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Summary 

High-Frequency (HF) radar systems are currently used to collect wave data. By applying 

spectral analysis methods, such as the Fast Fourier Transform (FFT) method, to the radar 
backscatter from the ocean surface, the so-called Doppler spectrum is calculated, and 
from this the directional wave spectrum and wave measurements are obtained. 
Because of the random nature of the ocean surface, spectral measurements are subject to 

random variability. In order to reduce variability, and hence to obtain relatively precise 

estimates, each spectrum is usually calculated by averaging a number of FFT estimates. 
Naturally, this method requires long data series, and problems may arise. In rapidly 

varying sea conditions, for example, successive FFT estimates may be quite inconsistent 

with each other (in non-stationary conditions), and then the spectrum estimate obtained 
by averaging is not only difficult to interpret but it may also be distorted. 

It is known that the more recent spectral analysis methods such as methods based on 

autoregressive (AR) and autoregressive-moving average (ARMA) stochastic models can 

provide stable estimates from short data sets. Thus these methods are potentially good 

alternatives to the FFT, as they avoid problems inherent to the use of large data sets. The 

aim of this thesis is to investigate how some of the modem spectral analysis methods may 
be used to obtain reliable spectral estimates from small data sets. 

Unlike the FFT method, the AR- and ARMA-based methods presuppose specific 

parametric forms for the spectral function, and therefore consist in estimating certain 

parameters from the data (as opposed to estimating the function itself). The modified 

covariance method and Burg's method are among several methods of estimating the 

parameters of the spectral function. 



The choice between the different models is based on the shape of the Doppler spectra; it 

is concluded that an AR process conforms better with the available data. Among the 

various estimation methods, the modified covariance method proves to be more reliable. 

In order to validate our choice, we carried out several comparisons with the FFT method. 

The modified covariance method with smaller data sets is shown to give satisfactory 

results, comparable to those of the FFI'method as usually applied, while the FFT method 

with smaller data sets performs poorly. Accurate wave measurements are still obtained 

by reducing the amount of data by a factor of four. 

The calculation of directional wave spectra from Doppler spectra estimated with the new 

technique also gave satisfactory results. 
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Glossary of abbreviations and symbols 

Abbreviations 

AR Autoregressive 
ARMA Autoregressive Moving Average 
CWT Continuous Wavelet Transform 
FFT Fast Fourier Transform 
FMICW Frequency Modulated Interrupted Continuous Wave 
HF High Frequency 
OSCR Ocean Surface Current Radar 
MA Moving Average 
MSE Mean Square Error 
PSD Power Spectral Density 
RMLE Recursive Maximum Likelihood Estimation 
SNR Signal-to-Noise Ratio 
STFT Short-Time Fourier Transform 
WT Wavelet Transform 

Symbols 

a scale factor 

ap autoregressive parameters of a pth order AR process 

a 
jb 

P autoregressive parameters for the modified covariance method 
bq moving average parameters of a qth order MA process 

Bias(. ) bias 

C velocity of light 

cor(. ) correlation coefficient 
CWT(T, a) continuous wavelet transform 

x2 chi-square distribution 

el P 
forward linear prediction error 

eb backward linear prediction error 
P 

f frequency 
fb Bragg frequency 

fd Doppler shift 
Ladar radar frequency 



Af I theoretical frequency difference 

9 earth's gravity 
,Y autocorrelation function 

Hs significant wave height 
identity matrix 
reflection matrix 

k ocean wavenumber 
kp reflection coefficients 
% radar wavelength 
MSE(. ) mean square error 

TI normalised Doppler frequency 
N data set length 
Ný, c; ') normal distribution of mean g and variance cy 

Vr radial component of the target speed towards the radar 
P AR model order 
q MA model order 
r Bragg ratio 
r"", rl. p 

fractional overlap 
rNarson Pearson's correlation coefficient 
r. (. ) autocoffelation sequence 
R range 
RP autocorrelation matrix 

A 
PP linear prediction error 
S(k, O) full directional spectrum 
Sy) true PSD function 

A 

SW estimate PSD function 
S", (f energy spectrum 
Sx (f ) periodogram 
STFT(r, f) short-time Fourier transform 

cr + integral under the positive Bragg peak 

a- integral under the negative Bragg peak 

0201) normalised power spectrum of the second-order backscatter 
T sample interval 
T. mean period 

time location 

'r d signal propagation delay 



0 direction of wave travel 

0+ propagation direction of the Bragg waves, along the radar beam towards 
from the radar 

propagation direction of the Bragg waves, along the radar beam away from 
the radar 

0(0 wind direction 

U(-) white noise process 
Var(. ) variance 
X(-) time series 



Chapter 1 

Introduction 

High-Frequency (HF) radar systems have the unique ability to picture the evolution of 

wave dynamics over a wide sea area under any weather conditions. The wave 

measurements are obtained from the HF radar by inverting a non-linear integral 

equation describing the relationship between the power spectrum of the radar 
backscatter and the ocean wave directional spectrum. This power spectrum is known 

as the Doppler spectrum. 

The present techniques for obtaining the Doppler spectrum have a major shortcoming: 

they require too long data sets. This is not acceptable for two reasons. First, the sea- 

state can only be considered stationary in sufficiently short time periods, shorter than 

the ones presently used. Second, the measurements can be subject to wind and wave 

variabilities. 
In this thesis, we solve this problem by looking at new spectral techniques. These 

methods work with shorter data sets. 

The work at Sheffield on HF radar remote sensing aims to measure the ocean wave 

directional spectrum over large areas of the coastal ocean. This spectrum contains 

information on both locally-generated wind waves and swell components from distant 

storms. In fact, the HF radar system measures backscatter from the ocean surface, in 

other words the moving waves, as well as from anything else such as ships. This 

backscatter is converted to the Doppler spectrum, which leads to current and wave 

measurements. The quality of the Doppler spectrum is responsible for the accuracy of 

these wave measurements. Thus, it is necessary to use a spectral estimation method 

which gives the best quality of this spectrum. 

Figure 1.1 shows a typical Doppler spectrum. Barrick (1972) developed two strong 

mathematical theories to describe this spectrum. The first-order theory represents the. 

two distinct peaks (see label A in figure 1.1) and this provides current measurements. 
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The continuum surrounding these two peaks is the second-order theory (see label B in 

figure 1.1). Wave measurements are extracted from this contribution. 

Periodogram 
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Figure M: Typical Doppler spectrum showing (A) first- and (B) second-order 
contributions. 

The usual spectral technique used to produce the Doppler spectrum is the periodograrn 

(Harris 1978). This is based on the averaging of several spectra obtained by the Fast 

Fourier Transform (FI-T), which is a fast algorithm applying the Fourier transform to 

the signal. This method will be described in the next chapter. 

In order to get wave measurements, it is essential to reduce reasonably the variance in 

the Doppler spectrum. This is achieved with the periodogram by averaging a certain 

number of Doppler spectra, which leads to the necessity of using long data series. 

Therefore, non-stationarity present in the sea state can become a major problem for 

wave measurements. If the current varies considerably, this can lead to a smearing of 

the first-order peaks and then prevent the separation of the first- and second-order 

parts of the spectrum which is necessary to get the ocean wave directional spectrum. 

Figure 1.2 illustrates this kind of problem and shows split peaks. One possible way to 

overcome this problem is to reduce the averaging process and therefore use shorter 

2 
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data collection times, hence the need for alternative spectral analysis methods. 
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Figure 1.2: Doppler spectrum showing split peaks. 

When the sea conditions are varying very quickly, the measurement period may not be 

sufficiently short to get enough information about the different sea states. This is the 

case for some measurements of the Petten experiment in the SCAWVEX program 

(Wyatt, 1997d). This experiment was carried out on the Dutch North Sea coast at 

Petten (see figure 1.3). The measurements were conducted during the storm season 

(from November to December 1996) and originated from (with a twentY-minute cycle) 

two HF radars (WERA systems), represented as M and S in figures 1.4,1.5 and 1.6. 

As can be seen in these figures, in some parts of the sea region covered (for example, 

along longitude 4.40), the wind direction (shown by arrows) and the significant wave 

height (shown by shadows) change considerably during this period of time. 

Therefore, one cannot be sure that twenty minutes is short enough to measure wind 

and hence wave variations, which is another motivation to work with short data 

collections. Also, it is obvious that this problem may occur when the data collections 

3 
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are longer, for example, in the case of the OSCR system (another HF radar system 

which will be introduced later on) where these collections take place over one hour. 

The objective of this work is to develop a spectral estimation method which allows us 

to use short time data collection. 

Figure 1.3: Measurement location of the Petten experiment. 

The modem spectral estimation methods have the potential, when used with HF radar 

data, of increasing the temporal resolution in current measurements thus allowing the 

monitoring of rapidly varying oceanographic conditions. Kahn (1991) showed that the 

ocean clutter can be modelled with two narrowband Bragg signals with time-varying 

frequencies and postulated that the time variations of the Bragg frequencies are related 

to ocean wave height. For estimating the radial component of surface current flow 

from HF radar measurements (Martin and Kearney, 1997), autoregression analysis is 

intrinsically more accurate than the FFT technique with short data sets. But nothing 

has been done concerning wave measurements. This thesis deals not only with current 

measurements but also the use of such techniques is investigated in wave 

measurements. In another words, the second-order part of the Doppler spectrum 

becomes very important in this research. 

4 
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Figure 1A HF radar coverage showing wind measurements (by arrows) and wave 
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Figure 1.5: HF radar coverage showing surface wind measurements (by arrows) and 
wave measurements (within shaded area). These measurements were taken at 6: 20pm 

on 12 November 1996. 
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wave measurements (within shaded area). These measurements were taken at 6: 40pm 
on 12 November 1996. 
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Chapter 2 of this thesis is concerned with HF radar measurements. Two HF radar 

systems other than the WERA system are presented: the PISCES and OSCR systems, 

which supply data for this work. The standard technique for producing the Doppler 

spectrum, the periodogram, is described. Since wave measurements are obtained from 

the Doppler spectrum, we give a detailed description of the first- and second-order 

parts of this spectrum and present these wave parameters. Also, the statistics of the 
backscattered data are discussed because these will be useful in the following 

chapters. 
Chapter 3 provides a review of modem spectral analysis methods. Four different 

spectral estimations are presented and applied to HF radar systems: 1. the 

autoregressive spectral estimation suitable for spectra with sharp peaks; 2. the 

autoregressive moving average spectral estimation able to represent different spectral 

shapes; 3. the eigenanalysis-based frequency estimation producing peaks of 

narrowband spectra and 4- the recursive maximum likelihood estimation (RMLE) 

which is restricted to real data. One spectral analysis method is selected according to 

the nature of the HF radar Doppler spectrum with its dynamic range and distinct 

peaks. This is the modified covariance method based on the autoregressive spectral 

estimation. 
Chapter 4 describes the modified covariance method and points out its major problem, 
the selection of the model order. As well, this chapter defines the problem of split 

peaks as mentioned above and emphasizes the importance of using the modified 

covariance method. 

In order to validate the modified covariance method, we need to compare it with the 

periodogram. To do so, two methods of comparison are introduced in Chapter 5. One 

is based on the Monte Carlo simulation study, which evaluates the performance of the 

different spectral methods. The second uses wave-buoy measurements. By extracting 

the wave parameters from the different spectral estimates, we can compare these 

quantities with the wave-buoy parameters. 

The results obtained from these comparisons are presented in Chapters 6 (for the 

OSCR system) and 7 (for the PISCES system). 

The conclusion of this work is in Chapter 8. 

8 



Chapter 2 

HF Radar Measurements 

Radio oceanography was first introduced during World War H. The objective was to 

provide a radar map of the surrounding ocean in order to get ship locations and was 

not to measure waves. At the time, sea echoes from the ocean were undesirable and 
this is why people called it "clutter". However, this phenomenon was of great interest 

for scientists who wanted to measure waves and understand the mechanisms behind it. 

It was Crombie (1955) who first established the relationship between the scattering of 

coherent HF radar (operating at frequencies 3-30 MHz) and waves on the ocean 

surface. Since then, HF radar systems have been developed and become a powerful 

tool for remote sensing of the sea-state. 

Two HF radar systems (OSCR and PISCES) are described in this chapter. We also 

present the Doppler spectrum and its characteristics, since the spectrum is essential to 

obtain both current and wave measurements. Finally, the nature of the HF radar data 

is statistically analyzed in order to apply some methods in the following chapters. 
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2.1 What is an ocean wave ? 

HF radar systems are used to provide measurements of the ocean waves. 

Wave motion is carried out by particles of water exhibiting circular motion as the 

wave travels. At the surface of the sea, these circular motions can have different 

amplitudes. Waves are generated by the wind either by distant storms or locally. The 

waves created by the distant storms are known as "swell". Having long wavelengths, 

they can travel long distances with low attenuation. The locally driven waves are 

more complex. When the wind blows over the sea, short-wavelength waves, called 

"wind-sea", are formed. As these build up, the energy is transferred into longer 

waves with larger amplitudes. 

2.2 HF radar systems 

HF radar systems are used for remote sensing of the sea-state (Paduan and Graber, 

1997). They provide monitoring of ocean surface waves and current over a wide 

surface area of the sea. 

A transmitted radio wave is scattered from any surface of ocean with which it 

interacts. This backscatter is received at the radar which measures the time and phase 

differences between the transmitted and received waves. The resultant power 

spectrum, referred to as the Doppler spectrum, which is based on the FFT, is 

computed. This spectrum is essential to get measurements about the ocean waves. 

Two HF radar systems are used for this work: the PISCES (not an acronym, c. L 

OSCR) system, intended for long range measurement of both current and waves, and 

the OSCR (Ocean Surface Current Radar) system, a short range high resolution 

system, developed for coastal current measurements. In order to eliminate directional 

10 



Chap. 2: HF Radar Measurements 

ambiguities, both the OSCR and PISCES systems comprise two radars positioned a 

distance apart from each other along the coast (Wyatt, 1987). 

2.2.1 Concept 

Radar stands for Radio Detection and Ranging. The radars have a principal radio 

frequency, the carrier, set by a frequency synthetizer. 

For a pulse radar (e. g. the OSCR system as described below), this continuous signal is 

pulsed on and off by an modulator. The short bursts of radio energy that result are 

amplified by a transmitter and sent to the antenna via a switch. The radio wave travels 

away from the radar at the speed of light, is scattered from a target and returns to the 

radar. 
The range, R, of the target is computed from the signal propagation delay d by 

d 

where c-3x 108 M/S is the velocity of light, the velocity at which the radio wave 

travels. 

The wave length of the radio wave, is related to the frequency, f, by 

x= c1f . (2.2) 

The change in the frequency of the radio signal caused by the motion of the target is 

called Doppler shift. This shift is related to the velocity of target by 

Af = fd = 2v, /, X, (2.3) 

where v. is the radial component of the target speed towards the radar. The Doppler 

shift was named after C. J Doppler (1803-1853). He pointed out that the color of a 

luminous body and the pitch of a sounding body are changed by the relative motions 

of the body and the observer. 

The radio wave frequencies that range from 3 to 30 MHz are classified as high 

frequencies, HE These HF radio waves have two alternate modes by which they can 

reach surface points beyond the horizon. The first involves diffraction by the curved 

earth; at HF, a vertically polarised wave can be diffracted a considerable distant 

beyond the horizon due to the much longer wavelength and the highly conductive 

11 



Chap. 2: HF Radar Measurements 12 

properties of sea water at these frequencies. This mode of radio propagation is 

referred to as the "ground-wave" or "surface wave" mode. The second mode of HF 

propagation, referred to as "skywave", results from the presence of the ionosphere 

above the earth. Sea echo has been observed by both these modes. 

2.2.2 OSCR system 

The OSCR system (Wyatt 1994 and Wyatt and Ledgard 1996), has been developed to 

provide solutions to coastal engineering problems, such as erosion problems or 

sandbank movements. 

As a pulse radar, this system uses a HF (25.4-27 MHz) radio frequency to map surface 

current patterns over a large area of the ocean. It is a land based portable radar system 

and consists of two radars, termed the master and slave, placed a distance apart from 

each other. For the work discussed in this thesis, experiments were conducted along 

the Holderness coastline (Prandle et al., 1996) and the radar sites were approximately 
15 kin apart from each other. I 

In order to avoid the signals interfering with each other, 

each unit makes independent measurements sequentially. These measurements were 

taken at up to 559 cell positions with a range extending to 40 kni offshore with a cell 

resolution of I km'. As a pulse radar, range gating is carried out in time domain. A 

single FFT provides the power spectrum at each range. It collects data for just five 

minutes over a twenty-minute cycle. At present, three separate five-minute data sets 

have to be averaged in order to obtain stable spectral estimates for wave 

measurements (current measurements are made using the five-minute data), thus 

measurements represent an hourly average. 

Since these measurements have been collected in coastal regions they may be subject 

to variations on time scales that are often less than one hour, leading to uncertainty in 

the interpretation of the data. This problem was already mentioned in the Introduction 

with the Petten experiment. 

12 



Chap. 2: HF Radar Measurements 13 

2.2.3 PISCES system 

The PISCES system was used to monitor waves and currents in the Celtic sea area. 
Two radars were set up. One was located on the South Wales coast, the other one on 

the North coast of Devon (Wyatt, 1995). 

PISCES is not a pulse radar but a FMICW (Frequency Modulated Interrupted 

Continuous Wave) radar; it transmits and receives a sweep in frequency (from 

frequency f, to frequency f2), repeated for the duration of the measurement. (The 

WERA system mentioned in Chapter I is a FMCW system. The difference occurs in 

the use of the transmitter and receiver. ) For the FMICW` radar, the receiver is 

switched off when the transmitter is working and vice-versa. Each sweep is processed 

using a FFT, the frequency bins of which identify the phase and amplitude of 
backscatter from consecutive range bins. The range resolution is determined by the 

total frequency difference, f, - f2, typically twenty kHz giving a resolution of 

C 
(f, -f2)*2 

- 7.5 km. Consecutive sweeps then contribute to a time series of 

backscatter for each range celi. A second FFr is required to provide the power 

spectrum of backscatter at that range. This second stage is identical to the processing 

which is employed by pulse radars (such as the OSCR system as described above), 

providing complex samples for each range bin. 

To obtain stable estimates, taking account the random nature of the sea surface, a 

certain amount of averaging of the second FFr is necessary. Therefore, about three 

minute Mrs averaged over about 30 minutes have been used. As has been said in 

Chapter 1, this can lead to problems in very variable sea conditions, particularly if 

measurements are required over a large area. 

13 



Chap. 2: HF Radar Measurements 14 

Z3 Doppler spectrum 

To get the ocean parameters, we compute the Doppler spectrum from the time series 

data obtained from the'-different HF radar systems. The method, usually used to 

produce the Doppler spectrum, is the well-known periodogram (Marple, 1987 and 

Harris, 1978). 

2.3.1 Periodogram 

The periodogram consists of segmenting the data into overlapping segments and 

averaging the sample spectrum of each segment. 

Assume a complex stationary data set x(O),..., x(N - 1) of N data points, which is 

divided into P segments of M samples each. Each segment is shifted with a shift Q 

(see figure 2.1). 

For both systems, we have taken M= 512 and Q= 128. Hence the overlap is 

512-128 
= 75%. 

512 

region of overlap 

m 

QM 

N 

Figure 2.1: Partition of segments for overlapped processing. 
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Chap. 2: HF Radar Measurements 15 

The purpose of overlapping segments is to increase the number of segments in order 

to decrease the variance of the power spectrum density (PSD) estimate (see 'next 

section). 

In order to reduce the effect of sidelobes (spurious peaks surrounding the main lobe) 

and decrease the estimation bias, a window is applied in each segment before 

computing the sample spectrum. Thus the p" segment consists of the samples: 

X(P) (M) = W(M)X(m + PQ), 
0: 5 M: 5 M-1 

(2.4) 
0: 5 P: 5 P- I 

where w(m)=0.35875-0-48829co 
ýjlrm 

+0.14128co 
4nm 

+0.01168co(nm) is 
ýM) 

s( 
M)M 

the Blackman-Haffis window (minimum 4-sample). From the range of the windows 

available, this window is recommended by Harris (1978) because of its efficiency in 

reducing spectral leakage and because it has the lowest correlation coefficient (see 

next section) for a 75% overlap. 

Then, the sample spectrum of the pth segment is 

SIP) (f )=I IX(P)(f f, 
-Y2 T: 5 f :5 Y2 

T (2.5) TMU 

where T is the, sample interval, U=T (M) z is the discrete-time window energy, 
M=0 

M-1 ()2 xfmT 
and X TYx " (m)e-' is the discrete Fourier transfonn. 

M-0 

The quantity U is present to remove the effect of the window energy bias in the final 

PSD estimate, the periodogram: 

S'(f) 
P-1 

S, P, (f) -l/ <f < (2.6) -7- -' /2T- -y2T* p P=() 

2.3.2 Correlation coefficient 

The correlation coefficient shows the correlation existing between 2 successive 

segments and the window efficiency. It is defined by 

is 
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M-1 I W(M)w (m +(I - r,,,,, )M) 
cor(r,,,,,,,, P) = `0 M-1 0: 5 r. ... I"p < (2.7) 

1 W2(M) 

M=o 

where r. .. 1,, P = 
M-Q is the fractional overlap and W(m) is the window Fourier 

m 

transform. 

When P segments are averaged, the variance of the average, a AVERAGE I is related to 

the individual variance of the segments, as'EGmENT, (Harris 1978), for a 75%-overlap, 

by: 

2 
AVERAGE + 2cor 2 (0.75) + 2cor 2 (0.5)1_ 

2 ýor 2 (0.75) + 2cor2 (0.5)) (2.8) 2p P2 
SEGMENT 

If there is no overlapping, then 
cr 

2 
VERAGE 

-1 (2.9) 2P 
SEGMENT 

2 

Also, we have . 
(Y A VERAGE 2 

with (y 2 
and 

Cy 2 (2.10) 2 AVERAGE SEGMENT CYSEGMENT A It 2 

[t is the degree of freedom of the "averaged" periodogram. The degree of freedom of 

the periodogram. for each segment without overlapping (Priestley, 198 1) is 2. 

This last formula is due to the distribution of the periodogram. Assuming that the 

initial process is a Gaussian purely random process, Priestley (1981) proved that the 

periodogram follows aX2 distribution. This property of normality will be shown 

later in section 2.6.1. 

In our case, using the Blackman-Harris window (minimum 4-sample), the different 

values taken by the correlation coefficient are: cor(O. 75) = 0.46 and cor(O. 5) = 0.038. 

Hence, with the PISCES system, we have 

2 CFAVERAGE 
N=4608, M=512, Q=128, P=33=> 2 0.043 in the case of GSEGMW 

over apping, 

a2 
9 AVERAGE 

N= 4608, M= 512, Q= 128, P2 
(YSEGMENT = 0.11 if we do not overlap. 

16 
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And for the OSCR system, we need to combine the equations (2.8), (2.9) and (2.10). 

For each segment of 896 data points, we overlap 4 segments of 512 points and obtain 

a "first" periodogram. Then, we average these 3 "first" periodograms in order to 

produce the final periodogram. 

2 
6 VERAGE 

N=2688, M=5l2, Q=l28, P=4x3=l2 2 
0.11 in the case of (YSEGMENT 

overlapping, 

2 

N= 2688, M 512, Q= 128, P=3 => 
(y AVERAGE 

= 0.333 if we do not overlap. 
SEGMENT 

(Y 
2 

N =896, M =512, Q= 128, P=4 => 
AVERAGE 

= 0.33 in the case of overlapping 2 (TSEGMENT 

one segment of 896 point data. 

Therefore, overlapping is important to decrease the PSD estimate variance. The 

variance reduction with the OSCR system is limited by the operational constraint, so 

that we cannot do as well as with the PISCES system. As can be seen with the OSCR 

system, the fact of averaging 4 segments produced from the 5-minute collection 

period is not sufficient to reduce the PSD estimate variance. This is the reason that 3 

separate 5-minute data sets are averaged and overlapped in order to obtain satisfactory 

quality signal to noise for wave measurements. We could extend averaging over 

longer periods, but this option is not acceptable. Non-stationarity is to be avoided as 

far as possible. The PSD estimate variance is used to determine the confidence 

intervals for wave measurements (Wyatt 1991). 

17 
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2.3.3 Applications 

2.3.3.1 OSCR system 

Figure 2.2 illustrates a periodogram obtained from the OSCR system. We recall that a 

raw file contains 3 segments of 896 samples, in other words 2688 data points. Each 

segment represents one 5-minute measurement and is separated by 20 minutes, so that 

it corresponds roughly to one hour measurement. For each segment, using a 75%- 

overlap, 4 segments, each of 512 samples, have been overlapped and averaged. Then 

the 3 resulting segments are averaged. In total, 12 segments have been used. 

2.3.3.2 PISCES system 

Briefly, the PISCES system provides files of 4608 data samples, this corresponds to a 

30-minute measurement cycle. In order to obtain the periodogram (figure 2.3), 33 

segments (of 512 samples) have been used, also using a 75%-overlap. 

As it can be seen, the fact that the variance is more reduced for this system makes the 

periodograrn in figure 2.3 -look "smoother" than the one obtained with the OSCR 

system shown in figure 2.2. 

0 

0 

ca .00 

CL 

0 

IýZ -1.2r -1ý9 QJ( Q; m Qgr Qýg VfJ U.:! Q. fJ OSPO fý3 11 

0 

. I. S2 iýT -1'02 
171 4. '&2 CýT 4102 D. b 0148 0173 0.93 123 IÄB 

Frequency Hz 

Figure 2.2: Periodograrn from the OSCR system (measurement taken at 3pm on 27 
December 1995), N= 2688 and P= 12. 
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U3 

0 

q 

;d 
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Figure 2.3: Periodogram from the PISCES (measurement taken at 8a. m. on 28 March 
1987), N= 4608 and P= 33. 

2.4 First-order measurements 

Figure 2.4 shows a typical Doppler spectrum obtained from the OSCR system. It was 

Crombie (1955) who deduced the Bragg scatter mechanism or first-order effect 

characterized by two prominent peaks symmetrically spaced about the carrier 

frequency (Forget et al., 1981 and Wyatt, 1990a), represented by A in figure 2.4. This 

mechanism was seen to be "Bragg scatter", the same phenomenon responsible for 

scatter of X-rays in crystals and light rays from diffraction gratings. 

The ocean wave-trains present on the sea interact with the radar wave. The sea-waves 

of wavelength 
Y2,2 x 

Y2,3 x 
Y2 

--- where X is the radar wavelength, backscatter 

almost all the energy toward the radar. Those having wavelengths equal to Y2, 
and 

moving toward (positive Doppler frequency) and away from (negative Doppler 

frequency) the radar, give the strongest echo (Barrick, 1977). This is illustrated in 

figure 2.5. For such waves, the dispersion relation linking wavelength X to wave 

19 
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velocity is v 
Fg%/ 

where g is the earth's gravity (Tucker 199 1). When there is V /41c 

no surface current, the peaks are located at the Doppler frequencies ±fb, with 

2v +=I frdar being the radar frequency (see section 2.1.1). In the fb 
-% Cc 

presence of a surface current, the peaks are at frequencies f. ±fb, where 

f. =2v, 
fr,, d,,,. (Vr being the radial component of surface current towards the radar) is 
C 

a frequency shift proportional to the magnitude of the current. Determining this shift 

is the principle behind measuring the surface current. 

Periodogram 
-1.27 -I. Q2 -017 C. S2 4.27 . 0.02 0.23 0.48 0.73 0.98 123 1.48 

0 

0 

m 
'00 

IL 

CL 
T 

d) 
CL 
D. 0 
O'l 

In 

a IQ 

0 e 

II I1 

2fb 

11 18 

0 
t9 

A A 
B B B 

. 1.52 . 1.2? . 1.02 4). 77 . 0.52 . 027 -0.02 0.23 0.49 0.73 0.98 123 1.48 

Frequency Hz 

Figure 2.4: Doppler spectrum ftom the OSCR system showing (A) first- and (B) 
second-order contributions (measurement taken at 3pm on 27 December 1995). 
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HF Radar 

transmitted wave 0-I 
Antenna 

X 
backscatterecd 
wave 

Figure 2.5: Diagram showing the Bragg scatter mechanism, given by the University of 
Hamburg. 

The two Bragg peaks are separated with the expected quantity, 2 1,11 f, which a ows us 

to check that any spectral method we apply correctly locates the first-order peaks (see 

Chapter 3). This quantity will be referred to as the theoretical frequency difference 

given by: 

Aft = 
2fb = 

2, T 

The difference in amplitude of the two peaks is related to the wind direction, 0.., For 

example, a wind blowing predominantly towards the radar results in the approaching 
Bragg line that is greater than the receding line. The directional distribution of ocean 

waves is usually assumed to be of the form: 

cos 
2s 02 oý, 

' 
), 

(2.12) 

where s is a spreading coefficient. 

This model allows sea waves to be generated in all directions except directly upwind, 

which qualitatively agreed with observations (Heron et al., 1985). Figure 2.6 shows 
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different directional distributions from equation (2.12) with 0,,, = 0' depending on the 

choice of the spreading coefficient s (s- 1,2 and 3). 

90 

, aD 

Z? O 

Figure 2.6: Superposition of four directional distributions, corresponding to different 
spreading coefficients s, represented in green for s=], in red for s2 and blue for s 3. 
In this case, the vAnd direction is 0. = 0". 

The Bragg ratio, r, is defined by (Wyatt et al., 1997a) 

Cos 2s 
0- - ow 

2 
r+ 

Cos 
2s 

0+ 
- 

oca 

2 

where or + and a- are the integrals under the positive Bragg peak and negative peak 

respectively and 0+ and 0- are the known propagation directions of the Bragg 

waves, along the radar beam towards and away from the radar respectively. 

If we refer these directions to the radar beam direction, 0=0 and 0' = ; r, then the 

equation (2.13) becomes 

22 
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Cos 2s 0. 

r -- 
ý2 

Cos 
2s 

r sin 
2s 

sin 
2s 

0.2 

2 

Cos 
2 (X =I+ cos 2(x 

Because V(x c= 91 2 we finally get 
sin 

2 ()C =I- cos 2oc 
2 

+ cosO. r(I - cosO. cosO. 
V-r- 1 (2.15) Vr- +I 

Figure 2.7 shows the superposition of the different solutions to the equation (2.15) 

obtained for the wind direction 0) related to the Bragg ratio r. In order to have a 

broad directional distribution, we disregard the solutions given by s ý: 4 (see figure 

2.7). For example, when r=2, we obtain in function of the spreading coefficient s the 

following angles for 0.: 

9 s=l, 0,, = 70.5* 

e s=2,0,, = 80.2* 

s=3,0-=83.1* co 

9 s=4,0(, = 84.8* 

The angular difference obtained with a spreading coefficient s=I and the other 

spreading coefficients is too large in regard of the error range given by earlier 

experiments which is around 10* (Wyatt and Ledgard, 1996). Also, the directional 

distribution in this case when s=1 is too large, in another words, two close values of r 

result in a large difference between the respective wind directions. Thus, we disregard 

the solution with a spreading coefficient of 1. Finally, the spreading coefficient is 

taken to be two in our case because a broader directional distribution is shown 

especially when r ý: I (Wyatt et al., 1997a). 

When the radar beam direction, OR I 
is taken into account, we then obtain 

COS(O. -0, )= 
ýi 1 

(2.16) 
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With a single radar measurement, the obtained value of 0,, can be either clockwise or 

anticlockwise from the radar beam; to resolve this ambiguity a second radar is used. 

Cos 0 
bi 

r 

Figure 2.7: Superposition of different curves describing the relationship between the 
cosine of the wind direction 0 

CO and the Bragg ratio r. 

25 Second-order measurements 

In contrast to the "spiky" feature of the first-order effect, the second-order continuum 

surrounding the main Bragg peaks, marked as B in figure 2.4, is a continuous function 

of ftequency. It is produced by: 1. non-linear ocean waves of the correct wavelength 

which do not satisfy the linear dispersion relationship propagating with different speeds 

and giving rise to different Doppler shifts-, and 2. double electromagnetic scattering 

processes also giving different Doppler shifts. From hydrodynamic and 

electromagnetic theory, Barrick (1977) developed an expression for the second-order 

24 
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spectrum. He showed that the second-order part of the backscattered spectrum may be 

described by the following nonnalised equation : 
02 

a2 (11) f K(i1,0)S(k', 0')S(k, 0)d0 (2.17) 
0, 

where K is a coupling function describing double scattering processes and non-linear 
interactions between pairs of ocean waves, which define its two constituent parts: the 

electromagnetic and hydrodynamic coupling coefficients, 

Tj is the normalised Doppler frequency (such that the negative Bragg peak 

occurs at il = -1 and the positive Bragg peak at 71 = +1), 

k= k(ij, O) and k'= k'(il', O') are the ocean wavenumbers of the interacting 

waves obeying the constraint k+ P= 2k-O where ko is the radar wavenumber, 

S(k, O) is the full directional wave spectrum, 

and 01 and 02 define limiting angles (Holden and Wyatt, 1992). 

ý3 2 (11) is the normalised power spectrum of the second-order backscatter. It is 

divided by the first-order Bragg power in order to cancel unknown factors such as 

path loss and system gains. This convenient normalization was first suggested by 

Hasselmann (1971). The full directional spectrum, S(k, O), can be expressed by 

(Tucker 1991): 

S(k, 0) = S(f ) G(f , 0) (2.18) 

where S(f) is one-dimensional spectrum and G(f, O) expresses how the energy at 

frequencyf is distributed by direction of wave travel. 

The aim of the work at Sheffield is to assess the use of HF radar systems for 

measuring S(k, O). Parameters such as significant waveheight, mean period and mean 
direction can be determined from S(k, O). 

The significant waveheight, Hs, is defined as (Tucker, 1991) 

HS =4ý 
rý(f 

) df (2.19) 
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df 2n 

where Off) = JS(k, O)dO and 0(f) is the spectral density function. In other A0 

words, Hs provides a measure of the total energy in the wave spectrum. 

The mean wave period T. is related to the inverse of the average frequency of the 

spectrum and is defined as 

Tw = 
fo(f)df 

(2.20) 
f0 (f ) fdf 

By inverting the non-linear Fredholm equation (2.17), the full directional wave 

spectrum, S(k, O), can be determined. A number of methods have been developed to 

solve this equation (Lipa et al., 1986 and Howell, 1990). For this work, we use the 

Wyatt inversion method (Wyatt, 1990b and Wyatt and Atanga, 1997b). Initial 

conditions concerning the wave parameters (such as Hs, T. and shortwave direction) 

are necessary to initiate this inversion method. They are extracted directly from the 

second-order continuum when normalized with respect to the first-order spectrum. 
These first estimates are used to model the wind wave spectrum, S(k', O') in equation 

(2.17), as a Pierson-Moskowitz spectrum with a COS4 directional distribution (Wyatt 

and Atanga, 1997b). 

We are interested in these expressions for Hs and T. because they will be useful to 

make comparisons between the periodogram and the selected modem spectral method 
(see Chapter 3). If we can measure these parameters with sufficient accuracy from our 

new spectral estimates we can proceed to test the accuracy of the inversion. 

2.5.1 Significant waveheight, H. 

Two expressions for H, using (Y 2 (11), have been developed by Wyatt (1986): 

* for the waves traveling perpendicular to the radar beam: 

Hs = aR ,a r= 91+ regression coefficient 

e for all other waves: 

26 



Chap. 2: HF Radar Measurements 27 

H, = PR7 , 
P,, y r= 91+ regression coefficients (2.22) 

f (Y-- FT1) -d where R2 11 +f (7 2 
(11)dll 

, il being the normalised Doppler frequency 
FL 

ýFjl 

(such that il = -1 at the negative Bragg peak and Tj =1 at the positive one), 

a2 (11) the normalised power spectrum of the second-order backscatter (it is divided 

by the first-order Bragg power), 

FL = 
[0.411BJIBIýJll r= FBI, FU = 

[11 
B 91*6TI B 

171 (=- FB I 

FB = lfrequencies il contributing to the first - order spectruml, 

and 11 B=I, the nonnalised Bragg frequency. 

A question arises: which of these two values for Hs is the correct one ? This can be 

only determined with additional information from a second radar or another system, 

such as wave buoy system (see Chapter 5 section 5.2.1). When two HF radar systems 

are used, the final value for H, is obtained by averaging the two closest quantities 

given by equations (2.21) or (2.22) resulting from each radar. 

2.5.2 Mean wave period, T. 

As for Hs, a formula for T. has been derived (Wyatt, 1986): 

f Cr 2 (11)dTl f Cr 2 (11)dTl 

T. =& 
F, F fB -+b, a, b E=- 91 (2.23) - fB + ýo 

f Cr 2 
1ý1 

- 'IdTl f Cr 2 
IhI 

- 'IdTl 

F, F. 

where fB is the Bragg frequency, 

[0911 
B]X 

111 EFB19 Fu 
-, 2 

MB 
e211B]\ITI E FB 1, 

and a and b are regression coefficients. 
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Z6 Data analysis 

In the following chapters, we will use the fact that the data are complex Gaussian. So 

we need to check this property for HF radar data. 

The stationarity of the data was assumed for the application of the periodogram in 

section 2.3.1 and this property has always been assumed for HF radar data. Since to 

show the stationarity of a signal is a very difficult task, this assumption is also made in 

this work. This will be necessary for the application of modem spectral techniques 

presented in the next chapter and the application of the Monte Carlo simulation study, 

a method of comparison described in Chapter 5. But, we propose here a preliminary 

investigation using the Wavelet analysis, a time-frequency method, which allows us to 

analyse non-stationary and interference effects present in the data. For some cases of 

HF radar data, non-stationarity has been identified with the Wavelet analysis. 

2.6.1 Complex normality 

Complex normality stands for a complex process following a Gaussian distribution. 

To investigate complex normality, we show first the normality of the real and 

imaginary parts of the data and then, the zero-correlation between the real and 

imaginary parts. 

2.6.1.1 Normality 

We have used an algorithm from Numerical Recipies in C (Press et al., 1988): the 

Kolmogorov-Smirnov test. The program is included in Appendix C because there are 

errors in the published code (p492). The test is well explained by L. Sachs (1984, p 
330). 

The Kolmogorov-Smirnov goodness of fit test is: 

HO : F(x) = FO (x) for all x (2.24) 
# HA : F(x) # FO (x) for some x 

28 



Chap. 2: HF Radar Measurements 29 

the null hypothesis, HO, that the sample comes from a population with known 

distribution function, FO (x) , is tested against the alternate hypothesis, HA 0 that the 

population underlying the sample does not have FO(x) as its distribution. 

The Kolmogorov-Smirnov statistic measures discrepancy as the maximum absolute 

difference: 

D= maxi FN (x) - F, (x)i 2.25) 

where FN (x) 
Ix (number of observations :5 x) and N the number of data 

N 

points. 
The significance level, a Ks, of an observed value of D is given by the probability 

P(D > observed) = QKs (-, [N-D) = OC KS 

where QKSW = 2j (-I) j-1e _2j2X? is a monotonic function (Press et al., 1988, p491) I 
j=1 

satisfying the limit conditions 
QKS (0) «'-': 1 JQKS 

(00) -2 

Large values of D (D ý! 0.05) show that the cumulative distribution function of data 

is significantly different from the normal distribution. 

We did several Kolmogorov-Smimov tests for each system (PISCES and OSCR) on 

the real part jxj9***9XNj and the imaginary part IYII***, YNI of the data with 

N= 1000, and small values of D were obtained. For example, with the PISCES and 

OSCR files used to produce the periodograms seen in figures 2.2 and 2.3, we found: 

" OSCR file: 
D=0.027 (real part) 

D=0.017 (imaginary part) 

" PISCES file: 
fD=0.027 (real part) 
[D = 0.026 (imaginary part) 

Therefore, we can accept the normality for both real and imaginary parts of the HF 

radar data. 
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2.6.1.2 Correlation 
We use the Pearson's correlation coefficient (Press et al., 1988): 

I (xi - 30(yi - Y) 
rPearson ýi (2.26) guxi 

- 
_YY gui-- -yy 

for pairs of quantities (xi 
, yj where Y and 7 are respectively the mean of the 

xi 's and yj 's. 

In our case, the pairs (xj, yj), =, _, 
represent respectively the real and imaginary parts 

of the data. 

To have no correlation, we must have jrp,. 
r,,,,, 

j<0.05, it must be close to 0. If 

lrp,. 
r,,,,, 

I=1, then it means complete correlation. 

For both systems, different files were tested and correlation was not present between 

the real and imaginary parts. For example, with the data used to produce the 

periodograms seen in figures 2.2 and 2.3, we find that jrr .... 
I=0.001. 

Therefore, since the zero-correlation between the real and imaginary parts of the data 

can be assumed and since the normality of the different parts were shown, we can 

assume that the data are complex Gaussian. 

2.6.2 Wavelet analysis 

This section introduces the wavelet analysis which describes how the spectral content 

of a signal changes in time. This time-frequency analysis provides the opportunity to 

interpret interference and non-stationary effects and show the quality of the data. 

Until now, we have used the Doppler spectrum with its two distinct peaks in order to 

get wave parameters (e. g. significant wave height, mean period, etc. ), but we do not 
know when the frequencies of these two peaks occurred. 

In Chapter 1, we saw that the time variations of the Bragg frequencies are related to 

the ocean wave height (Kahn 1991), in other words to the second-order contribution. 

Further information in the time domain might help to understand these variations and 
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then interpret interference effects. Therefore, we are interested in applying the 

wavelet analysis to HF radar data. 

The Wavelet Transform (WT) is of interest for the analysis of non-stationary signals, 

because it provides an alternative to the classical Short-Time Fourier Transform 

(STFI'). 

In contrast to the STFT, which uses a single analysis window, the WT uses short 

windows at high frequencies and long windows at low frequencies. 

For some applications it is desirable to see the WT as a signal decomposition onto a 

set of basis functions, called wavelets. They are obtained from a single prototype 

wavelet by dilations and contractions. The prototype wavelet can be thought of as a 

bandpass filter. In a WT, the notion of scale is introduced as an alternative to 

frequency, leading to a so-called time-scale representation. This means that a signal is 

mapped into a time-scale plane (the equivalent of the time-frequency plane used in the 

STFT). 

2.6.2.1 Non-Stationary Signal Analysis 

The aim of signal analysis is to extract relevant information from a signal by 

transforming it. 

For stationary signals x(t) , that is, signals whose statistical properties do not involve 

time, the natural "stationary transform " is the well-known Fourier transform: 

X(f f x(t)e -2jirftdt (2.27) 

The analysis coefficients X (f ) define the notion of global frequency, f, in a signal. 

They are computed as inner products of the signal with sinewave basis functions of 

infinite duration. As a result, Fourier analysis works well if x(t) is composed of a 

few stationary components. 

However, any abrupt change in time in a non-stationary signal x(t) is spread out over 

the whole frequency axis in X (f ). 

Therefore, an analysis adapted to non-stationary signals requires more than the Fourier 

Transform. The usual approach is to introduce time dependency in the Fourier 
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analysis while preserving linearity. The idea is to introduce a "local frequency" 

parameter (local in time) so that the "local" Fourier Transform looks at the signal 

through a window over which the signal is approximately stationary. Another 

(equivalent) way is to modify the sinewave basis functions used in the Fourier 

Transform to basis functions which are more concentrated in time (but less 

concentrated in frequency). 

2.6.2.2 The Short-Time Fourier Transform : Analysis with Fired Resolution 

Consider a signal x(t) and assume it is stationary when seen through a window g(t) 

of limited extent, centered at time locationr . 

The FT of the windowed signals x(t) g* (t -, r) yields the STFT: 

STFT(, c, f) =f x(t)g*(t-, r)e-2j'ftdt (2.28) 

whi ch maps the signal into a two-dimensional function in a time-frequency plane 

The parameter f is similar to the Fourier frequency and many properties of the 

Fourier transform carry over to the STFr- However, the analysis here depends 

critically on the choice of the window g(t). 

An alternative view is based on a filter bank interpretation of the same process. At a 

given frequency f, equation (2.28) amounts to filtering the signal " at all times " with 

a bandpass filter having as impulse response the window function modulated to that 

frequency. 

A possible drawback to the time and frequency resolution can be shown. Consider the 

ýbility- of the STFT to discriminate between two pure sinusoids. Given a window 

function g(t) and its Fourier transform G(f ), define the bandwidth Af of the filter 

as 

A2=ff2 
JG(f )12df 

(2.29) ff 
JG(f )1 2 

df 

where the denominator is the energy of g (t) 
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Two sinusoids will be discriminated only if they are more than Af apart. Thus, the 

resolution in frequency of the STFr analysis is given by Af . Similarly, the spread in 

time is given by At as : 

At2 =ft 
21g(t)12 dt 

(2.30) 
f lg(t)12dt 

where the denominator is again the energy of g(t). 

Two pulses in time can be discriminated only if they are more than At apart. 

Now, resolution in time and frequency cannot be arbitrarily small, because their 
A 

product is lower bounded. 

The Time - Bandwidth product must satisfy the inequality: At Af ý! 1/4n : the 

Uncertainty principle or Heisenberg inequality. It means that one can only trade time 

resolution for frequency resolution, or vice versa. Gaussian windows are therefore 

often used since they meet the bound with equality. 

More important is that once a window has been chosen for the STFT, then the time- 

frequency resolution given by (2.29) and (2.30) is fixed over the entire time-frequency 

plane since the same window is used at all frequencies. 

2.6.2.3 The Continuous Wavelet Transform :a multiresolution Analysis 

To overcome the resolution limitation of the STFT, one can imagine letting the 

r esolution At and Af vary in the time-frequency plane in order to obtain a 

multiresolution analysis. Intuitively, when the analysis is viewed as a filter bank, the 

time resolution must increase with the central frequency of the analysis filters. We 

therefore impose that Af is proportional tof. 

-ýf-- =c where c is a constant. (2.31) 
f 

The analysis filter bank is then composed of band-pass filters with constant relative 

bandwidth (so-called " constant-Q " analysis). Another way to say this is that, instead 

of the frequency responses of the analysis filter being regularly spaced over the 

frequency axis (as for the STFT case), they are regularly spread in a logarithmic scale. 

33 



Chap. 2: HF Radar Measurements 34 

When (2.3 1) is satisfied, we see that Af and therefore also At changes with the 

centre frequency of the analysis filter. Of course, they still satisfy the Heisenberg 

inequality (2.30), but now, the time resolution becomes arbitrarily good at high 

frequencies, while the frequency resolution becomes arbitrarily good at low 

frequencies. 

A generalization, of the concept of changing resolution at different frequencies is 

obtained with so-called " wavelet packets ", where arbitrary time-frequency 

resolutions (within the uncertainty bound (2.30) ) are chosen depending on the signal. 

The Continuous Wavelet Transform (CWT) follows the above ideas while adding a 

simplification: all impulse responses of the filter bank are defined as scaled, (stretched 

or compressed) versions of the same prototype h(t) : 

I 
h( ta) 

Cla I 

I 
where a is a scale factor. The constant 71a I is used for energy normalization. This 

results in the definition of the CWT: 

CWTx (r, a) =1 x(t)h* (2.32) Cla I 
(t 

a" 

ýt 
- 

To make the connection with the modulated window used in the STFF clearer, the 

basic wavelet NO in (2.32) could be chosen as a modulated window: 

-2jitfol h(t) = g(t)e 

Then the frequency responses of the analysis filters indeed satisfy (2.31) with the 

identification: 
fo. 
f 

The local frequency f= 
fo 

, whose definition depends on the basic wavelet, is no 
a 

longer linked to frequency modulation (as was the case for the STF17) but is now 

related to time-scalings. This is the reason why the terminology " scale " is preferred 

to " frequency " for the CWT, the word " frequency " being reserved for the STFT. 

Note that we define scale in wavelet analysis like the scale in geographical maps: 

since the filter bank impulse responses in (2-32) are dilated as scale increases, large 
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scale corresponds to contracted signals, while small scale corresponds to dilated 

signals. 

2.6.2.4 Wavelet Analysis and Synthesis 

Another way to introduce the CWT is to define wavelets as basis functions: 

(2.31)4=> CWT, (T, a)=fx(t)ha-,, r(t)dt 

which measures the "similarity" between the signal and the basis functions 

h,,,, r (t) =I-ht 
Ir ) 

called wavelets. 
-, 
fa- 

(a 

The wavelets are scaled and translated versions of the basic wavelet prototype h(t) . 

The reconstruction of x(t) =c ff CW7ý (, r, a)ha,, (t) 
dadt 

(2.33) 
a>O a 

is satisfied whenever h(t) is of finite energy and band pass (which implies that it 

oscillates in time like a short wave, hence the name " wavelet "). More precisely, if 

h(t) is assumed sufficiently regular, then the reconstruction condition is f h(t)dt = 0. 

Note that the reconstruction takes place only in the sense of the signal's energy. A 

signal may be reconstructed only with zero mean. 

2.6.2.5 Scalograms 

The spectrogram, defined as the square modulus of the STFT, is a very common tool 

in signal analysis because it provides a distribution of the energy of the signal in the 

time-frequency plane. 

A similar distribution can be defined in the wavelet case. Since the CWT behaves like 

an orthonormal basis decomposition, it can be shown that it preserves energy. We 

have 

2 dtda ffjCW7ý(T, a)j 2 

where Ex =f IX(t)12 dt is the energy of the signal x(t) . 
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This leads us to define the wavelet spectrogram or scalograrn. as the squared modulus 

of the CWT. It is a distribution of the energy of the signal in the time-scale plane, 
dTda 

associated with measure 2, and thus expressed in power per frequency unit, like 

the spectrogram. However, in contrast to the spectrogram, the energy of the signal is 

here distributed with different resolutions. 

2.6.2.6 Application 

We have been using the Morlet wavelet: 

h(t) =e 2"" e -0.5t2-e-2x2 

and analysing the scalograms given by this wavelet basis. The Morlet wavelet is a 

normalized, Gaussian-enveloped complex sinusoid with zero mean. It is only nearly 

orthogonal but offers satisfactory resolution and stability. 

Figure 2.9 exhibits the scalogram. of a good PISCES file, EB0319.011 (measurement 

taken at I lam on 19 March 1987). As can be seen, it contains 2 main parts which 

correspond to the 2 main Bragg peaks given by the spectral estimate shown in figure 

2.8. Here, the frequency scale is different from the spectral ones: the zero Doppler is 

shifted to the right by 1.2511z. Between these two rows, there is a "small valley" 

which means that the frequencies between 0.6 and 1.5Hz during all the emission of 

the signal are not powerful enough to show up (for the power scaling here). Figure 

2.10 shows the scalograrn from 0.7Hz to 1AHz. The power is much lower than the 

one contained in the peaks of figure 2.9. 

36 



Chap. 2: HF Radar Measurements 37 

1ý 

-1.25 -1.00 -0.75 -0.50 -0,25 0,00 0.25 D. 50 0,75 1 Do 1.25 

c) 

CL 

Q- 
CL 
0 rl , 71 

-1.25 -1.00 -0.75 -0.50 -0.25 D. 00 0.25 0.50 0.75 1.00 1.25 

Frequency Hz 

Figure 2.8: Periodogram from the PISCES (measurement taken at IIa. m. on 19 
March 1987), N= 4608 and P= 33. 
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Figure 2.9: Morlet scalogram obtained from the PISCES file E130319.01 1. 
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Figure 2.10: Morlet scalogram obtained from the PISCES file E130319.01 1, showing 
the frequencies from 0.7Hz to 1.41-1z. 

Plotting the data of this file, we can see that the real and imaginary parts behave in the 

same way. Figures 2.11 and 2.12 show the first 2000 samples. 

8 
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Figure 2.11: First 2000 real data points of the PISCES file EB03 19.011. 
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time 

Figure 2.12: First 2000 imaginary data points of the PISCES file E130319.01 1. 

With reference to the PISCES file E130316.008 (measurement taken at 8am on 16 

March 1987), the scalogram (figure 2.13) seems to be similar when compared with the 

previous one. Figure 2.14 shows its periodogram. There is some perturbation at the 

large negative frequencies and the total frequency difference is not very close to the 

theoretical one: Af = 0.527344Hz and Af, = 0.532674Hz. 

2000 

Figure 2.13: Morlet scalogram of the PISCES file EB0316.008. 
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Figure 2.14: Periodogram of the PISCES file EB0316.008. 

But if we look more at the scalogram, we can notice that at the beginning (in time) for 

the first row (foreground), the power tends to have less variability during the 500 

seconds (which correspond roughly to the first 1500 data points). Figure 2.15 exhibits 

the Autoregressive (AR) PSD estimate which does not use the first 2000 samples. 

This spectral estimate is obtained from a modem spectral method, the modified 

covariance method, which will be presented in the following chapter and fully 

described in Chapter 4. It no longer contains the perturbation noted in the figure 2.14 

and also a better estimation of Af is obtained: Af = 0532227Hz - The signal is 

plotted in figures 2.16,2.17,2.18 and 2.19. For the first 2000 data points (figures 

2.16 and 2.17), note that the real and imaginary parts are very different particularly at 

the beginning. For figures 2.17 and 2.18, they vary in a similar way. 
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Figure 2.15: AR PSD estimate of the PISCES file EB0316.008. The first 2000 data 
points are not used and the perturbation of the figure 2.14 has disappeared. 
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Figure 2.16: Real part of the first 2000 data points of the PISCES file EB0316.008. 
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Figure 2.17: Imaginary part of the first 2000 data points of the PISCES file 

EB0316.008. 
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Figure 2.18: Real part of the last 2609 data points of the PISCES file E130316.008. 
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Figure 2.19: Imaginary part of the last 2609 data points of the PISCES file 
E130316.008. 

Another interesting example is given by the periodograrn of the file EB0327.021 

(figure 2.20, measurement taken at 21pni on 27 March 1987). Figure 2.21 exhibits its 

scalograin where peaks show up only at the beginning of the record. If we look at this 
file, we notice that the first 700 samples are much larger in amplitude than the rest. 
Figures 2.22 and 2.23 show respectively the periodograin and the AR PSD estimate 
(obtained by the modified covariance method as well), with N= 700. They give a 
satisfactory estimation of the frequency difference, Af = 0532227Hz 

(Aft = 0533065Hz) and the level of the noise has reduced by about 10 dB. 
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Figure 2.20: Periodogram of the PISCES file E130327.021 
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Figure 2.21: Morlet scalogram of the PISCES file E130327.02 1. 
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Figure 2.22: Periodogram of the PISCES file EB0327.021 using only the first 700 
data points. 
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Figure 2.23: AR PSD estimate of the PISCES file E130327.021 with 

,N= 700 and p= 40. 
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The last example we propose concerns the problem of split peaks shown in figure 1.2. 

Figure 2.24 exhibits the scalogram of the same file originating from the OSCR system. 
The measurement was taken at 6pm on 6 January 1996 from the cell 55. As it can be 

seen, two rows appear as for the previous cases with the PISCES system. If we zoom 
into the region containing the most powerful frequencies, figure 2.25 (a), with the top 

view (b), we can see clearly that the Bragg frequency has moved during the hour 

measurement. We can also notice there is an anomaly during the period of time 600- 

700s; no signals show up. 

We can see already that the wavelet analysis is useful and promising. It can tell us 

when the information is the most reliable and show the quality of the data. It reveals 
lack of stationarity and emphases the importance of using modem spectral methods. 

Mo6et ScaJogram 
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Figure 2.24: Morlet scalogram obtained from the same OSCR file as shown in figure 
1.2 (cell 55, measurement taken at 6pm on 6 January 1996). 
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Figure 2.25: Morlet scalogram obtained from the same OSCR file as shown in figure 
1.2 (cell 55, measurement taken at 6pm on 6 January 1996), showing the frequences 
from OAHz to 0.7Hz, side view (a) and top view (b). The rectangular highlights in (b) 
show the moving Bragg fi-equency. 
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Chapter 3 

Modern Spectral Estimation 

This section provides a review of techniques for the modem spectral estimation. We 

are interested in finding the most appropriate to our applications in other words HF 

radar systems for ocean monitoring. 

The motivation of using such methods is the use of short data sets while providing 

stable spectral estimates. In order to select the most efficient and reliable modem 

spectral method, the different methods are tested on the data collected by the PISCES 

system. Some methods are limited by the amount of data which can be used, which 

leads us to take data sets of 100 samples. In this chapter, we just consider the first- 

order effect. We look at the position of the two main Bragg peaks and compare the 

total frequency difference to the theoretical one (see equation (2.11)). The second- 

order contribution will be investigated in the following chapters. 

Four different spectral estimations are described and applied: L the autoregressive 

spectral estimation suitable for spectra with sharp peaks; 2. the autoregressive moving 

average spectral estimation able to represent different spectral shapes; 3. the 

eigenanalysis-basedfrequency estimation producing peaks at narrowband spectra and 

4. the recursive maximum likelihood estimation (RMLE) which is restricted to real 

data. 
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3.1 Historical review 

The ocean wave measurements are obtained from the periodograrn based on the FFr 

processing. This classical spectral technique was introduced by Shuster (1898). In 

1927, Yule proposed an alternative analysis method by performing a least squares 

autoregression analysis of the following model : 

u(k) = b(l)u(k - 1) + b(2)u(k - 2) + F- (k), 

with e(k) small random error at each time k, b(l) and b(2) 2 arbitrary values and 

u(k) the signal, in order to search for any periodicities in the data. 

The solution of this regression equation is a damped sinusoid. The normal equations 

resulting from this analysis have been called the Yule-Walker equations. Walker 

(1931) used this technique to investigate damped sinusoidal time series. 

The year 1930 marked a major turning point for spectral analysis. It was Wiener who, 

by publishing his classic paper "Generalized Harmonic Analysis" (1930) placed 

spectral analysis on a firm statistical basis in its treatment of random processes. 

Precise statistical definitions of autocorrelation and power spectral density (PSD) 

were given for stationary random processes. These two functions of a random process 

were shown to be related via a continuous Fourier transform, which is the basis of the 

Wiener-Khintchine theorem. Wold (1938) introduced the terms moving average and 

linear autoregression for time-series model. He was the first to describe the 

relationship between the autoregressive parameters and the autocorrelation sequence 

as the Yule-Walker equations. He also introduced a very important decomposition 

theorem for stationary time series. It asserted that any stationary random process 

could be expressed as the sum of a deterministic component and a one-sided moving- 

average process driven by a white noise. This theorem led Kolmogoroff (1939) to 

formulate and solve the linear prediction problem. In 1948, Barlett suggested the 

computation of a spectrum from the autoregressive coefficients. 

The prime motivator for the current interest in high-resolution spectral estimation 

from limited data sets may be attributed to Burg (1967). He developed the maximum 

entropy spectral analysis which is related to autoregressive spectral analysis. Since 

then, many modem spectral analysis methods have been developed because of their 

ability to provide high frequency resolution from short data sets (Marple, 1987 and 
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Kay, 1988). Figure 3.1 shows an example of this ability. Two power spectra are 

presented, both resulted from a sum of two complex exponential functions plus a 

noise term. One is obtained by the conventional FFT and the other one by the Burg 

method. As it can be seen, the two peaks are thinner with the Burg method; higher 

frequency resolution is obtained. 

The fact that fast algorithms have been developed is an important consideration for 

real-time operation. 
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Figure 3.1: Power spectra over 128 frequency points resulted from the FFT (a) and 
the Burg method (b), showing the differences in the frequency resolution. 

3.2 Autoregressive Spectral Estimation 

Let jx(l),..., x(N)j be N consecutive samples of the time series of ocean 

backscatter at one range cell. 

The observed sequence jx(l),..., x(N)j is assumed to be the output from a pth order 

autoregressive (AR) model driven by a white noise process u(n), in other words the 

current output sample x(n) is assumed to be a weighted sum of P past output samples 

plus a noise term: 
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.p 
x(n)+Iakx(n - k) = u(n) 

k=l 

where ak is AR parameter k of a pth order AR process. 

The linear prediction problem is simply stated as follows. Given the observations 

x(s), s:! ý n, we wish to estimate the next sample x(n), n>0. Consequently, the AR(p) 

process is a linear prediction problem. 
A 

Our objective is to compute the AR power spectral estimate p (f ) (Marple, 1987) 
AR 

once the AR parameters have been estimated: 
A TO 
P(f)- 2 (3.2) 
AR p 

-2jicfnT 1+ 1 ip(n)e 
I 

n=l 

where T is the sample interval, 
A 

p is an estimate of the driving noise variance, 

and fi P (n ) are the AR parameter estimates. 

To do so, we have computed the covariance and the modified covariance methods 

which are based on a least squared linear prediction approach and the Burg method 

which estimates the reflection coefficients (Marple, 1987, p 195 and 213). These 

coefficients are provided by the Levinson recursion : 

ap (n) = ap-, (n) + kpa; 
-, 

(p - n), (3.3) 

where kp = ap (p) - 

All these methods are described by Marple (1987) and Proakis-Manolakis (1992). 

The modified covariance method is fully described in the next chapter. In Appendix 

B, a brief description of the Burg method is given. 

For the location of the two main peaks, the modified covariance and Burg methods 

give similar results on the PISCES data. For example, figures 3.2 and 3.3 show the 

AR PSD estimates of the PISCES file EB0328.008 (measurement taken at II am on 28 

March 1987). The estimated frequency difference is the same for these two 

techniques: Af =0.620117Hz and the theoretical frequency difference is: 

Aft = 0.620583Hz - 
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When the difference between' Af and Af, is smaller than one frequency bin, 

AF 0.00594 (OSCR system) h=N=0.00488 
(PISCES system) 

where AF is the frequency range and N the 

number of frequency points, we assume that " Af is close to Af, ". This is the case 

for the last examples. 

Marple (1987, p224-229) describes estimator characteristics and the different 

anomalies met in the autoregressive spectra. The main difference between the Burg 

and the modified covariance techniques is that in the Burg method the phenomenon of 

spectral line splitting can occur. This phenomenon is not the same problem 

mentioned in the Introduction. Figure 3.4 exhibits a Burg spectral estimate that has 

split the first main peak into two peaks and figure 3.5 exhibits a modified covariance 

spectral estimate that does not contain line splitting at the same frequency. Herring 

(1980) studied the cause of line splitting in the Burg method. In the case of two 

complex sinusoids in high signal-to-noise ratio (SNR) of 40-500, it was shown that 

it is difficult to explain this phenomenon. No evidence of line splitting has ever been 

observed with the modified covariance method (Marple, 1987, p226). 

Therefore, we prefer to work with the modified covariance method because it is more 

reliable in this aspect. 

3.3 Autoregressive Moving Average Spectral Estimation 

The AR model is by far the most widely used (see previous section). It is suitable for 

representing spectra with narrow peaks, it results in very simple linear equations and 

the decomposition theorem due to Wold (1938) asserts that any autoregressive moving 

average (ARMA) or moving average (MA) process may be represented uniquely by an 

AR model of possibly infinite order. 
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Figure 3.2: Doppler spectrum of the PISCES file EB0328.008, obtained by the 
modified covariance method with N= 100 and p= 25. 
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Figure 3.3: Doppler spectrum of the PISCES file EB0328.008, obtained by the Burg 

method with N= 100 and p= 25. 
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Figure 3A Doppler spectrum obtained by the Burg method using the file 
EB0329.01 I with N= 90 and p= 30. The largest negative frequency peak between 

-05OHz and -0.25Hz splits into two peaks. 
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Figure 3.5: Doppler spectrum obtained by the modified covariance method using the 
file EB0329.01 I with N= 90 and p= 30. No line splitting occurs. 
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However, the ARMA model can generate diverse spectral shapes and it may be 

appropriate to our case. It can be expressed by: 

pp 
x(n)=-Iakx(n-k)+Ibku(n-k)=I, h(k)u(n-k), (3.4) 

k=l k=O k=O 

where ak is the AR parameter k of a pth order AR process, bk the MA parameter k 

of a qth order MA process and h(k) is a casual filter with h(O) = 1. 

Unlike the extensive range of algorithms to produce AR PSD estimates, there have 

been few algorithms developed for ARMA PSD estimates. This is due to the 

difficulty of estimating simultaneously the MA and AR parameters of the ARMA 

model. Iterative optimization techniques have been developed to solve the nonlinear 

equation obtained for the autocorrelation sequence r,,, (m) = E(x(n + m)x* (n)) (E 

being the expectation) : 

rý (-m) for m<0 
pq 

r,:., (m)=-jakrxx(M-k)+p,, bkh*(k-m)for 0: 5m: 5q. (3.5) 
k=l k=O 

p 

- 61 -k) for m>q , akrxx(M 
k=l 

But these techniques involve important computations and are not guaranteed to 

converge. Therefore, we implemented a suboptimurn technique (Marple, 1987, p 

285). This technique estimates the AR and the MA parameters separately in 3 steps 

1. estimation of the AR parameters with the covariance method, a,,.., ap from 

the original data based on a least-squares ARMA Yule-Walker technique. 

2. production of a residual time sequence by filtering the data with a filter based 

on the last AR parameters, 

3. estimation of the MA parameters from the residual time sequence bo,.., bq. 

The ARMA Yule-Walker equations (Marple, 1987, p 182) describe the relationship 

between the autoregressive parameters of the ARMA model and the autocorrelation 

sequence. 

Then, the ARMA PSD estimate can be evaluated: 
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PARMA (f )= 

q 
jbk 

exp(-2j7ckjT) 

p 
a, exp(-2jicUT) 

where we have taken small values of p=q. 

When p is too large, we find that the total frequency difference is biased: 

Af (p = 5) = 0.620117Hz (see fig. 3.6) and Af (p = 25) = 0.751953Hz (see fig. 3.7). 

Figures 3.6 and 3.7 are obtained from the file EB0319.01 1. 

This method is comparable to the AR methods with taking small values of p. Good 

estimation of the frequencies are obtained. Figure 3.6 exhibits the ARMA PSD 

estimate and its total difference frequency estimate, Af = 0.620117Hz 
, is close to the 

theoretical one, Af, = 0.620583Hz. But it is preferable to use the Burg or the 

modified covariance method in view of fact that the ARMA method is limited by the 

orders p and q and its computation takes (at least) twice the time of the modified 
covariance method (Marple, 1987). 
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Figure 3.6: Doppler Spectrum of the PISCES file E130319.011 obtained by an ARMA 
model with N= 100 and p=q=5. 
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Figure 3.7: Doppler Spectrum of the PISCES file EB0319.011 obtained by an ARMA 
model with N= 100 and p=q= 25. 

3.4 Eigenanalysis-Based Frequency Estimation 

This method described in Marple (1987, p 361) and Proakis et al. (1992, p 278), 

divides the information in the autocorrelation matrix RP of a random process jx(n)l 

into 2 vectors subspaces, one a signal subspace and the other a noise subspace: 

Rp= 
[r" (0) ... r; (P)I, 

(3.7) 
r" (P) ... r" (0) 

where rx (m) = E(x(n + m)x* (n)) 

This creates frequency estimators and their plots show sharp peaks at the frequency 

locations of sinusoids or narrowband spectral components. 

These frequency estimators are not true PSD estimators because they do not preserve 

the measured process power. Therefore, this method is only worthwhile for the 

estimated frequency difference between the two main peaks. 

n 
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Hickey et al. (1995) have used this technique in order to get radar surface current 

measurements, and good results (compared with the conventional FFT-based method) 
have been obtained. 
Here is a view of the eigen-decomposition method for sinusoids in white noise: 

p j(21rfn+ýj 
x(n) A. e n I.. N (3.8) 

where the amplitudes JA- I and the frequencies Ifi I are unknown and the phases 

Jýj I are statistically independent random variables uniformly distributed on (0,2n). 

Then, x(n) is wide-sense stationary with the autocorrelation function 

p jlrfm 
pie (3.9) 

The observed sequence is 

y(n) = x(n) + w(n) (3.10) 

02 where w(n) is a white noise sequence with spectral density 
w. 

its autocorrelation function is 

yy 
(M) (M) + C; 8 (M), M 7 xx w 0, ± I, -+(n 

and its autocorrelation matrix is 

[, +(; 2j ryy =I,, w (3.12) 

,,, x 
is the autocorrelation matrix for x(n) of rank p: where 1' 

p 2j7rfi 2jn(n-I)fi 
p, s, sý, si ee (3.13) 

where H denotes the Hermitian transpose operation. 

Now, we are ready to do the eigen-decomposition of r... Let the eigenvalues JX, I 

be ordered in decreasing value with XI ýý X2 
- ýý X m, M being the rank of ryy and 

M>p. And let the corresponding eigenvectors be denoted as Ivi, i=L. M 

Assume that 

Vi 
H 

vj =sij. (3.14) 

In the absence of noise, we have 
Xj # O'i = I.. p p 

and r.,, Xjvj viH 
Xp+i =x0 p+21 
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The vectors vi, i=l.. p are called the principal eigenvectors and the values 
Xj, i=L. p the principal eigenvalues. 

21=cy2 
M 

Also, we can write that aWWY, vj' Vi . (3.16) 

Pm 
6., 

(Xi 
+ ý: F 2) 

vi 
H+ jCy2 vivi 

H. F )y = 1: Then, W Vi W (3.17) 
i=1 i=p+l 

The set Iv,, i=L. pj represents the signal subspace and Ivi, i=p+L. MI the noise 

subspace which is orthogonal to the principal eigenvectors. Therefore, the vectors 
Isj are linear combinations of the principal eigenvectors and are orthogonal to the 

vectors in the noise subspace. 

Consider the weighted spectral estimate: 

3H 
2 

Wk ff)Vký (3.18) 
k=p+l 

where jVk 
,k=p+L. MI are the eigenvectors in the noise subspace, jwk I the set of 

positive weights and s(f = 
[1, 

e 2inf 
.., e 2jn(M-I)f ] the complex sinusoidal vector. 

Note that at f= fi, s(fi) s, , we have P(fi) = 0, i=L. p. Then Yp(f 
) can 

estimate the frequencies of the sinusoidal components. 

The MUSIC (stand for MUltiple SIgnal Classification) sinusoidal frequency estimator 

is a special case in which wk = 1, Vk : 

PMUSIC (f )="12 (3.19) 
I jSHWVkj 

k=p+l 

The estimate of the sinusoidal frequencies are the peaks of PMUSIC (f 

In our case, we would prefer to get two peaks. 20 tests with the PISCES data have 

showed that we can get a good estimation of the most important peak. For example, 

figure 3.8 (file EB0319.01 1, measurement taken at II am on 19 March 1987) exhibits 

the two peaks and a good estimation of the total frequency, Af = 0.620117Hz, 

compared to the theoretical one, Aft = 0.620583Hz, and figure 3.9 (file EB0329.01 1, 

measurement taken at II am on 29 March 1987) with the same Af, shows what occurs 

in almost all the cases (only one peak), here at the frequency f, = 0.37Hz. Taking 
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the former f, and half of the theoretical frequency difference, an approximation of 

the shift frequency, fu, can be obtained. Therefore, this technique is of interest in 

surface current calculations. 

However, since it is impossible to get the second-order contribution, we prefer to use 

the autoregressive spectral estimation. 

0 

5 

m 

It 
a 

Id ý 

Figure 3.8: MUSIC estimate of the PISCES file EB0319.011 with 
N=90 and P=2. 

. t25 IM WS loso 425 um 025 om 075 $Co ei 

dm 'cýS cýC oýS AD cý7s lix0 -ei 
5 Frequ exy Hz 

Figure 3.9: MUSIC estimate of the PISCES file EB0329.011 with 
N=90 and p=2. 
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3.5 Recursive MLE method 

The Maximum Likelihood Estimation (MLE) method proposed by Kay (1983) 

develops an estimate of the reflection coefficients, kp, and the order update of the 

autoregressive coefficients, ap(l),..., ap(p), which are provided by the Levinson 

recursion seen in section 3.1 equation (3.3). A description of this technique is given 
in Appendix C. 

It requires that X= jx(l),..., x(N)j be a real Gaussian random process because it 

rapidly becomes complicated in the complex case : the cubic equation (see Appendix 

C equation (C. 16)) which produces the estimates of reflection coefficients, is too 

difficult to be solved: the unknown appears as its modulus and as itself. 

The probability density function PDF of a real AR(p) is denoted by: 

p(X; a(l),.., a(p), a 2). (3.20) 

Let a= (a a (p))T 
. Then 

p(X; a(l),.., a(p), (y 2)= &(p),.., x(N) / x(l), - x(p - 1); a 'Cy 
2) 

(3.21) 
X &(I),.., x(p - 1); a, (y 2 

For large data records (more than 20 samples) which is the case here (100 samples), 

the maximization of the PDF or likelihood function can be effected approximately by 

maximizing only the conditional PDF in the right-hand-side of equation (3.21). The 

effect of the PDF p(x(l),.., x(p - 1); a, Cr 2) on the MLE will be small as long as the 

poles are not too close to the unit circle (see Kay, 1983). With this approximation the 

conditional PDF can be maximized by assuming that X= jx(l),..., x(N)j is a 

Gaussian random process. We have shown that this is true for our data (see Chapter 2 

section 2.5). 

The MLE method is used on the real or imaginary parts of the data. Another version 

of the subroutine TEST of the algorithm is included in Appendix A because of errors 

in the published code (Kay, 1988, p 267). Determining the root of the cubic equation 

which is the maximum likelihood estimate of the reflection coefficient, we must check 

firstly if the parameter D is positive (see Kay, 1983, section IH p 58). 
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This estimator is a closer approximation to the true MLE than the one obtained by 

linear prediction methods. Operating in a recursive way, it successively fits higher 

order AR models to the data (and the estimated all-pole filter is guaranteed to be 

stable). The RMLE does well with respect to the absence of spurious peaks and 

resolvability of closely spaced peaks. However, the requirement of real data is too 

restrictive. This method is not as good as the modified covariance or Burg method for 

spectral peak location estimations. Using the real part of the data (file EB0319.01 1), 

figures 3.10 and 3.11 exhibit respectively the RMLE spectrum and the periodogram, 

giving the same frequency (around MHz) for the first-order peak as shown in figure 

2.6. They are similar and of course both are symmetric, due to the absence of the 

imaginary contribution. 

Therefore, we prefer to leave this method aside. 

0 

t1 

125 dj» 1075 um 1025 UM 925 059 UPS , u9 1.2 

. ýq . ýo D'n dm 'oýS D. w oýS oýO 0.75 im 1.2 
Frequency Hz 

Figure 3.10: RMLE spectrum from the real part of the PISCES file E130319.011 with 
N= 100. 
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Figure 3.11: Periodogram from the real part of the PISý' ES file EB0319.01 1. 

3.6 Summary 

In this chapter, four different modem spectral estimations were considered. We chose 

to work with the autoregressive spectral estimation and particularly, with the modified 

covariance method because of its reliability and efficiency concerning the position of 

the two Bragg peaks. A full description of this technique is given in the next chapter. 
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Chapter 4 

The Modified Covariance Method 

In the previous chapter, we presented several modem spectral estimation method. The 

modified covariance method, introduced by Marple in 1980, was chosen because it 

revealed to be the most reliable and efficient concerning the first-order part of the 

spectrum. 
A full description of this technique, based on the autoregressive spectral estimation, is 

given for completeness. It is supplemented by some details not presented elsewhere. 
Some applications on HF radar data are shown and superposed with the periodogram 

in order to show the similarities between the second-order contribution. 

Based on the autoregressive model, we also point out its major problem which is the 

selection of the model order. 

Finally, we propose this method as a solution to the problem of split peaks mentioned 
in the Introduction, because of its ability to use short data sets. 
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4.1 Description 

This method performs combined minimization of the forward and backward linear 

prediction squared effors, and makes estimates of the linear prediction coefficients or 
AR parameters. 

Let jx(n)} be the N-point data sequence x(l),..., x(N) which estimate the pth-order 

AR parameters. 
Assume that x(n) =0 for n<0 and n>N. 

A 

The forward linear predictor x(n) for sample x(n) is such that 
Ap 

x(n)= -I ap(k)x(n - k) 
k=l 

where the a,, (k) are the forward linear prediction coefficients for order 

The forward linear prediction error is 
Ap 

ef (n)=x(n)-x(n)=x(n)+2; ap(, k)x(n-k) 
p k=l 

(x(n) 
.... x(n - P)) 

ap(l) 
for np+1,.., N (4.2) 

ap(p)) 

=XT (n)aJb 
pp 

For purposes of fitting an AR model, it is assumed that the prediction error is a 

whitened process. This equates the AR parameters to the linear prediction 

coefficients. 

Assuming jx(n)l to be a stationary random process, the forward and backward linear 

prediction coefficients are complex conjugates of one another. So the backward linear 

prediction error may be expressed as 

p 
eb (n) = x(n - p) +Ia; (k)x(n -p+ k) 
p k=l (4.3) 

= XT (n)JaO* 
pp 

00 

0 where J is a (p + 1) X (p + 1) reflection matrix, j01 
100 
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The modified covariance method minimizes the sum of the forward and the backward 

linear prediction squared errors: 
N2 12 jb b 

P (Jef (ný +Iep(n (4.4) PP n=p+l 

This leads to the set of normal equations 
ap jb p 

' ý0=* jap(j)rp(i, j)=O for i#O (4.5) 
Dap (i) j=o 

N 
where rp(i, j)= E(x*(n-i)x(n-j)+x(n-p+i)x*(n-p+j)) (4.6) 

n=p+l 

and ap (0) = 1. 

Using (4.5), the definitions (4.2) and (4.3) and the fact that rp (0, j) = rp (j, O) , we 

find: 

p 
pJb - ja (4.7) 

p p(i)rp(Oi) j=o 

Expressions (4.5) and (4.7) can be combined into a single (p + 1) x (p + 1) matrix 

expression: 
jb 

Ra jb = 

[PP 

pp OP 

N 

with R=1: (XP*(n)XT (n)+JXP(n)X *T (n)J (4.8) 
ppp n=p+l 

So we need to solve these (p+l) equations for the (p+l) unknowns 

ap ap (p) and p Jpb. 

66 



Chap. 4: The Modified Covariance Method 67 

4.2 Fast algorithm to solve the modified covariance equations 
of linear prediction 

Using (4.7), we can see that RP is persymmetric ( JR *P J=R P) and also Hermitian 

R *T =RP). These properties allow a recursive algorithm of order P2 operations. P 
If ef (p + 1) and eb (N) are both not used, the resulting squared error ppJ"' is minimized PP 

and the linear prediction coefficients satisfy the normal equations: 

p 

[Pjb'] 
p Rpaffi 

0 

IV 
)12 with pp (Iepf'(n +Ieb (n - 2 

=p+2 

I. 

The prime denotes the solution for the case of omitted error terms and p Jb' is the P 

time-index-shifted variant of the definition (4.5) for p Jb. This is independent of time; P 

it is only here to indicate the successive cancellations of the error terms. 

These definitions will be useful in the development of the recursive algorithm that 

follows. 

4.2.1 Special partitions of RP 

4.2.1.1 Order-index partition 

The properties imply that RP is (p + 1) x (p + 1) matrix such that: 

RP-1 
RprH 

p 

rp (0, P) 
where rp .......... 

-rp 
(p - 1, P)- 

r rp (0,0) rTj 
pjp 

-1j] rp (p, p)] rp JRP 
(4.9) 
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4.2.1.2 Time-index partition 

' +X* RP=RP P(P+1)XT(p+ 1)+JXP(N)X"(N)J p-p 
XT 

(4.10) 
=JR'*J+JXP(p+1)X", (p+1)J+XP(N) (N) 

ppp 

4.2.2 Auxiliary parameters 

We also need two (p + 1) XI vectors: cp and dp defined by the matrix equations 

Rpcp=JXP(N) and Rpdp=X*P(p+l) 

cp (0) dp (0) 

with cp = .......... and dp .......... . 

-cp(p)- 
dp(p)_ 

Due to the Hermitian persymmetry of Rp. we have 

JR*PaJb* = RpJaJb* - 
(ýOp ) 

p 
pp pb 
R 

pJc*p = X'P' (N) 

Rpjd*p =JXP(p+1) 

(4.12) 

(4.11) 

Using (4.2), vectors cp and dp are defined for the matrix Rp in a similar manner: 

(JR '. J)c, =jxp(N) pp (4.13) 
(JR; J)d'p = X'P' (p + 1) 

4.2.3 Order Update Recursions 

Using the order-index partition of RP , we can show that the order update for the 

linear prediction coefficient vector is 
Jb' 

a jb ap-, +ap(p)[j 
Ojb'*] 

(4.14) 
p01 ap-, 
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Ap 
and A=rHa 

jb' 
where a, (P) =-pp P-1 

This is verified by multiplying by RP, as follows: 

LHS=R a 
jb 

pp 

R rp 
][a 0', rpT 

RHS -- 
PT P- 

]+ap(p)[rp(0'0) j 

j][j 

Ojb'* 

Jrp* j R'P* ap rp rp (p, P) 0 -1 -1 
jb* [p Jpb]= Rp-, alpý, rpTýjaý_, 

1* LHS = RHS 
0 *T 

a 
jb' + ap (p) 

Aa jb, * 
p rp P-1 

II 

P-1 

X 

jb' jb' PP-1 Pp-I 

0p 
Op-I Op-I 

p AP AP 

This yields that the order update for the linear prediction squared error is 
2 

jb 
= 

th, Pý 
= 

jb' 2 
pp P 

jb' pp-, (I-Iap(p)l (4.15) 
p P-1 

The order update relationships for cp and dp are given by: 

cP =[C ,+ cp (O)ap 
P-1 

I 

dp "+ dp (O)a 
p 

[do 

I] P- 

eb (N) 
C, (0) =-p lb (4.16) 

pp 

ef*(p+1) 
dp (0) =p lb \-W. A1j 

pp 

The terms cp (0) and dp (0) are determinated from the following scalar identities: 

C*T 
jb*T 

PY R aJb =(ap Rpc 
ppp 

c *T Pl' ]=(a 
jb*T JXp (N))* e 

b* (N) 
0ppp 
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C, (0) 
ib pp 

ef *(p + 
Similarly, we can prove that dp (0) P 

jb PP 

To prove (4.16) , we need only to verify the last p rows, multiplying both sides by 

RP: 

JXP (N) = 
[rp (0,0) rpTJ ][CO, ]+[epb(N) 

irp. JR'* 0 
P-Ij p 

But, 

JR'*-, Jc' = JX 
p P-1 P-1 (N) 

So we find the result expected. In the same way, we can prove (4.17). 

Three scalar parameters with their corresponding order updates are required by the fast 

algorithm: 

yp = 1_ X*T (N)Jcp =, _X*T (N)JR-'JXP(N) ppp 
yp=y' I-cp(O)e 

b* (N)=If' I-e 
b (N) 

2/p jb (4.18) 
p- p p- 

IpIp 

8p =, _XT(P+ I)dp = I_XT(P+ 1)R-'X* ppp P(P+I) (4.19) 
Sp = SP-1 - dp Ref (p + 1) = Sp-, - 

lef (p + 1)12 1 pjb ppp 

x= X*T (N)Jd ,X* =XT(P+I)C pppppp 
(ef (p + I)e b (N))* (4.20) 

, %p - X, 
P-l +p ib 

p 
pp 

NB: yP and 5P are real-valued due to the quadratic product definitions and %P is a 

complex parameter. 

We need only to prove the (4.18) and (4-20) order updates because the relationship 

(4.19) is similar to (4.18). 

For (4.18), we use (4.16) and premultiply by X*T (N)J: 
P 

X*T (N)Jcp = X*T (N)J ,0 
1) 

+ CP(O)X*T (N)Jap pp 
(CP- 

p 
I b* =>I-yp=l-yp-l +cp(O)e p 

(N) 

and for (4.12) we premultiply the relationship with d by X*T (N)J. PP 
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One final order recursion is required for rp, which is obtained from the definition 

(4.6) of rp (i, j) : 

r9 
rp 'p 

(0 p) 
(4.21) 

[rp-, 

- X(N +1- p) *p- 2) Xp-2 (N) - 
X* (P)JXp-2 (1 

4.2.4 Time Update Recursions 

The relationship for the time-shift update for aJb' is: P 

ib 
0 

aJb'- a (4.22) pp+ cc' 
(ep-, 

+ 01 
(dp-l ) 

(e b" (N)8'-, + ef (p + I)Xp-1) 
ppp 

vn 
, / DEN P-1 

b* 
(ef (p + I)yp-, + ep (N)X; 

where p -YDENP'-l 

DENP-1 y -18' 1_ 
IX. 

P_l 
12 

p P- 

Premultiplying (4-14) by RP and substituting the relationship for RP in the 

multiplication on the right-hand side yields: 

p=p", 
+(x, A+ PIB-ef (p+I)X*P(p+1)-e b* (N)JX (N) 

OP 

) (OP 

ppp 

0 
X* 

with A= (R 
- P(P+I)XT(P+1)_jXp 

(N)X*T (N)J - ppp cp-l) 

0 

P(P+I)XT(P+I)_jXp 
X*T X* 

and B=(Rp - (N) p (N)j 
p dp-l 

Hence, 
lb') 

= 

(Ppjb 

+ 
pp b* 

OP OP rp-, -P, kp-, -ep(N))JXP(N) 

epb(N ef*(p+l 
+ (- (x,?, P'*-, + 0,8p-, -epf (p+1))X*p(p+1)- cc, 

( 

OP 
p0p 

However, 
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b* 
a, yp-, - PIXP-l ep (N) 

- cckp-l + P15P-1 epf (p + 

Therefore, 

p 
ffil 

=p 
jb 

_ ale 
b (N)- plef*(p+ 1) 

pppp 

jb' p jb pp p 

b (N)l + lef (p + 
pp yp-l +2 

DENP-1 

ef (p + I)e b (N)X* 
pp P-1 (4.23) 

The auxiliary vectors cp and dp satisfy the equations: 

where 

(4.24) Cp ý'- Cp + ()C2JCp + 02Jdp 

and dp = dp + ()C3JC*p + 03Jd*p (4.25) 

(Y2 
(OP? IP* +OP8 PYDENP 

P2 (Op xp + opy PID 
EN p 

(FpXp +Op8 
()C3 PYD 

EN p 
P3 (OPXP +cp-f PID 

EN p 

DEN p 
=yp 5p _lx PI 

2 

0 =XT (N)dp = X*T(p + I)C 
pppp 

op =XT (N)cp p 
XH(P+ I)jd 

ppp 

To Verify (4.24) , we premultiply both sides by JR*J and substitute time-index p 

partition (4.10): 

'*Jcp = JR"Jcp +02JRP'*Jjd*p JRP + (12JR"JJc*,, pp 

=: >JXP(N)=A+B+C 

where 

A=(R -JX p(P 
+ 1)X*T(P + lg - X* (N )XT (N) 

pppp ýp 
=JXP(N)-JXp(p+1)Op -X*p(N»p 

p 
(N) - CC2JXp (P + lAp - CC2Xp (N)(1 B= a2X* 
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and C "'ý 02JXP (P + 1) - 02JXP (P + 1)(i - Sp) - 02X*p (N)X*P. 

=> JXp(P+1)10p +0ý2ýlp -P28pj+X*P(N)jýp -(X27p +P2Xp 
p0 

Also, we have 

00 =0 p 
+(X2)'p - 

028P =0 p+ DENP 
(OPXP 

p- p 
'XP 

+op5pxp -OPBPXP -Op7p8p)= 
A* =Op - 

* 
-0 %p* )=0. Op - (x2Yp + 02AP 

I (OPIPYP +op8pyp -Od-plp p7p DENP 

Thus, similarly for dp . we obtain the expected results. 

Finally, the recursions for yp, 8p and Xp are: 
(IOP125P 

+10pl2yp +2 Re[OPXPO; 
yp -yp - DENP 

(4.26) 

(lop 125p+ ic 

P12yp +2 Re[Op Xpc; 
sp, = sp - DENP 

(4.27) 

Xp = Xp + (1 30p + 030p* (4.28) 

They are obtained successively by forming X*T (N)Jcp from (4.26), XT(P+ I)dp' pp 
*T I 

from (4.27) and Xp (N)Jdp from (4.28). 

4.2.5 Modified Covariance Algorithm 

For a pth-order model and N data samples, this algorithm requires Np +6 P2 

computational operations (additions and multiplications) and element storage of 
N+4p. 

For a given value of N, the modified covariance method is comparable with the FF17 

method which requires N log N operations. In fact, shorter data sets are used with 

the modified covariance method, which implies less computation. Thus, the modified 

covariance method is faster than the FFr technique in this case. 
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In the algorithm, we check the numerical ill-conditioning or singularity of the normal 

equations. The squared prediction errors are, by definition, positive scalars and if 

these become negative, it is due to numerical ill-conditioning. Or if any become zero, 
it would indicate a singular normal equation matrix. The scalars 8 and 'y must be 

bounded between zero and unity ( Marple, 1987). If any of these scalars are outside 

this range, it shows numerical ill-conditioning. 

4.2.5.1 Algorithm 

Initial conditions: 

p=O 

r. (0,0) = 21: ix(n)12 
n=I 

r PO 
0(0,0)_IX(l)12 _IX(N)12 

c" (0) , (N) 

ro (0,0) 

do(0) x* (1) 

ro(0,0) 

210 = x* (1) x. (N) / ro (0,0) 
IX(l)12 /r so = 1- o(0,0) 

yo =1- ix(n)12 / r. (0,0) 

DENO =, y()50 _ 
110 12 

jffi9= lb 
PO po DENO 

tx CO(O) = 
PO 
x(n) do (0) = Ib' 
PO 

P=l 
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N-1 
rl(0,0)=2 Z x(k+1)x*(k) 

k=I 

a 
lb (1) =_r, 

(0,0) 
Ib' PO 

Pl jb = polb'(I - 
ja Jb (1)1') 

Main Loop: 

Whilep<P do: 

e Auxiliary vector and scalar updates: 
0 

CP+ cp (O)aP (4.16) 
[CP-1 I 

d? + dp (O)aP (4.17) 
P dP-I 

I 

eb (N) 
2 

p Yp = yp-l 
p jb 

p 

0& :5 1) (4.18) 

ef (p +2 
5p 8P-1 pp 

jb 
(> 0& 

-< 1) (4.19) 

p 

(ef (p + I)e b (N))* 
pp (4.20) I%p 

XP-1 
jb Pp 

DENP -,:, y p8p-I, 
% 

p 
I' (> 0 

Time shift update: 

b22b 
e (N)l 8'-, +Ief(p+l)l yp-1+2Refepf(p+l)ep(N)X'P-, 

PP PP -1 DENP-1 

(> 0& :5 1) (4.21) 

a aJb +a, 
0 

+01 
0 

(4.22) 
PP 

(dp'-l (CP, ) 
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Cp Cp+CC2JCp+P2Jdp 

(4.24) & (4.25) 
dp dp + (ýC3JC*p + P3jd* 

p 

7, =yp - 

lop 12 
Sp + 

lop 12 
yp +2 Re[OPXPOP* 

0' 0& :5 1) (4.26) p DENP 

818 

10 
P128P 

+ICP12, rp +2 Re[Op%pc; I 

pp DENP 
(> 0& (4.27) 

Xp = ? 
lp + CC30p + 03op 

(4.28) 

P=P+l 

0 Order update: 

rp (0, P) 
rp = 
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1 4.3 Model order selection 

The major problem of the modified covariance method is the selection of the AR 

model order selection, p. 

Marple (1987, p229-231) proposed many methods according to N. But, in general, 
insufficiently high values of p are obtained, resulting in a very smoothed spectral 

estimate. On the other hand, too high orders introduce spurious detail. 

Lang and McClellan (1980) showed that for the modified covariance method, p must 

be taken between N and N Y3 ' 
Y2, But we find that it works only when N: 5 100; that 

is not our case because if we take N :5 100, we do not get the second-order detail that 

we need. 
Therefore, we need to use another way for determining p. For the OSCR system, 

this problem is solved in the next chapter (section 5.1.4) which deals with the 

methodology to compare the modified covariance method with the periodogram. A 

range for p is given in Chapter 6 section 6.1.3. But, this selection of p stays 

problematic for the PISCES system (see Chapter 5 section 5.1.1). 

4.4 Applications 

Given that the second-order contribution is of greatest interest, the periodogram and 

the spectral estimates obtained from the modified COVariance method are scaled to the 

integral under the first-order peak (Wyatt, 1990). This is essential for the inversion 

procedure to be done and for determining the significant wave height HS and mean 

period T. (see Chapter 2 section 2.4). 
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4.4.1 OSCR system 

This system supplies files with the same theoretical frequency difference, 

Af, = 1.028361Hz. The periodogram uses the total data set, 3x 896 samples. We 

have been working with the master and slave files of the Holderness coastline data set 

(from the end of 1995 to the beginning of 1996). After a subjective selection of good 

cells, the modified covariance method was tested with N= 896. Figures 4.1 and 4.2 

show the periodograms of the cell 55 (measurements taken at 2pm on 21 December 

1995 and at lOpm on 9 January 1996) and the corresponding AR PSD estimates with 

p= 40 and 30 respectively. These spectral estimates give the same total frequency 

difference, Af = 1-027189Hz and appear similar. 

-0.5 0.0 0.5 1.0 1.5 

CL 

Ix 8 

Figure 4.1: Superposition of the periodogram (solid line) and the AR PSD estimate of 
the OSCR file (dotted line). Measurement taken at 2prn on 21 December 1995 (cell 
55). 
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Figure 4.2: Superposition of the periodogram. (solid line) and the AR PSD estimate of 
the OSCR file (dotted line). Measurement taken at l0prn on 9 January 1996 (cell 55). 

4.4.2 PISCES system 

In the previous chapter, the different modem spectral techniques were tested with 

some data sets of only N= 100 samples. The objective was to select the most reliable 

method knowing their crucial aspect of using short data sets. 

Figure 4.3 shows an AR PSD estimate with N= 500 and p= 20 of the same file used 

to produce the periodogram shown in figure 2.6. The total frequency difference 

estimation is Af =0.620117Hz, which is close to the theoretical one. 

Aft = 0.620583Hz. Note that this AR PSD estimate is "smoother" than the 

periodogram. This feature of smoothness reveals that Nmin is too low if we are 

considering the second-order contribution or that the model order, p, is too small. 
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Figure 4.3 : Superposition of the periodogram. (solid line) and the AR PSD estimate 
(dotted line) with N= 500 and p= 20 of the PISCES file E130319.01 1. 

Figure 4.4 exhibits the periodogram and the AR PSD estimate (N = 500 and p= 20) 

of the file EB0328.008. It can be seen that the second-order contribution near the 

strongest peak (positive frequency) is not sufficient. Increasing the model order p 

(see figures 4.5 and 4.6 with p= 50 and 70), improves the continuum surrounding the 

two main peaks. However, the difference in amplitude of the two main peaks, used to 

determine the wind direction (see Chapter 2 section 2.3), remains the same (about 

23dB) which is larger than for the periodogram. (about lOdB). Thus we need more 
data to apply the modified covariance method. 
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Figure 4.4: Superposition of the periodogram. (solid line) and the AR PSD estimate 
(dotted line) with N= 500 and p= 20 of the PISCES file EB0328.008. 
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Figure 4.5: Superposition of the periodogram. (solid line) and the AR PSD estimate 
(dotted line) with N= 500 and p= 50 of the PISCES file EB0328.008. 
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Figure 4.6: Superposition of the periodograrn (solid line) and the AR PSD estimate 
(dotted line) with N= 500 and p= 70 of the PISCES file EB0328.008. 

To find the minimurn data set length N for second-order structure, more tests are 

needed. 
In contrary to the OSCR system which forces us to test the modified covariance 

method with a maximum of 896 data points, with the PISCES system we can use up 

to 4608 data points and hence we will be able to find a value of N in order to obtain 

the best second-order spectrum. This will be presented in Chapter 7. 

To show that the modified covariance method does work well, we take all the data, 

i. e. N= 4608. 

Figures 4.7 and 4.8 exhibit respectively AR PSD estimates of the files EB0319.011 

and EB0328.008. They are superposed with their corresponding periodograms. As 

can be seen, the similarity is striking. 
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Figure 4.7: Superposition of the periodogram. (solid line) and the AR PSD estimate 
(dotted line) with N= 4608 and p= 40, obtained from the PISCES file 
E130319.01 I. 
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Figure 4.8: Superposition of the periodogram (solid line) and the AR PSD estimate 
(dotted line) with N= 4608 and p= 40, obtained from the PISCES file 
EB0328.008. 
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4.5 Split peaks 

In the first chapter, we presented the problem of split peaks. When long data time 

collections are used, split peaks can appear in the Doppler spectrum (see figure 1.2). 

(This is not the same phenomenon seen in Burg's method (see Chapter 3 section 3.1). ) 

This chapter explains this phenomenon and the modified covariance method is 

presented as a solution to this problem by reducing the amount of data. 

4.5.1 Problem 

With the OSCR experiments, Wyatt (1994) and later Ledgard and Wyatt (1997c) 

described the problem of split Bragg peaks and suggested this was a result of current 

variability. They suggested that this phenomenon could be the result of averaging 

several spectra over one hour measurement and lead to a smearing effect of the 

Doppler spectra resulting in a broadening of the main Bragg peak and in some cases 

resulting in a split peak. Figures 1.2,4.9 and 4.10 illustrate this problem which 
distorts the integral under the main Bragg peaks and then the wave parameters and 

could prevent the inversion process being done if the difference between the two 

peaks is less than 3dB. Recall that the first-order part of the Doppler spectrum 

consists theoretically of two impulse functions symmetrically spaced about the carried 

frequency (see Chapter 2 section 2.4). This is no longer the case when the peaks are 

split. The first-order part is distorted. 

4.5.2 Solution 

Figures 1.2,4.9 and 4.10 show Doppler spectra with split Bragg peaks. Figures 4.11, 

4.12 and 4.13 show respectively the corresponding AR spectral estimate resulting 

from the same measurement but with only one 5-minute measurement. As it can be 

seen, there are no split peaks in these spectral estimates. 
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Figure 4.9: Doppler spectrum resulted from the periodogram. with full data set, 
showing split peaks, obtained from the cell 33 (measurement taken at 18pm on 6 
January 1996). 

cm Mg 

-iu7 

8: - 
fs 11 

c 

IIIIIIIIIII-. 

C 

C 

IIII 

-152 -127 4 D2 -0 77 -0 52 -0.27 -0 02 0 23 0 48 0.73 0 9a 123 1 

Frequency Hz 

Figure 4.10: Doppler spectrum resulted from the periodogram. with full data set, 
obtained from the cell 54 (measurement taken at l2am. on 3 January 1996), showing 
split peaks. 
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Figure 4.14 just shows the regions surrounding the two first-order peaks of the 

periodograrn with full data set shown in figure 1.2 and the three successive AR 

spectral estimates obtained by the modified covariance method with N=896 and 

p= 40. As can be seen, the two Bragg peaks move to the left during the hour-long 

measurement and they remarkably delimit the periodograrn Bragg peaks. This was 

already noticed with the wavelet analysis in Chapter 2 section 2.6.2. The current has 

varied during this hour and this shows the phenomenon of split Bragg peaks is due to 

a current variability. 

This could have been done with the periodogram. But since in Chapter 2 section 

2.3.2, it was pointed out that the 5-minute periodogram. was not enough good to 

provide reliable wave measurements because of its high PSD estimate variance, we 

would rather use the modified covariance method. 

In conclusion, we can say that this problem is due to current variability. One hour 

measurement can be too long to get both current and wave measurements. This can be 

reduced by decreasing the time of the measurement and using the modified covariance 

method. 

4.6 Summary 

From a visual interpretation, this chapter showed good similarities between the 

periodogram and the AR PSD estimate resulting from the modified covariance 

method. Now we need to give a quantitative assessment of performance for both 

spectral techniques in order to validate the modified covariance method. The next 

chapter-will deal with several methods of comparisons. Chapters 6 and 7 will show 

the results obtained respectively for the OSCR and PISCES systems. 

Also, we explained the problem of split peaks which is caused by current variability. 

This led us to reduce the amount of data in order to solve this problem and 

emphasized the use of the modified covariance method since it is not preferable to use 

the periodogram with short data sets. 
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The modified covariance method, providing higher frequency resolution (see Chapter 

3 section 3.1) gives rise to thinner Bragg peaks and so enables us to avoid the problem 

of broad Bragg peaks, which occurs with the periodogram. 
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Figure 4.11: Doppler spectrum resulting from the modified covariance method with 
N= 896 and p= 40, obtained from the cell 55 (measurement taken at 18pm on 6 

January 1996), showing no split peaks (see figure 1.2). 
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Figure 4.12: Doppler spectrum resulting from the modified covariance method with 
N= 896 and p= 40, obtained from the cell 33 (measurement taken at 18pm on 6 
January 1996), showing no split peaks (see figure 4.9). 
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Figure 4.13: Doppler spectrum resulting from the modified covariance method with 
one 5-minute collection, obtained from the cell 54 (measurement taken at 12am on 3 
January 1996), showing no split peaks (see figure 4.10). 
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Figure 4.14: Superposition of the periodogram, (with full data set) represented by the 
black line and the three successive AR spectral estimates obtained by the mmlified 
Covarlance method (with N= 896 and p= 40) represented in red for the first 5- 

minute collection, green for the second and blue for the last. Only the regions 
surrounding the first-order peaks are shown. 

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 
Frequency Hz 

89 



Chapter 5 

Methodology to Compare the Modified 

Covariance Method with the Periodograrn 

In order to validate the modified covariance method described in the previous chapter, 

we compare it with the periodogram, the classical spectral technique which is 

presented in Chapter 2 section 2.3.1. 

To do so, the wave parameters obtained from both the periodogram and the modified 

covariance method are compared, first with a Monte Carlo simulation study and 

second with wave-buoy measurements. In addition, with the Monte Carlo simulation 

study, another comparison is done, directly on the spectral estimates. 

The different results are presented in Chapters 6 (for the OSCR sYstem) and 7 (for the 

PISCES system). 
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5.1 Monte Carlo comparison 

The aim of the Monte Carlo simulation study (Vaitkus et al., 1988) is to assess the 

performance of the different spectral methods. The different steps of this study are 

illustrated in figure 5.1. From the simulation model, a time domain signal is produced 

and transformed into a spectral model which is compared to the measured spectrum 

considered as the "true" spectrum. The overall error that results can then be used to 

assess the quality of the spectral model. 

True PSD S(f) 
(period, ogram) 

Bias and Bias and 
Variance Simulation Variance 

Model 

Process x(t) 
(Stationary and Gaussianj) 

SP(f) SAR(f) 

Modified 
Periodogram) Covariance 

I Method 

Figure 5.1: Flow chart illustrating the different steps of the Monte Carlo study. 

5.1.1 Simulated data 

We assume a given power spectrum density (PSD) function S(f ), which is 

considered as the "true" S(f ). 
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I n/2 ik 2xj 
The simulated signal is obtained by x(k) =-1, Rj en, for k=I... n (n being the 

n j=-n/2 

dimension of the signal) where the Rj 's are complex orthogonal random variables 

with zero-mean and with a variance of Var(Ri S(ý-2 ); in another words, we have 
n 

Rj = Aj + iBj where Aj and Bj are proportional to a normal distribution such as: 

S Ai = 
fS 

nI 
x N(0,1) 

Bi 5ýs IS( nx 
N(0,1) 

The resulting process x(k) is a zero-mean, second-order stationary, complex 

Gaussian signal, having the given PSD. 

The "true" S(f ) is the periodogram since it contains both the first- and second-order 

effects. It is compatible with the simulation model because if x(k) was real, the two 

normal variables could be replaced by one random variable following aX2 (chi- 

square) distribution. The sampling distribution of the periodograrn (with one 

segment) is a X2 distribution, assuming that the process from the start is Gaussian 

(Priestley, 1981). 

Given that the "true" S(f) is composed of 512 points, the simulation model can only 

generate independent data time-series of 512 samples. 

688 or 4608 measured data points 
time 

? 

512 simWated data points 
time 

true spectnun, periodogram 
512 ftequency points 

simulation 

Figure 5.2: Flow chart showing the main steps of the Monte Carlo simulation to get 
the simulated data. 
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As can be seen in figure 5.2, we cannot apply the periodogram to the simulated data in 

the same way as it was done on the 2688 or 4608 measured data points respectively 

for the OSCR and PISCES systems. Overlapping is not possible. Because overlapped 

data sets have some correlation, we do not need as many averages using our 

independent sets as is required with both OSCR and PISCES systems. We use 

equations (2.8) and (2.9) (seen in Chapter 2, section 2.3.2), which describe the 

consequence of overlapping segments. By equalizing these two equations, we 

estimate that 9 and 23 sets are sufficient for the OSCR and PISCES systems 

respectively. 
Since the OSCR system is more restrictive in the sense of number of averages and 

since disk space and computation time are too demanding for the PISCES system, we 

apply the Monte Carlo simulation to the OSCR system only. 

We need to check if the observed data, collected from both systems (PISCES and 

OSCR), are stationary and Gaussian in order to apply this simulation model. In 

Chapter 2, these properties were treated in section 2.6. We pointed out the difficulty 

of showing the stationarity. Here we can make a qualitative judgement. As the 

simulation model guarantees the stationarity of the resulting signal, we can compare 

the variations of the actual signal with the simulated signal. Figure 5.3 shows one 

example of simulated data obtained from the periodogram seen in figure 2.2 (Chapter 

2, section 2.3.1) with 512 points and figure 5.4 shows the three signals with 896 

points which produced this periodogram. As can be seen, the real and imaginary parts 

for each case vary in a similar fashion; the actual signal varies as much as the 

simulated signal. So we can assume that the observed data are stationary and then 

apply this simulation study to our case. However, we can notice in the actual signal 

that the maximum amplitude is different for each 896-sample set and for the last 

collection, the amplitude is increasing during time. In the future, it will be interesting 

to investigate further these variations and hence the stationarity of the HF radar data 

with the Wavelet analysis presented in Chapter 2 section 2.6.2. 
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5.1.2 Error Measurements 

Since the true PSD function, S(f), is known, it is straightforward to get the bias and 

variance, which are used here to describe the quality of the spectral estimates. We can 

obtain these error parameters in two different ways: directly on the spectral estimates, 

by comparing them with the "true" spectrum S(f ), and on the ocean wave parameters, 

by extracting them from the different spectral estimates and the "true" S(f ). 

5.1.2.1 Spectral estimates 

By definition, the bias is the deviation of the ensemble averaged spectral estimate 

from the true value: 

E[S(f)]-S(f) 
Bias(§(f))=- (5.2) 

S(f 

where S(f ) is the spectral density, S(f ) the estimate and E the expectation operator. 

The variance measures the spread in the error and is given by 

Var(§(f E' 
S(f ) E(§(ý)-)] 

. (5.3) 
S(f ) 

The mean square error incorporates both the bias and the variance: 
g(f)_S(f) 2 

MSE(S(f E- 
S(f )= 

Var(S(f + BiaS2 (S(f (5.4) 

Imaginary parl. simulaled data 
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Figure 5.3: Simulated signal obtained from the periodogram shown in figure 2.2. 
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Figure 5.4: Observed data provided by the OSCR system (measurement taken at 3pm 

on 27 December 1995), the three 5-minute measurements are shown. 
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These parameters are functions of frequency. By integrating respectively the bias, the 

variance and the mean square error over the frequency domain, the integrated bias 

(11B), the integrated variance (IVAR) and the integrated mean square error (IMSE) can 
be obtained. These integrated parameters represent the global deviation. An 

alternative set of integrated parameters can be obtained by first taking the logarithm of 

the different PSD functions, which is related to the dB scale. These will be referred to 

as 1131og, IVARI. g and IMSElog. This logarithmic operation flattens the power spectrum 

and the differences surrounding the first-order peaks are emphasized. 

Given that the second-order effect is of greatest interest, all these integrated 

parameters are calculated with the integration range which is a neighborhood of the 

main peak but does not include the peak itself, in other words the maximum range 

used for wave parameter estimation given in chapter 2 sections 2.4.1 for the 

significant wave height Hs and 2.4.2 for the mean period T.. 

5.1.2.2 Waveparameters 

We can also use the simulation to determine the bias and the variance of wave 

parameters estimated from the synthesized signal power spectra. The wave 

parameters we consider are the wind direction 0. (Chapter 2, section 2.3), the mean 

wave period T. (Chapter 2, section 2.4.2) and the significant wave height HS 

(Chapter 2, section 2.4.1). 0. is calculated from the difference in amplitude of the 

two first-order peaks (Wyatt et al., 1996). The other two wave parameters (Hs and 

Tw ) are extracted from the second-order contribution when normalized with respect to 

the first-order spectrum (Wyatt, 1986). 

We get similar formulas for the bias and the variance: 

Bia#) (5.5) 

Var(O =E (5.6) 

where 4 (=- 10 
., T, Hs I is the true wave parameter and 4^ is the estimate. 
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5.1.3 Sample size problem 

At this stage, a question arises : how many spectral estimates must we take, or how 

many processes x(t) must we generate, in order to obtain acceptable values for the 

different error parameters ? 

This is a well-known problem: the size of sample (Cochran et al., 1989). 

In our case, we want to find the number of spectral estimates, n, necessary to obtain, 

for a 95% confidence interval, an estimate of the mean square error, MSE, within ±5 

0.005) of the true value for the MSE. 

We consider here the mean square error seen in equation (5.4) calculated at each 
frequency because it contains both bias and variance parameters. Given the great 
importance of the second-order part of the spectrum, it is sufficient to solve this 

problem at 4 different frequencies: the 2 frequency points determining the first-order 

peak and the other 2 delimiting the integration range. 

Then, " for eachfrequency, we have 

In 
MSE = -I 

(xi (5.7) 
n i=l 

where X, ... X,, represent the spectral estimates and g is the true value for MLLR 

This definition of the mean square error is slightly different from the definition (5.4): 

there is no normalization with g for simplification purposes. 

Since n is large, we can assume that Xi follows a normal distribution: 

Xi N(g, C72) , with 02 known. 

In fact, Cy 2 is estimated by 

n 21): Cr 
64(Xi _ 

y)2 
, (5.8) 

n-1 j=1 
n 

where Y= jXj- 
n j=1 

n 
Then, we have (XI ý1)2 (F 2X2 

and so n 

2 
2 MSE - -Xn. (5.9) 

n 
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E (Tqj S--E) = 
Thus, -- Cy 

4 
2) 2(y 4 (5.10) tVar(fiSE) 

=n2 Var(X nn 

Hence, for an 95% confidence interval, we must have 

4 

21ýc- 
n 

or (5.11) 

This last inequality (5.11) was tested with different values of n, for each spectral 

technique. We found that 4000 spectral estimates are sufficient to obtain acceptable 

error measurements. 

5.2 Wave-buoy comparisons 

Wave buoys have been used to assess the use of HF radar systems for measuring the 

ocean wave directional spectrum (Wyatt, 199 1). 

From the periodogram. and the modified covariance method, we extract three wave 

parameters: the wind direction 0., the mean wave period T. and the significant 

waveheight Hs, and compare them with the wave-buoy measurements. 

5.2.1 Description and locations 

A wave-buoy system measures directly the directional wave spectrum (Tucker, 199 1) 

by. following the motion of the water particles. An internal processor computes the 

directional wave spectrum, the heave spectrum and the directional parameters. These 

data are then transmitted over an HF radio link or recorded on board the buoy. From 

these data, the two dimensional wave, spectrum is estimated (see Chapter 2 equation 

2.18). The heave gives S(f). The pitch and roll contain the information on 

direction, thatprovides G(f, O). 
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For the PISCES experiment (Wyatt, 1991), a WAVEC directional buoy, from which 

we will use wave measurements for comparison, and two waveriders have been used 

(see fig. 5.5). The WAVEC directional buoy measures the slope of the sea surface in 

two directions (such as North and East) at the same point. 

Concerning the OSCR experiment (Wyatt et al., 1997), two directional waveriders 

were deployed. They are located as shown in figure 5.6 which contains the radar 

measurement cells as well. For our comparisons, we use the waverider located 

between cells 36 and 54, marked as D3. It measures the vertical and horizontal 

displacements of a surface particle. 

EME 

WALES 

aE 

N 

ENGLAND 

Figure 5.5: PISCES experiment. Map showing radar sites (Z) at East Blockhouse, 
southwest Wales (E) and Nabor point, North Devon (N); buoy deployments, WAVEC 
(0) and waveriders (*) and the area of dual-radar coverage. 

5.2.2 Error measurements 

Two methods are proposed here. One considers the wave buoy measurements as "sea 

truth" measurements. The second one is a symmetric regression which takes into 

account errors coming from both systems (radar and wave buoy system). 

We treat separately the wind direction 0 (0 by analyzing the errors in the complex 

plane (Mardia, 1972) because here the "true" angles are not fixed (as for the Monte 
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Carlo simulation study). Instead of working with angles, we calculate the distance 

error for each measurement: 

d(Zwb 
9 Zr ) 

-ý 
V(cosOwb 

- COSOr )2 + (sin 0 
wb -sin Or )2 (5.12) 

with 
Zwb =e 

iOwb 

Owb and 0, being the wave-buoy and radar wind directions 
Zr = e'01 ' 

respectively. This is illustrated in figure 5.7. 

Then, the mean distance is given by: 

IM 
-1 di (5.13) 
M i=1 

and the distance variance by: 

m )2 Var(d) E(W-di (5.14) 
i=l 

where M is the number of measurements. 

Note that 

d=I <* le. 
b - 0,1 = 60*. (5.15) 

The mean and the standard deviation can be obtained in degrees by: 

meano =dx 60 (5.16) 

and ao = NfV--ar(d) x 60 (5.17) 
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54. OC 

53.90 

53.80 

Holderness Experiment 

... .. .... . 

... ...... . 

Irl 
53.70 

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 

Figure 5.6: OSCR experiment. Map showing master (M) and slave (S) radar sites 
(*) and the two waveriders (&). 

Z v 

Figure 5.7: Diagram showing the distance error between the wave-buoy and radar 
measurements for the wind direction on the unit circle. 
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5.2.2.1 "Sea truth" consideration 

Let 4 be the true wave parameter given by the wave buoy, 4E IT, Hs I and let ý be 

the wave parameter estimated by the different spectral techniques. t and ý are two 

vectors of dimension M. 

For each wave parameter, a normalized global error vector, can be calculated: 
2 

Pi = 
[ýL: Li] 

Lm 
4i 

Thus, we can obtain an error mean, Mean(p) , and an error variance, Var(p) , given 

by: 
1m 

Mean(p) =- Pi (5.19) 
m i=l 

m 
p))2 Var(p) (pi 

- Mean( (5.20) 

These quantities can be considered as positive percentages. They will be evaluated for 

both spectral techniques in the following chapters. 

5.2.2.2 Symmetric regression 

This method of comparison makes the assumption that errors are present in both 

measurement systems (radar and buoy). 

The directional waverider (Allender et al., 1989) can produce some error. The 

accuracy for the wave parameters (Hs and T. ) was demonstrated to be of 2.5-5% in 

the mean bias. Concerning the radar, this is still under investigation. However, we 

assume here that errors produced by both systems are of the same magnitude. 

This statistical method was used by Wyatt and Ledgard (1997c) in order to make 

OSCR/directional waverider comparisons. This was applied to various parameters of 

the directional wave spectrum, not just Hs and T. . The results showed that the radar 

measurements were in general in very good agreement with the wave buoy 

measurements. 
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The symmetric regression is in fact a Chi-square fitting and is based on a least-squares 

fit to a line with zero intercept (Press et al. 1992): 
2, M Y 

x2 (()C) =Ii- 
(Ixi 

with y= ax (5.21) 
i=1 CY 2+ Ot 2 Cr 2 

Y 

where x= (x, 
... xm ) represents the wave buoy measurements ,y= 

(y, 
... ym) the 

radar measurements, cyx and cry are respectively the x and y standard deviations. 

The denominator of equation (5.21) is obtained from: 

(y 2= (y2 22 Var(yj - ax, ) = Var(yi) +. Var(xi) y +cc ax. 

(; 2 
= Cy2 Since errors are of the same magnitude for x and y, we have 

.y 

The rm'*nimization of (5.18) with respect to (x gives two possible values: 

a 
Cc = 2b 

(5.22) 

m 
(Xý 

m22 

, x, y, and A= a +4b witha=l yiý) b=y 

Finally, the bias is obtained by taking the percentage variation from unity of the slope: 

tý' '! _ Bias =I -cc (5.23) 

and theyariance is estimated by: 
IU 

Var=- (X . Mi=l( 
I yi y 

(5.24) 

w 
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Chapter 6 

Evaluation of the Modified Covariance Method 

with the OSCR system 

This chapter contains the results for the OSCR system obtained from the two methods 

of comparison described in the previous chapter: the Monte Carlo simulation study 

and the wave-buoy comparisons. These results concern the modified covariance 
method and the periodogram, the classical method used to get the Doppler spectrum. 

We compare these two spectral techniques in order to see if the modified covariance 

method, by using shorter data sets, can be an alternative method of producing the 

Doppler spectrum. 

Also, these comparisons are used to determine the most suitable value of the model 

order p for the modified covariance method. 

In addition, we use spectral estimates generated by this method in the inversion 

procedure in order to give an overall view of the good quality of the directional 

spectra. 
All these comparisons are done only on "good" quality periodogram. suitable for 

extraction of the wave parameters. The cases of split Bragg peaks are not taken into 

account. 
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6.1 Good quality criteria 

This quality is tested on the presence of certain first- and second-order characteristics, 

in the Doppler Spectrum. In fact, we took the same criteria which have to be checked 

in order to proceed with the inversion procedure (Wyatt and Ledgard, 1997c) 

1. The Doppler spectrum must contain a peak. 

2. This peak must lie within a reasonable interval around the Bragg frequency in 

order to allow a maximum current of 2ms'l. 

3. The second-order contribution must be clearly defined: a non-zero number of 

frequencies in the ranges are required for inversion. 

4. The signal-to-noise ratio in the second-order part of the spectrum must be greater 

than 15 dB. 

5. The peak in the second-order spectrum must be at least 3 dB less than the main 

first-order peak. 

When, these points are satisfied the three wave parameters mentioned in Chapter 5, 

can be extracted and we can proceed with the different comparisons. 

6.2 Monte Carlo results 

The Monte Carlo simulation study consists of synthesising a signal whose spectral 

density function has similar characteristics to the observed signal (see chapter 5 

section 5.1). We present the results obtained from three Doppler spectra. They 

Correspond to three common sea-states: 

- case a: when the wind is blowing predominantly away from the radar, that results in 

the negative (in frequency) Bragg peak being the greatest. 

- case b: when the wind is blowing predominantly towards the radar, that results in the 

positive (in frequency) Bragg peak being the greatest. 

- case c: when the wind direction is perpendicular to the radar beam, that results in the 

two Bragg peaks being equivalent. 

figures 6.1,6.2 and 6.3 illustrate these three sea conditions respectively. 
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Figure 6.1: Doppler spectrum from the cell 144, measurement taken at 6: 40pm on I 
January 1996, showing a wind blowing predominantly away from the radar, case (a). 
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Figure 6.2: Doppler spectrum from the cell 79, measurement taken at 3pm on 27 
December 1995, showing a wind blowing predominantly towards the radar, case (b). 
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Figure 6.3: Doppler spectrum from the cell 220, measurement taken at 11: 25am on 5 
January 1996, showing a wind whose direction is perpendicular to the radar beam, 
case (c). 

6.2.1 Spectral estimates 

Table 6.1 shows the performances (see Chapter 5 section 5.1.2.1) of the periodogram 

and the modijiled covariance method (for different values of p) when they are applied 

to the periodogram in figure 6.1 (case (a)). These results are obtained from the 

differences that occured between the "true" spectrum (which is the periodogram) and 

the different spectral estimates. The four integrated error parameters defined in 

Chapter 5 are shown. As can be seen, the periodogram is better in terms of the given 

integrated parameters when 9 segments are averaged. However, when a single 

s. egment is used for the periodogram, all the AR PSD estimates are better. For 

example, when p= 40, the linear IMSE is minimised for this method and when 

p= 20, it is the logarithmic IMSEI,, g which is minimised. 
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Table 6.1 

Type Linear Logarithmic 

117VAR IMSE IVARI,, g IMSEI,, g 
Periodogram 

with 9 segments 
0.136 0.156 3.191 3.326 

Periodogram 
with 1 segment 

7.668 8.4762 40.927 41.314 

AR (p=20) 1.255 2.151 9.113 10.394 

AR (p=30) 1.015 1.523 10.581 11.959 

AR (p=40) 1.004 1.335 11.143 12.46 

AR (p=50) 1.195 1.429 12.123 12.741 

Comparison of performance of the modified covariance method and the periodogram. 
Four different model orders are taken for the modified covariance method. 

Results obtained from the cell 144 (measurement taken at 6: 40pm on I January 
1996), case (a). 

Table 6.2 

Type Linear Logarithmic 

WAR IMSE IVARI,, g IMSElog 

Periodogram 
with 9 segments 

0.13 0.16 0.009 0.01 

Periodogram 
with I segment 

8.41 9.12 0.11 0.114 

AR (p=20) 11.25 30.23 0.036 0.064 

AR (p=30) 10.83 21.97 0.044 0.064 

AR (p=40) 
- 

1.9 
- 

2.56 0.04 0.05 

AR (p=50) F 2.12 
1 

2.61 0.052 

Comparison of performance of the modified covariance method and the pcriodogram. 
Two different model orders are taken for the modified covariance method. 

Results obtained from the cell 79 (measurement taken at 3pm on 27 December 1995), 
case (b). 
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Table 6.3 

Type Linear Logarithmic 

WAR IMSE IVARI. g IMSEI,, g 
Periodograrn. 

with 9 segments 
0.099 0.104 0.123 0.135 

Periodogram, 
with I segment 

1.556 1.61 1.395 1.605 

AR (p=20) 0.224 0.778 0.163 0.37 

AR (p=30) 0.164 0.273 0.203 0.334 

AR (p=40) 0.349 0.44 0.284 0.304 

AR (p=50) 0.397 0.469 0.325 0.347 

Comparison of performance of the modified covariance method and the periodogram. 
Two different model orders are taken for the modified covariance method. 

Results obtained from the cell 220 (measurement taken at 11: 25arn on 5 January 
1996), case (c). 

The performances concerning the other two cases (b) and (c) are shown in tables 6.2 

and 6.3 respectively. The comments are the same, except for the modified covariance 

method from which the results depend on the model order p- For case (b), the IMSE 

and IMSEI. g are minimised when p= 40 and for case (c), these error parameters are 

nunimised for p= 30. 

As you can notice, the error parameters for the three different cases are not of the 

same order. This is due to the variations present in the second-order contribution and 

also to the choice of the distance (linear or logarithmic). For cases (a) and (b), the 

linear error parameters are comparable except for two p-values with the modified 

I covariance method (table 6.2, p= 20 and 30) showing large effors. However, 

concerning the logarithmic parameters, the errors are much larger for case (a). This 

can be explained by the presence of larger variations in amplitude of the second-order 

contribution of the periodogram shown in figure 6.1, which can induce more error in 

this case (a). Since the variations of the second-order part of the spectrum for case (b) 

(see figure 6.2) are small, the logarithmic errors are quite small. Concerning the last 

case (c), the linear and logarithmic errors are of the same magnitude since the 

variations of the second-order spectrum are small. 
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6.2.2 Wave parameters 

The three following tables 6.4,6.5 and 6.6 contain the error measurements obtained 
from three ocean wave parameters (see Chapter 5 section 5.1.2.2), respectively for 

each sea state (a), (b) and (c). 

As for the previous comparison with the spectral estimates, the periodograrn is better 

in terms of the given parameters when 9 segments are used and worse when a single 

segment is used. For certain values of p, the modified covariance method is 

comparable to the 9-segment periodogram. in terms of the bias. For example, in table 

6.4, when p= 40, the bias for Hs and T. is minimized for this method. And this 

happens for the two other cases (tables 6.5 and 6.6) when p= 30. For the last case 

(table 6.6), in comparison with the periodogram with 9 segments, less error is 

obtained for T. for the modified covariance method when p= 30. 

In contrary to the comparisons concerning the spectral estimates, the error parameters 

are of the same magnitude for the three cases. The variations of the second-order 

spectrum have no impact in these errors since the wave parameters are calculated from 

integrals of this contribution. 

Table 6.4 

Type HS Tw ow 

Bias Variance Bias Variance Bias Variance 

Periodogram 
with 9 segments 

0.0388 0.0352 0.0297 0.0253 0.004 0.006 

Periodogram 
with I segment 

0.489 0.6216 0.3978 0.3441 0.022 0.0646 

AR (p=20) -0.0456 0.0841 -0.1102 0.0154 0.0046 0.026 

AR (p=30) 0.0018 0.099 -0.0588 0.0105 0.006 0.0298 

AR (p--40) 0.0017 0.0928 -0.039 0.0062 0.0111 0.0286 

AR (p=50) 0.0855 0.2019 0.1372 0.4085 0.017 0.0315 

Comparison of performance of the modijied covariance method and the periodogram. 
Four different model orders are taken for the modified covariance method. 

Results obtained from the cell 144 (measurement taken at 6: 40pm on I January 
1996), case (a). 
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Table 6.5 
Type Hs TO, 0(0 

Bias Variance Bias Variance Bias Variance 

Periodogram 
with 9 segments 

0.0265 0.0333 -0.0048 0.0254 -0.0004 0.002 

Periodogram 
with 1 segment 

0.689 2.082 0.666 2.109 -0.006 0.02 

AR (p=20) -0.29 0.159 -0.44 0.0304 -0.01 0.173 

AR (p=30) -0.0328 0.2309 -0.1579 0.0278 -0.0163 0.0183 

AR (p=40) 0.229 1.235 0.497 3.523 -0.0049 0.0151 

AR (p=50) 
1 

0.751 
1 

2.513 
1 

1.593 
1 

8.004 
1 -0.01 0.021 

Comparison of performance of the modified covariance method and the periodogram. 
Two different model orders are taken for the modified covariance method. 

Results obtained from the cell 79 (measurement taken at 3pm on 27 December 1995), 
case (b). 

Table 6.6 

Type Hs TO 0(0 

Bias Variance Bias Variance Bias Variance 

Periodogram 
with 9 segments 

0.0795 0.1927 0.2786 0.6285 0.005 0.0053 

Periodogram 
with I segment 

0.5835 0.5643 1.2864 1.4424 0.002 0.0285 

AR (p=20) -0.2608 0.0548 -0.1479 0.0634 -0.009 0.0076 

AR (p=30) -0.1732 0.0516 0.03 0.1776 -0.0069 0.0078 

AR (p--40) 0.4357 0.5211 1.1652 2.7414 -0.021 0.012 

AR (p=50) 0.4099 0.4776 1.0059 2.0099 0.0105 0.0129 

Comparison of performance of the modified covariance method and the periodogram. 
Two different model orders are taken for the modified covariance method. 

Results obtained from the cell 220 (measurement taken at I 1: 25arn on 5 January 
1996), case (c). 

6.2.3 Summary 

15 more Monte Carlo simulations were carried out which revealed that for the 

modified covariance method, the different error parameters are generally minimized 

ill 
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for 20: 5 p: 5 40; that helps us in the selection of the model order p. This range for p 

is suitable for N= 512 samples. Nevertheless, given that the difference between 512 

and 896 points is not large and since no relation exists between p and N, we can also 

apply this range for N= 896 samples. 

For the different sea-states considered (seen in figures 6.1,6.2 and 6.3), the 

superpositions of the periodogram. and the AR PSD estimate (given by the modified 

covariance method) with the appropriate model order p given by the Monte Carlo 

comparison are shown in figures 6.4,6.5 and 6.6 respectively. As you can see, their 

similarity is quite good. In the next section, we propose a general p-value taken in this 

range. 
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Figure 6.4: Superposition of the periodogram. and the AR PSD estimate of the OSCR 
file cell 144 (dotted line) with N= 896 and p= 40. 
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Figure 6.5: Superposition of the periodogram and the AR PSD estimate of the OSCR 
file cell 79 (dotted line) with N= 896 and p= 40. 
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Figure 6.6: Superposition of the periodograrn and the AR PSD estimate of the OSCR 
file cell 220 (dotted line) with N= 896 and p= 30. 
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6.3 Wave-buoy results 

The different histograms shown in figures 6.7,6.8,6.9,6.10, and the tables 6.7 and 

6.8, give the results obtained from the wave-buoy comparison (see Chapter 5 section 

5.2). The bias and variance, relative to the wave-buoy measurements, are determined 

with the wave parameters extracted from the different spectral estimates. We used 

only good quality radar measurements (master and slave), obtained from the cell 55 

and dated from 4 until II January 1996. This quality was discussed in section 6.1. 

We considered each measurement to be independent. In total, 105 measurements 

were used to give the results. Concerning the periodogram, we took the full data set: 

2688 samples. 

6.3.1 Wind direction, 0. 

Table 6.7 contains the mean difference and the standard deviation obtained for 0. 

(see Chapter 5 section 5.2.2) with the periodograin with full and short data sets and 

the modified covariance method with different order models. As it can be seen, the 

results are comparable for both spectral techniques. The modified covariance method 

gives less error in terms of the given parameters when p =30. 

Also, this table shows the errors resulting from the modified covariance method when 

it is applied to the three successive 5-minute measurements. As can be seen, both 
I differences remain nearly constant during this hour measurement. 
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Table 6.7 

Type Ow (0) 

mean difference standard deviation 

Periodogram. 16.55 12.52 
full data set 

Periodogram. 17.16 14.53 
second collection 

AR(20) 16.8 12.15 
second collection 

AR(30) 16.26 11.5 
second collection 

AR(40) 16.34 11.78 
second collection 

AR(30) 17.59 13.18 
first collection 

AR(30) 17.3 14.38 
third collection 

Errors resulting from the comparison between the wave-buoy measurements and the 
wave parameter 0. extracted from the periodogram with full and short data sets and 

the modified covariance method with three different model orders. 

6.3.2 "Sea truth" consideration 

In this section the wave-buoy measurements are considered as "sea truth" 

rneasu 
! 
rements (see Chapter 5 section 5.2.1). 

Table 6.8 sho,. ys the error parameters resulted from the modified covariance method 

with three different model orders p. They were taken in the range given by the 

Monte Carlo simulation study (20: ý p: 5 40). We used the second 5-minute collection 

since this is closer to the wave-buoy measurements in time. As can be seen for HS 

and T. as for 0. ) , lower errors are obtained when p= 30. Therefore in the future we 

will be using this model order. We added to this table the results obtained from the 

periodograrn with the same amount of data (896 samples). These errors are quite 

large, showing the efficiency of the modified covariance method when using short 

data sets. 
Figures 6.7 and 6.8 show the error parameters resulting from the periodogram with 
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full data set and the modified covariance method with 896 samples. In general, the 

error mean is less than 6% for 11ý, 3% for 1,,, and the error variance is less than 1.2% 

for H. , 0.2% for T,,,. These results obtained for the error variance give a very good 

accuracy for the different wave parameters, given that the directional waverider can 

produce 2.5-5% error (Allender et al. 1989) in the bias. 

The periodograrn is better in terms of the mean, that is not the case for the variance 

which shows less error for the modified covariance method. 

Table 6.8 
Type Hs(%) T'll (%) 

Bias Variance Bias Variance 

AR (p - 20) 10 3.9 3.7 0.2 

AR (p--30) 5.9 1.2 2.5 0.1 

AR (p=40) 10.9 16.9 29.9 638.8 

Periodogram 29.4 
1 

418.8 62.5 686.8 

Errors resulting from the comparison between the wave-buoy measurements and the 
wave parameters (Hs and T,, ) extracted from the modified covariatice method with 

three different model orders and the periodogram with short data sets. 

lFigure 6.7: Histogram showing the mean of the error resulting from the comparison 
between the wave-buoy measurements and the wave parameters (H, ý. and I) 

extracted from the periodograrn with ftill data set and the modified covarialice method 
with 896 samples and p= 30. On the x-axis, the numbers I and 2 represent H, ý and 
1. respectively. 
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Figure 6.8: ffistogram showing the variance of the error resulting from the 
comparison between the wave-buoy measurements and the wave parameters (H,,,, and 
T rom the periodogram and the modified covariance method with 896 extracted f 

samples and p= 30. On the x-axis, the numbers I and 2 represent 11ý and 7,,, 

respectively. 

The next two figures 6.9 and 6.10 show the errors resulting from the modified 

covariance method when it is applied to the three successive 5-minute measurements. 

As can be seen, both bias and variance remain nearly constant during this hour 

measurement particularly for T,,. Concerning Hs (which is more sensitive to error) 

the last collection reveals more difference. However, one can say that the data remain 

reasonably stationary during the hour measurement. 

From all the results obtained for Hs and T,,,, we can notice their degree of sensitivity. 

The largest errors concern H.. The difference between Hs and 1,, comes fi-om the 

facts that Hs involves the first-order spectrum since the second-order contribution is 

normalized with respect to the first-order spectrum (see Chapter 2, sections 2.4.1 and 

2.4.2). 
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Figure 6.9: Histogram showing the mean ot the error resuiting trom the comparison 
between the wave-buoy measurements and the wave parameters (HS and T,,, ) 

extracted from the modified covariance method over the three collections of 896 

samples with p= 30. On the x-axis, the numbers I and 2 represent H,, and 

respectively. 

Error variances 

4 .......... 

3 0 first collection 

20 second collection 
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2 

Wave parameters 

Figure 6.10: Histogram showing the error variance resulting from the comparison 
between the wave-buoy measurements and the wave parameters (H. and 7' ) 

W 
extracted from the modified covariance method over the three collections of 896 

samples with p= 30. On the x-axis, the numbers I and 2 represent H,,; and 7' (0 

respectively. 
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6.3.3 Symmetric regression 

This comparison assumes that errors can be produced in both measurements (see 

Chapter 5 section 5.2.2). 

Table 6.9 shows the results obtained from the periodogram. with full data set 
(N = 2688) and the modified covariance method with N= 896 and the recommended 

model order p= 30. As can be seen, the periodogram and the modified covariance 

method have equal but different advantages. The periodograrn gives better results in 

terms of the variance for Hs and bias for T. and the modified covariance method 

gives better results in terms of the bias for Hs and variance for T.. 

We can notice that these errors are larger than the ones obtained with the sea truth 

consideration. This may be due to the fact that errors from both system build up. 
However, they are of the same order as the results obtained by Wyatt and Ledgard 

(1997c), showing good agreement between these results and theirs. 

Table 6.9 
Type Hs(%) T, M 

Bias Variance Bias Variance 

Periodogram 6.5 4.2 -2.5 2.7 

AR (p=30) 5.9 5.8 6 2.2 

Errors resulting from the symmetric regression between the wave-buoy 
measurements and the wave parameters (Hs and T. )extracted from the periodogram, 

with full data set and the modified covariance method. 
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6.4 Conclusion 

Since we are in the ideal situation for the periodogram (no case of spht peaks are 

considered), these results showed that the modified covariance method and the 

periodogram are comparable. 

With the Monte Carlo simulation study, the results obtained by the modified 

covariance method with shorter data sets are quite good, particularly for the wave 

measurements. Also, this study allows us to solve the problem of selection of the 

model order p for the modified covariance method. For the OSCR system, with 

N= 896, we must take 20: 5 p: 5 40. 

With the wave-buoy comparisons, a more precise value for p is obtained. Less error 

resulting from the "sea-truth" for the modified covariance method is obtained when 

p= 30. The results show that the modified covariance method is better for T,, and 

0,,. The symmetric regression shows good agreement between radar measurements 

(obtained from the periodogram and also from the modified covariance method) and 

wave-buoy measurements. 

Finally, the Monte Carlo method and the wave-buoy comparisons show the efficiency 

of the modified covariance method when short data sets are used, compared to the 

periodogram with the same amount of data (512 data points for the Monte Carlo 

simulation study and 896 data points for the wave-buoy comparisons). 

6.5 In version procedure 

As the modified covariance method is promising, the inversion procedure is carried 

out on its resulting AR PSD estimate. Figures 6.13,6.14,6.15 and 6.16 show 

different directional spectra which consist of the energy spectrum, mean direction and 

directional spread. They are obtained from spectra determined using the modf, i ed 

covariance method and the periodogram (with full data set), using the data originating 

120 



Chap. 6: Evaluation of the Modified Covariance Method with the OSCR system 121 

from the OSCR system. We use the dual radar analysis to solve directional and 

amplitude ambiguities (see Chapter 2 sections 2.3 and 2.4) and the Wyatt inversion 

method (Wyatt 1990b). The modified covariance method is applied on the second 

collection of 5-minute measurements since this time is closer to the wave-buoy 

measurements. Also, it uses the model order recommended by one wave-buoy 

comparison (the "sea-truth" consideration): p= 30 (see section 6.2.1). 

The energy spectrum S,,, (f) shows how the wave energy is proportionally distributed 

with frequency. For example in figure 6.13, at the frequency f=O. lHz we have 

S,,, (f 1.3m 2 /Hz for the buoy. This means that waves travelling with the period 

T=I 10s, have the same energy contribution. Low frequency waves, which are 0.1 

usually generated by distant storms outside the region covered, are swell (Brown et al., 
1989). High frequency waves are wind sea; they are created by the local wind. The 

mean direction informs us of the direction taken by the different wave groups. From 

this direction, the directional spread shows how waves can spread. On the top of the 

graphs is written the day and time of the measurements (radar and buoy), the location 

and the significant wave height and mean period respectively for the radar and the 

buoy. Concerning the radar, another parameter is added. It is the mean difference in 

dB between the inverted and measured spectrum and is a measure of the convergence 

used in the inversion procedure. This convergence criterion must be less than 2 

(Wyatt 1997e). 

In figure 6.13, the two kinds of waves are clearly seen. The first peak at the frequency 

0. IHz represents the swell and the second one at 0.2Hz characterizes the wind sea 

which is less important in this case. By looking at the mean direction, the swell is 

propagating from the North and the wind-sea from the East. Good similarities 

between the wave-buoy measurements and the two spectral techniques, the modified 

covariance method and the periodogram, are obtained. Concerning the wave energy 

spectrum, it is the periodogram which gives a better superposition. However, the 

different wave parameters (significant wave height and mean period) extracted from 

the modified covariance method are closer to the buoy's. 

Figure 6.14 shows a similarity between the periodogram and the modified covariance 
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method which reveal a strong peak at 0.15Hz. This is not the case for the wave-buoy 

measurements. Both swell and wind sea are present even if they are not very well 
delimited. This explains the differences occurring in the mean direction. For the 

wave parameters, both spectral techniques are comparable. 

In figure 6.15, the wave energy spectrum obtained from the AR PSD estimate contains 

more energy than the one obtained from the periodogram. But both of them are 

similar. It is difficult to tell if the first peak at 0.15Hz represents swell and wind sea. 
Another peak occurs above 0.2Hz. For this case, both wave groups have the same 
direction; they are travelling on-shore. Concerning the wave -parameters, it is the 

periodogram which gives better results. 

The last figure 6.16 concerns only the modified covariance method since the 

periodogram revealed split Bragg peaks (see figures 4.10 and 4.13). A peak below 

0.1 Hz appears in the wave-buoy energy spectrum and not in the different radar energy 

spectra. This is due to the fact that the radar range starts only at 0. lHz in this case and 

so nothing below this frequency can be detected. As can be seen, swell is propagating 

from the north and wind sea is travelling from East. Also, the wave parameters are 

close to the waverider's. 

In conclusion, we showed that the AR PSD estimates obtained by the modified 

covariance method can be inverted and give similar results to the periodograrn. Also, 

we showed that the inversion procedure can be still carried out when the periodogram. 

is not useable because of the problem of split peaks. To give firm conclusions, further 

work is needed. The inversion procedure must be applied to more AR PSD estimates. 
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Figure 6.13: Full directional spectrum resulted from the modr: fj i ed covariance method 
(a) and the periodogram (b) and obtained from the cell 55 (measurement taken at 
14pm on 21 December 1995), showing the energy spectrum, mean direction and 
spread as functions of frequency at locations measured from the North. Radar 
measurements are shown with a solid line and wave-buoy measurements with a 
dashed line. 
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Figure 6.14: Full directional spectrum resulted from the modified covariance method 
(a) and the periodogram (b) and obtained from the cell 55 (measurement taken at 
22prn on 9 January 1996), showing the energy spectrum, mean direction and spread as 
functions of frequency at locations measured from the North. Radar measurements 
are shown with a solid line and wave-buoy measurements with a dashed line. 
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Figure 6.15: Full directional spectrum resulted from the modified covariance method 
(a) and the periodograrn (b) and obtained from the cell 55 (measurement taken at 
20pm on I January 1996), showing the energy spectrum, mean direction and spread as 
functions of frequency at locations measured from the North. Radar measurements 
are shown with a solid line and wave-buoy measurements with a dashed line. 
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Figure 6.16: Full directional spectrum resulted from the modified covariance method 
obtained from the cell 55 (measurement taken at l2arn on 3 January 1996), showing 
the energy spectrum, mean direction and spread as functions of frequency at locations 

measured from the North. Radar measurements are shown with a solid line and wave- 
buoy measurements with a dashed line. 
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Chapter 7 

Evaluation of the Modified Covariance Method 

with the PISCES system 

For this HF radar system, this chapter contains only the results obtained by the two 

wave-buoy comparisons presented in Chapter 5 section 5.2. For the reasons given in 

Chapter 5 section 5.1.1, the Monte Carlo simulation study was not carried out with 

this system. 

The objective is to compare the modified covariance method with the periodogram, 

and give the accuracy of the wave parameters from extraction. 

Since the radar measurements were taken continuously (or coherently) over half an 

hour, here we propose a data set length which produces the best first- and second- 

order contributions. 
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7.1 Wave-buoy results 

7.1.1 Wind direction, 0. 

Table 7.1 contains the mean difference and the standard deviation obtained for OW 

(see Chapter 5 section 5.2.2). As can be seen, the mean difference is slightly better for 

the periodogram. But, when N ý: 1000, it is the modified covariance method which is 

better in terms of the standard deviation. For the modified covariance method, less 

error is obtained when p= 30 in general and this is reduced when N= 2000. 

However, one can say that when N ý: 1000, the results are comparable. 

In addition, the results obtained for N= 500 confirm the comments presented in 

Chapter 4 section 4.4.2. It was shown that this data set length was not enough to get a 

good estimation of the difference in amplitude of the two Bragg peaks in other words 

a good estimation of the wind direction. 

7.1.2 "Sea-truth" consideration 

This wave-buoy comparison considers the wave-buoy measurements as "sea-truth" 

measurements (see Chapter 5 section 5.2.1). 

Figures 7.1 and 7.2 show the mean and variance of the error (see Chapter 5 section 

5.2), resulting from the difference between the wave-buoy measurements and the 

wave parameters extracted from the periodogram. and the modified covariance 

method. Tables 7.2-7.5 show the different results obtained from the modified 

covariance method with four data set lengths and different model orders. In total, 88 

PISCES files, each containing 4608 samples, are tested. Only good data are taken 

with the same criteria as used for the OSCR system presented in the previous chapter 

(see section 6.2). 

Both radar and buoy systems work for around 30 minutes. The periodogram. uses 

these 30-minute measurements; that is not the case for the modified covariance 

method, for which shorter measurements are applied. As we assume that these 30- 

minute measurements are stationary in the sense that the sea-state is almost constant 
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during this period of time, we can take the first N data for the modirted covariance 

method for the comparison. 

Table 7.1 

Type OCO (0) 

mean difference standard deviation 

Periodograrn N 4608 14 12.1 

N= 500 AR(20) 17.14 13.22 

AR(30) 16.82 13.14 

AR(40) 17.05 13.28 

N= 1000 AR(20) 15.9 12.34 

AR(30) 15.83 11.64 

AR(40) 15.7 11.51 

N= 1500 AR(20) 15.29 11.83 

AR(30) 14.97 10.71 

AR(40) 15.3 11.18 

N= 2000 AR(20) 15.15 10.77 

AR(30) 14.36 10.35 

AR(40) 15.04 10.58 

Errors resulting from the comparison between the wave-buoy measurements and the 
wave parameter 0,, extracted from the periodograrn with full data set and the 

modijiled covariance method with three different model orders for different data set 
length. 

As our objective is to use shorter data sets with the modified covariance method, four 

different data set lengths are tested: N= 500,1000,1500 and 2000. For the model 

order p, we use the same range as for the OSCR system: 20: 5 p: 5 40. 

As can be seen in , tables 7.2,7.3,7.4 and 7.5 for the different data set lengths, less 

overall error is obtained when p= 30, as for the OSCR system. 
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Table 7.2 
Type Hs(%) TO M 

Bias Variance Bias Variance 

p= 20 17.65 14.84 5.91 1.326 

p=30 12.77 3.83 2.05 0.08 

p=40 117.53 12921 295.38 10462 

Errors resulting from the "sea-truth" comparison between the wave-buoy 
measurements and the wave parameters (HS and T. ) extracted from the modified 

covariance method with N= 500. 

Table 7.3 
Type Hs(%) TO) M 

Bias Variance Bias Variance 

p= 20 10.89 6.57 6.78 2.09 

p=30 6.4 1.01 2.37 0.15 

p=40 7.62 615.3 398.94 
1 

17920 

Errors resulting from the "sea-truth" comparison between the wave-buoy 
measurements and the wave parameters (Hs and T. ) extracted from the modified 

covariance method with N =I 000. 

Table 7.4 
Type Hs(%) T03 M 

Bias Variance Bias Variance 

p=20 10.37 2.58 6.34 2.14 

p=30 4.75 0.48 2.05 0.14 

p=40 79 842.3 1 213.96 1 7298.7 

Errors resulting from the "sea-truth" comparison between the wave-buoy 
measurements and the wave parameters (Hs and T. ) extracted from the modified 

covariance method with N= 1500. 
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Table 7.5 
Type H,, ý (%) T" (%) 

Bias Variance Bias Variance 

p= 20 10.74 3.31 6.99 2.34 

p= 30 4.64 6.28 1.91 0.09 

p= 40 71.76 
1 

811.02 
1 

144.41 3911.1 

Errors resulting from the "sea-truth" comparison between the wave-buoy 
measurements and the wave parameters (Hs and T,, ) extracted ftom the modified 

covariance method with N= 2000. 

The next histograms (figures 7.1 and 7.2) show the results obtained from the 

periodograrn with full data set, and the modified covariance method with four 

different data set lengths with the same model order p= 30. As can be seen, the 

periodogram is generally better in terms of the given parameters. But, for certain 

values of N, the results obtained with the modified covariance method are 

comparable. 

Figure 7-1: Histogram showing the mean of the error resulting from the comparison 
between the wave-buoy measurements and the wave parameters (H,,,; and 

extracted from the periodogram and modified covariance method. On the x-axis, the 
numbers 1, and 2 represent H,, s, and 7,, respectively. 
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Figure 7.2: Histogram showing the variance of the error resulting from the 
comparison between the wave-buoy measurements and the wave parameters (Hs and 
7,,, ) extracted from the periodogram and modified covariance method. On the x-axis, 
the numbers I and 2 represent H. and T,, respectively, 

For the modified covariance method, when N= 500, the global error in the 

significant wave height Hs is very high, which confirms the statement seen in Chapter 

4 section 4.4.2: N= 500 is too low to get the second-order contribution. For this 

wave parameter, less error is obtained when N= 1500. 

As for the mean period T, the periodogram and the modified covariance method with 

the different values of N provide comparable results. 

in general, for N ý! 1000, comparable errors concerning H. and 7", 
' are produced by a) 

the modified covariance method. However, N= 1500 is the recommended value to 

provide the most accurate wave parameters. 

In general, the error mean is less than 5% for Hs and 3% for 7", and the error 

variance is less than 1% for Ný and 0.2% for 7, These results obtained for the 

error variance give a very good accuracy for the different wave parameters given that 

the waverider can produce 2.5-5% error (Allender et al, 1989) in the mean bias. 
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7.1.3 Symmetric regression 

This method assumes that errors can be produced in both measurements (see Chapter 

5 section 5.2.2). 

Table 7.6 contains the results obtained from the periodogram using full data set and 

the modified covariance method with four different data set lengths as for the previous 

comparison. As can be seen, the different errors are comparable for both techniques 

and are of the same magnitude as for the OSCR system (see Chapter 6 section 6.2.2). 

Also, these results confirm that N= 1500 is the best data set length. A better 

accuracy for the wave parameters is provided by this number of data. 

Conceming Hs, the periodogram and the modified covariance method are 

comparable. Either the bias or the variance is smaller in each spectral technique. For 

T(O, it is the periodograrn which is better, particularly in terms of bias. The variance is 

equivalent for both techniques. 

Table 7.6 
Type Hs(%) TO M 

Bias Variance Bias Variance 

Periodogram -6.46 2.24 1.71 1.11 

AR(N 500) -15.16 9.98 7.64 1.39 

AR(N 1000) -6.1 6.05 8.48 1.57 

AR(N = 1500) -4.61 4.54 8.32 1.34 

AR(N = 2000) -5.33 4.38 8.48 1.15 

Errors resulting from the symmetric regression between the wave-buoy 
measurements and the wave parameters (Hs and T. ) extracted from the 

periodogram with full data set and the modified covariance method with four 
different data set lengths. 
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Z2 Conclusion 

The results of the wave-buoy comparisons show that the modified covariance method 

and the periodogram give similar results. 

This leads us to determine an appropriate value for the data set length :N= 1500 

samples, for the first- and second-order parts of the spectrum. Therefore, this amount 

of data, which corresponds roughly to 10 minutes, is recommended for future HF 

radar experiments. 

Figures 7.3 and 7.4 show the superpositions of the periodogram and the AR PSD 

estimate obtained from the PISCES files E130319.011 and E130328.008. The modified 

covariance method is applied with N= 1500 and p= 30. The two spectral estimates 

are also scaled to the integral under the first-order peak. This allows to compare the 

second-order part of the spectra which are directly related to the wave measurements. 

As can be seen, this superposition is very similar to the one shown in Chapter 4 

figures 4.6 and 4.7 with N= 4608. 
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Figure 7.3: Superposition of the periodogram (solid line) and the AR PSD estimate 
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Chapter 8 

Conclusions 

This thesis has been devoted to the investigation of modem spectral methods in order 

to monitor rapidly varying oceanographic conditions. The motivation has been 

twofold. Non-stationarity of the backscatter could occur and lead to the problem of 

split Bragg peaks in the Doppler spectrum. Even if this phenomenon of split Bragg 

peaks has not occured, the measurements may not have reflected correctly the sea 

conditions during this period of time. Finally, the modem spectral methods could 

provide stable spectral estimates using short data sets. 

A certain quality of the Doppler spectrum is essential to get current and wave 

measurements. The choice of the modem spectral method was made on the first-order 

part of the spectrum, which is related to current measurements. The evaluation of this 

method was mainly done on the extraction of the wave parameters from the second- 

order contribution. 

8.1 Modern spectral methods 

Four different spectral estimations were proposed in Chapter 3: 1. the autoregressive 

spectral estimation suitable for spectra with sharp peaks; 2. the autoregressive moving 

average spectral estimation able to re present different spectral shapes; 3. the 

eigenanalysis-basedfrequency estimation producing peaks of narrowband spectra and 

4. the recursive maximum likelihood estimation (RMLE) which is restricted to real 

data. 

The recursive maximum likelihood estimation (RMLE) developed an estimate of the 
I 

reflection coefficients and the order update of autoregressive parameters with the 

Levinson recursion. Since the requirement of the observed signal to be a real random 
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process was too restrictive in the sense that the obtained Doppler spectrum was 

symmetric, this method was left aside. - 
The eigenanalysis-based frequency estimation was only worthwhile for the location of 
the two Bragg peaks, hence for surface current calculations. Since the second-order 

contribution was non-existent, we preferred not to work further with this technique. , 
The autoregressive moving average (ARMA) spectral estimation was also studied. 
This model could provide different spectral shapes. Good estimations of the Bragg 

peaks were obtained but only with small values of the model orders. Its computation 

time was also important. Therefore, we chose to work with the autoregressive (AR) 

spectral estimation. 

This AR estimation showed the best results concerning the first-order part of the 

spectrum with no limitation on the model order, nature of the data and computation. 
Two methods were used to compute the AR power spectral density (PSD) estimate: 

the Burg method, which estimates the reflection coefficients subject to the Levinson 

recursion, and the modified covariance method based on a least-squared linear 

prediction approach. The choice between these efficient techniques was made on the 

fact that a phenomenon of split peaks, difficult to explain, could occur with the Burg 

method. (This phenomenon had nothing to do with the problem caused by non- 

stationarity of the data as mentioned above). 

Therefore, we chose to work with the modified covariance method because this 

technique revealed the most efficiency and reliability concerning the first-order 

contribution. 

8.2 Evaluation of the modified covariance method 

8.2.1 Qualitative assessment 

First, let us recall the mechanisms of the two HF radar systems. 

The. OSCR system collected data just for five minutes over a twenty-minute cycle; this 

corresponded to 896 samples. The classical spectral technique, the periodogram, used 
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three separate five-minute data sets in order to be stable. Our interest was to apply the 

modified covariance method on one five-minute data set. 

The PISCES system collected data continuously for about 30 minutes. This full data 

set of 4608 data points was used by the periodogram. In this case, we did not have 

any experimental constraints on the data set length for the application of the modified 

covariance method. 

For both systems, Chapter 4 showed several superpositions of the periodogram and 

the AR PSD estimate resulted from the modified covariance method. Good 

similarities were obtained. 

8.2.2 Quantitative assessment 

Two kinds of comparison were proposed and described in Chapter 5: 

* The Monte Carlo simulation stud : it consisted of synthesizing signals whose 

spectral density function have similar characteristics to the observed signal. Since the 

true PSD function was known, it was straightforward to get the bias and variance, 

describing the quality of the spectral estimates. These error parameters were obtained 

in two different ways: directly on the spectral estimates, by comparing them with the 

"true" spectrum; and on the ocean wave parameters (wind direction, significant wave 

height and mean period), by extracting them from the different spectral estimates and 

the "true" spectrum. 

This study was only applied to the OSCR system because disk space and computation 

time were too demanding for the PISCES system. 

In Chapter 6, the results on the spectral estimates showed that the periodogram with 

full data set was, as expected, better since the periodogram is known to be the best 

method when using long data series. However, the results of the wave parameters 

obtained by the modified covariance method were comparable with the ones obtained 

by the periodogram. But when using short data sets, the modified covariance method 

is largely better than the periodogram. This was one of the objectives of this thesis. 
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* The wave-buoy comparisons : By extracting the wave parameters from the 

different spectral estimates, we could compare these quantities with the wave-buoy 

measurements. Two methods were proposed. One considered the wave buoy 

measurements : as "sea truth" measurements. The second one was a symmetric 

regression which took into account errors coming from both systems (radar and wave 

buoy systems). These comparisons were applied to both HF radar systems (Chapters 6 

and 7). 

With the OSCR system, the results obtained from the sea-truth comparison showed 

that the modified covariance method was better than the periodogram. for the mean 

period and the wind direction. The symmetric regression showed that the 

periodogram. and the modified covariance method had equal but different advantages. 

Also, these comparisons confirmed the mediocrity of the periodogram. when using 

short data sets as pointed out with the Monte Carlo simulation study. 

For the PISCES system, the different comparisons showed as well that these two 

spectral techniques were comparable. 

This proves that the modified covariance method, with short data sets, and the 

periodogram, with full data sets, are equivalent in producing the Doppler spectrum. 

Therefore, these evaluations showed the quality of the modified covariance method 

using short data sets. 

8.3 Model order and data set length selections 

This work found a general model order, p, for the modified covariance method which 

is based on an autoregressive model. With the OSCR system in Chapter 6, a range 

was determined from the Monte Carlo simulation study: 20: 5 p: 5 40. From this 

range, we found that the p -value of 30 gave the smallest error with the wave-buoy 

comparison. 
Also, in Chapter 7 with reference to the PISCES system, this p -value was revealed to 

I 
be the most suitable for different data set lengths (N = 500,1000,1500 and 2000). 
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Since the PISCES system was not limited by the data collection, we could look for a 
data set length to get the best Doppler spectrum. 

In Chapter 4, we showed with this system that 500 samples were not enough to get a 

good estimation of the difference in amplitude of the two Bragg peaks, providing the 

wind direction. Chapter 7 confin-ned this statement. 

This chapter also recommended a data set length of 1500 samples (corresponding to a 

ten-minute collection) in order to get the most accurate wave parameters. 

8.4 Split peaks 

The first problem posed in the Introduction was the presence of split Bragg peaks in 

the Doppler spectrum. This implies the impossibility of proceeding with the inversion 

process which provides the full directional spectrum. In Chapter 4, this problem was 

shown to be the result of current variability and, by decreasing the time measurement, 

the modified covariance method reduced this problem since this method works well 

with short data sets. This showed the importance of using the modified covariance 

method for rapidly varying current conditions. 

8.5 Concluding remarks 

The reliability of the modified covariance method has been demonstrated. Good 

accuracy of the wave parameters was obtained. 

By using short data sets, this method reduced the problem of split peaks and gives rise 

to thinner Bragg peaks. 

Therefore, this method is efficient in the presence of rapidly varying oceanographic 

conditions. 

In Chapter 6, an overall view of the inversion procedure was given with the AR 

spectral estimate obtained from this method. This also showed promising results, 

140 



Chap. 8: Conclusion 141 

particularly when the periodograrn cannot be used because of the problem of split 

peaks. 
Finally, a data set length and a model order were recommended for the application of 

the modifled covariance method: N= 1500 and p= 30. The amount of data is then 

reduced by a factor of four. 

8.6 Future work 

The stationarity of the radar data was pointed out in Chapter 2, through a wavelet 

analysis, and Chapter 5, with the Monte Carlo simulation study. One question arose: 

is the time measurement short enough to consider HF radar data to be stationary ? In 

other words, how long must the data sets be to give a stationary process ? 

In order to answer this question, we started a wavelet analysis on some HF radar data. 

This time-frequency analysis with its scalogram. showed how the energy was 

distributed in the time-frequency plane. We showed how interference could appear in 

the scalograrn and when the signal was of better quality, in other words not drowned 

by some noise or interference. This pointed out the problem of split peaks by showing 

the main Bragg frequency moving during time. This analysis emphasized the use of 

the modified covariance method which by using short data sets reduced all these 

problems. 
To generalize, further work is needed. We need to investigate more HF radar signals. 

Also, for this work, we used a particular wavelet basis and we do not know if another 

wavelet might or might not be more appropriate to our case (Torrence and Compo, 

1998). 

Also, to confirm the promising results obtained with the inversion procedure carried 

out on the modified covariance spectra, this inversion needs to be applied to a wide 

range of modified covariance spectra. 
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Appendix A 

Some corrected codes 

This section contains two parts of C-programs, in which there are errors in the 

published code: (1) the Kolmogorov-Smirnov test (see Chapter 2 section 2.5.1) and 
(2) the procedure TEST of the recursive MLE method (see Chapter 3 section 3.4). 

A. 1 Kolmogorov-Smirnov test 

#include <math. h> 
#define NMAX 2000 
static float maxargl, maxarg2; 
#define MAX(a, b) (maxargl=(a), maxarg2=(b), (maxargi) > (maxarg2) ?\ 

(maxargl): (maxarg2)) 
/* -------------------------------------------------- ---------------- 
void sort(n, ra) 
int n; 
float ra[]; 
I 

int Ij, ir, i; 
float ffa; 

1=(n >> 
ir--n; 
for 

if (I > 1) 
rra--ra[--Il; 

else 
rra--ra[ir]; 
ra[ir]=rafl); 
if (--ir == 1) 1 

ra[l]=rra; 
return; 

} 
i=1; 
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j=l << 1; 
while 0 <= ir) 

if 0< ir && raU] < raU+1]) ++j; 
if (ffa < rao]) ( 

ra[i]=raU]; 
i += G=D; 

else j=ir+ 1; 

ra[i]=rra; 

/* ------------------------------------------------------------------- #define EPS 10.00 1 
#define EPS2 1.0e-8 

float probks (alam) 
float alam; 

int j; 
float a2, fac=2.0, sum=O. O, term, termbf=0.0; 

147 

a2 = -2.0*alam*alam; 
for o=l*, j<--100*, j++) ( 

tenn=fac*exp(a2*j*j); 
sum += term; 
if (fabs(term) <= EPS I *termbf 11 fabs(term) <= EPS2*sum) return sum; 
fac = -fac; 
termbf=fabs(term); 

return 
I 

/* ------------------------------------------------------------------- 
void ksone (data, n, func, d, prob, mean, var) 
P given an array data[] and given a cumulative distribution function 
P func ranging from 0 to 1, this routine returns the K-S statistic 
/*d and the sigignificant level prob. Small values of prob show that 
Pthe cumulative distribution function of data is significantly 
Mifferent from func. The array data is modified by being sorted 
Pinto ascending order. 
Pmean and var are the mean and variance of the array data 

float data[ I ], *d, *prob, mean, var; 
float (*func)(); /* ANSI: float (*func)(float); 
int n; 

int j, i, l, nl; 
float fn, ffen, dt, aux; 
float FO[NMAX], FN[NMAX]; 
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sort(n, data); 
aux = data[ I]; 
1=1; i=2; 
en = (float) n; 
while (i<=n) 

if (data[i] aux) 

FN[I] = (float)(i-l)/en; 
FO[I] = aux; 
aux = data[i]; 
I += 1; 
if (i == n) 

FN[I] = (float)(i)/en; 
FO[I] = aux; 

+= 

nl 1; 
*d=0.0; 
dt = 0.; 
for O= I -, j<=nlj++) 

fn=FNUI; 
ff=(*func)((FOU]-mean)/sqrt(2. *var)); 
dt = MAX(dt, fabs(fn-ff)); /*maximum distance*/ 
if (dt > *d) *d=dt; 

I 
/* *prob=1.36/sqrt(en); *H* significance 
*prob=probks(sqrt(en)*(*d)); 

#undcf MAX 

A. 2 Procedure TEST 

void TEST (ROOT, C, D, E, I, N, XKEST) 
/* Check the 3 real roots of a cubic equation to determine which 
/* one is the maximum likelihood estimate of the reflection 
/* coefficient 
double ROOT[3], C, D, E, *XKEST; 
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int LN; 

double. fmax, q, f;,, 
intj, ,-"-- '' 

fmax = -10000000.; 
for (j= I; j<=3 -, j++) 

if (ROOTU-I]>=-l. & ROOTU-I]<=I. ) 

q= fabs(E+2. *ROOTU-I]*C+ROOTU-I]*ROOTU-I]*D)/N; 
q= pow(q, 0.5*N); 
f= fabs(I. -ROOTU-I]*ROOTU-1]); 
f= pow(f, 0.5*1); 
f= f/q; printf("f %An", f); 
if (f > fmax) I *XKEST ROOTU-1]; 

fmax = f, 
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Burg method 

This appendix describes the Burg method which was introduced in Chapter 3 section 
3.2, used for autoregressive spectral estimation. This method is based on a order- 

recursive least-squares approach. It minimizes the forward and backward linear 

prediction errors with the constraint that the autoregressive parameters satisfy the 

Levinson recursion: 
-II--I 

ap (n) = ap-, (n) + kpa; 
-, 

(p - n), (B. 1) 

whcre k. ap (p) is known as the reflection coefficient. 

The forward and backward linear prediction errors are respectively: 

ef (n) = x(n) +aP (k)x(n - k) PI k=1 

P* 
(k)x(n -p+ k) 

(B. 2) 
ef (n) = x(n - p) +I ap P k=1 

where jx(n)} ý are . the N-point data sequence x(l),..., x(N) which estimate the pth- 

order AR paýaxneters. 

By substituting of equation (B-1) into these definitions, we get the following recursive 

relationships for the different linear prediction errors: 
b 
_I ef (n) = ef 1 (n) +ke (n - 1) 

P P- PP 
eb (n) =e b_1 (n - 1) + k; epf-l (n) 

(B. 3) 
PP 

At each order p, - the arithmetic mean of the forward and backward linear prediction 

errors is: ,- ý', 'ý ", -, , 
''. I ý,, 

II 
jb 

N 
)12 b )121 pp 

Ipn 
(B. 4) 

. t" , 2N n=p+l 

flef 
(n + le (n 



Appcndix B 151 

Mic objective, is to minimize this error which is subject to the recursion given by 

equation (B. 3)., ý So: pO is a function of the reflection coefficient k, since the pp 

predic - tion errois'fiom order p-I will be known. 

Ibis leads to'set the complex derivative of equation (13.4) to zero: 

ap jb ap jb 
PP 

m(kp) D91e(kp) =0 (B. 5) 

Ibus, an estimate of the reflection coefficient is obtained: 
N 

f b* 21 ep-, (n)ep-, (n - 1) 
n=p+l k P= N 

)12 b 121 
(B. 6) 

I jjePL, 
(n + lep-, (n - 1) 

n=p+l 

Once this reflection coefficient is estimated, the AR parameters can be calculated. 
A 

Thus the AR PSD estimate p (f ) can be obtained: 
AR 

A 
A TO 
P(f)= 2- (B. 7) 

AR 
11+ 

lp fip(n)e -2j7cfnT 

n=l 

I 

where T is the sample interval, 
A 

p is an estimate of the driving noise variance, 

and ip(n) are the AR parameter estimates. 

For a pth-order model and N data samples, this algorithm requires 3Np -p2 
I complex additions and multiplications, as well as p real divisions and element storage 

of 3N+P. 

The advantages of the Burg method are: 

* it results in high-frequency resolution. 

it yields a stable AR model since the normalization factors in the denominator of 

equation (B. 6) ensures that the estimate of the reflection coefficient has magnitude 

Icss than 

o it is computationally efficient. 

its disadvantages are: 
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0 the spectrum of the signal may have a single sharp peak, but this method may 

result in two or more closely spaced peaks. This line splitting problem difficult to 
define was, presented in Chapter 3 section 3.2. This was the reason we preferred to 

proceed with another autoregressive spectral method, the modified covariance 

method. 

0 for high-order models, it introduces spurious peaks. 

0 for sinusoidal signals in noise, it exhibits a frequency shift from the true 

frequency, resulting in a frequency bias (especially in short data sets). 

152 



Appendix C 

Recursive Maximum Likelihood Estimation 

This section describes the Recursive Maximum Likelihood Estimation (RMLE) 

introduced in Chapter 3 section 3.5. This technique is an approximation to the true 

MLE. . It operates in a recursive model order fashion, which allows to fit higher order 

models to the data. This method is restricted to real data. 

This method develops an estimate of the reflection coefficients, kP, and the order 

upd, ate of the autoregressive coefficients, ap ap (p) , which are provided by the 

Levinson recursion given in Appendix B equation (B. 1). 

Lct consider a zero-mean Gaussian autoregressive process of order p: 

X= [X(I) 
... x(N)]T. 

Mien, the probability density function (PDF) of X is 

p(Xia, Cr2) =L exp XT R-'X 
(2 (21r) N12 IRI 1/2 

(2 

whcre a= [a (1) ... a (p)]T is the AR parameter vector, a2 is the white noise variance 

and R E(XX T) is the covariance matrix (E is the expectation). 

Ibc true MLE of a', a, 2 is found by maximizing InpNa, a 2) with respect to a, 

a2 

Sincc X is a zero-me' ýhd autoregressive process, we can rewrite R as 

R(k)=E(X(t)X(t+k))=cy2Rf (k), (C. 2) 
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whcre Rf = Z-1 is the filter autocorrelation function (Z-1 denotes the 

_ 
(z)A(z- ) 

invcrsc Z transform and A(z) =I+a (k)Z-k 

k=l 

Thus, the equation (C. 1) becomes 

p(ýJa, ý12)= TI-2 exp XT R-'X) (C. 4) 
(27c) N12 cy N IRf I 2(y2 f 

'17)en, this probability is'maximizing with respect to (y2 because Rf depends only 

upon the filter parameters: 
8 In p(Xia, 

2N1 

_7 
+ 

4_XT R-IX 0 5a2 f Ta T( 

=> a2 XT R-lX. 
Nf 

Substituting (C. 5) into (C. 3), we now need to maximize 

I 

XT Rf'X 
N12 

Rf 
N)I 

or equivalently maximize: 

II 
IIN 

XT Rý'X 
Nf 

or by taking the logarithm: 

-e -N12 over a 1/2 

XTR f- 
I X+InlRf-11. 

N 

(C. 5) 

(C. 6) 

We want to maximize I recursivel . So we need to find recursive relationships for 

IRfIj 
and XTR-f'X in equation (C. 6). 

To do so, we assume that X, is an AR(n-1) process and that 1 is maximized with 

fCSPCCt to an-I = [a n a"-' (n - 1)] T where ai (i) is the ith AR parameter for the 

jth-ordcr model. Then, ' an-I is fixed from the previous maximization and we can 

CXPrCSS an in terms 6. f -an-, by the Levinson recursion (see Appendix B equation 

B.! ): 

154 



Appendix C 155 

ana 
n-I (i) + k, a n-I (n-i) i=l... n-I 

(C. 7) 
kn i=n 

Thus, equation (C. 6) becomes 

1=1,, =-Nln 
1 XT R-'X+InR-1 (C. 8) N fn 

I 
fn 

and 1,, depends only on k,, and is maximized with respect to it. 

To determine JR-11, we use the Toeplitz triangular decomposition (Marple 1987) fn 

since R is a toeplitz matrix: 

BT RB=P (C. 9) 

al(l) a2 (2) ... a' (n) 00... 0- 
01 al(l) ... a'-' (n - 1) an (n) 00 

where B, NxN, 

LO 0 ij 

P=diag NXN, 

and Pi is the prediction error power (or white noise variance) for the ith-order 
2 

predictor and P,, = cr 

A recursion exist also for Pi (this comes from the Levinson recursion): 

i 
Pi = Pi-I (I - k? ) => Pi = R(0)1-1 (I -k 

2). (C. 10) 

Since JBI = 1, from (C. 6), we obtain: 
n-I N-1 

IRI=IPI=flPiIIP,, 
i=O i=n 

and: 

IR lCy2 R -1 1= 
021V 

I 
/IRI= fn n-I -1 

fIP, / pi 
fI Pi / P, fIP, / pn i=o 

i=O i=n 

Thus, 

RIn 
n-I 

-fnl = 
11(l 

- 
0)' (1 -k 

2)n 11(l k 2)1 

WIn i=1 
i 

IRfi-, 11 
= (I -k2 n 

)nI 
I (C. 11) 

that is the first desired recursive relationship. 
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Now, we need to determine a recursive relationship for XT R -fl X=4, 

To do so, note that 4n '= XT R-'X=a p TS 
A fnn 

where a' = [I a" (1) ... a(n)]T and n 

N-i-j 
Sn =I 

t=' 0-5ij5n 

S 
j= i 

Using the recursion (C. 7), we partition (C. 12) into 

I- 
4n (I 

n-I + kn J 
n-I 

)a, 
-, 

kn 

(C. 12) 

is a symmetric matrix. 

kn 
(C. 13) 

where I., -, 
is the identity matrix of dimension (n - 1) x (n - 1), 

0 
is the reflection matrix of dimension (n - 1) X (n - 1) and 

-1 . -. 0- 

T Soo qn-I SOn 

1XI IX(n-1) 1XI 
qn-I Sn-2 Pn-I 

(n-I)XI (n-I)X(n-1) (n-I)XI 
T S,. 

o pn-l Snn 

L 
1XI IX(n-1) 1XI J 

Since a' can be further decomposed as a' = n-']+k,, 
[bol] 

with bl =J a" nn0 n-I n n-19 
n- 

we finally obtain 

-1 
2c., k,, + d,, kn 4, =4,2 (C. 14) 

afT 
[Sqn-I SO. 

bf#, T n-2 Pn-I ]b 
where cn = n-I nnT n-I and 

T1 

-1 , 
dn =b -1 

rpn-I 

nn n-2 Pn-j s 

bn-l =[a n-I (n ... an(l) 1] T 

Thus, 

=-Nln 
1+ 2c,, k,, + d, k 2)+ InIRf, '-, +n In(I - 

k2). 
Nnn (C-15) 

156 



Appcndix C 157 

It is assumed that k, ... k,, 
-, 

have been estimated. Then, the terms ý 
n- I. c,, , d,, and 

fn-11 can be computed and treated as constants. Therefore, to maximize In R-1 with 

respect to k,, , we set 
aln 

=0 and finally obtain Dkn 

k3 
(N - 2n)CI, 

2 ný,, -, + Nd,, Ncn 
n -' (N - n)dn -n (N - n)dn 

kn - (N - n)dn 
= 0. (C. 16) 

The equation provides either three real roots or one real root and two complex 

conjugate roots. This depends on d,, (d,, > 0, d,, =0 and d,, < 0). Kay (1983) 

proved that at least one real root within the interval [- 1, I] exists 

Once the estimate of kn is determined by this cubic equation, from equation (C. 5) (Y 2 

can be obtained 

+2c,, k, + d, k 2). (C. 17) 
N 

4n 

Nn 

To ease the computational burden, determining c,, and W, we can use: 

[S,, ],, =[S, -, 
], 
j 

0: 5i, j: 5n-I 
[S ]ij 

= 
[S 

n-I X(i)X(j)-X(N+I-i)X(N+I-j) i=n, j=l n. 
[S 

n 
lij 

= 
[S 

n 
Iji '=1... n, j=n 

Note that if X, is an AR(l) process, then the solution of (C. 16) produces the exact 

MLE. 

Once this reflection coefficient is obtained, the AR PSD estimate can be computed as 

for the Burg method described in the previous appendix (see equation B. 7). 

Using real data, this method provides symmetric spectral estimates. Since it was 

difficult to solve the cubic equation (C. 16) in the complex case (k,, appears as its 

rnodulus and as itself), we left this method aside. 
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