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Abstract

Building operations are responsible for about 30% of global greenhouse emissions.

Thus, to attain emissions reduction objectives, action on buildings’ operational en-

ergy use is vital. In this effort, the residential sector plays a key role. Nevertheless,

the priorities in this sector are diverse around the world. Discussion in the global

south tends to focus on informality and adequate housing provision rather than ther-

mal comfort or energy savings. While it is true that emissions per capita in developed

countries are considerably higher and the lack of quality housing characterises most

urban areas in the developing world, these facts should not rule out the inclusion of

environmental sustainability policies within low-income housing programmes in the

global south. Many such programmes nowadays act on the incremental strategy,

which is the most common form of building development in these regions. Incre-

mental houses are unfinished but in conditions of habitability and are upgraded at

a pace based on the financial capacities of their dwellers.

The current research responds to the envisaged need for tools and methods to

promote passive building design in aided incremental residential development. This

design strategy is used to minimise mechanical conditioning dependence while main-

taining indoor thermal comfort. It currently relies on computational optimisation

methods to achieve its goal. While high-profile buildings can afford these methods,

they remain out of reach of help agencies and dwellers in incremental housing set-

tings. As such, the present thesis defends the position that to unlock the capacity

of millions of incremental dwellers to contribute to emissions reduction and propel

a positive cycle of increased physical well-being with economic and environmental

benefits, these methods should evolve to cater for the needs of these settings. As

such, it presents an agent-based simulation workflow demonstrating the possibility

of applying these advanced methods in incremental residential scenarios.
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Chapter 1

Introduction

Buildings’ operations contribute significantly to Greenhouse Gas emissions, account-

ing for approximately 30% of global emissions. If Net Zero targets are to be achieved,

intervention in improving existing and future building stock is urgent. Although this

is widely acknowledged, the role of the residential sector in the global south is usu-

ally minimised in these efforts. In the developing world, the emissions per capita are

certainly just a fraction of those generated in the global north, but keeping emissions

low as housing quality is improved and consumption patterns change is an argument

to consider. In this sense, profiting from aided incremental development schemes,

not only to improve living conditions as it is currently done but also to provide

quality and thermally comfortable living solutions with minimal environmental ef-

fects, is the main topic of the current research. As such, this chapter introduces

the identified problem that justifies the development of the current research. It

continues by posing research objectives and describing the methodology designed

to tackle the research problem. This methodology uses an Agent-based approach

to execute a workflow of simulation tools and methods that allow compliance with

the set objectives. Finally, and based on the workflow components, this chapter

presents a structure for the rest of the document.
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1.1 Problem statement

The following section will present the problem statement that inspired and derived

in the development of this thesis. As such, it is composed of two parts. The first

one will introduce the concept and relevance of incremental residential development.

This section concludes by providing a general model of residential incremental de-

velopment in the global south. A second section introduces the concept of passive

building design, remarking on its usefulness as an efficient strategy to reduce emis-

sions from the built environment. This second section defends the idea that to meet

the increasing demand for housing in the global south with comfortable and sustain-

able dwellings in the short term, a passive design approach to aided incrementalism

is needed. This “passive incremental design” strategy requires developing tools and

methods that demonstrate that both approaches can be combined while bringing

increased benefits for dwellers and supporting agencies.

1.1.1 Incremental residential development in the global

south

Unemployment, labour informality and low wages all limit access to adequate hous-

ing for millions in the global south. Meanwhile, states cannot supply enough low-cost

quality public housing for this ever-increasing demand. In this context, people find

alternative solutions to cope with their needs. Incremental housing, a system where

a house is incomplete but in conditions of habitability (Van Noorloos et al., 2020)

and is later upgraded “at a pace based on the financing capacities of the families”

(Greene & Rojas, 2008), has been consistently employed as a strategy for those who

face this need. So much has this been that studies assert that between 50% to 90%

of residential development in the global south is incremental (Habitat for Humanity,

2014).

These figures reflect the high relevance of informal urban development in the

global south. Still, it would be wrong to judge incrementalism as a strategy solely

used by the urban poor in informal slums. As the size and quality of housing depend

on the financing capacities of families, and in the current day and age, credit plays

a big role in this capacity, the factor that pushes people to practice incrementalism
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is not solely their income category but their capability to qualify for a loan large

enough to pay for a finished residence. As achieving that status depends on proving

a stable and permanent flow of money, most people who rely on the informal sector

are pushed to incrementalism despite their income. Considering that in low- and

middle-income countries, 67.1% of the total employment is informal (OECD, 2023),

it is no wonder why so many people will rely on the incremental strategy for housing

provision. Additionally, as property ownership gives a sense of reassurance during

economic or political uncertainty (a permanent state in many global-south coun-

tries), many households prefer to expand a property they own rather than buy a

bigger one, even if they qualify for a loan. Forced multi-generational co-habitation,

resulting from high property costs in relation to incomes and the possibility of profit

from a property’s additional spaces, might also contribute to incremental develop-

ment’s popularity. As such, we could say that the incremental process happens

in many contexts and due to diverse causes, but in general terms, we can identify

certain factors that are always present.

First, we have an owner-occupier, an individual or collective household with

ownership rights over a certain property they currently inhabit. This property is

the second factor, a dwelling with certain characteristics that allow it to be expanded

if needed. These characteristics include having enough space at the ground level to

build an attached or detached annexe or a rooftop prepared to receive loads of one

or multiple stories above. Thirdly, there is a need to be satisfied with the potential

extension, whether real or perceived, current or future. This could be the intention to

capitalise on the property to generate an income, or it could be a desire to enjoy living

in a “decent and adequate” dwelling, one with enough spaces in size and number

to develop all daily activities with comfort and adequate levels of individual and

collective privacy. This factor, of course, is very subjective and has many cultural

connotations, such as those implied in what privacy and comfort are and how they

are measured. Finally, the factor differentiating the sort of incrementalism we will be

referring to in this thesis from others is the owner’s financial capacity. In the global

south, most people practice incremental development because they cannot access

the means that would allow them to get a fully “decent and adequate” dwelling at

once. It would be mostly the case that not even the incremental extensions can be
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paid in full. As a result, the “decent and adequate” dwelling comes, if ever, in pieces.

Instead of paying a mortgage in parts, the parts and components of the house are

paid in full, but as repayments, they come at different points in time. This latter

factor usually implies that the need is ahead of infrastructure and is real rather than

perceived.

Figure 1.1.1: Need-based loop in incremental residential development

As shown in Figure 1.1.1, incremental development in this context can be seen

as a cycle in which dwellers always chase their objective (a decent dwelling, one

with real need) with the limited resources they can access. As time passes, new

needs and opportunities emerge, and others disappear so that the “need” needs to

be re-evaluated. Eventually, the dwellers might achieve their goal or move out of

the property. In summary, two variables drive the transition between development

stages: on one hand, the need, a push factor, and on the other, the financial re-

sources, which bring an extension project to reality. A question of this schema left

for future chapters is an objective definition of “need” to be used in this research.

Meanwhile, financial capacity remains relative to material and labour costs and the

technology used to extend a dwelling.

This schema also entails an opportunistic approach towards building develop-

ment. As the decision to expand is taken once enough resources are gathered,

rational builders will prefer to minimise their resource use to anticipate the expan-

sion, expand the dwelling as soon as the resources are collected, and mind only

immediate need satisfaction when locating the expansion. This implies that, on

the one hand, there is not much space for planning and envisioning, and on the
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other, the construction quality might be impacted. Because of this, when uncon-

trolled, incremental development might be a dangerous force that brings unsafe and

unsustainable living spaces. Due to this, governments and international agencies

have engineered programmes that support the incremental strategy (Wakely & Ri-

ley, 2011), so the risks associated with its weaknesses can be minimised, but the

opportunities remain. This support may come in the form of financial, technical

and legal help so that dwellers feel more confident to invest, thinking in long-term

returns while minimising their initial cost and improving the overall quality and

safety of housing.

While the discussion has so far focused on incremental housing at the individ-

ual household scale, this thesis is interested in the aggregate consequences of these

practices. In this sense, incremental housing development constitutes an example

of a complex adaptive system, one deeply rooted in the changing socio-economic

conditions of the households that practice it. These conditions ultimately lead to

investment, which in turn impacts the physical condition of the built environment

and its associated variables. While some models exist to simulate incremental res-

idential development at the individual (Alvarado, Donath, & Böhme, 2009) and

collective scales (Augustijn-Beckers, Flacke, & Retsios, 2011; Peña-Guillen, 2019),

these are focused on reproducing the phenomena to investigate the spatial outcomes

of these interactions, paying little attention to other variables implied in the process,

such as operational energy-use or emissions.

1.1.2 Passive incremental building design

One of the most pressing challenges of this century is to provide comfortable liv-

ing spaces while curbing their use-related emissions. This challenge is particularly

acute in the residential sector of the global south, where a significant portion of

the population still lacks quality housing. The urgency is further compounded by

the need to reduce emissions from a rapidly expanding built environment. The cur-

rent climate emergency and the subsequent commitments to reduce energy-related

emissions necessitate innovative solutions that can achieve both goals in a relatively

short time. This section posits that supporting the incremental strategy could be

one such solution. By enabling access to micro-credits to enhance the quality and
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comfort of housing and reduce energy-related emissions, we could potentially un-

leash the potential of millions of self-builders in the global south to contribute to

the fight against climate change. A positive side effect could be the conversion of

energy savings into financial gains and comfort into productivity, thereby initiating

a virtuous cycle of improved economic and physical well-being with environmental

benefits.

In this context, passive building design emerges as a beacon of hope, offering a

strategy that can significantly reduce the long-term energy costs for dwellers with-

out compromising their indoor thermal comfort. This design approach, which uses

layout, fabric and form to reduce or remove mechanical cooling, heating, ventila-

tion and lighting demand (BRE, 2018), is not only fundamental but also highly

effective in achieving building energy efficiency (Sadineni, Madala, & Boehm, 2011,

Rodriguez-Ubinas et al., 2014). While the path to achieving a fully passive building

design is not without its challenges, it’s reassuring to know that modern Passive

building design relies on Building Energy Simulation and Optimization (BESO)

methods (Stevanović, 2013, Tian et al., 2018). These methods, which involve en-

ergy modelling and optimisation, can help ensure that design options translate into

energy savings and thermal comfort, further bolstering the case for passive building

design.

Even when BESO allows finding high-performing solutions with relative ease, a

highly trained and competent workforce able to understand, interpret and trans-

form data into designs is still required. Additionally, passive design usually implies

additional financial costs on materials and technologies that ensure adequate levels

of solar protection, insulation, and others. As a result, passive building design has

an additional initial investment in talent, technology and materials compensated in

the long term with lower energy bills. This increased initial investment can usu-

ally be afforded only by high-profile commercial buildings, keeping passive design

out of reach of most people practising incremental development in the global south.

The opportunistic nature of incremental development also doesn’t match the careful

planning needed to practice adequately passive building design.

As such, new approaches are needed if passive building design is ever combined

with the incremental strategy. First, we will need tools that can show that both
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approaches can be mixed and that, together, they can achieve increased energy

savings and thermal comfort, both to individual households and as interventions

at the neighbourhood scale. Initially, these tools would help convince dwellers and

help agencies about the feasibility and profitability of applying passive building

design strategies as programmes for incremental environments. Second, we will

need to make the required technical support affordable so that BESO becomes a

participatory tool rather than a high-technology gadget reserved for a specialised

public. Third, we will need the commitment of the help agencies so that funds

and promotion measures are put in place to ensure that the passive building design

strategy is applied in the real world.

The current thesis presents the very first-of-its-kind approximation to these goals.

This comes in the form of a workflow that informs interested parties on the appli-

cability and profitability of implementing the passive building design strategy in

residential incremental environments. Bearing in mind the various and complex

variables implicated in this design strategy, such workflow is limited to building

envelope geometries and their effect on individual and aggregate energy use and in-

door thermal comfort, leaving for future developments the implementation of other

strategies (such as insulation, openings, shading devices, ventilation, etc.) that

would allow achieving fully passive incremental dwellings and neighbourhoods.

1.2 Objectives

This thesis aims to inform the interested parties in implementing an aided form of

incremental residential development in the global south on the possible application

and benefits of passive building design strategies at individual and aggregate levels.

Bearing this in mind, this thesis has the following primary objective:

Primary objective: Demonstrate that passive building design, in general, and

the optimisation of building envelope geometries, in particular, can be used success-

fully in the context of incremental residential development in the global south to

achieve increased thermal comfort with energy efficiency at individual and aggregate

levels. From this primary objective, three secondary objectives are derived:

• Build a computational workflow able to simulate the incremental development
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of dwellings based on plausible assumptions and data.

• Develop a BESO methodology for optimised building envelope geometries able

to deal with the particularities of the residential incremental strategy in the

global south.

• Develop a workflow linking the outputs of the previously stated objectives to

obtain plausible results that demonstrate the possibility of applying passive

building design strategies in an incremental residential development context

and showcase its comparative benefits.

These secondary objectives are presented in more detail as follows:

Secondary Objective I: Build a computational workflow able to simulate the

incremental development of dwellings based on plausible assumptions and data. To

achieve this, we need to:

• Devise a model of incremental dwellers’ investment behaviour in the global

south, based on plausible assumptions.

• Feed this model with plausible data on the socio-economic conditions that

trigger incremental development.

• Implement this model in a platform able to feed the BESO methodology.

Secondary Objective II: Develop a BESO methodology for optimised building

envelope geometries able to deal with the particularities of the residential incremen-

tal strategy in the global south. This tool should be able to:

• Evaluate the energy use and indoor thermal comfort of building envelope ge-

ometries.

• Select the best-performing options.

• Repeat the optimisation process every time the incremental process takes

place.

Secondary Objective III: Develop a workflow linking the outputs of the previ-

ously stated objectives to obtain plausible results that demonstrate the possibility of

applying passive building design strategies in an incremental residential development

context and showcase its comparative benefits. This workflow should:

8



• Allow the interaction between the incremental development model and the

BESO.

• Test plausible scenarios that derive interesting and informative data outputs

• Present data at individual and aggregate levels clearly and convincingly for

the use of interested parties

1.3 Methodology

The proposed methodology uses an Agent-based modelling (ABM) approach. This

approach, which has been consistently used to study complex systems in urban and

architectural research (Chen, 2012), allows for getting data at the individual and

aggregate levels and testing different interaction scenarios. As such, the method-

ology is expressed as an ABM workflow for social simulation able to facilitate a

greater understanding of incremental housing development as an emergent socio-

spatial phenomenon. This workflow follows the exploratory modelling paradigm

(Bankes, 1993), and a post-rationalist approach to planning theory. The earlier im-

plies that the model is used to define salient characteristics and “inform” debates

rather than aiming at accurate or focused predictions, while the latter considers de-

sign as an argumentative process (Rittel & Webber, 1973) in which “negotiation and

compromise between parties” (Bazjanac, 1974 cited by Batty, 2013) are essential for

the decision-making process.

This methodological setup should allow for studying the aggregate impact of

individual choices on operational energy use at the neighbourhood scale. Its com-

ponents respond to the research objectives. As such, the methodological proposal

(Figure 1.3.1) is divided into two parts (A and B), with an intermediary component

between them. This intermediary is central to the posed methodology and, along

with Part A, responds to Secondary Objective I: While Part A feeds with plausible

data the sought model, the intermediary is in itself the model described on the said

objective. Part B, meanwhile, responds to Secondary Objective II, while the overall

arrangement (C) responds to Secondary Objective III. Its execution leads to the

results expected by the Primary Objective of the thesis. Due to the ABM approach,
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these results come initially at the individual level and are subsequently aggregated

to understand the macro trends.

To achieve its objective, the intermediary component reproduces the generalised

incremental residential development model presented in the first section of this chap-

ter (Figure 1.1.1). Part A, meanwhile, achieves its objectives by generating data in

terms of ”need” and ”financial capacity” for all the periods requested. As presented

before, these two variables are the determinants of the incremental process and feed

the intermediary component. With the interaction between these two components,

data on the timing of dwellings’ expansion is produced, and thus, the timing of

buildings’ geometries change is delivered to Part B.

Figure 1.3.1: Thesis Methodology

Part B, meanwhile, follows the typical set-up of a contemporary building design

optimisation loop: an Evaluator that provides information on the performance of

available options and a Selector which searches for new candidates and selects the

best-performing ones. Part B does not only use optimisation as a way to implement

BESO in the workflow, but also to simulate agents’ cognition in an ABM setting

under a bounded rationality premise. As such, agents make satisfactory rather than

optimal decisions, a problem tackled by optimisation methods if these are bounded

by computation and available information (Brownlee, 2007). Our optimisation loop

will, therefore, converge in “good enough” rather than optimal solutions. This

optimisation process’s objective function aligns with what is presented in Secondary

Objective II: the energy use and indoor thermal comfort resulting from varying

building envelope geometries.

To use BESO as an agent cognition tool, the workflow assumes that agents can

access a piece of information usually hidden from them: the potential operational
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energy use of their building expansion alternatives. Rationally bounded individ-

uals will, therefore, aim to minimise the running costs of their residences when

deciding where to incrementally expand their dwellings. The emergent phenomena

depicted will, therefore, not reproduce what exists in the real world but will be

the consequence of a universal policy choice, sharing the said information with the

participating agents.

This implies the evaluation of a “socio-technical” system in which agents’ interac-

tions are directed by their bounded rationality complemented by a piece of technical

information provided by a third party (an “aid” agency). This technical information

is provided by the ”Evaluator” component in the workflow. Solutions are satisficing

as the problem remains bounded by computation (time and resources) and the time

horizon of the available information (it only includes extension options possible with

the currently available financial means). This additional piece of information also

serves to keep track of the aggregate values and thus evaluate the consequences, in

environmental terms, of an emergent phenomenon.

To obtain this information, the workflow uses Building Energy Modelling (BEM)

as an ”evaluator” component. Contemporary BEM software can accurately pre-

dict energy use and thermal comfort at individual building scales, which becomes

convenient when setting up buildings as agents in an ABM setup. EnergyPlus

(EnergyPlus™, Version 00 , 2017), a whole building white box BEM software widely

used and validated in academia and industry, became the selected tool among avail-

able BEM software. As a white-box model, EnergyPlus “uses detailed physics-based

equations to model building components, sub-systems and systems to predict whole

buildings and their sub-systems behaviours” (Li & Wen, 2014). Its popularity has

also meant that it has become integrated into several wider platforms, such as the

Urban Modelling Interface (Reinhart, Dogan, Jakubiec, Rakha, & Sang, 2013) and

the Housing Energy Hub (Sousa, Jones, Mirzaei, & Robinson, 2018), which broadens

the development alternatives for the rest of the workflow components.

Agents solve their satisficing problems using Multi-Agent Reinforcement Learn-

ing (MARL), which also serves as the ”selector” component in the optimisation loop.

This method is used as it allows the creation of a decentralised system that enables

communication and learning. The experiments shown in the last chapter of this
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thesis demonstrate how these characteristics lead to negotiation and compromise

via tolerance values on the objective function. Other advantages of MARL are:

• It allows scalability, as with minimal changes, the same algorithm can jump

from simulating the cognitive process of one agent to tens interacting of agents.

• MARL and, more specifically, Q-learning has been in circulation for many

decades now. As a result, there are abundant learning resources to develop,

test, and debug a model that uses them. Given the researcher’s background,

this was vital to complete the project.

To get plausible and persuasive results, the workflow needed real-world data.

For this, a case study was needed. As a result, basic module developments in

Peru were selected. This typology of aided self-help developments serves as an

ideal case study as, unlike other such cases, they have trackable initial states at

building and neighbourhood scales. This allows taking out multiple variables that

would otherwise over-complicate the modelling task. As the chosen location, Peru

responds to its long-standing tradition with this type of development, the availability

of statistical data to create plausible models, and its variety of climates that allow

the simulation of diverse thermal comfort scenarios.

To sum up, the proposed workflow will be able to explore the possible outcomes

of a single policy action and multiple agent interaction scenarios in the develop-

ment of incremental housing projects in Peru by using BESO as an agent cognition

tool in an ABM setting. This is to inform and help social scientists, policymak-

ers, and urban designers have a better understanding of this emergent socio-spatial

phenomenon and thus act accordingly to maximise their social benefits and min-

imise their impacts (particularly those related to their operational energy use). A

complementary function (yet to be tested) is to serve as a “discussion facilitator”

between communities and planners. All this should ultimately serve to achieve the

main objective of this thesis, which is to demonstrate that passive building design

can be used in the context of incremental residential development.
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1.4 Contribution to Knowledge

The contribution to knowledge of the current research can be summarised in three

key aspects.

• First, it demonstrates that the integration between microsimulation and

MARL for agent cognition in an ABM setting is possible and functional. Al-

though optimisation methods in architecture using social-like behaviour exist

(such as particle swarm), and MARL has been previously used for agent cog-

nition in social simulation models (Sert, Bar-Yam, & Morales, 2020; Martinez-

Gil, Lozano, & Fernández, 2014), no record has been found of the integration

between a micro-simulation model and MARL mechanisms. This is probably

because, up to now, no usefulness has been found in integrating socio-economic

data projections and dynamic optimisation techniques applied to the built en-

vironment. As such, this thesis opens research avenues so far unexplored.

• Second, it simulates incremental residential development using learning

agents: Incremental residential development is not an uncommon research

topic in the simulation community; nevertheless, so far, we have read only

about constraint programming (Alvarado et al., 2009), rule-based ABM

(Augustijn-Beckers et al., 2011) and diffusion dynamics (Peña-Guillen, 2019)

as simulation methods. The current thesis presents the first attempt to use

learning agents for residential incremental development modelling and sim-

ulation. It also significantly increases the number of simulated incremental

dwellings in comparison with previous experiences, while it employs 3D CAD

software as a simulation platform and data visualisation tool.

• Third, it implements a multi-agent and dynamic optimisation method in a

building’s envelope geometry optimisation task: Although nowadays, build-

ing geometry optimisation is a common task in BESO, studies use parametric

optimisation as standard. This approach allows the use of robust methods,

such as Evolutionary algorithms, that can promptly produce highly relevant

results with relatively modest computational resources. Nevertheless, the post-

rationalist approach to planning theory and the ABM nature of the workflow

requires a method that goes beyond simply optimising single states in a static
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environment. We need a tool that generates agent interactions that open nego-

tiation spaces in multi-state building development. Dynamic optimisation in

general, and MARL in particular, did not offer so far any comparative benefit

in building envelope geometry optimisation against the parametric approach.

This thesis tests these methods in a very specific setting and with very specific

requirements, which demonstrate that there is space for dynamic optimisation

in the BESO field of study.

1.5 Thesis structure

This thesis is structured so that enough space is given to describe the tools and meth-

ods used in each workflow component. As such, Chapter 2 is reserved to present

the chosen case study. Chapter 3 presents Component A, while Component B uses

Chapters 4 and 5. The first of these two is used to describe its execution envi-

ronment, and the second one discusses the selected optimisation method and tests

its capabilities (partially presented in Poco-Aguilar, Wate, and Robinson (2022)).

Chapter 6, meanwhile, presents the outcomes of the workflow execution and the

implementation of the intermediary component, with the thesis’s primary objective

being attained here. Finally, Chapter 7 presents the thesis conclusions and provides

an outlook of possible future developments for this research.
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Figure 1.5.1: Thesis Structure
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2.1 Introduction

The current chapter aims to present basic module developments in Peru as suitable

study cases to test the proposed workflow. To achieve this, the chapter starts by de-

scribing Peru’s country profile, focusing on the country’s relevant physio-geographic

and socio-economic characteristics. A second section dives into the history of housing

provision policies in the country to introduce the concept of basic module develop-

ments and characterise them in present-day Peru. A third section presents current

policies in Peru that deal with thermal comfort and sustainability in the country’s

residential sector. A final section concludes by reckoning that basic module develop-

ments offer an ideal testing platform for the workflow due to their inherent top-down

characteristics, which imply trackable initial states. Meanwhile, Peru’s location is

confirmed due to its rooted tradition of top-down support for incremental develop-

ment and its diverse geography that allows testing the model with different climatic

scenarios whilst keeping control over socioeconomic variables. This is complemented

by the fact that the workflow might serve as a tool to support the country’s approach

to the comfortable and environmentally conscious design of low-cost housing fitted

for its context.

2.2 Relevant facts and figures of Peru

2.2.1 Physio-geographical characteristics of the country

The Republic of Peru is in western South America, facing the southern Pacific

Ocean. It is wholly positioned below the equatorial line and within the torrid zone,

with its northernmost point located at 0° 2’ 21.42” and its southernmost point at

18° 21’ 0.42” of southern latitude. With a total land area of 1,285,216 km2 (about

5.3 times that of the UK), it is the third largest country of the subcontinent, only

after Brazil and Argentina (Central Intelliegence Agency, 2023a). The Peruvian

climate is very diverse, derived from its location and geographical features. The

country is divided into three regions due to the Andes mountains, which traverse

the country from north to south, reaching altitudes up to 6,746 metres (22,133 ft)

above sea level (Central Intelliegence Agency, 2023b). On the eastern side of the
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Andes lays the tropical rainforest; on the western side, protected from the east-

erlies by the peaks, drier and stable conditions emerge. These latter conditions

are aggravated by the predominance of the northward-flowing Humboldt current,

which brings cold waters from Antarctica, creating a semi-permanent temperature

inversion phenomenon when it crosses tropical latitudes. As a consequence, ocean

humidity becomes trapped in the lower layers of the atmosphere, and vertical cloud

formations cannot emerge. Thus, heavy rains in the central and southern coastal

regions are sporadic, but as the influence of the Humboldt Current weakens further

north, a different climatic pattern emerges, developing a savannah-like ecosystem.

Figure 2.2.1: Eco-regions in Peru.
Source: ProjectPeru (2023)

Despite the desert-like climate in the western part of the country, several rivers

flow from the top of the Andes to the Pacific Ocean, feeding the soil and creating

highly productive valleys on their way. Eastwards, wider meandering rivers fed by

higher amounts of rain run freely on the plains and eventually join to form the

Amazon River, thus creating an intricate communication network that connects

towns and cities. The Andes are, therefore sculpted by water on all their sides,

forming deep valleys in which urban areas and productive activities have emerged.

21



In some sectors, broad plateaus emerge, where livestock, mining and commercial

activities sustain towns and cities that are among the highest inhabited places in

the world (NASA Earth Observatory, 2023).

Figure 2.2.2: Koppen-Geiger map of Peru.
Source: Beck et al. (2018)

Climatic and geological conditions determine the most common natural disasters

possible in the Peruvian territory. On the one hand, the same forces that formed

the Andes mountains are still present. The Nazca plate, which lies below the Pa-

cific, sub-ducts below the South American continental plate in front of the Peruvian

coastline, thus making possible the occurrence of volcanic eruptions and destructive

earthquakes, more frequent and dangerous the closer one gets to the sub-duction

zone. On the other hand, the relative climatic stability that southern cold waters

bring to the west of the country can be suddenly interrupted when the global El Niño

Southern Oscillation (ENSO) or the local El Niño Costero phenomena warm the wa-

ters, thus bringing heavy rains where unaccustomed, and drought to rain-dependant

areas. Populations in deep valleys are particularly vulnerable to landslides, as dry

slopes might receive atypical rainfall during these events.
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2.2.2 Socio-economic characteristics of the country

Peru’s population is projected to reach 33.7 million inhabitants for 2023 (INEI,

2023). This figure is unevenly distributed in the territory, with almost a third of the

country’s inhabitants living in the metropolitan area of Lima-Callao (INEI, 2023).

This fact also tips the balance in favour of the coastal region being the most densely

populated in the country, with about 59% of the country’s population living in what

represents 12% of the land area (INEI, 2023). The highlands, considering all people

located above 500 m.a.s.l. on the western side and 1500 m.a.s.l. on the eastern

side (INEI, n.d.), shelter about 26.8% of the population (INEI, 2023). The eastern

lowlands, which account for about 60% of the territory (Ministerio de Agricultura

y Riego Peru, n.d.), only hold 14.2% of the population (INEI, 2023).

Figure 2.2.3: Evolution of Population distribution in urban and rural areas in Peru
Source: INEI (2022)

Peru is also highly urbanised, with official figures reckoning that 82.6% of the

population lives in urban settlements (INEI, 2023). The country experienced rapid

urbanisation between the 1940s and the 1990s, which increased the number of in-

habitants living in urban areas from 35.4% in 1940 to 70.1% in 1993 (Figure2.2.3).

This process was mainly driven by incipient mid-century industrialisation and disas-

trous policies and natural events affecting the countryside in the 50s and 60s. This

deepened the inequality between urban and rural areas and produced a massive

migratory movement to major cities. Centralisation and consequential enhanced

opportunities made Lima the leading destination of this movement. Successive gov-

ernments could not handle such enormous population growth, and therefore, vast
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regions of Peru’s most significant cities grew out of self-help housing initiatives.

Figure 2.2.4: List of Cities with more than 100k inhabitants in Peru since 1940
Source: INEI (2022)

As a middle-income country, Peru faces several obstacles that limit its growth and

development. A chronic condition of the country is its economy’s significant levels of

informality. Although figures show that unemployment has remained relatively low

for the last couple of decades (Figure 2.2.6), most people receive their income from

activities carried out in the informal sector (Figure 2.2.5). Therefore, most Peruvian

workers do not enjoy social welfare benefits, such as time off, health insurance and

retirement pensions. Despite this, poverty figures (Figure 2.2.6), although high, do

not correspond with the levels of labour informality. This indicates that working in
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the informal sector is not necessarily a synonym for poverty.

Figure 2.2.5: Formal and informal employment figures in Peru
Source: INEI (2022)

An essential driver of the prevalence of the informal sector in the economy is

the lack of complete control of the state over its territory and resources. As a

result, private initiatives may decide to remain on the fringes of the law for several

years with only minor consequences. Additionally, there is a competitive advantage

derived from lower operation costs in informality. This causes a vicious cycle in

which entrepreneurial dwarfism prevails. Successful “lawful” businesses either profit

from informality and remain small to hinder their detection or become formal, invest

in growth and face unfair competition from their informal counterparts. This, of

course, impacts productivity and innovation as, to achieve profits, investment in

technology and workforce training seems secondary.

Figure 2.2.6: Evolution of monetary poverty in Peru
Source: INEI (2022)
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2.3 Basic Module Developments in Peru

2.3.1 A brief history of basic-module developments

Despite occurring in diverse contexts, the incremental strategy in the global south

has traditionally been associated with informal residential development due to its

incremental nature. Until the 1960s, there was the widespread idea that slums only

brought evil to cities and that they and the associated ideas had to be cleared to give

way to “modernity”. It was not until John F.C. Turner’s writings on his experience

in Latin America (particularly in Peru) became popular among practitioners in the

early ’70s that the ideas on how to deal with (and learn from) slums started to shift

(Fernández Maldonado, 2015; Bromley, 2003). The impact was so relevant that,

in a matter of just a few years, organisations such as UN-Habitat were promoting

internationally some programmes suggested in his writings as feasible solutions to

the lack of proper housing in the global south (Kozak, 2016). As a result, several

“aided self-help” programmes were implemented in various countries worldwide in

the following years.

Turner did not invent “aided self-help”, but he did become the leading promoter

and defender of a range of initiatives that had been taking place in various Latin

American countries since the 1960s (Harris, 2003). As mass migration from the

countryside to the urban areas occurred, governments faced increasing pressure to

take action on illegal land occupations and slum development. Faced with political

and economic factors that limited intervention choices, many decided to negotiate

with illegal occupants and slum dwellers. As a result, a degree of coordination and,

eventually, cooperation between government officials and slum dwellers developed

in some places. This was the case of various cities in Peru, extensively described

in Turner’s writings (Turner & Fichter, 1972). One of the popular initiatives when

Turner visited Peru was what later became known as the “lots and services” schemes.

In essence, government bodies, unable to provide fully finished dwellings, gave home

seekers property rights, communally or individually, with a low or no charge, of

public land destined for urban development. Government intervention continued by

providing access to essential services (water, electricity and sewage) and a planned

layout to occupy the land, including spaces reserved for public recreation and ad-
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ditional infrastructure. The development of the dwelling infrastructure itself was

mainly reserved for the now owner-occupier, who could receive technical or financial

support from the government or the community but was solely responsible for tak-

ing the initiative to start and continue the construction. As with the dwellings, the

public infrastructure was developed incrementally and sometimes collaboratively. In

these initial schemes, households could spend decades living in sub-standard tem-

porary accommodation solutions until, eventually, they could raise the money to

start developing a more durable and proper dwelling. Consequently, an alternative

developed with time, in which an expandable dwelling core was provided in addition

to property rights (Gyger, 2019a).

This other type of aided self-help, based on initial “basic extendable modules”,

also became globally relevant thanks to a design competition in Peru. Developed

between 1968 and 1975 (Garćıa-Huidobro, Torres Torriti, & Tugas, 2011), PREVI

(an acronym in Spanish for “Experimental housing project”) drew the attention of

several internationally renowned architects of the time, who competed to present a

residential project where a house would “not be considered as a fixed and unchange-

able unit, but as a structure with a cycle of evolution.” (Gyger, 2019a). Although

small in scale (only 467 units were built on the first and only stage of the initia-

tive), the impact of PREVI locally and globally was considerable. In Peru, “basic

modules” became the epitome of the social housing typology for several decades. 1.

2.3.2 Contemporary social housing policies in Peru, the

ABC model

The era of innovations in housing policies in Peru gradually faded away in the 80s

as the country entered a deep and challenging economic and political crisis. The

subsequent neoliberal reforms of the ’90s obliterated the few remnants of social hous-

1“Social housing” is used here in the sense of “housing provided or subsidised by the state
and aimed at low-income sectors”, thus discriminating alternative state provision strategies such
as “sites and services” and programmes aimed at middle-income sectors. “Epitome” is used as
a synonym of “archetype”, “paradigm”, “prototype”, or “classic example/case”. The claim thus
implies that the prototypical typology of state-provided buildings to house people in low-income
sectors in Peru was, for many decades, the basic module. This assertion is based on diverse
literature, including Gyger (2019b); Fernández-Maldonado and Bredenoord (2010) and Fernandez-
Maldonado (2014) who report the prevalence of this housing typology in the policies of various
administrations in Peru.
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ing provision policies, limiting the government’s action to formalise informal land

occupations (via the Commission for the Formalization of the Informal Property -

COFOPRI) and offering low-interest loans for construction materials and techni-

cal help for self-construction (via the Materials Bank – BANMAT). Only in 2001,

with the reinstatement of the Ministry of Housing, subsequent governments became

committed to supporting housing provision in the country (Fernández-Maldonado &

Bredenoord, 2010). Since then, the Peruvian housing policy has been based on the

ABC (an acronym in Spanish for Savings-Bonus-Credit) model. Based on housing

provision by ownership, this model asks that potential owners have an initial mini-

mal amount of Savings to buy a property, complemented by a cash Bonus given free

of charge by the government. Savings plus Bonuses make the down payment for a

Credit, a mortgage to be obtained in the private financial system. The property to

buy can be used or new and, in any case, provided by the free market. This model is

currently managed by “Fondo MiVivienda” (FMV), a state-owned investment com-

pany under private law that acts as guarantor (so the loans come at a lower interest

rate) and directs the bonus funds (Peruvian Law Nº 28579, 2005).

Although, initially, the ABC model seemed successful, it has not been able to

supply enough dwellings for the lower-income sectors (Leon, 2022). This is, on the

one hand, because as a system relying on financial credit, it cannot reach those

who depend on the informal economy, while, on the other, the dwelling costs deter-

mined by the market are well above the average income of the poorer households

(Calderon Cockburn, 2014). What this policy did achieve was to offer better condi-

tions for the middle classes to access a mortgage, and due to the contained demand

from decades of neglect and the contemporary economic growth, the construction

industry saw a golden era. Lima and some other large cities in the country saw

rapid vertical development in their most notorious middle-class areas (Fernández-

Maldonado & Bredenoord, 2010). At the same time, middle-size cities, particularly

coastal regions, saw a rapid urban expansion thanks to single-family middle-income

dwelling developments.

Because of the weaknesses of its approach, FMV was revamped in 2006. As part

of this, the “TechoPropio” programme was established as an ABC alternative for

the lower-income sectors; meanwhile, the “MiVivienda” programme, which had al-
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Table 2.1: Bonus brackets according to property retail value under the MiVivienda
programme

Property value
Minimum
Deposit

Non-refundable
top-up

Maximum loan
to property
value rate

65,200 – 93,100 PEN
(16,300 – 23,275 USD)

7.5%
25,700 PEN
(6,425 USD)

65%

93,101 – 139,400 PEN
(23,275 – 34,850 USD)

7.5%
21,400 PEN
(5,350 USD)

77%

139,401 – 232,200 PEN
(34,850 – 58,050 USD)

7.5%
19,600 PEN
(4,900 USD)

84%

232,201 – 343,900 PEN
(58,050 – 85,975 USD)

7.5%
7,300 PEN
(1,825 USD)

89%

Source: Ministerio de Vivienda Construccion y Saneamiento Peru (2022)

Table 2.2: Bonus brackets according to property retail value under the Techo Propio
AVN programme

Top Monthly
Household
Income

Cap on
property
value

Minimum
deposit

Non-
refundable
Top-up

Maximum
loan

Prioritised
Single-family
Dwelling

2,071 PEN
(518 USD)

55,000 PEN
(13,750 USD)

0.3%
43,240 PEN
(10,810 USD)

11,595 PEN
(2,899 USD)

Non
Prioritised
Single-family
Dwelling

3,715 PEN
(929 USD)

96,000 PEN
(24,000 USD)

0.3%
40,250 PEN
(10,062 USD)

55,462 PEN
(13,865 USD)

Source: Ministerio de Vivienda Construccion y Saneamiento Peru (2021b)

ready gained a reputation among consumers and developers, became “Nuevo Credito

MiVivienda” (NCMV) and continued to aim at middle-income sectors (Fernández-

Maldonado & Bredenoord, 2010). To achieve its goal, the TechoPropio programme

caps beneficiaries’ incomes and the retail price of housing units (Table 2.2). Addi-

tionally, it also presents products aimed at the self-builder, such as “Construction

on own site” (CSP) and “Housing improvement” (MV), which offer Bonuses, low-

interest credits and technical help for those who have a property to improve, extend

or develop. The TechoPropio product comparable to that of NCMV is “new dwelling

acquisition” (AVN), which finances the purchase of a property below a capped value.

Even after these changes, and with TechoPropio having existed as an ABC pro-

gramme for almost 20 years, the model’s outcomes still seem insufficient. Recent

reports (Figure 2.3.1) show that, out of the total offer of newly built housing in the

Peruvian urban market in recent years, only 4% come from schemes financed by

TechoPropio’s AVN. Meanwhile, NCMV performs slightly better with 7%. Ahead
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Figure 2.3.1: Distribution of modes of housing production in Peru per year
Source: Grupo de Analisis para el Desarrollo (2020)

are traditional mortgages (without governmental help) and the elephant in the room,

informal development, which, with its two typologies combined (adequate and in-

adequate), represent more than 2/3 of the yearly production of new housing in the

country. As expected, self-help provision overruns any governmental effort to sup-

ply adequate housing. Many structural problems contribute to the incapacity of the

formal market to cope with the demand. Particularly relevant is the lack of well-

positioned and well-sized lands for development in larger cities, which would allow

diminishing costs, and the informality of the job market, which limits the eligibility

of low-income individuals to qualify for a mortgage (and thus for government help

under the ABC model) (Calderon Cockburn, 2014).

2.3.3 Characterisation of current basic-module develop-

ments in Peru

Now that the concept and origins of basic module developments in Peru have been

established, we can proceed to characterise them in current-day Peru. This section

does so by first identifying who the most likely consumers of this type of housing

development are, then where these developments are mostly located, and finally,

what are their material and spatial characteristics, both at individual dwelling and

neighbourhood scales.

To characterise basic-module developments in Peru, we must first know who
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currently promotes them and whom they are aimed at. With this information, it

is possible to locate and size them, get the average market values of the dwellings,

and their spatial and technical characteristics.

First, we can fairly say that the bulk of basic module developments are promoted

by governmental programmes aimed at the lower-income sectors. Although exam-

ples exist in the Peruvian context of private developers selling incremental modules

without governmental involvement, these exceptions could be assumed to follow a

model led by those working in cooperation with the public realm.

Second, we can reasonably assume that they are directed to lower-income sectors

and thus promoted via TechoPropio’s AVN. Although no official figures classify

the dwelling financed by AVN as “incremental” or “not incremental”, the caps on

property costs established by the programme do give a hint to confirm this guess.

These caps and the government’s bonuses to households (Table 2.2) are differentiated

according to whether the household belongs to a prioritised group and what type of

property they aim at (single-family dwelling or multifamily residential). Knowing

this, it is fair to say that, due to caps on the retail value of units, most single-family

dwellings financed with the AVN bonus will be in basic-module developments. This

information also gives an idea of the cost of the “seed” housing units.

By using the project search tool available on the FMV webpage (Fondo MI-

VIVIENDA S.A., n.d.-b), it is possible to confirm this guess. Nevertheless, it is also

possible to note that some developments promoted via the NCMV programme are

also incremental (Fondo MIVIVIENDA S.A., n.d.-a). The latest available figures

(Fondo MiVivienda S.A., 2017) show that, at the national level, 36% of consumers

of NCMV used the bonus to buy a house. This figure increases in regions other

than Lima and ranges between 50 – 72% of the properties purchased with FMV’s

products. Of course, it would be wrong to say that all of these are located on basic

module developments first because these include both new and used properties and

second because even in the ‘new’ category, there might be other types of develop-

ment. Despite this, we must acknowledge that basic-module developments aimed at

the middle-income market exist.

Nevertheless, this phenomenon seems to be limited in geographical scope. By

checking the project search tool (Fondo MIVIVIENDA S.A., n.d.-a), it is noticeable
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that most NCMV basic module developments are located in agricultural-export-

dependent coastal regions like Piura, La Libertad, Lambayeque, and Ica. It is no

wonder that, outside Lima, as land values become lower, and particularly in coastal

regions, where there is plenty of relatively flat accessible land, developers can offer

single-family dwellings for middle-income households within caps imposed by NCMV

(Table 2.1). Of course, keeping costs within limits might require further sacrifices,

which means selling basic modules instead of fully finished homes. Market preference

for a house rather than a flat and the disinclination of FMV to fund land acquisition

(probably to avoid land speculation) might give space for this market to flourish in

these locations. Of course, to keep up with the market targeted, these basic modules

likely come with better quality finishings than those promoted by AVN.

To sum up, in today’s Peru, it is possible to find basic-module developments pro-

moted by government programmes or without their support. Finding those aimed at

the middle-income market and those in lower-income sectors is also possible. Nev-

ertheless, despite this variety, most projects seem to be financed by TechoPropio’s

AVN. Additionally, due to the burden of land value in the retail cost of units and the

strict caps imposed by AVN, most of these projects seem to prefer regions outside

metropolitan Lima. As a result, it is highly likely that by profiling AVN single-

family dwellings projects outside Lima, we get an accurate picture of the current

situation of basic module developments in Peru.

Figure 2.3.2: Total dwellings per region (outside Lima-Callao) applying for AVN
2002-2012
Source: MiVivienda SA (by request)

Now that we have identified our research target, we can proceed to characterise
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incremental projects that exist within AVN. Information on these projects is only

available (by request) to those registered with the programme between 2002 and

2012. Although ten years have passed since the latter data, that information is

enough to get a perspective on the location and dimension of these developments in

recent years.

Figure 2.3.2 shows that most AVN housing units registered outside Lima were

in coastal regions, particularly in La Libertad and Ica. Data filtered for those

regions reveal that the most significant projects were “Alto Salaverry II” in La

Libertad, with 4346 registered dwellings and “Las Casuarinas de Ica” in Ica, with

2641 registered dwellings. An internet search confirms these were basic module

developments and reveals their fate. While “Las Casuarinas” was developed in

stages and has become a thriving community with a buoyant property market, “Alto

Salaverry II” shows fewer results. We can only confirm that the beginning of its

development was planned for 2014 (Gobierno Regional de La Libertad, 2014).

Despite the spectacular number of dwellings offered by these developments, these

are at the highest end and do not represent what is happening in the whole country.

The average number of dwellings by project by region (Figure 2.3.3) shows that, de-

pending on the location, projects had between 10 and 540 dwellings, with a national

average of 251.

Figure 2.3.3: Average dwellings per project by region (outside Lima-Callao) for AVN
2002-2012
Source: MiVivienda SA (by request)

Now, regarding the materials and technologies used for construction, these de-

pend on the location and the available resources. The country’s location in an
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earthquake-prone area, the availability of materials and the typical training avail-

able for the local workforce result in two construction systems that predominate for

building massive housing developments (including basic modules). These are con-

fined masonry and limited ductility walls. The earlier is a construction system where

the masonry walls are assembled first, then concrete columns and beams are poured

in to confine them. On the latter, the structural system comprises concrete slabs and

thin walls (10-12cm) without any confinement at their extremes. Limited ductility

walls are reinforced with electro-welded wire meshes to achieve seismic resistance.

They are planned using a strict modularisation that does not allow long distances

between vertical supports (typically, less than three meters in a single direction).

While limited ductility walls are of relatively recent implementation, they are be-

coming preferred to produce low-cost housing as they reduce construction times and

the area lost to structural elements.

Figure 2.3.4: Limited ductility wall detail
Source: Diaz Figueroa (2021)

The construction method, the budget, and the legal framework determine the

spatiality of the seed dwellings. A special code rules social housing developments

in Peru (Supreme Decree Nº 002-2020-VIVIENDA), which allows smaller lot sizes

(no less than 70m2), reduced road sections (no less than 5.4m as roadway and 1.8m

per sideway), and higher densities and allowed heights. Basic-module developments,

therefore, implement minimal or close to minimal street widths unless the local urban

development plan requires otherwise (when higher hierarchy roads are crossing the

location). By law, areas must be reserved for parks, recreation and complementary
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infrastructure (health, education, safety, etc.). Although developers must comply

with the provision of the land for public spaces, the special code guiding social

housing developments allows “progressive” implementation of the urban features,

so developers might sometimes elect to leave this for municipalities to finish the

job. It might then be the case that these areas remain vacant lots until the local

government decides to invest in them (Figure 2.4(b)).

(a) Las casuarinas de Ica, Ica, Peru (b) Villa Marina in Salaverry, La Libertad, Peru

Figure 2.3.5: Satellite views of the most recent available state of (a) and (b)
Source: Google Earth

Even when there are differentiated rules for urban development for social hous-

ing projects in Peru, the construction standards remain the same for all buildings.

Nevertheless, due to the cap on the retail price of the units, the usual finishings for

seed modules are minimal. They typically include plywood doors, single-glazed win-

dows, plastering (when masonry), internal and external paint coating and kitchen

and bathroom tiling. The bathroom must also be fully equipped, and the kitchen

needs to have at least an installed sink. Spaces are usually minimal and include

an integrated kitchen-dining-living and at least one bedroom (Figure 2.3.6). Open

spaces in the property are also important, as they allow for vertical or horizontal

expansion.

2.4 Energy, thermal comfort, and sustainability

in the urban residential sector in Peru.

An increased interest in the sustainability of the built environment has charac-

terised the 21st century. Governments worldwide have implemented measures to

ensure that new and existing buildings minimise their environmental impact. The
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(a) Los Sauces de Tarapoto,
Tarapoto, San Martin, Peru

(b) Las retamas de San Luis,
Huancayo, Peru

Figure 2.3.6: Plans of two representative AVN projects
Source: (a) Torres Garćıa and Urraca Coa (2017) and (b) Avila Saldana (2020)

global south has not been oblivious to this trend. Several policies have been enacted

in Peru in the last few years to keep up the pace. These have come in the form

of updated building codes, economic benefits for the promoters and consumers of

“green” newly built dwellings and guidelines to promote energy efficiency in resi-

dential appliances. Nevertheless, the predominant form of building production in

the country (incremental self-help) and improving existing building stock seem to be

left behind from most discussions regarding the environmental sustainability of the

built environment. This section will critically approach the existing policies around

sustainability in the urban residential sector in Peru to present them to the reader

and reveal the shortcomings that allow for a bottom-up incremental approach to

residential sustainability in the Peruvian context. This allows us to conclude that

utilising the proposed workflow in Peru is not only useful for the aims of this thesis

but also as a means to affect the mindset of decision-makers in the country.
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2.4.1 Energy sources and Greenhouse gas emissions reduc-

tion commitments in Peru

As part of the Paris Agreement, Peru is committed to reducing its greenhouse gas

(GHG) emissions by 40% by 2030 (Ministerio del Ambiente Peru, 2021). This com-

mitment will be achieved in two parts: 30% through non-conditioned investments

and expenses with public and private internal and external resources and an ad-

ditional 10% subject to international external financing. This implies that Peru

must not exceed 179 million tons of carbon dioxide equivalent in 2030. Currently,

most of the emissions in Peru come from land use, land use change and forestry

(LULUCF), which generate almost half of the total emissions (Figure 2.4.1). The

energy sector, meanwhile, comes in second place, with nearly a third of the coun-

try’s emissions. A large portion of this share comes from transport (12.2% out of

the total), in which the use of fossil fuels predominates. Emissions coming from

electricity production are considered within the “Energy Industries” subcategory

(Intergovernmental Panel on Climate Change, 1996), which makes up 6% of the to-

tal country emissions. Emissions from fuel combustion in households are included in

the “other sectors – energy” category (Intergovernmental Panel on Climate Change,

1996), making up 2.6% of the total country emissions.

In Peru’s urban residential sector, three energy sources prevail: Electricity, Liqui-

fied Petroleum Gas (LPG), and, increasingly, Natural Gas. In urban areas, 99% of

households have access to electricity, and in the median, they use 113 kWh/month

(De La Cruz, Salazar, & Santos, 2021). The most common uses for electricity among

those who have access to it are refrigeration (68%) and lighting (100%), with very

few using it for climatisation/water heating (2%) and cooking (6%) (De La Cruz,

Salazar, & Santos, 2021). Meanwhile, LPG is the preferred energy source for cook-

ing in urban areas, where 81% of households have access to it and 99.9% use it

for cooking (De La Cruz, Salazar, & Coello, 2021). Urban households with access

use an average of 1.06 LPG bottles of 10kg per month, equivalent to 0.48 MMBTU

(De La Cruz, Salazar, & Coello, 2021). Lastly, natural gas requires a network con-

nection and has only a few decades of being implemented in the residential sector.

Due to this, it is only available in certain areas of major cities. In the Lima and Ica

regions, which have direct access to the central processing facility, 1 out of 4 and
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Figure 2.4.1: GHG Emissions by sector, Peru 2019
Source: Ministerio del Ambiente Peru (2021)

1 out of 5 households, respectively, use it (De La Cruz, Salazar, & Romero, 2021).

In other regions with access, all on the western side of the country, residential con-

nections reach less than 10% of households (De La Cruz, Salazar, & Romero, 2021).

The median use of natural gas is 17m3 per month, and those with access use it pri-

marily for cooking (99.9%), with only 1.1% using it for water heating (De La Cruz,

Salazar, & Romero, 2021).

In terms of electric generation, thanks to its geography, Peru can source most of it

from hydropower. Increasingly important is Gas, which in the last couple of decades

has overgrown Oil as the second source of electricity production and, if the current

trend continues, might reach first place in a few years (Figure 2.4.4). Alternative

energy sources such as Bioenergy, solar and wind have been recently implemented

but still contribute minimally to the energy mix (Figure 2.4.3). Although Gas is

thought to be much cleaner than other fossil fuels, it might still be a significant

contributor to global warming (Howarth, 2014), and the increasing reliance of the

country on this source might put in danger its goals for emissions reduction.
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Figure 2.4.2: Electricity use by sector, Peru 2015
Source: Ministerio de Energia y Minas Peru (2014)

Figure 2.4.3: Electricity production by source in Peru
Source: Ritchie, Roser, and Rosado (2022)

2.4.2 Policies and programmes in the urban residential en-

ergy sector in Peru

Although Peru’s residential sector emissions are relatively small, successive admin-

istrations have implemented policies to reduce them and promote energy efficiency.

In 2000, through Law No. 27345, the Promotion of the Efficient Use of Energy was

declared of national interest. Ten years later, through Supreme Decree Nº 064-2010-

EM, the long-term National Energy Policy (2010 – 2040) was approved to ensure the

supply of energy, protect the consumer, promote the competitiveness of the national

economy and reduce the negative environmental impact of the use and consumption

of energy. Therefore, guidelines were published to encourage energy efficiency in
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Figure 2.4.4: Evolution of the share of the sources for electricity production in Peru
Source: Ritchie et al. (2022)

Table 2.3: Strategies and actions at household scale in the residential sector to
achieve GHG emission reduction commitments in Peru

Strategy Actions

Solar Water
Heater Installation

Progressive replacement of 200,000 electric water
heaters with solar heaters in the residential sector,
representing 29% of the current electric water heater
stock.

Replacement of
Incandescent light bulbs

Replacement of 4 million incandescent light bulbs
with the most efficient technology currently available
on the market (LED).

Replacement of
Fluorescent Lamps

Replacement of 3 million fluorescent lamps with
fluorescent lamps with improved efficiency (T5) and
progressively with LED fluorescent lamps in the
residential sector.

Installation of Improved
stoves in rural areas

Installation of improved stoves in 500,000 homes over
five years (100,000 homes/year).
Each improved stove has a useful life of 5 years and
allows for increasing the efficiency of firewood use,
reducing the volume used by 40%.

Source: Ministerio de Energia y Minas Peru (2014)

the industrial, commercial, services and residential sectors. The guide for residences

is aimed to “raise awareness, guide and organise the evaluation and quantify the

rational use of energy in the different socio-economic levels on which households in

the national territory are categorised.” (Ministerio de Energia y Minas Peru, 2014).

As a document made by the Ministry of Energy, its focus is on domestic appliance

efficiency. Nevertheless, it recognises that appliances must act only complementary
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to bioclimatic building design in terms of environmental comfort. A relevant point

from this guide is that it reveals the critical actions promoted by the ministry at the

household scale, which include replacing boilers with solar water heaters, replacing

incandescent and fluorescent light bulbs with LED lighting and installing improved

kitchens in rural areas (Table 2.3).

The Ministry of Housing, as the entity in charge of promoting specific policies

for the housing sector, has also focused on energy efficiency and emissions reduction

in urban areas. There are three central policies in the last decade directed towards

this objective: The publication of the Technical Code for Sustainable Construction

(2015, modified 2021), the addition of the “Thermal and Lighting Comfort with

Energy Efficiency” section to the Peruvian Building Code (2014, revised 2022) and

the promotion, since 2015, of the “Bono MiVivienda Sostenible”, which derives from

NCMV and helps families to access dwellings that implement energy and water

saving criteria.

Although it might seem that there is a comprehensive policy to achieve comfort-

able dwellings while minimising energy emissions, the truth is that these policies

are entangled and seem to lack a unified direction. A clear example is the initially

called “Thermal and Lighting Comfort with Energy Efficiency” section (EM.110) of

the National Building Code (RNE) (Ministerio de Vivienda Peru, 2022). Although

the name implies that the topics of thermal comfort and energy efficiency must be

tackled, the chapter mainly regulates maximum building envelope transmittance

values according to a proposed bioclimatic territorial categorisation. As side topics,

the chapter includes a formula to ensure that indoor condensation will be avoided,

maximum air permeability standards by location, a method to calculate minimal

window areas to ensure natural indoor lighting, and standards to communicate the

hygrothermal characteristics of construction materials. A final informative annexe

aims to guide designers on implementing shading devices to avoid indoor overheat-

ing and excessive contrast and reflection from external light sources. Although all

these variables contribute to a comfortable and energy-efficient indoor environment,

there is an evident lack of consideration for the broader concept. Additional vari-

ables, such as passive design measures, are partially ignored. This vagueness was so

apparent that in 2022, the name of the section was changed to “Thermal envelope”
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(Ministerio de Vivienda Peru, 2022), a title that still does not describe all the topics

tackled in the text, but at least is more accurate than the previous one.

Initially, compliance with EM.110 was optative, and so it remained between

2014 and 2021. That year, under Supreme Decree 014-2021-VIVIENDA, the Tech-

nical Code for Sustainable Construction (Ministerio de Vivienda Construccion y

Saneamiento Peru, 2021a) was updated to make its application compulsory for spe-

cific building types. As the energy section of this code refers extensively to EM.110,

the latter also became partially mandatory for the same set of buildings. The

“sustainable” Code, which has existed since 2014, considers itself complementary to

RNE. It was developed to set a base standard for MiVivienda Verde certifications and

promote sustainable construction in public infrastructure, remaining just a guide for

other project types. It has a more comprehensive approach towards sustainability,

including a section on buildings and another on urban developments. The buildings

section has chapters on energy and hydric efficiency, green spaces, trash manage-

ment, eco materials and cycling infrastructure. The chapter on energy efficiency

tackles building envelopes, lighting, ventilation, heating and cooling, electromechan-

ical appliances, and gas connections. On the energy section, the only additions to

what was already established in EM.110 are setting maximum reflectance values for

envelopes, compelling the use of LED lighting and movement sensors, establishing

minimal efficiency standards for HVAC appliances, and setting a minimum number

of connection points for gas piping in residential buildings. The code also allows the

use of independent calculations to prove that a building design will use less energy

or water than established standards; nevertheless, as there are no thermal comfort

standards in this code or EM.110, it is possible to deliver calculations that disregard

any climatisation appliance despite thermal discomfort.

For MiVivienda Verde certifications, FMV establishes additional requisites. This

certification is carried out under the “MiVivienda Verde” programme, launched in

2015 due to the cooperation between FMV and the Agence Française de Dévelopment

(AFD) (Global Alliance for Buildings and Construction, 2020). The programme al-

lows households to benefit from a subsidy if their home is certified to meet specific

water and energy-saving criteria. As such, the price of certified “green” housing

remains competitive in relation to those lacking certification. In 2018, this initial
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Figure 2.4.5: Relationship between the Peruvian building codes mentioned in this
chapter

benefit was complemented by an interest rate reduction (Bono MiVivienda Verde)

on mortgages devoted to acquiring certified green housing. (Global Alliance for

Buildings and Construction, 2020). The certification comes in three levels (Table

2.4), and the criteria to classify projects in these result from considering the local

sustainable construction market and the regulatory and technical context (Global

Alliance for Buildings and Construction, 2020). Although the internal guide to

certify projects (Fondo MIVIVIENDA S.A., 2022b) considers NCMV and AVN de-

velopments as potential recipients of the certification, the latest official reports from

FMV seem to limit the application of the programme to NCMV products (Fondo

MIVIVIENDA S.A., 2022a).

In any case, the certification criteria seem to encompass most variables affecting

energy and water savings. In the case of Bioclimatic design, this aims to offer occu-

pants thermal comfort and thus promotes the use of Bioclimatic Strategies according

to Climate Zones. Compliance with these criteria can be demonstrated through two

possible pathways (Fondo MIVIVIENDA S.A., 2022b): through a bioclimatic study

complying with national and/or international standards (ASHRAE 55:2017, LEED,

EDGE, BREEAM or Passivhaus) or through the demonstrated application of the
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Table 2.4: Certification level and criteria to qualify under the MiVivienda Verde
Programme

Grade I+

Domestic water conservation technologies.
Energy efficiency technologies in lighting and water heating.
Bioclimatic design.
Waste management and recycling plans for construction works.
Use of eco-materials.
Sustainable mobility accessibility and fibre connection.

Grade II+
Grade 1+ conditions.
Renewable power generation equipment (PV panels).
Energy-efficient electromechanical equipment.

Grade III+
Grade 2+ conditions.
Residual water reuse.
Mixed uses and communal spaces.

Source: Fondo MIVIVIENDA S.A. (2022b)

guidance notes included in the same document. These notes include several mea-

sures to reduce heat gains or control heat losses according to the climatic zones.

There are also measures to promote indoor ventilation and reduce the heat island

effect.

Figure 2.4.6: Number of MiVivienda Verde loans given in 2022
Source: Fondo MIVIVIENDA S.A. (2022a)

In addition to the support offered by the central government (if developed within

the NCMV framework), buildings accredited with internationally recognised certi-

fications also receive benefits from some local authorities. They usually allow in-

creased built areas when certified by BREEAM, LEED, EDGE and others (Granda,

2023). Although these are interesting measures, their extension is still geographi-

cally limited as only some local authorities consider them. At the same time, the

cost implied in the certifications suggests that most of these will be high-profile

residential projects with few to no social housing components.
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2.4.3 Other policies and programmes in Peru

Exemplary initiatives taken in the country but outside the scope of this study are the

National Rural Housing Program (PNVR) implemented by the Ministry of Housing

and the Guide to Bioclimatic Design Strategies for Thermal Comfort published by

the Ministry of Education (Ministerio de Educacion Peru, 2023). The latter is a

referential document issued to be used in designing private and public educational

centres at every level in the country.

The PNVR, meanwhile, was created in 2012 and modified in 2013 (Supreme

Decree No. 016-2013-VIVIENDA). It has the purpose of improving the quality

of life of those living below the line of poverty and extreme poverty and whose

residence is located in a rural settlement or a dispersed arrangement of dwellings.

This is achieved through actions that provide or improve their housing units. The

main line of action of this programme has been the construction of “Sumaq Wasi”

(Beautiful house) dwellings, whose design prioritises thermal comfort, bearing in

mind the climatic regions in which they lay, adapting the use of technological and

traditional materials in the components to achieve an ideal bioclimatic model (Portal

del Estado Peruano, n.d.). This programme has focused on developing new dwellings

based on unique models per region with areas between 26 and 33 m2. So far, there

are two areas of intervention, one in the context of the Multisector Plan against

Frost and easterly Cold fronts, where up to 24,000 warm seismic-resistant dwellings

are being built in rural areas prone to extremely low temperatures, and on the other

in the context of the Comprehensive Reconstruction Plan with Changes where up to

8,000 homes located in 12 regions belonging to families affected by the 2017 El Niño

Costero phenomena, are being rebuilt with climate-resilience and thermal comfort

criteria in mind (Portal del Estado Peruano, n.d.).

2.5 Conclusions

To sum up, basic module developments are a form of aided self-help, present in sev-

eral countries worldwide but whose history is heavily linked to Peru. As any aided

self-help initiative, it has two components: top-down and bottom-up. The earlier

is represented by urban layouts, basic infrastructures and “seed” dwellings designed
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Figure 2.4.7: Adobe model of Rural housing for cold climates
Source: Portal del Estado Peruano (n.d.)

to be extended. The latter is the incremental project itself, a likely lifelong project

in which the owner-occupier embarks once they have taken possession of the prop-

erty. As a testing ground to explore the possibilities and limitations of incremental

development, basic-module developments offer several benefits that respond to their

top-down component. As urban layouts and initial dwelling states are certain and

fixed, the bottom-up variable can be explored without the noise that uncertainty on

these two early variables poses in fully bottom-up developments. At the same time,

as public monies are invested in their promotion and development, decision support

tools can be used to optimise the resource use devoted to these initiatives. Finally,

as the bottom-up component of basic modules is simply incremental development,

some conclusions drawn from researching them can be extended to other contexts

in which this is also present.

In addition to being strongly linked to the history and evolution of basic-module

developments, Peru also shows some physio-geographic characteristics that make

it an ideal testing ground for the proposed workflow. The variety of climates in

its territory implies that different environmental conditions could be tested using a

socio-economic model fed from a single national dataset. Although regional socio-

economic differences are present and cannot be ignored, a single national dataset

facilitates their identification and provides grounds for their inclusion or exclusion

in the model.

Finally, Peru is a country committed to reducing its residential sector emissions.
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Various policies and programmes promoted by successive governments demonstrate

this. Nevertheless, on the one hand, there does not seem to be a joint approach

to this topic and on the other, there is apparent favouritism in promoting ready-

finished new developments for the middle classes as the sole carriers of sustainability.

The earlier is noted as a lack of a centralised corpus of sustainability standards in

the built environment. Instead, several parallel codes exist, with an apparent lack

of a joint objective. This makes regulations entangled and confusing, which might

be discouraging and complicating their application where no compliance is required.

In this parallel coding system, MiVivienda Verde certification standards seem to

be the most complete set of guidelines to achieve comfortable residential indoor

environments with energy efficiency. Nevertheless, its shortcomings are similar to

those of its parent programme, NCMV: It prioritises middle-income households over

lower, new developments over retrofit and densification and ready-finished dwellings

over incremental development.

Although the MiVivienda Verde certification guidelines imply that the criteria

could be applied to AVN, official documents, such as the latest institutional report of

FMV, seem to confirm that these are more expectations than reality. Additionally,

even if, in the short term, private developers can deliver “green” housing products

below the price cap established by AVN, measures taken to achieve a passive design

in basic modules will be fruitless, as the modules are designed to grow and change,

rendering ex-ante assessments lapsed. As such, if the ABC model is to remain

a low-cost housing provision strategy in Peru, a new approach is needed. One

that considers how incremental and passive design strategies can interact to bring

everyone comfortable and sustainable living spaces. In this sense, the proposed

workflow can not only be served by the Peruvian context to test its capabilities but

also become a tool that allows the implementation of that approach.
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trieved from https://cdn.www.gob.pe/uploads/document/file/2089254/

Informe%20de%20la%20revisi%C3%B3n%20de%20criterios%20de%20dise%

C3%B1o%20de%20edificaciones%20con%20muros%20de%20ductilidad%

20limitada.pdf

Fernandez-Maldonado, A. M. (2014). Incremental housing in peru and the role of

the social housing sector. In J. Bredenoord, P. Van Lindert, & P. Smets (Eds.),

Affordable housing in the urban global south: Seeking sustainable solutions (pp.

271–285). Routledge.

Fernández Maldonado, A. M. (2015, 6). Las barriadas de lima como est́ımulo a la

reflexión urbana sobre la vivienda: revisitando a turner y de soto. Universidad

Nacional de Ingenieŕıa.
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Chapter 3

Socio-economic Model

The current chapter presents the development of a plausible socio-economic model

able to feed the intermediary component of the Thesis methodology with country-

specific socio-economic data for multiple simulation years. This model deals with the

“uncontrolled” situations faced by a household owning an incremental dwelling (such

as the variation in the number of members and their financial circumstances). To

determine these variables at each time step, the model relies on event probabilities,

categorical probability distributions and transition probabilities among categories,

taken mainly from Peru’s national household survey (ENAHO), complemented by

other specific surveys and official projections and datasets.

The model uses microsimulation as a method and works at two complementary

scales: at the individual level, a demographic model simulates the lifecycle of in-

dividuals within a household, determining when they are born, give birth, become

economically active, move out and die. At the household level, an economic model

predicts the likely category for each household in relation to the mean income and

expenses per capita for their corresponding socio-economic level (SEL). The results

of both models combined give a complete picture of the likely demographic and

financial progression over 25 years for 48 synthetic households living in a generic

intermediate city in Peru. The chapter ends by presenting conclusions and recom-

mendations on implementing this model in the general workflow and for further

development and improvement.
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3.1 Microsimulation as a method

The methodology (Figure 1.3.1) assigned workflow Part A to a socio-economic model

whose aim was to feed the intermediary component with plausible data on ”need”

and ”financial capacity” for all the periods requested. While the concept of ”finan-

cial capacity” was tackled in the introductory chapter, the concept of ”need” was

kept aside for future development. As our modelling task requires an objective and

measurable concept (so quantitative variables can be derived), the present research

bounds ”need” to ”space need” and derives the latter from the concept of overcrowd-

ing. This choice was made as overcrowding implies two measurable variables: The

number of people inhabiting a dwelling and the size of that dwelling. At the same

time, it allows easily deriving simple categories, a dwelling can be ”overcrowded”

or ”not overcrowded”. In that sense, an overcrowded dwelling is in urgent need of

expansion, while a not-overcrowded one could be if other conditions are met.

These additional conditions and the dwelling size variable are left for the inter-

action between the intermediary component and the workflow Part B. As such, the

socio-economic model deals with the two following variables:

• The number of people inhabiting a dwelling, responding to the ”need” factor,

and

• Their joint financial capacity.

As these variables are needed for multiple periods that depict the dwelling evo-

lution, the socio-economic model obtains these by:

• Simulating the demographic evolution of households, and

• Simulating the evolution of their financial circumstances

Other additional requirements set by the methodology are an Agent-Based ap-

proach and the use of site-specific empirical data. Given these and available datasets

(presented further in this chapter), the ideal candidate method was microsimulation,

a social simulation-based tool “with a micro-unit of analysis” (O’Donoghue, 2014).

Although closely related to other individual-level modelling approaches, like cel-

lular automata and agent-based models (ABMs), microsimulation is characterised
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by its focus on simulating the socio-economic attributes of the agents rather than

their interactions. Even if they are not the same, ABMs and microsimulation are

increasingly moving towards a common ground thanks to their commonalities (Li,

O’Donoghue, & Dekkers, 2014) and allow the creation of workflows that complement

their strengths.

Microsimulation models can be broadly classified as static and dynamic. While

the earlier category models “the day after effect” of a policy change, thus involving

“the interaction of population and policy complexity, but abstract from behavioural

response or other endogenous change” (O’Donoghue, 2014), the latter models the

behaviour of micro-units over time. To achieve this, Dynamic microsimulation typi-

cally projects population samples over time so that “one can, for example, examine

future income distributions under different economic and demographic scenarios.”

(Li et al., 2014). This implies that any dynamic microsimulation model has an

underlying model of demographic behaviour.

Unsurprisingly, these demographic models are themselves a form of dynamic

stochastic microsimulation. There, “the unit of observation is the individual, and

the main purpose is to create simulated populations with kinship networks to an-

swer questions of interest to demographers and other social scientists.” (Mason,

2014). To achieve this, demographic microsimulations simulate “all of the usual de-

mographic events” (births, marriages, divorces and deaths) and transitions between

arbitrarily defined subpopulations (Mason, 2014). Their stochastic nature lies in

their reliance on distribution and transition probabilities to achieve their simula-

tion task. Demographic microsimulation usually implies an ageing process, which

consists of “updating a database to represent current conditions” or “projecting a

database for one or more years to represent expected future conditions.” (Li et al.,

2014). This ageing process can be static or dynamic, the earlier of which implies

“adjusting the weights of the observations so that the simulated population distri-

bution matches the macro-aggregates” (Li et al., 2014). At the same time, the latter

“changes the attributes of the individuals instead of altering their weights.” (Li et

al., 2014). Whilst a dynamic approach complies more closely with a purely agent-

based nature, it usually depends on an alignment mechanism to “keep its aggregate

outputs in line with predictions from macro-models.” (Li et al., 2014).
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Dynamic microsimulation can be classified according to their underlying concept

of time step and dependence on new agents beyond their seed community (Li et

al., 2014). Regarding the latter, dynamic models can be either open or closed. A

model is considered ‘closed’ if it uses a fixed set of individuals to create and maintain

social links (but usually allows new individuals as new-borns and immigrants), whilst

an open model “starts with a base population and new individuals are generated

exogenously” if required (Li et al., 2014). In demographic models, this differentiation

is particularly relevant in spouses’ selection, as in closed models, couples can only

be formed between existing agents. Although an open approach better depicts a

real-world scenario (where individuals of different communities can form couples),

this method may produce a sample that does not represent the studied community

(Li et al., 2014). For this reason, a closed model approach is recommended when

simulating household-level variables.

Regarding their relationship with the temporal dimension, Dynamic microsim-

ulation models can be discrete or continuous. In discrete time microsimulation,

individual attributes are changed once per period (usually based on transition prob-

ability matrices), whilst, in continuous time microsimulation, we rely on survival

models, which determine the length of time an individual will face their current

state (Li et al., 2014). Discrete-time models show some limitations, including their

unrealistic assumption of a sequential order of life events, the lack of consideration of

the transition path happening in between the registered time steps, and the difficul-

ties implied in ordering the application of transition matrices (like the probabilities

of getting pregnant after marriage or marrying after a premarital pregnancy) (Li et

al., 2014). Beyond these theoretical weaknesses, most available datasets have data

collected at discrete time steps, thus facilitating the construction of discrete-time

models over continuous ones.

To interact with macroeconomic models, Microsimulation models increasingly

rely on either an alignment process or computational general equilibrium (CGE)

feedback (Li et al., 2014). Alignment is “a process of constraining model output

to conform more closely to externally derived macro-data” (Scott, 2001). Applying

this process has become standard over the past decade, as it allows “the use of dy-

namic microsimulation models for the policy assessment together with (and making
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use of) the simulation results of macroeconomic models” (Li et al., 2014). This is

particularly relevant for continuous variables (such as earnings or expenses), which

align with a fix ratio to meet a projected average or distribution (Li et al., 2014).

In conclusion, microsimulation is a social simulation modelling technique based

on the micro-unit, be that the individual, a household or a company. Although

not precisely the same, microsimulation models and ABMs are closely related and

can complement each other due to their agent-based nature. Microsimulation is

broadly classified as static and dynamic, the latter of which is more relevant to the

current research as it deals with the time dimension. Most dynamic microsimulation

models rely on a demographic model, which, by definition, implies the agents’ ageing

process. These models are usually stochastic and allow us to analyse demographic

trends and their consequences as emergent phenomena.

As such, Dynamic Microsimulation (DM) seems to be able to generate data that

complies with all the requisites for our socio-economic model: It can simulate the

demographic evolution of households and the change in their members’ numbers. It

also simulates the growth of income, expenses, and the shift in employment status

of the individuals. At the same time, we are dealing with an agent-based modelling

approach, which agrees with the one used in methodology.

To be more precise, the current research uses discrete-time and closed demo-

graphic DM. The economic simulation component, meanwhile, depends on an align-

ment process to keep up with aggregate-level projections; since income and expense

figures are usually affected by macro effects such as inflation and economic growth.

3.2 Data sources

Due to its focus on the micro-scale, microsimulation relies on individual or house-

hold data. The usual sources include household surveys, administrative, census and

synthetic data. Panel data is preferred as it records changes over time (Li et al.,

2014). Concerning income data, literature warns against using self-reported infor-

mation, promoting instead the use of administrative data as tax report statistics

(Li et al., 2014). Nevertheless, this may be a misleading recommendation for our

case study. Administrative reports are highly reliable in developed countries, where
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labour markets are extensively formal, and income tax is the primary source of

government revenue. In the developing world, where informality is the rule and gov-

ernment are funded mainly by trade and consumption taxes, administrative data

only registers a small part of the reality. Finally, the sample size is essential when

dealing with dynamic microsimulation models. Beyond the total number of respon-

dents, one must be aware of the respondents within groups and sub-groups that

allow for determining more specific transition probability matrices. In this sense, a

model can only be as detailed as the origin dataset allows.

3.2.1 ENAHO

Given these recommendations, Peru’s National Household Survey (ENAHO) was

selected as the primary source dataset. This survey is executed regularly by Peru’s

National Institute of Statistics and Informatics (INEI), which since 1995 has been

monitoring the indicators that allow us to know the evolution of poverty, well-being

and living conditions of households in Peru. Since 2003, the survey has been con-

ducted continuously throughout the year. It consists of five questionaries with a

total of about 350 questions that range from describing the characteristics of the

dwelling, the household and the individuals’ perceptions of democracy and partici-

pation. Since 2011, there has been the inclusion of a Panel component. The panel

survey aims to include about 30% of the participant households of the non-panel

survey. The survey’s microdata is freely available to download on INEI’s webpage

and thus has been widely explored by various research.

In this research, ENAHO’s data serves to construct distribution and transition

probabilities to project the characterisation of the population in time. It is also

used to determine the likely income/expenses at the household level during various

years. Finally, the dataset serves to obtain simple trend-line projections of income

and expenses to be utilised in an alignment process for the economic component of

the model.

Two factors were considered in selecting the appropriate time range for the data

to be used. On one hand, it was vital to avoid relying on data generated during

the worst part of the COVID-19 pandemic. This is because various socio-economic

variables were heavily affected by the measures taken to combat this disease. Sec-
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ondly, to allow results validation, we had to rely on the maximum period of panel

data published in a single dataset. As panel data comes in five-year period batches,

it was decided that the selected datasets, both panel and non-panel, will cover the

period starting in 2015 and finishing in 2019.

The downloadable data of ENAHO, both in its panel and non-panel format,

is divided into six modules, the first five covering each of the independent ques-

tionnaires applied at the individual level and a sixth aggregating the data at the

household level. From all these, three are useful for the current model. The sum-

mary (aggregated) module serves us well considering that the household is the core of

the agent-based approach. Meanwhile, the so-called Module 200, which records the

population’s general characteristics, served to construct the base of the demographic

model. Finally, Module 500, which records the income-generating status of surveyed

adults, allowed the inclusion of this variable, useful for both the demographic and

economic components of the model.

Summary Dataset

The summary dataset was used both on its panel and non-panel format. The fol-

lowing relevant variables were selected from this module:

• Social strata of the household (from now on referred to as socio-economic level)

• Location strata of the household (from now on referred to as urban agglomer-

ation size of the location)

• Number of household members

• Number of income-generating household members

• Total net monetary income of the household in the last twelve months and

• Total household monetary expenses in the last twelve months.

These six variables can be classified into three categories:

• Filtering variables (socio-economic level and urban agglomeration size)

• Demographic variables (Number of household members and income-generating

household members), and
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• Economic variables (income and expenses)

The first group of variables allows filtering data so that the surveyed population

characteristics get close enough to that of the case studies without affecting the

statistical relevance of the resulting probability matrices. These matrices go to up

to three levels of specificity, so it was essential to keep the filters minimal.

The first of these filters refers to the socio-economic level (SEL) of a household,

which is a categorical index composed of five levels (A to E, where A is correlated

with the highest incomes and E with the lowest) widely used in sociological, po-

litical and market studies in Peru. Created by APEIM (Peruvian Association of

Market Intelligence Companies), this classification is calculated based on material

and immaterial household resources that accurately predict income, consumption

and living standards (APEIM, 2020). As such, it is used by governmental organisa-

tions to target population segments with housing programmes (Instituto CUANTO,

2018). Techo Propio’s New Dwelling programme (AVN) is focused on SELs C and

D, while Nuevo Credito MiVivienda (NCMV) does so on SELs B and C (see Chapter

2 for further details). Nevertheless, as not all projects financed by these programmes

are incremental, a further level of specificity is needed.

Thanks to statistical bulletins fromMiVivienda fund (Fondo MIVIVIENDA S.A.,

2022), we know that most single-family dwellings financed by AVN are located either

in the peripheries of Metropolitan Lima or in medium-sized cities in the rest of the

country (see Chapter 2). As the workflow aims at climate diversity to test its

functioning, three intermediate cities with diverging climate patterns were selected

for the final run of the workflow (Chapter 6). As such, the socio-economic model

relies on the medium-sized cities category to filter the data. In statistical terms, these

locations fall in categories three and four of ENAHO’s variable. This corresponds to

locations with a population between 20k and 100k inhabitants (or between 4k and

20k dwellings in older survey versions). Further filtering was not considered as the

number of participating households was already falling worryingly, particularly for

panel data (Table 3.1).

The second group of variables, referred to as demographic, register the number of

household members and of income-generating household members. As for household

membership, this is determined by considering those who self-reported as belonging
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Figure 3.2.1: Number of participant households after applying filters in ENAHO’s
non-panel data by year and SEL

Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) SUMARIA dataset

Table 3.1: Number of participant households in ENAHO’s SUMARIA panel data for
two consecutive years (2015-2016) by socio-economic level (after applying filters).

SEL
Participating
households

B 97
C 225
D 1143
Total 1465

Source: Data taken from INEI (2019a) SUMARIA dataset

to the household minus those who self-reported as domestic workers or salaried by

the household chief (INEI, 2016a). Figures 3.2.2 and 3.2.3 show the number of

household members in non-panel and panel data, respectively.

The income generator status of a member is determined by applying a formula

defined in the summary dataset methodological document (INEI, 2016a). This for-

mula omits domestic workers, individuals salaried by the household chief and those

under 14. Those not discriminated by those filters can be considered income gen-

erators if they have had any income in the last 12 months, be this ordinary or

extraordinary, monetary or in kind. For illustrative purposes, the current document

includes a ratio of income generator members over the total number of members

(Figure 3.2.4 for non-panel data and Figure 3.2.5 for panel data).

The last group of variables from ENAHO’s summary dataset are those referred to

the household economic status. Household income registers the sum of all ordinary

and extraordinary monetary income after taxes self-reported by every household
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Figure 3.2.2: Number of household members in participant households by year and
SEL, ENAHO non-panel

Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) SUMARIA dataset

Figure 3.2.3: Number of household members for participating households in two
consecutive years (2015-2016) by year and SEL, ENAHO panel.

Source: Data taken from INEI (2019a) SUMARIA dataset

member for the last twelve months (INEI, 2016a). Similarly, household expenses

are the sum of all the monetary expenses self-reported by every household member

for the previous twelve months (INEI, 2016a).

As this thesis deals with the interrelationship between available monetary means

and the number of occupants of a dwelling, two normalised variables are generated

from the existing data. First, by dividing the income among the number of income

generators in a household, we get the average income each income generator member

produces. Equally, by dividing the household total expenses among the number of

household members, we get the average expenses that each member incurs to the
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Figure 3.2.4: Number of income generators over total household members for
filtered participant households, ENAHO’s non-panel data.

Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) SUMARIA dataset

Figure 3.2.5: Number of income generators over total household members for
filtered participant households in 2015 and 2016, ENAHO PANEL

Source: Data taken from INEI (2019a) SUMARIA dataset

household budget. By taking out the outliers, representing extraordinary income

or expenses from rare events such as property transactions, we can get the average

by SEL. Figure 3.2.6 registers the evolution of these averages per SEL for every

year taken from non-panel datasets. We can notice a clear trend of growth for both

figures in all socioeconomic levels, which agrees with the macro-economic growth of

the country in those years. The differentiation of these figures among SELs is also

made explicit.
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Figure 3.2.6: Average yearly income per income generator in a household and
average annual expenses per household member (in local currency, filtering outliers)
for filtered participating households in ENAHO non-panel data by year and SEL.

Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) SUMARIA dataset

Module 200

The second dataset taken into account from ENAHO is the so-called module 200.

This registers general data of household members at the individual level. The non-

panel version of this dataset is used to generate distribution probabilities for syn-

thetic individual generation, whilst the panel version allows generating moving-out

probability tables of individuals by age and gender categories. The selected variables

from this dataset are:

• Location strata of the dwelling (size of the urban agglomeration by population)

• Age of the individual

• Gender of the individual

Module 200 does not contain information about the SEL of individuals, as this

variable only classifies whole households. Because of this, the only filter variable

for this module was the location strata, so we only included intermediate cities

according to the same filter applied to the summary dataset. Age categories were

assigned in five-year periods to integrate ENAHO’s data with the other datasets. As

non-panel data determines the characteristics of the individuals at the starting time

step, only data from the earlier study period is needed. So, after applying the only
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Figure 3.2.7: Population pyramid for filtered participants.
Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) Modulo-200 dataset

filter to 2015 non-panel data, we ended up with 31,452 participants, categorised by

age and gender according to Figure 3.2.7.

Figure 3.2.8: Population pyramid of participants who were present in 2015 but
reported moving out to a different household in 2016.
Source: Data taken from INEI (2019a) Modulo-200 dataset

As panel data is needed to calculate the move-out probabilities of individuals,

and the datasets come in five-year batches, we need to apply an additional filter,

showing only the individuals from households participating in two consecutive years.

We chose participating households in 2015 and 2016 to align with the previously

selected years. By filtering those individuals who were present in 2015 but were

reported to have “moved out to another household” in 2016, we get a profile of

those who have moved out (807 individuals in total) by age and gender category

(Figure 3.2.8).
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Module 500

The third and last dataset used from ENAHO is module 500. This part of the survey

applied exclusively to individuals 14 or older, inquiries about their income and work

status. From the non-panel version of this module, the model obtains categorical

distribution for the income-generator status. In contrast, the panel version gets

transition probabilities for the same variable. As this status was calculated initially

only at the summarising stage of the dataset creation, it only exists as an aggregate

number for the household. Due to this, the variable outcome was recalculated for

individuals using the formula in the summary methodological guide (INEI, 2016a).

Thus, the selected variables for this module included the ones needed for the formula,

plus:

• Age of the individual

• Gender of the individual

• Location strata of the dwelling (urban agglomeration size by population)

• Relationship of the individual with the household chief

Figure 3.2.9: Proportion of participants by age/gender categories who are
household chiefs.

Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) Modulo-500 dataset

The individual’s relationship with the household chief was selected as the chief

status significantly affects the chances of an individual becoming and staying an in-

come generator (Figure 3.2.12). Additionally, the chief status allowed a model that
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Figure 3.2.10: Population pyramid of individuals that were not income generators
in 2015 but became in 2016.

Source: Data taken from INEI (2019a) Modulo-500 dataset

avoids children-only households. As with module 200, only the urban agglomeration

size was used as a filter variable for datasets corresponding to 2015 (non-panel) and

2015-2016 (panel). After applying the filter, 23,197 individuals remained partici-

pants in the 2015 non-panel dataset, classified according to their age, gender, chief

and income generator categories as shown in Figure 3.2.12. This dataset was also

helpful in determining the characteristics of the household chief so that the distri-

bution probabilities for this category could be calculated (Figure 3.2.9). Meanwhile,

Panel data allowed characterising those earning or losing income-generating status

according to their household chief status (Figures 3.2.10 and 3.2.11).

Figure 3.2.11: Population pyramid of individuals who were income generators in
2015 but lost their status in 2016.

Source: Data taken from INEI (2019a) Modulo-500 dataset
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Figure 3.2.12: Absolute number of filtered participants by age/gender category who
are/are not income generators and/or household chiefs.

Source: Data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) Modulo-500 dataset

3.2.2 Other Datasets

Although complete, ENAHO misses some data needed to construct a full microsim-

ulation demographic model. Deaths are recorded in panel data, but as these are

self-reported, they could hide some cases, including deaths of individuals absent on

the previous survey visit. Meanwhile, births could be detected by filtering new indi-

viduals in a two-consecutive-year panel household with less than a year of age, but

this hides births between survey visits.

Figure 3.2.13: Projected population for Peru in 2015 and 2020 by age and gender
category

Source: Data taken from INEI (2019d) dataset
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As such, to calculate death probabilities by age and gender categories, this model

relies on population estimates and projections for Peru by calendar year and simple

age for the period between 1950 and 2050 (INEI, 2019d) and on the data released

by the national informatics system for defunctions (MINSA, n.d.), which records all

the registered deaths in the country starting from 2017.

Figure 3.2.14: Registered deaths in Peru in 2019 and 2018 by age and gender category
Source: Data taken from MINSA (n.d.) dataset

Figure 3.2.13 shows the comparative population pyramids for the two extreme

years considered from ENAHO’s datasets (INEI 2016b, 2017a, 2018a, 2019b, 2020a).

The model uses the registered deaths in those years to get approximate age and

gender-specific death probabilities from population projections. By getting the num-

ber of deaths in year 1 (Y1) (Figure 3.2.14) and dividing it by the population pro-

jected by age categories for the previous year (Y0), we get an estimate of the share

of the population that was alive on Y0 but died on Y1 (Figure 3.2.15). Given that

COVID-19 considerably altered the deaths registered during the pandemic, we only

account for valid death data between 2017 and 2019. This can be projected by age

and gender categories and using simple extrapolation to cover all intended years of

simulation.

Finally, to calculate the birth probabilities for women in their fertile age, the

model relies on the national survey on demography and family health (ENDES).

This dataset is based on a continuous survey performed by INEI, which specialises

in health issues, particularly women and their sexual-reproductive aspect. Although

ENDES’ microdata is fully available to download, data presented in summary re-

ports (INEI 2016c, 2017b, 2018b, 2019c, 2020b) is more than enough for general
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Figure 3.2.15: Proportion of deaths over the total population by age and gender
category 2019.

Source: Data taken from INEI (2019d) and MINSA (n.d.) datasets

Figure 3.2.16: Evolution of the population in Peru by age and gender category
between 2000 and 2022.

Source: Data taken from INEI (2019d)

fertility probabilities. Additionally, unlike ENAHO, ENDES does not account for

a panel version. ENDES summaries provide useful figures, such as the number of

children born alive by women’s age category per year (Figure 3.2.17) and the time

elapsed (in months) between the latest birth and the previous one according to the

most recent child ordinal number. The earlier is helpful to determine distribution

probabilities for the number of children by women according to their age category.

Meanwhile, to get the number of children per woman, we can extrapolate the num-

ber of children by age category for the number of years the simulation needs (Figure

3.2.18).
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Figure 3.2.17: Number of children born alive by women’s age category for 2015 and
2020.

Source: Data taken from INEI (2016c, 2017b, 2018b, 2019c, 2020b) dataset

Figure 3.2.18: Women between 45 and 49 years old in Peru. Evolution of the
proportion according to number of children born alive.

Source: Data taken from INEI (2016c, 2017b, 2018b, 2019c, 2020b) dataset

3.3 The model

Two core components form the proposed socio-economic model. The first one is the

economic model, which predicts the categories of income and expenses per capita

in relation to the mean of their SEL for every participating household, thus leading

to determining the financial capacity of the household. The second component is

the demographic sub-model. This has two outputs: the expected total number

of household members for every year of simulation and the expected number of

household members who are income generators for the same period. The earlier

goes directly to feed the intermediary component of the general workflow, the latter
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supports the economic model by adjusting the household income to the number of

income-generating members.

3.3.1 Economic sub-model

To facilitate the execution of this model, the processed variables are:

• Per capita, as this is the most straightforward method to profit from immedi-

ately available aggregate figures at the household level.

• Relative to a mean by SEL, as this allows for alignment with an external

complex economic model.

• And categorical, as this simplifies the generation of distribution and transition

probabilities.

Inflation and GDP growth are some of the macroeconomic factors that have

a direct impact on household income and expenses. However, it is challenging for

micromodels to monitor these variables. Therefore, outsourcing to an external macro

model is the most practical solution in this case. In the current setup, the macro

model predicts income and expense means by SEL as continuous variables, whilst

the micro model only deals with categorical variables relative to SEL means. As

the latter are relative to the earlier, a communication channel exists allowing the

transformation of categories to continuous values. To allow introducing the number

of household members to the equation, and thus the impact of size on household

finances, all variables are per capita, in the case of income relative to the number of

income-generating members, and in the case of expenses relative to the total number

of household members.

In summary, we can say that this economic model is not designed to predict

future household income or expenses by itself but to predict likely household classi-

fication concerning mean income and expenses per capita values. Considering that

macro global variables such as inflation and economic growth are tackled by an ex-

ternal model, this micro model only deals with processes internal to the household

that affect their per capita income and expenses. As these are various, random, and

uncontrollable, they can be considered stochastic and are managed by transition
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probability matrices. We can also assume then that the membership of a household

to one of the categories in question is a mere result of their present “luck”, which

could change randomly from one time step to the next.

The present model assumes five of these “luckiness” categories. These result

from dividing the continuous values of the two variables (income and expenses per

capita) among the means of their SEL in a given year. As such, a value of 1 in

this new variable will indicate that the continuous datapoint for that household was

the same as the mean for its SEL. A higher value will show that the continuous

observation was above the mean by a factor, and a lower value indicates that it was

below it by a fraction.

With these new values, we define the categories so that any observation with

values between 1 and 1.5 can be said to be “around the mean” for their SEL. Two

additional categories are set with similar value differences above and two below.

After categorising all observations for the base year of the simulation (Table 3.2), it

is possible to get distribution probabilities for income categories (Table 3.3). Because

expenses are dependent on income, expense category distribution probabilities are

calculated according to the belonging of the household to an income category (Figure

3.3.1). To get transition probabilities, the model utilises panel data (Figure 3.3.2).

Table 3.2: Number of cases for relative income and expenses categories.

SEL Category 1 [0:0.5) 2 [0.5:1.0) 3 [1:1.5) 4 [1.5:2) 5 [2:Inf)
B Income 67 134 56 32 35

Expenses 36 148 66 43 32
C Income 208 354 174 81 97

Expenses 153 358 218 97 93
D Income 817 1402 815 355 381

Expenses 492 1520 966 419 385

Source: Based on data taken from INEI (2016b) SUMARIA dataset

Finally, a macro model of means per capita by SEL is needed to get continuous

variables from the predicted categorical. To rationalise the macro modelling process,

this exercise uses a simple extrapolation model, which takes the non-panel data for

every one of the five years available (2015-2019), calculates the mean income and

expenses per capita per SEL and projects it to 25 years using trend lines (Figure

3.3.3) Although this model oversimplifies the complex macro-economic system, it

is enough to test the workflow presented in this thesis. If required, it could be
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Table 3.3: Distribution probabilities for relative income categories according to SEL.

Income
Category

B C D

1 0.207 0.228 0.217
2 0.414 0.387 0.372
3 0.173 0.190 0.216
4 0.099 0.089 0.094
5 0.108 0.106 0.101

Source: Based on data taken from INEI (2016b) SUMARIA dataset

Figure 3.3.1: Distribution probabilities for expenses relative categories according to
SEL and close income category.

Source: Based on data taken from INEI (2016b) SUMARIA dataset

eventually replaced by a more accurate and complex model.

The main drawback of the proposed modelling approach is the lack of data to

simulate transitions between SEL categories. This is because SEL categories are

static for households in the base panel dataset. This could be because the SEL

categorisation was copied for every year at the end of the summarising process, or

it could be that the survey did not find any change in the living conditions of the

households during the years of study.
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Figure 3.3.2: Transitions probabilities for relative income categories.
Source: Based on data taken from INEI (2019a) SUMARIA dataset

Figure 3.3.3: Projection of relative income and expenses.
Source: Based on data taken from INEI (2016b, 2017a, 2018a, 2019b, 2020a) SUMARIA datasets

3.3.2 Demographic sub-model

This sub-model has two outputs: the expected total number of household members

for every year of simulation and the expected number of household members who

are income generators for the same period. The earlier serves to, on the one hand,

calculate an occupancy index (which eventually leads to a “need” variable triggering

dwelling expansion) and, on the other, support the economic model so that it can

output household annual expenses per household member as continuous values. The
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latter only supports the economic sub-model, but in this case, with the household’s

annual income.

To generate these outputs, this sub-model relies on the basic variables determin-

ing demographic evolution: births, deaths, and migration. Additionally, it includes

a variable that registers the income-generating status of every individual every year

of the simulation. It relies on a stochastic approach to deal with demographic events,

so every event is associated with a probability matrix.

To allow further specificity, probabilities are differentiated according to popula-

tion characteristics. Birth probabilities, for example, are affected by the mother’s

age and the number of children she has had in her fertile lifetime. Death probabili-

ties, meanwhile, are determined by the age and gender of the individual in question,

factors that are also determinants in assigning emigration probabilities. In the case

of assigning an income generator status, more specificity is needed, as beyond age

and gender, being a household chief affects the likelihood of one being an income

generator. Assigning a household chief also allows us to avoid having children-only

households, as every household has one chief who must be an adult.

In this demographic model, every individual starts with values for each one of

the following variables:

• Individual ID

• Dwelling ID

• Dwelling SEL category

• Household ID

• Chief role

• Discrete age

• Categorical age

• Gender

• Number of children born alive

• Income generator status
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In the first time step, values for each variable are assigned or assumed. In the

case of the number of children born alive, only women in their fertile age get a

number above 0. Meanwhile, only individuals above 14 can be income generators,

and only those above 19 can be household chiefs.

Every year of the simulation one year is added to individual discrete ages. Conse-

quently, the categorical age is immediately re-evaluated. The two first demographic

events simulated are the ones that have to do with losing household members: deaths

(Table 3.4) and emigration (Table 3.5). These are the simplest, as they happen only

once in the life of the simulated individuals and are determined solely by their age

and gender categories. Once an individual is assumed to be dead or has moved out,

they won’t participate anymore in future time steps of the simulation and will not

count towards simulation outputs. While death probabilities are taken from popu-

lation projections and death registries, move-out probabilities come from ENAHO

panel data for 2015 and 2016. Therefore, they represent the static conditions for

inter-household mobility during that interannual period.

After determining the individuals departing from the dataset, it is time to assess

the survival of whole households. For this, it is essential to bear in mind that every

household must have one chief who is over 19 years old. We first check each household

to see if they have remaining individuals; those who do not are eliminated from the

dataset. Those who do are checked again to determine if their chief remains. If

no chief is present, the next eldest adult takes the post; if no adult is present, the

household is removed from the dataset.

The third demographic event simulated is birthing. Every woman has a probabil-

ity of adding one child per time step to their record according to their age category

and the number of children she has on record. The model does not register kin

relations; thus, the number of children at T0 is just an abstract figure to differen-

tiate probabilities of adding newborn members to a household and does not imply

that the children a woman registers before the first simulated birth are household

members.

For the number of children per woman by age category, the model uses ENDES,

which does not register transition probabilities, only distribution ones. Because of

this, the model relies on aggregate probabilities, which imply that the probability of
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Table 3.4: Death Probabilities by
Age and gender categories.

Age
Categories

Male Female

0-4 0.002 0.002
05-9 0.000 0.000
10-14 0.000 0.000
15-19 0.001 0.000
20-24 0.001 0.000
25-29 0.001 0.001
30-34 0.001 0.001
35-39 0.002 0.001
40-44 0.002 0.001
45-49 0.003 0.002
50-54 0.004 0.003
55-59 0.006 0.004
60-64 0.009 0.007
65-69 0.013 0.010
70-74 0.021 0.017
75-79 0.034 0.027
79+ 0.099 0.085

Source: Based on data taken from INEI

(2019d) and MINSA (n.d.) datasets

Table 3.5: Probabilities of leaving
the household by age and gender

categories.

Age
Categories

Male Female

0-4 0.118 0.134
5-9 0.092 0.084
10-14 0.064 0.091
15-19 0.075 0.141
20-24 0.156 0.143
25-29 0.188 0.176
30-34 0.131 0.146
35-39 0.089 0.051
40-44 0.066 0.037
45-49 0.053 0.049
50-54 0.056 0.018
55-59 0.040 0.027
60-64 0.018 0.025
65-69 0.020 0.032
70-74 0.051 0.067
75-79 0.037 0.022
79+ 0.012 0.052

Source: Based on data taken from INEI

(2019a) Modulo-200 dataset.

a woman giving birth to an additional child in the current year is equal to the sum

of probabilities of having more children than she currently has. The probabilities

of remaining at her current state equal the difference between the probabilities of

adding one child and the unit. With this assumption, a transition probability table

can be derived from the original data. To track the broader societal fertility trends,

five years of ENDES data were used to extrapolate probabilities until 2040 (Figure

3.3.4). This data makes it possible to derive probabilities of adding one extra child

to the count according to the mother’s age (Figure 3.3.5). Once the model deter-

mines a woman has an additional child, a new synthetic member is added to the

household and dwelling with age 0 and equal probabilities of being male or female.

As newborns, they cannot be chiefs, income generators or mothers.

After adding and subtracting members, it comes time to determine the new

income generator status of the remaining adult members. Transition probabilities

(Appendix 1) are based on ENAHO panel data for 2015 and 2016 and are specific

to age, gender and role categories. Because of their origin, these probabilities are
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Figure 3.3.4: Evolution of the proportion of women by total number of children
born alive for those aged between 45 and 49 years old.

Source: Based on data taken from INEI (2016c, 2017b, 2018b, 2019c, 2020b)

Figure 3.3.5: Probabilities of adding one child to the current count by women’s age
category. Current count (number of children) as facets.

Source: Based on data taken from INEI (2016c, 2017b, 2018b, 2019c, 2020b)

likely biased by the macro state of the economy in the country during those years.

Nevertheless, it is hoped that the effect of this external factor is limited for the aims

of the present simulation.

After extinguishing and adding individuals, new households must be created to

replace those without members. To create a new household and its members, we
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first set the number of members the new household will have according to distribu-

tion probabilities taken from ENAHO’s summary module and specific to each SEL

category (Table 3.6). This implies that the SEL is assigned to dwellings, not house-

holds, so an extinguished household is replaced only by a household of the same SEL

category. This intends to represent the reliance of SEL classification on built envi-

ronment variables and the relationship between property valuations and the income

level of incumbent resident households. It also implies that the discrete number

of household members in the base dataset is translated to categories, truncated at

seven members per household due to low probabilities beyond that number.

After their quantity is determined, synthetic individuals are generated. First, we

assign chief roles so that there is always one chief per household; then, according to

distribution probabilities, gender (Table 3.7) and age categories (Appendix 2) are in

that order. Finally, an initial income generator status is set according to age, gender,

and role (Figure 3.3.6). Women are assigned a starting number of children according

to the probabilities of the previously determined simulation year. The categorical

age, which comes in 5-year cohorts used in most source datasets, determines the

starting discrete age. This is simply a random integer between the limits of the

category.

Table 3.6: Categorical distribution
probabilities for the number of

household members by SEL category.

B C D
1 0.117 0.116 0.127
2 0.191 0.185 0.165
3 0.194 0.238 0.209
4 0.277 0.220 0.225
5 0.117 0.135 0.138
6 0.074 0.052 0.071
7+ 0.031 0.053 0.066

Source: Based on data taken from INEI

(2016b) SUMARIA dataset

Table 3.7: Categorical distribution
probabilities for Gender according to

Chief role category

Chief
Non
Chief

Male 0.687 0.413
Female 0.313 0.587

Source: Based on data taken from INEI

(2016b) Modulo-200 dataset

Once new household members are generated, these are added to the primary

dataset, and the simulation for a single year is done. As this is repeated for each year

required, we get the needed outputs. We get the number of household members and

income-generating household members for each dwelling and household identification
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Figure 3.3.6: Probabilities of being an income generator at T0 according to age,
gender and chief status categories.

Source: Based on data taken from INEI (2016b) Modulo-200 and Modulo-500 datasets

code for every simulation year. Once these are obtained, it is possible to return to the

economic model outputs and, with the aid of the external macro model of projected

means, get the households’ income and expenses as continuous values.

3.4 Results

Table 3.8: SEL distribution for synthetic households at T0.

SEL
Number of
households

B 10
C 14
D 24

Total 48

To test the model, a set of 48 synthetic households was generated using a cus-

tomised distribution probability of SELs (Table 3.8), which aims to represent the

imagined distribution of SELs within an incremental housing neighbourhood in an

83



Figure 3.4.1: Number of households by income and SEL categories every year of
the simulation.

intermediate city in Peru. With these SEL values, initial “luckiness” categories for

relative per capita income and expenses were assigned and then projected for 25

years using the previously described economic model (Figure 3.4.1). As expected,

the static transition probabilities generate similar distributions by SEL for all the

years of simulation. Disaggregated results by household for this simulation can be

seen in Appendices 3 and 4.

After using ENAHO’s distribution probabilities, an initial number of household

members is assigned to each household. With these numbers, a total of 164 individ-

uals are generated for T0. Figure 3.1(a) shows their age and gender characterisation.

Once the demographic model is run for 25 years, we see how the population decays

on every SEL, reaching a total of 90 inhabitants in year 25, with a stabilisation trend

on levels C and D (Figure 3.4.3). Whilst the population ageing process is expected,

there is an unexpected predominance of male inhabitants in the older cohorts in

the last years of the simulation (Figure 3.1(b)). This might have to do with the

emigration probabilities, which are less in the case of household chiefs, who tend to

be older males.

The most important output of the demographic model, the number of members

per household, also shows a decaying trend, as expected in an ageing society (Figure
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(a) Age and gender characterisation for synthetic individuals at simulation
T0

(b) Age and gender characterisation for synthetic individuals at simulation
T25

Figure 3.4.2: Population pyramids at T0 and T25 of the demographic simulation

3.4.4). Nevertheless, wave patterns emerge, likely indicating generational changes

or birth waves. The other relevant outcome from this model, the number of in-

come generators, is better understood when shown relative to the total number of

household members (Figure 3.4.5). As expected, diminishing the household sizes

results in a higher ratio of income generators out of the total number of household

members, which would determine higher household yearly financial balances.

Once the results of the demographic simulation were ready, it became possible to

complete the economic model by transforming the predicted categorical variables to

continuous ones by using the previously described trendline model of mean income

and expenses by SEL. Figure 3.4.6 shows the evolution of average yearly savings
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Figure 3.4.3: Population evolution by dwelling’s SEL.

Figure 3.4.4: Average number of household members by dwelling’s SEL category

Figure 3.4.5: Average ratio of income generators out of total household members by
dwelling’s SEL category.
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Figure 3.4.6: Average yearly savings per Household by SEL.

by dwelling’s SEL. As expected, there is an upward trend in all SELs following

the external model. The high variation between consecutive years of savings is

something that draws attention. This effect is more pronounced in the SELs with

fewer households, so it’s likely the result of a few outlying data points affecting the

classes’ mean. The lower starting point for SEL B is also noticeable, probably related

to its higher average number of non-working household members on the initial time

steps.

3.5 Conclusions

The present chapter has dealt with the issue of proposing a plausible socio-economic

model able to integrate with the general workflow of the thesis. It has presented

micro-modelling as a widely used and highly developed method to model socio-

economic phenomena using an agent-based approach. Consequently, it posed a

micro-model consisting of two sub-models, one purely economic and another demo-

graphic. While the earlier predicts future income and outcome per capita categories,

the latter predicts the total number of household members and income-generating

household members. When working together, they can output the two desired vari-

ables to connect the socio-economic and the agent learning components. These

variables are the number of household members and the yearly savings of the house-

hold. The plausibility of the proposed model lies in two factors. On the one hand,

it follows a simple logic based on the basic events that drive demographic change
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(births, deaths, migration). On the other, it uses real-world data to generate distri-

bution and transition probabilities.

Although this basic plausibility is enough to feed the thesis workflow, some issues

remain in the modelling approach chosen, most of which respond to data availability.

First, it was not possible to include increasing life expectancy in the model (as it was

done with decreasing fertility rates) just because publicly available death statistics

in Peru only cover the period starting in 2017, including three years of abnormally

high death rates due to the COVID-19 pandemic. Similar is the case for SEL tran-

sition probabilities, which were not possible to calculate as ENAHO panel summary

data does not show differing SELs among years for participating households. Addi-

tionally, there is the case of evolving transition probabilities. These were managed

in the economic sub-model by having relative categories dependent on an external

model and in the birth rate by directly projecting the probabilities with a simple

trendline model (as there were five years of available real-world data); nevertheless,

the income-generating status, which depends on macro-economic growth, and emi-

gration probabilities, which depends on broader societal changes, remained static for

the simulation period. Although assuming purely static stochastic processes behind

these two phenomena is plausible, an alignment procedure for these would increase

the model’s plausibility.

Concerning emigration probabilities, an odd but explainable phenomenon oc-

curred in the test run: a predominance of men in the latter years of the simulation.

Although such difference in gender distribution is unlike in a more comprehensive

social system, it is explainable in a small closed system such as our neighbourhood,

where this distribution could indicate the presence of household chiefs staying af-

ter other members have migrated. The lack of an immigration mechanism in the

model could have magnified this effect. Such an approach requires assigning house-

holds an attractiveness factor that would add one or more members born outside

the simulation. One of the candidate variables to calculate this factor would be

annual household savings, assuming that new members would move in only if there

is an excess in economic resources. Another approach is to include the relationship

status of the inhabitants. Thus, non-married or divorced individuals would attract

new members of a similar age. These were discarded as the earlier required an
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infinite loop, in which the continuous results from the economic sub-model would

have to feed the demographic sub-model, which feeds the continuous outcome from

the economic sub-model. Meanwhile, the latter overcomplicates a model that has

consistently avoided considering kin relationships due to its base dataset’s format.

Finally, an interesting mechanism that could be included in the future is the ca-

pacity of the entire household to move out and be replaced by another. This would

require a base dataset that includes this information to calculate event probabilities.

Considering those changes, it should be possible to make the jump from a plausi-

ble model to a statistically accurate one. In such a scenario, a proper statistical

validation procedure should take place.
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Chapter 4

Optimisation Environment

The current chapter deals with the optimisation environment of Part B in the

methodology. As exposed in the first chapter, this part consists of an optimisa-

tion loop that needs an environment to allow the functioning of its Evaluator and

Selector components. As such, this environment is formed by two parts: A geometry

generation (GG) script that creates and modifies building envelope geometries to

be evaluated and selected, and a development environment in which this script is

implemented and that allows encompassing the other two components.

The present chapter then starts by introducing the requisites for the ideal devel-

opment environment. It continues by describing the selected one, emphasising its

compliance with the identified requisites. It then proceeds to describe the internal

processes and functioning of the GG script, including the programming paradigm

used for the development, the programming language, the required modules, the

classes created and the interaction with the other components of the workflow. A

detailed description of the procedural geometry generation method and its inter-

action with external applications that allow adding non-geometrical data to the

outputs is also considered. Finally, the chapter presents conclusions and recommen-

dations to implement the optimisation environment within a fully functional version

of the general workflow.
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4.1 The development environment

In software development, an environment is a workspace from which the software

is written, tested and debugged. In our case, this software is the so-called optimi-

sation loop, including its selector, evaluator and GG script components. Given the

individual requisites of each of these and the required interaction between them and

the rest of the workflow, a list of key requisites for the development environment

was acknowledged:

1. The graphical nature of the geometry generation and manipulation process

requires a Graphical User Interface (GUI), fully integrated at least during the

development process of the GG script.

2. The development and integration of the selector component within the envi-

ronment requires the ability to jump with ease from optimising one to tens of

interacting agents.

3. There should be unambiguous communication between the three components

of the optimisation loop and the other parts of the workflow. This requires

available communication channels and minding the compatible formats ac-

cepted by the evaluator.

The last requisite sums up one of the main challenges presented in this chapter,

which is communicating custom-written scripts with externally written software (the

evaluator). In this sense, two factors will be tackled: communication channels and

compatible formats. Regarding the latter, our selected evaluator, EnergyPlus (The

National Renewable Energy Laboratory, 2017), accepts two text-based input file

formats: IDF, recommended when the files are generated via a GUI, and epJSON,

recommended when using a programming language (U.S. Department of Energy,

2021). Regarding communication channels, the optimisation phase requires auto-

execution without the need for human intervention; as such, the standard approach

is to rely on Application Programming Interfaces (API). The most straightforward

way to control EnergyPlus using APIs is by using OpenSudio SDK, an open-source

analysis platform and toolkit that facilitates integrated whole-building energy anal-

ysis and provides an API to access EnergyPlus (Guglielmetti, Macumber, & Long,

2011).
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Altought this arrangement seems to comply with requisite number three, further

adaptations are needed to comply with the two remainings. Requisite one, for exam-

ple, demands a GUI compatible with the environment, at least during the GG script

development phase. For this task, OpenStudio relies on SketchUp (Trimble Inc.,

2000) via a plug-in. Whilst SketchUp allows scripting, this mode of using the soft-

ware is not particularly popular and, therefore, lacks community support. Luckily,

as OpenStudio is open-source, many independent initiatives profit from its API and

Command-line interface (CLI) capabilities, thus expanding the graphical platforms

able to interact with EnergyPlus. The most popular of these initiatives is Lady-

bug Tools (M. S. Roudsari & Mackey, 2017), a collection of computer applications

that support environmental design and education. It is open-source, community-

supported, integrated with the most currently popular 3D software and written in

Python, the most popular programming language nowadays (TIOBE Software BV,

2023). Although, thanks to its current cross-platform capabilities, LadybugTools

can be plugged into most existing geometry engines, it was initially developed as

a Grasshopper plug-in, thus accounting for more experience, support and legacy

options on that platform.

Grasshopper (McNeel and Associates, 2014) is a visual programming language

and environment that runs within Rhino3D (Rhino), a commercial computer graph-

ics and computer-aided design (CAD) software. Rhino’s geometries are based on the

NURBS mathematical model, focused on producing a mathematically precise rep-

resentation of curves and freeform surfaces. This characteristic differentiates Rhino

from most CAD applications and has made it popular within the procedural and

parametric geometry generation communities. Being NURBS complex geometrical

objects, designers usually rely on scripting rather than on Rhino’s GUI to achieve

accuracy. Despite this, being design a highly graphical exercise, users remain de-

pendent on graphical outputs to keep a visual on their tasks. Grasshopper plays

a significant role in covering this form of human-computer interaction. As a visual

programming language, it offers a more relatable experience to designers who do

not have “traditional” scripting training, whilst it uses Rhino’s graphical output

to show the resulting geometries in real-time. This also opens the doors to the

straightforward practice of parametric design, which means generating geometries
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within parameters rather than with absolute properties or inputs. Parametric design

leads to the use of optimisation methods for geometry generation. As such, both the

platform and the community are used to the integration of these in their workflows.

The Grasshopper development environment consists of a canvas, or working

space, and several components with varying functions that can be placed on it.

These components are equivalent to what we call functions in a traditional program-

ming language. They accept inputs, execute an internal process and produce one or

several outputs. Grasshopper includes a customisable component so that one can

write a script within it (using C, Python or VisualBasic) and create a new process to

be executed. This has allowed the surge of a constellation of community-generated

components that can perform various very specific functions. LadybugTools, writ-

ten in Python, started as part of this constellation (M. S. Roudsari, Pak, & Smith,

2013).

Figure 4.1.1: Grasshopper Canvas and one Python component with its inputs and
outputs

As such, using Grasshopper as an environment, Rhino3D as GUI and OpenStudio

(via Ladybug Tools) as API medium for EnergyPlus, theoretically allows complying

with requirements 1 and 3. This setup requires writing the GG and the selector

scripts as custom Grasshopper components, and given that Python is the native

language of Ladybug Tools, it makes sense that these two use it as well. This

setup was successfully used during the development phase of the selector component

(shown in Chapter 5). Nevertheless, it showed shortcomings when scaling up the

learning process to tens of agents, failing to comply with requisite 2. Two factors

contributed to this limitation:
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• First, in the Grasshopper canvas, an Evaluator component is needed for every

agent participating in a learning process. This becomes very inconvenient and

graphically confusing when dealing with tens of agents.

• Second, Grasshopper components are incapable of outputting intermediate

states when commanded to execute a loop. In incremental housing, the inter-

mediate states are precisely crucial.

During the development phase, only up to four agents were used, and their

performance was aggregated for evaluation, so the first shortcoming was completely

avoided. The second one had a temporary workaround: Loop processing was taken

outside of the component and into the Grasshopper canvas. This was achieved by

having an external counter that computed the current iteration’s ordinal so that

Grasshopper components deal only with the tasks assigned to one iteration at a

time. To update the component’s output, the resulting solutions must expire. This

requires a signal so that the canvas counter knows when to carry on with its task.

To achieve that, it is possible to profit from “sticky”, Grasshopper’s default data

collector that stores variables beyond solutions expiration. By writing and reading

values from this collector, the counter and the components keep a communication

channel. It is also possible to send data via ”sticky” from the Evaluator to the

Selector, so they coordinate their tasks. By setting geometries as outputs, this

environment allows witnessing the learning process directly, which also allows a

debug process on both the GG script and the Selector implementation.

Although the previously described environment was enough to achieve the results

shown in Chapter 5, the thesis objectives demanded further interacting agents. As

such, a change of environment became necessary. This involved completely detaching

the script from the Grasshopper canvas and running it from an external development

environment. This was possible as, in the previous setup, the GG script was never

dependent on Grasshopper; it was just using it as a development environment to

communicate with EnergyPlus via the LadybugTools components while profiting

from its interactions with Rhino to output real-time graphics. Its dependencies

to allow the latter and generate geometries compatible with LadybugTools, were

limited to Rhino.Geometry, the Geometry namespace of RhinoCommon, the Python

Software Development Kit (SDK) for Rhino (McNeel R. and Associates, 2023b).
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(a) Seed state (b) State 1

(c) State 2 (d) State 3

Figure 4.1.2: Frames of the graphical output of a single-agent optimisation process
using Ladybug as Evaluator and Reinforcement Learning as Selector

As such, a straightforward change of environment can happen by using the

rhino3dm module, a geometry library with a RhinoCommon style able to access and

manipulate geometries independent of Rhino (McNeel R. and Associates, 2023a),

or the Rhino.Inside module, which allows running Rhino inside many other pro-

grams, including those written in Python (McNeel R. and Associates, 2023c). With

these alternatives, it is possible to execute the GG script developed for the pre-

vious setup outside Grasshopper. From the side of the Evaluator, meanwhile, al-

though LadybugTools components are natively written in Python, a transformation

from Grasshopper components to Python functions is still required. This is a rel-

atively straightforward task which implies adapting the component contents to a

pure Python script.

The disadvantage of this approach was that the live geometric outputs of the

learning process were lost. Nevertheless, as the GG script was already developed to

the point of deployment, the objective could still be attained. In exchange of this

loss it was possible to overcome the two challenges previously presented:

• The intermediate states of loops became accessible for output and manipula-

tion, including the possibility of sending intermediate-state geometries to the
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Evaluator when required.

• The Evaluator could be called within Agent-based loops so it can execute

energy simulations for every agent participating in a learning process.

An additional advantage of this setup is that it becomes easier to integrate High-

performance computing (HPC) and cloud computing resources into the environment,

thus potentially speeding the processing time of simulations.

To facilitate the portability of the GG script, Rhino.Inside was selected over

rhino3dm, as the latter comes in the style of RhinoCommon, whilst the earlier

literally calls RhinoCommon functions. The difference between the two is minimal,

but it does exist so that the selected workflow avoids a second debugging process.

This comes at a cost, as Rhino.Inside requires an installed and licensed version of

Rhino to work, and as Windows and Mac are the only compatible platforms for the

software, the execution of our GG script is also limited to them. This discards the

option of executing the code fully on available HPC premises (at The University

of Sheffield, currently, all HPCs run on Linux). Luckily, the mother company of

LadybugTools offers Pollination (Ladybug Tools LLC, 2023), a cloud computing

service that allows the processing of several energy simulations on the cloud in

parallel. By using its API, it is possible to interact with it from a local computer

and execute energy simulations on request, thus expediting the workflow execution

time when working with tens of agents.

In summary, the current section has described two development environments for

the optimisation process: One working within the Grasshopper canvas and another

working in a pure Python environment. These two environments are used asyn-

chronously, according to the requirements of a phased development process. While

the earlier serves well to get the GG and Evaluator scripts to a deployment stage,

the latter allows scaling up the workflow to handle tens of agents. In both environ-

ments, thanks to the presence of LadybugTools, either as Grasshopper components

or Python functions, the resulting geometries from the GG script can be translated

to a compatible format for EnergyPlus.
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4.2 The Geometry Generation script

The following section describes the GG script in its entirety. This script is de-

signed to receive and interpret the orders given by the Selector, transform them

into geometrical data and pack these geometrical results, along with complemen-

tary non-geometrical data, in a compatible format readable by the Evaluator. This

is done in two consecutive steps: the geometry generation itself and the addition of

supplementary data. To achieve the first of these, the script is self-reliant, while for

the second, it relies on functions from LadybugTools modules.

Figure 4.2.1: Detailed optimisation loop, including the interactions with the GG
script.
This loop is triggered by the incremental development model shown in 1.1.1, which
informs on the ”need” and financial capacity of the agent to the Selector. In such a
way, the feedback to the GG script becomes bounded in quantity and timing.

4.2.1 The geometry generation script structure

The geometry generation script relies on the Object Oriented Programming (OOP)

paradigm, as this allows the creation of complex programmes by organising their

design around objects able to interact with each other rather than relying on im-

perative instructions given by the programmer. Considering the methodological

approach taken by this research, these objects can configure the agents at the core

of our agent-based geometry optimisation problem. Objects in an OOP programme

are instances of a class, and several classes might co-exist in the same programme.

Objects also have attributes, which represent the state of an object, and methods,
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which are the functions that the object can execute. Classes in a programme can be

completely independent from one another, or they can have relationships. The GG

script here presented is designed around the “Agent” class, from where geometrical

objects representing dwellings are instances. The “Agent” class has a composi-

tion relationship with the “Block” class, as one block might contain one or more

dwellings. This sort of arrangement allows a Block object to arrange the houses

in order and to obtain their attributes and the possible interrelationships between

them. It also enables it to simplify the application of methods to all its components

and add new methods referring to their aggregate behaviour.

Figure 4.2.2: UML class diagram with the most important attributes and methods of
the Block and Agent classes

In this OOP structure, geometries representing individual dwellings are at-

tributes of the “Agent” class. To modify the geometrical structure and thus simulate

the incremental process, we rely on the Extend() (Fig. 4.2.3) method of the said

class. To generate and modify these geometries, the script uses objects belonging

to classes native to the Rhino.Geometry module. As explained in the previous sec-

tion, this allows portability between the development and the deployment stages.

From this module, there is a short list of classes on which the GG script ultimately

depends. These are:

• Points 3d: Represents the three coordinates of a point in three-dimensional

space, using double-precision floating point values.

• Polylines: an ordered set of points connected by linear segments, which can

be closed if the starting and ending points coincide.
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• Vectors 3d: Represents the three components of a vector in three-dimensional

space, using double-precision floating point numbers.

• Breps or Boundary Representations: Surfaces or polysurfaces with trim curve

information.

• Meshes: a geometry type that is defined by vertices and faces.

The two latest are complex constructions with inner components (vertices, edges,

faces, etc.) so that their attributes and methods can also refer to these objects. The

geometry attribute of an “Agent” object is a Brep object, which represents the en-

velope of one incremental dwelling at a given point in time. As such, the script

is structured around generating and manipulating these Brep objects. The agent’s

Extend(int) method achieves it using Rhino’s Extrusion method, which creates an

initial geometrical seed extruded from a Polyline footprint drawn inside a bounded

lot and grows this seed by extruding a selected face from it. As a hollow shell rep-

resenting the outer boundaries of the dwelling, all internal divisions are eliminated

every time the expansion process is simulated. To make sure that the output remains

a closed solid after dealing with the internal divisions, a Brep-Mesh-Brep transfor-

mation is used just before outputting the result as an Agent attribute. Incremental

expansion is achieved when the resulting geometry is set as the initial state so that

any further transformation is applied to the previous output.

Figure 4.2.3: Generation of vectors for extrusion as part of the Extend() function.
To get its dimension, v1 is unitized and multiplied by the “module” input. V2 already
shows its correct direction and dimension.

Source: Poco-Aguilar, Wate, and Robinson (2022)
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To place these objects in space, a coordinate system is needed. Rhino’s coordi-

nates use the unit system input by the user. While this facilitates relating a scaled

model with its real-world inspiration, the GG script complements it with an addi-

tional modular unit system, which enables, on the one hand, the standardisation

of dwelling sizes and, on the other, the communication with the rest of the com-

ponents of the workflow. As such, dwellings are formed by modules that represent

functional rooms. This allows it to understand the “need” input coming from the

socio-economic model (which uses rooms as units of measure). Considering this,

lots sizes and height construction limitations are given in modular units. To facili-

tate the process, modules are cubic and allow for mimicking a minimally functional

residential room.

The agent class

The script is structured around the “Agent” class. It is, therefore, vital to under-

stand its structure to understand the programme as a whole. An object belonging

to the “Agent” class is initialised by inputting the following basic geometrical at-

tributes:

• Location of the initial (lower left) point of the lot in Rhino’s system of coor-

dinates (X and Y),

• Size of the lot’s basic module in Rhino’s unit system,

• Size of the lot in X and Y in modular units,

• Location within the lots’ modular grid of the initial point (lower left) of the

footprint of the seed geometrical state of the dwelling.

• Size of the seed state of the dwelling in X and Y in modular units.

• Maximum height allowed for the vertical growth of the dwelling in modular

units.

With this data, the script creates an “Agent” object whose seed geometric repre-

sentation is obtained with the BrepCore attribute. To generate the seed geometry,

the script first bounds the individual lot that limits in X and Y the growth of the
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dwelling. For this, it takes the coordinates of the initial point of the lot, the equiv-

alence of the modular dimension in Rhino’s measurement unit system and the lot

size in X and Y in modular units. With these ingredients, it locates the remaining

three points, defining a quadrangle that represents the limits of a lot. Once these

boundaries are determined, a grid of points is generated within the lot by consider-

ing its modular dimensions. A list of available coordinate points to start the seed

geometry of the dwelling is created by taking out the points located on the upper

and right boundaries.

This 3D geometry is achieved by obtaining the base points with a strategy sim-

ilar to those used with the lot boundaries, then getting a closed polyline from the

base points, and finally extruding a Brep surface obtained from this polyline. The

extrusion demands a guiding line, which is obtained by connecting one of the base

vertices with a projection of the same with a Z coordinate equal to a module’s mea-

sure. The result is a Brep, either cubic or rectangular parallelepiped (depending

on the base), whose height is always limited to one module. This seed geometry is

permanently stored in the agents’ InitBrep attribute.

Figure 4.2.4: Top view of the two measurement systems overlapping to locate initial
geometrical states
In this example figure, the GG script Module is equivalent to three system units
(dotted grid). This generates a secondary modular grid (solid lines) which guides
the location and development of building envelopes. Here, the initial building
envelope state (grey fill) is the size of one room and is initialised in modular

coordinates (2,2).

As the geometries represent an incremental dwelling, a vital method of the
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“Agent” class is the Expand(int) function, which controls the application of the

Extrude method from Rhino.Geometry. The Expand(int) function receives an in-

teger as input, which represents an index in a list of face identifiers of the current

geometrical state of the Agent. This list is filled with only the identifiers of those

faces that are “extrudable”. These faces either look to the sky (if their vertices have

a Z coordinate below the height limitation) or not on the lot’s boundary. These

limitations allow keeping the dwelling’s development within constraints in X, Y and

Z axes. To discriminate growable faces from the rest, walls and roofs indices are

first separated into different groups. This classification is done by obtaining the

vertices forming the faces of the Brep and then getting the coordinates that they

share. Vertices on the roof share Z coordinates, and depending on this shared value,

we can determine if it is a growable roof. Wall vertices, meanwhile, share either an

X or Y coordinate, and to be growable, this shared value should be different to the

values of the lot’s boundaries.

To allow any positive integer as input, the BoundInputAction(int) method con-

verts any integer beyond limits to one within it by using the remainder of the division

method. This function also subtracts a unit from the input when different to zero

so that zero remains reserved to indicate nil extension. Negative integer inputs are

allowed, but they are all turned to -1, indicating an order to return the seed geomet-

rical representation and eliminate all the growth executed so far. As a result, and

to achieve the progressive transformation, the Extend(int) method might alter the

OutBrep attribute to a new geometry resulting from the transformation process or

go back to the seed geometry, depending on the input. A complementary output of

this method is the number of available actions after arriving at a given state. This

results from measuring the length of the list with the IDs of the extrudable faces

and is useful to construct an incremental Q-table, as explained in Chapter 5.

The extension of the dwelling is achieved by extruding the selected face in an

outward direction perpendicular to its plane. To ensure that the extrusion is made

in the correct direction when the chosen surface is a wall, the centre of the building’s

footprint is first determined using the footprint’s vertices. The centre point is then

projected to the ground projection of the wall. With that direction and the module

as length, a vector can be traced from the centre point projection on the footprint
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boundary so that the ExtrudeFace method from Rhino.Geometry has all it needs

to perform its task. If the selected face is a roof, the process followed is similar to

the one extruding the seed geometry in the Z direction. All internal divisions are

deleted to simplify the energy modelling (considering that we are dealing with the

optimisation of building envelopes only). So, after performing the extrusion, the

original face is deleted, and only the outer boundaries of the geometry remain. To

keep the geometry as a closed entity, a Mesh covering the outer boundaries of the

geometry is generated; this new object is closed and then reconverted into a Brep.

Before outputting the result, the method ensures that there are no duplicated faces

and that we end up with a closed geometry with all their faces pointing outwards,

as demanded by the Evaluator. Exceptionally, a non-manifold geometry will be

generated. By definition, this is a non-closed geometry, but as its status does not

depend on the lack of connection between the faces, there is nothing that the GG

script can do to “geometrically solve” this output. Because of this, its management

is left to the Selector, which penalises it when encountered (See Chapters 5 and 6).

Figure 4.2.5: Examples of Non-manifold geometries
Source: Chatzivasileiadi, Lannon, Jabi, Wardhana, and Aish (2018)

While the geometrical output is the primary data type expected by the Evalua-

tor, the Selector does not directly interact with it. Q-learning, the Selector method

presented in Chapter 5, demands unique state identifiers to be used in the con-

struction of a table where visited solutions are recorded and rewarded according

to their performance. This implies that our Selector requires identifications rather

than geometries. Additionally, the investing mechanism needs to keep track of the

costs implied in the expansions so that it would be able to determine if an extension

investment is carried out. Because of this, the “Agent” class comes with other at-

tributes that allow fluent communication with these other components. The “state”

attribute is a string formed by Ts and Fs. These result from a geometrical operation

that starts by considering the maximum amount of modular units a dwelling could

potentially occupy. At the centre of each of these units, one point is located so that
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each has a unique index within a list. When required, these points are tested for

their location in relation to the building envelope so that a ”T” results from a point

being within the envelope and an ”F” from it being outside it. As these characters

occupy in a string the location of the index of their test point in their respective

list, a unique ID is achieved for every possible geometrical output. In the case of

non-manifold geometries (which cannot be closed and therefore pass all points as

being outside), they are identified with a string with as many ”F”s as potentially

available modules.

Figure 4.2.6: Test points to get dwelling geometry size and state
The maximum potentially occupied space by the dwelling is divided into modular
cubes, each of which has a point in the centre. These points are tested so that if
they are within the dwelling’s envelope, they return a ”T”; otherwise, they return

an ”F”. These characters form a string, which identifies a geometrical state.
Counting the ”T” occurrences determines the current size of the geometry in

modular cubes.

With this method, it is also possible to determine potential future states by

identifying the closest external point to each of the extrudable surfaces and turning

their corresponding character from ”F” to ”T”. It also becomes possible to measure

the size of dwellings in “room” units. This is achieved by simply counting the

number of points inside the geometry and is presented using the OccupiedPoints

attribute from the agent object.

To calculate the extension costs, the script differentiates the new faces from the

pre-existing ones by comparing the two most recent geometrical states and returning

the indices of the additional faces in the latter. Then, the new faces are classified
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into walls and roofs using a Rhino.Geometry method, and then total areas by class

are calculated. With an input indicating the approximate construction cost per

square meter differentiated in the same classes, it is possible to get an approximate

total price of the extension.

The Block class

As described earlier, the “Agent” class has a composition relationship with the

“Block” class, so that a block is composed of dwellings (or agents in this case). This

adds operability to manage multiple dwellings accumulated in a block or neighbour-

hood. As “Agent” is the basic class of the programme’s structure, blocks were built

on top of it so that a block instance initiates several agent instances, ordering them

according to additional inputs. The Block class also profits from inputting some

common properties shared among all the composing agents. As such, to initiate a

block instance, we need the same inputs as we did for the Agent class (indicating

the properties of its composing units) plus the following:

• An integer indicating the number of continuous lots on a single side of the

block.

• A Boolean indicating whether the lots will be mirrored to form a double-sided

block.

• A Boolean indicating if the initial row of lots will be done in X (True) or Y

direction (False).

• A floating-point positive number indicating the view range of agents to identify

their neighbours within the block.

• A floating-point positive number indicating the cost of building one square

meter of walls.

• A floating-point positive number indicating the cost of building one square

meter of roof.

The generation process of a Block object starts by creating an instance of the

class Agent with a starting point coinciding with the block’s initial point. The rest
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of the agents in a line of houses are started by using their (unique) X or Y sizes

(depending on the Boolean input) and calculating their starting points from there.

This first line of dwellings is mirrored if the second Boolean input indicates so. With

the range view input, direct neighbours are identified. This floating point positive

number is used as a ratio to create a circle from the centre of the agent’s lot. The

other agents’ lots vertices are evaluated in relation to that circle so that immediate

neighbours are those who have at least one vertex within the circle. Their IDs,

stored in a list, become an attribute of the initial agent. Neighbour identification

is helpful for the Selector method, as it allows the construction of a reward table

that only includes the immediate neighbours (see Chapter 5), thus saving memory

resources and making possible the execution of the workflow.

4.2.2 Adding properties to the geometry with Ladybug-

Tools

As specified earlier, EnergyPlus, our selected Evaluator, requires, in addition to the

geometrical information provided by the GG script, non-geometrical data, including

usage schedules and occupancy ratios, among others. To supply this information

and complement the GG script output geometries, the present workflow uses Lady-

bugTools.

To understand LadybugTool’s contribution, we first need to understand the

structure and mechanics of this collection of applications. LadybugTools is formed

by four software applications, each serving a different purpose but all related to

assessing the built environment. These tools are Ladybug, Honeybee, Dragonfly

and Butterfly. The most basic of them is Ladybug (M. S. Roudsari et al., 2013),

a tool capable of importing and interpreting EnergyPlus Weather files (.epw) and

performing different types of studies using that data (as solar shading, wind, and

daylight among other analyses). Ladybug does not perform complex energy analysis

as a tool designed for early-stage prototyping. Its studies are limited by the infor-

mation taken only from geometries and weather files. Originally, Ladybug depended

on Rhino.Geometry to perform its analytical operations, but today, it relies on its

own Python library, Ladybug Geometry (Mackey, Garay, Roudsari, Dao, & Vasan-

thakumar, 2023). This library, which does not allow NURBS geometries, makes it
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possible for Ladybug, and other applications built on top of it to be portable and

interact with various CAD software.

Meanwhile, Honeybee (M. Roudsari et al., 2023), built partially on top of Lady-

bug and thus profiting from some of its functions, serves as a bridge between these

various CAD software and Radiance 1 and EnergyPlus. To achieve its functional-

ity, Honeybee uses OpenStudio’s CLI and API capabilities. Meanwhile, to be able

to manipulate geometries, Honeybee relies on the Ladybug-Geometry library and

on its own class structure (Mackey, Roudsari, Vasanthakumar, Peng, & Dao, 2023),

which, as required by the Evaluator software it communicates, adds non-geometrical

properties to buildings’ models.

DragonFly (Charan et al., 2021), allows the creation of district-scale models com-

patible with URBANopt (an energy simulation software based on EnergyPlus and

OpenStudio), OpenDSS (an electric power distribution system simulator. Electric

Power Research Institute Inc., 2023), REopt (a techno-economic decision support

platform. The National Renewable Energy Laboratory, 2023), and the Urban

Weather Generator (a Python application for modelling the urban heat island effect.

Vasanthakumar, Mackey, & Dao, 2023). DragonFly has its own class structure, a

simplified version of Honeybee’s adapted to the urban scale. Finally, the most recent

tool in the LadybugTools set is Butterfly (M. S. Roudsari, Dao, Mackey, Subrama-

niam, & Bachant, 2023), which allows creating and running advanced computational

fluid dynamic (CFD) simulations using OpenFOAM.

Because of its simplicity and rapid execution, Ladybug was used in the devel-

opment stage of the GG script to calculate annual solar irradiation availability (see

Chapter 5). Nevertheless, as the objectives of the thesis demanded energy simu-

lations, Honeybee had to be used at more advanced stages (See Chapter 6). This

tool was preferred over DragonFly due to its more complete class structure and

flexibility. Additionally, as EnergyPlus allows predicting the performance of each

individual building, its implementation is fitted for an Agent-based approach.

To understand better the interaction between Honeybee and the GG script, it

is vital first to understand Honeybee’s JSON schema. A JSON schema is a declar-

ative format describing the structure of other data, thus allowing communication

1Radiance (Ward, 1994) is a suite of tools that use ray tracing for lighting simulation
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between programmes, even if they are written in different languages or work from

different platforms. Honeybee uses it to describe the structure of 3D objects and

complementary data in a format that OpenStudio and EnergyPlus can understand.

As such, Honeybee’s JSON schema is organised into five geometry objects (Room,

Face, Aperture, Door and Shade) representing planar geometries (Mackey, Roudsari,

et al., 2023). Rooms represent single closed volumes and map to a zone in Ener-

gyPlus. These objects are composed of planar Faces, representing walls, roofs, and

floors. Apertures (representing windows, light tubes, daylight domes or any other

light-carrying opening) and Doors (opaque or transparent) can be assigned to Faces,

while Shades can be assigned to any of the other four geometrical objects.

Figure 4.2.7: The five geometric objects of the Honeybee schema
Source: (Mackey, 2020)

These five objects are added to a Honeybee Model object, which is ultimately

sent to EnergyPlus or Radiance using Honeybee’s own JSON format (.hbjson). Hon-

eybee Model objects can only be simulated if they contain at least one Room, being

the rest of the base objects, optional data. The Model object and its constituent

geometric objects are meant to be extended with properties (non-geometric data)

for energy simulation. This is done through a ”properties” key that each object

possesses. These keys include properties for materials, constructions, construction

sets, schedules, and program types. In addition to the Model object, Honeybee gen-

erates SimulationParameter objects, which represent a complete set of EnergyPlus

simulation settings, including the type of calculation to run, running time, and re-

sults to record. The SimulationParameter JSON schema is wholly separate from the

Model schema but still essential for running an energy simulation. The simulation

only runs once a Model object, a SimulationParameter object and an EnergyPlus

weather File (.epw) are provided.

To send the resulting geometries for one agent to EnergyPlus, the GG script
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uses the Honeybee’s RoomSolid function to transform the BREP representing a

dwelling’s envelope into a Room object. Once the Room is created, it is possible

to add apertures to it; the easiest way is to use the Apertures by ratio function

from Honeybee, which allows creating them with a simple aperture-to-wall ratio as

input. Next, for each agent’s Model object, the geometries of all the other agents in

a Neighbourhood are added as Shades. Finally, the non-geometrical properties are

added to the envelopes, which are single Room objects.

When the energy simulation is processed locally, Honeybee executes OpenStu-

dio from the CLI and automatically returns the performance values as numbers;

meanwhile, when the simulation is executed on the cloud, the script automatically

uploads the required files and then waits for and downloads the results. As the

results come in a JSON format, the Selector needs to open these files and find the

relevant figures.

4.3 Conclusions

The current chapter has presented the optimisation environment, including both

the development environment for the execution of the optimisation programme and

the GG script for the generation and modification of the required building envelope

geometries. By describing two alternative development environments to be used at

different stages of the programme’s development, it was determined that together,

they are able to comply with all three requisites initially established.

Consequently, the chapter describes the structure of the GG script, dividing its

tasks into two consecutive steps. First, the geometry generation itself, which is con-

cerned with the management of Brep objects and the output geometry-related useful

identifiers to feed the Evaluator and the Selector. Second, the addition of supple-

mentary data, including finer geometrical details and non-geometrical information

required by the Energy Simulation. The first of these is presented as an original

contribution in the form of a script written in Python using the OOP paradigm.

The latter, meanwhile, uses the functions and tools offered by Honeybee, one of

LadybugTools’ applications. As a result, for each agent, a Honeybee model and a

Simulation Parameters object are delivered to EnergyPlus in a JSON format, thus
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concluding the task assigned to the GG script.

Although the GG script is extensively described in this chapter, its functioning is

not yet presented or tested. This is because this script cannot be tested in isolation

but only as part of a workflow. Particularly relevant are its interactions with the

Selector and the Evaluator. As such, the following two chapters are devoted to

testing the GG script along with the two Development Environment setups presented

in this section. Altought the results shown in both chapters are promising, some

issues could have been tackled at this stage to have a more streamlined workflow.

For example, writing the GG script relying exclusively on rhino3dm or Ladybug

geometry modules from the beginning would have allowed complete freedom from

Rhino software and, thus, from the Windows platform. Altought this would have

resulted in a lack of graphical output at the development stage of the GG script, this

could have been supplied by an interaction of the script with other GUI alternatives

available as Python modules. This could have given more flexibility to the workflow,

including the capacity to be executed on Linux and, thus, on available HPC facilities.

A potential future implementation in these platforms is still possible, which opens

the door to testing larger urban scenes and more complicated social interaction mod-

els without having to rely on costly commercial platforms. Despite this and other

minor changes that could have improved marginally the efficiency of the workflow,

the set of choices presented and justified in this chapter have catered for the needs

of the thesis, so that they have been able to deliver enough results to arrive at the

posed goals.
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Chapter 5

Optimisation Selector

The current chapter presents and tests the method for the Selector component be-

longing to the optimisation loop of our methodology. As such, it begins by framing

the optimisation task within the Architectural Design Optimization (ADO) field of

study. After reviewing the most utilised methods in this field, the chapter arrives at

the conclusion that none fits our task due to the dynamic nature of the incremental

housing optimisation problem. As an alternative approach is needed, the field’s the-

oretical foundations in simulation-based optimisation reveal control optimisation as

a viable tool. By taking into account operations research and control literature, the

chapter defines our optimisation task as a Markov Decision Problem (MDP), which

could use reinforcement learning (RL) as an optimisation mechanism. To provide

empirical ground for this choice, the chapter presents a test done to optimise a single

building envelope to maximise its solar exposure.

As positive results are achieved, the chapter continues by presenting RL but

now from the perspective of machine learning (ML) literature. This serves as a

way to introduce multi-agent reinforcement learning (MARL) so the optimisation

of multiple geometries is achieved. This leads to the adaptation of the previously

presented algorithm for a successful scaling-up from single to multi-agent RL. An

adapted version of näıve Q (λ) joint-action learning is thus presented and tested as

the ideal method to be used for the purposes of this research. Finally, the chapter

arrives at conclusions and recommendations on the implementation of the adapted

algorithm on the posed workflow.
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5.1 The location dilemma as an optimisation

problem

The dweller involved in incremental housing development faces two consecutive

dilemmas when confronted with the need to expand. First comes the financial

dilemma (can I afford it? ), which, with a positive response, leads to the location

dilemma (where will I place the extension? ). This research established that the ear-

lier would be tackled by an investment decision model (Figure 1.1.1) that mimics the

logic behind incremental housing development in the global south, essentially mod-

elling the ’trigger’ to incrementally expand. The location dilemma, meanwhile, as it

has repercussions on the building envelope’s geometry (the optimisation’s objective

function) and represents the cognitive function of agents in an ABM, was assigned

to the optimisation loop. In this sense, the present chapter deals exclusively with

the search for a method that finds satisficing solutions when dwellers face the second

dilemma.

In this context, using optimisation methods to find satisficing solutions becomes

a building form-finding problem. In building design, solving this problem is usually a

matter reserved for architectural design, which directs us to the concept of architec-

tural design optimisation (ADO) (Wortmann & Nannicini, 2017). This sub-field of

study makes use of computational design methods to optimise quantifiable variables

of building design problems. It has become increasingly popular in the last decades

due to the acknowledgement by the design community that optimisation can be a

powerful tool for structural design, form finding and compliance with increasingly

demanded environmental design certifications. Although any quantifiable variable

can be optimised, ADO is particularly interested in the interrelationship of those

that architects value more: form, function and structure.

To understand better the optimisation problem at hand, we need to first list the

objective function, the variables and the number of possible solutions:

• The objective function of the optimisation problem is aligned with the imputed

agents’ rationally bounded behaviour. This is complemented by additional in-

formation shared with the agents due to the universal policy choice mentioned

in Chapter 1. This shared information differs according to the development
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stage of the workflow. In the version shown in this chapter, the shared infor-

mation is the total number of sunlight hours on the building envelope. The

imputed behaviour meanwhile responds to a minimisation of the predicted op-

erational energy costs coming from the agent’s expansion location decision. In

this chapter this is implicit, as agents try to maximise solar exposure during

winter months.

• The variables implied in these optimisation problems are the building envelope

geometry and the performance values shared with the agents. As such, a

modification in the envelope’s geometry (implicated in the expansion location

choice of the agent) entails a variation in the performance metrics.

• The possible solutions in the search space are as many as there are intermediate

modular arrangement possibilities before the buildable space (within lot and

height limitations) becomes fully filled. In the experiments shown in this

chapter, this is possibly in the order of thousands.

Many optimisation methods exist to make ADO possible. Nevertheless, the list

of those frequently used in industry and academia is relatively short. The ADO

community relies highly on model-free stochastic parametric optimisation methods

(Wortmann, Cichocka, & Waibel, 2022). Stochastic methods, called simulation-

based methods, allow the maximisation (or minimisation) of net rewards obtained

from a random system (Gosavi, 2015c). Parametric refers to the fact that their goal

is to find the values of parameters that maximise or minimise a function, and model-

free refers to the fact that they do not require the analytical form of the objective

function (Gosavi, 2015c). Given these categories, the preference for these methods in

the ADO community is easy to guess, even more so considering the usual requisites

within the industry: Stochastic optimisation has an advantage over deterministic

as execution time is prioritised over finding absolute global optima; meanwhile, a

model-free approach allows profiting from existing commercial (energy, lighting, etc.)

simulation software, thus making the process more expedite.

The apparent relative advantage of parametric optimisation to solve most ADO

problems is particularly relevant to the present chapter. This approach is used

considering the simplifying assumption that the built environment is static in time.
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Although this is not true, as we know that cities are dynamic systems in permanent

change, this assumption allows getting close-to-optimal solutions useful for enough

of the building’s life cycle while using powerful optimisation algorithms that require

relatively modest computer power. Although this assumption is enough to solve

most ADO problems, it is not so for our case study. Incremental housing can only

be thoroughly analysed by considering its highly dynamic nature. Thus, a static

approach to its optimisation would provide optimal solutions only for a single state

of the multiple that a dwelling visits before arriving at its conclusion, each state

being influenced by its neighbouring context. An approach that considers moving a

system along a desirable path of states instead of providing a solution for only one

seems more suitable for our case study 1.

In simulation-based optimisation literature, the alternative to parametric (also

called static) is control (also called dynamic) optimisation (Gosavi, 2015b). Under

this other paradigm, we are not trying to optimise the parameters that maximise

(or minimise) the rewards on a single state, but, as there are several states which

change ”dynamically”, we try to optimise the ”decisions” or ”actions” (hence the

name control) that we should take at each state to achieve a given goal (Gosavi,

2015d, 2015b). Thus, the outcome is an optimal sequence of states and actions

rather than parameters that lead to a single-state solution. It seems clear that, if

simulation-based optimisation is the way to follow, dynamic optimisation is the best

choice for optimising the location dilemma in incremental housing.

To understand better how control optimisation can be applied to our case study,

we must first understand it as a system. Roughly speaking, a system is “a collection

of entities that interact with each other” (Gosavi, 2015d) whose behaviour, in the

case of dynamic systems, can be described in terms of its number of states (also

known as traits). Control theory, the field of study that gave birth to dynamic

optimisation, is interested in how these traits change over time. We can quickly

identify both entities and states in our case study. At the macro level (in a neigh-

bourhood), each dwelling is an “entity”; at the micro level, each household member

1Besides this, we have to consider that optimisation (as used in this workflow) also serves as an
agent-cognition tool in a multi-agent setting. As such at an aggregate scale, the method must allow
for a decentralised system that enables communication among agents, thus leading to negotiation
and compromise. This factor, related to the scalability of the system, is discussed in greater
depth later on in this chapter. Here, the discussion is focused on the operational affinity between
incremental residential development at the individual level and dynamic optimisation methods
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is one. These entities interact with each other (one’s dwelling expansion affects the

solar exposure of their neighbours, while the income-generating status of members

affects the resource availability of the household) and decide where they will extend

a dwelling. States, meanwhile, are the different spatial configurations that dwellings

visit until they are considered “finished”. Another characteristic of dynamic systems

is that their behaviour can be explained by “governing variables” (Gosavi, 2015d),

which in our case are the subjective choices of each household to build on a deter-

mined region of space at a determined time within constraints (legal, financial and

spatial). As this choice is usually driven by purely subjective preferences, it can be

considered random. We are thus dealing with a dynamic stochastic system.

Stochastic systems are usually associated with a stochastic process. Roughly

speaking, these processes have a property that changes randomly with time (Gosavi,

2015b), typically in response to some known underlying stimulus; in our case, the

dwelling’s geometry. One example of a discrete stochastic process is the Markov

process, which is characterised by three essential properties (Gosavi, 2015b):

• The jumpy property, as they jump regularly between states.

• The memoryless property, as the probability that the process jumps from state

i to state j, does not depend on the states visited by the system before arriving

at state i.

• The unit time property because the process jumps between states after unit

time.

To be sure that we are dealing with a stochastic process, we can check these

properties individually in our case study:

• First, as dwellings constantly expand and change their geometrical configura-

tions, we can be sure we comply with the jumpy property.

• Second, we comply with the memoryless property as at every time-step house-

holds decide where to expand driven by subjective preferences not reliant on

their previous choices, and influenced by the evolving actions of their neigh-

bours. We could argue that their decisions are affected by the current configu-

ration of the dwelling, which derives from decisions taken in the past. However,
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bear in mind that we are not directly evaluating those decisions but merely

their consequences in the current state (or geometrical configuration).

• Finally, we know that the expansion process happens at any moment in which

dwellers have the need and resources; nevertheless, for modelling purposes,

we need to discretise this so geometries can only change once a year, thus

complying with the third property.

Now that we have determined that we are dealing with a stochastic system as-

sociated with a (by simplification, discrete) stochastic process, we can define the

location dilemma as a Markov Decision problem. As said before, households face a

financial dilemma to determine if they can afford to build an extension in certain

time steps. They have little choice here, as they depend on external uncontrollable

variables (cost and financial means). As shown in the socio-economic model, prob-

able future states of these variables can be predicted using a stochastic model that

relies on Transition Probability Matrices (TPM). As no external agency can control

the process, when Markov chains exist, these are “uncontrolled”.

Nevertheless, this is not the case in the location dilemma. Once the decision on

expansion has been taken, households have to decide where to locate this extension,

and here, they have restrained control over their choice. Therefore, they can choose

an action to be taken at each state. Because there is likely more than one option of

location each time they are faced with the dilemma, and because we assume that

the time elapsed between state evaluations is uniform, we have a Markov decision

problem (MDP). This is a problem of control optimisation or, more precisely, a

problem of finding the optimal action to be selected at each state (Gosavi, 2015d).

In the following section, we will learn about the methods to tackle this type of

problem using dynamic optimisation.

5.2 Dynamic optimisation methods

To tackle MDPs, control optimisation uses a framework that allows analysing any

process of interest. This framework is made up of five elements (Gosavi, 2015b):

• A decision maker (also called agent)
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• Policies

• Transition probability matrices

• Transition reward matrices

• A performance metric

At each time step, the agent has to select an action while in a given state. The

sequence of actions and states is the so-called policy. As at each state, multiple

actions can be chosen; each one is associated with a probability, thus, a probabil-

ity transition matrix exists. We need to weigh “optimal” policies to achieve our

objective function. Therefore, a transition reward matrix appears as a way to asso-

ciate rewards with transitions, leading to optimal policies. Finally, we can derive a

performance metric from the objective function to compare policies and select the

optimal one.

The most straightforward method to tackle MDPs is exhaustive enumeration,

which consists of enumerating every policy with the possibility of being selected

2, evaluating their performance metric, and declaring the policy that produces the

best value to be the optimal one. This approach has its obvious limitations, as we

can only afford to check each policy’s performance within time and computational

constraints in very small problems (Gosavi, 2015a). Dynamic programming (DP)

(Bellman, 1966) is more efficient for larger problems as it has a considerably lower

computational burden. DP requires the computation of a so-called “value function”

for every state that rests on a simple linear system of equations where the number

of equations equals the number of decision-making states in the Markov chain (|S|).

This system is often called the Bellman equation (Equation 5.1).

hµ̂(i) = r̄(i, µ(i))− ρµ̂ +

|S|∑
j=1

p(i, µ(i), j)hµ̂(j) for each i ϵ S (5.1)

Where:

• The unknowns are the hµ̂ terms, which are the elements of the value function

vector associated with the policy µ̂.

2An alternative to this brute force approach is static optimisation at each time-step, but this
is out of bounds of the dynamic optimisation discussion.
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• µ(i) denotes the action selected in state i under the policy µ̂.

• r̄(i, µ(i)) denotes the expected immediate reward in state i under policy µ(i).

• p(i, µ(i), j) denotes the one-step transition probability of jumping from state

i to state j under the policy µ̂.

• ρµ̂ denotes the average reward associated with the policy µ̂

To obtain an optimal policy, we use policy iteration; this is, we start with an

arbitrary policy, evaluate it with the Bellman equation and, with that metric stored

in a vector, we can move to a better policy at every iteration until no further

improvement is possible.

Although DP guarantees to give optimal solutions to any MDP, it is doubly

cursed by the curse of dimensionality and by the curse of modelling (Gosavi, 2015a),

both related to DP’s reliance on transition probabilities. Reinforcement learning

(RL) is a good alternative. Based on DP, it avoids these two curses because (Gosavi,

2015a):

• As a model-free method, it does not need the transition probability matrices

as it stores the value function as Q-factors.

• When the MDP has millions of states, RL does not store the Q-factors explic-

itly but uses function approximation methods to approximate the Q-factors of

millions of states.

The most straightforward form of RL is Q-learning (Watkins & Dayan, 1992).

This model-free algorithm ”can be derived from the Bellman optimality equation

for discounted reward MDPs” (Gosavi, 2015a), which allows for finding an optimal

policy using a value iteration method. This method differs from policy iteration

because it starts with arbitrary values for the value function vector and applies an

updating mechanism derived from the Bellman equation to update these values. In

vanilla Q-learning (not customised or modified from its original form), the Bellman

equation is presented as follows (Watkins & Dayan, 1992):

Considering an initial state s ϵ S, in which we select an action a ϵ A,

resulting in a new state s′ ϵ S:
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s → a → s′

Calculate a Q-value for (s, a) with the following formula:

Qnew(s,a) = (1–α) Q(s, a) + α(Rt+1 + γmaxQ(s′))

Where:

• Q(s,a) is the existing Q-value to be replaced.

• α is the learning rate, which weights the existing Q-value to be replaced against

rewards.

• Rt+1 is the reward received from choosing a while on s.

• γ is the discount factor, which weights possible future rewards (maxQ(s′))

against the reward obtained from choosing a while on s (Rt+1).

• maxQ(s′) is the maximum Q-value registered so far for the actions available

on s′.

The value vector, called a Q-table, stores one value (called Q-value) for every

state-action pair. Q-values are updated using the Bellman equation every time

the same state-action pair is revisited. With every additional iteration, Q-values

collect information about the reward from selecting a given action in a given state.

With this, an optimal policy is formed from its parts. When the agent implements a

reward-greediness mechanism, it will, at each state, prefer the action with the highest

Q-values and avoid the ones with the lowest ones. As updated Q-values receive

feedback from future ones (maxQ(s′)), the agent has information about rewards

available in the subsequent stages of the policy chain, thus moving towards an

optimal policy rather than focusing myopically on the nearest reward. The discount

factor (γ) variable can control the importance of these future rewards.

The process to implement vanilla Q-learning is the following (Watkins & Dayan,

1992):

Step 1 Initialize the Q-value for each state-action pair:

Q(s,a) = 0, ∀ s ϵ Sˆ∀ a ϵ A(s)
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Step 2 Repeat the following for each iteration (also called episode):

• Choose an action a from the current state s a = argmaxQ(s,a)

• Take action a and observe the next state s′ and the immediate

reward r.

• Update the Q-value of the current state-action pair using the Bell-

man optimality equation for discounted reward MDPs (Equation

5.1).

• Set the current state to the next state: s = s′

Step 3 Until the Q-value function converges or a certain number of

episodes have been completed, repeat steps 2-3.

Although in small search spaces, this process is enough to find an optimal policy

in a short time, in larger ones, the agent might conform to local optima (a solution

optimal only in regards to the small section of the solution space that a ”lazy”

reward-greedy agent explores), which could be sub optimal when looking at the full

picture. To avoid this problem, an epsilon-greedy behaviour can replace reward-

greedy behaviour. This consists of including an exploration factor ε, which allows

the agent to select random actions sometimes instead of choosing the ones with the

highest Q-values. With this, the agent can ”explore” the search space and avoid

the negative consequences of its reward-greediness. This divides the optimisation

process into an exploration phase and an ”exploitation” phase, where the agent

reinforces a ”positive” behaviour with the information it has previously collected.

To implement this, we modify the first point of step two and introduce a probability

factor:

a = argmaxQ(s,a) with probability (1− ε)

a = random with probability ε

By having a decaying ε value, we can ensure that the probability of having a random

solution is high on the earlier iterations (exploration phase) and lower on the latest

ones (exploitation phase).

In summary, the location dilemma is a MDP, which can be optimised using

RL, a control optimisation method. Under this framework, we have an agent (a
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household), a set of states (possible geometric configurations) and actions (location

decisions) that form possible policies, and an objective function related to the shape

of the building envelope. From the optimisation process, we should get a policy that

minimises energy use while maintaining thermal comfort. Given these precepts, we

can now test RL in our case study.

5.2.1 Single-Agent reinforcement learning

To test the implementation of the described algorithm in our case study, a much

simpler objective function was used: maximise the building envelope solar irradiation

hours in the coldest months for an urban location in Peru. The results of these tests

were initially presented in Poco-Aguilar, Wate, and Robinson (2022).

The vanilla Q-learning algorithm was implemented in the Development Optimi-

sation Environment described in Chapter 4. All custom components were written

in Python and implemented using Grasshopper (McNeel, R and Associates, 2014).

The geometry’s performance was evaluated using Ladybug (Roudsari, Pak, & Smith,

2013), a Grasshopper component designed to analyse weather data and perform so-

lar irradiation computations. The initial configuration of the dwelling consisted of

a single cubic module with a length of three meters per side, able to extend one

module of the same dimension per each time step within the lot’s physical limits

and legal height limits. The lot’s dimensions were set to be equal to the dimensions

of three cubic modules in depth (9m) and two modules in width (6m), while the

legal limit was set to three modules in height (9m).

The agent’s lot was surrounded by fixed-shape neighbours on three of its sides

(Figure 5.2.1), with the particularity that, being in the southern hemisphere (-16.32

latitude, -71.55 longitude, 2520 m.a.s.l.) in wintertime (21/03 until 23/09), the

agent had to find a policy that allowed it to surpass its shadowing neighbours.

Finally, although the socioeconomic model was not tested yet, socioeconomic inputs

had to be defined for the proper functioning of the algorithm. These were a fixed

total budget of 15k monetary units (MU) and a fixed need for space of six occupied

modules. Each square meter of newly built walls costs 100 MU, while roofs cost 150

MU. There is no further justification for these precise figures, as these serve just to

test and refine the presented workflow. The only explainable variable is the relative
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difference between them, which intends to reflect the increased level of difficulty

(translated to costs) in the construction procedure of roofs relative to that of walls.

The agent always has the need to build, but its financial capacity at each episode

is limited by its total budget; thus, part of the challenge is building the needed

modules without depleting the total budget.

Figure 5.2.1: Initial state of the housing core for experiment one. Surrounding
buildings on red, core coloured with the analysis palette.

Source: Poco-Aguilar et al. (2022)

To achieve step 1 of the process (initialise the Q-value for each state-action pair),

the agent needed to know possible states and actions in advance. To do so, the agent

calculates the states it can visit within the time-space constraints. As described in

Chapter 4, states are defined as strings formed by “F”s and “T”s according to the

status (within or outside the building envelope) of the central point of each of the

three-dimensional modules in which the buildable space is divided. With this in

mind, the algorithm generates all the possible combinations of these two letters in

a string as long as the number of potentially occupiable number of modules that

exist in a lot. To avoid wasting memory in generating and storing unnecessary

vector entries, there is a pre-simulation process in which the algorithm gets the

identification number of all the points that could be occupied within the maximum

time-steps constraint, departing from the seed cubic module. While states have

unique identifiers, actions across states have a standard identification number related

to the available face of the envelope to be modified. As there are different actions

per state, the algorithm calculates the maximum number of possible actions among

all possible states. Thanks to the feature programmed on the geometry generation
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algorithm that reduces the face identification number when this is beyond limits,

higher action identification numbers are not a problem. This absolute maximum

action number is calculated using the following empirical formula:

MAct = LongestDim+ (((LongestDim ∗ 2)− 1) ∗ (ShortestDim− 1)) (5.2)

Where:

• LongestDim is the longest dimension of the lot.

• ShortestDim is the shortest dimension of the lot.

• When the lot is a square, both positions are interchangeable.

At the beginning of the process, we do not know the maximum achievable per-

formance (maximum possible sunlight hours within physical and legal constraints),

so we must discover it from the search space. The method to achieve this is to

record the maximum performances the geometry achieves at each episode. With

this record in hand, we can reward the agent when the current performance is more

or equal (within a tolerance, due to likely geometric imprecision) to the current

record. This also means that initially, optimal policies would need to be replaced

each time a better-performing one is discovered. This has consequences on the Q-

learning settings, as in the initial exploration stages, the values must be replaced

without leaving many traces. This also determines “winning” and “losing” policies.

An agent “wins” the “game” when the selected policy leads to either breaking the

currently established record or keeping it. It will “lose” if it performs well below

that record. In this logic, the winning policies are “paths to victory”. Because we

can only judge the policy once the agent meets its need within constraints or cannot

do it when the time is over, the major reward/penalisation is only granted on the

last time step of the episode. To allow this, an episode ends when a performance

record is broken or the maximum number of time steps is reached. In addition, to

minimise the time steps to arrive at a solution, a minimal penalisation is assigned

for each time step where the goal has not been achieved.
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This maximum number of time steps per episode was set at ten. The algorithm

was also given a maximum of five hundred episodes to converge to an optimal policy

without any mechanism stopping the parameter if this was achieved earlier. As for

the Bellman equation, the variables were set as follows:

• A learning rate (α) started at 0.99 with an empirically determined decay of

0.99976 per step. This ensures that replacement Q values get higher weights

against old ones during the exploration phase, while the opposite happens in

the exploitation phase. This strategy helps find new optimal policies with the

“record-breaking” method.

• A fixed discount rate (γ) of 0.9 defines a non-myopic agent. This is because

the “winning” or “losing” character of the episode is only defined on the latest

time-step. As such, it is better to weigh more future rewards (max(Q(s′))

than immediate ones (Rt+1).

• An exploration rate (ε) starting at 0.99 with an empirically determined decay

of 0.9982 per step. This allows for determining an early exploration phase, in

which policies result from random action choices, and a late exploitation phase,

in which positive behaviours are reinforced, stabilising an optimal policy.

• The reward assigned was +25 when the agent “wins the game” and -25 when

it “loses”. At each time step without an episode-killing result, a minimal

penalisation of minus one is awarded to promote a solution with the minimum

steps.

The test was run on Rhino 6, working on a Windows 10 PC with an Intel Core

i5 vPro processor of 9th generation and an installed RAM of 8GB. The time of

execution was about 45 minutes, after which the process automatically stopped

when finishing simulating episode number five hundred. The accompanying figures

show that the agent did manage to find and learn a satisficing policy. Figure 5.2.2,

which shows the episode number on the X-axis, the accumulated rewards per episode

on the first Y-axis and a scale for ε and α values on the second Y-axis, demonstrates

how, as ε diminishes, a policy with high accumulated rewards stabilises. Only a few

remaining random solutions in the last episodes interrupt the flat line on the highest
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end. A completely flat line will be only possible if ε is an absolute zero, as just one

incorrect (random) action taken in a previous time-step is enough to block the way

to a “winning” solution. Figure 5.2.3, which shows the episode number on the X-

axis and the maximum performance achieved at the final step of each episode on the

Y-axis, demonstrates how the policy leading to the highest recorded performance is

found in the exploration phase (higher ε) and it is later recovered in the exploitation

phase when it stabilises.

Figure 5.2.2: Reward accumulated per episode as a dark continuous line, ε as
dashed line and α as dashed-dotted.

Source: Poco-Aguilar et al. (2022)

Figure 5.2.3: Maximum performance per episode as a continuous line, maximum
performance recorded as dashed.
Source: Poco-Aguilar et al. (2022)

These results demonstrate that finding an optimal policy for our case study

using RL with a simple objective function and predefined socio-economic variables is

possible. They also show that the geometry generation algorithm in earlier chapters

works well when integrated with an RL algorithm. Nevertheless, up to this point, we

have only tackled the optimisation problem of a single individual, whilst this thesis
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aims to deal with the optimisation of entire neighbourhoods. In the next section,

we will jump from the unit to the multitude.

5.3 Multi-agent reinforcement learning

RL’s simple but powerful approach to solving decision-making problems has pop-

ularised its uses beyond control optimisation. So much so that it has become one

of the three machine-learning (ML) paradigms. From this perspective, we are not

solely interested in optimising a dynamic process but more in how intelligent artifi-

cial agents could learn a desired behaviour with minimal human intervention. From

the machine learning perspective, the repetitive episodes are experiences needed to

“reinforce” a desired behaviour in an intelligent being by using “rewards”. In this

sense, we are resuming the previously introduced discussion of optimisation as an

agent cognition strategy in rationally bounded agents.

The machine learning approach also adds something beneficial to this thesis:

agent interaction. In the real world, intelligent beings do not exist in isolation;

they interact with their environment and other intelligent agents. The relationship

with these other agents adds a layer of complexity to RL, as each agent might have

a different objective function. From there, we can imagine extreme scenarios of

interaction among agents. In a fully cooperative scenario, for example, the objectives

of all agents would be aligned, so they work together towards one goal. Whilst on

a fully competitive one, objectives are entirely misaligned, so only one agent can

find an optimal policy at the expense of the rest. There could also be team games,

where objectives are shared among teammates but opposed between teams, and, in

non-zero-sum games, the emergence of negotiation spaces, leading to compromise

of parties. These scenarios simplify the intricate interactions that exist in reality,

some of which include complex social dilemmas.

Going back to our optimisation problem, one could argue that, when uncontrolled

and unoptimised, incremental development approaches more a competitive scenario

than a cooperative one. As households cannot predict their neighbours’ future states,

or profit from those states, they would try to profit the most from the resources

they believe they can access at a given time. For example, if I want to invest in
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an extension that includes the capacity to implement PV panels on the rooftop,

and I am the first one to extend a house in a block with only one-story houses,

I could assume that it is better to build that extension on the first floor, as this

minimises the risk that my neighbours obstruct my access to sunlight. The logic

that accompanies me is competitive due to the likely imminent growth of neighbours.

If, just after I finish building my extension, one of my neighbours suddenly builds

three stories high on the most inconvenient side for my PV investment, we reach a

conflict scenario. Given their individual goal, they will try to maximise their profit

within constraints. As building regulations are not typically designed to indicate

what can and cannot be done at the intermediate stages of incremental housing

development, my neighbours are probably within their rights.

We end with a very unfair situation in which those with immediate access to

capital to develop their dwellings at the early stages of a new neighbourhood’s

occupation could affect those needing more time for capital accumulation. The

neighbourhood’s full potential to minimise energy use could be held up due to vary-

ing access to capital and individualistic goals. An immediate solution to this is, of

course, communication. If my neighbour and I had discussed our plans before their

execution, we probably could have reached a fair agreement for both parties. Of

course, this communication could only have been fruitful if we both had access to

adequate information for our goals, such as some sun-path analysis, for example.

To avoid future problems, this informed discussion should take place with all my

immediate neighbours, and they should have it with their respective neighbours, and

so on. In the real world, this sort of coordination is infrequent and hard to achieve.

First, it is difficult for our target population to access the information needed for

energy use minimisation with thermal comfort targets in mind. Second, even if

they had access to this information, communication among all interested parties is

complicated, time-consuming and requires technical knowledge. Finally and most

importantly, we do not know if all will sacrifice their goals for the common good.

Approaching this problem in the virtual world via single-agent Q-learning is also

problematic and shows the limitation of the algorithm for multi-agent scenarios. It

also demonstrates that communication channels among agents are needed, even in

the virtual world. For example, when using Q-learning as configured for the previ-
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ously presented experiment but considering two agents (one next to another), we will

encounter that they are unlikely to converge to a solution. This can be explained by

their lack of communication and consequential coordination. The following example

demonstrates this:

• Let us assume that, due to randomness (ε), Agent One does not expand on

the first episode (selects action 0) while Agent Two does.

• On the last time-step of this first episode, Agent Two discovers that going from

state “FFTFF” to state “FTTFF” via action ”2” leads to record-breaking

performance and, thus, to a maximum reward.

• As a consequence, at the end of episode one, the state-action pair (FFTFF, 2)

stores a high value in the Q table of Agent Two.

• At the end of the next episode, Agent One builds two stories tall and occludes

Agent Two’s access to the sun.

• Faced again with the state “FFTFF”, Agent Two assumes that selecting action

”2” will lead to a high reward.

• Nevertheless, now that its neighbour is affecting the performance of its geom-

etry, that action selection leads to an underperforming result.

• Therefore, in the Q-table of Agent Two, a low value will replace the previous

high value, and Agent Two will temporally forget that optimal policy.

When this happens several times with multiple agents, convergence becomes un-

likely, limiting the usefulness of RL as a method. Nevertheless, these inconveniences

can be avoided by making the agent ”sense” the changes in its environment. If

somehow Agent Two was aware that choosing the same action does not lead to the

same reward, it would become reactive, and its probability of achieving convergence

would increase. This leads us to the concept of joint-action learners (JAL), one of

the two paradigms in Multi-agent reinforcement learning (MARL) distinguished by

(Claus & Boutilier, 1998). On the opposite shore are Independent learners (ILs),

who apply Q-learning in the classic sense, ignoring the existence of other agents.

JALs, in contrast, learn the value of their actions in conjunction with those of other
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agents via the integration of RL with equilibrium (or coordination) learning meth-

ods. This method implies having a more complex table to store the Q-values, one

that includes the agent’s state and tracks the synchronic joint action of the other

agents in the environment. The complexity of this is that this table grows exponen-

tially with the number of agents in the environment, complicating the optimisation

of large sets of agents. A neighbourhood strategy can be used to avoid this so that

only the neighbouring agents that affect the performance of another agent are used

to build the Q-table.

These changes in the table also lead to some inconsistencies when applying step

2 from vanilla Q learning:

• We cannot choose directly a from s with the following formula, as there is a

bi-dimensional matrix for every s that includes the agent’s and neighbours’

actions.

a = argmaxQ(s,a)

• For the same reason, we cannot get a max Q(s′) to apply to our usual Bellman

optimality equation.

Qnew(s,a) = (1–α)Q(s,a) + α(Rt+1 + γmaxQ(s′))

To solve this, we will use the Kleiner and Nebel (n.d.) approach. We initialise

a complementary table that counts the times each combination of agent’s state and

their neighbours’ joint action is visited (C(s,a−i)) and another that counts the times

every agent’s state is visited (n(s)):

C(s,a−i) ← 0∀s ϵ S,∀a−i ϵ A−i

n(s)← 0∀s ϵ S

Where: a–i is a vector storing the actions of all the neighbours of agent i (Joint-

action vector) but not the action of agent i (ai) so that ai ∪ a–i contains all the

actions selected during the current time-step.

Although the initial values are 0, this will be updated each time we visit the

state joint-action combination. With this, every time we have to choose an action,
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we can weigh its Q-values against the times the state-joint actions combination has

been visited over the times the state has been visited so that the action selection

happens by solving:

argmax
ai

∑
a−i

C(s, a−i)

n(s)
Q(s, ⟨ai, a−i⟩) (5.3)

This new setting will also serve to solve the maximum future Q value problem

in the Bellman optimisation equation so that the equation becomes:

Q(s, ⟨ai, a−i⟩)← (1− α)Q(s, ⟨ai, a−i⟩) + α(R(s, ai + γV (s′))) (5.4)

Where:

V (s′) = max
ai

∑
a−i

C(s′, a−i)

n(s′)
Q(s′, ⟨a′i, a−i⟩) (5.5)

Now that we have the basic modifications that would make RL possible for JAL,

we can test it in our case study to provide empirical evidence about its suitability.

5.3.1 An adapted version of Q joint-action learning

We will now test the MARL JAL algorithm and develop a fitted version for our case

study. This new version is built empirically by improving the basic JAL algorithm

presented in the previous section via a trial-and-error method. As such, this section

offers four tests that go from the direct application of the basic JAL algorithm for

the optimisation of only two agents and end up in a polished version of the algorithm

applied to four agents but readily extendable to as many agents as needed. As each

algorithm was built one on top of the previous one, and all were built on top of the

single-agent RL one, the configuration is the same as the immediately previous one

unless otherwise expressed.

On the first test, the algorithm was applied to optimise only two agents’ be-

haviour. At this stage, the goal was to maximise the performance of only one of

them, which means there was a selfish and a selfless agent. As multiple agents re-

quire more computational resources, the number of spaces needed was reduced to

only four, and consequently, the available budget was reduced to 10.5k MUs. To
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limit the time execution and force expansion on each time step, the maximum time

steps per episode were the same as the number of spaces needed. An episode finished

when the record performance for the selfish agent was either broken or kept within

tolerance or when the maximum number of time steps per episode was reached.

Rewards and penalisations were kept as in the single-agent case. The location and

the performance evaluated were precisely the same as in the single-agent scenario,

except for the neighbour’s configuration, in which one of the static neighbours is

replaced by the second agent (Figure 5.3.1). The Bellman equation had the same

inputs as in single-agent optimisation.

Figure 5.3.1: Two agent optimisation initial setting.
Dynamic agents shown as squares, with the selfish agent in false-colour

After 45 minutes of running in the same PC used for the single-agent reinforce-

ment learning, the two agents seem to get close to stability on a high reward policy

(Figure 5.3.2). Because the objective is unique and the reward for both depends

on the selfless agent’s performance, there is only one reward/episode line. First, we

can notice that the agents take more time to stabilise a policy. The single-agent

scenario reached stability on about the 90th episode, but the dual one did on about

the 260th, even though the task is much more straightforward and equation vari-

ables remain the same. This might be due to the required coordination of action

selections.

The same algorithm was used on a second test but now on four agents. In

this test, the process could not be initiated because of the high memory burden of

generating four Q-tables with the individual possible states of every agent and the

possible combinations of their actions and their neighbours’ actions. Taking into
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Figure 5.3.2: Reward accumulated for two joint-action learners

account that, given the size of the lot, the maximum height, and the maximum

number of time steps, the geometry generation algorithm calculates 120 possible

states and nine actions at each state on the first time step (t0), the possible joint-

action combinations for four neighbours is 87,480 (93 x 120). This is only for the

first time step out of a maximum of four. Because the table was built in advance,

an average personal computer would run out of memory at the first step of the RL

process. A straightforward solution appeared once this problem was identified (Box

5.3.3). The table was not complete but was built incrementally as new states were

visited. So that each time we reach a state, we check if it is already in the table;

if not, we add it along with all the possible own actions (aj) and neighbours’ joint

actions (a−j). If the state exists, we proceed as usual.

1. Intial State s

2. Get Action a

3. Get New State s′, Reward r

4. Check if s′ on Q-table

• If not, add state sub-table (dictionary) with pos-
sible combinations of future neighbour’s joint ac-
tions A′

−j as keys and a list filled with 0s as long
as A′ (possible individual future actions). SET
maxQ(s′,A) = 0

• If yes, GET maxQ(s′,A)

5. With r and maxQ(s′,A), SET Q(s,a)

6. s = s′, until s terminal.

Figure 5.3.3: Process for the incremental construction of the table
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With the modification added, the algorithm was tested once more. When applied

to two agents, the computing time performance improved in relation to the previous

test, with the same positive results for the optimisation. The process now took about

half an hour. Nevertheless, when the algorithm was tested on four agents, problems

appeared again. Unlike the previous run, the process started, but agents were

not properly learning. After inspecting the historic Q-values, the problem became

apparent. As the “winning” or “losing” status of a policy is only determined on the

very last time step, we need to reach it at least twice.

On a first run, as the performance record is broken and a new optimal solution

is found, the maximum reward/penalisation is saved for the “winning” state-action

pair. On a second run, this is back propagated to the immediately previous couple

via the Bellman equation’s maxQ(s) variable. In our case, with four agents, just to

transit from t0 to t1, there are 625 (54) possible action combinations, each resulting

in a different environment setting. Moreover, in this experiment, the winning action

selection is (at least) on t3. As a result, we are unlikely to visit the same final

state-joint-action combination twice.

The most straightforward strategy to overcome this challenge is to use eligibility

traces (λ). Eligibility traces are ”a kind of mathematical trick that improves the

performance of Temporal Difference methods” (Salloum, 2019). In Q-learning, this is

achieved using a “backward view”, which communicates to the previous state-joint-

action pairs that the policy they are following might be leading to a final “victory”

state (one with maximum reward). This implies that we no longer update just one

Q-value at a time, like in vanilla Q-learning, but all the previous values of the current

policy in formation. This update means there is no need to re-visit a terminal state

as the final reward will have a repercussion on all the policy’s Q-values that lead to

it. As it is possible to derive various other policies from the conforming states of a

“winning” policy (and the more we go back, the more alternative branches appear),

the weight of the reward has to be higher in the closer steps to the terminal and

lower the more we go back. A supplementary vector (e(s,a)) stores the state-action

pairs visited in the forming policy and counts the time steps passed since each pair

was last visited so their new Q-values can be adequately weighted.

The literature describes three forms of implementing λ on Q-learning (Sutton &

139



Barto, 1998). The first one is Watkin’s Q(λ) (Watkins, 1989), in which the counting

vector is set to zero every time a non-greedy action is taken (random selection),

thus cutting the back-propagating effect. The second is Peng’s Q (λ) (Peng, 1993;

Peng & Williams, 1994), which does not differentiate exploratory from greedy action

selections. Finally, “näıve” Q (λ), which looks just like Watkins’s Q (λ), but traces

are not set to zero on exploratory actions. Watkins’s Q (λ) typical process (for

single agent learning) is shown in Figure 5.3.4.

Figure 5.3.4: Watkins’s Q (λ) process for single-agent learning.
Source: Sutton and Barto (1998)

With a close inspection of the process, it is easy to determine that this will not fit

our case study. In our setup, the objective is to find record-breaking solutions. We

depend on the exploratory phase to find these policies in this task. Add to this that

our major reward/penalisation is located on the latest time step of each episode, and

we can easily conclude that cutting trails on exploration is more inconvenient than

beneficial. Due to the complexity of implementing Peng’s Q (λ), naive Q(λ) seemed

the ideal candidate to overcome this inconvenience. Nevertheless, this algorithm

was to be adapted to the particularities of our optimisation problem (Box 5.3.5).

As the “winning” or “losing” status of a policy is determined only at the latest time

step, applying the λ strategy at that last stage is necessary while doing so on the

previous ones is inconvenient. Additionally, as breaking a performance record is the

most important task, only “winning” policies backpropagate, thus “illuminating”

the path to rewarded terminal states only.

The algorithm was tested on a four-agent scenario (Figure 5.3.6), where the
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Figure 5.3.5: Adapted naive Q(λ) learning for incremental JAL

agents were isolated from any static neighbours. This was designed to allow faster

convergence in a more complex stage. The objective here was to maximise the aggre-

gated performance (sunlight hours during the time evaluated for all the geometries),

which means that all agents are selfless and prioritise the common good over the in-

dividual. With the rest of the configuration remaining the same as the last test, and

after an hour of processing on the same PC, the five hundred episodes were finalised.

Because only one reward value is shared among all the agents, we see only one line

of accumulated reward per episode. Figure 5.3.7 shows that the reward stabilises on
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the highest end by about episode 300. There is a noticeable trend towards a delay

in the convergence point as the number of interacting agents increases.

Figure 5.3.6: Initial state of four interacting agents

We can also note that, even though in the current test, the ε value starts at

the same point and has the same decay as previously, there is more instability

in the exploitation phase compared to previous ones. This is probably due to the

coordination needed among agents and a magnifying effect on the epsilon value when

applied in parallel to four agents. With four agents, we are using the same ε four

times before decaying it, so it becomes more likely to have a random action selection

even when this number is low. Additionally, arriving at a “winning” terminal state

requires coordination on the actions selected by every agent at each time step, which

means that a single diverging action from just one of the agents produces sub-optimal

results.

Despite these effects, the agents seem to be learning a desired behaviour, and

most importantly, they coordinate their actions to achieve their common goal. As

can be noticed in Chapter 6, with minimum modification, this algorithm is able to

handle tens of agents while interacting with an evaluator that deals with more com-

plex simulations. Nevertheless, some inputs, particularly the epsilon value, needed

to be adjusted to achieve convergence in a rational time and within a rational num-

ber of episodes.
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Figure 5.3.7: Reward accumulation per episode for four interacting agents

5.4 Conclusions

The objective of the current chapter was to find a Selector method for the optimi-

sation loop described in the methodology. As such, it established our optimisation

task at the individual building level as an architectural design optimisation (ADO)

problem. Due to its nature, this problem seems to fit better dynamic optimisation

methods rather than popular static optimisation ones. By relying on control opti-

misation literature, this chapter concludes that the most reliable dynamic method

to tackle our problem at the individual building scale is Reinforcement Learning

(RL). This model-free method avoids the curses of modelling and dimensionality

implied in Dynamic Programming (DP). As a machine-learning paradigm, RL also

serves as an agent cognition tool while offering scalability due to its straightforward

adaptation to a Multi-agent setting. With minimal changes, it allows the interaction

of multiple agents in a single environment, thus enabling scenarios of confrontation,

cooperation and negotiation. When faced with these scenarios, the current chap-

ter presented coordination as a necessary step to reach Multi-agent modelling. As

such, it concludes that implementing the RL Q-learning algorithm with Joint-action

learners (JAL) is the most suitable way to provide an optimisation mechanism for

the thesis’ workflow.

With this in mind, the chapter presents the results from testing several variants

of the base algorithm proposed by the literature to a case study similar to the

thesis’ ultimate objectives. Using a trial-and-error method, the chapter presents a

refined version of the algorithm that is adjusted to thesis needs, thus resulting in

the likely candidate to be used by the final workflow deployment. The results from

testing this algorithm are promising. Still, some adjustments must be made when

applied to the final case study, mostly related to the number of interacting agents
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in the environment. Particularly relevant is the epsilon value that determines the

optimisation process’s exploration and exploitation phases and the processing time

implied in executing a workflow with tens of agents and several years of incremental

development simulation.
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Chapter 6

Workflow Execution

The purpose of this chapter is to demonstrate the execution capacity of the workflow

presented at the beginning of this thesis and to introduce the generated outcomes

as proof of principle that passive building design, in general, and the optimisation

of building envelope geometries, in particular, can be used in the context of in-

cremental residential development in the global south to achieve increased thermal

comfort with energy efficiency at individual and aggregate levels. To achieve this,

the workflow components, so far tested as individual entities, needed to become

integrated.

As such, this chapter begins by presenting the latest adjustments needed to inte-

grate the independent components into one system. This includes adaptations to the

Optimisation Environment presented in Chapter 5 and the digital implementation

of the residential incremental development model presented in Chapter 1. These two

allow reading the data generated by the Socio-economic model presented in Chapter

3 and transforming it into triggers that allow the optimisation of tens of interacting

building envelopes in a residential incremental development setting. After bring-

ing up these adaptations, the chapter continues by presenting the case studies from

where EnergyPlus weather files (.epw) are taken and the scenarios posed to test

the workflow. As the results are presented, the chapter is able to draw conclusions

about the impact of applying optimisation methods to the decision-making process

of our agents and on the possibility of implementing envelope geometry optimisation

processes in the case of incremental residential development.
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6.1 Latest adjustments

So far, this thesis has presented the theoretical arrangement of a workflow of models

designed to simulate incremental development and optimise builder-dwellers’ loca-

tion decisions, bearing in mind energy efficiency and thermal comfort. Each of the

components of the arrangement has been presented in its chapter, with only the

necessary interactions among them to test their independent functionality. Even

though the socio-economic model has been capable of delivering its outcomes so far,

the optimisation loop has demonstrated a limited capacity to deal with multiple

agents, remaining to test its theoretical capabilities beyond local neighbour inter-

action. As such, this section presents the latest updates to those components that

make possible the functioning of the workflow with multiple interacting agents inside

a neighbourhood. Additionally, in this chapter, the optimisation loop replaces the

Building Energy Modelling (BEM) software used for the test in Chapter 5 (Ladybug,

M. S. Roudsari, Pak, & Smith, 2013) with the one selected at the beginning of this

thesis (Honeybee/EnergyPlus, M. Roudsari et al., 2023; The National Renewable

Energy Laboratory, 2017).

The updates made to the workflow can be classified into three groups. The

first one is concerned with the variations on the optimisation problem as presented

in Chapter 5; the second one is concerned with the additions and modifications

made to the Optimisation Environment presented in Chapter 4, while the last one is

concerned with the integration of the model for residential incremental development

presented in Chapter 1 (Figure 1.1.1) into a digital platform.

6.1.1 Optimisation Problem

The optimisation problem has some variations in regards to how it was presented in

chapter 5:

• The objective function keeps aligned with the imputed agents’ rationally

bounded behaviour but now, the additional information shared with the agents

due to the universal policy choice is the energy used to keep the enclosed space

within a “healthy” indoor temperature threshold. Therefore, the imputed be-

haviour responds to an explicit minimisation of the predicted operational en-
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ergy costs coming from the agent’s expansion location decision as agents now

aim to directly minimise operational energy use.

• The variables remain the same (the building envelope geometry and the per-

formance values shared with the agents).

• Possible solutions in the search space remain related to the buildable space

(within lot and height limitations) filling, but now they are in the order of

tens of thousands, as we deal with tens of agents in a neighbourhood.

6.1.2 Optimisation Environment

The optimisation environment was altered in its two components: the Geometry

Generation (GG) script and the development environment. The earlier required the

creation of an additional class that encompasses multiple blocks within it so that a

neighbourhood can be created and the learning process of all its components can be

managed. The latter, meanwhile required to increase the time execution efficiency

so that multiple interacting agents can have their learning processes within a feasible

time period. This includes managing the cloud environment to allow parallel energy

simulations and the integration of EnergyPlus, which has, so far, not been tested.

Creating neighbourhoods in the GG script.

Figure 6.1.1: Neighbourhood at its initial state created with settings from Appendix
13 seen in Rhino 3D

Chapter 5 justifies the selection of reinforcement learning as an ideal dynamic

optimisation method for the workflow and tests its capabilities for single and multi-
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agent optimisation. Nevertheless, the tests on the optimisation loop were done on

only up to four contiguous agents. Even when that was enough as proof of principle,

further modifications were needed on the GG script and the learning algorithm to

optimise several non-contiguous agents. This first section deals with the necessary

changes made to the GG script to allow this.

The GG script was limited as it initially only considered two classes in a com-

position relationship: the agent and the block. Although generating a block with as

many agents as required would be possible, that would not look anywhere close to a

neighbourhood. As such, a new class was needed, one that allowed separating blocks

by streets. This new class, named “Neighbourhood”, enables the creation of multi-

ple blocks separated by a given distance, representing the public space in between.

The block class was also modified to get closer to the actual aspect of basic module

developments in Peru. In Peru, most modern residential buildings have frontal and

posterior setbacks. As such, blocks need to include those parameters as inputs. To

make this possible, there is now a change of terminology; what an agent used to

understand as the area of their “lot” now is just the “buildable area”. Setbacks are,

therefore, separations between “agent” objects within a block and thus can never

be occupied by incremental development.

Additionally, the Agent class has been supplemented with reinforcement-

learning-related attributes and methods. As such, the incremental construction of

the Q-tables and supplementary matrices described in Chapter 5 can now be man-

aged by using the attributes of the said class. This also makes it possible to manage

the individual learning process at aggregate levels with the Block and Neighbourhood

classes, whose added attributes and methods get and set those of their individual

components related to the learning process.

Increased time processing efficiency in the optimisation algorithm

While these modifications allowed a more realistic approach to the geometry, the

learning process remained a bottleneck. Although a realistic processing timeframe

was achieved even in a fully cooperative approach in the test phase (Chapter 5),

repeating the process in an entire neighbourhood with tens of agents demonstrated

that just scaling the approach was insufficient. The first problem was that, for
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Figure 6.1.2: Neighbourhood UML class diagram with its most important features

every agent, every step of every episode, a complete model needed to be sent to the

Building Energy Modelling (BEM) software. With each model initially taking up

to 5 minutes to process on a local computer, the amount of time it would take to

develop 25 years of socio-economic simulation for tens of agents and hundreds of

episodes would have been enormous.

Two measures were then taken. On the one hand, it was necessary to find a way

to parallelise energy simulations and, on the other, a way to diminish the complexity

of the simulated model. To achieve the earlier, the development environment was

left behind in favour of the execution environment (See Chapter 4). Pollination

(Ladybug Tools LLC, 2023) was chosen as a cloud computing service to execute the

energy simulations. This is a paid service offered by the same creators of Ladybug-

Tools. It allows sending models in an HBJSON (Honeybee JSON) format to their
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servers, processing them in EnergyPlus thanks to Honeybee “recipes”. With their

hundreds of CPUs, they can rapidly handle the tasks assigned and run several jobs

in parallel. Nevertheless, we have to consider that even though this might dimin-

ish processing times, the complexity of the task is penalised by increased monetary

costs. As such, efficient resource use demands to keep models as simple as possible.

Consequently, a filtering process was applied to select only participating agents on

every step, episode, and year and generate a Honeybee model only considering their

immediate neighbours. Participating agents are those that modify their envelope on

the evaluated time-step, while its shading neighbours are those encountered in its

view range.

With these two modifications plus a feature to avoid multiple simulations of the

same agent in the same state by storing its performance in a Python dictionary, it

was possible to diminish processing times radically. Of course, energy simulation is

just a part of the optimisation loop. A bottleneck remained in the learning algorithm

itself. This was caused as memory ran out due to the high number of agent Q-tables

being handled in parallel. Once identified, this issue was rapidly solved by applying

the same filtering criteria to send models to the cloud. As such, only participating

agents each year create Q-tables, while only the ones participating in a step modify

it. As Q-tables include neighbours’ current states and possible future actions, these

variables must be retrieved from the agent object and its neighbours according to

its view range.

Even when this improved processing times, the execution of an aggregate per-

formance approach (as the one used in the last experiment of Chapter 5) within a

reasonable timeframe remained unlikely in an entire neighbourhood. Two reasons

are behind this:

• The testing phase used Ladybug, which allows sending all geometries, dis-

regarding their location, to one Evaluator component so that an aggregated

performance is automatically output. EnergyPlus does not allow the same, as

only contiguous Zones are recognised as valid building inputs. This implies

that to manage a similar objective function as in the latest test, individual

results have to be aggregated.

• The filtering process presented above implies that not all agents output their
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performances on every time step, and thus, both approaches are mutually

exclusive.

As a consequence, new forms of testing cooperation between agents had to

emerge.

6.1.3 Residential Incremental Development model

As shown in the general methodology (Figure 1.3.1), to communicate the results

from the socio-economic model and trigger the optimisation loop, an intermediary

component is needed. The introductory chapter established that this will be the

digital implementation of the incremental development model presented at the be-

ginning of this thesis. This section deals with that implementation and the mechan-

ics considered to integrate this component with parts A and B of the methodology.

This becomes explained in two sections, one which deals with the coordination of

cycles and another that deals with the coordination of measuring units between the

socio-economic model and the optimisation loop.

Coordination between socio-economic and optimisation cycles

A requirement to integrate the socio-economic model and the optimisation loop is a

mechanism that coordinates their different cycles. While the socio-economic model

operates in years, the optimisation loop occurs in episodes and steps. The most

straightforward way to achieve this coordination is by considering years as an outer

loop so that for every year, there is a learning process composed of episodes and

steps. In a Multi-agent setting, within steps, there is an inner iteration of agents

so that each one can act on its Q-table. This implies that the learning loop must

find a satisficing solution at the end of each ”socio-economic year,” which must

be reinstated the following one as the initial state for a new learning process. To

achieve this, two adaptations were implemented. The first allows for expediting the

learning process by implementing an auto-stop mechanism that acknowledges when

the learning loop has found a stable solution. A second one selects and saves the

satisficing solution from a given learning process and reinstates it at the beginning

of the next.
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The auto-stop mechanism (Appendix 8) works with a fraction of the total max-

imum episodes allowed per learning process as a user’s input. This determines the

number of latest episodes the algorithm must look at to count “winning” episodes.

If, for example, the maximum allowed number of episodes is 200, and the users’ in-

put for the auto-stop mechanism is 0.1, the algorithm checks the latest 20 episodes.

Then, it counts how many of these are “winning”. As in our optimisation prob-

lem, the objective performance is not fixed, but moves as new record performances

are found; the algorithm considers an episode as “winning” when its performance

is within a tolerance value of the most recent objective. This tolerance has to be

the same used to reward the solution within the learning process. Additionally,

the auto-stop algorithm accepts a second input, the expected fraction of successful

episodes, to determine a complete learning process. In the previous example, an

input of 0.7 will mean that 70% or more of the latest 20 episodes will need to be

“winning” episodes for the learning process to stop.

This simple scheme complicates when there are several agents in the learning

process. In a competitive scenario, it is highly likely that on the same episode, some

agents “win” and others “lose”. Even more, the learning process may stabilise with

a minority of agents having been able to find a reward-worthy solution. This is

peculiar to those cases in which agents are adjacent and do not have much space for

negotiation (tolerance from the goal, discussed later in the chapter), so a win-win

situation is unlikely. To manage this, each evaluated episode receives an average

success rate, considering the “winning” or “losing” states of all agents participating

in that learning process. This figure is used to get an aggregated average success rate

for all the episodes evaluated. The second input of the auto-stop algorithm serves

as a goal so that the learning process stops when the aggregate success rate becomes

equal to or more than the input. As nothing ensures that the latest episode executed

before stopping is the best solution found, the satisficing set of states reinstated as

initial the following year is taken from the evaluated episode with the best average

performance. In such a way, it is possible to make sure that the initial states of

every further year are the ones that benefit the most agents, even in a competitive

mode.

As stabilisation in a non-compliant episode success rate is still possible, an al-
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ternative exit strategy is taken. In this second option, the learning stops if all the

evaluated episodes have the same average success rate. This indicates that the learn-

ing algorithm cannot achieve a better-performing solution; thus, processing further

episodes would waste time and resources. This constraint also makes clear that we

are dealing with a satisficing problem even when using an optimisation method.

Translation of socio-economic units to spatial units

From a certain perspective, the main task of the intermediary component in the

methodological setup is to transform the units used in the socio-economic model

(Part A) into the ones used in the optimisation loop (Part B). Additionally, con-

sidering that this intermediary component determines the timing of expansion, it

could also be considered a micro-investment decision model. Micro as the monetary

amounts are just enough to build an extension rather than to acquire a finished

house. In this sense, this section will describe the implementation of the residential

incremental development model exposed in Chapter 1 as both a unit translator and

an investment decision model for its implementation in a digital setting.

Up to now, our socio-economic model has output the number of household mem-

bers and the yearly financial balances of households, which are available for every

simulation year. At the other end, the optimisation loop, through the geometry

generation script, operates in terms of modular rooms, which compose dwellings.

There, the incremental process consists of adding modular rooms each time this is

required. Therefore, the challenge lies in turning people and financial means from

the socio-economic model into time of requirement (or triggering moments) and

modular rooms.

A key concept to allow this translation is the concept of ”need”. As presented

in Chapter 3, the present research understands the ”need” expressed in Figure 1.1.1

in terms of the statistical concept of residential “overcrowding”. As that section

only offered a general approach to that concept, this chapter will standardise it for

modelling purposes. In Peru, overcrowding is defined as a situation in which the

permanent inhabitants of a dwelling are three or more for every room that can be

used as a bedroom (INEI, 2015). This includes all the rooms in a house except

those used as kitchens, toilets, passageways or garages. This definition comes from
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UN-HABITAT standards (United Nations Human Settlements Programme (UN-

Habitat), 2021) and is widely applied in the global south.

Other region’s definitions of this term vary substantially. In the US, for exam-

ple (where their definition of potential bedroom excludes toilets, balconies, porches,

foyers, corridors and half rooms), crowded housing units are those with more than

one person per room. In contrast, severely crowded housing units are those with

more than 1.5 people per room (United States Census Bureau, 2000). In the Eu-

ropean Union, the definition of overcrowding depends on the living arrangement of

the household. An overcrowded household does not have at its disposal a minimum

number of rooms equal to one room for the household, one room per couple in the

household; one room for each single person aged 18 or more; one room per pair

of single people of the same gender between 12 and 17 years of age; one room for

each single person between 12 and 17 years of age and not included in the previous

category; and one room per pair of children under 12 years of age (EUROSTAT,

2021). In the UK, two different concepts of overcrowding exist, one used as a legal

term and the other as a statistical definition. The latter, defined by the English

Housing Survey, use the bedroom standard indicator, which calculates a standard

number of bedrooms for each household by age/sex/marital status composition and

the members’ relationship. From there, Households are considered overcrowded if

they have fewer bedrooms available than the notional number needed (Housing and

Communities Department for Levelling Up, 2019).

In general, we notice that dwelling size is usually measured by the number of

rooms usable as bedrooms to determine overcrowding. Wider differences arise on

how inhabitants are related to this size, with some countries limiting the number

of people per bedroom according to age, gender and kinship, and others simply

aggregating the number of household members without further inquiring about their

characteristics and relationships. Given this information, we could conclude that

overcrowding within a household is a measure of comfort and that, in general terms,

any relation of rooms/people below 0.33 implies an unacceptable standard of living.

Ratios between 0.33 and 1 could be acceptable depending on the arrangement of

people in bedrooms and their characteristics, and any ratio above 1 allows extra

rooms for additional specialised activities. The present model uses these ratios as
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determinants to define the need for expanding a dwelling. As such, and to push for

a quality of housing that goes above the bare minimum, any dwelling with a ratio

of rooms/people of less than 0.5 is considered in “urgent need” of expansion; one

with a ratio between 0.5 and 1 is considered in “need”, and any above 1 to have “no

need” at all.

This concept allows sorting out the issue of “need” by relating people and mod-

ular rooms. Nevertheless, the financial capacity variable remains in the air. This

input coming from the socio-economic model allows for determining who would ac-

tually build. The most straightforward way to introduce this variable is by finding a

correspondence between the modular room units and the available financial means.

This is done using the direct construction costs of a room unit with the same ma-

terials and technology typically used for incremental development in the base year

of the social simulation (2015). This was achieved by projecting the cost of an aca-

demically documented construction budget for 2009 (Cardenas Vargas, 2013) in the

region of Puno, in the Highlands of Peru (See Appendix 9). The micro-investment

model updates this equivalence every year, considering the inflation registered by

yearly Peruvian official construction values (See Appendix 10). With this transfor-

mation, agents in the “urgent need” and “need” categories are able to check whether

they can afford the expansion and, if they do, expand. Agents in the “no need” cat-

egory can build if their accumulated savings are well above the cost of building a

room unit. This is determined by another input for the model, which indicates the

fraction of the accumulated savings to be compared with the cost of a room unit.

If this fraction of their savings equals or exceeds the room cost, they will build one

additional room even when they do not need it. This aims to reflect construction

activity to achieve increased comfort rather than solely a way to satisfy a need.

Finally, by implementing a loan mechanism, it is possible to increase the afford-

ability of certain agents. In the case of the current model, only agents in “urgent

need” can access a loan. If their accumulated savings are insufficient to cover the

investment needed to satisfy their need, agents check if they can ask for a loan that

covers the difference. For this, there is a “loan capacity” input, which indicates the

maximum loan a household could take, expressed in a fraction or number of times

their current yearly income. If the maximum loan covers the investment needed,
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the agent takes only the required amount, and the figure becomes added to their

accumulated debt. Every year that passes in the simulation, a fixed interest rate

is added to this latter variable. Agents meanwhile try to pay their debts as soon

as possible. If, in any further year, they encounter a positive balance, they use as

much as they can to decrease their accumulated debts. The maximum amount they

can invest in repaying their debts or on building an extension to their dwelling is

set by an input that determines the fraction of their accumulated savings usable for

these purposes.

6.2 Case study locations and comparative scenar-

ios

The following section presents the locations selected as case studies and the formu-

lated comparative scenarios. Location selection is based on relevant variables for

the present research, including the availability of Energy Plus Weather files (EPW)

for energy simulation, the existence of basic module developments in the area and

climatic diversity between locations. The posed scenarios, meanwhile, respond to

the possibility of testing diverse agent relationships in a multi-agent system and the

functionality of the workflow as a tool to devise the relative impact of incremental

extension decision-making on potential energy use and thermal comfort by using

diverging objective functions.

6.2.1 Location selection

Three locations in Peru were selected as case studies to test the workflow. Their

selection responds to climate diversity, TechoPropio’s “New dwelling acquisition”

(AVN) registered projects and the availability of EPW files to be used in the energy

simulation (See Appendix 11). The cities of Piura and Juliaca and the region of

San Martin were chosen. Each corresponds to one of the main natural regions of

Peru (desertic coast, highlands and eastern rainforests) and is thus representative of

their climatic conditions. In the case of San Martin, the entire region was chosen,

as registered AVN projects are distributed among multiple cities of the area. Never-

theless, the region is still represented by a single EPW file, whose data was collected
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at the airport of the most populated city in the area, the city of Tarapoto. The

other two EPW files contain data taken from their corresponding cities’ airports.

In all the cases, the airports are located within the urban areas, so the EPW data

is representative of the cities’ local conditions. Hereunder, each of the locations are

presented in more detail.

Figure 6.2.1: Number of registered AVN dwellings in selected regions (2002-2012)
Source: Mi Vivienda SA (by request)

Piura

The city of Piura, located in river Piura Valley, is the administrative capital of the

region of the same name. Due to its location on the western side of the Andes, close

to the equatorial line and at low altitude, it has a hot desert type of climate. Despite

this, its location in the country’s northern tip makes it vulnerable to heavy rains,

particularly during El Niño events. Distanced 40km from the sea and surrounded by

the Sechura desert plains, Piura usually registers temperatures above 30oC and thus

is known as the city of the eternal summer. Mild seasons are present in its location

due to the influence of the northward-facing cold Humboldt current, which, while

circulating on temperate latitudes, becomes influenced by higher seasonal thermal

variations. Figure 6.2.3 shows daily dry bulb temperature variation from the EPW

file corresponding to Piura. Figure 6.2.4 shows the total number of registered cooling

and heating days in the dataset based on 18oC as the heating setpoint and 24oC as
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Figure 6.2.2: Geographical location of selected EPWs

the cooling setpoint 1.

Figure 6.2.3: Year Dry Bulb temperature from Piura’s EPW
Source: Betti G. (2022)

1Figures taken from WHO (1987) and justified later on this document.
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Table 6.1: Climatic conditions according to EPW files by location

Location
Piura
Airport

Juliaca
Airport

Tarapoto
Airport

Coordinates 80.616W 5.206S 70.158W 15.467S 76.373W 6.509S

Altitude 35.4 m 3825.8 m 274.3 m

Koppen-geiger
Climate
classification

Subtropical
desert
(BWh)

Marine
west coast
(Cfb)

Tropical
rainforest
(Af)

Average
yearly
temperature

23.9oC 9.4oC 25.6oC

Hottest
yearly
temperature
(99%)

33.2oC 20.0oC 35.0oC

Coldest
yearly
temperature
(1%)

17.0oC -3.2oC 18.6oC

Annual
cumulative
horizontal
solar radiation

2160.59
kWh/m2

2432.64
kWh/m2

1799.14
kWh/m2

Percentage
of diffuse
horizontal
solar radiation

25.90% 24.50% 34.80%

With more than half a million inhabitants, its metropolitan area is the fifth most

populated of Peru (INEI, 2022) and an important administrative and commercial

centre in the north of the country. Due to this and plenty of available developable

land in its surroundings, Piura has been one of the cities most benefited by the AVN

programme. Between 2002 and 2012, the province of Piura registered 1487 dwellings

under the AVN programme (Figure 6.2.1). The most remarkable incremental devel-

opments in that period were “Urbanizacion Santa Margarita” and “Urbanizacion El

Sol de Piura”, with 789 and 642 registered dwellings, respectively.

San Martin

The region of San Martin is in the northeast of Peru, between the foothills of the

Andes and the Amazon rainforest. Connected with both the Pacific coast and the

Amazonian port of Yurimaguas through the northern trans-Andean highway, it has

grown thanks to commercial, industrial, and service activities brought by this con-
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Figure 6.2.4: Total heating and Cooling days in Piura’s EPW
Source: Betti G. (2022)

nection. Although the region’s capital is the city of Moyobamba, the most significant

urban agglomeration and the regional airport site is the city of Tarapoto. This city

is in the east of San Martin region, in the lowest foothills of the Andes. With about

200 thousand inhabitants in its metropolitan area, it is considered the third largest

city in the Peruvian Amazon (INEI, 2022). Tarapoto is an important commercial,

educational and tourist centre of the northeast. Other important towns in the region

include Juanjui, Lamas, Rioja and Tocache. Due to its local importance and rapid

growth, this region has been one of the most benefited by the AVN programmes in

the last years. Between 2002 and 2012, the region registered 2579 dwellings under

the AVN programme (Figure 6.2.1). The most important basic module develop-

ments in this period were Los Sauces de Tarapoto in Tarapoto and Los Jardines de

Juanjui in Juanjui, with 380 and 2199 registered dwellings, respectively.

Figure 6.2.5: Year Dry Bulb temperature from Tarapoto’s EPW
Source: Betti G. (2022)

Tarapoto, as a place with a tropical climate and close to the equator, does not

present many thermal variations during the year. Figure 6.2.5 shows how maximum

and minimum temperatures remain relatively stable throughout the year. Only

a few days in February, the lowest temperature reached 0oC, but this seems to be

more of an error in the data-gathering process than an actual event. The stability of
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local temperatures can also be seen in Figure 6.2.6, which shows the total number

of registered cooling and heating days classified in months based on 18oC as the

heating setpoint and 24oC as the cooling setpoint.

Figure 6.2.6: Total heating and Cooling days in Tarapoto’s EPW
Source: Betti G. (2022)

Juliaca

Juliaca is a commercial city in southern Peru and the biggest city in the Puno

Region. Located in the Peru-Bolivia plateau at more than 3,000 m.a.s.l, the city

has more than 300 thousand inhabitants. Due to its location, it has a cold climate

characterised by markedly dry and wet seasons. The dry season is linked to the astro-

nomical austral winter. Clear skies and consequential significant daily temperature

variations, aggravated by the altitude, characterise it. Higher relative humidities

and cloud cover mitigate these effects during the wet season. Figure 6.2.7 shows

how minimal temperatures consistently drop below 0oC between May and Septem-

ber while maximum remain relatively stable throughout the year, with a slight but

noticeable increase in the spring (September-November). Figure 6.2.8, which shows

the total number of heating days considering a setpoint of 18oC, confirms these

statements.

Figure 6.2.7: Year Dry Bulb temperature from Juliaca’s EPW
Source: Betti G. (2022)
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Due to its regional importance, Juliaca has been one of the cities in the highlands

most benefited from the AVN programme. Between 2002 and 2012, 1071 dwellings

were registered in the province (Figure 6.2.1), with the most significant basic-module

developments being Residencial Aeropuerto, Urbanizacion Praderas del Inka and

Urbanizacion Santa Monica, with 436, 186 and 214 dwellings respectively.

Figure 6.2.8: Total heating and Cooling days in Juliaca’s EPW
Source: Betti G. (2022)

6.2.2 Scenario definition

Cooperation vs. Competition

Multi-agent systems allow the emergence of complex interrelations between agents.

As such, the proposed workflow can also test different agent interaction scenarios.

In general terms, these can be classified into three groups:

• Cooperation, when Agents act in a group to solve a common problem,

• Indifference, when Agents do not have any pre-set dispositions towards each

other but interact because they use common resources.

• Adversary, when Agents have opposing interests.

How these scenarios were implemented in our workflow depended on the opti-

misation method selected. As explained in Chapter 5, multi-agent reinforcement

learning problems are challenging “because they violate the stationary environment

assumptions used by most machine learning systems.” (Sen & Sekaran, 1998). Due

to this, multiple attempts have been made in the past to enable agent interaction in

RL. In the case of our workflow, the solution chosen is based on joint-action learn-

ers, as posed by Claus and Boutilier (1998). Joint-action learners can perceive other
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agents’ actions and thus can maintain a model of their strategies and choose their

actions accordingly (Kapetanakis & Kudenko, 2002). Meanwhile, in the alternative

approach based on Independent learners, these are unaware of the existence of other

agents and can only perceive the reward associated with their joint actions.

In any case, be the agents independent or joint-action learners; they rely on “co-

ordination” to reach individual or common goals. Coordination in this context has

been defined as “choosing one’s action based on the expectation of others’ actions”

(Sen & Sekaran, 1998) and “the ability of two or more agents to jointly reach a con-

sensus over which actions to perform in an environment.” (Kapetanakis & Kudenko,

2002). In this sense, the discussion between independent and joint-action learner

approaches is about the origin of the coordination-enabling information from other

agents’ actions or rewards. Whatever the pathway, coordination enables coopera-

tive, indifferent, and even adversarial agent-based scenarios. In the case of the latter,

for example, agents could benefit from receiving information about what adversaries

are doing or planning to do and thus act accordingly (Sen & Sekaran, 1998).

Although coordination enables agent interaction, some assumptions needed to

implement it move the model away from depicting real-world situations. For exam-

ple, in a real-world incremental neighbourhood, it is unlikely that people would find

a way to agree on fully coordinated courses of action. Even if they were to find such

a space, without the proper legal tools, enforcing agreements might be difficult.

As such, an initially posed cooperative scenario, tested in Chapter 5, reproduces

the case of a Cooperative single-stage game (Fudenberg & Levine, 1998), a type of

game in which agents have common interests and, as such, they are rewarded based

on their joint action with the same reward for all. This initial approach suffered

changes resulting from the resource optimisation strategies used to allow the pro-

cessing of tens of agents (discussed in the first section of this chapter). As a result,

agents in a cooperative scenario are no longer rewarded based on the entire neigh-

bourhood’s performance but on the performance of the section of the neighbourhood

in their individual view range. In this scenario, cooperative and adversarial relations

might emerge. The earlier would be when active agents are exclusive in each other’s

view ranges. When third active parties are included in one’s view range but excluded

from the other’s, adversarial relationships might emerge. Thus, what we now re-
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fer to as a cooperative scenario is more of a mixed scenario in which cooperative

behaviour is likely but not exclusive.

The competitive scenario, on the other hand, is straightforward. In this case,

the reward is based solely on individual performance. Despite this, we cannot con-

sider it a purely competitive scenario, as agents’ interests might not be completely

antagonistic. For example, if actions 1 and 2 allow Agent A to reach its goal state,

but only by selecting action 2 enables its neighbour to reach its own goal state, a

possible solution satisfies both parties even if they have individualistic goals. In

this case, the joint-action learner method’s coordination strategy will privilege the

convergence in action 2 rather than on 1. Therefore, if there is space to negotiate,

agents with individualistic goals will cooperate to reach the common good.

Tolerance values control this negotiation space. Suppose agents are given more

freedom to diverge from the absolute performance record on their history. In that

case, they can find multiple goal states and negotiate with their neighbours to find a

shared satisfactory solution. Lower tolerances, meanwhile, increase the likelihood of

facing zero-sum games and reduce the probability of converging on stable solutions,

as opposing agents might take turns to “win” at different episodes. To sum up,

the coordination strategy prefers Pareto-dominated solutions even when goals are

individualistic. Therefore, what we refer to from now on as a competitive scenario

will imply, even if unintended, a cooperative component derived from coordination

and tolerance values.

Energy use maximisation vs. minimisation

A second comparison puts together the best and worst possible incremental devel-

opment scenarios. This is possible by setting diverging objective functions (max-

imisation vs. minimisation of energy use). This allows us to derive conclusions

about the actual effect of the agent’s extension choices on the potential energy use

of their dwellings. Appendix 6 shows the objective function for a maximising sce-

nario, while Appendix 7 does so for a minimising scenario. The cooperation and

competition scenarios use the minimisation objective function, while maximisation

and minimisation scenarios use a competitive approach towards agent interaction.
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6.3 Results

6.3.1 Results from the micro-investment decision model

As stated earlier in this chapter, a micro-investment model is used to translate the

units from the socio-economic model to the ones used in the optimisation loop. To

allow the final execution of the workflow, we feed this intermediate model with the

results presented in Chapter 3. Thus, the micro-investment modelling results follow

a group of 48 agents classified in three socioeconomic levels (SEL) for 25 years.

These arrive at the following variables for each agent and each year at the end of

the simulation:

• Number of bedrooms per dwelling

• Occupancy ratio (rooms/people)

• Need category

• Accumulated debt

• Accumulated savings

The executed model was limited to adding only a maximum of one room per

agent per year. This setting was determined to allow an expedited learning process.

Other model settings can be seen in Appendix 12, the most remarkable being that all

agents start with a seed dwelling composed of two potential bedrooms. The micro-

investment model was implemented in R, and took just a few seconds running from

R Studio on a Windows desktop computer implemented with an Intel Xeon CPU

with a capacity of 3.50GHz and 16Gb of physical memory to get the desired results.

The disaggregated version of these results can be seen in Appendix 5.

Regarding the number of bedrooms per dwelling, as expected, these increase as

time passes. Nevertheless, some differences among SELs can be noted. As shown

in Figure 6.3.1, agents classified on SEL D, related to the lowest income and larger

household sizes, achieve larger dwelling sizes early in the simulation and continue

to grow even when the other classes seem to have reached a plateau. As SEL does

not differentiate fertility rates, this could be explained by larger initial household
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sizes and a consequential higher probability of new household members, which to-

gether push for faster and increased incremental development. An apparent relative

slowdown in the SEL D figures between years 6 and 16 could be interpreted as a

generational change, not occurring (or delayed) in other SELs due to the ages of

household members and the household sizes in simulation year 0. It is also impor-

tant to point out the disparity in the number of agents in each class, which could

affect the aggregate averages.

Figure 6.3.1: Average rooms per SEL for every simulation year

Figures on the average occupancy ratio per SEL tell us that dwelling growth

appears to satisfy the “need” for space in households early in the simulation. Fig-

ure 6.3.2 shows how all SEL aggregate values leave the “need” upper threshold by

simulation year 6, implying that beyond that point, dwellers are building because

of an excess of means rather than due to lack of space. Thus, incrementalism helps

to increase comfort rather than just satisfying essential needs. A factor pushing

this result might be the initial number of rooms (two), which diminishes the “need”

at simulation year 0 and thus provides space to invest in comfort in the remaining

years. Another factor might be the optimistic scenario derived from the external

macro trendline model used for alignment, which implies a stable and permanent

increase in income during the 25 years of the simulation. A remarkable case is that

of SEL B, which, despite having the highest income, takes more time to escape the
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need area. This could result from smaller household sizes, deriving in the no-need

category in early years. Additionally, this category depends solely on their savings

for comfort growth as they cannot take a loan, so longer times are needed for ex-

pansion. A contributing factor could be that compared to the other SELs, B has

higher expenses per capita relative to their income. Thus, yearly balances are lower

and accumulated savings take more time to grow.

Figure 6.3.2: Average occupancy ratio (rooms/people) per SEL for every simulation
year

Even if, at an aggregate level, overcrowding seems to be solved, figures at an in-

dividual scale show that not every agent in the simulation achieves its goal. Figure

6.3.3 shows how, even if the “No Need” category becomes popular early in the sim-

ulation, in the last years, there are still several agents on the “Need” and “Urgent”

categories. It is also noticeable that for two years (19 and 20), there have been no

agents in the “urgent” category. Considering that there is no active immigration

mechanism, this seems to confirm the emergence of a second generation of births.

Regarding debt accumulation, Figure 6.3.4 shows that, as expected, the lowest-

earning category (D) relies on loans more than the others. It also demonstrates

that repayment is possible despite a relatively high annual interest rate (15%). The

optimistic assumption about income evolution on the socio-economic model might

play a role here. The sudden fall in the aggregate average for SEL D between
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Figure 6.3.3: Evolution of the ”need” categorization of agents

years 16 and 17 might be explained by the accumulation of debt on one agent, who

suddenly and providentially increases their annual savings to repay the accumulated

debt from years in one (Agent 39, identified in Appendix 5). SEL B lays on the

opposite side of D, as no debt is ever acquired. This could be due to a combination

of factors, including higher incomes and smaller household sizes.

Figure 6.3.4: Average accumulated debt per SEL for every simulation year
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Figures on accumulated savings by SEL seem to confirm some of the previously

posed hypotheses. However, the highest earning category (SEL B) accumulates less

savings than the other two. This could be, on the one hand, due to the highest

expenses per capita identified in the socioeconomic model and, on the other, due to

their reliance on their own resources to carry on with the incremental process. The

SEL whose savings grow more is C, a logical consequence of not relying so much

on credit to carry out incremental development and the increasingly diverging path

between their income per income generator and expenses per capita, identified in

the socioeconomic model.

Figure 6.3.5: Average accumulated savings per SEL for every simulation year

Now that the output variables of the micro-investment model have been pre-

sented, it is possible to arrange these in time and space. Figure 6.3.6 shows the

number of active agents each year of the simulation. Since agents are only allowed

to build one bedroom per year, it also reflects the number of bedrooms built yearly.

There is an evident construction boom in the early years of the simulation, which

recedes as years pass. This complements the observations made in Figure 6.3.3,

which shows how all SELs leave behind the “urgent need” category in the first six

years. Additionally, two years of the simulation (19 and 20) show no activity. This

agrees with Figure 6.3.3, which shows that, precisely in those two years, no single

agent was classified in the “urgent need” category. The resurgence of construction
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activity in the last four years seems to confirm a second generation of dwellers. The

implications of these figures for the optimisation loop are that there will be several

interacting agents in the early years, which implies longer processing times. As time

progresses, the task will be much easier and thus, processing time figures will be

reduced.

Figure 6.3.6: Active agents per year

Placing agents in space gives us more information on the implications of this

development pattern. After a “Neighbourhood” object becomes created using the

settings shown on Appendix 13, agents simulated on the loan/investment decision

model can be assigned to a ”lot” in this spatial setting. A simple, orderly process

was used to assign locations to abstract agents so that the first agent corresponds to

the first lot object created on the procedural geometry generation process. Figure

6.3.7(a) shows the construction activity (years in which expansions happen) of each

agent distributed in space for the 25 years of the simulation; Figure 6.3.7(b) shows

the construction activity of each agent by identification distributed in time, and

Appendix 15 shows the construction activity for each year distributed in space.

Finally, an initial geometrical size was determined to set initial states. This comes

in the form of a sequence of actions for each agent that produces an initial spatial

setup (Figure 6.3.8). Although the micro-investment model settings determined that

the initial size would be two bedrooms, the geometrical model needs to include other

spaces in the dwelling which are not bedrooms; as such, the initial geometrical state

has 6 modular cubes in size (mimicking the dimensions of real-world seed dwellings
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(a) Activity of agents by location (b) Agents activity by year

Figure 6.3.7: Agent activity in time and space

and including non-dormitory rooms). Despite this initial consideration, all further

extensions are considered likely bedrooms, while other functional spaces are, for

now, disregarded for model simplification.

Figure 6.3.8: Dwellings on their seed state before the learning process
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6.3.2 Optimisation results by location

Once the agents coming from the micro-investment model are in place, it finally

becomes possible to execute the optimisation loop. Bearing in mind the Thesis’

objectives, the present study uses potential Annual Energy use as a proxy for ther-

mal comfort. This allows to optimise the geometries for the two established goals

(energy efficiency and thermal comfort) while keeping a single performance figure

as an objective function. As such, Honeybee’s ”Rooms” are conditioned and use

heating and cooling set points (18oC-24oC) based on healthy indoor thermal stan-

dards (WHO, 1987). Under this approach, lower annual energy use figures imply

fewer hours outside of the ”healthy” zone and, at the same time, less demand for

heating/cooling appliances to achieve the goal temperature interval. The selection

of these set point figures responds to an inclusive approach towards building design

that bears in mind the well-being of vulnerable groups while keeping simplified uni-

versally applicable categories (healthy vs. unhealthy indoor spaces). In any case,

this consideration becomes secondary, as in our optimisation exercise, relative differ-

ences between solutions are more important than absolute performances. Absolute

values will, therefore, remain solely referential, as they do not express the actual

energy use of households with commonly used appliances in the real world.

This section reports the results from testing the workflow on the three locations

introduced earlier in this chapter. As such, except for the EPW files, all the settings

to run the BEM and the Multi-Agent reinforcement learning (MARL) algorithm

were kept the same among locations. In the three cases, the objective function was

to minimise the operational energy use of the dwellings. The agents, meanwhile,

were rewarded based on their individual performance (competitive mode).

The BEM considers dwellings as mono-zone buildings. This is because no internal

divisions exist; therefore, every dwelling is evaluated as one Honeybee “Room” or

its equivalent in EnergyPlus, one “Zone”. Despite this, the “zone” envelopes are

formed by several quadrangular surfaces whose dimensions correspond to the module

used in the GG script (Figure 6.3.9). Each surface is implemented with a Honeybee

Aperture, controlled by an input determining the dimension relationship between

the surface and its aperture. Other settings required by the BEM and the MARL

algorithm can be found in Appendix 11 and Appendix 14, respectively.
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Figure 6.3.9: Model of an agent and its shading neighbours, as seen from Pollination
Source: Ladybug Tools LLC (2023)

From the three location scenarios presented, two (Piura and Tarapoto) were run

locally, and one (Juliaca) was run on the cloud. This allowed the parallel processing

of several locations at once and the comparison of execution performances among

platforms. The local run was executed on aWindows desktop computer implemented

with an Intel Xeon CPU with a capacity of 3.50GHz and 16Gb of physical memory.

The cloud run, meanwhile, executed the energy simulation on the Pollination servers,

with its learning process happening in a Windows laptop computer with an Intel

Core i5-9400H CPU with 2.50GHz of capacity and an installed memory of 8Gb. Due

to the differences in the computing capacity, these executions are compared in terms

of the number of episodes taken per year to reach convergence and the average time

taken by episode on each simulation year.

Figure 6.3.10 shows the number of episodes it took for each location to reach

convergence. Due to the auto-stop algorithm inputs, no scenario will stop before 20

episodes (10% of the maximum allowed episodes). Besides this, it is noticeable that,

in all locations in the early years of simulation, there is a higher number of episodes

until convergence. This figure eventually stabilises on lower values as time passes.

This is a natural consequence of more active agents in the early years, making it

more difficult to reach an agreement on a joint-action solution. As all inputs except

EPW files remain the same, the only plausible explanation for location differences is
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that these agreements are more difficult to reach under certain climatic conditions

and intermediate spatial arrangements. The case of Tarapoto is remarkable, which

in years 0 and 3 takes considerably more episodes to reach convergence than other

locations. In year 15, meanwhile, when there is only one active agent, all locations

take the same number of episodes, corresponding to the minimum possible.

Figure 6.3.10: Number of episodes until convergence by location

Figure 6.3.11 shows the average time per episode for the three locations. In the

case of Tarapoto, it is noticeable how consistent lower times per episode are. Energy

modelling seems to take considerably less time when processing simulations that use

that EPW file. When comparing the other two locations, Juliaca tends to have a

better time performance in the earliest years. Nevertheless, its advantage is lost as

time passes. An explanation for this is that the comparative benefit of processing

models on the cloud, derived from its capacity to handle parallel tasks, is lost when

there are fewer models to process. This is mainly because time is lost in uploading

and downloading data, so with fewer models to process, local execution is more

efficient than using the cloud.

As a result, in the current study, overall processing times are higher in the cloud

environment. This is because most activity is carried out in the first five years, while

in the remaining 20, fewer energy models need to run in parallel. This difference

can be noted in Figure 6.3.12, where Juliaca, executed in the cloud, is the worst-

performing location regarding execution time. Despite the higher number of episodes

in selected years, Tarapoto benefits from lower energy modelling processing times

and thus delivers results briefly.
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Figure 6.3.11: Average time per episodes until convergence by location

Figure 6.3.12: Total processing time by location

At the agent scale, each learning process has its characteristics. Appendix 16,

Appendix 20 and Appendix 19, corresponding to Piura, Tarapoto and Juliaca, show

the agents’ graphs for every learning process of reward accumulation and registered

performances. While these are kept for the reader’s consideration, the current chap-

ter will discuss the aggregate results in terms of performance, measured in aggregate

Energy Use intensity (EUI). As in these cases, the learning process uses individual

annual energy use as a performance measure; aggregate EUI is obtained by com-

bining individual energy performances of all agents and dividing that figure by the

neighbourhood’s total built area. These two figures are captured from the final state

of agents at the end of every yearly learning process. To get the total built area,

the number of occupied modules per agent is aggregated to a global figure, and then

this is multiplied by the floor area of a single module.

Although this is more than enough to compare scenarios and derive plausible

conclusions, absolute values are referential; units used as input for lighting and

equipment in the energy model are in Watts over the unit of built area (m2), but
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dwellings are mono-zone and do not have internal divisions, so it is expected that

the energy model considers solely building footprints as total built areas, ignoring

increased areas in upper floors. Although this might affect aggregate EUI values, it

does not affect the individual learning process, which depends on relative differences.

Additionally, the objective function (Appendix 7) uses total annual energy use as

a performance measure, classified according to the number of occupied modules at

the evaluated state, and never refers to area units.

Figure 6.3.13 shows relevant differences between locations, with Tarapoto using

considerably more energy per square meter than the other two cases. This might

result from that location maintaining consistently high temperatures all year round

(Figure 6.2.5), unlike the other hot zone, Piura, which shows a temperature pattern

that depicts mild seasons (Figure 6.2.3). Juliaca, meanwhile, the only location in a

cold area, shows the best performance. This might result from higher solar radiation

during colder and drier months, which allows solar heat gains during the day and

diminishes the need for heating appliances. In terms of common trends, we can

notice that in the three locations, energy use intensity seems to diminish as time

passes. A plausible cause could be that the energy model settings remain unaltered

despite increased areas. There is no feedback loop to alter, for example, the people

density input for Honeybee. Another likely cause is the discrepancy between the

built areas considered by the BEM and the ones considered to get the aggregate

EUI values.

Figure 6.3.13: Aggregate EUI by location

Finally, the effect of the climatic conditions on the agents’ decision-making pro-

cess can also be measured by the spatial patterns that emerge. While Appendix 21
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shows the spatial distribution of cubic modules for every simulation year in the three

locations, this chapter will be limited to analysing the outcomes at the end of the

simulation process (Figure 6.3.14). As the objective function is kept the same, there

is not much difference among the patterns formed. In general terms, agents try to

develop horizontally, with only a few growing two and only one three stories high.

In this sense, a small difference exists between hot climates and the cold location

(Juliaca). In the latter, there are more modules located on the upper levels com-

pared to the other two. It is also the only location in which a three-storied building

appears. This might have to do with the geometries’ increased exposure to solar

radiation, which may be diminishing the need for heating. Otherwise, developing

vertically seems to be less profitable than doing so horizontally. This probably has

to do with the lack of internal divisions within dwellings, which increases the energy

demand when conditioning multi-storied buildings.

(a) Tarapoto (b) Piura

(c) Juliaca

Figure 6.3.14: Spatial pattern comparison by location at final simulation year (com-
petitive, minimisation)
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6.3.3 Cooperative vs. competitive

This second scenario implies the addition of a simulation run not previously pre-

sented. In this new run, the EPW file of Juliaca is used in a cooperative approach

and executed on the cloud. The location responds to the fact that this EPW file

was already used in a cloud setting, and as the cooperative approach demands more

resources and thus demands the cloud setting, it made sense to keep the site to allow

comparison with minimal interferences. As such, the competitive run presented here

is the one denominated as ”Juliaca” in the previous section.

Figure 6.3.15 indicates the number of episodes it took to converge on each simu-

lation year. Results here are mixed, as only in some years the cooperative learning

process takes more time than the competitive one. As in the previous comparison,

a common pattern among runs appears in year 15, in which agents take the least

possible amount of episodes to reach convergence.

Figure 6.3.15: Number of episodes until convergence in cooperative and competitive
scenarios

Figure 6.3.16 shows how, in the cooperative scenario, the average time per

episode is, with few exceptions, consistently higher than in the competitive sce-

nario. This is in line with the mechanics of the cooperative scenario, which requires

sending more models per step (agents’ model and its neighbours’ models to aggre-

gate performance figures) even when the number of participating agents remains the

same as in the competitive one.

As expected, this impacts the overall processing time of the cooperative scenario,

which is considerably higher in relation to the competitive one (Figure 6.3.17). As

both were executed on the cloud, whether these results will hold if one or both were
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Figure 6.3.16: Average time per episodes until convergence in cooperative and com-
petitive scenarios

executed locally remains an open question.

Figure 6.3.17: Total processing times in cooperative and competitive scenarios

Again, individual agent learning processes are left for the readers’ consideration

in Appendix 19 and Appendix 18, and the chapter will carry on by discussing the

neighbourhood’s aggregate Energy Use Intensity in kWh/m2. In this sense, the com-

petitive scenario seems to perform consistently better in relation to the cooperative

one (Figure 6.3.18). A plausible explanation is that even in the competitive scenario,

coordination exists. When negotiation spaces are present (because of tolerance val-

ues) and objectives are diverging but not opposed, Pareto-dominated solutions are

preferred. As such, when several agents find a satisficing individual performance,

they might be pushing further the aggregate performance of the neighbourhood

with their individual efforts. Altought in the cooperative scenario might happen

the same, there, individually satisficing solutions are diluted on locally aggregated

performance values, and thus global aggregates are not pushed as much.

Finally, we carry on with the analysis of emergent spatial patterns. For the
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Figure 6.3.18: Aggregate EUI in cooperative and competitive scenarios

reader’s consideration, Appendix 23 shows the spatial outcomes of every year for

the two runs here compared. Figure 6.3.19 shows the spatial patterns at their last

simulation year. According to these images, we can notice that when compared to

agents on the competitive run, those on the cooperative one develop vertically with

more frequency. As such, the corresponding graph has significantly more modules

on upper stories. As hypothesised earlier, this might have to do with the increased

possibility of collecting solar heat gains with vertical development. There must be

an additional comparative benefit of taking this approach when aggregating the

performances locally, which is otherwise ignored.

6.3.4 Maximisation vs. Minimisation

To carry on with this last scenario, the workflow ran once more to generate a fifth

simulation. On this new run, the objective function is replaced, so the algorithm

tries to maximise the energy use instead of minimising it. This run uses the EPW file

of Piura and is executed locally. This choice was made as the location comparison

put Piura’s aggregated EUI at an intermediate level. Additionally, it demonstrated

that for the task assigned, running locally was more convenient than doing it on

the cloud. To minimise inconsistencies in the comparison, the run representing here

the minimisation objective function corresponds to the location earlier denominated

”Piura”.

Figure 6.3.20 shows the number of episodes it took on each of these simulation

runs to reach convergence according to the standards considered by the auto-stop

mechanism. In most learning processes, the minimisation run seems to take fewer
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(a) Cooperative spatial pattern at final simulation
year (Juliaca, minimisation)

(b) Competitive spatial pattern at final simulation
year (Juliaca, minimisation)

Figure 6.3.19: Spatial pattern comparison. Cooperative vs. Competitive scenarios

years to reach convergence. Interestingly, in year 15, where previously presented

results showed that participating agents reached convergence in a minimal amount

of episodes, the Maximisation process took considerably more episodes to converge.

Some other such big relative differences exist, as in year 0 or year 2, which tell

us that, depending on the objective function, the coordination task can be more

difficult to achieve.

In terms of time per episode (Figure 6.3.21), both runs perform similarly with just

a few exceptions. Particularly relevant is Year 0, where theMaximisation simulation

took considerably more time per episode than the other scenario. This is unexpected

as the energy simulation is the task that takes the most time of the optimisation
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Figure 6.3.20: Comparative number of episodes until convergence. Maximisation vs
Minimisation

process, and considering that both use the same settings, a similar execution time

would be the most logical outcome. The difference is possibly derived from the fact

that, as maximisation generates increasingly energy-dependent building envelopes,

further efforts need to be made by the BEM to simulate these situations. The impact

of this could be magnified when there are several active adjacent buildings, like in

the case of Year 0.

Figure 6.3.21: Comparative average time per episode per year until convergence.
Maximisation vs Minimisation

This has consequences on the overall execution time of the maximisation run.

Although the relative difference seems considerable (Figure 6.3.22), when compared

to previous scenarios, it is actually not so much (roughly 40k seconds of difference

between extreme cases in the two previous sections vs. 4k in the current one). This

small difference can be explained largely by the longer processing time per episode

in Year 0. Regarding aggregate energy use intensity at the neighbourhood scale

Figure 6.3.23 shows clearly how values diverge. The most noticeable progression in
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Figure 6.3.22: Comparative total time until convergence. Maximisation vs Minimi-
sation

both cases happens in the earliest simulation years, precisely when there are more

active agents. Even when this trend is almost symmetric, the maximisation run

presents longer leaps in these early years. This might indicate that in the search

space, higher energy-use solutions are easier to attain than lower ones.

Figure 6.3.23: Comparative aggregated EUI Maximisation vs Minimisation

Finally, we can analyse the resulting patterns. As in previous cases, Appendix

23 shows the evolution of the neighbourhood every year and is left for the reader’s

consideration. The current section is dedicated to analysing the latest state of the

neighbourhood. Figure 6.3.24 shows significant differences in the emerging patterns.

On the maximisation run, there are evidently more multi-story dwellings. There

is a clear preference for agents to choose to develop their houses vertically. This

contrasts with the minimisation run, where agents seem to build vertically when no

more horizontal space is available. The ”towers” that agents on the maximisation

run build seem to confirm the hypothesis posed earlier: vertical development is used

as a way to increase solar heat gains. As such, it is avoided when minimising energy

use in hot climates but is sometimes preferred in cold ones. The fact that on none
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of the cold scenarios (Juliaca cooperative and competitive), the vertical patterns

were so pronounced as in the maximisation run might indicate that another factor

affects this choice: Due to the lack of vertical divisions, it is likely that conditioning

a dwelling is more energy intensive when it has multiple stories. As such, agents

in a cold climate find an intermediate solution, whilst agents with a maximisation

objective function go to the extreme.

6.3.5 Scalability

The proposed methodology’s scalability has been demonstrated. We have been able

to jump from simulating the cognitive process of a single agent in the tests shown

in Chapter 5 to tens of agents, as shown in the current chapter. This was done with

minimal adaptations to the dynamic optimisation algorithm just to provide space for

communication and negotiation among multiple agents. In terms of computational

cost, even when these expectedly increased, that increase was manageable with

simple fixes that optimised the functioning of the workflow.
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(a) Minimisation spatial pattern at final simulation year (Piura, com-
petitive)

(b) Maximisation spatial pattern at final simulation year (Piura, com-
petitive)

Figure 6.3.24: Spatial pattern comparison. Minimisation vs Maximisation scenarios
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6.4 Conclusions

The present chapter has presented the execution of the proposed workflow. As such,

its purpose was to demonstrate its functionality and to generate data that allows

attaining the primary objective of this thesis. To reach these, it first presented a

series of adjustments made to the workflow components to allow its integration.

Consequently, it has presented the study locations from where Energy Plus weather

files (EPW) are taken. This led to defining comparison scenarios used to test the

system and obtain the desired outcomes. These had differing objective functions: A

first one compared the system when it rewards individual performances versus when

it does with locally aggregated ones, and the second one set diverging objective

functions (maximise or minimise individual annual energy use). Given these sce-

narios and locations, the workflow was executed using the settings presented in the

appendices and taking Annual Energy Use as the objective function. This allowed

us to comply with the primary objective of the thesis, as Energy use considering

conditioned spaces serves as a proxy for thermal comfort.

The results were presented and analysed, taking into account three variables:

execution time, aggregate energy use intensity and the terminal spatial outcomes of

the learning process. These serve to select suitable tools and methods for further

development and to demonstrate the possibility and usefulness of applying passive

building design digital tools in an incremental development context. As such, the

results have been able to prove that: (1) For the proposed task, there is no compar-

ative benefit of executing the energy simulation on the cloud, (2) our competitive

setup achieves better performance at an aggregate level, and (3) there is an evident

benefit of applying optimisation of building envelope geometries in an incremen-

tal setup translated in increased energy savings and thermal comfort. In addition,

the simulation runs have permitted us to take a look at the emerging spatial pat-

terns formed by intelligent agents with a given objective. Consequently, the present

chapter has been able to attain its objective. It has not only demonstrated that a

workflow simulating incremental residential development based on real-world data

and an optimisation loop for building geometries optimisation is possible but has

generated convincing data for interested parties to take this approach seriously.

Despite this, some issues remain for future development. For example, altought
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we have successfully tested in previous stages the inclusion of extension costs in the

decision-making process of agents (Chapter 5), this was not included in the final

execution of the workflow. The micro-investment model generated data externally

and determined ex-ante the moments in which agents become active. This approach

has allowed for generating comparable scenarios due to their common starting point,

but future developments could reintegrate this feature to include a financial variable

in the learning process. Another feature tested previously but lost in this chapter is

the capacity of agents to extend multiple modular rooms in a single learning process.

The workflow is ready to test scenarios that include this feature, but to expedite the

processing of tens of agents, it was taken out at the last minute. This latter feature

could also serve to consider non-bedrooms as part of the extension, as these are

vital to ensure the functionality of a residential unit. This, of course, would require

classifying rooms within a geometry as potentially or non-potentially bedrooms and

calculating the ”need” according to this differentiation. Finally, regarding energy

modelling, this could benefit from receiving geometries where each room or each floor

is a ”zone”. This could put to the test the ”build tall for heat gains” hypothesis. In

this sense, Using Urban Building Energy Models (UBEM) could serve to minimise

processing times in this scenario and allow the use of neighbourhood aggregate

performances to test fully cooperative approaches.
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Chapter 7

Conclusions and further research
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7.1 Conclusions

The current research was developed to respond to the envisaged need for tools

and methods to promote passive building design in aided incremental residential

development. In this context, the hypothesis was that, with the implementation

of passive building design, we could attain increased thermal comfort with energy

efficiency at individual and aggregate levels, thus unlocking the capacity of millions

of incremental developers to contribute to emissions reduction and enter a virtuous

cycle of enhanced economic and physical well-being with environmental benefits.

As such, the current thesis posed a single primary objective: To demonstrate the

possibility of successfully implementing building envelope geometries’ optimisation

tools in the context of incremental residential development.

From the primary objective, three secondary ones were derived: (1) To build a

computational workflow able to simulate the incremental development of dwellings,

(2) to develop an optimisation methodology for building envelope geometries

adapted for incremental development and (3) to develop a workflow linking these

two to obtain data that demonstrates the possibility of applying passive building de-

sign in incremental residential development. These objectives led to a methodology

that uses an Agent-based modelling (ABM) approach composed of two parts plus

an intermediary component. While Part A generated data regarding ”need” and

”financial capacity” for all the requested periods, the intermediary component used

these variables to feed a micro-investment decision model that sets the timing for

incremental development. This timing information feeds an optimisation loop (Part

B) that delivers satisficing geometrical solutions that minimise energy use with ther-

mal comfort at hand while serving as an agent cognition tool in an ABM setting.

At an aggregate level, these results should comply with the primary objective.

To test the posed workflow, the present thesis used Basic module developments

in Peru as case studies. These are a form of aided self-help in which helping agencies

provide an initial dwelling core that can be later developed as families’ needs and

financial capacity progress. This residential typology serves as testing grounds as

it comprises top-down and bottom-up components, the latter plainly representing

incremental development while the earlier gives trackable initial states that facilitate

the simulation task. Additionally, as aided initiatives, public entities are usually
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involved. In the immediate term, modelling results could support existing public

policies and programmes. The location meanwhile responds to three factors: a

tradition of these types of developments in the country, the availability of data to

construct socio-economic models and the climate diversity of its territory. Finally,

Peru is committed to reducing its residential sector emissions, as various national

policies and programmes demonstrate. Nevertheless, low-income dwellers seem to be

disregarded as possible contributors to these efforts. As such, applying the model to

this case study could also motivate to broaden the policy approach in that country.

The bulk of this document has been devoted to justifying, describing and testing

the methods selected for the workflow. As such, a socio-economic model belong-

ing to Part A of the methodology was presented in Chapter 3. This model uses

microsimulation as a method and comprises two sub-models: economic and demo-

graphic. Together, they can generate the number of household members and the

joint financial capacity for each household each simulation year. The optimisation

environment, meanwhile, was presented in Chapter 4 and comes in two versions used

asynchronously at different stages of the workflow’s development. It also includes

a Geometry Generation (GG) script concerned with managing geometrical objects

and sending them (along with geometry-related useful identifiers) to the other com-

ponents of the optimisation process. To achieve its goal, this script complements its

capabilities with those from third-party tools. Finally, due to the dynamic and multi-

agent nature of our optimisation task, multi-agent reinforcement learning (MARL)

was selected and tested as a Selector component of workflow’s Part B. As a result of

a trial-and-error experimental process, the present research implements an adapted

version of Q-learning that uses Joint-action learners (JAL) and a customised näıve

lambda strategy.

After selecting and testing the methods, it came time to run the entire work-

flow. Five simulation runs were made, varying by location, objective function or

performance evaluation modality. In all of them, Annual Energy Use was used as an

optimisation goal and proxy for thermal comfort. Results from these five runs were

grouped and analysed according to three factors: execution time, aggregate energy

use intensities and spatial patterns forming from intelligent agents with a given ob-

jective. As a result, we were able to conclude the possibility of integrating digital
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tools to support passive building design in the context of aided incremental residen-

tial development. With this in mind, we can now evaluate if the research achieved

its goals. Regarding Secondary Objective I, Chapters 3 and 6 of this document have

presented the development and successful testing of a model that simulates residen-

tial incremental development based on plausible assumptions and real-world data.

Regarding Secondary Objective II, Chapters 4 and 5 have presented the successful

development and integration of an optimisation methodology for building envelope

geometries adapted for incremental development. Regarding secondary objective

III, Chapter 6 tests the general workflow and derives results demonstrating the pos-

sibility of applying passive building design in incremental residential development.

As the workflow is run, we attain the primary objective of this thesis by showing

the potential of successfully implementing building envelope geometries optimisa-

tion tools in the context of incremental residential development. This opens the

gates for further research and development, particularly on the tasks pointed out at

the beginning of this thesis: The implementation of this modelling approach in a

participatory environment and its use to convince interested parties of its usefulness.

Despite this apparent success, shortcomings remain for future adjustment. These

are presented in the following section.

7.2 Further research

The present modelling workflow has left some tasks for future development. This

section will put them forward by considering each workflow component individually

and as interacting entities. The first of the individual approach is the socio-economic

model. This could improve if it considers an immigration mechanism in its demo-

graphic sub-model, missing from the presented simulation runs due to the lack of

a definition for an attractiveness factor. Another feature that could be added is

the consideration of transitions between socioeconomic levels (SEL) categories or

other similar categorical variables. This was not applied in the test runs as the base

dataset does not register variations in these categories over the years. One variable

considered in the base dataset but not in this component’s modelling mechanics

was the existence of multi-household dwellings. These could be included in future
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developments, thus enhancing the plausibility of the modelling approach. Finally,

this model would need to eventually jump from a plausible model to a statistically

validated one. This implies, among other measures, implementing a more accurate

macroeconomic simulation to be used as an alignment tool for the financial variables.

The optimisation environment, meanwhile, could implement geometry modules

in Python that allow more freedom to execute the workflow in diverse settings.

Due to the modules used in the present research, the execution was limited to

Windows-based platforms. Thus, we have yet to be able to profit from available

High-performance computing premises. As for the Selector component, the current

research used JALs as the most straightforward solution for the coordination prob-

lem in multi-agent settings. Alternative scenarios could test Independent Learners

(IL) and see if more realistic “competitive” scenarios emerge. The Energy modelling

task, meanwhile, could benefit from using different thermal comfort standards. Al-

though the learning process should not be affected (as it depends on relative dif-

ferences rather than absolute values), this would allow additional data on the level

of thermal comfort the diverse solutions attain. Regarding the interaction between

energy modelling and the GG script, an additional workflow run could evaluate if

the presence of internal divisions affects the emerging spatial patterns. Meanwhile,

the interaction between the energy model and the learning process could benefit

from considering whole neighbourhood aggregate performance values as an evalu-

ation objective. Replacing the current Evaluator with an Urban Building Energy

Modelling (UBEM) engine could make the optimisation possible within reasonable

processing times.

Regarding the micro-investment decision model, this could benefit from being

included within the learning process instead of working as an external agency. The

capacity of the learning algorithm to incorporate this model was successfully tested

in Chapter 5. Nevertheless, it was lost in the final runs due to magnitude. This was

also the case of the capacity of dwellers to build more than one room per learning pro-

cess. By reintegrating these features in a run with tens of agents, we could also profit

and integrate the capacity of agents to build non-bedroom modules. This opens the

door to include income-generating spaces that feed the socio-economic model. An-

other potential feature is the inclusion of a whole lifecycle incremental development
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model that includes household agents moving in or out of the neighbourhood and

a mechanism for demolition, subdivision, and re-development of buildings. Lastly,

the loan mechanism could be refined to consider more informed assumptions about

the micro-loan market and its conditions.

Finally, the overall functioning of the modelling setup could be improved by

implementing further interaction between components. Except for the optimisation

loop, the workflow presented in this thesis has a linear configuration and does not

consider other feedback loops. As such, some improvements could be implemented.

• Feed the energy model with the results from the socio-economic model: The

settings from the earlier could be modified dynamically by, for example, con-

sidering variations in the number of people inhabiting a dwelling and their age

and work status. These variables affect occupancy ratios and usage schedules

and would derive more precise results.

• Feed the economic model with the spatial states: Income-generating functions

could be assigned to some rooms, thus impacting households’ money availabil-

ity with their presence.

• Feed the socio-economic model with Energy simulation outputs: A reduction

of energy use could be translated to monetary terms and thus impact the

financial capacity of dwellers.

• These loops could help optimise other geometrical and non-geometrical fea-

tures, such as building materials and opening dimensions. This could broaden

the objective function to include operational and embodied carbon emissions.

Besides this, as expressed in the introductory chapter, the workflow presented

here intends to be an initial step in integrating passive building design tools and

methods in an aided incremental design setting. As such, to carry on with this task,

the results from this thesis must be discussed with the interested parties to promote

a feedback process that propels further development. That should eventually lead

to the transformation of the workflow into a participatory urban energy modelling

tool.
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Appendix 1

Transition probabilities for the income generator status

Transition probabilities for the
income generator status by age

category for Male household chiefs.

Age
Category

Tn
Yes

(Tn+1)
No

(Tn+1)
25-29 Yes 1.000 0.000

No 1.000 0.000
30-34 Yes 0.980 0.020

No 1.000 0.000
35-39 Yes 0.970 0.030

No 0.667 0.333
40-44 Yes 0.970 0.030

No 0.714 0.286
45-49 Yes 0.990 0.010

No 0.667 0.333
50-54 Yes 0.956 0.044

No 0.875 0.125
55-59 Yes 0.949 0.051

No 0.833 0.167
60-64 Yes 0.969 0.031

No 0.667 0.333
65-69 Yes 0.976 0.024

No 0.750 0.250
70-74 Yes 0.974 0.026

No 0.400 0.600
75-79 Yes 0.948 0.052

No 0.333 0.667
79+ Yes 0.946 0.054

No 1.000 0.000
Source: Based on data taken from INEI

(2019a) Modulo-500 dataset

Transition probabilities for the
income generator status by age

category for Female household chiefs.

Age
Category

Tn
Yes

(Tn+1)
No

(Tn+1)
25-29 Yes 0.885 0.115

No 0.500 0.500
30-34 Yes 0.944 0.056

No 0.800 0.200
35-39 Yes 0.961 0.039

No 0.600 0.400
40-44 Yes 0.986 0.014

No 0.667 0.333
45-49 Yes 0.958 0.042

No 0.750 0.250
50-54 Yes 0.947 0.053

No 0.833 0.167
55-59 Yes 0.940 0.060

No 0.625 0.375
60-64 Yes 0.952 0.048

No 0.333 0.667
65-69 Yes 0.978 0.022

No 0.875 0.125
70-74 Yes 0.943 0.057

No 0.800 0.200
75-79 Yes 1.000 0.000

No 1.000 0.000
79+ Yes 0.895 0.105

No 0.000 1.000
Source: Based on data taken from INEI

(2019a) Modulo-500 dataset
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Transition probabilities for the
income generator status by age
category for Male non-household

chiefs.

Age
Category

Tn
Yes

(Tn+1)
No

(Tn+1)
15-19 Yes 0.700 0.300

No 0.480 0.520
20-24 Yes 0.837 0.163

No 0.627 0.373
25-29 Yes 0.848 0.152

No 0.595 0.405
30-34 Yes 0.904 0.096

No 0.667 0.333
35-39 Yes 0.961 0.039

No 0.667 0.333
40-44 Yes 0.958 0.042

No 0.625 0.375
45-49 Yes 0.966 0.034

No 0.400 0.600
50-54 Yes 0.929 0.071

No 1.000 0.000
55-59 Yes 1.000 0.000

No 0.400 0.600
60-64 Yes 1.000 0.000

No 1.000 0.000
65-69 Yes 0.778 0.222

No 0.667 0.333
70-74 Yes 0.875 0.125

No 0.000 1.000
75-79 Yes 1.000 0.000

No 1.000 0.000
79+ Yes 0.938 0.063

No 0.143 0.857
Source: Based on data taken from INEI

(2019a) Module-500 dataset

Transition probabilities for the
income generator status by age

category for Female non-household
chiefs.

Age
Category

Tn
Yes

(Tn+1)
No

(Tn+1)
15-19 Yes 0.627 0.373

No 0.396 0.604
20-24 Yes 0.783 0.217

No 0.441 0.559
25-29 Yes 0.856 0.144

No 0.463 0.537
30-34 Yes 0.867 0.133

No 0.534 0.466
35-39 Yes 0.894 0.106

No 0.600 0.400
40-44 Yes 0.926 0.074

No 0.492 0.508
45-49 Yes 0.933 0.067

No 0.523 0.477
50-54 Yes 0.910 0.090

No 0.520 0.480
55-59 Yes 0.868 0.132

No 0.276 0.724
60-64 Yes 0.870 0.130

No 0.538 0.462
65-69 Yes 0.923 0.077

No 0.724 0.276
70-74 Yes 0.881 0.119

No 0.083 0.917
75-79 Yes 0.760 0.240

No 0.368 0.632
79+ Yes 0.921 0.079

No 0.348 0.652
Source: Based on data taken from INEI

(2019a) Modulo-500 dataset
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Appendix 2

Age category probability distribution according to gender

and chief role

Distribution probabilities for age
categories by gender for household

chiefs.

Age
Category

Female Male

0-4 0.000 0.000
5-9 0.000 0.000
10-14 0.000 0.000
15-19 0.004 0.003
20-24 0.024 0.018
25-29 0.047 0.051
30-34 0.061 0.086
35-39 0.096 0.099
40-44 0.114 0.118
45-49 0.123 0.135
50-54 0.097 0.115
55-59 0.116 0.100
60-64 0.090 0.085
65-69 0.075 0.071
70-74 0.057 0.050
75-79 0.049 0.036
79+ 0.045 0.032

Source: Based on data taken from INEI

(2016, 2017, 2018, 2019b, 2020)

Modulo-200 dataset

Distribution probabilities for age
categories by gender for
non-household-chiefs.

Age
Category

Female Male

0-4 0.093 0.136
05-9 0.097 0.154
10-14 0.099 0.145
15-19 0.104 0.152
20-24 0.097 0.130
25-29 0.083 0.088
30-34 0.072 0.053
35-39 0.063 0.037
40-44 0.063 0.028
45-49 0.057 0.018
50-54 0.045 0.014
55-59 0.032 0.012
60-64 0.030 0.007
65-69 0.022 0.007
70-74 0.015 0.005
75-79 0.012 0.004
79+ 0.017 0.009

Source: Based on data taken from INEI

(2016, 2017, 2018, 2019b, 2020)

Modulo-200 dataset
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Appendix 3

Number of Household members per agent

Number of household members for each agent and each year of simulation
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Appendix 4

Yearly balance per agent

Yearly balance per agent in thousand of PEN
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Appendix 5

Number of (potential) bedrooms per dwelling

Number of (potential) bedrooms per dwelling for every simulated year
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Occupancy ratio per dwelling

Occupancy ratio in (potential) bedrooms per person for each simulation year and
every dwelling
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Need category evolution for every dwelling

Need category for every simulated year and dwelling
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Accumulated debt per dwelling

Debt accumulated by each dwelling every simulation year in thousands of PEN
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Accumulated savings per dwelling

Accumulated savings for each agent every year of the simulation in thousands of
PEN
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Appendix 6

Algorithm 1 Objective function: Maximise

for all a ∈ A do
procedure Determine if the geometry is Manifold and that needs

are met
if a.geometry is Manifold then

m = true
else

m = false
end if
if Space need is satisfied with the new state then

n = true
else

n = false
end if

end procedure
procedure Determine if the new performance is worthy of reward

and modify record accordingly(s, R, P , t)
if s ∈ R[a] then ▷ This is the first time we visit a size

R[a][s]← P
r ← P

else
if P > R[a][s] then ▷ Found performance better than record

R[a][s]← P
r ← P

else
r ← R[a][s]

end if
end if
u← r − (r ∗ t)
if P ≥ u ∧m = true then ▷ Filter non-manifold solutions

b← true
else

b← false
end if

end procedure
procedure Assign reward to the current state(b, n, m)

if b = true ∧ n = true then
reward = 25

else if b = false ∧ n = true then
reward = −25

else if m = false then
reward = −25

else
if current step is last episode’s step then

reward = −25
else

reward = −1 ▷ Minimise number of steps to reach solution
end if

end if
end procedure

end for

• A is the set of participating agents

• s is the size of the current state (in occupied points)

• R is the record dictionary where past high-performing values are stored by
agent identification and state size.

• P is the performance of the current state.

• t is the tolerance value to consider a performance worthy of a reward.
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Appendix 7

Algorithm 2 Objective function: Minimise

for all a ∈ A do
procedure Determine if the geometry is Manifold and that needs

are met
if a.geometry is Manifold then

m = true
else

m = false
end if
if Space need is satisfied with the new state then

n = true
else

n = false
end if

end procedure
procedure Determine if the new performance is worthy of reward

and modify record accordingly(s, R, P , t)
if s ∈ R[a] then ▷ This is the first time we visit a size

R[a][s]← P
r ← P

else
if P < R[a][s] then ▷ Found performance better than record

R[a][s]← P
r ← P

else
r ← R[a][s]

end if
end if
u← r + (r ∗ t)
if P ≤ u ∧m = true then ▷ Filter non-manifold solutions

b← true
else

b← false
end if

end procedure
procedure Assign reward to the current state(b, n, m)

if b = true ∧ n = true then
reward = 25

else if b = false ∧ n = true then
reward = −25

else if m = false then
reward = −25

else
if current step is last episode’s step then

reward = −25
else

reward = −1 ▷ Minimise number of steps to reach solution
end if

end if
end procedure

end for

• A is the set of participating agents

• s is the size of the current state (in occupied points)

• R is the record dictionary where past high-performing values are stored by
agent identification and state size.

• P is the performance of the current state.

• t is the tolerance value to consider a performance worthy of a reward.
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Appendix 8

Algorithm 3 Autostop algorithm

procedure Collect the proportion of ”win” episodes per agent(t, E,
W , A, R, q, s)

Ei ⊂ E
C ← NewDict()
if Ei > E · t then

for all e ∈ Ei do
c← 0
N ← NewList()
for all a ∈ A do

if e ∈W [a] then
if W [a][e] ̸= ”lose” ∧W [a][e] ̸= −R then

if W [a][e] = nonmani then
AddItem(N, true)

else
AddItem(N, false)
if W [a][e] ≤ q + (q · s) then

c = c+ 1
end if

end if
end if

end if
end for
if ∃ true ∈ N then

C[e]← 0
else

C[e]← c÷ size(A)
end if

end for
end if

end procedure
procedure Determine if the learning process stops in the current
episode(C, P )

stop← false
if size(C) > 0 then

m← x corresponding to max(y)∀(x, y) ⊂ C
p← (

∑
y∀(x, y) ⊂ C)÷ size(C)

u← ∃! y ∀ (x, y) ⊂ C
if size(u) = 1 ∧ u[0] > 0 then

stop← true
end if
if p > P then

stop← true
end if

end if
end procedure

• Where E is the maximum number of episodes

• t is the fraction of E to be evaluated to determine the auto-stop.

• Ei are all elapsed episodes

• W is a three-dimensional array that stores agent IDs, episode IDs and the
outcomes of those episodes for those agents.
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• A is the set of participating agents.

• R is the maximum reward attainable (or penalisation when negative).

• q Maximum (or minimum, depending on the objective function) performance
on record at the moment.

• s Tolerance value, a fraction of the current record performance that determines
acceptable rewarded solutions.

• P The stop proportion input.
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Appendix 9

Basic module Budget

The following budget example was taken from Cardenas Vargas (2013), which

calculates the construction cost of a basic module of 40m2 of built area in the city of

Puno in the southern Peruvian Andes (2009 prices). For the purpose of this thesis,

the budget items have been re-arranged in sections that better help discriminate

costs that are exclusive to an extension from those that are included in the dwelling

core.

Units Quant. Unit

Cost

Partial

(PEN)

Total

(PEN)

General expenses (all

construction works)

179.31

Guardian House and ware-

house

GLB 1 93.89 93.89

Worksite cleaning GLB 1 85.42 85.42

Expenses exclusive to

ground floors

5700.90

Manual ground cleaning m2 48.52 1.79 86.8508

Layout m2 38.75 0.88 34.1

Level tracing and Layout

Modifications

m2 25.6 0.84 21.504

Trenches for FoundationS m3 19.5 21.37 416.715

Interior leveling and Com-

paction

m2 54.32 2.72 147.7504

Manual Filling with Exter-

nal Material

m3 3.7 27.94 103.378

Elimination of surplus ma-

terial

m3 18.98 4.99 94.7102

Compacted Filling in

Batches with own material

m3 12.9 21.34 275.286

FoundationS m3 12.65 148.75 1881.6875

214



Concrete for FoundationS

Protection

m3 1.34 202.31 271.0954

Formwork Installation and

Removal for Foundation

Protectors

m2 17.85 23.14 413.049

False Floor Concrete m2 33.73 23.79 802.4367

Concrete in Reinforced

Foundation Protectors

m3 1.67 213.96 357.3132

Formwork Installation and

Removal for Foundation

Protectors

m2 20.25 23.14 468.585

Structural Steel for Rein-

forced Foundation Protec-

tion

kg 79.62 4.1 326.442

Walls (core or exten-

sion)

10789.16

Concrete in Columns m3 4.58 332.13 1521.1554

Formwork Installation and

Removal for Columns

m2 22.94 41.91 961.4154

Structural Steel for

Columns

kg 328.62 4.17 1370.3454

Stretcher bond KK Brick

WallS

m2 66.66 38.58 2571.7428

Indoor Plastering m2 86.05 14.2 1221.91

Outdoor Plastering m2 36.27 14.17 513.9459

Plastering in Windows

doors and other openings

m 41.5 8.7 361.05

Framed wood doors pce 1 280 280

Framed plywood doors pce 9 4.46 40.14

Double glass (2) modular

system (4 mm)

pce 3 250 750

215



Double glass modular sys-

tem (4 mm)

pce 1 65 65

Vinyl Paint ON Exterior

WallS

m2 36.27 7.26 263.3202

Vinyl Paint ON interior

WallS

m2 86.05 6.08 523.184

Wall Power Outlets pt 5 69.19 345.95

Roofs/Ceiling (core or

extension)

6269.73

Concrete in Beams m3 1.86 312.96 582.1056

Formwork Installation and

Removal in Beams

m2 5.09 42.46 216.1214

Structural Steel for Beams kg 226.83 4.17 945.8811

Concrete in Lightened

Slabs

m3 1.98 301.01 595.9998

Formwork Installation and

Removal in Lightened Slabs

m2 30.93 30.51 943.6743

Structural Beam for Light-

ened Slabs

kg 205.48 4.17 856.8516

Hollow Clay Brick for

Lightened Slabs

unit 248 1.91 473.68

Ceilings m2 35.19 27.34 962.0946

Vinyl Paint on Ceiling m2 35.19 5.19 182.6361

Roofing m2 40.21 6.36 255.7356

Ceiling Outlet pt 5 50.99 254.95

Floors (only finishings,

core or extensions)

1146.75

Rubbed-colored Concrete

FloorS

m2 24.17 28.84 697.0628

Light colored Venetian tile

Floor

m2 9.58 46.94 449.6852
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Basic appliances in-

cluded in the core

2319.93

Kitchen Ceramic Wall m2 1.42 43.79 62.1818

Framed Wood Doors pce 2 380 760

Main Door Lock pce 2 35.23 70.46

Stainless Steel Kitchen Sink pce 1 161.2 161.2

5. 3” PVC Rain Water

Outlets

pt 2 31.85 63.7

2” Bronze Cap Provision

and Placement

unit 1 17.01 17.01

Registry box 12” X 24”

with Concrete Cap

pce 1 86.53 86.53

Kitchen Sink Plastering m2 2.1 19.68 41.328

Irrigation Wrench with

1/2” tap

pce 2 45.97 91.94

Hydraulic Test for Residen-

tial Water Installation Pip-

ing

m 26.35 3 79.05

Kitchen sink table unit 1 77.24 77.24

Mixed Power Outlet pce 1 50.03 50.03

Power Outlet for Kitchen pt 1 65.58 65.58

Phone Outlet pt 1 62.91 62.91

TV Antenna Outlet pt 1 52.7 52.7

Output for GONG Type

Bell

pt 1 77.67 77.67

Distribution Board unit 1 109.58 109.58

Electrical Network Conec-

tion

unit 1 159.59 159.59

Concrete Wall for Electric-

ity Metering

unit 1 231.23 231.23
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Appliances shared be-

tween Kitchens and

bathrooms (included in

core)

1480.26

2” PVC Sewage Outlets pt 7 45.06 315.42

2” PVC Outlets m 17 16.18 275.06

2” Bronze Sink Provision

and Placement

unit 3 18.68 56.04

Cold Water Outlet with

1/2” PVC-SAP Pipe

pt 6 49.87 299.22

Distribution network 1/2”

PVC-SAP pipe

m 25.5 10.43 265.965

1/2” Bronze gate valves pce 4 67.14 268.56

Additional costs of a

Bathroom (extension)

1505.24

Domestic Ceramic Wall m2 8.06 37.34 300.9604

Concrete skirting m 7 8.14 56.98

Bathroom door lock pce 1 26.37 26.37

Low Tank Toilet pce 1 265.83 265.83

Wall Lavatory pce 1 137.53 137.53

Chomed Shower incl. acce-

sories

unit 1 64.98 64.98

4” PVC sewage Outlets pt 3 59.03 177.09

2” PVC Ventilation Outlets pt 1 37.35 37.35

4” PVC Outlets m 20 20.67 413.4

4” Bronze Cap Provision

and Placement

pce 1 17.16 17.16

2” PVC Ventilation Hat pce 1 7.59 7.59

TOTAL 29391.29
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Aggregated Unit costs

From the previous categories, it is possible to get aggregated unit costs:

Category Unit cost detail Category
budget

Quantity Unit
cost

General expenses Per work 179.31 1 179.31

Exclusive to ground
floors

Per m2 of built
area

5700.90 40.00 142.52

Walls Per m2 of wall 10789.16 66.66 161.85

Roofs/Ceiling Per m2 of ceiling 6269.73 35.19 178.17

Floors Per m2 of finished
floor

1146.75 33.75* 33.98

Shared between Kitchens
and bathrooms

0.5 per bathroom 1480.26 0.50 740.13

Additional costs of a
Bathroom

Per bathroom 1505.24 1 1505.24

* This is the sum in area of the two items belonging to this category
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Extension Budget With these unitary costs, it is possible to generate ap-

proximate budgets for different extension situations using the prices for 2009. These

tables aim to answer ”How much did it cost to build an extension of 2.7*2.7*2.7 in

Puno, Peru, in 2009?” (the size corresponds to one spatial module in the simulation).

Case A: Located on the ground floor, needs only ONE wall to enclose the

perimeter.

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

Ground extras per m2 of built area 7.29 142.52 1038.99

General expenses unit 1 179.31 179.31

Walls per m2 of built wall 7.29 161.85 1179.91

Ceiling per m2 of ceiling 7.29 178.17 1298.84

Floor per m2 of floor 7.29 33.98 247.70

Partial
total
(PEN) 3944.75

Case B: Located on the ground floor, needs TWO walls to enclose the perimeter.

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

Ground extras per m2 of built area 7.29 142.52 1038.99

General expenses unit 1 179.31 179.31

Walls per m2 of walls 14.58 161.85 2359.82

Ceiling per m2 of ceiling 7.29 178.17 1298.84

Floor per m2 of finished floor 7.29 33.98 247.67

Partial
total
(PEN) 5124.67
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Case C: Located on the ground floor, it needs THREE walls to enclose the

perimeter.

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

Ground extras per m2 of built area 7.29 142.5226 1038.99

General expenses unit 1 179.31 179.31

Walls per m2 of walls 21.87 161.85 3539.74

Ceiling per m2 of ceiling 7.29 178.1679 1298.84

Floor per m2 of finished floor 7.29 33.97772 247.70

Partial
total
(PEN) 6304.58

Case D: Located above the ground floor, it needs ONE wall to enclose the

perimeter.

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

General expenses unit 1 179.31 179.31

Walls per m2 of walls 7.29 161.85 1179.913

Ceiling per m2 of ceiling 7.29 178.17 1298.844

Floor per m2 of finished floor 7.29 33.98 247.6976

Partial
total 2905.76
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Case E: Located above the ground floor, needs TWO walls to enclose the perime-

ter

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

General expenses unit 1 179.31 179.31

Walls per m2 of walls 14.58 161.85 2359.83

Ceiling per m2 of ceiling 7.29 178.17 1298.84

Floor per m2 of finished floor 7.29 33.98 247.70

Partial
total 4085.68

Case F: Located above the ground floor, needs THREE walls to enclose the

perimeter

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

General expenses unit 1 179.31 179.31

Walls per m2 of walls 21.87 161.85 3539.74

Ceiling per m2 of ceiling 7.29 178.17 1298.84

Floor per m2 of finished floor 7.29 33.98 247.70

Partial
total 5265.59
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Case G: Located above the ground floor, needs FOUR walls to enclose the

perimeter

Category Unitary cost detail Unit

Unitary
cost
(PEN)

Total
cost
(PEN)

General expenses unit 1 179.31 179.31

Walls per m2 of walls 29.16 161.85 4719.65

Ceiling per m2 of ceiling 7.29 178.17 1298.84

Floor per m2 of finished floor 7.29 33.98 247.70

Partial
total 6445.50

223



Additional space needed

Extensions usually need areas besides their assigned function to provide access

or complementary services. In the case of potential bedrooms, this is more evident,

as they are usually fully enclosed and increase the demand for toilets.

The additional area for access to the extension is calculated with the most space-

consuming solution, which is a corridor that runs adjacent to one of the sides of the

module. This generates a corridor with an area of 2.43 m2 (2.7*0.9 m) using a

standard corridor width of 0.9 m. As this access could be potentially shared among

at least two spaces, only half of that figure (2.215 m2) is considered as the access

area needed for each modular extension. This is equivalent to 0.15 of the module

area, a fraction used in the budget to maintain the differences among cases. Toilets

are sized using the same fraction of the extensions’ built area, with additional costs

referred to the need to implement additional appliances in this sort of space.

Case Room
cost

Access Bathroom Bathroom
exclusive
appliances

Bathroom
shared
appliances

Total

A 3944.75 591.71 591.71 1505.24 740.13 7373.55

B 5124.67 768.70 768.70 1505.24 740.13 8907.44

C 6304.58 945.69 945.69 1505.24 740.13 10441.33

D 2905.76 435.86 435.86 1505.24 740.13 6022.86

E 4085.68 612.85 612.85 1505.24 740.13 7556.76

F 5265.59 789.84 789.84 1505.24 740.13 9090.64

G 6445.5 966.83 966.83 1505.24 740.13 10624.52

Additional budget in PEN assigned to auxiliary spaces needed for functional
extensions
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Appendix 10

To get an average rate of inflation for the model, the most straightforward manner

was to use the official building unit values published by the government to value

buildings for tax purposes. Although these values are not commercial and do not

aim to reflect the cost of building; they are updated yearly, taking into account

inflation.

The following table shows the values of a building of an area of 40m2 (the same

size as the budgeted core shown in Appendix 6) for every year between 2015 and

2019 in the ”Sierra” region. The letters represent each of the categories included

in the official building unit values for those years (Ministerio de Vivienda, 2015,

Ministerio de Vivienda, 2016, Ministerio de Vivienda, 2017, Ministerio de Vivienda,

2018, Ministerio de Vivienda, 2019)

Year 2015 2016 2017 2018 2019

Built Area (m2) 40 40 40 40 40

Walls C C C C C

Roofs C C C C C

Floors G G G G G

Doors and windows F F F F F

Coatings F F F F F

Toilets C C C C C

Electrical and sani-
tary fittings

E E E E E

Total value 23140.0 23834.8 24549.6 25285.6 25817.2

Yearly increase (%) +3.00 +2.99 +3.00 +2.10

Valuation in PEN using the official unitary values for a 40 m2 construction in the
Sierra region of Peru

The average yearly increase in value for the selected years is 2.77 %
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Appendix 11

Honeybee/EnergyPlus Settings

Construction sets

Exterior subset

Parameter Variable Value Source

Wall extw

7/8” Stucco + 0. 4”
Normal weight concrete
wall + 7/8” Stucco (R =
0.108 m2 K/W).

Direct observation.
Honeybee material
library.

Roof extr

Generic roof membrane
+ 0. 8” Normal-weight
concrete floor + 7/8”
Stucco (R = 0.182 m2

K/W).

Direct observation.
Honeybee material
library.

Floor expfl

7/8” Stucco + 0. 8”
Normal-weight concrete
floor + 7/8” Stucco (R =
0.152 m2 K/W).

Direct observation.
Honeybee material
library.

Ground subset

Parameter Variable Value Source

Wall extw
Same as exterior wall (R
= 0.108 m2 K/W)

Direct observa-
tion.Honeybee
material library.

Roof extr
Same as exterior roof (R
= 0.182 m2 K/W)

Direct observa-
tion.Honeybee
material library.

Floor grdfl
Concrete pavement (R =
0.115 m2 K/W)

Direct observa-
tion.Honeybee
material library.
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Sub-face subset

Parameter Variable Value Source

Window windows
U 0.11 SHGC 0.34 Sim-
ple glazing (R = 1.42 m2

K/W).

Direct observation.
Honeybee material
library.

Skylight - None Direct observation.

Operable - None
Because ventilation
is 0.

Exterior
door

doors

5/8” plywood + Generic
wall air gap + 5/8” ply-
wood (R = 0.417 m2

K/W).

Direct observation.
Honeybee material
library.

Overhead
door

- None Direct observation.

Glassdoor - None Direct observation.
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Schedules

People occupancy schedules

Hours Weekdays (peop wday) Weekends (peop wend)
0:00 – 6:00 hrs 1 1
06:00 – 08:00 hrs 0.5 0.75
08:00 – 17:00 hrs 0.25 0.75
17:00 – 21:00 hrs 0.5 0.75
21:00 – 24:00 hrs 1 1

Lighting schedule

Hours Use
0:00 – 6:00 hrs 0
06:00 – 08:00 hrs 0.5
08:00 – 17:00 hrs 0
17:00 – 19:00 hrs 0.5
19:00 – 22:00 hrs 1
22:00 – 0:00 hrs 0

Electric equipment use schedule

Hours Weekdays (eq use) Weekends (eq sch)
0:00 – 6:00 hrs 0 0
06:00 – 08:00 hrs 0.5 0.5
08:00 – 17:00 hrs 0 0.5
17:00 – 19:00 hrs 0.5 0.5
19:00 – 22:00 hrs 0.5 0.5
22:00 – 0:00 hrs 0 0

Gas equipment use schedule

Hours Use
0:00 – 6:00 hrs 0
06:00 – 07:00 hrs 1
07:00 – 11:00 hrs 0
11:00 – 13:00 hrs 1
13:00 – 17:00 hrs 0
17:00 – 18:00 hrs 1
18:00 – 24:00 hrs 0
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Hot water use schedule

Hours Use
0:00 – 6:00 hrs 0
06:00 – 07:00 hrs 0.5
07:00 – 18:00 hrs 0
18:00 – 19:00 hrs 0.5
19:00 – 24:00 hrs 0

Cooling and heating setpoints

Setpoint schedule
Parameter Variable Value
Heating heat spoint 18 oC
Cooling cool spoint 24 oC
Humidification hum spoint None
Dehumidification dhum spoint None

These setpoints do not reflect the presence of HVAC systems but are a
reference to achieve a standard “healthy” indoor environment (WHO, 1987).
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Programmes

People programme

Parameter Variable Value Source

People
my human
density

0.1
people/m2

The mean figure of the base and
the last years of the social simu-
lation a.

Activity
schedule

None
120
W/person

The schedule is set to always
on and uses Honeybee’s default
value, corresponding to awake
adult humans who are seated.

a The average number of bedrooms/people from the social simulation’s base
year is 0.72. For that same timestep, dwellings have 2 bedrooms in 43.74 m2,
so that to each bedroom corresponds 21.87m2. Thus, on the simulation’s base
year, there is 0.033 people/m2. For the last year of the simulation (average
number of bedrooms 3.87; average size of the dwelling 60.78 m2 and average
number of bedrooms/people 2.65), we get an average of 0.17 people/m2.

Lighting programme

Parameter Variable Value Source
Watts per
area

watts light 3.15 W/m2 Considering a 23 W energy saver
bulb in each modular room.

Return frac-
tion

return fract 0 Default value.

Radiant
fraction

radiant fract 0.32 Default value.

Visible frac-
tion

visible fract 0.25 Default value.

Electrical equipment programme

Parameter Variable Value Source
Watts per
area

watts eq 6.56 W/m2 Approximate based on relevant
and situated literature b

Radiant
fraction

radiant fract 0 Default value.

Latent frac-
tion

latent fract 0 Default value.

Lost frac-
tion

lost fract 0 Default value.

b Oraiopoulos et al. (2022) consider 12W per “zone floor area” for lighting and
a bit more than twice that figure for electrical equipment (25W per “zone
floor area”). The same correlation between lighting and electrical equipment
is used here.
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Gas equipment programme

Parameter Variable Value Source
Watts per
area

watts gas 2.94 W/m2 ERCUE survey 2019-2020 c.

Radiant
fraction

radiant fract 0 Default value.

Latent frac-
tion

latent fract 0 Default value.

Lost frac-
tion

lost fract 0 Default value.

c According to the ERCUE survey 2019-2020 (De La Cruz, Salazar, & Coello,
2021), in the urban areas of Peru, the average consumption of LPG, measured
in 10-kg bottle units, was 1.06 per month, equivalent to 0.48 MMBTU, or 140
640 Wh per month. Considering 730hrs in a month, this is equivalent to
193W, then divided by the maximum ground floor area (65.61 m2).

Hot water programme

Parameter Variable Value Source

Flow per
area

my hotw flow 0.21 l/h-m2

Peru’s building standards
code taking into account 2
people per room d.

Target tem-
perature

target temp 60 oC Default value.

Sensible
fraction

sensible fract 0.2 Default value.

Latent frac-
tion

latent fract 0.05 Default value.

d Peru’s building code (RNE) section IS 0.10 (Ministerio de Vivienda, 2006),
referring to water and sewage provision, mentions in Article 11 a daily allo-
cation of hot water in residential buildings according to the number of bed-
rooms. Considering two persons per bedroom, this ranges between 40-60
litres per person per day. This study considers the mean between these two
extremes (50 l/person-day or 2.08 l/person-hour) and the density of dwellers
(0.1 people/m2).

Infiltration programme

Parameter Variable Value Source

Flow per ex-
ternal area

my flow
0.0003 m3/s
per m2 of
façade

Honeybee’s recommended value
for an “average” building. The
schedule is set to always on.
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Honeybee ”Room” configuration

Honeybee room settings

Conditioned myConditioned TRUE

It does not reflect the pres-
ence of HVAC systems, but
it is used as a reference to
achieve a standard “healthy”
indoor environment.e

Roof Angle my roofangle 60 Default
e The ERCUE survey 2019-2020 reveals that the number of Peruvian households
using appliances to climatise interior spaces is negligible, between 0.3% using
gas-powered systems (De La Cruz, Salazar, & Coello, 2021) and 2% using
electric systems (De La Cruz, Salazar, & Santos, 2021).
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Apertures

Aperture by ratio configuration

Parameter Variable Value Source
Ratio my aper ratio 0.25 Empirical observation.
Subdivide my subdivision FALSE Only one window per surface.

Windows
height

my win hgt
None (Over-
ridden by
ratio)

-

Sill height my sill hgt
None (Over-
ridden by
ratio)

-

Horizontal
separation

my h sep
None (Over-
ridden by
ratio)

-

Vertical sep-
aration

my v sep
None (Over-
ridden by
ratio)

-

Operable my oper apert FALSE
Ventilation assumed from in-
filtration only.
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Honeybee Simulation Parameters

Honeybee Simulation Parameters

Parameter Variable Value
North my north 180o

Run period my run period Year (default)
Daylight
saving

my daylight saving False (default)

Holidays my holidays None (default)
Start day of
the week

my startday Sunday

Timesteps
per hour

my tstep 1

Terrain my terrain Urban

Simulation
control

my simcontrol
Perform a sizing calculation but only
run the simulation for the RunPeriod
(default).

Shadow cal-
culation

my shadow calc
”Full exterior with reflections, poly-
gon clipping, periodic, for every day
of the year (365).”

Sizing my sizing None
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Honeybee Simulation outputs

Honeybee Simulation outputs

Parameter Variable Value
Zone energy use my zone eu TRUE
HVAC Energy use my hvac eu FALSE
Gains and loses my gains loses FALSE
Comfort metrics my comfort m FALSE
Surface temperature my surf temp FALSE
Surface energy flow my surf e flow FALSE
Load type my load type FALSE
Report frequency my freq type Annual
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EnergyPlus weather files

EPW Files

City Location EPW file Source

Juliaca
15.5° S
70.13° W
3824 m.a.s.l.

PER PUN Juliaca-
Manco.AP.847350 TMYx.2007-
2021.epw

climate.onebuilding.org

Piura
5.18° S
80.65° W 55
m.a.s.l.

PER PIU Piura-
Iberico.Intl.AP.844010
TMYx.2007-2021.epw

climate.onebuilding.org

Tarapoto
6.48° S
76.37° W
356 m.a.s.l.

PER SAM Tarapoto- Pare-
des.AP.844550 TMYx. 2007-
2021.epw

climate.onebuilding.org

236



Appendix 12

Socio-economic modelling settings

Socio-economic model settings

Parameter Variable Value
Seed for pseudorandom number generator. set.seed() 229
Total number of synthetic agents in the
simulation.

total ag 48

Probability of agents belonging to the
socio-economic level B.

sel b 0.2

Probability of agents belonging to the
socio-economic level C.

sel c 0.3

Probability of agents belonging to the
socio-economic level D.

sel d 0.6

Number of years of the simulation. nr yrs 25

Micro-investment model settings

Parameter Variable Value Source

Limits defining the cate-

gories of “need” in bed-

rooms/people.

need thld

[-Inf, 0.5),

[0.5, 1),[1,

Inf)

International consensus on

minimum adequate living

conditions and proposed

good standard [1]

Times the household’s

yearly financial balance

(when positive) that can

be taken as a loan.

loan cap 4

In most places in the world,

lenders use the rule of thumb

of capping mortgages at 4.5

times the income and the

loan-to-income ratio to 30%-

40%.

The annual interest rate

charged to loans.
interest 0.15

Average in 2015, according

to Peru’s banking and insur-

ance superintendency [2].
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The maximum fraction of

a “no-need” household’s

accumulated savings that

still triggers construction

if it pays for the con-

struction cost.

Noneed thr 0.01
Empirical, avoids over-

extension.

The maximum fraction

of the household accumu-

lated savings allowed to

be used to pay for con-

struction or for debt re-

payment.

invs max 0.6
Empirical, avoids depletion

of savings.

Initial size of the dwelling

(in number of actual bed-

rooms).

dw size 0 2
Minimum requirement for

“Techo Propio” dwellings.

Building cost at year 0

(2015)
bld cst 0 10120

Referential figure, calculated

for 2015, see Appendix 9.

Annual inflation applied

to construction costs.
inflt 0.028

Average calculated using

Peru’s Official Building

Unit Values 2015-2019, see

Appendix 10.

[1] The definition of overcrowding, according to UN-habitat, is to have more

than three persons per potential bedroom. The international consensus to define

adequate living conditions is two persons or less per potential bedroom. The gold

standard would be to have at least one potential bedroom per person so there are

remaining spaces to accommodate more specialized activities. Check Chapter 6,

micro-investment model, for more details.

[2] The average interest rate for mortgages in Peru in June 2015 was 8.38%. The

average for personal loans was 24.33% (Superintendencia de Banca Seguros y AFP,

2024).
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Appendix 13

Geometry Generation script settings

GG script settings

Parameter Variable Value
Number of agents (dwellings) in the neighbourhood (data
read from the socio-economic model).

nr agents 48

Coordinates (in meters) of the origin of the neighbourhood
in the X axis.

lotorigx 0

Coordinates (in meters) of the origin of the neighbourhood
in the Y axis.

lotorigy 0

Number of blocks in the X axis. my nrblocksX 3
Number of blocks in the Y axis. my nrblocksY 2
Width of the streets between blocks (in meters). my streetwith 11
Size (in modules) of the buildable area within the lot in the
X axis.a

lotsizex 3

Size (in modules) of the buildable area within the lot in the
Y axis.a

lotsizey 3

Size of the module (in meters). my module 2.7
Coordinates (in modular units, within the lot) of the origin
of the dwelling seed in the X axis.

coreorigx 0

Coordinates (in modular units, within the lot) of the origin
of the dwelling seed in the Y axis.

coreorigy 0

Size (in modular units) of the dwelling seed in the X axis. coresizex 1
Size (in modular units) of the dwelling seed in the Y axis. coresizey 1
Maximum height allowed for vertical development (in mod-
ular units).

maxheight 3

The number of lots that make one side of a block. NrlotsOnSide
(nr agents/2)
/ n blocks

If True, the blocks are formed by mirrored lots. If False,
they are formed by a single line of lots.

doubleside TRUE

If True, the side lots are generated on the X axis direction,
if False, they are generated on the Y axis direction.

mainsideXorY TRUE

Radius (in meters) of a circle drawn from the centre of lots
and used to identify the neighbours of every dwelling.

radius neighid my module * 4

Sequence of actions to set the initial module. basic mod stps [2, 1, 2, 5, 7]
a By default, the lots’ buildable areas have a setback from the back boundary of the lot equiv-
alent to 1 module and a setback from the street (front boundary of the lot) of 0.5 modules.
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Appendix 14

Multi-agent Q-learning settings

Multi-agent Q-learning settings

Parameter Variable Value

The tolerance within the absolute objective to still
consider awarding the maximum reward to a solution.a

tolerance 0.01

The number of years in which the simulation will run
(taken from the socio-economic model).

years 25

The maximum number of episodes allowed for each
learning process.

episodes 200

The maximum number of steps within an episode. In
this model, this is related to the number of rooms built
in a year, currently capped at 1.

steps 1

This reward is assigned to an agent when they achieve
the goal. The maximum penalisation (awarded on
“deadly” states) is the negative of this value.

GOAL REWARD 25

Penalisation for each step passed in which a “terminal”
state is not encountered.

TIME PENALTY -1

”The discount factor, which determines the impor-
tance of future rewards.”

DISCOUNT 0.9

The lowest learning rate achievable at the last episode
allowed at the current learning process.

lowest lr 0.1

The lowest epsilon value achievable at the last episode
allowed at the current learning process.

lowest ep 0.005

Fraction of the maximum allowed episodes in the
learning task that have to be evaluated to determine
a stop of the task.

lookback f 0.1

Proportion of the latest episodes evaluated that need
to be successful (maximum reward) so that the learn-
ing task stops.

stop prop 0.75

a It has to be noted that, as tolerance bounds a “negotiation space”, it is possible
to apply individualized tolerances to agents, so that individual attitudes towards
negotiation are mimicked. Nevertheless, in this thesis, tolerances are simply used
to facilitate the learning process and are thus universal.
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Appendix 15

Agent activity on space by year

Construction activity on years 0-9
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Construction activity on years 10-21
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Construction activity on years 22-23
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Appendix 16

Learning process by agent for each simulation year (Piura,

minimisation, competitive)

(a) Performance (b) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(1)
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(c) Performance (d) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(2)
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(e) Performance (f) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(3)
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(g) Performance (h) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(4)
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(i) Performance (j) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(5)
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(k) Performance (l) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(6)
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(m) Performance (n) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(7)
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(o) Performance (p) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(8)
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(q) Performance (r) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(9)
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(s) Performance (t) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(10)
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(u) Performance (v) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(11)
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(w) Performance (x) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(12)
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(y) Performance (z) Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(13)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(14)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(15)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(16)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(17)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(18)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(19)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(20)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(21)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(22)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(23)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(23)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(24)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(25)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(26)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(27)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(28)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(29)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(30)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(31)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy minimisation
(32)
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Appendix 17

Learning process by agent for each simulation year (Piura,

Maximisation, competitive)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (1)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (2)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (3)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (4)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (5)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (6)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (7)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (8)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (9)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (10)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (11)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (12)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (13)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (14)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (15)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (16)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (17)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (18)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (19)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (20)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (21)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (22)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (23)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (24)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (25)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (26)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (27)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (28)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (29)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (30)

() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (31)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (32)
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() Performance () Rewards

Learning process of all agents in Piura Competitive scenario for energy use Maximi-
sation (33)
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Appendix 18

Learning process by agent for each simulation year (Juliaca,

Minimisation, cooperative)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (1)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (2)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (3)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (4)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (5)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (6)

307



() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (7)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (8)

309



() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (9)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (10)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (11)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (12)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (13)

314



() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (14)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (15)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (16)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (17)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (18)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (19)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (20)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (21)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (22)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (23)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (24)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (25)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (26)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (27)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (28)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (29)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (30)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (31)

() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (32)
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() Performance () Rewards

Learning process of all agents in Juliaca cooperative scenario for energy use Min-
imisation (33)
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Appendix 19

Learning process by agent for each simulation year (Juliaca,

Minimisation, competitive)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (1)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (2)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (3)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (4)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (5)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (6)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (7)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (8)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (9)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (10)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (11)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (12)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (13)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (14)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (15)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (16)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (17)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (18)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (19)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (20)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (21)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (22)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (23)

350



() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (24)

351



() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (25)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (26)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (27)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (28)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (29)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (30)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (31)

() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (32)
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() Performance () Rewards

Learning process of all agents in Juliaca competitive scenario for energy use Min-
imisation (33)
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Appendix 20

Learning process by agent for each simulation year (Tarapoto,

Minimisation, competitive)

() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
imisation (1)
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() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
imisation (2)
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() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
imisation (3)
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() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
imisation (4)
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() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
imisation (5)
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() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
imisation (6)
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() Performance () Rewards

Learning process of all agents in Tarapoto competitive scenario for energy use Min-
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Appendix 21

Spatial outcomes comparison by location

() Piura () Juliaca () Tarapoto

Emerging Spatial outcomes by year and location (1)
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Emerging Spatial outcomes by year and location (2)
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Appendix 22

Spatial outcomes comparison by scenario, competitive and

cooperative

() Cooperative () Competitive

Emerging Spatial outcomes by year and scenarios cooperative and competitve (1)
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Appendix 23

Spatial outcomes comparison by scenario, maximisation and

minimisation

() Maximisation () Minimisation

Emerging Spatial outcomes by year and scenarios maximisation and minimisation
(1)
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Emerging Spatial outcomes by year and scenarios maximisation and minimisation
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Emerging Spatial outcomes by year and scenarios maximisation and minimisation
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