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Abstract

Many astrophysical phenomena associated with black holes and neutron stars involve

large-scale relativistic flows of magnetised plasma. Such flows are best described with the

framework of relativistic magnetohydrodynamics (RMHD). Like many other fluid frame-

works, RMHD allows analytical solutions only for highly simplified problems, and any more

or less realistic problem requires computer simulations. Numerical techniques for RMHD

have been developed for over two decades now, with shock-capturing conservative schemes

having been particularly successful. But while they have allowed great advances in our

understanding of many phenomena of relativistic astrophysics, they all share one major

flaw: none of the current conservative schemes can handle the regime of relativistically

high magnetisation, where the electromagnetic mass-energy dominates the mass-energy of

the plasma. Often the problems start even when the two are comparable.

In this thesis, we describe a method to overcome this problem caused by the fact

that the electromagnetic field becomes almost Force-Free and as a result the system of

RMHD conservation laws become degenerate. In our approach we split the flow dynamics

into the Force-Free evolution of the electromagnetic field and the interaction between this

field with the plasma. This novel approach is similar in spirit to the operator-splitting

methods for differential equations and can be applied even in the case of moderate- to

low-magnetisation RMHD problems. In the high magnetisation regime, this approach is

similar to a perturbation technique.

To test the approach, we have built a code for Special Relativistic RMHD and carried

out a large number of one- and two-dimensional test simulations in Cartesian geometry.

The simulations included the cases of both the strongly- and weakly-magnetised relativis-

tic plasmas and compared against exact solutions, where known, and solutions obtained

with other methods, or even frameworks, like Force-Free degenerate electrodynamics and

plasma kinetics. The results are very promising.
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Conventions, Notations and Special Relativity

Some notations in this thesis may be unfamiliar, and some conventions are ambiguous as

well, so we will give a brief overview of these here.

In this work, we will use units (unless stated otherwise) such that the speed of light

c = 1, 4π and µ0 vanish from Maxwell’s equations, and Boltzmann’s constant kB = 1 (in

other words, the equations are nondimensionalised).

Greek indices such as α, β are assumed to range from 0 to 3 (where the 0 index refers to

the time coordinate), while Latin indices such as i, j range from 1 to 3, or just the spatial

coordinates. Unless otherwise specified, a number value is not an index but instead implies

exponentiation, i.e. r2 = r ·r. We also use Einstein summation notation, so that a repeated

index has an implied sum

aαbα =
3∑

α=0
aαbα.

We further choose the sign convention so that the metric signature is (−,+,+,+).

Thus vectors written with a Greek index such as aα are 4-vectors, with four components.

We further split these into time and space components via aα =
(
a0,a

)
, where a0 is the

time component, and a are the spatial components. That is, a vector that is either written

in bold or with Latin indices represents only the three spatial components.

v represents a 3-velocity. If x(t) is the position in space in Cartesian coordinates of

an object at t in the laboratory frame, then v = dx

dt
, so v is the velocity of an object as

observed by someone in the laboratory frame.

uα =
(
u0,u

)
represents a 4-velocity. This is given by uα = dxα

dτ
, where xα = (t,x) (the

position of the object in spacetime) and τ is the proper time (the time as measured by

the object that is moving). Given the Lorentz factor γ = dt

dτ
we can write the 4-velocity

in terms of the 3-velocity as uα = (γ, γv).

A vector a written without Latin or Greek indices and not in bold face is the magnitude

of the full vector, whether it is a 4-vector or 3-vector. If it is a 3-vector like v this is

v2 = vivi = v · v, while if it is a 4-vector like aα then this is a2 = aαaα.

Thus for a 4-vector a is not the magnitude of the spatial components alone, but instead

the magnitude of the entire 4-vector. However, this is with the sole exception of the 4-

velocity uα, where u instead represents the magnitude of the spatial components, u2 = u·u.
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Chapter 1

Introduction

This chapter sets the thesis in the relevant astrophysical background, with a brief intro-

duction and literature review of important application areas such as Jets, Black Holes,

Pulsars and the recent developments of gravitational wave astronomy and the Event Hori-

zon Telescope, as well as a review of some of the numerical techniques used to model

them.

Numerical schemes for Relativistic Magnetohydrodynamics (RMHD) have come a long

way since their inception, and there are now several such schemes. Among these, conserva-

tive schemes are used to capture discontinuities, like shocks and current sheets. However, in

RMHD conservative schemes all exhibit stiffness in regions of high magnetisation, i.e. when

the Stress-Energy tensor is dominated by the Electromagnetic components (Komissarov,

2006). We characterise this here by the ratio of magnetic pressure to plasma rest-enthalpy

density, σ = B2 − E2

w
, where w is the relativistic enthalpy density, B is the magnetic field

and E is the electric field.

This parameter σ is a relativistic equivalent to the non-relativistic plasma beta, al-

though now the ratio is inverted (so that high numbers indicate strong magnetic fields).

For a high magnetisation plasma, we would thus have σ ≫ 1. In this high magnetisa-

tion regime, errors in the calculations due to approximate integration methods become

comparable to other important values, and so the solution becomes difficult to compute

accurately, and non-physical tricks need to be employed to prevent codes from crashing,

such as pumping extra plasma into the system if σ gets too high, e.g. Komissarov (2004b).

In order to simulate such situations accurately, we need a new code to deal with this

regime. This project proposes a form of operator splitting model of the dynamics in this

regime. We split the overall equations into a fully electromagnetic component, and an

interaction component. The electromagnetic and interaction terms are then integrated

separately each time step.
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1.1 Astrophysical applications and Literature Re-

view

It is widely held that at least 99.9% of (baryonic) matter in the universe is plasma (Bachyn-

ski, 1961). Therefore, as the quintessential example of a magnetised fluid, we can conclude

that the motion of a large proportion of the universe’s matter is governed by magnetohy-

drodynamics (MHD). The realm of relativistic magnetohydrodynamics (RMHD), however,

is certainly more restrictive. Even if nearly all the matter is plasma, for relativity to be

required in the model means extreme conditions, such as energy densities so high that it

is comparable to the mass-energy of the particles, or particle velocities approaching the

speed of light.

Although restrictive, these conditions do occur naturally in the universe, in some of the

most extreme environments imaginable. These conditions include AGNs (Active Galactic

Nuclei) and GRBs (Gamma Ray Bursts), jets from X-ray binaries, as well as Pulsars and

their associated Pulsar Wind Nebulae (PWNs). A common feature of many such examples

is a compact object such as a black hole or neutron star; this is an object so small relative

to their mass that the treatment of gravity warrants a fully general relativistic description.

Of course, other cases like supernovae do not feature a compact object — although one is

typically expected to be formed from the stellar core during the supernova.

1.1.1 Black Holes, X-ray Binaries and Active Galactic Nu-

clei

Perhaps the most well known result to come out of general relativity, black holes have been

of interest to Astronomers and many others since they were first theorised by Schwarzschild

(1916) as an exact solution to the equations of general relativity, which had been published

only a few months prior by Einstein (1915). These objects create some of the most extreme

conditions in the universe since the Big Bang itself, with gravity so strong that not even

light can escape from within the event horizon.

There are currently two categories of Black Holes known to exist: First, we have stellar

mass black holes, with a mass of around 5 to 20 solar masses (McClintock and Remillard,

2006). These are the remnants of supernovae, from progenitor stars with masses above

around 8 solar masses (Smartt, 2009).

These black holes are of particular interest when they are active, i.e. when they have

infalling material. This most often occurs if black hole forms part of a binary system,

such as when its progenitor star was already in a binary system. In this case, the black
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hole can leech material from its pair. The infalling material releases enormous amounts of

gravitational potential energy as it falls in, causing it to heat up and emit X-rays. Thus

this arrangement has become known as an X-ray binary (Tauris and van den Heuvel,

2006). Note that an X-ray binary may alternatively have a neutron star instead of a black

hole for the compact object.

On the extreme end we have supermassive black holes, gigantic black holes that sit at

the centre of galaxies. These black holes can have masses in excess of billions of solar masses

(Shemmer et al., 2004; Mortlock et al., 2011; Wu et al., 2015). When the supermassive

black hole at the centre of a galaxy is active — i.e. when matter is falling in — it is known

as an active galactic nucleus (AGN). The resulting accretion disc and associated magnetic

fields often creates a magnetised, relativistic jet of plasma that blast out from the poles

of the black hole, extending for thousands of parsecs out into intergalactic space (Kundt,

2016). This is in addition to the extreme temperature of the accretion disc itself, which

thereby emits copious amounts of high energy electromagnetic radiation.

One of the most well known examples is the core of M87, a relatively nearby galaxy

with a supermassive black hole of 6.5±0.7×109 solar masses (Akiyama et al., 2019b) in its

core, M87*. This black hole has generated a jet that extends 10 kiloparsecs out from the

black hole (Biretta and Junor, 1995) — most likely with a twin on the other side hidden

from us via relativistic beaming (Sparks et al., 1992), a relativistic effect where matter

looks brighter when moving towards the observer and dimmer when moving away.

The exact mechanism of these relativistic jets is still a subject of some debate. The

current most popular candidate comes from Blandford and Znajek (1977). In that paper,

the authors suggest that energy and angular momentum can be extracted from a rotating

black hole by an externally supported magnetic field — for instance, a magnetised accretion

disc. The magnetic fields lines are then twisted by the rotating black hole, which can then

accelerate particles away from the black hole in two twin jets, in opposite directions.

Unfortunately, although there has been promising work in numerical modelling of black

hole accretion discs and the Blandford-Znajek mechanism (Komissarov, 2001; De Villiers

et al., 2003; McKinney, 2006), current models of black holes have great difficulty with

modelling the case accurately. This is because the magnetisation of the black hole can

reach many orders of magnitude higher than what current codes can handle, especially

near the black hole horizon.

For instance, Kino et al. (2015) used data from the Event Horizon telescope data

of M87* (Akiyama et al., 2019a) to estimate the magnetisation of the plasma near the

event horizon the black hole. Due to uncertainty about the nature of the plasma around

M87* the exact value is not certain, but generally they estimate magnetisation of at least
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σ > 103, and potentially as high as σ = 106 or higher.

To get around this, some authors such as Komissarov (2001); McKinney (2006) used a

force-free approach, i.e. neglecting the small inertial components entirely. This system is

known as Force-Free Degenerate Electrodynamics, or FFDE. While this is able to handle

high magnetisation better than RMHD codes, neglecting the plasma is obviously not ideal

if it is important for the dynamics, such as if a current sheet forms. For the BZ mechanism

in particular, matter is required since it works by accelerating charged particles.

Other authors have performed simulations of the BZ mechanism using a true RMHD

code including the inertial components, but they had to use various means in order to avoid

the high σ limitation. For instance, McKinney and Gammie (2004) and Qian et al. (2018)

limited the initial ratio of gas pressure to magnetic pressure to 100 and 10 respectively

(thus limiting σ to 0.01 and 0.1), while Komissarov (2004b) limited the maximum σ by

“pumping” new plasma into the region near the black hole where the value of σ is highest.

In addition, isentropic flows can handle higher σ as the energy equation can be elimi-

nated (Komissarov et al., 2007a), while the adiabatic entropy transport equation can be

integrated to bypass these errors as well. Of course, these will not be helpful for non-

adiabatic flows, such as shocks and current sheets.

Given that we expect real black hole accretion discs to have far higher magnetisations

and to have current sheets, these limitations are not desirable. However, with current

codes potentially having difficulty with magnetisation as low as σ ≈ 1 (Porth et al., 2013),

these magnetisations are well beyond current capabilities. Thus it is highly desirable to

develop a numerical code that can handle these magnetisations.

1.1.2 Gamma Ray Bursts and Supernovae

Gamma Ray Bursts (GRBs) are extremely energetic bursts of Gamma Rays observed in

other galaxies. These bursts are the brightest and most energetic events in the known

universe (Burns et al., 2023). GRBs can generally be sorted into two main categories,

differing by duration and ultimately cause, although more categories have been proposed

(Kouveliotou et al., 1993).

Short GRBs, classified as those less than 2 seconds, account for around 30% of the

GRBs detected. On average they last ∼ 0.3s, and are thought to occur either when two

neutron stars merge into a new black hole, or when a neutron star merges with a black

hole to form a larger one — something which was confirmed to an extent when a short

GRB was positively identified with the detection of a neutron star merger by LIGO, by

identifying a short GRB with an associated gravitational wave of the form that models
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predicted such an event would emit (Abbott et al., 2017b). The majority of the energy

released during the inspiral is emitted as gravitational waves, and thus can be modelled

without RMHD. However, if the GRB jets are powered magnetically then the system will

require RMHD to simulate, and when the magnetic term becomes dominant we again need

a simulator that can handle this regime.

Core Collapse

The remainder of GRBs are long GRBs. Long GRBs are emitted due to the core collapse

of a relatively high-mass star, of at least around 10 solar masses (Woosley and Bloom,

2006). Core collapse has two main possible outcomes: either it can end in a supernova, or

a long GRB.

Once a star runs out of Hydrogen in its core, it begins to contract from the loss

of internal pressure as its main power source is lost. If the star has enough mass, the

pressure in the core becomes high enough that Helium will begin fusing instead. This will

run out eventually too, and so again if the star has enough mass the Lithium will begin

to fuse.

With enough initial mass, this chain continues up the periodic table, until it reaches

iron. At this point, there is no longer any energy to be released from fusion as the reaction

is now endothermic for further elements (Woosley and Janka, 2005). The resultant drop in

energy output in the core means that the core temperature begins to fall, and thus it can

no longer hold up against the enormous gravity of the mass of the star above. The only

factor that can hold it back now is the electron degeneracy pressure, whereby matter is so

dense that to compress further would force electrons to occupy the same energy states, a

situation forbidden by the Pauli exclusion principle (Lieb and Yau, 1987).

However, this too has a limit at the Chandrasekhar mass, of around 1.44 solar masses

(Lieb and Yau, 1987). When the core finally exceeds this limit, the core begins to collapse

rapidly (Burrows and Vartanyan, 2021). This collapse is very rapid, but is quickly halted

by a second resisting pressure, that of neutron degeneracy pressure. Thus the rapidly

contracting core comes to a sudden stop as it reaches nuclear densities, creating a shock

wave that begins to propagate back out. However, this shock is soon stalled due energy

losses from dissociating nuclei and neutrino emissions, thus it transforms into an accretion

shock (Bethe, 1990). What happens next is dependent on several factors, most notably

the initial mass of the star.

With a lower mass, the rapid contraction heats the core adiabatically, and so in the hot

and dense core it becomes energetically favourable for protons and electrons to merge into

neutrons via electron capture. This process of electron capture releases vast quantities of



6

neutrinos, which rarely interact with normal matter and thus carry much of the energy

out of the core. Through a process that is not currently well understood, some of these

neutrinos are absorbed by the outer envelope of the star depositing large amounts of energy

into these regions, restarting the shock and triggering the supernova explosion (Fryer and

New, 2003). Meanwhile, the inner core converts into a compact object composed almost

entirely of neutrons — i.e. it has become a neutron star.

Like the electron degeneracy pressure before, neutron degeneracy pressure also has a

limit. Thus the mass of the neutron star is limited to between 2.01 ± 0.04 and 2.16 ± 0.17

solar masses (Rezzolla et al., 2018). With a higher initial mass, this limit can be exceeded

during the collapse of the inner core. Thus the neutron star formed above will then collapse

further into a black hole. If a black hole forms, then the timing is key. If the collapse

happens after the supernova explosion has been triggered, then the supernova will still

occur leaving relatively little material to accrete onto the new black hole. However, if the

core collapses into a black hole before the supernova has been triggered then the neutrinos

will not be released. Thus we have a failed supernova, where the star does not explode.

Since the outer envelope has not been blasted away, it now begins to accrete into the

new black hole. If there is enough initial angular momentum in the infalling material, it

will form an accretion disc, which in turn will produce jets, either via the BZ mechanism

(Komissarov and Barkov, 2009) or neutrino heating (Popham et al., 1999; Kohri et al.,

2005). At some distance from the black hole, these jets will produce gamma rays, which

thus forms a long GRB that continues until the accretion disc runs out of infalling material.

This sequence of events is the current most popular model for the production of a long

GRB from a collapsing star (Woosley, 1993; MacFadyen and Woosley, 1999).

Numerical models of supernovae have been performed for a long time (Gull and Longair,

1973; Xu et al., 1985; Reinecke et al., 2002), but even the more recent examples such as

Nagakura et al. (2020); Burrows et al. (2023) still do not fully include important factors

such as relativity. This is due partly to high magnetisation causing problems with RMHD

— in particular high magnetisation is unavoidable for a BZ jet driving the GRB — but

also because supernovae is a multi-physics problem, involving general relativity (especially

if a compact object forms), neutrino-matter interactions, nuclear physics, radiation, and

plasma dynamics. This complexity makes supernova modelling particularly difficult.

1.1.3 Astrophysical Jets

Astrophysical jets are beams of gasses and plasmas travelling relative into or through

a background medium. While some jets have a low enough energy to be modelled in
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Newtonian hydrodynamics (HD) — or magnetohydrodynamics (MHD) if magnetic fields

are involved — some jets are energetic enough that the fluid is moving at relativistic

speeds, and so the jet can only be modelled by relativistic models.

These jets can be powered by many different astrophysical phenomena, such as black

holes as noted above. While modelling the power source and origin of the jet is of great

interest, modelling just the jets themselves is also useful. Thanks to this as well as the

fact that the jets alone are a simpler case to model, jets were among the first astrophysical

phenomena to be modelled.

The first numerical model of a jet came from Rayburn (1977), in the form of a simple

HD code. They studied the structure generated by a 2D, uniform, supersonic, cylindrical

flow, with an external medium with density either uniform or decreasing with the distance

from the injection nozzle. This code ran as a Particle-in-cell (PIC) model on a 2D grid of

just 10 x 20 grid cells, with 16 particles per cell.

In spite of the small size of the model, it was still capable of producing two shocks

– the bow shock of the jet entering the external medium, and the reverse shock of the

termination of the jet. The model also generated a rarefied (less dense) region around the

jet, as the external medium was heated by the shocks.

Later studies also utilised 2D HD codes, such as Norman et al. (1981) who used a

finite difference code on a 40 x 40 grid to study if a hot gas inserted into a gravitationally

bound cloud could escape in the form of jets. Notably, this numerical study did not quite

agree with theoretical results. While the hot gas did create a cavity in the cloud and a

de Laval nozzle through which hot gas escaped, the cavity developed a Rayleigh-Taylor

instability (at the interface between the hot, rarefied gas in the cavity and the cooler,

denser, exterior cloud) which could destroy the nozzle, in contrast to theoretical models.

This clearly demonstrates the important place that numerical studies hold, as a form

of confirmation (or refutation) for theoretical models. Given that traditional scientific

experimentation is difficult if not impossible in relativistic astrophysics, with the closest

to real data being astronomical observations, this is very useful to have.

Of course, given that most matter in the universe is a plasma where electric and

magnetic fields are important, a simple HD model is not enough to capture the dynamics

of most flows in astrophysics, not to mention jets. The first MHD model of jets came

from Clarke et al. (1986). They used an axisymmetric scheme for MHD that was a simple

extension of their earlier HD codes. While the setup of this model was identical to one of

their earlier HD models, besides an azimuthal magnetic field which increased linearly with

the distance from the axis, the results did not match the HD model, as we would expect.

The shocked plasma at the front of the jet did not flow backwards to create the cavity
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around the jet, and instead flowed forward to form a magnetically-pinched structure in

front of the termination shock, known as a “nose-cone”, the development of which was

determined by the parameter β = pg

B2/2 , the ratio of inertial gas pressure to magnetic

pressure. Later, fully 3D codes by Mignone et al. (2010a) showed that this formation was

an artefact of the 2D model, as it suppressed non-axisymmetric instabilities that would

have otherwise destroyed the nose-cone.

The first models of relativistic jets were more tests of codes, as opposed to realistic

models of astrophysical jets. Some of the first realistic numerical models of 2D RMHD

were done by Komissarov (1999b), who studied axisymmetric jets with a purely azimuthal

magnetic field, and the same settings as with Clarke et al. (1986). Analysis of the jets

showed that it was not the β of typical MHD that determined the nose-cone development,

but instead the relativistic σ, the ratio of magnetic energy to rest-mass energy.

Unlike the previous cases of black holes and GRBs, jets are not expected to have

exceptionally high magnetisations. For instance, Król et al. (2022) estimate that the

magnetisation of a relativistic, current-carrying jet with radial velocity shear will likely

only be σ ∼ O(1) — although they do note it could get as high as σ ≲ O(10) in the right

circumstances. Even so, this moderate value of σ is still large enough to cause problems

in some cases, as noted above. So a method to handle these cases is still warranted.

Moreover, the base of the jet (i.e. where it forms) such as a black hole can have much

higher magnetisations. Thus one important question here is why the jet magnetisation is

low, given that the magnetisation at its base can be very high. This could be due to a

number of factors, such as mixing with low σ gasses such as winds from the accretion disc,

and conversion of magnetic to kinetic energy. Clearly, to study this numerically we need

a model that can handle low and high σ simultaneously.

1.1.4 Pulsars

First discovered by Hewish et al. (1968), pulsars are neutron stars characterised by the

radio beams that are emitted from them. Since these beams are often misaligned with

the axis of rotation, as the pulsar spins the beam sweeps across the sky in a cone shape.

If the Earth happens to lie in this cone, then we can detect the beam sweeping across

us as a regular pulse of radio waves. As the neutron star is very massive and spins at

very high speeds, the large angular momentum in its rotation means that this pulse is

very regular, and barely changes in frequency for each pulsar — although there are still

means by which this frequency can change on longer time scales, especially from either

energy loss via electromagnetic radiation and gravitational waves (Zhang et al., 2016), or
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energy gain via accretion of material from a binary companion (Bhattacharya and van den

Heuvel, 1991).

Although the radio pulses emanating from a pulsar are the most distinctive feature of

one, in terms of energy extracted from the pulsar the radio beams represent only a tiny

fraction of all the power output of a typical pulsar. The total energy loss of a pulsar can

be quite accurately estimated from precise measurements of its rotation period P and time

derivative Ṗ . Using the known mass and radius of the pulsar, we can calculate the total

rotational energy and the power output as a result of the loss of this energy, or “spindown”

power (Cerutti and Beloborodov, 2017). Comparisons of the spindown power to the power

in the radio beams shows a huge deficit (Pétri, 2016).

Early models of the magnetosphere near the surface of the pulsar reasoned that the

intense surface gravity of the pulsar would prevent any particles from lifting from the sur-

face and would prevent them from filling the magnetosphere, causing the magnetosphere of

the pulsar to be a near vacuum (Pacini, 1967, 1968; Ostriker and Gunn, 1969). Combined

with the dipole model of the pulsar itself, this led to the vacuum dipole magnetosphere

models.

The strong dipole magnetic field of the pulsar means that particles in the field are

restricted to the drift velocity vD = E × B

B2 for motion perpendicular to the magnetic

field B. However, particles are free to move unobstructed along the field lines, especially

if there is a component of parallel electric field E∥, so that E ·B ̸= 0. The vacuum dipole

solutions showed that there was indeed strong E∥, and thus Goldreich and Julian (1969)

pointed out that these electric fields in the equatorial region were in fact easily strong

enough to lift particles from the surface of the neutron star and fill the magnetosphere

with particles, eliminating the vacuum.

At least some part of this plasma near to the surface of this pulsar must be corotating

with the pulsar, due to the boundary with the surface and due to the rotation mass of the

star itself dragging around material with it via frame dragging. This corotation has a limit

of course, as to remain corotating means faster and faster orbits as one goes further out;

at its limit, the material would need to be moving at the speed of light. The corotational

limit cylinder this indicates is called the light cylinder, the radius of which is therefore

given by rL = 1
Ω , where Ω is the angular frequency of the pulsar. For the most rapidly

spinning “millisecond pulsars” the light cylinder can be only a few kilometres above the

surface of the pulsar equator.

This therefore divides the pulsar magnetosphere into two regions, an inner corota-

tional region within the light cylinder, and an outer pulsar wind region which is no longer

corotating and leaves the pulsar at very high velocities.



10

Although electrons and ions lifted from the surface is one source of particles in the

pulsar magnetosphere, this alone cannot fully explain the spindown of the pulsar. Later

observation of the pulsar wind showed that this wind is an electron-positron (e±) plasma.

These positrons were not lifted from the surface, but are expected theoretically (Cerutti

and Beloborodov, 2017).

Consider, as before, that we have a strong magnetic field B and a parallel electric field

E∥. Charged particles such as electrons are forced to follow magnetic field lines and are

accelerated along them by the electric field E∥ to relativistic speeds. If the magnetic field

lines are curved, then these relativistic electrons will then emit synchrotron radiation as

high energy γ-rays as they are forced to turn.

These high-energy photons will in turn interact with the strong magnetic fields to create

a particle-antiparticle pair via pair production. The new particles are also accelerated

along the magnetic field lines, and the result is that any region with E ·B ̸= 0 will rapidly

fill with an e± plasma (Erber, 1966; Harding and Lai, 2006).

This process does not proceed indefinitely however, as these charged particles then

serve to increase the conductivity of the plasma, until it is high enough that E ·B = 0 and

no more particles can be produced. Thus only the less dense, particle-poor regions termed

“gaps” can produce more particles to fill the magnetosphere (Cerutti and Beloborodov,

2017).

Even though there is now an e± plasma filling the magnetosphere, the energy and

momentum of the plasma is still dwarfed by that of the electromagnetic fields in the region

(Philippov and Spitkovsky, 2014; Cerutti et al., 2015). The dynamics of the plasma are

thus dominated by the electromagnetic fields, and the plasma itself does little to affect

the dynamics beside make the conductivity high enough that E ·B = 0 is nearly satisfied

everywhere. There are only a few particular cases where the plasma inertia cannot be

ignored — most notably current sheets.

Although gaps are required to fill the magnetosphere, it makes sense to consider models

of so-called force-free solutions (so termed because the Lorentz force vanishes), where we

assume that violations of E ·B = 0 necessary to create particles are minimal, and that the

inertial mass of the plasma is much smaller than the energy density of the electromagnetic

fields.

One common feature of all such force-free solutions is the presence of a current sheet

separating the magnetic field of either pole (Spitkovsky, 2006; Kalapotharakos and Con-

topoulos, 2009). This is problematic because current sheets are regions where fully force-

free models are not viable. Such solutions cannot exist in force-free models, as the current

sheet heats up the plasma and makes neglecting the inertial terms no longer an accurate
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assumption.

More recently, numerical simulations have been performed using PIC models instead

(Philippov and Spitkovsky, 2014; Cerutti et al., 2015). Currently this is the only other

method available that can handle the high magnetisation in this system. Unfortunately,

although PIC models can be used this case is somewhat unsuitable for it since simulations

must be global. This is due to the inherently non-local nature of the system, since activity

near the light cylinder affects activity near the polar caps and vice versa (Cerutti and

Beloborodov, 2017).

In practice, PIC models are limited to a few orders of magnitude of scale separation

between the scale of the macroscopic (neutron star radius, light cylinder radius) and

the microscopic (plasma skin depth) scales, which for real pulsars is huge (Cerutti and

Beloborodov, 2017). This scale separation is still sufficient to capture the fundamentals

of pulsars such as gap formation, but a different model for pulsar magnetospheres such as

a true RMHD plasma model that can handle high σ is warranted.

Pulsar Wind Nebulae

Beyond the immediate magnetosphere region of the pulsar we enter the Pulsar Wind

Nebula (PWN). These are formed of the outflow from the pulsar itself and are frequently

found inside the supernova remnant of the progenitor.

As a result of the high magnetisation of the plasma and the high angular velocity of

the pulsar, the magnetosphere emits a pulsar wind, similar to a stellar wind. This magne-

tised, relativistic wind then collides and interacts with the nearby interstellar medium and

(typically) the outer supernova remnant, from when the pulsar originally went supernova.

Once again, we need RMHD to simulate this system, as the winds are relativistic.

While not as extreme as the pulsar magnetosphere, the magnetisation in the pulsar

wind can still be very high, at least close to the pulsar, and especially near the polar

regions. Lyutikov et al. (2018) note that while the magnetisation at the boundary of the

PWN and the outer supernova remnant is small with σ ≪ 1, the magnetisation in the

polar regions at the termination shock could be as high as σ ≈ 400.

1.1.5 Notable Recent Developments

These extreme flows and the compact objects that drive them are quite difficult to observe.

They are typically rare enough that finding one close enough to earth for good observation

is unlikely. The compact objects themselves are also usually very small, many times smaller

than the stars that formed them — with the notable exception of supermassive black
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holes, which can grow to the point that they have masses exceeding 1010 solar masses,

and Schwarzschild radii beyond 1,000 AU (i.e. 1,000 times the distance from the Earth to

the Sun) in the most extreme known cases (Shemmer et al., 2004). However, since each

galaxy is expected to usually only have one supermassive black hole, they are very rare

and distant — and the closest known (Sagittarius A*, located at the centre of the Milky

Way) is cloaked behind the dust in the galactic disc. While supernovae are also large and

bright, they are also rare events and very difficult (if not impossible) to predict, and the

same applies to mergers.

However, relatively recently there have been notable breakthroughs that have allowed

for observations of these high energy scenarios, through two key methods: Gravitational

wave astronomy, and the Event Horizon Telescope.

Gravitational Wave Astronomy

One of the predictions made by general relativity is that of the existence of gravitational

waves, waves in spacetime itself that travel at the speed of light. These waves are ra-

diated whenever mass-energy is accelerating, provided that the motion is not spherically

or rotationally symmetric. One important case of this motion is any two-body system in

orbit, and thus the energy carried by these waves causes even orbits in two-body systems

to decay, in contrast to the Newtonian case (Misner et al., 1973).

Gravitational waves are transverse waves and have the effect of stretching and com-

pressing distances between objects as they pass. That is, if we imagine the simple case of

a circular ring of test particles in flat spacetime and a single-frequency, polarised, small-

amplitude (i.e. linearised) gravitational wave passing through perpendicular to the plane

of the ring, then the wave will distort the shape of the ring into an ellipse. As the wave

passes, the ellipse will pulsate and switch which dimensions are stretched and compressed.

This distortion will not change the area inside the ring, so the product of the two axes of

the ellipse is constant.

Fig. 1.1a gives a diagram of the passage of just such a polarised, pure frequency grav-

itational wave, passing perpendicular to the plane of the test particles. In this case, the

displacement of each particle follows a straight line, and oscillates around its initial po-

sition in a sine wave. In this case, the wave is ×-polarised, meaning that the axes of

the ellipse make a cross shape, as opposed to +-polarised waves, which are the same but

rotated through π/4 radians.

Gravitational waves can also be circularly polarised. Such waves have the effect of

rotating the ellipse instead of causing it to pulsate, see Fig. 1.1b. In this case the particles

now follow small circular orbits around the unperturbed position; note that the particles
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(a) ×-Polarised Wave. (b) Circularly Polarised Wave.

Figure 1.1: Effect of the passage of a ×-polarised (a) and a circularly polarised gravita-

tional wave (b) on a circular ring of test particles, passing perpendicular to the plane of

the particles. Shown are four states of the oscillation; each state progresses to the next in a

clockwise fashion, following the black arrows. The red points and dashed circle indicate the

original positions of the test particles, the black dots and ellipses/circles are the displaced

positions, with the red arrows indicating the displacement vectors of each particle.

themselves do not rotate around the centre with the ellipse, so there is no overall rotation

of the system.

Note that the amplitude in these diagrams is heavily exaggerated. The amount of

extra displacement ∆s between two masses is proportional to the original displacement

s between them, thus the amplitude of a gravitational wave is typically measured by the

strain h, given by h = 2∆s/s. While the strain in this diagram is h = 0.7, the strain

of waves that pass the Earth is extremely small. For example, the first detection of

gravitational waves — originating from the merger of binary stellar mass black holes —

by Abbott et al. (2016a) had a peak strain of just h ≈ 10−21. If the initial displacement

of two test masses is 1 km, this gravitational wave would increase the displacement by

around one ten thousandth the diameter of a proton.

While the energy lost by gravitational waves for a typical planet orbiting a star is too

small to have a meaningful effect on its orbit, for massive objects orbiting rapidly in small

orbits the energy loss is significant enough to mean that they will eventually collide. For

instance, one of the first indirect pieces of evidence of the existence of gravitational waves

came from Taylor and Weisberg (1982), who showed that the binary pulsar PSR 1913+16

was reducing in orbital period at a rate with excellent agreement to the calculated orbital

decay due to gravitational radiation.
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The amount of energy emitted as gravitational waves in some of these events can

be enormous, in spite of how small the detected strain is here on Earth. For instance,

Reisswig et al. (2009) performed numerical relativity models of the merger of equal-mass

binary black holes with aligned spins. For the energy emitted as gravitational waves during

the merger, they came to a value of around 2–10% of the total mass-energy of each black

hole. Thus for a merger of two stellar-mass black holes with masses of (say) 40 solar

masses, around 1–4 solar masses worth of mass-energy will be emitted as gravitational

waves during the merger. This has since been confirmed by observations of gravitational

waves from real mergers (Abbott et al., 2016b).

The form of the gravitational wave packet produced by a merger is quite characteristic.

Since the frequency of the waves is twice the orbital frequency and the energy emitted

increases as the objects move faster in tighter orbits, as the objects inspiral they emit

gravitational waves in a profile of increasing frequency and increasing energy, a signal

known as a “chirp” (Boyle et al., 2019).

Other notable scenarios that can emit gravitational waves of significant magnitude

include supernovae, binaries of compact objects prior to the final inspiral, and fast rotating

neutron stars with a non-spherical mass distribution (Misner et al., 1973).

Detecting gravitational waves from these objects is of interest for a few reasons. First

of all, they simply provide another means by which we can observe these scenarios; in

some cases, they are the only means by which they can be observed. Furthermore, these

waves can travel freely through dust clouds and other opaque objects unlike electromag-

netic waves, allowing us the observe things that are otherwise hidden from view. Finally,

the methods of detection used detect the wave amplitude, not the energy directly. The

amplitude of a gravitational wave decays like r−1 where r is the distance to the emission

location, unlike the energy which decays like r−2 (Ju et al., 2000).

The same is also true of electromagnetic waves. For electromagnetic waves, detection in

a telescope involves absorbing the light, and measuring the change in energy. However, the

gravitational wave detectors (described below) are based on measuring the strain instead,

and this decays slower than the energy. This makes gravitational waves better suited for

the detection of distant objects — although the strain is so small no matter the distance

that detection is typically easier for electromagnetic waves.

There are a handful of methods that can be used to detect these waves, depending on

the frequency of the waves. For waves emitted by cases relevant to this project — e.g.

compact object mergers, binaries, supernovae — the wave frequencies are of a range that

can be detected using laser interferometry. Laser interferometry is a technique that uses

lasers to detect minute changes in the distance between objects, in this case caused by the
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passage of a gravitational wave.

One of the main such methods used for current gravitational wave detectors is a Michel-

son Interferometer (Bond et al., 2017). In this case, a laser is split into two beams at right

angles and sent down two different arms that are as long as possible, and exactly the

same length; these beams are then reflected back (typically multiple times to increase the

effective length) and recombined. As a gravitational wave passes through, it will change

the lengths of the arms. Since the arms are perpendicular to each other, as one arm is

stretched the other will be compressed. As a result, the distance (and hence the time)

the beam travels will be different between the two arms. The originally in-phase light

beams will therefore be out of phase by the time they reach the detector, and so they will

interfere with each other.

Since the difference is so slight, detecting these waves is a challenge and the detec-

tors are very sensitive to other distortions, such as minor earthquakes for ground-based

interferometers. In spite of this, in 2015 the two LIGO detectors (Laser Interferome-

ter Gravitational-Wave Observatory) became the first interferometers detect a confirmed

gravitational wave (Abbott et al., 2016a). Since then, other detectors like Virgo in Italy,

GEO600 in Germany and KAGRA (Kamioka Gravitational Wave Detector) in Japan have

joined in and made many more observations of gravitational waves (Abbott et al., 2017a,

2022). By comparing the exact detection times for the same gravitational waves at these

different locations, it is possible to triangulate which direction the wave came from.

Ground-based interferometers are limited in the range of frequencies they can detect by

their length and environmental factors. For instance, the LIGO detectors are restricted to

the frequency range 10 Hz to 10 kHz (Martynov et al., 2016), meaning they can only expect

to detect rapid events, such as the final inspiral of compact object mergers and supernovae.

However, space-based interferometers are currently being planned such as LISA (Laser

Interferometer Space Antenna) and DECIGO (Deci-hertz Interferometer Gravitational

wave Observatory).

These interferometers will use satellites in space instead of long arms on the ground, al-

lowing for much longer interferometer arms and the elimination of factors like earthquakes.

This in turn allows for the detection of lower frequency phenomena such as compact ob-

ject binaries. For instance, LISA is planned to cover the range of frequencies from 100

µHz to 1 Hz (Amaro-Seoane et al., 2012); this will be done with three separate spacecraft

orbiting the Sun 2.5 million km apart, effectively creating an interferometer with arms of

that length (Cornish and Robson, 2017).

Whether it is detected on Earth or in space, the data received from the interferometers

consists of a shift in the phases of the two beams, and thus a distortion in the length of the
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interferometer arms. In order to identify the cause of these, we have two main methods:

First, by comparing the exact time of detection at multiple detectors, it is possible to

triangulate the location of the event that emitted the waves. Telescopes can then look

nearby in that region and potentially identify a possible source for the event, such as an

associated gamma ray burst from a neutron star merger.

For example, the gravitational wave emitted from a neutron star merger detected by

Abbott et al. (2017b) arrived just 1.7 s ahead of a GRB from the same direction (Abbott

et al., 2017c), providing some of the first evidence that neutron star mergers can trigger

GRBs.

Second (and more relevant to this thesis), the gravitational wave profile of numerical

models of these events can be compared to real detections. This has made it possible to

make positive identifications of various black hole-black hole and black hole-neutron star

merger events; for instance, the first gravitational wave detection in Abbott et al. (2016a)

was identified as a merger of two solar mass black holes by matching the “chirp” produced

to numerical models like those of Reisswig et al. (2009).

There are now significant catalogues of numerical results to compare the detected

gravitational waves against, such as those of Boyle et al. (2019); Healy and Lousto (2022)

which now have thousands of different black hole-black hole, black hole-neutron star and

neutron star-neutron star merger waveforms.

One thing to note about all those waveforms is that they are purely models of the com-

pact objects themselves and neglect any plasma or electromagnetic fields. As discussed

previously, complete models of these mergers requires plasma modelling of the magneto-

spheres of these objects during the merger. The main source of the gravitational waves

is of course the compact objects themselves, however with more sensitive detectors the

impacts of plasma and the electromagnetic fields will be important (Henry et al., 2023).

Including the plasma could also allow us to model the resulting GRB, to help connect

gamma-ray burst observations to merger events.

For supernovae, plasma modelling is crucial to get the gravitational wave profile correct

since there are no central compact objects (at least at first) to dominate the dynamics.

Thus in this case we do need an accurate model of the plasma to get an accurate model

of the gravitational wave profile.

Overall, gravitational wave astronomy provides a new source of data for matching

against numerical models of the phenomena. In the flip side, modelling the emitted grav-

itational waves from these phenomena also helps us to identify the origin of these waves.

For many of these cases, as we have noted above, high magnetisation is quite likely to

occur and thus a numerical model which can handle this regime is necessary.
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Event Horizon Telescope

Black holes are the smallest possible objects given their mass, which makes them quite

difficult to observe directly (of course, we would be observing their accretion discs and

jets, not the black holes themselves). Stellar mass black holes have radii of only a few

kilometres — the Schwarzschild radius of the Sun (i.e. the radius of a black hole with the

same mass) is just 3 km — so observing even nearby black holes is difficult.

On the other hand, supermassive black holes can be far larger. As noted above, the

largest currently known have masses on the order of 1010 to 1011 solar masses (Shemmer

et al., 2004; Ge et al., 2019); for example, the supermassive black hole TON 618 has a

estimated mass of 4 × 1010 solar masses, making its Schwarzschild radius approximately

1,300 AU, i.e. 1,300 times the average distance from the Earth to the Sun, or more than

40 times the average distance of Neptune to the Sun.

However, these black holes are also much rarer, typically limited to just one per galaxy,

and most are not that large either. The closest known is Sagittarius A* (located at the

centre of our Milky Way galaxy) and has mass of “only” 4×106 solar masses, corresponding

to a Schwarzschild radius of around 18 solar radii (Abuter et al., 2023). However, even

this nearby supermassive black hole is located 8.277 kiloparsecs away (26,996 light years),

and it is also hidden behind dust in the galactic disc.

Due to this, identification of black holes has in the past been limited to the motion

of stars and gas clouds near to the supposed black hole. For instance, stars nearby to

Sagittarius A* have been observed in infrared orbiting a seemingly empty spot at extreme

speeds (Eckart et al., 2002).

However, a recent breakthrough has been made by the team behind the Event Hori-

zon Telescope (EHT). By making multiple simultaneous observations of the same black

hole with different telescopes across the globe, the data from the various telescopes was

combined to create observations using what is effectively a telescope the size of the Earth.

This allowed them to resolve far more distant objects than each telescope could alone.

Such arrays have been used before of course (Thompson et al., 2017), but what is

unique about the EHT is its very short, low-mm wavelength detection range.

In a series of papers starting with Akiyama et al. (2019a), they published their first

results of observations of the supermassive black hole at the centre of M87, a relatively

nearby galaxy. This black hole is much more massive and thus much larger than Sagittarius

A*, and is responsible for a relativistic jet that extends out into intergalactic space.

They have also since come out with observations of Sagittarius A* (Akiyama et al.,

2022) as well as several other black holes, such as 3C 279 (Kim et al., 2020) — which also
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included direct observations of a relativistic jet emerging from the AGN core.

Now that we have proper observational data, it is finally possible to match numerical

models to observations. We also now have more accurate data for the numerical model

conditions as well. Of particular relevance to this thesis is the fact that these black holes

are commonly expected to have high values for σ — and indeed, observations from EHT

indicate that the magnetisation of M87 is at least σ > 103, as noted above. Current

models are unable to deal with this high magnetisation, especially when it interacts with

low magnetisation plasma as well, and thus a new numerical scheme that can handle the

high magnetisation regime is necessary.

1.2 Numerical Methods for Relativistic Plasmas

There are multiple ways of modelling a plasma; at its most basic level, we can try following

every single particle in the plasma individually, a vast number of charged (and possibly

uncharged) particles moving about and interacting either in the short-range via collisions,

or in the long-range via electric and magnetic fields.

Although this would theoretically capture all the dynamics of the plasma accurately

(provided a method for solving Maxwell’s equations for the electric and magnetic fields as

well), due to the enormous number of particles for even the smallest of cases modelling

plasmas in this fashion is impractical. We can afford to drop this extreme level of accuracy

to some extent in most situations, thus many different numerical techniques have been

developed to model plasmas, each with their own strengths and weaknesses.

1.2.1 Particle-in-Cell Method

The first method to discuss is the particle-in-cell (PIC) method. Instead of evolving

every particle in the plasma individually, this model represents the plasma particles as a

set of “super-particles”. Each super-particle then represents a distribution of individual

particles (Birdsall and Langdon, 1985). The super-particles are then moved around the

computational domain in accordance with their momentum and the forces acting on them

(i.e. the Lorentz force), as if they were individual particles themselves.

Meanwhile, the electric and magnetic fields are solved for via Maxwell’s equations.

The method to solve these equations varies, but regardless of what method is used this

requires values for the current density J . This is of course dependent on the particles of

the plasma, and thus must be calculated from the super-particles. This is done using a

form of averaging scheme, which takes nearby super-particles and collects them into “cells”
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to calculate an average. This average is usually not uniform and takes into account the

fact that each super-particle is in fact a distribution of many particles. If the integration

scheme does not enforce exact adherence to Gauss’ law, then the charge density is also

needed in order to clean the errors in the divergence of the electric field.

Since this method models the particles themselves to an extent, PIC models are highly

accurate and include much of the small-scale physics. In addition, PIC models are able to

probe the high-σ regime that other models are unable to model. PIC models have been

used successfully for various different cases of relativistic plasmas; for instance, Chen and

Beloborodov (2014); Philippov and Spitkovsky (2014) use PIC codes to model neutron

star magnetospheres, and Hirotani et al. (2021) use a PIC code to model a stellar black

hole magnetosphere.

However, even with collecting particles into less numerous super-particles, PIC models

still struggle with how many super-particles are needed to model cases properly. As we

mentioned briefly in section 1.1.4, PIC models are limited to a few orders of magnitude

of scale separation between the scale of the macroscopic and the microscopic (plasma

skin depth) scales (Cerutti and Beloborodov, 2017). This means that these models are

only capable of capturing some of the more basic phenomena in scenarios with large scale

separations, such as black holes or pulsars.

1.2.2 Kinetic Models

The next category is that of kinetic models. These model the plasma as a distribution of

particle positions and velocities (i.e. a distribution in phase-space) which is then evolved

according to an equation — such as the Vlasov equation (e.g. Rasio et al. (1989)) or the

more accurate Fokker-Planck equations (e.g. Stahl et al. (2017)) — which describes the

evolution of such a statistical distribution.

So instead of discrete particles being moved around the domain, the plasma is instead

represented as a continuum in phase space, which is updated according to partial differ-

ential equations. In addition to this distribution function, the electric and magnetic fields

are evolved according to Maxwell’s equations simultaneously, much like the PIC method.

As a result of working in phase space, the distribution function is six-dimensional,

consisting of three velocity components and three positional components, plus time (Liu

et al., 2019). Since we cannot work numerically with a fully continuous distribution, the

grid is discretised so that we are working with the value of the distribution function at a

finite set of discrete points.

These methods often also treat different particle species as separate distribution func-
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tions; for instance, an electron-proton plasma may have a distribution function each for

the electrons and protons. With this many variables defined at each point in space, these

kinetic methods can also be quite demanding computationally.

1.2.3 RMHD

A simpler alternative to both kinetic models and a PIC method is a fluid model, which

represents the plasma not by individual particles or by a distribution, but by macroscopic

quantities like pressure or temperature. When applied to relativistic plasmas, this model

is known as relativistic magnetohydrodynamics, or RMHD.

The fluid model of RMHD allows for a much easier time modelling plasmas, as the

number of values needed to be tracked is far smaller. This does come at the cost of some

major simplifying assumptions, however. For instance, we have assumed that the plasma

is collisional, meaning that the particles collide often enough that a statistical, thermal

equilibrium is reached (otherwise the plasma cannot be represented properly by a single

temperature, since we no longer know the distribution the particles follow). For some

cases like the accretion discs of supermassive black holes, it is expected that the plasma

will be collisionless instead; for example, the accretion disc around M87 is expected to be

collisionless (Ryan et al., 2018). In this case a fluid model may not be appropriate.

However, even without significant collisions a weakly collisional the plasma may still

achieve isotropy and reach a thermal equilibrium via other methods. For instance, insta-

bilities in the plasma can exhibit collective plasma interactions (Kunz et al., 2014, 2016),

allowing the plasma to reach a statistical distribution.

One of the key strengths (or weaknesses) of a numerical method for fluid dynamics is

its ability to handle discontinuities; in the context of relativistic plasmas, the principal ex-

amples are shock waves and current sheets. In most of the applications detailed above, we

expect some of these discontinuities to appear. For example, as discussed in section 1.1.4,

analytical models of pulsar magnetospheres typically expect at least one current sheet to

appear that separates the magnetospheres of the northern and southern hemispheres of

the pulsar. This means that it is necessary for the numerical method used to be able to

handle discontinuities well.

The equations of RMHD are a system of partial differential equations, involving deriva-

tives of the variables with respect to space and time. The derivatives in these equations

are the key issue for discontinuities; they obviously do not exist at discontinuities, so this

system will fail if one appears. This differential form of the equations is known as the

strong form because it prohibits discontinuous (or non-differentiable) solutions. If we in-
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stead integrate the equations over an arbitrary volume and over time then these differential

equations can be transformed into integral equations, in which these strict conditions on

the solutions can be relaxed, allowing for discontinuous solutions. This integral form of

the equations is known as the weak form.

Many numerical methods are based on solving the differential form of the equations. For

instance, in the finite difference method we start with a grid of points in the computational

domain where the exact value of the solution function is known. Using these known values,

the time derivative of the solution at those points is calculated based on the system of

equations, which is used to update the values by a time step. If there is a discontinuity,

then this method will generally fail to compute the derivatives correctly.

Of course, with a finite grid of points with non-zero spacing between each point, a

discontinuity in the data is indistinguishable from very high gradients. Thus discontinuities

in the data do not necessarily lead automatically to failure of the integration scheme.

Instead, other issues tend to occur such as spurious oscillations near the discontinuity.

In order to deal with discontinuities one of two methods is typically used: The first

method is to add artificial numerical dissipation to smooth out discontinuities, for instance

by adding artificial viscosity (Hartmann and Houston, 2002; Česenek et al., 2013). Al-

though this does allow these methods to handle discontinuities by smoothing them over

multiple grid points, the extra dissipation is obviously not satisfactory if we are interested

in resolving the discontinuities accurately.

The second method is to give special treatment to the discontinuities. This generally

involves an extra procedure that identifies discontinuities (Zanotti et al., 2015; Deppe et al.,

2022). After they have been identified, these specific points are then treated differently; for

example, one may use an entirely different integration scheme that handles them properly.

Finite Volume Schemes

Alternatively, we can use a shock-capturing scheme. Unlike the previous methods de-

scribed, a shock-capturing scheme can handle discontinuities without any special treat-

ment. One such method, very common in RMHD modelling (and fluids more generally),

is the finite volume (FV) method.

The FV method takes advantage of the fact that the equations of RMHD can be

expressed as a system of conservation laws, such as conservation of momentum and con-

servation of energy. The computational domain is split into a grid of cells, in which the

known quantities are cell averages of the conserved variables, instead of point values like

a finite difference method.

Since the quantities are conserved, the dynamics of the system can be modelled by



22

evaluating the flux of these quantities across cell boundaries cell averages. In some cases

we may also have source terms, which are sources that produce (or remove) conserved

quantities inside the cell itself; for example, for a resistive plasma the dissipation due to

electrical resistance appears as source terms.

The finite volume method is based on solving the weak form of the equations instead

of the strong form. As a result of using these integral equations instead of differential

equations, these methods can capture discontinuities without special treatment, and thus

are shock-capturing schemes.

Although the treatment of discontinuities in FV methods is superior to non shock-

capturing schemes, these methods can still run into problems with discontinuities; in

particular, for improved accuracy FV methods require spatial interpolation of variables

during the calculation of the fluxes. If this interpolation crosses a discontinuity, then the

result will be spurious oscillations.

There are now various methods for avoiding such issues, such as total variation di-

minishing (TVD) schemes (e.g. Balsara (2001)) or weighted essentially non-oscillatory

(WENO) schemes (e.g. Tchekhovskoy et al. (2007)). Generally, these methods work by

avoiding interpolation across the discontinuity, either by reducing the number of cells be-

ing interpolated over or by simply shifting the range of interpolated cells to avoid the

discontinuity.

For RMHD, FV techniques (and other conservative techniques) are highly effective

for modelling many cases, such as much of the scenarios above. They have proven very

successful at modelling a great many cases, and several different codes have been developed

for modelling RMHD — see for example HARM (Gammie et al., 2003), ECHO (Del Zanna

et al., 2007), CAFE (Lora-Clavijo et al., 2015), IllinoisGRMHD (Etienne et al., 2015) and

KORAL (Sądowski et al., 2013), among others.

However, it is not without its issues. The most notable for us is that when the magnetic

fields are too strong and σ is large, these methods can have difficulty modelling the system,

since in the limit of σ → ∞ the conservation equations of RMHD are degenerate and not

independent. Since several of the astrophysical cases described above involve these strong

magnetic fields, the current models of this type are insufficient.

The actual scheme that will be used later is a closely related method to the FV method,

known as a conservative finite difference method (CFD). Generally speaking, FD schemes

do not maintain conservation of variables like momentum, energy etc. down to numerical

precision. As noted above, methods like an FD method which is based on the differential

form should have issues near discontinuities.

However, our CFD method is an adaptation of an FV method, which allows it to avoid



23

this problem. In this case, the gradients are computed as the difference between fluxes

at the boundaries, which allows neighbouring cells to share fluxes again and maintain

conservation. In practice, our CFD method is extremely similar to an FV method, and

thus has similar advantages and drawbacks to such a method.

Force-Free Degenerate Electrodynamics

One of the most common methods of avoiding the issue at high magnetisation is to go to

the extreme end and model the case of RMHD with σ → ∞, a regime known as force-

free degenerate electrodynamics (FFDE). In this regime, the components related to the

inertia of the plasma (e.g. plasma pressure, rest-mass density etc.) are neglected entirely

and only the magnetic and electric fields are retained. Thus this regime is essentially a

vacuum solution of Maxwell’s equations.

Ideal RMHD assumes that the condition of perfect conductivity is satisfied (embodied

by the condition E = −v × B). The lack of v in this case (since the plasma is being

neglected, the plasma velocity v has no meaning) means that this condition must become

two separate constraints, E · B = 0 and B2 − E2 > 0.

A key aspect of FFDE is that the equations are not independent, so it is not actually

possible to ensure conservation of all conserved quantities, due to errors inherent to the

integration scheme. In particular, the equations of energy and momentum conservation

are not independent, and only have two independent equations.

This degeneracy makes numerical modelling of FFDE a little more tricky, since the

techniques of finite volume methods and conservative finite difference methods that allow

us to enforce conservation of the conserved variables to numerical precision can no longer

enforce this for all the variables, because we are trying to conserve seven different variables

with just five equations. If we try to evolve all of the equations, then truncation error

will cause them to disagree after each time step, i.e. the integration will give inconsistent

results.

Methods for solving FFDE can be effectively sorted into two types, based on the equa-

tions being solved. On the one hand, we have the S-B formulation, i.e. where Poynting

Flux S = E×B and magnetic field B are the conserved variables. This method evolves the

system using Faraday’s law to evolve B, and momentum conservation to evolve S. Some

of these methods also evolve the energy as well, in order to ensure energy conservation.

Komissarov (2002) presents an example of an S-B formulation. The scheme follows a

finite volume scheme, evolving B and S via conservation laws. This scheme differs however

when it comes to calculate E from S and B (which is necessary to calculate fluxes).

To find E, the simple provision E = (S × B) /B2 is used. This automatically enforces
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the two constraints E · B = 0 and B2 − E2 > 0. However, the resultant E does not

satisfy S = E × B. This condition is generally impossible to satisfy, as we would require

S ·B = 0 in order for this to be possible, which will be violated by errors in the integration.

In effect, this method eliminates the component of S parallel to B.

Besides not fully conserving momentum, the previous method also completely neglects

energy conservation, which McKinney (2006) points out may be the most important to

enforce due to the fact that the energy has larger non-linearity compared to the momenta.

Thus they suggest also evolving energy conservation. When it comes to calculate E, they

suggest using the same method for calculating E as before, except after calculating E as

above they alter the magnitude of E to match the energy as determined by integrating

the energy conservation equation. In this way energy conservation is conserved exactly,

but momentum conservation is even less accurate than before.

The second formulation for FFDE is the E-B formulation, which evolves B and E

directly using Faraday’s law for B and Ampères law (including the displacement current)

for E (Mahlmann et al., 2021). Ampères law requires the current density J , and thus

requires an Ohm’s law to relate the current to the electric and magnetic fields.

Although it is possible to evolve the system with just this, Gauss’ law applies a con-

straint on the electric field. Munz et al. (1999) point out that if this constraint is ignored,

the difference |∇ · E − ρc| may grow unbounded, thus this formulation also requires an

estimate for the charge density ρc for Gauss’ law, which itself requires the inclusion of

charge conservation as another evolution equation.

This method also requires a scheme to enforce the two constraints E · B = 0 and

B2 − E2 > 0, as otherwise these conditions can be violated. Various methods have been

proposed for this as well. For instance, Palenzuela et al. (2010) change E to enforce the

two conditions; first they project E into the subspace of vectors orthogonal to B to enforce

B · E = 0, and then if B2 − E2 < 0 they reduce the magnitude of E until B2 = E2.

Other authors instead use driver terms to enforce these conditions (Alic et al., 2012;

Parfrey et al., 2017). Effectively, this means artificial currents which act to correct the

violation of the conditions. This of course means that these conditions are not enforced

exactly and will be violated to some extent. However, the violations are significantly

reduced from what they would be without any correction.

Unfortunately, however it is modelled, FFDE suffers from a major drawback in that

some scenarios at high magnetisation cannot be modelled. In particular, current sheets

require full modelling of the plasma, as plasma heating means that the plasma cannot

be ignored, so the inertia of the plasma pressure becomes significant (Mahlmann et al.,

2021). Since there are important high-σ cases where current sheets appear, such as pulsar
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magnetospheres, this flaw is a major problem in modelling these cases.

Smoothed Particle Hydrodynamics

The RMHD fluid models described above are all Eulerian descriptions of the flow, meaning

that we have discretised the domain into a grid of discrete points where the flow parameters

such as velocity, pressure etc. are known. This mesh of grid points moves independently of

the fluid (if they move at all), and thus the fluid flows independently of the gird, through

these points.

However, it is also possible to model fluids from a Lagrangian description. In this

case, the locations of known quantities follow individual fluid parcels. In this sense, this

method is similar to a PIC method since we are following particles through the domain

— although in this case the forces acting on the particles are macroscopic parameters like

pressure.

One of the first Lagrangian numerical methods is that of Smoothed Particle Hydro-

dynamics (SPH). As a Lagrangian method, it follows a discrete, finite set of fluid parcels

around the domain as they are affected by various forces, e.g. gas pressure and the Lorentz

force. Each parcel has its own values for the macroscopic quantities of pressure, density

etc., and this means that instead of having these quantities known at a specific set of grid

points, we know them at a complex distribution of points.

However, like a finite volume method, each particle does not represent the quantities

at a particular location but instead a region surrounding it. The SPH method then

calculates the actual values of quantities like density, gas pressure etc. at each parcel

location by considering the smoothing length of each particle — essentially, these are

calculated as weighted averages of nearby particles, with more weight given to closer

particles (Monaghan, 1992; Martí and Müller, 2003; Price, 2012). This is quite similar to

the averaging scheme used in a PIC method to calculate the macroscopic quantities of the

current and charge densities.

This method has several unique advantages. The fact that the parcels will have a

tendency to be concentrated in regions of high density means that these regions will au-

tomatically receive higher accuracy, as the grid has effectively been refined automatically.

In addition, the meshless nature of a Lagrangian method means that this scheme is well-

suited to cases with complex geometries, as there is no preferred grid (Liptai and Price,

2019).

Unfortunately, this method is not without its drawbacks. Most notably, just like with

finite difference methods artificial viscosity is required to handle shocks (Martí and Müller,

2003), which is not desirable for accurate resolution of shocks. Moreover, for relativistic
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SPH it is not clear what form this viscosity should take to be begin with (Liptai and Price,

2019). Viscosity can also be required to damp unphysical oscillations as well (Rosswog,

2010).

SPH models have been used to model various systems in the realm of RMHD. For

example, Diener et al. (2022) used it to model a neutron star merger, while Barai et al.

(2011) used it to model accretion onto a supermassive black hole. Meanwhile, Huško and

Lacey (2023) used SPH to model an AGN jet interacting with the intra-cluster medium.

1.3 Structure of this Thesis

Altogether, we see that there are multiple astrophysical scenarios in which the magneti-

sation σ is high enough to cause problems. Although some methods such as FFDE and

PIC codes are able to make some progress in modelling these scenarios, these both have

major drawbacks that make them unsuitable for modelling these cases properly. Thus it

is highly desirable to develop a code that can handle the high magnetisations properly,

and it is this task that we will attempt in this thesis.

This Chapter gave a brief discussion of the placement of this project within the wider

field of RMHD.

Chapter 2 will introduce and briefly analyse the governing equations of RMHD as well

as the high magnetisation limit of RMHD, Force-free electrodynamics. This will include

a discussion of various exact solutions to the equations, to be used later for testing.

Next, Chapter 3 will go into detail regarding the numerical methods used to model the

system — both those which were previously considered and those which have been settled

on — before moving on to a discussion of our novel approach itself.

Chapters 4 and 5 will give results for 1D and 2D tests respectively, going into detail

regarding the strengths and shortcomings of the novel technique, and comparing results

for different alterations of the method.

Finally, Chapter 6 will conclude the project with a summation of the results, as well

as a discussion of further improvements and/or progress that may be possible.
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Chapter 2

RMHD & FFDE

This chapter will be an in depth look at RMHD, in particular a discussion of the equations

of RMHD and their basic properties, such as phase speeds of waves and hyperbolicity.

It will also discuss a few exact solutions of the equations, for use later in testing. The

same will also be done for the high-magnetisation limit of RMHD, known as Force-Free

Degenerate Electrodynamics (FFDE).

2.1 Ideal Relativistic Magnetohydrodynamics

Ideal RMHD concerns the dynamics of a relativistic plasma. This means that we are deal-

ing with an inviscid, compressible fluid with electromagnetic components and no resistivity.

Resistive plasmas are of interest in the study of astrophysical plasmas; for instance, con-

sider the “gaps” in the models of pulsar magnetospheres, where charged particles are not

abundant enough to render the plasma (almost) perfectly conducting. However, in this

project we will only be considering the ideal case of a perfectly conducting plasma.

This project will also only go as far as Special Relativity, not General Relativity.

General relativity is of course important — it is absolutely necessary to model black holes,

pulsars and supernovae — there was not sufficient time to include these effects as well. This

means we will not be including gravity, and greatly simplifies the equations, as instead of

a general metric tensor gαβ we will be using the Minkowski metric tensor of flat spacetime

gαβ = ηαβ =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (2.1)

(written here in Cartesian coordinates), which is of course much easier to deal with.
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Many authors have already developed several different conservative codes for modelling

RMHD in special and general relativity, such as Komissarov (1999a); Gammie et al. (2003);

Del Zanna et al. (2007); Lora-Clavijo et al. (2015). While these codes are very successful in

many areas, they all have one problem in common: they cannot handle high magnetisations

well (Komissarov, 2006), sometimes having difficulty with magnetisation as low as σ ≈ 1.

For instance, Porth et al. (2013) had to cap σ ≤ 3 for numerical stability in their model

of a pulsar wind.

There are couple of methods to get around this issue. One method employed by

Komissarov (2004b) is to simply pump extra plasma into regions where σ climbs too high.

Although this prevents the issue with high magnetisation, this is clearly unsatisfactory if

one wishes to study a case where high magnetisation is important.

Higher values of σ can be handled for isentropic flows, as the energy equation can

be eliminated (Komissarov et al., 2007a). In addition, Noble et al. (2009) used a fix

for the GRMHD code HARM (Gammie et al., 2003) based on parallel integration of

the adiabatic entropy transport equation. If high magnetisations ever caused a problem,

this conservation law could be substituted for the conservation of energy and avoid the

problems with high magnetisation. However, since shocks and current sheets are not

adiabatic and therefore violate entropy conservation, this is not helpful for cases involving

shocks, such as termination shocks in pulsar winds (Porth et al., 2013), or involving current

sheets such as pulsar magnetospheres (Spitkovsky, 2006).

In light of these issues, a model that can handle high-σ accurately is highly desirable.

2.1.1 Governing Equations

In covariant form, the conservation of energy and momentum can be concisely written

(Dixon, 1978; Anile, 1989)

∇αT
αβ = 0, (2.2)

where Tαβ is the stress-energy tensor, expressing the flux of the α component of 4-

momentum through the β-coordinate. In other words, Tαβ describes the flux of energy

and momentum through space and time.

This equation simply enforces energy and momentum conservation, corresponding to

β = 0 and β = (1, 2, 3) respectively. Since we are working only in special relativity, the

covariant derivative ∇α is greatly simplified, and effectively equivalent to ∂α in Cartesian

coordinates, the partial derivative with respect to the α coordinate.

In RMHD, Tαβ consists of two components: an inertial component Tαβ
(m) correspond-

ing to the stress-energy of the fluid itself (i.e. in the mass and internal energy of the
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fluid), and an electromagnetic component Tαβ
(e) corresponding to the stress-energy of the

electromagnetic fields. This is such that Tαβ = Tαβ
(m) + Tαβ

(e) .

If we assume that the fluid is inviscid and that there is no heat flux, the inertial

component Tαβ
(m) can be written in terms of the fluid properties as (Lichnerowicz, 1967;

Schutz, 2009)

Tαβ
(m) = wuαuβ + ηαβpg, (2.3)

where uα is the fluid 4-velocity, pg is the gas pressure, w(ρ, pg) is the enthalpy density.

Note that in relativity, the enthalpy density is given by w(ρ, pg) = ρ+ ρϵ+ pg, where ϵ is

the specific internal energy, and so includes the rest-mass energy in addition to the typical

non-relativistic enthalpy.

Meanwhile, the electromagnetic component Tαβ
(e) can be written in terms of the Faraday

tensor Fαβ as (Misner et al., 1973)

Tαβ
(e) = FαµF β

µ − 1
4η

αβFµνF
µν . (2.4)

With Eq. (2.2) and these two components, we now have a set of four conservation laws,

corresponding to the four rows of the Tαβ tensor. In addition to these equations, we also

have Maxwell’s equations for the electromagnetic fields,

∇α
∗Fαβ = 0, (2.5)

and

∇αF
αβ = Jβ, (2.6)

where Jβ = (ρc,J) is the 4-current with ρc the electric charge density and J the conven-

tional current density, while ∗Fαβ = 1
2ϵ

αβµνFµν is the dual of the Faraday tensor with ϵαβµν

the four-dimensional Levi-Civita Symbol. Although both of these are evolution equations

(except for β = 0 where F 00 = ∗F 00 = 0 means there is no time derivative in either case),

Eq. (2.6) is not used to evolve Fαβ and is only used in order to determine the 4-current

Jβ (if desired), just like in non-relativistic MHD. This is because Eq. (2.6) gives us the

evolution of the electric field, but the perfect conductivity condition below in Eq. (2.8)

gives us the electric field in terms of the velocity and magnetic field. In resistive RMHD

models, these equations can no longer be dropped; see for example Mattia et al. (2023).

The final evolution equation we need expresses the conservation of mass (Komissarov,

1999a),

∇α(ρuα) = 0. (2.7)

Of course, in some conditions these quantities are not conserved, for instance if there is

significant pair production generating new plasma. This would add source terms to right
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of Eq. (2.7), expressing this change in plasma density. These cases will not be considered

here.

In addition to these three evolution equations, we also need equation to make this ideal

RMHD: the perfect conductivity (PC) condition (Del Zanna et al., 2007)

Fαβuα = 0, (2.8)

which expresses the lack of electrical resistance in the fluid. If the fluid is not perfectly

conducting, then we would need to include the relativistic Ohm’s law. We will not be

considering a resistive plasma here, but a discussion of Ohm’s law is helpful to understand

where Eq. (2.8) comes from.

The simplest case of Ohm’s law is that of a scalar law, but in a sufficiently strong

magnetic field the resistivity becomes anisotropic. The key here is the ratio between

Larmor radius rl and mean free path λ (Petschek, 1958). The mean free path gives the

average distance a particle travels before a collision, while the Larmor radius is the radius

of the curved path the particle follows in a given magnetic field. That is, given that the

magnetic component of the Lorentz force acts perpendicular to the velocity of a charged

particle and the magnetic field, the magnetic field acts to cause to particle to follow a

curved path — either circular if the particle has no velocity parallel to the magnetic field,

or helical otherwise. This is given by

rl = mv⊥
B|q|

,

where m is the mass of the particle, v⊥ is the velocity of the particle orthogonal to B, and

q is the charge of the particle.

If rl ≫ λ, i.e. the Larmor radius is significantly larger than the mean free path, then the

particles will follow approximately straight paths between collisions, thus meaning that

the conductivity will be isotropic and therefore scalar. However, if rl becomes comparable

to λ then particle paths will be curved. Thus the travel of charged particles orthogonal to

the magnetic field is suppressed, hence conductivity in this direction is also suppressed.

Meanwhile, particles can still travel freely along the magnetic field lines. In this more

general case, a tensor formulation of Ohm’s law is thus more appropriate.

If we stick to a scalar law here, then Ohm’s law takes the form (Lyutikov and Uzdensky,

2003)

Jβ = ρ0
cu

β + σcF
αβuα, (2.9)

where σc is the fluid conductivity, and ρ0
c = −Jαu

α is the electric charge density in the

fluid frame.
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This law can be understood as having two components; the first term denotes current

due to advection of charges with the fluid, while the second is current forced by the electric

and magnetic fields. If we assume that the current Jβ is finite, then since the second term

must remain finite also, as σc → ∞ we must have the condition Eq. (2.8).

Another aspect worth mentioning is entropy conservation. Entropy can be defined

using Gibbs’ equation (Eckart, 1940)

Tds = dϵ+ pd

(1
ρ

)
, (2.10)

where T is the absolute temperature of the fluid, ϵ is the specific internal energy of the

fluid and s is the specific rest entropy, i.e. the specific entropy as measured by an observer

moving with the fluid.

Taub (1948) showed that if we use this equation with Eqs. (2.2) and (2.7) and let

B = E = 0 (i.e. an unmagnetised gas), then conservation of energy for an ideal fluid can

be written as

ρTuα∇αs = 0, (2.11)

so conservation of mass, momentum and energy implies constant entropy along streamlines,

much like the non-relativistic case. This means that entropy is conserved, provided that

the flow is continuous. If the flow has discontinuities, then when the streamlines intersect

them the variables can have a discontinuity and overall entropy conservation can thus be

violated.

Harris (1957) further showed that similar arguments can be applied to a relativistic,

magnetised plasma with B and E non-zero to obtain

ρTuα∇αs = Jc · E′, (2.12)

where Jc = J − ρcv is the conduction current (the electric current minus the advection

current, the current due to advection of charged particles), and E′ is the electric field as

measured by an observer moving with the fluid,

E′ = γ (E + v × B) . (2.13)

The assumption of perfect conductivity Eq. (2.8) implies that E′ = 0, and therefore en-

tropy is also constant along streamlines for an ideal, magnetised plasma as well. Naturally,

for a resistive plasma E′ = 0 is generally not true and so entropy is not conserved, even

for continuous cases.

Equation of State

The final key we need to close this system is an equation of state, relating the relativistic

enthalpy density w (or alternatively specific internal energy ϵ) to the rest mass density
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ρ and gas pressure pg, i.e. we need a relation of the form w = w(ρ, pg). The form of

this equation depends on the properties of the plasma being described; the most common

assumption is that of an ideal gas, a gas in which all the particles are randomly moving

point particles without inter-particle interactions. In the non-relativistic case this reduces

very simply as the ratio of specific heats in this case is constant, independent of the density

and pressure and dependent only on the degrees of freedom of the individual molecules.

This means we can write the internal energy for the non-relativistic case of an ideal gas as

e = Γ
Γ − 1pg,

where Γ = Cp

Cv
is the ratio of specific heats, and e is the internal energy of the gas (notably

not including the rest-mass energy of the fluid in the non-relativistic case). Unfortunately,

Γ is not constant for a relativistic perfect gas, so the equation of state for a perfect gas is

much more complicated in this case.

Suppose a gas is made of N particle species which are all individually conserved, so

that

∇αD
α
I = 0, (2.14)

where Dα
I = nIu

α is the 4-particle flux of species I, and nI is the number density of species

I in the rest frame. Although generally we could use a multi-fluid description of the fluid,

where each particle species is represented by a separate fluid and has its own velocity, here

we will only consider the simplified case where all N species share the same 4-velocity uα,

the fluid velocity. The total particle number density is given by

n =
N∑

I=1
nI , (2.15)

so given the particle rest mass of each species mI we must have

ρ =
N∑

I=1
nImI , (2.16)

for the fluid rest mass density.

Synge (1957) gives the following equation of state for a perfect gas

w =
N∑

I=1
nImIG(ξI) , (2.17)

pg =
N∑

I=1

nImI

ξI
, (2.18)

where ξI = mI

T
, with T the gas temperature, and

G(ξ) = K3(ξ)
K2(ξ) , (2.19)
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where the Kν(·) are the modified Bessel functions of the second kind. The plasma tem-

perature T is assumed to be the same for all particle species at any given location, and

can be calculated from the ideal gas law

pgV = NT, (2.20)

where V is a given volume and N is the number of particles in said volume. Since the

number density n = N/V , we can rearrange for temperature as

T = pg

n
, (2.21)

so we can calculate the temperature from the gas pressure pg and the particle number

density n. Eqs. (2.17) and (2.18) therefore constitute the required equation of state for a

relativistic ideal gas.

The adiabatic sound speed as is given by

a2
s =

(
∂p

∂ϵ

)
s
, (2.22)

where s is the entropy. We can also calculate the ratio of specific heats for this relativistic

gas as

Γ =
∑N

I=1 nIG
′(ξI) ξ2

I∑N
I=1 nI

(
G′(ξI) ξ2

I + 1
) , (2.23)

which we can then use to write Eq. (2.22) as

a2
s = Γpg

w
. (2.24)

Using Eqs. (2.17), (2.18) and (2.23) we can then show that for an ultra-relativistic

gas with pg ≫ ρ (i.e. plasma internal energy density much larger than rest-mass energy

density), we have that

Γ → 4
3 , a2

s → 1
3 . (2.25)

Since the speed of sound as is an increasing function of pg, the speed of sound for a

relativistic ideal gas is therefore limited to as = c/
√

3 ≈ 0.577c, a little more than half the

speed of light.

Analogy with the non-relativistic case would lead one to search for a ratio Γ⋆ as

w = ρ+ Γ⋆

Γ⋆ − 1pg, (2.26)

and we can then use Eqs. (2.17) and (2.18) to write this as (Falle and Komissarov, 1996)

Γ⋆

Γ⋆ − 1 =
∑N

I=1 nImI (G(ξI) − 1)∑N
I=1 nImIξ

−1
I

. (2.27)

In non-relativistic, ideal gases these two ratios Γ and Γ⋆ are the same. However, it

is important to note that in the relativistic case the two are no longer necessarily the
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(a) (b)

Figure 2.1: Γ (black) and Γ∗ (red) for an Electron-Positron (a) and an Electron-Proton

gas (b), with equal ratios of particle species in both cases.

same, so that generally Γ ̸= Γ⋆. These two are generally only equal if the gas is either

non-relativistic so that pg ≪ ρ, or if the gas is ultra-relativistic so that pg ≫ ρ. Although

they are asymptotically equal for the non-relativistic and ultrarelativistic cases, in the

transition between these extremes their values diverge.

Fig. 2.1 shows a comparison of Γ and Γ⋆ for an electron-positron gas and an electron-

proton gas (with equal number densities of each particle species), the most common types

of plasma in astrophysical situations. Note how the electron-proton gas appears two have

two regions where increased temperature leads to decreased Γ/Γ⋆. This is a product of

the fact that such a plasma consists of particles of two different masses.

The temperature of the particles can be related to the average kinetic energy per

particle. Since we have assumed that at any given location all particle species have the

same temperature, each particle species gave the same average energy per particle. Thus

the particles with less mass reach the relativistic regime — where the particles are moving

at significant fractions of the speed of light — before the more massive particles.

Although for accuracy’s sake we should be using the above equation of state described

in Eqs. (2.17) and (2.18), for the purposes of testing our numerical model it is unnecessary

to use this full equation of state; we can see from Fig. 2.1 that although there are relativistic

corrections to be made, they are not particularly significant, and only serve to change the

ratio of specific heats (for a monatomic gas) from 5
3 in the non-relativistic regime to 4

3 in

the ultrarelativistic regime.

Furthermore, this inclusion also makes the calculation of some exact solutions much

more cumbersome, especially considering the presence of Bessel functions in Eq. (2.17).

We would also need to include Eq. (2.14) for all N species, unless there is only one species

N = 1 (in which case conservation of particle number is equivalent to Eq. (2.7), mass

conservation).
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For the purposes of testing our new numerical scheme this therefore adds an unneces-

sary complication, and as such for the remainder of this thesis we will assume a constant-Γ

gas law

w(ρ, pg) = ρ+ Γ
Γ − 1pg, (2.28)

and use the ultra-relativistic value for Γ = 4
3 . For this value of Γ, the gas law reduces to

w(ρ, pg) = ρ+ 4pg, and the speed of sound retains the limit of a2
s → 1

3 .

2.1.2 Special Relativistic 3+1 Splitting

While the covariant forms of the equations of RMHD (Eqs. (2.2), (2.5), (2.7) and (2.8))

are concise and often convenient to work with analytically due to all the tools of tensor

calculus, for the purposes of numerical integration it is more convenient to express these in

the form of conservation laws in terms of primitive properties of the fluid, such as density

ρ, gas pressure pg etc.

First of all we can start with Eq. (2.7), conservation of mass. Under special relativistic

splitting and in Cartesian coordinates this becomes

∂t

(
ρu0

)
+ ∇ · (ρu) = 0, (2.29)

where we recall that u the three spatial components of the 4-velocity, and u0 = γ is the

fluid Lorentz factor, given by

γ2 = u2 + 1 = 1
1 − v2 . (2.30)

Next we have Eq. (2.2), the conservation of energy and momentum. We can write

out the Electromagnetic component Tαβ
(e) in Minkowski coordinates by first defining the

Maxwell stress tensor

σij = EiEj +BiBj − 1
2
(
E2 +B2

)
δij , (2.31)

where δij is the Kronecker delta, i.e.

δij =

 1 if i = j

0 if i ̸= j
. (2.32)

Now we can write out the electromagnetic component of the stress-energy tensor Tαβ
(e) as

(Misner et al., 1973)

Tαβ
(e) =



1
2
(
E2 +B2) (E × B)x (E × B)y (E × B)z

(E × B)x −σxx −σxy −σxz

(E × B)y −σyx −σyy −σyz

(E × B)z −σzx −σzy −σzz


. (2.33)
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With this expression for Tαβ
(e) we are ready to write out the equations; Eq. (2.2) splits

separately into the conservation of energy

∂t

(
wu0u0 − pg + 1

2
(
E2 +B2

))
+ ∇ ·

(
wu0u + E × B

)
= 0, (2.34)

and the conservation of momentum

∂t

(
wu0u + E × B

)
+ ∇ ·

(
wuu − EE − BB +

(
pg + 1

2
(
E2 +B2

))
δij
)

= 0, (2.35)

which is a vector equation, consisting of three equations in one, one for each dimension of

space.

The final set of evolution equations is in Eq. (2.5), Gauss’ law for magnetism and

Faraday’s law. We can write out the Faraday tensor in Minkowski coordinates in terms of

the magnetic field B and electric field E as

Fαβ =



0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


, (2.36)

so the time component of Eq. (2.5) gives us Gauss’ law for magnetism, the divergence-free

condition on B

∇ · B = 0, (2.37)

while the space components give Faraday’s law

∂tB − ∇ × E = 0. (2.38)

Of particular note here is how the divergence-free condition is not an evolution equation,

and instead acts as a constraint on B. This is of particular importance in 2D and higher

models, as particular care needs to be taken to ensure that this constraint remains satisfied.

We can also write out the remaining two of Maxwell’s laws, although as noted previously

with perfect conductivity these equations are not used for the evolution of the system.

From the time component of Eq. (2.6) we have Gauss’ law

∇ · E = ρc, (2.39)

while the space components give Ampères’ law

∂tE − ∇ × B = −J . (2.40)

Note that unlike non-relativistic MHD we can not neglect the displacement current ∂tE

here.
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The time component of the PC condition Eq. (2.8) gives

E · u = 0. (2.41)

Since u is parallel to v with only a factor of γ ̸= 0, we can also write this as E · v = 0.

Finally, the spatial components of Eq. (2.8) give

E = −v × B. (2.42)

This perfect conductivity condition implies several other conditions on E: First, it clearly

implies Eq. (2.41), making that equation superfluous. Second, it implies that E = 0 in the

fluid frame, where v = 0. Third, it implies B · E = 0. Finally fourth, with the condition

that the fluid is not superluminal v < 1 it implies that B2 > E2. For the latter two, the

expressions B · E and B2 − E2 are both Lorentz invariants, and therefore true in any

frame, as we would expect.

Eqs. (2.29) to (2.42) constitute the complete equations of RMHD, after we include the

equation of state Eq. (2.28). We could substitute for E in these equations using Eq. (2.42),

although for our purposes this only serves to make the equations even more complex. In

order to study the system analytically, we can change the equations into another form.

Following Anile (1989), we now define the magnetic 4-vector

bα = 1
2ϵαβγδu

βF γδ. (2.43)

In the fluid frame bα = (0,B), so since b2 is a Lorentz invariant we find that in any

frame, the value of b2 is equal to the value of B2 in the fluid frame. In the laboratory

frame, the components of bα are related to B and E via

b0 = B · u, b = B + b0u

u0 , b2 = B2 − E2,

B = bu0 − ub0, E = −u × b,

where we have used the PC condition to get E in terms of u and b.

Given bα, the covariant form of the RMHD equations is simpler, as the two tensors

Tαβ and Fαβ can be written

Tαβ =
(
w + b2

)
uαuβ +

(
pg + 1

2b
2
)
ηαβ − bαbβ, (2.44)

Fαβ = bαuβ − bβuα. (2.45)

Note that this vector bα is only useful due to the PC condition Eq. (2.8), as otherwise we

cannot cancel the electric field.
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We can thus rewrite the equations of RMHD using this to obtain (Anile, 1989; Komis-

sarov, 1999a)

∂t

((
w + b2

)
u0u0 −

(
pg + 1

2b
2
)

− b0b0
)

+ ∇ ·
((
w + b2

)
u0u − b0b

)
= 0, (2.46)

for energy conservation,

∂t

((
w + b2

)
u0u − b0b

)
+ ∇ ·

((
w + b2

)
uu − bb +

(
pg + 1

2b
2
)
δij
)

= 0, (2.47)

for momentum conservation, and

∂tB + ∇ × (u × b) = 0, (2.48)

for Faraday’s law (this form with E eliminated is often called the induction equation).

Mass conservation is unchanged of course, given that there is no input from the electro-

magnetic fields.

Note how b2 = B2 − E2 appears together with the gas pressure pg in Eq. (2.44), and

thus also appears with it in Eqs. (2.46) and (2.47). This term (with a factor of 1/2, so 1
2b

2)

is called the magnetic pressure pm, and acts similar to the gas pressure. It is equivalent

to the magnetic pressure in the non-relativistic case. As the magnitude of a 4-vector, this

value is a Lorentz invariant, much like the gas pressure pg, the rest-mass density ρ, and

the enthalpy density w.

After applying condition Eq. (2.42), these equations are altogether a total of eight

differential equations with eight unknowns and one constraint, Eq. (2.37). In 1D this

system reduces to seven differential equations, as Eq. (2.37) reduces to ∂xBx = 0, while

the x-component of Faraday’s law Eq. (2.48) reduces to ∂tBx = 0. So in 1D these two

equations enforce that Bx is constant in both space and time, and we have no need to deal

further with the divergence-free condition.

2.1.3 Linear Theory

To help understand the dynamics of RMHD, we will look into the behaviour of linear waves.

Non-linear phenomena like shock waves and rarefaction waves can also be related to small-

amplitude, linear counterparts (Toro, 1997), thus this will be helpful for constructing exact

solutions for testing the code. In addition, the linearisation is also of great interest for

numerical methods based on Riemann solvers, such as the numerical method used in this

project discussed later in section 3.1.2.

We are looking for small amplitude, plane wave solutions of the equations Eqs. (2.29)

to (2.42). In the most general case (but neglecting source terms), we are working with a

system of equations of the form
∂Q

∂t
+ ∂F x

∂x
= 0, (2.49)
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where Q is a vector of conserved quantities, and F x = F x(Q) is a vector of x-fluxes. Note

that we have assumed the plane wave is parallel to the y-z plane, so we can drop y- and

z-derivatives. A non-parallel plane wave can easily be transformed into a parallel one by

rotation, so we have not lost any details.

We now look for plane wave solutions of the form

Q(x, t) = Q0 + Q1e
i(kx−ωt), (2.50)

where Q0 is a constant background state, Q1 is a small perturbation and k, ω are the

angular wave-number and angular frequency of the wave respectively.

Inserting this into Eq. (2.49), we obtain

∂

∂t

(
Q0 + Q1e

i(kx−ωt)
)

+ ∂

∂x
F x
(
Q0 + Q1e

i(kx−ωt)
)

= 0, (2.51)

which comes out to

−iωQ1e
i(kx−ωt) + A

(
Q0 + Q1e

i(kx−ωt)
)
ikQ1e

i(kx−ωt) = 0, (2.52)

where A = ∂F x

∂Q
is the Jacobian of F x with respect to Q. If we use the assumption that

Q1 is small compared to Q0, then the Q1-dependence of A can be dropped so that after

rearranging we have (
A(Q0) − ω

k
I

)
Q1 = 0, (2.53)

where I is the identity matrix.

In other words, the plane waves have phase velocity µ = ω/k given by the eigenvalues

of A(Q0), and the perturbation vectors Q1 of each wave are the eigenvectors.

Thus we need to find the eigenvalues and eigenvectors of A for our system. Performing

this analysis on our system however is easier said than done, given its complexity. One way

of doing this is to solve the system in the fluid frame with uα = (1, 0, 0, 0), a far simpler

case, and then use Lorentz transformations to find the solution in the general case.

Alternatively, we could greatly simplify the problem if the system were written in

covariant form, since then we would have access to the powerful tools of tensor calculus.

For this, the vector of unknowns must be constructed of 4-vectors and 4-scalars. For

RMHD, these could be uα, bα, pg, s, where s is specific entropy. However, we have ten

unknowns here, so this requires ten evolution equations instead of the seven we have in

1D.

To overcome this problem, Anile and Pennisi (1986) used an ingenious method to

construct three more evolution equations by transforming the three constraints we have

into evolution equations; these constraints being the divergence-free condition Eq. (2.37),
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as well as two more constraints on the 4-vectors uα and bα: uαu
α = −1 and uαb

α = 0.

This allows us to write the system in terms of the primitive vector U = (uα, bα, pg, s).

As a consequence of adding three extra evolution equations to the system, three new

unphysical waves appear in the solution. These waves can easily be identified as the only

three waves which break the constraints these extra equations were derived from.

We will first present the results of Anile and Pennisi (1986) in covariant form; however,

before that we need to introduce a covariant wavevector following from Friedrichs (1954,

1974).

First, suppose that the position of a wavefront is given by

ϕ(xα) = 0, (2.54)

where ϕ is a 4-scalar and a function of position xα, so that the wavefront is on a level

curve of ϕ.

Let µ be the wave speed and n the unit vector in the direction of travel of the wavefront

in the Laboratory frame Σ. Now define a covariant vector ϕα such that in the frame Σ we

have

ϕα = (−µ,n) , (2.55)

which is of course related to ϕ(xα) as the wavevector ∂αϕ normalised to ϕαϕ
α = 1 − µ2.

Now further introduce the unit vectors ξα = (−1,0) and χα = (0,n). These vectors

therefore satisfy

ϕα = µξα + χα, ξαξ
α = −1, χαχ

α = 1, ξαχ
α = 0, G = ϕαϕ

α = 1 − µ2. (2.56)

In our case we are only interested in waves travelling along the x-axis in the frame Σ, so

we have

ξα = (1, 0, 0, 0) , χα = (0, 1, 0, 0) , ϕα = (µ, 1, 0, 0) . (2.57)

This vector ϕα was introduced by Friedrichs (1954, 1974) in order to formulate hyperbolic

laws in covariant form.

Eigenvalues

Anile and Pennisi (1986) derived from their augmented model the following expression for

the eigenvalues

Ea2A2N = 0, (2.58)

where

A = Ea2 − B2, (2.59)
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N = w
(
e′

p − 1
)
a4 −

(
w + e′

pb
2
)
a2G+B2G, (2.60)

a = ϕαu
α, B = ϕαb

α, E = w + b2, e′
p =

(
∂e

∂p

)
s

= 1
a2

s

.

With Eq. (2.57) we have that

a = ux − µu0, B = bx − µb0. (2.61)

Since E > 0, Eq. (2.58) generally has the following solutions:

1. One solution for a2 = 0, a repeated root,

2. Two solutions for A2 = 0, both repeated roots,

3. Four solutions for N = 0.

We can now obtain the phase speeds,

µm = vx = ux

u0 , (2.62)

for material waves advecting with the fluid and corresponding to a = 0,

µa = bx ± ux
√

E
b0 ± u0

√
E
, (2.63)

for Alfvén waves, corresponding to A = 0, and

u4
0 (µms − vx)4

(
1 − ϵ2

)
+
(
1 − µ2

ms

)(a2
s

E

(
bx − µmsb

0
)2

− u2
0 (µms − vx)2 ϵ2

)
= 0, (2.64)

for Magneto-Sonic waves, corresponding to N = 0 and where

ϵ2 = a2
s + s2 − a2

ss
2, s2 = b2

E
. (2.65)

Unfortunately, Eq. (2.64) is a quartic polynomial in µms and does not generally permit

separate expressions for the fast and slow magneto-sonic waves, unlike MHD (Lichnerowicz,

1967; Keppens and Meliani, 2008). If calculating these speeds is necessary in the model

then we need to be able to solve a quartic polynomial — fortunately, this is possible

analytically.

As it turns out, just like in the non-relativistic case of MHD these seven types of waves

always appear in the same order of phase speed. That is, the phase speeds always satisfy

the following (Keppens and Meliani, 2008)

−1 ≤ µ−
f ≤ µ−

a ≤ µ−
s ≤ µm ≤ µ+

s ≤ µ+
a ≤ µ+

f ≤ 1, (2.66)

where µ±
f and µ±

s are the fast and slow MS phase speeds respectively, and where the sign

of ± indicates left-going waves for − and right-going waves for +. Note that these are left
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Figure 2.2: Phase speeds in the fluid frame. The phase speeds are calculated for the state

B = (3, 0, 0), ρ = 1, pg = 2. In this plot, the red line indicates fast speed, the blue line is

Alfvén speed, and the green line is the slow speed. The outermost dashed circle is the speed

of light, and the dotted circle tangent to the slow speed is at the adiabatic sound speed as.

The remaining dotted circles are at constant velocities of 0.1, 0.2, ..., 0.9.

or right going in the fluid frame; in an arbitrary frame, the fluid may have a high enough

velocity that µ−
s > 0 or even µ+

f < 0, for example.

From comparison to non-relativistic MHD we expect one material wave and two Alfvén

waves, and as such we expect that the three additional waves introduced by the augmented

system are an extra wave travelling with the material wave, and two additional waves

travelling with the Alfvén waves, and this is exactly the case (Anile and Pennisi, 1986).

We can thereby refer to the additional material wave the “pseudo-material” wave and the

additional Alfvén waves the “pseudo-Alfvén” waves.

The group speed of each wave behaves similarly to MHD (Keppens and Meliani, 2008);

fast waves are roughly the same between phase and group speed in all direction and Alfvén

waves follow the magnetic field lines advected by the fluid flow. Slow waves follow magnetic
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Figure 2.3: Group speeds in the fluid frame. The plot has the same state and plot

description as Fig. 2.2.

field lines to an extent, although not exactly. To help visualise these, see Figs. 2.2 and 2.3

for a plot of the phase and group speeds in the fluid frame.

In these plots, we are showing the phase or group speeds of each of the three wave types

in each direction. For the phase speed plot, this represents the phase speed of a plane

wave in each direction. For the group speed plot, this represents the speed and direction

in which energy is carried from the system. That is, if energy is inserted into the system

at the centre of the plot, the group speed plot shows the speed and direction in which the

energy is carried by each wave type. The group speeds for these plots are calculated from

the phase speeds via a Huygens construction (Keppens and Meliani, 2008).

For a low magnetisation σ ≪ 1 plasma, the fast phase and group speeds approach the

speed of sound as in all directions, since the fast wave in the limit of no magnetisation

turns into a normal sound wave in RHD (Relativistic Hydrodynamics). Meanwhile, the

slow and Alfvén waves travel together at the same speed down field lines, with their speed

approaching 0 as σ → 0, effectively disappearing in RHD.



44

Figure 2.4: Phase speeds in the laboratory frame. The phase speeds are calculated for

the same state as Fig. 2.2, after a Lorentz boost of 0.5c towards the lower right. In this

frame B = (3.232,−0.2321, 0) and the 4-velocity is u = (0.408, 0.408, 0) (indicated by the

black dot), while ρ and pg are unchanged by the Lorentz boost. The plot setup is otherwise

the same as in Fig. 2.2.

As magnetisation increases, the fast speed begins to approach the speed of light, except

exactly down field lines where it retains the speed of sound, as. The Alfvén and slow speeds

come up to meet it, until the slow and Alfvén speeds also reach the speed of sound down

field lines.

At this point, a transition occurs, and as magnetisation increases the fast Alfvén speed

continues to increase as the fast speed down field lines begins to increase beyond as.

Meanwhile, the sound speed is no stuck to as along field lines.

As magnetisation increases further to σ ≫ 1, the fast speed approaches the speed of

light in all directions, while the Alfvén wave approaches a wave travelling at the speed of

light down magnetic field lines. Meanwhile, the slow wave approaches a wave travelling

at as down field lines instead.
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Figure 2.5: Group speeds in the laboratory frame. The plot has the same state and plot

setup as Fig. 2.4. Compare this case to the fluid frame in Fig. 2.3; note how relativistic

effects compress speeds that are closer to the speed of light in this frame and expands speeds

that are closer to 0.

Thus besides the limit of the speed of light c, phase and groups speeds in RMHD are

quite similar to that of MHD (Keppens and Meliani, 2008). The main differences are in

the specifics of the degeneracies (i.e. where multiple waves have the same phase speed), as

we will discuss in section 2.1.3.

Eigenvectors

As the non-physical waves have the same eigenvalues as some of the physical waves, we need

a way to find a basis of these eigenspaces, such that the required eigenvectors are physical.

As noted above, physical waves should not change the constraints that we included in the

augmented system, and we can use these to separate out the non-physical waves. From

this, we obtain the following eigenvectors, in U = (uα, bα, pg, s) space (Anile and Pennisi,

1986):
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The material wave:

rm = (0α, 0α, 0, 1) . (2.67)

The Alfvén waves:

ra =
(
ζα,

B
a
ζα, 0, 0

)T

, (2.68)

where ζα = ϵαβγδϕ
βuγbδ.

The magnetosonic waves:

rms = (κα, τα,Aa, 0)T , (2.69)

where

κα = a2
s − 1
a2

s

(
a4

G
(ϕα + auα) − a2B

w
bα

)
, τα = B

a
κα + A

w

(
a

a2
s

bα − Buα
)
.

The pseudo-material wave:

rpm = (0α, ϕα, 0, 0)T . (2.70)

The pseudo-Alfvén waves:

rpa =
(
θα,

B
a
θα, 0, 0

)T

, (2.71)

where θα = ϵαβγδζ
βϕγbδ

Thus we have expressions for the eigenvectors in U -space, which can easily be trans-

formed into expressions for the variation of the magnetic field B instead of bα, or other

variables such as density ρ and 3-velocity v as desired.

These eigenvectors are fairly complex and difficult to understand — although we can

point out to things. First, the material wave is the only wave that has a change in entropy,

so in the linear regime only material waves change entropy. Second, for the Alfvén waves

the variation in magnetic field and 4-velocity is parallel, and they do not change the

pressure. Since they also do not change entropy, the density must also be constant.

To help visualise these eigenvectors further we can write them in the fluid frame, and

we can also give the variation in other variables in this frame too. In the fluid frame, the

phase speeds of each wave are given by (Komissarov, 1999a)

µm = 0, µ2
a = B2

x

E
, µ4

ms −
(
a2

sµ
2
a + ϵ2

)
µ2

ms + a2
sµ

2
a = 0, (2.72)

where we note that it is now possible to separate the magnetosonic waves into slow and

fast modes as

µ2
f =

a2
sµ

2
a + ϵ2 +

√
(a2

sµ
2
a + ϵ2)2 − 4a2

sµ
2
a

2 , (2.73)
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µ2
s =

a2
sµ

2
a + ϵ2 −

√
(a2

sµ
2
a + ϵ2)2 − 4a2

sµ
2
a

2 . (2.74)

We can also discuss the eigenvectors in this frame; for the following, we will discuss

only the right-going waves, µ ≥ 0. In the case of the material wave this is very simple

with only a variation in entropy — thus corresponding to a variation in only density. All

other variables (i.e. pg,u,B and E) are constant, and the phase speed is µm = 0 as well,

so this is simply advected by the fluid.

Alfvén waves feature no variation in pressure or entropy, and therefore density is con-

stant as well. For other variables we have

du = sgnBx√
E


0

Bz

−By

 , dB =


0

−Bz

By

 , dE = sgnBx√
E


−
(
B2

y +B2
z

)
BxBy

BxBz

 . (2.75)

Here we can see that in the fluid frame, the magnetic variation dB is orthogonal to the

component of B perpendicular to the x-axis, B⊥.

By contrast, magnetosonic waves have variation in all variables besides entropy. For

these remaining variables, the variation in the fluid frame is

du =


µ2

ms − µ2
a

BxBy

E
(
a2

s − 1
)

BxBz
E

(
a2

s − 1
)
 , dB = η2

µms


0

By

Bz

 , dE = η2


0

Bz

−By

 ,

dpg = wa2
s

µms

(
µ2

ms − µ2
a

)
, dρ = ρdpg

wa2
s

= ρ

µms

(
µ2

ms − µ2
a

)
,

(2.76)

where η2 = µ2
ms − a2

sµ
2
a.

In this case we can see that in the fluid frame, the variation in magnetic field dB is now

parallel to B⊥ instead, with the tangential velocity component u⊥ parallel to that as well.

However, there is a longitudinal component of du provided µ2
ms ̸= µ2

a. The compression

in gas pressure and density is naturally proportional to this longitudinal component. We

can also see that there is no variation in Ex as well, meaning that at least in this frame

only Alfvén waves can change Ex.

Another point to note is that if we insert the expressions for µ2
ms from Eqs. (2.73)

and (2.74) into η2, the factor of dB and dE, then we find that this expression is only zero

if: Bx = 0, the degenerate case with µa = µs = 0; a2
s = 1, which is not possible with

our equation of state; or w = 0, in which case there is no plasma. Thus there is always a

magnetic and electric component to this eigenvector.

The difference between fast and slow modes is subtle, but we can see from Eq. (2.66)

that the sign of µ2
ms − µ2

a will flip. So the longitudinal variation of u as well as the
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variations of pg and ρ will all change sign, even as the variation of other components such

as u⊥ retain their sign.

Degeneracies

A system of PDEs with all eigenvalues real and a diagonalisable Jacobian is called hyper-

bolic, and a hyperbolic system with all eigenvalues distinct is called strictly hyperbolic

(LeVeque, 2002). While RMHD and the augmented system are both hyperbolic, the aug-

mented system of RMHD is never strictly hyperbolic, as the non-physical waves match the

phase speeds of some of the physical waves. As these waves are artificial and not present

in the original RMHD, we will no longer discuss them.

But unaugmented RMHD is also not strictly hyperbolic; just like in MHD the eigen-

values are repeated in a few specific cases, although in the general case all the eigenvalues

are distinct (Anile and Pennisi, 1986). In the degenerate cases where they are not distinct,

while the expressions for the eigenvalues given above are functional, the expressions for the

eigenvectors either diverge or are not linearly independent of the eigenvector expressions

at the same phase speed.

So in these degenerate cases we require different expressions for the eigenvectors with

the same phase speeds. The remaining distinct eigenvectors do not require correction.

To start with, it is easier to understand the degeneracies if we begin in the fluid frame.

The same degeneracies should be present in all frames, so this will describe all possible

degeneracies. Using the phase speeds given for this frame in Eqs. (2.72) to (2.74), we find

that RMHD has the same degeneracies as MHD (Komissarov, 1999a):

Case 1: if Bx = 0, then µm = µ±
s = µ±

a = 0

Case 2: if B⊥ = 0, then


µ±

f = µ±
a if s > as,

µ±
s = µ±

a if s < as,

Case 2a: if B⊥ = 0 and s = as, then µ±
s = µ±

a = µ±
f ,

where B⊥ is the component of B perpendicular to the x-axis, and where s2 = b2/E .

To identify these degeneracies in the Laboratory frame it is convenient to find the

covariant form of these conditions.

Case 1 : We are looking for a solution µ of both a(µ) = 0 and N (µ) = 0. Since a = 0

in this case, we can insert a = 0 into Eq. (2.60) which tells us that µm is a solution of

N (µ) = 0 if and only if B = 0. In the fluid frame this is equivalent to Bx = 0 as before.

In the laboratory frame, this reads (Komissarov, 1999a)

0 = B = bx − vxb0 = Bx

u0 .
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Since u0 ≥ 1, in the Laboratory frame the condition still reads Bx = 0.

Case 2 : In this case we are looking for a solution of both A(µ) = 0 and N (µ) = 0.

Inserting B2 = Ea2 from Eq. (2.59) into Eq. (2.60) easily gives us that provided a ̸= 0 the

solution of A(µ) = 0 satisfies N (µ) = 0 if and only if

b2 = B2

a2 +G
,

In the fluid frame this reduces to B⊥ = 0. However, the fact that B⊥ = 0 in the

fluid frame does not necessarily indicate that it is degenerate in the laboratory frame. In

fact, it is not even the case that both left and right going waves will be degenerate at

the same time; unlike the MHD case, it is now possible to have µ+
a = µ+

s or µ+
f without

µ−
a = µ−

s or µ−
f and vice versa (Komissarov, 1999a).

Case 2a: Both s and as are 4-scalars so the condition s = as is covariant. Therefore

whether we have µ±
s = µ±

a or µ±
f = µ±

a or even µ±
s = µ±

f = µ±
a is easily determined from

s and as.

Figs. 2.4 and 2.5 shows the phase and group speeds in an arbitrary frame; degeneracies

correspond to points where the phase speeds of different waves are equal. Note how the

points where µ±
f and µ±

a are equal (where the red and blue lines are tangent) are not

opposite each other with respect to the centre of the plot. This shows how it is possible

to have only one direction degenerate at once.

2.1.4 Non-relativistic MHD

Now that we have an understanding of relativistic MHD, it is worth contrasting it to the

non-relativistic case. Having split the covariant equations into time and space derivatives

and rewritten the equations of RMHD (Eqs. (2.29), (2.34), (2.35), (2.37), (2.38) and (2.42))

into the alternate forms using b (Eqs. (2.29), (2.37) and (2.46) to (2.48)), the equations

of RMHD now bear a clearer resemblance to the equations of non-relativistic MHD in

conservation form. Those equations are (Goedbloed and Poedts, 2004): mass conservation

∂tρ+ ∇ · (ρu) = 0; (2.77)

energy conservation

∂te+ ∇ ·
((

e+ pg + 1
2B

2
)
v − B (v · B)

)
= 0, (2.78)

where e = pg

Γ − 1 + 1
2B

2 + 1
2ρv

2, the total energy density; momentum conservation

∂t (ρv) = ∇ ·
(
ρvv − BB +

(
pg + 1

2B
2
))

= 0; (2.79)
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as well as Gauss’ law for magnetism and Faraday’s law, which are unchanged from

Eqs. (2.37) and (2.38).

These equations will naturally bear a strong resemblance because we expect to recover

the MHD equations in the non-relativistic limit of RMHD. In this limit, we have

b2 → B2, w → ρ, u0 → 1, u → v, b0 → 0.

If we insert these into Eqs. (2.29), (2.37) and (2.46) to (2.48) then we recover the equations

of MHD as expected, except for energy conservation. Since RMHD energy includes mass-

energy, this conservation law reduces to mass conservation instead. To recover Eq. (2.78)

we must first subtract RMHD mass conservation Eq. (2.29) from energy conservation

Eq. (2.46) before taking the limit.

However, in spite of this close resemblance RMHD has some major difficulties that

MHD does not. First and most obviously, the magnetic field in RMHD is now involved in

the conserved variables outside of Faraday’s law. Thus variable conversion algorithms to

calculate primitive variables from conservatives is significantly more difficult — in fact, it

now requires an iterative algorithm, instead of analytic formulae; see for example Newman

and Hamlin (2014).

Another difficulty unique to modelling relativistic MHD (and relativistic HD) is that

the fluid 3-velocity now has a cap at the speed of light. If we are working with the 3-

velocity, then we need to be sure that its magnitude is less than the speed of light at

all times, and frequently we find that exceeding this limit will immediately cause major

problems for the code wherever it occurs, since this makes the Lorentz factor γ imaginary.

In many cases this can be avoided by using the 4-velocity, which also has the advantage

of being more sensitive at high Lorentz factors. Since the 3-velocity is capped at the speed

of light, at high Lorentz factors the 3-velocity becomes insensitive to changes in velocity

that would otherwise be very large. While working with the 4-velocity can avoid many

of these, in some instances it is necessary to use the 3-velocity; for instance, if two states

have 4-velocity u and u′, then ux = u′
x does not imply that they have the no relative

velocity in the x-direction. There is no relative velocity in the x-direction if and only if

the 3-velocities match, vx = v′
x.

2.2 Force-Free Degenerate Electrodynamics

Force-Free Degenerate Electrodynamics (FFDE) (also known as Force Free Electrodynam-

ics (FFE) and Magnetodynamics (MD)), is the case of RMHD in the limit of high σ, i.e. the

massless approximation of RMHD. Initially, it was used as a simplified set of equations, to
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analyse the condition near compact objects, such as pulsars (Goldreich and Julian, 1969;

Ingraham, 1973; Mestel, 1973), black holes (Blandford and Znajek, 1977; MacDonald and

Thorne, 1982; Okamoto, 1992) and accretion discs (Blandford, 1977), where in all such

cases the value of σ can be large enough to warrant this approximation, as it is too large

for current RMHD models. These applications were all generally stationary, and in most

cases axisymmetric configurations.

Ushida (1997); Gruzinov (1999) and Komissarov (2002) extended the description to a

full time-dependent, non-axisymmetric formulation of the system — the latter of which

in particular with a view toward numerical modelling. Here we will follow Komissarov

(2002) and describe the system in much the same way as we have previously for RMHD

by first describing the equations in a covariant framework, before transitioning to special

relativistic 3+1 splitting for the equations in conservation form. We will also give an

alternative form, in terms of the derivatives of B and E directly. Both of these forms of

the equations are commonly used in numerical applications.

As the limit of high σ, FFDE is simply RMHD without the inertial terms. Naturally,

just as with RMHD the basic energy-momentum conservation laws Eq. (2.2) and Maxwell’s

equations Eq. (2.5) still hold. Maxwell’s equations are completely unaffected by the ab-

sence of the inertial components; the difference with RMHD lies in the conservation laws,

where the stress-energy Tensor Tαβ no longer includes the stress-energy of the inertial

fluid, so that we simply have (Komissarov, 2002)

Tαβ = Tαβ
(e) = FαµF β

µ − 1
4η

αβFµνF
µν . (2.80)

Thus the covariant evolution equations of FFDE are

∇βT
αβ = 0, (2.81)

∇α
∗Fαβ = 0; (2.82)

naturally mass conservation Eq. (2.7) is dropped since there is no mass to conserve.

From the Lorentz Force (Jackson, 1999) we have

∇βT
αβ
(e) = −FαβJ

β, (2.83)

where Jα is the 4-current, satisfying the remaining Maxwell equations

∇βF
αβ = Jα,

and it therefore follows from Eqs. (2.81) and (2.83) that we must have

0 = ∇βT
αβ = −FαβJ

β, (2.84)
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so that FFDE therefore requires the vanishing of the Lorentz force, hence why it is known

as “force-free”. This also implies that detFαβ = 0 (Ushida, 1997).

The biggest difference between FFDE and RMHD lies in the PC condition; if we recall

from Eq. (2.8) the PC condition in covariant form is

Fαβuα = 0,

but without the fluid description uα is undefined, thus an alternate version of the PC

condition is required. If we consider Eq. (2.8) we can derive two conditions on only the

Faraday Tensor Fα as (Komissarov, 2002)

Fαβ
∗Fαβ = 0, (2.85)

FαβF
αβ > 0, (2.86)

which turn out to be sufficient.

Writing out the equations under 3 + 1 splitting we can put the equations in a more

familiar form. Without uα there is no reason to use bα — moreover, we need to keep the

electric field E in the equations as we can no longer cancel it with E = −v × B.

Energy conservation of Eq. (2.81) becomes (Komissarov, 2002)

∂t

(1
2
(
E2 +B2

))
+ ∇ · (E × B) = 0, (2.87)

while momentum conservation of Eq. (2.81) becomes

∂t(E × B) + ∇ ·
(

−EE − BB +
(1

2
(
E2 +B2

))
δij
)

= 0. (2.88)

Meanwhile, Faraday’s law Eq. (2.38) is unchanged

∂tB − ∇ × E = 0,

as is the divergence-free condition Eq. (2.37)

∇ · B = 0.

Finally, the two PC conditions (2.85) and (2.86) are now

B · E = 0, (2.89)

and

B2 − E2 > 0. (2.90)

Note that both of these values B · E and B2 − E2 are Lorentz invariant (naturally,

given that they are 4-scalars derived directly from Fαβ). Thus we do not need to worry
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about the potential existence of Lorentz frames in which one (or both) of these conditions

are violated. Moreover, these two constraints also guarantee the existence of a Lorentz

frame in which the electric field E = 0 (Komissarov, 2002). Since a boost in the direction

of B would then leave B and E unchanged in this case, this guarantees the existence of a

1-parameter family of such frames. One such frame can be found by a Lorentz boost by the

drift velocity vD = E × B

B2 , which is the Lorentz boost of minimum velocity magnitude

needed to reach such a frame.

Both of these conditions also hold in RMHD, and therefore the same reasoning implies

the existence of a 1-parameter family of frames with E = 0 in these frames as well. In

RMHD, one of these frames is the fluid frame, where the PC condition Eq. (2.42) clearly

shows that E = 0 if v = 0. This means that in RMHD, one of the 1-parameter family of

frames is unique. FFDE has no unique frames since it does not have the fluid velocity v,

and therefore this information is lost when we take the high-σ limit of RMHD.

Alternate Derivation

Besides the two PC conditions (2.89) and (2.90) these conservation equations are identical

to vacuum electromagnetics. This indicates an interpretation of FFDE as the dynam-

ics of some kind of perfectly conducting vacuum. The derivation given above describes

FFDE as the high-σ limit of RMHD, but the fact that the equations are identical to

electromagnetism in a vacuum plus the PC condition suggests an alternate derivation:

We start with Maxwell’s equations

∂B

∂t
= −∇ × E, (2.91)

∇ · B = 0, (2.92)
∂E

∂t
= −∇ × B − J , (2.93)

∇ · E = ρc, (2.94)

where J is the current density and ρc the charge density. If we take the time and space

components of the Lorentz force Eq. (2.83) and enforce the force-free condition by setting

them equal to zero, then we also get the conditions

E · J = 0, (2.95)

ρcE + J × B = 0. (2.96)

Note that we can easily derive E · B = 0 and B2 > E2 from Eq. (2.96), provided ρc ̸= 0.

We want to eliminate the current J and charge density ρc, so first taking the cross
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product of Eq. (2.96) with E and rearranging gives us the current perpendicular to B

J⊥ = ρc

B2E × B = ∇ · E
B2 E × B, (2.97)

where we have used Gauss’ law Eq. (2.94) to eliminate ρc.

Now we take the time derivative of the Force-free condition E · B = 0

E · ∂B
∂t

+ B · ∂E
∂t

= 0,

and substitute in the equations for ∂tB and ∂tE and rearrange to obtain

B · J = B · ∇ × B − E · ∇ × E,

so therefore we have for the current parallel to B (Mahlmann et al., 2021)

J∥ = B

B2 (B · ∇ × B − E · ∇ × E) ,

which combined with Eq. (2.97) gives us an expression for the current J as (McKinney,

2006)

J = 1
B2 [(∇ · E)E × B + B (B · ∇ × B − E · ∇ × E)] . (2.98)

Finally, we can substitute this expression for J back into Eq. (2.93) to gain

∂E

∂t
= −∇ × B − 1

B2 [(∇ · E)E × B + B (B · ∇ × B − E · ∇ × E)] , (2.99)

which taken together with Faraday’s law Eq. (2.37), the divergence-free condition on B

Eq. (2.38), and the PC conditions (2.89) and (2.90) gives an alternate formulation for the

equations of FFDE, this time not in conservative form, but rather directly in terms of the

time derivatives of E and B.

2.2.1 Degeneracy

The two formulations of FFDE are equivalent, but comparing these two formulations of

FFDE, we note that there is a discrepancy in the number of equations between them. The

conservative formulation has:

• Seven evolution equations: Eqs. (2.38), (2.87) and (2.88),

• Two equality constraints: Eqs. (2.37) and (2.89),

• One inequality constraint: Eq. (2.90).

Meanwhile, the direct formulation has:

• Six evolution equations: Eqs. (2.38), (2.88) and (2.99),
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• Two equality constraints: Eqs. (2.37) and (2.89),

• One inequality constraint: Eq. (2.90).

So the conservative formulation has one more evolution equation in comparison. This

is indicative of the fact that some of the equations in the conservative formulation are

not independent of each other. In fact, taking into account all the constraints there are

actually only really four independent evolution equations (Komissarov, 2002).

This can be shown more explicitly using the covariant formulation. Ushida (1997) notes

that the fact that Fαβ is an antisymmetric tensor with detFαβ = 0 implies that Fαβ is

an even rank matrix. Thus since B is not a zero vector by Eq. (2.90), it follows that Fαβ

has non-zero elements, and therefore detFαβ = 0 implies that Fαβ has a two-dimensional

eigenspace of zero eigenvalues. That is, there are two vectors aα for which

Fαβa
α = 0.

Following Komissarov (2002), we let aα be one of them. Since we have Eq. (2.85), the

second zero eigenvector bα can then be introduced via

bα = ∗F βαaβ.

So in terms of aα and bα we can write

Fαβ = ϵαβγδa
γbδ, ∗Fαβ = bαaβ − aαbβ,

thus it follows from the latter (Komissarov, 2002) that a unit space-like vector cα orthog-

onal to aα and bα is a zero eigenvector of ∗Fαβ. Once again, another zero eigenvector dα

of ∗Fαβ is given by

dα = F βαcβ,

and again we can write in terms of cα and dα

∗Fαβ = ϵαβγδc
γdδ, Fαβ = cαdβ − dαcβ.

Taken together with the Lorentz force Eq. (2.83) it follows that the vector ∇αT
αβ

always lies in the 2D plane described by cα and dα, and thus it follows that only two

components of Eq. (2.2) are independent in FFDE (Komissarov, 2002).

2.2.2 Linear Theory

Just as with RMHD in section 2.1.3 we can study the dynamics of linear FFDE via

the eigenvalues and eigenvectors of the Jacobian. Since FFDE is the limit of RMHD as
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σ → ∞, we can derive the eigenvalues and eigenvectors of FFDE either directly from the

Jacobian, or as the limit of those from RMHD. However, the reduced degrees of freedom

limits the number of possible eigenvectors to just four, which clearly means that some of

the eigenvectors of RMHD cannot have counterparts.

Limit of RMHD

We naturally will not expect to have a material wave in FFDE; both because the phase

speed µm is the fluid 3-velocity vx — a variable not present in the formulation of FFDE

— as well as the simple fact that there is no material in FFDE.

For the remaining eigenvalues we can consider µa and µms as σ → ∞. First, we begin

with Eq. (2.72) so that in the fluid frame, Alfvén wave phase speeds are given by

µa = ± Bx

√
w +B2

= ± Bx

|B|
√

1 + σ−1
, (2.100)

where we have taken |B| out of the square root, and substituted w/B2 = σ−1. If we now

further define Bx/|B| = cos θ, where θ is the angle between B and the x-axis, then we

can take the limit as σ → ∞ as

lim
σ→∞

µa = ± cos θ. (2.101)

Similarly, the MS phase speeds in the fluid frame from Eq. (2.72) are

µ±
ms =

√
1
2

(
d2 ±

√
d4 − 4a2

sµ
2
a

)
, d2 = ϵ2 + a2

sµ
2
a = a2

s + s2 + a2
s

(
µ2

a − s2
)
,

s2 = B2

w +B2 = 1
1 + σ−1 .

We already know the limit of µa, so for s2 and d2 we have that

lim
σ→∞

s2 = 1, lim
σ→∞

d2 = a2
s + 1 + a2

s

(
cos2 θ − 1

)
= 1 + a2

s cos2 θ,

hence the limit of µ±
ms is

lim
σ→∞

µ±
ms = ±

√
1
2

(
1 + a2

s cos2 θ ±
√

(1 + a2
s cos2 θ)2 − 4a2

s cos2 θ

)
= ±

√
1
2(1 + a2

s cos2 θ ± (1 − a2
s cos2 θ)),

and so we obtain

lim
σ→∞

µ±
s = ±as cos θ, lim

σ→∞
µ±

f = ±1. (2.102)

Thus in summary, the fast waves travel at the speed of light in all directions, Alfvén

waves travel at the speed of light down magnetic field lines, and slow waves travel at

the speed of sound down magnetic field lines. However, the adiabatic sound speed as is
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obviously dependent on the neglected inertial terms, thus it should have no meaning in

FFDE. As the only wave still dependent on as, slow waves are the odd one out here, and

their presence would appear to be an issue as they have no meaning in FFDE. We will

show that these slow waves do not appear at all if we derive the eigenvalues directly from

the FFDE system itself in the next section.

Direct derivation

Besides deriving them as the limit of RMHD, we can also study these waves as a direct

derivation from the equations of FFDE themselves. If we start with the conservation law

form, then written in the form
∂Q

∂t
+ ∂F

∂x
= 0, (2.103)

we have

Q =



By

Bz

EyBz − EzBy

EzBx − ExBz

ExBy − EyBx

1
2
(
E2 +B2)


, F =



Ez

−Ey

−ExEx −BxBx + 1
2
(
E2 +B2)

−ExEy −BxBy

−ExEz −BxBz

EyBz − EzBy


, (2.104)

where we have dropped the ∂tBx term since we have the same conditions on Bx as with

RMHD; in 1D, ∂tBx = 0 and ∂xBx = 0, hence Bx is constant.

Calculating ∂F /∂Q directly from this is quite complex since the components of F are

not easily calculated from those of Q. It is more convenient to find another vector P such

that we can write both Q(P ) and F (P ). With this we could write Eq. (2.103) in the form

A
∂P

∂t
+ C

∂P

∂x
= 0, (2.105)

where

A = ∂Q

∂P
, C = ∂F

∂P
,

so we are looking for solutions of the generalised eigenvalue problem

(C − µA) r = 0, (2.106)

for eigenvalues µ and eigenvectors r.

We are now left with choosing the variables in P ; selecting from B and E suggests

itself since we have already written Q and F in terms of these variables. First, we already

know that Bx is not necessary since this variable cannot change. Furthermore, two of the

conservative variables above involve only By and Bz, so we must choose these two.
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We know that there are only four independent equations, so we only have two choices

left, so we select two of the components of E. Unfortunately, the choice of these depends

on the direction of the magnetic field. If Bx = 0 then we must choose Ex and similarly

for y and z, so no choice will cover all possibilities.

Komissarov (2002) suggests augmenting the equations by relaxing the PC condition in

Eq. (2.89), similar to the method above for finding the eigenvalues of RMHD. We then

modify the equations such that the condition is automatically satisfied if the condition is

satisfied by the initial data.

Komissarov (2002) selects all three space components of energy-momentum conserva-

tion in Eq. (2.81) and adds the extra term Bi∂t(B · E) to these equations to gain

∇αT
iα +Bi

∂(B · E)
∂t

= 0. (2.107)

Clearly, if our initial data satisfies the PC condition Eq. (2.89), then as we have B ·E =

0 the equations are unchanged. Moreover, if we take Eq. (2.107) and use Eqs. (2.6)

and (2.83) we can rewrite the first term in terms of the Faraday Tensor as (Komissarov,

2002)

Fiα
∂Fαt

∂t
+ Fiα

∂Fαx

∂x
+Bi

∂(B · E)
∂t

= 0, (2.108)

which we can then contract with Bi to get

(B · E) ∂Ex

∂x
+B2∂(B · E)

∂t
= 0,

which shows that provided B2 > 0 (which is guaranteed by Eq. (2.90)), if B · E = 0 at

time t = 0 then B · E = 0 for all future times t > 0 as well. Therefore, if the initial

data satisfies the PC condition Eq. (2.89) then the augmented system will have the same

dynamics as the unaugmented system.

With this augmented system we can now safely select

P = (By, Bz, Ex, Ey, Ez) , (2.109)

and with this we can write out the two Jacobians A and C; using Eq. (2.107) we find

A =



1 0 0 0 0

0 1 0 0 0

BxEy + Ez BxEz − Ey B2
x BxBy −Bz BxBz +By

ByEy ByEz + Ex BxBy +Bz B2
y ByBz −Bx

BzEy − Ex BzEz BxBz −By ByBz +Bx B2
z


(2.110)
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C =



0 0 0 0 −1

0 0 0 1 0

−By −Bz Ex −Ey −Ez

Bx 0 Ey Ex 0

0 Bx Ez 0 Ex


. (2.111)

Thus the solutions of the generalised eigenvalue problem Eq. (2.106) are (Komissarov,

2002)

µ±
f = ±1, (2.112)

µ±
a = BzEy −ByEz ±

√
B2

x(B2 − E2)
B2 , (2.113)

µn = 0.

Note that the augmented system naturally includes an extra solution compared to the

unaugmented system, so we have five solutions instead of four.

Comparison of Eqs. (2.112) and (2.113) to Eqs. (2.101) and (2.102) tells us that µn = 0

must be the unphysical extra solution, and that the slow waves are the solutions that

disappear for FFDE as expected (Komissarov, 2002).

Eigenvectors

With the eigenvalues given by Eqs. (2.112) and (2.113) we then can obtain the eigenvectors.

The eigenvectors of the fast waves are (Komissarov, 2002)

r±
f = (−ηf , νf , 0,±νf ,±ηf )T , (2.114)

where the sign of ± indicates the wave direction, and

ηf = Ez ±By, νf = Ey − ∓Bz.

Meanwhile, the eigenvectors of the Alfvén waves are

r±
a =

(
νa, ηa,−

η2
a + ν2

a

Bx
, µ±

a ηa,−µ±
a νa

)T

, (2.115)

where we assume Bx ̸= 0 and

ηa = Ez + µ±
a By, νa = Ey − µ±

a Bz.

Just as with RMHD, there are degenerate cases for these eigenvectors, where two or

more phase speeds are equal.

Case 1a: If we have

E⊥ = −i × B, (2.116)
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where E⊥ is the component of E perpendicular to the x-axis, and i is the unit vector in

the positive x-direction.

Given this condition then we will have

µ+
a = µ+

f ,

so the right-going Alfvén and fast waves have the same phase speed (Komissarov, 2002).

This is of course equivalent to the Case 2 degeneracy of RMHD.

In this case we can use the eigenvectors

r1 = (0, 1, 0, 1, 0)T , r2 = (−1, 0, 0, 0, 1)T ,

as a basis for the eigenspace.

Case 1b: If we have

E⊥ = i × B, (2.117)

then we will have

µ−
a = µ−

f ,

so now the left-going Alfvén and fast waves have the same phase speed (Komissarov, 2002).

For this eigenspace we can use the eigenvectors

r1 = (0, 1, 0,−1, 0)T , r2 = (1, 0, 0, 0, 1)T .

Case 1c: Just as in RMHD, it is possible to have only one of Cases 1a and 1b true

at once, i.e. we could have µ+
a = µ+

f , µ
−
a ̸= µ−

f and vice versa. However, it is still also

possible for both conditions in Eqs. (2.116) and (2.117) to be true at once; if we consider

the implications of both conditions and the PC condition Eq. (2.89) together then it is

clear that we must have (Komissarov, 2002)

E = 0, B⊥ = 0,

which is of course also a sufficient condition for this degeneracy. In this case, the eigenvec-

tors given for Cases 1a and 1b are already linearly independent and are therefore sufficient.

Case 2 : We again also have the tangential degeneracy for Bx = 0. In this case, we

have (Komissarov, 2002)

µ±
a = µa = Ey

Bz
= −Ez

By
, (2.118)

again forming a 2D eigenspace. In this case we can use the eigenvectors

r1 =
(

1, 0, By
(
1 − µ2

a

)
Ex

, 0,−µa

)T

, r2 =
(

0, 1, Bz
(
1 − µ2

a

)
Ex

, µa, 0
)T

,
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as the basis provided that Ex ̸= 0; if we do have that Ex = 0, then instead we can use

r1 = (0, 0, 1, 0, 0)T , r2 = (Bz,−By, 0,−µaBy, µaBz)T .

We might be concerned that it may be possible to have both Case 2 and one of the

Case 1 conditions simultaneously, but if we consider the implications of µa = ±1 with

Eq. (2.118) (i.e. Ey = Bz and Ez = −By) then it is clear that in order to satisfy one of

Eqs. (2.116) and (2.117) in addition to Eq. (2.118), then we must have B2 ≤ E2, violating

the second PC condition in Eq. (2.90).

2.3 1D Exact Solutions in RMHD

In order to test the accuracy of our code, we will need some method to check the results

against. We could of course compare the results to previous authors, or even against our

own non-split RMHD code on the same conditions. These cases of course depend on these

codes being able to handle the regime being modelled, and hence are mostly limited to

low-σ regimes — except for models performed using FFDE or PIC schemes which are

able to handle the high-σ regime, although the FFDE tests will not include any plasma

of course.

Besides this though, we can also test the code against known exact solutions to the

equations. Clearly, if we know exactly what the results the code should achieve are, then

we get an excellent test of the accuracy of the code. In this section we will describe various

known exact, 1D solutions for RMHD which will later be used in chapter 4 for testing.

Provided that the wave amplitude is small relative to the background state, the eigen-

vectors above for RMHD (section 2.1.3) and FFDE (section 2.2.2) can be used to construct

linear, exact solutions of RMHD and FFDE. This particular case will be discussed in sec-

tion 2.3.2. However, the fact that these cases all have sufficiently small amplitude to

remain in the linear regime severely limits their utility for testing purposes. Although the

code should be able to handle linear waves, this is the simplest possible test besides a

constant state.

Besides the basic linear solutions we found above, we can also look for non-linear

solutions, where the variation of Q is no longer small relative to the magnitude of Q.

These exact solutions are of particular use for testing the code, as a working code should

match the exact results, or at least approach them as the resolution increases.

The equations being solved can be written in the conservation form and in Cartesian

coordinates as (LeVeque, 2002)

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= S, (2.119)
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where Q is a vector of conserved variables; for RMHD these are the conserved mass ργ

(Eq. (2.29)), the conserved energy wγ2 − p + 1
2
(
E2 +B2) (Eq. (2.34)), the conserved

momentum wγu + E × B (Eq. (2.35)), and the magnetic field B (Eq. (2.38)). F ,G and

H are vectors of the corresponding x-fluxes, y-fluxes and z-fluxes respectively, and S is a

vector of source terms — for which we have S = 0 for both RMHD and FFDE in Cartesian

coordinates.

Calculating exact solutions for RMHD for 2D or 3D models is a very difficult task,

so to simplify the discussion we will assume planar symmetry in the y and z planes (i.e.

Q(x, y, z, t) = Q(x, y + a, z + b, t) for any a, b ∈ R), so that the system reduces to 1D as

y and z-derivatives vanish. In this way, the derivatives of Fy and Fz in Eq. (2.119) both

vanish, and we are left with
∂Q

∂t
+ ∂Fx

∂x
= 0. (2.120)

This has a particularly profound effect on the x-component of the magnetic field, Bx.

For this component, Faraday’s law (2.38) reduces to ∂Bx

∂t
= 0; meanwhile, Gauss’ law

(2.94) reduces to ∂Bx

∂t
= 0. Taken together then, this means that Bx = constant, and

thus allows us to eliminate Bx from the unknowns, reducing the system to seven equations

with seven unknowns.

Even reducing the system to just 1D still retains much of the complexity of RMHD.

An arbitrary initial condition may have a solution, but that by no means allows us to

calculate it analytically. So in order to find some solutions we must simplify further.

Eq. (2.120) is the strong form of the equations, and so assumes continuity and differ-

entiability, much like the rest of our discussion above in this chapter. Thus all legitimate

solutions are differentiable solutions, in which all the variables and their derivatives are

continuous across the whole domain at the initial time t = 0, and at least up to some

non-zero time t = t1 > 0.

However, it is generally the case for hyperbolic problems — including RMHD — that

discontinuities like shocks can form via methods like nonlinear steepening, which is a

nonlinear effect where the back of a wave travels faster than its front, causing it to catch

up and eventually form a discontinuity. In such cases, the model will break at some finite

time t > 0 in the future. Alternatively, we may be interested in cases that start with a

discontinuity.

Since cases like these are of interest in modelling, and even beyond the point where the

discontinuity forms, we relax the conditions of continuity and differentiability, and consider

cases with discontinuities as well. Indeed, the very reason one would use a conservative

numerical scheme like we do, as described later in chapter 3, is because that method can
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capture discontinuities more effectively than other methods. Systems like Eq. (2.120) can

easily be converted into a weak form by putting into an integral form, i.e. integrating the

equations over some volume V and time interval T . In this weak form, discontinuities in

the variables as well as discontinuities in their derivatives (weak discontinuities) are still

valid solutions.

2.3.1 Discontinuities

Since we are modelling discontinuities, it is useful to also look for discontinuous solutions

of the weak form of the equations. The simplest case of a discontinuity consists of a

constant left state Ql and a constant right state Qr, with a discontinuity of zero width

separating them and moving at velocity v. This system would not evolve over time besides

the constant movement of the discontinuity.

An arbitrary choice of Ql and Qr in a hyperbolic PDE the system matches the condi-

tions described in section 3.1.2 for a Riemann problem. As we will discuss in that section,

this generally does not remain as a single discontinuity and instead splits into a collection

of up to n distinct waves travelling at different speeds, where n is the number of distinct

eigenvalues of the hyperbolic system.

We must therefore look for specific choices of Ql and Qr that remain as a single

discontinuity with constant velocity. If we consider a general 1D system of conservation

laws Eq. (2.120), then using our assumption of a single discontinuity of constant velocity

v we can integrate this system over the discontinuity and over a small time interval to

obtain

v (Ql − Qr) = Fl − Fr, (2.121)

which is thus the general equation that any discontinuous solution of a system of conser-

vation laws must satisfy.

Note that if the change at the discontinuity is small (i.e. Ql − Qr ∼ O(∆q) with

∆q ≪ 1) then this reduces to a small perturbation of Eq. (2.49) — in other words, the

solutions of Eq. (2.121) reduce to the solutions found in section 2.1.3 for the linear case.

Therefore, all the solutions for this equation found subsequently can be considered non-

linear discontinuous extensions of the linear waves given there, and by examining the low

amplitude limit of each solution these discontinuities can be identified with their linear

counterparts.

Analysis of Eq. (2.121) further tells us that if µl and µr are the phase speeds of the cor-

responding linear waves in the left and right regions, then one of the following inequalities
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must hold (Webb et al., 1987)

µl ≤ v ≤ µr or µl ≥ v ≥ µr.

That is, the velocity of the discontinuity is between the phase velocities of the correspond-

ing linear waves in the adjacent regions.

RMHD is a fully relativistic system of equations, and thus we can use a Lorentz trans-

formation to change reference frame to one in which v is any value we like — including

v = 0 and vice versa. So if we have a solution in a frame where the discontinuity has

velocity v = 0, then we can Lorentz boost this solution into another solution with any

desired velocity v. Furthermore, provided that v ̸= ±1 so that the discontinuity is not

moving at the speed of light, any solution has a Lorentz frame in which it is stationary

with v = 0. Since in RMHD all discontinuities have |v| < 1, any solution can be calculated

in this way.

However, fast waves in FFDE do have velocity v = ±1. In relativity, there is no Lorentz

frame in which such a wave is stationary; it will always be moving at the speed of light

for all observers. Although such solutions do exist in the high-σ limit FFDE, below this

limit all discontinuities have |v| < 1, since they are all non-linear extensions of the linear

waves — the phase speeds of which are allµ< 1. The fact that a Lorentz frame exists in

which fast waves are stationary in RMHD but not FFDE is a major difference between

the two systems.

In the frame of the discontinuity, Eq. (2.121) reduces to

Fl = Fr, (2.122)

which is of course a much more manageable problem — although the complexity of RMHD

makes this by no means easy.

Thus if we insert the form of the flux F in RMHD from Eqs. (2.29), (2.34), (2.35)

and (2.38) into this equation, then we are looking for solutions of the following system

ρlu
x
l = ρru

x
r , (2.123)

wlu
0
l u

x
l + Ey

l B
z
l − Ez

l B
y
l = wru

0
ru

x
r + Ey

rB
z
r − Ez

rB
y
r , (2.124)

wlu
x
l u

x
l − Ex

l E
x
l + pl + 1

2
(
E2

l +B2
l

)
= wru

x
ru

x
r − Ex

rE
x
r + pr + 1

2
(
E2

r +B2
r

)
, (2.125)

wlu
x
l u

y
l − Ex

l E
y
l −BxBy

l = wru
x
ru

y
r − Ex

rE
y
r −BxBy

r , (2.126)

wlu
x
l u

z
l − Ex

l E
z
l −BxBz

l = wru
x
ru

z
r − Ex

rE
z
r −BxBz

r , (2.127)

Ez
l = Ez

r , (2.128)

Ey
l = Ey

r , (2.129)
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with the PC condition (2.42) determining E in terms of B and u on both sides. Since Bx

is constant, we have Bx
l = Bx

r = Bx.

In general these equations do not look particularly easy to solve, although we can

take pointers from MHD as we expect the known solutions from MHD to appear at low

velocities, temperatures and magnetic field strengths. In particular, we expect to find con-

tact discontinuities, current sheets, Alfvén (rotational) discontinuities, and fast and slow

Magneto-Sonic Shocks. They will likely not behave identically, but they should approach

their non-relativistic counterparts as the plasma velocity, temperature and magnetic field

strength are reduced. We can also note that these solutions are extensions of the linear

solutions, and so we may expect to find analogues of each linear wave as discontinuities

and no extra solutions that do not correspond to any linear waves.

We can make some headway with solving these equations by assuming some of the

components are constant, or even equal to zero, in order to cancel terms and reduce the

complexity.

Stationary Discontinuities

To start with, we can first take the simple case of assuming u = 0 on both sides, which

cancels many of the components. This would correspond to a discontinuity that advects

with the fluid. Cancelling Eqs. (2.123) to (2.129) gives us

pl + 1
2B

2
l = pr + 1

2B
2
r , (2.130)

BxBy
l = BxBy

r , (2.131)

BxBz
l = BxBz

r , (2.132)

where Eqs. (2.123), (2.124), (2.128) and (2.129) have been dropped entirely since all their

terms cancelled.

The first point to note here is that the density ρ has disappeared entirely, thus the den-

sity can change freely here, we can have ρl ̸= ρr regardless of what the other components

are doing. The simple case where only ρ changes is known as a contact discontinuity, and

is one of the simplest exact solutions we can find; moreover, this case extends identically

into higher dimensions and into the continuous case. Since the discontinuity is stationary

in the fluid frame, this solution implies that any variation in only the density should be

advected by the fluid velocity.

The first of these three conditions Eq. (2.130) specifies that the total pressure of gas

pressure plus magnetic pressure must be constant. So any drop in gas pressure must be

compensated by a rise in magnetic pressure and vice versa.
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Now consider Eqs. (2.131) and (2.132). There are two possibilities: first, Bx ̸= 0 implies

By
l = By

r and Bz
l = Bz

r , and so all three components of B are constant, hence Eq. (2.130)

means that pl = pr. So in this case all the components besides ρ must be constant. So

if there is non-zero Bx only the density can change for a stationary discontinuity. Such a

solution is of course an extension of material waves from section 2.1.3, as these waves are

stationary relative to the fluid and only change the density.

The second possibility is Bx = 0. In this case (2.131, 2.132) no longer restrict By

and Bz, so the only remaining condition is Eq. (2.130)), that the total pressure remains

constant. Hence in this case, if Bx = 0 then the equations are solved so long as this

total pressure remains constant; there are clearly many choices for this, but one of the

most important is to keep gas pressure constant pl = pr and then rotate the magnetic

field, By
r = By

l cos θ − Bz
l sin θ and Bz

r = By
l sin θ + Bz

l cos θ. This case is known as a

current sheet, since for a change of non-zero thickness this implies the existence of a sheet

of current in the region of rotation. In the most extreme case, θ = π and the magnetic

field completely flips direction, Bl = −Br This test is of particular importance because it

does not work in FFDE models, since it tends to violate B2 −E2 > 0 in the sheet, as the

plasma is heated by the current (Komissarov, 2002).

These stationary solutions correspond to the stationary linear waves with Bx = 0; if

we recall from section 2.1.3, Alfvén waves and slow waves both have µ = 0 in the fluid

frame in addition to entropy waves, and so these discontinuities therefore correspond to

this combination of three different waves in this degenerate case. For our current sheet

that merely rotates the magnetic field, it is purely an Alfvén wave.

The de Hoffmann-Teller Frame

So far we have already Lorentz boosted to a frame in which the discontinuity is stationary,

so that we only need to solve Fl = Fr. But there are many such frames, since from this

frame any boost parallel to the discontinuity is still a stationary frame.

One such stationary frame is quite special, known as the de Hoffmann-Teller frame,

first noted in de Hoffmann and Teller (1950). In this frame, the velocity on one side ul

is parallel to the magnetic field Bl so that Bl × vl = El = 0. Moreover, the balance of

fluxes in Faraday’s law in Eqs. (2.128) and (2.129) tells us that Er = 0 also, and hence

the velocity u is parallel to the magnetic field B on both sides in this frame. Thus in this

frame, there is no electric field on either side of the discontinuity. Note however that this

frame exists if and only if Bx ̸= 0.

In this frame Eqs. (2.123) to (2.129) are considerably simplified due to the annihila-

tion of E; moreover the last two Eqs. (2.128) and (2.129) are eliminated entirely, so the
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equations we are left with are

ρlu
x
l = ρru

x
r , (2.133)

wlu
0
l u

x
l = wru

0
ru

x
r , (2.134)

wlu
x
l u

x
l + pl + 1

2B
2
l = wru

x
ru

x
r + pr + 1

2B
2
r , (2.135)

wlu
x
l u

y
l −BxBy

l = wru
x
ru

y
r −BxBy

r , (2.136)

wlu
x
l u

z
l −BxBz

l = wru
x
ru

z
r −BxBz

r . (2.137)

Alfvén Discontinuities

Now let us consider a case where both ux and u0 is constant; this therefore corresponds

to a case where the velocity can only rotate around the x-axis (Komissarov, 1997). With

ux constant we immediately have ρl = ρr from Eq. (2.133), and Eq. (2.134) further gives

us wl = wr, which taken together tells us that pl = pr.

Plugging these into Eq. (2.135) tells us that B2
l = B2

r , and therefore the magnetic field

is also restricted to rotations about the x-axis. Hence we have that the only available

changes are rotations of u and B about the x-axis, with all other components constant.

So we can re-parametrise the system as a rotation of the perpendicular components of

u and B. We still have the freedom to rotate the entire system, so we choose to rotate

such that uz
l = 0, which implies Bz

l = 0 since u and B are parallel. With this, we have

uy
l = u⊥, uz

l = 0, By
l = B⊥, Bz

l = 0,

uy
r = u⊥ cos(θ) , uz

r = u⊥ sin(θ) , By
r = B⊥ cos(θ) , Bz

r = B⊥ sin(θ) ,

where u⊥ and B⊥ are the magnitudes of the perpendicular components of u and B, and

θ is the rotation of u. Note that since u and B are parallel after the rotation as well, the

rotation of B is also θ. Finally, inserting these into Eq. (2.137) and cancelling gives us

wuxu⊥ = BxB⊥, (2.138)

which gives us a condition the discontinuity must satisfy.

This kind of discontinuity is known as an Alfvén discontinuity (Komissarov, 1997), or

alternatively a rotational discontinuity (since the main effect is to rotate the magnetic

field and velocity).

In an arbitrary frame, this discontinuity moves at the local Alfvén speed. In fact, it

is notable because the Alfvén speed is an invariant across the discontinuity as well. It is

also no longer a simple rotation of the magnetic field and velocity, and in fact “rotates”

the velocity and magnetic field through an ellipse. Furthermore, in an arbitrary frame the

normal components ux and Ex are no longer constant — although vx is constant.
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We noted before that the de Hoffmann-Teller frame that we are using only exists so

long as Bx ̸= 0. In the case that Bx = 0, the equivalent Alfvén discontinuity is in fact

the current sheet we discussed previously; note how for both cases the magnetic field is

rotated about the x-axis in the frame of the discontinuity.

Magnetosonic Shocks

The final type of discontinuity to discuss is that of Magnetosonic shocks. These are dis-

continuities that feature movement of plasma material across the shock, and form via

non-linear steepening of continuous waves, unlike other discontinuities which generally ei-

ther only form due to boundary conditions, or were already present in the initial conditions.

Magnetosonic shocks are the extensions of the Magnetosonic waves from section 2.1.3, and

thus can be sorted into fast shocks and slow shocks.

Solving the shock equations Eqs. (2.123) to (2.129) in the most general case for shocks

is a fairly involved affair. We shall instead first derive results for some special cases before

describing the solution for the general case.

It is common to describe shocks in terms of “upstream” and “downstream” states.

These are defined such that fluid flows across the shock from the upstream state to the

downstream state.

Parallel Shocks The first case we shall investigate is parallel shocks, where the Mag-

netic field B lies in the plane of the shock in the shock frame, i.e. so that Bx = 0. This

choice means that the shock can only be a fast shock, as slow shocks do not exist in this

state.

As noted previously, this scenario does not permit the de Hoffmann-Teller frame, so

instead we will follow Komissarov and Lyutikov (2011) and choose a frame where u is

in the x-y plane so that uz = 0, and the magnetic field B parallel to the z-axis so that

By = Bx = 0, so u and B are orthogonal. Furthermore, we will orient the shock so that

the left state is the upstream state.

Since this gives us b0 = 0, it is more convenient to insert these assumptions into the

version of the RMHD equations in terms of bα instead of B and E in Eqs. (2.46) to (2.48);

doing so gives us

ρlγlv
x
l = ρrγrv

x
r , (2.139)(
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l

)
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l v
x
l =

(
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r

)
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x
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x
r v
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r , (2.142)
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γlv
x
l b

z
l = γrv

x
r b

z
r , (2.143)

where we have written this in terms of the 3-velocity v and Lorentz factor γ (given by

Eq. (2.30)) as it makes some things simpler. Note that bz = Bz

u0 on both sides and is the

only non-zero component of bα, so from here on we will drop the z superscript.

Taking Eqs. (2.140) and (2.142) gives us vy
l = vy

r , meanwhile Eqs. (2.139), (2.140)

and (2.143) yields

ρr

ρl
= br

bl
= σr

σl
= η

χ
, a2

r = 1
κ

(
η

(
1 + κa2

l + B2
l

ρl

)
− B2

l

ρl

(
η

χ

)
− 1

)
, (2.144)

where κ = Γ
Γ − 1 with Γ the ratio of specific heats, a2 = p/ρ is the temperature of the

plasma, χ = vx
r /v

x
l , and

η = γl

γr
=
√

1 + u2
xl (1 − χ2). (2.145)

So given the downstream state and the parameter χ we can calculate the corresponding

upstream state.

To determine χ we need the final equation we have not yet used, Eq. (2.141), into which

we can substitute all the above expressions for the downstream state. Doing so gives a

rather difficult algebraic equation to solve, but we can simplify it with some assumptions

to reduce the complexity, as in Komissarov and Lyutikov (2011). In particular, we can

assume that the upstream flow is cold (al → 0) and highly relativistic (γl ≫ 1). In this

case, the equation for χ reduces to

χ3
(
(1 + σl)u2

xl (κ− 1)
)

+ χ2
(

−σlu
2
xl

(
κ− 2

2

)
− κ (1 + σl)u2

xl − κσl

2

)
+ χ

(
(1 + σl)

(
1 + u2

xl

)
− η

)
+
(
σl

(
κ− 2

2

)(
1 + u2

xl

))
= 0. (2.146)

This is still difficult to deal with, since η is a function of χ, so this is not truly a cubic

function in χ. To deal with this, we can further assume that uxl ≫ 1. If we denote the

angle between the upstream fluid velocity ul and the shock front by θl, then this condition

implies sin θl ≫ 1/γl. The above cubic equation then reduces further to

χ3 (1 + σl) (κ− 1) − χ2
(
σl

(3κ− 2
2

)
+ κ

)
+ χ (1 + σl) + σl

(
κ− 2

2

)
= 0. (2.147)

Given its definition, there is of course a root χ = 1 corresponding to the continuous

solution, Pl = Pr. For the remaining two solutions only one is physical

χ = 2 + 6σl +
√
D

4 (1 + σl) (κ− 1) , (2.148)

where

D = (2 + σlκ)2 − 8 (1 + σl)σl (κ− 1) (2 − κ) . (2.149)
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With the ultrarelativistic plasma condition Γ = 4/3 =⇒ κ = 4 we therefore have

χ =
1 + 2σl +

√
16σ2

l + 16σl + 1
6 (1 + σl)

. (2.150)

This means that the corresponding downstream Lorentz factor is

γr = 1√
1 − χ2

1
sin θl

. (2.151)

Although this may appear to imply that small θl causes the downstream Lorentz factor

to diverge, this would violate the earlier assumption that uxl ≫ 1.

For low upstream magnetisation σl ≪ 1 this gives us

γr = 3
2
√

2

(
1 + 1

2σl

) 1
sin θl

, (2.152)

while for high upstream magnetisation σl ≫ 1 we instead have

γr =
√
σl

sin θl
, (2.153)

so the downstream Lorentz factor increases with upstream magnetisation σl, at first lin-

early and later with the square root.

Perpendicular Shocks The opposite extreme of the parallel shock, perpendicular

shocks feature B⊥ = 0 on both sides of the shock front. Since Bx must be constant, this

therefore means that the magnetic field cannot change at all.

Returning to the de Hoffmann-Teller frame in Eqs. (2.133) to (2.137), the magnetic

contributions vanish from these conditions; since the magnetic field is constant across

the shock it cancels from all of the jump conditions. Moreover, since the fluid velocity

is parallel to the magnetic field on both sides of the shock we can cancel the latter two

equations from this system entirely, and thus the system can be reduced to the following

three jump conditions

ρlu
x
l = ρru

x
r , (2.154)

wlu
0
l u

x
l = wru

0
ru

x
r , (2.155)

wlu
x
l u

x
l + pl = wru

x
ru

x
r + pr. (2.156)

Since the magnetic contributions have cancelled, the shock is effectively a purely hydro-

dynamic shock (Webb et al., 1987)

Oblique Shocks In the general case, the magnetic field will be neither parallel nor

perpendicular to the shock front and will instead be oblique on at least one side of the
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shock. Solving this system here is quite complex, so instead we will simply describe the

results.

Webb et al. (1987) showed that besides a few special cases (including the parallel and

perpendicular cases discussed above), the shock equations reduce to a polynomial of degree

seven, which must be solved to find shock solutions. For any given state, there can only

be at most four physical shock solutions corresponding to two fast shocks and two slow

shocks (one each for either direction) — and one each of these will violate the entropy

condition, as entropy will be reduced across the shock — and thus most of these solutions

will be non-physical, and only two of the solutions at the most will correspond to physical

solutions.

In terms of general results for oblique shocks, Webb et al. (1987) showed that density

and gas pressure always increases across the shock, for both fast and slow shocks. However,

in the shock frame the tangential magnetic field B⊥ is reduced downstream for a slow

shock, while it is increased for a fast shock (Webb et al., 1987).

2.3.2 Continuous Solutions

For continuous solutions, we are looking for solutions of the equations with all variables

varying continuously across the domain, at least at t = 0 if not for all future times t > 0.

Note that we are not necessarily requiring smooth variables, so first and higher derivatives

can feature discontinuities; such discontinuities are known as weak discontinuities.

Small Amplitude Waves

Perhaps the simplest type of continuous wave solutions is that of small amplitude waves.

These are waves with sufficiently small amplitude such that they do not appreciably change

the background state, and so do not self-interact nor interact with other waves, and the

system becomes fully linear.

These waves are given by the eigenvalue and eigenvector solutions we found in sec-

tion 2.1.3, wherein the eigenvalues correspond to the phase speeds, and the eigenvectors

to the “shape” of the wave perturbation in P -space, i.e., the relative change in each

variable across each wave.

We therefore have seven different types of waves to choose from, and we can also

freely choose the waveform; for instance, we could use a sine wave, or a sawtooth wave.

Moreover, we can also superpose these seven different waves onto each other, giving us a

huge number of different solutions to choose from. In fact, we could even rotate the wave

vectors, allowing us to construct a fully multi-dimensional test case.
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The only limitation is that the amplitude needs to be small, to avoid non-linear effects.

Unfortunately, this limitation means that these solutions are not particularly useful as

tests; a model which can’t handle these tests likely has significant problems, but they are

by far the easiest solutions to model correctly (besides a uniform state). The only real use

such a solution would have been for testing stability; that is, if the amplitude grows in

time instead of staying constant (or more typically shrinking due to numerical dissipation)

then the numerical model is unstable.

Simple Waves

Beyond these small amplitude waves, a common way of finding continuous solutions is

to look for simple waves. These can be defined as “one-dimensional unsteady motion in

which the hydrodynamic and electrodynamic variables in some inertial system of reference

depend upon the x-coordinate along a direction of propagation and upon t through any

combination ϕ(x, t)” (Shikin (1969), p. 348). In other words, all the variables can be

described as functions of a single variable ϕ(x, t), so the degrees of freedom have been

reduced.

To help explain, we first define characteristics. We start with a general 1D conservation

law in the form of Eq. (2.49). To reiterate, that is

∂Q

∂t
+ A(Q) ∂Q

∂x
= 0,

where A(Q) is an n× n matrix. Now, let li(Q) and ri(Q), i = 1, . . . , n be left and right

eigenvectors of A(Q), so that

li(Q)A(Q) = λili(Q) , and A(Q) ri(Q) = λiri(Q) . (2.157)

This then further means that

li · rj = 0 for i ̸= j, (2.158)

provided the rj are linearly independent, and the same for the li. It is always possible to

find such eigenvectors for RMHD, even in the degenerate cases with repeated eigenvalues.

If we take Q(x, t) and now consider the differential dQ then we have

dQ = ∂tQdt+ ∂xQdx = −A∂xQdt+ ∂xQdx. (2.159)

We can now left-multiply by the left eigenvectors li to obtain

li · dQ = − (liA) ∂xQdt+ li · ∂xQdx = (dx− λidt) li · ∂xQ. (2.160)

Therefore along the curves defined by dx/dt = λi(Q), we must have li · dQ = 0; these

curves are known as characteristics (Courant and Hilber, 1989). Since the eigenvalues λi
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are the phase velocities µ of the hyperbolic system, they can also be understood as curves

that follow their corresponding waves through the (x, t) plane.

With this definition, simple waves can be understood as the case where all the char-

acteristics for the same i are straight lines and do not self-intersect. Note that the other

characteristics need not be straight.

Since it reduces the description to functions of a single variable, the case of a simple

wave clearly greatly simplifies the problem. We can further impose one of two further

constraints to simplify further; we can impose either:

A. The characteristics all come from the same point, an initial discontinuity. In this

case we can describe all variables of the wave as Q(x, t) = U(x/t) (where we have

placed the initial discontinuity at (0, 0)). See Fig. 2.6a for a plot of the characteristics

of a case of this type.

B. The characteristics are all parallel, and therefore the wave does not change over

time and instead moves in the domain (and so assuming it is not moving at the

speed of light, there must be a frame in which it is stationary). This wave can then

be described as Q(x, t) = U(x− µt), where µ is the phase speed of the wave. See

Fig. 2.6b for a plot of the characteristics of a case of this type.

Outside of the ends of these waves we will then have a constant region, as with the

discontinuities above. Generally this will mean that the ends of the waves will feature

weak discontinuities.

x

t

(a)

x

t

(b)

Figure 2.6: Simple wave characteristics for cases A (a) and B (b). In case A the red

characteristics indicate the edges of the expansion fan. The straight lines are the charac-

teristics of the eigenvalue corresponding to this particular wave mode; other characteristics

will generally not be straight.
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Case A If we use the condition of case A from above then we can substitute Q(x, t) =

U(x/t) into the general equation for a 1D conservation law, Eq. (2.49), then we have

∂

∂t
U

(
x

t

)
+ ∂

∂x
F x
(
U

(
x

t

))
= 0,

which we can easily differentiate to get

− x

t2
U ′
(
x

t

)
+ A

(
U

(
x

t

)) 1
t
U ′
(
x

t

)
= 0,

where A = ∂F x

∂Q
is again the Jacobian of F x with respect to Q. We can further rearrange

this to obtain (Landau and Lifshitz, 1959)(
A

(
U

(
x

t

))
− x

t
I

)
U ′
(
x

t

)
= 0, (2.161)

where I is the identity matrix.

Note how Eq. (2.161) is an eigenvalue problem for the Jacobian A. This of course

means that solutions are exactly the same as those found in section 2.1.3, and so it follows

that each point in the wave moves with the same speed as one of the phase speeds of the

linear waves. Since these phase speeds are different in the general case, a particular wave

will use only one of the phase speeds, and so the simple wave can be identified with this

linear wave.

Moreover, the shape of the wave given by U ′
(
x

t

)
must then be the eigenvector of

corresponding wave so we can find the shape of the wave simply by integrating, and

therefore system must solve the differential equation (Falle et al., 1998)

dQ

dν
= ri(Q) , (2.162)

for some parameter ν and where ri is the eigenvector.

Case B Now, if we use case B from above then we can instead write Q(x, t) = U(x− µt),

where µ is the speed of the wave, which must be constant. If we once again insert this

into Eq. (2.49) and reduce as above, then we will obtain

(A(U(x− µit)) − µi)U ′(x− µit) = 0. (2.163)

So once again the system has been reduced to an eigenvalue problem for A. The

solution is therefore the same as before, but with one caveat: We have assumed that the

phase speed µ is constant, so µ cannot change over the form of the wave. In other words,

we require the condition

ri · ∇Uµi = 0, (2.164)

to hold, where ri is the corresponding eigenvector.
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Rarefactions

Rarefaction waves are travelling continuous waves for which the density drops over the

wave. They can be considered the continuous non-linear counterpart of the MS shocks from

before, since they also correspond to linear MS waves. Unlike the shock case however these

waves are isentropic, which can be clearly seen from how the eigenvectors in section 2.1.3

have no entropy component.

Since the phase speed of the wave is not constant across the wave, these waves corre-

spond to the case A type of simple waves discussed above. Unfortunately, the eigenvectors

are complex enough that integrating Eq. (2.162) for this case is not possible analytically,

so we must find these solutions via numerical integration instead.

Since we are following case A, rarefaction waves must spread out as time increases,

since the phase speed at each end of the wave is different. However, since these waves are

isentropic the time reverse is also a physical wave, as this does not violate the second law of

thermodynamics. In this case, this wave is a so-called compression wave which compresses

the plasma as it travels. If a rarefaction spreads out from an initial discontinuity as in

case A, a compression wave would then collapse towards a final discontinuity in finite time,

after which the solution is no longer correct. Note that since the overall difference between

the left and right states of MS shocks is different from that of rarefaction waves — after

all, rarefaction and compression waves are isentropic, while shocks are not — this “final

discontinuity” that a compression wave collapses into is not generally a shock solution.

Alfvén Waves

Closely related to the Alfvén discontinuous discussed in section 2.3.1, continuous Alfvén

waves are effectively identical to the discontinuous case except with non-zero width (Komis-

sarov, 1997). Just like the discontinuities, these waves will (in the de Hoffmann-Teller

frame) rotate the magnetic field and the 4-velocity.

An important detail is that since the corresponding Alfvén phase velocity is constant

across the wave, the wave is not compressed nor stretched over time. That is, unlike

rarefaction and compression waves each point in the wave travels at the same velocity,

and so the shape of the wave is unchanged as it travels.

Outside of the de-Hoffmann-Teller frame, the magnetic field vector traces out an ellipse

in the By−Bz plane instead of a circle, thus generally this wave also changes the magnitude

of B. However, since b2 is constant like in the discontinuous case the magnetic pressure

does not change.

Unlike rarefactions, Alfvén waves do satisfy Eq. (2.164) and so we can use case B.
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Moreover, since the phase speed is constant, for case A an Alfvén wave would in fact be

a discontinuity, identical to that calculated above. Thus to construct an Alfvén wave, we

need only start in the de Hoffmann-Teller frame and then rotate the magnetic field and

velocity together around the x-axis (i.e. keeping them parallel) by a different angle for

each point on the x-axis. If the angle smoothly changes in x then we have an Alfvén wave,

otherwise it is an Alfvén discontinuity.

Since this is the case, it is possible to rotate the magnetic field back to the initial state.

This means we can start and end at the same state, which is quite convenient as it means

we can use periodic boundary conditions, unlike rarefactions which do not start and end

in the same state. Periodic boundaries are convenient because it means the case we are

modelling cannot leave the computation domain, and so we can run the test for as long as

we like. For discontinuous tests it is possible to follow the discontinuity, but rarefactions

spread out over time so eventually it will escape the domain.

2.4 1D Exact Solutions in FFDE

We can also consider exact solutions in the reduced system of FFDE; these are naturally

going to be extensions of results from section 2.3 in the limit of σ → ∞, and as such these

solutions are limited to Alfvén waves and fast waves. For reasons that will become clear,

it is sufficient to consider only continuous solutions.

2.4.1 Fast Waves

The continuous solutions in FFDE will of course satisfy the same conditions as in RMHD;

as such, using the form of the eigenvectors from Eq. (2.114) we find that FFDE fast waves

must satisfy the following differential equations (Komissarov, 2002)

dEx

0 = dBy

− (Ez ±By) = dBz

Ey ∓Bz
= dEy

± (Ey ∓Bz) = dEz

± (Ez ±By) , (2.165)

where the sign of ± again indicates the direction of the fast wave. These equations can

then be easily integrated to obtain (Komissarov, 2002)

µf = ±1 = constant, (2.166)

Ex = constant, (2.167)

ηf = Ez ±By = constant, (2.168)

νf = Ey ∓Bz = constant. (2.169)

Naturally B · E is also invariant, as a constraint of FFDE.
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If we now introduce the vector

tf = (0, νf , ηf )T ,

then it follows that

dB⊥ · tf = 0, dE⊥ ∥ tf , (2.170)

where dB⊥ and dE⊥ are the variation of the components of B and E perpendicular to

the x-axis (and therefore, the wave direction). Thus these waves are transverse waves and

have the same properties as linearly polarised electromagnetic waves in a vacuum.

A point to bear in mind is the fact that while FFDE fast waves have phase speeds at

the speed of light, in RMHD these waves are slightly slower than the speed of light. This

has significant consequences, because while there is a Lorentz frame in which any RMHD

fast wave will be stationary, there are no frames in which a wave travelling at the speed of

light is stationary. This is therefore a significant divergence between FFDE and RMHD,

even at high values of σ.

We note that the inertial terms of RMHD generally include a factor γ, the Lorentz

factor of the plasma. Both energy and momentum conservation, Eqs. (2.34) and (2.35),

have the term wγ2; meanwhile, mass conservation, Eq. (2.29), has the smaller term ργ.

Since the fast wave speeds in the fluid frame will be near the speed of light, a Lorentz

boost to a frame where one of these waves is stationary will result in a very high γ for the

plasma, meaning that the inertial terms are no longer small, despite the high value of σ.

This may suggest that the alternate parameter

σ∗ = σ

γ2 = b2

wγ2 = B2 − E2

wγ2 , (2.171)

may be more appropriate for determining the relative magnitudes of the electromagnetic

and inertial components of the system. Unfortunately, this new parameter is not a Lorentz

invariant.

In order to determine the relative sizes of the electromagnetic and inertial components

in the fast wave frame, we can calculate the value of this parameter σ∗ in the frame of

a fast wave. Starting from the fluid frame, we can use the phase speeds of MS modes

calculated previously in Eq. (2.73), where thanks to the simplified case of the fluid frame

we can separate out the fast and slow modes.

Since we want to find the solutions for σ → ∞, it is convenient to rewrite Eq. (2.73)

in terms of σ. To this end we take out a factor of w from each appearance of b2, so that

s2 = σ

1 + σ
,



78

and Eq. (2.73) becomes

µ2
f =

σx
1+σa

2
s + ϵ2 +

√(
σx

1+σa
2
s + ϵ2

)2
− 4 σx

1+σa
2
s

2 , (2.172)

where we have defined σx in analogy to the definition of σ as

σx = B2
x

w
.

Since we are currently in the fluid frame, a Lorentz boost to the fast wave frame would

have a fluid Lorentz factor γ given by

γ2 = 1
1 − µ2

f

, (2.173)

therefore the parameter σ∗ in this frame is

σ∗ = σ
(
1 − µ2

f

)
. (2.174)

Given Eqs. (2.172) and (2.174) we can find the limit of σ∗ as

lim
σ→∞

σ∗ = 1 − a2
s

1 − a2
s cos2 ϕ

, (2.175)

where ϕ is given by

cos2 ϕ = σx

σ
= B2

x

B2 ,

i.e. ϕ is the cosine of the angle between Bx and the x-axis in the fluid frame.

Eq. (2.175) thus tells us that provided that the adiabatic sound speed does not approach

the speed of light, then σ∗ ∼ O(1) in the fast wave frame. For the equation of state we are

using, discussed in section 2.1.1, we have that as is capped at a2
s = 1/3 and so therefore

Eq. (2.175) is

lim
σ→∞

σ∗ = 2
3 − cos2 ϕ

,

for a sufficiently hot plasma. So for a hot plasma, in the limit of large σ, the value of σ∗

is such that 2/3 ≤ σ∗ ≤ 1 in the fast wave frame. For colder plasmas a2
s < 1/3 and so the

lower limit > 2/3 in this case, while the upper limit is unchanged. In either case, σ∗ ≤ 1

in the fast wave frame and in the limit of high magnetisation, in spite of the fact that σ

is large.

2.4.2 Alfvén Waves

For Alfvén waves we can use the eigenvectors from Eq. (2.115), so the wave must satisfy

the differential equations (Komissarov, 2002)

dBy

Ey − µaBz
= dBz

Ez + µaBy
= −BxdEx

η2
a + ν2

a

= dEy

µa(Ez + µaBy) = − dEz

µa(Ey − µaBz) , (2.176)
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where µa is the phase speed of the Alfvén wave, so µa = µ+
a or µa = µ−

a , and

ηa = Ez + µaBy, νa = Ey − µaBz,

as before.

These equations can then be solved to find the following invariants

B2 − E2 = constant, (2.177)

µa = constant, (2.178)

ηa = Ez + µaBy = constant, (2.179)

νa = Ey − µaBz = constant, (2.180)

and again B · E is also invariant.

Since the component of Ex is not constant, Alfvén waves are not fully transverse, unlike

fast waves. But like fast waves, these waves can still be characterised as linearly polarised;

if we introduce the vector

ta = (0, νa, ηa)T ,

then

dB⊥ · ta = 0, dE⊥ ∥ ta, (2.181)

and so comparing Eqs. (2.170) and (2.181) indicates that while both waves are linearly

polarised, they are not generally mutually orthogonal.

Eqs. (2.166) and (2.178) indicate that all waves of FFDE are linearly degenerate; that

is, just like Alfvén waves in RMHD the phase speed of every wave is constant across the

wave, and so they simply travel without changing shape. This also means that shocks

cannot form via non-linear steepening (since the back of the wave is not able to “catch

up” to the front), although they may appear due to initial or boundary conditions. As

a result, in the high-σ regime of RMHD fast waves will steepen very slowly. This also

means that fast shocks do not have strong non-linear steepening keeping them thin and

non-diffuse; this will have consequences later on for simulations of fast shocks. This also

means that the jump conditions of shocks in FFDE are equivalent to that of simple waves,

i.e. discontinuous solutions are equivalent to continuous waves with zero width.

2.5 The Equations of RMHD and FFDE

To finish up, we will summarise the equations of RMHD and FFDE being solved in our

scheme. Although the scheme is aimed at solving only the equations of RMHD, the

equations of FFDE are relevant as they form part of our new scheme we will introduce in

the next chapter.
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2.5.1 RMHD

The equations of ideal RMHD consist of eight evolution equations: Mass conservation

Eq. (2.29)

∂t

(
ρu0

)
+ ∇ · (ρu) = 0,

momentum conservation Eq. (2.47)

∂t

(
wu0u + E × B

)
+ ∇ ·

(
wuu − EE − BB +

(
pg + 1

2
(
E2 +B2

))
δij
)

= 0,

energy conservation Eq. (2.34)

∂t

(
wu0u0 − pg + 1

2
(
E2 +B2

))
+ ∇ ·

(
wu0u + E × B

)
= 0,

and Faraday’s Law Eq. (2.38)

∂tB − ∇ × E = 0.

There are also two constraints, Eqs. (2.37) and (2.42)

∇ · B = 0, E = −v × B.

In addition to these equations, we also need an equation of state, for which we use the

simple Eq. (2.28)

w(ρ, pg) = ρ+ Γ
Γ − 1pg,

with Γ = 4/3.

Taken together, this is the entire system that we are attempting solve.

2.5.2 FFDE

The equations of FFDE consist of seven different evolution equations: Energy conservation

Eq. (2.87)

∂t

(1
2
(
E2 +B2

))
+ ∇ · (E × B) = 0,

momentum conservation Eq. (2.88)

∂t(E × B) + ∇ ·
(

−EE − BB +
(1

2
(
E2 +B2

))
δij
)

= 0,

and Faraday’s law again Eq. (2.38)

∂tB − ∇ × E = 0.

Meanwhile, we have three constraints, Eqs. (2.37), (2.89) and (2.90)

∇ · B = 0, B · E = 0, B2 − E2 > 0.
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Chapter 3

Numerical Schemes

This chapter will introduce the fundamental numerical schemes integral to the project. It

will first introduce the numerical integration scheme, including a discussion of the finite

difference method used, as well as discussion of the methods used to obtain higher-order

accuracy integration. The chapter will then move on to introduce the novel approach at

the heart of this thesis.

3.1 Integration Method

As we discussed in section 1.2, there are a multitude of different methods for solving

hyperbolic systems of conservation laws; one of the most important categorisations of

which are non-conservative versus conservative schemes.

These two categories differ in how they treat the conservative variables, e.g. mass and

momentum. Obviously, the exact solution of a system of conservation laws will keep

them conserved, with the exception of boundary conditions and source terms. However,

numerical methods generally have sources of error that cause this conservation to be

invalidated.

There are two main sources of error in a numerical scheme. The first is numerical

error, which is error that arises from the imprecision with which values are stored in the

computation. It most frequently becomes an issue if we take the difference between two

similar values, as the number of significant figures of the difference will be limited. For

example, if we have x = 4.61344 and y = 4.61334 so that both x and y are stored to six

significant figures, then their difference will be x− y = 0.00009, and therefore reduced to

just one significant figure. This error can be reduced by increasing the precision of the

stored values or avoiding points which require taking the difference of similar values, but

it is otherwise difficult to avoid.
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The other main source is truncation error, arising from the discretisation and approxi-

mation of the system. For example, a time integration scheme will step forward a non-zero

time ∆t each time step. The solution at each iteration is an approximation of the true

solution given the state at the previous step.

Consider a simple ODE, for example,

dx

dt
= f(x, t) , (3.1)

with initial data x(t0) = x0. Now let us suppose that the exact solution to this equation

can be expressed as a Taylor series

x(t− t0) = x0 + (t− t0)x′(t0) + 1
2 (t− t0)2 x′′(t0) + O

(
(t− t0)3

)
. (3.2)

After evolving the system k iterations to some t = k∆t, since the numerical method is

an approximate solution this numerical solution will only match the exact solution up to

a finite number of terms. That is, the Taylor series is truncated. The error due to this

truncation (i.e. the difference between exact and numerical solutions) is thus known as

truncation error (Süli and Mayers, 2003). For partial derivative equations, we can also

incur truncation error from spatial discretisation as well.

If the truncation error is ET ∼ O(∆xn) + O(∆tm) then we say that the method is

nth-order in space and mth-order in time, because if we halve ∆x then the error due to

the spatial discretisation will decrease by ∆xn, while if we halve ∆t then the error due to

temporal discretisation will decrease by ∆tm. Clearly a higher order code is more accurate,

but this will generally come at the cost of increased complexity in implementation and

computation.

In this case, the equations being solved here are conservation laws. If we integrate such

an equation over a given volume V and over a time interval t0 to t1 (and ignore source

terms), then we will find that the change in the total of a conserved variable inside the

volume is equal to the flux of that quantity across the volume boundaries.

Therefore, if we have two volumes sharing a boundary, the flux across that boundary is

shared by both volumes, and thus a change in one volume across that boundary is exactly

balanced by the change in the other volume. Overall, the variables are conserved.

Conservative schemes exploit this fact by splitting the integration domain into small

cells; see Fig. 3.1. Each cell represents a volume, and the change of the conservative

variables inside each cell us given by the flux over its boundaries. Since these fluxes are

shared (equal but opposite) by neighbouring cells, by updating the cell values using these

fluxes we can guarantee that the total of the conserved variables across the entire domain

remains constant to numerical precision instead of truncation precision, besides boundary

conditions and source terms.
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Both conservative and non-conservative schemes have been applied to RMHD. Among

non-conservative schemes, some examples include Dumbser et al. (2008); Zanotti and

Dumbser (2015); Zanotti et al. (2015) who developed a discontinuous Galerkin method

for RMHD; meanwhile, De Villiers and Hawley (2003) developed a scheme similar to the

popular ZEUS solver for non-relativistic HD and MHD (Stone and Norman, 1992).

However, as with all non-conservative schemes, both of these schemes have difficul-

ties with discontinuities. The former of the two implemented an algorithm that detects

discontinuities, to which an alternative conservative solver is applied to find a solution

in the vicinity of the discontinuity. Although this method is effective, it still requires a

conservative solver anyway.

Meanwhile, the latter applied artificial viscosity to smear out the discontinuities to

enable the finite difference scheme to handle them. This method, first introduced by Von-

Neumann and Richtmyer (1950) is common among non-conservative schemes for handling

discontinuities, such as Hartmann and Houston (2002); Česenek et al. (2013). However,

since it causes shocks to be smeared over multiple grid points, this method is not satisfac-

tory for accurate evaluation of shocks.

Thus if the case one is attempting to model is dependent on resolving discontinuities

accurately, then a conservative solver that can handle them without artificial viscosity or

special treatments will be very useful. As such, we seek to create a conservative method.

The basic method we are using to integrate the system of RMHD is that of a con-

servative finite difference scheme. If we work here in three dimensions and Cartesian

coordinates, then we have the general conservation law Eq. (2.119)

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= S.

These equations are then split into two parts

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= 0 and ∂Q

∂t
= S, (3.3)

i.e. a homogeneous system, and an inhomogeneous system containing the source terms.

These two systems are then integrated separately (if there are any source terms at all).

The computation domain is split into a Cartesian grid of cells Ci,j,k; see Fig. 3.1 for

a 2D representation. Each iteration starts with the known values of the conservative

variables Q at the centre of each cell, Qi,j,k (in fewer dimensions we simply have fewer

subscripts) — in Fig. 3.1 these are the points at the centre of each cell, located on the lines

x = xi−1, xi, xi+1 and y = yi−1, yi, yi+1. We then start by integrating the homogeneous

system, the left equation in Eq. (3.3). Starting with the Qi,j,k, the basic steps of a single

iteration of this scheme are as follows:
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yj−3/2

yj−1/2

yj+1/2

yj+3/2

yj−1

yj

yj+1

xi−1 xi xi+1
xi−3/2 xi−1/2 xi+1/2 xi+3/2

Figure 3.1: The discretised computational domain for the 2D case. Known cell values are

located on the lines with integer subscript, x = xi−1, xi, xi+1 and similar for y. Cell bound-

aries where fluxes are calculated are located on the half-integer lines x = xi−3/2, ..., xi+3/2

and similar for y.

First, the known cell values are interpolated within each cell to its boundaries, using

nearby cell values. Since each boundary is a boundary of two cells, each boundary has two

different interpolated values for Q, from either side of the boundary. Thus the interpolated

result at each boundary consists of a state on the “left” in one cell Ql and a state on the

“right” in its neighbour Qr.

These interpolations can be any functions that interpolates the data. We now simplify

by asserting that these states are both constant at the boundary, giving us what is known

as a Riemann problem at each cell boundary. We now solve each Riemann problem at every

boundary with an approximate Riemann solver, to obtain the fluxes Fi+1/2,j,k,Gi,j+1/2,k

and Hi,j,k+1/2 at each boundary x = xi+1/2, y = yj+1/2 and z = zk+1/2 respectively.

These fluxes are then corrected to F̂i+1/2,j,k and similar for G and H so that the

gradients of the fluxes in each cell can be approximated to a high degree of accuracy via

∂Fi,j,k

∂x
= 1

∆x
(
F̂i+1/2,j,k − F̂i−1/2,j,k

)
, (3.4)

where ∆x is the cell width in the x-dimension, and the same for G and H.

With these gradients, we can integrate the homogeneous system and update the Qi,j,k

by a time step. Since every cell shares each boundary with another cell, the flux F̂i+1/2,j,k

etc. at these boundaries appear in the gradient of both neighbouring cells with opposite

sign. Thus the total of the conserved quantities Qi,j,k remains constant over the compu-
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tation domain down to numerical precision, besides flux across the boundary and source

terms. For accurate time integration we use a Runge-Kutta scheme, so in this case we

update the Qi,j,k to multiple points within the full time step, to get estimates of the gradi-

ents at multiple points and therefore construct a more accurate overall gradient to update

the system over the full time step.

We have now fully integrated the homogeneous system of Eq. (3.3), so we now integrate

the source terms separately. In our case, the source terms are simple enough that this can

be done analytically; the equations of RMHD detailed in the previous chapter have no

source terms, and in 1D this is also true of our method. However, in 2D and above the

method we use to remove the divergence of B resulting from truncation errors requires

the addition of a source term — although the form of this source term is so simple that

the system can be solved analytically with ease.

With this, a single time step is complete. Now that we have completed an overview of

the method, we shall now go into more technical detail of the method.

3.1.1 Finite Difference and Finite Volume Schemes

Among conservative schemes, there are two main approaches, via either finite difference

or finite volume schemes. Both types of schemes have been developed extensively for

RMHD. For finite volume schemes, we have examples like the CAFE code (Lora-Clavijo

et al., 2015), the IllinoisGRMHD code (Etienne et al., 2015) and the GENESIS code (Aloy

et al., 1999; Leismann et al., 2005), while for finite difference schemes we have the ECHO

code (Del Zanna et al., 2007), and the KORAL code (Sądowski et al., 2013), among others.

The main difference between finite volume and conservative finite difference methods

is what the known values represent. For FV schemes, the known values are cell averages,

the average of each conservative variable inside each cell. For CFD schemes (and more

generally any finite difference scheme), the known values are instead point values, i.e. the

exact value of the conservative variables at the given position in the domain.

The main integration method we will use to solve the equations of RMHD presented

in chapter 2 is a conservative third order finite difference scheme, based on Godunov’s

scheme (Godunov, 1959). The basic scheme is the same as that of the ECHO code of Del

Zanna et al. (2007).

Finite Volume Methods

In order to understand the CFD method, it is helpful to first describe the similar finite

volume (FV) method.
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We first discretise the computational domain into a grid of cells Ci,j,k. This works

just as above; see Fig. 3.1 for a grid in 2D. We can integrate Eq. (2.119) over each cell

Ci,j,k and over the time step [tn, tn+1]. Since we can easily cancel each derivative with its

respective integral, this gives us
� xi+1/2

xi−1/2

� yj+1/2

yj−1/2

� zk+1/2

zk−1/2

(Q(x, y, z, tn+1) − Q(x, y, z, tn)) dxdydz

+
� tn+1

tn

� yj+1/2

yj−1/2

� zk+1/2

zk−1/2

(
F
(
xi+1/2, y, z, t

)
− F

(
xi−1/2, y, z, t

))
dydzdt

+
� tn+1

tn

� xi+1/2

xi−1/2

� zk+1/2

zk−1/2

(
G
(
x, yj+1/2, z, t

)
− G

(
x, yj−1/2, z, t

))
dxdzdt

+
� tn+1

tn

� xi+1/2

xi−1/2

� yj+1/2

yj−1/2

(
H
(
x, y, zk+1/2, t

)
− H

(
x, y, zk−1/2, t

))
dxdydt

=
� tn+1

tn

� xi+1/2

xi−1/2

� yj+1/2

yj−1/2

� zk+1/2

zk−1/2

S dxdydzdt. (3.5)

We now define

Q̄n
i,j,k = 1

∆x∆y∆z

� xi+1/2

xi−1/2

� yj+1/2

yj−1/2

� zk+1/2

zk−1/2

(Q(x, y, z, tn)) dxdydz, (3.6)

where ∆x,∆y and ∆z are the grid spacings in the x, y and z-coordinates respectively, i.e.

∆x = xi+1/2 − xi−1/2 etc. This definition means that Q̄n
i,j,k is the average of Q(x, t) over

the cell Ci,j,k at time tn. We further define

F̄
n+1/2
i+1/2,j,k = 1

∆y∆z∆t

� tn+1

tn

� yj+1/2

yj−1/2

� zk+1/2

zk−1/2

F
(
xi+1/2, y, z, t

)
dydzdt, (3.7)

where ∆t is the time interval, ∆t = tn+1 − tn. Again, this is defined so that F̄
n+1/2
i+1/2,j,k is

the average of F (x, t) over the upper x-boundary of cell Ci,j,k (located in the y-z plane at

x = xi+1/2) and over the time interval [tn, tn+1]. We also define Ḡ
n+1/2
i,j+1/2,k and H̄

n+1/2
i,j,k+1/2

similarly, as averages of the flux over the y and z boundaries respectively. Finally, we

define

S̄
n+1/2
i,j,k = 1

∆x∆y∆z∆t

� tn+1

tn

� xi+1/2

xi−1/2

� yj+1/2

yj−1/2

� zk+1/2

zk−1/2

S dxdydtdt, (3.8)

so that S̄
n+1/2
i,j,k is the average of S over Ci,j,k and over [tn, tn+1].

With these new definitions, we can rewrite Eq. (3.5) as an equation in terms of these

averages as

1
∆t

(
Q̄n+1

i,j,k − Q̄n
i,j,k

)
+ 1

∆x
(
F̄

n+1/2
i+1/2,j,k − F̄

n+1/2
i−1/2,j,k

)
+ 1

∆y
(
Ḡ

n+1/2
i,j+1/2,k − Ḡ

n+1/2
i,j−1/2,k

)
+ 1

∆z
(
H̄

n+1/2
i,j,k+1/2 − H̄

n+1/2
i,j,k−1/2

)
= S̄

n+1/2
i,j,k . (3.9)

By calculating the average boundary fluxes F̄
n+1/2
i±1/2,j,k etc. as well as the average source

terms S̄n+1/2
i,j,k , we can therefore calculate the change in Q̄n

i,j,k in the cell over the time step.
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yj−1/2

yj+1/2

xi−1/2 xi+1/2 xi+3/2

Q̄n
i,j,k Q̄n

i+1,j,k

F̄
n+1/2
i−1/2,j,k F̄

n+1/2
i+1/2,j,k F̄

n+1/2
i+3/2,j,k

Ḡ
n+1/2
i,j−1/2,k

Ḡ
n+1/2
i,j+1/2,k

Ḡ
n+1/2
i+1,j−1/2,k

Ḡ
n+1/2
i+1,j+1/2,k

Figure 3.2: Two neighbouring cells in a 2D finite volume scheme. The average of each

cell Q̄n
i,j,k is updated by the total average flux over the entire boundary. Since the two cells

share the boundary x = xi+1/2, the total of Q between both cells is not affected by the flux

over this boundary F
n+1/2
i+1/2,j,k.

Note how the flux F̄
n+1/2
i+1/2,j,k will also be present in the update of Q̄n

i+1,j,k, with a minus

sign, see also Fig. 3.2 for an illustration of this in 2D. This is also true of the other fluxes

Ḡ and H̄ as well. Thus like a telescoping sum, these will cancel out for the total of Q

over the entire domain (i.e. the integral over the entire domain), leaving only fluxes at the

domain boundaries and source terms. This is the key to conservative schemes, and what

allows them to ensure conservation, since this guarantees that Q must be conserved down

to numerical precision.

Eq. (3.9) is the fundamental equation of a finite volume scheme. All we have left is to

evaluate the average fluxes F̄ . There are many different methods of doing this, and many

of the RMHD codes mentioned at the start of section 3.1.1 can implement more than one

of them.

Reducing Eq. (3.9) to 1D and neglecting source terms, the basic numerical method is

thus

Q̄n+1
i = Q̄n

i − ∆t
∆x

(
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

)
, (3.10)

where F
n+1/2
i+1/2 is some approximation of the average flux at the given boundary, i.e.

F
n+1/2
i+1/2 ≈ F̄

n+1/2
i+1/2 = 1

∆t

� tn+1

tn

F
(
xi+1/2, t

)
dt. (3.11)

Thus we now must find a way to approximate the average boundary fluxes. Perhaps

the simplest method would be to use the simple average

F
n+1/2
i+1/2 = 1

2
(
F
(
Q̄n

i

)
+ F

(
Q̄n

i+1
))
, (3.12)
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so that F
(
Q̄n

i

)
is the flux F associated with the average of cell Ci; inserting this into

Eq. (3.10) gives

Q̄n+1
i = Q̄n

i − ∆t
2∆x

(
F
(
Q̄n

i+1
)

− F
(
Q̄n

i−1
))
. (3.13)

Unfortunately, this is unstable for hyperbolic methods (LeVeque, 2002).

One simple method of avoiding this instability is via the classic Lax-Friedrichs method,

which instead has the form

Q̄n+1
i = 1

2
(
Q̄n

i−1 + Q̄n
i+1
)

− ∆t
2∆x

(
F
(
Q̄n

i+1
)

− F
(
Q̄n

i−1
))
. (3.14)

This is very similar to the previous method, except that the initial state Q̄n
i has been

replaced by the average of the two neighbouring states. This may seem to contradict

the form Eq. (3.10), but this method can be recast in this form (LeVeque, 2002). Doing

so makes it clear that this method has introduced an extra diffusive term to the simple

averaging method, which has the effect of suppressing its instability. Although in the

limit ∆x → 0 this method does solve the original equations, this artificial viscosity is

quite significant.

This method is known as a central method, because the update to the cell values is

symmetric in space about the point where we are updating the solution (LeVeque, 2002).

This is a property shared by a number of different schemes, some of which have been

applied to RMHD, such as a Lax-Wendroff scheme, as used by (for example) Del Zanna et

al. (2003); or a Rusanov scheme (also known as local Lax-Freidrichs), as used by HARM

(Gammie et al., 2003) and KORAL (Sądowski et al., 2013).

However, for hyperbolic systems we expect information to travel down characteristics

at specific velocities, given by the eigenvalues of the Jacobian Eq. (2.53). In our case, this

means the two fast, slow and Alfvén phase velocities, as well as the advection speed vx.

Given this, it makes sense to try to take advantage of this fact to better integrate the

system, by biasing the integration; after all, in the extreme case where all the character-

istics velocities have the same sign (i.e. travelling in the same direction), any cells in the

downwind direction cannot possibly have any effect on the solution.

One of the most common such approaches that of Godunov (1959). In this case,

the known cell averages are interpolated to the cell boundaries — in Godunov’s original

scheme, this was done by simply assuming each cell was constant, with each cell having a

constant value equal to its cell average.

From this point, the entire system is evolved together at once for a time step. Each

cell boundary consists of two constant states with a discontinuity at the boundary. This

is a well-known problem known as a Riemann problem, which has a relatively simple

solution compared to the general case. After evolving the system for a time step (assumed
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short enough that neighbouring Riemann problems do not interact), the cell averages are

recalculated from the new state. This scheme is upwind because it takes into account

the direction of the characteristics — for each Riemann problem, the characteristics with

λ < 0 move into the left cell, while those with λ > 0 move into the right.

Thanks to a convenient property of Riemann problems that the state at the initial

discontinuity (i.e. the boundary in our case) is constant in time after the initial state, this

is equivalent to finding the flux of this location in each Riemann problem individually and

using that as the boundary fluxes.

The final remaining task to complete the method is to find a Riemann solver, a method

that can solve any given Riemann problem. Ideally this would be done via an exact solver,

i.e. a method that outputs the exact solution to the given Riemann problem. However,

in most cases such a solver is impractical in both implementation and computational

complexity. Thus most methods will use an approximate solver of some kind. There are

many different such methods, of which we will discuss a few later in section 3.1.2.

Godunov’s original scheme is first order in space, because the method assumes that the

value of the initial data in each cell is constant and equal to the cell average, so the initial

data is piecewise constant. We can improve this accuracy by instead interpolating in each

cell by a more complex function; the simplest example would be a linear interpolation,

which would allow each cell to have a non-zero gradient.

This would mean that each Riemann problem now has non-constant states, and so is

in fact now a generalised Riemann problem, with the two left and right states being some

arbitrary function. While methods that use generalised Riemann solvers have been pro-

posed, such as Ben-Artzi and Falcovitz (1984) who developed such a method for the Euler

equations, these generalised Riemann solvers will be exceedingly complicated, especially if

we allow for higher order interpolations such as quadratic or higher polynomial functions.

However, an approximate solution is all that is really needed, thus most schemes opt

for a simplification and assume that the Riemann problem still has constant states, equal

to the value of the inter-cell interpolations at the boundary (Toro, 1997).

For Godunov-type schemes, it is clear that in order for the results to be reasonable we

must have that Riemann problem between (for instance) cell Ci−1 and Ci and that between

Ci and Ci+1 cannot interact. This means that the time step ∆t must be small enough that

the fastest wave modes neighbouring cells do not have enough time to cross the full width

of the cell, ∆x. Therefore, if we denote the fastest wave mode in the whole computational

domain by v then this generates the Courant-Friedrichs-Lewy (CFL) condition (Courant

et al., 1928)

Cu = v∆t
∆x , (3.15)
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where Cu is a dimensionless number called the Courant number.

This condition is a condition for the stability of the scheme, when the time stepping

is explicit. Although our justification above applies only to Godunov-type schemes, this

condition in fact applies to all explicit finite volume schemes (LeVeque, 2002). Notably

however, this condition does not apply for an implicit scheme, which is unconditionally

stable (Fernández-Pato et al., 2018), thus these methods can use larger values of Cu.

This stability and larger potential time steps is one of the main reasons why one would

use an implicit scheme, in spite of the increased complexity both of implementation and

calculation. However, this does not mean we can increase Cu to any value we like in that

case, as an increase in step size still results in a loss of accuracy, even if the scheme is

stable.

Godunov-type schemes are very popular in RMHD, and have been implemented in

many different codes, such as that of Komissarov (1999a), as well as the Athena++ (White

et al., 2016), ECHO (Del Zanna et al., 2007), KORAL (Sądowski et al., 2013), and CAFE

(Lora-Clavijo et al., 2015) codes, among others. These schemes all differ in the exact

implementation however, in particular the choice of Riemann solvers used.

The basic method detailed above is a finite volume method, which describes cell values

in terms of the averages inside each cell. Although very effective, this method does have

a fairly significant issue with implementing it easily: In one of the steps of the finite

volume scheme above, we interpolated the known cell averages to the cell boundaries

to set up the Riemann problem. In one dimension this is a relatively simple task —

although there are complications we will discuss in section 3.1.3. In higher dimensions

however, this interpolation must take into account the full multidimensionality of the

problem and interpolate values using all nearby cells. This scheme can thus be quite

difficult to implement.

Conservative Finite Difference Methods

Another major class of numerical methods is that of a finite difference (FD) method.

Unlike finite volume schemes which use cell averages, finite difference schemes discretise

the system using exact cell values instead. These methods therefore use the differential

form of the equations Eq. (2.119) instead of the integral form Eq. (3.9). Thus we are

searching for an estimate of the derivatives of the fluxes are the cell centres, instead of

the averages over the cell boundaries. These schemes have a major advantage in that

the interpolations to boundaries along one dimension need only take into account the

cell values in that dimension, and can ignore the other cell values nearby. Thus the

interpolation scheme in higher dimensions can be the same as that of one dimension.
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However, since we are trying to evaluate derivatives, we may have difficulty with dis-

continuities, since this is the strong form of the equations that enforces continuity and

differentiability. In addition, while finite volume schemes automatically conserve the vari-

ables, finite difference schemes need not satisfy this condition.

However, there is a way to get around this problem, by adapting the finite volume

scheme above for a finite difference framework. Like other finite difference schemes, this

scheme still needs an estimate for the gradients ∂xF etc. at the grid points, but the

method used to obtain these is very similar to a finite volume scheme — and is designed

specifically to maintain conservation like a finite volume scheme — and thus it can handle

discontinuous cases. In fact, if we stick to just using first derivatives for interpolations

(i.e. second order) this scheme is identical to a finite volume scheme. However, while this

method avoids multidimensional interpolations, this method also introduces an extra step

not previously necessary, that we will discuss in section 3.1.4.

This method has been applied to non-relativistic MHD codes, such as Mignone et al.

(2010b); Minoshima et al. (2019), as well as relativistic MHD codes like Del Zanna et al.

(2007). Our own scheme will use this method, generally following the scheme as set out

in Del Zanna et al. (2007), and works as follows:

To simplify the discussion, we will again assume planar symmetry in the y and z planes,

so that the system reduces to 1D as y and z-derivatives vanish. Thus we are updating

Qi,n (the value at the centre of cell Ci at time t = tn), using an estimate of the gradient

∂xF = F i at this location.

xi−1/2

S−
i

xi+1/2

S+
i

∆x

Qi−1 Qi Qi+1

Figure 3.3: Diagram of the cells in a 1D Conservative Finite Difference Scheme.

The basic idea is to calculate fluxes F+
i and F−

i at the upper and lower boundaries

of the cell (S+
i and S−

i , located at x = xi−1/2 and x = xi+1/2 respectively) so that
1

∆x

(
F+

i − F−
i

)
is an estimate for the gradient ∂xF at the cell centre (where ∆x is the

grid spacing). See Fig. 3.3 for a diagram of a 1D scheme.

If these fluxes are again shared by neighbouring cells like a finite volume scheme, i.e.

F+
i = F−

i+1, then when we update the values of Qn
i,j,k using these fluxes, the quantities

are once again conserved to numerical error.

Following a finite volume scheme up to this point, the fluxes we have calculated F±
i

at each cell boundary are the exact values of the fluxes at these points. It is important to
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note however, that the estimate 1
∆x

(
F+

i − F−
i

)
for the gradient of F at the cell centre is

at most second order accurate (Del Zanna et al., 2007). See Fig. 3.4 for a diagram of this

estimate.

xi−3/2 xi−1/2 xi+1/2 xi+3/2

F−
i

∂xF F+
i

∆x

Figure 3.4: Diagram of the uncorrected fluxes in a 1D Conservative Finite Difference

Scheme. The curve is the exact flux at each point, the known solutions at the bound-

aries are F+
i and F−

i (it should be noted that these are actually approximations of the

exact solution). The second-order accurate estimate of ∂xF at x = xi is the estimate
1

∆x

(
F+

i − F−
i

)
, here represented by the gradient of the red line connecting F+

i to F−
i .

If we wish to create a scheme with higher order accuracy, then we must apply a cor-

rection to these exact fluxes to get the corrected fluxes F̂±
i , for which 1

∆x

(
F̂+

i − F̂−
i

)
is

a higher order accurate approximation to the gradient ∂xF .

Thus we wish to calculate an approximation to these F̂±
i . We can then use these in

the semi-discrete equation (Del Zanna et al., 2007)

dQi

dt
+ 1

∆x
(
F̂+

i − F̂−
i

)
= S, (3.16)

to integrate the Qi.

There are two key properties that we want these flux approximations F̂±
i to satisfy:

1. To maintain conservation of the Qi, we require

F̂+
i = F̂−

i+1, (3.17)

for all i, so that the change in Qi is matched by a change in neighbouring cells

(besides boundaries and source terms).

2. To achieve nth order spatial accuracy, we require that 1
∆x

(
F̂+

i − F̂−
i

)
be an nth

order accurate approximation of ∂F
∂x

∣∣∣∣
x=xi

. That is, they must satisfy

1
∆x

(
F̂+

i − F̂−
i

)
= ∂F

∂x

∣∣∣∣
x=xi

+ O(∆xn) . (3.18)

These fluxes F̂±
i must be calculated from the known data that is the exact flux at the

boundaries, F p
i m.
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Thus overall, the CFD scheme calculates F̂±
i based on the cell values Qi in each cell

works as follows. Here we follow the scheme laid out in Del Zanna et al. (2007).

To start with, we calculate the exact flux at the boundaries F±
i . The method here

is the same as with an FV scheme, except we are interpolating exact cell values instead

of averages, thus the interpolation scheme can be one dimensional instead of multidimen-

sional.

Thus we first reconstruct the cell value at the upper and lower boundaries of each cell,

using an approach which will be discussed in section 3.1.3. This gives us the interpolated

value inside within the cell Ci at the start of the time step for the S+
i and S−

i boundaries,

i.e. Q+
i and Q−

i . Although S+
i and S−

i+1 represent the same cell boundary, because the

Q+
i and Q−

i+1 were reconstructed using different cells they will generally not be equal.

Given the Q+
i and Q−

i+1 on the same boundary we then solve the resulting Riemann

problem using a Riemann solver which will be discussed in section 3.1.2. This will then

give us the exact flux at the boundary F±
i , where now these do satisfy F+

i = F−
i+1. Again,

these exact values do not satisfy Eq. (3.18) for spatial accuracy > 2, and therefore for

these higher order schemes we now require an extra step to calculate the F̂±
i from the

F±
i ; this is the so-called “DER” step in Del Zanna et al. (2007), discussed in more detail

below.

This method may seem more complicated since it includes an extra DER step that is

not necessary in an FV method, but as mentioned previously it is used because unlike

the FV methods, multidimensional schemes only require 1D reconstruction algorithms for

higher spatial order, as opposed to FV methods based on cell averages, which require

multidimensional reconstruction to calculate fluxes on cell faces (Shu, 2020). Effectively,

adding another dimension to the finite difference scheme just means using the exact same

algorithm on the new dimension as well, and so the computational cost is exactly the

same, per grid point per direction. This is much more efficient that finite volume methods

(Casper et al., 1994).

For the value of Cu that we use, we theoretically should use a value for Cu that is as

large as possible, since the smaller Cu, the more time steps we need to perform to reach

the same time point in the simulation. However, reducing Cu a little can be necessary to

suppress some numerical instabilities which generate non-physical artefacts in the solution.

In our case, the fastest wave modes are always the fast waves, and at high σ these

approach the speed of light, therefore we can use v = 1 for simplicity. Meanwhile, for Cu

we use Cu = 0.4 for all tests in chapters 4 and 5, in order to suppress some numerical

artefacts.

Both conservative finite difference methods and finite volume methods use the conserva-
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tive variables Q as the integration variables, since these are the variables being conserved.

In order to calculate important values like the fluxes we need to be able to calculate the

fluxes from the conservative values. Unfortunately, for many systems including RMHD,

the fluxes have no simple form in terms of the conservative variables. The typical rem-

edy is to specify a set of intermediate variables called the primitive variables P . These

variables are chosen so that both the conservative variables and fluxes can be calculated

from them easily. This makes it easier to calculate the fluxes, and also easier to apply

boundary conditions, which are often not simple expressions in terms of the conservative

variables either.

Calculating the primitives from the conservatives is often one of the most complex and

slowest parts of a scheme, since the conservatives are often very complicated variables;

RMHD is one such case, and several conversion methods have been developed (Del Zanna

et al., 2007; Newman and Hamlin, 2014).

3.1.2 Riemann Solvers

The Riemann solver is one of the most important parts of any method of Godunov-type,

and as such many different types of Riemann solver have been proposed over the years.

Riemann solvers are used to solve so-called Riemann problems, which are a particular

class of initial conditions with a constant left state Ql, a constant right state Qr, and a

discontinuity between. From here on, we will assume that the discontinuity is located at

x = 0 at time t = 0, so therefore our Riemann problems are all of the form (Toro, 1997)

Q(x, 0) =


Ql if x < 0,

Qr if x > 0.
(3.19)

Riemann problems are classic problems for hyperbolic systems as they will often exhibit

all the most fundamental aspects of a particular system. For hyperbolic systems, this

setup results in a solution which involves only discontinuities and centred rarefactions

(Landau and Lifshitz, 1959; Jeffrey and Taniuti, 1984). Generally, a Riemann problem

will decompose into a series of n distinct waves (either discontinuities or rarefactions),

where n represents the number of distinct eigenvalues of a given hyperbolic system (Toro,

1997).

For instance, a Riemann problem in RMHD (just like in MHD) will typically decompose

into seven separate waves, each corresponding to one of the seven distinct eigenvalues of

the system; from the outside in, there will be a pair of fast waves, a pair of Alfvén waves, a

pair of slow waves, and finally in the middle a contact discontinuity (Komissarov, 1999a).

In between each wave is a region where all values are constant. This is unless one of the
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degeneracies is present, in which case some of the waves will move together and there will

effectively be fewer waves.

x

t

0

T

(a)

x

p

0

(b)

x

p

0

(c)

Figure 3.5: An arbitrary Riemann fan for a variable p(x, t) in a system with three

wave modes, in this case splitting into two discontinuities with phase speeds µ < 0 and a

rarefaction with phase speed µ > 0 over the full wave. (a) The Riemann fan in the x-t

plane. The two slanted lines in the x < 0 half of the plane represents a discontinuity; the

shaded region on the right indicates that it is a continuous wave (and thus a rarefaction),

and is bounded by two weak discontinuities. Also shown here is the Riemann fan in the

x-p plane at t = 0 (b) and t = T (c).

The exact form of the waves will depend on the initial discontinuity; in particular, the

fast and slow waves can either be continuous rarefaction waves or discontinuous shock

waves. The Alfvén and contact discontinuities will always be discontinuities however, as

neither spread out over time since their own phase speed is constant across them.

In Fig. 3.5a we have an example of a Riemann fan for a variable p(x, t), in the x-t

plane, and with two slices in the p-x plane at t = 0 and t = T . The original Riemann

problem in Fig. 3.5b has split into three separate waves, a left-going discontinuity, a slower

left-going discontinuity, and a right-going rarefaction. This is a simplified case, as typically
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RMHD will have seven separate waves — although this situation could occur in the Bx = 0

degeneracy case, as in that case five of the waves have the same phase speed.

Riemann problems (or to be more precise, their solutions) have a useful property of

self-similarity. Consider a general system of equations

∂Q

∂t
+ ∂F

∂x
= ∂Q

∂t
+ ∂F

∂Q

∂Q

∂x
= 0, (3.20)

coupled with the initial conditions Eq. (3.19).

Now consider Qλ(x, t) = Q(λx, λt), a scaled version of the solution Q. If we substitute

Qλ into Eq. (3.20) then we obtain

∂Qλ

∂t
+ ∂F

∂Qλ

∂Qλ

∂x
= 0,

λ
∂Q

∂t
(λx, λt) + λ

∂F

∂Q
(λx, λt) ∂Q

∂x
(λx, λt) = 0, (3.21)

hence Qλ is also a solution of the system, with initial conditions Qλ(x, 0) = Q(λx, 0).

Given the initial conditions Eq. (3.19) we find that Qλ(x, 0) = Q(x, 0), and thus Qλ is a

solution for the same initial conditions.

Therefore if we have the solution at some time ti > 0 then we can find another at any

other future time tj > 0 by simply scaling appropriately. Equivalently, we can write our

solution as a function of a single variable Q(x, t) = U(x/t) where x/t is the similarity

parameter. x/t of course represents a straight line from the origin that all features of the

solution must follow, so that the derivative of Q along these lines is zero.

For the purposes of a Riemann solver in the numerical method, all that is actually

needed is the solution at x = 0 at some time t > 0. Since all points on this line (besides at

t = 0) have the same similarity parameter x/t = 0, this solution is in fact independent of

t; for all future times t > 0 the exact result is constant. Thus the Riemann solver does not

need to consider the time at all — provided of course that the CFL condition is fulfilled.

The most obvious method for solving such a problem is likely the exact solver, which

given the Riemann problem supplied outputs the exact solution for the given initial con-

dition. This type of solver is typically used for simple systems, where the solution of

the Riemann problem can be found easily and with little computational overhead. For a

system as complex as RMHD an exact solver is less useful due to the high complexity of

such a solver, and the high computational costs.

After all, there will generally be seven separate waves of the types described in sec-

tion 2.3 which were complex enough on their own. For instance, a shock wave (as discussed

in section 2.3.1) generally requires solving a seventh order polynomial, which cannot be

done analytically. Giacomazzo and Rezzolla (2006) have created a method for finding the
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exact solution, however their method uses an iterative procedure and is impractical for use

in an actual numerical scheme, besides generating exact solutions for testing purposes.

Fortunately, numerical results typically do not suffer significantly with more approxi-

mate solutions (Toro, 1997). There can be negative effects, such as more diffuse discon-

tinuities (spread over more cells) or numerical artefacts, but these can often be remedied

in one way or another. In fact, it can be quite surprising how little the approximation

needs to match the exact solution; as we will see later with the HLL solver in section 3.1.2,

the numerical method can be reasonably accurate even if we reduce the number of waves

down to just two.

There are multiple simplifications that can be applied to the Riemann solution to

reduce the complexity. The first would be to collapse the continuous rarefaction waves

into discontinuities, so that each component of the Riemann fan is reduced to a single

velocity. This velocity should ideally be chosen such that the new discontinuity lies inside

the original rarefaction wave, i.e. if vl and vr are the velocities of the left and right ends

of the rarefaction respectively, then the velocity of the new discontinuity vd should be

vl < vd < vr. Of course, this leaves us with some freedom over what velocity vd we should

choose.

Using this simplification, we would therefore only need to calculate the velocities of

each wave, and the constant states between them. The solution we want at x = 0 then

simply corresponds to the state between the wave with largest velocity v < 0 and the wave

with smallest velocity v > 0 — unless all waves have v > 0 or v < 0, in which case the

solution is simply one of the initial states Ql or Qr respectively.

Although this simplification is helpful, the difficulty of the problem has not been re-

duced very significantly, as the calculation of the constant states and of the velocities is

still a highly intractable non-linear system of equations. Multiple further reductions have

been proposed, but here we will only consider two.

Linear Riemann Solvers

The first method we will consider is that of a Linear solver (Roe, 1981; Powell, 1994; Toro,

1997). In section 2.1.3 we discussed the linearisation of RMHD, finding the eigenvalues

and eigenvectors of the Jacobian A(Q). For a given state Q, the eigenvalues correspond

to the velocities of each wave, and the eigenvectors correspond to the direction of the jump

in Q-space.

As the amplitude of the waves increases the eigenvalues and eigenvectors no longer

match the exact results, as non-linear effects become relevant. However, for a sufficiently

small amplitude of the initial discontinuity this linearisation will give accurate results as
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these non-linear effects vanish.

Linear Riemann solvers simply assume that this is still an appropriate approximation,

even for initial discontinuities of much higher amplitudes. In other words, to solve the

Riemann problem we choose a base state Qb and calculate the n eigenvalues λi and

eigenvectors vi of the Jacobian A(Qb). Since we know that the left state is Ql and

the right state is Qr, we then can find the amplitudes ai of each wave by solving the linear

system
n∑

i=1
aivi = Qr − Ql, (3.22)

for the ai, which will have a unique solution provided the vi are all linearly independent.

Then each of the n− 1 in-between states Qi must satisfy

Qi = Ql +
i∑

j=1
ajvj , (3.23)

or from the other side

Qi = Qr −
n∑

j=i+1
ajvj . (3.24)

This gives us a chain of states connecting Ql and Qr. We can therefore derive the internal

states Qi from either direction, given Ql, Qr and the ajvj . Since this is the case, one

of the waves ajvj can be neglected, as even if a link in the chain is missing, we can still

calculate all of the Qi by starting from the appropriate side of the Riemann problem.

Since we only need n − 1 of the aj , we can therefore drop one of the equations in

Eq. (3.22) and reduce the number of unknowns of the linear problem by one. For RMHD,

it is natural and simplest to neglect the amplitude of the contact wave as it is the simplest

wave, only changing the density. Since this wave is always at the centre, this also maintains

the symmetry of the system. Symmetry is useful because if we were to take the mirror

image of our Riemann problem — i.e. swap Ql and Qr and reflect the vectors u and

B — then we should get the exact same results (with mirrored vectors) because of the

symmetry in the equations of RMHD. If the Riemann solver is not symmetric, then this

property would be broken.

This also means we can neglect density from Eq. (3.22) and reduce the system down

to six equations in six unknowns, reducing the computational cost of the Riemann solver.

All that remains here is to choose the base state Qb from which we find the eigenvalues

and eigenvectors. We have a lot of choice here of course, and in fact we might even use a

different Qb for some of the eigenvalues and eigenvectors. Using a different Qb could have

significant consequences though, since using the same base state generally guarantees that

the eigenvectors are all linearly independent, which is not guaranteed otherwise.
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One basic choice is to simply use the average Qb = (Ql + Qr) /2 as the base state (e.g.

Riemann Solver B in Falle and Komissarov (1996), p. 589). In many situations this works

well, although for some systems the average state might not be physical; for instance, with

FFDE even if we have Bl · El = 0 and Br · Er = 0, generally speaking the averages of

these Ba = 1
2(Bl + Br) and Ea = 1

2(El + Er) do not satisfy Ba · Ea = 0, and so these

averages are non-physical states.

Another simple choice for RMHD (and similar systems) is to use Ql for the three fast,

Alfvén and slow left waves and Qr for the three fast, Alfvén and slow right waves (e.g.

Riemann Solver A in Falle and Komissarov (1996), p. 588). Regardless of what base state

we use, the contact wave only has a jump in density, so the choice of Qb for that wave

does not matter.

Instead of choosing a base state Qb for the Jacobian, the Roe-type Riemann solver looks

instead for an averaged Jacobian Ā(Ql,Qr) from which all eigenvalues and eigenvectors

are derived. This averaged Jacobian is required to satisfy three conditions; first, that it has

n real eigenvectors. Second, that it satisfies the consistency condition Ā(Q,Q) = A(Q)

for all Q. Third, that

Fr − Fl = Ā (Qr − Ql) . (3.25)

(Roe, 1981) showed an averaged Jacobian satisfying these conditions is guaranteed to exist

by the mean value theorem.

This third condition ensures that the Riemann solver is able to resolve even non-linear

discontinuities accurately, since if Ql and Qr satisfy the jump conditions Eq. (2.53), then

they satisfy

Fl − Fr = λ (Ql − Qr) , (3.26)

where λ is therefore both the shock speed and an eigenvalue of the averaged Jacobian. Thus

in this specific case, the Roe solver gives an exact solution of the equations. Unfortunately,

finding this averaged Jacobian can be quite difficult for complex systems.

Linear Riemann solvers have been used in various codes, such as for non-relativistic gas

dynamics (Brio et al., 2001) and MHD (Dai and Woodward, 1994). Some RMHD codes

also use linear Riemann solvers, such as Komissarov (1999a); Koldoba et al. (2002).

A significant issue with linear solvers is degenerate cases. If a particular choice of Qb

produces repeated eigenvalues (i.e. waves travelling at the same velocity) then these cases

must be treated separately, since we need to ensure that the eigenvectors chosen for these

repeated eigenvalues are linearly independent (Falle et al., 1998). Therefore this method

can become quite complex as the algorithm evaluates which (if any) degenerate case we

are in.
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Another problem is that the in-between states Qi found may not be physical. For

instance, in RMHD we must have density ρ > 0 and gas pressure pg > 0, however the

linear solver may find that these values drop below 0, particularly in the presence of strong

rarefactions. Generally the only method to deal with this is to set a minimum value to the

density and gas pressure to prevent them from becoming negative, a clearly unsatisfactory

and artificial solution.

HLL Solver

An alternative solver is the HLL solver, first proposed in Harten et al. (1983) and developed

further in Einfeldt (1988). This method simplifies the system even further into just two

waves, the waves with the highest and lowest velocity (i.e. the outermost signals from

the Riemann problem). In the case of RMHD, this of course corresponds to the two fast

waves. The remaining interior states are then averaged together into a single, constant

interior state. The scheme works as follows (Toro, 1997):

Define vr and vl as the highest and lowest velocities of all waves respectively. If we

have vrvl > 0 then the velocities have the same sign, and therefore the Riemann fan is

entirely on one side of x = 0. Thus in this case, the solution for the flux can immediately

be found as Fl if vl, vr > 0 or Fr if vl, vr < 0. For the remaining case with vrvl < 0 we

need to find the flux inside the Riemann fan.

First, we choose an arbitrary xl < 0 and xr > 0 and a time t = T such that xl ≤ Tvl

and xr ≥ Tvr. This setup means that the points where the lines x = xl and x = xr

intersect the line t = T lie beyond the intersection of the highest and lowest velocity

waves, which at this time would be at x = Tvl and x = Tvr — in other words, we choose

xl < Tvl and xr > Tvr. Fig. 3.6 shows the general idea behind this set up; we can see

that the interval [Tvl, T vr] is inside the interval [xl, xr].

The equations for a general 1D homogeneous system are given by Eq. (2.119), dropping

y and z derivatives and the source terms so that

∂Q

∂t
+ ∂F

∂x
= 0.

If we now integrate these equations over [xl, xr] × [0, T ], then we obtain
� xr

xl

Q(x, T ) dx−
� xr

xl

Q(x, 0) dx =
� T

0
F (Q(xl, t)) dt−

� T

0
F (Q(xr, t)) dt. (3.27)

Since we chose T such that the line from (xl, 0) to (xl, T ) lies entirely outside the Riemann

fan, the state Q is constant along the line and therefore we have that the integral
� T

0
F (Q(xl, t)) dt = TFl, (3.28)
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Figure 3.6: A Riemann fan as reduced by the HLL scheme. vl represents the fastest

signal to the left, and vr represents the fastest signal to the right.

and similarly on the other side the same reasoning gives
� T

0
F (Q(xr, t)) dt = TFr. (3.29)

The integral along t = 0 is not completely constant, and instead has a single jump

discontinuity at x = 0. Therefore the integral here is
� xr

xl

Q(x, 0) dx = xlQl − xrQr, (3.30)

we can therefore put Eqs. (3.28) to (3.30) into Eq. (3.27) to find
� xr

xl

Q(x, T ) dx = xrQr − xlQl + T (Fl − Fr) , (3.31)

so we know the exact result for the integral of Q at time t = T , provided the velocities vl

and vr. Since we allowed the integral to extend slightly into the constant regions, we can

further split this integral into
� xr

xl

Q(x, T ) dx =
� T vl

xl

Q(x, T ) dx+
� T vr

T vl

Q(x, T ) dx+
� xr

T vr

Q(x, T ) dx, (3.32)

where the first and third integrals on the right hand side can be evaluated to give us
� xr

xl

Q(x, T ) dx =
� T vr

T vl

Q(x, T ) dx+ (Tvl − xl)Ql + (xr − Tvr)Qr, (3.33)

which we can now substitute this into Eq. (3.31) and rearrange to obtain

1
T (vr − vl)

� T vr

T vl

Q(x, T ) dx = QHLL = vrQr − vrQl + Fl − Fr

vr − vl
, (3.34)
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where QHLL is the average of Q in the Riemann fan at time t = T .

Although we could use this QHLL as our solution to the Riemann problem, we can do

better by calculating the fluxes directly.

Now we can once again integrate the conservation laws in section 3.1.2 over the reduced

area of [xl, 0] × [0, T ], to obtain
� 0

xl

Q(x, T ) dx−
� 0

xl

Q(x, 0) dx =
� T

0
F (Q(xl, t)) dt−

� T

0
F (Q(0, t)) dt. (3.35)

The second integral on the left and the first integral on the right have already appeared

before in Eq. (3.27). For the second integral on the right, the state F (Q) at x = 0 is also

constant despite being inside the Riemann fan, as discussed previously. This flux is the

value we are looking for, which we will call FHLL. With this, Eq. (3.35) reduces to
� 0

T vl

Q(x, T ) dx = −TvlQl + T (Fl − FHLL) . (3.36)

Using the initial simplifying approximation that the interior state between the two

fastest signal velocities is constant, i.e. Q is constant inside the Riemann fan, Q inside the

fan must be equal to the average, QHLL. Therefore Eq. (3.36) further reduces to

FHLL = Fl + vl (QHLL − Ql) , (3.37)

and finally we can substitute for QHLL using Eq. (3.34) to obtain

FHLL = vrFl − vlFr + vlvr (Qr − Ql)
vr − vl

, (3.38)

So we can calculate an estimate of the flux at the boundary using only the conserved

variables and fluxes in the two initial states, and the maximal velocities of the waves in

the Riemann fan.

We still need to calculate two of the phase speeds, which would generally depend on the

solution; in order to maintain validity of this method we require that these phase speeds

be at least as fast as the exact values, or at the very least close enough to not be an issue.

One method would be to use the eigenvalues of the left and right initial states for these

phase velocities. If we write l− and l+ as the maximal phase velocities for the left state,

and r− and r+ as the same for the right state, then we could use l− as the maximal left

phase velocity vl, and r+ for the maximal right phase velocity vr.

However, depending on the initial states Ql and Qr we could either have l− < r− or

l− > r−, and similarly for the positive case. In the latter case, with l− > r−, it may be

better to use r− for vl instead, in order to help ensure that the velocity vl we are using

is smaller than the true value, as suggested by Davis (1988). This is the choice that we

decided to use for the HLL phase speeds.
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In summary, given signal velocities vl and vr this scheme outputs the flux at the

boundary for a given Riemann problem as

Fout =


Fl if vl, vr > 0

FHLL if vlvr ≤ 0

Fr if vl, vr < 0

, (3.39)

with FHLL given as above in Eq. (3.38).

The main advantage of the HLL method over other methods is its simplicity. In

comparison to the Linear method previously discussed, all we need here is two of the

phase velocities, and the conservative variables and fluxes for the initial states, which are

generally quite simple to calculate.

Another advantage is that this method generally avoids the problem with linear meth-

ods wherein the resultant state can be non-physical; with this method that cannot happen,

because we do not evaluate the actual state and directly output the flux at the boundary

instead.

This method is not without its own drawbacks, however. neglecting all but two of the

waves means that although the method can resolve the remaining waves, these waves tend

to be quite diffusive, spreading these waves over more grid points (Toro, 1997). Various

authors have suggested methods to combat this by using an alteration of the scheme to

resolve these waves, at the cost of higher computational cost; for instance, the HLLC

method developed in Toro et al. (1994) for non-relativistic Hydrodynamics restores the

contact wave to reduce the diffusivity, and in Mignone et al. (2009) a five-wave version of

the HLL scheme for RMHD is developed.

HLL solvers (and related solvers e.g. HLLC) are quite popular in RMHD, and have

been used in various codes, such as Athena++ (White et al., 2016), ECHO (Del Zanna et

al., 2007), IllinoisGRMHD (Etienne et al., 2015) and CAFE (Lora-Clavijo et al., 2015).

The most significant factor in their popularity is likely their simplicity, and the fact that

we only need the eigenvalues of the Jacobian to calculate the resultant Flux. For this

reason, we will also use the HLL solver described above for our code.

3.1.3 Reconstruction

At the start of each time step, the known values in our scheme are the point values of

Q at the centre of each cell Ci,j,k. To set up the Riemann problems to be solved via a

method described in the previous section, we must interpolate the value of Q at the cell

boundaries, in a step known as the reconstruction step. Generally speaking, the more
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accurate this interpolation is the more accurate the overall numerical solution will be. In

particular, we seek to increase the spatial order of the code, as discussed at the start of

this chapter.

Interpolating to first order is quite simple; in this case the interpolation can simply

assume that Q is constant in each cell, and equal to the known value at the centre. At

each boundary, the value of Q in one cell is matched next to the (generally different) value

of Q in the next cell, and thus we have a Riemann problem that can be solved as above.

In order to obtain higher orders, we can use the known values of nearby cells as well

to improve the interpolation of Q in each cell. We thus try to fit different functions to the

known values as interpolating functions. We then interpolate to the boundaries of each cell

from both directions (from the cell to the left and to the right). These two interpolations

will generally give a different result, and thus we again have a Riemann problem that can

be solved using the previous methods.

Most authors tend to use the simplest choice of polynomial interpolation (Liu et al.,

1994; Jiang and Shu, 1996), although other types such as trigonometric polynomial (Wang

and Zhu, 2020) and exponential polynomial (Ha et al., 2016) interpolation have also been

proposed. For a polynomial fit however, the method is quite simple. Given any n consecu-

tive known values, there is a unique n−1 order polynomial that passes through all n points

exactly, the so-called Lagrange polynomial. This polynomial then serves as an nth-order

accurate approximation for the given variable in all n cells from which the interpolation

was derived.

Thus each cell has a choice of n different polynomial interpolations which are all nth-

order accurate. Naively, we may assume that we can simply choose any of these polyno-

mials for the approximation in a given cell. Unfortunately, things are not so simple.

Godunov’s Theorem

Godunov (1959) proved a very important theorem related to numerical solutions of partial

differential equations (PDEs). This theorem states that linear numerical schemes for

solving PDEs, having the property of not generating new extrema (a monotone scheme),

can be at most first order accurate. This theorem has come to be known as Godunov’s

theorem.

This problem can be understood as related to the Gibbs phenomenon in the Fourier

series of data with a jump discontinuity. In that case, the Fourier series exhibits large

overshoots and undershoots at the discontinuity, i.e. new extrema. While these new ex-

trema become thinner as higher order sines and cosines are included, and thus the Fourier

series converges to the data almost everywhere (except for the discontinuities), their am-



105

xi−2 xi−1 xi xi+1 xi+2

Ci−2 Ci−1 Ci Ci+1 Ci+2

(a)
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Figure 3.7: First (a) and Second order (b) linear interpolation of the same data. This

data has a discontinuity between Ci to Ci+1.

plitude does not approach 0. Instead, it approaches a limit of about 9% the scale of the

discontinuity itself (Bocher, 1906).

In our case, a polynomial approximation over a discontinuity will also exhibit a similar

phenomenon near the discontinuity, and it is this which underlies Godunov’s theorem.

The only way we can guarantee avoiding new extrema is through the use of a first order

approximation. That is, we assume the function is constant, and therefore we cannot

exceed the known values of the function.

Fig. 3.7 gives an illustration of this issue. Here we have a first and second order

interpolation of the same data. The gradient in the second order interpolation is set to

the average of the gradient between itself and its two neighbours, i.e. the gradient in Ci is

set to the average of the gradient between Ci−1 and Ci, and the gradient between Ci and

Ci+1.

We can see that while the first order interpolation has no problems at the discontinuity,

the second order interpolation overshoots and introduces new extrema. For example, at

the right boundary of Ci+1 located at x = xi+3/2 the interpolated value is now larger

than the value in both Ci+1 and Ci+2. However, the interpolation elsewhere does not have

these issues, and so away from discontinuities it is still desirable to use a higher order

interpolation.

Since these problems are caused specifically by discontinuities in the variables, if we

can create a scheme that reduces the order near these discontinuities then we can obtain

higher order approximations outside of these cases without issue. There are many different

ways of obtaining higher order interpolations; a popular example is the piecewise parabolic

method. This method is used in various RMHD codes such as ECHO (Del Zanna et al.,

2007), IllinoisGRMHD (Etienne et al., 2015) and KORAL (Sądowski et al., 2013).

In our case, we have used two different methods of achieving higher order code, for

second and third order interpolation respectively.
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Second order method

The second order method is the first method we used to improve the accuracy of the code.

This particular method is based on the method from Komissarov (1999a).

Given the primitives P at the centre of cell Ci at time n, we use these Pi,n to calculate

the gradient in each Ci as(
∂P

∂x

)
i,n

= 1
∆xav

(
∆Pi− 1

2 ,n,∆Pi+ 1
2 ,n

)
, (3.40)

where ∆x is the cell width, av (·, ·) is a non-linear averaging function and

∆Pi− 1
2 ,n = Pi,n − Pi−1,n, (3.41)

and so we can then use these gradients to calculate the cell value at the boundary as

P l
i,n = Pi,n − 1

2∆x
(
∂P

∂x

)
i,n

and P r
i,n = Pi,n + 1

2∆x
(
∂P

∂x

)
i,n
, (3.42)

for the left and right boundaries of Ci respectively.

Given the boundary between Ci and Ci−1 this gives two interpolations for this same

boundary as the right boundary of the lower cell P r
i−1,n and the left boundary of the

upper cell P l
i,n. Generally these are not equal and so we then solve the resultant Riemann

Problem, now neglecting the gradients within the cell.

All that remains is the averaging function av (·, ·). For each cell, there are two different

second order polynomial interpolations within the cell; the interpolation of the left and

current cells, and the interpolation of the right and current cells. In both cases, the

interpolation is just a straight line connecting the two known cell values at the cell centres,

giving a gradient of ∆Pi−1/2,n for the left interpolation and ∆Pi+1/2,n for the right. In

both cases, the interpolation at the cell boundary is simply the cell value at the centre

plus this gradient over half the cell width.

The averaging function then simply finds an average between these two gradients, to

find an interpolation that is balanced between the two, since left or right biased inter-

polations tend to have unwanted effects on the model results. Moreover, this non-linear

average can be tuned so that the gradient of interpolations containing a discontinuity are

dropped, in order to avoid the problem of Godunov’s theorem.

We find then that a function av (·, ·) which is homogeneous of degree one and has the

following properties

av(a, b) = 0 if ab < 0,

av(a, b) →


1
2(a+ b) as a → b,

a as |a|/|b| → 0,

b as |b|/|a| → 0,
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will have the desired behaviour. That is, if a ≈ b then the average approaches the usual

average of the gradients, while are if |a| ≫ |b| or vice versa, so that one of the gradients

a or b is much larger than the other, then the average defaults to the smaller of the

two gradients, thus neglecting the interpolation of larger absolute gradient. If there is a

discontinuity, then this should be the side with the larger absolute gradient and therefore

the averaging function neglects this side, avoiding the issues associated with interpolation

over a discontinuity. Finally, in the case where the gradient changes sign (so a minimum

or maximum) the function outputs a gradient of 0, thereby eliminating the possibility of

introducing new extrema.

Clearly there is a lot of freedom in the choice of function here, and no general agreement

on which is best. Following van Leer (1977) and Komissarov (1999a), we choose

av(a, b) =


a2b+ ab2

a2 + b2 if ab ≥ 0 and a2 + b2 ̸= 0,

0 if ab < 0 or a2 + b2 = 0,

which has all the correct properties, in addition to being quite simple.

xi−2 xi−1 xi xi+1 xi+2

Ci−2 Ci−1 Ci Ci+1 Ci+2

Figure 3.8: Second order interpolation using the nonlinear averaging method, using the

same data as in Fig. 3.7.

Fig. 3.8 shows the results of this interpolation method, using the same data as before

in Fig. 3.7. Comparing to the second order interpolation in Fig. 3.7b that uses a linear

average, we can clearly see that this method has eliminated the issue with interpolations

near the discontinuity.

One may note that this method does not in fact reduce to first order near discontinu-

ities, unless at least one of the gradients is zero or the gradient changes sign. If this is

not the case, then the averaging function gives a non-linear average of the two gradients,

and still retains second order convergence. Thus this method does not actually reduce

the order at all, and simply biases the interpolation to the side that does not contain any

discontinuities. However, as noted previously the issue above was with interpolating over

a discontinuity, and so this method should still serve to remove this issue.
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Third order WENO method

Although in many circumstances a second order method is sufficient, we will see later that

the reduction of truncation error is more important for this code than would generally be

the case. In addition to this, the near-lack of non-linear steepening at high σ for fast shocks

means that there are few factors to counteract numerical diffusion and keep shocks sharp,

thus these shocks can spread over many cells with a low-accuracy integration scheme. We

therefore decided to improve the method to third order so that we could reduce this error

further.

Every n consecutive cells (called a stencil) provides an nth order interpolation within

these n cells. Each cell is a member of n different stencils, and therefore has n different

nth order interpolations for the value of P inside the cell, including both cell boundaries.

The essentially non-oscillatory or ENO method, first proposed in Harten et al. (1987),

uses this fact to avoid the problem of oscillatory solutions. In its basic form, this method

evaluates the “smoothness” of all n stencils, and then chooses the smoothest stencil for

the interpolation. Since a stencil that contains a discontinuity should not be smooth, this

method naturally selects a stencil that has none.

This method is known as essentially non-oscillatory, because even though it does not

reduce to first order, it still avoids the oscillations induced by interpolating over a discon-

tinuity, and therefore avoids this problem, for the most part.

Unfortunately, the basic ENO method will often be biased left or right, as in many

conditions one can find that the smoothness of the stencils is itself biased, regardless of

the presence of actual discontinuities. Many suggestions have been proposed to combat

this, including trying to bias the selection process centrally, so that in smooth regions it

tends to select central interpolations.

Importantly, any weighted average of the n difference interpolations is also an nth order

interpolation over the same domain. That is, if P1(x) ,P2(x) , . . . ,Pn(x) are the n different

interpolation functions within the cell, any weighted average

P̄ (x) =
n∑

i=1
aiPi(x) , with

n∑
i=1

ai, (3.43)

is also an nth order interpolation of P inside the cell. This fact can also be used to try

to bias the stencil selection more smoothly; we may note that the previous second order

method can in fact be interpreted in this way, as an averaged ENO method.

However, rather than an arbitrary choice of weights, Liu et al. (1994) developed the so-

called WENO method (Weighted essentially non-oscillatory) and showed that by averaging

with a convex combination of all the stencils with a particular choice of weights, it can

actually allow us to increase the order of the interpolation. A particular cell is contained
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in n different stencils, therefore an average of all these n interpolants contains data from

2n− 1 different cells in total. So it is not unreasonable to think that combining this data

in a particular manner could increase the order of the method somehow, up to a maximum

of 2n− 1.

While Liu et al. (1994) originally only showed that the order of the method could

be increased by one, Jiang and Shu (1996) showed further that a particular method of

averaging allows us to increase the order of the method up to the theoretical maximum of

2n− 1. That is, with all 2n− 1 cells involved there is a unique 2n− 2 order interpolation

polynomial, and they showed that one can average all n interpolations to match this unique

polynomial. The weights needed are independent of the actual values in the cells so long

as the cell size is constant and only depends on the location we are interpolating to inside

the cell, so we can always use the same weights. Since the full set of 2n−1 cells are centred

on the cell we are interpolating, this method is also naturally a central interpolation, so

there is no bias.

However, we have of course been ignoring the problem of discontinuities in some cells.

If we simply interpolate like the 2n−2 order polynomial, then this is no different than just

using this interpolation to begin with. The advantage of a WENO scheme is that we can

modify the weights of the average so that if a discontinuity is in one (or more) of the sten-

cils, then these interpolations are dropped from the average, avoiding the discontinuities

— and also dropping the order of the interpolation, generally to the order of interpolation

of a single stencil, n.

xi−1 xi xi+1

Ci−1 Ci Ci+1

Si− 1
2

Si+ 1
2

S∗
i

Figure 3.9: Illustration of a third order WENO scheme. The second order interpolations

of the sub-stencils Si−1/2 and Si+1/2 are in black, while the third order interpolation over

the full stencil S∗
i is in red. Each stencil range is annotated below the plot.

In our case, we are using a third order WENO scheme. An illustration of our set
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up can be seen in Fig. 3.9. The two linear interpolations have stencils Si−1/2 over Ci−1

to Ci and Si+1/2 over Ci to Ci+1/2, with linear interpolations drawn in black. These

two interpolations are both valid second order interpolations of the value of P inside

the common cell Ci (assuming no discontinuities are present, of course). This therefore

means that any weighted average of these two interpolations is also a second (or higher)

interpolation of P , including the specific choice of weights which match the interpolation

over the stencil S∗
i , i.e. all three cells.

Both smaller stencils have unique linear interpolations for the left and right boundaries

of Ci, so we write P l
i,− as the interpolation of the left boundary at xi−1/2 of Ci via stencil

Si−1/2, and similarly for the right boundary at xi+1/2 we have P r
i,−, while the interpolations

of stencil Si+1/2 are given by P l
i,+ for the left boundary and P r

i,+ for the right. With these

definitions, we can write these in terms of the known values at the cell centres Pi as

P l
i,− = 1

2Pi−1 + 1
2Pi and P r

i,− = −1
2Pi−1 + 3

2Pi,

P l
i,+ = 3

2Pi − 1
2Pi+1 and P r

i,+ = 1
2Pi + 1

2Pi+1.
(3.44)

Meanwhile, the third order interpolations for the left and right boundaries using all three

cells ∗P l
i and ∗P r

i are given by

∗P l
i = 3

8Pi−1 + 3
4Pi − 1

8Pi+1 and ∗P l
i = −1

8Pi−1 + 3
4Pi + 3

8Pi+1. (3.45)

Comparing Eq. (3.44) to Eq. (3.45), we find that we can write the third order interpo-

lations in terms of the second order interpolations as weighted averages

P l
i = γ−P

l
i,− + γ+P

l
i,+ and P r

i = γ+P
r
i,− + γ−P

r
i,+, (3.46)

if we use the weights γ− = 3/4 and γ+ = 1/4. Note how the weights for the left and right

boundaries are not the same but instead swapped due to symmetry.

The weights γ± are known as the linear weights. They are the optimal choice of weights

to achieve third order convergence, and in smooth regions these are the weights we want

to use. However, if we were to simply use these weights everywhere the method would

be no different from simply using a third order central scheme directly. It is when there

are discontinuities that the advantages of a WENO method make themselves known; if a

particular stencil contains a discontinuity, then we can reduce the weight of this stencil to

ignore its impact.

We therefore require some method of identifying discontinuities. Unfortunately, with

the only data we have being the values at the cell centres, it is impossible to perfectly

separate cases of discontinuities to cases with merely very large gradients etc. — at least

until the grid spacing ∆x is small enough to fully resolve these features.
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We must settle for a method that can identify where discontinuities probably are in-

stead. To do this, we require some method of evaluating the “smoothness” of each stencil,

much like an ENO method, which we can then use to calculate the so-called “non-linear

weights”w±, from which we can calculate our final interpolation result as

P l
i = w−P

l
i,− + w+P

l
i,+ and P r

i = w+P
r
i,− + w−P

r
i,+. (3.47)

We require two properties of these non-linear weights:

1. In smooth regions they should approach the linear weights, w± → γ± as ∆x → 0.

2. If stencil Sr contains a discontinuity then the associated weight should be small

wr → 0.

For this purpose, we first need some way of measuring the smoothness of each stencil.

Jiang and Shu (1996) originally suggested the following for these so-called “smoothness

indicators”

βk
i =

n∑
r=1

∆x2r−1
� xi+1/2

xi−1/2

(
dr

dxr
p(k)(x)

)2
dx, (3.48)

where βk
i ≥ 0, with k ranging 1 ≤ k ≤ n, represents the smoothness of the interpolation

in the current cell Ci by the kth interpolating function p(k)(x).

In other words, the smoothness βk
i of a particular interpolating function p(k)(x) is the

squared sum of the L2-norms over the current cell Ci of its first n derivatives.

With this definition it is clear that functions with smaller derivatives will have smaller

smoothness (given that smoother interpolations give smaller smoothness indicators, it is

perhaps more accurate to call them roughness indicators). By comparing smoothness of

each interpolation in the current cell, we can identify discontinuities by particularly large

βk
i .

In our case of a third order WENO scheme, the interpolating polynomials are all linear

functions so all but then r = 1 derivative is 0. On a uniform grid, it is therefore very simple

to evaluate the smoothness exactly in terms of the cell values; in this case it reduces very

simply to

β− = (pi − pi−1)2 , β+ = (pi+1 − pi)2 , (3.49)

where the β± are the smoothness of the interpolation in stencil Si±1/2 in the current cell.

The smoothness indicators in this case are thus simply the squared differences.

With these smoothness indicators, Jiang and Shu (1996) then define the non-linear

weights as

wl = w̃l∑n
r=1 w̃r

, with w̃r = γr

(ϵ+ βr)2 , (3.50)
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where ϵ > 0 is a small number used to prevent the denominator from reaching 0 when

βr = 0. Generally this is chosen such that ϵ2 is close to the numerical precision. Note that

ϵ also serves as a minimum cut-off to the smoothness βr; if 0 ≤ βr ≪ ϵ then these small

smoothness values will effectively be ignored.

It is worth noting that it is not the absolute values of the βr that matters, but rather

their relative magnitudes to each other, since the non-linear weights only match the linear

weights if all the smoothness scores βr are equal. For our third order, two-stencil scheme

then, the smoothness should have the following properties

1. β−/β+ → 0 if the left stencil contains a discontinuity.

2. β+/β− → 0 if the right stencil contains a discontinuity.

3. β−/β+ → 1 if both stencils are smooth.

In most cases the non-linear weights wl in Eq. (3.50) have the desired properties of

reducing to 0 when containing a discontinuity, and approaching wl → γl when both are

smooth. However, there is a specific scenario in which the weights find smooth regions to

be non-smooth: If the smooth region contains a critical point where the derivative of the

variable being interpolated is zero, then the method only converges at second order.

This is because if there is no critical point in a given smooth stencil, then the smooth-

ness is βr ∼ O(∆x), while if there is a critical point in the smooth stencil then the

smoothness is βr ∼ O
(
∆x2). So even if all the stencils are smooth, the smoothness of

stencils containing the critical point converges to 0 faster than those that do not, and the

result is these stencils appear smoother by this calculation, causing the scheme to neglect

the other apparently less smooth stencils.

This issue was first recognised by Henrick et al. (2005). They also proposed a mapping

method for fifth order WENO that preserves fifth order convergence even in the presence

of critical points, by mapping the non-linear weights to new values. Unfortunately, this

particular map is ineffective at avoiding the issue for third order WENO schemes.

Novel Smoothness Indicator

Several methods have been proposed to improve third order WENO. For instance, Don and

Borges (2013) propose including a global smoothness indicator, which takes into account

the overall smoothness over all three cells involved in each interpolation. The global

smoothness τ = |β− + β+| is combined with the smoothness of the sub-stencils β± by

altering Eq. (3.50) with

w̃r = γr

(
1 + τ

ϵ+ βr

)
, (3.51)
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to reduce dissipation.

To improve things further, Xiaoshuai and Yuxin (2015) suggest redefining this global

smoothness to

τ =
∣∣∣∣12 (β− + β+) − β0

∣∣∣∣ , (3.52)

where β0 is the overall smoothness of the full 3-cell stencil as given by Eq. (3.48), and is

therefore

β0 = 13
12 (pi−1 − 2pi + pi+1) + 1

4 (pi−1 − pi+1)2 . (3.53)

Xu and Wu (2018) suggest another redefinition of the global smoothness with the

slightly simpler definition of

τ =
∣∣∣∣12 (β− + β+) − 1

4 (pi−1 − pi+1)2
∣∣∣∣ , (3.54)

and also suggest modifying Eqs. (3.50) and (3.51) further to

w̃r = γr

(
1 + τ

ϵ+ βr
+ λ

βr + ϵ

τ + ϵ

)
, (3.55)

where λ = ∆x1/6 if chosen for better results.

All of these methods show some improvements in the dissipation of the method, but

none are able to deal with the issues near critical points. Although some methods do show

promise in this regard (e.g. Ha et al. (2020)), for this thesis we opted for a novel method

we developed that utilises an estimate of the magnitude of the interpolated variable to

identify discontinuities, and thereby avoids reducing the order due to misidentified critical

points. In the interest of simplicity, we will also not be using any of the above improved

third order methods, although none are incompatible.

In order to prevent the reduction of order near critical points then, we propose the

following novel adjustment to Eq. (3.48):

β− = (ui − ui−1)2 +AU2
−∆x2 and β+ = (ui+1 − ui)2 +AU2

+∆x2, (3.56)

where U± is the typical magnitude of the variable u over the stencils, for which we can

use U2
− =

(
u2

i + u2
i−1
)
/2 and U2

+ =
(
u2

i+1 + u2
i

)
/2, and A = 1/L2 where L ≫ ∆x is the

minimal length scale of a “smooth” solution. That is, the minimum width for what we can

consider a smooth state of the system. For our numerical method the choice of L = ns∆x

with 5 ≤ ns ≤ 10 works well. With this choice, the extra component of AU2
±∆x2 becomes

U2
±/n

2
s, so this component has no dependence on the grid spacing with this choice of L.

In smooth regions, we generally expect the magnitudes U± to dominate, so that

(ui+1 − ui)2 ≈
(
∂u

∂x

)2

i
∆x2 ≪ AU2∆x2, (3.57)
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so with these new smoothness indicators and weights, unless the gradients ui − ui−1 or

ui+1 − ui are large (suggesting the presence of a discontinuity), the β± will be dominated

by the magnitude of the variables themselves. So we should have β−/β+ → 1 in smooth

regions, even if there is a critical point.

Meanwhile, in the presence of a discontinuity

(ui+1 − ui)2 ≈ U2 ≫ U2

n2
s

= AU2∆x2, (3.58)

so the new terms are small, and the original smoothness indicators in Eq. (3.49) are

recovered.

This method thus avoids the problems near critical points, without causing problems

at discontinuities; this is of course with the sole exception of the case where the magnitude

of the variables U is also small. That is, if the interpolated variable u(x) happens to have

a critical point where u(x) = 0 (i.e. a point x = a where we have u(a) = 0 and u′(a) = 0).

In this case, our assertion that the magnitudes U± will dominate is no longer valid, and

Eq. (3.57) does not hold.

If this condition does not hold exactly then we expect that Eq. (3.57) will only hold at

sufficiently small ∆x. However, even if the condition need not be satisfied exactly, they

are likely rare enough that they do not need to be dealt with. At the very least, these new

smoothness indicators β± are clearly superior to the originals in Eq. (3.49) since those will

also have the same problem.

The novel smoothness indicators in Eq. (3.56) can be inserted directly into Eq. (3.50) as

a substitution for the original smoothness indicators of Eq. (3.49). With this adjustment,

the third order interpolation is once again able to achieve third order convergence, even

in the presence of critical points, besides the special case noted above.

Therefore, for all tests in chapters 4 and 5 we use a third-order WENO scheme using

these novel smoothness indicators.

3.1.4 DER step

After reconstructing the variables at the boundaries and subsequently solving the Rie-

mann problems at each boundary, we then have the exact values of the flux function

at these boundaries Fi+1/2. As noted previously, these values do not generally satisfy

both Eqs. (3.17) and (3.18), at least for the case of a finite difference scheme. We can

demonstrate this if we take a Taylor Series about xi.

We can work with a single-equation PDE for simplicity

∂q

∂t
+ ∂f

∂x
= 0, (3.59)
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where the extension to systems of PDEs is the natural method, i.e. keeping each component

of Q separate. Using the exact values at the boundaries, fi+1/2, the finite difference

approximation of the derivative is given by

∆xf ′(xi) ≈ fi+1/2 − fi−1/2, (3.60)

where fi+n/2 is the exact flux at x = xi +n∆x/2. If we now take the Taylor series of f(x)

about xi and insert x = xi ± ∆x/2, then we obtain

f(x± ∆x/2) = fi±1/2 = fi ± ∆x1
2f

(1)
i + ∆x2 1

6f
(2)
i ± ∆x3 1

24f
(3)
i + O

(
∆x4

)
, (3.61)

where f (k)
i is the kth derivative of f(x) at xi. Inserting into Eq. (3.60), we find

∆xf ′(xi) ≈ ∆xf (1)
i + ∆x3 1

12f
(3)
i + O

(
∆x4

)
. (3.62)

Cancelling the first derivative from both sides, we find that the error of this approximation

is 1
12∆x3f

(3)
i + O

(
∆x4), and therefore the approximation is only accurate up to second

order. We thus need to calculate some f̂i+1/2 from these such that

∆xf ′(xi) ≈ f̂i+1/2 − f̂i−1/2, (3.63)

is at least third order accurate; that is, the f̂i+1/2 satisfy Eq. (3.18).

In Del Zanna et al. (2007), they begin with a finite difference approximation of the

derivative

∆xf ′(xi) ≈ f̂i+1/2 − f̂i−1/2 = a
(
fi+1/2 − fi−1/2

)
+ b
(
fi+3/2 − fi−3/2

)
, (3.64)

here based on a 4-point stencil. If we once again take the Taylor series of f(x) about xi

and insert all the points

x = xi − 3
2∆x, x = xi − 1

2∆x, x = xi + 1
2∆x, x = xi + 3

2∆x,

then after substituting for the fi±1/2 and fi±3/2 and collecting terms we get

∆xf (1)
i =

∞∑
k=0

f
(k)
i

∆xk

k!2k

(
1 − (−1)k

)(
a+ 3kb

)
+ O

(
∆x5

)
. (3.65)

Clearly the terms with even k cancel. In order to match the left hand side, we require a

pair of values a and b such that the coefficient of the ∆x term is 1, and the ∆x3 term is

eliminated. After expanding, these conditions become

a+ 3b = 1 and a+ 27b = 0, (3.66)

and it is easy to find that the solution to these equations is a = 9/8 and b = −1/24.
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With these values of a and b we can calculate ∆xf ′(xi) directly from the fi+1/2 etc.

using Eq. (3.64). However, we require the values of the f̂i±1/2 specifically, so that we can

share these fluxes between neighbouring cells and thus maintain conservation. So now we

write
f̂i+1/2 = d0fi+1/2 + d1

(
fi−1/2 + fi+3/2

)
,

f̂i−1/2 = d0fi−1/2 + d1
(
fi+1/2 + fi−3/2

)
,

(3.67)

and comparison with the values of a and b in Eq. (3.64) above tells us that we have

d0 = 13/12 and d1 = −1/24. Using these values we can now derive the f̂i±1/2 and hence

obtain a higher-order method.

Note that we could alternatively interpret this as a correction to the original flux fi±1/2

by
f̂i+1/2 = fi+1/2 − 1

24
(
fi−1/2 − 2fi+1/2 + fi−3/2

)
,

f̂i−1/2 = fi−1/2 − 1
24
(
fi−3/2 − 2fi−1/2 + fi+1/2

)
,

(3.68)

where we can identify the components in brackets as an estimate of the second derivative

at that point. Indeed, Jiang and Shu (1996) give an alternative view of the DER correction

as

f̂i±1/2 = fi±1/2 +
m−1∑
k=1

a2k∆x2kf
(2k)
i±1/2 + O

(
∆x2m+1

)
, (3.69)

making the DER correction a correction based on the even derivatives of f(x). We could

therefore potentially apply the DER step using a different approximation for the second

derivative. In our case, m = 2 and so only the second derivative f (2)(x) is needed, which

we calculate based on a centred, symmetric stencil.

The corrections given in Eq. (3.68) are quite small (being only of order ∆x2), so the

oscillations induced by this correction are likely to be quite small. For this reason, Del

Zanna et al. (2007) did not use a more costly WENO method (or otherwise), since this

would seem unlikely to confer much benefit.

However, it is not impossible to conceive of a scenario in which this would cause prob-

lems. Consider a sharp, strong discontinuity in a conserved variable that on at least one

side of the discontinuity is close to the limit of physical values. For instance, in RMHD

we could have a value of the conserved energy from Eq. (2.34) that is very close to zero

on one side of the discontinuity, next to a much larger value on the other side. Such a

scenario is very common in — for instance — a fast shock spread over very few cells.

In this scenario, the flux in the interior of the shock could be of comparable value to that

of the larger value of the conserved variable, and therefore potentially orders of magnitude

larger than the smaller value. Thus any oscillations induced by using this central stencil

may be enough to push the energy into the negatives and therefore break the simulation,
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despite the fact that the oscillations would be quite small. Indeed, in practice we have

observed this very phenomenon when using initial conditions that are too sharp. Since we

desire sharper discontinuities, it may be advantageous to use a method of some description

to allow the model to handle these sharp discontinuities.

Since this is another case of an interpolation scheme having difficulty near discontinu-

ities, it is tempting to try another WENO method. However, given that the oscillations

are already small, problems with the DER method tend to only manifest like the suggested

case above with the system being pushed out of the set of physical states. Given how close

the system already is to failing in these cases, we have found in practice that implementing

a non-oscillatory method like WENO does not help prevent these problems.

Instead, the only way we have found to prevent failure in those cases is to forgo the

DER step entirely, and simply use the fluxes fi±1/2 prior to correction. This of course

causes the code to reduce to third order, but ideally this would only be done in specific

cases, when necessary.

With that said, we have also found other ways of preventing these failure cases by

altering other parts of the code. As such, in all tests in chapters 4 and 5 (except where

stated otherwise) we use the normal DER step in all cases with a central, symmetric stencil

and do not skip it.

3.1.5 Runge-Kutta Methods

With the previous steps of reconstruction, Riemann solver and DER we have constructed

inter-cell fluxes that we can insert into the semi-discrete system Eq. (3.16). Thus our

system of partial differential equations has now become a system of ODEs for time inte-

gration, of the form
dQ

dt
= L(Q) , (3.70)

where Q is the vector of conserved variables, and L(Q) is a vector-valued differential

operator which outputs the corresponding flux gradients (with an extra minus sign as

we have moved this term to the other side of the equation). In other words, L(Q) is

an operator representing the previous three steps, which takes as an input a state Q and

outputs an approximation to the flux gradient (or gradients, in the multidimensional case)

of this state.

We thus now need a method of time integration. The most basic such method is the

Euler method, which simply uses the gradient of Q at the beginning of the time step over

the full time step. In other words, it uses a linear approximation of the solution, so the
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solution at the next step is

Qn+1 = Qn + ∆tL(Qn) . (3.71)

However, this method is first order in time (i.e. the truncation error is ET ∼ O(∆t)), and

as such it is quite inaccurate.

The CFL condition Eq. (3.15) means that ∆t is proportional to ∆x, provided we keep

the Cu constant. Since the truncation error of the numerical scheme is ET ∼ O(∆xn) +

O(∆tm), this error is dominated by the spatial error if n < m and time stepping error if

n > m, for sufficiently small ∆x and ∆t. Thus the higher order reconstruction scheme

and DER step detailed above are not especially useful unless we also use a higher order

time integration scheme.

There are different ways of creating a higher order time integration method, but the

method we chose is an explicit Runge-Kutta method. The “explicit” term means that each

step in the integration method only depends on currently known values, unlike implicit

schemes where the next state can also be dependent on itself.

For instance, the simplest implicit method is the backwards Euler method; in this case

(in contrast the to the Euler method) this method uses the gradient at the end of the time

step. Thus for our system, the next time step as given by the backward Euler method is

Qn+1 = Qn + ∆tL(Qn+1) . (3.72)

Since the next step Qn+1 depends on itself, it is defined implicitly. This method is still

first order, but it is more stable and in the case of FV/CFD methods it allows the CFL

condition to be relaxed. However, calculating the next step is significantly more complex

in both computation and implementation, since it requires more than just calculating the

flux gradients L at a given time step.

Thus most RMHD schemes use explicit time integration — although some schemes use

implicit integration for just the source terms, as these terms can be stiff such as with resis-

tive plasmas. This kind of mixed scheme is known as an implicit-explicit (IMEX) scheme,

and has been used in some RMHD codes, such as Palenzuela et al. (2009); Ripperda et

al. (2019). In our case, the only source terms we have can be solved analytically, so this

is unnecessary.

For both the second order and third order code we used an explicit Runge-Kutta

method of the respective order. For an explicit Runge-Kutta method, the solution for the

next time step is then given by

Qn+1 = Qn + ∆t
s∑

i=1
biKi, (3.73)
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where

Ki = L(Si) , and Si = Qn + ∆t
i−1∑
j=1

aijKj . (3.74)

Essentially, we step to various sub-steps Si by a weighted sum of the currently known

gradients Ki. At these sub-steps, we calculate the gradient Ki via the operator L(Si),

then use this new gradient together with those of previous sub-steps in a weighted sum

to step forward again to another point. Finally, we use all s of these known gradients to

step forward the full step by Eq. (3.73).

The bi are the weights of the gradients Ki for the full time step, and the aij are the

weights of each gradient Kj for the ith sub-step. It is easy to see why this could achieve

a more accurate integration; by using the gradients from other points in the time step we

get a better approximation for the true gradient from start to end of the time step. The

values of these parameters are key to RK methods; various conditions are needed to make

the method truly higher order. Even so, there is generally a lot of freedom in choosing

these parameters exact values, and thus many different RK schemes we can choose from,

even for the same order.

Generally speaking, RK methods need at least n sub-steps to achieve an nth order code

(Ascher and Petzold, 1998). It is therefore desirable to minimise the order of the method

at at most the order of the spatial discretisation, to minimise wasteful calculations.

For our second order code, we used the second order midpoint method (Ascher and

Petzold, 1998). In this case there is a single sub-step so that s = 2, and we have

K1 = L(Qn) ,

K2 = L
(
Qn + 1

2∆tKj

)
,

(3.75)

so that K1 is the gradient at the initial state tn, and using K1 to reach the estimate of

Q we have K2 as the gradient at the midpoint. With this, the full step is then

Qn+1 = Qn + ∆tK2, (3.76)

so we simply use the gradient at the midpoint.

Meanwhile, for our third order code, we used Kutta’s third order method (Ascher and

Petzold, 1998), so we have

K1 = L(Qn) ,

K2 = L
(
Qn + 1

2∆tKj

)
,

K3 = L(Qn + ∆t (2K2 − K1)) .

(3.77)

Here K1 and K2 are the same as before, while K3 is an estimate for the gradient at the

end point using the two previous K1 and K2. With these, we can calculate the full time
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Figure 3.10: Diagrams of Runge-Kutta stepping for the differential equation Eq. (3.79)

with exact solution x(t) via the Euler method (a), midpoint method (b) and Kutta’s third

order method (c). The initial state is x = xn at time t = tn, the state after the time step

∆t is xn+1, the x = si are the mid-steps and the ki are the gradients as calculated at the

si. There is a clear improvement in accuracy as the order is increased.

step as

Qn+1 = Qn + ∆t
(1

6K1 + 2
3K2 + 1

6K3

)
= Qn + 1

6∆t (K1 + 4K2 + K3) , (3.78)

so this time we have a weighted average, biased towards the midpoint estimate. Since this

method requires an extra time step, it is slower to evaluate than the second order method.

Diagrams for the Euler method, midpoint method and our third order method can be

seen in Fig. 3.10, for the scalar differential equation

dx

dt
= f(x, t) . (3.79)
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As we can see from this example, the third order method is significantly more accurate

than the midpoint method, which is itself more accurate than the Euler method.

3.2 Novel Operator Splitting Method

High-Magnetisation RMHD

As we have noted previously, conservative numerical methods like the one described in

section 3.1 are known to work for RMHD only so long as σ =
(
B2 − E2) /w is small, so

that the electromagnetic terms are relatively small. These methods can have difficulties

even for relatively small values of σ ∼ O(1). Dealing with this problem is the main crux

of this thesis, but first we must seek a better understanding of the cause of this issue.

These problems have the form of large errors for the recovered key (primitive) pa-

rameters of plasma, e.g. its thermodynamic pressure and Lorentz factor, and ultimately

the non-existence of physically meaningful values for such parameters consistent with the

computed conserved quantities, such as mass, energy and momentum densities.

The fact that the equations of FFDE are degenerate (Komissarov, 2002) indicates that

the system of RMHD should be close to degenerate for high-magnetisation flows. That

is, with σ ≫ 1 the energy (Eq. (2.34)) and momentum (Eq. (2.35)) conservation laws

of RMHD should be close to linearly dependent. It has been suggested previously in

Komissarov (2006) that this may be the fundamental cause behind the problems with

conservative RMHD codes.

In the limit of high σ, the vector ∇αT
αβ should be restricted to a two dimensional

plane as shown by Komissarov (2002) and reiterated in section 2.2.1. When σ is large but

finite in RMHD, ∇αT
αβ is not restricted to a plane, but it should be close to a force-free

configuration.

That is, if the vector ∇αT
αβ is far from this plane, then σ cannot be small, and the

reverse is also true so that σ large implies that the vector must be close to the plane. Thus

at high σ this vector is restricted in the value it can take, and so the range of physically

realistic values for the conservative variables at the given magnetisation shrinks.

During the computation of the model, the computed values for the conservative vari-

ables in each iteration will incur some numerical and truncation error. Because the range

of ∇αT
αβ for the given magnetisation has become quite small, this error can easily push

the vector ∇αT
αβ into a range inconsistent with the given magnetisation. In this state,

there may be no physically meaningful values for the gas pressure, density or Lorentz

factor consistent with the given conservative variables, since the required values may be
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negative, or greater than 1 (for the Lorentz factor). Thus the numerical method fails in

this instance.

In other words, since a force-free component of ∇αT
αβ is restricted to a 2D plane, any

deviation from this restriction must be dealt with by a component that is not force-free,

i.e. inertial terms such as density and gas pressure. But these terms should be O
(
σ−1),

and so as σ increases the ability of these terms to deal with such deviation diminishes.

Operator Splitting

Now that we have an understanding of the numerical methods we will use, we can move

on to the new method of modelling RMHD presented in this thesis, a kind of operator

splitting method. The objective is to adapt an asymptotic method, and separate the

RMHD system into two components: One of order ∼ O(1), and one of order ∼ O
(
σ−1).

To this end, we take Eq. (3.70) and we now split Q into Q = Q0 +Q1, with Q0 ∼ O(1)

and Q1 ∼ O
(
σ−1). Thus Eq. (3.70) splits into the two sub-equations

∂Q0
∂t

+ L0(Q0,Q1) = 0, (3.80)
∂Q1
∂t

+ L1(Q0,Q1) = 0. (3.81)

Thus the Q0 and Q1 individually satisfy their own conservation laws but are coupled to

each other (although we will split the equations such that the operator L0 does not depend

on Q1). We can therefore step forward Eq. (3.70) in time by stepping forward Eqs. (3.80)

and (3.81) separately.

RMHD

If we recall from the chapter 2, for the evolution equations for RMHD after special rela-

tivistic splitting, we have Eq. (2.29) which governs mass conservation

∂t

(
ρu0

)
+ ∇ · (ρu) = 0,

Eq. (2.35) which governs momentum conservation

∂t

(
wu0u + E × B

)
+ ∇ ·

(
wuu − EE − BB +

(
pg + 1

2
(
E2 +B2

))
δij
)

= 0,

Eq. (2.34) which governs energy conservation

∂t

(
wu0u0 − pg + 1

2
(
E2 +B2

))
+ ∇ ·

(
wu0u + E × B

)
= 0,

and Eq. (2.38) which is simply Faraday’s law

∂tB − ∇ × E = 0.
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In addition to these, we have two constraint equations: Eq. (2.37), the divergence-free

constraint of B

∇ · B = 0,

and Eq. (2.42), the perfect conductivity condition

E = −v × B,

which allows us to eliminate the electric field E from the other equations.

First, we split the magnetic and electric fields into

B = B0 + B1, E = E0 + E1, (3.82)

where B0,E0 ∼ O(1) and B1,E1 ∼ O
(
σ−1), and we also assume the inertial components

u, pg, ρ, w ∼ O
(
σ−1) — so we have split the magnetic and electric fields into components

of order 1 and components of the same order as the inertial components.

With this splitting, with σ ≪ 1 we have B2
0 ≪ B2

1 and E2
0 ≪ E2

1 so the 0-components

are small. With σ ≫ 1, we have B2
0 ≫ B2

1 and E2
0 ≫ E2

1 so we have the reverse with the

1-components small instead.

Substituting these definitions into the equations of RMHD above, we can then separate

the equations into two components: O(1) parts consisting of B0 and E0, and the remaining

components which will all be O
(
σ−1).

3.2.1 Force-Free Operator

For the O(1) components, mass conservation does not appear, and for the remainder we

have momentum conservation

∂t(E0 × B0) + ∇ ·
(

−E0E0 − B0B0 + 1
2
(
E2

0 +B2
0

)
δij
)

= 0, (3.83)

energy conservation

∂t

(1
2
(
E2

0 +B2
0

))
+ ∇ · (E0 × B0) = 0, (3.84)

and Faraday’s law again

∂tB0 − ∇ × E0 = 0. (3.85)

Meanwhile the constraints are

∇ · B0 = 0, (3.86)

and

E0 = −v × B0. (3.87)

Given that this is derived in an identical manner, there should be little surprise that

the equations are the same as that of FFDE. The second constraint of Eq. (3.87) is special
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since v does not appear elsewhere in these equations; in order to close this system we can

use the same adjustments as with FFDE and instead impose

B0 · E0 = 0, (3.88)

and

B2
0 − E2

0 > 0. (3.89)

Since this system is just FFDE, we can treat these equations in exactly the same

manner as we would any other FFDE method. We therefore choose to refer to this part

of the split operator as the force-free operator.

The fact that this system is simply FFDE also allows us to use integration schemes

created by other authors for this system. For example, in section 2.2 we derived an

alternate system of equations for FFDE which act directly on the B0 and E0. However,

for this thesis we simply used the system as above, Eqs. (3.83) to (3.86), (3.88) and (3.89).

The force-free system corresponds to the L0 operator from Eq. (3.80). As noted above,

our splitting has eliminated the Q1 terms from this operator.

Conservation

In section 2.2.1, we noted that the conservation equations of FFDE are not independent of

each other, so we have an overdetermined system with seven conservation equations with

just four independent equations.

Analytically there is no issue here. We simply have several equations we can choose

from that are all satisfied, and we can drop any equations we like. Numerically, however,

the situation is more problematic.

We have previously described our integration scheme, a conservation scheme, meaning

that it maintains conservation of the conserved variables to machine precision. This is

useful for the accurate modelling of discontinuous solutions. For RMHD, this means

maintaining conservation of mass, energy, momentum and Faraday’s law. Our splitting

scheme should ideally maintain this property as well.

Unfortunately, the loss of independence makes this difficult. Our integration scheme

will update all seven of the conserved variables with fluxes consistent with neighbouring

cells to keep the variables conserved. However, generally speaking they will not be con-

sistent with each other. Truncation error in the integration scheme means that the values

no longer agree with each other.

For instance, in the force-free operator we have the conserved quantity B0 and the

conserved quantity S0 = E0 ×B0. Given their definitions, these variables must obviously

satisfy B0 · S0 = 0, since one is the cross product of the other with another vector.
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But after stepping forward the integration scheme by a time step, we get new states

for the variables B̂0 and Ŝ0. While these variables will all be conserved independently due

to the integration scheme, they will not generally satisfy the condition B̂0 · Ŝ0 = 0, due

to the truncation error in the integration scheme. It would therefore be impossible to find

an E0 for which S0 = E0 × B0, and the same applies to the conserved force-free energy
1
2
(
B2

0 + E2
0
)

(McKinney, 2006).

This leaves us with a significant problem, since it means we cannot maintain conser-

vation for all seven variables and keep the variables consistent with each other. Outside

of some unknown, clever integration scheme/correction we have no choice but to either

allow conservation for (at least) some of the conserved variables to be only maintained to

truncation error, or we allow the conditions to be violated.

We therefore concluded that allowing conservation to be relaxed a little was the better

option. The result is that despite the integration scheme being a conservative method,

the conservation is not maintained to machine precision but to truncation error. Thus the

scheme is now highly dependent on the accuracy of the integration scheme, and so it is

highly desirable to reduce truncation error as much as possible, via the higher order spatial

and time integration schemes discussed previously. Unfortunately, the spatial interpolation

must reduce in order near discontinuities, and will generally also reduce in order near

strong gradients as well, since the algorithm cannot tell the difference. As such, cases

with large gradients or discontinuities will see more error in the conservation of energy

and momentum over time.

3.2.2 Interaction Operator

We can now collect the remaining terms in the total RMHD operator into another operator.

These terms include terms of order ∼ O
(
σ−1) as well as those of order ∼ O

(
σ−2). We

keep these terms so that the overall system of the force-free operator L0 together with

this operator L1 does not drop any terms of RMHD, so these operators together match

RMHD exactly.

Since these terms describe the interaction between the inertial terms and the electro-

magnetic fields, we will call this operator the Interaction operator.

For these equations we retain the entirety of mass conservation

∂t

(
ρu0

)
+ ∇ · (ρu) = 0, (3.90)

since it does not appear at all in the force-free operator. For momentum conservation, the

remainder of this equation is
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∂t

(
wu0u + E0 × B1 + E1 × B0 + E1 × B1

)
+ ∇ · (wuu − E0E1 − E1E0 − E1E1

−B0B1 − B1B0 − B1B1 +
(
pg + E0 · E1 + B0 · B1 + 1

2
(
E2

1 +B2
1

))
δij
)

= 0, (3.91)

while for energy conservation what remains is

∂t

(
wu0u0 − pg + E0 · E1 + B0 · B1 + 1

2
(
E2

1 +B2
1

))
+ ∇ ·

(
wu0u + E0 × B1 + E1 × B0 + E1 × B1

)
= 0, (3.92)

and finally Faraday’s law takes on the simple form

∂tB1 − ∇ × E1 = 0. (3.93)

For the constraints, the divergence-free constraint is simply

∇ · B1 = 0, (3.94)

but we need to be more careful with the perfect conductivity condition.

In the force-free operator we had to alter the PC equation to deal with E0 instead of

v. Ideally, we would have split the PC condition with v = v0 + v1 so that

E0 = −v0 × B0 and E1 = −v0 × B1 − v1 × B0 − v1 × B1. (3.95)

However, we had to alter the PC condition into B0 · E0 = 0 for the force-free operator

since v does not appear. While this altered constraint guarantees that a v that satisfies

E0 = −v × B0 does exist, this v is not unique as adding an arbitrary component parallel

to B0 also satisfies condition.

Generally speaking B1 will not be parallel to B0, so this lack of knowledge about v0

makes Eq. (3.95) unsuitable. We could technically split v further into

v = v0 + sB0 + v1,

where v0 = (E0 × B0) /B2, i.e. the drift velocity, sB0 ∼ O(1) and v1 ∼ O
(
σ−1). But this

is becoming excessively complicated and would make calculating primitives from conser-

vatives even more cumbersome.

Instead of splitting, we can simply keep the PC condition complete as is, which allows

us to rearrange as

E1 = − (E0 + v × B0) − v × B1. (3.96)

Note how the bracket (E0 + v × B0) should be ∼ O
(
σ−1) to match the order of the

remaining components, but both components are actually ∼ O(1). This is a reflection

of the fact that for large σ we expect v to be close to the drift velocity that makes this
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bracket equal to 0, besides a component parallel to B0 which leaves it unchanged. If σ is

large this could cause a problem, since E1 depends on the small difference between two

relatively large values. In practice this has not caused a noticeable issue however, since σ

would need to be very large to cause an appreciable numerical error.

3.2.3 Overall Method

In the course of a single time step of this method, we first step forward the force-free

system of Eq. (3.80)
∂Q0
∂t

+ L0(Q0) = 0,

where we have dropped the Q1-dependence from the operator L0.

We start with the force-free system because it is not dependent on Q1. We can therefore

calculate fluxes and primitive variables P0 without needing these variables, and we can

step forward this system completely independently.

After stepping forward the force-free operator, we then step the interaction system of

Eq. (3.81)
∂Q1
∂t

+ L1(Q0,Q1) = 0,

using the Q0 at the start of the time step to calculate the fluxes, and then the Q0 at the

end of the time step to calculate the P1 at this time, using a variable conversion algorithm.

To be precise: The operator L1(Q0,Q1) is used to calculate the flux gradients of the

interaction fluxes. These fluxes are calculated from the Qn
0 and Qn

1 , i.e. the state at the

initial point of the time step.

This is used to update the Qn
1 by a time step. At this time we first calculate the

force-free primitives P n+1
0 from the Qn+1

0 . Then we calculate the interaction primitives

P n+1
1 from the Qn+1

1 and the P n+1
0 .

So far, the force-free system is completely unaffected by the interaction system. We

know that the force-free system has issues with cases like current sheets, so we must do

something about this. Moreover, if we leave them alone then B1 and E1 could potentially

grow until they break the O
(
σ−1) condition, making the operator splitting method a

meaningless alteration.

The solution to this is quite simple: at the end of each time step, we recombine the B0

and B1 as well as the E0 and E1, and set B0 and E0 to their totals. That is, at the end

of each time step, we set

B0 = B0 + B1 and B1 = 0, (3.97)

E0 = E0 + E1 and E1 = 0, (3.98)
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so we set the force-free magnetic field equal to the total magnetic field, and the same with

the electric field. Since B1 and E1 start the time step at 0 and end it at order O
(
σ−1),

this automatically enforces B1,E1 ∼ O
(
σ−1), and this also allows the interaction system

to affect the force-free system.

For first order in time this is a complete time step. But at higher order in time, things

are more complicated. We are using an RK method to increase the time accuracy, and

this requires that we calculate the value of the Q0 and Q1 at several intermediate points

in time; in particular, the choices of RK methods for second and third order time stepping

both require a mid step of half the time step.

The force-free operator is independent of the interaction system, thus we can fully

integrate this system by a full time step without any interference from the interaction

system.

However, since the interaction operator L1 depends on both Q1 and Q0, we also need

the value of force-free system Q0 for the mid steps as well. We need the force-free system

to calculate the interaction primitives P1 as well.

This requires that we also calculate the force-free system at the same time. This can

be done in three different ways:

1. Use the same Runge-Kutta method for both operators, and step forward both sys-

tems together for every sub-step.

2. Use different Runge-Kutta methods for either operator, which have the same sub-

step times. For instance, the second and third order time stepping schemes we

described in section 3.1.5 both use the same sub-step time points.

3. For each sub-step, perform a full time step of the force-free system to this sub-step.

For instance, the Runge-Kutta scheme we use is Kutta’s classic third order method,

which requires two sub-steps, one at the midpoint time tn+1/2 = (tn+1 + tn) /2, and

one at the end point of the time step tn+1. So we can perform two full steps of the

force-free system, once to tn+1/2 and once again to tn+1, and use these values for

calculating the fluxes and primitives of the interaction system.

First of all, the second method is not likely a good choice, as it is not even clear that this

method would retain the higher order time stepping for the scheme. Since the interaction

operator does not affect the force-free operator, the force-free operator at least would

retain higher order convergence, but it is not clear at all that the interaction operator

would retain this. We therefore decided against this scheme — especially since using the

third order operator for both is only a single extra time step for the interaction system

anyway.
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Since the third method means we are running the force-free system with half the time

step (i.e. half the Courant number Cu), the third method clearly requires more calculation

per time step. A different Runge-Kutta method could mean even more time steps for the

force-free system. With that said, the force-free system is much simpler and cheaper to

calculate computationally speaking. Furthermore, at high σ the accuracy of the force-

free system becomes much more important, so by doing twice as many time steps we

can increase the accuracy of the method — although decreasing the time step without

increasing the resolution is known to increase dissipation. We could even do multiple full

steps of the force-free system for each of these sub-steps.

The other advantage of decoupling the systems in this manner is that we could in-

dependently increase the resolution of the force-free system as well. Doing so would be

beneficial as the accuracy of the force-free system is significantly more important, both

due to the system being dominant at σ ≫ 1 and because this would reduce truncation

error and thus reduce loss of conservation.

The recombination step is one of the main reasons we have not tried increasing the

resolution of the force-free system independently of the interaction system. Since we

would only have the values of the interaction variables at some of the equivalent force-free

grid points, we would need to create another interpolation scheme to find these values

off the interaction grid. Moreover, in higher dimensions this would need to be a fully

multidimensional interpolation scheme as well, as mentioned above. Given its complexity

and limited advantage, we will use the first time stepping method for the remainder of

this thesis.

3.2.4 Integration Scheme

Since we are integrating the two operators (semi-)independently, we are free to choose

different integration schemes for the two operators. Thus we can choose the method and

the specifics of the method for both operators.

Interaction Operator

Although different integration schemes could have been applied to the interaction opera-

tor, the complexity of the equations lead us to simply use an HLL method as described

previously. This is an especially simple method to use, and we can practically use it “out

of the box” so to speak, without needing to do any complex tasks such as determining all

the eigenvectors.

The only task we need to do is calculate the maximal signal velocities SL and SR for
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the system. We have two clear choices: Use the speed of light, or use the fast speeds.

Using the speed of light is of course guaranteed to be fast enough, as no signal can

go faster than light to begin with. Moreover, in the high-σ regime the fast speeds are

very close to the speed of light most of the time. This choice also avoids any difficulty

calculating phase speeds. However, this choice will cause fast waves and fast shocks to

be more diffusive like all the other waves with HLL solver, because we are not accurately

resolving these features. This will also be the case at low σ, where the fast speeds are no

longer close to the speed of light.

This is especially the case when the fluid velocity is high enough to cause the true fast

speeds to both be positive or negative; as we have described before, in the HLL solver in

such cases the output is simply the flux of one of the initial constant regions outside the

Riemann fan, since the Riemann fan is wholly on one side of the origin x = 0. However,

with the use of the speed of light this would never happen, and the result of this solver is

thus significantly different than otherwise.

We can therefore use the fast phase speeds instead. These fast speeds should match

the fast speeds of the overall total RMHD system, so we can just use the same expressions

for the phase speeds given in Eq. (2.64), for the most general case. Unfortunately, this

does mean that generally we will need to solve a quartic polynomial for every Riemann

problem, although since this can be done analytically this is not exceptionally slow. For

our code, we use these fast speeds for the interaction operator, as this was found to make

the results in high Lorentz factor flows (where the Fast speeds can be significantly different

from the speed of light) less diffusive, while having little effect when the fast speeds are

both close to the speed of light. Thus there is little reason not to use this choice.

Force-Free Operator

As the simpler of the two operators, the force-free operator affords us the most flexibility

in choosing the integration method, since this makes it easier to apply different methods.

As discussed previously, when using our Finite difference scheme we have the choice of

which solver to use — although we have still chosen to use an HLL solver, like with the

interaction operator.

As with the interaction operator, this gives us some choice over what signal velocities

to use. We know that the overall system is RMHD, so it may be appropriate to use the

fast speeds, like with the interaction operator. This gives some small complication, since

now the force-free operator does depend on the interaction system, unlike our discussion in

section 3.2.1. This would cause a problem if we were to use the split-time stepping method

described above, where the interaction operator is integrated with a shorter time step than
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the interaction operator, since we would not know the value of interaction system at the

mid-steps that we would need to calculate the fast phase speeds.

Alternatively, we could use the speed of light as our signal velocity. Keeping the force-

free operator independent of the interaction system as discussed previously, this should in

fact be the “correct” choice, since the fast phase speeds in the force-free system are always

the speed of light in all directions.

In practice, testing the code against both choices of velocity has shown that the code

can be numerically unstable when using the fast phase speeds for the force-free system.

We therefore have chosen to always use the speed of light as the maximal signal velocities,

and thus the force-free system remains fully independent of the interaction system (at

least until the recombination step).

As a result, the two HLL operators are using two different phase speeds — the inter-

action operator is using the full RMHD fast phase speeds, while the force-free operator is

using the force-free fast phase speeds. In high-σ states with relatively low fluid velocity,

these values are quite close together, but as σ decreases or the velocity increases they can

become quite significantly different — this is most notable when the fluid is supersonic,

i.e. faster than the fast phase speed, as in this case the HLL signal velocities are all on

one side of x = 0, and the output is the left or right state flux, instead of the central HLL

flux.

We can still use a different Riemann solver for the force-free instead, however. Un-

like full RMHD, for which an exact Riemann solver is a fairly intractable problem and

excessively complex with little gain, Riemann problems in FFDE are much simpler to

solve exactly since the general equations for non-linear waves given in section 2.4 is much

simpler.

In particular, only fast waves can change the magnetic pressure pm =
(
B2 − E2)/2,

and only Alfvén waves can change Ex, the component of the electric field parallel to the

wave directions. This means that solving the system exactly reduces to determining the

values of pm and Ex in the central region of the Riemann fan bounded by Alfvén waves

(Komissarov, 2002). This is even easier in the degenerate case, as the degenerate waves

are even simpler.

However, an exact solver no matter how simple it can be calculated is still often ex-

cessive for maintaining accuracy; for sufficiently small jumps simpler solvers work without

issue, and although quite simple this method still requires an iterative solver.

As an alternative we could instead use a Linear Riemann solver, as described above

in section 3.1.2. As such a solver resolves all the waves (albeit approximately) it reduces

the diffusivity of the Alfvén waves compared to the HLL solver, which drops these waves.
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This of course comes at the cost of increased computational complexity, as we need to

solve a system of Linear equations to find the amplitudes of each wave, and we need to

identify and treat degenerate cases independently.

These previous methods are all based on the conservative method described in sec-

tion 3.1. The advantage of a conservative method is of course the fact that conservation

is maintained up to the numerical error, which is very useful for properly modelling dis-

continuous solutions such as shocks.

However, we have previously noted in section 3.2.1 that conservation cannot be main-

tained for the force-free operator to machine precision. Thus the advantage of a conserva-

tive method is not achievable to begin with, at least not for all the variables. Thus there

may be some value in using a different scheme entirely.

In section 2.2 we derived a different set of evolution equations, acting directly on the

B and E for FFDE. Some authors, such as Komissarov (2004a); Mahlmann et al. (2021)

have used these equations for modelling FFDE, instead of the conservation laws. We could

therefore apply these same methods to the force-free operator, giving us a completely

different method for integrating the force-free operator.

Low Magnetisation Regime

The integration scheme detailed above is of course tailored towards the high σ regime. In

this regime, the force-free system dominates the dynamics, and the scheme appears similar

to a perturbation scheme.

However, as we will see in chapters 4 and 5, testing has indicated that the code behaves

well even outside of this regime in low magnetisation as well. In this regime, at the start of

the time step we still have B0 = E0 = 0, so that we essentially have all the electromagnetic

terms collected in the force-free system, and all the inertial terms in the interaction system.

The following discussion is more easily understood in the context of a first-order scheme,

hence we will assume such from here on.

During each time step, the force-free operator will update the electromagnetic terms as

if the system is force-free; at the end of the time step, B0 and E0 are the electromagnetic

fields of a purely force-free evolution, even though overall the system is not force-free and

can have a non-negligible Lorentz force.

The interaction operator meanwhile starts without any electromagnetic fields. Thus the

initial flux calculated is ignorant of the electromagnetic fields, and is equivalent to the flux

for a purely hydrodynamic case, and the conservatives are updated accordingly. However,

at the end of each iteration we must calculate the primitives from these conservatives, and

it is here that the force-free fields become important, as the expressions for the interaction
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conservatives Eqs. (3.90) to (3.93) involve the force-free fields. In effect, the hydrodynamic

flow has induced electric and magnetic fields (assuming the flow was not parallel to the

magnetic field).

The final step recombines the force-free and interaction electric and magnetic fields. It

is at this point that the force-free system becomes “aware” of the plasma inertia. Thus in

this step, the electromagnetic evolution is no longer force-free.

In effect, we have split the system into two components: A force-free evolution of

the magnetic fields, and a hydrodynamic evolution of the plasma inertia. At the end of

the time step, the effect of this hydrodynamic flow on the electric and magnetic fields is

determined, and this is used to correct the force-free evolution.

In higher order time integration, the picture becomes more complex because the sub-

steps will have non-zero B1 and E1, and so the interaction system will be affected by the

force-free fields. However, the reverse is not true, so the force-free system will only become

affected by the plasma inertia at the end of each time step.

Since our splitting has retained all the terms of RMHD, the evolution of the system will

be consistent with a normal RMHD code. The only exception is the lack of conservation

for the force-free fields, which is negligible at low σ since the electromagnetic fields are

small.

3.2.5 Extending to Higher Dimensions

As we will show in the next chapter, the integration scheme described above is fully

capable of handling the 1D code besides a few relatively minor issues, many of which we

will manage to correct. Thanks to the fact that the code is a finite difference scheme

instead of a finite volume scheme, the extension to multidimensional problems is relatively

simple.

If we recall from section 3.1.1, we discretised the 1D spatial terms into the semi-discrete

equation of Eq. (3.16)
dQi

dt
+
∑

i

1
∆x

(
F̂+

i − F̂−
i

)
= S.

So from the x-boundary fluxes F̂±
i and source terms S we can calculate the first derivative

dQi/dt of each of the i cells.

This extends quite simply into two dimensions as

dQi,j

dt
+ 1

∆x
(
F̂+

i,j − F̂−
i,j

)
+ 1

∆y
(
Ĝ+

i,j − Ĝ−
i,j

)
= S, (3.99)

for the i, j cell, where Ĝ±
i,j are the y-boundary fluxes, naturally equivalent to the x-

boundary fluxes. They must also satisfy the same conditions as the x-boundary fluxes of
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Eqs. (3.17) and (3.18), which ensure that boundary fluxes are shared between neighbouring

cells and that they produce high-order estimates for the flux at the cell centres.

As we mentioned previously in section 3.1.1, thanks to using a finite difference scheme

the reconstructions for the Riemann problems described in section 3.1.3 can be done one

dimensionally. That is, to construct the x-boundary Riemann problems, we only need

to interpolate in the x-direction, and the same for the y-boundaries. The same is also

true of the DER step. We thus have no need of a fully multidimensional reconstruction

scheme, which would otherwise be necessary in a typical finite volume scheme based on

cell averages.

Thus the calculations of the F̂±
i,j and the Ĝ±

i,j can be done with the same method

described in section 3.1, applied to the x-boundaries and y-boundaries individually. Hence

the method can be extended to two dimensions with ease, and the extension to three

dimensions follows in much the same way.

However, there is one major caveat to our assertion that the system can be extended to

higher dimensions easily: That of the divergence-free conditions on B0 and B1, Eqs. (3.86)

and (3.94). In 1D, these conditions combine with the two components of Faraday’s law in

Eqs. (3.85) and (3.93) to give the simple condition that both Bx
0 and Bx

1 are constant in

both space and time over the entire domain, effectively reducing the number of evolution

equations by two.

However, in higher dimensions this reduction is no longer possible. All three com-

ponents of B are now able to vary in all cells in both space and time. This gives us

a significant problem: truncation error and numerical error are now capable of violating

these divergence-free conditions. Numerically, the conditions act as initial conditions for

the initial state of the system, and the basic equations have no intrinsic effect of removing

these violations (Falle et al., 1998). The result is naturally that the violations will grow

over the course of the simulation, and will frequently grow large enough to alter the results

or even crash the code entirely (Brackbill and Barnes, 1980). This is an effect that we

have also observed in two dimensional tests as well.

This particular problem is not unique to our method, and indeed all models of even

non-relativistic MHD must contend with this issue (Falle et al., 1998; Komissarov, 1999a).

Of course, this means we have a multitude of different possible corrections to this flaw

that have been proposed over the years.

Some of these methods include:

1. Solve the Poisson equation ∇2ϕ + ∇ · B = 0 for the pseudo-potential ϕ, and then

use the result to correct the magnetic field by setting the magnetic field to the

solenoidal component B∗ = B − ∇ϕ (e.g. Zachary et al. (1994)). Although this
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is highly effective, it is also quite expensive computationally to solve the Poisson

equation.

2. Use the integral form of the induction equation Eq. (2.48) to enforce the condition

exactly (e.g. Evans and Hawley (1988)), a method known as “constrained transport”.

This method requires using a staggered grid, so that we have the value of the

magnetic field at the cell interface centres, and the cell edge centres as well.

3. Alter the equations to include the extra terms that ∇·B ̸= 0 would imply, effectively

suppressing the effect of non-zero divergence on the results (e.g. Zachary et al.

(1994)). Unfortunately, these equations are no longer conservation laws (Brackbill

and Barnes, 1980; Komissarov, 1999a).

4. Use a vector potential A such that B = ∇×A to describe the magnetic field instead

of B (e.g. Bell and Lucek (1995)). Since the divergence of a curl is always zero,

this would necessarily enforce ∇ · B = 0. This method naturally requires different

equations on A compared to B. More importantly, like the previous method these

equations are not conservation laws (Komissarov, 1999a).

5. Use the generalised Lagrange multiplier (GLM) method to diffuse and attenuate non-

zero divergence (e.g. Komissarov (2007)). Although this method does not enforce

the condition exactly, it is the simplest to implement and the equations remain

conservation laws.

As one of the simplest to implement in addition to retaining the conservation laws,

we opted to use the last method, the GLM method. Proposed in Munz et al. (2000) and

explored further in Dedner et al. (2002), the idea behind this method is to convert the

constraint ∇ · B = 0 into an evolution equation that we can evolve with the rest of the

system, that has the effect of dispersing the ∇ · B across the domain as well as causing

the magnitude to decay as well.

With this method, we need only convert the divergence constraint into one more conser-

vation equation and add an extra term to Faraday’s law. Specifically, we modify Eqs. (2.37)

and (2.38) into (Komissarov, 2007)

∂B

∂t
+ ∇ × E + ∇ϕ = 0, (3.100)

∂ϕ

∂t
+ ∇ · B = −κϕ, (3.101)

where ϕ is a new dynamical variable (a pseudo-potential) and κ is a constant parameter.

Eq. (3.101) naturally implies that the new variable ϕ is a conserved variable, which we
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can evolve along with the rest of the system without issue. We also now have a source

term in Eq. (3.101), but this particular form of source term is very simple to deal with.

In order to understand the effect of these alterations, we can take the partial derivative

of Eq. (3.101) with respect to time to get

∂2ϕ

∂t2
+ κ

∂ϕ

∂t
+ ∂

∂t
(∇ · B) = 0. (3.102)

Now we take the divergence of Eq. (3.100) to obtain

∂

∂t
(∇ · B) + ∇2ϕ = 0, (3.103)

since the divergence of curl is 0. We can then use this equation to substitute into

Eq. (3.102) for ∂t(∇ · B) and therefore we find (Komissarov, 2007)

∂2ϕ

∂t2
+ κ

∂ϕ

∂t
− ∇2ϕ = 0, (3.104)

so ϕ satisfies the telegraph equation. It thus follows that ϕ is transported at the speed of

light by hyperbolic waves, and decays provided κ > 0.

If we further take the time derivative of Eq. (3.103) then we will get

∂2

∂t2
(∇ · B) + ∇2

(
∂ϕ

∂t

)
= 0. (3.105)

We can then take the Laplacian of Eq. (3.101), and thus substitute for ∇2(∂tϕ) to give

∂2

∂t2
(∇ · B) − ∇2 (∇ · B) − κ∇2ϕ = 0, (3.106)

and finally we use Eq. (3.103) again to eliminate the ∇2ϕ and obtain (Komissarov, 2007)

∂2

∂t2
(∇ · B) + κ

∂

∂t
(∇ · B) − ∇2 (∇ · B) = 0. (3.107)

Thus ∇ · B satisfies the same telegraph equation, and therefore is also transported at

the speed of light, and decays with κ > 0. Thus it is clear that with these adjustments,

the natural evolution of ∇ · B and ϕ forwards in time is towards ∇ · B(x, t) = 0 and

ϕ(x, t) = 0, unless prevented by the boundary conditions.

To use this method for our split-operator method, we need to make the same alterations

as in Eqs. (3.100) and (3.101) to both the force-free operator and the interaction operator.

In other words, we alter Eqs. (3.85) and (3.86) into

∂B0
∂t

+ ∇ × E0 + ∇ϕ0 = 0, (3.108)
∂ϕ0
∂t

+ ∇ · B0 = −κϕ0, (3.109)

and we also alter Eqs. (3.93) and (3.94) into

∂B1
∂t

+ ∇ × E1 + ∇ϕ1 = 0, (3.110)
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∂ϕ1
∂t

+ ∇ · B1 = −κϕ1. (3.111)

Thus we must introduce two new variables ϕ0 and ϕ1 instead of just one — although at

high σ we should find that |ϕ1| ≪ |ϕ0|, so the ϕ1 will likely be much less important at

high σ.

Source Terms

The source term in Eq. (3.101) needs special consideration. In the integration scheme

described in chapter 3 we did include the possibility of source terms, but we did not

describe how to deal with them. For 1D ideal RMHD source terms do not appear, but they

can appear for multidimensional systems, in particular with non-Cartesian coordinates.

If we start with the general conservation law Eq. (2.119) we have

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= S.

We already know how to solve the homogeneous equations

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= 0, (3.112)

without any source terms, so the obvious method to solve the full system is to use another

operator splitting method (Komissarov, 2007). That is, we first solve Eq. (3.112) then

solve the pure source term operator

∂Q

∂t
= S, (3.113)

and alternate between these two operators each time step.

In our case, the source term S only has one non-zero component; that is, we only need

to solve
∂ϕ

∂t
= −κϕ, (3.114)

which we can easily solve analytically as

ϕ(r, t) = ϕ(r, t0) e−κ(t−t0). (3.115)

Therefore all we need to do to apply this source term is to decay the value of ϕ in each

cell exponentially every time step. More complex source terms usually require using nu-

merical methods to solve Eq. (3.113), so the fact that we can solve this analytically is very

convenient.
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The Value of κ

We clearly have some choice as to the value of κ; as we have noted above we need κ > 0,

but this still leaves us with a large amount of freedom. The value of κ serves to alter to

rate at which both ϕ and ∇ · B decay. Clearly, too small a value for κ would mean that

it does not decay meaningfully. Although as we described above the GLM method also

advects the ∇ · B errors away from their source, effectively diluting the issue across the

domain, if the source generates ∇ · B to quickly or if the domain is finite, e.g. a periodic

domain, then ∇ · B may be able to grow sufficiently to cause problems.

Although this would seem to imply that it should be made as large as possible in order

to eliminate ∇ ·B, numerically we find Eq. (3.101) implies that making κ very large causes

ϕ to decay in a very small number of time steps, thus preventing it from having an effect

on B via Eq. (3.100).

In other words, let us consider the operator splitting method described above, that per-

forms a step of the homogeneous system Eq. (3.112) followed by a source step Eq. (3.113).

In our case the source step is Eq. (3.115), the exponential decay of ϕ. Thus with suffi-

ciently large κ, the value of ϕ decays so much that it can have no effect during the next

step of Eq. (3.112).

Thus the optimal value of κ — i.e. that which minimises ∇·B — is somewhere between

a κ so small that little to no decay occurs and a κ so large that ϕ decays too quickly. From

numerical tests, a value of κ = 100 works well at the resolutions we tested, from 100 × 100

up to resolution 400 × 400. However, other values for κ are likely more optimal. Indeed,

the optimal value even depends on the particular case being modelled. Various authors

(Dedner et al., 2002; Tricco and Price, 2012) have suggested different values for κ.

However, from testing there appears to be little to gain from a more optimal choice

of κ. So long as κ is sufficient to clear ∇ · B errors from the system such that it is not

causing no apparent problems, and a more optimal value for κ gives little to no benefit.

Thus for all our 2D tests, we simply set κ = 100 regardless of the resolution, Cu, or

the nature of the test case itself.

Another point we may note is that the fact that we apply the system twice implies we

could use two different values of κ for Eqs. (3.109) and (3.111). However, we believe this

is unlikely to be particularly useful. This is because if ϕ0 and ϕ1 have similar magnitudes,

like what would happen with σ ≈ 1, it is unlikely that two different values of κ would be

useful. On the other hand, at high σ we will have that ϕ1 is much smaller than ϕ0 and so

a change in κ will have little overall effect.

One problem that may be worth bearing in mind is that this divergence cleaning
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method does not enforce an exact divergence-free condition on B, i.e. generally we will

have ∇ · B ̸= 0. If we let δB be the minimum adjustment needed (in a least-squares

sense) so that ∇ · (B + δB) = 0, then the magnitude of the error δB only depends on

the form of the B-field and its magnitude. Since this is independent of the σ−1 scaling, it

is possible that at high σ the magnitude of this error is of a similar order or greater than

the scale of the interaction system. It is then possible that this may cause problems such

as large errors in the interaction system.

It may be then that a divergence cleaning scheme that enforces an exact divergence-

free condition on at least B0 is preferable to the GLM method we have opted for here.

However, testing has shown that at least for the cases we have considered this does not

seem necessary, and so we have not attempted this scheme due to it being far more

complicated to implement than the current GLM method.

3.2.6 Primitive Variable Conversion

As noted previously, it is necessary to write the system in terms of simpler quantities

called primitive variables such as mass density ρ or gas pressure pg, in order to be able

to calculate the fluxes and apply boundary conditions — as well as simply to understand

the current state of the system.

There is a lot of freedom in choosing what quantities to use for these primitives. For

use in conservative numerical models, we desire a set of variables that have the following

properties:

1. Q(P ) is an invertible function over the domain of physically possible states.

2. Q,Fx,Fy,Fz can be calculated as easily as possible from P .

3. P can be calculated easily from Q.

Of course, there are many other desirable properties we could ask for, but these are the

most important. While the first two properties are relatively simple — in fact the way we

have written the equations themselves naturally suggest a set we could use — the third

property is much harder to satisfy.

For the force-free system the natural choice is of course B0 and E0. We do need to be

careful though, since these variables need to satisfy the PC conditions B0 · E0 = 0 and

B2
0 > E2

0 , so an arbitrary pair B0 and E0 will not generally satisfy these conditions. In

other words, we are choosing six variables for a system with only five degrees of freedom

(or four degrees in 1D). Unfortunately, there is no obvious choice of just five variables that

would always work. Dropping one of the elements of B0 or E0 cannot always work, as
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if the corresponding element of E0 or B0 is 0 (for instance, if we have dropped Ex
0 and

Bx
0 = 0) then the remaining elements of B0 and E0 only have three degrees of freedom

left. As such, we keep all six of B0 and E0, and simply enforce B0 · E0 on them.

For the interaction system, we can use the magnetic field B1 as primitive variables

since they are conservative variables, and the other conservative variables have simple

descriptions in terms of these variables.

The next natural choice is to use mass density ρ and gas pressure pg as primitives,

since they both appear almost on their own, and the entropy density w is related to these

variables via the Equation of State.

For the remaining variables, we still need to describe the fluid velocity. This gives us

two possible natural choices; we can choose to use either the 3-velocity v or we can use the

spatial components of the 4-velocity u. Either choice allows us to calculate the Lorentz

factor γ, and thereby completes the set of primitive variables, since we can fully calculate

all the conservative variables and fluxes in terms of these variables after implementing the

PC condition to calculate E1.

Both of these choices to describe the velocity are quite similar. At low velocity they are

in fact almost identical in value; the differences between them become significant only at

high Lorentz factors, since at high Lorentz factor the magnitude of v tends to 1, the speed

of light, while u is unbounded. This fact makes v insensitive at high Lorentz factors, and

small changes in v then correspond to large changes in γ, and therefore large changes in

the conservative variables. We therefore chose u as the velocity description, since it does

not have this problem.

In conclusion then, we have for our choices of primitive variables

P0 =

B0

E0

 , P1 =



ρ

u

pg

B1


, (3.116)

for the force-free primitives P0 and interaction primitives P1.

Although these choices of primitive variables P0 and P1 in Eq. (3.116) allow for us to

calculate the corresponding conservative variables Q0 and Q1 easily, since the numerical

method updates the conservative variables each time step (and during each time step) we

also need to calculate the primitive variables from these conservative variables, in order to

calculate the corresponding fluxes. This calculation needs to be as fast as possible, since

it will be performed several times each time step for every cell in the domain, so the speed

of this calculation is one of the chief bottlenecks in the speed of the method.
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Force-Free

For the force-free variables, this calculation is quite simple. Following Komissarov (2002),

we have

P0 =

B0

E0

 and Q0 =


B0

S0

U0

 =


B0

E0 × B0

1
2
(
B2

0 + E2
0
)
 , (3.117)

for our primitive and conservative variables. We have the magnetic field B0 directly, and

only need to calculate the electric field E0. This can be done simply using the Poynting

flux S0 = E0 × B0, as this implies

E0 = 1
B2 (B0 × S0) , (3.118)

and so we do not need to use energy conservation at all.

Unfortunately, things are not quite as simple as they seem. We can clearly see that the

system is overdetermined, with seven conservative variables and six primitive variables;

moreover, the PC condition B0 · E0 = 0 reduces the number of free primitive variables

down to just five.

Although analytically the conservative variables will satisfy these conditions, we noted

in section 3.2.1 that for our numerical method there will be a small error in at least some

of the variables on the order of the truncation error, as noted by McKinney (2006). The

result is that the conservatives will generally by slightly inconsistent with each other and

will not correspond to any B0 and E0 exactly.

We could make alterations to this conversion method to try to suppress any issues

that this causes, since this can cause the momentum and/or energy to not be conserved

properly. But since this problem is perhaps the most significant issue with this method,

we will leave it as it stands for now and discuss this problem further in chapter 4. For

now, we will simply use Eq. (3.118).

Interaction

In comparison to the force-free system, calculating the interaction primitives is much more

complicated — although we at least do not have any problems with an overdetermined

system.

There are multiple methods that have been developed for this task for normal RMHD

(Del Zanna et al., 2007; Newman and Hamlin, 2014), but for our new code we will need

to develop our own new version. With that said, we will be able to borrow some of these

methods, as the equations are of course closely related.



142

In this case, our variables are

P1 =



ρ

u

pg

B1


, Q1 =



D

S1

U1

B1


=



ργ

wγ2v + E1 × B0 + E0 × B1 + E1 × B1

wγ2 − p+ E0 · E1 + B0 · B1 + 1
2
(
E2

1 +B2
1
)

B1


. (3.119)

Note how the conservative variables are dependent on the force-free variables B0 and E0;

we therefore need these variables before we can calculate the P1.

Once again, we can just use the magnetic field B1 directly, since it is already a primitive

variable. If we insert the expression for E1 = − (E0 + v × B0)−v×B1, then this leaves us

with calculating the reduced five primitive variables R from the reduced five conservative

variables T

R =


ρ

u

pg

 , T =


D

S1

U1

 . (3.120)

An obvious method to use is a multivariate Newton method. However, while this has

proved reasonably successful for our code, this method does require inverting a 5×5 matrix

every iteration, and while it may be possible to do this symbolically and thus skip the

matrix inversion this itself can be quite difficult to find.

As such, we decided to find an improved method instead, preferably with as few free

dimensions as possible.

1D Secant Method

In order to speed up the variable conversion as much as possible we want to find a

method with as few dimensions as possible, hopefully without sacrificing the stability

of the method.

Starting with the conservative variables, we have

T =


D

S1

U1

 =


ργ

wγ2v + E1 × B0 + E0 × B1 + E1 × B1

wγ2 − p+ E0 · E1 + B0 · B1 + 1
2
(
E2

1 +B2
1
)
 . (3.121)

We can eliminate E1 by substituting with the expression from the PC condition E1 =

− (E0 + v × B), where we have B = B0 + B1 as the total magnetic field.

With this substitution, we can manipulate the expressions to obtain

E1 × B = B2v − (B · v)B − E0 × B, (3.122)

as well as

E0 · E1 = v · (E0 × B) − E2
0 , (3.123)
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and finally
1
2E

2
1 = 1

2
(
B2v2 − (B · v)2

)
− v · (E0 × B) + 1

2E
2
0 . (3.124)

Using these, we can insert into the expression for S1 to obtain

S1 = wγ2v +B2v − (B · v)B − E0 × B0, (3.125)

meanwhile for U1 we get

U1 = wγ2 − p+ B0 · B1 + 1
2B

2
1 − 1

2E
2
0 + 1

2
(
B2v2 − (B · v)2

)
. (3.126)

For the sake of convenience, we can collect all the known values on the left hand side

and define new variables

S = S1 + E0 × B0, (3.127)

and

U = U1 − B0 · B1 − 1
2B

2
1 + 1

2E
2
0 , (3.128)

so overall the new system we are solving is

D = ργ, (3.129)

S =
(
W +B2

)
v − (B · v)B (3.130)

U = W − p+ 1
2
(
B2v2 − (B · v)2

)
, (3.131)

where W = wγ2.

Note that given the definition of S1 in Eq. (3.121) and the definition of S in Eq. (3.127),

we have for S

S = Wv + E × B, (3.132)

where E = E0 +E1. This S is therefore equivalent to the total momentum in the system,

force-free and interaction combined. Similarly, for U we find

U = wγ2 − p+ 1
2E

2. (3.133)

This is not quite identical to the total energy of the system because we have subtracted the

known magnetic terms from U ; in other words, the total energy in the system is actually

Utot = U + 1
2B

2.

Together, this has two consequences. First, it means that both S and U are O(1)

expressions, and not O
(
σ−1). This may cause problems at high σ, as these quantities

become insensitive to changes in the interaction terms making this variable conversion

less accurate. However, we will see later that such problems can be avoided.

Second, this also means that the system we are solving in Eqs. (3.129) to (3.131) is

actually identical to the system we would be solving for in a normal RMHD scheme,
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without splitting. Thus it should be possible to use conversion routines intended for

normal RMHD schemes for our scheme as well, such as Del Zanna et al. (2003, 2007);

Mignone and McKinney (2007); Newman and Hamlin (2014); Kalinani et al. (2022).

Selecting one of these schemes that has proven successful then, we follow the work of

Del Zanna et al. (2003, 2007). Hence we can use Eq. (3.130) to take the square of S to

give

S2 =
(
W +B2

)2
v2 −

(
2W +B2

)
(B · v)2 , (3.134)

as well as the dot product of S with B to get

B · v = S · B
W

; (3.135)

the latter of which allows us to eliminate B · v from all the equations, so we have

S2 =
(
W +B2

)2
v2 −

(
2W +B2

) (S · B)2

W 2 , (3.136)

and

U = W − pg + 1
2B

2v2 − 1
2

(S · B)2

W 2 . (3.137)

So we have successfully reduced the system to just three unknowns, W,pg and v2. The

relation between ρ, pg and w is given in our case by the polytropic EOS w = ρ+ κpg with

κ = Γ/(Γ − 1), so we can use the definition of W and Eq. (3.129) to find that

pg = 1
κ

(
W
(
1 − v2

)
−D

√
1 − v2

)
, (3.138)

which we can use to eliminate pg from Eq. (3.137) to obtain a cubic expression for W

a3
(
v2
)
W 3 + a2

(
v2
)
W 2 + a0 = 0, (3.139)

where

a3
(
v2
)

= 1 − 1 − v2

κ
, (3.140)

a2
(
v2
)

= 1
2B

2v2 − U +D

√
1 − v2

κ
, (3.141)

a0 = −1
2(S · B)2 , (3.142)

so now we have just two equations and two unknowns, v2 and W .

We thus have a choice of three methods to solve these two remaining equations. These

are:

1. Solve both together as a 2D system using (for instance) a multivariate Newton

Method.
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2. GivenW we can use Eq. (3.136) to solve exactly for v2. Inserting this into Eq. (3.139)

we obtain a function F1
(
W, v2(W )

)
which we can solve using any 1D root finding

method.

3. Given v2 we can solve the cubic Eq. (3.139) exactly for W . Inserting this into

Eq. (3.136) we obtain a function F2
(
v2,W

(
v2)), which we can again solve using any

1D root finding method.

Del Zanna et al. (2007) give a compelling reason to choose the third option here; first

of all, we would expect that reducing the dimension of the system would be faster, and

so the choice is between option 2 and option 3. Between these two, the value of v2 is

restricted to 0 ≤ v2 < 1 while W is restricted to W ≥ 0. Between these two variables

it is more important to maintain the bounds on v2, since the expression for a2 includes
√

1 − v2, and so we cannot allow v2 > 1. It is thus more reasonable to use option 3 with

v2 as our iteration variable, since this allows us to control v2, and keep it within the valid

region.

The cubic equation in Eq. (3.139) can of course have three roots, so we must determine

which is correct. By studying the behaviour of the roots, it is possible to show that the

desired root must be the lone, positive root. During iterations, we may find that the

current value of v2 does not allow for a positive solution to the cubic, however we find

that there appears to be little problem allowing it to be negative during iterations, as the

routine is still able to output the correct solution in the end.

Although it may work well in some cases, at high velocities as v2 approaches the limit

of 1 it becomes increasingly insensitive to changes, which may lead to a loss of accuracy

in this case. We could instead use the Lorentz factor γ as the iteration variable, but this

time since 1 ≤ γ this variable is instead insensitive to changes at low velocities, leading to

inaccuracies in this case instead. Thus we can choose u2 = γ2 − 1 instead, which has no

upper limit as with γ, but also approaches 0 at low velocities. Since we have

v2 = u2

1 + u2 , (3.143)

the change to the equations is minimal.

Once we have converged to a solution for u2 and W , we can compute the remaining

primitives as

w = W

γ2 , (3.144)

ρ = D

γ
, (3.145)

pg = w − ρ

κ
, (3.146)
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B · v = S · B
W

, (3.147)

v = S + (B · v)B
B2 +W

, (3.148)

E1 = − (E0 + v × B) , (3.149)

and this completes the variable conversion scheme. From here on, this method shall be

referred to as Method 1.

In comparison to the previous multivariate Newton scheme, this method is significantly

improved by the reduction in the degrees of freedom. Instead of inverting a 5 × 5 matrix

every iteration, we instead need to solve a cubic equation and then compute a single step

of a Secant method (or univariate Newton method, or otherwise), which requires far fewer

computations per iteration.

This method is not without its own potential issues, however. We have already noted

previously that when σ is large, S and U are insensitive to changes in the interaction

terms and the method is therefore likely to be less accurate in this regime. This error will

scale with the numerical error, since the fundamental cause is the loss of accuracy that

comes from truncating the approximations of these values in floating point expressions.

We therefore would expect this error to become significant when σ−1 is of the order of the

numerical error.

However, the fact that we have conservation error as discussed in section 3.2.4 that is

of the order of the truncation error, this error will be comparatively inconsequential until

σ is quite large, so this issue is likely not particularly important at low σ. Moreover, in

order to calculate the Jacobian in the previous multivariate Newton method it is necessary

to substitute for E1 using the PC condition Eq. (3.96), which itself has a problem with

cancellation of O(1) values anyway, so this method has the same problem.

Testing

In order to test the two methods, we will measure four different properties:

1. Total Time

2. Relative Error

3. Failure Rate

The first of these is quite simple, as the total real time taken to converge.

Relative error is a measure of how close the solution reached is to the true solution.

We calculate this by taking the absolute difference between the calculated primitives and

the correct primitives for a given problem, and then dividing by the correct primitives
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to get a relative error instead of absolute error. We use a relative error because absolute

error would bias higher values of σ, since the values of the interaction primitives become

smaller at higher σ, thus the absolute error falls with them. However, since the correct

velocity and E1 can potentially be 0 or close to it, this relative error is only particularly

suitable for testing density and pressure. Thus we are only testing the error in these two

quantities, and disregarding the error in velocity and E1. Although this may ignore error

specific to these two quantities, in most cases we believe it unlikely that the error in these

would differ significantly.

Finally, failure rate measures the number of failed convergences to total tests. That

is, if for some reason the method fails to find a result — perhaps it was not converging

to a solution, or maybe the system exited the range of physical values and caused the

Lorentz factor to become imaginary — then we count this case as a failure, and compare

the number of failures to the total number of tests.

In terms of the relative significance of these three measures, it is clear that in order of

importance they are failure rate, relative error, and total time.

In order to test these schemes thoroughly, we require a large bank of varied test cases

to test them against. However, with so many different possible input variables, including

density, pressure, velocity, B0, B1, E0 in addition to the various possibilities for the initial

guess, testing them systematically is quite difficult. We therefore instead test them using

a random initial state, choosing a random set of variables to test them against each time.

Due to the known relationships between the variables including conditions like B0·E0 =

0, as well as the relative sizes of the variables with B0,E0,v ∼ O(1) and ρ, pg,B1,E1 ∼

O
(
σ−1), any random set of initial variables will not be appropriate for testing.

We thus carefully construct the random state to attempt to reproduce a state that may

reasonably occur. This is done as follows:

1. First, a parameter σ′ is chosen randomly from the log-uniform distribution, so that

σ′ ranges from 10a and 10b, for some values a and b we can choose later. The

parameter σ′ encodes the relative scales of the large and small variables, making it

closely related to the σ of the final state. Note however that this parameter is not

the value of σ for the final random state itself.

2. Pressure pg and Density ρ are chosen from a uniform distribution on [0, 1].

3. Vectors u0,u1,B0 and B1 are chosen with a uniformly distributed direction in 3D.

The magnitude of u1 and B1 is uniformly distributed on [0, 1], while the magnitude

of B0 is uniformly distributed on [0.5, 1] respectively. For u0, the magnitude is

first uniformly distributed on [0, 1] before being multiplied by another variable with
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a log-uniform distribution, ranging from 1 to 10c (Note that u0 and u1 represent

4-velocities).

4. A “temperature” parameter θ is chosen randomly from the log-uniform distribution,

from 0.1 to 10. This parameter is intended to encode the temperature of the plasma,

as the ratio of pressure to density, to model hot or cold plasmas. If θ > 1 then the

plasma is “hot”, and we further divide the density ρ by θ. If θ ≤ 1 then the plasma

is “cold”, and we instead multiply the pressure pg by θ. It is done in this manner to

ensure that neither the density nor the pressure is increased, so that the magnitude

of σ is not reduced by this step.

5. Given these random variables, first all the small variables ρ, pg,B1,u1 are divided

by the parameter σ′ to make them small.

6. u0 is converted to a 3-velocity v0, which is then used to set E0 = −v0 × B0.

7. We set u = u0 + u1 as the full velocity of the state. This step is why we use

4-velocities, not 3-velocities, as in that case we could end up with v2 ≥ 1.

8. Finally, we calculate the 3-velocity v and set E1 = − (E0 + v × B).

In this manner we can construct a random state, for which we can roughly select the

range of σ by choosing the limits a and b for the range of σ′, and the maximum Lorentz

factor by choosing c.

We are not finished however, as we also need an initial guess. For Method 1, we need

only u2. Any arbitrary random values would not be suitable. During the run of the

actual code, the initial guess used is simply the previous state for the given grid point.

This is obviously not available here, but we do know that the change between consecutive

iterations in the state of any given grid point is not going to be particularly large; even with

fast shocks moving near the speed of light, the difference between consecutive iterations

can still be fairly small. Thus in order to test the conversion scheme on a relevant test,

we need an initial guess which is fairly close to the true solution.

For that reason, we construct an initial guess by obtaining three different random vari-

ables distributed uniformly on [0.9, 1.1]. We then multiply each of the three components

of u in the solution by a different one of these random variables, to represent a variance

of around 10% in each of the three components of u, after which we use u2 of this altered

u∗ as the initial guess.

Now that we have constructed our test bed, we can finally present some of the results.

Figs. 3.11a and 3.11c give the results of time taken and relative error, with a = 1 and
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b = 8 so that σ′ ranges from 101 to 108, and with c = 10 so that the Lorentz factor is

capped at around 10.

(a) (b)

(c) (d)

Figure 3.11: Log-log plots of Time taken (top row) and relative error (bottom row)

against σ for 1,000 randomly distributed tests of Method 1. Lorentz factor is capped at

around 10. Each cross represents an individual test. (a) Time vs. σ, 10 ≤ σ′ ≤ 108.

(b) Time vs. σ, 109 ≤ σ′ ≤ 1018. (c) Error vs. σ, 10 ≤ σ′ ≤ 108. (d) Error vs. σ,

109 ≤ σ′ ≤ 1018. Cases of the 1,000 where the algorithm failed to converge have been

excluded.

We can see clearly that Method 1 is quite fast, taking typically around 10−6 seconds

to calculate a solution. On the other hand, we can clearly see an increase in error with σ,

with the error increasing approximately proportional to σ.

We may also note a few sporadic cases in Fig. 3.11a which appear to have taken far

longer to converge. While these cases are more common at higher σ, the trend is weak. In

addition, a separate test against of 100,000 cases led to 488 outright failures to converge,

a failure rate of around 0.5%.

These poor convergence cases correspond to cases where the secant method appears

to straddle the root; instead of converging, the iterations steps just oscillate around the

correct solution until it happens to put the iteration closer to the solution than previous.
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Once the iteration is close enough to the solution, the algorithm can finally converge. This

is also the cause of many of the convergence failures, as these occur when the procedure

hits the iteration limit of 1,000 iterations.

If we change the range of σ′ to 109 to 1018 (Figs. 3.11b and 3.11d) then the failure

rate of Method 1 actually decreases to 257 out of 100,000, and curiously the convergence

appears to become a little faster — although as we can see from Fig. 3.11d, the relative

error of the solution is much too poor here to be useful.

Reducing Error

We can see from Fig. 3.11 that Method 1 suffers from a significant flaw, in that the error

increases proportional to σ until it is simply too large to be useful. Reducing this error is

therefore a very important objective.

The first source of error to consider lies in the algorithm for solving the cubic. The

method used in Fig. 3.11 was a fairly basic cubic solving algorithm, which uses Cardano’s

method for cases with one real root, and trigonometric formulae for the case of three real

roots. But we can have some problematic cases, since while a3 cannot be small as it is

bounded by 1 − 1/κ ≤ a3 ≤ 1, both a2 and a0 can be small quantities, and independently

of each other. In order to remedy these to some extent, we used a Newton method to

improve imperfect solutions.

By improving the accuracy of the cubic solver using a collection of different methods

including asymptotic expansions as well as methods from Blinn (2006) and Press (2007),

we were able to successfully eliminate errors arising from solving the cubic. These methods

were also a little faster than the original scheme, as they are entirely analytic.

Cancelling Large Quantities The second problem with the variable conversion

Method 1 is that several of the quantities themselves contain cancellation of large quanti-

ties. For instance, S · B will be close to 0 at large σ since the force-free component of S

is orthogonal to B0, which is itself almost equal to B. However, both S and B are not

close to 0, and so most of this must cancel out in the dot product leading to significant

numerical error.

If we expand S = S0 + S1 and B = B0 + B1 then the solution to this is quite simple

S · B = S0 · B0 + S0 · B1 + S1 · B

= S0 · B1 + S1 · B, (3.150)

which no longer has any issues with cancellation.
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We can attempt to apply a similar method to other problematic components of Method

1, to see if we can cancel out the large quantities. Beginning with Eq. (3.141), we can

substitute for U using Eq. (3.128) to give

a2 = 1
2
(
B2v2 − E2

0

)
− U1 + B0 · B1 + 1

2B
2
1 +D

√
1 − v2

κ
. (3.151)

The only terms left which are O(1) are B2v2 and E2
0 , so their difference can be a source

of significant error.

If we introduce the force-free drift velocity

v0 = 1
B2

0
E0 × B0, (3.152)

then clearly v2
0 = E2

0/B
2
0 , so we can write B2v2 − E2

0 as

B2v2 − E2
0 = B2v2 −B2

0v
2
0 = B2

0

(
v2 − v2

0

)
+
(
2 (B0 · B1) +B2

1

)
v2, (3.153)

and hence

a2 = 1
2
(
B2

0

(
v2 − v2

0

)
+
(
2 (B0 · B1) +B2

1

)
v2
)

−U1+B0 ·B1+ 1
2B

2
1 +D

√
1 − v2

κ
, (3.154)

thus the error has been mostly eliminated. The term B2
0
(
v2 − v2

0
)

is now the only term

which is O(1) so there may be issues if v2 ≈ v2
0.

One method of remedying this would be to use 4-velocity instead. If we let

u2 = v2

1 − v2 , and u2
0 = v2

0
1 − v2

0
, (3.155)

then v2 − v2
0 becomes

v2 − v2
0 = u2 − u2

0
(1 + u2)

(
1 + u2

0
) . (3.156)

Thus the problem has shifted from when v2 − v2
0 is small to when u2 − u2

0 is small.

This makes the error u2 times smaller than before, and so when u2 is large, this error is

reduced. Of course, we could still have problems when u2 is also small.

The only other part which may have problems is Eq. (3.136), which also features a mix

of large and small quantities. It is not immediately clear how to deal with this case. Even

if we expand B and others, large quantities still do not all cancel. However, if we divide

the cubic Eq. (3.139) by W 2, then we obtain the expression

S · B
W 2 = 2 (a3W + a2) , (3.157)

which we can substitute into Eq. (3.136). If we let

Ū = U1 − B0 · B1 − 1
2B

2
1 = U − 1

2E
2
0 , (3.158)
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then after substituting Eq. (3.157) into Eq. (3.136) and cancelling out terms in B4, we

arrive at

W 2v2 + 4UW + 4 (pg −W )
(
W + 1

2B
2
)

=

S2
1 + 2 (S0 · S1) − 2ŪB2 −B2

0v
2
0

(
B2

1 + 2 (B0 · B1)
)
, (3.159)

where we note that now all terms are at most O
(
σ−1).

Secant Method Although the method described above is usually very effective, it can

sometimes have some difficulties with specific cases. Most commonly, the initial guess may

not be good enough to be inside the region of fast convergence for the Secant method,

and the result is that the iteration parameter jumps around, often to either side of the

solution.

This is a well known issue with the Secant method; while more stable than Newton’s

method, it still does not have the guaranteed convergence of the bisection method. Natu-

rally, this being well known means that there are several methods to remedy it.

We chose to follow (Martínez, 1994) and add a relaxation parameter 0 < ω ≤ 1 to the

method. If we denote the normal update to xn by the secant method by xn+1 = xn + F ,

then the relaxation parameter is used to change the update to xn+1 = xn + ωF . This

reduces the change in xn+1 and prevents the iterates from jumping over the true solution.

However, this comes at the cost of reduced order of convergence. Thus the best choice

may be to start with ω = 1 to allow unproblematic cases to converge quickly, before

reducing ω until the method converges for the more troublesome cases.

In our case, reducing ω at specific iteration counts was found to do the trick; we reduce

ω via the scheme: ω = 0.9 at iteration 16, ω = 0.8 at iteration 32, ω = 0.7 at iteration 64,

ω = 0.6 at iteration 128, and ω = 0.5 at iteration 256. This scheme was found to be able

to allow even the most difficult cases to converge eventually.

An alternative (that we have not implemented thus far) is to apply the Brent-Dekker

method instead (Dekker, 1969; Brent, 1971) The basic idea behind this algorithm is to

combine the secant method with the bisection method, in order to take advantage of the

secant method’s rate of convergence and the bisection method’s guaranteed convergence.

Testing Method 2

With these adjustments to Method 1, we shall call the resulting new method as “Method

2”. We can now try retesting it again, to see if we have successfully reduced the error.

Fig. 3.12 shows the results of testing this altered method. We can see that thanks to our

adjustments, nearly all the error at high σ has been eliminated. Where once the error
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increased with σ, it is now flat, and does not appear to increase with σ at all, even all

the way up to σ = 1018, which is well beyond the level of σ at which we needed it to

work. Thus Method 2 is now superior to Method 1 in all properties — including number

of failures, for which there were no convergence failure cases in 100,000 tests, even for the

high-σ range 109 ≤ σ′ ≤ 1018 — making it all around the best option.

(a) (b)

(c) (d)

Figure 3.12: Time taken and relative error against σ for 1,000 randomly distributed tests

of Method 2. Lorentz factor is capped at around 10. Each cross represents an individual

test. (a) Time vs. σ, 10 ≤ σ′ ≤ 108. (b) Time vs. σ, 109 ≤ σ′ ≤ 1018. (c) Error vs. σ,

10 ≤ σ′ ≤ 108. (d) Error vs. σ, 109 ≤ σ′ ≤ 1018.

Previously we tried to eliminate the error arising from v2 ≈ v2
0, but were only able

to eliminate some of the error. Fig. 3.13a shows the relative error in Method 2 against

v2 − v2
0. We can see a small spike at v2 = v2

0 indicating that there is still some error here,

but at least for this test bed the problem is rather insignificant.

Another issue we have neglected is the effects of large γ. Fig. 3.13b shows the results

of error for tests with 1 ≤ γ ≤ 103, plotted against γ. Like σ before, there is a clear

increase in error as σ increases, approximately proportional to γ2. This would appear to

be a significant problem like with σ, but while the error is large at high Lorentz factors,

in practice we do not expect to have exceptionally high Lorentz factors with γ > 103.
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(a) (b)

Figure 3.13: Relative error against v2 − v2
0 and γ for 1,000 randomly distributed tests

with 10 ≤ σ′ ≤ 108. Each cross represents an individual test. (a) Error vs. v2 − v2
0,

1 ≤ γ ≤ 10. (b) Error vs. γ, 1 ≤ γ ≤ 103.

In conclusion, we have successfully developed a primitive conversion scheme that main-

tains low error even into extreme values of σ of σ > 1018 or more (assuming our test bed

was a fully representative sample of possible states of the system, of course). Thanks to

this reduction in error, we can be quite confident that any failures of the overall scheme

are not caused by this primitive conversion algorithm. This method is also quite fast as

well as each iteration only needs to solve a cubic equation and perform a single 1D Secant

method step, as opposed to the basic 5D Newton method we developed initially.

Thus for all the tests in chapters 4 and 5 we use Method 2 to convert the conservatives

into primitives.

One thing to note is that when developing this scheme, we pointed out that we could

adapt an already existing conversion algorithm for RMHD for our interaction terms. Thus

we followed the method proposed by Del Zanna et al. (2007) for RMHD since we asserted

that our scheme should be able to use an adaptation of an RMHD solver. However, there

are of course multiple different solvers in the literature we could use, and it is possible

that we could have used any of them.

However, it is not clear if any other schemes will allow for the cancellations that we

used in our scheme to avoid the errors. All schemes for inverting RMHD naturally work

with relatively large quantities like the total momentum and energy, and it may be that

depending on the scheme, cancellation is difficult, if at all possible.

3.2.7 Primitive Interpolation

Previously in section 3.1.3, we discussed the interpolation scheme that reconstructs the

variables at the cell boundaries to set up the Riemann problems. At that time we were
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considering interpolation in terms of the primitives P , but in practice we can choose any

set of variables satisfying the conditions set above for primitives, including either the

primitives we have chosen or the conservatives.

Different choices of interpolating variables will naturally give different results for the

interpolation. For instance, a contact discontinuity only features a jump in ρ, out of all

the primitives discussed above. But of the conservatives, there is a jump in conserved

mass, momentum and energy.

However, although interpolating on the conservatives could be a good choice, doing so

requires that we convert them back into primitives in order to calculate the fluxes, adding

extra variable conversion steps that could significantly slow the code. In practice, we have

generally chosen to interpolate on the primitives.

Since interpolation does not consider any bounds on the variables themselves, such as

the bound ρ, pg > 0 on the density and gas pressure, it is plausible that interpolation

may occasionally break such conditions, which is not desirable. This is one of the reasons

we have chosen to use the 4-velocity u instead of the 3-velocity v, since v is bound by

0 ≤ v2 < 1 while u is only bounded from below by u2 ≥ 0. In practice, we have found

that the bounds on ρ and pg are not typically broken and can easily be dealt with via a

minimum lower bound on each variables, such as 10−6.

Other bounds prove more challenging however, especially bounds or restrictions that

involve multiple variables. Particularly notable are the PC conditions on the force-free

system and the interaction system. For the force-free system, we must satisfy B0 ·E0 = 0.

Generally speaking an arbitrary polynomial interpolation will not satisfy this condition at

the boundaries. There are not many obvious remedies to this issue; the only method that

immediately springs to mind is that we could select one of the components of B0 or E0

and change that variable alone to satisfy the condition.

B0 is a known conserved quantity, so it seems reasonable to choose to alter E0 only.

This gives us three choices, but these choices are not all equivalent. If the corresponding

component of B0 or E0 is 0, then changing this variable will have no effect on the condition.

For the remainder, the amount by which they change could be significant, and minimising

this change is desirable since the interpolated value should be close to the “true” value.

One possibility is to simply choose the component that will change the least if we

impose the condition. This can easily be identified as the variable whose corresponding

component is the largest, since small changes in this variable will have the largest effects

on B0 ·E0 and thereby minimise the amount by which the variable would need to change.

However, this could still potentially be a relatively large change in the component.

An alternative would be to change more than one component, and eliminate the com-
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ponent of E0 parallel to B0 by setting

E0 = E0 − B0
(B0 · E0)

B2
0

. (3.160)

This is equivalent to be the value of E0 that satisfies the B0 · E0 = 0 that is closest in a

least-squares sense to the original E0.

For the interaction system, this condition-breaking only occurs if we interpolate E1 as

well as the remaining primitives ρ, u, pg and B1, which would generally not satisfy the full

PC condition Eq. (3.96). With that said, we also need the force-free variables available

and so we still need to contend with the same problem as before.

This gives a new method of satisfying B0 ·E0 = 0 that was not available previously —

since we have access to the 4-velocity u now, we could set E0 = −v×B0 to automatically

satisfy B0 · E0 = 0. Then we could similarly set E1 = −v × B1 to satisfy Eq. (3.96) as

well. Unfortunately, this breaks third-order convergence for the scheme, and is thus not

suitable as a method for remedying this problem unless we can find a condition for when

to turn this part of the code on or off. This condition would need to be chosen such that

the PC condition is enforced for the interpolation, when necessary, but dropped when

unnecessary to allow the code to be third-order.

Alternatively, we could use the same method as with the force-free system to alter one

variable of B0 and E0, and then enforce Eq. (3.96) to set

E1 = − (E0 + v × B0) − v × B1. (3.161)

This is problematic because at high σ the quantity E0 + v × B0 should be O
(
σ−1). But

these quantities are both O(1), so this quantity is the difference of two large quantities. As

we were discussing previously in section 3.2.6 this is a major source of error in numerical

schemes, so this calculation of E1 is highly susceptible to error at high σ. Unfortunately,

finding an E0 which eliminates this problem in some way is difficult, besides the method

given previously which as we noted does not allow for third-order convergence.

There is in fact one more somewhat surprising alternative: simply leave these conditions

unsatisfied. In the solution of the HLL solver, none of these conditions need to be satisfied

exactly in order to get a valid result. We still need to calculate phase speeds, but for

this we are using full RMHD phase speeds, so we do not need E, it will automatically be

assumed to be E = −v × B during the calculation of phase speeds. For the force-free

system, these phase speeds need not be calculated at all as we use the speed of light. Note

that this choice only works for the HLL solver; the other solvers need to calculate the

Alfvén phase speeds, and we can see from section 2.2.2 that these phase speeds are only

physical if B2 − E2 > 0.
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In practice, we have found that enforcing the PC condition via Eqs. (3.160) and (3.161)

can occasionally be helpful — specifically for stationary fast shocks — but there are

alternative methods that also help in those cases as well anyway. Furthermore, for some

tests such as magnetic island collapse in section 5.2.4, this alteration actually causes

problems with the code, and causes it to fail when running with the third order code. As

such, we decided to leave E0 and E1 alone, i.e. we do not enforce the PC condition for

any of the tests presented in chapters 4 and 5.

3.2.8 Summary of the Scheme

To finish this chapter, we will summarise the equations being solved, and the steps of the

optimal version of the code. This includes some corrective adjustments we have not yet

described — specifically, E0-capping (see section 4.3.5) and conditional energy transfer

(see section 4.3.4).

Force-Free System

The force-free sub-system consists of seven evolution equations Eqs. (3.83) to (3.85) and

three constraints Eqs. (3.86), (3.88) and (3.89). The evolution equations are momentum

conservation

∂t(E0 × B0) + ∇ ·
(

−E0E0 − B0B0 + 1
2
(
E2

0 +B2
0

)
δij
)

= 0, (3.162)

energy conservation

∂t

(1
2
(
E2

0 +B2
0

))
+ ∇ · (E0 × B0) = 0, (3.163)

and Faraday’s law

∂tB0 − ∇ × E0 = 0. (3.164)

Meanwhile the constraints are

∇ · B0 = 0, B0 · E0 = 0, B2
0 − E2

0 > 0. (3.165)

As we have discussed at length above, these equations are degenerate, and it is thus not

necessary to evolve all of them. In particular, the easiest to drop is energy conservation.

However, we do in fact evolve all seven equations for use in the corrective step of conditional

energy transfer, step 13 of the summary below in section 3.2.8. The details of this step

are discussed in more detail in section 4.3.4.

For a multidimensional scheme, we alter these equations slightly for the GLM scheme.

In particular, an extra term is added to Faraday’s Law to give Eq. (3.108)

∂B0
∂t

+ ∇ × E0 + ∇ϕ0 = 0, (3.166)
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and the constraint ∇ · B0 = 0 is converted to Eq. (3.109)

∂ϕ0
∂t

+ ∇ · B0 = −κϕ0. (3.167)

Interaction System

The interaction sub-system consists of a further eight evolution equations Eqs. (3.90)

to (3.93), and two constraints Eqs. (3.94) and (3.96). The evolution equations are mass

conservation

∂t

(
ρu0

)
+ ∇ · (ρu) = 0, (3.168)

momentum conservation

∂t

(
wu0u + E0 × B1 + E1 × B0 + E1 × B1

)
+ ∇ · (wuu − E0E1 − E1E0 − E1E1

−B0B1 − B1B0 − B1B1 +
(
pg + E0 · E1 + B0 · B1 + 1

2
(
E2

1 +B2
1

))
δij
)

= 0, (3.169)

energy conservation,

∂t

(
wu0u0 − pg + E0 · E1 + B0 · B1 + 1

2
(
E2

1 +B2
1

))
+ ∇ ·

(
wu0u + E0 × B1 + E1 × B0 + E1 × B1

)
= 0, (3.170)

and finally Faraday’s law

∂tB1 − ∇ × E1 = 0, (3.171)

while the constraints are

∇ · B1 = 0, E1 = − (E0 + v × B0) − v × B1. (3.172)

Once again, in a multidimensional scheme these equations are modified for the GLM

method so that Faraday’s Law becomes Eq. (3.110)

∂B1
∂t

+ ∇ × E1 + ∇ϕ1 = 0, (3.173)

and the constraint ∇ · B1 = 0 is converted to Eq. (3.111)

∂ϕ1
∂t

+ ∇ · B1 = −κϕ1. (3.174)

The Integration Scheme Steps

At the start of each time step, we keep only the known cell values at the centre of each

cell. These values are then updated via:

1. Interpolate both the force-free and interaction primitive cell values P0 and P1 to

the cell boundaries using Eqs. (3.44) and (3.47). We also use the novel smoothness

indicators Eq. (3.56), with ns = 5.
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2. If the test is multidimensional, for the x-boundary interpolations set the interpolated

B0
x and B1

x for the left and right states to the average of the two sides of the Riemann

problem at that location, in order to ensure the 1D condition of constant B0
x and

B1
x is true at the Riemann problems. Do the same for y-boundaries but for B0

y and

B1
y , and the same for z.

3. Solve the Riemann problems at each cell boundary for both the force-free and in-

teraction variables using an HLL solver as described in section 3.1.2, Eqs. (3.38)

and (3.39). The force-free Riemann solver uses signal velocities of ±1 for the HLL

scheme, while the interaction solver calculates all phase speeds for all waves in both

states and uses the most extreme in either direction (since the most extreme will

always be fast waves, only the magnetosonic wave speeds are actually calculated).

This gives the fluxes at the boundaries Fi+1/2 (and Gi+1/2 etc. for higher dimen-

sions).

4. Implement the DER step as described in section 3.1.4, Eq. (3.68). A central stencil

is used for the estimates of the second derivatives.

5. Using Eq. (3.16) (or Eq. (3.99) etc. for higher dimensions), calculate the Runge-

Kutta sub step total gradient Ki from Eq. (3.77) for both the force-free and inter-

action systems.

6. Update the conservatives Q0 and Q1 using the appropriate Runge-Kutta sub-step

equation from Eq. (3.77), and calculate the force-free primitives P0 of this state

using Eq. (3.118).

7. Perform the E0-capping step discussed in section 4.3.5: If E2
0 > B2

0 in any cell, cap

E2
0 by setting its magnitude to either E2

0 = 2U0−B2
0 (where U0 is the conserved force-

free energy determined via integration of Eq. (3.84), force-free energy conservation)

or to 0.99B2
0 , whichever is smaller.

8. Use the primitive conversion scheme Method 2 from section 3.2.6 to calculate the

interaction primitives P1.

9. Apply boundary conditions to the primitives P0 and P1, and recalculate force-free

and interaction conservatives Q0 and Q1 from the updated P0 and P1.

10. Perform steps 1 to 9 for the remaining two Runge-Kutta sub-steps and obtain the

total gradients K2 and K3 using Eq. (3.77), changing the equation in step 5 as

appropriate.
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11. Use the three sub-step total gradients K1 to K3 to calculate the conservatives for

the next time step, Qn+1.

12. Calculate the force-free primitives P0 of this state using Eq. (3.118), and apply

E0-capping again like step 7.

13. Perform the condition energy transfer step discussed in section 4.3.4: If the force-

free energy calculated from P0, i.e. U∗
0 = 1

2
(
B2

0 + E2
0
)
, is less than the energy as

updated via the integration scheme U0, then transfer the difference U0 − U∗
0 to the

interaction energy, U1 = U1 + U0 − U∗
0 , and remove it from the force-free energy

U0 = U∗
0 . Since this is the energy of P0 already there is no need to recalculate P0.

14. For a multidimensional scheme, solve the GLM source term equation Eq. (3.113)

analytically using Eq. (3.115), with κ = 100.

This sequence of steps performs a single time step of the integration scheme.
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Chapter 4

1D results

In this section we will start to test the code described in section 3.2 with various tests

in 1D to find its strengths and limitations. We will also introduce various alterations to

the code, in order to remedy these flaws. At the end of this chapter, we will test the

convergence of the third order code for smooth solutions.

4.1 Test Configuration

Note that in all figures given below, the black crosses indicate the cell values and the red

line is the exact solution, unless stated otherwise. If present, the green line is the initial

state. The resolution (i.e. number of cells in the computational domain, not counting

boundary cells) varies between each case, and is given in the descriptions of the plots. Since

we have not used an adaptive mesh refinement scheme, which would increase resolution in

specific regions to capture fine details, this resolution stays constant and the cell spacing

∆x remains constant throughout as well.

For the boundary conditions, we want a simple option. One property we may desire

is the so-called radiation condition, which stipulates that most (if not all) energy of a

wave passing the boundary is not reflected, so that the wave passes freely thorough the

boundary. Unfortunately, while a radiation boundary condition of this type is possible

for individual wave modes, with seven separate wave modes it is not possible to allow all

wave modes through cleanly at once.

We therefore chose to use a simple Neumann boundary condition with the gradient

equal to 0 at both ends of the domain. This allows most waves to pass relatively freely, with

— for the most part — little reflected back into the domain. This is easily implemented

by setting the values in the boundary cells equal to the outermost cell of the integration

region proper.
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x−1 x0 x1 x2 x3 xn−2 xn−1 xn xn+1 xn+2

(a)

x−1 x0 x1 x2 x3 xn−2 xn−1 xn xn+1 xn+2

(b)

Figure 4.1: 1D Neumann (a) and periodic boundary conditions (b) applied to the same

data. The computational domains have n cells from x = x1 to x = xn. The boundary cells

at either end are drawn in red, located at x = x−1, x0 on the left and x = xn+1, xn+2 on

the right.

Besides a Neumann boundary condition, some tests instead use Periodic boundary

conditions. There are implemented by setting the boundary cell values equal to the cells

at the other end of the integration domain. Fig. 4.1 contains diagrams of these two

boundary conditions, for a system with two boundary cells at each end.

4.2 Continuous Tests

We begin with continuous test cases, since these are likely to be easier to handle, due to

the smaller gradients.

4.2.1 Small Amplitude Waves

For our initial test, we start with one of the simplest tests possible, that of small

amplitude waves as discussed in section 2.3.2. This test is done with a constant background

state, along with a superposition of left and right fast waves, left and right Alfvén waves,

and left and right slow waves (i.e. all wave types, besides entropy waves), each with their

own (very small) amplitudes and waveforms.

Figs. 4.2a and 4.2c show the results of this test for pg and Bz. The background

state for this test is ρ = 10−5, pg = 5.1220 × 10−6,u = (−1, 0.22321,−0.013397) and
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B = (1, 2.2321,−0.13397), and so therefore we have σ = 100,000 and σ∗ = 48,780. As we

can see from these results, the code can handle this without significant issue, besides some

small variation due to numerical diffusion. This error is less significant than it appears

due to the low amplitude of the original wave.

This error can be counteracted simply by either increasing the resolution or the order of

the code, as we can see on the right of Fig. 4.2 where we have run the same test with twice

the resolution. We can see that the error in gas pressure and magnetic field is significantly

reduced.

(a) (b)

(c) (d)

Figure 4.2: pg (top row) and Bz (bottom row) for a small-amplitude Wave test up to

t = 100, using a third order code and Periodic BCs. The tests were run at resolution 50

(left column) and 100 (right column). In this state, the background value of σ = 105.

This test demonstrates that the base code works correctly at least. The numerical

solution is shown to converge to the correct solution with at least order 1 for continuous

solutions. Given that the code still solves the equations of full RMHD, albeit split into

separate pieces, this is not particularly unexpected.

We could now try other small amplitude tests, such as changing the background state

so that one or more of the waves are degenerate. But while a Linear Riemann solver
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must treat these cases separately, and thus could fail independently, we are actually using

an HLL solver which does not perform differently under other circumstances. Therefore

further tests of this type are not likely to be particularly enlightening, and it is better to

move on to more challenging, non-linear tests of our code.

4.2.2 Simple Waves

Increasing the difficulty now, we move out of the linear regime to simple waves, as discussed

in section 2.3.2. These come in four different types, corresponding to the three different

types of waves in RMHD, and an entropy wave. The entropy wave only has a variation

in density, and is merely advected with the flow, behaving exactly the same as it did in

the small amplitude case. We therefore skip this solution and move on to the other three

cases.

Alfvén Waves

We start off some simple wave tests with an Alfvén wave, which we discussed in sec-

tion 2.3.2. These waves are unique in that the density ρ and pressure pg are unaffected.

Let us compare the RMHD solution with the FFDE solution, in order to determine

what effects we expect the interaction system to have. In the fluid frame, the Alfvén phase

speeds of RMHD are

µR
a = ± Bx√

w +B2
= ± Bx

|B|
√

1 + σ−1
= ± cos θ√

1 + σ−1
, (4.1)

meanwhile the phase speeds in FFDE are

µF
a = ±Bx

|B|
= ± cos θ, (4.2)

where θ is the angle between B and the x-axis. Comparing these we can clearly see

that the introduction of the interaction terms should slow the Alfvén waves by a factor

of
√

1 + σ−1. This effect will be more pronounced near the RMHD Alfvén wave frame

instead of the fluid frame. This is especially the case for θ = 0, i.e. the magnetic field

parallel to the x-axis, since in this frame the FFDE Alfvén speed is in fact the speed of

light, so no matter what frame we are in these waves will always move at this speed.

We can also compare the eigenvectors; in RMHD and in the fluid frame, we have from

Eq. (4.1) that µa = ±Bx/
√

E , so from Eq. (2.75) the variations in uα, B and E are

dB = (0,−Bz, By) , duα = ± 1√
w +B2

(0, 0, Bz,−By) ,

dE = ± 1√
w +B2

(
−
(
B2

y +B2
z

)
, BxBy, BxBz

)
,
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where the sign indicates the direction of the wave in the x-axis. Meanwhile, for FFDE,

Eq. (2.113) in the fluid frame (E = 0) gives µ±
a = ±Bx/B, and so with inserting this into

Eq. (2.115), the eigenvectors are then

dB = (0,−Bz, By) , dE = 1
B

(
−
(
B2

y +B2
z

)
, BxBy, BxBz

)
.

Hence these are identical besides a factor of
√

1 + σ−1 just like with the phase speed,

which serves to reduce the relative variation of E in RMHD compared to FFDE, with the

difference approaching 0 as σ → ∞.

Problem Figure State at ϕ = 0 State at ϕ = π/2

Low-σ Alfvén

Wave,

µ = −0.3

4.3

u = (−0.78878, −0.73030, 0),

B = (2, 4.1931, 0),

ρ = 10, pg = 5,

σ = 0.66667, σ∗ = 0.30929

u = (−0.78878, −0.71554, −0.14606),

B = (2, 4.1084, 0.83863),

ρ = 10, pg = 5,

σ = 0.66667, σ∗ = 0.30929

High-σ Alfvén

Wave,

µ = 0.94

4.4

u = (−0.21587, −4.0249, 0),

B = (2.7, 2.6379, 0),

ρ = 0.01, pg = 0.01,

σ = 162, σ∗ = 9.3932

u = (−0.21587, −3.8395, −1.2075),

B = (2.7, 2.5164, 0.79138),

ρ = 0.01, pg = 0.01,

σ = 162, σ∗ = 9.3932

Table 4.1: Initial test case data for both 1D Alfvén wave tests. “µ” is the phase velocity

of the wave. Given here is the state at phase ϕ = 0 and ϕ = π/2. Since the domain

is [−5, 5] for both tests, this is the initial states at the locations x = −5 and x = −2.5,

respectively.

Thus the effects of the interaction system on the results should be fairly subtle in the

fluid frame, only serving to slow the waves down and decrease dE. Naturally, these effects

should be more pronounced at lower σ, as the system diverges from the pure force-free

system.

As with the small amplitude waves, the phase speed of Alfvén waves is invariant across

them, and therefore the whole wave moves together at constant speed without changing

over time. We can choose the waveform of our tests to our liking as well.

For our tests here, we construct the Alfvén wave starting in the de Hoffmann-Teller

frame. In this frame, the Alfvén wave reduces to a rotation in magnetic field and velocity,

keeping them parallel. So, starting with the magnetic field without a z-component, B =

(Bx, B⊥, 0), the magnetic field is rotated in a sine wave fashion.

That is, if we let ψ(x) be the rotation of the magnetic field at position x, then

B(x) = (Bx, B⊥ cos(ψ(x)) , B⊥ sin(ψ(x))) , (4.3)

where ψ(x) is given by

ψ(x) = sin−1 (A sin(ϕ(x))) , ϕ(x) = 2πx
L
, (4.4)
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(a) (b)

(c) (d)

Figure 4.3: By (a), uy (b), pg (c) and pm (d) for a low-σ Alfvén wave test up to t = 100,

at resolution 100, using a third order code and periodic BCs. In this case, σ = 0.66667.

where where L is the width of the domain, and A is the amplitude of the rotation wave.

In both tests we performed, A = 0.3.

Table 4.1 contains the data for both Alfvén wave tests performed. In this table, the

state at ϕ = 0 and ϕ = π/2 is given, and the remaining states are given by Eqs. (4.3)

and (4.4).

Fig. 4.3 shows the results of testing our code on a relatively low σ Alfvén wave outside

the fluid frame, with periodic boundary conditions. As we can see, the method is clearly

capable of handling this case with relatively few issues. The system has generated some

variation in the gas pressure and magnetic pressure that should not be there, but even

for other RMHD solvers this tends to happen anyway, due to truncation error and other

sources of error. This error is concentrated around specific regions of the wave, and is

particularly pronounced at the extrema of the magnetic field. As this test is at a low value

of σ, the correction coming from the interaction terms is quite significant.

Fig. 4.4 shows the results of an Alfvén wave at high σ. This σ is high enough that

typical RMHD schemes would not be able to handle this case, but here we can see that
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(a) (b)

(c) (d)

Figure 4.4: By (a), uy (b), pg (c) and pm (d) for a high-σ Alfvén wave test up to t = 100,

at resolution 100, using a third order code and Periodic BCs. In this case, σ = 196.20.

the wave is handled reasonably well. The magnetic field is very close to the exact solution.

However, we do see some problems with pg, pm and u. The same problem as before with

induced variation in pg and pm is present and more pronounced than before. The density

and gas pressure overall slowly drifts over time, in conjunction with a drift in the velocity

as well. This drift is much more pronounced at lower integration order, so this error is

clearly associated with the truncation error of the scheme.

We can see from these two tests that our code is quite comfortable with Alfvén waves, at

both high and low σ. In both cases there was some error in the gas and magnetic pressure

— specifically there is systematic error that is converting gas pressure into magnetic

pressure — but this was not particularly significant.

Moreover, the error in pm is only notable because it is constant in the exact solution,

so the error immediately jumps out on observation. The error in B and E is in fact of

comparable size to the error in pm, but is much less obvious since these variables are not

constant across the wave.

The only exception to this is the error in u which is able to vary more significantly in
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the direction parallel to B0, since this is not constrained by the relatively large values in

the force-free system. In the remaining components of u orthogonal to B0, the variation

is once again relatively small.

Rarefactions

We now move onto rarefaction waves. These solutions come in two kinds, slow and fast

rarefactions, dependent on which type the eigenvector used for their construction belongs

to. These solutions are discussed in section 2.3.2. Table 4.2 contains the test case data for

all the rarefaction tests considered. Given in the table is the data for the left state (the

constant state beyond the left end of the rarefaction), and the data for the right state as

well. The rest of the rarefaction is connected continuously between these two states by

integrating Eq. (2.162) numerically.

Problem Figure Left State Right State

Low-σ Slow

Rarefaction,

µl = 0.23703,

µr = 0.25581

4.5

u = (−0.01, 0.22321, −0.013397),

B = (1, 0.85622, 0.083013),

ρ = 1, pg = 2.1,

σ = 0.17956, σ∗ = 0.17099

u = (0.018733, 0.32185, −0.0053551),

B = (1, 0.57325, 0.058210),

ρ = 1.0928, pg = 2.3637,

σ = 0.11793, σ∗ = 0.10682

High-σ Slow

Rarefaction,

µl = 0.13880,

µr = 0.17220

4.6

u = (−0.01, 0.22321, −0.013397),

B = (1, 0.73205, −2.7321),

ρ = 0.01, pg = 0.005,

σ = 286.83, σ∗ = 273.15

u = (0.037388, 0.26236, −0.14375),

B = (1, 0.73183, −2.7312),

ρ = 0.013499, pg = 0.0074591,

σ = 198.46, σ∗ = 181.93

Low-σ Fast

Rarefaction,

µl = 0.51214,

µr = 0.65213

4.7

u = (−0.5, 0.27321, 0.073205),

B = (1, 2.2321, −0.13397),

ρ = 0.501, pg = 1.2,

σ = 0.85244, σ∗ = 0.64093

u = (−0.31981, 0.21866, 0.064735),

B = (1, 2.6121, −0.15090),

ρ = 0.62027, pg = 1.59530,

σ = 0.97807, σ∗ = 0.84734

High-σ Fast

Rarefaction,

µl = 0.97709,

µr = 0.98788

4.8

u = (−1, 0.22321, −0.013397),

B = (1, 2.2321, −0.13397),

ρ = 0.01, pg = 0.005,

σ = 101.63, σ∗ = 49.574

u = (−0.70023, 0.11581, −0.0069516),

B = (1, 2.4545, −0.14733),

ρ = 0.012633, pg = 0.0068281,

σ = 120.17, σ∗ = 79.914

Table 4.2: Initial test case data for all 1D rarefaction tests. The left and right states

correspond to the constant states at either end of the rarefaction. µl and µr are the phase

velocities of the given rarefaction in those states respectively.

Slow Rarefaction Waves

We start with slow rarefactions. Slow rarefactions are somewhat unique compared to fast

and Alfvén modes in that the variation in the electromagnetic components B and E is of

the same order as the inertial components ρ, pg and u. Thus this case could potentially be
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handled fully by the interaction system alone, with the force-free system merely providing

a background B0 and E0 without needing to be evolved.

Slow waves do not appear in the force-free system, so there is no force-free counterpart

to compare these rarefactions to. If we tried to test the same B and E of a slow rarefaction

on pure FFDE, we would expect to find that they simply split into four separate waves

like any other initial condition in FFDE that is not purely a fast or Alfvén wave. Thus

the action of the interaction operator in this case should be to suppress this action, and

keep the wave held together.

One special case of slow rarefactions is a so-called switch-off slow rarefaction. In this

case, the state of the system in the upstream state has B⊥ ̸= 0 while the downstream

state has B⊥ = 0, so the rarefaction has the effect of “switching off” the perpendicular

component of the magnetic field. For some integration schemes this test is more difficult

than an arbitrary slow rarefaction. In particular, Linear Riemann solvers must treat the

degenerate B⊥ = 0 state differently, and so this test challenges the scheme in a particularly

special way. The HLL solver we are using does not treat these states differently however,

and so our scheme does not have any particular difficulty with this type of solution.

(a) (b)

Figure 4.5: By (a) and pg (b) for a low-σ slow rarefaction wave test up to t = 15, at

resolution 100, using a third order code and Neumann BCs. In this case, σ = 0.17956 at

the left end of the rarefaction, and σ = 0.11793 at the right.

Figs. 4.5 and 4.6 show the results of two slow rarefaction tests. In both cases the

rarefaction here moves slowly to the right and slowly expands as it does so.

We can see that the low-σ test in Fig. 4.5 agrees closely to the exact solutions in both

gas pressure and magnetic field, with the exception of the weak discontinuities at either

end of the waves where the numerical solution is slightly smoothed compared to the exact

solution. This artefact is common to most methods of modelling RMHD, and also will

tend to 0 as the resolution is increased. This is therefore not significant enough to be
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(a) (b)

Figure 4.6: By (a) and pg (b) for a high-σ slow rarefaction wave test up to t = 20, at

resolution 100, using a third order code and Neumann BCs. In this case, σ = 286.83 at

the left end of the rarefaction, and σ = 198.46 at the right.

called a problem.

For the high-σ test in Fig. 4.6 we get much the same results, the code is able to handle

the case without any difficulty. Like before there is some smoothing around the weak

discontinuities, but this is still not unexpected.

Fast Rarefaction Waves

The final continuous test for which we have an exact solution is fast rarefactions. As

above, these solutions are discussed in section 2.3.2. Unlike their slow counterparts, the

variation of B and E is now large, and of comparable scale to the magnitude of B and E.

This test should therefore be a more comprehensive and difficult test for the code than

slow rarefactions, since now both operators are significant.

Unlike slow waves, fast waves do exist in pure FFDE, and we can therefore compare

the wave modes like we did with Alfvén waves. Even in the fluid frame, the fast phase

speed is still a fairly complex expression. However, for the variation in the variables we

can see from Eq. (2.76) that these are

du =


µ2

f − µ2
a

BxBy

E
(
a2

s − 1
)

BxBz
E

(
a2

s − 1
)
 , dB =

µ2
f − a2

sµ
2
a

µf


0

By

Bz

 ,

dE =
((
µ2

f − µ2
a

)
− B2

x

E

(
a2

s − 1
))


0

Bz

−By

 ,

dpg = wa2
s

µf

(
µ2

f − µ2
a

)
, dρ = ρdpg

wa2
s

= ρ

µf

(
µ2

f − µ2
a

)
,
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where µf is the fast Wave speed. Meanwhile, for FFDE we have from Eq. (2.114) that

dB = µf (0, By, Bz) , dE = µ2
f (0, Bz,−By) ,

in FFDE µf = ±1 of course, so the factor on dE vanishes, and the choice of direction of

the fast wave only flips the dB vector.

Comparing these, we can see that fast waves in RMHD have more of a difference from

the FFDE solution than for the case of Alfvén waves. The magnetic and electric field

variations in RMHD are once again parallel to their FFDE counterparts, but the exact

difference between them is a dependant on the magnetisation σ, the direction of B, the fast

speed µf and the local sound speed as, which itself depends on the plasma temperature

and thus gas pressure pg and density ρ.

One particular property of fast Waves at high σ is that the fact that the fast wave

speed approaches the speed of light means that in the fluid frame the rarefaction barely

spreads, and mostly just moves through the fluid at almost the speed of light, with the

interaction system having little effect. By contrast, in a frame near that of the rarefaction

the difference between the speeds at either end is much more significant, and may even

change sign. So in this frame the interaction system must be having a far larger impact

despite being otherwise the same wave, at the same σ.

(a) (b)

Figure 4.7: By (a) and pg (b) for a low-σ fast rarefaction wave test up to t = 8, at

resolution 100, using a third order code and Neumann BCs. In this case, σ = 0.85244 at

the left end of the rarefaction, and σ = 0.97807 at the right.

This is easily explained with the observation that while σ is large, near the wave frame

we have σ∗ = σ/γ2 ∼ O(1). As discussed in section 2.4, this means that the magnitude

of some of the values in the interaction system are in fact relatively large. Thus the same

test from different frames is treated very differently by the integration scheme, as the

interaction variables will be larger in a frame where σ∗ is not small.
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(a) (b)

Figure 4.8: By (a) and pg (b) for a high-σ fast rarefaction wave test up to t = 5, at

resolution 100, using a third order code and Neumann BCs. In this case, σ = 101.63 at

the left end of the rarefaction, and σ = 120.17 at the right.

Figs. 4.7 and 4.8 show the results of fast rarefaction tests at high and low σ. We can

see that the code again has little difficulty handling these tests. We still have the artefacts

at the weak discontinuities at either end like the slow rarefaction tests, but the results are

otherwise very good.

In summary, the method appears perfectly capable of handling most kinds of continuous

solutions with few difficulties or problems, at least for the range of σ we have tested. The

method does appear to have some difficulty with Alfvén waves, but this error is generally

not large. Therefore, for at least 1D cases without any discontinuities, this method is able

to run without major problems provided that the gradients do not become too large. Of

course, continuous solutions are generally easier to handle by integration schemes, so the

real tests for the method are discontinuous tests.

4.3 Discontinuous Tests

We have seen that the code is already quite capable at handling all kinds of continuous

solutions in 1D. But this is only half the story, as we also need to check the code against

discontinuous solutions, such as shocks and contact discontinuities. The initial data for

all test cases considered is contained in tables 4.3 and 4.4.

These test cases are all initially constructed with a smooth “tanh” profile instead of

a sharp discontinuity. Numerical diffusion causes each discontinuity to be spread over

several cells during the run of the test, while factors such as non-linear steepening cause

this to tend to a finite limit, and thus the discontinuities tend to a settled profile (besides

contact discontinuities, for which there are no steepening effects, and only the reduction
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Problem Figure(s) Left State Right State

Hot Contact

Discontinuity,

µ = 0.37139

4.9

u = (0.6, −0.066987, −1.1160),

B = (1, −0.36603, 1.3660),

ρ = 0.00006, pg = 0.01,

σ = 36.440, σ∗ = 13.962

u = (0.6, −0.066987, −1.1160),

B = (1, −0.36603, 1.3660),

ρ = 0.0003, pg = 0.01,

σ = 36.223, σ∗ = 13.878

Cold Contact

Discontinuity,

µ = 0.37139

4.10

u = (0.6, −0.066987, −1.1160),

B = (1, −0.36603, 1.3660),

ρ = 0.01, pg = 0.0002,

σ = 135.16, σ∗ = 51.787

u = (0.6, −0.066987, −1.1160),

B = (1, −0.36603, 1.3660),

ρ = 0.001, pg = 0.0002,

σ = 810.98, σ∗ = 310.72

Low-σ Slow

Shock,

µ = −0.28735

4.11

u = (−0.51129, −0.10170, 0.058719),

B = (1, −0.46051, 0.26588),

ρ = 6.9577, pg = 3.7851,

σ = 0.052669, σ∗ = 0.041303

u = (−0.53134, 0.086603, −0.005),

B = (1, −0.95623, 0.55208),

ρ = 6.3113, pg = 3.3218,

σ = 0.1, σ∗ = 0.077978

High-σ Slow

Shock,

µ = 0.24254

4.12

u = (0.18266, −0.84803, 0.48961),

B = (1, −0.69461, 0.40104),

ρ = 0.026338, pg = 0.036496,

σ = 7.5165, σ∗ = 3.7729

u = (−0.67524, −0.12990, 0.075),

B = (1, −0.71760, 0.41431),

ρ = 0.0043349, pg = 0.0022815,

σ = 100, σ∗ = 67.638

Low-σ Fast

Shock, µ = 0
4.13 and 4.19

u = (−0.35067, 0.072168, −0.041666),

B = (1, −2.4342, 1.4054),

ρ = 23.499, pg = 31.508,

σ = 0.054702, σ∗ = 0.048413

u = (−2, 0.086603, −0.05),

B = (1, −0.86603, 0.5),

ρ = 4.1202, pg = 2.1685,

σ = 0.1, σ∗ = 0.019960

Low-σ Fast

Shock,

µ = 0.90286

4.14

u = (1.4166, 0.072168, −0.041666),

B = (1, −4.1180, 2.37752),

ρ = 23.499, pg = 31.508,

σ = 0.054702, σ∗ = 0.018151

u = (0.048555, 0.086603, −0.05),

B = (1, −0.47055, 0.27167),

ρ = 4.1202, pg = 2.1685,

σ = 0.1, σ∗ = 0.098779

Weak High-σ

Fast Shock,

µ = 0

4.15 and 4.20

u = (21.762, 0, 0),

B = (15.811, 172.22, 298.30),

ρ = 1, pg = 1,

σ = 100.00, σ∗ = 0.21072

u = (8.3126, 0.13033, 0.22573),

B = (15.811, 173.61, 300.71),

ρ = 2.6179, pg = 4.4198,

σ = 119.42, σ∗ = 1.7019

Weak High-σ

Fast Shock,

µ = −0.99504

4.16

u = (0.85573, 0, 0),

B = (15.811, 10.405, 18.022),

ρ = 1, pg = 1,

σ = 100.00, σ∗ = 57.728

u = (−0.22530, 0.13033, 0.22573),

B = (15.811, 24.381, 42.230),

ρ = 2.6179, pg = 4.4198,

σ = 119.42, σ∗ = 106.75

Table 4.3: Initial test case data for all 1D discontinuity tests, part 1. “µ” is the phase

velocity of the discontinuity for the given data. The discontinuities were initially located

at x = 0 (thus “left” refers to x < 0 and “right” to x > 0), with a smooth “tanh” profile

over a handful of cells.

of numerical diffusion as the gradient drops).

The results of these tests are best when the initial profile is close to this settled profile.

When the initial discontinuity is too sharp (or too wide) the system will emit the difference

between the settled profile and the initial profile as extra waves which can affect the results.

In many cases this can even cause the code to fail, as these waves can have very high
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Problem Figure(s) Left State Right State

Strong High-σ

Fast Shock,

µ = 0

4.17 and 4.21

to 4.23

u = (−0.84070, 0.40157, −0.23184),

B = (1, −1.8622, 1.0751),

ρ = 0.011895, pg = 0.83089,

σ = 1.4042, σ∗ = 0.73066

u = (−100, 2.5981, −1.5),

B = (1, −0.8660, 0.5),

ρ = 0.0001, pg = 0.0001,

σ = 2120.1, σ∗ = 0.21180

Strong High-σ

Fast Shock,

µ = 0.99995

4.18 and 4.25

u = (52.372, 0.40157, −0.23184),

B = (1, −98.174, 56.681),

ρ = 0.011895, pg = 0.83089,

σ = 1.4042, σ∗ = 0.00051173

u = (4.2780, 2.5981, −1.5),

B = (1, −2.5390, 1.4659),

ρ = 0.0001, pg = 0.0001,

σ = 2120.1, σ∗ = 74.912

Low-σ Current

sheet, µ = 0
4.26

u = (0, −0.71962, −0.046410),

B = (0, 0.13397, 2.2321),

ρ = 10, pg = 20,

σ = 0.036842, σ∗ = 0.024238

u = (0, −0.71962, −0.046410),

B = (0, −0.13397, −2.2321),

ρ = 10, pg = 20,

σ = 0.036842, σ∗ = 0.024238

Low-σ Current

sheet,

µ = −0.5

4.27

u = (−0.71181, −0.71962, −0.046410),

B = (0, 0.15470, 2.5774),

ρ = 10, pg = 20,

σ = 0.036842, σ∗ = 0.018179

u = (−0.71181, −0.71962, −0.046410),

B = (0, −0.15470, −2.5774),

ρ = 10, pg = 20,

σ = 0.036842, σ∗ = 0.018179

High-σ

Current sheet,

µ = 0

4.28, 4.30

and 4.32

u = (0, −0.0098076, 0.58301),

B = (0, −1.2321, 1.8660),

ρ = 0.001, pg = 0.001,

σ = 926.87, σ∗ = 691.69

u = (0, −0.0098076, 0.58301),

B = (0, 1.2321, −1.8660),

ρ = 0.001, pg = 0.001,

σ = 926.87, σ∗ = 691.69

High-σ

Current sheet,

µ = 0.5

4.29, 4.31

and 4.33

u = (0.66833, −0.0098076, 0.58301),

B = (0, −1.4226, 2.1547),

ρ = 0.001, pg = 0.001,

σ = 926.87, σ∗ = 518.77

u = (0.66833, −0.0098076, 0.58301),

B = (0, 1.4226, −2.1547),

ρ = 0.001, pg = 0.001,

σ = 926.87, σ∗ = 518.77

Table 4.4: Initial test case data for all 1D discontinuity tests, part 2. “µ” is the phase

velocity of the discontinuity for the given data. The discontinuities were initially located

at x = 0 (thus “left” refers to x < 0 and “right” to x > 0), with a smooth “tanh” profile

over a handful of cells.

amplitudes, pushing the conservatives outside the bounds of physically meaningful states.

Thus we must be careful in the exact initial profile.

The exact shape of this settled profile is difficult to determine ahead of time, thus the

initial profiles of these tests are simply “tanh” profiles. Given some variable q with left

and right states qL and qR, we set the initial profile to

q(x) = 1
2

(
tanh

(
x− c

a

)
+ 1

)
(qR − qL) + qL, (4.5)

where c gives the initial centre of the discontinuity (for all 1D tests, we have c = 0) and

a is a parameter determining the width of the discontinuity. Clearly the function q(x)

satisfies q(x) → qL as x → −∞ and q(x) → qR as x → ∞, as desired.

While we use the same a for each individual variable in each test, the value of a is

chosen independently for each test to match the settled profile to some extent, which can
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be much wider in some cases. All tests were done with ∆x = 0.1, and since all tests had

0.1 ≤ a ≤ 0.4, the initial discontinuity was spread over anywhere from 6 or so cells to 24

or more.

4.3.1 Contact Discontinuities

To start off with, we will begin with contact discontinuities that are stationary with respect

to the fluid and hence are simply advected with the flow, as discussed in section 2.3.1. As

we derived there, if we have Bx ̸= 0 then the only primitive variable that can change in a

stationary discontinuity is the density ρ, implying the contact plane between two plasmas

of different density — hence the term “contact” discontinuity.

(a) (b)

Figure 4.9: ρ (a) and σ (b) for a high-σ Contact Discontinuity in a hot plasma, with

σ = 36.440 and pg/ρ = 166.67 for x < 0, and σ = 36.223 and pg/ρ = 33.333 for x > 0

at time t = 0. The test was run until t = 100 at resolution 100, using a third order code,

Neumann BCs, width parameter a = 0.1, and an initial domain of [−5, 5] which we have

shifted during the test to follow the discontinuity.

These are by far the simplest case we can try, as without changing B or E, this is

entirely within the interaction system. Moreover u is also unchanged, and so the changes

are constrained to the small O
(
σ−1) variables. That is, since density ρ is the only variable

that changes and this variable is ∼ O
(
σ−1), any truncation or numerical errors in the

integration can only effect ∼ O
(
σ−1) changes to the other variables.

We can see from the equations of RMHD that a cold plasma with ρ ≫ pg might be

more difficult to handle than a hot plasma with ρ ≪ pg. This is because for a hot plasma

we have w ≈ 4pg, and so a change in just ρ only significantly affects the conserved mass

ργ, while for a cold plasma the changes in the conserved energy and momentum would

also be significant. A cold plasma thus also features a more significant change in σ across

the discontinuity.
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With all that said, the code will still likely have no real issues with a cold plasma

anyway for the reasons mentioned above.

(a) (b)

Figure 4.10: ρ (a) and σ (b) for a high-σ Contact Discontinuity in a cold plasma, with

σ = 135.16 and pg/ρ = 0.02 for x < 0, and σ = 810.98 and pg/ρ = 0.2 for x > 0 at

time t = 0. The test was run until t = 100 at resolution 100, using a third order code,

Neumann BCs, width parameter a = 0.1, and an initial domain of [−5, 5] which we have

shifted during the test to follow the discontinuity.

Figs. 4.9 and 4.10 give the results of a test for a contact discontinuity in a hot and

cold plasma respectively at high σ. These tests are both of moving discontinuities (with

respect to the cell grid), and with the phase velocity of these two cases (µ = in both cases)

it would only take until t = 20 or so to leave the initial domain of [−5, 5]. In order to run

these tests for longer then, we have made the domain “follow” the shock.

This is done by shifting all cells over by one every few iterations, to keep up with the

exact solution. For most cells, this fully defines the new shifted value. But at the edge of

the domain that we are moving towards, the cell at the end has no known value as it was

previously outside the domain. For these cells, their value is set at the boundary values

— since we are using Neumann Boundary Conditions, this means its value is simply set

equal to the cell to its side.

As we expected, the code is perfectly capable of handling these tests without much

issue. The only real issue is that the discontinuities are fairly diffuse and spread over

several cells. This is a combination of two issues: first, the HLL method we are using is

known to cause any waves that are not explicitly resolved in the Riemann Solver to be

more diffuse. Since the HLL method we are using only resolves the fast waves, Alfvén, slow

and Contact waves will be more diffuse. Second, the phase speed of the wave is constant

across the discontinuity and so there is a lack of non-linear wave steepening to force the

discontinuity to be sharp.
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4.3.2 Alfvén Discontinuities

As discussed in section 2.3.1, Alfvén discontinuities are effectively equivalent to the contin-

uous case, but collapsed into a single, discontinuous jump instead of a smooth transition.

This is due to the fact that the Alfvén phase speed is an invariant of the Alfvén wave.

Although such a case is certainly analytically different from the continuous counterpart,

numerically speaking any discontinuity will always be spread over at least a couple of cells.

Moreover, we always start the discontinuous tests with a smooth tanh profile since the

scheme has difficulty with exceptionally sharp discontinuities. Thus the discontinuous case

is practically indistinguishable from the continuous case. The discontinuity will have a

finite width, and so it is equivalent to the continuous case.

We therefore find that there is little reason to specifically test an Alfvén discontinuity

as a separate case from the continuous Alfvén waves already tested in section 4.2.2, so we

will not consider this case here.

4.3.3 Slow Shocks

We now move on to slow shocks. Like their continuous counterparts of slow rarefactions,

these shocks feature a small variation in B and E and so are likely to be easier for the

code to handle since the shock is on the scale of the interaction system.

Figs. 4.11 and 4.12 show the results of a slow shock test at low and high σ respectively.

We can clearly see that the code has little to no difficulty with either the low- or high-σ

cases. The only problem is that the shock is fairly wide, which is likely a consequence

of using HLL, which like contact discontinuities does not resolve slow shocks, leading to

increased numerical dissipation.

The small discontinuity in B and E at high σ means that the force-free system deriva-

tives is at a similar or smaller scale to that of the interaction system. Since the force-free

system is where we expect more problems due to the lack of conservation as noted in

section 3.2.4, the fact that the code can handle slow shocks without problems is not un-

expected.

4.3.4 Fast Shocks

Now that we have successfully tested the code against slow shocks, we will move on to

testing fast shocks. Along with current sheets, these tests are likely to be the most difficult

to handle at high σ for two main reasons: First, these shocks move at almost the speed

of light in the upstream fluid frame, so small errors could push them into superluminal
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(a) (b)

(c) (d)

Figure 4.11: Bz (a), ux (b), ρ (c) and pg (d) for a test of a low-σ slow shock up to

t = 100, at resolution 100, using a third order code, Neumann BCs, width parameter

a = 0.1, and an initial domain of [−5, 5] which we have shifted during the test to follow

the shock. In this case, σ = 0.1 on the left and σ = 0.052669 on the right.

speeds. Second, they can feature large changes in both the electromagnetic and inertial

terms, making them the ultimate test of the code’s ability to handle high σ cases.

As with the continuous case, there is a stark difference between this solution in the

upstream fluid frame compared to the shock frame, since in FFDE there is no shock frame

and thus this frame must feature large corrections from the inertial operator. Once again,

this is because even with σ ≫ 1 we would still have σ∗ ≈ 1, thus the inertial terms in the

shock frame are of comparable size to the electromagnetic terms.

Meanwhile, the Lorentz factor downstream can be far smaller than upstream for a

strong shock, so that in the shock frame the downstream value of σ∗ will be relatively

close to σ. However, such strong shocks will also lead to a large decrease in σ downstream,

as the density and gas pressure increase by several orders of magnitude.

Hence both upstream and downstream, the value of σ∗ will be relatively small in the

shock frame both for strong shocks, and for weak shocks where the downstream velocity
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(a) (b)

(c) (d)

Figure 4.12: Bz (a), ux (b), ρ (c) and pg (d) for a test of a high-σ slow shock up to

t = 100, at resolution 100, using a third order code and Neumann BCs, width parameter

a = 0.1, and an initial domain of [−5, 5] which we have shifted during the test to follow

the shock. In this case, σ = 100 on the left and σ = 7.5165 on the right.

will be almost as fast — as can be seen in tables 4.3 and 4.4 for the high-σ fast shocks.

On the other hand, in (or near) the fluid frame, σ∗ will be close to σ. So if we are near

the upstream fluid frame, the upstream inertial components will be much smaller than the

electromagnetic components. If we are near the downstream frame however it depends on

the strength of the shock.

For weak shocks, the downstream state will be similar to the upstream state, and thus

have high σ and comparable σ∗. For strong shocks, σ downstream will already be smaller

than the upstream state, and the value of γ will be quite large as well, as (in the shock

frame) the shock slows the downstream fluid significantly. Thus in the upstream frame,

the downstream fluid is moving quite quickly as well. Therefore the downstream σ and σ∗

will be relatively small for a strong shock.

Thus between the upstream fluid frame and the shock frame, the interaction compo-

nents change from O
(
σ−1) in the upstream frame all the way up to match or exceed the
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force-free components at O(1) in the shock frame. Given how different these conditions

are, we may expect the code to behave differently in these two cases, so it is worth testing

both.

(a) (b)

Figure 4.13: Bz (a) and pg (b) for a test of a stationary, low-σ fast shock up to t = 100,

at resolution 100, using a third order code, Neumann BCs, width parameter a = 0.1, and

a domain of [−5, 5]. In this case, σ = 0.054702 on the left and σ = 0.1 on the right, while

σ∗ = 0.048413 on the left and σ∗ = 0.019960 on the right.

Fig. 4.13 shows a test of a fast shock at low σ in the shock frame. In this case the

code seems able to handle the shock without great difficulty. Besides the fact that the

shock appears to be drifting slowly to the left with phase speed µ ≈ −0.0025, there are

no other obvious problems. This drift is a result of the system coming to stabilise in a

slightly different shock configuration to the initial conditions. In contrast to the previous

slow shock tests, this shock is quite sharp — both because in this case the HLL solver does

resolve this wave, and also because there is appreciable non-linear steepening keeping the

shock sharp.

Fig. 4.14 features the same shock but now in a different frame, close to that of the up-

stream fluid frame. Since σ is low, the difference between these frames is not exceptionally

different, and the code handles the shock with relative ease. As before, the shock is kept

sharp and it moves with respect to the grid at the expected velocity. The shock is spread

over a few more cells than that of the shock frame test, but an increase in dissipation for

a moving shock is common among shock-capturing schemes. There does, however, appear

to be a small change in the magnetic field downstream compared to the exact solution.

This could be explained by the shock settling to a different solution compared to the initial

conditions, but we will see later that this may not be the case.

Clearly the code has little difficulty at low σ, so now we move on to high σ. High-σ fast

shocks are among the hardest cases for the code to deal with. In the upstream fluid frame,
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(a) (b)

Figure 4.14: Bz (a) and pg (b) for a test of a moving, low-σ fast shock up to t = 100,

at resolution 100, using a third order code, Neumann BCs, width parameter a = 0.2, and

an initial domain of [−5, 5] which we have shifted during the test to follow the shock. This

shock is the same as in Fig. 4.13 but in a different frame, where the shock moves with

shock velocity µ = 0.90286. As a Lorentz invariant σ is the same, with σ = 0.054702 on

the left and σ = 0.1 on the right. However, the value of σ∗ is now σ∗ = 0.018151 on the

left and σ∗ = 0.098779 on the right.

(a) (b)

Figure 4.15: Bz (a) and pg (b) for a test of a weak, stationary, high-σ fast shock up

to t = 100, at resolution 100, using a third order code, Neumann BCs, width parameter

a = 0.1, and an initial domain of [−5, 5]. In this case, σ = 1.4042 on the left and

σ = 2120.1 on the right, while σ∗ = 0.73066 on the left and σ∗ = 0.21180 on the right.

these shocks are moving faster than the fast phase speed which is itself very close to the

speed of light. Since this is the case the phase speed of similar states is not significantly

different, and so the non-linear steepening that would otherwise help to keep them sharp

is very weak, allowing the shocks to spread out due to diffusion. In addition to this, fast

shocks can feature large gradients in the magnetic field and very large changes in gas

pressure, and thus also large changes in σ.
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(a) (b)

Figure 4.16: Bz (a) and pg (b) for a test of a weak, moving, high-σ fast shock up to

t = 100, at resolution 100, using a third order code, Neumann BCs, width parameter

a = 0.2, and an initial domain of [−5, 5] which we have shifted during the test to follow

the shock. Once again, this shock is Fig. 4.15 in a different frame, with the shock now

moving with velocity µ = 0.9999458. σ is thus the same with σ = 1.4042 on the left

and σ = 2120.1 on the right. However, we now have σ∗ = 0.00051173 on the left and

σ∗ = 74.912 on the right.

In order to properly identify how well the code deals with this difficult case, we will

include two different shock cases, with one shock much weaker than the other in terms of

the change in gas pressure and σ. Fig. 4.15 shows the results for the first, weaker shock

in the shock frame.

Like with the low-σ case, the code handles this test quite well, with little difficulty.

The shock is spread over only a few cells, and the results are more or less correct —

although the drift of the shock is much more significant here, with a shock velocity of

around µ ≈ 0.018.

Fig. 4.16 shows the results for the same shock in the fluid frame. This time the shock

is spread over quite a few cells, unlike the low-σ moving shock in Fig. 4.14. This is due to

the weak non-linear steepening we described above. The jump in magnetic field appears

to be quite accurate, but we can see a clear drop in the gas pressure downstream compared

to the expected value, similar to the change in magnetic field in the low-σ moving shock.

Fig. 4.17 shows a test of a much stronger fast shock at high σ in the shock frame;

in this case, the gas pressure increases by around four orders of magnitude — although

thanks to the high σ the change in magnetic field strength is comparatively smaller.

Once again, the shock is drifting to the left, this time with velocity µ ≈ −0.022. More

notably however, like the moving shocks before the magnetic field downstream appears to

be slightly different compared to the exact solution. Again, this could be explained by the
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(a) z-component of magnetic field.

(b)

(c)

(d) (e)

Figure 4.17: Bz (a), ux (b), ρ (c) and pg (d) for a test of a stationary, high-σ fast

shock up to t = 100, at resolution 100, using a third order code, Neumann BCs, width

parameter a = 0.1, and an initial domain of [−5, 5]. In this case, σ = 1.4042 on the left

and σ = 2120.1 on the right, while σ∗ = 0.73066 on the left and σ∗ = 0.21180 on the right.

shock settling to a different solution.

There is another significant issue (not visible in the plots themselves): in order to avoid

the model crashing due to various problems — such as the variable conversion failing to

converge as u2 exceeds infinity, or gas pressure dropping below 0 — it is often necessary

to run the test at a small value for the Courant number, perhaps as low as Cu = 0.05

(although it was not necessary in this particular instance). This is highly undesirable, since

the smaller this value is the more iterations we need to run the model for the same time.

In addition, low Cu is known to be associated with increased diffusivity of the numerical

model, and thus raising Cu as high as possible is usually considered to be very important.

The low value of Cu is needed sometimes because the total energy and total momentum

are very close together, due to the large Lorentz factor of the plasma upstream of the shock.

One condition for a physically meaningful state is that the total momentum M and total
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(a) (b)

(c) (d)

Figure 4.18: Bz (a), ux (b), ρ (c) and pg (d) for a test of a moving, high-σ fast shock

up to t = 100, at resolution 100, using a third order code, Neumann BCs, width parameter

a = 0.4, and an initial domain of [−5, 5] which we have shifted during the test to follow the

shock. Once again, this shock is Fig. 4.17 in a different frame, with the shock now moving

with velocity µ = 0.9999458. σ is thus the same with σ = 1.4042 on the left and σ = 2120.1

on the right. However, we now have σ∗ = 0.00051173 on the left and σ∗ = 74.912 on the

right.

energy E must satisfy

E2 −M2 > 0. (4.6)

If we are in a state where we have M2/E2 ≈ 1 (such as a high-σ, strong fast shock), then

small errors in the fluxes can cause the state to be unphysical, causing the code to fail.

The stationary fast shock naturally satisfies this condition. Thus in order for the code

to handle this state, the Courant number Cu has to be reduced, unless we can find a way

to reduce the errors in the flux.

Increasing the value of Cu is a somewhat problematic affair. The main problem at

the heart of this is that this fast shock we are considering is perhaps too extreme for our

code to reliably handle, with an increase in pressure of over 8,000 times, and a significant
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change in magnetic field. In these conditions, the total momentum M is close to the limit

of E2 > M2, where E is the total Energy. If it goes beyond this at any point then there

will be no solution to the variable conversion, and the code will fail (although the last

resort cap on u2 described in section 3.2.6 can often catch this failure mode, so long as it

is just a single, sporadic case).

With momentum so close to the limit, relatively small errors can push it over the limit,

and the extreme gradients in the shock can often be enough to do so. Thus this case is

quite difficult to handle, as we need to keep a tight lid on the magnitude of the errors.

This also means that seemingly unimportant (or even detrimental) alterations can be

the difference between the code working at high Cu and not. For instance, one alteration

that sometimes works, is to enforce the PC conditions after interpolation, as discussed by

section 3.2.7. This can allow the code to handle this strong fast shock at high Cu for a

second or third order code. However, if we are using this PC enforcement scheme, then

we have found that the code actually fails if we do not also implement the DER correction

to the third order interpolation discussed in section 3.1.4. This is quite surprising, as

one might imagine that a higher order correction like this would be more likely to cause

problems near discontinuities than solve them. This is indicative of the volatile nature of

this test case.

We will move on from this issue for now, since as we will see later the method to correct

some of the other issues with these high-σ fast shocks can also help with the volatility

problem as well, and negate the necessity of a low Cu value.

Fig. 4.18 shows the same shock in the fluid frame, and the issues are even more apparent

here. The shock appears to have constructed a complicated structure — although this

could be the shock actually being several waves together; since in this frame, the high

fluid velocities mean that several wave modes have phase velocities near the speed of light,

at least in the downstream state with ux = 52.372. With that said, this test at least does

not require a small value for Cu unlike the stationary case, and works fine at Cu = 0.4.

Another problem we can see in Fig. 4.18 is that the shock is very wide. This is most

likely attributable to the near-total lack of non-linear steepening, and thus there is little

keeping the shock sharp. It is for this reason that we decided to upgrade the code to third

order, although there is still significant widening of the shock here even with this.

Conservation Error

Besides the instability of the code, the noticeable differences between the downstream

values of ρ, pg and Bz compared to the initial values in several of the previous tests is

concerning. In the stationary case, there also appears to be a small oscillation (most
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clearly visible in the plot of Bz, Fig. 4.17b) and the shock itself is drifting the left. As

mentioned, this could be explained by the system merely settling to a different solution,

but this may not be the actual cause.

While the moving fast shock in Fig. 4.18 appears to ultimately reach a similar state

downstream of the shock to the initial conditions, the shock itself is very wide and has

developed a complex structure. This time, the complex structure is not an aspect shared

by the previous fast shock tests.

We can see that the new shock in Fig. 4.17 features a smaller jump in density in gas

pressure, and a larger jump in Bz. Only the downstream variables are affected; this is to

be expected, since the upstream fluid is currently moving faster than the fast phase speed

and so no changes can propagate into this region. This shock is also moving to the left,

albeit quite slowly at v = −0.05.

(a) (b)

(c) (d)

Figure 4.19: x-component (a), y-component (b), and z-component (c) of the total mo-

mentum divided by initial total energy, as well as total energy (d) in the system over time

for the stationary shock test Fig. 4.13. The red line indicates the initial value of each.

In section 3.2.6 we noted that the force-free system is unable to fully conserve all the

energy and momentum. It may be that the problem here is related. Indeed, Figs. 4.19
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(a) (b)

(c) (d)

Figure 4.20: x-component (a), y-component (b), and z-component (c) of the total mo-

mentum divided by initial total energy, as well as total energy (d) in the system over time

for the stationary shock test Fig. 4.15. The red line indicates the initial value of each.

to 4.21 show the total conserved RMHD variables in the system over time for the stationary

shocks in Figs. 4.13, 4.15 and 4.17. We can clearly see that these conserved variables are

not conserved, although the error is relatively small each time step.

This problem is not quite as bad as these plots make this appear, however. Some of

this drift in the total energy and momentum over time is not due to loss of conservation.

If we refer back to the results these came from then we can see that in all three cases the

shock itself has ended up moving against the grid, in contrast to the initial solution which

was stationary. This movement across the grid is responsible for some of the drift in the

variables, since as the shock moves across the grid the proportion of the grid that is in the

upstream and downstream states changes, thereby changing the totals of the conserved

variables.

This motion across the grid is also responsible for something else: These plots of the

total conserved variables also show an oscillation in many of the conserved variables, in

all three fast shock cases in Figs. 4.19 to 4.21. We can associate these oscillations with the
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(a) (b)

(c) (d)

Figure 4.21: x-component (a), y-component (b), and z-component (c) of the total mo-

mentum divided by initial total energy, as well as total energy (d) in the system over time

for the stationary shock test Fig. 4.17. The red line indicates the initial value of each.

movement of the shock across the grid because the period of the oscillations matches the

movement across the grid. That is, there is exactly one complete oscillation for each grid

point travelled. The fact that the high-σ shocks are moving faster than the low-σ shock

is clearly visible.

Besides the movement of the shock across the grid, there is still the overall failure of

accurate conservation to consider. The cause of this error is something that has been

identified previously; in section 3.2.6 we discussed the method of converting variables

from conserved to primitive in the force-free and interaction operators. In the force-free

operator, we noted that due to the system being overdetermined, it was not possible (by

this method) to maintain conservation of all the conserved variables down to numerical

error. We can only maintain to conservation down to truncation error for at least three of

the conserved variables.

After converting the conserved variables to primitives, at the end of the time step we

perform the recombination step, where B0 and B1 are added back together and B0 is
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set to their total, and the same for E. This then necessitates recalculating the conserved

variables, but since the B0 and E0 did not completely match their conserved counterparts,

after recalculating the conservatives this mismatch error is then lost.

This error should be present in all the previous tests, but it is only really noticeable

here for a couple of reasons:

1. The error is in the force-free operator, so tests that only rely on the interaction

operator or tests at small σ where the interaction operator is relatively large will

not see significant issues from this.

2. The error will be more pronounced near large gradients or discontinuities, since the

truncation error will be larger.

Correcting Conservation error

Correcting this error has no obvious solution. The first idea would be to reduce the trun-

cation error, but since we are having issues near discontinuities increasing the order of the

code will have limited effect, since we need to reduce the order near discontinuities anyway.

Furthermore, increasing resolution may improve the situation for continuous solutions, but

discontinuities become sharper in response, which could paradoxically increase the error

instead.

One method that comes to mind is that while the force-free system cannot deal with

this error the interaction system is not overdetermined, so if we moved the error into the

interaction system then it may be able to handle it.

At the end of the time step, prior to calculating primitives, we have the conserved

variables B0,M0 and U0 for the magnetic field, momentum and energy from the force-

free system respectively. We also have the conserved variables D,B1,M1 and U1 for

the conserved mass, magnetic field, momentum and energy for the interaction system

respectively.

In section 3.2.6 we described the method used to convert these to primitives. Starting

with the force-free system, we seek a B0 and E0 to match the B0,M0 and U0, i.e. so that

we have

Q

B0

E0

 =


B0

M0

U0

 . (4.7)

As noted previously, this is generally impossible, due to truncation error making the

conserved variables inconsistent. All we can do is find a “good enough” B0 and E0 that

is as close as we can get it. Our dilemma is that no matter how close we try, there will
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generally always be a non-zero difference
B0

M0

U0

− Q

B0

E0

 = δQ =


δB0

δM0

δU0

 , (4.8)

with δQ on the order of the truncation error.

The proposed solution is very simple — we take this error δQ and add it to the

interaction system instead. That is, after calculating the force-free primitives we then

move the error over by setting 
B0

M0

U0

 →


B0 − δB0

M0 − δM0

U0 − δU0

 , (4.9)

for the force-free conservatives and

D

B1

M1

U1


→



D

B1 + δB0

M1 + δM0

U1 + δU0


, (4.10)

for the interaction conservatives. We can then calculate the interaction primitives from

these new conservative variables, which for this system has a unique solution since the

system is not overdetermined.

Unfortunately, there is a glaring flaw in this method, in that if the error is too large (and

it is not necessarily smaller than the interaction system) then the primitive conversion may

fail to find a solution. For instance, if the error in energy reduces the amount of energy

in the interaction system, then it may be reduced too low for there to be a corresponding

set of primitives.

Moreover, the code with this correction would appear to be more-or-less identical to

a normal RMHD code, with only minor differences between them. Thus if this method

somehow worked it would seem that a normal RMHD code would work anyway.

Even so, applying this method does help prove that this is indeed the cause of the

problems in Figs. 4.13, 4.15 and 4.17. Running the same test of Fig. 4.17 again with

this correction in Fig. 4.22 shows that the results are now working perfectly, and so this

conservation error is definitely the problem at hand.

However, as noted above a normal RMHD code is also able to handle this problem, so

this is not very useful at all — moreover, if we change Lorentz frame to one in which the

shock is even moving at a very low shock velocity of |v| = 0.1 or even less then this causes

the code to fail, both for a normal RMHD code and our code with this method applied.
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(a) (b)

(c) (d)

Figure 4.22: Bz (a), ux (b), ρ (c) and pg (d) for a test of the same conditions as

Fig. 4.17. This time, conservation is enforced using the conservation error shifting method

detailed in section 4.3.4.

With that said, the main reason that this correction crashes the code is that the total

energy becomes too low. As noted previously, the total energy E = U0 + U1 and total

momentum M = M0 + M1 must satisfy E2 > M2, and these strong fast shocks tests are

very close to violating this condition, with E2/M2 close to 1. It is generally the violation of

this particular condition that causes the code to crash when running the transfer scheme.

If we write the conservation loss in energy as ∆U0, and that of momentum as ∆M0, then

the shifting method adds ∆U0 to the interaction energy U1 and ∆M0 to the interaction

momentum M0, and subtracts them from the force-free counterparts. Since the condition

we want to keep satisfied is

(U0 + U1)2 > (M0 + M1)2 , (4.11)

instead of transferring all of ∆U0 and ∆M0, we could instead restrict the transferral to

only those cases where the total energy would not drop as a result of the transfer — i.e.

those cases where ∆U0 > 0. This should theoretically avoid most cases where E2 > M2



192

is violated due to the transferral.

If however the momentum error ∆M0 is even more significant than ∆U0 this transferral

could still violate the condition. In practice this seems rare, but we could avoid this by

simply transferring only the energy and leaving the momentum alone. Moreover, testing

shows that the results for fast shocks with this conditional transfer scheme are in fact

either slightly better if we do not transfer momentum, or they are not noticeably affected

at all.

(a) (b)

(c) (d)

Figure 4.23: Bz (a), ux (b), ρ (c) and pg (d) for a test of the same conditions as

Fig. 4.17. This time, the energy lost from the force-free system after each time step is

transferred to the interaction system using the energy error shifting method detailed in

section 4.3.4.

Performing this conditional transfer of just the energy does successfully allow the code

to work, even for the moving shock. Fig. 4.23 gives the results with this conditional

transfer scheme for the strong, high-σ stationary fast shock in Fig. 4.17.

As we can see, there is no longer a notable difference in the downstream variables,

and in fact if we compare these results to the stationary shock with the full transfer

scheme in Fig. 4.22, we can see that there is in fact little difference at all, despite the
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lack of momentum conservation, or the lack of energy conservation when the condition for

transfer is not satisfied.

For the moving shock case, Figs. 4.24 and 4.25 show the same cases as Figs. 4.16

and 4.18 respectively, this time using the conditional energy transfer scheme. While the

scheme appears to have little to no effect on the strong fast shock in Fig. 4.18, this

adjustment does partially correct the issue with the loss of downstream gas pressure in

the weak shock in Fig. 4.16.

Although it has no apparent effect on the strong shock, the fact that it does not make

anything worse indicates that this correction is worth keeping. In addition, besides the

complex shock structure for the strong fast shock, the downstream variables were already

quite accurate before any corrections.

(a) (b)

Figure 4.24: Bz (a) and pg (b) for a test of the same conditions as Fig. 4.16. This

time, conservation is corrected using the conditional energy error shifting method detailed

in section 4.3.4.

Other than this correction, the only alternative we have come up with is to alter the

variable conversion in section 3.2.6 to try to maintain conservation of particular variables.

As discussed there, we can alter the variable conversion to enforce energy conservation

automatically, by setting B0 and E0 to match the conserved FF energy.

Unfortunately, altering the method in this way does not appear to have significant

effects on the results of the tests — in spite of the fact that keeping energy conserved (or

at least not decreasing) allows stationary fast shocks to work well.

Since it proved to be useful here, all tests in this chapter as well as most of the next

chapter here have been performed with the condition energy transfer scheme, besides the

previous fast shock tests. This includes the previous 1D tests performed above, like the

Alfvén waves and slow shocks.
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(a) (b)

(c) (d)

Figure 4.25: Bz (a), ux (b), ρ (c) and pg (d) for a test of the same conditions as

Fig. 4.18. This time, conservation is corrected using the conditional energy error shifting

method detailed in section 4.3.4.

4.3.5 Current Sheets

As features that are not properly handled by FFDE simulations, ensuring that current

sheets can be handled is of paramount importance. As current sheets are discontinuities

featuring large gradients in the electromagnetic fields, we may be concerned that the

conservation error we have just identified may be problematic here as well, but since the

magnetic field strength drops in the sheet, σ also drops so we may not need to be so

concerned.

Current sheets were discussed in section 2.3.1, where we also considered all such discon-

tinuities that are stationary with respect to the fluid. There we identified that if Bx = 0

then the condition that the total pressure is constant (i.e. the sum of the gas and pressures

pt = pm + pg) is sufficient for all such stationary cases.

This gives us a lot of freedom with regards to how to set up a current sheet, as we can

include a change in density ρ, a change in the ratio of the pressures pg/pm, and a change

in the direction of the magnetic field B. It is this third option of changing B that is most
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interesting to us, as the other two variables ρ and pg are both of order ∼ O
(
σ−1). Thus

if we want to keep σ ≫ 1, we are limited in how much we can change these values.

Thus we are most interested in a rotation of B (in the fluid frame). Such a solution is

known as a current sheet, since Ampère’s law

∇ × B = J + ∂E

∂t
, (4.12)

implies the existence of a charge current J in the region where the magnetic field changes

direction. This is because the rotation of the magnetic field would mean B has non-zero

curl, and the fact that we are in the fluid frame implies E = 0 and therefore ∂tE = 0, so

we must have non-zero J .

The rotation of the magnetic field can be by any amount; if we let Bl = (0, B, 0) be

the magnetic field to the left of the current sheet then the right is given by

Br =


0

B cos θ

B sin θ

 , (4.13)

with θ the rotation of the field.

Although these solutions imply that the current sheet could be resolved in the numerical

model as a rotation of the magnetic field over a small but non-zero number of cells, in

practice the numerical solution tends to connect the two states directly. That is, the

structure of the numerical solution to the current sheet does not rotate the magnetic

field, but instead the magnetic field strength drops in the structure of the sheet. Thus

the condition above of constant total pressure implies that the gas pressure must rise to

compensate, heating the plasma.

In the most extreme case with θ = π the field rotates a half turn and so the magnetic

field completely flips direction, Br = −Bl = (0,−B, 0). Thus in the numerical structure

of the current sheet, the magnetic field magnitude drops to 0 in the centre very briefly,

before flipping sign and increasing in magnitude again. In such conditions the value of σ

will of course increase, reaching infinity at the point where B = 0.

From this it is immediately clear why FFDE has difficulties with these conditions; since

it has no gas pressure to increase there is nothing to counterbalance the current sheet. The

magnetic field drops, and the fundamental condition of FFDE — that the inertial terms

are negligible — is violated, as the magnitude of B2 approaches 0 and the PC condition

B2 − E2 > 0 is broken. The FFDE Riemann problem in this case has no solution.

Fig. 4.26 shows the results of a stationary current sheet at low σ, while Fig. 4.27 shows

the same current sheet moving at v = 0.5 to the left. For the stationary case, the code

appears to be able to handle the problem without difficulty. However, for the moving case
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(a) (b)

Figure 4.26: By (a) and pg (b) for a stationary current sheet test, run until t = 100 at

resolution 100, using a third order code, Neumann BCs, width parameter a = 0.1, and a

domain of [−5, 5]. In this case, σ = 0.036842 in the left and right states, but drops to 0 at

the centre of the current sheet.

(a) (b)

Figure 4.27: By (a) and pg (b) for a moving current sheet test, run until t = 3 at

resolution 100, using a third order code, Neumann BCs, width parameter a = 0.1, and an

initial domain of [−5, 5] which we have shifted during the test to follow the current sheet.

This test is the same case as Fig. 4.26, but in a different frame with the current sheet now

moving with phase velocity µ = −0.5, so σ is the same as before with σ = 0.036842 in the

left and right states.

there are clearly very significant errors in which the system immediately emits waves in

both directions, that reduce the magnitude of By to near-zero and significantly heat the

plasma.

Fig. 4.28 shows the results of a stationary current sheet at high σ. Once again, the

code can handle the stationary case without much issue, although the sheet has become

relatively wide (note that this width is a little exaggerated by the logarithmic plot of gas

pressure, it would not look so wide in a non-logarithmic plot).
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(a) (b)

Figure 4.28: By (a) and pg (b) for a stationary current sheet test, run until t = 100 at

resolution 100, using a third order code, Neumann BCs, width parameter a = 0.1, and a

domain of [−5, 5]. In this case, σ = 926.87 in the left and right states, but drops to 0 at

the centre of the current sheet.

(a) (b)

Figure 4.29: By (a) and pg (b) for a moving current sheet test, run until t = 3 at

resolution 100, using a third order code, Neumann BCs, width parameter a = 0.3, and an

initial domain of [−5, 5] which we have shifted during the test to follow the current sheet.

Again this test is the same as Fig. 4.28 but in a different frame with the current sheet now

moving at µ = 0.5, so σ is the same as before with σ = 926.87 in the left and right states.

Fig. 4.29 shows the results for the same current sheet in a different frame, with the

sheet moving at v = 0.5 now. Much like the low-σ case, the system has immediately

collapsed and sent out waves to the left and right which carry away By, and this time

giving a noticeable increase in the gas pressure.

While the example cases here will immediately fail, previous tests were able to last at

least a few iterations before giving incorrect results. In these cases, after a few iterations

the test would suddenly jump, producing a large spike in pressure at the current sheet

and sending out waves in either direction. Sometimes these waves would have no apparent
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effect on the current sheet, but eventually one would carry away most of the By away.

After analysing the tests carefully, we eventually determined the cause of this error.

Consider the case of Bl = (0, B, 0) ,Br = (0,−B, 0). Since the magnetic field in the

numerical solution changes directly between the left and right states, we always have

Bx = Bz = 0. Near the centre of the current sheet, the magnetic field drops in magnitude

very sharply and eventually flips sign.

In the force-free system, B0 frequently drops so sharply that we have E2
0 > B2

0 in

violation of Eq. (3.89); surprisingly, for our code this generally does not cause obvious

problems in itself. This is because the equations themselves do not have much problem

with violating this constraint, and the only real problem is that the Alfvén phase speeds are

non-physical in this case. Since we are using an HLL solver, these phase speeds are never

needed and so this issue does not often cause any problems, and the code can continue

running unabated.

Since the integration method steps forward by finite time steps each iteration, the

magnitude of B0 never actually reaches 0, as it will instead jump over this point from

B > 0 to B < 0. However, how close the system comes to 0 differs each time a cell passes

through the transition. The system is chaotic enough that this distance is effectively

random.

Occasionally then, the magnitude of B0 drops exceptionally low and becomes very

nearly 0, as the time step update happens to place it closer to 0 than usual as it flips sign.

In the variable conversion described in section 3.2.6, we set E0 via Eq. (3.118)

E0 = 1
B2 (S0 × B0) .

Since S0 remained at a similar magnitude as before, the result is that the magnitude of

E0 increases to compensate. In one particular test case of a current sheet we examined,

the value of B0 dropped to approximately B0 ∼ 10−5 while we had S0 ∼ 10−4, thus the

magnitude of E0 became E0 ∼ 10, far larger than it should be. Thus B0 is near 0 while

E0 is very large, an enormous violation of the condition B2 − E2 > 0.

When these highly inconsistent values of B0 and E0 are passed to the interaction

system to calculate primitives, the numerical method is faced with a dilemma: if we recall

the PC condition on the interaction system Eq. (3.96)

E1 = − (E0 + v × B0) − v × B1,

then in attempting to satisfy this condition — which is enforced in the variable conversion

— the code finds that the magnitude of B0 is much too small and E0 is much too large.

Since v is capped at v2 < 1 and B1 has not become large, in order to satisfy the condition

the code must cancel out the E0 with an equally large and opposite E1.
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This large E1 then causes more problems, most notably with the conserved interaction

energy U1 from Eq. (3.92)

U1 = wu0u0 − pg + E0 · E1 + B0 · B1 + 1
2
(
E2

1 +B2
1

)
.

The variable conversion subroutine has U1 as a known quantity, and now has a very large

E1 to deal with. Two terms specifically stand out, E0 · E1 and E2
1/2. Since E1 ≈ −E0,

these two terms cancel to ≈ −E2
0/2.

In order to match this to U1, the subroutine has no choice but to either increase the

gas pressure pg so that the enthalpy density w increases, or increase the Lorentz factor γ

(or both). Thus the end result after this chain of propagating errors is a single-cell jump

in gas pressure and/or velocity, of at least one order of magnitude. This is the true origin

of the sudden jump, as this spike in pressure then emits fast waves to the left and right,

which carry some of the magnetic energy away from the current sheet, the scale of this

emission dependent on how close B0 came to 0.

This error only appears in the moving case because the stationary current sheet is not

moving across the grid, and so there is no chance for the sign change to occur. However,

even a very slowly moving current sheet should encounter this issue, as the current sheet

passes over the cells and the sign changes occur.

Although in both the moving tests above this problem occurred immediately, in other

tests that have been performed previously this error instead occurred after a short time,

and somewhat randomly. This is because By can “jump” over the sign change, and not

reach the small value necessary to trigger this problem. However, given enough time we

expect this problem to be triggered eventually.

Correcting Small B0 Error

Now that we have positively identified the cause of the error, we can now begin to correct

it. Clearly, there are multiple different alterations we could make in order to attempt to

correct this error. These different alterations may be mutually exclusive, and of course

may not work at all.

Transition scheme

One fact that comes to mind is that the cause of the error is the force-free system. Since in

the centre of the current sheet we should have σ ≪ 1, as indeed we have seen in the tests,

a full RMHD code instead of splitting should be able to handle it. Thus in order to correct

this error we could include a condition that switches the code from splitting to full RMHD.

Lehner et al. (2012); Paschalidis and Shapiro (2013) have already developed method for



200

matching FFDE to RMHD, so it is not unreasonable to attempt to do something similar

for our code as well.

In our case, we note that with B0 = E0 = 0 the equations of the interaction system

reduce to the original equations of RMHD, so we do not need to include an entirely different

RMHD integration scheme and could simply set B0 = E0 = 0 to switch the system. Aside

from a few small differences, such a scheme should be more or less identical to a normal

RMHD scheme.

The main such difference is that in our scheme, interpolation for the interaction system

interpolates all of: ρ, pg,u,B0,E0,B1,E1. In this case with B0 = E0 = 0 these interpo-

lations are irrelevant, but for the remainder, a typical ideal RMHD scheme would use the

PC condition of Eq. (2.42), E = −v × B to interpolate E implicitly. But in our case, we

are interpolating E1 itself individually, and thus the results are a little different.

The means to correct this is clear; we can simply use the methods described in sec-

tion 3.2.7 to set E1, which in this case exactly corresponds to E1 = −v × B1, thereby

making this system identical to a normal ideal RMHD scheme. Of course, making our

scheme identical to RMHD may not be necessary anyway.

Now that we have established a simple method of switching the scheme to normal

RMHD, we propose the following correction: At the end of the time step, identify how

small σ is. If it is below a specified value, instead of doing the normal recombination step

Eq. (3.97)

B0 = B0 + B1, B1 = 0,

E0 = E0 + E1, E1 = 0,

we instead do the reverse

B1 = B0 + B1, B0 = 0,

E1 = E0 + E1, E0 = 0,

thus switching the system to full RMHD.

In order to make the transition smoother, we could also specify a transition region for

σ between a pair of upper and lower limits σmin and σmax, so that for σ ≥ σmax we use

our normal recombination step, and for σ ≤ σmin we use the reverse step. For the region

in-between, we would use some transition function, i.e.

B0 = α (B0 + B1) , B1 = (1 − α) (B0 + B1) ,

E0 = α (E0 + E1) , E1 = (1 − α) (E0 + E1) ,
, (4.14)

where α(σ) is a function of σ that determines how much of the total B and E goes into
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the force-free and interaction systems. If we use a simple linear transition, then

α(σ) =


0 if σ ≤ σmin

σ−σmin
σmax−σmin

if σmin < σ < σmax

1 if σ ≥ σmax

(4.15)

so that α(σ) ≤ 0 for σ ≤ σmin and α(σ) ≥ 1 for σ ≥ σmax, with a linear transition

between.

The end result of this is that as σ decreases the code transitions from the splitting

scheme to a more typical RMHD scheme. Thus in the centre of the current sheet the

errors of the force-free system should be avoided.

(a) (b)

Figure 4.30: By (a) and pg (b) for the case of Fig. 4.28 with the transition scheme

detailed in section 4.3.5.

(a) (b)

Figure 4.31: By (a) and pg (b) for the case of Fig. 4.29, run until t = 100 with the DER

step from section 3.1.4 turned off, and with the transition scheme detailed in section 4.3.5,

and this time with a thinner initial discontinuity with width parameter a = 0.2.

Figs. 4.30 and 4.31 show the results of the previous tests in Figs. 4.28 and 4.29 with
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this new correction. We can see that the problems have been eliminated entirely. The

current sheet is able to run exactly as expected.

This method is not without its flaws, however. First, it was necessary to turn off the

DER step described in section 3.1.4 from the third order interpolation scheme, in order

to allow the moving current sheet in Fig. 4.31 to work — although some sort of limiting

scheme that turns off the DER step near high gradients could potentially work as well.

You can also see from the plots that the transition has created a kind of structure in the

results. In the gas pressure, there is a fairly wide region in the centre with a near-constant

high pressure, and in the magnetic field the gradient is larger on the outside of the current

sheet, but then becomes smaller towards the centre as the scheme transitions to RMHD.

As a result, the stationary current sheet is now a few cells wider than it was before.

There are also problems with this scheme when expanded to 2D, at least for the GLM

scheme that we are using to clean the divergence of B0 and B1 (see section 3.2.5 for the

description of this scheme).

From Eqs. (3.109) to (3.110), we apply the GLM method to both the force-free system

in Eqs. (3.108) and (3.109) and to the interaction system in Eqs. (3.110) and (3.111). At

each time step (and sub-step), Eqs. (3.109) and (3.111) generate ϕ0 and ϕ1 proportional

to the magnitude of B0 and B1 respectively. However, at the end of the time step we

apply the transition scheme above, and so the ϕ0 and ϕ1 are no longer matched to the B0

and B1 that generated them.

For instance, we can consider a simple case where B0 ̸= 0 at the start of the time step.

At the end of the time step, ϕ0 ̸= 0 has been induced by this B0. But now let us suppose

that σ has also dropped by the end of the time step, so that α = 0. As a result, B0 is

now set to 0, and yet ϕ0 is still non-zero. Thus the B0 and ϕ0 have become mismatched.

Of course, this could be remedied by simply transitioning ϕ0 and ϕ1 just like B0 and

B1 etc. This would then allow the ϕ and B to become properly matched again. However,

while this could be effective, the fact that non-zero ϕ also affects neighbouring cells via

Eqs. (3.108) and (3.110) means that we could have large ϕ0 next to a cell with small B0,

which again may cause problems.

Capping E0

Besides the previous method, a far simpler alternative also presents itself. In the analysis

of the cause of the error given previously, we noted that the fundamental cause of this is

that E0 is large while B0 is small. To remedy this then, a simple idea would be to cap

the value of E0 to maintain the condition B2
0 − E2

0 > 0, which should have an effect on

this problem.



203

We have some freedom in choosing the exact point in the code at which we apply the

cap to the value of E0, and how. One method we could consider is altering the force-free

primitive calculation, by selecting one of the other methods proposed in section 3.2.6 to

prioritise the conservation of other variables, which may avoid the problem with E0. For

instance, enforcing energy conservation with the conversion scheme may mean that E0 no

longer causes the problem. However, there may be no way of doing so without violating

the condition anyway.

Alternatively, we may note that the HLL method we are using for the FFDE system

has no issues with violations of the B2
0 − E2

0 > 0 condition, and is able to obtain a sane

estimate for the flux even if it is violated in a major way. After all, without correction the

condition is in fact violated repeatedly during the tests in Fig. 4.30, and only occasionally

causes major problems.

Thus we may be able to get away with a violation of the condition, provided that it is

small enough to avoid the error we are trying to correct here. In particular we can keep

the direction the same and simply restrict it to E2
0 = B2

0 , a very minor violation of the

condition that is simple to calculate.

However, for other methods such as a linear Riemann solver or even an exact solver,

violations of this condition cause irreconcilable issues. For instance, the Alfvén phase

speeds (required for a linear Riemann solver, unlike the HLL solver) comes out to an

imaginary value if the condition is violated, as we can see from Eq. (2.113). In this

instance we thus clearly need to require that the condition be satisfied. If we still keep the

direction of E0 the same, then we need to choose a cap Emax such that E2
0 ≤ EmaxB

2
0 ,

with Emax < 1. This choice will necessarily be arbitrary of course.

Of course, this method clearly disregards conservation of all of the momentum and

energy, retaining only the conservation of B0. It may be possible in some instances then

that this correction will cause very significant loss of energy or momentum (since E0 is

reduced this can only be a loss, not a gain). This may not be a significant issue however,

since we expect σ to be small in the situations where this adjustment is relevant and

therefore the increased conservation error should be relatively minor.

Figs. 4.32 and 4.33 once again shows the results of the previous tests of Figs. 4.28

and 4.29 using this correction instead, using a cap for E0 of Emax = 0.99. We can

contrast these with the results from the previous correction, Figs. 4.30 and 4.31. We can

clearly see that both correction methods appear to be as successful as each other — except

this time we could keep the DER step in place, so the code can remain third order. In

addition, unlike the transition scheme this scheme does not cause the current sheet to

become wider.



204

(a) (b)

Figure 4.32: By (a) and pg (b) for the case of Fig. 4.28 with the E0-capping scheme

detailed in section 4.3.5.

(a) (b)

Figure 4.33: By (a) and pg (b) for the case of Fig. 4.29, run until t = 100 with the

E0-capping scheme detailed in section 4.3.5, and this time with an even thinner initial

discontinuity with width parameter a = 0.1.

We have therefore managed to create two alternative methods for correcting the error

with small B0. We can either transition the system to a standard RMHD scheme at low σ,

or we can simply cap the magnitude of E0. Both methods have proven their effectiveness

at dealing with the problem, although with different side effects on the structure of the

current sheet.

In 1D we appear to be free to choose either correction method for this problem, with

few downsides to either choice. The methods are not mutually exclusive either, so we

could even use both simultaneously — in fact, maintaining the condition B2
0 − E2

0 > 0

may be a sensible choice to implement all the time, especially if we are using a method

other than HLL to calculate force-free fluxes, thus it may be prudent to cap E0 no matter

what.

As such, besides the previous current sheet tests we used this capping scheme for all
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previous and subsequent tests.

4.4 Convergence Testing

Besides verifying the ability of the code to handle different tests accurately, we also want

to ensure that the higher order schemes we are using are in fact properly increasing the

order of convergence.

First, we need to select the kind of test we want to check against. The test needs to

be continuous of course, since the spatial order is reduced near discontinuities, so from

among the continuous solutions we can choose from

1. Small amplitude waves,

2. Rarefactions,

3. Alfvén waves.

Small amplitude waves are unsuitable, because their small amplitude means testing

convergence quickly runs into the limit of numerical precision. Unlike small amplitude

waves, rarefactions and Alfvén waves have significant variation in several variables, well

above numerical precision.

With rarefactions we need to be careful since even if the interior of the wave is contin-

uous, there are weak discontinuities at either end that will break convergence, since the

Taylor expansion is not valid in this region. We therefore need to restrict the convergence

testing only to regions of the wave between the weak discontinuities at either end.

We also need to be careful because we cannot use periodic boundary conditions, since

the upstream state of the rarefaction wave is necessarily different from the downstream

state, since we know these two states must have different phase speeds for the corre-

sponding MS wave. If the wave reaches these non-periodic boundaries, then the numerical

solution will again diverge from the exact solution, since the Neumann boundary condi-

tions will enforce zero gradient, which does not match the rarefaction solution. While we

could use more complex boundary conditions, it is simpler to just restrict the convergence

testing within the boundaries as well as the within the weak discontinuities.

Meanwhile, Alfvén waves are a good choice for testing convergence of the code, since

they are continuous solutions and can be constructed without any weak discontinuities.

They can also be constructed in a manner that returns the system to the same state on

either side of the wave, allowing us to use a periodic boundary condition and run the

system for as long as we desire, unlike with rarefaction tests. One factor we do need to
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keep in mind here though is that returning to the same state with a continuous solution

necessarily means that there must be at least one critical point (i.e. derivative equal to 0)

in every variable, by Rolle’s theorem. Therefore the flaw in some WENO schemes near

critical points detailed in section 3.1.3 will cause problems if left unaddressed.

Another factor to keep in mind is that several variables are constant in an Alfvén wave,

in particular density ρ and gas pressure pg. As two of the directly interpolated variables,

flaws in the interpolation of these specific variables are not properly tested via Alfvén

waves. With that said, as we have noted in the Alfvén wave test in section 4.2.2, numeri-

cal models of these waves have a tendency to induce a variation in ρ and pg anyway due

to numerical errors, and therefore these tests may in actuality test these variables inter-

polation as well — although we note that such variations should be small, and therefore

susceptible to the same issues as with small amplitude wave tests.

4.4.1 Testing Results

Weighing these difference benefits and drawbacks, we decided to test the convergence using

a circularly polarised, large-amplitude Alfvén wave, with periodic boundary conditions.

This is a standard test of convergence in the literature; see for example Del Zanna et al.

(2007); Nakamura et al. (2023)

Like the Alfvén wave tests of section 4.2.2, we generate this wave in the de Hoffmann-

Teller frame, and then Lorentz boost by velocity vB in the x-direction so that the wave

is not stationary. However, unlike those tests the magnetic field performs a full rotation;

that is, for the 1D test the magnetic field at time t in the laboratory frame is given by

B(x) =
(
Bx, γBB⊥ cos

(2π (x− vBt)
2L

)
, γBB⊥ sin

(
ψ

(2π (x− vBt)
2L

)))
, (4.16)

where γB is the Lorentz factor corresponding to the Lorentz boost (γ−1
B =

√
1 − v2

B), and

the period 2L is the domain width, so that there is exactly one wave in the domain.

For the 1D test we used the domain [−L,L] with L = 5. We used Bx = 2.7 and

B⊥ = 0.9 for the magnetic field parameters, and the Lorentz boost velocity was vB = 0.94,

so the wave is travelling close to the speed of light in the positive x direction. This

corresponds to a Lorentz factor of γB ≈ 2.931, thus the magnitude of the transverse

magnetic field in the laboratory frame is γBB⊥ ≈ 2.638. This is the same base state as

with Fig. 4.4, so like in that case we have σ = 162. This test is therefore a relatively high

σ test.

We can also do convergence tests for a 2D code. Testing of the 2D code proper is in

the next chapter, but here we will include the results for convergence testing. For the 2D

test, the setup is the same except the wave is rotated so that the wave is travelling with
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Res. |E(ρ)| |E(pg)| |E(ux)| |E(uz)| |E(Bz)|

10 2.47 × 10−2 7.17 × 10−1 5.66 × 10−1 2.20 × 100 3.58 × 10−1

20 1.35 × 10−2 7.98 × 10−2 3.66 × 10−1 1.63 × 100 4.34 × 10−2

40 7.03 × 10−4 1.76 × 10−3 2.94 × 10−2 1.80 × 10−1 2.26 × 10−3

80 1.18 × 10−5 2.45 × 10−5 4.00 × 10−4 3.17 × 10−3 8.76 × 10−4

160 7.98 × 10−6 1.82 × 10−5 2.81 × 10−4 2.10 × 10−3 1.40 × 10−4

320 1.48 × 10−6 3.39 × 10−6 5.36 × 10−5 4.02 × 10−4 1.93 × 10−5

640 2.17 × 10−7 5.00 × 10−7 7.96 × 10−6 6.03 × 10−5 2.52 × 10−6

1,280 2.93 × 10−8 6.75 × 10−8 1.08 × 10−6 8.21 × 10−6 3.19 × 10−7

2,560 3.80 × 10−9 8.76 × 10−9 1.40 × 10−7 1.07 × 10−6 4.03 × 10−8

5,120 4.84 × 10−10 1.12 × 10−9 1.78 × 10−8 1.36 × 10−7 5.10 × 10−9

10,240 6.09 × 10−11 1.40 × 10−10 2.24 × 10−9 1.72 × 10−8 6.49 × 10−10

Table 4.5: L1 Norms for 1D Alfvén wave convergence tests. “Res.” refers to resolution

(i.e. the number of cells) and is inversely proportional to ∆x and thus ∆t also.

Res. |E(ρ)| |E(pg)| |E(ux)| |E(uz)| |E(Bx)| |E(Bz)|

10 2.16 × 10−2 3.09 × 10−1 1.47 × 100 2.07 × 100 1.15 × 10−1 1.58 × 10−1

20 8.35 × 10−3 3.40 × 10−2 9.19 × 10−1 1.24 × 100 1.54 × 10−2 1.92 × 10−2

40 8.35 × 10−4 2.15 × 10−3 1.74 × 10−1 1.65 × 10−1 2.82 × 10−3 5.16 × 10−4

80 8.68 × 10−5 2.04 × 10−4 2.07 × 10−2 1.64 × 10−2 5.85 × 10−4 2.44 × 10−4

160 7.70 × 10−6 1.72 × 10−5 1.65 × 10−3 1.68 × 10−3 7.80 × 10−5 4.90 × 10−5

320 6.38 × 10−7 1.40 × 10−6 1.11 × 10−4 1.75 × 10−4 9.32 × 10−6 8.07 × 10−6

640 8.08 × 10−8 1.84 × 10−7 1.41 × 10−5 2.33 × 10−5 1.17 × 10−6 1.17 × 10−6

1,280 1.15 × 10−8 2.67 × 10−8 2.16 × 10−6 3.33 × 10−6 1.48 × 10−7 1.64 × 10−7

Table 4.6: L1 Norms for 2D Alfvén wave convergence tests. “Res.” refers to resolution

(i.e. the number of cells) and is inversely proportional to ∆x and ∆y, and thus ∆t also.

wave vector k = (1, 1), i.e. the wave is travelling at velocity µa = 0.94 towards the upper

right. The domain in this case is [−5, 5]× [−5, 5], thus it is square, with periodic boundary

conditions for both the x- and y-boundaries.

Since the wave is now travelling along the diagonal, we need to stretch the wave by
√

2 so that there is still exactly one wave in the domain. However, in order for the wave

to match the periodic boundary conditions we actually need to fit two wave periods along

the diagonal. We therefore have for the 2D test, L = 5/
√

2 ≈ 7.07.

The method we are using to test the convergence is to run the code at a given resolution

n from some time t = t0 until some later time t = t1, with t1 − t0 ≫ ∆t so that we have

several time steps. We thus have the numerical solution ai for a given variable p(x) at time
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t1 at a set of n points in the domain, where ai is the value in the ith cell (so 1 ≤ i ≤ n).

Next, we calculate the exact solution Ai at t1 for these n points in the domain, and

calculate the L1 norm of the difference between them and the numerical solution

|En (p)| =
n∑

i=1
|ai −Ai| , (4.17)

where |En (a)| is then the L1-norm error for the variable a at resolution n.

If the code is order r, then we have the ai −Ai = O(∆xr) + O(∆tr), and therefore the

L1 norms for each variable should satisfy |En (a)| = O(∆xr) + O(∆tr). So if we halve the

grid spacing ∆x and the time step ∆t, then the error should decrease by 2r times. Since

the time step is related to the grid spacing by the Courant condition ∆t
∆x = Cu and the

Courant number Cu is constant, increasing the resolution/decreasing the grid spacing is

matched by a corresponding decrease in time step. Therefore doubling the resolution also

halves the time step.

In order to test the convergence then, we calculate the L1 norm at multiple different

resolutions, doubling the resolution each time. If our code is third order as expected, then

the L1 norms should decrease by 23 = 8 times each time we double the resolution.

Tables 4.5 and 4.6 give the 1D and 2D results respectively of the L1 norms for each

variable. The resolution is doubled successively, starting at resolution 10 and ending at

resolution 10,240 in 1D, and 640 in 2D. The test in 1D was run each time until t = 5; at

resolution 10 this is just 7 iterations, but at resolution 10,240 this is 6,400 iterations. In

2D, the test was instead run until only t = 1.

(a) (b)

Figure 4.34: Log-log plots of error for ρ (red, squares), ux (green, pluses) and By (blue,

circles) against resolution for the circularly polarised Alfvén wave. The tests were run in

1D (a) up to t = 5 and in 2D (b) up to t = 1. A plot of an exact N−3 trend is included

for reference.

Fig. 4.34 gives log-log plot of the error against resolution for the 1D and 2D Alfvén

wave tests. In 1D, the convergence is quite clear, although there is some variability at
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low resolution. In 2D, the convergence is less clear, although this can be attributed to the

same variability as in 1D; in 2D, the code was not fast enough to get results at higher

resolutions in reasonable time.
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Chapter 5

2D results

This chapter will first introduce the 2D version of the method, in particular describing how

the divergence-free constraint is overcome. It will then move on to again show simulations

and tests of the method, and describe any potential issues unique to 2D.

5.1 Oblique 1D Tests

Now that we have modified our code to handle 2D problems, we can move on to test the

code. Finding 1D exact solutions like in section 2.3 was already complex enough, and this

unfortunately makes finding exact solutions in 2D even harder. We can however perform

simple rotations of the 1D cases into oblique cases, where (for instance) the shock front

of a planar fast shock is not parallel to the x- or y-axes. This allows us to turn our 1D

test cases into tests of our 2D solver. We define ϕ as the rotation of the oblique test from

being parallel to the y-z plane — so in other words, ϕ is the angle of the plane of the

oblique test to the y-z plane.

These tests are still 1D in a sense of course, and it is conceivable that the code may

not exhibit problems that it otherwise would, such as some sort of numerical artefact that

only appears for truly 2D problems. Unfortunately, the only 1D test case that can be

easily made fully 2D in this sense is the small amplitude wave test, since we can simply

superpose multiple different wave modes of various obliquities and thereby generate a truly

2D solution. However, as we noted previously small amplitude tests are the easiest test

for any model to pass and are thus not particularly useful for finding flaws beyond bugs

in the code itself.

However, although they may not be fully 2D problems, it is still worth testing the

code against these oblique 1D exact solutions even if we are not necessarily detecting all

possible flaws of the code.
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We need to be careful about the boundary conditions here for non-periodic cases. In the

1D case we opted for a simple Neumann boundary condition, with gradient set to 0. That

was fine in those cases, but in 2D we have some choice over which direction the gradient

is 0 at the boundary. The simplest choice to implement would be perpendicular to the

boundary, so that we set the boundary cells to the value closest to them. Unfortunately,

for oblique tests this can cause problems because the boundary values do not match the

oblique wave in the integration region. For instance, if we have an oblique shock test

the shock front will have a sudden change in direction at the boundary with this simple

boundary condition.

(a) (b) (c)

Figure 5.1: Diagrams of 2D Neumann conditions, with tanϕ = 0 (a), tanϕ = −1 (b)

and tanϕ = −1/2 (c). Red cell centres indicate boundary cells, and the arrows indicate

which cells these cells take their value from.

A natural choice then is to choose that the gradient is 0 parallel to the wave front

at angle ϕ — a condition that the wave itself also satisfies. Fig. 5.1 provides a diagram

of Neumann BCs at the upper y-boundary for three angles of ϕ = 0, ϕ = −π/4, and

ϕ ≈ −0.46365.

More generally, if tanϕ = n/m for two coprime integers n and m > 0, then if Ci,j is a

boundary cell on the upper y-boundary then it takes the value of cell Ci−n,j−m,

Qi,j = Qi+n,j−m. (5.1)

In other words, it takes the value of the cell n cells to the right and m cells below itself,

i.e. along the line with gradient tanϕ. The value at other boundaries is defined similarly.

In other words, the cell takes the value of the nearest cell along the line of gradient

dy/dx = tanϕ that is inside the computational domain. Of course, sometimes there is

no cell along this line inside the computational domain; for instance, with ϕ = −π/4

the gradient of the line means that the cells in the upper left and lower right boundary

corners have no cells inside the domain to match to. For these cells we simply use the

usual Neumann condition with the nearest cell.
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Clearly, if n or m are large integers, these boundary conditions will be matching to

cell values which are quite far away, and the corner regions with no matching cells will

be quite large. In fact if n or m is larger than the x- or y-resolution respectively then

there will be no matching cells at all for any of the boundary cells, as the next matching

cell will beyond the other side of the domain. For this reason, when using these boundary

conditions we stuck to ϕ = π/4.

The test data for both continuous and discontinuous oblique tests is contained in ta-

ble 5.1. Like before, we shall once again begin with the continuous cases, since as we

discovered previously the code is more comfortable with these, at least in 1D. Testing the

small amplitude case again is likely not worth it, so we will skip that test and move on to

Alfvén waves.

Alfvén Waves

We begin testing our 2D code using the same test for high-σ Alfvén waves as in Fig. 4.4,

at an oblique angle of ϕ = π/6. This Alfvén wave is constructed in the same way as the

version of Fig. 4.4, except it has been rotated to be oblique and the wavelength has been

carefully chosen so that the wave matches at the boundaries for the periodic BCs and

has exactly two waves in the domain. In addition, a constant phase shift of π/2 has been

added to the rotation ψ(x). That is, the magnetic field (prior to rotation of π/6 about

the z-axis) is given by

B(x) = (Bx, B⊥ cos(ψ(x)) , B⊥ sin(ψ(x))) .

In this case, unlike section 4.2.2, ψ(x) is now given by

ψ(x) = sin−1 (A sin(ϕ(x))) + π

2 , ϕ(x) = 2πx
L
,

where L is the wavelength of the Alfvén wave; since the wave is at an oblique angle to the

x-axis, this length is a little longer than the domain width in the x-dimension, of 2 units.

Specifically, this length is L = 2 sec(π/6) ≈ 2.3094, so the wave is stretched by a factor

s ≈ 1.1547

So effectively, we first have stretched the Alfvén wave of section 4.2.2 by s, then rotated

about the x-axis by π/2, then rotated about the z-axis by π/6. As a result, the phase

speed µ as well as ρ, pg, σ and σ∗ are all the same, but the magnetic field at ϕ = 0 is

now B = (2.4150, 1.2075, 2.6379), with 4-velocity u = (−0.19308,−0.096542,−4.0249).

Meanwhile, at a quarter-phase ϕ = π/2 these are instead B = (2.7689, 0.49964, 2.5164)

and u = (−0.73308, 0.98346,−3.8395). The results are given in Fig. 5.2.

If we compare to the 1D results in Fig. 4.4, we see that for this case the 2D oblique

version does not introduce any new problems unique to this case. In fact, the results
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(a) (b)

(c) (d)

Figure 5.2: 2D oblique Alfvén wave test results with obliquity ϕ = π/6. This test is

equivalent to Fig. 4.4, rotated anti-clockwise by ϕ. These plots show Bz with magnetic

field lines (a) and ux (b) over the whole domain. (c) shows a cut of Bx along y = 0.2450

and (c) shows a cut of uy along y = −0.2250, in both cases with the exact solution given in

red. This test was run until t = 10, at resolution 200×200 on the domain [−1, 1]× [−1, 1],

using a third order code and Periodic BCs.

appear better since u has drifted less from the correct values. However, this is due to the

increased resolution reducing truncation error, and not because the 2D code is better.

Fast Rarefaction

The next test we will perform is that of a fast rarefaction test. This time, we use a previous

test from Komissarov (1999a) of an oblique fast rarefaction. This test is of a rarefaction

oriented at an angle ϕ = π
4 to the x-axis, with the initial discontinuity through the origin

at time t = −0.5. In this particular case, the phase speed of the rarefaction changes sign

in the middle of the rarefaction, so in this frame there is a point on the rarefaction that

stays stationary. The data for this test is contained in table 5.1.
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(a) (b)

(c) (d)

Figure 5.3: 2D oblique fast rarefaction test results with obliquity ϕ = π/4. These plots

show Pg (a) and Lorentz factor (b) over the whole domain; the arrows in (b) indicate

the direction and magnitude of the 4-velocity u. (c) shows a cut of Pg along the line

y = −0.0090, while (d) shows a cut of Bx along the line x = −0.0990, in both cases with

the exact solution given in red. This test was run until t = 0.2 at resolution 400 × 400 on

the domain [−1, 1] × [−1, 1], using a third order code, oblique Neumann BCs.

The results for this test are shown in Fig. 5.3. As we can clearly see, the code is again

to handle this test easily, much like the 1D tests. The numerical results show a close

match to the exact solution, even with the lowered resolution. These results are also a

close match to the results of Komissarov (1999a).

Oblique Fast Shock

The final oblique 1D test we will show is of a high-σ fast shock. This test is based on

the same shock as in Figs. 4.17 and 4.18, but from a different frame again. In this frame,

the shock is moving towards the top right of the plot at µs = 0.99950, having started on

the line y + x = 0.5. This alternate frame was used because the test failed with the more
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Problem Figure Bottom Left State (x + y < 0) Top Right State (x + y > 0)

Fast Rarefaction,

µl = −0.57952,

µr = 0.68318,

ϕ = π

4

5.3

u = (−3.5355, −3.5355, 0),

B = (2.1213, 4.9497, 0),

ρ = 0.01, pg = 1,

σ = 6.2728, σ∗ = 0.24126

u = (0.66608, −1.5308, 0),

B = (−7.0523, 14.123, 0),

ρ = 0.056200, pg = 9.9920,

σ = 6.2136, σ∗ = 1.6407

High-σ Fast Shock,

µ = 0.99950,

ϕ = π

4

5.4

u = (37.360, 36.704, 0.0),

B = (−79.451, 80.866, 0.0),

ρ = 0.011895, pg = 0.83089,

σ = 1.4042, σ∗ = 0.00051173

u = (5.1463, 0.90367, 0),

B = (−1.3659, 2.7802, 0),

ρ = 0.0001, pg = 0.0001,

σ = 2120.1, σ∗ = 74.912

Table 5.1: Initial test case data for the oblique fast rarefaction and fast shock tests.

extreme case of µs = 0.99995 in Fig. 4.18. The data for this test is contained in table 5.1.

This test was also set up with the tanh shape applied to the conservative variables

instead of the primitives — that is, instead of setting up the initial conditions by fitting

the primitive variables to a tanh shape as described in section 4.3, we instead applied this

shape to the conservative variables instead. This was used because it was found to give

slightly better results.

Unlike the 1D case, we also found that the method to enforce the PC condition at the

boundaries described in section 3.2.7 actually causes the code to crash in this case. For

this reason, all of our 2D tests (including the two previous tests above) were performed

without this correction to the algorithm — although this was also true of the 1D tests in

chapter 4 as well anyway.

The results for this test can be seen in Fig. 5.4. Once again, the results show a close

match to the exact solution. They in fact appear to be better than the results for the other

frame seen in Fig. 4.18, however running the 1D code in this frame instead gives similar

results to the 2D test here, indicating that this difference is just the different reference

frame. Even so, these are promising results, as this is a very strong, extreme shock that

is likely beyond anything that would normally be encountered in an astrophysical setting,

given that the gas pressure ratio is so large, at pr
g/p

l
g ≈ 8300, and similarly the ratio of

magnetisation is σr/σl ≈ 1500.

5.2 Non-Planar Tests

The previous results show that the 2D code is capable of handling much the same tests as

the 1D code to similar accuracy. However, although the previous cases are decent tests of

the code, the fact that they are all 1D solutions could mean that some problems may have

passed undetected. On the other hand, fully 2D exact solutions of RMHD are difficult to
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(a) (b)

(c) (d)

Figure 5.4: 2D oblique fast Shock test results with obliquity ϕ = π/4. These plots show

Pg (a), Pm with magnetic field lines (b), and γ (c) over the whole domain; the arrows in

(c) indicate the direction and magnitude of the 4-velocity u. (d) shows a cut of pg along

the line y = 0.4975, with the exact solution shown in red. This test was run until t = 1 at

resolution 200 × 200 on the domain [−1, 1] × [−1, 1], using a third order code and oblique

Neumann BCs. This discontinuity was set up with width parameter a = 0.3.

find, so we may need an alternative to test our code.

Without exact solutions, the only things we can compare against are other numerical

results for the same (or similar) conditions. Although this code should be the first that

can handle the high-σ regime (besides PIC codes), we can still use previous results at

lower σ to test our code.

For tests at the same σ, PIC tests run at high σ also serve as useful comparisons, since

these are the only tests we can compare against for high σ. We can also compare against

FFDE codes, although these cases neglect the plasma inertia, so we do not expect the

results to be identical.
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Alternatively, while exact solutions in RMHD are hard to find, FFDE is a much simpler

system, and as such there are some exact solutions we can test against, such as instabilities

and known solutions. At high σ, RMHD should behave approximately the same as it

approaches this limit.

5.2.1 Advection Test

One very simple test we can perform is an advection test. A variation in just density will

be advected by the fluid flow without any distortion (provided the velocity is constant

and uniform). Thus we can try a pure density variation and see how the code handles the

case.

(a) (b)

Figure 5.5: ρ at time t = 0 (a) and at time t = 10 (b) for a test of an advecting, high-

density cylinder. This test was run at resolution 200×200 on the domain [−1, 1]× [−1, 1],

using a third order code and Periodic BCs.

For our test, the background magnetic field is B = (1, 0, 0), and the pressure is pg =

0.01. In the centre of the domain, we have a cylinder of radius 1 with density ρ = 1, while

outside of this circle the density is much lower at ρ = 0.01. Thus there is a large change in

σ between the inside and outside of the circle, from σ = 0.96 inside to σ = 20 outside. This

circle also has a smoothed radial tanh profile at the edges centred at r = 0.25 and with

width parameter a = 2
15 = 0.13333, so there is no sharp discontinuity. Fig. 5.5a shows this

initial density. This high-density cylinder is then advected by a constant, uniform fluid

velocity u = (2.3,−1.6, 0).

Fig. 5.5b shows the results of the test at time t = 10. The advection velocity is the

three velocity of the fluid, v ≈ (0.77314,−0.53783, 0), thus the centre of the cylinder should

now be at (7.7314,−5.3783). However, since the boundaries are periodic, the cylinder has
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wrapped to the other side of the domain multiple times, so the cylinder should actually

be at (−0.2686, 0.6217), which matches the results. The density has diffused a little, but

this is to be expected since we already know that contact discontinuities will suffer from

increased diffusion with our HLL code, and without any non-linear steepening. We can

also observe a small amount of distortion in the initially circular shape, indicating a small

amount of anisotropy in the integration, but this is a fairly minor amount.

5.2.2 Lundquist Flux Rope

Simple variations in density are not the only feature that can be advected, however. One

well known example comes from Lundquist (1950), in which they describe a “rope” of

flux, a stable solution of FFDE. This case was also tested with force-free and PIC codes in

Lyutikov et al. (2017) — although in their case they were considering colliding flux ropes,

while we will merely model the advection a single flux rope, which should retain its initial

shape indefinitely.

In cylindrical coordinates and in the fluid frame, the Lundquist solution takes the form

B(r ≤ rj) = J1(rα) eϕ + J0(rα) ez, (5.2)

where J0, J1 are the Bessel functions of zeroth and first order respectively, rj is the radius

of the rope, and α > 0 is a parameter that can be chosen freely. Outside the flux rope,

the magnetic field takes on the value at the edge,

B(r > rj) = B(rj) . (5.3)

If we choose α such that rjα is a zero of J1 (rα) then the field outside the cylinder will

have no azimuthal component eϕ and will be entirely into or out of the plane. It follows

from the integral form of Ampère’s law that in this case the total current of the flux rope

in this case would be 0. This case is also convenient in that the outer field will be constant

and uniform in this case as well, meaning that we can impose Periodic BCs.

We therefore chose α such that rj = 1 and rjα is the first zero of J1, i.e. α ≈ 3.8317.

Thus our flux rope has radius exactly rj = 1. Our setup differs from the setup in Lyutikov

et al. (2017), where the authors modify the flux rope Bz component to

Bz(r ≤ rj) =
√
j0(rα)2 + C,

where C is a constant, for which they always use C = 0.01. This has the effect of

preventing Bz from changing sign, so without this our test does indeed have Bz = 0 at

the first zero of J0 inside the flux rope, at r ≈ 2.4048. Fig. 5.6a shows the initial magnetic

field z-component; note how it is negative outside the flux rope.
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(a) (b)

Figure 5.6: Initial out-of-plane magnetic field Bz for a Lundquist flux rope, in the fluid

frame (a) and in a moving frame (b). The resolution is 200 × 200, and the domain is

[−1, 1] × [−1, 1]

Besides the magnetic field, we also set ρ = 0.000,01 and pg = 0.000,05, so the initial σ

is very high, ranging from σ = 772.5 outside the flux rope to σ = 4,758.4 at the centre.

(a) (b)

Figure 5.7: Pg (a) and Bz (b) for a stationary Lundquist Flux Rope. This test was run

until t = 10 at resolution 200 × 200 on the domain [−1, 1] × [−1, 1], using a third order

code and Periodic BCs.

We start off with a stationary test, without any fluid velocity, u = (0, 0, 0). The results

for this test can be seen in Fig. 5.7. We can see that the flux rope has generally held its

shape without issue, although there is some plasma heating at the edge of the flux rope.

While this plasma heating is significant compared to the background gas pressure in this

case, the amount of energy the plasma has gained is small compared to the total energy

of the system, including the electromagnetic parts.
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Besides the stationary test, we can also perform an advected test, for which we will

use fluid velocity u = (1.5,−0.4, 0). This is somewhat more involved than the density

advection test, as this time we need to be careful about changing Lorentz frames. Besides

performing a Lorentz transformation on the magnetic field, there is also Lorentz contrac-

tion of the Flux rope in the direction of travel. The initial magnetic field in this case can

be seen in Fig. 5.6b; as a result of Lorentz contraction, the rope is no longer cylindrical.

(a) (b)

Figure 5.8: Pg (a) and Bz (b) for an advected Lundquist Flux Rope. This test was run

until t = 10 at resolution 200 × 200 on the domain [−1, 1] × [−1, 1], using a third order

code and Periodic BCs.

Since 4-velocity u = (1.5,−0.6, 0) corresponds to 3-velocity v ≈ (0.78947,−0.31579, 0).

Thus at time t = 10, we would expect the centre of the flux rope to be located at

(−0.1053, 0.8421), where we have taken the periodic boundaries into account.

Fig. 5.8 gives the results of this advected test at t = 10. Clearly, the flux rope has

ended up advected to the right position. Other than this, the results are much the same as

the stationary version — the flux rope maintains its shape well, and there is some plasma

heating at the edge of the flux rope again. However, this time the heating is non-uniform,

with more heating on the side facing away from the direction of travel.

5.2.3 Cylindrical Explosion Test

The next case we shall consider is a strong cylindrical explosion test. This test was

first considered by Komissarov (1999a) for a normal RMHD code, but has since become a

standard test, used by several different authors including Del Zanna et al. (2003); Leismann

et al. (2005); Nagataki (2009); Lora-Clavijo et al. (2015).

The initial background gas pressure pg and density ρ is low, with pg = 3.5 × 10−5
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and ρ = 10−4. The initial explosion is a cylinder at the centre of the domain, with radius

r = 1. The pressure and density inside this cylinder is far higher with pg = 1 and ρ = 10−2,

making this plasma much hotter. Like the advection test, the edge of the cylinder has

a smoothed tanh profile centred at r = 0.9 with width parameter a = 2
15 = 0.13333. In

addition, like the oblique fast shock above the tanh profile was applied to the conservative

variables instead of the primitives.

The initial magnetic field in the domain is uniform, with B = (B, 0, 0) everywhere,

both inside and outside the cylinder. This gives us a significant range of values for σ, since

the gas pressure and density are both much higher inside the cylinder initially. Meanwhile,

the initial velocity is u = 0 everywhere, thus we also have E = 0 everywhere. We can

then perform the test for several different choices of B, giving us tests at several different

values of σ.

With a cylindrical central region of hot, dense plasma situated inside a region of cold,

rarefied plasma, the expected result of this test is an explosion, expanding outwards into

the cold background. The exact nature of this explosion will depend on the magnitude of

B.

With weakB (σ ≪ 1) the expansion should be purely radial, since there is no anisotropy

to break the rotational symmetry. Meanwhile, with strong B (σ ≫ 1) the plasma expan-

sion will be constrained to the magnetic field lines, although there will still be fast waves

expanding in the non-parallel directions. As B increases, we should see the plasma become

more and more trapped to the direction parallel to B.

There are of course four special locations on the cylinder boundary. Two are at (±1, 0),

where the magnetic field is orthogonal to the boundary. In this case, the system is degen-

erate, and some of the waves will travel at the same phase speed, either the Alfvén and

fast waves at high B or the Alfvén and slow waves at low B — or all three for a particular

choice of B.

The other two points are of course at (0,±1), with the magnetic field parallel to the

boundary. Once again, the system is degenerate, but this time the Alfvén and slow waves

are now advected along with the plasma, regardless of B. Thus in the direction parallel

to the y-axis, we expect there to be only fast modes at high values of B, since the fluid is

constrained at high σ to follow the magnetic field lines.

With B ≪ 1 the test will be close to that of an unmagnetised gas. Without any major

anisotropy, we would thus expect the explosion to be purely radial, with hot, dense plasma

expanding uniformly in all directions. This would also serve to “push” out what magnetic

field there is inside the central cylinder, creating a region of reduced magnetic pressure

and bending the magnetic field lines around it.
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(a) (b)

(c) (d)

Figure 5.9: Bx (a), By (b), pg (c) and u0 (d) for a cylindrical Blast wave with B =

(0.01, 0, 0). Arrows in (d) indicate the direction and magnitude of u. This test was run

until t = 4 at resolution 400 × 400 on the domain [−6, 6] × [−6, 6], using a third order code

and Neumann BCs.

As B increases, the influence of the magnetic field begins to dominate. The magnetised

plasma becomes more and more heavily constrained to the magnetic field direction, at

first simply slowing the expansion orthogonal to the magnetic field before more-or-less

outright eliminating any expansion other than along the magnetic field lines. The only

components able to travel significantly orthogonal to the magnetic field would be the

magnetic components themselves, carried by the fast waves. In addition, the degree to

which the magnetic field is expelled from the central region is also reduced, until there is

little to no change in the magnetic field.

Komissarov (1999a) performed this test at three different values of B, with B1 = 0.01,

B2 = 0.1 up to B3 = 1. For the initial value of σ in these cases, we find that for the

first case σ ranges from 4.17 × 10−1 ≤ σ1 ≤ 2.49 × 10−5, in the second case the range
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(a) (b)

(c) (d)

Figure 5.10: Bx (a), By (b), pg (c) and u0 (d) for a cylindrical Blast wave with B =

(0.1, 0, 0). Arrows in (d) indicate the direction and magnitude of u. This test was run

until t = 4 at resolution 400 × 400 on the domain [−6, 6] × [−6, 6], using a third order code

and Neumann BCs.

is 4.17 × 101 ≤ σ1 ≤ 2.49 × 10−3, and in the third case the range is 4.17 × 103 ≤ σ1 ≤

2.49 × 10−1. The maximum σ in the third case is exceptionally high for a normal RMHD

code, but as it turns out Komissarov (1999a) has been unable to replicate the results for

this case, so this test may not be accurate — although as we will see later our results for

the same test are a close match to those results.

We can thus perform this test for the same values for B and compare our results to

these earlier results for normal RMHD, and also try probing the problem at even higher

values of σ than Komissarov (1999a) was able to with an RMHD code.

Fig. 5.9 shows the results for case 1, with B = 0.01. This case has a fairly low σ, with

the value initially of σ < 1 in both the interior and exterior regions. With this low σ, we

expect a near-radial expansion of the system, and this is exactly the result we obtain. We
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(a) (b)

(c) (d)

Figure 5.11: Bx (a), By (b), pg (c) and u0 (d) for a cylindrical Blast wave with B =

(1, 0, 0). Arrows in (d) indicate the direction and magnitude of u. This test was run until

t = 4 at resolution 400 × 400 on the domain [−6, 6] × [−6, 6], using a third order code and

Neumann BCs.

can clearly see also that the magnetic field has been almost entirely expelled out of the

central explosion. These results are a close match to those of Komissarov (1999a).

Fig. 5.10 shows the results for case 2, B = 0.1. The value of σ is larger now, and

there is a significant impact on the shape of the expansion. Although it is not strictly

constrained to the magnetic field lines, the results are no longer approximately radial, with

expansion of the plasma orthogonal to the magnetic field slowed, and with expansion of

magnetic components mainly in this orthogonal direction. However, the magnetic field is

still largely expelled from the interior region, just like before. Once again, these results

are a close match to the results of Komissarov (1999a) for RMHD.

Fig. 5.11 shows the results for case 3, B = 1. σ is now quite large in the exterior region,

reaching up to σ = 4.17 × 103. This is the highest σ that Komissarov (1999a) considered,
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(a) (b)

Figure 5.12: By (a) and Pg (b) for a cylindrical Blast wave with B = (1000, 0, 0).

Arrows in (d) indicate the direction and magnitude of u. This test was run until t = 4 at

resolution 400×400 on the domain [−6, 6]× [−6, 6], using a third order code and Neumann

BCs.

although as mentioned above they were not able to get their code to run the test again.

However, by comparison we can see that our results are a close match to the results that

they did get. In this case, the strong magnetic field has almost completely constrained the

expansion of the plasma to the magnetic field lines, and the magnetic field itself is barely

affected by the explosion itself.

All of the results in Figs. 5.9 to 5.11 are consistent with the previous results of Komis-

sarov (1999a), with a normal RMHD code. All three show a close match to those results,

and our results also match those of others who have performed this test such as Leismann

et al. (2005).

Finally, we decided to stress-test the code with an extreme case. Fig. 5.12 shows the

results for an explosion with the magnetic field at B = 1000; here we have σ ≈ 4.5 × 109

in the outer region, a value well beyond anything a typical RMHD code could hope to

model. For this case, the results are once again as expected, and besides the actual values

the results are very similar to that of the less extreme case of B = 1 in Fig. 5.11.

This case is a very extreme case, although it should be noted that since the explosion

is driven initially by a region of increased pressure and density, the induced magnetic field

fluctuation is very small compared to the overall magnetic field strength. We can see from

Fig. 5.12a that the fluctuation in By is |δBy| ≤ 2 × 10−4. Given that we have B = 1000,

this means this fluctuation is 5 × 106 times smaller than the actual magnitude of B. Thus

although σ is very high in this test, the variation in B is also very small as well, which is

partly why the code can handle such a high σ without issue.
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5.2.4 Magnetic Island Collapse

Another test we can consider is that of the collapse of a system of magnetic islands, which

has been performed previously in Lyutikov et al. (2017) using both FFDE and PIC codes,

and Nalewajko et al. (2016) has performed a similar test, also using a PIC code. For the

PIC tests they performed this test case at a relatively high σ; for example, in the case of

Lyutikov et al. (2017) the mean σ ranges from σ = 6 up to σ = 1360.

Besides there being previous results we can compare our results to, the test also features

the formation of current sheets, making this a very useful test of our code.

For the initial state of this system, the plasma is at rest with constant density ρ and

gas pressure pg. The only non-constant variable initially is the magnetic field B. This

magnetic field takes the form

B = B0


− sin(2παy)

sin(2παx)

cos(2παx) + cos(2παy)

 , (5.4)

where B0 is a parameter that determines the overall magnetic field strength, and α is a pa-

rameter that determines the spatial period. For the boundary conditions we use a periodic

boundary condition for both x- and y-boundaries. In order for matching boundaries to

be consistent without any discontinuities α only has a finite set of possible values. These

initial conditions thus create a lattice of magnetic islands or flux tubes with alternating

out-of-plane magnetic field Bz, and with X-points at the corner of four adjacent islands

where B = 0.

This particular solution is a stationary solution of the FFDE, i.e. they are solutions

of the equations of FFDE with all time derivates ∂t = 0. Parker (1983) studied this

configuration under the context of solar physics, and suggested that this configuration

would be unstable in force-free conditions.

This magnetic field configuration actually belongs to a family of ABC structures

(Arnold-Beltrami-Childress). ABC structures are divergence-free vector fields X of the

form (Zhao et al., 1993; Moffatt, 1986; Dombre et al., 1986)

X =


A sin z′ + C cos y′

B sin x′ +A cos z′

C sin y′ +B cosx′

 , (5.5)

where A,B and C are constants.

This setup has been studied both in the context of Euler flows (i.e. incompressible

hydrodynamics, ∇ · v = 0), where X is then the fluid velocity (Childress, 2003), as well
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as in the context of electromagnetics, as a magnetic field configuration (Dombre et al.,

1986).

ABC structures in force-free fields are known to be stable to ideal perturbations pro-

vided all three of A,B,C ̸= 0 (Moffatt, 1986). In our case, in addition to the transforma-

tion

x′ = 2παx, y′ = 2παy + π

2 , z′ = z, (5.6)

we have A = 0 and B = C = B0, and therefore this setup does not satisfy this stability

condition. In the case of this 2D ABC configuration, the islands can move with respect to

each other and thereby reduce their interaction energy, and thus this configuration is not

stable.

B2 can be easily calculated from Eq. (5.4) to give

B2 = B2
0 (2 + 2 cos(2παx) cos(2παy)) , (5.7)

which indicates two key points: At the centre of the magnetic islands with x, y = n/(2α)

with n ∈ Z, the magnetic field strength is at a maximum of |B| = 2 (or alternatively

magnetic pressure pm = 1
2
(
B2 − E2) = 1). Meanwhile, at the X-points situated at the

centre of four neighbouring islands (where x, y = (2n− 1)/(4α) with n ∈ Z) the magnetic

field vanishes. Thus at these X-points we have σ = 0, regardless of the overall magnetic

field strength B0.

Applying Ampère’s law which we recall from Eq. (2.93)

∂E

∂t
= −∇ × B − J ,

the fact that, although unstable, the system is initially in a steady state means we simply

have

∇ × B = −J , (5.8)

thus we find the current J is

J = B0


−2πα sin(2παy)

2πα sin(2παx)

2πα cos(2παx) + 2πα cos(2παy)

 = 2παB, (5.9)

thus the current is parallel to the magnetic field, and proportional to its magnitude.

From these results we can easily show (Lyutikov et al., 2017) that each flux tube has

magnetic flux ∝ B0/α
2, energy per unit length ∝ B2

0/α
2, helicity per unit length ∝ B2

0/α
3

and axial current ∝ B0/α. The helicity of both types of flux tubes has the same sign, and

therefore the overall helicity in the system is non-zero.

As the islands slip past each other and towards islands with a matching sign of Bz,

current sheets form at the boundary between these islands of matching Bz, as while Bz
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is the same, Bx and/or By flips sign. Thus this particular case features the formation of

current sheets, and is therefore a very useful test of our code to judge its ability to handle

the formation and evolution of current sheets. As we noted in section 2.3.1, current FFDE

codes cannot properly handle current sheets, and thus ensuring our code can handle this

case is very important.

SinceBz is still non-zero in the current sheets whileBy and/orBz flip sign, these current

sheets may not be as extreme as the 1D case we considered in section 4.3.5. However,

as with that case, the code can still have difficulty avoiding problems if we do not apply

any corrections such as the E0-capping scheme described in section 4.3.5. Unfortunately,

unlike the one dimensional case this alone is not enough to fix all the issues here.

Current sheets in RMHD are known to be major sources of plasma heating, due to

magnetic reconnection converting electromagnetic energy into plasma energy, among other

factors.

The system we are modelling ideal RMHD of course, so there should be no magnetic

reconnection. However, even though our code models ideal RMHD, our code exhibits a

small amount of numerical resistivity, just like many numerical models (Rembiasz et al.,

2017). This is due to numerical and/or truncation errors in the integration which mean

that there is an effective resistance and viscosity to the fluid. These factors are one of the

main drivers of numerical diffusion, seen in cases like the contact discontinuity in Figs. 4.9

and 4.10. The magnitude of this resistance depends on a number of factors, including

the order of the code and the resolution. As a consequence of this, magnetic connection

and the resistive Tearing instability (see the next test, section 5.2.5) can still occur in our

code, thus this test can identify exactly how much resistivity there is.

However, if we test the magnetic island collapse with E0-capping alone, then we find

that the amount of heating is well below what is expected. This is because capping E0

effectively removes the energy contained in the electric field from the system, and causes

the total energy in the system to rapidly drop.

At heart then, this problem relates to the conservation of energy. Borrowing an idea

from section 4.3.4, if we artificially force the transfer of energy to the interaction system,

then the problem of energy loss may be avoided. That is, if we use the same method as

in section 4.3.4 — transfer “missing” energy from the force-free system to the interaction

system every time step, provided the change is positive, i.e. it increases the interaction

system energy.

This scheme of transferring only when there is an energy loss in the force-free system

will mean that the system will tend to gain energy as a whole over time of course —

since whenever the system has energy loss, that loss is rectified, but an energy gain is not.
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However, generally speaking this gain should be quite slow, since it is on the order of the

truncation error, and this is corroborated by testing. Thus we find that this small gain in

energy over time is acceptable.

Testing in the next section will show that the combination of these two correction

procedures — capping E0 and conditional energy transfer — is successful in allowing our

scheme to work in this case involving two dimensional current sheet formation.

Testing

With these corrections to the algorithm, we can finally begin to test this case properly.

For all the tests in this section (and in the rest of this chapter), we have performed them

with both E0-capping and conditional energy transfer.

(a) (b)

Figure 5.13: Bz (a) and σ (b) for the magnetic island collapse at t = 0. The resolution

is 200 × 200, and the domain is [−1, 1] × [−1, 1].

This particular setup has a large degree of symmetry, and furthermore the instability

can require a long time to grow. Since this is the case, we added some random noise

and a displacement of the setup in x and y in order to break the symmetry and give the

instability a kick-start. This took the form of a randomly-generated displacement of the

initial conditions in Eq. (5.4) by δx ≈ 0.7419 and δy ≈ 0.7751, so that the actual initial

conditions in the magnetic field are

B = B0


− sin(2πα(y + δy))

sin(2πα(x+ δx))

cos(2πα(x+ δx)) + cos(2πα(y + δy))

 . (5.10)

In addition, some random noise is added to the initial velocity. Instead of u = 0 initially,

the velocity takes the form
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200000u = f1,n sin((n cos(yπ) + 220)πx) + f2,n cos((n sin(yπ) + 220)πx)

+ f3,n sin((n cos(yπ) + 220)πx) + f4,n cos((n sin(yπ) + 220)πx) , (5.11)

for n from 1 to 4, and where the fj,n are all random vectors, with each component an

independent random variable in the range (−
√
n/2,

√
n/2). There is no particular reason

for this exact form of the noise, this is just intended to kick start the instability to some

extent and break the symmetry.

Fig. 5.13 shows these initial conditions in magnetic field with the domain [−1, 1]×[−1, 1]

and with α = 1. We can see that this choice of initial conditions splits the domain into

a chequerboard pattern with two different types of magnetic island, one with Bz < 0 and

the other with Bz > 0. With this choice of domain and α we can see that we have two

periods of the initial conditions in both x and y, and therefore we have four of each type

of magnetic island.

If we now run the code, we find that initially not much happens, as the instability is

still in the growth stage, and is well below the magnitude of the other values. All that

does occur is some settling of the solution, most notably the gas pressure exhibits some

plasma heating.

However, around t = 10 or so, the instability finally becomes large enough to move the

magnetic islands. This instability took longer to grow in our case than in Lyutikov et al.

(2017), where the instability became notable around t = 7. However, the initial time of

the instability is strongly dependent on the size of the initial noise we add, so this is not

a particularly important factor, and does not indicate anything wrong with our results.

At this time, the islands begin to slip past each other, and we reach the state at t = 11.5

in Fig. 5.14. The magnetic islands of matching Bz have all split into pairs, which have

slid towards each other. Where they are meeting, we can clearly see that current sheets

have begun to form; this can be most clearly seen in Fig. 5.14d, where there is a clear

discontinuity in Bx at y ≈ −0.3 along the line x = 0.0950, matching the point where two

islands of Bz > 0 are colliding.

These current sheets are causing very significant plasma heating, as the formerly low

gas pressure has now reached levels only an order of magnitude or so below that of the

magnetic pressure. This is in turn forces the plasma out the ends of the current sheets at

high velocity, which is then deflected around the magnetic islands, and subsequently heats

the rest of the plasma in the domain outside the magnetic islands.

After this initial collision, the current sheets begin to dissipate. The magnetic island

pairs begin a slow merger process, with significantly less plasma heating than initially.

However, around t = 27 the magnetic islands of matching Bz (of which there are now two
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(a) (b)

(c) (d)

Figure 5.14: Bz (a), Pg (b) and u0 (c), as well as a slice in Bx at x = 0.0950 (d) for the

magnetic island collapse at t = 11.5. For (c) the arrows show the direction and magnitude

of u. This test was run at resolution 200 × 200 on the domain [−1, 1] × [−1, 1], using a

third order code and Periodic BCs.

of each) once again begin to collide with each other, forming another set of significant

current sheets.

This state at t = 27 can be seen in Fig. 5.15; four current sheets are forming or

already have formed here, two of which are stronger than the others. These are located

at (0.75, 0.25), (0.75,−0.75), (−0.25, 0.75) and (−0.25,−0.75) i.e. they are arranged in a

square grid (this is a remnant of the original symmetry).

After these current sheets form, they slowly slide around until they become aligned at

around t = 31, which can be seen in Fig. 5.16, where the two strong current sheets are

now approximately aligned along y = 0.15. Like the initial current sheets, this current

sheet now begins to dissipate, and the system enters the final stable phase, with little to

no more plasma heating. This stable state agrees with the final state found by Lyutikov
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(a) (b)

Figure 5.15: Bz (a) and Pg (b) for the magnetic island collapse test of Fig. 5.13 at

t = 27.

(a) (b)

Figure 5.16: Bz (a) and Pg (b) for the magnetic island collapse of Fig. 5.13 at t = 31.

et al. (2017) with FFDE and PIC codes as well.

Fig. 5.17 shows a comparison of the relative energy in the system, comparing the total

initial energy to the relative energy in the electromagnetic terms, given by 1
2
(
E2 +B2),

and the energy in the plasma, given by wγ2 − pg. The stages described above can be

clearly seen:

In the first stage, from t = 0 to t = 10, the system is relatively constant, with a

relatively small amount of energy transferring into the plasma (although relative to how

much the plasma started with, this is quite a lot of energy).

At t = 10, the first current sheets form, and there is a large increase in plasma heating,

lasting until around t = 12 or so. After this, there is a relatively small amount of plasma

heating while the magnetic islands merge. Eventually, around t = 29 the second current
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(a) Energy Comparison. (b) log Energy Comparison.

Figure 5.17: A normal (a) and a Logarithmic Plot (b) of the energy in the system. The

black line is the total energy, the red line is the electromagnetic energy 1
2
(
B2 + E2), and

the green line is the plasma energy wγ2 − pg. These values are given as a relative fraction

of the initial total energy, shown by the dotted line.

sheets form, and the second burst of plasma heating occurs. Finally, around t = 32, the

system enters a stable equilibrium, and little to no energy is transferred any more.

If we look closely at the total energy, we can see that during all this there is a slow gain

in the total energy in the system. Since the BCs are periodic, this can only be a result of

the conservation error we discussed in section 4.3.4. However, this level of error is quite

minor compared to the overall test.

5.2.5 Tearing Instability

Another instability we can consider is the Tearing instability of Current Sheets, as has

been studied previously by Komissarov et al. (2007b), and Komissarov and Barkov (2016).

In this instability, a current sheet “Tears” as opposing magnetic fields on either side

of the sheet pinch together and annihilate in magnetic reconnection. It is unique in this

case in that it is specifically a resistive instability, driven by the electrical resistance of

the fluid (Komissarov et al., 2007b). A perfectly conducting fluid has no way to allow the

magnetic fields on either side to meet, and it is only the resistance that allows this.

As mentioned previously, even though our code aims to model ideal RMHD there is

still some numerical resistivity meaning that magnetic reconnection can still occur, causing

the instability to still be unstable. Although the presence of this instability is a problem

for our code, it is still worth testing it, as we can get a measure of how significant the

numerical resistivity is by measuring the growth rate of the instability.

For our test, we again have an initial steady state plasma with ρ = pg = 0.01 constant.
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We initialise the magnetic field as

B =
(
B tanh

(
x

l

)
, 0, B sech

(
x

l

))
, (5.12)

where B = 1 is the magnetic field magnitude, and l = 0.1 is a characteristic length,

encoding the width of the current sheet. With this setup, the magnitude of the magnetic

field is constant, and thus so is the magnetic pressure and magnetisation, with σ = 20.

(a) (b)

Figure 5.18: Initial magnetic field Bx (a) and Bz (b) for the tearing instability, with

resolution 200 × 200 and domain [−1, 1] × [−1, 1].

(a) (b)

Figure 5.19: Bz (a) and Pg (b) for the tearing instability, at time t = 20. This test

was run at resolution 200 × 200 on the domain [−1, 1] × [−1, 1], using a third order code.

The left and right x-boundaries are periodic, while the upper and lower y-boundaries are

Neumann BCs.

Current sheets like this actually exhibit multiple instabilities (Komissarov and Barkov,

2016), so in order to ensure that we get a tearing instability we initialise with an extra
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(a) (b)

Figure 5.20: Bz (a) and Pg (b) for the tearing instability, at time t = 25. This test

was run at resolution 200 × 200 on the domain [−1, 1] × [−1, 1], using a third order code.

The left and right x-boundaries are periodic, while the upper and lower y-boundaries are

Neumann BCs.

(a) (b)

Figure 5.21: Bz for the tearing instability, at times t = 50 (a) and t = 100 (b). This

test was run at resolution 400 × 400 on the domain [−1, 1] × [−1, 1], using a third order

code. The left and right x-boundaries are periodic, while the upper and lower y-boundaries

are Neumann BCs.

variation in By given by

By = 0.001 sin
(2πx
L

)
, (5.13)

where L is the width of the domain along the x-axis, so that there is exactly one of these

waves in the domain.

Fig. 5.18 shows the initial Bx and Bz for this setup. The flip in magnetic field direction

is clearly visible.
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Running this test forward in time, it takes some time for the instability to tear the

current sheet, but by t = 20 the current sheet has begun to fully pinch, as can be seen in

Fig. 5.19. Here we can see that the magnetic field lines are beginning to pinch together,

and there is some significant plasma heating occurring in the pinching region. By t = 25,

the current sheet has almost fully torn apart, and split into a magnetic island, similar

to before. The plasma in this magnetic island is significantly hotter than the rest of the

domain.

If we run this test again but with double the resolution in x and y, then we should find

that the instability grows slower. Fig. 5.21 shows the results of this high resolution test,

and as can clearly be seen, the instability grows far slower at this high resolution, showing

almost no change up to t = 50, and by t = 100 it is around about the state that the test

at half resolution was at t = 25.

Thus for this case too, the results are exactly as expected: There is some numerical

resistivity, and it decreases as the grid spacing ∆x decreases. In addition, previous tests

at second order have shown that this resistivity is higher at lower order, as expected.
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Chapter 6

Conclusion

This Chapter gives a summary of the results of this thesis. Suggestions of further

progress and/or improvement are given as well.

6.1 Summary

The aim of this thesis has been to extend modelling of Relativistic MHD into the high-σ

regime, for which most current models are inadequate. After discussing the fundamental

equations of RMHD and its high-σ limit of FFDE in chapter 2 along with a brief discussion

of some exact solutions of this complex, non-linear system, we introduced a novel approach

to the high-σ regime in chapter 3.

This scheme is based on the splitting of the system into two components: A force-free

system with only electromagnetic components, equivalent to the high-σ FFDE system, and

an interaction system consisting of the remaining components of the full RMHD equations,

which effectively characterise the interaction of the electromagnetic fields with the plasma

itself.

By dividing the system in this manner, the model is able to handle the high-σ regime

by relaxing strict conservation of the momentum and energy in the force-free system.

This allows the model to avoid problems in normal RMHD models associated with the

near-degeneracy of the equations in the high-σ limit.

In chapter 4 we tested the code against 1D exact solutions and demonstrated that the

code was capable of handling smooth solutions with ease. The code gave excellent results

at both low and high magnetisations for small amplitude waves, Alfvén waves and both

fast and slow rarefactions. Furthermore, we showed that the code converges at third order

to the exact solution for such smooth solutions.

While the code was also able of handling slow shocks without any problems, the code
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had more difficulty with fast shocks and current sheets. However, we showed that a simple

adjustment to the code in capping E2
0 to less than B2

0 in the force-free system was sufficient

to allow current sheets to perform as desired at high σ.

We had more difficulty with fast shocks, especially strong shocks at high σ. We were

able to find a way to allow stationary shocks to work better by enforcing energy conser-

vation to occur in cases where there would otherwise be a loss of energy, but while this

saw some improvement for moving fast shocks, it did not eliminate the error, especially

for strong fast shocks. However, this strong shock we tested against was so strong that

it may be more extreme than anything we can expect to find in a typical astrophysical

scenario, so this flaw may not be all that significant. Moreover, although the error was

quite significant in inertial quantities such as the gas pressure, in the magnetic field and

electric fields the relative error in their values was much less significant.

In chapter 5 we moved to test the code against two-dimensional tests. First, we needed

to implement a fix for the divergence-free constraints on B0 and B1, that were previously

trivial to deal with in 1D. We chose to fix this with a GLM method for each of B0 and

B1, since this is one of the simplest methods to implement and proved in later tests to be

sufficient.

Moving on to the tests, we began with 1D tests that had been rotated to be oblique

with respect to the grid, to make the tests two-dimensional. The 2D code proved to be

able to handle these tests almost as well as the 1D cases, although the 2D code was slightly

worse at handling the extreme fast shock, as it was not able to handle the shock in the

same frame as in 1D — although by reducing the shock velocity a little, the 2D code

became able to handle it well as before.

We then tested the system against truly 2D cases. First, it handled an advection test

without difficulty, besides some expected diffusion. Then we tested it against a Lundquist

flux rope, for which the code also handled it well, with only a relatively small amount of

plasma heating at the interface of the flux rope and the background medium.

The code was also able to handle the cylindrical explosion test at multiple different

values of σ, matching previous results from Komissarov (1999a); Nagataki (2009); Lora-

Clavijo et al. (2015) among others — including with σ > 109, well above the level typically

expected in astrophysics, as well as beyond any previous tests — thus proving the code

capable of handling extremely high σ.

The magnetic island collapse test was particularly important because it featured the

formation and dynamics of several current sheets. This was particularly important as

methods prior to our new method find the most difficulty with these cases. By using the

same scheme of enforcing energy conservation that improved stationary fast shocks, this
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test was also able to give excellent results, which match previous results such as those of

Lyutikov et al. (2017) done with FFDE and PIC schemes quite closely.

Finally, we tested the code against a resistive tearing instability like in Komissarov et

al. (2007b) and Komissarov and Barkov (2016), showing that the code has some numer-

ical resistivity. This numerical resistivity was reduced as the resolution of the test was

increased, as we expected.

All in all, the 1D and 2D codes are capable of handling most tests without difficulty,

only showing issues in the most extreme cases with high σ, high Lorentz factor γ and a

strong discontinuity all at once. Otherwise, the code only has relatively minor issues, such

as diffusion for fast shocks due to the weak non-linear steepening.

6.2 Future Progress

The code as it stands is already capable of being used to test real astrophysical scenarios in

2D. However, most relevant cases require additions to the code, such as an axisymmetric

extension to model cases with rotational symmetry e.g. jets or accretion discs, or a fully

3D extension, or the inclusion of general relativity. In addition, it may still be possible to

improve the current code. As such, there are still improvements that can be made, and

further extensions to the code.

6.2.1 Extending the Code

Altering the Computational Domain

The current code is at most a Cartesian 2D code which assumes symmetry along the z-axis.

That is, it assumes that all of the variables are constant in the z-direction. Unfortunately,

as mentioned above, most astrophysical scenarios do not satisfy this condition. Although

it can be used to study cases like current sheets in isolation, most cases like black holes

and jets do not have this kind of symmetry. Thus in order to model these scenarios, we

need to alter the domain.

Three Dimensions First and most obviously, we can try to extend the code to a fully

3D version. This could be done now quite easily, as extending from the 3D code to the

2D code should not introduce any new issues like the extension from 1D to 2D has with

the divergence of B. Thus this extension is as simple as adding another dimension to the

domain and calculating the fluxes for the new cell boundaries, in the same way as before.
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However, the 2D code is already somewhat slow, and so the 3D code would likely run too

slowly without also implementing it in a high-performance form, e.g. using parallelisation.

Besides this problem, we do not expect there to be any other issues with extending the

code to 3D. We do not know of any other problems that could arise from extending to

3D that would not have already made themselves known at 2D. It is technically plausible

that there is some numerical instability that will only occur in 3D or higher, however we

do not currently know of anything that could trigger this problem.

Axisymmetry Although extending the code to 3D would involve some work in imple-

menting a high-performance version, we could instead try using an axisymmetric scheme

to get a form of 3D test.

Axisymmetry is that assumption that the variables are all symmetric along some axis.

For instance, our 1D and 2D codes already axisymmetric, as they assume that the variables

are constant along one or more axes.

However, if we change coordinate systems then we can choose a different axis along

which we assume symmetry. For instance, if we change to cylindrical coordinates and then

assume the system is rotationally symmetric about the z-axis, then we can treat cells with

the same r and z position as the same cell and neglect the angle θ, and in so doing reduce

the number of dimensions by one.

This would allow us to study systems where we can expect some degree of rotational

symmetry, such as jets and black holes. This method has been used frequently in the

past, such as by Lind et al. (1989) for models MHD jets, and Komissarov (1999b) for

models of RMHD jets. However, the assumption of symmetry can in some cases suppress

instabilities that would otherwise occur in a fully 3D code.

Implementing this would be more difficult than a simple extension to 3D, as it would

involve adding source terms to handle the coordinates, which are no longer the simple

Cartesian coordinates we have been using. However, the code should be able to run much

faster as the domain is still 2D.

General Relativity

The current code only handles Special Relativity. Given that most of the high-σ regimes

this code will be useful for occur near compact objects such as Pulsars and Black Holes

where general relativity is important, extending the code to include general relativity is a

clear next step.

The inclusion of general relativity instead of special relativity modifies the covariant

equations of RMHD in Eqs. (2.2) to (2.8) by replacing the Minkowski metric ηαβ with a
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more general metric gαβ. This alters the conservation equations, and means that we now

have to deal with source terms.

The overall method for shock-capturing, GRMHD schemes (Del Zanna et al., 2007;

Komissarov, 2004b; Gammie et al., 2003) are largely similar to SRMHD schemes (Komis-

sarov, 1999a; Mignone et al., 2007): We interpolate cell values to the interfaces, calculate

fluxes, then use these fluxes to update conservative variables.

The actual method to do this varies. For instance, in Komissarov (2004b), for each cell

interface they transform frames to the local fiducial observer (FIDO) — that is, to a frame

that is stationary with respect to the cell boundary. Then they interpolate cell values to

this boundary. In this situation, one can use the same Riemann solver here (such as the

HLL solver we use) to evaluate the boundary fluxes in GRMHD as one does in SRMHD.

After solving the Riemann problems at all the cell interfaces, each of the resultant

Riemann problem solutions are transformed back into the laboratory frame from which

the full system is described. These fluxes can then be used just like before to update the

conserved variables in each cell. It is then also possible to use the same primitive variable

calculation algorithms as before.

On the other hand, Del Zanna et al. (2007) take a different approach that obviates the

need to transform between different reference frames. Instead of switching back and forth,

the values in the system are described in the frame of the local FIDO at all times. This

modifies the equations of GRMHD, but besides the source terms the system remains a set

of conservation laws; in fact, the conserved quantities are the same as in SRMHD besides

a factor of √
γ, where γ is the determinant of γij , the spatial components of the metric

tensor gαβ (this factor is present even with the previous method). The main differences

are in the fluxes, and these differences are much easier to deal with since changes to the

conservative variables would require changes to the primitive conversion algorithm.

These considerations are all we need to deal with black holes, pulsars and other similar

cases, since these are relatively simple to deal with in GR as the metric is static. That

is, we can neglect the self-gravity of the plasma and electromagnetic fields, due to the

dominance of the central compact object, so that the metric can be effectively assumed to

be static. In other words, the plasma can be treated as simply in the presence of a very

strong gravitational field.

For cases like supernovae however, there is no compact object to dominate the stress-

energy tensor, and so we must evolve the spacetime metric along with the plasma. This

is especially challenging because the equations of General Relativity are highly non-linear

and difficult to solve. However, GRMHD codes that do evolve the metric have already

been developed (Duez et al., 2005; Shibata and Sekiguchi, 2005; Mösta et al., 2014), and
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since the Einstein equations are not coupled directly to the GRMHD equations — their

only connection being the metric tensor itself — the same methods used to evolve the

metric for these GRMHD codes should also be applicable to our code without any need

to adapt them.

As such, converting to the code to a general relativistic scheme could be simpler than

it may first appear. Generally, the most difficult part to deal with will most likely be the

new source terms, so long as the metric is static.

6.2.2 Improving or Altering the Code

Reducing Conservation Error

As one of the clearest deficits of the method, reducing the conservation error of the code

is a clear target. Since the conservation error is tied to the truncation error of the time

integration and spatial interpolation, one of the first methods of doing so that comes to

mind is to increase the order of the code further from third order. This would also reduce

dissipation and allow discontinuous solutions to be resolved sharper.

Several higher order interpolation methods already exist. The WENO scheme intro-

duced in Jiang and Shu (1996) is order 2r−1, and can theoretically allow r to be arbitrarily

high (although since we want a stencil that does not contain a discontinuity, increasing the

size of the stencils is not always desirable). Fifth order (Henrick et al., 2005) and higher

(Shi et al., 2003) schemes have been introduced and improved over time, so increasing at

least to fifth order seems relatively doable.

However, such a method would not decrease the conservation error near discontinuities,

since the order of the code is reduced here. Since these cases are where the most error

occurs, increasing the order of the code has diminishing returns. In fact, increasing the

order of the code should make discontinuities sharper, which could actually increase the

amount of conservation error instead — although in practice we have found that increasing

the code from second to third order did reduce the error for fast shocks to a degree, and

the second order code was also a significant improvement over the initial first order code.

On the extreme end, some kind of integration scheme for the force-free system that fully

conserves the force-free variables could potentially solve this problem entirely. However, it

is not at all clear how to go about creating such a scheme. Moreover, it may well be that

the very reason our scheme works in the first place is because it relaxes exact conservation

of energy and momentum. It is entirely possible that an exactly conserving scheme would

not work as a result of this.
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Thus we believe that aiming for this kind of full conservation of the force-free variables

is not useful, as it is not clear how to do so, and it may not work at all.

Alternate Riemann Solver

One possibility that could improve the code is to change Riemann solver, as was considered

in section 3.2.4. We could even use different types of Riemann solver for the force-free

and Interaction operators. We discussed a few different types of Riemann solvers in sec-

tion 3.1.2.

The main advantage of switching Riemann solvers for us is that the current HLL solver

is known to be quite diffusive in particular for any waves not resolved by the HLL solver

itself. For us, that means that Alfvén waves, slow waves and contact discontinuities have

stronger diffusion. We could instead use a Riemann solver that does resolve these waves,

such as an exact solver, a linear solver, or a modification of an HLL solver that resolves

further waves — such as HLLC which resolves the contact discontinuity (Toro et al.,

1994; Honkkila and Janhunen, 2007), or HLLD which resolves the Alfvén and contact

discontinuities (Mignone et al., 2009). Using any one of these alternate Riemann solvers

could help to reduce diffusion for the currently-unresolved waves — although currently

the wave with the worst diffusion problems is the fast wave, which is already resolved, so

the benefits here will be limited.

If we tried to use a different Riemann solver for the interaction system, we would

clearly need to develop a new one (although it may be simpler than it appears to convert

a solver for RMHD into one for the interaction system). For the force-free system however,

there are already some known solvers, since this is equivalent to just FFDE. For instance,

Komissarov (2002) describes both a linear and an exact Riemann solver.

Using this would mean that we would need to enforce the PC conditions after inter-

polation, however. If the PC conditions are violated then a linear Riemann solver would

have problems calculating phase speeds, since (for example) now we need to calculate the

Alfvén phase speeds for FFDE, instead of just using ±1 for the fast phase speeds — and

this is before even attempting to calculate eigenvectors. An exact Riemann solver would

have even worse problems, since we are trying find the exact solution for a problem that

does not even satisfy the constraints of the system.

Unfortunately, enforcing the PC conditions after interpolation was something that was

found to cause problems in the 2D code. It is currently not clear what specifically caused

this issue, so it may be possible to avoid it, but at the moment it looks like trying to

use a different Riemann solver may not work. With that said, in testing we have found

that enforcing the force-free PC conditions has significantly less impact than enforcing
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the full force-free and interaction PC conditions, at least with regards to stationary 1D

fast shocks. Thus it may be that we can get away with only enforcing the force-free PC

condition, and so use a different Riemann solver for just this operator.

Evolving B0 and E0 Directly

In chapter 1, we discussed different methods of modelling FFDE. In particular, we noted

that while some codes use an S-B formulation of FFDE and integrate the momentum

conservation law for S — our own code included — other codes use an E-B formulation

and evolve Maxwell’s equations directly instead.

Thus we could try using this formulation for our force-free solver instead. Since con-

serving the force-free energy and momentum is not currently possible, the advantage of

using a scheme to conserve them to numerical error is lost. Thus shifting the force-free

operator integration scheme to one which uses these equations instead may be a good idea.

Indeed, some authors such as Komissarov (2004a); Mahlmann et al. (2021) have already

implemented such a scheme for FFDE and General Relativistic FFDE already, achieving

comparable results to the alternative scheme. Thus it is quite likely that such a scheme will

also work with our code as well. This scheme can also be implemented using a conservative

finite difference method like the one we already use, except the equations also includes

source terms in the form of the current J , as well as an extra constraint on the electric

field in the form of Gauss’ law, Eq. (2.94) ∇ · E = ρc.

However, our energy transfer scheme required the inclusion of energy conservation in

order to determine the lost energy due to truncation error. Thus if we used this scheme,

we would need to still include energy conservation as an extra equation. In addition, as

noted in chapter 1, if Gauss’ law is not enforced exactly then this may also require the

inclusion of an extra equation in the form of charge conservation, in order to be used as

part of a divergence cleaning algorithm.

Alternative Divergence Cleaning Algorithms

In section 3.2.5 we mentioned several different alternatives for resolving the problem with

∇ · B = 0 in dimensions higher than 1D. Ultimately, we chose the GLM method at least

partly due to its simplicity of implementation.

However, the GLM method does have a flaw in that it does not enforce the constraint

exactly. As the code runs, the system builds up some non-zero ∇ · B a little above the

truncation error. We have already noted previously that at high σ this could be larger

than σ−1, and thus larger than the interaction system.
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It is therefore possible that this could cause problems with our code, as the resultant

errors in B0 become more significant than the interaction system itself.

Thus it may be advisable to change the divergence cleaning algorithm to one that

enforces the constraint exactly, such as Method 2 (Constrained Transport, e.g. Evans and

Hawley (1988)) described in section 3.2.5, using the integral form of Eq. (2.48) to enforce

the condition. This method does however involve using a staggered grid for the magnetic

field, making it significantly more complex than the GLM method.

One thing to note is that we need to clean both B0 and B1 of violations of the condition.

At high σ, where we are more likely to see a benefit of enforcing the condition exactly,

only the divergence of B0 is significant at truncation error scales. Thus, we may in fact

only need to apply the alternative method to B0, and not B1. That is, we could use

different divergence cleaning schemes for B0 and B1. However, using a staggered grid

in this instance could cause a problem in the recombination step, as then we would not

have the values of B0 and B1 at the same locations, forcing us to interpolate them before

recombination.

In addition, at high σ, the effect on B1 is likely insignificant. However, at low σ

both B0 and B1 can have relatively significant values, in which case there may be un-

foreseen consequences to using two different divergence cleaning algorithms for these two

components of the magnetic field.
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