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A B S T R A C T

Over time, optical microscopy has improved to allow for increasing
resolution. Traditional light microscopes can resolve distances down to
200nm due to the diffraction limit of light. Significant challenges arise
when trying to see structures smaller than this.

Single Molecule Localisation Microscopy (SMLM) techniques, includ-
ing stochastic optical reconstruction microscopy (STORM) [1], photo-
activated localisation microscopy (PALM) [2] and fluorescence photo-
activated localisation microscopy (FPALM) [3] have brought nanoscale
resolution into biology, circumventing the diffraction limit on micro-
scopy by exploiting the photoblinking ability of some fluorophores.

There remain a number of technical challenges involved with SMLM,
in both acquisition and analysis of the data. Extracting useful informa-
tion from reconstructed images (particularly counting the number of
molecules of interest in the sample) is still difficult in samples which
are densely-labelled with many overlapping fluorophores. Datasets are
also typically very large so simply processing and storing data can be
a technical challenge itself.

This thesis postulates that a combination of Gibbs sampling by means
of a Mixture Model and a Modified Ising Model (MIM) could be used to
improve the accuracy of SMLM reconstructions by characterising each
pixel of the image into two populations: signal or noise. Through test-
ing on simulated datasets, it was found that this method of classifying
pixels can successfully denoise images, and reduce the amount of disk
space required to save them by, on average, 95%. Statistical knowledge
about the two populations is also determined using a parameterless
system.

It was found that using the processed data in combination with
machine learning algorithms [4], could provide an improved method
for accurately counting fluorophores of interest in sample sections. The
accuracy reached values of 88.6%, 89.3%, 90.8% and 98.9%, and loss
values of 0.229, 0.213, 0.191 and 0.017 for the non-processed datasets,
the Mixture Model output, the MIM output and the product of the
Mixture Model and MIM outputs respectively. Using the processed
datasets also decreased the number of iterations required for the neural
network (NN) to reach a high accuracy/ low loss. These accuracies
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and loss values were reached on the training dataset. This method
could be used on real SMLM datasets, potentially providing a way to
determine the absolute numbers of biological molecules of interest in
cells, allowing biologists to extract more quantitative information from
SMLM techniques.

The NN was adapted to take in three dimensional data instead of just
single images. This data included the previous, current and following
images. Unfortunately this only managed to get to an accuracy of
42.4% using the 4 different datasets as before: non-processed data, the
Mixture Model output, the MIM output and the product of the Mixture
Model and MIM outputs
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1
L I G H T, L E N S E S : P H Y S I C S A N D B I O L O G Y

For nearly 2000 years, [1] humans have been using lenses to image
objects which are inaccessible to the naked eye. For example, we use
imaging techniques in medicine to look inside objects, in microbiology
to look at very small objects, and in astronomy to look at objects
which are very far away. This thesis focuses on imaging in the field of
microscopy, particularly for biological applications.

The human eye can discern objects down to around 0.07mm in
diameter [2] which is roughly the size of a single strand of hair. In
order to image objects smaller than this, for example organelles inside
cells, a magnified image of the object in question must be produced
using combinations of lenses.

1.1 microscopes - an early history

Although imaging can be a huge challenge for scientists, lenses have
been used for millennia to make objects appear larger. The earliest
microscopic observation was circa A.D. 63, when Seneca noticed that a
glass globe filled with water made letters larger and clearer [1]. The
Romans also used curved planes of glass to magnify objects by around
2.5 times in the first century [3]. Some optical properties of lenses
were known by medieval writers such as Roger Bacon, and the first
spectacles with convex lenses were created in the 1300s by Salvino
d’Amarto [3].

The first publication that used a magnifying glass was in 1592, that
contains hand drawn illustrations that go into more detail than could
be seen by the naked eye. The illustrations are of common objects in
nature. However, they are drawn with minute accuracy with enlarged
details which would have been indistinguishable to the unaided eye.
[1]
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light, lenses : physics and biology

Up to this point is often referred to as the Pioneering Period of
Microscopical discovery and it brought together the understanding that
lenses could be used in both microscopes and telescopes to make objects
look bigger. Although telescopes were generally accepted straight away
and used to further research in astronomy, microscopes took around
half a century before they started being used for scientific research
and the observations in the beginning were unrelated and scattered
across many different areas [1]. Before this they were seen as mere
amusements [4].

Optical or light microscopes, use visible light and lenses to magnify
objects. Objects can be magnified using just one lens, but modern-day
microscopes use a combination of lenses to achieve higher magnification
power [5]. The compound microscope uses two or more lenses, both
an objective lens and an eyepiece, to further magnify objects. It is
unknown who specifically came up with this idea however credit is
often given to Hans and Zachcrias Hanssen in the 1590’s [6, 7] due to
letters that were sent in this period describing this particular set up.

In 1661, Marzello Malpighi was the first man to publish a scientific
discovery using a microscope, thus starting the Classical period of mi-
croscopical discovery. He looked at dried lungs of frogs and postulated
that blood flows in a closed system. He also discovered the existence
of capillaries. [6].

Robert Hooke and Antoni van Leeuwenhoek advanced microscopy
and discovered the existence of microscopic organisms between 1665-
83 [5]. Often Leeuwenhoek is described as the ’first of the microbe
hunters’ due to his letter from 1676 [6]. However, Hooke had previously
discovered several varieties of fungi, and published "Micrographia", an
illustrated book on microscopy in 1665 [8]. Hooke also coined the term
‘cell’ after looking at cork through a microscope and seeing a regular
series of shapes and likening them to a monk’s cell [6].

Many more discoveries were found using compound microscopes
from this point, but it was not until the late 1800’s that the resolving
power of these microscopes were fundamentally limited by the diffrac-
tion of light. It was at this point that new microscopes and techniques
were starting to be developed.

1.2 lenses

All waves, for example electromagnetic waves, travel at different speeds
through different media. This leads to a change in the direction that the
light is travelling when transitioning a boundary between two different
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materials. This property is known as refraction and is described by
Snell’s law [9, 10] in equation (1.1):

n1 sin θi = n2 sin θr, (1.1)

where θi and θr are the angle of incidence and refraction respectively
and n1 and n2 are the refractive indices of materials 1 and 2 respectively.
The refractive index of a medium is the ratio of the speed the wave
travels in a vacuum, c, to the speed it travels in the medium, vi:

ni =
c

vi
. (1.2)

Although Snell’s law was first realised by Ibn Sahl in 984A.D. [9, 11],
it is credited to Astronomer Snellius and his experimental work in 1621

[9]. Snell’s law shows that light travelling from a medium with a low
refractive index to a medium with a higher refractive index will bend
towards the normal. This phenomena is shown in figure 1.1.

Figure 1.1: A wave transitioning a boundary from a material with a lower
refractive index to a material with a higher refractive index will be
refracted towards the normal (θ2 < θ1).

By changing the shape of the interface between materials, refraction
can be exploited and light can be bent to a focal point, f [12]. There
exists many different shapes of lenses with straight, concave or convex
edges which changes the position of the focal point. Common thin
lenses can be seen in figure 1.2. The lens-maker formula or thin-lens
equation below (equation (1.3)) [12] can be used to calculate the focal
point of a lens.

1

so
+
1

si
=
1

f
= (nl −n)(

1

R1
−
1

R2
), (1.3)

where so and si are the distances from the object and image respectively,
ni and n are the refractive index’s of the lens and external media

3
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Figure 1.2: Shapes of common thin lenses. The types shown are: a) double con-
vex, b) plano-convex, c) converging meniscus, d) double concave,
e) plano-concave, f) diverging meniscus. a-c) are all converging
lenses, which d-f) being diverging lenses (adapted from [13])

respectively (e.g. if the lens was in air then n ≈ 1). R1 and R2 are the
radii of curvature of the first and second edge of the lens.

The most commonly used lenses in microscopes are double convex,
or biconvex lenses and plano-convex, or straight-convex, lenses and
they are often put together in the form of compound lenses. Compound
lenses are simply a combination of different lenses that fit together to
make a more complicated lens and change the direction of the light in
question.

Another phenomenon that occurs in waves is diffraction [10]. All
transverse waves, from water waves to electromagnetic waves, undergo
diffraction when reaching a boundary or going through an aperture.
This causes the waves to spread out, changing the wavefront. When
going through a small aperture, for example a small slit or a circular
hole that is comparable to the wavelength, diffraction causes construct-
ive and destructive interference to occur [10, 12]. Light propagating
after the aperture has a very different wavefront to the light before.
When light passes through a small slit, a double slit, or even a series of
slits, the pattern of light on a screen would be a series of lines starting
the brightest in the central maxima and decreasing in intensity as you
move away from the centre. The diffraction pattern from a single slit
experiment is shown in figure 1.3.

When going through a small circular aperture the light diffracts
to create a central bright spot surrounded by concentric rings which
decrease in intensity the further from the centre you move [15]. This
pattern is called an Airy disk [12], named after George Airy [15], and is
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Figure 1.3: Incident monochromatic light enters a single thin slit from the left,
creating a diffraction pattern on the right. A visual representation
of the diffraction pattern can be seen, along with an intensity
profile (red), showing a central intensity maximum with thinner,
dimmer maxima on either side of the maximum. [14]

shown in figure 1.4. When light from a point source is imaged through
a lens onto a screen or camera, this same pattern, called a point spread
function (PSF), is formed.

The diffractive property of light makes it fundamentally impossible
to focus light from a point source back down to a single point and
makes traditional optical microscopes have a resolution limit which is
diffraction limited.

When point sources are very close to each other in object space,
their PSFs can overlap in image space, as shown in figure 1.4. If the
physical separation of these sources is less than half of the size of the
microscope’s PSF, it is no longer possible to differentiate between the
sources in the image. In 1873 Ernst Abbe developed the first equation
to describe this resolution in the x and y direction [17]:

Resolution(x,y) =
λ

2NA
=

λ

2n sin(θ)
, (1.4)

where λ is the wavelength of light, NA = n sin θ is the numerical
aperture (NA) [18] of the objective lens, with n being the refractive
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Figure 1.4: Airy disks and intensity distributions for a) a point spread function
(PSF), b) two PSFs that are just resolvable and c) two PSFs that are
unresolvable. [16]

index of the lens and θ the collection angle of the lens. This is shown
in figure 1.5.

There are several other different equations to describe the resolution
limit. They all have slightly different constants in the equation. Another
popular resolution equation is the Rayleigh Criteria [19]:

Resolution(x,y) = 0.61
λ

NA
= 0.61

λ

n sin θ
. (1.5)

Here you can see that the constant in front of the fraction has been
changed from 1

2 (or 0.5) to 0.61.

Using equations (1.4) and (1.5), the best achievable resolution with
a typical oil objective lens (NA = 1.4) and visible light (λ ≈ 500 nm)
is approximately 200 nm. This is sometimes referred to as Abbe’s
diffraction limit [20].

At this resolution, only large organelles separated by significant
distances within the cells will be discernible. Finer cellular structures
cannot be determined, so it would not be possible to perform co-
localisation studies to investigate the relationship between particular
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Figure 1.5: The collection angle of a lens. A point source in the sample emits
light in all directions. Only light collected by the lens can con-
tribute to the final image. Using a lens material with a higher
refractive index can increase the collection angle of the lens, lead-
ing to higher resolution images.

cell components to help determine how the cell functions. Figure 1.6
shows some examples of structures at different sizes and what can be
seen with this resolution.

Figure 1.6: An array of biological specimens and their relative sizes. At
the typical Abbe resolution limit of 200 nm, viruses and smaller
internal molecules of cells will not be visible. [20]

Equations (1.4) and (1.5) indicate that the resolving power of a mi-
croscope can be increased by reducing the wavelength of light used for
imaging, or by increasing the NA of the objective lens. In 1910 the first
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UV microscopes were created, however it was quickly seen that UV
light is toxic to cells [21]. It also causes more background noise due to
their higher energy, decreasing the signal-to-noise ratio (SNR).

Although increasing the NA is possible, there is a limit. From
equation (1.4) it can be seen that

NA = n sin(θ). (1.6)

Therefore the main limiting factor is n, the refractive index of the
imaging medium [22]. This value can range between 1 for air and 1.51

for specialised immersion oils. [22]
Wave-particle duality is a quantum mechanical concept in which

all particles or quantum entity can be described as either a wave, or
a particle. In 1929, Louis-Victor de Broglie received a Nobel Prize
in Physics for the wavelike property of electrons. [23] Due to this
phenomenon, high-energy electrons can be used to image samples at
an equivalent wavelength which is shorter than that of visible light,
leading to a higher resolving power. Electron microscopy (EM) is
described in more detail in section 1.3.

1.3 Electron microscopy (EM)

As stated above in equations (1.4) and (1.5) the resolution of micro-
scopes can be increased by using a shorter wavelength and due to
wave-particle duality, electrons can be used to achieve this and hence
EM was created. The wavelength of the electrons is determined by
momentum which can be fine tuned by changing the voltage used to
accelerate the electrons.

The first electron lens and EM prototype were produced in 1931 with
a magnification of around 400x [24]. There are many different types
of EM including the scanning transmission EM which has achieved a
resolution better than 50pm and magnifications of around 10,000,000x
[25]. This is around a 4000x better resolution than traditional light
microscopy is capable of. In 1986 Ernst Ruska received a Nobel Prize
in physics for "The Development of the Electron Microscope and of
Electron Microscopy". [26]

There are many drawbacks and limitations to using EM. As particles
(electrons) are used instead of electromagnetic waves, the sample needs
to be imaged in a vacuum so that the electrons are not scattered by air
particles before reaching the sample [27]. To increase the contrast of
the images, the sample is coated in metal and, as electrons are not very
penetrative, only the surface or very thin samples can be imaged.

8
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Due to all of these preparatory measures it is impossible to image live
samples using this technique. The cell fixation methods required for EM
can cause artefacts to occur, such as membrane deformation/shrinkage.
The sample is also badly damaged by ionisation due to the high energy
electrons being fired at it. [27]

1.4 defying the limits

Light microscopy techniques offer the best alternative and are a nat-
ural choice to image live samples as they are the least invasive. As
the resolution of these techniques is limited to around 200nm, novel
methods are required in order to circumvent the fundamental limit of
light microscopes, such that smaller structures become visible, thus
moving microscopy into nanoscopy.

1.4.1 Deconvolution

Deconvolution is an algorithm based program used after images have
been taken to try and reverse convolution [28]. It is used in many differ-
ent areas including seismology, radio astronomy and optical imaging.
In optical systems such as fluorescence microscopy (as described in
sections 1.6 and 1.7), it corrects the systematic error of blur and helps
to bring back the contrast in smaller features.

An image taken with SMLM (described in section 1.7.1) can be
thought of as a convolution between the actual photons produced by the
sample and the Probability Density Function (PDF) of the microscope:

f ∗ PDF = i, (1.7)

where f is the ground truth, i is the image recorded and ∗ means to
convolute. Deconvolution is performed in the frequency domain by
computing the fourier transform (FT) of both the PSF (described in
section 1.2) and the image. These are then divided and the result is the
FT of the ground truth. The inverse fourier transform (IFT) is computed
rendering the final result [28, 29].

Unfortunately the image also includes some noise (described in detail
in section 3.4), ε:

(f ∗ PSF) + ε = i. (1.8)

This can make the deconvolution very difficult to perform. The PSF
may not be known precisely and then would have to be estimated. This
would decrease the accuracy of the deconvolution result. [29]

9
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1.4.2 Confocal Microscope

The confocal microscope was invented in 1955 by Marvin Minsky [30],
with a patent being filed and accepted in 1961 [31]. Although this
microscope uses simple objectives, a higher resolving power can be
produced than in a simple microscope. It uses two apertures, one to
create point illumination upon a sample, and the second to reject all
scattered light except that coming from the central focal point. As the
light is focused onto a single point of the sample, this point is then
raster scanned across the sample and an image is reconstructed. A
simple diagram of the confocal setup is shown in figure 1.7.

[32].

Figure 1.7: The simplified workings of a confocal microscope. (Adapted from
[32])

1.5 fluorophores

As early as 1874 it was postulated that clearer images could be produced
if the subject itself were to emit light, rather than to illuminate it by an
outside source [32, 33]. This technique uses fluorophores.
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Although fluorescence was observed as early as 1560 [34], the name
fluorescence was not coined until the early 1800’s by George Stokes [35,
36]. A fluorophore was not termed until 1897 by Richard Meyer [37].

Fluorescence is a form of luminescence whereupon a substance emits
photons after absorbing electromagnetic radiation [38]. Although some
things naturally fluoresce (intrinsic fluorescence or auto-fluorescence),
specific molecules that are known to fluoresce are called fluorophores.

Fluorophores contain electrons which are usually in the ground state,
S0. When these molecules are irradiated with photons with an energy
equal to the difference between two energy states, the electrons absorb
the energy and enter an excited state, S1:

S0 + hνex → S1, (1.9)

where h is Planck’s constant and νex is the frequency of light. The
electron then disperses energy non-radiately to drop down to the first
excited singlet state, giving off heat. The molecule then fluoresces by
dropping back down to the ground state spontaneously and emitting
a photon. This usually has a smaller frequency, or longer wavelength,
than the excitation photon:

S1 → S0 + hνem + phonon, (1.10)

where νem is the frequency of emitted light (usually νem < νex). This
process can be described by a Jablonski diagram as shown in figure 1.8.

Fluorophores have many different characteristics including max-
imum excitation and emission wavelength, quantum yield (QY), life-
time and Stokes shift [39]. These characteristics are all fluorophore
specific and vary substantially.

The maximum excitation wavelength is the maximum wavelength
(minimum energy) a photon can have that can be used to excite the
fluorophore into its excited state. The maximum emission wavelength
is the maximum wavelength (minimum energy) a photon can have that
is emitted when the fluorophore drops back down to its ground state.
[39]

The QY is the efficiency of the fluorescent process; the ratio of the
energy from incident light to emitted light. QY is calculated using
equation (1.11). [39]

QY =
number of photons emitted

number of photons absorbed
=

kf∑
i ki

, (1.11)

where kf is the rate constant of spontaneous emission and
∑
i ki is the

sum of all rates of excited decay.
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Figure 1.8: A simplified Jablonski diagram showing the fluorescence process.
An electron absorbs photon energy and is excited both electron-
ically and vibrationally (blue arrow). The system then relaxes
non-radiatively (red arrows) emitting heat before fluorescing. A
photon is released with a longer wavelength (green arrow).

The lifetime refers to how long the fluorophore remains in its excited
state, S1, before emitting a photon and returning back to the ground
state, S0 [39]. This process generally follows first order kinetics as
follows:

[St] = [S0]exp(−Γt), (1.12)

where [St] is the concentration of molecules in the excited state at time
t, [S0] is the initial concentration and Γ is the decay rate, which is equal
to the inverse of the fluorophore lifetime.

Fluorescence is also dependent on the orientation of the incoming
light relative to its transition moment and the nature of the sample
[38]. The relative orientation of the light can be overcome by using
circularly polarised light so that all different orientations of light hit
the fluorophores. The nature of the sample can also affect fluorescence:
whether the sample is fixed, moveable or where the fluorophores are
in the sample (i.e next to the glass slide or deep in the sample).

1.6 high-resolution fluorescence microcopy

Although optical microscopes are favoured for imaging live cells due to
their non-invasive property, using the above approaches requires high
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energy photons/lasers which causes damage to the cells (phototox-
icity) and still limits their resolution to around 200nm [40]. Therefore
new ways to increase the resolution without damaging the cells were
researched.

Three different microscopes that exploit some of the properties of
light to produce images are: 2-photon microscopy [41]; Light Sheet
Fluorescence Microscopy (LSFM) [41] and total internal reflection fluor-
escence (TIRF) [42]. The first two of these techniques vary the incident
light whereas TIRF utilises the refractive property of light to increase
the resolution of the images produced. These techniques all use lasers
and therefore phototoxicity can occur in the form of photobleaching
and photodamage.

Photobleaching is the photochemical alteration that occurs to the
fluorophores due to the laser energy. This causes an irreversible reaction
that stops fluoresence from being able to occur by cleaving some of the
covalent bonds. [43, 44]

Photodamage occurs to the cells being imaged and is also due to the
high energy incoming photons. Again the high energy photons cleave
covalent bonds. The higher the energy of the photons and the longer
the cells are exposed the more damage that occurs and this can kill
cells. [43, 44]

1.7 super-resolution microscopy

Super-resolution microscopy allows images to be taken with a resolu-
tion that is not limited by the diffraction of light. There are two major
groups of functional super resolution: deterministic super-resolution
and stochastic super-resolution. Deterministic super-resolution ex-
ploits fluorophores’ non-linear response to excitation whereas stochastic
super-resolution uses fluorophores with complex temporal behaviour
and and resolves fluorophores in time. Deterministic super-resolution
techniques include stimulated emission depletion (STED) [45], near-
field scanning optical microscopy (NSOM) [46] and structured illumin-
ation microscopy (SIM) [47]. Stochastic super-resolution techniques
include SMLM [48–50] and SOFI [51].

The first super-resolution microscope developed was STED [45]. In
2014 Stefan Hell received a Nobel Prize in Chemistry along with Eric
Betzig and William Moerner "for the development of super-resolved
microscopy". [20]
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The STED microscope exploits the non-linear response of fluoro-
phores and minimises the area of illumination at the focal point [45,
52]. Two lasers are used as shown in figure 1.9. The excitation laser
(green) is used to excite the fluorophores into their ‘on’ state. These can
then return to the ground state via several different processes, mainly
spontaneous fluorescence emission, or stimulated emission. Stimulated
emission is caused by the second laser (red), sometimes called the STED
laser. This laser is a similar wavelength to the emitted fluorescence light
and it is incident on the fluorophore before spontaneous emission can
occur, forcing it to relax into a higher vibrational state as shown in the
Jablonski diagram in figure 1.10. It is a doughnut shape that is overlaid
on the first laser, and reduces the effective excitation volume as shown
in figure 1.9. The photons emitted are red-shifted and therefore can be
differentiated from spontaneous emission. Typically this microscope
has a resolution between 30-80nm however in 2012 a resolution of
2.4nm was reported [53].

Although a good resolution can be found with this microscope, it
requires a complex optical set up which is expensive. It can also take a
long time to produce images as the lasers are raster scanned across the
sample. Due to this long acquisition time, it is difficult to analyse live
processes.

Figure 1.9: STED illumination strategy. The excitation laser (left, green) is
overlaid with the STED laser (centre, red), causing stimulated
emission at the edges of the excitation beam. Together, these create
a smaller effective PSF (right, green), exciting a much smaller
volume than the original excitation laser. [52]

NSOM [46], sometimes known as scanning near-field optical micro-
scopy (SNOM), is a type of scanning probe microscope which exploits
the nature of evanescent waves. The excitation laser is focused through
an aperture that has a diameter smaller than the wavelength. This
causes an evanescent field to be created on the other side of the aper-
ture.
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Figure 1.10: A simplified Jablonski diagram of both stimulated emission and
fluorescence. The excitation laser excites a fluorophore from the
ground state (S0) into the first excited state (S1). If this falls back
down to the ground state spontaneously then this is fluorescence.
If, however, the fluorophore encounters a photon with an energy
comparable to the energy difference between the ground and
excited state then stimulated emission occurs. [52]

The sample is scanned very close to the aperture and the detector is
also placed a few nm from the surface so that everything is within the
evanescent field. As an evanescent field is very localised to the aperture
(it drops off proportionally to the square distance), this technique is
primarily for surface inspection. It also takes a long time for large areas
to be imaged and is also vulnerable to artefacts which typically comes
from the tip breaking [46].

SIM uses patterned light to obtain high order spatial resolution,
increasing the lateral and axial resolution two-fold compared to con-
ventional light microscopy [47]. The first results were published in
1995. When objects containing fine structures are illuminated with this
patterned, or structured, light, Moiré fringes arise. These shift the high
frequency features to lower frequencies that can then be detected by
the camera. The illumination pattern is shifted relative to the sample to
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produce images at different phases as shown in figure 1.11. Computer
software is then used to analyse the images and reconstruct an image by
using superimposed additional information that is found in reciprocal
space.

Figure 1.11: Simplified diagram of the illuminated samples in Structured
Illumination Microscopy. Patterned light is used to illuminate
the sample in widefield. The phase between the sample and
illumination pattern is then changed and another image is taken.
The images for the differently oriented images are then used to
create a image. [32]

Although in general the sample needs to be stable in order to take the
multiple images needed with light at different angles, this technique
has been used with live cell measurements. This technique can also be
enhanced by using saturated light: saturated structured illumination
microscopy (SSIM) [54], to enable a resolution of up to 50nm [55].

1.7.1 Single Molecule Localisation Microscopy (SMLM)

SMLM summarises all stochastic super-resolution techniques that isol-
ate emitters and fit a PSF. In 1995, Betzig proposed an idea to create
super resolved images using blinking molecules [56]. The first observa-
tion of single molecules was W.E. Moerner in 1989 [57]. He observed
them in solids at very low temperatures, however the field has ad-
vanced to low [58] and room temperatures [59]. It was later found
that when single molecules of mutants of the green fluorescent protein
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(GFP) were irradiated with 488nm light, they were seen to blink for
several cycles before entering a stable dark state [60]. This detection of
single molecules and then blinking single molecules was the pivotal
achievement that led to SMLM and earned Moerner a Nobel prize in
Chemistry in 2014 along with Eric Betzig and Stefan Hell (mentioned
previously in section 1.7) [20].

After discovering that fluorophores were capable of photoswitching
and photoblinking, three different research groups developed similar
methods to exploit these properties in 2006. These were photo-activated
localisation microscopy (PALM) [48], stochastic optical reconstruction
microscopy (STORM) [49] and fluorescence photo-activated localisation
microscopy (FPALM) [50].

These methods allow a few sparsely distributed fluorophores to be
stochastically photoactivated while their remaining neighbouring mo-
lecules remain dark. This allows spatially inseparable fluorophores,
when viewed together, to be resolved in time. These sparse fluoro-
phores are imaged, localised and bleached/ turned off and then the
process is repeated with a different, sparsely distributed, group of
fluorophores. Merging all the obtained single-molecule localisations
yields the final pointillistic super-resolution image. This process can be
seen in figure 1.12

Figure 1.12: A simplified example of how SMLM works. The image on the
far left shows a widefield image where all the fluorophores are
emitting at the same time and the PSFs are overlapping. The
middle two show isolated subsets of fluorophores emitting in
multiple stochastic rounds of activation and localisation. As
the PSFs are isolated, the fluorophores can be localised with
a high precision by finding the centre. The final image on the
right shows a computer-rendered super-resolution image creating
using all the locations found in the images taken.

Fluorophores with complex temporal properties allow them to have
two distinct states: ’on’, and ’off’ or ’dark’. These particular fluoro-
phores are used in these methods. Although the complex process is not
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completely understood, the most accepted theory is as follows, and the
transitions are shown in the simplified Jablonski diagram figure 1.13.
The fluorophore is ’on’ when it is transitioning between its ground
state, S0, its first excited state, S1 and its first triple state T1. It is ’off’
when it is in its charge transfer state (CTS) and it can also become
bleached and ’die’, meaning that it can no longer transition back to its
’on’ state and release any more photons. Although this means there
are three different states, there is no way to differentiate between ’off’
and bleached/dead in the images produced and when they are not
fluorescing (’on’) it is not known where where fluorophores are located.
[61, 62]

Figure 1.13: A simplified Jablonski diagram showing the possible transitions
a fluorophore can undergo during a SMLM experiment.

It should be noted that the transition from T1 to S0 is non-radiative
and does not emit a photon. This is a dark transition and is sometimes
thought of as ’off’. However, as the lifetime in this state is very small
(1̃00’s nm), it can be considered as still being ’on’ during this time.

A fluorophore is naturally in S0 and is excited by the incident laser
to S1 whose lifetime is generally in the region of nanoseconds long.
When it drops back down to S0 a photon is emitted which is detected
by the camera (or photon collector) and therefore it can be ’seen’. If
the fluorophore transitions non-radiatively to its CTS instead, it will
enter its ’off’ state which has a lifetime in the range of ns-µs. From this
state the fluorophore can either drop back to its ground state and turn
back ’on’, or it can bleach. Bleaching is often caused by the fluorophore
oxidising. If the fluorophore enters this state then it can no longer
enter its ’on’ state and fluoresce. Although this is a third state, it is
not distinct. In the images we cannot tell the difference between the
fluorophore being ’off’ or ’bleached’. [61, 62]

When a photon (of the correct energy) from the incident laser strikes
a fluorophore that is in its ground state, it transitions to an excited
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state such as S1. When a fluorophore (or any molecule) is in an excited
state it can release energy through several different means. These can
be split into two different groups: intramolecular and intermolecular.
For fluorescence the process is intramolecular and the fluorophore
drops back down to S0 emitting a photon which can be detected. If the
fluorophore only transitioned between S0 and S1 then the power output
from the fluorophore would remain roughly constant as the lifetime
of S1 is very short (nanoseconds). However, due to other means that a
fluorophore can de-excite, the power output has a very large range. All
the methods that reduce the photon yield are known as quenching.

The excited fluorophore can enter into a triplet state, T1, non-radiative-
ly, without emitting a photon, and stay there for a short period of time
(ns to µs) before dropping down to S0. The electron flips its spin state
which is a quantum-mechanically forbidden transition and therefore
has a very small probability of occurring. This is known as intersystem
crossing and is an intramolecular de-excitation.

The fluorophore can also de-excite through non-radiative internal
conversion, conformational changes, or intermolecular changes [38].
The conformational changes could come from collisions with, for ex-
ample, oxygen (oxidation), halogens and anions. These are known as
collisional quenching. Some intermolecular transfers can include photo
induced electron transfer (PET) and forster resonance energy transfer
(FRET) [63], both of which can be exploited.

The light liberated from individual fluorophores is observed in the
images as an intensity spot, which is blurred due to diffraction, and
is generally around 250-300nm laterally and 500-800nm axially [32].
Although the details of this spot cannot be resolved, the knowledge
that only one fluorophore is present is utilised, and a location can be
determined using the xy intensity centre of the spot.

To determine the localisations of these emitters, a variety of different
computational algorithms can be used. Several of these are described
in section 2.2 but a directory of these can be found here [64]. There are
many factors that contribute to the localisation precision including; the
number of detected photons per switching event, the pixel size of the
camera and the magnification of the microscope, the background noise,
and the labelling density [32]. It has been found that the precision is
inversely proportional to the square root of the number of photons
detected [65]:

< (∆x)2 >=
s2√
N

, (1.13)

where N is the number of photons detected and s is the spot size.
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If the detector has very large pixels then the precision will be limited
by this and it will not be possible to determine where in this pixel that
the fluorophore is situated. The Nyquist criterion also states that the
average distance between two neighbouring molecules is roughly half
the resolution that can be produced [65].

SMLM is favoured as it does not require any specialised equipment
or a complicated set up as is needed in both STED or NSOM, and
unlike EM live cells can be imaged using the technique. It can also
achieve a higher resolution than SIM.

Unfortunately, this technique can be slow to acquire the raw images.
The first PALM image took several hours [50] and the first STORM
image taking 5 minutes to take [49]. Also some of the algorithms that
are used to reconstruct the final image can take a long time to compute
the final image. Despite this, the imaging times of just seconds have
been reported [66] with acquisition times constantly reducing with new
developments in the field.

1.7.2 Super Resolution Optical Fluctuation Microscopy (SOFI)

SOFI is similar to SMLM, however it is more of a post processing
method. [51] This method requires fluorophores with two distinct states,
either like in SMLM, with ’on’ and ’off’ states or with two different
intensities. It uses the temporal correlations of the independently
fluctuating emitters to create a 5-fold improvement in spatial resolution
with a large background reduction.

1.8 outline and scope of this thesis

The aim of this thesis was to denoise images from SMLM and use this
output to determine the number of fluorophores emitting in different
regions of the images. Simulations were produced to enable precise
analysis of post processes. They also enabled images with different
qualities to be produced, for example images where all fluorophores
are overlapping, or where they are very sparse. A two staged denoising
algorithm was written that uses Bayesian Statistics and Markov random
fields to determine which pixels are signal and which are noise. The
first stage has all the pixels independent, whereas the second stage
uses this output and a spatial dependence to further classify the pixels.
Various different methods were used to try and determine the number
of fluorophores in the images including a AI classifier.
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Chapter 2 gives an overview of the previous methods used. It also
introduces the different statistics and AI used.

Chapter 3 describes how the simulations were produced and explains
the physics behind how SMLM works. Appendix B contains the code
used in this chapter.

Chapter 4 explains how the denoising algorithm works and how the
two different sections of the code can be altered and used. Appendix C
contains all the code used in this chapter.

Chapter 5 describes the methods used to try and count the number
of fluorophores and therefore molecules of interest in the sample.
Appendix D contains all the code used in this chapter.

Chapter 6 contains a discussion and conclusions about all the previ-
ous chapters.
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acronyms

ADC analog to digital converter

AF Alexa Fluor

AI artificial intelligence

sCMOS scientific Complementary Metal-Oxide Semiconductor

CNN convolutional neural network

CTS charge transfer state

DL deep learning

e-h electron-hole

EM electron microscopy

EMCCD Electronic Multiplying Charge-Coupled Devices

FISH fluorescence in situ hybridisation

FNN feedforward neural network

FP fixed pattern

FPALM fluorescence photo-activated localisation microscopy

FRET forster resonance energy transfer

FT fourier transform

GFP green fluorescent protein

GPU graphics processing unit

IFT inverse fourier transform

i .i .d. independent, identically distributed

KNN K-nearest neighbours

LM localisation microscopy

LS least-squares

LSFM Light Sheet Fluorescence Microscopy

LSM Light Sheet Microscopy

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MIM Modified Ising Model

ML Machine Learning

MLE maximum likelihood estimate

MNIST modified national institute of standards and technology

MRF markov random field
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NA numerical aperture

NN neural network

NSOM near-field scanning optical microscopy

PALM photo-activated localisation microscopy

PDF Probability Density Function

PET photo induced electron transfer

PSF point spread function

QE quantum efficiency

QW quantum well

QY quantum yield

RL Richardson-Lucy

RMS root mean squared

RNN recurrent neural network

ROI regions of interest

SIM structured illumination microscopy

SMLM Single Molecule Localisation Microscopy

SNOM scanning near-field optical microscopy

SNR signal-to-noise ratio

SOFI Super Resolution Optical Fluctuation Microscopy

SSIM saturated structured illumination microscopy

STED stimulated emission depletion

STORM stochastic optical reconstruction microscopy

SVM support vector machines

TIRF total internal reflection fluorescence

VWCM virtual window center of mass
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2
M E T H O D S A N D M AT E R I A L S

2.1 introduction

Many different methods were used throughout this thesis. This Chapter
gives an overview of both the traditional methods used and a brief intro-
duction to the statistics and artificial intelligence artificial intelligence
(AI) used in chapters 4 and 5 respectively.

2.2 reconstruction algorithms

There are many different algorithms that can be used to localise fluoro-
phores in a stack of images created using localisation microscopy (LM).
A comprehensive list can be found here [64]. These algorithms use
different methods to find and localise the fluorophores. The following
will describe some of the methods used.

These algorithms are designed to localise the different fluorophores,
xi = (xi,yi), where i = {0, ..,N}, N being the number of fluorophores,
from an image, I . I can be thought of as a matrix where each element
represents the intensity for each pixel of the camera.

Localising the fluorophores can be done in two different ways; either
by fitting the whole image instantaneously, or by finding areas where it
is believed a single (or multiple) fluorophore is active and doing further
analysis on these smaller areas. These areas are often referred to as
regions of interest (ROI). Generally, the latter is used as fitting to the
entire image is very difficult and usually computationally expensive.

2.2.1 Finding regions of interest (ROI)

Finding the ROI can be achieved using several different methods. A
manually chosen threshold can be used to find areas which have intens-
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ity values larger than this. This method is often dismissed as it does
not achieve high enough identification levels due to the wide variation
in intensity across different fluorophores.

Generally, deconvolution is used to enhance features of a character-
istic shape; σ. This causes areas that have this shape to have sharper
peaks. Using a threshold on this enhanced image finds ROI with a
much higher precision. This precision can be found by using simula-
tions and finding a user defined false positive p-value. [67]

Often, once the ROI have been found, they will be checked to ensure
that they only contain one fluorophore. This is often done by a shape
test and rejecting shapes that do not follow a point spread function
(PSF), for example if they are too elliptical. Rejecting ROI that have too
high a photon count (intensity) may also be used as this could indicate
that there are two fluorophores emitting in a close region. [67]

2.2.2 Localising using fitting

Fitting images to a PSF can be a very rigorous approach to localising
fluorophores. In this case, to allow the parameters of each fluorophore
to be estimated, a physical model describing the mean number of
photons collected at each pixel, given that a fluorophore is at x;
λ(x;x) is required. The PSF of the system is often used for this. For
more complicated systems more parameters about the fluorophore are
included which can include brightness, orientation and even velocity
[67, 68]. This updates the model to λ(x;Λ) where Λ encompasses all
of the parameters.

2.2.3 Least-squares (LS) criterion

The LS fit varies parameters to minimise the following equation:

S =
∑

pixels

(data − model prediction)2

expected variance of data
. (2.1)

Here, S is the weighted sum of squared errors. It aims to find the set of
model parameters that produces the least difference between the model
and the observed data. The expected variance of data, depicted in the
denominator, is the variance of the signal on that pixel. LS requires no
detailed knowledge of the camera’s noise.
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This model is robust against the misspecification of the shape of PSF,
as long as it is symmetrical. However, it needs the width to be well
defined or depicted as an unknown parameter. [67, 68]

Weighting can be understood as comparing actual errors to expected
errors. When mismatching these values, the accuracy of this model is
reduced. The PSF can be constructed from experimental data or from
an approximate formula.

There is a fast available algorithm that calculates only the x and y
positions and no other parameters. [69]

2.2.4 Maximum likelihood estimate (MLE)

One of the best methods would be to use MLE as theoretically it
achieves the lowest mean-squared error. However it needs accurate
characteristics of the imaging system. If these are incorrect, the local-
isation accuracy is severely diminished. [67]

MLE returns values for the model parameters that are most likely
to produce the observed data [68]. It requires three different theor-
ems which each state a key result [70]. The first one states that, for
every estimated parameter, there is a theoretical limit to the variance of
unbiased estimators. This limit is the maximum achievable precision.
Theorem two states that when this is attainable by an unbiased estim-
ator, MLE will achieve this limit. Finally, theorem three states that, for
a large data set, the variance of an MLE estimate will approach this
limit.

The model works by varying the parameters and calculating the
likelihood of obtaining the observed signal. It keeps the values of the
parameters that provide the largest likelihood. It can also calculate a
prediction of the variance of the estimate. [67]

2.2.5 Localising without fitting

It can be advantageous to use algorithms that are less dependent on a
model of the system. These include centroid localisation method [71]
and finding the point of radial symmetry [72].

The centroid localisation method is also known as the centre of
mass method. One well known algorithm that uses this method is
called QuickPALM [71]. In this method, the background fluorescence
needs to be removed. If this is not removed then the result becomes a
weighted average between the geometric centre and the true centre. One
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problem with this method is that the actual PSF should be symmetrical
however as the camera is pixelated and has a discrete grid (rather than
a continuous), the image is distorted and the centres of the camera
image and the actual image may not coincide. There are advantages
of this method as there are very few assumptions of the image shape
however caution needs to be used when using this method alone.

This method can be improved by using virtual window center of
mass (VWCM) [73] as it means that it is unaffected by background
noise. It works by ensuring the fluorophore is in the centre of the ROI
by trimming and reshaping it.

Another method is to find the point of radial symmetry [72, 74].
This method works by calculating the gradient at each pixel, or at
each corner, to define a line. Using these lines, the centre of the radial
symmetry is determined by finding the point which minimises the total
distance for all these lines meeting. Sometimes a weighting factor is
used. This can be the inverse of the distance of each line.

This method is very fast and very good at finding locations when the
fluorophores are sparsely distributed and there is only one fluorophore
in each ROI. However, reconstruction accuracy is degraded for datasets
with densely populated fluorophores, with the method often identify-
ing a single emitter where there should be multiple fluorophores.

2.2.6 Localising multiple emitters simultaneously

There are several different methods that have been created to try and
fit multiple emitters simultaneously. Many of these extensions of the
fitting methods were mentioned earlier and produce a list of positions
however, some of them produce a density profile instead. As before,
when using small sections of the image, there are both fitting and
non-fitting based methods. [67]

Some issues that occur when fitting multiple fluorophores is that the
model can favour more fluorophores than there actually are. Often a
user-determined threshold is created for the residual or log likelihood
and the algorithm will stop adding fluorophores when this threshold
is reached.

Fitting based methods often work by cutting the image into ROI
as before, and assuming that each of these regions are independent
of each other. The theory is that if the PSF of the fluorophore is well
known, then it is possible to create models that describe how they
would behave if they overlap. These methods assume that there is
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no interaction between close emitting fluorophores. They are also
more computationally expensive as there are a lot more parameters to
estimate.

The most rigorous approach is to calculate the MLE [75]. These have
also been extended into using a graphics processing unit (GPU) which
increases the speed of the algorithms [76, 77]. Huang et al. have created
a method that is optimised for scientific Complementary Metal-Oxide
Semiconductor (sCMOS) cameras. [78]

One popular LS approach is called DAOSTORM [79] which is based
on an astronomy algorithm [80]. It uses a fixed shape, multiple model
PSF to localise the fluorophores. It has been shown to maintain high
performance in high density images.

2.2.7 Image estimation

These methods estimate the local density/ concentration of fluoro-
phores. Two different approaches use either the Richardson-Lucy (RL)
deconvolution [79, 81, 82] or compressed sensing [83].

Richardson-Lucy deconvolution uses an MLE approach and requires
a density map, a PSF and a noise model. It computes the probability of
obtaining the data set chosen and then picks the one with the highest
probability. One advantage is that it can incorporate blinking dynamics
into the model.

Compressed sensing requires no prior information on noise or blink-
ing dynamics. It works by subdividing the pixels so that the number
of unknown variables is greater than the number of input variables.
Here, the unknown variables are the places on the density map and
the input variables are the photon values at each pixel. There are then
more equations than unknown variables and therefore this problem
can be solved. For each data there will be multiple maps that would fit.
Compressed sensing then chooses the sparsest of these maps so as not
to overestimate the number of fluorophores. [83]

Another method uses Bayesian Statistics (described in section 2.3.1)
to compute a conditional probability of a density map [84]. It is called
3B, short for Bayesian analysis of blinking and bleaching method. It
uses the whole sequence of images and the blinking dynamics. The
final image created is the average over many different density maps.
This method is very computationally intensive and the effort is linear to
the number of fluorophores multiplied by the number of pixels. It also
trades off temporal resolution for spatial resolution. Each reappearance
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of a fluorophore (as it blinks) improves the localisation accuracy and it
can achieve a 50nm resolution after only a few seconds of acquisition.
[84]

2.2.8 Testing localisation algorithms

To determine how good a localisation algorithm is, synthetic data is
generally used. There are several possible errors in these algorithms.
They can find the location of a fluorophore that is not there, a false
positive, or they can miss the location of fluorophore, a false negative.
They can also determine that a fluorophore is there, but localise it in the
incorrect location; spatial precision. There are two fundamental values
that are used to describe how good the algorithms are, the precision p
and the recall r. These are described as follows:

p =
TP

FP+ TP
(2.2)

and

r =
TP

FN+ TP
(2.3)

where TP is the number of true positives, FP is the number of false
positives and FN is the number of false negatives. The precision is
the percentage of locations found that are correct and the recall is the
percentage of all the real fluorophores that are found.

These values are sometimes combined as either the Jaccard Index,
JAC or the F1-score;

JAC =
TP

FN+ FP+ TP
(2.4)

and

F1 =
2

1
p +

1
r

. (2.5)

Modern localisation algorithms typically have quite good precision but
varied recall, however these values will very drastically depending on
the density of the emitters per image [85], and generally there is a peak
performance for different fluorophores.

Although these values give a good idea of how many fluorophores
enter the ’on’ state, a good image of what is occurring in the cell
cannot be produced if the object of interest is poorly labeled, or if the
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fluorophores never turn ’on’. In certain circumstances it is possible to
label everything (by using genome editing systems), however it is not
possible to ensure that every fluorophore in the sample photoconverts
into its ’on’ state. If the fluorophore never emits any photons, then it is
fundamentally impossible for any algorithm to determine its location.

The algorithms, however, could have very good recall and precision,
but fail to determine the location of the fluorophores accurately.

The algorithm could be perfect at counting all the fluorophores that
emit any photons, but this will only show a good representation of the
sample if the method is not limited by experimental difficulties.

Several different groups have looked into the percentage of fluoro-
phores that mature (fluorescent proteins only) [86] and photoconvert
into their ’on’ state. These vary substantially from 1-20% [86] to 40-80%
[87].

2.3 statistics

Statistics are heavily used in this thesis to both create simulated images
(chapter 3) and analyse them (chapter 4). In general, statistics are used
across a very broad range of disciplines to extract and infer conclusions
from noisy data with uncertainty. The field uses probabilities to draw
inferences about unknown parameters, such as means and variances,
or to predict future observations. To do this the uncertainty/variability
of the data is formalised by treating the data as realisations of ran-
dom variables whose joint distribution comprises the data generation
mechanism, also known as the likelihood. As “true models” are only
available in very limited situations, several different likelihoods can be
chosen for each situation and this leads to shades of subjectivity on the
model [88].

The Bayesian approach was pioneered by Reverend Thomas Bayes
and Pierre-Simon Laplace in the 18th century and developed by Harold
Jeffreys [89],Leonard Jimmie Savage [90] and Bruno de Finette [91] in
the 1950’s to the 1970’s. This approach can be used for any uncertain
event even if it cannot be repeated (e.g. the speed of light or if England
will win the Women’s hockey in the next Olympic games). Bayesian,
or Bayes Theorem is expressed in the statement “The posterior is
proportional to the likelihood times the prior”. If follows Dennis
Lindley’s two rules [92]:

1. they always obey the laws of probability,

2. all uncertainty is to be modelled using probability.
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Simply, the difference between a Frequentest and a Bayesian is that
to a frequentist, data are repeatable and they will consider what values
for the data are plausible conditional on a particular value of the pa-
rameters: P[data | parameters], whereas to a Bayesian the parameters
are uncertain and the observed data are not. They consider their
probability distribution of the parameters conditional on the observed
data P[parameters | data].

Probability-based models are used in all the algorithms in this thesis.
We refer to these by name and the distribution are shown in table A.1.

2.3.1 Bayesian Inference

As stated before, Bayes allows statistical inference to be performed on
any data, whether it is replicable or not. Bayesian Inference states that
the posterior is proportional to the likelihood multiplied by the prior.
This statement can be written as:

π(θ | D) ∝ L(θ;D)π(θ), (2.6)

which is simplified from:

π(θ | D,A,K) =
p(D | θ)π(θ | K)

f(D)
. (2.7)

In these equations (equations (2.6) and (2.7)), π(θ | D) and π(θ | D,A,K)
are the posteriors, L(θ;D) and p(D | θ) are the likelihoods and π(θ) and
π(θ | K) are the priors. θ ∈ Θ are the unknown parameters, D is the
data, A and K are the assumptions and previous knowledge respectively
which are omitted from equation (2.6). f(D) is a normalising constant.

The prior, or prior (probability) distribution, is a mathematical con-
struct which expresses the decision maker’s beliefs about the unknown
quantities. Every unknown parameter has its own separate prior which
describes its shape. This can often be quite difficult to decide and
is very subjective. There are many different choices for each prior,
and different people tackling the problem will choose different priors
which adds to the subjectivity of the model. These priors reflect all the
relevant information about the parameter, not depending on the data
at hand. If there is little to no knowledge about the parameters then
uninformative or ’flat’ priors can be used that reflect a balance among
all possible values of the parameter. The prior can also be produced
using data from previous experiments or it can be elicited subjectively
by an expert. Often conjugate priors are used, which are distributions
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from the same family as the posterior. This simplifies the posterior
considerably.

The likelihood, or likelihood function, is the chosen model for the
data generation mechanism. This function is used in both Bayesian
and frequentest statistics and is a function of both the data and the
unknown parameters. The numerical observations, or data, are taken
as realisations of random variables and the joint distribution of these
observations is taken to be the likelihood. This is the main assumption
in any statistical approach and is a Probability Density Function (PDF)
which depends on fixed unknown parameters (θ). Once the data has
been observed it can be fixed and used to find the unknown parameters
(θ).

The posterior can be thought of as the updated distribution of θ
using the prior information. It is a PDF of the unknown quantities
in question. Each of these unknown quantities are treated as random
distributions. It is conditional on the data that was provided in the
likelihood and the prior distributions elicited. Although the posterior
is dependent on both the prior and the likelihood, there are many
different factors that sway it towards either one. The posterior is driven
towards the prior distribution if: there is high confidence in it and it
has been given a high precision, if there is little data, or if the likelihood
has low precision. It will be driven more towards the likelihood if it
has a high precision, there are lots of data, or if an uninformative prior
is used.

The proportionality constant ensures that the posterior is a PDF by
normalising the function:

f(D) =

∫
Θ
p(D | θ)π(θ | K)dθ, (2.8)

ensuring that the posterior integrates over all space to one. If this easily
calculated then inference can begin straight away as the posterior is
simple to find [92]. When this is difficult to calculate, which is often the
case, more complicated methods must be used such as Markov Chain
Monte Carlo (MCMC), described below in section 2.3.2.

2.3.2 Markov Chain Monte Carlo (MCMC)

When the normalising constant, f(D), cannot be calculated then dif-
ferent methods such as MCMC or numerical integration have to be
used to complete Bayesian Inference. [92] Numerical integration can be
very difficult and complicated to implement, especially if using both
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discrete and continuous quantities and high dimensions. It also is not
very numerically stable and therefore MCMC is preferable.

A sequence θ1,θ2,θ3, ...,θN is a Markov Chain if, for any set A,
θk ∈ Θ ⊆ RP and {k ∈N : k > 1}:

Pr(θk ∈ A | θ1, ...,θk−1) = Pr(θk ∈ A | θk−1), (2.9)

so each state only relies on the previous state. This dependence is
known as the Markov Property. The sequence must be (p-)irreducible,
aperiodic and (Harris/positive) recurrent, meaning that it must be pos-
sible to get from any state to any other state in a number of steps. [92] It
must also be non-cyclic and able to repeat values. These characteristics
are exploited to build a scheme that will provide a means to explore
the posterior distribution.

Monte Carlo is a traditional name for simulation methods which
rely on random sampling to obtain approximate numerical results.
So together an MCMC is just a Markov chain which uses random
sampling.

The initial values: θ1, ...,θT , where T < N, are known as the burn-in
period and are discarded. Although the value of θ1 is arbitrary and not
entirely important, the closer it is to the stationary distribution then
the smaller the burn-in period will be and therefore the cheaper (and
faster) the process will be. The number of values to discard can be
determined by looking at a plot of the values of one of the parameters.
An example of this can be seen in section 2.3.3 in figure 2.1.

2.3.3 Simple Example of Markov Chain Monte Carlo (MCMC)

This section will describe a simple example of Bayesian Inference using
MCMC. Imagine that we have sections from raw images in Single
Molecule Localisation Microscopy (SMLM) in which we know there
are only single events. From these data we want to calculate the mean
intensity of an event. Although this can be found using a frequentist
approach it would not be possible to incorporate any prior knowledge
about the events in it and therefore a Bayesian approach will be used.

The data is modelled with a Gaussian distribution:

Xi ∼ N(xi | µ,
1

λ
), (2.10)
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with unknown mean µ, and precision λ. Each data point is said to be
independent, identically distributed (i.i.d.) and therefore the likelihood
is:

π(θ;D) =

N∏
i=1

N(xi | µ,
1

λ
), (2.11)

where N is the number of data points, θ is a place-holder for the
unknown parameters and D is the data.

A prior is put on both the unknown parameters µ and λ. A Gaussian
distribution is chosen on the mean as it is known that the distribution
is bell shaped and also because this can be made quite ’flat’ and
uninformative. A Gamma distribution is put on the precision because
it has to be greater than zero, and again they can be quite uninformative.
The two prior distributions are:

π(µ) = N(µ | η,
1

τ
) (2.12)

and

π(λ) = Ga(λ | a,b), (2.13)

with known a and b; the shape and scale parameter of λ’s Gamma
distribution; but unknown η and τ; mean and precision of µ’s Gaussian
distribution. As there are unknown parameters in the priors, often
called hyperparamters, this is known as a hierarchal model and a
second layer of priors (one for each unknown in the first layer of
priors), often called hyperpriors, need to be included:

π(η) = N(η | m,b) (2.14)

and

π(τ) = Ga(τ | c,d). (2.15)

Where m and b are the mean and precision of η’s Gaussian distribu-
tion, and c and d are the shape and scale parameters for τ’s gamma
distribution. In this example, all the prior distributions are kept quite
flat and uninformative.

All the priors (equations (2.12) and (2.13)) and hyperpriors (equa-
tions (2.14) and (2.15)) are multiplied together with the likelihood
(equation (2.11)) to compute the posterior (equations (2.6) and (2.7)).
This is of unknown form so the probability constant cannot be cal-
culated analytically and therefore inference cannot be made directly.
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Instead an MCMC method is used. To do this, the full conditional of
each unknown parameter (µ, λ, η and τ) is found using the posterior.
This is done by setting all the other parameters, other than the one in
question, as constants and simplifying it to find the known distribution.
From these distributions values can be drawn. As the full conditionals
are dependant on the other parameters and hyper-parameters, they
need to be constantly updated. Values are randomly produced from
each of the full conditionals sequentially and recorded, with the distri-
butions being updated before each value is drawn. After a period of
time the values will start to converge and once this occurs each drawn
value will be a realisation from the posterior distribution. Up to this
point is called the burn-in period and these initial values are discarded
as they have not been drawn from posterior. The number of data points
that are discarded is determined by plotting the data points as shown
in figure 2.1. Using a plot like this it is easy to see when the chains
start to converge. In this particular case the chains converge almost
instantly. Although drawing this graph and using it to determine the
burn-in values is very useful, it is not practical to use this method in
practice when doing inference over many different images. Instead, a
relatively large number of values are dropped to ensure that all of the
burn-in period is discarded. Once a sufficient number of values have
been collected, inference can be made on the collected data. Bayesian
Inference is useful as it also gives an uncertainty on the predicted
values. A pseudocode is shown in section 2.3.4 and the actual code is
shown in appendix A.1.

How close the values in posterior are to the actual values is depend-
ent on several different factors: how many iterations the algorithm
goes through (up to the uncertainty of the model), how much data
is available and how informative the priors are. Below is an example
showing how the the posterior changes depending on how much data
is available.

There are three data sets. Each one consists of random numbers
taken from a Gaussian distribution with mean 10 and precision 1. The
first data set has 10 data points, the second has 100 and the final has
1000 data points. Each of these data sets was put through the same
algorithm with the same number of iterations, starting points and
priors. The priors chosen in this example were taken to be quite flat
and uninformative. Figure 2.2 shows the posteriors results for the three
calculated means (µ’s). It can be seen from this figure that the more
data is available the more precise the value of µ is. The pseudocode
for this process is in section 2.3.4. The code written in MATLAB (by
myself) is in appendix A.
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Figure 2.1: Burn-in for each data set. It can be seen that in these particular
data sets there is a very small burn-in and the values converge
almost instantly. It can be seen that the smallest dataset has the
largest variability.

Figure 2.2: Graph shows the probability densities of the µ’s calculated using
Bayesian Inference for three different data sets. The data for each
set come from the same distribution, however the size varies from
10 points to a 1000 points. It can be seen that the µ’s calculated
from the larger data set is more precise.

Table 2.1 below shows some numerical summaries taken from the
Bayesian Inference of this problem. It can be seen from this table that
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the more data points there are, the closer the values are to the exact
value and the more precise the values are.

Actual Value Data Set 1 Data Set 2 Data Set 3

number of 10 100 1000

data points

mean 10 10.2886 10.0375 10.0309

variance of 0.3106 0.0097 0.00096

mean

precision 1 0.5392 1.0397 1.02357

Table 2.1: Table shows the results from the Bayesian Inference for three dif-
ferent data sets. The data are taken randomly from the same
distribution of mean 10 and precision 1. It can be seen that the
more data points in the set, the more accurate the final value of the
mean and precision can be found.

If the full distributions are of an unknown form then random values
cannot be drawn. Instead, values are drawn from a proposal distribu-
tion; g(x ′|xt) where x ′ is the new value and xt is the previous value.
[93] In principle, this proposal can be any distribution, however in
practice a distribution that is similar to the full distribution is chosen.
These values are then kept with probability α, calculated from the
Metropolis-Hastings (MH) ratio [94]:

α = min
{π(x ′)g(xt|x ′)
π(xt)g(x ′|xt)

, 1
}

. (2.16)

This determines how compatible the new value is compared to the
current value. If the new value, x ′, is rejected then the previous value,
xt, is used as the next value, xt+1. The proposal distribution is usually
chosen so that between 20% and 40% of values are kept. In a Gibbs
sampler the proposal distribution is the same as the full distribution
and therefore the MH ratio is always equal to 1 so every value is kept.

As stated earlier, several additional factors other than the amount
of data available determine the accuracy of the results found from
Bayesian Inference. The more iterations performed the higher the
accuracy and precision of the results, up to the uncertainty of the model.
A compromise has to be found between the number of iterations and
computational power used. The priors chosen can affect the results
considerably, and as stated before, as the priors are subjective they can
vary substantially depending on the person who chooses these. If little
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is known about the variable then a flat, or non-informative, prior can
be used. This means that the results will tend more towards the data.
If a high precision prior is used then the posterior will be pushed more
to the prior.

The prior is more important if the sample is small, the data are
complex or variable, or if the data are heterogeneous; coming from
several different sources. In these cases, the prior chosen will have a
much higher impact on the resulting posterior.

2.3.4 Pseudocode

This section describes the pseudocode for the process described in
section 2.3.3. The likelihood is described in equation (2.11) and the
priors for µ, λ, η and τ are shown in equations (2.12) to (2.15). The
posterior is calculated as:

π(θ | D) =

N∏
i=1

N(xi | µ,
1

λ
)N(µ | η,

1

τ
)Ga(λ | a,b)N(η | m,p)Ga(τ | c,d).

(2.17)

From this the full conditionals can be determined as follows and are
shown in equations (2.18), (2.21), (2.26) and (2.29)

Π(µ) = N(µ | m∗,p∗) (2.18)

with

m∗ =
nλ

nλ+ p
x̄+

p

nλ+ p
m (2.19)

as a weighted mean and

p∗ = nλ+ p. (2.20)

From this it can be seen that if the precision of the prior is very small,
then m∗ would be approximately equal to x̄. Also, if n, the number of
data points, is very large, then the same would also occur. This means
that the prior will only have a large effect if it has a large precision, or
only a small amount of data is collected.

The full conditional for λ is:

Π(λ) = Γ(λ | a∗,b∗) (2.21)
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where

a∗ =
n

2
+ a (2.22)

and

b∗ = b+
n

2
(s2 + (x̄− µ)2) (2.23)

with s2 being the sample variance:

s2 =
1

n

n∑
i=1

(xi − x̄)
2 (2.24)

and x̄ is the average of x given by:

x̄ =
1

n

∑
i

xi. (2.25)

The full conditionals of η

Π(η) = N(η | α∗,β∗) (2.26)

where

α∗ =
τµ+ pm

τ+ p
(2.27)

and

β∗ =
1

τ+ p
(2.28)

The full conditional of τ

Π(τ) = Γ(τ | c∗,d∗) (2.29)

where

c∗ = c+
1

2
(2.30)

and

d∗ = d+
(µ− η)2

2
(2.31)

The Pseudocode is as follows:

1. Calculate values for x̄ and s2 (equations (2.24) and (2.25))
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2. Fix values for m, p, a and b

3. Calculate a∗ (equation (2.22))

4. Arbitrarily choose a value for λ > 0

5. Use λ to calculate/update m∗ and p∗ (equations (2.19) and (2.20))

6. Generate a random number from the distribution of µ (equa-
tion (2.18)) using current values of m∗ and p∗

7. Use current value of µ to calculate/update b∗ (equation (2.23))

8. Generate a random number from the distribution of λ (equa-
tion (2.21)) using current value of b∗

9. Repeat steps 5-8 m times (m is the number of iterations)

51



methods and materials

2.4 photon detection

Before cameras, the only way to record images was to hand draw what
was seen through a microscope. Although some very good images were
produced in this manner, it is very impractical and quite impossible to
complete at the speed the images change when using any wide-field
super-resolution technique or any technique that uses raster scanning.
Hand drawing has very low precision and accuracy and visually seeing
the images from LM would be near impossible. Currently, either an
Electronic Multiplying Charge-Coupled Devices (EMCCD) or a sCMOS
camera is used when imaging in wide field. When imaging by raster
scanning across a sample, often an optical fibre is used to collect the
photons which are then transported to a single counting module which
is similar to a one pixel camera.

EMCCD and sCMOS cameras both have a sensory array that detects
and collects incident photons. Each pixel in the sensory array consists of
a photodiode which is a semiconductor p-n junction. Electrons diffuse
from the n- to the p-region leaving holes and inducing an electronic
field which opposes this diffusion until an equilibrium is created.

This natural potential difference forms a quantum potential or quan-
tum well (QW): a charge depletion region. The region is increased by
putting a reverse bias upon the photodiode which also reduces any
current being produced when there are no photons hitting the pixel.
This is known as dark current and will be explained further later in
this section.

When a photon with sufficient energy hits the pixel, an electron
is excited from the valence band to the conduction band and is then
described as a photoelectron. These photoelectrons then migrate to the
quantum well, where they stay until they are counted. In one frame,
each pixel will collect a number of photoelectrons proportional to the
number of photons that are incident upon it.

Both the EMCCD and the sCMOS collect the photoelectrons in this
way however they readout the values using different methods. In the
EMCCD camera a sinusoidal voltage is used to shift the electrons from
each pixel down into a holding area. Each pixel, row by row, then
goes through a read-out register and an electron multiplication register
which turns the electrons into an electrical signal which is measured.

In sCMOS cameras the photoelectrons are converted into a voltage
at the pixel. Immediately after the image has been taken, each row
of pixels is read out separately with its own charge amplifier which
digitises the signal. As this does not have to be grown on one chip like
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an EMCCD it is much cheaper to produce and due to there being an
amplifier in each row the sCMOS camera can have much faster frame
rates. However, having a different amplifier for each row means that
there are slight differences to each read out and the values will not be
as uniform. The quantum efficiencies will be slightly different for each
amplifier and therefore there will be more variation over the image
than the more uniform EMCCD camera.

Although, after the readout register the EMCCD is more uniform,
the EMCCD’s electron multiplication register increases the variation of
the number of electrons counted. This multiplication factor is different
each time and changes the values non-uniformly across the pixels, both
spatially and through time. This multiplication factor essentially halves
the quantum efficiency (QE) of an EMCCD camera from 95% to <48%.
[78, 95]

Both cameras are susceptible to thermal noise. Some electrons acquire
enough thermal energy to escape the semiconductors sea of electrons.
These electrons move into the QW and are read out by the cameras
amplifiers. This is proportional to the temperature and some cameras
are cooled to minimise this. This noise is often called thermal dark
current as it is produced even when there is no light incident upon the
camera.

As the QW is not finite, some electrons will also be able to naturally
tunnel out. This would reduce the amount of detected photons that
would be in the final image.

Pixels in both cameras can saturate, as the QW can only hold so
many electrons. If this occurs then there is a loss of information and
the images produced are less accurate. Also, if the pixels saturate,
sometimes a ’bleeding effect’ may occur and the stored electrons can
move into neighbouring pixels, further reducing the accuracy of the
produced image. This affect is reduced by having smaller exposure
times, i.e. increasing the frame rate.

A compromise has to be found between read noise and saturation. If
the frame rate is very quick then read noise will have a high impact on
the images produced. If it is too slow then the pixels could saturate.

Cameras have a lot of different sources of noises that they add to the
images. These include, read noise, shot noise, fixed pattern (FP) noise
and Fano noise [96]. These are described in more detail in section 3.4.
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2.5 Artificial intelligence (AI)

AI refers to machines (or robots etc) that mimic human intelligence or
the human mind. This could be in the form of problem solving; playing
games; recognising objects, animals or people; or understanding and
responding to a language. The machine may utilise one or more of
these abilities. It is used regularly in day-to-day life; in phones such
as ’Siri’ and ’Google assistant’, to recommend what to watch next on
Netflix etc, and when asking for directions.

Early AI solved problems that were intellectually difficult for hu-
mans, that followed formal mathematical rules. These were easy for
computers to resolve and comparatively simple to program. The true
challenge of programming AI is solving problems that are intuitive
and simple for humans, for example, recognising speech, faces or an-
imals. Although these tasks are easy for humans to complete, they are
difficult to describe, especially mathematically. To overcome this, the
computer is programmed to learn from experience (data). It then learns
in terms of a hierarchy of concepts, using simple concepts to learn
more complicated ones. This negates the need to formally specify all
knowledge from the offset, which would be described as a knowledge
based approach. [97]

Machine Learning (ML) is a subset of AI that that learns by itself
using data and looking for patterns within it. It uses the data to
reprogram itself and, generally, the more data it has to learn from, the
more accurate it becomes at solving a problem. This depends heavily on
the representation of the data. Some simple examples include logistic
regression, which can recommend a cesarean delivery [98], and naive
Bayes which aims to separate e-mails into legitimate and spam [99].

Deep learning (DL) is a further subset of ML that, without human
intervention, teaches itself to perform a specific task. They are based
on neural networks (NNs) which are described in section 2.5.1.

AI is a huge topic and is used in many different applications. This
section will focus on the tools and methods used in chapter 5.

2.5.1 A neural network (NN)

A NN is a subsection of ML that uses algorithms inspired by a brain’s
neural network structure and function [100–102]. It is more precisely
called an artificial NN. In this thesis, the ’artificial’ will be omitted.
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NNs are computing systems that comprise of connected units or-
ganised into layers. These units are called neurons, or nodes, and
the connections between them form the network. As stated earlier,
these neurons are organised into layers and data flows through these,
being transformed as they transition between each one. A pictorial
representation is shown in figure 2.3. [100, 101]

Figure 2.3: Example illustration of a neural network. The circles represent
each neuron which are arranged into layers. In this example there
is one input layer represented by blue circles, two hidden layers
which are red and green, and one output layer in yellow. There
is always one input and one output layer. The number of hidden
layers can vary.

There are different types of layers in every NN; an input layer, an
output layer and hidden layers. If there is more than one hidden layer,
then the algorithm is known as deep learning [101]. The input layer
comprises of one neuron for each component of the input data. The
output layer has one neuron for each of the possible outputs. The
hidden layers however, can have any number of neurons, that can
be arbitrarily chosen. These apply weights, biases and thresholds to
the inputs. Each layer can be thought of as a different mathematical
function that defines a new representation of the input data. The
number of layers in the system is often known as the depth of the
model. For example, the NN shown in figure 2.3 has a depth of 3.
Some approaches use the depth of the graph which describes how
concepts are related to each other.
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2.5.2 Deep learning (DL)

DL uses NN with multiple hidden layers which are sometimes referred
to as deep neural networks. These can work with both labelled and
unlabelled data and are capable of both supervised and unsupervised
learning. They determine complicated concepts by combining simple
representations together, for examples patterns and structures in the
data.

For supervised learning algorithms data is supplied to the algorithm
that contains features, however each data is associated with a label or
target. It aims to define a network that matches incoming data to the
correct label or target [97]. Supervised learning is used in this thesis.

In the case of unsupervised learning algorithms, the data is not
linked to a label or target. The algorithm attempts to learn properties
of the structure of the data set either implicitly or explicitly [97]. These
two terms are not formally defined and often there are examples that
cross-over, however they help to categorise some of the different ML
algorithms.

When performing DL, several different types of NN can be used.
Feedforward neural networks (FNNs) [97], recurrent neural networks
(RNNs) [97, 103] and convolution neural networks (CNNs) [97, 103] are
all examples. FNN, also known as multilayer perceptions, are so called
as they only allow data to flow in one direction through the network.
RNNs allow for cycles within the network. CNNs are NNs that, for
at least one layer transition, use convolution in place of using simple
multiplication/ manipulation. This thesis uses both FNN and CNN.

Feedforward neural network (FNN)

The aim of a FNN is to approximate some function f∗ that classifies an
input, x, to a category, y:

y = f∗(x). (2.32)

It defines a mapping:

y = f(x;θ), (2.33)

where θ are all the parameters learnt by the NN that defines the best
function approximation so that f(x;θ) is the closest approximation of
f∗(x) as possible.
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It is defined as a network since it combines multiple different func-
tions together. For example, if there were three hidden layers then f(x)
would be defined as:

f(x) = f1(f2(f3(x))), (2.34)

where fi, i ∈ {1, 2, 3} are three different functions used between the
layers.

During the training process, the raw data is used to drive f(x) as
close to f∗(x) as possible. Each data, x, has a label, y, and the learning
algorithm decides how to alter the hidden functions (layers) to try and
reproduce the closest value to this label for the output.

Convolutional neural network (CNN)

As stated earlier, a CNN uses convolution in at least one of the layer
transitions. It is generally used when there is a spatial dependency
within the data. CNN only go one way through the model and are
therefore are a specialist form of FNNs.

Performance measure

When performing any kind of ML, in order to evaluate its abilities,
a quantitive measure of performance must be derived. How this is
measured is very dependent on the task required by the machine.
When creating a classification algorithm, the accuracy (the proportion
of correct classifications) or error rate (the proportion of incorrect
classifications) can be used and implemented quite easily. For some
tasks, for example density estimation, these performance measures, or
any that give a value between 0 and 1, do not make sense. The most
common approach is to use the average log-probability [97].

2.6 acronym list

acronyms

ADC analog to digital converter

AF Alexa Fluor

AI artificial intelligence

sCMOS scientific Complementary Metal-Oxide Semiconductor
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CNN convolutional neural network

CTS charge transfer state

DL deep learning

e-h electron-hole

EM electron microscopy

EMCCD Electronic Multiplying Charge-Coupled Devices

FISH fluorescence in situ hybridisation

FNN feedforward neural network

FP fixed pattern

FPALM fluorescence photo-activated localisation microscopy

FRET forster resonance energy transfer

FT fourier transform

GFP green fluorescent protein

GPU graphics processing unit

IFT inverse fourier transform

i .i .d. independent, identically distributed

KNN K-nearest neighbours

LM localisation microscopy

LS least-squares

LSFM Light Sheet Fluorescence Microscopy

LSM Light Sheet Microscopy

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MIM Modified Ising Model

ML Machine Learning

MLE maximum likelihood estimate

MNIST modified national institute of standards and technology

MRF markov random field

NA numerical aperture

NN neural network

NSOM near-field scanning optical microscopy

PALM photo-activated localisation microscopy

PDF Probability Density Function

PET photo induced electron transfer
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PSF point spread function

QE quantum efficiency

QW quantum well

QY quantum yield

RL Richardson-Lucy

RMS root mean squared

RNN recurrent neural network

ROI regions of interest

SIM structured illumination microscopy

SMLM Single Molecule Localisation Microscopy

SNOM scanning near-field optical microscopy

SNR signal-to-noise ratio

SOFI Super Resolution Optical Fluctuation Microscopy

SSIM saturated structured illumination microscopy

STED stimulated emission depletion

STORM stochastic optical reconstruction microscopy

SVM support vector machines

TIRF total internal reflection fluorescence

VWCM virtual window center of mass
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3
S I M U L AT I O N S

3.1 summary

A simulation software has been developed that creates realistic Single
Molecule Localisation Microscopy (SMLM) images. Although the sim-
ulation software replicates the photophysics seen from Alexa Fluor
(AF) 647 in a typical SMLM experiment, it could be altered to include
any other fluorophore for which the emission statistics are well char-
acterised. This software gives the user control over the placement and
photophysics of fluorophores, allowing different population densities,
and images with varied signal-to-noise ratio (SNR) to be created.

These simulations are used in chapter 4 to test the limits of the
denoising algorithm. Having the flexibility over all the characteristics
of the simulations are used in chapter 5 when looking at how images
look and change when fluorophores are placed in close proximity.

3.2 introduction

Simulations are used in many different fields including biology, chem-
istry, physics, performance engineering, economics and the social sci-
ences. They are used to imitate the operation of a real process or system.
In order to work, a model has to be created which represents the key
characteristics/ behaviours/ functions of the system or process that
wants to be investigated.

When looking at images that have been reconstructed from real
SMLM datasets, it is not possible to know the ground truth; the exact
locations of the fluorescent molecules, how many molecules are in the
sample, and whether the molecules have undergone multiple emitting
events are all unknown. Using simulations, it is possible to create test
datasets where this information is known, which can then be used to
test the limitations of reconstruction and analysis algorithms.
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Although there are simulated data available online [104], this al-
gorithm was created so that the simulated images could be more
customisable. The simulation algorithm was created to understand
the science, to enable both standard and high/low density images to
be produced, and to try and count the number of fluorophores in a
sample (chapter 5). Having more flexibility in the production process
allows as many fluorophores to be in close proximity of each other as
needed, as well as knowing exactly how many are there and their exact
location. By doing this, it allows more scenarios to be explored and
the distribution of the different populations (signal and noise) can be
determined and used to help count the number of fluorophores. The
images can be specifically tailored to the needs required for each step
in the process.

Previously, the photophysics of several popular fluorescent dyes
[39] and fluorescent proteins [86] have been characterised, in order to
evaluate their performance in room-temperature SMLM experiments.
Some photophysical properties which are crucial to SMLM are:

1. the number of photons per switching event,

2. the on-off duty cycle,

3. photo-stability,

4. the total number of photoswitching cycles/ survival fraction,

5. the ability to control the fluorophores activation rate and

6. how the buffer affects the fluorophore.

The values for these parameters all vary substantially between the
different fluorophores, and are also highly dependent upon the envir-
onment that the fluorophore is placed in. For example, when AF 488

is in a β-mercaptoethanol environment, its mean number of detected
photons per switching event is 427 [39]. However, when in a mercap-
toethylamine environment, its mean number of detected photons per
switching event is 1,193 [39].

The number of detected photons per switching event for a particular
type of fluorescent molecule follows an exponential distribution [39].
Figure 3.1 shows this distribution for AF 647 in a β-mercaptoethanol
environment. This particular fluorophore, in this environment, yields a
mean number of 5,202 photons per switching event. As the process is
stochastic, the value varies for each event. The probability that a fluoro-
phore will enter the ’off’ state is the same at any given time throughout
the process, but the longer it has been in the ’on ’ state the more likely it
is to change state. Due to the localisation precision being inversely pro-
portional to the square root of the number of photons (equation (1.13)),
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a high photon yield is desirable to obtain an accurate position of the
probes. The photon number varies substantially between different
fluorescent molecules; for example, AF 488 in β-mercaptoethanol envir-
onment yields an average of 427 photons per switching cycle, whereas
Atto 565 in a mercaptoethylamine environment can yield an average of
19,714 photons. [39]

Figure 3.1: Dempsey et al. [39] determined the number of detected photons
for many different switching events using single-molecule fluores-
cence time traces for different fluorophores. This histogram was
constructed from many events from hundreds of molecules for AF
647 in a β-mercaptoethanol environment. This can be fit with an
exponential function whose mean is 5,202 photons. This can vary
substantially, from 427 photons for AF 488 in a β-mercaptoethanol
environment and 19,714 photons for Atto 565 in a mercaptoethyl-
amine environment.

The on-off duty cycle describes the average fraction of time that a
fluorophore spends in the ’on’ state relative to the time it spends in
its ’off’ state. For example, if the fluorophore is ’on’ for 1ms every
second, then the duty cycle would be 0.001. A low duty cycle is
desirable as the maximum number of fluorophores that are able to
be localised in a diffraction limited area is inversely proportional to
the duty cycle. [39] However, the lower the duty cycle the more raw
data has to be taken to create a full reconstructed image as there will
be fewer fluorophores ’on’ per image, and therefore fewer switching
events for image reconstruction. Therefore a compromise needs to be
found. Ideally, the duty cycle and the frame rate would be in sync,
however, this is near impossible due to the stochastic nature of the
fluorophores.
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Photo-stability describes how the fluorophore is resistant to chemical
changes under illumination [39]. If it is very photostable then it will
less less susceptible to photobleaching. If it is unstable, it will bleach
rapidly due to the laser illumination and no longer be able to fluoresce.
This can vary depending on the buffer used and the environment the
samples are in when imaged.

The total number of photoswitching cycles/ survival fraction is the
average number of times the fluorophore oscillates between its ’on’ and
’off’ state before it bleaches [39]. As SMLM can be used for a variety
of applications, the desired number of times a fluorophore switches
between each state varies. If using SMLM to localise molecules, once a
fluorophore has been located then it would be ideal if it would bleach.
This would help to combat double counting. However, if SMLM is
being used to track molecules, then ideally the fluorophore would
be able to switch an infinite number of times and never bleach. This
statistic is related quite closely to the photostability.

The ability to control the fluorophores activation rate is how well the
fluorophore can be controlled using a light source independent from
the imaging light, and if it can be forced to stay in its ’off’ state for
longer periods of time. This allows the density of ’on’ fluorophores to
be controlled. [39]

Many different buffers are used in SMLM. These can strongly affect
the fluorophores switching properties and change the resulting image
quality. Currently it is not fully understood how these buffers work,
nor is it well documented, however, they are often used to stop the
fluorophores from reacting with oxygen (oxidising) which often causes
them to bleach more quickly. Choosing the correct buffer composition
is essential for robust on-off switching of dyes [39]. They often include
a thiol as some fluorophores, including AF 647 require this for robust
switching as it is thought they form a covalent conjugate with a thiol
in its dark state. Some fluorophores can still perform without a thiol
which suggests that thiol-independent pathways can exist for some
dyes [39].

3.3 real data production

After the type of fluorophore has been chosen (which depends upon
the structure of interest, type of sample etc.) they are attached to the
structure of interest. This can be done in a variety of different ways
that will only be touched on briefly here. A more detailed overview
can be found in reference [105].
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The range of methods for attaching molecules spans both cova-
lently or non-covalently bonding of small molecules, fluorescent pro-
teins, antibodies, oligonucleotides, proteins or even peptides [105].
Methods include immunostaining [105], protein fusion tags [106–110],
small-molecule affinity probes, fluorescence in situ hybridisation (FISH)
probes [111] and metabolically incorporated probes.

Choosing the correct method to attach the fluorophore depends upon
many different factors including, but not limited, to the particle/ struc-
ture of interest, if imaging live cells and whether using multiple colour
channels. Two factors that need to be considered are the size of the
fluorophores and the distance they are from the particle/ structure of
interest. Both these factors will affect the precision of the localisations.

When taking SMLM images, at any given time there is only a subset
of fluorophores emitting light due to the chemical properties of the
molecules. They each emit light from a point source at the sample.
If the frame is taken over 3ms, the amount of photons that any one
of these fluorophores emits during this time depends on a variety of
different factors including, but not limited to, the intensity distribution,
on/off rates, bleaching rates of the specific fluorophore being used, and
the laser intensity at that specific point of the sample.

If a fluorophore is ’on’ for the whole of the frame then it is more
likely to emit more photons than if it only turns on half way through or
at the end of the frame, especially if it has a constant rate of emission.
This increases the variation of the signal and widens the distribution of
the detected photons per molecule for each frame. This is also referred
to as noise within the signal and will be for the rest of this thesis.

Photons will leave the fluorophores in all different directions. Photons
that reach and pass through the coverslip then enter the microscope
before being collected by the camera. There are often many optical
components which manipulate the photons around the microscope
including filters, lenses and mirrors. Filters stop certain wavelengths
from being transmitted however they often have a band pass and let a
small range of wavelengths through rather than one specific one. They
will also cause some photons to be reflected and therefore reduce the
amount of emitted photons that are detected. Lenses and glass com-
ponents will also reflect some of the photons back due to the change of
refractive index the photon is traveling through. This will again reduce
the number of photons that reach the camera. All of these components
will slightly alter the amount of photons that reach the camera.

When the collected light reaches the camera, the individual photons
are binned in space. This depends on both the size of the pixels within
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the camera and on the magnification of the microscope. The camera
converts the majority of these photons into photoelectrons which are
read and used to create an image depending on the quantum efficiency
(QE) of the camera. More of this is discussed in section 2.4.

The camera also adds a variety of different sources of noise including,
but not limited to, shot noise, read noise and fixed pattern (FP) noise.
These are discussed in more detail in section 3.4.1.

3.4 noise

There are a variety of different sources of noise when using SMLM.
It can arise from external sources, the camera, autofluorescence, and
is even within the signal itself. Noise coming from external sources
are very unlikely if the set up of the microscope is optimal. They are
indistinguishable and therefore still convert electrons into photoelec-
trons within the camera and therefore add noise to the final images.
As the camera and microscope are (usually) set up within a dark room
and/or box, this is quite unlikely and, compared to other sources of
noise, causes minimal effect.

3.4.1 Camera Noise

There are several potential sources of noise in cameras. Four funda-
mental noise sources are signal shot noise, Fano noise, FP noise and
read noise [96]. Signal shot noise and Fano noise are related to photon
interaction, FP noise is due to non-uniformity between pixels (mainly in
scientific Complementary Metal-Oxide Semiconductor (sCMOS) cam-
eras) and read noise is a compound noise that encompasses all sources
that do not depend on signal strength.

Shot noise

Shot noise is known by many different names including photon noise,
Bose noise and Poisson noise. It occurs because light comes in discrete,
or ’quantised’ packets: photons. There are also spontaneous fluctu-
ations due to position-momentum uncertainty, as well as fluctuations
caused by the uncertainty of electric- and magnetic fields. The variance
of photons arriving at the camera is known as shot noise. [96]

As described in section 1.7 and shown in the Jablonski diagram in
figure 1.13, when a fluorophore is in its ’on’ state it is transitioning
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between three different states; its ground state (S0), its first excited
singlet state (S1) and triplet state (T1). The different transitions can be
seen in figure 1.13 and they have probabilities specific to the fluorophore
used. Every time it drops from S1 down to S0 it releases a photon
which can be detected. The rate at which this occurs is different for
each fluorophore and varies both spatially and temporally. These
fluctuations can also be thought of as shot noise.

Fano Noise

Fano noise is fundamentally related to the charge generated by a
photon’s interaction with a semiconductor. As not all the energy of an
interacting photon is spent in the production of an electron-hole (e-h)
pair, there is a variation in the number produced by each photon. This
variance is the Fano noise. This is not as prevalent in modern cameras
and is insignificant compared to other sources of noise in the cameras
used for SMLM

Fixed pattern Noise

Although present in both Electronic Multiplying Charge-Coupled
Devices (EMCCD) and sCMOS cameras, FP noise is more prevalent in
sCMOS cameras due to how they are made. Some pixels will be able
to collect charge more efficiently than others due to slight differences
in electrical components. If all the pixels are illuminated with the same
intensity there will be a pattern of ’hot’ (brighter) and ’cold’ (darker)
pixels [112]. It is called ’fixed’ as it is the non-uniformity in each pixel
is temporally constant. Therefore the spatial pattern is the same image
to image for the same camera.

As EMCCD cameras use the same read-out register for all pixels, the
FP comes only from the ability of individual pixels to collect charge.
In sCMOS cameras each pixel has its own read-out register and there-
fore the FP noise will be more varied. It can be mostly corrected for
depending on the camera in question, and some sophisticated cameras
correct for this themselves.

FP noise is often removed by using a process called flat fielding
[96]. A computer is used to adjust pixel sensitivity so that they are all
equal. The camera is presented with extended light source that has
nearly uniform radiance. The images the camera collects will have
pixel-to-pixel non-uniformities. As the light source is uniform across
all pixels, these must be inherent to the camera itself.
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FP noise is proportional to signal and also the cleanliness of cameras
can also affect it. For example, if there are any dust particles or scratches
on the camera then these will also contribute to the FP noise [112].

Read Noise

Read noise is a compound noise that encompasses all sources that
do not depend on signal strength. These include, but are not limited
to, pixel source follower noise, sense node reset noise, thermal dark
current shot noise, dark current FP noise, analog to digital converter
(ADC) and system noise. [96]

Pixel source follower noise is caused by the residual electrons left
after the capacitor has been emptied. There will be some electrons left
in the capacitor when it is emptied and these will contribute towards
the subsequent image. It is both spatially and temporally systematic,
and therefore will affect each pixel differently at each new image.

Sense node reset noise is generated thermally by the channel res-
istance associated with the reset of the capacitor [112]. Every time a
frame is read, energy is added to the system to enable the electrons
to flow and be counted. This addition of energy adds electrons to
the system which are counted by the detector and is related to the
frequency or frame rate. If the frame rate is faster, fewer photons
arising from the true source will have been detected, while the noise
will contribute highly, and therefore the signal to noise ratio will be
lower. A compromise has to be made for frame rate so that this effect
can be minimised.

As mentioned before in section 2.4, thermal dark current comes from
electrons that acquire enough thermal energy to jump over the band
gap into the quantum well (QW) and be registered by the pixel. This
is temperature dependent and many of the high end cameras used
are now cooled to minimise this effect. Often the room is temperature
controlled as well [112]. It consists of both dark current shot noise and
dark FP noise. The latter dominates the former and can be determined
by taking images with no light source.

ADC quantising noise occurs due to the uncertainty from converting
pixel signal into a digital value.

All remaining sources of noise are often combined, and collectively
known as “system noise”. Sources of system noise include, but are not
limited to: transient noise, luminescence, ADC feedback noise, power
supply noise and electromagnetic noise. [112]
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3.4.2 Noise within the signal

The noise in the signal is related to the stochastic nature of the fluoro-
phores and can be confused with shot noise. Per frame, the number of
photons collected per fluorophore depends upon when the fluorophore
turns on within that frame and the rate at which it emits photons.

The rate that a fluorophore emits photons when it is ’on’ is related to
the intensity of the laser. When the fluorophore absorbs a photon from
the laser it transitions from S0 to S1 (see figure 1.13). The higher the
intensity of the laser the greater the probability that a (laser) photon
will hit the fluorophore causing it to jump to S1. The lower this intensity
the lower the probability the fluorophore will be excited and therefore
it will stay longer in the ground state. The wave-front for a laser
generally has a Gaussian Distribution and therefore the fluorophores in
the centre of the sample will receive a higher intensity of photons than
fluorophores nearer the edge. Although lasers with a flat wave-front
are available, they are often very expensive and not widely used.

Transitions from both S1 and T1 down to S0 (see figure 1.13) are very
difficult to control and can vary substantially both across a sample
using the same fluorophores, as well as between different types of
fluorophores. The ratio between time spent in S1 and T1 affects the
average rate of photon emission. Due to these factors, two fluorophores
that are in their ’on’ state for the same amount of time may still emit a
different number of photons.

The number of photons ultimately detected per frame will also
vary depending upon when the fluorophore leaves the ‘off’ state and
enters the ‘on’ state. If a fluorophore begins emitting at the start of a
frame, then more photons will be detected in that frame compared to a
fluorophore which has started to emit photons part way through the
frame. This variation in the number of detected photons affects the
ability to measure the location of the fluorophores, and contributes to
noise within the signal.

3.4.3 Autofluorescence

Autofluorescence describes the natural fluorescence that occurs in biolo-
gical samples. Some compounds and amino acids inside cells fluoresce
naturally when exposed to certain wavelengths. Autofluorescence in-
creases the variance in the noise and can add a further population into
the system. This would increase the number of populations from two;
signal and noise, to three; signal, autofluorescence and noise. [113]
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3.5 simulations

The simulation software described in this chapter creates a stack of
images which replicate typical datasets acquired from a SMLM ex-
periment using the fluorophore AF 647 as the fluorescent label. The
photophysic characteristics of AF 647 were obtained from literature
[39], and these values could easily be changed to adapt the model to
one of the other commonly-used and well-characterised fluorophores.

The number of fluorophores and frames can be chosen by the user.
The frame rate is set to 100 frames per second (10ms long exposure
times) and is related to the probabilities chosen so is fixed. In order to
change this, all the other variables would have to be recalculated. For
every nanosecond in time, the state of each molecule is simulated using
probabilities and statistics. Although the actual transitions are very
complicated, shown in figure 1.13, in this simulation it is simplified to
the transitions shown in figure 3.2. The main differences between these
two are that the triplet state, T1 has been omitted. When a fluorophore
is ’on’ it is only transitioning between S0 and S1. As before it is ’off’
when it is in its charge transfer state (CTS), and bleached when in its
bleached state. The probabilities are altered so that this follows the
actual process as close as possible. The transition probabilities used
are:


from\to on off bleached
on 0.9 0.1 0

off 0.00999910 0.99 0.00000090
bleached 0 0 1

.

These chosen numbers are explained in section 3.6.

Using this data and the frame rate, the fraction of the frame the
fluorophore is emitting for is determined. This is calculated for the
entire duration of the imagery. For each frame and fluorophore this
fraction is then converted into a photon number using statistics. The
statistics chosen for this process are described in more detail in sec-
tion 3.6.

The fluorophores are simulated as being 1nm2 in size and their
position can be chosen either manually or randomly. These positions
are stored so that that the ground truth is always known. This ground
truth matrix has elements that represent a nm2 area. If a molecule is ’on’
then the corresponding element is given the number of photons this
fluorophore emits in this frame. This is now a simulated sample plane,
detailing the locations of the fluorophores and how many photons they
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Figure 3.2: A simplified Jablonski diagram showing the transitions used in
this simulation.

have emitted, without accounting for any effects that would arise from
diffraction, background noise, or imaging with a microscope.

The next stage of the simulation software is to apply transforma-
tions to the ground truth matrix which would replicate the process of
imaging with a microscope. The ground truth matrix is Fourier trans-
formed to put it into reciprocal space, and then a mask is applied to
the resulting matrix which removed high frequency components. The
mask is chosen to replicate the theoretical point spread function (PSF)
of the imaging system and can be altered if the resultant microscope
has a smaller or larger PSF. The filtered matrix is then inversely Fourier
transformed back into real space. This process simulates the action of
lenses in the theoretical optical system, which act as a low frequency
filter. This updated ground truth matrix is now effectively a simulated
image where the emission of photons from a fluorophores have been
spread over a group of pixels; the PSF.

The pixels of the camera are larger than 1nm2 in size and therefore
the data is binned in space. This can be changed to be both camera
and microscope specific, so that it includes both the magnification of
the microscope and the size of the pixels in the camera. For example,
if the camera pixels are 10µm2 (10000nm2), and the microscope has
a magnification of 100, the effective size of the pixels are 100nm2.
Therefore the ’real space’ pixels are binned into 100 by 100 ’camera
space’ pixels.

This image is now a noise free version of the image received by the
camera. It consists of pixels that are the same size as real data, and
contains only photons from the fluorophores themselves, spread out
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into the PSF of the microscope. Noise is now added to the image. This
noise can be made camera specific by collecting data from the camera
when there is no sample or light source (dark data). It can also be
simulated using information found in the literature.

A flow chart of how both the real and simulated data are created
is shown in section 3.7. The main differences between these two are
discussed in section 3.8.

3.6 chosen statistics

The chosen probabilities were used to simulate AF 647. Properties of
this fluorophore can be seen in Dempsey et al.’s paper [39].

Initially the chosen probabilities were:


from\to on off bleached
on 0.9 0.099 0.001
off 0.05 0.95 0

bleached 0 0 1

.

As it cannot be physically seen when a fluorophore bleaches it was
taken so that the fluorophore could only enter the bleached state from
the ’on’ state. These values yielded some good results. However, using
the Jablonski diagrams, figures 1.13 and 3.2, it can be seen that the
fluorophore can only bleach from its ’off’ state in both the actual and
simplified versions. Due to this, the probabilities were altered to the
following:


from\to on off bleached
on 0.9 0.1 0

off 0.00999910 0.99 0.00000090
bleached 0 0 1

.

The value 0.9 was chosen for the on-on transition. This means that
fluorophores are ’on’ they are emitting, on average, for nine ’sections’
of a frame which would be around 9ms. A lot of the fluorophores will
emit for a lot less time that this. Fluorophores that are only ’on’ for one
’section’ will probably be too dim to be detected.

The value for the on-off transition was calculated using: 1 − on-on
transition. This is because it cannot go from ’on’ to bleached and the
values in each row must add up to one as they are probabilities.

The equilibrium on-off duty cycle for AF 647 is 0.0012 [39]. This is
the fraction of time spent in the on state. Therefore the fraction of time
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spent in the off state is 0.9988. Therefore the off to off transition was
kept very high. This also keeps the number of ’on’ fluorophores sparse
in each frame as the majority of the pixels will be ’off’.

The off-bleach transition was kept very low at 0.00000090. The sur-
vival fraction for AF after 400s of illumination is 0.73 [39]. This requires
a very low value for the off-bleach transition. Stacks of images were
created for lengths of 400s (40,000 images). The off-bleach transition
was altered until the percentage of fluorophores that had bleached was,
on average, 27%.

The on-bleach transition is zero as there is no transition available for
a molecule to go from an ’on’ state to a bleached state. The bleach-
off and bleach-on transitions are also zero as it is not possible for a
fluorophore to make these transitions. The bleach-bleach transition is
one as once the fluorophore has entered that state it is unable to turn
back ’on’ or go into the ’off’ state.

The average number of photons that are detected from each AF 647

is described by an exponential fit with a mean value of 5,202 [39]. The
number of photons emitted from each ’on’ fluorophore was chosen
randomly from an Poisson distribution, however it did not have a
mean value of 5,202. A single image was created with one single ’on’
fluorophore and no noise. The number of photons that the fluorophore
emitted was altered until, when the final image was summed across all
pixels, a mean value of 5,202 was found. This value was 6019. It should
be noted that the simulation only produces the number of photons that
are emitted towards the microscope.

3.7 flowchart

The following flowchart shows the main steps of how both real data
and the simulated data are created.
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Real Data

Flurophores are attached to
the molecules of interest (the

ground truth is unknown)

Some molecules are ’on’ de-
pending on the chemical

properties of the fluorphore

’on’ molecules emit a random
number of photons in all directions

Photons that reach the lens are
collected and go through the mi-

croscope. The angle of collection is
slightly larger than expected due to
the refractive index of the glass lens

The photons go through all the
different components of the micro-

scope: lenses, filters, mirrors etc

Photons that hit the camera
are collected: some of these

photons are ’stray’ photons that
have not come from the sample

The photons that hit the camera
are binned into pixel size (also

depends on the magnification of the
microscope) and in frame length

Camera adds noise

Simulated Data

Position of fluorophores are either
manually chosen or put down
randomly however a record of

the ground truth is always kept

Statistics are used to de-
termine if the molecules are

’on’ for each nanosecond

Bin this information
into time (frame length)

Use statistics to determine how
many photons are emitted in

the direction of the microscope

PSF of camera is added to
the image (FT, mask, IFT)

The data is binned in space
depending on the magni-
fication of the microscope

and pixel size of the camera

Noise is added
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3.8 differences

There are several differences between the production of the simulation
images and the real data. These include: the orders that different steps
are completed in; the transitions that occur; and that the simulations
are done in discrete time steps whereas the real data production occurs
in real, continuous time.

In both the simulated and the real images, the fluorophores posi-
tions are chosen initially. In real data these are attached to specific
molecules/ structures of interest, whereas in the simulations they are
placed randomly. These can be placed specifically in certain places if
desired, however there are many molecules in real data and choosing
all these places manually could end up being very time consuming.
Specific regions can be chosen where the molecules can be placed, for
example away from the edges of the simulated images.

In real data, some of the fluorophores may never turn ’on’ and emit
any photons. In the simulations every fluorophore starts ’on’ and then
starts to photoblink from here, although there is a probability they will
bleach straight away. In these simulations the first few images are often
ignored as it is not physical to have all of the molecules ’on’.

When a fluorophore is ’on’ it emits photons. The number of photons
detected for each event comes from an exponential distribution. In
real data it is possible that photons coming from each individual
fluorophore come from different distributions due to depth in the
sample or polarisation etc. This is not accounted for in the simulations
and currently the simulations only create 2D data. It is possible in the
future, that this could be extended to create 3D images, for example
when the microscope includes an extra lens to introduces astigmatism
into the PSFs [114].

The fluorophore within the sample will have specific variations, for
example a fluorophore that is deeper within a sample may emit the
same amount of fluorophores as one near the top, due to scattering,
refraction and absorption less photons will reach the camera. This is
not accounted for within the simulations however could be included in
the future.

In real data the photons go through different optical components
including filters and lenses when inside the microscope. Any time that
photons transition between different materials there is a probability of
being reflected, and therefore there will be some losses in the system.
Although the simulations account for this, it does not take every single
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component separately and instead takes them all together including
the QE of the camera.

In real data noise can come from a variety of different sources at
different stages of the process. This is discussed more in section 3.4. In
the simulated images, all noise is added at the end of the process.

When real images are taken the data is binned in both space and
time at the camera. The pixel size of the camera and the magnification
power of the microscope determine how the data is binned in space.
In the simulations these occur at different times. The data is binned in
time near the beginning of the process and the data is binned in space
just before the noise is added.

There are differences in the transitions that are allowed in both the
real data and simulations. The transitions that are allowed in the
simulations are shown in the Jablonski diagram in figure 3.2. Real
fluorophores can go through many different transitions. The main
transitions are shown in figure 1.13, however this is still a simplified
version of what actually happens, which is still not fully understood.

As stated before, when creating real data, this occurs in real, continu-
ous time. During the simulations, all the transitions for the whole stack
of images are created at the beginning and in discrete sections. These
are then binned into bigger time frame sections.

3.9 results

The simulated images show a strong resemblance to real data both
spatially and temporally. Section 3.9.1 looks at a stack of images that
were created and sent through ThunderSTORM [115]. It describes the
differences between the locales of the molecules that were found, and
the molecules that are put down by the simulations.

Section 3.9.2 shows some simulated images and real images side be
side and discusses the differences.

Section 3.9.3 looks at how the simulated images vary through time
as the fluorophores blink on and off. These are compared to a time
trace of real data taken with SMLM.

3.9.1 ThunderSTORM results

A stack of 500 images were simulated with 5000 fluorophores. These
images were run through the ThunderSTORM [115] to determine how
many fluorophores could be localised.
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As ThunderSTORM [115] is more of a localisation algorithm rather
than a counting algorithm an individual image was first looked at
to see the differences in the locations of the fluorophores that were
actually ’on’ in the simulations and the locations that ThunderSTORM
predicted. This is shown in figure 3.3 where an image from the middle
of the stack is shown (image 300). Figure 3.3a shows the simulated
image.

Figure 3.3b shows the actual positions of all the fluorophores. It
should be noted that this contains all the fluorophores that are ’on’,
even if they only emit for 1ms (a tenth of the frame). Also, as the output
of photons is randomised from a poisson distribution, it could be that
some fluorophores emit very few photons and will still be classified as
’on’. In this frame there are 99 fluorophores ’on’.

Figure 3.3c shows the positions that ThunderSTORM [115] predicted
there to be a fluorophore and figure 3.3d shows both this and the actual
positions for comparison. Looking at figure 3.3d it can be seen that
ThunderSTORM has failed to find several fluorophores on the edge of
the image. As ThunderSTORM ignores the edges of images this was
expected. There are several spots where there are fluorophores with
overlapping PSF and ThunderSTORM has only fitted one fluorophore
to these spots. This was also expected to occur while using this al-
gorithm as it works better with sparse images. Finally, there are some
fluorophores that are not near the edge of the simulated images that
ThunderSTORM has missed entirely. These are fluorophores that are
dim, and not emitting many photons. As the number of photons that
each fluorophore emits is generated from an poisson function, this is
to be expected.

Looking at the total number of fluorophores ThunderSTORM re-
gisters, the number is an overestimate. Due to small fluctuations in the
background noise this is thought to be due to multiple counting; i.e. if a
fluorophore turns back on then it is recounted. Instead the difference in
the number of fluorophores simulated as ’on’ in the algorithm, and the
number of fluorophores localised by ThunderSTORM per image was
looked at. This is shown in figure 3.4. Although the initial 200 frames
show a large disagreement in the number of fluorophores, after this the
difference in the number of fluorophores is very low. As each frame is
2ms, it takes around 2s for the the difference to reach an equilibrium.
Looking at figure 3.4b the mode is between -4 and 7 and it looks to
follow a gamma distribution shape.
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(a) (b)

(c) (d)

Figure 3.3: (a) An image from the middle of a stack of 500 simulated images
(image 300) with a total of 5000 switching fluorophores, (b) shows
the locations of all the emitting fluorophores for that timeframe.
There are 99 ’on’ fluorophores. (c) the positions that Thunder-
STORM predicted and (d) shows both the actual locations as well
as the positions found by ThunderSTORM.

3.9.2 Comparison with real images

Figure 3.5 shows both a simulated image and a real data image taken
with SMLM. It can be seen that these images have a good resemblance
with similar PSFs and noise areas.
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(a)

(b)

Figure 3.4: The difference between the number of fluorophores that are ’on’
in the simulated images and then number of fluorophores that are
localised by the ThunderSTORM [115] algorithm. Fluorophores
are classed as ’on’ if they are emitting for over half of the frame. (a)
shows the difference through time whereas (b) shows a histogram
of the whole stack.

3.9.3 Time traces of images

Figures 3.6 and 3.7 show a time trace through a stack of images. They
both show the mean value of a 3x3 pixel section through time. For
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(a)

(b)

Figure 3.5: (a) An image taken using SMLM and (b) a simulated image pro-
duced with the simulation described in this chapter.

each time trace there are nine images showing the 3x3 area at that
time. Figure 3.6 is a stack of 500 images that were simulated using
the algorithm described above whereas figure 3.7 shows a stack of 100

images of 3T3 cells taken using SMLM.

From these two figures (figures 3.6 and 3.7) it can be seen that the
time trace of the simulated images follow a similar trend to the real
images. As all the fluorophores are ’on’ in the first image, the first few
should be discarded when analysing the stack. The noise values have a
similar trend and the variance is similar.

Looking at figure 3.6, the peaks in intensity are when the fluorophore
is emitting photons. The noise values appear to come from fluctuations
in the noise, however a few small peaks can be seen when neighbouring
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fluorophores are ’on’ and the edges of the PSFs are over the pixels. This
can be seen in the sixth image.

Figure 3.6: Figure shows the mean of a 3x3 area through an entire stack of
5000 simulated images. There are nine different sub-images that
show the 3x3 area at that time. Each of these images has the same
scale which is shown to the right of the figure.

Figure 3.7: Figure shows the mean of a 3x3 area through a stack of 100 real
images from 3T3 cells. There are nine different sub-images that
show the 3x3 area at that time. Each of these images has the same
scale which is shown to the right of the figure.
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3.10 discussion

Software that successfully creates simulated images from SMLM has
been developed. It is very flexible in terms of of fluorophore location
and fluorophore photophysics. It currently simulates the photophys-
ics of AF 647, however this could be adapted to include any other
fluorophore with well documented emission statistics such as any in
[39].

The simulated images were run through ThunderSTORM [115] as
described in section 3.9.1. As ThunderSTORM is more of a localisation
algorithm rather than a counting algorithm, the difference in the total
number of fluorophores was expected to be different. When looking
at individual images the locations were well matched as shown in
figure 3.3. As was expected, ThunderSTORM failed to pick up fluoro-
phores that were very dim. Another limitation with ThunderSTORM
is that is unable to discern between fluorophores when their PSF are
overlapping. This can also be seen in figure 3.3.

The difference in the number of fluorophores localised by Thun-
derSTORM and the number of fluorophores simulated is plotted in
figure 3.4. Images at the beginning of the simulations are more densely
populated and therefore there will be more overlapping PSFs. This will
inhibit ThunderSTORM’s ability to correctly localise the correct number
of fluorophores which can be seen in the plot. After 2s (200 images) the
difference in the number of fluorophores counted by ThunderSTORM
was very well matched. This shows that the images are similar to
real images taken with SMLM. The mode of the difference in fluoro-
phores localised by ThunderSTORM and the number of fluorophores
simulated as ’on’ is between -4 and 7.

The simulated images were compared to a real stack of images. A
time trace of the mean of a 3x3pixel area of the simulations and real
images are shown in section 3.9.2 and figure 3.6. The fluctuations in
both of these time traces are comparable showing that the simulations
follow the same trends.

Within these figures (section 3.9.2 and figure 3.6) are some inlet
pictures showing the pixel data at that point in time. From these it can
be seen that the PSFs are also comparable showing that the simulations
are a good approximation of the real data.

All of these factors show that the simulated images are comparable
to the real images. They have similar time traces, PSFs and noise.

When photons are emitted from fluorophore they leave in all direc-
tions and start to diffract. These photons are more likely to leave in
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certain directions depending on the polarisation of the fluorophore,
however this orientation will vary for each fluorophore that is fixed
and if the fluorophore is not fixed then it will fluctuate with time. The
number of collected photons will also vary diversify depending on
how deep the fluorophores are within the sample. The deeper the
fluorophores are, the more likely the photons are going to be diffrac-
ted, absorbed or refracted before reaching the coverslip/ lens. These
factors are not included in the simulation as the photon number for
every fluorophore is chosen from the same distribution. This could be
incorporated into the code in the future so that fluorophores at differ-
ent levels/ orientations have photon numbers coming from different
distributions.

Currently the algorithm produces only 2-dimensional SMLM images.
There are many different ways of expanding SMLM into 3-dimensions.
A lot of these work by changing the PSF of the fluorophores. One
such method introduces a cylindrical lens into the optical path causing
optical astigmatism [114]. When fluorophores are are on either side of
the focal plane their PSF changes from circular to elliptical. It widens
in the x-direction when it is above the focal plane and in the y-direction
when below. This could be incorporated into the simulations in the
future.

3.11 the algorithm

The code that was written and used in this chapter can be found in
appendix B.

The code that simulates individual images was adapted from soft-
ware written by Ashley Cadby. The rest of the code was written by
myself.
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4
M I X T U R E M O D E L A N D T H E M O D I F I E D I S I N G
M O D E L

4.1 summary

In this chapter a two-part algorithm which successfully denoises im-
ages from Single Molecule Localisation Microscopy (SMLM) has been
developed in MATLAB. The first section of the algorithm separates
the pixels into signal and noise on a pixel-wise basis and produces the
probabilities that a pixel is signal (or noise). These probabilities are
then passed to the second part of the code which incorporates a spatial
structure to further determine how likely the pixels are signal or noise.

4.2 introduction

As described in section 1.7.1, SMLM is a fluoresence microscopy tech-
nique that utilises specific fluorophores that can enter a stabilised dark
state. Using fluorophores that turn ’on’ and ’off’ stochastically means
that at any point in time there is only a small subset of fluorophores
that are ’on’. A video, or stack of images, are taken of the sample, and
in each frame the fluorophores can be localised with a much higher
precision than if they were all fluorescing at the same time. This is due
to the point spread function (PSF) (figure 1.4) of the emitting molecules
no longer overlapping and fluorophores are separated temporally.

One of the difficulties of using SMLM is analysing the image. In
most processing algorithms the priority is to identify the location of
fluorophores. However, as SMLM has been adapted for different uses,
counting the number of fluorophores in the sample has become more
prevalent. Especially when it is used for stoichiometry and higher
densely populated images. The very nature of stoichiometry requires
the number of fluorophores to be known. When analysing higher
density images, knowing the number of fluorophores would make it
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easier to localise and fit as it would reduce the number of unknowns,
allowing for a much higher precision of localisation.

To separate out the necessary data, the pixels are split into two
different populations; signal and noise. If the noise pixels can be
identified and set to zero, an image showing only the signal can be
produced. Having the noise pixels removed will allow for clearer
molecule identification.

This chapter describes a two stage algorithm that has been developed
that uses Bayesian Inference and random fields to determine the prob-
ability that each pixel in a single image is signal. These probabilities
can be used to classify the pixels into each population using a ’soft
classification’. It is a soft classification as a threshold is applied on
probabilities and not upon the raw data.

The first section (section 4.3), the Mixture Model, gives a good estim-
ation of signal and noise, however it is done using a pixel-wise manner
and therefore there are some individual pixels that are incorrectly
classified as signal/noise.

The second part of the algorithm, described in section 4.4, takes
the probabilities from the Mixture Model and uses Markov random
fields to incorporate the spatial knowledge into the model. It uses the
knowledge that PSFs spread over several pixels and uses the neigh-
bouring pixels to help reclassify the pixels creating a new matrix of
probabilities.

4.3 the first stage : denoising (the mixture model)

The first part of the algorithm uses Gibbs sampling as a means of
Bayesian Inference to separate the pixels into two populations; sig-
nal and noise. This will be called the Mixture Model from this point
forward. The process uses a pixel-wise approach and has several lim-
itations. One of the main problems is that, because its mathematical
model imposes no physical constraints and treats every pixel as inde-
pendent, pixels can be incorrectly classified. However, it can be used as
a quick and easy de-noising mechanism if that is all that is required.

Bayesian Statistics is described in section 2.3.1 and requires the pos-
terior to be determined (equations (2.6) and (2.7)). For this to be to be
calculated, both a likelihood and its priors need to be chosen.
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4.3.1 The Likelihood

The algorithm assumes that each population comes from a Gaussian
distribution with unknown mean, µj, and precision, λj where j ∈
{n, s} with n referring to the noise population and s referring to the
signal population. The following population distribution is used as the
likelihood for each individual pixel:

f(xi | θ) = PsN(xi | µs, λs) + PnN(xi | µn, λn), (4.1)

where θ is a place-holder for the unknown parameters and xi is the
intensity of pixel i in the image and i ∈N = {1, 2, ...,N} where N is the
number of pixels in the image. Ps and Pn are the probability of a pixel
being signal or noise respectively over the entire image and µs/n and
λs/n, being the mean and precision of the distribution respectively, with
subscript s referring to signal, and n to noise. As each pixel is taken to
be independent, identically distributed (i.i.d.) this can be multiplied
over i to get the full likelihood for the entire image as follows:

f(x | θ) =

N∏
i=1

f(xi | θ) =

N∏
i=1

[
PsN(xi | µs, λs) + PnN(xi | µn, λn)

]
. (4.2)

4.3.2 The Priors

From the likelihood (equation (4.2)) it can be seen that there are five
unknown variables: Pn, µn, λn, µs and λs. As Pn can be described in
terms of Ps: Ps = 1− Pn, only one of these parameters is needed. As
there are five unknown variables, five different prior distributions are
required. These were chosen as follows:

π(Pn) = Be(Pn | α,β), (4.3)

π(µs) = N(µs | ms,ps), (4.4)

π(λs) = Γ(λs | as,bs), (4.5)
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π(µn) = N(µn | mn,pn) and (4.6)

π(λn) = Γ(λn | an,bn). (4.7)

Where α and β are the shape parameters for the Pn Beta distribution,
ms/n and ps/n are mean and precision for the µs/n Gaussian distribution
and as/n and bs/n are the shape and scale parameters for the λs Gamma
distribution.

The following constraints can be applied; Ps + Pn = 1, 0 6 Ps,Pn 6 1
and µs > µn. The pixels must belong to either the signal or the noise
distribution and probabilities have to between zero and one. Also, due
to the nature of the system the signal values will be higher than the
noise values.

Information about the precision is unknown, however it is thought
that the distribution of the noise would be better determined and
henceforth λn > λs. This is due to the noise population being more
homogeneous unless there is a lot of autofluorescence coming from the
sample. Autofluorescence would decrease the precision of the noise
population and may, in the future and in certain images, require its
own population. The algorithm can also be tailored more specifically
to the system it is trying to denoise. For example, Electronic Multiply-
ing Charge-Coupled Devices (EMCCD) and scientific Complementary
Metal-Oxide Semiconductor (sCMOS) cameras will have different types
of noise. Although all pixels in an EMCCD camera go through the
same read-out register and have have noise coming from the same
distribution, they then use an electron multiplication register that uses
a stochastic multiplication. This causes the distribution to be changed
in a non-uniform matter increasing the variance of the distribution.
sCMOS cameras readout at the pixel and therefore the noise associated
with each pixel is different: fixed pattern noise. This is explained more
in section 2.4. The algorithm here copes with these differences well
as the variance is not fixed in the code and, instead, the data is used
(along with some prior knowledge) to determine this.

The signal population should have a larger variance as it can come
from a single fluorophore or multiple overlapping fluorophores. Also,
each of the pixels containing signal will also have background noise
contained within them and, therefore, they are expected to have more
variance (precision = 1/variance). Furthermore, due to the PSF of the
microscope there will be variations in values across the pixels that
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represent one fluorophore. For example, the centre of the fluorophore
will have a larger value than the ones nearer the edges.

The prior distribution chosen for Pn is a beta distribution. This is
because the value has to be between 0 and 1 as it is a probability. The
Beta distribution is also in the same family as the Gaussian distribution
and will therefore make the equation easier to simplify and calculate
the full conditionals.

Both means, µn and µs, are given a Gaussian distribution as this is
a good approximation of each population. A t-distribution could be
used for the signal population as it would add some extra information
about the tails of the distribution; it would allow the extremes to
hold more weight (be more probable). However, as an average value
cannot be calculated for a t-distribution, a Gaussian was ultimately
chosen. Gaussian distributions are also favoured as they can be made
quite flat and uninformative if little information is known about the
populations. The distribution for the noise could also be changed to
be more physical, however using this Gaussian fit yields good results
for images taken using SMLM as shown in the rest of this chapter
specifically in sections 4.3.6 and 4.3.7.

Both precisions λn and λs are given Gamma distributions to ensure
that they are always positive. These distributions can also be made flat
and uninformative so that the data is used more than the prior.

4.3.3 Values chosen for priors

In the priors (equations (4.3) to (4.7)) there are ten different parameters
to be fixed: α, β, mj, pj, aj and bj where subscript j ∈ {n, s}. The values
chosen for these values are shown in table 4.1.

The vales for α and β were both chosen as 1
2 in the prior equation

for Pn (equation (4.3)). This means that there is an equal probability
of the pixel being in either population; signal or noise. This keeps the
prior flat and uninformative so that the data drives the result more
than the priors. In the future, this could be changed so there is a higher
probability that the pixel is noise. This would be more physical as there
are more pixels in the noise population. However, it was kept as 1

2 so
that if the signal population is very small the algorithm was less likely
to fail (explained more in section 4.3.9).

The values of ms and mn were chosen as the 97.5th and 2.5th quantile
of the data respectively. Initially, specific values were chosen for these
but as the signal value varies across all SMLM images drastically due
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Table 4.1: Table shows the chosen values for all the unknown quantities in the
prior distributions described in equations (4.3) to (4.7)

Variable Value

α 1
2

β 1
2

ms 97.5th quantile of the data
ps 0.05

mn 2.5th quantile of the data
pn 0.01

as 0.01

bs 0.01

an 0.01

bn 0.01

to the large variety of fluorophores, using a constant number would
not be physical for all images. Although this is not a completely
Bayesian approach, it is a good approximation. Another method, that
is more Bayesian, would be to use the quantile values in only the initial
image. In all subsequent images after, the value for µs and µn that is
computed for previous image can be used as the prior values ms and
mn respectively in the next image. Although this works very well, it
stops the algorithm from being parallelised due to the dependence on
the previous image. Currently the algorithm can be parallelised across
images so that a full stack can be done at a quicker rate. This requires
each image to be independent and therefore including this dependence
would inhibit this ability.

A further method, would be to alter the prior for each specific
fluorophore, environment and microscope used. The user could either
pick the prior themselves, or there could be list of prior values for each
fluorophore and its environment. This was discarded as the aim was
to make the code as independent as possible, so it could work with a
large variety of images without having to change the input values.

Values for ps and pn where chosen as 0.05 and 0.01. Choosing a low
precision for the mean value allows both populations to rely more on
the the data. A slightly higher precision was for the signal population
to try and ensure that it kept the higher valued pixels in its population
rather than them being classified as noise.
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The prior values for as/n and bs/n were all chosen to be 0.01. This
creates a distribution with a peak near zero. This allows the two popu-
lations to have a large variation and therefore will enable populations
to include values that are far away from the mean. Little information is
known about the precisions and although it is thought that the noise
may be more precise when there is little to no autofluorescence.

4.3.4 The Posterior

To calculate the posterior all the priors (equations (4.3) to (4.7)) are
multiplied together with the likelihood (equation (4.2)) as described in
equations (2.6) and (2.7). This renders a very complicated and unknown
distribution (equation (4.8)):

π(θ | x) ∝
N∏
i=1

f(xi | θ)Be(Pn | α,β)N(µs | ms,ps)

Γ(λs | as,bs)N(µn | mn,pn)Γ(λn | an,bn). (4.8)

As this is unknown, inference cannot be made directly. Instead a
Markov Chain Monte Carlo (MCMC) method is utilised using the full
conditionals of each unknown variable. MCMC methods are described
in section 2.3.2, and the full distributions are calculated and shown in
section 4.3.5.

4.3.5 Full Conditionals

As described in section 2.3.3 the full distributions are found using the
complicated posterior. All the unknown parameters, bar the one of
interest, are set as constants and then the equation is simplified to find
a known distribution.

The distribution is found up to its proportionality. The type of
distribution is determined and then the constant of normalisation is
found using the type of distribution.

From the posterior, described in equation (4.8), it can be seen that
there are five unknowns (Pn, µs/n and σs/n) which come from the five
different priors (equations (4.3) to (4.7)). Each unknown requires its
own full conditional and therefore there need to be five different full
conditionals. These are described as follows:

π(Pn) = Be(nn +α,ns +β), (4.9)
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π(µj) = N(µj | m
∗
j ,p
∗
j ), and (4.10)

π(λj) = Γ(λj | a
∗
j ,b
∗
j ). (4.11)

Where

m∗ =
njλjx̄+ pjmj

njλj + pj
, (4.12)

p∗j = njλj + pj, (4.13)

a∗j =
nj

2
+ aj, (4.14)

b∗j = bj +
nj

2
(s2j + (x̄j − µj)

2), (4.15)

and

s2j =
1

nj

∑
i

(xi − x̄j), (4.16)

x̄j =
1

nj

∑
i

xi. (4.17)

Here, subscript j ∈ {n, s} and nj is the number of pixels in population j.

All of these full conditionals are of known distributions; Beta, Gaus-
sian and Gamma (see appendix A.2). Therefore random numbers can
be drawn from these and inference can be performed using MCMC.

4.3.6 MCMC method

The data from each image is first split arbitrarily using the 95th percent-
ile so that everything above this value is primarily counted as signal,
and anything below is classed as noise. This value is used as it is
known that a much larger proportion of pixels will be noise rather
than signal. Although any value can be used to initially split the data,
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the closer the initial populations are to the final ones, the quicker the
algorithm will reach an equilibrium.

There are now two data sets: signal and noise. These two data sets
are treated separately and considered independent from each other.
For each data set, the parameters m∗, p∗, a∗ and b∗ are calculated
(equations (4.12) to (4.15)). These are then used to draw a random
number from the full conditionals of µn/s and λn/s (equations (4.10)
and (4.11)). These are stored and used as the new values of µn/s and
λn/s.

The final full conditional, Pn (equation (4.9)), is used to calculate an
updated version of Pn. This number describes the overall probability
that a pixel is noise. The full conditional uses the number of pixels
in each population, and a number is drawn from this distribution to
update Pn. This value is then used to determine the probability that
each individual pixel is noise using equation (4.18).

Pin =
PnN(xi | µn, λn)

PnN(xi | µn, λn) + (1− Pn)N(xi | µs, λs)
. (4.18)

These probabilities show how compatible each pixel is with the noise
distribution. How compatible a pixel is with the signal distribution is
given by Pis = 1− Pin. If there are very few pixels defined as signal
then Pin → 1 for all i and therefore all pixels will be classified as noise.
Pin → 0 for all i if most of the pixels are defined as signal. In these two
cases, the model breaks down.

Using a Bernoulli distribution, these probabilities are used to re-
classify the pixels as signal or noise. A Bernoulli distribution returns
either a one or a zero. If a one is returned, the pixel is classified in
the noise population, and if a zero is returned, the pixel is classified
in the signal population. These values are all stored in the Z matrix.
The populations for signal and noise have now been updated and some
pixels will have changed which population they are in. This process
is now repeated until an equilibrium is reached. All values that are
drawn after the equilibrium are an estimate from the posterior.

The output of the Mixture model includes:

• a matrix stating if each pixel is signal (0) or noise (1) for each
iteration: the Z matrix, and

• the values drawn for all five of the priors for each iteration:

– µn,

– µs,

– λn,
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– λs, and

– Pn.

All of this data will include the burn-in period (see section 2.3.2). Before
the algorithm reaches equilibrium, the values being drawn are not from
the posterior, and therefore have to be discarded. The number of values
that need to be discarded can be determined by plotting a graph of the
the unknowns and finding where they reach equilibrium. Although
this is the most accurate method, it can be very time consuming to do
this for a large stack of images. Therefore, instead, a large number of
values are discarded to ensure that all of the burnin is removed.

The Z matrix is of size n (number of pixels) by m (the number of
iterations) and is used to calculate the probability that each pixel is
signal. This is done by finding the average value over all the iterations,
after the burn-in period has been removed. The matrix contains only
zeros and ones, where a zero denotes it has been classified as noise,
and a one denotes it being classified as signal. Therefore, the average
over all these values will be the probability that a pixel is signal. An
example of these probabilities are shown in figure 4.1. In this figure,
figure 4.1a shows the whole range of probabilities, and figure 4.1b
shows a close up of the middle range (from 0.53 to 0.99). These values
can be used to denoise the images. A threshold is chosen and pixels
with probabilities above this are classed as signal, and those below are
classified as noise. As this threshold is done on probabilities and not
on the actual intensity values from the original image, it can be thought
of as a ’soft threshold’. The noise pixels can then be removed or set to
zero.

Using a soft threshold on the probabilities is preferred over a ’hard
threshold’ on the intensity values due to the large variation in intensities.
This variation occurs not only across SMLM images taken for one
stack, but also between samples. A ’hard threshold’ would have to be
individually chosen for each image, whereas a soft threshold can be
the same across all different images.

Figures 4.2a and 4.3a show images taken using SMLM. These image
have been processed using the algorithm discussed above and the
output probabilities are shown in figures 4.2b and 4.3b. As described
earlier, these probabilities can be used to denoise the images using a
soft threshold to create a mask. A mask for figure 4.3a is shown in
figure 4.3c. Multiplying this mask with the original image creates a
desnoised image as shown in figure 4.3d.

Figure 4.4 shows figure 4.2a after it has been denoised using different
’soft thresholds’. There is a large difference between figure 4.4b and
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(a)

(b)

Figure 4.1: The probabilities output from the Mixture Model for figure 4.2a,
showing the likelihood a pixel is signal. These are also shown
pictorially in figure 4.2b. (a) shows all the values where as (b)
shows only the values between 0.52 and 0.99.

the others however there is very little difference between figures 4.4c
to 4.4f. For different images there will be different ranges, for some
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there will be very little difference between ’soft thresholds’ of 0.3 and
0.9. However, generally there is very little difference between 0.6 and
0.95.

(a) (b)

(c) (d)

Figure 4.2: (a) An image taken with SMLM of a 3T3 cell labelled with AF 647,
(b) the probabilities produced from the Mixture Model showing
how likely the pixel is to be signal. (c) A mask produced from (b)
using a soft threshold of 0.7. (d) A denoised version of (a) using
the mask in (c).

The values of µn/s and λn/s describe both populations; signal and
noise. In each iteration, a µn/s and λn/s are drawn and saved. The mean
of these can be used to determine the final value, but also the confidence
in this can be calculated by computing the variance. These can be seen
in figures 4.5 and 4.6 with figure 4.5 showing the predicted values
of µn/s and λn/s for figure 4.2a and figure 4.6 shows the populations
for figure 4.3a. Figures 4.5a and 4.6a show a histogram of all the
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(a) (b)

(c) (d)

Figure 4.3: a) A sparsely populated image of Staphylococcus labeled with AF
647 taken with SMLM. (b) The probabilities produced from the
Mixture Model showing how likely a pixel is to be signal. (c) A
mask produced from the probabilities in (b) using a soft threshold
of 0.7, The pixels with a value of 1 have been classified as signal.
(d) A denoised version of (a) using the mask in (c).

pixel intensities in figures 4.2a and 4.3a respectively. Figures 4.5b
and 4.6b show histograms of the values drawn for µn and µs and
figures 4.5c and 4.6c show histograms of the values drawn for λn and
λs. Figures 4.5d and 4.6d show the distributions of both the signal and
the noise populations calculated using the mean values of µn/x and
λn/s.

These values can be used for various situations including to calculate
the signal-to-noise ratio (SNR) (section 4.5.2) and when using the
algorithm for data reduction section 4.5.1. These values are also used in
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(a)

(b)

(c) (d)

(e) (f)

Figure 4.4: (a) The original image that was taken using SMLM and is a repeat
of figure 4.2a. Figures (b)-(f) show this image after it has been
denoised using soft threshold values of (b) 0.5, (c) 0.6, (d) 0.7, (e)
0.8 and (f) 0.9.

chapter 5 when trying to count the number of fluorophores in a stack
of SMLM images.

In figures 4.5 and 4.6 it can be seen that the values of µn/s and λs/n
look to come from two different populations. As the code redistributes
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the pixels into signal and noise populations at every iteration using
random numbers and probabilities, the distribution will alter for each
iteration. As the two distributions of signal and noise overlap, some
pixels will switch between the two groups causing the µn/s and λn/s
values to alter each time. This causes the posterior to be multimodal as
can be seen in figures 4.5b and 4.5c.

(a) (b)

(c) (d)

Figure 4.5: (a) A histogram of the intensity values for each pixel in figure 4.2a.
(b) Shows a histogram of the drawn µs and µn values for each
iteration (the mean values of the noise and signal populations).
(c) Shows a histogram of the drawn λs and λn values for each
iteration (the precision values of the noise and signal populations).
(d) Shows the distributions of the noise and signal populations
using the mean values of µi and λi where (i ∈ n/s). In all of these
figures, red represents the noise population and blue represents
the signal population. It can be seen in both (b) and (c) that the
posterior is multimodal. This is due to the overlapping of the two
distributions (signal and noise) and the pixels switching between
them.

If more accurate values of µn/s and λn/s are required, then the fixed
populations, determined using a soft threshold, can be sent through a
section of the Mixture Model using Bayesian Inference to determine the
values from this new data. The priors used in this were calculated using
the values from the first iteration through the Mixture Model; the mean
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of µn and µs. These updated values can be used to calculate a more
accurate value of the SNR (see section 4.5.2) or to help when trying to
count the number of fluorophores in the sample (see chapter 5).

(a) (b)

(c) (d)

Figure 4.6: (a) A histogram of the intensity values for each pixel in figure 4.3a.
(b) Shows a histogram of the drawn µs and µn values for each
iteration (the mean values of the noise and signal populations).
(c) Shows a histogram of the drawn λs and λn values for each
iteration (the precision values of the noise and signal populations).
(d) Shows the distributions of the noise and signal populations
using the mean values of µi and λi where (i ∈ n/s). In all of these
figures, red represents the noise population and blue represents
the signal population. It can be seen in both (b) and (c) that the
posterior is multimodal. This is due to the overlapping of the two
distributions (signal and noise) and the pixels switching between
them.

A sensitivity test has been conducted on the Mixture Model. This test
showed that the code was robust and the values of m p a and b can be
changed without having much difference on the outcome, however it
does depend upon the type of images being analysed. This is discussed
more in section 4.3.7.

Although this method can be used independently, as each pixel is
taken to be independent, the output can have some incorrectly classified
pixels. It is known that the PSF of a fluorophore is spread over several
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(a) (b)

(c) (d)

Figure 4.7: The pixels in figure 4.3a were split into fixed noise and signal
populations using a soft threshold of 0.7. These populations were
sent through a Mixture Model to provide updated values of µj
(the mean) and λj (the precision) where j ∈ n, s. (a) A histogram
of the drawn µj for each iteration. (b) A histogram of the drawn
λj for each iteration. (c) The distributions of the fixed noise and
signal populations using the mean values of µi and λi. (d) The
distributions of the noise and signal populations from before
(figure 4.6d) and using the fixed populations. In all of these
figures, red represents the noise population and blue represents
the signal population.

pixels and this model can classify isolated pixels as signal (that are
surrounded by noise). To incorporate this spatial information into the
model, the probabilities calculated in the Mixture Model are passed
to a second algorithm which incorporates a spatial structure using the
four nearest neighbours to further classify the pixels.

4.3.7 Sensitivity Test

The Mixture Model has been sent through a sensitivity test to determine
how robust it is. When large, sparse, and clean images are analysed
with the algorithm it is robust when choosing the prior values. When
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the images have autofluorescence in them then the priors need to be
chosen with a lot more thought. If they are not chosen with thought
then the algorithm can break, with all pixels being classified into the
same population.

Also when analysing smaller data, such as figure 4.3a, the algorithm
is less robust and some prior values will cause the code to fail. Prior val-
ues for µi are the least robust, however, their is more prior knowledge
for these unknown parameters.

When changing the values for an/s and bn/s and λn/s the algorithm
is robust. The values for µn/s have to be chosen with more thought or
the algorithm fails to separate the two different populations. There is,
however, typically good knowledge about the values of µi and µs high
comparable to the intensity values of the specific image.

Figure 4.8 shows an image taken using SMLM and then the output
of the Mixture Model using different prior values. The values used are
shown in table 4.2. From these images it can be seen that the algorithm
is robust when changing the prior values as the resultant probabilities
are very similar with a mean difference of 4.4958× 10−5. Appendix C.2
shows more results from the sensitivity test.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: (a) The original image (a repeat of figure 4.2a) and then five
different (b)-(f) examples of the output using different prior values
(More results can be seen in appendix C.2). The prior values used
are shown in table 4.2.
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4.3.8 Pseudocode for this Mixture Model

Given a data set D, which consists of both signal and noise, the likeli-
hood is given by equation (4.2) and the priors are given by equations
equations (4.3) to (4.7). equations (4.3) to (4.7). The full posteriors are
calculated to be equations (4.9) to (4.11).

1. Split D arbitrarily into signal and noise populations using 95th
percentile.

2. Fix values for mj, pj, aj and bj.

3. For each population, calculate values for x̄ and s2 (equations (4.16)
and (4.17)).

4. Calculate a∗j (equation (4.14)).

5. Arbitrarily choose a value for λj > 0.

6. Use λj to calculate/update m∗j and p∗j (equations (4.12) and (4.13)).

7. Generate a random number from the distribution of µj (equa-
tion (4.10)) using current values of m∗j and p∗j .

8. Use current value of µj to calculate/update b∗j (equation (4.15)).

9. Generate a random number from the distribution of λj (equa-
tion (4.11)) using current value of b∗j .

10. Use equation (4.9) to calculate the probability that a pixel is signal
or noise.

11. Use this value and a Bernoulli distribution to classify the pixels
as signal or noise.

12. Repeat steps 6-11 m times where m is the number of iterations.

Finally, the code was run on the same data using different seeds to
check convergence. figure 4.17 shows the data from figure 4.2a. table 4.3
shows the different quantiles for the different runs using different seeds.
From both of these it can be seen that when different seeds are used,
the algorithm still converges at the same place, producing the same
results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: The results from using the same data (as shown in figure 4.2a)
through the Mixture Model using two different seeds. (a) The
probability outputs using the first seed. (b) The probability outputs
using the second seed. (c) A histogram showing the values of µN
from the two different seeds. (d) A histogram showing the values
of µS from the two different seeds. (e) A histogram showing the
values of λN from the two different seeds. (f) A histogram showing
the values of λS from the two different seeds. (g) The distribution
of the two noise distributions. (h) The distribution of the two
signal signals
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174.5731 180.4918 184.2015 193.8716 194.4381

4.3.9 Limitations of the Mixture Model

There are several different limitations of this Mixture Model algorithm.
It is computationally intensive and it requires there to be enough data
in each population. The priors should work for the majority of SMLM
images, however, as there are such a diverse number of fluorophores,
environments and cameras, the data varies widely. There may be some
scenarios where the prior values will need to be altered.

The computational intensity increases linearly with the number of
pixels in the image and how many times the process is iterated through.
The code, however, is parallelised across images so it can iterate through
several images at once.

This will vary from data set to data set depending on the data itself.
If there is a lot of data in each population then the result will depend
more on the data than the priors. This means that the noise population
will tend more towards the data rather than the prior. The signal
population is significantly smaller in size than the noise population
and, therefore, will tend more towards the prior than the data. If the
precision of the data (in each population) is small, then then mean of the
posterior will tend towards the prior. The larger the precision the more
it will tend to rely on the data. This can be seen from equation (4.12).
Therefore the signal population, the more interesting of the two, will
depend more on the prior values chosen than the noise population.

If there are not enough data in each population then the algorithm
classifies them all into one group and the algorithm fails. This is due
to equation equation (4.18). If Pn is large, then all pixels are classified
as noise as Pin → 0 for all i. If all the pixels are classified into the same
group then the algorithm draws a new set of probabilities to try and
redistribute the pixels so that there are pixels in both groups. A limiter
is in the code that breaks the algorithm if it loops through this step
1000 times.

Synthetic images were created using the simulation algorithm de-
scribed in chapter 3. The number of fluorophores ’on’ in the image
were reduced until the resultant data was unable to be split by the Mix-
ture Model. When looking at synthetic images with a SNR of 3.57, the
algorithm needs around 1.38% of pixels to be in the signal population.
The SNR was calculated using the method described in section 4.5.2
and the number of pixels in the signal population was calculated using
a soft threshold of 0.8. Using images with higher SNR yielded a similar
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result of 1.38%. As the SNR decreases, the percentage of pixels needed
increases, also the number of incorrectly classified pixels increases as
the higher values for noise become comparable with the lower values
of the signal. A SNR value of 2.22 requires around 4% of pixels to be
signal.

The code used to swap the populations around and classify signal
as noise and vice versa. This is known as label switching. Figure 4.10

shows an image that has been denoised incorrectly in this manner.
This, however, has been rectified by adding in an extra step to ensure
that the signal population always has a higher mean than the noise
population. If the values were reversed then the code automatically
swapped them to ensure that the correct values were allocated to the
correct populations.

Figure 4.10: Data produced from Mixture Model from simulated data. Al-
gorithm has identified the two populations successfully, however
has not managed to denoise the image. The colour scale shows
the intensity of the pixels
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4.4 the second stage : the Modified Ising Model (MIM)

This section of the algorithm is an adaptation of the Ising Model; a
mathematical model of ferromagnetism in statistical mechanics [116].
This has been modified by having the different spins as the two different
populations. The algorithm uses a markov random field (MRF) and the
four nearest neighbours to further determine the classification of the
pixels. It uses both MRF [117] and the Metropolis-Hastings (MH) ratio
[93].

4.4.1 Markov Random Fields (MRF)

A MRF is an undirected graphical model for a set of random variables,
called nodes, which are divided into cliques [117]. They provide a mech-
anism for enforcing spatial consistency across images, incorporating
both the previous estimate and the relationship between neighbouring
nodes. [118]

Images are split up into nodes which are connected to their neigh-
bours via edges. The notation for these image graphs is:

G = (V,E), (4.19)

where V = (1, 2, ..., i, ...,N) is the number of nodes or vertices, N being
the maximum number or nodes, and E represents the edges connecting
them. A typical edge is given by: (i, j) with i, j ∈ V , and the graph is un-
directed meaning (i, j) = (j, i). This is represented in figure 4.11. All the
circles (shaded or otherwise) are the nodes, and all the lines connecting
them are edges. MRFs are only interested in local interactions and use
a neighbourhood system to achieve this. The neighbourhood model
can be extended (or reduced) to include more (or less) neighbours
as required. Figure 4.11 shows the most simple of local interactions
and figure 4.12 shows how it can be extended. Figure 4.12 also shows
cliques which are a subset, C, of S. A subset is a clique if two different
elements of C are always neighbours.

In graph interpretation, if two nodes are linked by an edge, then
they are neighbours. Mathematically this is defined as follows. Let
S be a finite set of pixels with elements, or sites, denoted by s. Λ is
the finite phase space. A random field on S with phases in Λ is a
collection X = {X(s)}s∈S of random variables X(s) with values in Λ. A
neighbourhood system on S is a family N = {N}s∈S of subsets of S such
that for all s ∈ S: s /∈ Ns, and if t ∈ Ns → s ∈ Nt. That is, s cannot be a
neighbour of itself, and if t is a neighbour of s then s is a neighbour of t.
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Figure 4.11: Graphical representation of data. Nodes are represented by
circles (shaded or not) and edges are represented by straight
lines. Given the grey nodes, the black node is conditionally
independent of the white nodes. [119]

Figure 4.12: Two different neighbourhood systems and their corresponding
cliques. [120]

Ns is called the neighbourhood of site s, and if s and t are neighbours
it is denoted s ∼ t.

A random field is an MRF if:

P
[
X(s) = x(s) | X(S\s) = s(S\s)

]
=

P
[
X(s) = x(s) | X(Ns) = s(Ns)

]
(4.20)

That is, an element is only dependent on its neighbourhood and not
the rest of the data. This is shown in figure 4.11, the black node is
conditionally independent of the white nodes, given the grey nodes.
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4.4.2 Metropolis-Hastings Ratio

The Mixture Model works by generating random numbers from the full
distributions as they are of known distributions. If the distributions are
unknown and direct sampling is not possible then the MH algorithm,
or Metropolis algorithm, is used. [94]

Instead of drawing from the full distribution, a proposal distribution,
or candidate-generating density is used. This is a Probability Density
Function (PDF) and is permitted to depend upon the current state of
the process. If the process is at the point x, and a value y is to be
generated, then the proposal is denoted:

q(x,y). (4.21)

Instead of drawing a random number from the full distribution, a
number is generated from this proposal [93]. In principle this proposal
can be any distribution, however in practice a distribution that fits as
closely as possible to the full distribution is chosen. [94]

This new value, y is kept with probability α(x,y). This is known as
the Metropolis Ratio. It determines how compatible the new value is
compared to the current value. It is defined as:

α(x,y) =

min{π(y)q(y,x)
π(x)q(x,y) , 1}, if π(x)q(x,y) > 0.

1, if π(x)q(x,y) = 0,
(4.22)

where π(x) is the full distribution [93]. This ratio is sometimes referred
to as the probability of move. If y is rejected, then the previous value,
x, is repeated and used as the next value. The Mixture Model can be
thought of a special case of the MH algorithm where α(x,y) is always
equal to one. [94]

4.4.3 Modified Ising Model (MIM)

The Ising model is a mathematical model of ferromagnetism in statist-
ical mechanics. Here it has been adapted for use in de-noising with the
different spins being the two populations. [116]

In the Ising model, the total energy of the system, the Hamiltonian
(H), is

E(= H) = J
∑
i∼j

zizj, (4.23)
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where zi denotes the spin of particle i, and the sum is over all the
neighbouring particles, i ∼ j, as defined in section 4.4.1. J is a constant
that represents the strength of interaction between the particles. If this
is positive then neighbouring particles having the same spin decreases
the energy.

The Ising model has an inverse temperature dependence which is
related to the amount of energy the system contains and the amount
of energy it requires to change spin. In this adaptation, this parameter
is also denoted as J, and can be thought of the inverse of temperature.
The lower this value, the higher the temperature and therefore the
more energy is in the system, meaning that more, smaller clusters are
favoured. Therefore, pixels with neighbours in the opposite population
are unfavourable. The temperature is treated as an unknown parameter
and is inferred from the data. [116]

Statistical mechanics states that, if set C represents all possible con-
figurations, and E(c) is the energy of configuration of c ∈ C, then the
probability of any particular configuration c, P(c), is:

P(c) =
1

Z
exp
{
−
E(c)

kT

}
. (4.24)

Where Z is the normalisation constant, T is the temperature in Kelvin,
and k is Boltzmann’s constant. Using this and the Hamiltonian from
before (equation (4.23), then

P(y) =
1

Z
exp
{
J
∑
i∼j

yiyj

}
, (4.25)

where yi is now the output probability value from the Mixture model
at position i.

As∑
i∼j

yiyj = 2N(N− 1) − 2dy, (4.26)

where N is the number of pixels and dy is the number of disagreeing
edges, the local structure can be measured using:

P(y) =
1

Z
exp
{
2J
(
N(N− 1) − dy

)}
. (4.27)

As N(N− 1) and Z are constants, this can be written as:

P(y) ∝ exp(−2Jdy). (4.28)
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In this section we treat the neighbourhood structure, θ, as unknown,
formalised as the Ising model, thus the prior for the neighbourhood is
given by:

π(θ) ∝ exp(−2Jdθ) (4.29)

Given that the inverse temperature J has a strong influence on the
number of cluster in the filed, a prior distribution was used to allow
the data to determine a value for J. As J can be thought of as the
inverse of temperature, it must be positive value. Therefore, a Gamma
distribution has been chosen as its prior:

π(J) = Γ(J | aJ,bJ). (4.30)

Here, aJ and bJ are the shape and scale parameters for the Gamma
distribution.

The data in this model can be represented with a Gaussian distribu-
tion:

L(y, θ) ∝ exp
(
−1

2σ2

∑
m,n

(ymn − θmn)
2

)
. (4.31)

As before, ym,n is the output data (probabilities) from the Mixture
model at position m,n. θm,n = {1,−1} is the classification of the pixel
into either the signal (1) or noise (-1) population. σ is the variance of
this likelihood.

Combining equations (4.29) to (4.31) and using equations (2.6) and (2.7)
the posterior is:

π(θ |D) ∝ exp
(
−1

2σ2

∑
m,n

(ymn− θm,n)
2

)
JaJ−1 exp

(
− J(bJ + 2dθ)

)
.

(4.32)

This posterior (equation (4.32)) is very complicated and only one full
conditional of the two unknowns is a known distribution: J equa-
tion (4.33). The full conditional of the neighbourhood is an unknown
distribution and therefore the MH algorithm is used.

The full distribution of J is given by:

Γ(J|aJ,b∗J), (4.33)

where b∗J = bJ + 2dθ. As this full conditional is a known distribution
then random values can be drawn from it. Therefore there is no need
to use a MH ratio for this parameter.
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For the neighbourhood, the full distribution is of an unknown form
and therefore numbers cannot be sampled from this. Instead a proposal
is used that changes the value of one pixel to the opposite population,
for example, if it is classified as signal it changes it to noise (-1 goes
to 1, and 1 goes to -1). The proposal is denoted q(θ, θ ′) where θ is the
current neighbourhood, and θ ′ is the proposed neighbourhood with
the pixel in question in the other population. The ratio of the proposal
equations is given by:

q(θ ′, θ)
q(θ, θ ′)

= e
−2y(pos)

σ2 . (4.34)

Here, y(pos) is the probability value of the pixel in question that came
from the Mixture Model, and σ is related to the amount of noise in the
system as described earlier. This value is fixed, however in the future it
is possible to treat it as an unknown parameter and infer it from the
data.

The full potential is given by:

π(θ) ∝ exp(−2Jdθ). (4.35)

The ratio of the full potentials is given by:

π(θ ′)

π(θ)
= e2J(dθ−dθ ′), (4.36)

where J is the inverse parameter related to temperature and dθ and
dθ ′ are the number of neighbourhood pixels that are in the opposite
population originally, and when it has been changed to the other
population in the proposal respectively. For example, if there is a pixel
classified as signal surrounded by four noise pixels, dθ = 4 and dθ ′ = 0.

Multiplying equations (4.34) and (4.36) gives the Metropolis ratio;
α. A random number between 0 and 1 is generated. If this generated
number is less or equal to α then the proposed value is kept. If it is
greater than α then the proposed value is rejected and the previous
value is reused.

As with the Mixture Model, the MIM goes through many iterations.
The more iterations are completed the more accurate the final result
will be, up to the limitations of the model. In every iteration, the
algorithm goes through each pixel in the image in a random order. The
state of the pixel is inverted (from signal to noise or vice versa) and the
MH ratio is used to determine which population the pixel should be in.
How many times it is classified into each population determines the
probability it should be signal (or noise).
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Results from the MIM are shown in figures 4.13 and 4.14 with fig-
ure 4.13 showing the results from figure 4.2a and figure 4.14 showing
the results from figure 4.3a. The probabilities that were inputted into
the code are were the the outputs from the Mixture Model shown in
figures 4.2b and 4.3b.

4.4.4 Sensitivity Test

As with the Mixture Model, a sensitivity test has been performed on
the MIM. The values that can be changed in this section are: the prior
values for J, aJ and bJ, and σ. J is the inverse temperature dependence
and σ which is related to how noisy the image is. In this algorithm J is
treated as an unknown and therefore has its own distribution, whereas
σ is taken as a constant. However, in the future this could be changed
and inferred from the data.

Figures 4.15 and 4.16 show the output of the Ising section of the
algorithm for several different prior values for images figures 4.2a
and 4.3a. For figure 4.2a (figure 4.15), only the centre of the image has
been shown so it can be easier to see the pixel values. Figure 4.15a
shows centre of the original image, figure 4.15b shows the Gibbs prob-
abilities and figures 4.15c to 4.15f show four outputs from the MIM. The
priors for these results and the results shown in figures 4.16c to 4.16f
are shown in table 4.4.

Here is only a selection of the results and their priors, a more com-
prehensive test has been completed however only a selection are shown
here. It can be seen that the Ising section is a lot less robust than the
Mixture Model and therefore the values need to be chosen with more
care. For both these images the prior values of aJ = 2, bJ = 2 and σ = 2

yield the best results and therefore these were the values chosen for
future images.

Table 4.4: Prior values used to produce results in figures 4.15 and 4.16

Prior values
Images aJ bJ σ

c 1 1 0.5
d 2 2 2

e 3 3 0.75

f 6 4 1
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(a) (b)

(c)

(d)

(e)

(f)

Figure 4.13: (a) The probabilities produced from the Mixture Model for fig-
ure 4.2a showing the likelihood each pixel is signal (a repeat
of figure 4.2b). (b) The updated probabilities output from the
MIM where the input was (a). (c) A histogram showing the same
probabilities in (b). (d) A mask created using a soft threshold of
0.7 on the Ising probabilities. (e) A denoised version of figure 4.2a
using the mask shown in (d). (f) A histogram showing the drawn
values of J from each iteration of the MIM.

Finally, the code was run using different seeds to ensure that the
algorithm converged the same place each time. The results of this can
be seen in figure 4.17. A histogram showing all of these is shown in
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(a) (b)

(c)

(d)

(e)

(f)

Figure 4.14: (a) The probabilities produced from the Mixture Model for fig-
ure 4.3a showing the likelihood each pixel is signal (a repeat
of figure 4.3b). (b) The updated probabilities output from the
MIM where the input was (a). (c) A histogram showing the same
probabilities in (b). (d) A mask created using a soft threshold of
0.7 on the Ising probabilities. (e) A denoised version of figure 4.2a
using the mask shown in (d). (f) A histogram showing the drawn
values of J from each iteration of the MIM.

figure 4.18. The quantiles of these results can be seen in table 4.5. From
this it can be seen that the algorithm converges when different seeds
are used.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: (a) The middle area from figure 4.2a, an image taken using SMLM
and the (b) the middle area of figure 4.2b, the output from the
Mixture Model. (c)-(f) Different outputs from the MIM using
different prior values. The prior values are shown in table 4.4

4.5 applications

This code has several different applications, including data reduction,
measuring SNR and as a preprocessing algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: (a) A copy of figure 4.3a, an image taken using SMLM and the (b)
the copy of figure 4.3b, the output from the Mixture Model for
(a). (c)-(f) Different outputs from the MIM using different prior
values. The prior values are shown in table 4.4

4.5.1 Data Reduction

The algorithm can be used to reduce the amount of memory needed to
save the same amount of data. As most of the pixels are only noise, and
contain no information about the location of the fluorophores, these
pixels can be discarded. Depending on how many fluorophores are
emitting in each frame and how dense they are changes the amount of
pixels that can be discarded.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: (a, c, e) Images showing the probability results using the MIM
using different seeds to test that the algorithm converges in the
same place. The probabilities going in to this are shown in
figure 4.16a. (b, d, f) Histogram of the probabilities that can be
seen in (a), (c), and (e) respectively.

Denoising the images can be done using either just the Mixture
Model or after both the Mixture Model and the MIM. The data is
saved as a as a sparse matrix which contains only the positions and
the intensity values of the signal data. As images taken with SMLM
have such a high proportion of pixels as noise, if only the signal data
is saved then a large amount of memory can be removed. This can be
achieved by denoising the images using the Mixture Model and MIM
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Figure 4.18: A histogram showing the probabilities from the MIM when three
different seeds are used. This contains the results shown in
figures 4.17b, 4.17d and 4.17f

Table 4.5: Quantile values from the results shown in figure 4.17. MIM was
used on the same data produced in the Mixture Model (figure 4.16a)
using different seeds to check convergence.

MIM Results
Quantile Seed 1. Seed 2 Seed 3

0 0.4350 0.4350 0.4250

0.25 0.4900 0.4900 0.4900

0.5 0.5000 0.5000 0.5000

0.75 0.5100 0.5100 0.5100

1 0.9800 0.9700 0.9800

stated above and then saving these images as sparse matrices. This can
reduce the amount of memory required to save images by, on average,
95%. This reduces an 8Gb stack down to 400Mb.

When images are sparsely populated, for example in figure 4.3a
then this works exceedingly well. The image was sent through the
ThunderSTORM algorithm to determine the positions of the fluoro-
phores. These positions are shown in figure 4.19. Next the image was
run through the Mixture Model and denoised using a threshold of 0.8.
ThunderSTORM uses the background noise to aid in its localisation
algorithm and, therefore, the images were re-noised using values ran-
domly chosen from a Gaussian of mean mn and λn. It can be seen that
the re-noised Gibbs image finds the locations of the same fluorophores
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as in the original image. The Ising model however finds the location of
two more fluorophores.

(a) (b)

(c) (d)

Figure 4.19: (a) Original SMLM image and the locations ThunderSTORM pre-
dicted. (b) Renoised image from Mixture Model and the locations
predicted by ThunderSTORM on this new image. (c) Renoised
image from MIM and the locations predicted by ThunderSTORM
as well as the locations from the original image. (d) Original
SMLM with both the locations calculated from Gibbs renoised
image and the original image.

4.5.2 Measuring Signal and Noise (signal-to-noise ratio (SNR))

SNR is an important factor that quantifies the quality of images. If
the images have a low SNR then there may be losses of important
information. The definition and calculation of SNR varies widely
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depending on the field and it is calculated in several different manners
when using SMLM.

An equation used to calculate SNR is as follows:

SNR =
Io − Ib
σ

, (4.37)

where Io is the object intensity, Ib is the background intensity and σ
is a representative noise level. The value of σ varies and there are
several different methods for calculating it. It can be calculated from
the background root mean squared (RMS) [121], the noise over the

object (σo) [122] and a mixture of the two
√
σ2b + σ

2
o [123].

Here, the equation was adapted as follows:

SNR =
µs − µn
σn

(4.38)

where

σn =
1√
λn

. (4.39)

µs, µn and λn are all calculated using the Mixture Model, and therefore
it can be calculated with no user input.

4.5.3 Localisation

Finding the sections using this method and using a soft threshold rather
than a hard threshold will enable localisation of fluorophores to occur.
This could be used to help find the regions of interests (ROIs) needed
for other localisation algorithms. It has many advantages as it requires
no input (the prior values are pre-chosen) and using a soft threshold
provides better images than using a hard threshold on the intensities
of the images.

4.5.4 Preprocessing - Counting

The output of this algorithm is used chapter 5. Both the output of the
Mixture Model and the MIM are used to try and quantify the amount
of fluorophores within the sample.

4.6 discussion

A two-stage algorithm has been developed that successfully denoises
images taken using SMLM with no user input. Both of these stages
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create a matrix of probabilities. These show the likelihood that the
pixel is in the signal population.

The first stage uses a Mixture Model as a means of Bayesian Inference
to split the data into two different populations, signal and noise, on a
pixel-wise manner. This can be used as a standalone or the probabilities
output can be fed into the MIM.

Due to the nature of SMLM, the PSF of the emitting fluorophores is
known to spread over several pixels. Therefore, as pixels are denoised
independently of each other, there may be some incorrectly classified
pixels. Isolated pixels that are classified as signal, surrounded by noise,
have been incorrectly classified. The second section of the algorithm,
the MIM, takes the output from the Mixture Model and incorporates a
spatial dependence using nearest neighbours.

The Mixture Model calculates a lot of statistical information about
the two different populations of the data: signal and noise. These two
populations were taken to be Gaussian distributions and the mean and
precision were determined for each. As a value for these is calculated
at each iteration a distribution of the mean and precision are found and
therefore the confidence in them can be determined. These values are
all produced with no user input, using the priori and the data alone.
Although a soft threshold is chosen by the user, the results are not
sensitive to this value and 0.7 yields good results for most images.

Using a soft threshold on the probabilities from the Mixture Model,
obtains better results than using a ’hard threshold’ on the raw intens-
ities in the original images. The intensities in SMLM images vary
substantially both throughout a single stack and when imaging differ-
ent samples. Therefore, a ’hard threshold’ would have to be selected
for each individual image. When using a soft threshold however, the
same value can be used across a variety of different images and yield a
consistent results with all of them.

The Mixture Model was put through a rigorous sensitivity test. The
values of µi are the least robust out of all the unknown prior values,
however more prior information is known about these. The values for
all the other unknowns are all robust when using various values.

The Mixture Model, used alone, has several limitations. The data
input into the Mixture Model needs to have enough data in each
population otherwise the algorithm fails. Depending on the SNR, the
images need between 1.38% and 4% of the pixels to be classified as
signal or the algorithm fails. Images taken with SMLM should have
more than this percentage especially as images are being taken at higher
densities in order to reduce images times.
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As stated earlier, each pixel is taken independently. This is not phys-
ically correct and therefore using the Mixture Model as a standalone
may have some anomalies in the final result. Due to the nature of
SMLM images, the signal data tends to congregate into ’islands’ of sig-
nal surrounded by a sea of noise. The output from the Mixture Model
has islands with rough edges and isolated pixels that are incorrectly
classified. Feeding the probabilities output from the Mixture Model
into the MIM helps to mitigate these limitations, helping to remove
isolated pixels and smooth the edges of the islands.

The MIM incorporates a spatial structure into the method by using
the four nearest neighbours. Any pixels without four neighbours: the
outer most edges, are therefore ignored. For most images taken with
SMLM, the main interest is in the centre, so little to no data is lost. As
it is known that the PSF spreads over several pixels, isolated pixels
classified as signal, and surrounded by pixels classified as noise, are
incorrectly classified.

The MIM is less robust than the Mixture Model and the prior values
have to be chosen with a lot of thought. The values chosen work for
a variety of different types of images, and were determined from the
results of the sensitivity test.

This method has many different and useful applications. It can
reduce the amount of data needed to save the images, measure the
SNR, find the areas of interest and is used as a preprocessing algorithm
for counting in chapter 5. This is in addition to its ability to denoise
data.

When using SMLM, a large stack of images are needed to localise all
the fluorophores. This requires a lot of disk space to save the images.
The method described in this chapter offers a way to denoise the images
and save them in a manor that can save up to 95% of disk space. As the
statistical properties about the noise are also determined and saved (µs
and λs), the images can also be renoised at a later stage using only these
two values. Most location algorithms use the noise when locating the
fluorophores positions and therefore it needs to be added back in.

4.7 further work

Further work the could be completed on this work would be to combine
the two stages of the code into one. This would make the method more
efficient. Ways into speeding up the algorithm could also be looked
into, such as using a graphics processing unit (GPU).
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The Mixture Model models both populations as Gaussian distribu-
tions, however, it is known that the noise population is not of this type.
This population could be updated to see if different populations yield
better results.

4.8 the algorithm

The code that was written and used in this chapter can be found in
appendix C.

The first section of this algorithm, the Mixture Model, was written in
MATLAB by myself. The second section, the MIM was also written in
MATLAB by myself, but adapted from code found here [124].
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5
C O U N T I N G

5.1 summary

In this chapter several different approaches were used to try and count
the number of fluorophores in the sample with varying degrees of
success. All tests used simulated data produced by the algorithm
outlined in chapter 3. The methods used were: a two staged Mixture
Model, machine learning and neural network (NN).

The two-staged Mixture Model was used to split the signal popula-
tion further into two new distributions; S1 and S2. Due to the nature of
images taken with Single Molecule Localisation Microscopy (SMLM),
there was insufficient data in a lot of the images to produce consistent
results across a range of images.

Using consolidated results from the Mixture Model and inputting
into MATLABS’s Classification learner [125] to train various different
models yielded promising results. These models obtained an accuracy
of 87.2%.

Training data sets were created in order to train a NN. Four different
training sets were used; the raw image data, the probabilities output
from the Mixture Model and the Modified Ising Model (MIM), and the
product of these two probabilities. The accuracy reached from these
datasets was 88.6%, 89.3%, 90.8% and 89.9%, and loss values were 0.238,
0.213, 0.190 and 0.017 respectively.

The NN was adapted to take in 3-dimensional data; the previous,
current, and following image. A new set of training data was created,
and the four different sets were used as before; the raw image data,
the probabilities output from the Mixture Model and the MIM, and the
product of these two probabilities. The accuracy reached from these
datasets was 40.4%, 42.4%, 40.4%, and 42.4% respectively. The loss
values for these were 0.481, 19.8, 2.00, and 42.4 respectively.
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5.2 introduction

SMLM can be used for many different applications including; to de-
termine the positions of a molecule within a sample; to find the stoi-
chiometry of a molecule or to find the number of a specific structure
of interest within the sample. All of these are related but there are
different considerations depending on the final outcome required.

Finding the exact number of a specific structure of interest within
a sample is extremely difficult and many different problems are en-
countered when trying to determine this. To count a specific structure,
it is first labelled with a fluorophore. There are many different methods
to attach fluorophores to a structure of interest. These are touched on
briefly in section 3.3 and a more in depth description can be found in
[105]. As described in section 1.7.1, fluorophores used in SMLM have
two distinct states, usually a ’light’ and a ’dark’ state. This is exploited
so that at any point during the imaging process there is a subset of
fluorophores ’on’ and emitting photons. The enables the diffraction
limit to be circumvented and a higher precision of location to be found
than in traditional light microcopy as the point spread functions (PSFs)
(shown in figure 1.4) are less likely to overlap (see figure 1.12).

For this process to be optimal there would never be any fluorophores
with overlapping PSFs ’on’ at any one time. To insure this, sparse
images can be taken by activating only a very small subset of the
total number of fluorophores. However, this method requires a large
number of images to be taken over a long period of time to ensure that
all the fluorophores are activated at least once, allowing them to be
localised. This requires a lot of image frames and the analysis would
be computationally intensive.

One of main difficulties with counting the precise number of fluoro-
phores and therefore structure of interest, is the associated noise. This
is described in detail in section 3.4 and includes camera noise, back-
ground noise and noise within the signal. The noise within the signal
makes it very difficult to count the number of fluorophores, especially
in sections with overlapping PSFs. Due to the variability in the rate
at which fluorophores emit photons (related to shot noise and the
laser intensity) and the time in which they spend in the ’on’ state per
frame, it can be very difficult to determine how many are on in each
frame. Two fluorophores with overlapping PSFs could be mistaken for
a brighter single fluorophore.

Fluorophores can photobleach due to the lasers that are incident
upon them. Once they have photobleached it is no longer possible
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for a fluorophore to return to its ’on’ state. Some fluorophores may
have bleached before the imaging takes place which would lead to
undercounting of the structure of interest.

One major difficulty with counting the number of fluorophores in
a sample is that they can enter the ’on’ state multiple times during
the imaging process. For every frame that they are ’on’, they could be
localised as a separate emitter. The could ultimately look like a cluster
of fluorophores rather than one single emitter.

As all transitions are dependent on quantum properties, some fluoro-
phores may not enter the ’on’ state throughout the entire imaging
process. This will also lead to undercounting. This problem will
become more prominent as acquisition times are reducing constantly.

As acquisition times are being reduced, the density of images is
increasing in order to image all of the fluorophores in the sample. This
could lead to undercounting as fluorophores with overlapping PSFs
may be counted as one fluorophore.

Being able to count the number of molecules within a sample would
be very useful. If the exact number of molecules is known then these
molecules could be fit with Gaussians with a high precision. This would
mean that the structure could be more easily studied and calculated.

5.3 background

Being able count the number of fluorophores can be very useful. Infer-
ring the stoichiometry of structures can aid in the understanding of its
operation.

Counting the number of fluorophores in order to determine the
number of a specific structure of interest in a sample has different
difficulties depending on many different factors. This includes but is
not limited to, how the fluorophores are attached, what fluorophores
are used and the laser intensity.

If the number of fluorophores in each images can be determined,
then localising these fluorophores would be simplified. There would be
less parameters to change, the x and y positions as well as the standard
deviations of the 3D gaussian.

When using dye-labelled antibodies to attach the fluorophores, there
arrises a new difficulty. Typically multiple antibodies attach to the
target [126] and therefore, if the number of fluorophores could be
counted with high accuracy, relating this to the number of structures
is near impossible [127]. Therefore, when using SMLM in order to try
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and count the number of a specific target in a sample, the labelling
process needs to be tailored to try and ensure that there are no multiple
bound fluorophores.

Several different methods have been used in order to count the
number of fluorophores in either a sample, or in specific areas of the
image. These include counting from the fluorescent intensity [128, 129]
and photobleaching in diffraction-limited data [130–132].

Using the fluorescent intensity to try and count the number of fluoro-
phores in a specific area can be done in several different manners.
When using this technique, fluorophores do not need to be spatially
resolved, they can be found in a cluster. The intensity of this cluster
is calculated and divided by the estimated number of photons that
would be collected by one emitter. This is known as the photon budget
of a fluorophore. Unfortunately this photon budget varies due to ex-
citation, local cellular conditions and possible fluorophore interaction.
An early approach of this, using low density data, can be seen here
[128]. Although this techniques is not used for SMLM the method is
transferable.

Another method would be to create a calibration curve as seen in
[129]. This accounts for the non-linearity of photons collected as the
number of fluorophores increases. A linear relationship was seen for a
small number of fluorophores, but the expected number decreased as
the number of fluorophores increased. This could be to do with some
fluorophore-fluorophore interaction or self quenching [129]. Generally
this approach has low precision [133] and is not typically used.

Counting using photobleaching in a diffraction limited area relies
on the stochastic bleaching of fluorophores. Das et al. [131] estimated
that they could determine up to 15 photobleaching steps, depending
on the signal-to-noise ratio (SNR), without the need for extrapolation
or maximum likelihood estimate (MLE) estimation. They look at indi-
vidual complexes where every subunit is labelled. The total number
of photobleaching steps determines the number of subunits in the
complex.

Counting photobleaching steps is a conceptually straight forward
idea, however, inherent, and non-constant noise within the data makes
it difficult to identify every step. The noise changes stochastically
depending on the the number of fluorophores and therefore using a
constant noise within a model would degrade the results. Tsekouras
et al. [132] use a Bayesian approach in order to calculate the step
number. When using data with high SNR they can count upwards of
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100 fluorophores. With low SNR they can still count upwards of 50

fluorophores. They eliminate unlikely models and allow for blinking.

Counting the number of fluorophores in a pure SMLM dataset is very
difficult. DAOSTORM [79] is an algorithm designed to analyse high
density SMLM. This algorithm provides a more quantitative report
on spatial distribution of fluorophores. It is based on an astronomy
algorithm [80] and uses a fixed shape, multiple model PSF to localise
the fluorophores. It has been shown to maintain high performance in
high density images.

5.4 the data used

In order to know the ground truth detailing where the molecules are
in each image, simulated data was used. The data was produced using
the method described in chapter 3, however it will be summarised here.

The number of fluorophores are chosen and for each 100nm of time,
it is modelled if each of these are ’on’, ’off’ or ’bleached’. A simplified
model is used for the quantum properties to reduce the simulation
time. Figure 1.13 is a Jablonski diagram showing the actual quantum
steps that the fluorophores can take, and figure 3.2 shows the simplified
Jablonksi diagram used in this model. The statistics have been altered
to account for this variation.

These data are binned in time to calculate how long each fluorophore
is ’on’ for in each frame. This is then converted into a photon number
using statistics.

An empty ’ground truth’ matrix is created where each element
represents a square nanometer area for each image. The position
of each fluorophore can either be chosen manually or randomly. These
are then taken to occupy one nanometer square and the photon number
is added to the corresponding element in the matrix.

The PSF of the microscope is then added by using a Fourier transform,
cutting out the high frequencies and then inverse fourier transforming
back. This essentially blurs the images, changing the point emitters
into refracted spots.

This data is then binned in space, where the size relates to the mag-
nification of the microscope and the pixel size of the camera. Finally,
noise is added to each pixel to create the final image. An example of
one of these simulated images is shown in figure 5.1.
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Figure 5.1: An example of a simulated image

5.5 approaches/ methods

Several different methods were used to try and count the number of
fluorophores. These include: two-staged Mixture Model processing,
using the Mixture Model output, and several variations of Machine
Learning (ML) [100]. All these different methods yielded varying
degrees of success.

The final objective is to be able to count the number of fluorophores
in high density images where the PSFs are overlapping each other. Low
density images were used initially to check proof of concept.
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5.5.1 Two-Staged Mixture Model

In SMLM images, the majority of pixels are noise, with ’islands’ of
signal pixels. It is unknown how many fluorophores there are in
the sample in each of these ’islands’; there could be an individual
fluorophore, or multiple emitters with overlapping PSFs.

Various images were created with different numbers of fluorophores.
These simulated datasets were processed using the Mixture Model
algorithm described in chapter 4. A ’soft threshold’ was then used to
split the data into signal and noise and create a mask were 0 represents
noise and 1 represents signal. This mask shows all the ’islands’ where
the fluorophores are emitting.

To try and determine how many fluorophores were in each ’island’
the signal data was passed to the Mixture Model a second time. This
splits the data further and adds a third population. Before, there was
noise (N), and signal (S), whereas now there is noise (N, as before), but
there are two signal populations: S1 and S2, where S1 typically has a
higher intensity value than S2.

It was hoped that the ratio in intensity between these two different
populations, or the ratio of number of pixels in each ’island’ could
be used to discern if there were single or multiple fluorophores with
overlapping PSFs. Unfortunately, in a majority of images, there was
not enough data in the original signal population (S). and one of
the limitations of the Mixture Model algorithm arises if there are not
enough data points in either one of the populations. This is due to
equation (4.18) and is described in section 4.3.9.

When there was enough datapoints in the signal population, gen-
erally small ’islands’ were classified purely as S2 and larger ’islands’
had the centre as S1 and the surrounding pixels as S2. Unfortunately,
due to the large variation in the number of photons emitted per frame
when a fluorophore is ’on’, this was not consistent. If every ’island’ was
split so there were some pixels in either population, then this could
have been used to aid in finding a more precise location of the emitters,
however this was not the case.

5.5.2 Using the Mixture Model Output

It was hypothesised that the Mixture Model could be used to observe
steps in intensity as the fluorophores turn ’on’ and ’off’, and then model
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how many fluorophores have switched states between neighbouring
frames.

A set of fifty simulated images containing 150 fluorophores were
created as described in chapter 3. Looking at the sum of the intensity
across the whole image, figure 5.2, it can be seen that the intensity
changes widely and steps in this data would not be sufficient enough
to calculate the number of fluorophores in the system.

Figure 5.2: The sum of the intensity of entire simulated images through time.
These images were simulated to have 150 fluorophores using the
process described in chapter 3.

The simulated data were processed using the Mixture Model, which
is described in detail in chapter 4. The output of this was used to
denoise the images. A soft threshold was used so that pixels with a
probability below this threshold are classed as noise and set to zero.
Values of 0.7, 0.8 and 0.9 were used as the soft threshold for these
images. The sum of these denoised images was then calculated and
plotted against time. This is shown in figure 5.3. The step changes
in intensity are now more visible and it is easier to determine where
the fluorophores turn change state, but difficult to see the number of
fluorophores.

As described in chapter 4, the output of the Mixture Model also
includes statistics about the noise and signal distributions. These
distributions are taken to be Gaussian and the mean and precision of
these distributions are determined from the posterior. It is known that
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Figure 5.3: The sum of intensity of only the signal pixels of the entire images
through time. These images were denoised using the Mixture
Model code described in chapter 4 and a soft threshold of 0.7 (blue
line), 0.8 (red line) and 0.9 (yellow line).

for one fluorophore, the number of photons at each pixel, Xi, is given
by:

Xi ∼ N(µs,σ2s) (5.1)

where µs and σ2s are the mean and variance of the signal. Therefore,
each pixel will be given by

yt ∼ N(ntµs,ntσ2s) +noise (5.2)

where t = 1, ..., T and refers to the number of fluorophores present. This
can then be used to estimate the change in the number of fluorophores
that are ’on’ between each frame using the following equations:

Et[yt+1 − yt]

µ̂
=
µ(nt+1 −nt)

µ̂
≈ ∆n. (5.3)

and

µ ≈ µ̂ (5.4)
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where µ is the actual mean of the distribution and µ̂ is the estimated
value taken from the Mixture Model (µs). Et is the expected value at
time t.

The difference between the sum of the signal data was calculated
and divided by µs in neighbouring images. As µs is calculated for
each image, the mean of consecutive images was used. This value
should then be ∆n, the difference in the number of ’on’ fluorophores
between the two images. Figure 5.4a shows a plot of this value over
a stack of 47 frames as well as the actual difference in the number of
fluorophores that are ’on’ in each frame. For the actual difference in the
number of fluorophores that are ’on’, there are three different values.
The simulations split each frame into ten different sections. These plots
show the difference when fluorophores are classed as ’on’ when they
are emitting for at least 0.3, 0.5 and 0.7 for each frame. There are also
three different values for estimated change (∆n) in fluorophores. Using
the precision of the signal population, λs, error bars can be calculated
using the following equations.

Et[yt+1 − yt]

µ̂+ σs
=
µ(nt+1 −nt)

µ̂+ σs
≈ ∆minn, (5.5)

Et[yt+1 − yt]

µ̂− σs
=
µ(nt+1 −nt)

µ̂− σs
≈ ∆maxn, (5.6)

where

σs =
1√
λs

. (5.7)

Looking at figure 5.4a it can be seen that these error bars are very
close to the value and therefore, for clarity, they will be omitted from
future graphs. It can be seen that this value for the number of ’on’
fluorophores is inconsistent with the actual number. Equation (5.3) is
for individual pixels and several pixels contribute to one fluorophore
related to the PSF of the microscope. Therefore the equation has been
modified so that the PSF of the fluorophore is incorporated. Using
the calculated mask the average area of the ’islands’ was calculated.
’Islands’ of only one or two pixels were discarded. Equation (5.3) is
therefore adapted to become:

Et[yt+1 − yt]

µ̂ x mean PSF area
=

µ(nt+1 −nt)

µ̂ x mean PSF area
≈ ∆n. (5.8)
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In this particular stack of images, the average PSF size was calculated
to be 9.797 pixels. Figure 5.4b shows the results from this equation
along with the actual number of fluorophores that are ’on’. In this
image, a fluorophore is classified as ’on’ if it is emitting for more than
half of the frame during the simulation process (see chapter 3 for more
detail).

The difference between the actual and the expected values for the
number of ’on’ fluorophores is shown in figure 5.4c. The mean of the
absolute difference of these is calculated to be 9.95.

(a) (b)

(c)

Figure 5.4: (a) The expected change in number of fluorophores (solid red
line) and the upper (solid blue line) and lower (solid green line)
limits. The actual change in the number of fluorophores is shown
by the two dashed lines. These show the actual change when
the fluorophore is simulated as ’on’ when emitting for more than
0.3 (dashed blue line) and 0.7 of the frame (dashed orange line).
(b) The expected change in the number of fluorophores when
incorporating the size of the PSF and a soft threshold of 0.7 (red
solid line). The actual change in the number of fluorophores is also
shown (dashed blue line). Here, a fluorophore is classed as ’on’
if it emits for at least half of a frame. (c) The difference between
the actual and the expected change in fluorophores for the values
shown in (b).

In order to try and improve upon this model, the values of µs and
λs were updated using the process explained in section 4.3.6. A soft
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threshold of 0.7 was used to split the data into fixed populations. These
fixed populations are sent through a Mixture Model to give more
accurate values of µs and λs. These updated values of µs and λs were
then used to recalculate ∆n. This is shown in figure 5.5.

Figure 5.5a shows the results from equation (5.8) for the updated
values of µs and λs and the difference between the actual number
of fluorophores. Here, the fluorophores are classified as ’on’ if it
is emitting for at least half the frame during the simulation process.
Figure 5.5b shows the difference between the number of fluorophores
that are ’on’ and the expected difference calculated for both the original
and updated values of mus and λs. The mean of the absolute difference
for the absolute values of these is calculated to be 4.89, showing that
updating the values using fixed populations increases the accuracy of
the results.

(a) (b)

Figure 5.5: (a) The expected change in the number of fluorophores when
incorporating the size of the PSF, a soft threshold of 0.7 and the
updated value of µs (red solid line). The actual change in the
number of fluorophores is also shown (dashed blue line). Here, a
fluorophore is classed as ’on’ if it emits for at least half of a frame.
(b) The difference between the actual and the expected change
in fluorophores for both the original value (blue solid line) and
updated value (dotted red line) of µs.

5.5.3 Machine Learning (ML)

An algorithm is a set of instructions that a computer uses to solve
a specific problem. It takes an input and performs computations
sequentially to create an output. For some tasks an algorithm cannot be
produced, and therefore different methods are required. ML is a study
of computer algorithms that computes a model based on ’training data’.
[134]
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ML is a subset of artificial intelligence that completes a task without
being explicitly told how to. It optimises parameters using ’training
data’ and can make predictions about the future, gain knowledge about
the data, or both of these. [134]

ML can be used for learning associations, unsupervised learning,
reinforcement learning and supervised learning in the case of classi-
fications and regression [134]. Here, supervised learning is used for
classification.

Supervised learning uses a set of training data and the desired
outputs. It trains a model to try and compute the desired output from
input data.

Matlab Classification Learner

Matlab includes a classification learner application [125] which can
train models to classify data into groups. Different supervised ML
can be explored to determine which classification model type is best
for your data. The different models include support vector machines
(SVM) [135, 136] and K-nearest neighbours (KNN) [137].

Simulated data was created using the algorithm described in chapter 3.
Here 50 images were produced with 150 fluorophores. These were
processed using the Mixture Model described in chapter 4 and a soft
threshold of 0.7 was used to denoise the images. Any ’islands’ that
were smaller than three pixels were disregarded and taken as noise as
the PSF is known to be greater than this.

Data relating to the ’islands’ of signal groups was input to the MAT-
LAB classification learner to determine if the number of fluorophores
emitting in each island can be accurately counted.

Firstly the area of the ’islands’, the sum and standard deviation of the
intensity of the pixels in the ’islands’ were input into the classification
learner. Next, the area of the ’islands’, the sum of the intensity of the
pixels in the current image, the previous and the next frame were input
into the classification learner.

Care had to be taken as the majority of the regions of interest (ROI)
contained only one fluorophore. Therefore if the model classified all
areas as containing only one fluorophores then the accuracy percentage
would be very high (81.1%). Using a balanced training data set would
help to rectify this in the future [138].
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Area, Intensity, Standard Deviation

The area of the ’islands’, the sum and standard deviation of the intensity
of the pixels in the ’islands’ were input into the classification learner
and trained on all the various classification models. There were two
different models that yielded the two highest results of 87.7% and 87.5%
accuracy; A KNN classification and a SVM classification respectively.

A KNN classification uses the K-nearest neighbours to categorise
query points. It can also incorporate a distance dependence. It uses
these to find clusters within the data. [137] The number of neighbours
used in this classification was 10 with no weight on the distance.

The data from this is shown in figure 5.6. Figure 5.6a shows a scatter
plot of the area size against the standard deviation of the intensities,
figure 5.6b shows the area size against the sum of the intensities and
figure 5.6c shows the sum of intensities agains the standard deviation of
intensities. The points in all of these graphs show the model predictions
with dots representing correct predictions and crosses being incorrect.
The colours correspond to the different predictions; orange for one,
yellow for two and purple for three. Figure 5.6d shows a confusion
matrix of the true classes against the predicted classes.

When held out data was used on this model (a KNN classification),
the accuracy was 87.3%. This was using data of length 469. The majority
of errors were only out by one fluorophore, however there were three
with two fluorophores difference. This is very similar to the accuracy
found from the training data.

An SVM is an abstract learning machine that attempts to generalise
and make predictions using training data. It intuitively introduces
directed hyperplanes that separate the training datas features to the
corresponding labels. The points closest to these hyperplanes are
known as support vectors. These impact the most influence on the
position of the hyperplane. If the data cannot be linearly separated
then kernels can be used to map the data to feature space. The directed
hyperplanes are then used in this space. [135]

Here, a Gaussian kernel was used to map the data into feature
space. The results are shown in figure 5.7. This figure shows the same
information as that in figure 5.6 but for the new SVM model. The
accuracy of this model on the training data was 87.3%.

When held out data was used on this model (a SVM model), an
accuracy of 85.3% was achieved. This was using data of length 469. The
majority of these errors were only one fluorophore out, however there
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(a) (b)

(c)

(d)

Figure 5.6: KNN classification using 10 nearest neighbours. (a) shows a scatter
plot of the area size against the standard deviation of the intens-
ities, (b) shows the Area size against the sum of the intensities
and (b) shows the sum of intensities agains the standard deviation
of intensities. The points in all of these graphs show the model
predictions with dots representing correct predictions and crosses
being incorrect. The colours correspond to the different predic-
tions; orange for one, yellow for two and purple for three. (d)
Shows a confusion matrix of the true classes against the predicted
classes.

were three that were two out. This is slightly less than the accuracy of
the KNN model that was created before.

173



counting

(a) (b)

(c) (d)

Figure 5.7: SVM classification. (a) shows a scatter plot of the area size against
the standard deviation of the intensities, (b) shows the Area size
against the sum of the intensities and (b) shows the sum of intens-
ities agains the standard deviation of intensities. The points in all
of these graphs show the model predictions with dots represent-
ing correct predictions and crosses being incorrect. The colours
correspond to the different predictions; orange for one, yellow for
two and purple for three. (d) Shows a confusion matrix of the true
classes against the predicted classes.

Area, Intensity before, during and after

Using the size of the area, and the sum of the pixel intensities in the
current, previous and next image yielded an accuracy percentage of
87.7%. This is a small increase in the percentage error from the SVM
model, and the same as the results from the KNN model. The best
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model here was a decision tree which is shown in figure 5.8a and the
confusion matrix for this classification shown in figure 5.8b

Although this yields a higher percentage than the result from the
SVM model, and the same result as the KNN model, it is thought that
this type of classification for determining the number of fluorophores
in an area is too coarse and therefore should not be used. It would
not be able to be used for different sets of data. Looking at figure 5.8a
it is clear that this method should not be used. It can only classify
an ’island’ to have 1, 2 or 3 fluorophores. It only uses the sum of the
current and next images intensities.

When using held out data for this decision tree, an accuracy of 86.6%
was found. 343 data were put through the trained model, the majority
of errors were only off by one fluorophore, however there was one that
was off by two. Although for this data, it seems like the decision tree is
reliable, due to its course data, I do not believe that this can be used
for real data, especially due to the variability of intensities across both
stacks of images, and between stacks. This is also a lower accuracy
than the two previous models (the KNN and SVM) with the different
data inputs (the size, intensity, and standard deviation).

Looking at the confusion matrices for all of these different models;
KNN, SVM and the decision tree, figures 5.6d, 5.7d and 5.8b respect-
ively, it can be seen that the KNN and SVM models compute very
similar results, producing better results on the lower predictions. The
decision tree model is the most different and produces better results
for higher predictions.

Using the ML system and just taking some consolidating results from
the Mixture Model was promising. However, I believe that a model
will need to have a success rate of around 90% or above for it to be
useable to a high enough accuracy. Also, the course nature of the data
included in this model means that it would need a lot more training
to be able to treat this as a viable model. These models also seem too
course to be able to differentiate the wide variety of different images
that come in due to there being different fluorophores with different
quantum yield (QY) and due to bleaching effects.

5.5.4 Neural networks (NNs)

Different data sets were used to train a NN. Simulated data was created
with either 0, 1, 2, 3, 4, or 5 emitting molecules in. These are small
areas aiming to imitate a ’cut-out’ section of a full image.
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(a)

(b)

Figure 5.8: (a) The decision tree created by the Classification learner in MAT-
LAB when the input was area size, and the sum of the intensities
for the current, previous and next image. (b) A confusion matrix
of the true classes against the predicted classes.

As only the signal population is relevant to the neural network, it
was proposed that the Mixture Model or MIM would highlight the
valuable data, allowing the NN to be trained more quickly and/or
more accurately. Therefore the different datasets used to train the NN
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were; the original simulated data, the output of the Mixture Model,
the output of the MIM, and the product of the results from both the
Mixture Model and the MIM.

The Training Data

A NN was written and trained to take image sections of size 32x32

pixels and determine how many molecules are ’on’ in that section.
Images were created that contained either 0, 1, 2, 3, 4, or 5 emitting
fluorophores in. A balanced dataset was created, ensuring that there
were an equal number of images attached to each label. 1000 of each
type of image were created. This NN was written using PyTorch [101].

As a sixth of the images contain zero fluorophores emitting in them,
they could not be individually sent through the Mixture Model (see
section 4.3.9 for more detail). Therefore the data was amalgamated
into larger images and all different image types were processed sim-
ultaneously. This ensured that there was enough data in the signal
population and the algorithm did not fail. These were partitioned back
into data of the original size, 32x32 pixels, and used as a second set of
data.

The probabilities from the Mixture Model were then processed using
the MIM and these probabilities were used as a third data set (see
section 4.4 for more detail). Finally the probabilities from both the
Mixture Model and the MIM were multiplied together to create a
fourth data set.

Figures 5.9 to 5.14 show example frames for the training data used.
These figures show examples of 0-5 ’on’ fluorophores, respectively.
They contain the (a) the raw data, (b) the probabilities output from
the Mixture Model, (c) the probabilities from the MIM and (d) the
probabilities from both the Mixture Model and the MIM multiplied
together.

For the NN, a classification model similar to one used for the mod-
ified national institute of standards and technology (MNIST) [139]
was used. This is a database used for handwriting recognition that is
commonly studied using ML. These problems are similar; an image
is trying to be classified into groups. In MNIST, the output are letters
and numbers, here, the output is a number of fluorophores.

The neural network (NN) created
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(a) (b)

(c) (d)

Figure 5.9: Examples of the input data to the NN for an image with no
fluorophores emitting. (a) Shows the raw simulated image, (b)
after it has been processed by the Mixture Model, (c) after it has
been processed with the MIM and (d) is (b) and (c) multiplied
together.

A NN with five hidden layers was created. As there are no cycles
in the NN it is known as a feedforward neural network (FNN). These
layers comprise of two convolution layers and three linear layers. As
there are convolution layers it is also known as a convolutional neural
network (CNN). The input layer takes the data from each image. The
output layer comprises of the five values the NN can predict. For the
rest of this chapter the ’C’ and ’F’ will be omitted, and it will be referred
to as a NN (rather than either a FNN or CNN).

As described in section 2.5, input data is manipulated by the NN
to predict how many fluorophores are emitting in each image. Each
hidden layer in the NN contains specific weight tensors that manipulate
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(a) (b)

(c) (d)

Figure 5.10: Examples of the input data to the NN for an image with one
’on’ fluorophore. (a) Shows the raw simulated image, (b) after it
has been processed by the Mixture Model, (c) after it has been
processed with the MIM and (d) is (b) and (c) multiplied together.

the data. As the NN learns from the data these weights are updated to
minimise the loss function. The loss function is related to the difference
between the predicted outputs and the true labels. Here a cross-entropy
function is used.

The data goes through the NN in batches. An epoch is defined as
when all the data has been processed. The larger the batch size the
quicker each epoch is completed. However, the unit being used may not
have the processing power to compute all of the images simultaneously.
Also, if the batch size is too large, the model will degrade and not be as
accurate. A large batch size will lead to a poor generalisation, however
it is not currently known why [140]. It can also cause instabilities in
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(a) (b)

(c) (d)

Figure 5.11: Examples of the input data to the NN for an image with two
fluorophores emitting. (a) Shows the raw simulated image, (b)
after it has been processed by the Mixture Model, (c) after it has
been processed with the MIM and (d) is (b) and (c) multiplied
together.

the early stages of training. It will also take longer to run and may not
be able to process new data. Various different batch sizes were used
when training this NN.

The two convolution layers have a kernel size of five, and therefore
perform a convolution on the input data using a matrix of size 5x5.
This is completed six times so the weight matrix for each convolution
matrix can be thought of as size 5x5x6. The values of these matrices
are updated in order to minimise the loss function at the end of each
batch.

After the two convolution layers there are three linear layers. The
data is first converted into a 1-dimensional array and then matrix
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(a) (b)

(c) (d)

Figure 5.12: Examples of the input data to the NN for an image with three
fluorophores emitting. (a) Shows the raw simulated image, (b)
after it has been processed by the Mixture Model, (c) after it has
been processed with the MIM and (d) is (b) and (c) multiplied
together.

multiplication is conducted using new weight matrices. These work to
reduce the data by specified amounts defined by the user. The final
linear layer reduces the data down to five neurons, which correspond
to the number of molecules that are on: 0, 1, 2, 3, 4 or 5. A value for
each of these numbers is computed, and the largest is taken to be the
predicted value. For example, if the computed values were: 0.1, 0.1,
0.2, 0.3, 0.1, 0.1 for the labels 0-5 respectively, the NN would predict
that three fluorophores are emitting in this image as it has the highest
probability.

As stated before, the values in all of the weight matrices are updated
sequentially in order to minimise the loss function. The rate by which
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(a) (b)

(c) (d)

Figure 5.13: Examples of the input data to the NN for an image with four
fluorophores emitting. (a) Shows the raw simulated image, (b)
after it has been processed by the Mixture Model, (c) after it has
been processed with the MIM and (d) is (b) and (c) multiplied
together.

they change is related to the learning ratio, which is chosen by the user.
Many different learning ratios were used when training this data to
determine which value would optimise the NN. The loss function is
calculated at the end of each batch. The gradient for each weight, with
respect to the loss function is calculated and multiplied by the learning
ratio. The weights are then updated by subtracting this value from the
previous value.

The learning ratio is chosen by the user. A compromise has to be
chosen when selecting this. The smaller the learning ratio, the longer
the NN will take to learn. As well as this, the algorithm is more likely to
settle on an incorrect local maximum rather than the global maximum.
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(a) (b)

(c) (d)

Figure 5.14: Examples of the input data to the NN for an image with five
fluorophores emitting. (a) Shows the raw simulated image, (b)
after it has been processed by the Mixture Model, (c) after it has
been processed with the MIM and (d) is (b) and (c) multiplied
together.

On the other hand, if the learning ratio is too large, then the values that
minimise the loss function the most may be missed.

The NN computes both the accuracy and the loss of the model
after each batch. The accuracy describes how well the NN works at
classifying the images to the number of fluorophores that are ’on’.

The loss is calculated using a cross entropy function [141] and is
related to the difference between the classification number and the
actual label number [142]. This function is commonly used in ML as a
loss function.

The cross entropy loss function, LCE, is sometimes known as the
logarithmic loss, log loss or logistic loss function. As stated earlier
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the NN calculates the probability for each label, and the label with
the highest probability is the final output. The loss compares the
predicted class probability to the desired output and is calculated using
equation (5.9):

LCE = −

n∑
i=1

ti log(pi). (5.9)

Where n is the number of classes, ti is the truth label for the ith

class and pi is the probability calculated by the NN for the ith class.
The perfect model would have a cross entropy of zero. Due to the
logarithmic scale, there is a larger penalty for differences close to one
and a small penalty for differences close to zero. [143]

5.5.5 Results from the neural network (NN)

Many different values of the learning rate and batch size were used
to train the NN and determine the best values to use. Figure 5.15

shows the accuracy and figure 5.16 the loss for the non-processed data,
the Mixture Model output and the MIM output with learning rates of
1x10

−3 and 1x10
−5, and batch sizes of both 10 and 25. It can be seen

from this data that a learning rate of 1x10
−3 is too small and the NN

often fails, being unable to get results. When using a learning rate of
1x10

−5 the highest accuracy reached was 90.8% for both MIM output
datasets. The Mixture Model output datasets yielded the next highest
accuracies with 89.3% and 89.2% for batch sizes 10 and 25 respectively.
Using the non-processed dataset, the accuracy reached was 88.5% and
88.6% for the batch sizes of 10 and 25 respectively.

It can be seen from these data that the non processed dataset takes
the longest to learn and reaches the lowest accuracy. The MIM datasets
learn the second quickest, but to the highest accuracy. The Mixture
Model datasets learnt the fastest, however it was not to the highest
accuracy. In each case the batch size of 10 learnt the fastest, however it
did not always reach the highest accuracy (for each dataset).

It was postulated that removing the images with the label ’zero’
would enable the NN to learn to a higher accuracy and lower loss. A
learning rate of 1x10

−5 and a batch size of 10 were used. The accuracy
results determined were 88.5%, 89.26% and 90.82% for the original data,
Mixture Model output and MIM output respectively. The accuracy and
loss for this data are shown in figure 5.17.

The Mixture Model and the MIM output were then multiplied to-
gether to incorporate the structures from both outputs. The results
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(a)

(b)

Figure 5.15: Accuracy against iteration number for non processed data, Mix-
ture Model output and MIM output for batch sizes of 10 and
25. a) All datasets use a learning rate of 1x10

−3 and b) uses a
learning rate of 1x10

−5.

from this are shown in figure 5.18 with a comparison to the Mixture
Model and MIM outputs. These have a batch size of 25 and a learning
rate of either 1x10

−4 or 1x10
−5. It can be seen that this data learns

faster and to a higher accuracy. The highest accuracy reached by the
product of the Mixture Model and MIM outputs are 98.75% and 98.39%
for the learning rates 1x10

−4 and 1x10
−5 respectively. The Loss gets to

a value of 0.0199 and 0.0270 for the learning rates 1x10
−4 and 1x10

−5

respectively.

Table 5.1 shows a summary of the results from the NN. It shows
the highest accuracy reached for each of the different datasets and the
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(a)

(b)

Figure 5.16: Loss against iteration number for non processed data, Mixture
Model output and MIM output for batch sizes of 10 and 25. a)
All datasets use a learning rate of 1x10

−3 and b) uses a learning
rate of 1x10

−5.

associated loss value. It also shows the number of iterations required for
the NN to reach an accuracy of 80%. Different batch sizes and learning
rates were used to achieve these results, and it should be noted that,
although an accuracy of 80% is reached by this iteration number, due
to the nature of how the NN learns, the accuracy may dip below this
on subsequent iterations. Different runs of the non-processed, Mixture
Model output, and MIM output datasets did learn to 80% in fewer
iterations, however they did not reach as high an accuracy, nor were
they quicker than the final dataset; the product of the Mixture Model
and MIM outputs. From these results it can be seen that the product of
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(a)

(b)

Figure 5.17: The a) accuracy and b) loss against iteration number for the non
processed dataset, the Mixture Model output, and MIM output
using labels 1-5. Here a learning rate of 1x10

−5 and a batch size
of 10 was used.

the Mixture Model and MIM output has a significantly higher accuracy,
lower loss, and learns the fastest.

The next step would be to benchmark this with real data. This
gives rise to many different challenges including a limited ground
truth, heterogeneity of real data, experimental variability, and code
limitations.

When using real data, establishing a reliable ground truth for bench-
marking the algorithm’s performance in counting fluorophores is chal-
lenging. One way to test it would be to compare its performance to
other counting algorithms, for example, ThunderSTORM. Although this
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(a)

(b)

Figure 5.18: The a) accuracy and b) loss against iteration number for the
product of the Mixture Model and MIM outputs, the Mixture
Model output, and MIM. Here a learning rates of both 1x10

−4

and 1x−5 and a batch size of 25 was used.

serves as a valuable benchmark, it may not fully reveal the algorithms
proficiency in counting fluorophores.

Despite the efforts made for the simulated code to create images as
realistic as possible, there are certain elements that are absent in the
images. For example there is no autofluorescence within the datasets.

The NN has been trained exclusively on data resembling Alexa Fluor
(AF) 647. Real experiments introduce numerous variables that may not
be fully represented in the training data, although best efforts have been
made to make it as real as possible. For example, biological variations,
drift, sample preparation techniques, and environmental conditions.
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This would potentially limit the NNs ability to generalise effectively to
real-world scenarios.

An inherent challenge when analysing real data with the NN lies on
its training on sparse images with emitters situated solely at the centre.
Finding a stack of data that only has a small amount of fluorophores
in, with all of these situated in the centre of the images would be very
difficult.

All these factors have prevented the NN from being used on real
data in its current form.
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Comparing the neural network (NN) with ThunderSTORM

The simulated images created to train the NN were analysed using
ThunderSTORM to test how they compared. ThunderSTORM was
used to count how many fluorophores were in each image. This was
then compared to how many were simulated within the image. If
ThunderSTORM counted the same number of fluorophores as was
simulated, then this was classed as correctly classified. If any other
number of fluorophores were detected then this was classed as an
incorrect measurement. In addition to this, it was also looked into
how many images ThunderSTORM miscounted by one fluorophore.
For example, if the image simulated three fluorophores emitting and
ThunderSTORM counted either two or four fluorophores.

This analysis was completed for each stack of images: the raw images,
the probability outputs from the Mixture Model, the probability outputs
from the MIM, and the latter two multiplied together. The results from
this analysis are presented in table 5.2. The table displays the highest
accuracy reached using the NN, the percentage of images that were
correctly classified by ThunderSTORM, and the percentage of images
correctly classified within one fluorophore for ThunderSTORM.

The highest accuracy in table 5.2 refers to the highest possible ac-
curacy from the NN. This is not necessarily the final accuracy. Due to
the nature of the learning process within the NN the accuracy may dip
below this upon further iterations.

From this it can be seen that NN outperformed ThunderSTORM for
all the different types of data input, especially the processed data. It
was expected that ThunderSTORM would not perform as well when
processed data was inputted due to the nature of the images. The
processed images are comprised of probabilities, rather than the larger
whole numbers that would be expected from real data. In addition to
this, the shape of the fluorophores within these images are going to be
different from what ThunderSTORM is programmed to take in.

Looking at the percentage of images correctly classified to within
one fluorophore using ThunderSTORM, it can be seen that using the
raw simulated images produces an extremely high probability of near
97%. It is possible that some of the fluorophores were too ’dim’ for
the algorithm to count them as emitters. It is also possible that the
algorithm counted ’phantom’ fluorophores where fluctuations in the
background noise produced a shape similar to an emitter.
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Expanding the neural network (NN) into the time dimension

The majority of the previous codes have analysed the stack of SMLM
images individually, initially with the pixels independent, identically
distributed (i.i.d.) (the Mixture Model; section 4.3), and then incorpor-
ating the neighbouring pixels to include a spatial dependency (using
several different methods including the MIM; section 4.4, and the NN;
section 5.5.4). Although this approach has yielded good results, due
to the blinking nature of fluorophores within SMLM, incorporating
a temporal element within the algorithm should theoretically result
in a greater accuracy. By tracking fluorophores over time and using
their blinking characteristic of turning ’off’ and ’on’ again, the preci-
sion of the localisation could be increased (if the exact emitter can be
determined in subsequent images). This temporal integration could
help identify more patterns, trends, or even anomalies that might not
be evident when taking a frame by frame analysis.

The nature of fluorophores has been discussed in section 3.2. As
fluorophores turn ’on’ and ’off’ stochastically, they are often ’on’ for
more than one consecutive frame, as well as in multiple frames distrib-
uted throughout the stack. The shorter the frame, the more likely that
they will be ’on’ for multiple consecutive frames, however this would
also increase the noise within the image (see section 3.4) as well as
reducing the photons released by the emitter for each frame making
it more difficult to localise the fluorophores. Different fluorophores
have different average ’on’ times, and would be more, or less, likely to
be ’on’ for consecutive frames. This could be utilised by using data in
neighbouring frames to localise fluorophores to a higher precision.

To try and exploit this temporal element, the NN was adapted to
take in 3-dimensional data. Ideally, the whole stack of images would
be analysed as one dataset. Unfortunately, the amount of available
computing power is limited, and therefore, at this moment in time,
this approach is not possible. Instead, the adapted 3D NN receives
three consecutive frames as its input, rather than the individual images
independently.

To modify the NN to allow for the input of 3D data, all the convo-
lutions were changed to 3D convolutions, and a new set of training
data was created. The code can be found in appendix D.6.3. The
training data this time was a stack of images created using the the
simulation code described in chapter 3 that changes through time, with
the fluorophores being simulated as AF 647.
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This stack of simulated images was used to train the 3D NN. The
simulation code was developed to simulate 10 fluorophores in a small
area (either ’on’ or ’off’). The maximum number of fluorophores ’on’
in each image is 8 fluorophores, the minimum was 0. These images
were also analysed using ThunderSTORM with the results from each
method compared. If ThunderSTORM found the correct number of
fluorophores then the image was classified as being correctly identified.

When using the 3D NN, the highest accuracy reached when using
the raw images was 40.4%, when using the output from the Mixture
Model the highest accuracy was 42.4%, for the output of the MIM, the
highest accuracy was 40.4%, and for the output of Mixture Model and
MIM multiplied together the highest accuracy was 42.4%. The loss for
these datasets at this accuracy are 0.481, 19.8, 2.00, and 42.4 respectively.
The loss and accuracy for these are shown in figure 5.19.

It can be seen that the 3D NN is struggling to learn past around 40%
for all of the different stacks of images. As the output can go up to 8 (or
even 10), if the NN was just guessing then there would be an accuracy
between 10 and 14%. Further investigation is needed to understand
way the 3D NN is struggling to learn. It is possible that is not enough
correlation between the neighbouring images, or it could be that there
is not enough training data for the NN to work on.

One main concern, that could be the reason for the low accuracy of
this NN, is that the dataset is not balanced; there is an unequal number
of images with the same number of fluorophores within them. The
inherent unpredictability in the generation of simulated images, owing
to the stochastic nature of the image generation process, complicates
the creation of a time-dependent stack of data that maintains balance
across different classes.

Due to limited computing power, only a small batch size could
be utilised. Consequently, this could have resulted in a restricted
representation of the data during the training process. This could stop
the NN from training correctly, and could end up ’memorising’ sections
rather than learning the overall pattern, compromising the learning
process of the NN. If a larger batch size could be used, then this would
provide a more comprehensive view of the dataset. In theory, the NN
should exhibit a greater accuracy than when using the batch size of
3. Caution should be used when increasing the batch size as using an
excessively large number may lead to memory constraints and other
consequences.

A much higher learning rate was used for the training data of this
3D NN. A variety of different learning rates were tested, however, if
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the a value of less than 0.1 was used the algorithm got ’stuck’ and
stayed at the same accuracy and loss. It can be seen from the images in
figure 5.19 that the results are not as good as the 2-dimensional NN.
The NN is struggling to learn, and only accuracies of around 40% are
found for each of the different data sets.

Another strategy to enhance the efficiency of this 3D NN would be
to increase the volume of training data. Having a limited amount of
training data could lead to several detrimental impacts on the perform-
ance of the NN. It could lead to overfitting, or bias when applied to
new data.

The loss of the 3-dimensional NN is also significantly larger than the
loss of the 2-dimensional NN (see figures 5.16 to 5.18). Although this
attempt has not yielded results of a high accuracy, further work could
be done using a 3-dimensional NN to attempt to improve this.

The results from this 3D NN were then compared to the percentage
of images that ThunderSTORM identified correctly. When using the
raw images, the percentage of correctly analysed images from Thun-
derSTORM was 55%, with an extra 33% being only one fluorophore off.
Images analysed using the Mixture Model yielded a percentage of 0%
(if failed to locate any fluorophores). Using the output from MIM, the
percentage of correctly analysed images from ThunderSTORM was 2%.
Finally, when using the Mixture Model output multiplied by the MIM,
the percentage of correctly identified images from ThunderSTORM was
33%. It was expected that the processed images would have low accur-
acy when using ThunderSTORM to locate and count the fluorophores
as the images are very different to what it is coded for and have values
between 0 and 1 as they are probabilities.

5.6 results and discussion

Several different methods were used to try and determine the number
of fluorophores in a sample to varying degrees of success. For all of
these methods, simulated data was used.

First, a two staged Mixture Model was used to try and split the
signal data into two different populations S1 and S2. Unfortunately,
due to the lack of signal data in each image this was unsuccessful. The
algorithm failed for many images, and was inconsistent across others.
It is possible that this could be useful across the entire stack of images,
but it is unlikely due to the change in intensity throughout the images.
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(a)

(b)

Figure 5.19: The a) accuracy and b) loss against iteration number for the raw
images, the Mixture model output, the MIM output, and the
product of the Mixture Model and MIM outputs when using the
3D NN. Here a learning rate of 0.2 was used and a batch size of
3 was used.

Next, the Mixture Model statistical output was used to try and de-
termine the change in the number of emitting fluorophores between
images using the change in intensity and equation (5.3). The result was
inconsistent with the actual difference due to the equation not taking
into account the PSF of the fluorophore and working on a pixel wise
manner. Incorporating the PSF of the fluorophore, equation (5.3), yiel-
ded more promising results with the results and was more consistent
with the actual results. A mean absolute difference was calculated to
be 9.95.
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When the value of µs, the mean of the signal population calculated
from the Mixture Model, was updated using the process described in
section 4.3.6 (using the fixed signal data), the mean absolute difference
was calculated to be 4.89. This decreases the error almost 2-fold. There
are, on average, 51 molecules ’on’ in each frame of this dataset. There-
fore the error is around 10%. This result is promising, however, using
this to calculate the actual number of fluorophores in each frame would
generate too much error. It would be possible that this could be used
in conjunction with another method to determine the total number of
fluorophores.

MATLAB’s classification learner [125] was next used to try and
determine how many fluorophores were ’on’ in each ’island’ of signal.
Two different sets of data were used and several different models were
trained to try and calculate this. First, the area of the ’islands’, the sum
and standard deviation of the intensity of the pixels in the ’islands’
were used. Next, the area of the ’islands’, the sum of the intensity of
the pixels in the current image, the previous and the next frame.

Although the second data set produced an accuracy of 87.7% (the
same as with the KNN with the first dataset), the modelled train
was a decision tree which only took into account the intensity of the
current frame and the next frame. This is too coarse a classification and
therefore is dismissed as being used as a model for future datasets.

The first data set produced two trained models with accuracies of
87.7% and 87.5%. These were a KNN using ten nearest neighbours
and an SVM using a Gaussian kernel respectively. It is thought that
the SVM is a better model as it uses a more rigorous and sophisticated
approach. Both of these models could be used as viable approaches to
count the number of fluorophores in ’islands’ of real data. When using
held out data, these two models had an accuracy of 87.3% and 85.3%
for the KNN and SVM respectively.

A NN was written with the aim to count the number of fluorophores
in image sections. Training data was produced that contained between
0 and 4 fluorophores ’on’ in each images. These images were processed
by the Mixture Model and the MIM to produce two new datasets; the
probability outputs. These were then multiplied together to create a
fourth and final dataset.

After training the NN on these datasets, the accuracy reached values
of 88.6%, 89.3%, 90.8% and 98.9%, and loss values of 0.238, 0.213, 0.190

and 0.017 for the non-processed data, the Mixture Model output, the
MIM output and the product of the Mixture Model and MIM outputs
respectively. This can be seen in table 5.1. Using processed data also

197



counting

decreased the number of iterations needed for the NN to learn to a high
accuracy. This method potentially provides a way to determine the
absolute numbers of fluorophores emitting in a sample, and therefore
the number of the structure of interest.

The NN was then adapted to take in 3-dimensional data; the previous,
current, and following images. Unfortunately, this NN struggled to
learn and the highest accuracy reached was 42.2%. Although this
particular NN was unsuccessful, this approach should not be ruled out
in the future, and it is thought that, with a lot more work, this could
end up having a much higher accuracy than what was found here.

From all these results it can be seen the best method used to count
fluorophores is to use NN and the processed data, specifically the final
dataset; the product of the Mixture Model and MIM outputs.

5.7 further work

There are many different paths that could be taken using the research
that has been completed in this chapter. Larger datasets could be used
for the Mixture Model statistics, where more fluorophores are emitting.
Equation (5.3) could be used on individual pixels intensity time traces
throughout the stack to see if this is a more viable technique than using
all the signal pixels in frame.

All of these models could be tested on different simulated data, for
example the datasets in [104].

For the NN, the next step would be to use sections of real data to
determine if the NN still determines the number to a high accuracy.
The 3-dimensional NN needs more work to see if this could get to a
higher accuracy. This work could include creating a balanced training
data set, using a larger data set, and utilising a supercomputer to enable
a larger batch size for training.

The Matlab Classification learner technique could be used in con-
junction with the Mixture Model statistical information to calculate
the difference in the number of fluorophores in neighbouring frames.
Instead of using the intensities in both the neighbouring frames, the
estimated change in fluorophore number could be inputted.

5.8 the algorithm

The code that was written and used in this chapter can be found in
appendix D.
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The two-staged Mixture Model (section 5.5.1) was written by myself
in MATLAB, as was the code that uses the output from these (sec-
tion 5.5.2). All the ML algorithms in section 5.5.3 were written by
myself using the Matlab classification learner. Both the 2D and 3D NNs
(section 5.5.4) were written in collaboration with Ashley Cadby, and
was adapted from a standard NN that classifies handwritten letters.
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6
D I S C U S S I O N

Optical microscopy is a non-invasive technique to allow a user to look
at small structures. The resolution for optical microscopes has increased
and traditional light microscopes can resolve distances down to 200nm.
This is limited by the diffraction limit of light. Single Molecule Loc-
alisation Microscopy (SMLM) techniques, including stochastic optical
reconstruction microscopy (STORM) [49], photo-activated localisation
microscopy (PALM) [48] and fluorescence photo-activated localisation
microscopy (FPALM) [50], circumvent this diffraction limit by exploit-
ing the photoblinking ability of some fluorophores allowing nanoscale
resolution.

This thesis has developed an adaptable method to create realistic
simulations of SMLM images (chapter 3), a two-stage algorithm to
denoise SMLM images (chapter 4), and several different methods in
order to count the number of fluorophores in a sample (chapter 5).

6.1 simulations

A method that successfully simulates images from SMLM was de-
veloped. Although the method is tailored to create images using the
photophysics of Alexa Fluor (AF) 647, this adaptable algorithm could
be altered to include any fluorophore with well documented emission
statistics such as any in [39]. Due to the simulation process, the initial
frames should be discarded as all the fluorophores start as ’on’.

These images were tested using ThunderSTORM [115] showing very
promising results. Although not every fluorophore was found, this was
expected. The dim fluorophores, and those localised by the edges were
missed. Some fluorophores with overlapping point spread functions
(PSFs) were localised as a single emitter.

These simulated images were comparable to real data both spatially
and temporally, showing that the model is a success.
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6.2 mixture model , Modified Ising Model (MIM)

A two-stage algorithm has been developed that successfully denoises
images taken using SMLM with no user input. This algorithm also has
several other useful applications that can be exploited.

The first stage of the algorithm, the Mixture Model, uses Bayesian
Inference to split the data into two distinct populations on a pixel-wise
manner. It is known that there is a spatial dependence in these images
due to the PSF of the fluorophores, and therefore, this method is known
to have several limitations. This can be used as a standalone algorithm
or the output can be fed into the second stage; the MIM.

The Mixture Model outputs the probability that a pixel is signal, and
several different statistics about the populations. The two populations
are modelled as Gaussian distributions and the means and precisions of
these are determined using the data and the priori. Priori is information
that is previously known about the data before the data is looked at.

As the probability that a pixel is signal is calculated, a ’soft classific-
ation’ of signal and noise can be determined using a ’soft threshold’.
This method is preferred due to the variation in intensity values across
all images. The same soft threshold can be used for all SMLM, however
a ’hard threshold’ on the intensity values of the raw data would have
to be tailored for every image.

The main limitation of the Mixture Model is that enough pixels need
to be classified in each population otherwise the algorithm fails. The
images require upwards of 1.38% to 4% of pixels to be classified as
signal, depending on the signal-to-noise ratio (SNR) of the images.

A rigorous sensitivity test was completed on the Mixture Model. The
majority of the unknowns were very robust with regards to changing,
however the means of the two populations need to be chosen with
more care. Fortunately, more prior information is known about these
values.

SMLM images consist of mainly noise pixels, with ’islands’ of signal
at the locations of the emitting fluorophores. For a low density images,
these ’islands’ should look like the PSF of fluorophores and be circular
and any fluorophores with overlapping PSFs should be formed from
a summation of circles. As the Mixture Model takes every pixel to be
independent, these ’islands’ can have irregular shapes. This limitation
is mitigated by further processing the probability output using a MIM.

The MIM processes the probabilities further by using the nearest
neighbours to incorporate a spatial dependence. Neighbours of the
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same classification are preferred, whereas neighbours of the different
classification are penalised.

The MIM is less robust than the Mixture Model and the prior values
have to be chosen with a lot of thought. The values chosen work for
a variety of different types of images, and were determined from the
results of the sensitivity test.

There are several different applications from this two-staged al-
gorithm:

• denoiseing the images,

• calculating the SNR,

• reducing the amount of disk space needed to save the useful data,
and

• as preprocessing to aid in the determination of the number
of fluorophores in an image, or image section, as detailed in
chapter 5.

This method has very useful applications and can be used to help
further research using SMLM This method could also be adapted to
other data that consists of two distinct populations, for example Light
Sheet Microscopy (LSM).

6.3 counting

Counting the number of fluorophores in a sample is very challenging.
Difficulties include; the variation in the number of photons emitted,
and the noise in the images.

Several different methods were explored and developed in the quest
to count the number of fluorophores in a sample, or sample section.
For all these different methods, simulated data was used.

Different methods explored were:

• a two staged Mixture Model,

• using the Statistical data from the Mixture Model to try and count
the difference in emitting fluorophores in neighbouring images,

• using two different consolidated results from the Mixture Model
and using to train models in MATLAB’s Classification learner,
and

• training a neural network (NN) to determine the number of
fluorescent molecules in SMLM image sections. A training dataset
was designed specifically for this technique.
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• adapting the NN from before to take in 3-dimensional data; the
previous, current, and following image, to determine the number
of fluorescent molecules in SMLM image sections. Again, a
training dataset was designed specifically for this

Using a two-staged Mixture Model was dismissed as a viable method
due to the limitations of the Mixture Model and the inconsistency of
the results. The method was to process the images using the Mixture
Model outlined in chapter 4 and then take the signal pixels only, and
reclassify these into two new populations. Not enough data was in the
signal population to consistently produce results that could be used to
aid in the calculation of the number of fluorophores.

Using the statistical information about the signal population calcu-
lated using the Mixture Model, the change in the number of emitting
fluorophores between images was calculated. This result was inconsist-
ent with the actual difference due to this system not incorporating the
PSF of the fluorophores. This method was was then updated to include
the PSF and the mean absolute difference was calculated to be 9.95.
This value was improved to 4.89 when updating the statistical output
from the Mixture Model using fixed data populations. This shows a
very promising result and could be developed further to aid in the total
number calculation. It could also be used in conjunction with other
algorithms.

A consolidation of results from the Mixture Model and MIM were
used to train various different models in MATLAB’s classification
learner [125]. Two different dataset were used:

1. the area of ’islands’ classified as signal, the sum of the intensities
in these pixels and the standard deviation of these intensities, and

2. the area of ’islands’ classified as signal, and the sum of the intens-
ities in these pixels in the current image, the previous image and
the next image.

Although the second dataset produced a model with a higher accur-
acy, 87.3% up from 87.2%, a decision tree was used for this classification
which only used two pieces of information. This classification tech-
niques was dismissed due to the variation of values across different
images and this classification method being too coarse.

Two different models were trained to the same accuracy for the
first dataset: a K-nearest neighbours (KNN) [137] using 10 nearest
neighbours, and a support vector machines (SVM) [135, 136] using a
Gaussian kernel. Due SVM using a more rigours approach it is thought
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that this model would be more viable in the future to count the number
of fluorophores in ’islands’ of real data.

The most promising result came from the results of a NN. Training
data was produced that contained between zero and four fluorophores
in the images. This data was processed using the Mixture Model and
the MIM. Four different training datasets were used to train the NN;

1. the raw images,

2. the probabilities output from the Mixture Model,

3. the probabilities output from the MIM, and

4. the product of the probabilities output from both the Mixture
Model and the MIM.

The results produced from the NN were 93% 96% 65% and 95%
accuracy rates for the for the raw image data, Mixture Model probab-
ilities, MIM probabilities and Mixture Model multiplied by the MIM
respectively. The Mixture Model probabilities both trained faster and
had lower losses, potentially providing a way to determine the abso-
lute numbers of fluorophores emitting in a sample, and therefore the
number of the structure of interest.

When the NN was adapted to take in 3-dimensional data; the pre-
vious, current, and following images, it struggled to learn and the
highest accuracy reached was 42.4%. This accuracy was found using
the outputs from the Mixture Model, and when the output of Mixture
Model and MIM were multiplied together. When using either the raw
images, or the output from the MIM, the highest accuracy reached was
40.4%.

6.4 further work

The simulation method could be extended to produce 3-dimensional
data [114], or by allowing individual, or groups of, fluorophores to
have different distributions of photon emission. By allowing different
fluorophores, or groups of fluorophores to have different emission
statistics would allow for different characteristics in the final images.
For example, photons emitted from fluorophores that are deeper in the
sample will undergo more scatter and absorption before entering the
microscope.

Although the Mixture Model produces very effective results, both
the signal and the noise populations are modelled to be Gaussian
distributions. This is unphysical and these could be updated to different
populations to determine if this improved upon these results.
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There are many different paths that could be taken using the re-
search completed in chapter 5. Larger datasets could be used for the
Mixture Model statistics, where more fluorophores are emitting. Or
equation (5.3) could be used on individual pixels intensity time traces
throughout the stack to see if this is a more viable technique than using
all the signal pixels in frame.

Using the statistical output from the Mixture Model to count the
difference between neighbouring images could be used in conjunction
with the Machine Learning (ML). Instead of using the intensities in
both the neighbouring frames, the estimated change in fluorophore
number could be inputted.

For the NN, the next step would be to use real data rather than
simulated data or to use different simulated data for example the
datasets in [104].

Also, all of these models could be tested on different simulated data,
for example the datasets in [104].
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acronyms

ADC analog to digital converter

AF Alexa Fluor

AI artificial intelligence

sCMOS scientific Complementary Metal-Oxide Semiconductor

CNN convolutional neural network

CTS charge transfer state

DL deep learning

e-h electron-hole

EM electron microscopy

EMCCD Electronic Multiplying Charge-Coupled Devices

FISH fluorescence in situ hybridisation

FNN feedforward neural network

FP fixed pattern

FPALM fluorescence photo-activated localisation microscopy

FRET forster resonance energy transfer

FT fourier transform

GFP green fluorescent protein

GPU graphics processing unit

IFT inverse fourier transform

i .i .d. independent, identically distributed

KNN K-nearest neighbours

LM localisation microscopy

LS least-squares

LSFM Light Sheet Fluorescence Microscopy

LSM Light Sheet Microscopy

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MIM Modified Ising Model

ML Machine Learning

MLE maximum likelihood estimate

MNIST modified national institute of standards and technology

MRF markov random field
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NA numerical aperture

NN neural network

NSOM near-field scanning optical microscopy

PALM photo-activated localisation microscopy

PDF Probability Density Function

PET photo induced electron transfer

PSF point spread function

QE quantum efficiency

QW quantum well

QY quantum yield

RL Richardson-Lucy

RMS root mean squared

RNN recurrent neural network

ROI regions of interest

SIM structured illumination microscopy

SMLM Single Molecule Localisation Microscopy

SNOM scanning near-field optical microscopy

SNR signal-to-noise ratio

SOFI Super Resolution Optical Fluctuation Microscopy

SSIM saturated structured illumination microscopy

STED stimulated emission depletion

STORM stochastic optical reconstruction microscopy

SVM support vector machines

TIRF total internal reflection fluorescence

VWCM virtual window center of mass
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115M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych and G. M. Hagen,
‘ThunderSTORM: A comprehensive ImageJ plug-in for PALM and
STORM data analysis and super-resolution imaging’, Bioinformatics
30, 2389–2390 (2014).

116B. A. Cipra, ‘An Introduction to the Ising Model’, The American
Mathematical Monthly 94, 937–959 (1987).

117I. H. Witten, E. Frank, M. A. Hall and C. J. Pal, ‘Chapter 9 - Prob-
abilistic methods’, in Data mining practical machine learning tools
and techniques, edited by I. H. Witten, E. Frank, M. A. Hall and
C. J. B. T. D. M. ( E. Pal (Morgan Kaufmann, 2017), pp. 335–416.

118B. A. Landman, I. Lyu, Y. Huo and A. J. Asman, ‘Chapter 6 - Mul-
tiatlas segmentation’, in Handbook of medical image computing and
computer assisted intervention, edited by S. K. Zhou, D. Rueckert,
G. B. T. H. o. M. I. C. Fichtinger and C. A. Intervention (Academic
Press, 2020), pp. 137–164.

119Orchard, Peter, Markov random field optimisation, http://homepages.
inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/,
Accessed 2014-08-28.

120Q. Jackson and D. Landgrebe, ‘Adaptive Bayesian contextual classi-
fication based on Markov random fields’, Geoscience and Remote
Sensing, . . . 40, 2454–2463 (2002).

121A. Sonnleitner, G. Schütz and T. Schmidt, ‘Free Brownian Motion of
Individual Lipid Molecules in Biomembranes’, Biophysical Journal
77, 2638–2642 (1999).

122M. K. Cheezum, W. F. Walker and W. H. Guilford, ‘Quantitative
comparison of algorithms for tracking single fluorescent particles’,
Biophysical Journal 81, 2378–2388 (2001).

123U. Kubitscheck, O. Kückmann, T. Kues and R. Peters, ‘Imaging and
Tracking of Single GFP Molecules in Solution’, Biophyiscal Journal
78, 2170–2179 (2000).

124Markov random fields, https://www2.isye.gatech.edu/isyebayes/
bank/handout16.pdf, Accessed August 11, 2022.

227

https://doi.org/10.1126/science.1153529
https://doi.org/10.1093/bioinformatics/btu202
https://doi.org/10.1093/bioinformatics/btu202
https://doi.org/10.2307/2322600
https://doi.org/10.2307/2322600
https://doi.org/https://doi.org/10.1016/B978-0-12-804291-5.00009-X
https://doi.org/https://doi.org/10.1016/B978-0-12-804291-5.00009-X
https://doi.org/https://doi.org/10.1016/B978-0-12-816176-0.00011-9
https://doi.org/https://doi.org/10.1016/B978-0-12-816176-0.00011-9
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1166604
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1166604
https://doi.org/10.1016/S0006-3495(99)77097-9
https://doi.org/10.1016/S0006-3495(99)77097-9
https://doi.org/10.1016/S0006-3495(01)75884-5
https://reader.elsevier.com/reader/sd/pii/S0006349500767646?token=0845E75381297A07EFF9907564B266667CA2C88AF4961CC8EACC32AB84A7209B75F00B4D98E44F18C7B1AFB6F8F521C6
https://reader.elsevier.com/reader/sd/pii/S0006349500767646?token=0845E75381297A07EFF9907564B266667CA2C88AF4961CC8EACC32AB84A7209B75F00B4D98E44F18C7B1AFB6F8F521C6
https://www2.isye.gatech.edu/isyebayes/bank/handout16.pdf
https://www2.isye.gatech.edu/isyebayes/bank/handout16.pdf


bibliography

125Classification Learner, https://uk.mathworks.com/help/stats/classificationlearner-
app.html, Accessed: 2020-08/-8.

126M. J. Rust, M. Bates and X. Zhuang, ‘Sub-diffraction-limit imaging
by stochastic optical reconstruction microscopy (STORM).’, Nature
methods 3, 793–5 (2006).

127R. P. Nieuwenhuizen, M. Bates, A. Szymborska, K. A. Lidke, B.
Rieger and S. Stallinga, ‘Quantitative localization microscopy: Effects
of photophysics and labeling stoichiometry’, PLoS ONE 10, 1–18

(2015).
128D. Gross and W. Webb, ‘Molecular counting of low-density lipo-

protein particles as individuals and small clusters on cell surfaces’,
Biophysical Journal 49, 901–911 (1986).

129B. M. Burton, K. A. Marquis, N. L. Sullivan, T. A. Rapoport and
D. Z. Rudner, ‘The ATPase SpoIIIE Transports DNA across Fused
Septal Membranes during Sporulation in Bacillus subtilis’, Cell 131,
1301–1312 (2007).

130M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry and
J. P. Armitage, ‘Stoichiometry and turnover in single, functioning
membrane protein complexes’, Nature 443, 355–358 (2006).

131S. K. Das, M. Darshi, S. Cheley, M. I. Wallace and H. Bayley, ‘Mem-
brane protein stoichiometry determined from the step-wise pho-
tobleaching of dye-labelled subunits’, ChemBioChem 8, 994–999

(2007).
132K. Tsekouras, T. C. Custer, H. Jashnsaz, N. G. Walter and S. Pressé,

‘A novel method to accurately locate and count large numbers of
steps by photobleaching’, Molecular Biology of the Cell 27, edited
by D. Lidke, 3601–3615 (2016).

133A. Lee, K. Tsekouras, C. Calderon, C. Bustamante and S. Pressé,
‘Unraveling the Thousand Word Picture: An Introduction to Super-
Resolution Data Analysis’, Chemical Reviews 117, 7276–7330 (2017).

134E. Alpaydin, ‘Introduction’, in Introduction to machine learning (2010),
pp. 1–19.

135C. Campbell and Y. Ying, ‘Learning with Support Vector Machines’,
Synthesis Lectures on Artificial Intelligence and Machine Learning
5, 1–95 (2011).

136N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vec-
tor Machines and Other Kernel-based Learning Methods (Cambridge
University Press, Mar. 2000).

228

https://doi.org/10.1038/nmeth929
https://doi.org/10.1038/nmeth929
https://doi.org/10.1371/journal.pone.0127989
https://doi.org/10.1371/journal.pone.0127989
https://doi.org/10.1016/S0006-3495(86)83718-3
https://doi.org/10.1016/j.cell.2007.11.009
https://doi.org/10.1016/j.cell.2007.11.009
https://doi.org/10.1038/nature05135
https://doi.org/10.1002/cbic.200600474
https://doi.org/10.1002/cbic.200600474
https://doi.org/10.1091/mbc.e16-06-0404
https://doi.org/10.1091/mbc.e16-06-0404
https://doi.org/10.1021/acs.chemrev.6b00729
https://doi.org/10.2200/S00324ED1V01Y201102AIM010
https://doi.org/10.2200/S00324ED1V01Y201102AIM010


bibliography

137V. Hodge and J. Austin, ‘A Survey of Outlier Detection Methodolo-
gies’, Artificial Intelligence Review 22, 85–126 (2004).

138M. Buda, A. Maki and M. A. Mazurowski, ‘A systematic study of the
class imbalance problem in convolutional neural networks’, Neural
Networks 106, 249–259 (2018).

139L. Deng, ‘The mnist database of handwritten digit images for ma-
chine learning research [best of the web]’, IEEE Signal Processing
Magazine 29, 141–142 (2012).

140S. L. Smith, P.-j. Kindermans, C. Ying, Q. V. Le and G. Brain, ‘D on
’ T D Ecay the L Earning R Ate , I Ncrease the B Atch S Ize’, 1–11

(2018).
141Cross entropy loss, https://pytorch.org/docs/stable/generated/

torch.nn.CrossEntropyLoss.html, Accessed April 02, 2021.
142Z. Zhang and M. R. Sabuncu, ‘Generalized cross entropy loss for

training deep neural networks with noisy labels’, Advances in Neural
Information Processing Systems 2018-December, 8778–8788 (2018).

143Cross-entropy loss function, https://towardsdatascience.com/cross-
entropy-loss-function-f38c4ec8643e, Accessed April 02, 2021.

229

https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e




A
A P P E N D I X A : I N T R O D U C T I O N

a.1 example Markov Chain Monte Carlo (MCMC) code

function result = GIBBS(matrixData, M)

%constants from data

n = length(matrixData);

xbar = mean(matrixData);

s2 = var(matrixData);

% to be saved

%sal.mu = NaN(1,M);

%sal.lamda = NaN(1,M);

%constants for lam prior

a=0.1;

b=0.1;

%constants for m prior

nu = 0;

tau = 0.2;

%constants for p prior

alpha = 0.1;

beta = 0.1;

%constants in posterior

aStar = a+n/2;

alphaStar = alpha+ 1/2;

%initialising

mu = NaN(1,M);

mu(1) = 1;

lambda = NaN(1,M);
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lambda(1) = 1;

m = NaN(1,M);

m(1) = 1;

p = NaN(1,M);

p(1) = .1;

for i = 2:M

% for mu

% keyboard

pstar = lambda(i-1)*n+p(i-1);

mstar = (n*lambda(i-1)*xbar + p(i-1)*m(i-1))/pstar;

% draw a mu

mu(i) = normrnd(mstar, 1/sqrt(pstar) );

%result.mu(i) = mu;

% for lambda

bstar = b + (n*(mu(i)-xbar)^2)/2 + n*s2/2;

% draw a lambda

lambda(i) = gamrnd(aStar,1/bstar);

%result.lambda(i) = lambda;

%for p

betaStar = beta + (mu(i)-m(i-1))^2;

% draw a p

p(i) = gamrnd(alphaStar, 1/betaStar);

% for m

taustar = (p(i)+tau);

nustar = (2*p(i) + tau*nu)/taustar;

% draw an m

m(i) = normrnd(nustar, 1/sqrt(taustar));

end

result.mu = mu;

result.lambda = lambda;
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continuous distributions

a.2 continuous distributions

The different continuous distributions that were used in this thesis are
included in table A.1

233



appendix a : introduction

N
am

e
N

ot
at

io
n

p.
d.

f.
M

ea
n

E
[X

|
θ
]

V
ar

ia
nc

e
V
[X

|
θ
]

N
ot

es

Be
ta

B
e
(x

|
α

,β
)

f(
x
)
=

x
α
−
1
(1
−
x
)β

−
1

B
(α

,β
)

X
=

(0
,1
)

Θ
=

{(
α

,β
)
∈

R
2
:α
>
0
,β
>
0
}

X
=

(0
,1
)

µ
(1
−
µ
)

(α
+
β
+
1
)

G
am

m
a

G
a
(x

|
α

,β
)

f(
x
)
=

β
α
x
α
−
1
e
−
β
x

Γ
[α
]

Γ
(n

)
=

(n
−
1
)!

X
=

R
+

Θ
=

{(
α

,β
)
∈

R
2
:α
>
0
,β
>
0
}

α β
α β
2

G
au

ss
ia

n
(N

or
m

al
)

N
(x

|
µ

,λ
)

f(
x
)
=

λ
−
1 2

√
2
π

ex
p[
−
λ 2
(x

−
µ
)2
]

X
=

R

Θ
=

{(
µ

,λ
)
∈

R
2
:λ
>
0
}

µ
1 λ

C
an

al
so

be
pa

ra
m

et
er

is
ed

in
te

rm
s

of
th

e
st

an
da

rd
de

vi
at

io
n
σ
=

1
λ
1
/
2

Table A.1: Continuous distributions

234



B
A P P E N D I X B : S I M U L AT I O N S

b.1 simulations code

foldername1 = ’SimTest_11_6_2020/images-’;

mkdir ’SimTest_11_6_2020/images-’

foldername2 = ’nic-’;

tic

Num_mols = 5000;

frame_num = 500;

frame_time = 10;

% simulate on off

M = MolsMatrix_test(Num_mols, frame_num, frame_time);

% create empty matrix

M_binned = NaN(Num_mols, frame_num);

% sum into frames

for i = 1:frame_num

first = (i-1)*10 +1;

last = i*10;

temp = M(:,first:last);

a = find(temp == -1);

temp(a) = 0;

b = sum(temp,2);

M_binned(:,i) = b;

end % for

%define paramaters needed
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FOV = 10000;

PSF = .004;

pixelsize = 100;

offset = 100;

efficiency = 0.7;

noisevalue = 50;

% create positions for each molecule

moleculelist = NaN(Num_mols,3);

% Center = round(FOV * .5);

% for i = 1:5

% for j = 1:5

% mol = j + 5*(i-1);

%

% % 10nm apart

% x_pos = Center + (i * 10 - 10);

% y_pos = Center + (j * 10 - 10);

%

% moleculelist(mol,1) = x_pos;

% moleculelist(mol,2) = y_pos;

% end % j

% end % i

areaMols= FOV* 0.8;

%moleculelist(:,1)=randi(FOV, Num_mols,1);

%moleculelist(:,2)=randi(FOV, Num_mols,1);

moleculelist(:,1)=randi(areaMols, Num_mols,1);

moleculelist(:,2)=randi(areaMols, Num_mols,1);

moleculelist = moleculelist+(FOV*0.1);

% create image stack

%foldername = ’Data_2July/image-’;

partc=’.tif’;

% mean of the exponential

%mu = 5202;

%mu = 7500;

mu = 6019
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for i = 1:frame_num

map=zeros(FOV);

% moleculelist(:,3) = exprnd(mu, Num_mols, 1).*(M_binned(:,i)/10);

moleculelist(:,3) = poissrnd(mu, Num_mols, 1).*(M_binned(:,i)/10);

map = addmolecules(map,moleculelist);

%fourier transform that image

B = fft2(map);

%make optical transfer function

R=makemask(PSF, FOV);

B = B.*R;

%fourier transform back into real space

Y = ifft2(B);

Y = real(Y.*Y);

% capture on camera (bin in space)

[captureimage, loopnumber] = capturecamera(FOV, pixelsize,

Y,efficiency);

%add noise level

captureimage = round(captureimage) + offset;

%change so size is automated?

% noisemap = gauspdf(100,300,0.24);

% noisemap = normpdf(100,300,0.24);

% noisemap = normrnd(300,20,[100]);

noisemap = poissrnd(20,100);

captureimage = captureimage + noisemap;

imagenumber = num2str(i,’%05d’);

s = strcat(foldername1,foldername2, imagenumber, partc);

imwrite(uint16(captureimage),s);

end %for

s = strcat(foldername1,’matlab.mat’);
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%keyboard

save(s)

toc1

b.1.1 Adding molecules to the image

function [ map ] = addmolecules( map,moleculelist )

%UNTITLED4 Summary of this function goes here

% Detailed explanation goes here

for i =1:size(moleculelist,1)

% keyboard

map(moleculelist(i,1),moleculelist(i,2))=moleculelist(i,3);

end

end

b.1.2 Creating a mask

function [ R ] = makemask( r,SX )

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

x = linspace(-1,1,SX);

y = linspace(-1,1,SX);

[X,Y] = meshgrid(x,y);

R = sqrt(X.^2 + Y.^2);

%keyboard

R(R>r) = 0;

R(find(R)) = 1;

end

b.1.3 Binning the data in space

function[captureimage,loopnumber] = capturecamera(FOV,pixelsize,

Y,efficiency)

%UNTITLED5 Summary of this function goes here
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% Detailed explanation goes here

loopnumber = round(FOV/pixelsize);

captureimage=zeros(loopnumber+1);

for i = 1:loopnumber-1

for j = 1:loopnumber-1

captureimage(i,j) = efficiency*sum(sum(Y(((i-1) * pixelsize)

+ 1 :(i*pixelsize) + 1, (( j-1 ) * pixelsize) + 1:((j*pixelsize)+1))));

end

end

captureimage=captureimage(1:loopnumber,1:loopnumber);

end
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A P P E N D I X C : G I B B S I S I N G

c.1 gibbs ising code

function result = Gibbs_Ising_Jul2018(matrixData)

M = 1e4;

validateattributes( matrixData, {’double’} , ...

{’2d’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

[m,n] = size(matrixData);

Gibbs_threshold = 0.8;

%% Run through Gibbs

datavec = reshape(matrixData, [],1);

result.Gibbsdata = twoPopLoopJul2018( datavec, M );

Gibbs_noBurnin = result.Gibbsdata.Z(:, M/4+1:end);

Gibbs_a = mean(Gibbs_noBurnin,2);

Gibbs_b = reshape(Gibbs_a, [m,n]);

result.Gibbs_probs = Gibbs_b;

result.Gibbs_map = Gibbs_b > Gibbs_threshold;

result.Gibbs_image = result.Gibbs_map .* matrixData;

%% Run through Ising

result.Ising = Ising_Jul2018(Gibbs_b);

end % function
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c.1.1 Gibbs Sampler for two populations

function [ gibbs , ising ] = twoPopLoopJul2018( datavec, M )

%TWOPOPLOOPJUL2018 Summary of this function goes here

% Detailed explanation goes here

validateattributes( datavec, {’double’} , ...

{’2d’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

validateattributes( M , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’integer’, ’finite’, ’nonnan’, ’positive’} )

%% Prior values - precision beta (a, b) mean gaussian (m,p)

%signal

a_sig = 0.01;

b_sig = 0.01;

%m_sig = 200;

m_sig = quantile(datavec,0.975);

p_sig = 0.05;

%p_sig = 1;

%noise

a_noise = 0.01;

b_noise = 0.01;

%m_noise = 140;

m_noise = quantile(datavec,0.025);

p_noise = 0.01;

%% find values needed and preallocate space for results

N = length(datavec);

gibbs.muNoise = NaN(1,M);

gibbs.muSignal = NaN(1,M);

gibbs.lamNoise = NaN(1,M);

gibbs.muSignal = NaN(1,M);

gibbs.Pn = NaN(M,1);

gibbs.Z = NaN(N,M);

index = SplitByAverage_Jul2018( datavec );

for i = 1:M

% Seperate into 2 populations using index
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[data_S, data_N] = seperate_Jul2018(index,datavec);

% calculate some values

a = sum(index); %number of signal data points

b = N - a; % number of noise data points

% calculate the probability of noise pixels from beta

distribution

% (prior = beta(1/2, 1/2) )

Pn = betarnd(a + 1/2, b + 1/2);

gibbs.Pn(i) = Pn;

%Gibbs Sampler for both signal and noise

Signal = GibbsGauss_Jul2018(data_S,1,a_sig,b_sig,m_sig,

p_sig);

Noise = GibbsGauss_Jul2018(data_N,1,a_noise,b_noise,

m_noise,p_noise);

% ensure they haven’t swopped

if Signal.mu > Noise.mu

gibbs.muNoise(i) = Noise.mu;

gibbs.lamNoise(i) = Noise.lam;

gibbs.muSignal(i) = Signal.mu;

gibbs.lamSignal(i) = Signal.lam;

else

gibbs.muNoise(i) = Signal.mu;

gibbs.lamNoise(i) = Signal.lam;

gibbs.muSignal(i) = Noise.mu;

gibbs.lamSignal(i) = Noise.lam;

end

probabilities = prob1_Jul2018(datavec,gibbs.muNoise(i), ...

gibbs.muSignal(i),gibbs.lamNoise(i),gibbs.lamSignal(i), Pn);

index = binornd(1,(1-probabilities));

% check for no empty sets (must have data in both

signal and noise data

% sets

dummy = 1;

while dummy>0

n = sum(index);

if n<1 || n == N

idx = newZ(probabilities);
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else

break;

end %if

end %while

gibbs.Z(:,i) = index;

% how far through the code has it gone?

if ~mod(i,M/10)

disp([num2str(i/M*100),’% done’])

end % if

end %for

end %function

c.1.2 Separating the signal and noise

function [noise, signal] = seperate_Jul2018( index, datavec )

%SEPERATE Seperates datavec into two populations using index

% Detailed explanation goes here

validateattributes( datavec , {’double’} , ...

{’2d’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

validateattributes( index , {’double’} , ...

{’2d’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

noise = datavec(~logical(index));

signal = datavec(logical(index));

end %function

c.1.3 Gibbs Sampler for one population

function result = GibbsGauss_Jul2018(datavec,M,a,b,m,p)

%GIBBSGAUSS_JUL2018 Gibbs Sampler

% Detailed explanation goes here

validateattributes( datavec, {’double’} , {’2d’, ’real’, ’nonempty’,

’finite’, ’nonnan’} )

validateattributes( M , {’double’, ’single’} , ...
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gibbs ising code

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( a , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( b , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( m , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

validateattributes( p , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

%% Statistics

n = length(datavec);

xbar = mean(datavec);

s2 = var(datavec);

%% update a (stays constant throughout)

astar = n/2 +a;

%% allocate data space for mu and lam

result.mu = NaN(M,1);

result.lam = NaN(M,1);

%% starting point

lam_cur = 1;

for i = 1:M

pstar = n*lam_cur +p;

mstar = (n*lam_cur*xbar + m*p)/pstar;

mu_cur = normrnd(mstar, 1/sqrt(pstar));

bstar = b+ n/2*( s2 + (xbar - mu_cur)^2);

lam_cur = gamrnd(astar, 1/bstar);

result.mu(i) = mu_cur;

result.lam(i) = lam_cur;

end %for

end %function

function result = prob1_Jul2018(data,muNoise,muSignal,
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lamNoise,lamSignal,Pn)

%PROB1_JUL2018 Summary of this function goes here

% Detailed explanation goes here

validateattributes( data, {’double’} , ...

{’2d’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

validateattributes( muNoise , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( muSignal , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( lamNoise , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( lamSignal , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

validateattributes( Pn , {’double’, ’single’} , ...

{’scalar’, ’real’, ’nonempty’, ’finite’, ’nonnan’, ’positive’}

)

%%

B = (lamSignal*(data - muSignal).^2 - lamNoise*(data - muNoise).^2);

A = sqrt(lamSignal/lamNoise)*exp(-1/2*B);

P = (1-Pn)./Pn;

S = (A).*P;

result = 1./(1+S.*P);

end %function

function sal = newZ(probabilities)

% N = length(probabilities);

%sal = NaN(N,1);

sal = binornd(1,probabilities);

%for i = 1:N
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gibbs ising code

% sal(i,1) = binornd(1,probabilities(i,1));

%end

function result = Ising_Jul2018( probs_matrix )

%ISING_JUL2018 Summary of this function goes here

% Detailed explanation goes here

%check inputs

validateattributes( probs_matrix, {’double’} , ...

{’2d’, ’real’, ’nonempty’, ’finite’, ’nonnan’} )

%% make so initial conditions are always the same (repeatable)

randn(’state’,3) %set the seeds (state) to have

rand (’state’,3) %the constancy of results

%% set some variables (initial)

z = 1e4; %number of iterations

sigma = .5; %must be less than 3(2)

% J(1) = 1; %Reciprocal Temperature

%priors

a = 2;

b= 0.6;

% make proabilities go from -1 to 1 (not 0 to 1)

y = 2*probs_matrix - 1;

s = size(probs_matrix);

theta = ones(s(1),s(2)); %start with ones

%%

k = 1;

randvec = randperm( s(1)*s(2) );

J = NaN(z,1); % preallocate space for reciprocal temperature

J(k) = gamrnd(a,b); % first reciprocal temp from a gamma dist

(priors above)

IsingMatrix = zeros(s(1),s(2)); %start with zeros

for j = 1:z
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% disp how much is done - needs changing

if ~mod(j,z/10)

disp([num2str(j/z*100),’% done’])

end

for pos = randvec % go through pixels in a random order

determined above

thetaP = -theta(pos); % propose that the pizel changes

state

LikeRatio = exp(y(pos)*(thetaP - theta(pos))/sigma.^2);

% how likely is it to change

neighborhood = pos + [-1,1,-s(1),s(1)];

[iy,ix]=ind2sub([s(1),s(2)],pos); %change from ind to

x,y

% using cliques

neighborhood([iy==1,iy==s(1),ix==1,ix==s(2)]) = [];

disagree = sum(theta(neighborhood)~=theta(pos)); % how

many disagree

disagreeP = sum(theta(neighborhood)~=thetaP); % how many

disagre with the proposal

DelLogPr = 2 * J(k) * (disagree - disagreeP);

alpha = exp(DelLogPr) * LikeRatio;

if rand < alpha % if a random number is smaller than

alpa keep the propossal

theta(pos) = thetaP;

disagree = disagreeP;

end %if

% update J (only b changes, a is constant)

bstar = b + 2*disagree;

J(k + 1) = gamrnd(a,bstar);

J_rat = J(k + 1)/J(k);

J_dif = J(k+1)-J(k);

alpha2 = ((J_rat)^(a-1))*exp(-2*bstar*J_dif);

if rand > alpha2 % keep new J with prob rand

J(k + 1) = J(k);

end %if
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sensitivity test results

% update cliques model (add or take one from the relative

position)

IsingMatrix(pos) = IsingMatrix(pos) + theta(pos);

k = k+1;

end %for

end %for

IsingMatrix = IsingMatrix/z; %get back to numbers between -1 and

1

IsingMatrix = (IsingMatrix + 1)/ 2; % change to between 0 and

1

result = IsingMatrix;

end % function

c.2 sensitivity test results
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D
A P P E N D I X D : C O U N T I N G

d.1 the two stage gibbs algoirhtm

function sal = doublegibbs(matrixdata, M)

% input data, run Gibbs Sampler to seperate signal from noise.

Then run signal

% through gibbs sampler againg to seperate signal into S1 and

S2 (S1 is

% higher than S2)

%subplot(2,2,1)

%imagesc(matrixdata)

%keyboard

%threshGibbsNew

tic

datavec = reshape(matrixdata,[],1);

% Run through Gibbs Sampler to classify into signal and noise

sal.gibbs1 = twoPopLoopNew(datavec,M);

% find the average of the Z matrix along the second dimension

(finds the

% probability of each pixel being noise

mz = mean(1-sal.gibbs1.Z,2);

s = size(matrixdata);

% threshold the data (> .7) to classify pixels

mask = threshold(mz,s(1),s(2));

sal.mask = mask;

% set all the pixels classified as noise to zero

sal.gibbsimage = mask.*matrixdata;

%subplot(2,2,2)

%imagesc(sal.gibbsimage)
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toc

%indexSignal

ind = find(mask);

signal = matrixdata(logical(mask));

%sal.signal = [signal, ind];

%gibbsvector (gibbs2)

sal.gibbs2 = twoPopLoopNew2(signal ,M);

sal.S12 = mean(1-sal.gibbs2.Z,2);

sal.signal = [signal, ind, sal.S12];

sal.idx = sal.S12 > 0.7;

%noise

noise = matrixdata(logical(~mask));

Npos = find(~mask);

sal.N = [noise, Npos];

%s1

S1 = sal.signal(logical(sal.idx));

S1pos = ind(logical(sal.idx));

sal.S1 = [S1, S1pos];

%s2

S2 = sal.signal(~logical(sal.idx));

S2pos = ind(~logical(sal.idx));

sal.S2 = [S2, S2pos];

Nsize = size(sal.N);

N0vector = zeros(Nsize(1),1);

N = [N0vector, sal.N];

S1size = size(sal.S1);

S11vector = ones(S1size(1),1);

S12vector = 2*S11vector;

S1 = [S12vector, sal.S1];

S2size = size(sal.S2);
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S21vector = ones(S2size(1),1);

%S22vector = 2*S21vector;

S2 = [S21vector, sal.S2];

all =[N; S1; S2];

order = sortrows(all, 3);

s = size(matrixdata);

sorted = reshape(order(:,1),s(1),s(2));

sal.sorted = sorted;

%subplot(2,2,3)

%imagesc(sorted)

orig = reshape(order(:,2),s(1),s(2));

%subplot(2,2,4)

%imagesc(orig)

subplot(2,3,1)

imagesc(matrixdata)

subplot(2,3,2)

imagesc(sal.gibbsimage)

subplot(2,3,3)

plot(sal.gibbs1.muNoise)

hold on

plot(sal.gibbs1.muSignal)

hold off

subplot(2,3,4)

imagesc(sorted)

subplot(2,3,5)

plot(sal.gibbs2.muSignal1)

hold on

plot(sal.gibbs2.muSignal2)

hold off

subplot(2,3,6)

imagesc(orig)
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d.2 using the gibbs statistics to calculate the change

in ’on’ fluorophores

filelist_images = LM_filelist(’/Users/Nicola/Google Drive/code_data

/matlab/SimCode_Nic/20Bleaching_1/Bleaching20_12P_many/images’);

filelist_GibbsProbs = LM_filelist(’/Users/Nicola/Google Drive/code_data/

matlab/SimCode_Nic/20Bleaching_1/Bleaching20_12P_many/images’);

filelist_IsingProbs = LM_filelist(’/Users/Nicola/Google Drive/code_data

/matlab/SimCode_Nic/20Bleaching_1/Bleaching20_12P_many/isingProbs2’);

All = length(filelist_GibbsProbs);

images_gibbs = NaN(100 ,100,All);

%images = images(:,:,1:All);

images_summed = NaN(50,1);

for i = 1:All

temp = sum(sum(images(:,:,i)));

images_summed(i,1) = temp;

end %for

figure(’Name’, ’Images Summed’), plot(images_summed);

%numb = 45;

%images_small = NaN(13,13,numb);

%% put all ising images in matrix

for i = 1:47

%for i = 1:numb

filepath_ising=filelist_IsingProbs{i};

filepath_GibbsProbs = filelist_GibbsProbs{i};

Z_ising = double(importdata(char(filepath_ising)));

% Z_gibbs = double(importdata(char(filepath_GibbsProbs)));

%Z_image = Z_image(34:66,34:66,:);

% Z_image = Z_image(44:56,44:56,1);

% images(:,:,i) = Z_image;

images_ising(:,:,i) = Z_ising;

end %for
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%keyboard

% for threshold = .7:.1:1

% for i = 1: numb

%

% threshold

%

% mask = images(

%

% end %for images

% end %threshold

%keyboard

%images_gibbs = images_gibbs/255;

%% plot the sum of just the signal

mask_7 = images_gibbs > .7;

mask_8 = images_gibbs > .8;

mask_9 = images_gibbs > .9;

%keyboard

%image_thresh_7 = mask_7 .* images_small;

%image_thresh_8 = mask_8 .* images_small;

%image_thresh_9 = mask_9 .* images_small;

image_thresh_7 = mask_7 .* images;

image_thresh_8 = mask_8 .* images;

image_thresh_9 = mask_9 .* images;

figure(’name’, ’images summed just signal’);

hold on

plot(squeeze(sum(sum(image_thresh_7))));

plot(squeeze(sum(sum(image_thresh_8))));

plot(squeeze(sum(sum(image_thresh_9))));

legend(’below 0.7’,’below 0.8’,’below 0.9’)

%% sum of just the signal for each image

%sum_image_7 = sum(image_thresh_7(:));

sum_image_7 = squeeze(sum(sum(image_thresh_7)));

%sum_image_8 = sum(image_thresh_8(:));

sum_image_8 = squeeze(sum(sum(image_thresh_8)));

%sum_image_9 = sum(image_thresh_9(:));

sum_image_9 = squeeze(sum(sum(image_thresh_9)));
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%%

%sum_image_7t = [ sum_image_7 ; 0];

%sum_image_8t = [ sum_image_8 ; 0];

%sum_image_9t = [ sum_image_9 ; 0];

%sum_image_7t_p1 = [0; sum_image_7];

%sum_image_8t_p1 = [0; sum_image_8];

%sum_image_9t_p1 = [0; sum_image_9];

%difference

%E_t7 = sum_image_7t_p1 - sum_image_7t ; %need to remove top

and bottom

%E_t8 = sum_image_7t_p1 - sum_image_8t ;

%E_t9 = sum_image_7t_p1 - sum_image_9t ;

%a = length(E_t7);

%E_t7 = E_t7(2:a-1);

%E_t8 = E_t8(2:a-1);

%E_t9 = E_t9(2:a-1);

%could have done

E_t7 = -diff(sum_image_7);

E_t8 = -diff(sum_image_8);

E_t9 = -diff(sum_image_9);

%GibbsData = GibbsData(1:All, :);

%%

Mus = NaN(size(GibbsData,1)-1, 1);

Prec = NaN(size(GibbsData,1)-1, 1);

%keyboard

for i = 1: size(GibbsData,1)-1

Mus(i) = ( GibbsData(i,3) + GibbsData(i+1,3) )/2 ;

Prec(i) = ( GibbsData(i,4) + GibbsData(i+1,4) )/2 ;

end %for

stDevs = (sqrt(Prec).^(-1));

%Mus = Mus(1:numb-1);
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E_t7_mid = E_t7./Mus;

E_t8_mid = E_t8./Mus;

E_t9_mid = E_t9./Mus;

E_t7_low = E_t7./(Mus + stDevs) ;

E_t8_low = E_t8./(Mus + stDevs) ;

E_t9_low = E_t9./(Mus + stDevs) ;

E_t7_high = E_t7./(Mus - stDevs) ;

E_t8_high = E_t8./(Mus - stDevs) ;

E_t9_high = E_t9./(Mus - stDevs) ;

%figure; plot(E_t7)

%figure; plot(E_t8)

%figure; plot(E_t9)

%figure(’Name’,’E_t7’); plot(E_t7)

%figure(’Name’,’E_t8’); plot(E_t8)

figure(’Name’,’E_t9’); plot(E_t9_mid)

number_on_3 = sum(M_binned>3);

number_on_5 = sum(M_binned>5);

number_on_7 = sum(M_binned>7);

number_on_3 = number_on_3(1:All);

number_on_7 = number_on_7(1:All);

%figure(’Name’, ’number_on’ ); plot(number_on_3, ’r’); hold on;

...

% plot(number_on_5, ’g’), plot(number_on_7, ’b’);

%legend(’on > 3’, ’on >5’, ’on >7’)

%figure(’Name’, ’-diff_num_on’); plot(-diff(number_on_3)); ...

% hold on; plot(-diff(number_on_7));

%legend(’difference in number on >3’,’difference in number on

>7’);

figure(’Name’, ’both’); plot(-diff(number_on_3), ’--’);
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hold on

plot(-diff(number_on_5),’--’);

plot(-diff(number_on_7), ’--’);

%hold on;

plot(E_t9_mid,’r’);

plot(E_t9_low,’g’); plot(E_t9_high, ’b’)

legend(’difference number on >3’,’difference number on >5’, ’difference

number on >7’, ’expected number on (mid)’,’expected number on

(low;)’,’expected number on (high)’)

figure(’Name’, ’num_on and E_t9’);

plot(E_t9_mid,’r’); hold on; plot(number_on_3)

legend(’expected number using Gibbs’,’actual number on (>3)’)

%% for updated mus threshold 7

Mus7 = NaN(size(GibbsData,1)-1, 1);

Prec7 = NaN(size(GibbsData,1)-1, 1);

%keyboard

for i = 1: size(GibbsData7,1)-1

Mus7(i) = ( GibbsData7(i,3) + GibbsData7(i+1,3) )/2 ;

Prec7(i) = ( GibbsData7(i,4) + GibbsData7(i+1,4) )/2 ;

end %for

stDevs7 = (sqrt(Prec7).^(-1));

%Mus = Mus(1:numb-1);

E7_t7_mid = E_t7./Mus7;

%E_t8_mid = E_t8./Mus;

%E_t9_mid = E_t9./Mus;

E7_t7_low = E_t7./(Mus7 + stDevs7) ;

%E_t8_low = E_t8./(Mus + stDevs) ;

%E_t9_low = E_t9./(Mus + stDevs) ;

E7_t7_high = E_t7./(Mus7 - stDevs7) ;

%E_t8_high = E_t8./(Mus - stDevs) ;

%E_t9_high = E_t9./(Mus - stDevs) ;
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%figure; plot(E_t7)

%figure; plot(E_t8)

%figure; plot(E_t9)

%figure(’Name’,’E_t7’); plot(E_t7)

%figure(’Name’,’E_t8’); plot(E_t8)

figure(’Name’,’E7_t7’); plot(E7_t7_mid)

number_on_3 = sum(M_binned>3);

number_on_5 = sum(M_binned>5);

number_on_7 = sum(M_binned>7);

%number_on_3 = number_on_3(1:All);

%number_on_7 = number_on_7(1:All);

figure(’Name’, ’number_on’ ); plot(number_on_3, ’r’); hold on;

...

plot(number_on_5, ’g’), plot(number_on_7, ’b’);

legend(’number on >3’, ’number on >4’, ’number on >5’);

figure(’Name’, ’-diff_num_on’); plot(-diff(number_on_3)); ...

hold on; plot(-diff(number_on_7));

legend(’difference in number on >3’,’difference in number on >7’);

figure(’Name’, ’both’); plot(-diff(number_on_3), ’--’);

hold on

plot(-diff(number_on_7), ’-’);

%hold on;

plot(E7_t7_mid,’r’);

plot(E7_t7_low,’g’); plot(E7_t7_high, ’b’)

legend(’difference number on >3’, ’difference number on >7’, ’expected

number on (mid)’,’expected number on (low;)’,’expected number

on (high)’)

figure(’Name’, ’num_on and E7_t7’);

plot(E7_t7_mid,’r’); hold on; plot(number_on_3)

legend(’expected number using Gibbs’,’actual number on (>3)’)

%% for updated mus threshold 8
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%difference

%E_t7 = sum_image_7t_p1 - sum_image_7t ; %need to remove top

and bottom

%E_t8 = sum_image_7t_p1 - sum_image_8t ;

%E_t9 = sum_image_7t_p1 - sum_image_9t ;

%a = length(E_t7);

%E_t7 = E_t7(2:a-1);

%E_t8 = E_t8(2:a-1);

%E_t9 = E_t9(2:a-1);

%could have done

%E_t7 = -diff(sum_image_7);

E_t8 = -diff(sum_image_8);

%E_t9 = -diff(sum_image_9);

%GibbsData = GibbsData(1:All, :);

Mus8 = NaN(size(GibbsData8,1)-1, 1);

Prec8 = NaN(size(GibbsData8,1)-1, 1);

%keyboard

for i = 1: size(GibbsData8,1)-1

Mus8(i) = ( GibbsData8(i,3) + GibbsData8(i+1,3) )/2 ;

Prec8(i) = ( GibbsData8(i,4) + GibbsData8(i+1,4) )/2 ;

end %for

stDevs8 = (sqrt(Prec8).^(-1));

%Mus = Mus(1:numb-1);

%E8_t7_mid = E_t7(1:46)./Mus8;

E8_t8_mid = E_t8(1:46)./Mus8;

%E8_t9_mid = E_t9(1:46)./Mus8;

%E8_t7_low = E_t7(1:46)./(Mus8 + stDevs8) ;

E8_t8_low = E_t8(1:46)./(Mus8 + stDevs8) ;

%E8_t9_low = E_t9(1:46)./(Mus8 + stDevs8) ;

%E8_t7_high = E_t7(1:46)./(Mus8 - stDevs8) ;
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E8_t8_high = E_t8(1:46)./(Mus8 - stDevs8) ;

%E8_t9_high = E_t9(1:46)./(Mus8 - stDevs8) ;

%figure; plot(E_t7)

%figure; plot(E_t8)

%figure; plot(E_t9)

%figure(’Name’,’E_t7’); plot(E_t7)

%figure(’Name’,’E_t8’); plot(E_t8)

figure(’Name’,’E8_t9’); plot(E8_t9_mid);

legend(’expected dif thresh 9’);

%number_on_3 = sum(M_binned>3);

%number_on_5 = sum(M_binned>5);

%number_on_7 = sum(M_binned>7);

%number_on_3 = number_on_3(1:All);

%number_on_7 = number_on_7(1:All);

figure(’Name’, ’number_on’ ); plot(number_on_3, ’r’); hold on;

...

plot(number_on_5, ’g’), plot(number_on_7, ’b’);

legend(’number on >3’, ’number on >4’, ’number on >5’);

figure(’Name’, ’-diff_num_on’); plot(-diff(number_on_3)); ...

hold on; plot(-diff(number_on_7));

legend(’difference in number on >3’,’difference in number on >7’);

figure(’Name’, ’both’); plot(-diff(number_on_3), ’--’);

hold on

plot(-diff(number_on_7), ’-’);

%hold on;

plot(-diff(E8_t8_mid),’r’);

plot(-diff(E8_t8_low),’g’); plot(-diff(E8_t8_high), ’b’)

legend(’difference number on >3’, ’difference number on >7’, ’expected

number on (mid_8)’,’expected number on (low_8)’,’expected number

on (high_8)’)

figure(’Name’, ’num_on and E_t9’);

plot(E8_t8_mid,’r’); hold on; plot(number_on_3)
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legend(’expected difference number using Gibbs’,’actual difference

number on (>3)’)

%%

%% for updated mus threshold 9

%difference

%E_t7 = sum_image_7t_p1 - sum_image_7t ; %need to remove top

and bottom

%E_t8 = sum_image_7t_p1 - sum_image_8t ;

%E_t9 = sum_image_7t_p1 - sum_image_9t ;

%a = length(E_t7);

%E_t7 = E_t7(2:a-1);

%E_t8 = E_t8(2:a-1);

%E_t9 = E_t9(2:a-1);

%could have done

%E_t9 = -diff(sum_image_7);

%E_t9 = -diff(sum_image_8);

E_t9 = -diff(sum_image_9);

%GibbsData = GibbsData(1:All, :);

Mus9 = NaN(size(GibbsData9,1)-1, 1);

Prec9 = NaN(size(GibbsData9,1)-1, 1);

%keyboard

for i = 1: size(GibbsData9,1)-1

Mus9(i) = ( GibbsData9(i,3) + GibbsData9(i+1,3) )/2 ;

Prec9(i) = ( GibbsData9(i,4) + GibbsData9(i+1,4) )/2 ;

end %for

stDevs9 = (sqrt(Prec9).^(-1));

%Mus = Mus(1:numb-1);

%E8_t7_mid = E_t7(1:46)./Mus8;

%E8_t8_mid = E_t8(1:46)./Mus8;

E9_t9_mid = E_t9(1:46)./Mus9;
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%E8_t7_low = E_t7(1:46)./(Mus8 + stDevs8) ;

%E8_t8_low = E_t8(1:46)./(Mus8 + stDevs8) ;

E9_t9_low = E_t9(1:46)./(Mus9 + stDevs9) ;

%E8_t7_high = E_t7(1:46)./(Mus8 - stDevs8) ;

%E8_t8_high = E_t8(1:46)./(Mus8 - stDevs8) ;

E9_t9_high = E_t9(1:46)./(Mus9 - stDevs9) ;

%figure; plot(E_t7)

%figure; plot(E_t8)

%figure; plot(E_t9)

%figure(’Name’,’E_t7’); plot(E_t7)

%figure(’Name’,’E_t8’); plot(E_t8)

figure(’Name’,’E_t9’); plot(E9_t9_mid)

%number_on_3 = sum(M_binned>3);

%number_on_5 = sum(M_binned>5);

%number_on_7 = sum(M_binned>7);

%number_on_3 = number_on_3(1:All);

%number_on_7 = number_on_7(1:All);

figure(’Name’, ’number_on’ ); plot(number_on_3, ’r’); hold on;

...

plot(number_on_5, ’g’), plot(number_on_7, ’b’);

legend(’number on >3’, ’number on >4’, ’number on >5’);

figure(’Name’, ’-diff_num_on’); plot(-diff(number_on_3)); ...

hold on; plot(-diff(number_on_7));

legend(’difference in number on >3’,’difference in number on >7’);

figure(’Name’, ’both’); plot(-diff(number_on_3), ’--’);

hold on

plot(-diff(number_on_7), ’-’);

%hold on;

plot(-diff(E9_t9_mid),’r’);

plot(-diff(E9_t9_low),’g’); plot(-diff(E9_t9_high), ’b’)
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legend(’difference number on >3’, ’difference number on >7’, ’expected

number on (mid_8)’,’expected number on (low_8)’,’expected number

on (high_8)’)

figure(’Name’, ’num_on and E_t9’);

plot(E9_t9_mid,’r’); hold on; plot(diff(number_on_3))

legend(’expected difference number using Gibbs’,’actual difference

number on (>3)’)

%% for updated mus threshold 7 (second try)

%E_t7 = -diff(sum_image_7);

E_t7_2 = E_t7 / 7;

Mus7 = NaN(size(GibbsData,1)-1, 1);

Prec7 = NaN(size(GibbsData,1)-1, 1);

%keyboard

for i = 1: size(GibbsData7,1)-1

Mus7(i) = ( GibbsData7(i,3) + GibbsData7(i+1,3) )/2 ;

Prec7(i) = ( GibbsData7(i,4) + GibbsData7(i+1,4) )/2 ;

end %for

stDevs7 = (sqrt(Prec7).^(-1));

%Mus = Mus(1:numb-1);

E7_t7_mid_2 = E_t7_2./Mus7;

%E_t8_mid = E_t8./Mus;

%E_t9_mid = E_t9./Mus;

E7_t7_low_2 = E_t7_2./(Mus7 + stDevs7) ;

%E_t8_low = E_t8./(Mus + stDevs) ;

%E_t9_low = E_t9./(Mus + stDevs) ;

E7_t7_high_2 = E_t7_2./(Mus7 - stDevs7) ;

%E_t8_high = E_t8./(Mus - stDevs) ;

%E_t9_high = E_t9./(Mus - stDevs) ;
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%figure; plot(E_t7)

%figure; plot(E_t8)

%figure; plot(E_t9)

%figure(’Name’,’E_t7’); plot(E_t7)

%figure(’Name’,’E_t8’); plot(E_t8)

figure(’Name’,’E7_t7_2’); plot(E7_t7_mid_2)

number_on_3 = sum(M_binned>3);

number_on_5 = sum(M_binned>5);

number_on_7 = sum(M_binned>7);

%number_on_3 = number_on_3(1:All);

%number_on_7 = number_on_7(1:All);

figure(’Name’, ’number_on’ ); plot(number_on_3, ’r’); hold on;

...

plot(number_on_5, ’g’), plot(number_on_7, ’b’);

legend(’number on >3’, ’number on >4’, ’number on >5’);

figure(’Name’, ’-diff_num_on’); plot(-diff(number_on_3)); ...

hold on; plot(-diff(number_on_7));

legend(’difference in number on >3’,’difference in number on >7’);

figure(’Name’, ’both’); plot(-diff(number_on_3), ’--’);

hold on

plot(-diff(number_on_7), ’-’);

%hold on;

plot(E7_t7_mid_2,’r’);

plot(E7_t7_low_2,’g’); plot(E7_t7_high_2, ’b’)

legend(’difference number on >3’, ’difference number on >7’, ’expected

number on (mid)’,’expected number on (low;)’,’expected number

on (high)’)

figure(’Name’, ’num_on_diff and E7_t7’);

plot(E7_t7_mid_2,’r’); hold on; plot(-diff(number_on_3))

legend(’expected number using Gibbs’,’actual diff number on (>3)’)

E7_t7_mid_2 = reshape(E7_t7_mid_2, 1,[]);

figure(’Name’, ’diff between actual and expected’)

plot(-diff(number_on_3)-E7_t7_mid_2)

hold on
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plot(-diff(number_on_5)-E7_t7_mid_2);

plot(-diff(number_on_7)-E7_t7_mid_2)

legend(’diff >3’,’diff >5’,’diff >7’);

%%

Diff_act3_exp7 = -diff(number_on_3)-E7_t7_mid_2;

Diff_act5_exp7 = -diff(number_on_5)-E7_t7_mid_2;

Diff_act7_exp7 = -diff(number_on_7)-E7_t7_mid_2;

d.3 the support vector machines (SVM) classification

learner

function [trainedClassifier, validationAccuracy] =

trainClassifierSVM( trainingData )

% [trainedClassifier, validationAccuracy] = trainClassifier(trainingData)

% returns a trained classifier and its accuracy. This code recreates

the

% classification model trained in Classification Learner app. Use

the

% generated code to automate training the same model with new

data, or to

% learn how to programmatically train models.

%

% Input:

% trainingData: a matrix with the same number of columns

and data type

% as imported into the app.

%

% Output:

% trainedClassifier: a struct containing the trained classifier.

The

% struct contains various fields with information about

the trained

% classifier.

%

% trainedClassifier.predictFcn: a function to make predictions

on new

% data.

%
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% validationAccuracy: a double containing the accuracy in

percent. In

% the app, the History list displays this overall accuracy

score for

% each model.

%

% Use the code to train the model with new data. To retrain your

% classifier, call the function from the command line with your

original

% data or new data as the input argument trainingData.

%

% For example, to retrain a classifier trained with the original

data set

% T, enter:

% [trainedClassifier, validationAccuracy] = trainClassifier(T)

%

% To make predictions with the returned ’trainedClassifier’ on

new data T2,

% use

% yfit = trainedClassifier.predictFcn(T2)

%

% T2 must be a matrix containing only the predictor columns used

for

% training. For details, enter:

% trainedClassifier.HowToPredict

% Auto-generated by MATLAB on 20-Aug-2019 16:05:48

% Extract predictors and response

% This code processes the data into the right shape for training

the

% model.

% Convert input to table

inputTable = array2table(trainingData, ’VariableNames’, {’column_1’,

’column_2’, ’column_3’, ’column_4’});

predictorNames = {’column_1’, ’column_2’, ’column_3’};

predictors = inputTable(:, predictorNames);

response = inputTable.column_4;

isCategoricalPredictor = [false, false, false];
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% Train a classifier

% This code specifies all the classifier options and trains the

classifier.

template = templateSVM(...

’KernelFunction’, ’gaussian’, ...

’PolynomialOrder’, [], ...

’KernelScale’, 1.7, ...

’BoxConstraint’, 1, ...

’Standardize’, true);

classificationSVM = fitcecoc(...

predictors, ...

response, ...

’Learners’, template, ...

’Coding’, ’onevsone’, ...

’ClassNames’, [0; 1; 2; 3; 4]);

% Create the result struct with predict function

predictorExtractionFcn = @(x) array2table(x, ’VariableNames’,

predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn =

@(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = ’This struct is a trained model exported

from Classification Learner R2019a.’;

trainedClassifier.HowToPredict = sprintf(’To make predictions

on a new predictor column matrix, X, use: \n yfit = c.predictFcn(X)

\nreplacing ’’c’’ with the name of the variable that is this struct,

e.g. ’’trainedModel’’. \n \nX must contain exactly 3 columns because

this model was trained using 3 predictors. \nX must contain only

predictor columns in exactly the same order and format as your

training \ndata. Do not include the response column or any columns

you did not import into the app. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ’’stats’’, ’’stats.map’’),

’’appclassification_exportmodeltoworkspace’’)">How to predict using

an exported model</a>.’);

% Extract predictors and response

% This code processes the data into the right shape for training

the
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% model.

% Convert input to table

inputTable = array2table(trainingData, ’VariableNames’, {’column_1’,

’column_2’, ’column_3’, ’column_4’});

predictorNames = {’column_1’, ’column_2’, ’column_3’};

predictors = inputTable(:, predictorNames);

response = inputTable.column_4;

isCategoricalPredictor = [false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM,

’KFold’, 5);

% Compute validation predictions

[validationPredictions, validationScores] =

kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, ’LossFun’,

’ClassifError’);

d.4 the K-nearest neighbours (KNN) classification learner

function [trainedClassifier, validationAccuracy] =

trainClassifierKNN10(trainingData)

% [trainedClassifier, validationAccuracy] =

trainClassifier(trainingData)

% returns a trained classifier and its accuracy. This code recreates

the

% classification model trained in Classification Learner app. Use

the

% generated code to automate training the same model with new

data, or to

% learn how to programmatically train models.

%

% Input:

% trainingData: a matrix with the same number of columns

and data type

% as imported into the app.
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%

% Output:

% trainedClassifier: a struct containing the trained classifier.

The

% struct contains various fields with information about

the trained

% classifier.

%

% trainedClassifier.predictFcn: a function to make predictions

on new

% data.

%

% validationAccuracy: a double containing the accuracy in

percent. In

% the app, the History list displays this overall accuracy

score for

% each model.

%

% Use the code to train the model with new data. To retrain your

% classifier, call the function from the command line with your

original

% data or new data as the input argument trainingData.

%

% For example, to retrain a classifier trained with the original

data set

% T, enter:

% [trainedClassifier, validationAccuracy] = trainClassifier(T)

%

% To make predictions with the returned ’trainedClassifier’ on

new data T2,

% use

% yfit = trainedClassifier.predictFcn(T2)

%

% T2 must be a matrix containing only the predictor columns used

for

% training. For details, enter:

% trainedClassifier.HowToPredict

% Auto-generated by MATLAB on 20-Aug-2019 16:04:41

% Extract predictors and response
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% This code processes the data into the right shape for training

the

% model.

% Convert input to table

inputTable = array2table(trainingData, ’VariableNames’, {’column_1’,

’column_2’, ’column_3’, ’column_4’});

predictorNames = {’column_1’, ’column_2’, ’column_3’};

predictors = inputTable(:, predictorNames);

response = inputTable.column_4;

isCategoricalPredictor = [false, false, false];

% Train a classifier

% This code specifies all the classifier options and trains the

classifier.

classificationKNN = fitcknn(...

predictors, ...

response, ...

’Distance’, ’Minkowski’, ...

’Exponent’, 3, ...

’NumNeighbors’, 10, ...

’DistanceWeight’, ’Equal’, ...

’Standardize’, true, ...

’ClassNames’, [0; 1; 2; 3; 4]);

% Create the result struct with predict function

predictorExtractionFcn = @(x) array2table(x, ’VariableNames’,

predictorNames);

knnPredictFcn = @(x) predict(classificationKNN, x);

trainedClassifier.predictFcn = @(x) knnPredictFcn

(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.ClassificationKNN = classificationKNN;

trainedClassifier.About = ’This struct is a trained model exported

from Classification Learner R2019a.’;

trainedClassifier.HowToPredict = sprintf(’To make predictions

on a new predictor column matrix, X, use: \n yfit = c.predictFcn(X)

\nreplacing ’’c’’ with the name of the variable that is this struct,

e.g. ’’trainedModel’’. \n \nX must contain exactly 3 columns because

this model was trained using 3 predictors. \nX must contain only

predictor columns in exactly the same order and format as your
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training \ndata. Do not include the response column or any columns

you did not import into the app. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ’’stats’’, ’’stats.map’’),

’’appclassification_exportmodeltoworkspace’’)">How to predict using

an exported model</a>.’);

% Extract predictors and response

% This code processes the data into the right shape for training

the

% model.

% Convert input to table

inputTable = array2table(trainingData, ’VariableNames’, {’column_1’,

’column_2’, ’column_3’, ’column_4’});

predictorNames = {’column_1’, ’column_2’, ’column_3’};

predictors = inputTable(:, predictorNames);

response = inputTable.column_4;

isCategoricalPredictor = [false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationKNN,

’KFold’, 5);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, ’LossFun’,

’ClassifError’);

d.5 the neural network (NN)

import torch

import matplotlib.pyplot as plt

import numpy as np

import torch.nn as nn

import pandas as pd

import torch.nn.functional as F

import torch.utils.data as data_utils
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from torch.utils.data import DataLoader, TensorDataset, random_split

from torch.utils.tensorboard import SummaryWriter

import time

from PIL import Image

from collections import OrderedDict

from collections import namedtuple

from itertools import product

class mynetwork(nn.Module):

def __init__(self, molecules, dropout):

super().__init__()

self.conv1 = nn.Conv2d(in_channels=1, out_channels=6,

kernel_size=5)

self.conv2 = nn.Conv2d(in_channels=6, out_channels=12,

kernel_size=5)

self.fc1 = nn.Linear(in_features=12 * 5 * 5, out_features=120)

self.fc2 = nn.Linear(in_features=120, out_features=60)

self.out = nn.Linear(in_features=60, out_features=molecules)

# self.ash = nn.Dropout(dropout)

def forward(self, t):

t = t

# (2) hidden conv layer

t = self.conv1(t)

t = F.relu(t)

t = F.max_pool2d(t, kernel_size=2, stride=2)

# (3) hidden conv layer

t = self.conv2(t)

t = F.relu(t)

t = F.max_pool2d(t, kernel_size=2, stride=2)

# (4) hidden linear layer

t = t.reshape(-1, 12 * 5 * 5)

t = self.fc1(t)

t = F.relu(t)

# (5) hidden linear layer

t = self.fc2(t)

t = F.relu(t)

t = self.ash(t)
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# (6) output layer

t = self.out(t)

# t = F.softmax(t, dim=1)

return t

def data_get(file_name, csv_data, test_number):

train_target = np.genfromtxt(csv_data, delimiter=’,’)

image = Image.open(file_name)

empty = []

for I in range(image.n_frames):

image.seek(I)

empty.append(np.asarray(image))

data = np.asarray(empty)

data = data.astype(float)

length_data = np.shape(data)[0]

train_target = train_target[:, 0:length_data]

# print(np.shape(train_target)[1])

train = torch.tensor(data).type(torch.float)

train = train.unsqueeze(dim=1)

train_target = torch.tensor(np.sum((train_target > 5),

axis=0)).type(torch.long)

test = train[-test_number:, :, :, :]

train = train[:-test_number:, :, :, :]

test_target = train_target[-test_number:]

train_target = train_target[:-test_number]

return (train, train_target, test, test_target)

def calculate_correct(out, labels):

return torch.eq(out.argmax(dim=1), labels).sum().numpy()

#return torch.eq(out.sum(dim=1), labels).sum().numpy()

# Is position stupid

class RunBuilder():

@staticmethod

def get_runs(params):

Run = namedtuple(’Run’, params.keys())

runs = []
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for v in product(*params.values()):

runs.append(Run(*v))

return runs

class RunManager():

def __init__(self):

self.epoch_count = 0

self.epoch_loss = 0

self.epoch_num_correct = 0

self.epoch_start_time = None

self.run_params = None

self.run_count = 0

self.run_data = []

self.run_start_time = None

self.network = None

self.loader = None

self.tb = None

def begin_run(self, run, network, loader):

self.run_start_time = time.time()

self.run_params = run

self.run_count += 1

self.network = network

self.loader = loader

self.tb = SummaryWriter(comment=f’-{run}’)

characteristics, labels = next(iter(self.loader))

def end_run(self):

self.tb.close()

self.epoch_count = 0

print(time.time() - self.run_start_time)

final = network(test.cuda())

# print(len(test_target))

print(run.file_name)

print(np.int( 100 * calculate_correct(final.cpu(), test_target)

/ len(test_target)))

def begin_epoch(self):

self.epoch_start_time = time.time()
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self.epoch_count += 1

self.epoch_loss = 0

self.epoch_num_correct = 0

def end_epoch(self):

epoch_duration = time.time() - self.epoch_start_time

run_duration = time.time() - self.run_start_time

loss = self.epoch_loss / len(self.loader.dataset)

accuracy = self.epoch_num_correct / len(self.loader.dataset)

self.tb.add_scalar(’Loss’, loss, self.epoch_count)

self.tb.add_scalar(’Accuracy’, accuracy, self.epoch_count)

def _get_num_correct(self, preds, labels):

return preds.argmax(dim=1).eq(labels).sum().item()

def track_loss(self, loss, batch):

self.epoch_loss += loss.item() * batch[0].shape[0]

def track_num_correct(self, preds, labels):

self.epoch_num_correct += self._get_num_correct(preds,

labels)

def inform(self, discrete_n):

if self.epoch_count % discrete_n == 0:

print(self.epoch_count, ’ ’, self.run_count)

params = OrderedDict(lr=[0.001], batch_size=[100], molecules=[6],

dropout=[0.2],file_name=[’Images/SIM32_6.tif’, ’Images/Gibbs.tif’])

m = RunManager()

for run in RunBuilder.get_runs(params):

train_tensor, train_target, test, test_target = data_get(run.file_name,

’M_binned.csv’, 60)

train_data = data_utils.TensorDataset(train_tensor, train_target)

network = mynetwork(run.molecules + 1, run.dropout)

if (torch.cuda.device_count() == 1):

print(’CUDA’)

network = network.cuda()
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loader = DataLoader(train_data, batch_size=run.batch_size,

shuffle=True)

optimizer = torch.optim.Adam(network.parameters(), lr=run.lr)

m.begin_run(run, network, loader)

for epoch in range(100):

m.begin_epoch()

for batch in loader:

characteristics, labels = batch

if (torch.cuda.device_count() == 1):

characteristics = characteristics.cuda()

labels = labels.cuda()

preds = network(characteristics) # Pass Batch

loss = F.cross_entropy(preds, labels) # Calculate

Loss

optimizer.zero_grad() # Zero Gradients

loss.backward() # Calculate Gradients

optimizer.step() # Update Weights

m.track_loss(loss, batch)

m.track_num_correct(preds, labels)

m.inform(100)

m.end_epoch()

m.end_run()

d.6 the 3d neural network (NN)

d.6.1 Main Code

{

"cells": [

{

"cell_type": "code",

"execution_count": null,

"metadata": {

"collapsed": true,

"pycharm": {

"name": "#%%\n"
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}

},

"outputs": [],

"source": [

"import numpy as np\n",

"import torch\n",

"import torch.nn as nn\n",

"import torch.nn.functional as F\n",

"import torch.optim as optim\n",

"\n",

"\n",

"torch.set_grad_enabled(True)"

]

},

{

"cell_type": "code",

"execution_count": 1,

"outputs": [

{

"ename": "NameError",

"evalue": "name ’nn’ is not defined",

"output_type": "error",

"traceback": [

"\u001B[0;31m----------------------------------------

-----------------------------------\u001B[0m",

"\u001B[0;31mNameError\u001B[0m

Traceback (most recent call last)",

"\u001B[0;32m/var/folders/sm/33wx21p95j9479zfzh0bt80h0000gn

/T/ipykernel_72020/765017263.py\u001B[0m in \u001B[0;36m<module>

\u001B[0;34m\u001B[0m\n\u001B[0;32m----> 1\u001B[0;31m \u001B

[0;32mclass\u001B[0m \u001B[0mNetwork\u001B[0m\u001B[0;34m(\u001B

[0m\u001B[0mnn\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mModule\

u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B

[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B

[1;32m 2\u001B[0m \u001B[0;32mdef\u001B[0m \u001B

[0m__init__\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself

\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B

[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m

3\u001B[0m \u001B[0msuper\u001B[0m\u001B[0;34m

(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m.\u001B

[0m\u001B[0m__init__\u001B[0m\u001B[0;34m(\u001B[0m

\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B
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[0m\u001B[0m\n\u001B[1;32m 4\u001B[0m \u001B

[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mconv1\u001B[0m

\u001B[0;34m=\u001B[0m \u001B[0mnn\u001B[0m\u001B[0;34m.\u001B

[0m\u001B[0mConv2d\u001B[0m\u001B[0;34m(\u001B[0m\u001B

[0min_channels\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0;36m1

\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mout_channels\u001B

[0m\u001B[0;34m=\u001B[0m\u001B[0;36m6\u001B[0m\u001B[0;34m,

\u001B[0m \u001B[0mkernel_size\u001B[0m\u001B[0;34m=\u001B

[0m\u001B[0;36m5\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m

\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m

5\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B

[0m\u001B[0mconv2\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mnn

\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mConv2d\u001B[0m

\u001B[0;34m(\u001B[0m\u001B[0min_channels\u001B[0m\u001B

[0;34m=\u001B[0m\u001B[0;36m6\u001B[0m\u001B[0;34m,\u001B[0m

\u001B[0mout_channels\u001B[0m\u001B[0;34m=\u001B[0m\u001B

[0;36m12\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mkernel_size

\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0;36m5\u001B[0m

\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B

[0m\u001B[0m\n",

"\u001B[0;31mNameError\u001B[0m: name ’nn’ is not defined"

]

}

],

"source": [

"class Network(nn.Module):\n",

" def __init__(self):\n",

" super().__init__()\n",

" self.conv1 = nn.Conv2d(in_channels=1, out_channels=6,

kernel_size=5)\n",

" self.conv2 = nn.Conv2d(in_channels=6, out_channels=12,

kernel_size=5)\n",

"\n",

" self.fc1 = nn.Linear(in_features=12 * 4 * 4,

out_features=120)\n",

" self.fc2 = nn.Linear(in_features=120, out_features=60)\n",

" self.out = nn.Linear(in_features=60, out_features=2)\n",

"\n",

" def forward(self, t):\n",

" t = t\n",

"\n",

" # (2) hidden conv layer\n",
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" t = self.conv1(t)\n",

" t = F.relu(t)\n",

" t = F.max_pool2d(t, kernel_size=2, stride=2)\n",

" # print(t.size())\n",

"\n",

" # (3) hidden conv layer\n",

" t = self.conv2(t)\n",

" t = F.relu(t)\n",

" t = F.max_pool2d(t, kernel_size=2, stride=2)\n",

" # print(t.size())\n",

"\n",

" # (4) hidden linear layer\n",

" t = t.reshape(-1, 12 * 4 * 4)\n",

" t = self.fc1(t)\n",

" t = F.relu(t)\n",

" # print(t.size())\n",

"\n",

" # (5) hidden linear layer\n",

" t = self.fc2(t)\n",

" t = F.relu(t)\n",

" # print(t.size())\n",

"\n",

" # (6) output layer\n",

" t = self.out(t)\n",

" t = F.softmax(t, dim=1)\n",

" #print(t.size())\n",

"\n",

" return t\n",

"\n",

" def __repr__(self):\n",

" return \"Bunny Kitten\"\n",

"\n"

],

"metadata": {

"collapsed": false,

"pycharm": {

"name": "#%%\n"

}

}

}

],

"metadata": {
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"kernelspec": {

"display_name": "Python 3",

"language": "python",

"name": "python3"

},

"language_info": {

"codemirror_mode": {

"name": "ipython",

"version": 2

},

"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython2",

"version": "2.7.6"

}

},

"nbformat": 4,

"nbformat_minor": 0

}

d.6.2 3D neural network (NN) - the main code

{

"cells": [

{

"cell_type": "code",

"execution_count": 1,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [

{

"ename": "ModuleNotFoundError",

"evalue": "No module named ’torch’",

"output_type": "error",
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"traceback": [

"\u001b[0;31m------------------------------------------------

---------------------------\u001b[0m",

"\u001b[0;31mModuleNotFoundError\u001b[0m

Traceback (most recent call last)",

"\u001b[0;32m<ipython-input-1-5d2c842df08f>\u001b[0m in

\u001b

[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b

[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b

[0;34m \u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b

[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m

\u001b

[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m

\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m

\u001b

[0;32mimport\u001b[0m \u001b[0moptim\u001b[0m\u001b[0;34m\u001b[0m

\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m

\u001b

[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m

\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunctional\u

001b[0m \u001b[0;32mas\u001b[0m \u001b[0mF\u001b[0m\u001b

[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b

[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m

\u001b[0;32mas\u001b[0m \u001b[0mnn

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b

[0m\u001b[0m\n",

"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named

’torch’"

]

}

],

"source": [

"import torch\n",

"import numpy as np\n",

"from torch import optim\n",

"import torch.nn.functional as F\n",

"import torch.nn as nn\n",

"from PIL import Image\n",

"import os\n",

"torch.set_grad_enabled(True)\n",
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"from torch.utils.tensorboard import SummaryWriter"

]

},

{

"cell_type": "code",

"execution_count": 56,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"def loadtiffs(file_name):\n",

" img = Image.open(file_name)\n",

" #print(’The Image is’, img.size, ’Pixels.’)\n",

" #print(’With’, img.n_frames, ’frames.’)\n",

"\n",

" imgArray = np.zeros((img.size[1], img.size[0], img.n_frames),

np.uint16)\n",

" for I in range(img.n_frames):\n",

" img.seek(I)\n",

" imgArray[:, :, I] = np.asarray(img)\n",

" img.close()\n",

" return(imgArray)"

]

},

{

"cell_type": "code",

"execution_count": 57,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"def get_file_list(dir):\n",

" file_list = []\n",

" for file in os.listdir(dir):\n",

" if file.endswith(\".tif\"):\n",

" file_name = dir + ’/’ +file\n",
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" file_list.append(file_name)\n",

" return file_list"

]

},

{

"cell_type": "code",

"execution_count": 58,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"fileListName = \"images\"\n",

"fileList = get_file_list(fileListName)\n",

"fileList = sorted(fileList)"

]

},

{

"cell_type": "code",

"execution_count": 61,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"data = loadtiffs(fileList[0])\n",

"data = np.append(data, loadtiffs(fileList[1]), axis=2)\n",

"data = np.append(data, loadtiffs(fileList[2]), axis=2)\n",

"#data = np.append(data, loadtiffs(fileList[3]), axis=2)\n",

"#data = np.append(data, loadtiffs(fileList[4]), axis=2)\n",

"data = data.astype(float)\n",

"data = np.swapaxes(data,0,2)"

]

},

{

"cell_type": "code",

"execution_count": 62,

"metadata": {
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"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"x_data = torch.tensor(data)\n",

"x_data = torch.unsqueeze(x_data, 0)\n",

"x_data = torch.unsqueeze(x_data, 0)"

]

},

{

"cell_type": "code",

"execution_count": 63,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"#N For mini batch (or how many sequences do we want to

feed at one go)\n",

"# Cin For the number of channels in our input (if our image

is rgb, this is 3)\n",

"#D For depth or in other words the number of images/frames

in one input sequence (if we are dealing videos, this is the number

of frames)\n",

"#H For the height of the image/frame\n",

"#W For the width of the image/frame\n",

"\n",

"input = torch.randn(20, 3, 10, 50, 100)"

]

},

{

"cell_type": "code",

"execution_count": 81,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},
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"outputs": [],

"source": [

"class Network(nn.Module):\n",

" def __init__(self):\n",

" super().__init__()\n",

" #self.conv1 = nn.Conv2d(in_channels=3, out_channels=12,

kernel_size=5)\n",

" self.conv1 = nn.Conv3d(in_channels = 1, out_channels

= 8, kernel_size=(3,3,3))\n",

" # nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)\n",

"\n",

"\n",

" self.fc1 = nn.Linear(in_features=8 * 62 * 62,

out_features=120)\n",

" self.fc2 = nn.Linear(in_features=120, out_features=60)\n",

" self.out = nn.Linear(in_features=60, out_features=10)\n",

"\n",

" def forward(self, t):\n",

" t = t\n",

"\n",

" # (2) hidden conv layer\n",

" #print(t.size())\n",

" t = self.conv1(t)\n",

" t = F.relu(t)\n",

" #t = F.max_pool2d(t, kernel_size=2, stride=2)\n",

"# print(t.size())\n",

"\n",

" # (3) hidden conv layer\n",

"# print(t.size())\n",

"# t = self.conv2(t)\n",

"# t = F.relu(t)\n",

"# t = F.max_pool2d(t, kernel_size=2, stride=2)\n",

"# print(t.size())\n",

"\n",

" # (4) hidden linear layer\n",

" t = t.reshape(-1, 30752)#61504)\n",

" t = self.fc1(t)\n",

" t = F.relu(t)\n",

" # print(t.size())\n",

"\n",

" # (5) hidden linear layer\n",

" t = self.fc2(t)\n",
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" t = F.relu(t)\n",

" # print(t.size())\n",

"\n",

" # (6) output layer\n",

" t = self.out(t)\n",

" #t = F.softmax(t, dim=1)\n",

" #print(t.size())\n",

"\n",

" return t\n",

"\n",

" def __repr__(self):\n",

" return \"Bunny Kitten\"\n"

]

},

{

"cell_type": "code",

"execution_count": 82,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"m = Network().double()"

]

},

{

"cell_type": "code",

"execution_count": 83,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [

{

"name": "stdout",

"output_type": "stream",

"text": [

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n"
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]

}

],

"source": [

"out = m(x_data)"

]

},

{

"cell_type": "code",

"execution_count": 84,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [

{

"name": "stdout",

"output_type": "stream",

"text": [

"tensor([[-5.5895, -3.4079, 1.1544, -1.2945, 3.3398, -3.4924,

3.1246, 2.5768,\n",

" 0.6130, 6.9213]], dtype=torch.float64,

grad_fn=<AddmmBackward0>)\n"

]

}

],

"source": [

"print(out)"

]

},

{

"cell_type": "code",

"execution_count": 85,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"values = np.genfromtxt(’M_on3_num.csv’,delimiter=’,’)\n",
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"labels = torch.tensor(values)"

]

},

{

"cell_type": "code",

"execution_count": 86,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [

{

"name": "stdout",

"output_type": "stream",

"text": [

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n"

]

}

],

"source": [

"#test\n",

"current = 1\n",

"data = loadtiffs(fileList[current-1])\n",

"data = np.append(data, loadtiffs(fileList[current]), axis=2)\n",

"data = np.append(data, loadtiffs(fileList[current+1]), axis=2)\n",

"data = data.astype(float)\n",

"data = np.swapaxes(data,0,2)\n",

"x_data = torch.tensor(data)\n",

"x_data = torch.unsqueeze(x_data, 0)\n",

"x_data = torch.unsqueeze(x_data, 0)\n",

"preds = m(x_data)"

]

},

{

"cell_type": "code",

"execution_count": 87,

"metadata": {

"pycharm": {

"name": "#%%\n"

}
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},

"outputs": [

{

"name": "stdout",

"output_type": "stream",

"text": [

"False\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",
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"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",
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"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n",

"torch.Size([1, 1, 3, 64, 64])\n",

"torch.Size([1, 8, 1, 62, 62])\n"

]

},

{

"ename": "KeyboardInterrupt",

"evalue": "",

"output_type": "error",

"traceback": [

"\u001b[0;31m-------------------------------------------

--------------------------------\u001b[0m",

"\u001b[0;31mKeyboardInterrupt\u001b[0m

Traceback (most recent call last)",

"\u001b[0;32m/var/folders/sm/33wx21p95j9479zfzh0bt80h0000gn

/T/ipykernel_88707/4219333407.py\u001b[0m in \u001b[0;36m

<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 23\u001b[0m

\u001b[0mx_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch

\u001b[0m\u001b[0;34m.\u001b[0m\u001b

[0munsqueeze\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_data

\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b

[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b

[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m

\u001b[0mx_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b

[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b

[0munsqueeze\u001b[0m\u001b[0;34m(\u001b[0m\u001b

[0mx_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0

\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--->

25\u001b[0;31m \u001b[0mpreds\u001b[0m

\u001b[0;34m=\u001b[0m \u001b[0mnetwork\u001b[0m\u001b[0;34m

(\u001b[0m\u001b[0mx_data\u001b[0m\u001b[0;34m)\u001b

[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m

\n\u001b[0m\u001b[1;32m 26\u001b[0m \u001b

[0mlabel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m

(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m[\u001b

[0m\u001b[0mcurrent\u001b[0m\u001b[0;34m]\u001b

[0m\u001b[0;34m.\u001b[0m\u001b[0munsqueeze\u001b[0m\u001b
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[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)

\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m

\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b

[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLongTensor

\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m

\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m

\u001b

[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mF\u001b

[0m\u001b[0;34m.

\u001b[0m\u001b[0mcross_entropy\u001b[0m\u001b[0;34m

(\u001b[0m\u001b[0mpreds\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0mlabel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",

"\u001b[0;32m~/miniforge3/lib/python3.9/site-packages

/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl

\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b

[1;32m 1100\u001b[0m if not (self._backward_hooks

or self._forward_hooks or self._forward_pre_hooks or
_global_backward_hooks\n\u001b[1;32m 1101\u001b[0m

or _global_forward_hooks or _global_forward_pre_hooks):

\n\u001b[0;32m-> 1102\u001b[0;31m

\u001b[0;32mreturn\u001b[0m \u001b[0mforward_call

\u001b[0m\u001b[0;34m(\u001b[0m\u001b

[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[

0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[

0m\u001b[1;32m 1103\u001b[0m \u001b[0;31m# Do not

call

functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m

\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

1104\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m

\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m

\u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b

[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",

"\u001b[0;32m/var/folders/sm/33wx21p95j9479zfzh0bt80h0000gn/

T/ipykernel_88707/1846076806.py\u001b[0m in \u001b[0;36mforward

\u001b[0;34m(self, t)\u001b[0m\n\u001b[1;32m 30\u001b[0m

\u001b[0;31m# (4) hidden linear layer\u001b[0m\u001b[0;34m

\u001b[0m\u001b

[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

31\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m
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\u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape

\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b

[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m30752

\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m#61504)

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b

[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0mt\

u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b

[0m\u001b[0;34m.\u001b[0m\u001b[0mfc1\u001b[0m\u001b[0;34m

(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b

[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b

[0m\u001b[1;32m 33\u001b[0m \u001b[0mt\u001b

[0m \u001b[0;34m=\u001b[0m \u001b[0mF\u001b[0m\u001b

[0;34m.\u001b[0m\u001b[0mrelu\u001b[0m\u001b[0;34m

(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b

[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

34\u001b[0m \u001b[0;31m# print(t.size())\u001b

[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b

[0;34m\u001b[0m\u001b[0m\n",

"\u001b[0;32m~/miniforge3/lib/python3.9/

site-packages/torch/nn/modules/module.py\u001b[0m in

\u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)

\u001b[0m\n\u001b[1;32m 1100\u001b[0m

if not (self._backward_hooks or self._forward_hooks or

self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m

1101\u001b[0m or _global_forward_hooks

or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[

0;31m \u001b[0;32mreturn\u001b[0m

\u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b

[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b

[0m\n\u001b[0m\u001b[1;32m 1103\u001b[0m

\u001b[0;31m# Do not call functions when jit is

used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[

0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

1104\u001b[0m

\u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b

[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=

\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b

[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",

"\u001b[0;32m~/miniforge3/lib/python3.9/site-packages
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/torch/nn/modules/linear.py\u001b[0m in \u001b

[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b

[1;32m 101\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n

\u001b[1;32m 102\u001b[0m \u001b[0;32mdef\u001b

[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[

0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b

[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor

\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m

\u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b

[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m

\u001b[0;32mreturn\u001b[0m \u001b[0mF\u001b

[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b

[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,

\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b

[0mweight\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbias

\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b

[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b

[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b

[0m\n\u001b[1;32m 105\u001b[0m

\u001b[0;32mdef\u001b[0m \u001b[0mextra_repr\u001b[0m

\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b

[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b

[0mstr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",

"\u001b[0;32m~/miniforge3/lib/python3.9/site-packages

/torch/nn/functional.py\u001b[0m in \u001b[0;36mlinear

\u001b[0;34m(input, weight, bias)\u001b[0m\n\u001b[1;32m

1846\u001b[0m \u001b[0;32mif\u001b[0m

\u001b[0mhas_torch_function_variadic\u001b[0m\u001b[0;34m

(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b

[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m

\u001b[0m\u001b[0m\n\u001b[1;32m 1847\u001b[0m

\u001b[0;32mreturn\u001b[0m \u001b[0mhandle_torch_function

\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlinear

\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\

u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m

\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m
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\u001b[0;34m,\u001b [0m \u001b[0minput\u001b

[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b

[0m\u001b[0;34m,\u001b[0m \u001b[0mbias

\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbias

\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\

u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b

[0;32m-> 1848\u001b[0;31m \u001b[0;32mreturn\u001b[0m

\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\

u001b[0m_C\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nn

\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b

[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m

\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m

\u001b[0;34m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m)

\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m

\u001b[0m\n\u001b[0m\u001b[1;32m

1849\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m

1850\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",

"\u001b[0;31mKeyboardInterrupt\u001b[0m: "

]

}

],

"source": [

"print(torch.cuda.is_available())\n",

"network = Network().double()\n",

"tb = SummaryWriter()\n",

"\n",

"number_run = 200\n",

"numberImages = 99\n",

"holdall = np.zeros(number_run)\n",

"closs = np.zeros(number_run)\n",

"#optimizer = optim.Adam(network.parameters(), lr=0.01)\n",

"optimizer = torch.optim.SGD(network.parameters(), lr=0.1,

momentum=0.9)\n",

"for I in range(number_run):\n",

" total_correct = 0\n",

" optimizer.zero_grad()\n",

" for current in range(1,numberImages):\n",

"\n",

"\n",

" data = loadtiffs(fileList[current-1])\n",

" data = np.append(data, loadtiffs(fileList[current]),

axis=2)\n",
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" data = np.append(data, loadtiffs(fileList[current+1]),

axis=2)\n",

" data = data.astype(float)\n",

" data = np.swapaxes(data,0,2)\n",

" x_data = torch.tensor(data)\n",

" x_data = torch.unsqueeze(x_data, 0)\n",

" x_data = torch.unsqueeze(x_data, 0)\n",

" preds = network(x_data)\n",

" label = (labels[current].unsqueeze(0)).

type(torch.LongTensor)\n",

" loss = F.cross_entropy(preds, label)\n",

" #print(loss)\n",

" #optimizer.zero_grad()\n",

" loss.backward() # Calculating the gradients\n",

" optimizer.step()\n",

" if (torch.argmax(preds)) == label:\n",

" total_correct = total_correct + 1\n",

" tb.add_scalar(’Loss’, loss, I)\n",

" tb.add_scalar(’Number Correct’, total_correct, I)\n",

" print(total_correct)\n"

]

},

{

"cell_type": "code",

"execution_count": null,

"metadata": {

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": []

}

],

"metadata": {

"kernelspec": {

"display_name": "Python 3",

"language": "python",

"name": "python3"

},

"language_info": {

"codemirror_mode": {
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"name": "ipython",

"version": 3

},

"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython3",

"version": "3.8.5"

}

},

"nbformat": 4,

"nbformat_minor": 1

}

d.6.3 3D neural network (NN) - the NN

{

"cells": [

{

"cell_type": "code",

"execution_count": null,

"metadata": {

"collapsed": true,

"pycharm": {

"name": "#%%\n"

}

},

"outputs": [],

"source": [

"import numpy as np\n",

"import torch\n",

"import torch.nn as nn\n",

"import torch.nn.functional as F\n",

"import torch.optim as optim\n",

"\n",

"\n",

"torch.set_grad_enabled(True)"

]
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},

{

"cell_type": "code",

"execution_count": 1,

"outputs": [

{

"ename": "NameError",

"evalue": "name ’nn’ is not defined",

"output_type": "error",

"traceback": [

"\u001B[0;31m------------------------------------------

---------------------------------\u001B[0m",

"\u001B[0;31mNameError\u001B[0m

Traceback (most recent call last)",

"\u001B[0;32m/var/folders/sm/33wx21p95j9479zfzh0bt80h0000gn

/T/ipykernel_72020/765017263.py\u001B[0m in \u001B

[0;36m<module>\u001B[0;34m\u001B[0m\n\u001B

[0;32m----> 1\u001B[0;31m \u001B[0;32mclass\u001B[0m

\u001B[0mNetwork\u001B[0m\u001B[0;34m(\u001B[0m\

u001B[0mnn\u001B[0m\u001B[0;34m.\u001B[0m\u001B

[0mModule\u001B[0m\u001B[0;34m)\u001B[0m\u001B

[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m

\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m

2\u001B[0m \u001B[0;32mdef\u001B[0m \u001B[0m__init__

\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B

[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B

[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B

[1;32m 3\u001B[0m \u001B[0msuper\u001B[0m

\u001B[0;34m(\u001B

[0m\u001B[0;34m)\u001B [0m\u001B[0;34m.\u001B[0m\u001B

[0m__init__\u001B[0m\u001B[0;34m(\u001B[0m\u001B

[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m

\u001B[0m\u001B[0m\n\u001B[1;32m 4\u001B[0m

\u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m

\u001B[0mconv1\u001B[0m \u001B[0;34m=\u001B[0m

\u001B[0mnn\u001B[0m\u001B[0;34m.\u001B[0m\u001B

[0mConv2d\u001B[0m\u001B[0;34m(\u001B[0m\u001B

[0min_channels\u001B[0m\u001B[0;34m=\u001B[0m\u001B

[0;36m1\u001B[0m\u001B[0;34m,\u001B[0m \u001B

[0mout_channels\u001B[0m\u001B[0;34m=\u001B

[0m\u001B[0;36m6\u001B[0m\u001B[0;34m,\u001B[0m

\u001B[0mkernel_size\u001B[0m\u001B[0;34m=\u001B
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[0m\u001B[0;36m5\u001B[0m\u001B[0;34m)\u001B[0m

\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B

[0m\n\u001B[1;32m 5\u001B[0m \u001B

[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B

[0mconv2\u001B[0m \u001B[0;34m=\u001B[0m

\u001B[0mnn\u001B[0m\u001B[0;34m.\u001B[0m\u001B

[0mConv2d\u001B[0m\u001B[0;34m(\u001B[0m\u001B

[0min_channels\u001B[0m\u001B[0;34m=\u001B[0m

\u001B[0;36m6\u001B[0m\u001B[0;34m,\u001B[0m

\u001B[0mout_channels\u001B[0m\u001B[0;34m=\u001B

[0m\u001B[0;36m12\u001B[0m\u001B[0;34m,\u001B[0m

\u001B[0mkernel_size\u001B[0m\u001B[0;34m=\u001B

[0m\u001B[0;36m5\u001B[0m\u001B[0;34m)\u001B[0m\

u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",

"\u001B[0;31mNameError\u001B[0m: name ’nn’ is not defined"

]

}

],

"source": [

"class Network(nn.Module):\n",

" def __init__(self):\n",

" super().__init__()\n",

" self.conv1 = nn.Conv2d(in_channels=1, out_channels=6,

kernel_size=5)\n",

" self.conv2 = nn.Conv2d(in_channels=6, out_channels=12,

kernel_size=5)\n",

"\n",

" self.fc1 = nn.Linear(in_features=12 * 4 * 4,

out_features=120)\n",

" self.fc2 = nn.Linear(in_features=120, out_features=60)\n",

" self.out = nn.Linear(in_features=60, out_features=2)\n",

"\n",

" def forward(self, t):\n",

" t = t\n",

"\n",

" # (2) hidden conv layer\n",

" t = self.conv1(t)\n",

" t = F.relu(t)\n",

" t = F.max_pool2d(t, kernel_size=2, stride=2)\n",

" # print(t.size())\n",

"\n",

" # (3) hidden conv layer\n",
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" t = self.conv2(t)\n",

" t = F.relu(t)\n",

" t = F.max_pool2d(t, kernel_size=2, stride=2)\n",

" # print(t.size())\n",

"\n",

" # (4) hidden linear layer\n",

" t = t.reshape(-1, 12 * 4 * 4)\n",

" t = self.fc1(t)\n",

" t = F.relu(t)\n",

" # print(t.size())\n",

"\n",

" # (5) hidden linear layer\n",

" t = self.fc2(t)\n",

" t = F.relu(t)\n",

" # print(t.size())\n",

"\n",

" # (6) output layer\n",

" t = self.out(t)\n",

" t = F.softmax(t, dim=1)\n",

" #print(t.size())\n",

"\n",

" return t\n",

"\n",

" def __repr__(self):\n",

" return \"Bunny Kitten\"\n",

"\n"

],

"metadata": {

"collapsed": false,

"pycharm": {

"name": "#%%\n"

}

}

}

],

"metadata": {

"kernelspec": {

"display_name": "Python 3",

"language": "python",

"name": "python3"

},

"language_info": {
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"codemirror_mode": {

"name": "ipython",

"version": 2

},

"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython2",

"version": "2.7.6"

}

},

"nbformat": 4,

"nbformat_minor": 0

}
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