separately and
the problem reduces to a single measurement vector (SMV) one and the fi-
nal result can be combined through averaging for instance. So, consider the
following optimisation

min
xg,n
∥x̂g,n∥0 subject to ∥yn −Agx̂g,n∥2 ≤ ε, (2.29)

where yn and xg,n represent the n-th column of Y and Xg respectively, x̂g,n

denotes the estimated version of xg,n, ∥.∥0 is the ℓ0 norm which returns the
number of non-zero entries in its argument, and ∥.∥2 is the ℓ2 norm which
returns the Euclidean distance, and ε is the allowed error bound. Since (2.29)
is difficult to solve due to the NP-hardness of the ℓ0 norm, a popular relax-
ation is typically introduced by enforcing sparsity through the ℓ1 norm which
returns the sum of the absolute values of the argument. Therefore, (2.29) be-
comes

min
xg,n
∥x̂g,n∥1 subject to ∥yn −Agx̂g,n∥2 ≤ ε, (2.30)

where ∥.∥1 is the ℓ1 norm. The above problem is convex and can be solved
using the least absolute shrinkage and selection operator (LASSO) technique
[70].

A more efficient approach for solving this MMV problem is by employing
the concept of group sparsity (GS). To illustrate this, consider the following
optimisation problem

min
Xg
∥X̂g∥2,1 subject to ∥Y−AgX̂g∥F ≤ ε, (2.31)

where X̂g denotes the estimated version of Xg, ∥.∥2,1 is the ℓ2,1 norm which
returns the ℓ2 norm across every row of a matrix followed by the ℓ1 norm
across the resulting vector, and ∥.∥F is the Frobenius norm. The problem in
(2.31) can be solved using the group LASSO technique [71]. However, as the
number of snapshots increases, the computational complexity increases dra-
matically. To overcome this issue, a projection of Y to a signal subspace that
has a lower dimension can be performed using singular value decomposition
(SVD) [58].
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2.2 Bistatic Radar

2.2.1 History and Applications

Some of the earliest experiments in radar were in fact of bistatic nature with
spatial separation between the transmitter and the receiver2. Following early
proposals that somewhere in the atmosphere may be of reflective nature to
explain the propagation of radiowaves beyond the horizon, in 1924 and 1925,
Appleton and Barnett conducted experiments to measure the height of the
ionosphere with a set of broadcast transmitter and receivers located 120km
apart on the south coast of England [72]. Then in the late 1930s, the devel-
opment of the Chain Home radar system for detecting incoming aerial raids
was motivated by the Daventry Experiment conducted in 1935 by Robert
Watson Watt and Arnold Wilkins that proved feasible the radar detection of
a Handley Page Heyford aircraft [73, 74]. In 1943, the Germans deployed
Klein Heidelberg which was the first proper operational bistatic radar sys-
tem used in World War II [75]. Further development of bistatic radar was
then halted following research in radiowave interference and the develop-
ment of monostatic radar [76].

In the 1950’s, bistatic radar received new interest [77]. Its resurgence was
evident in military applications such as semi-active missile seekers (Hawk
and Sparrow in the United States and the Bloodhound in the UK) [78], bistatic
fence radar (the Distant Early Warning line [79] and Navspasur in the US),
detection of low-RCS objects [80]. During the 1970s and the early 1980s, a
large-scale research programme was launched in the United States for de-
velopment and research of bistatic radar systems for a variety of missions
including Sanctuary for electronic counter-countermeasure, Bistatic Technol-
ogy Transition/Tactical Bistatic Radar Demonstration for stealth operation
and attack of fixed and moving ground targets, and Bistatic Alerting and
Cueing [81].

Driven by the acceleration in computing power and the rise of the global
positioning system (GPS), a new era began in the mid 1990s with significant
developments in passive bistatic radar (PBR) and bistatic synthetic aperture
radar (SAR) with their applications in remote sensing [82, 83, 84, 85, 86, 87,
88, 89], airborne surveillance [90, 91, 92, 93, 94], and stealth detection [95, 96,
97, 98, 99].

2It was only until World War II when the transmit-receive switch was invented.
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Recently, in the wake of the new radio (NR) revolution and the integration
of mobile communications with radar sensing, fresh interest was drawn into
cooperative/collaborative/coherent bistatic radar (CBR) and PBR for auto-
motive applications [100, 101, 102, 103]. The literature on this topic is rather
limited due to its prematurity, so only a few exhibits that encompass the
main developments are highlighted next. In [104], one of the early experi-
ments to exploit long term evolution (LTE) signals for detecting moving ve-
hicles in a PBR configuration using base-station transmitters as illuminators
of opportunity (IOO)s. Then efforts shifted towards CBR for joint vehicular
communication and detection using OFDM and PWCM signals with empha-
sis on their simplicity of implementation compared to the commonly used
FMCW waveforms [105, 106, 107, 108, 109, 110, 111]. The common goal in
these experiments is to demonstrate the ability of integrating radar capabil-
ities of motion parameter estimation using existing mobile communication
technologies and architectures. In [112], a proof of concept was presented in
using satellite signals for automotive sensing.

It is evident from the summarised timeline that the development of the
bistatic radar was influenced by different ventures with varying purposes.
For this sake, an application-focused overview is presented next.

Bistatic DEW Line Gap-Filler Radar

The enthusiasm around distant early warning (DEW) radar during World
War II was somehow generated by two potential advantages associated with
a bistatic setup. The first being that targets carry a very large RCS when
crossing the bistatic baseline, which is the line between the transmitter and
the receiver. This occurs when the scattering angle tends to 0◦ leading to a
forward-scatter cross section which can be many orders of magnitude larger
than a typical monostatic (back-scatter) RCS [113]. The other potential ad-
vantage stems from the use of CW transmitters which are much simpler than
monostatic pulse transmitters, and can therefore be rid of a modulator and
can operate at low voltages. This meant that such systems required less main-
tenance and could be left unattended in areas of extreme weather conditions
such as the arctic region or dessert land. Despite the Canadians investing
considerable amount of effort into this application of bistatic radar for use
in their air-defense line, they faced a problem of crossing birds leading to
false detections and unwanted effects [97]. Also, the straight line assump-
tion between the bistatic transmitter and receiver is limited to relatively short
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distances (due to the curvature of the Earth), so many systems had to be de-
ployed to cover large perimeters. After various experiments in an attempt
to resolve the unwanted effects of the bird crossing problem [114], such as
lowering the operating frequency, the idea of using bistatic radar for DEW
and gap-filling was eventually abandoned. It is important to mention that
one limitation with forward-scatter detection is that it is impossible to deter-
mine where a target crosses the baseline of the transmitter and receiver pair
whereas an equivalent monostatic radar can easily determine where the tar-
get crosses the radar fence. Also, a forward-scatter detection carries a zero
Doppler frequency rendering it useless for separating moving targets from
stationary ones.

Low Airborne Target Surveillance

One interesting property of bistatic radar is the ability to detect high-frequency
(HF) signals propagating over-the-horizon (OTH), owing to the refraction
paths through ionospheric layers. This allows surveillance of aerial targets
such as low-altitude missiles and aircraft, as well as ballistic missiles during
their boost phase. HF signals also travel along the curvature of the Earth
through diffraction while suffering from higher path-loss and leading to re-
duced radar-to-target ranges. A bistatic radar would therefore exploit both
operating modes for improved detection and surveillance. The 440-L system
developed by the US in the 1960s and 1970s (halted in 1974) is a forward-
scatter OTH radar that detects the targets’ ionospheric signature formed by
the disturbances caused by the ionized jet of gas trailing the rocket [115]. This
would also allow detecting different types of missiles due to their unique
OTH signature.

Planetary Exploration

The main interest in bistatic radar for space exploration originates from the
fact that the pathloss limitation associated with the monostatic radar range
equation can be overcome if the spacecraft could be used on the shorter of
two transmit and receive paths. The idea is that a spacecraft orbiting a partic-
ular planet or moon can illuminate the latter with echoes being collected via
terrestrial receiving stations. [97] concludes that bistatic radar cannot com-
pete with the capabilities of monostatic SAR systems given the compelling
goals and the willingness of funding agencies to provide the necessary re-
sources.
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FIGURE 2.2: Monostatic vs bistatic radar setup

Air Surveillance

Typically operating in a passive mode, this class of bistatic radar, used in
civilian or military air surveillance, relies on transmitters of opportunity which
include terrestrial television (TV) and FM broadcast transmitters, satellite
TV broadcasts, and HF radio broadcasts. These transmitters are of non-
cooperative nature and the passive radar is a hitch-hiker operating without
the knowledge of the transmitter. Multiple receivers could be deployed form-
ing a multistatic measurement system. While most efforts in this area were
experimental of nature and often dampened by the lack of interest against the
rather accelerating developments in monostatic radar, the Silent Sentry sys-
tem (developed by Lockheed Martin) [116], the multistatic high-definition
(HD)-TV based radar system (developed by the US army) [117], and the FM
radio-based bistatic radar system (developed by NATO) [118], represent real
evidence of the ongoing interest, advancement, and application of bistatic
and multistatic radar in the field of air surveillance.

2.2.2 Bistatic vs Monostatic: Advantages and Disadvantages

A bistatic radar configuration with separately located transmitter and re-
ceiver can offer numerous advantages over the monostatic counterpart. How-
ever, a comparable analysis is inherently dependant on the application being
considered. In this section, a comparison is provided between the two con-
figurations (see Figure 2.2 for a simple sketch of each configuration) where
the advantages and disadvantages of each are highlighted. A brief summary
of this comparison is provided in Table 2.2.

Due to the ability to combine the transmitter and the receiver in a com-
pact package with both modules sharing a single antenna, the overall system
design of a monostatic radar is relatively simple. Such co-location also sim-
plifies calibration procedures, making it easier to maintain accuracy. Mono-
static radar systems also require minimal infrastructure which reduces the
associated logistical challenges owing to the single-platform integration. As
a result, such systems are cost-effective and are suitable for mobile vehicles
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and platforms. From a performance perspective, owing to their high range
resolution and low latency, they can provide tracking and surveillance with
high accuracy. They can also be integrated with other sensors such as lidar,
sonar, and cameras, for enhanced situational awareness. On the other hand,
monostatic radar systems suffers from self-interference since the transmit-
ted energy can leak directly to the receiver through internal coupling and are
susceptible to clutter in dense environments. Active radiowave transmission,
normally at fixed frequencies, makes these systems vulnerable to electronic
jamming and easier to locate making them prone to direct destruction in war-
fare scenarios. They also typically have fixed antenna positions which limits
the detection of low-flying or ground-hogging objects. The co-location of the
transmitter and the receiver makes the network less scalable and results in
hemispherical coverage which limits the range of the system.

TABLE 2.2: A summary of the advantages and disadvantages
of monostatic and bistatic radar

Monostatic Bistatic

Advantages

• Simplicity of design [76]
• Ease of calibration [34]
• Low cost system [34]
• Ease of deployment[34]
• High tracking accuracy

[119]
• Improved range

resolution [120]
• Low latency [34]
• Integration with other

sensors [121]

• Enhanced stealth and
LPI [122]

• Resistance to ECM [123]
• Flexible RCS [97]
• Radar network

scalability [124]
• Improved target

discrimination [97]
• Reduced Doppler

ambiguity [97]

Disadvantages

• Self-interference [125]
• Susceptibility to clutter

[97]
• Limited detection of

low-flying targets [97]
• Vulnerability to

jamming [97]
• Limited scalability [126]
• Limited range [97]

• Complex geometry and
coordination [29]

• Increased system cost
[127]

• Synchronisation
challenges [128]

• Complex signal
processing [129]

• Data fusion challenges
[130, 131]

• Complex coverage
planning [127]

Bistatic radar has been a popular choice in military applications given
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its ability to operate covertly in the so-called low probability of intercept
(LPI) systems. This stealth antenna increases their survivability and makes
them less prone to jamming and other forms of electronic counter-measures
(ECM). Due to their ability of illuminating targets from different angles as
well as collecting forward-scatters, they can offer flexible and improved RCS
which is also an attractive feature for defence applications. With separated
transmitters and receivers, a bistatic radar can be scaled into a large net-
work to achieve increased coverage, improved target separation, and re-
duced Doppler ambiguity. However, the said advantages are associated with
multiple drawbacks in design, deployment, and operation. The bistatic ge-
ometry is inherently complex which makes the planning and coordination of
the system architecture and coverage more difficult. Signal processing tech-
niques are therefore more complex and require added stages for centralised
data fusion. In order to maximise the information being extracted from the
received signals, very tight synchronisation between the transmitter and the
receiver is usually needed as well as good knowledge of the transmitted
waves, which constitute the dilemma of bistatic radar operation. Overall,
these challenges can massively increase the budget of using bistatic radar
systems making them less attractive for low-cost applications.

2.2.3 The Synchronisation Requirement

In the architecture of a monostatic radar module, a sampling clock is used
in the process of digitising the received signals. Time stamping, which is the
essence of radar ranging as it is by-product of measuring time delays of re-
flected received signals, is crucial for proper operation of such systems. For-
tunately, transceivers share the same sampling clock so the receiver has exact
knowledge of the start of the transmission. However, due to the separation
of the transmitter and the receiver in a bistatic system, accessing this infor-
mation is not as straightforward and a form of communication between the
nodes is required for useful measurement of a delay of a reflected signal. For
this reason, synchronisation techniques have been studied and developed
over the years. In [128], a variety of modern synchronisation techniques are
discussed including coaxial links and optical fibre links when the nodes are
within close proximity, line of sight (LOS) direct signal measurement, navi-
gation satellites (e.g. GPS) using stable pulse-per-second (PPS) signals [132],
and communication satellites using two-way measurements of PPS signals
[133].
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Timing is achieved in practice using two units: the oscillator and the
counter [134]. These units combined form what is known as the clock. In
order to synchronise two clocks, they both should be disciplined by the same
source. Atomic clocks are known as the ultimate reference for disciplining
any other local clocks. They are based on the vibration of atoms (Cesium or
Rubidium). GPS satellites carry extremely precise atomic clocks hence their
popular use for disciplining clocks in navigation and telecommunications.
This is done through accurate positioning of ground receivers whose motion
usually affects the level of the synchronisation achieved. Locally, Quartz-
crystal oscillators are typically used and their output is compared to more
accurate references for stricter timekeeping.

Providing an extensive review of synchronisation techniques and stud-
ies is beyond the scope of this work. Developments that are most relevant
to bistatic radar applications are provided next. Without loss of generality,
radar-based ranging requires sub-nanosecond time synchronisation which is
dictated by the resolution requirement of these systems. In [135], a synchro-
nisation scheme was developed using direct-path signals for bistatic SAR
systems where the received signal is passed through an envelope detector
to synchronise the sampling clock. In [136], synchronisation in a multistatic
FMCW-based radar network is realised through a novel over-the-air der-
amping technique by utilising a reference synchronisation signal broadcasted
on a lower frequency channel. In [137], a high-precision time synchroni-
sation scheme is proposed for multistatic radar using a mix of microwave
and troposcatter channels. It was shown that clock bias in the order of 2
ns can be achieved. [138] conducted a study determining the effects of L1
civilian signals on GPS timing for a fixed receiver. Nanosecond-accuracy
time synchronisation was proved feasible by incorporating a weighting algo-
rithm in the process. In [139], a novel synchronisation protocol was proposed
for cooperative radar applications by combining information from all nodes
in a shared ledger including coarse estimates of position (through global
navigation satellite systems (GNSS)). This presented protocol enables sub-
nanosecond level synchronisation between the nodes. [140] demonstrates
the use of a fibre-optic White Rabbit network for accurate and stable time
and frequency transfer in a netted radar system. Tests demonstrate that peak-
to-peak synchronisation accuracy of sub-nanosecond can be achieved. More
recently, a commercial off-the-shelf (COTS) oscillators were used in a study
to evaluate the synchronisation capability using GPS disciplining in [141]. It
was shown that time drift in the order of 4 ns can be achieved.
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2.3 Summary

In this Chapter, a review of the literature around automotive and bistatic
radar was presented. The basic concepts of radar use for localisation and
motion parameter estimation were introduced. The FMCW signal was iden-
tified as the state-of-art waveform used for automotive radar applications.
Fourier-based signal processing was acknowledged as the popular candi-
date for parameter estimation due to its efficiency and good performance.
For more advanced signal processing techniques, subspace-based methods,
namely MUSIC, were often used as the performance reference with sparse-
based methods such as LASSO offering improved performance but with less
theoretical exhibits due to the modernity of the framework. A gap between
the narrowband and wideband problem was identified with little research
being done to edge such gap and provide an effective solution to the wide-
band problem. The bulk of the literature on bistatic radar focused on its
military use with very limited interest post cold war given its limitations and
the superiority of the monostatic counterpart. However, it became more ev-
ident after reviewing the advantages of the bistatic configuration that what
appealed to researches 70 years ago is rather timeless, and the versatility it
offers can indeed help improve existing automotive radar sensing techniques
as will be presented in the remaining Chapters.
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Chapter 3

Enhanced Automotive Sensing
Using Bistatic Radar with
Narrowband Cooperative Roadside
Sensors

3.1 Introduction

Radar-based sensing is a key enabling technology for autonomous driving
and future intelligent transportation systems [9, 22, 142, 119, 143]. Recently,
the automotive industry has benefited significantly from the development of
various millimetre wave radar technologies deployed for applications such
as adaptive cruise control, lane-change assistance, parking assistance, au-
tonomous emergency brake, and advanced driver assistance systems (ADAS)
[144, 145, 33]. Naturally, the focus of automotive radar has been on the mono-
static mode, i.e. the radar is equipped with its own transmitters and receivers
for effective target detection and estimation, given the simplicity of its imple-
mentation and signal processing. On the contrary, a bistatic radar relies on
a transmitter typically located far away from the receiver, and requires an
additional reference receiver for collecting a direct-path signal needed as a
reference for the demodulation task [122, 146]. Without loss of generality,
any form of communication between the transmitter and the receiver that al-
lows instantaneous sharing of the modulation parameters of the transmitted
waveform, as well as tight time synchronisation, is sufficient for the opera-
tion of such radar systems.

In this Chapter, an application of bistatic radar in an automotive sce-
nario that incorporates cooperative roadside sensors is proposed. Consider
a smart highway with some stationary roadside sensor transmitting radar
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FIGURE 3.1: A schematic of the bistatic automotive localisation
scenario.

waveforms, and a connected vehicle passively relying on these signals to
locate other vehicles ahead of it in a bistatic manner. The idea is to re-
lieve the vehicle from the transmission task, which inherently reduces power
consumption. This also extends the detectable range of the vehicle’s front
long-range radar when the targets are closer to the roadside sensor than
the receiving antenna. Figure 3.1 shows a schematic of such a scenario.
Being of a cooperative nature, the roadside sensor transmits a modulated
waveform suitable for radar applications – typically FMCW – and informs
the sensing vehicle of its transmission routine and modulation parameters
via a fifth-generation (5G) link with an agreed protocol. Although sharing
such information is straightforward and can be achieved using vehicle-to-
infrastructure (V2I) communications [108], meeting the synchronisation re-
quirement can be a critical task. Briefly, this synchronisation task between
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the searching car and the roadside sensor can be achieved by fixing both lo-
cal clock units to the same time reference, with an acceptable offset. It is
important to mention, however, that in this proposed application, the syn-
chronisation requirement, and the possible prospects to meeting them differ
from that in bistatic vehicular applications exploiting 5G NR waveforms be-
tween multiple nodes (e.g. [147]). This adds another element of novelty to
this work as emerging applications always drove specific synchronisation re-
quirements [148]. Here, the following can be stated: the sensing vehicle can
be synchronised by a local time reference present at the roadside sensor (no
need for coordinated universal time (UTC) as a discipline); a clear LOS is
available between the sensor and the vehicle; the latter can both have time
reference units of the same granularity and specifications; the roadside sen-
sor can quantify its clock drift due to its synchronisation to the GNSS atomic
clock, and can communicate its drift to the vehicle after the initial synchroni-
sation (as long as the drift does not exceed the latency of the communication
link); the minimum accepted clock offset is dictated by the range resolution
of bistatic FMCW radar and is independent from GNSS localisation accuracy
and the instantaneous motion parameters of the vehicle; the sensing vehicle
can have private access to GNSS, adding to DoFs available for the synchro-
nisation task.

In the rest of this Chapter, the geometry of the proposed application along-
side its solution is provided in Section 3.2. Then, the bistatic FMCW signal
model is derived in Section 3.3. After that, a parameter estimation/processing
algorithm based on FFT is proposed in Section 3.4. Finally, computer simula-
tions are presented in Section 3.5, and conclusions are drawn in Section 3.6.

3.2 Solution to the Geometry of the Proposed Sce-

nario1

Assume all vehicles are moving with constant forward velocity over the con-
sidered period of signal transmission such that the sensing vehicle is ap-
proaching the h-th roadside sensor and the target vehicles are driving away

1This work here is inpsired by Skolnik and Willis’s development of the bistatic radar
geometry for airborne applications and ballistic missile detection [76, 149]. The third dimen-
sion represented by the elevation is not taken into account here but will be considered in
future work.
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FIGURE 3.2: Geometry of the bistatic automotive localisation
scenario.

from it. The aim for the sensing vehicle is to locate the k-th target by esti-
mating its range Rk, forward velocity vk, and DOA θk. Let Rh be the dis-
tance between the h-th roadside sensor and the sensing vehicle, which is
often known as the bistatic baseline, and Rh,k be the distance between the
h-th roadside sensor and the k-th target vehicle. Denote by v the forward
velocity of the sensing vehicle and θh the DOA of the h-th roadside sensor
observed at the sensing vehicle. In the sequel, the subscripts k and h denote
any parameters or signals corresponding to the k-th target and the h-th road-
side sensor, respectively. The subscript h, k denotes any parameters or signals
corresponding a combination of the k-th target and h-th roadside sensor.

The derivations presented in the remainder of this Section apply for the
geometry provided in Figure 3.2 based on the assumption above that the
target vehicle is driving away from the roadside sensor and the sensing ve-
hicle is approaching it. This assumption does not particularly simplify the
bistatic geometry in any sense, it rather allows focusing on the proof of con-
cept for this proposed application since other geometries require different
radar considerations, which may be considered in future work. Nonetheless,
the derivations here are valid regardless of the placement of the sensing ve-
hicle, the roadside sensor, or the target vehicle on either side of the road. So,
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applying the cosine law to the angle γh,k in Figure 3.2 gives

R2
h,k = R2

k + R2
h − 2RkRh cos(γh,k), (3.1)

where γh,k is an auxiliary angle and can be defined as

γh,k = |θh − θk|. (3.2)

From Figure 3.1, the signal reflected from the k-th target and received at the
sensing vehicle, travels a distance Ŕh,k, known as the bistatic range, such that

Ŕh,k = Rh,k + Rk. (3.3)

Combining (3.1) and (3.3) leads to the following

Rk =
Ŕ2

h,k − R2
h

2Ŕh,k − 2Rh cos(γh,k)
. (3.4)

The velocity projected on the direct-path signal due to the motion of sensing
vehicle can be defined as

vh = v cos(θh). (3.5)

Similarly, the total velocity projected on each path of the target signal can be
defined as

vh,k =vk cos(αh,k) + (vk − v) cos(θk)

=vk [cos(αh,k) + cos(θk)]− v cos(θk), (3.6)

where αh,k is an auxiliary angle and can be defined as

αh,k =

βh,k + θk, for θh ≤ 0◦,

βh,k − θk, for θh ≥ 0◦,
(3.7)

where βh,k is the bistatic angle. By applying the sine law to the bistatic trian-
gle, we get

sin(γh,k)

Rh,k
=

sin(βh,k)

Rh
. (3.8)
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By combining (3.3), (3.7), and (3.8), we can rewrite αh,k as

αh,k =

arcsin
(

Rh
Rh,k

sin(|θh − θk|)
)
+ θk, for θh ≤ 0◦,

arcsin
(

Rh
Rh,k

sin(|θh − θk|)
)
− θk, for θh ≥ 0◦,

(3.9)

Using (3.6) and (3.9), vk can be calculated as

vk =
vh,k + v cos(θk)

cos(αh,k) + cos(θk)
. (3.10)

To solve this geometry problem and estimate the motion parameters of the
target, Ŕh,k, Rh, Vh,k , v, θk, and θh should be known. Next, we show how the
latter can be unambiguously estimated using radar sensing.

3.3 Bistatic Automotive FMCW Radar Signal Model

Suppose that the h-th roadside sensor transmits a frame of M identical nar-
rowband FMCW chirps, with pulse repetition interval T and transmission
duration per pulse equal to Tc. A single sensing vehicle is considered with K
point targets present in the visible region of its radar module. A normalised
single chirp can be represented in the complex form as

s0(t) =

exp{j2π( f0t + 0.5µt2)} t ∈ [0, Tc),

0 otherwise,
(3.11)

where f0 denotes the starting frequency, t is the continuous real time, µ = B
Tc

is the modulation rate, and B is the bandwidth. Note that the normalisation
step to represent s0 through dividing the original signal by the transmitted
signal amplitude

√
PtGt with Pt and Gt being the transmitted power and an-

tenna gain, respectively, is merely done to simplify the notation. Then, the
transmitted normalised frame can be represented as

sM(t) =
M−1

∑
m=0

s0(t−mT). (3.12)

Since the signal sM(t) is periodic, time t can be decomposed into fast time t f

and slow time mT such that

t = t f + mT, t f ∈ [0, Tc). (3.13)
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Accordingly,
s0(t) = s0(t f + mT) = s0(t f ). (3.14)

While sM(t) is a superposition of M chirps, it is convenient with the proposed
decomposition of time to represent the normalised transmitted signal for the
m-th chirp at time t f as

s(m, t f ) = s0(t f ). (3.15)

The direct-path signal received at the sensing vehicle from the h-th roadside
sensor incurs a time delay

τh(m, t f ) =
Rh
c
− vh

c
(t f + mT). (3.16)

Suppose that the sensing vehicle is equipped with a ULA of L antennas with
adjacent sensor spacing d [150]. By following a free-space path-loss model,
the direct-path signal received at the l-th antenna of the sensing vehicle cor-
responds to the h-th roadside sensor and can be expressed as

rh(l, m, t f ) = Ahs0(t f − τh(m, t f )) exp{−j2πϕh(l)}, (3.17)

where

Ah =

√
PtGtGrc2

(4π)2 f 2
0 R2

h
(3.18)

is the received signal amplitude with Gr being the receiver antenna gain, and

ϕh(l) =
f0d sin θh

c
l (3.19)

is the phase delay relative to the 0-th antenna.
Similarly, the signal reflected from the k-th target and received at the sens-

ing vehicle incurs a time delay

τh,k(m, t f ) =
Ŕh,k

c
+

vh,k

c
(t f + mT). (3.20)

Then, a bistatic signal reflected from the k-th target and received at the sens-
ing vehicle can be expressed as

rh,k(l, m, t f ) = Ah,ks0(t f − τh,k(m, t f )) exp{−j2πϕk(l)}, (3.21)
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where

Ah,k =

√
PtGtGrσbic2

(4π)3 f 2
0 R2

kR2
h,k

(3.22)

is the received signal amplitude with σbi being the bistatic RCS, and

ϕk(l) =
f0d sin θk

c
l (3.23)

is the phase delay relative to the 0-th antenna. We assume, for the sake of
simplicity, that σbi is constant and equal for all considered targets, and the
received signal amplitude is deterministic.

The total signal received is a superposition of the direct-path and the
bistatic target signals and can be expressed, in the presence of K targets, as

yh(l, m, t f ) = rh(l, m, t f ) +
K

∑
k=1

rh,k(l, m, t f ) + wh(l, m, t f ), (3.24)

where wh is AWGN2. To extract the embedded information, yh is cross-correlated
with a signal identical to the one in (3.11) generated locally. Here, we assume
perfect synchronisation and that the modulation settings are known. The
resultant beat signal, also known as the intermediate frequency (IF) signal,

2Noise is not necessarily white Gaussian in real scenarios and the case with non-white
non-Gaussian noise will be considered as part of future research since such considerations
would affect the performance of the developed methods.
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corresponding to the h-th sensor can be modelled as

y◦h(l, m, t f ) = rh(l, m, t f )s∗0(t f ) +
K

∑
k=1

rh,k(l, m, t f )s∗0(t f ) + wh(l, m, t f )

= Ah exp{j2π[ f0(t f − τh(m, t f )) + 0.5µ(t f − τh(m, t f ))
2 − ϕh(l)]}

× exp{−j2π( f0t f + 0.5µt2
f )}

+
K

∑
k=1

Ah,k exp{j2π[ f0(t f − τh,k(m, t f )) + 0.5µ(t f − τh,k(m, t f ))
2 − ϕk(l)]}

× exp{−j2π( f0t f + 0.5µt2
f )}+ wh(l, m, t f )

= Ah exp{−j2π[ f0τh(m, t f )− 0.5µτ2
h (m, t f ) + µt f τh(m, t f ) + ϕh(l)}

+
K

∑
k=1

Ah,k exp{−j2π[ f0τh,k(m, t f )− 0.5µτ2
h,k(m, t f ) + µt f τh,k(m, t f ) + ϕk(l)]}

+ wh(l, m, t f )

≈ Ah exp{−j2π[ f0τh(m, t f ) + µt f τh(m, t f ) + ϕh(l)]}

+
K

∑
k=1

Ah,k exp{−j2π[ f0τh,k(m, t f ) + µt f τh,k(m, t f ) + ϕk(l)]}+ wh(l, m, t f ).

(3.25)

By substituting (3.16) and (3.20) in (3.25) we get the dechirped signal as

y◦h(l, m, t f )

= Ah exp{−j2π[ f0(
Rh
c

+
vh
c
(t f + mT)) + µt f (

Rh
c

+
vh
c
(t f + mT)) + ϕh(l)]}

+
K

∑
k=1

Ah,k exp{−j2π[ f0(
Ŕh,k

c
+

vh,k

c
(t f + mT)) + µt f (

Ŕh,k

c
+

vh,k

c
(t f + mT))

+ ϕk(l)]}+ wh(l, m, t f )

≈ Ah exp{−j2π(
f0Rh

c
+

µRh
c

t f +
f0vh

c
mT + ϕh(l))}

+
K

∑
k=1

Ah,k exp{−j2π(
f0Ŕh,k

c
+

µŔh,k

c
t f +

f0vh,k

c
mT + ϕk(l))}+ wh(l, m, t f ).

(3.26)
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The dechirped signal is sampled at a rate fs and can be written as a function
of antenna index l, slow-time index m and fast-time index n as

ŷh[l, m, n] = qh exp{−j2π(
µRh

c
n
fs
+

f0vh
c

mT +
f0d sin θh

c
l)}

+
K

∑
k=1

qh,k exp{−j2π(
µŔh,k

c
n
fs
+

f0vh,k

c
mT +

f0d sin θk
c

l)}+ ŵh[l, m, n],

(3.27)

where qh = Ahe−j2π
f0Rh

c , qh,k = Ah,ke−j2π
f0 Ŕh,k

c , and ŵh is AWGN.
Taking into account the Nyquist considerations, the maximum unam-

biguous bistatic range can be defined as

Rbi =
c fs

µ
. (3.28)

Assuming the observation period is equal to the chirp duration, the Rayleigh
resolution of the target range can be defined as

δRh,k =
c

2B cos(βh,k/2)
. (3.29)

Assuming free-space propagation, using the radar range equation with the
same radar settings, we can derive the relationship between the maximum
detectable target range from a bistatic measurement, denoted by Rbi, and
that from a monostatic measurement, denoted by Rmono, as

Rbi =

√
σbi

σmono

R2
mono
Rt

(3.30)

where σmono denotes the monostatic RCS, respectively, and Rt is the distance
between the roadside sensor and the target. Assuming σbi = σmono, it is clear
that the sensing vehicle can detect a target at much further distances using
the proposed bistatic configuration when the target is closer to the roadside
sensor. This is illustrated in Figure 3.3 where Rmono is set to 100 m, typically
achieved by existing automotive monostatic radar for front long-range ap-
plications. Also, the roadside sensor can practically have much higher trans-
mission power and antenna gain than the radar module fitted in the sensing
vehicle, thereby potentially improving the detection range even further. It
is worth mentioning that according to Crispin’s equivalence RCS theorem
[151], σbi and σmono vary over comparable values when βh,k < 180◦, meaning
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FIGURE 3.3: Maximum detectable range: bistatic vs monostatic
(based on (3.30) with Rmono = 100 m and σbi = σmono).

that one could be greater than the other depending on the scattering geome-
try and conditions.

Let Rmono be the maximum unambiguous monostatic range. Knowing
thatRmono = c fs

2µ , we can define the following

Rbi = 2Rmono − Rt. (3.31)

From (3.31), we can see that the maximum unambiguous range of the pro-
posed application is at least that of a monostatic radar and at most twice of it.
In theory, this permits relaxing the sampling-clock requirements which can
reduce the energy cost. However, setting the sampling frequency to achieve
the lower bound would be a more practical approach. From (3.29), we can
see that the resolution of the proposed application is poorer than that of a
monostatic radar (typically c/(2B)). However, the proposed scenario offers
other advantages depending on the instantaneous geometry of vehicles. For
instance, when two cars have the same monostatic range but different bistatic
range, they can still be separated here while monostatic radar fails. In addi-
tion, extending this proposal to deploying multiple roadside sensors with
well-designed cooperative transmission protocols could improve range res-
olution beyond the monostatic radar capabilities.

In the dechirp process, it was assumed that perfect synchronisation be-
tween the sensing vehicle and the roadside sensor is achieved. However,
synchronisation errors may occur in reality, so we define here the minimum
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requirement of time synchronisation for acceptable errors in parameter esti-
mation. Let the synchronisation error be τe (in seconds), assumed constant
during one frame. The range bias introduced can then be expressed as

Rbias = ±τec. (3.32)

This bias in range measurement can be considered negligible if it is smaller
than half of the resolution bound. So, using (3.29), for a given bandwidth B,
the maximum accepted clock offset in this proposed application is related to
the bistatic angle βh,k can be defined as

τe,max = min
βh,k

(
1

4B cos(βh,k/2)

)
. (3.33)

3.4 Data Processing and Parameter Estimation

The raw data is structured into a matrix format, and then 2D FFT is applied
for range-Doppler and range-DOA processing.

3.4.1 Range-Doppler Estimation

From the sampled data in (3.27) corresponding to the h-th roadside sensor,
the slow-time and fast-time domains are considered and can be structured
into a 2D matrix YRV ,h ∈ CM×N as

YRV ,h = qh · vh · rT
h +

K

∑
k=1

qh,k · vh,k · rT
h,k + WRV ,h, (3.34)

where rh and rh,k are N × 1 column vectors

rh =

[
1, e−j2π

µRh
c

1
fs , . . . , e−j2π

µRh
c

N−1
fs

]T
, (3.35)

rh,k =

[
1, e−j2π

µŔh,k
c

1
fs , . . . , e−j2π

µŔh,k
c

N−1
fs

]T

, (3.36)

representing the range steering vectors, vh and vh,k are M× 1 column vectors

vh =

[
1, e−j2π

f0vh
c T, . . . , e−j2π

f0vh
c (M−1)T

]T
, (3.37)

vh,k =

[
1, e−j2π

f0vh,k
c T, . . . , e−j2π

f0vh,k
c (M−1)T

]T
, (3.38)
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representing the Doppler steering vectors, and WRV ,h is AWGN.
Computing the range-Doppler 2D FFT allows us to estimate the peaks

corresponding to (Rh, Vh) and (Ŕh,k, vh,k). By applying the triangle inequal-
ity to Tx-Tg-Rx in Figure 3.2, we can state that Ŕh,k = (Rh,k + Rk) < Rh

(assuming no reflections from objects on the LOS between the sensing ve-
hicle and the roadside sensor). Therefore, the peak with the smallest range
corresponds to (Rh, vh), while the remaining peak corresponds to (Ŕh,k, vh,k).

3.4.2 Range-DOA Estimation

Next, the antenna and fast-time domains are considered and can be struc-
tured into a 2D matrix YRθ,h ∈ CL×N as

YRθ,h = qh · ah · rT
h +

K

∑
k=1

qh,k · ak · rT
h,k + WRθ,h, (3.39)

where ah and ak are L× 1 column vectors

ah =

[
1, e−j2π

f0d sin θh
c , . . . , e−j2π

f0d sin θh
c (L−1)

]T
, (3.40)

ak =

[
1, e−j2π

f0d sin θk
c , . . . , e−j2π

f0d sin θk
c (L−1)

]T
, (3.41)

representing the array steering vectors, and WRθ,h is AWGN.
Computing the range-DOA 2D FFT allows us to estimate the peaks corre-

sponding to (Rh, θh) and (Ŕh,k, θk) which can be matched directly to the corre-
sponding range parameters previously estimated. The estimated parameters
are then stored and processed as shown in Algorithm 1.

3.5 Simulation Results

Computer simulations were conducted to evaluate the success of the pro-
posed application3. A single cooperative roadside sensor, sensing vehicle,
and target are placed at map coordinates to replicate the road scenario of

3The developed methods and algorithms can be verified effectively using simulated data
as the model is accurate enough for reliable validation, which is also a common practice in
the radar community. However it is always advantageous and desirable to test the methods
and algorithms using real data. Given the difficulty of obtaining real data, it is left for future
work.



46 Chapter 3. Enhanced Automotive Sensing Using Bistatic Radar with
Narrowband Cooperative Roadside Sensors

Algorithm 1 FFT-based parameter estimation algorithm for the proposed
bistatic automotive sensing application.

Require: YRV ,h, YRθ,h, f0, µ, d, T, M, L, fs, N.
1: Apply 2D FFT to YRV ,h; compute a range-Doppler map.
2: Search for the peaks in the range-Doppler map; estimate Rh, vh, Ŕh,k, and

vh,k.
3: Apply 2D FFT to YRθ,h; compute a range-DOA map.
4: Search for the peaks in the range-DOA map; estimate θh and θk.
5: Using the estimates of θh and θk, estimate γh,k according to (3.2).
6: Using the estimates of γh,k, Rh and Ŕh,k, estimate Rk according to (3.4).
7: Using the estimates of vh and θh, estimate v according to (3.5).
8: Using the estimates of Ŕh,k, Rk, Rh, θh, and γh,k, estimate αh,k according to

(3.7).
9: Using the estimates of vh,k, v, θk, and αh,k, estimate vk according to (3.10).

10: return Estimates of Rk, vk ,and θk for all K targets.

TABLE 3.1: Radar settings used in the simulation of the pro-
posed bistatic automotive application

Parameter Value Parameter Value
Pt 10 dBm f0 77 GHz
Gt 23 dBi B 300 MHz
Gr 16 dBi Tc 30 µs
σbi 1 dBsm T 35 µs
NF 12 dB fs 17.07 MHz
M 256 N 512
L 128 d 1.948 mm

Figure 3.1. The radar system settings used are recommended by the Interna-
tional Telecommunication Union (ITU) for automotive applications in [152].
A summary of these settings used as well as the modulation parameters is
provided in Table 3.1. In the first simulation, the noise figure (NF) was fixed
at 12 dB (recommended in [152] for measuring a monostatic range up to 100
m). The estimated parameters after applying Algorithm 1 are shown in Table
3.2. We can see that at the recommended NF of 12 dB, the motion parameters
can be accurately estimated with the proposed bistatic measurement.

Monte Carlo simulations were also conducted to compute the root-mean-
squared error (RMSE) performance at different levels of noise. A scenario
where the sensing vehicle is equipped with an equivalent monostatic radar
is used as the baseline for comparison. NF is varied in a range of 10-30 dB,
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FIGURE 3.4: An example of the range, Doppler, and DOA spec-
tra generated using FFT from bistatic measurements for esti-

mating the parameters in Table 3.2.
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FIGURE 3.5: A comparison of RMSE between the proposed
bistatic automotive radar application and the monostatic equiv-

alent against different levels of NF (σbi = σmono).
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TABLE 3.2: True vs estimated parameters from bistatic mea-
surements (NF = 12 dB)

Parameter Rh [m] Rk [m] v [m/s] vk [m/s] θh [
◦] θk [

◦]
True 51.41 92.24 13.41 25.64 −20 26.31

Estimated 51.01 92.30 13.42 25.57 −20.10 25.94

and 2000 tests are run for each level of noise. Then, the RMSE for the esti-
mated range, velocity and DOA is computed, and the results are shown in
Figure. 3.5. These results show that with the proposed bistatic configuration
the motion parameters, for both direct-path and target signals, can be accu-
rately estimated as NF approaches the recommended levels. As theoretically
expected, the bistatic measurement outperforms the monostatic counterpart
when estimating the target signal. By focusing on the estimation perfor-
mance of the target signals in Figure 3.5, it is clear that bistatic measurements
achieve the same level as the monostatic ones but with 3 dB increase in noise
levels. Also, while the direct-path signal dominates the FFT spectrum, a sim-
ple peak search was sufficient to detect the relatively weaker target signal.

3.6 Summary

In this Chapter, an automotive application for bistatic radar was proposed
by employing cooperative roadside sensors. As well as enahancing the de-
tection range of the vehicle with the bistatic mode achieving a theoretical
range up to twice that of the monostatic counterpart, this application can
also reduce the power cost associated with the constant transmission while
in autopilot mode. Moreover, the roadside sensors can offer more flexibility
of transmission with increased antennas, higher power, and better orthogo-
nality. With less active transmitters on the smart highway, assuming more
user vehicles than roadside sensors, the spectrum may be much cleaner than
that with monostic radars actively illuminating the field. Although perfect
synchronisation between the transmitting sensor and the receiving car is a
critical task, this Chapter focused on the radar signal processing aspect and
derived the general geometry of a scenario when the sensing vehicle is ap-
proaching the roadside sensor while the target drives away from it. It was
shown that the motion parameters can be unambiguously estimated when
the sensing vehicle is equipped with an antenna array in the receiving mode.
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Computer simulations have shown that the proposed application outper-
forms the monostatic equivalent in considered scenarios and it can match its
performance with 3 dB higher noise levels. It is important to mention that
more advanced peak search algorithms and direct-path suppression tech-
niques, such as CFAR [153], could yield a better RMSE at higher noise lev-
els. However, such research direction remains for future work. In the next
Chapter, alternative signal processing techniques for improving the estima-
tion quality are explored.
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Chapter 4

Sparsity-Based Location and
Doppler Estimation

4.1 Introduction

While it is generally accepted that advanced signal processing techniques
carry the extra computational cost, this consensus is destined to vanish as
processing power retains its increasing trend. As a result, advanced signal
processing techniques such as MUSIC [47] and sparsity-based methods un-
der the CS framework [154] have been hot topics in radar-related research in
the last few decades [49, 40, 61, 33]. A sparse representation means that the
signal can be modelled as a vector of finite/infinite parameters where only a
few entries are non-zero; a set containing the indices of the non-zero entries
in this sparse vector is known as the support.

When a radar system illuminates a given area of interest, the reflected en-
ergy only occupies a small fraction of the detected spectrum. Although con-
vential radar signal processing does not assume sparsity in its framework,
recent work [61] has shown that tools used in the CS area [55] can in fact be
exploited for high resolution radar imaging. In [155], the effects of the radar
settings on the conditions required for sparse signal recovery in a convex en-
vinronment were studied. It was also shown that correct detection of targets
depends on their number and the SNR level of the signals available. For
convenience, sparsity is assumed in this thesis (may be achieved in a pre-
processing stage such as CFAR) in order to focus on validating the bistatic
automotive radar application being presented.

To the best of our knowledge, in the existing literature on motion param-
eter estimation using sparse recovery techniques, no work has previously
been done on jointly estimating range, Doppler, and DOA of a target using
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sparse representation of bistatic measurements. Here, a sparse representa-
tion is derived for the bistatic automotive signal model presented in Section
3.3 for joint location and Doppler estimation1. Without loss of generality, the
2D-location is defined as the range and DOA of the target, and Doppler is
the effect of the moving object on the path of the propagating wave, which
is directly related to the target velocity. The Cramer-Rao bound (CRB) is also
derived for this estimation problem for the first time. It provides a lower
bound on the variance of an unbiased estimation of the motion parameters
[156], which is a performance benchmark commonly used in the radar liter-
ature. In the CRB derivation, the noiseless signal is treated as determinis-
tic with its noisy version following a Gaussian distribution. A closed-form
representation is provided that allows straightforward implementation with
simulation tools.

In the rest of this Chapter, a 3D bistatic automotive FMCW signal model
and the CRB are derived in Section 4.2. Then, a multi-target sparsity-based
method for simultaneous location and Doppler estimation is proposed in Sec-
tion 4.3. Finally, simulation results are presented in Section 4.4, and the find-
ings are summarised in Section 4.5.

4.2 3D Bistatic Automotive FMCW Radar Signal

Model

Without loss of generality, we assume perfect synchronisation with the mod-
ulation settings already known. Further, we assume that the location of the
roadside sensor (Rh, θh) is known and that the signal rh has already been
removed at the receiver. Note that knowledge of the roadside sensor loca-
tion allows us to more effectively remove the direct-path signal as explained
below:

1. The peak corresponding to the direct-path signal can be unambigu-
ously identified since τh < τh,k (triangle inequality in Figure 3.2 with
Rh < (Rh,k + Rk)) and the intensity of the peak is strictly higher than
the ones corresponding to bistatic reflections.

1While this thesis adopts a sparsity-based approach for parameter estimation, the focus
remains on devising a signal processing scheme for the proposed bistatic automotive radar
application in which it outperforms the currently used FFT-based approach in the industry.
The core optimisation method used here, LASSO, is a popular and well understood algo-
rithm. Novel methods for sparsity-based estimation may be considered in future work.
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2. The GPS coordinates of the roadside sensor can be accessed by the sens-
ing vehicle through the established NR communication link. With ac-
cess to its own GPS coordinates, the sensing vehicle can then implement
data fusion to better estimate the direct-path signal (Note that the avail-
ability of accurate GPS coordinates is not necessary for the feasibility of
this application but can help optimise the estimation and the removal
of the direct-path signals).

3. Direct-path removal techniques have been studied extensively in the
literature, and the feasibility of such task has already been proven [157,
158, 159]. Moreover, having access to two sources of information re-
lated to the direct-path signal (through radar processing and NR com-
munications) can intuitively improve the performance of those tech-
niques.

The dechirped and sampled signal in (3.27) can now be simplified to repre-
sent the target reflections only. So, it can be written as a function of antenna
index l, slow-time index m and fast-time index n as

y̌h[l, m, n] =
K

∑
k=1

qh,ke−j2π(
µŔh,k

c
n
fs
+

f0vh,k
c mT+ f0d sin θk

c l)
+ ŵh[l, m, n]. (4.1)

The results in (4.1) can be structured to form a tensor Y h ∈ CL×M×N such
that

Y h =
K

∑
k=1

qh,k(ak ◦ vh,k ◦ rh,k) +W h, (4.2)

where W h ∈ CL×M×N is the AWGN tensor. Next, the antenna and fast-time
domains are stacked together against the slow time, and the tensor Y h can
be reshaped into a matrix Yh ∈ CLN×M such that

Yh =
K

∑
k=1

qh,k

(
ph,kvT

h,k

)
+ Wh, (4.3)

where ph,k = rh,k ⊗ ak and Wh ∈ CLN×M is the AWGN matrix.
Finally, Yh can be written in a more compact format as

Yh = PhXhVT
h + Wh, (4.4)

where Ph = [ph,1, ph,2, . . . , ph,K] ∈ CLN×K contains the range-DOA informa-
tion, Vh = [vh,1, vh,2, . . . , vh,K] ∈ CM×K contains the Doppler information,
and Xh = diag{qh,1, qh,2, . . . , qh,K} ∈ CK×K contains the complex amplitude.
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4.2.1 CRB Derivation for 3D Joint Parameter Estimation

Consider the following reformulation of (4.4)

yh = vec{Yh} = Ahxh + wh ∈ CLMN×1, (4.5)

where

Ah = [(vh,1 ⊗ ph,1), (vh,2 ⊗ ph,2), . . . , (vh,K ⊗ ph,K)] ∈ CLMN×K, (4.6)

xh = [qh,1, qh,2, . . . , qh,K]
T ∈ CK×1, (4.7)

and wh = vec{Wh}.
For the simplicity of notation, we assume a single target and roadside

sensor, so the subscripts h and k are omitted in the following CRB derivation,
and the bistatic range and velocity, and DOA are now denoted as R, v, and
θ, respectively. Let Qn ∈ CLMN×1 be the noise covariance matrix of y, which
can be expressed as

Qn = E{wwH} = σ2
nI, (4.8)

where σ2
n is the noise power, I is an LMN × LMN identity matrix, and E{.}

is the expectation computation. The estimation of the motion parameters is
denoted as u such that

u = [R θ v]T. (4.9)

Then, the measurement vector follows a Gaussian distribution, i.e. y ∼
N (µy(u), σ2

nI), where µy(u) represents the mean value of y and is defined
as

µy(u) = µy(θ, R, v) = Aa(θ, R, v), (4.10)

with the (mLN + lN + n)-th entry of a(θ, R, v) given by

am,l,n(θ, R, v) = exp
{
−j2π

(
f0d sin θ

c
l +

µR
c

n
fs
+

f0v
c

mT
)}

, (4.11)

and A is the signal amplitude. Accordingly, the probability density function
(PDF) of y is

p(y, u) =
1

πLMN det{Qn}
e−(y−µy(u))Qn

−1(y−µy(u))H
, (4.12)
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where det{.} returns the matrix determinant. The log-likelihood function of
y is given by

Ly(u) ≜ ln p(y, u) = −LMN ln det{πQn} − (y− µy(u))Qn
−1(y− µy(u))H.

(4.13)
Let û be the unbiased estimation for the parameter set u. The CRB gives the
lower bound of the variance of such estimation, whose covariance matrix is
given as

C(u) ≜ E{(û− u)(û− u)T} (4.14)

and satisfies the following inequality

C(u) ≥ J−1, (4.15)

where J is the Fisher information matrix (FIM) and defined as

J = −E
{
∇u∇T

uLy(u)
}

, (4.16)

and ∇u =
[

∂
∂R

∂
∂θ

∂
∂v

]T
. Then for a Gaussian distribution and a deterministic

mean, the i, j-th element of the FIM can be written as [43]

Ji,j =
∂2

∂ui∂uj
[Ly(u)] = 2ℜ

{
∂µH

y (u)
∂ui

Qn
−1 ∂µy(u)

∂uj

}
, (4.17)

where i and j represent the rows and columns in J and ui represents the i-th
parameter in u. For jointly estimating the R, θ, and v, the FIM is expressed as

J =

 Jθθ JθR Jθv

JRθ JRR JRv

Jvθ JvR Jvv

 . (4.18)

Next, the FIM element with respect to θ is derived as

J1,1 =
∂2

∂θ2 [Ly(u)] = 2
A2

σ2
n

∂aH(θ, R, v)
∂θ

∂a(θ, R, v)
∂θ

. (4.19)

Firstly, the derivative of am,l,n(θ, R, v) with respect to θ can be obtained as

∂am,l,n(θ, R, v)
∂θ

= am,l,n(θ, R, v)
(
−j2π

f0d cos θ

c
l
)

. (4.20)
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Then,
∂a(θ, R, v)

∂θ
= a(θ, R, v)⊙ (1M ⊗ (1N ⊗ á(θ))), (4.21)

where á(θ) = [0,−j2π
f0d cos θ

c , . . . ,−j2π
f0d cos θ

c (L− 1)]T, 1M = [1, 1, . . . , 1]T ∈
RM×1, and 1N = [1, 1, . . . , 1]T ∈ RN×1. After that, we get Jθ,θ = J1,1.

Similarly, the FIM element with respect to R is derived as

J2,2 =
∂2

∂R2 [Ly(u)] = 2
A2

σ2
n

∂aH(θ, R, v)
∂R

∂a(θ, R, v)
∂R

. (4.22)

For the derivative of am,l,n(θ, R, v) with respect to R, we get

∂am,l,n(θ, R, v)
∂R

= am,l,n(θ, R, v)
(
−j2π

µ

c
n
fs

)
. (4.23)

Then,
∂a(θ, R, v)

∂R
= a(θ, R, v)⊙ (1M ⊗ (ŕ⊗ 1L)), (4.24)

where ŕ = [0,−j2π
µ

c fs
, . . . ,−j2π

µ
c fs

(N − 1)]T and 1L = [1, 1, . . . , 1]T ∈ RL×1.
After that, we get JR,R = J2,2.

Next, the FIM element with respect to v is derived as

J3,3 =
∂2

∂v2 [Ly(u)] = 2
A2

σ2
n

∂aH(θ, R, v)
∂v

∂a(θ, R, v)
∂v

. (4.25)

For the derivative of am,l,n(θ, R, v) with respect to v, we get

∂am,l,n(θ, R, v)
∂v

= am,l,n(θ, R, v)
(
−j2π

f0T
c

m
)

. (4.26)

Then,
∂a(θ, R, v)

∂V
= a(θ, R, v)⊙ (v́⊗ (1L ⊗ 1L)), (4.27)

where v́ = [0,−j2π
f0T
c , . . . ,−j2π

f0T
c (M− 1)]T. After that, we get Jv,v = J3,3.

Jθ,r = Jr,θ and can be obtained from J1,2 as

Jθ,r = 2
A2

σ2
n

∂aH(θ, R, v)
∂θ

∂a(θ, R, v)
∂R

. (4.28)

Jv,r = Jr,v and can be obtained from J2,3 as

Jv,r = 2
A2

σ2
n

∂aH(θ, R, v)
∂v

∂a(θ, R, v)
∂R

. (4.29)
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Jθ,v = Jv,θ and can be obtained from J1,3 as

Jθ,v = 2
A2

σ2
n

∂aH(θ, R, v)
∂θ

∂a(θ, R, v)
∂v

. (4.30)

Finally, the CRB for joint estimation of bistatic range, velocity, and DOA
is computed as

CRB(u) = diag
{

J−1
}

. (4.31)

The CRB derived above is the benchmark for unbiased parameter estimation
and will be used as the framework for performance validation of the sparse-
based solution proposed in the next Section.

4.3 Proposed Sparsity-based Simultaneous Multi-

target Localisation and Doppler Estimation

4.3.1 3D Sparse Representation

In order to introduce sparsity to the antenna and fast-time domains in (4.5),
a range-DOA search grid of length Gp such that Gp << K and gp-th en-
try (Rh,gp , θgp) is defined to represent all the potential locations of the tar-
gets from the h-th bistatic measurement. Then, an overcomplete range-DOA
steering matrix Pg,h ∈ CLN×Gp is constructed with its gp-th column given as
ph,gp = rh,gp ⊗ agp , where

agp =

[
1, e−j2π

f0d sin θgp
c , . . . , e−j2π

f0d sin θgp
c (L−1)

]T
(4.32)

and

rh,gp =

[
1, e−j2π

µRh,gp
c

1
fs , . . . , e−j2π

µRh,gp
c

N−1
fs

]T

. (4.33)

Similarly, in order to introduce sparsity to the slow-time domain, a bistatic
velocity search grid of length Gd such that Gd << K and gd-th entry vh,gd

is
defined to represent all the potential bistatic velocities of the targets from the
h-th bistatic measurement. Then an overcomplete Doppler steering matrix
Vg,h ∈ CM×Gd is constructed with its gd-th column given as

vh,gd
=

[
1, e−j2π

f0vh,gd
c T, . . . , e−j2π

f0vh,gd
c (M−1)T

]T

. (4.34)
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Finally, (4.5) can be written in a sparse format as

yh = Ag,hxg,h + wh ∈ CLMN×1, (4.35)

where

Ag,h =
[
(vh,1 ⊗ ph,1), (vh,2 ⊗ ph,2), . . . , (vh,Gd

⊗ ph,Gp)
]
∈ CLMN×GpGd (4.36)

and xg,h ∈ CGpGd×1 is a sparse vector whose K non-zero entries correspond-
ing to the complex coefficients of the visible targets.

4.3.2 Joint Bistatic Localisation and Doppler Estimation us-

ing the LASSO Technique

Following the representation of the measurement signal in (4.35), the prob-
lem of motion parameter estimation is cast as an SMV and the popular ℓ1

minimisation method can be used to recover the support of xg,h which is di-
rectly related to the location and the bistatic velocity of the target. Therefore,
consider the following optimisation problem

min
xg,h
∥x̂g,n∥1 subject to ∥yh −Ag,hx̂g,h∥2 ≤ ε1, (4.37)

where xg,h is the reconstructed sparse vector and ε1 is the reconstruction er-
ror. The optimisation problem (4.37) is convex and can be solved using the
LASSO technique via any open-source solvers such as CVX.

4.4 Simulation Results

Computer simulations were conducted to demonstrate the RMSE performance
of the proposed 3D joint motion parameter estimation solution from 1000
Monte Carlo trials. The radar settings used are shown in Table 4.1. A sce-
nario is considered where a single roadside sensor and sensing vehicle are in
operation, and the latter is estimating the bistatic range and velocity, as well
as DOA, of a single point-like target simultaneously by solving the optimi-
sation problem (4.37). A search grid is defined such that each domain has 7
potential grid points with a combined length of GdGp = 343. The granularity
is first chosen as 1 (m, m/s, or ◦) to provide a coarse estimate of the target
parameters, and is then reduced to 0.15 for all three domains. So, the total
search region for each domain is initially 7 (m, m/s, or ◦), and is then reduced
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TABLE 4.1: Radar settings used in producing the RMSE perfor-
mance against the CRB

Parameter Value Parameter Value
Pt 10 dBm f0 77 GHz
Gt 23 dBi B 300 MHz
Gr 16 dBi Tc 25 µs
σbi 0 dBsm T 30 µs

SNRo −10–20 dB fs 5 MHz
M 9 N 125
L 9 d 1.948 mm

to 1.05 centred around the initial coarse estimate. In each trial, a new reali-
sation of the noise signal is generated and the target parameters are drawn
from a uniform distribution bounded by two adjacent grid points. This ap-
proach allows producing more accurate RMSE results while avoiding further
reduction in the granularity of the search grid which is computationally ex-
haustive. So, with sufficient number of trials, it is intuitive that the RMSE
performance may reach its asymptotic bound. The CRB derived in Section
3.3 is used as the benchmark for performance against varying levels of SNRo

(output SNR) which is defined as the ratio between the power of the received
signal and the receiver noise power. The estimation results using 3D FFT and
3D MUSIC are used for comparison. In Figure 4.1, the computed RMSE from
each method and the CRB are shown for each parameter.

It can be seen that the LASSO technique clearly outperforms the FFT at
all levels of SNRo, and outperforms MUSIC at SNRo levels below 10 dB. It is
however important to mention that matching the CRB trend requires higher
level of granularity in the search grids which is computationally costly and
difficult to achieve with the available computing power. The aim of this sim-
ulation is to focus on the estimation accuracy of the algorithm with the search
grid zooming in to esimate the parameter with the lowest possible error.
Clearly, FFT is disadvantaged here as the grid is fixed since it depends on
the number of measurements in each domain. However, that highlights the
advantage of parameteric search methods. With MUSIC and LASSO sharing
the same search grid, it is evident that sparsity-based estimation can outper-
form subspace-based algorithms.
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FIGURE 4.1: A comparison of the computed RMSE against the
CRB for joint estimation of the motion parameters in the pro-
posed bistatic automotive application using FFT, MUSIC, and

LASSO.
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4.5 Summary

In this Chapter, a 3D sparse representation for bistatic automotive radar mea-
surement was derived. Unlike the signal model derived in Chapter 3, the
contribution of the direct-path signal was neglected here to focus on the per-
formance of parameter estimation from the bistatic signals only with differ-
ent methods. Then, a sparsity-based solution for joint motion parameter esti-
mation was proposed. The CRB was derived for a Gaussian distributed sig-
nal providing a lower bound for the estimation bias. It was proven through
computer simulations the feasibility of jointly estimating the bistatic range,
velocity, and DOA of the target using the LASSO technique which clearly
outperforms FFT and MUSIC (albeit with a smaller margin) at different lev-
els of SNRo. In the conducted simulations, a single point-like target was
considered with a two-stage search to firstly provide a coarse estimate of the
parameter and then refine the search to explore the potential of the differ-
ent methods in achieving an estimation bias in the order of the CRB. In the
next Chapter, to fully exploit the advantages of separating the transmitter
from the receiver, the problem is extended to the multistatic case where data
fusion is achieved by employing the GS concept.





63

Chapter 5

Multistatic Operation by
Exploiting the Concept of Group
Sparsity

5.1 Introduction

The interests to bistatic and multistatic radars resurged in the 1990s with
more research drawn into statistical MIMO radar, bistatic SAR, remote sens-
ing, and stealthy detection [160, 161, 86, 96, 162]. Bistatic and multistatic
radars are also the foundation of passive radar systems as a means of green
sensing technology [163, 164]. However, bistatic radar has since then strug-
gled to break into the automotive industry, partly due to the very strict syn-
chronisation requirements (in the order of nanoseconds [149]). Nonethe-
less, motivated by the drive in the fifth-generation (5G) communications and
beyond to meet the requirements of vehicular applications [102], [165], as
well as some advances in experimental radar synchronisation [136, 139, 141],
automotive bistatic applications have been recently proposed to offer joint
communication and radar capability for vehicles transmitting known com-
munication modulation waveforms [166], enhanced detection in smart high-
way scenarios using cooperative roadside sensors transmitting radar signals
[167, 168], and improved radar performance for vehicles exploiting a super-
position of their monostatic measurements and bistatic ones from other road
users [111]. At the same time, there are potential problems with such appli-
cations when employing Fourier techniques for localisation.

In this Chapter, an extension to the bistatic automotive application is pro-
posed where multiple cooperative roadside sensors are considered, resulting
in a configuration known as multistatic (see Figure 5.1). The focus here is on
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FIGURE 5.1: Multistatic automotive localisation scenario using
multiple cooperative roadside sensors.

the 2D localisation problem where the target range and DOA are simultane-
ously estimated followed by Doppler estimation for multiple targets. This
problem is referred to as 3D motion parameter estimation albeit different
to that in Chapter 4 where all motion parameters are jointly estimated. Al-
though the high efficiency of 3D FFT and its good performance make it a
straightforward candidate for extracting frequency information from an ac-
cumulation of signals corrupted by white noise [43], when multiple roadside
sensors are in operation, it becomes difficult using FFT to coherently inte-
grate range and Doppler measurements from different transmitter-receiver
pairs [169]. To overcome this issue, more advanced signal processing tech-
niques are needed, allowing processing information from multiple bistatic
transmitter-receiver pairs on the data level.

Researchers have adopted sparse representation from the CS framework
and developed radar signal models for the DOA estimation problem [170,
171, 172, 69] that can naturally be solved by popular techniques such as group
LASSO [71, 173], also known as ℓ2,1 minimisation, and multistatic Bayesian
sparse learning [174, 175, 176]. In particular, the structured sparsity problem
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arises when multiple sources of information share a common support set un-
der the generally accepted narrowband assumption. Therefore, it naturally
exists in radar applications, for instance, when multiple pulses, transmitters,
or receivers are employed.

In this Chapter, it is shown that the extra degrees of freedom (DoFs)
offered by prior information and multiple transmitters can be directly ex-
ploited following a sparse representation. The road is mapped as a Carte-
sian grid and enforce sparsity for simultaneous 2D localisation, followed by
Doppler estimation. With this approach, the exhaustive 3D parameter search
presented in Chapter 4 is avoided, thereby significantly reducing the com-
putational complexity. In order to pair the estimated location and Doppler
parameters for each target, two data association methods are proposed with
varying performance and computational complexity. Extensive computer
simulations convey the feasibility and superiority of the proposed sparsity-
based positioning solutions in multistatic automotive configurations, and
prove the success of the proposed data association methods under different
settings.

In the rest of this Chapter, a multistatic FMCW radar signal model is de-
rived in Section 5.2. Then, a multi-target location and Doppler estimation
solution employing the GS concept in multistatic automotive configuration
is proposed in Section 5.3. Finally, simulation results are presented in Section
5.4, and conclusions are drawn in Section 5.5.

5.2 Multistatic FMCW Radar Signal Model

Consider H stationary roadside sensors, each transmitting FMCW chirps. In
reality, some form of orthogonality is introduced between the signals from
different sensors to allow separating them at the receiver end [177]. Let
(R, θ)k := (Rk, θk) and (R, θ)h := (Rh, θh). Following earlier assumptions,
the parameters (R, θ)h are known to the sensing vehicle. By exploiting this
and using the geometry depicted in Figure 3.2, Ŕh,k can be obtained as

Ŕh,k =
√

R2
k + R2

h − 2RkRh cos(θh − θk) + Rk. (5.1)

The aim is to estimate (R, θ)k and vk. After applying 3D FFT to (4.2), the
spectrum would show K peaks corresponding to (Ŕh,k, θk, vh,k) for all k. Using



66 Chapter 5. Multistatic Operation by Exploiting the Concept of Group
Sparsity

Bistatic
bisector

δRh,k

Tx

Rx

Tg

Tg

Tg

βh,k
2

ψ

FIGURE 5.2: Range resolution in bistatic radar.

(5.1), Rk can be calculated as

Rk =
Ŕ2

h,k − R2
h

2Ŕh,k − 2Rh cos(θh − θk)
. (5.2)

After Rk and θk are estimated, assuming known v, vk can be estimated using
(3.10).

The generalised range resolution can be defined as [149]

δRh,k(ψ) =
c

2B cos(βh,k/2) cos ψ
, (5.3)

where βh,k is the bistatic angle (shown in Figure 3.2) and ψ is the rotation
angle from the bistatic bisector as shown in Figure 5.2.

Remark. In bistatic radar, the range resolution varies in 2D depending on the ge-
ometry. Therefore, it can no longer be defined in one specific direction (such as down-
range in the monostatic case). In (2.5), the direction of range resolution is dictated
by the rotation angle ψ away from the bistatic bisector which is considered as the
reference point (see Figure 5.2 for an illustration of three possible placements of tar-
gets). Clearly, the down-range resolution is maximum when ψ = 0◦, and as one
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target rotates away from the bisector (ψ > 0◦), the resolution is degraded. When
ψ = 90◦, the two considered targets lie on the same iso-range contour and can no
longer be resolved in the range domain.

On the other hand, βh,k determines the effect of the bistatic geometry on the over-
all range resolution regardless of the direction of interest. Clearly, when βh,k = 0◦,
the bistatic range resolution is maximised and reduces to the monostatic one. It is
important to note here that, for a given target, the range resolution varies with the
location of the h-th roadside sensor. This highlights the advantage of multistatic
configuration in increasing the number of DoFs when signal processing techniques
permit fusion at the data level. In the case of Fourier-based estimation, although
two targets that cannot be resolved in the range domain may still be resolved in the
range-DOA 2D FFT spectra, the conversion in (5.2) to calculate the range Rk intro-
duces some bias imposed by the estimate of θk. Similarly, the conversion in (3.10) to
calculate the velocity vk introduces some bias imposed by the estimates of Rk and θk.

Some further problems emerge when using Fourier-based estimation in
this application. The first problem occurs when some information is known
a priori, since the FFT fails to integrate such information directly and can
only be done in post-processing steps. The second problem naturally arises
in the multistatic configuration because the FFT cannot be applied across the
domain created by the multiple roadside sensors. In other words, the FFT
cannot be applied across the signals received from H roadside sensors in a
similar manner to the signals received at L antennas, for instance, since there
is no correlation between the H signals. This limits the benefit of integration
gain to the domain corresponding to the parameter being estimated [178].
It follows that the fusion of multistatic signals in the FFT domain may only
be done post-calculation rather than at the measurement level. Furthermore,
suppose there exist H independent FFT spectra from which Rk is estimated.
The final estimate after averaging can be expressed as

R̄k = Rk + ϵ̄, (5.4)

such that

ϵ̄ =
1
H

H

∑
h=1

ϵh, (5.5)

where ϵh denotes the bias of the calculated range from the h-th source of
information. When ϵh follows a Gaussian distribution N (µ̄, σ2

a ) with µ̄ and
σ2

a being the mean and variance, respectively, then ϵ̄ follows N (µ̄, σ2
a /H). In

this case, averaging the estimates only reduces the error variance by a factor
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of H, but does not affect the shape of the PDF. This analysis also applies to the
averaging estimates of vk. For DOA estimation, one may argue that the DOA-
FFT spectra can be averaged directly because all H signals share the same
frequencies corresponding to θk. However, such an approach, often known as
incoherent integration, may only reduce the variance of the estimated noise
floor, meaning that the average noise power level remains unchanged.

5.3 Proposed Multistatic Location and Doppler Es-

timation Using GS in Multi-target Automotive

Scenarios

5.3.1 Sparse Representation for Multistatic Cartesian 2D Lo-

calisation

Recall the signal model defined for the measurement from the h-th road-
side sensor in (4.4). With the help of the relation in (5.1), it can be seen
that one DoF associated with such representation is the ability to design
the steering matrix to incorporate (R, θ)h known prior to estimation. There-
fore, a 2D polar grid of length Gp is defined to search for range and DOA
(R, θ)gp := (Rgp , θgp) to simultaneously estimate (R, θ)k. Then, for each road-
side sensor, an overcomplete range-DOA steering matrix Pg,h ∈ CLN×Gp is
constructed with its gp-th column given as p̃h,gp = r̃h,gp ⊗ agp , where

r̃h,gp =


1

e−j2π
[(

µ
√

R2
gp+R2

h−2Rgp Rh cos(θh−θgp )+Rgp

)
1

c fs

]
...

e−j2π
[(

µ
√

R2
gp+R2

h−2Rgp Rh cos(θh−θgp )+Rgp

)
N−1
c fs

]

 . (5.6)

Thus, (4.4) can be written in a standard sparse format as

YP
h = Pg,hXP

g,h + Wh, (5.7)

where XP
g,h ∈ CGp×M is a sparse data matrix whose m-th column contains K

non-zero entries corresponding to the complex coefficients of target echoes
from the h-th transmitted signal. It is assumed that all columns have the
exact support set containing the indices of the non-zero entries.
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FIGURE 5.3: Proposed 2D rectangular search grid.

This road scenario motivates the idea of constructing a 2D rectangular
search grid of size I × J and coordinates (xi, yj) with i = 1, 2, . . . , I and j =
1, 2, . . . , J as shown in Figure 5.3. By taking the sensing vehicle as the centre
of the Cartesian map, it is clear that yj is always positive whereas the sign of
xi mirrors θgp with the forward line being the reference. Following this, the
subscript gp is now replaced with gij which corresponds to the ij-th bin in the
2D rectangular grid.

Next, the gij-th column in Pg,h can be constructed by converting the ij-th
Cartesian coordinates (xi, yj) into polar coordinates (R, θ)gij := (Rgij , θgij) as

(R, θ)gij =

√x2
i + y2

j , arcsin

 xi√
x2

i + y2
j

 . (5.8)

Accordingly, the Cartesian coordinates of the k-th target can be defined as

(x, y)k = (Rk sin θk, Rk cos θk) (5.9)

and do not necessarily lie on an exact coordinate of the generated rectangular
search grid.
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5.3.2 Sparse Representation for Multistatic Doppler Estima-

tion

The raw data in (4.4) is reshaped to get

Zh = YT
h . (5.10)

A velocity grid of length Gd is defined to search for vh,gd
to estimate vh,k.

Then, an overcomplete Doppler steering matrix Vg,h ∈ CM×Gd is constructed
by replacing vh,k with vh,gd

in Vh such that

vh,gd
∈ [vmin,h, vmax,h] , (5.11)

where

vmin,h = min
αh,gij

,θk

{
vmin[cos(αh,gij) + cos(θk)]− v cos(θk)

}
,

vmax,h = max
αh,gij

,θk

{
vmax[cos(αh,gij) + cos(θk)]− v cos(θk)

}
,

αh,gij =



arcsin

(
Rh sin(|θh−θgij |)√

R2
gij+R2

h−2Rgij Rh cos(θh−θgij )

)
+θgij , for θh ≤ 0◦,

arcsin

(
Rh sin(|θh−θgij |)√

R2
gij+R2

h−2Rgij Rh cos(θh−θgij )

)
−θgij , for θh ≥ 0◦,

(5.12)

and vmin and vmax denote the minimum and maximum values of the poten-
tial forward velocities of the target, respectively. Accordingly, Zh can now be
written in a standard sparse format as

ZD
h = Vg,hXD

g,h + WT
h , (5.13)

where XD
g,h ∈ CGd×LN is a sparse data matrix whose (lN + n)-th column con-

tains K non-zero entries corresponding to the complex coefficients of the vis-
ible targets and have the same support set.
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5.3.3 Multistatic Localisation and Doppler Estimation Using

GS

Firstly, the 2D location denoted by (x, y)k is to be estimated through recon-
structing XP

g,h from Yh. All columns in the H matrices XP
g,h have the same

support set corresponding to K locations (x, y)k. So, the concept of GS can
be employed across M pulses and H sensors by generating an LN × MH
measurement matrix BP

g and a Gp ×MH sparse data matrix UP
g as

BP
g =

[
Pg,1XP

g,1, Pg,2XP
g,2, . . . , Pg,HXP

g,H

]
, (5.14)

UP
g =

[
XP

g,1, XP
g,2, . . . , XP

g,H

]
. (5.15)

Denote row vector uP
g,gp as the gp-th row of the matrix UP

g . By computing the
ℓ2 norm to each row vector uP

g,gp , a new column vector is formed as

ũP
g =

[
∥uP

g,1∥2, ∥uP
g,2∥2, . . . , ∥uP

g,Gp
∥2
]T. (5.16)

Then, the GS-based multistatic localisation method is formulated as follows
[58, 179]

min
UP

g

∥ũP
g∥1 subject to ∥Y◦ − BP

g∥F ≤ ε2, (5.17)

where
Y◦ = [Y1, Y2, . . . , YH] , (5.18)

and ε2 is the reconstruction error.
Next, after estimating (x, y)k, the bistatic velocity parameter denoted by

vh,k is to be estimated through reconstructing XD
g,h from Zh. Notice that, while

the columns in XD
g,h share the same support set, the latter varies across H

Doppler data matrices. This is dictated by the steering matrix Vg,h that is
designed to search for vh,k rather than vk. Alternatively, the steering matrix
could be designed to directly search for vk. In such a case, all columns in
the H data matrices would share the same support set corresponding to all K
parameters. Although this approach may offer the advantage of employing
the GS concept across H sensors as well as L antennas and N snapshots, it
may suffer from ambiguities due to the coupling between velocity, range,
and DOA in (3.6) and (3.7). To illustrate this, the search grid would have
to be populated K times and, depending on the 2D locations of the targets,
the estimated bistatic velocities may migrate to other values which do not
necessarily correspond to their true velocities in the search grid. This is due
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to the fact that there is no mechanism in ℓ1 norm to ensure either an even
or an uneven distribution of sparsity among all K groups of the search grid.
Ideally, sparsity can be enforced across all H sensors to estimate Rk, θk, and
vk simultaneously. However, this requires handling steering matrices of size
LMN × GdGp which is computationally exhaustive.

For the h-th measurement matrix Zh, the GS concept can be employed
across LN snapshots. Therefore, Doppler estimation is performed by solving
the following optimisation problem

min
XD

g,h

∥x̃D
g,h∥1 subject to ∥Zh −Vg,hXD

g,h∥F ≤ ε3, (5.19)

where
x̃D

g,h =
[
∥xD

g,h,1∥2, ∥xD
g,h,2∥2, . . . , ∥xD

g,h,Gd
∥2

]T
, (5.20)

xD
g,gd

is the gd-th column of XD
g and ε3 is the reconstruction error. Both optimi-

sation problems (5.17) and (5.19) are convex and can be solved using existing
convex optimisation toolboxes. Finally, the proposed GS-based method for
location and Doppler estimation of K targets in this multistatic automotive
scenario is summarised in Algorithm 2.

Algorithm 2 A GS-based location and Doppler estimation algorithm for mul-
tistatic automotive application.

Require: Yh, Rh, θh, v, f0, µ, d, T, M, L, fs, N, H.
1: Obtain and store the raw data Yh for all h as in (4.3).
2: Generate an I × J rectangular search grid of length Gp after choosing ap-

propriate values for (x1, y1) and (xI , yJ).
3: Convert the Cartesian coordinates (xi, yj) to polar coordinates (R, θ)gij

using (5.8).
4: For each roadside sensor, construct a range-DOA steering matrix Pg,h

whose gij-th column corresponds to (xi, yj).
5: Estimate UP

g by solving the optimisation problem (5.17).
6: Perform a peak search to find the estimated coordinates of K targets.
7: Reshape the raw data as in (5.10) to get Zh.
8: After selecting appropriate values of vmin and vmax, using v and all Gp

values of (R, θ)gij , calculate vmin,h and vmax,h for all h using (5.12).
9: Generate H velocity search grids of length Gd using (5.11).

10: For each roadside sensor, construct a Doppler steering matrix Vg,h whose
gd-th column corresponds to vh,gd

.
11: Estimate XD

g,h by solving the optimisation problem (5.19) for all h.
12: Perform a peak search to find the estimated bistatic velocity values of K

targets.
return Estimates of (x, y)k and vh,k for all K targets.
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5.3.4 Parameter Pairing using Cross-Correlation and ESPRIT

While the values of (x, y)k and vh,k can be estimated using Algorithm 2, the
information regarding the association of the location with the corresponding
bistatic velocity for each target remains unknown. Such pairing is essential
for establishing a complete profile about the targets and for computing the
velocity vk using (3.10). So, motivated by the cross-correlation (CC)-based
pair-matching method for elevation and azimuth in L-shaped antenna ar-
rays [180], a modification is proposed here for matching the location and
bistatic velocity pairs. Each 2D location corresponds to a unique angle θk,
so the parameter association task renders a matching between the DOA and
bistatic velocity parameters. This can be done by exploiting the CC matrix
Rθυ,h which is defined as

Rθυ,h = E
{

yθ,h(n)yH
υ,h(n)

}
, (5.21)

where the l-th entry of yθ,h(n) ∈ CL×1 is equal to ŷh[l, 0, n] in (4.1) and the
m-th entry of yυ,h(n) ∈ CM×1 is equal to ŷh[0, m, n]. Clearly, Rθυ,h can only
be computed when L = M. Unlike the case in [180] where both received
signals corresponding to the two components of the L-shaped array have the
same length, L is smaller than M in the underlying problem. Therefore, only
the first L entries of yυ,h(n) are considered, from which y̆υ,h(n) is formed.
Accordingly, Rθυ,h becomes an L× L matrix whose diagonal elements lead to
the following formulation

dθυ,h =[
K

∑
k=1

qh,k,
K

∑
k=1

qh,k, e−jζωh,k , . . . ,
K

∑
k=1

qh,k, e−jζ(L−1)ωh,k

]T

, (5.22)

where ζ = 2π f0/c and ωh,k = d sin θk − TVh,k. Denote by d̂θυ,h, θ̂k, v̂h,k,
and ω̂h,k the estimated versions of dθυ,h, θk, vh,k, and ωh,k respectively. The
implementation for the pairing method can then be summarised as follows.

1. Using the estimated values θ̂k and v̂h,k, calculate K2 combinations of
{d sin θ̂kθ

− Tv̂h,kυ
}, where kθ, kυ = 1, 2, . . . , K.

2. Obtain d̂θυ,h from yθ,h and y̆υ,h as

d̂θυ,h =
1
N

N

∑
n=1

yθ,h(n)⊙ y̆∗υ,h(n), (5.23)
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then construct a Hermitian Toeplitz matrix, R̂cc,h, whose first column is
d̂θυ,h.

3. Apply ESPRIT to R̂cc,h to estimate ωh,k for K targets.

4. For the k-th target, the correct combination of DOA and velocity pa-
rameters is determined by solving the following minimisation problem

min
kθ ,kυ

∣∣∣e−jζω̂h,k − e−jζ(d sin θ̂kθ
−Tv̂h,kυ )

∣∣∣ . (5.24)

Note that Step 4 above adopts the comments in [181] to expand the unam-
biguous parameter range of this pair matching method.

5.3.5 Parameter Pairing based on Least Squares

Unlike the previous parameter association method, matching here is done
between the estimated 2D locations and the bistatic velocity parameters. To
illustrate this, consider the following reformulation of (4.4)

yh = vec{Yh} = Ahxh + wh, (5.25)

where
Ah = [(ph,1 ⊗ vh,1), (ph,2 ⊗ vh,2), . . . , (ph,K ⊗ vh,K)] , (5.26)

xh = [qh,1, qh,2, . . . , qh,K]
T , (5.27)

and wh = vec{Wh}. By focusing on Ah, it can be seen that once ph,k and vh,k

are constructed from the estimated location and bistatic velocity, the task be-
comes to find the combination that minimises the distance between the ma-
trix Ah and its reconstruction. Thus, the following least-squares (LS)-based
minimisation problem is proposed

min
Âh

∥∥∥yh − Âh(ÂH
h Âh)

−1ÂH
h yh

∥∥∥
2

, (5.28)

where Âh is the estimate of Ah and is constructed from the estimated values
of location and bistatic velocity. For K targets with different location and
bistatic velocity, K! candidates of Âh are considered. The main advantage of
this method is that the correct combination is determined for all K targets
simultaneously. The minimisation in (5.28) can be interpreted as a maximum
likelihood approach due to the AWGN assumption [43].
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TABLE 5.1: Radar settings used in the simulation of the multi-
static automotive scenario

Parameter Value Parameter Value
Pt 10 dBm fs 5 MHz
Gt 23 dBi Tc 30 µs
Gr 16 dBi T 35 µs
σbi 0 dBsm N 150
B 150 MHz M 128
f0 77 GHz L 8

SNRi 100− 160 dB d 1.948 mm

Remark. So far it has been assumed that all K targets have different locations and
bistatic velocities, hence only K! candidates are considered in the LS-based pair-
matching method. While the CC-based method allows repetition in both the location
and Doppler domains, it is in fact forced to do so by the nature of its minimisation
that is repeated K times, and there is no theoretical criterion to eliminate any of the
combinations after processing each target. On the other hand, using the LS-based
method repetition may only occur in the Doppler domain since the targets will in
reality be located at different 2D locations. Therefore, in order to generalise this
proposed method, K! can be treated as the lower bound on the number of possible
candidates of Âh and, in an extreme case, when some targets share the exact bistatic
velocity, up to KK candidates may need to be considered. In such case, the computa-
tional cost may be noted as a disadvantage when using this method.

5.4 Simulation Results

In order to evaluate the success of the proposed GS-based solution in pro-
cessing multistatic automotive radar signals and convey its advantage over
the state-of-art, computer simulations were run using MATLAB and the CVX
package. The radar settings used are shown in Table 5.1. For parameter esti-
mation, the RMSE is used as the performance metric. The MUSIC method is
used as the baseline for comparison due to its super-resolution capability and
its ability to use the same search grids generated for the GS-based method.
The performance metric was measured in two different settings: varying in-
put SNR (SNRi) and varying number of processed pulses/snapshots. Note
that the SNRi, defined as

SNRi =
PtGt

Pn
, (5.29)
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FIGURE 5.4: A comparison of a 2D location map computed us-
ing GS (top) and MUSIC (bottom) for 4 point targets at SNRi =

150 dB with 8 processed pulses.

where Pn is the noise power at the receiver, is used here as opposed to the
conventional output SNR defined at the receiver. Following this approach
is more suitable when the received signal is a superposition of signals from
multiple targets with different ranges. To illustrate this, the output SNR can
be defined as

SNRo =
PtGtGrσbic2

(4π)3 f 2
0 R2

TxR2
RxPn

=
Grσbic2

(4π)3 f 2
0 R2

TxR2
Rx

SNRi, (5.30)

where RTx is the transmitter-to-target range and RRx is the target-to-receiver
range. Suppose a target has RTx = RRx = 50 m, then using the radar settings
in Table 1 with SNRi = 150 dB, the equivalent SNRo is 16.88 dB. However,
for another target with RTx = RRx = 40 m, then SNRo = 20.75 dB. Therefore,
demonstrating the performance metrics against SNRi is more convenient as
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FIGURE 5.5: A comparison of a bistatic velocity spectrum com-
puted for 4 point targets at SNRi = 150 dB with 16 processed

snapshots.

targets may have different SNRo. For parameter association, both proposed
methods are compared using the probability defined as the ratio between
the number of successful pairings and the total number of trials. The perfor-
mance metric was measured in three different settings: varying SNRi, vary-
ing estimation error, and varying number of targets.

Consider a scenario where two roadside sensors are employed (H = 2),
one on each side of a smart highway (see Figure 5.1). For location estimation,
the rectangular search grid is generated such that (x1, y1) = (−4, 55) and
(xI , yJ) = (6, 65) with I = J = 21. For Doppler estimation, vmin = 25 and
vmax = 35 are considered with Gd = 128. The known polar coordinates of
the roadside sensors are [(30.00,−7.66), (30.33, 11.41)] and the velocity of the
sensing vehicle is v = 25.

For the sake of clarity, the methods being compared are described as fol-
lows.

• GS-Joint estimates the 2D location (x, k)k from all H received signals
simultaneously in line with Algorithm 2.

• GS-Average estimates the bistatic velocity vh,k from each h-th received
signal separately in line with Algorithm 2. Assuming perfect param-
eter association, the target velocity vk is then calculated followed by
averaging.
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• MUSIC-Average estimates 2D location (x, k)k and bistatic velocity vh,k

from each of the H received signals separately using MUSIC. Its im-
plementation follows the same steps as Algorithm 2 with Step 5 being
replaced by estimating the location-MUSIC spectrum using Pg,h, and
Step 11 being replaced by estimating the Doppler-MUSIC spectrum us-
ing Vg,h. Assuming perfect parameter association, the target velocity vk

is then calculated followed by averaging.

• Pair-CC-ESPRIT pairs the location and bistatic velocity parameters in
line with the method in Section 5.3.4.

• Pair-LS pairs the location and bistatic velocity parameters in line with
the method in Section 5.3.5.

In Figure 5.4 the result of 2D localisation is shown for a scenario with four
evenly spaced targets at SNRi = 150 dB with 8 processed pulses. It can be
seen that the MUSIC-based method fails to detect two of the targets with the
location of the detected ones clearly smeared. On the contrary, the GS-based
method results in sharp detected peaks. In Figure 5.5 the estimated bistatic
velocity spectrum from 16 processed snapshots for this scenario is shown.
The GS-based method clearly yields a better result. The running time for
the MUSIC-based method is 1.56 seconds and that of the proposed method
is 40.17 seconds. The computer used is powered by an 11th Gen Intel(R)
Core(TM) i5-1145G7 chip (2.60 GHz base frequency) and carries 8.00 GB of
RAM1.

5.4.1 Comparison of RMSE for Parameter Estimation

1000 Monte Carlo trials are carried out to compute the RMSE performance.
In each trial, a different realisation of the noise signal Wh is generated. One
point-like target is placed in the visible region of the sensing vehicle (K = 1),
and its parameters (x, y)k and vh,k are drawn from a uniform distribution
bounded by two adjacent grid points from their corresponding search grids.

Firstly, the numbers of pulses and snapshots processed for location and
Doppler estimation are chosen as 8 and 16, respectively, and SNRi is varied.
The results are shown in Figure 5.6. It is evident that GS-Joint outperforms
MUSIC-Average at all levels of SNRi in both location and Doppler estima-
tion.

1Note that the time consumed by the proposed method could be significantly reduced
if with a dedicated GS-based algorithm instead of the existing convex optimisation toolbox,
which will be considered in future work
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FIGURE 5.6: A comparison of RMSE for location (top) and ve-
locity (bottom) estimation between GS and MUSIC against dif-

ferent levels of SNRi.

Next, the number of processed pulses for location estimation is varied be-
tween 2 and 8, and the number of processed snapshots for Doppler estima-
tion is varied between 4 and 16, with SNRi being fixed at 150 dB. The results
are shown in Figure 5.7. As the number of pulses/snapshots increases, the
estimation performance of the proposed method is improved. For all param-
eters being evaluated, the GS-based method outperforms MUSIC.

5.4.2 Comparison of the Probability for Parameter Associa-

tion

In each trial, the estimated target location and velocity to be used in the
pairing methods is randomly selected from a Gaussian distribution with the
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FIGURE 5.7: A comparison of RMSE for location (top) and ve-
locity (bottom) estimation between GS and MUSIC as the num-
ber of processed pulses/snapshots increases (SNRi = 150 dB).

mean being the true value and the standard deviation σe ranging from 0 to
0.5. A different realisation of Wh is generated in each trial and data from only
one roadside sensor is considered.

Firstly, two targets are considered with varied SNRi. The results are
shown in Figure 5.8. Pair-LS clearly outperforms Pair-CC-ESPRIT with the
latter performing similarly only when SNRi is above 150 dB and σe is below
0.1.

Next, the number of targets is varied and the SNRi is fixed at 160 dB. The
results are shown in Figure 5.9. Again, Pair-LS clearly outperforms Pair-CC-
ESPRIT with the latter performing similarly only when K = 2 and σe ≤ 0.1.
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FIGURE 5.8: A comparison of the probability of successful pair-
ing between Pair-LS and Pair-CC-ESPRIT against different lev-

els of SNRi (K = 2).
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FIGURE 5.9: A comparison of the probability of successful pair-
ing between Pair-LS and Pair-CC-ESPRIT as the number of tar-

gets increases (SNRi = 160 dB).

5.5 Summary

In this Chapter, a sparsity-based approach for multistatic automotive locali-
sation was derived. The need for fusing information from multiple sources
at the data level was emphasised. The current state-of-art estimation tech-
niques used in the automotive radar industry fail to fulfil such requirements.
By employing the GS concept, a method for target location and Doppler es-
timation was proposed which increases the DoFs and allows information fu-
sion at the data level. Since the natural solution for this application leads to
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decoupled localisation followed by Doppler estimation, two methods for pa-
rameter association were proposed: one relies on the CC between the antenna
and pulse domains to match the DOA and bistatic velocity parameters; and
the other relies on the whole signal to pair the location and bistatic velocity
parameters for all targets simultaneously in an LS-based approach. Com-
puter simulations were conducted to evaluate the performance and verify
the effectiveness of the proposed methods. It was shown that GS-based pa-
rameter estimation clearly outperforms MUSIC under different settings. The
pairing methods also showed evident success in data association under dif-
ferent settings. Bearing the computational cost associated with GS-based op-
timisation and the LS-based parameter association approach, their attractive
performance encourages more research in such advanced signal processing
techniques. Bearing the computational cost associated with GS-based optimi-
sation, it is well suited for the wideband problem where multiple frequencies
are combined through structured sparsity. So, this research area is explored
in the next Chapter.
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Chapter 6

Wideband Bistatic Automotive
Radar

6.1 Introduction

Wideband signals can theoretically improve the performance of radar sys-
tems particularly for parameter estimation but processing such signals car-
ries a huge computational cost mainly due to the increased data size [182].
Nevertheless, signal processing techniques are often developed under nar-
rowband assumptions for feasible and practical implementation. When such
assumptions are broken, more complex solutions are often required [120].

The motivation behind extending the automotive bistatic radar applica-
tion to the wideband framework is driven by both the advantages and chal-
lenges of wideband radar. Such advantages are well documented in the lit-
erature [183, 184, 185], and include increased detection accuracy and reso-
lution, improved target identification and feature extraction, higher proba-
bility of detection, added immunity and secretiveness, as well as reduced
dead zones. On the other hand, processing wideband signals requires com-
plex and novel techniques for detection, ranging, and direction finding, and
significantly increases the memory and computing load. Furthermore, the
increased accuracy and resolution comes at a cost of increased captured clut-
ter and degraded coherence of detection especially in the presence of moving
targets. Fortunately, any attempts at tackling these challenging is incredibly
rewarding as it unlocks masses of potential for automotive radar applica-
tions.

In this Chapter, the current understanding of wideband automotive radar
is furthered by deriving a rigorous wideband FMCW signal model based on
the proposed bistatic automotive application. The unwanted artefacts asso-
ciated with this problem are identified to explicitly highlight the areas where
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conventional narrowband estimation techniques fail. Some artefacts that are
often neglected in the wideband radar literature are considered. In order to
devise a new criterion under which narrowband assumptions are no longer
valid, upper bounds on bandwidth are derived for each measurement do-
main. Then, a general approach for resolving the unwanted artefacts is pro-
posed by decoupling the range, Doppler, and DOA estimation tasks. The
proposed solution can be applied to different parametric approaches and
regarded as a systematic method where either subspace or GS-based algo-
rithms can be used. However, after proving in the previous Chapters that
sparsity-based methods can outperform subspace-based estimation techniques,
a three-stage method is proposed by employing the GS concept for decou-
pled wideband range, Doppler, and DOA estimation. It is shown that the
unambiguous data association can be achieved without a noticeable increase
in the computational cost.

In the rest of this Chapter, a wideband bistatic FMCW signal model is
derived in Section 6.2 where the unwanted wideband artefacts are analysed
and bandwidth bounds are derived for wideband FMCW radar. After that,
an approach for resolving the unwanted artefacts through decoupled estima-
tion is proposed in Section 6.3 followed by a three-stage GS-based algorithm
for wideband range, Doppler and DOA estimation. Finally, simulation re-
sults are presented in Section 6.4 and a summary is given in Section 6.5.

6.2 Wideband Bistatic FMCW Signal Model

Suppose the roadside sensor is transmitting wideband chirps and the direct-
path signals are removed. By recalling (3.21), the signal received from the
k-th target at the l-th antenna can be written as

rh,k(l, m, t f ) = Ah,k exp{j2πφh,k(m, t f )} exp{−j2πΘh,k(l, m, t f )}, (6.1)

where

φh,k(m, t f ) = f0(t f − τh,k(m, t f )) + 0.5µ(t f − τh,k(m, t f ))
2 (6.2)

is the phase of the received signal at the 0-th antenna and

Θh,k(l, m, t f ) =
fh,k(m, t f )d sin θk

c
l (6.3)
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is the phase delay relative to the 0-th antenna with fh,k(m, t f ) being the in-
stantaneous frequency of the received signal. It can then be extracted as

fh,k(m, t f ) =
dφh,k(m, t f )

dt f

= f0

(
1− dτh,k(m, t f )

dt f

)
+ µ(t f − τh,k(m, t f ))

(
1− dτh,k(m, t f )

dt f

)

≈ f0 −
f0vh,k

c
− µŔh,k

c
+ µt f . (6.4)

By plugging (6.4) in (6.3) and following the same dechirp process as in (3.25)
and (3.26), the sampled dechirped radar signal can then be written as

y§
h(l, m, n)

=
K

∑
k=1

qh,k exp{−j2π(

1︷ ︸︸ ︷
( f r

h,k + f d
h,k)

n
fs
+ f d

h,kmT +

2︷ ︸︸ ︷
µvh,kT

c
n
fs

m)}

× exp{−j2π(( f0 − f r
h,k − f d

h,k)
d sin θk

c
l︸ ︷︷ ︸

3

+
µd sin θk

c
n
fs

l︸ ︷︷ ︸
4

)}+ w§
h[l, m, n],

(6.5)

where f r
h,k =

µŔh,k
c is the range dependant frequency, f d

h,k =
f0vh,k

c is the

Doppler frequency, and w§
h[l, m, n] is AWGN.

Consider the following matrices containing the range, Doppler, and DOA
information, respectively, as

R§
h,k =


1 1 . . . 1

1 e−j2π( f r
h,k+ f d

h,k+
µvh,kT

c )( 1
fs
) . . . e−j2π( f r

h,k+ f d
h,k+

µvh,kT(M−1)
c )( 1

fs
)

...
... . . . ...

1 e−j2π( f r
h,k+ f d

h,k+
µvh,kT

c )( N−1
fs

) . . . e−j2π( f r
h,k+ f d

h,k+
µvh,kT(M−1)

c )( N−1
fs

)

 ,

(6.6)

V§
h,k =


1 1 . . . 1

1 e−j2π( f d
h,k+

µvh,kT
c fs

) . . . e−j2π( f d
h,k+

µvh,kT
c fs

(N−1))

...
... . . . ...

1 e−j2π( f d
h,k+

µvh,kT
c fs

)(M−1) . . . e−j2π( f d
h,k+

µvh,kT
c fs

(N−1))(M−1)

 , (6.7)
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and

A§
h,k =


1 1 . . . 1

1 e−j2π(
f a
h,kd sin θk

c +
µd sin θk

c fs
) . . . e−j2π(

f a
h,kd sin θk

c +
µd sin θk

c fs
(N−1))

...
... . . . ...

1 e−j2π(
f a
h,kd sin θk

c +
µd sin θk

c fs
)(L−1) . . . e−j2π(

f a
h,kd sin θk

c +
µd sin θk

c fs
(N−1))(L−1)

 ,

(6.8)
where f a

h,k = f0 − f r
h,k − f d

h,k. Firstly, consider the fast time against the slow
time in (6.5). The received signal from the m-th chirp can be written as

Z§
r,h[m] = R§

h[m]x§
r,h[m] + w§

r,h[m] ∈ CN×1, (6.9)

where R§
h[m] = [R§

h,1[m], R§
h,2[m], . . . , R§

h,K[m]] ∈ CN×K,

x§
r,h[m] = [e−j2π f d

h,1mqh,1, e−j2π f d
h,2mqh,2 . . . , e−j2π f d

h,Kmqh,K], (6.10)

and w§
r,h[m] ∈ CN×1 is AWGN.

Then, consider the slow time against the fast time. The received signal
from the n-th snapshot can be written as

Z§
v,h[n] = V§

h[n]x
§
v,h[n] + w§

v,h[n] ∈ CM×1, (6.11)

where V§
h[n] = [V§

h,1[n], V§
h,2[n], . . . , V§

h,K[n]] ∈ CM×K,

x§
v,h[n] = [e−j2π( f r

h,1+ f d
h,1)

n
fs qh,1, e−j2π( f r

h,2+ f d
h,2)

n
fs qh,2 . . . , e−j2π( f r

h,K+ f d
h,K)

n
fs qh,K],

(6.12)
and w§

v,h[n] ∈ CM×1 is AWGN.
Finally, consider the antenna domain against the fast time. The received

signal for the n-th snapshot can be written as

Z§
a,h[n] = A§

h[n]x
§
a,h[n] + w§

a,h[n] ∈ CL×1, (6.13)

where A§
h[n] = [A§

h,1[n], A§
h,2[n], . . . , A§

h,K[n]] ∈ CL×K, x§
a,h[n] = x§

v,h[n], and

w§
a,h[n] ∈ CL×1 is AWGN.

6.2.1 Analysis of the Unwanted Wideband Artefacts

The artefacts associated with the signal model in (6.5) are next discussed.
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1. The fast-time domain in reality contains Doppler information as well as
range information which is shown in the summation of both frequen-
cies in term {1}. This artefact is not particularly caused by the increase
in bandwidth of the transmitted signal but may cause some bias in the
range estimate when the frequency and velocity are large enough. The
effect of this Doppler shift on range estimation becomes critical once it
exceeds the resolution in fast-time which can be defined for Rayleigh
estimation as δ f r = 1

Tc
.

In practice, the bias caused by this Doppler shift on the range estimate
can be corrected following Doppler estimation.

2. In term {2} in (6.5), the artefact is concluded by a coupling between
the fast-time and slow-time domains. This degrades the orthogonal-
ity between the two domains and is responsible for the well-known
range walk phenomenon [186, 187, 188]. In other words, between multi-
ple transmitted chirps, the tracked target travels a distance larger than
the conventional range-FFT bin. Consequently, the spikes in a range-
Doppler map would look smeared translating to estimation error and
degradation in resolution and SNR. Also referred to as range migra-
tion, this problem was studied extensively in the literature in various
schemes. The Keystone algorithm is a popular method for solving
range migration and it emerged in SAR imaging [189], and an appli-
cation of it to automotive wideband radar can be found in [190]. It is
shown that no prior knowledge of the Doppler frequencies or the num-
ber of scatterers is required. Basically, one-dimensional interpolation
is applied in the domain of interest and the cross-coupling term {4} is
removed. The disadvantage of Keystone transforms is that they require
a very large sample size and in many occasions oversampling to over-
come interpolation errors and to avoid ghost targets [191]. Another
method for solving migration problems is the Back-Focusing method,
tested in [192] using real radar data and compared to the Keystone
method. It is not affected by interpolation and provides a better per-
formance at a cost of higher computational complexity. Also, there is
no proof that it can be used in multi-target scenarios. Recently, [193]
proposed an FFT-based approach to solve the effect of the migration in
range-Doppler mapping of wideband radar. This works by first locat-
ing the smeared peaks in the range-Doppler FFT map, and then the ve-
locities are recorded and compensated for migration. Using the tuned
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velocities, the smeared energy in multiple range cells is removed (the
peaks are sharpened), and then Sinc interpolation is finally applied to
correct the amplitude of the sharpened peaks. The main drawback of
this method is that it assumes that all targets are visible in the orig-
inal range-Doppler map. However, targets of varying intensities are
affected differently by migration and can in many cases become unde-
tected if the smearing power surpasses the noise floor.

3. The term {3} in (6.5) represents a shift in the frequency inside the phase
progression term across the antenna domain used for DOA estimation.
This frequency shift caused by the trip delay and Doppler effect, with
the range dependant frequency having the more significant effect, is
independent of time. To the best of our knowledge, this artefact has
not been previously identified. While this frequency shift, typically ∼
50-100 MHz for automotive applications, may seem insignificant com-
pared to f0, it is key for high resolution radar imagery to understand
such artefact and devise solutions for better estimation performance.

4. The term {4} in (6.5) represents the wideband problem in DOA esti-
mation where the DOA dependant phase shift in the fast time is no
longer negligible as the bandwidth increases. This term then deviates
the target from its true bearing as the observation period increases and
requires compensation for accurate DOA estimation. The two main-
streams for solving this problem include the incoherent signal subspace
method (ISSM) [194, 195] and the coherent signal subspace method
(CSSM) [196, 197]. These two methods convert the wideband prob-
lem into a narrowband one while harnessing the benefits of the in-
creasing bandwidth. ISSM decomposes the output of the antenna array
into multiple sub-arrays and applies a form of filter bank and therefore
solve the DOA problem for each channel separately. Although no ini-
tial estimate of DOA is required (which usually hinders convergence),
channels with poor SNR can severely degrade the overall accuracy after
averaging as the total signal power is not exploited here. CSSM on the
other hand, converts the covariance matrices of all the signal subspace
into a signal subspace of essentially one frequency via focusing ma-
trices, and then conventional narrowband DOA estimation is applied.
[198] shows that CSSM outperforms ISSM as the focused matrices pre-
serve the SNR of the sub-bands; however the computational complex-
ity of forming these matrices is very large and, they require an initial
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estimate of the true DOAs which can affect the performance [199].

Similar to the multiple-snapshot case of DOA estimation under the
CS framework, the wideband case can be treated as a structured spar-
sity problem [59]. The steering matrix becomes a block diagonal ma-
trix with each block corresponding to a different frequency. This ap-
proach leads to significant improvement in performance with some
added computational cost. More recently, [50] proposed solving the
wideband DOA estimation problem by applying a matched filter (a
phase compensation step) to each grid point in the DOA region before
estimating the signal subspace of the signal. This work was applied
to joint Doppler-DOA estimation and claimed the ability of applying
the algorithm to range-Doppler/DOA processing. The computational
complexity is still very large in this proposed method even after effi-
cient implementation of parallel processing and accelerated EVD. Also,
extending this method to range processing means that the matched fil-
ter applied to the DOA domain will inevitably reduce the resolution
and accuracy of the estimated range.

6.2.2 Bandwidth Bounds for Wideband FMCW Radar

Under narrowband signal assumptions, the terms {2} and {4} in (6.5) are nor-
mally neglected. Knowing they are dependant on the bandwidth B, it is use-
ful to derive upper bounds that define the bandwidth above which the nar-
rowband assumptions may fail. In the following derivations, joint parameter
estimation is assumed in line with the implementation of the signal model in
Chapter 4. For simplicity of notation, the subscripts h and k are omitted.

Fast-time Domain

In the fast-time domain, the frequency progression across the N samples al-
lows estimating the bistatic range parameter R. By taking the coupling terms
{2} and {4} in (6.5) into account and ignoring the Doppler shift inside term
{1}, the fast-time progression term becomes

ρ(l, m, n) = (
µR
c

+
µvT

c
m +

µd sin θ

c
l)

n
fs

=
µ

c
(R + vmT + d sin θl)

n
fs

(6.14)

Then, the maximum bias in the estimated range can be defined as

Rbias,max = vmax(M− 1)T + max
d,θ
{d| sin θ|}(L− 1), (6.15)
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where vmax is the maximum bistatic velocity and max{d| sin θ|} can defined,
by taking into account the Nyquist requirements in a ULA, as

max
d,θ
{d| sin θ|} = c

2 f0
. (6.16)

The maximum bias can now be expressed

Rbias,max = vmax(M− 1)T +
c(L− 1)

2 f0
. (6.17)

The range bias may be neglected when

Rbias,max < δRmax/2, (6.18)

where δRmax is the maximum bistatic range resolution which can be defined
using the Rayleigh criterion as

δRmax =
c
B
− vmax f0Tc

B
. (6.19)

By substituting (6.17) and (6.19) in (6.18), the bandwidth upper bound can be
defined as

βr =
f0(c− f0vmaxTc)

2vmax(M− 1) f0T + c(L− 1)
. (6.20)

According to the Nyquist theorem, vmax = c
2T f0

and βr reduces to

βr =
f0(1− Tc

2T )

L + M− 2
. (6.21)

Slow-time Domain

In the slow-time domain, the phase progression across the M chirps allows
estimating the bistatic velocity parameter v. By taking the coupling term {2}
in (6.5) into account, the slow-time progression term becomes

ν(m, n) = (
f0vT

c
+

µvT
c

n
fs
)m =

f0T
c

(v +
µv
f0

n
fs
)m. (6.22)

Then, the maximum bias in the estimated bistatic velocity can be defined as

vbias,max =
Bvmax

f0
. (6.23)
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The bistatic velocity bias may be neglected when

vbias,max < δvmax/2, (6.24)

where δvmax is the maximum bistatic velocity resolution which can be de-
fined using the Rayleigh criterion as

δvmax =
c

f0MT
. (6.25)

By substituting (6.23) and (6.25) in (6.24), the bandwidth upper bound can be
defined as

βv =
c

2vmaxMT
=

f0

M
. (6.26)

Antenna Domain

In the antenna domain, the phase progression across L antennas allows es-
timating the DOA parameter θ. By taking the coupling term {4} in (6.5) into
account and ignoring the effect of the shift in the centre frequency in term {3},
the antenna progression term becomes

o(l, n) = (
f0d sin θ

c
+

µd sin θ

c
n
fs
)l

=
f0d
c
(sin θ +

µ sin θ

f0

n
fs
)l. (6.27)

Then, the bias in the estimated DOA can be defined as

θbias(θ) = arcsin(
B sin θ

f0
). (6.28)

The DOA bias may be neglected when

θbias(θ) < δθ(θ)/2, (6.29)

where δθ(θ) is the DOA resolution which can be defined using the Rayleigh
criterion as

δθ(θ) =
2

L cos θ
. (6.30)

The minimal distance between θbias(θ) and δθ(θ) is when θ = 45◦. So, by
substituting (6.28) and (6.30) in (6.29), the bandwidth upper bound can be
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defined when θ = 45◦ as

βθ =
√

2 f0 sin(
2
√

2
L

). (6.31)

6.3 Wideband Motion Parameter Estimation using

GS

6.3.1 Resolving the Unwanted Artefacts through Decoupled

Estimation

When jointly estimating the range, Doppler, and DOA parameters, the arte-
facts in terms {1} and {3} are naturally solved. However, the size of the mea-
surement signal increases dramatically in the wideband case and applying a
3D parametric search becomes impractical. Also, with joint estimation, filter-
ing out the coupling terms {2} and {4} requires applying a phase compensa-
tion for every entry in the Doppler and DOA search grids which is computa-
tionally exhaustive. Therefore, to reduce the computational complexity and
resolve the unwanted artefacts, a decoupled estimation method is proposed
as illustrated in the following steps:

1. Since the slow-time progression term only contains Doppler informa-
tion, it is convenient to first estimate the bistatic velocity from (6.11)
through a 1D search grid. Therefore, Doppler steering matrices are
constructed using V§

h,k for the selected snapshots, which directly solves
the coupling problem and incorporates the term {2} in (6.5) as extra
information about the target without the need of compensating for it
through matched filtering. The same steering matrices can also be used
for the signals from multiple antennas knowing that there is no cou-
pling between the slow-time and antenna domains.

2. In the second stage, a 1D bistatic range search grid is defined then
bistatic range estimation is done for each estimated bistatic velocity.
Without prior knowledge of the DOAs of the targets, only the signals
from the first antenna are used (i.e. (6.9)) to avoid the effects of the DOA
dependant coupling term {4}. So, for K targets, range estimation is re-
peated K times. In each iteration, the k-th estimated bistatic velocity
is used to construct the range steering matrices for the selected chirps
using R§

h,k. In each iteration, the range spectrum might show multiple
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peaks corresponding to other targets. This is due to the fact that while
the steering matrices are designed to remove the effect of coupling and
focus the peak for the k-th target being processed, they do not necessar-
ily suppress the energy from other targets. To resolve this problem, an
approach is proposed using the CLEAN technique [200] and process-
ing the targets in a descending order of intensity. To illustrate this, the
target with the largest amplitude in the Doppler estimation stage is first
processed. With the steering matrices constructed using the estimated
bistatic velocity for this target, the largest peak in the estimated range
spectrum is chosen and correct parameter pairing is realised. Then, the
signal corresponding to this target is reconstructed from the estimated
bistatic range and velocity and removed from the original signal before
processing the next target.

3. Finally, for DOA estimation, a 1D search grid is defined. For each
estimated range-Doppler pair, DOA steering matrices are constructed
for the selected snapshots using A§

h,k. In order to choose the correct
peak in the DOA spectrum corresponding to the target being processed,
a maximum-likelihood approach can be implemented without signifi-
cantly increasing the computational cost. It follows that the combina-
tion of the estimated range, Doppler, and DOA parameters that min-
imises the distance between the raw signal (containing the energy from
all targets) and that constructed from it for the k-th target is the correct
one, which concludes the pairing process.

6.3.2 A Three-stage Wideband GS-based Range, Doppler, and

DOA Estimation

For Doppler estimation, recall the reshaped signal in (6.11). To introduce
sparsity in the Doppler domain, a search grid is defined of length Gv with
all the potential bistatic velocities to estimate vh,k. Accordingly, a Doppler
steering matrix is constructed for the n-th snapshot by replacing vh,k with
vh,gv in V§

h[n] to get V§
g,h[n] ∈ CM×Gv . Following such representation, Z§

v,h[n]
can now be written in a sparse format for the n-th snapshot as

Z§
v,h[n] = V§

g,h[n]x
§
gv,h[n] + w§

v,h[n], (6.32)

where x§
gv,h[n] ∈ CGv×1 is a sparse data vector containing K non-zero entries

corresponding to the complex coefficients of the targets. So, the concept of GS
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can be employed across N snapshots by generating an M× N measurement
matrix B§

v,h and a Gv × N sparse data matrix U§
v,h as

B§
v,h =

[
V§

g,h[0]x
§
gv,h[0], V§

g,h[1]x
§
gv,h[1], . . . , V§

g,h[N − 1]x§
gv,h[N − 1]

]
, (6.33)

and
U§

v,h =
[
x§

gv,h[0], x§
gv,h[1], . . . , x§

gv,h[N − 1]
]

. (6.34)

Then, Doppler estimation is done by solving the following optimisation prob-
lem

min
U§

v,h

∥U§
v,h∥2,1 subject to ∥Z§

v,h − B§
v,h∥F ≤ ε4, (6.35)

where
Z§

v,h = [Z§
v,h[0], Z§

v,h[1], . . . , Z§
v,h[N − 1]] (6.36)

and ε4 is the reconstruction error.
For range estimation, recall the reshaped signal in (6.9). To introduce

sparsity in the range domain, a search grid is defined of length Gr with all
the potential bistatic range parameters to estimate Ŕh,k. Accordingly, a range
steering matrix is constructed for the m-th chirp by replacing Ŕh,k with Rh,gr

in R§
h[m] to get R§

g,h[m] ∈ CN×Gr . Following such representation, Z§
r,h[m] can

now be written in a sparse format for the m-th chirp as

Z§
r,h[m] = R§

g,h[m]x§
gr,h[m] + w§

r,h[m], (6.37)

where x§
gr,h[m] ∈ CGr×1 is a sparse data vector containing K non-zero entries

corresponding to the complex coefficients of the targets. So, the concept of
GS can be employed across M chirps by generating an N ×M measurement
matrix B§

r,h and a Gr ×M sparse data matrix U§
r,h as

B§
r,h =

[
R§

g,h[0]x
§
gr,h[0], R§

g,h[1]x
§
gr,h[1], . . . , R§

g,h[M− 1]x§
gr,h[M− 1]

]
, (6.38)

and
U§

r,h =
[
x§

gr,h[0], x§
gr,h[1], . . . , x§

gr,h[M− 1]
]

. (6.39)

Then, range estimation is done by solving the following optimisation prob-
lem

min
U§

r,h

∥U§
r,h∥2,1 subject to ∥Z§

r,h − B§
r,h∥F ≤ ε5, (6.40)
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where
Z§

r,h = [Z§
r,h[0], Z§

r,h[1], . . . , Z§
r,h[M− 1]] (6.41)

and ε5 is the reconstruction error.
For DOA estimation, recall the reshaped signal in (6.13). To introduce

sparsity in the DOA domain, a search grid is defined of length Ga with all
the potential DOAs to estimate θk. Accordingly, a DOA steering matrix is
constructed for the n-th snapshot by replacing θk with θga in A§

h[n] to get
A§

g,h[n] ∈ CL×Ga . Following such representation, Z§
a,h[n] can now be written

in a sparse format for the n-th snapshot as

Z§
a,h[n] = A§

g,h[n]x
§
ga,h[n] + w§

a,h[n], (6.42)

where x§
ga,h[n] ∈ CGa×1 is a sparse data vector containing K non-zero entries

corresponding to the complex coefficients of the targets. So, the concept of GS
can be employed across N snapshots by generating an L× N measurement
matrix B§

a,h and a Ga × N sparse data matrix U§
a,h as

B§
a,h =

[
A§

g,h[0]x
§
ga,h[0], A§

g,h[1]x
§
ga,h[1], . . . , A§

g,h[N − 1]x§
ga,h[N − 1]

]
, (6.43)

and
U§

a,h =
[
x§

ga,h[0], x§
ga,h[1], . . . , x§

ga,h[N − 1]
]

. (6.44)

Then, DOA estimation is done by solving the following optimisation prob-
lem

min
U§

a,h

∥U§
a,h∥2,1 subject to ∥Z§

a,h − B§
a,h∥F ≤ ε6, (6.45)

where
Z§

a,h = [Z§
a,h[0], Z§

a,h[1], . . . , Z§
a,h[N − 1]] (6.46)

and ε6 is the reconstruction error.
When processing targets individually for DOA estimation, it is possible

to choose correct peak in the estimated spectrum by adopting a maximum-
likelihood approach. Suppose while processing the k-th target that the es-
timated DOA spectrum contains I peaks (I is used here instead of K to ac-
count for ghost targets). By considering the antenna and fast-time domains
only, the contribution of the k-th target can be constructed for the i-th DOA
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candidate as

C§(k)
h,i [n] =



e−j2π( f r
h,k+ f d

h,k)
n
fs

e−j2π[(
f a
h,kd sin θi

c +
µd sin θi

c
n
fs
)+( f r

h,k+ f d
h,k)

n
fs
]

...

e−j2π[(
f a
h,kd sin θi

c +
µd sin θi

c
n
fs
)(L−1)+( f r

h,k+ f d
h,k)

n
fs
].


(6.47)

Then, a minimisation function is porposed for choosing the correct DOA can-
didate as

θi = arg min(∥z§
a,h − c§(k)

h,i (c
§(k)

H

h,i c§(k)
h,i )

−1c§(k)
H

h,i z§
a,h∥2), (6.48)

where z§
a,h = vec{Z§

a,h} and c§(k)
h,i = vec{C§(k)

h,i } with

C§(k)
h,i = [C§(k)

h,i [1], C§(k)
h,i [2], . . . , C§(k)

h,i [N − 1]]. (6.49)

Finally, the proposed method for range, Doppler, and DOA estimation
using wideband bistatic measurements is summarised in Algorithm 3.

6.4 Simulation Results

Computer simulations were conducted to verify the success of the proposed
GS-based wideband solution. The radar settings used are summarised in
Table 6.11. The search grids are generated such that Gr = 64, Gv = 128,
and Ga = 256. The step size of the search grid is chosen as 0.06 m for range
estimation, 0.06 m/s for velocity estimation, and 0.12◦ for DOA estimation.
Three targets are considered and their parameters are uniformly spaced in
the search field. Firstly, Ŕh,k, vh,k, and θk are fixed on exact grid points from
their corresponding search grids.

A single trial is performed to visualise outcomes of each stage of the pro-
posed in Algorithm 3. For the sake of comparison, in the parameter estima-
tion stage for each domain, the same optimisation steps are performed using
steering matrices that do not take into account the artefacts of the wideband
signal model. This approach is referred to as the conventional one. The cho-
sen target parameters are shown in Table 6.2. For Doppler and DOA estima-
tion, two snapshots are used, and two chirps are used for range estimation.

1The values of the parameters used are within the range recommended by the ITU in
[152] for wideband applications
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Algorithm 3 A GS-based range, Doppler, and DOA estimation algorithm in
automotive applications using wideband bistatic measurements.

Require: Z§
r,h, Z§

v,h, Z§
a,h, f0, µ, d, T, M, L, fs, N.

1: Generate a bistatic velocity search grid of length Gv whose gv-th entry
vh,gv spans the potential values of interest

2: Construct a steering matrix V§
g,h[n] using vh,gv .

3: Perform Doppler estimation by solving (6.35) and store all K bistatic ve-
locities in the descending order of intensities as ν = [v̂h,1, v̂h,2, . . . , v̂h,K].

4: Generate a bistatic range search grid of length Gr whose gr-th entry Ŕh,gr
spans the potential values of interest.

5: for k← 1 to K do
6: Construct a steering matrix R̂§

g,h[m] using the k-th entry of ν and Ŕh,gr .

7: Perform range estimation by solving (6.40) using Z§(k)
r,h , which repre-

sents Z§
r,h for the k-th iteration.

8: Choose the range parameter R̂h,k with the largest intensity in the esti-
mated spectrum.

9: Construct a steering vector R̂§
h,k[m] using the estimated bistatic range

and velocity pair (R̂h,k, v̂h,k).
10: Remove the contribution of the target being processed to get

Z§(k+1)

r,h [m]←
(

Z§(k)
r,h [m]− R̂§

h,k[m](R̂§H

h,k[m]R̂§
h,k[m])−1R̂§H

h,k[m]Z§(k)
r,h [m]

)
.

11: end for
12: Store the estimated bistatic range and velocity pairs as rν =

[(R̂h,1, v̂h,1), (R̂h,2, v̂h,2), . . . , (R̂h,K, v̂h,K)].
13: Generate a DOA search grid of length Ga whose ga-th entry θga spans the

potential values of interest.
14: for k← 1 to K do
15: Construct a steering matrix Â§

g,h[n] using the k-th pair in rν and θga .

16: Perform DOA estimation by solving (6.45) using Z§
a,h.

17: Store the estimated DOAs in a = [θ̂1, θ̂2, . . . , θ̂I ], where I is the number
of detected peaks in the DOA spectrum.

18: Construct the contribution of the k-th target using (R̂h,k, v̂h,k) and all I
DOA candidates in a as in (6.47).

19: Choose the correct DOA for the k-th target by solving the problem in
(6.48).

20: end for
21: return Estimates of Ŕh,k, vh,k, and θk for all K targets.
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TABLE 6.1: Radar settings used in the simulation of the wide-
band bistatic automotive scenario

Parameter Value Parameter Value
Pt 10 dBm fs 17.66 MHz
Gt 23 dBi Tc 29 µs
Gr 16 dBi T 30.438 µs
σbi 0 dBsm N 512
B 1.5 GHz M 128
f0 77 GHz L 16

SNRi 160 dB d 1.948 mm

For Doppler estimation, the results are shown in Figure 6.1. It can be seen
the proposed method accurately estimates the bistatic velocity for all targets
while the conventional approach fails to do so. The effect of the coupling
on performance is very clear with the energy being smeared across multiple
grid points.

For range estimation, the results for every target are shown in Figure 6.2.
It can also be seen that the bistatic range for all three targets is accurately
estimated and the success of the Clean-like approach is visible in each spec-
trum. On the contrary, the conventional approach fails to accurately estimate
the range parameters and the energy is smeared across multiple grid points
similarly to the Doppler domain.

For DOA estimation, the results are shown for every target in Figure 6.3.
The proposed method accurately estimates the DOA for all targets while the
conventional method shows a slight drift from the true value. The P-test
values shown next to each detected peaks represent the normalised values
of the argument of the optimisation problem in (6.48). As theoretically ex-
pected, the true DOA minimises the proposed pairing function. Monte Carlo
trials are also conducted to verify the success of the proposed solution by
computing the RMSE as the performance metric. This time, the parameters
are chosen from a uniform distribution bounded by two adjacent grid points
from their corresponding search grid. The results are shown in Table 6.3,
and it can be seen that the motion parameters can be accurately estimated,
and unambiguously paired at the range and DOA estimation stages of the
proposed algorithm.
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TABLE 6.2: Chosen target parameters in the single trial for
wideband estimation

Parameter Range [m] Velocity [m/s] DOA [◦] Amplitude
Target 1 31.82 80.95 7.41 5.4× 10−7

Target 2 34.34 81.96 12.94 5.1× 10−7

Target 3 36.23 82.98 22.47 4.8× 10−7

TABLE 6.3: RMSE computed using the proposed wideband so-
lution from 1000 trials at SNRi = 160 dB

Parameter Range [m] Velocity [m/s] DOA [◦]
RMSE 0.0380 0.0867 0.251

FIGURE 6.1: A comparison of the estimated velocity spectrum
between the proposed method and the conventional one using

wideband bistatic measurements.
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FIGURE 6.2: A comparison of the estimated range spectrum be-
tween the proposed method and the conventional one using
wideband bistatic measurements. The three targets are esti-
mated in the descending order of intensities as shown from top

to bottom.
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FIGURE 6.3: A comparison of the estimated DOA spectrum be-
tween the proposed method and the conventional one using
wideband bistatic measurements. The spectrum corresponding
to each target is shown with P-test being the value of the argu-

ment of the pairing optimisation function in (6.48).



102 Chapter 6. Wideband Bistatic Automotive Radar

6.5 Summary

In this chapter, the wideband case was considered for bistatic automotive
radar sensing. A rigorous signal model was derived that takes into account
the artefacts often neglected in the literature. A parametric analysis was pre-
sented to highlight the differences from the simplified narrowband model.
Bandwidth bounds were derived to provide a criterion under which the nar-
rowband assumptions are no longer valid and the rigorous model providing
a more realistic representation of the radar signal should be used. After that,
a general systematic approach was proposed to process wideband signals in
decoupled measurement domains for bistatic automotive motion parameter
estimation. This solution could be implemented with any parametric meth-
ods and it does not solve the wideband problem by converting it to a set of
narrowband ones, it rather uses the wideband artefacts to solve the pairing
problem associated with decoupled 1D estimation. Then, a GS-based algo-
rithm was proposed for parameter estimation and unambiguous data asso-
ciation. Computer simulations proved the success of the proposed approach
and the performance was evaluated at low noise levels as a preliminary study
for this wideband problem. In future work, the proposed solution will be
evaluated with higher levels of noise and increased number of targets. Its
performance will be compared against the Keystone method which is often
used alongside the FFT for wideband estimation.
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Conclusions

In this thesis, motivated by the drive towards collaborative radar and vehicle-
to-infrastructure communication in the wake of the revolution in mobile com-
munications, a novel application of bistatic radar for automotive sensing was
proposed. The idea can be envisioned in a smart highway designed with in-
frastructure suited for radar operation where cooperative roadside sensors
are carefully distributed on the side of the road and are transmitting radio-
waves modulated to suit the already existing radar modules present in the
road vehicles. The latter can then switch to a receiving mode and be relieved
from the transmission task. Communication between the roadside sensors
and the sensing vehicles can be established via pre-agreed protocols over a
NR link.

In Chapter 3, the main advantage of such an application was demon-
strated by showing that enhanced detection and parameter estimation per-
formance can be achieved using the proposed bistatic configuration when
compared to the monostatic counterpart. Despite the complex geometry as-
sociated with bistatic measurements, it was shown that the motion param-
eters of the targets, including the range, velocity, and the DOA, can be un-
ambiguously estimated. In particular, a method based on the FFT was de-
veloped for multi-target motion parameter estimation. The synchronisation
requirements for useful operation of this radar configuration were also de-
rived. By using the radar settings recommended for vehicular applications,
computer simulations were conducted using the MATLAB software to val-
idate the theories behind this application and provide a proof of concept.
A theoretical increase in detected range from bistatic measurements up to
twice that from monostatic measurements was proven. Also, simulation re-
sults show that the bistatic radar can achieve the same level of performance
with 3 dB less power.

In Chapter 4, a sparse representation for the signal model was derived
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and a method was proposed for joint localisation and Doppler estimation us-
ing convex optimisation. The sparse data was reconstructed via the LASSO
technique which was implemented in MATLAB using the CVX toolbox. In
order to provide a benchmark for the performance of parameter estimation,
the CRB for this problem was derived. It was shown through extensive sim-
ulations that it is feasible to jointly estimate the bistatic range, velocity, and
DOA under varying levels of noise, using the LASSO technique. As ex-
pected, the latter outperformed FFT with a large margin due to its ability
to refine the search grid with higher granularity to achieve better estimation
accuracy. FFT has a fixed grid limited by the number of measurements which
highlights its main disadvantage despite its unwavering efficiency. LASSO
also outperforms MUSIC albeit with a smaller margin.

In Chapter 5, the problem was extended to the multistatic case with multi-
ple cooperative roadside sensors. It was conveyed that advanced signal pro-
cessing techniques are needed to fully benefit from having multiple sources
of information about the target. In fact, with the state-of-art signal process-
ing techniques, such as Fourier-based estimation, the fusion of this informa-
tion can only be done at post-processing stages. So, a method for location
and Doppler estimation was proposed by adopting the GS concept for jointly
processing signals from multistatic measurements offering an improved per-
formance and increased DoFs. After avoiding an exhaustive 3D parametric
search, two methods for data association were proposed and tested through
computer simulations under varying settings. Computer simulations also
showed that the proposed GS-based method can outperform the state-of-art,
namely MUSIC which was used as the benchmark for parameter estimation
performance.

In Chapter 6, a case where the roadside sensors are transmitting wide-
band signals was considered. A rigorous signal model was derived and the
unwanted artefacts normally neglected in the narrowband case were identi-
fied and analysed. Bandwidth bounds were proposed as a criterion under
which narrowband assumptions are no longer valid. It was shown that the
artefacts can be resolved without forcing the problem into a narrowband one
and using existing techniques. More profoundly, a general solution to the
bistatic wideband problem was proposed by incorporating the artefacts as
extra sources of information about the targets, and processing the data after
decoupling the measurement domains. Unlike current popular approaches
for parameter estimation from wideband signals, the proposed approach rids
the need for filtering out or compensating for the effect of the unwanted
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artefacts. Then, a GS-based algorithm was proposed for decoupled range,
Doppler, and DOA estimation alongside an unambiguous data association
solution for multi-target scenarios. The proposed solutions were evaluated
using computer simulations under high SNR levels confirming the feasibil-
ity of the approach and showing significant reduction in the effect of the un-
wanted wideband artefacts as a preliminary study.

7.1 Future Work

The research conducted in this thesis has undoubtedly expanded the litera-
ture in the areas encompassed by each Chapter. Moreover, it has introduced
new areas of research which may be considered in future work by any inter-
ested researchers. Next, we briefly list a few of these directions:

1. The approach proposed in Chapter 6 for processing wideband signals
is well suited for sparsity-based estimation. By adopting the GS con-
cept, it can be easily seen that the steering matrices in each measure-
ment domain lead to a common support between all the sparse vec-
tors. So, the wideband problem can be extended to the multistatic case
where Doppler estimation is performed first in line with the solution
presented in Chapter 5, and then 2D localisation can be performed by
combining stages two and three in the solution presented in Chapter 6.
However, this approach can increase the computational cost, so means
of reducing the added complexity can be explored.

2. The preliminary results of Chapter 6 are very promising. The proposed
solution can be evaluated further under different operational settings
and compared against popular wideband solutions such the Keystone
transform.

3. The CRB has not been previously derived for the wideband bistatic au-
tomotive problem. So, by following the CRB derivation in Chapter 4,
and using the wideband signal model derived in Chapter 6, the CRB
can be derived for joint estimation, or for decoupled estimation by only
considering the diagonal elements of the FIM.

4. It would interesting to evaluate the performance for parameter esti-
mation when both bistatic and monostatic measurements are available.
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Fortunately, similar to the multistatic case in Chapter 5, both measure-
ments would share the same support set for location estimation and GS
can be applied for improved performance.

5. For practical operation of the bistatic automotive radar, some proto-
cols are required for handoff as the sensing vehicle switches from one
roadside sensor to another along the route. A well designed scheme for
smooth operation is required and interference due to signals from other
roadside sensors should be minimised.

6. So far, only computer simulations were used as a means of theoretical
validation for the proposed methods. It is important, however, to vali-
date the performance with real radar data which may then attract more
interest into this area of research and promote efforts for conducting
real-world experiments that mimic the envisioned application.

7. The interference and clutter problems are very popular in the radar
community. Particularly with automotive applications that impose higher
safety requirements, it is important to ensure that a developed method
is guaranteed to work in the presence of these artefacts. In future work,
the effect of both problems on the probability of signal recovery from
sparse measurements will be studied. Also, methods for reducing in-
terference should and the effect of clutter should be explored.

8. The white Gaussian assumption is common within the radar commu-
nity. It is, however, important to study the effect of non-white non-
Gaussian noise on the performance of sparsity-based signal recovery.
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