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Summary

High-Frequency (HF) radar systems are currently used to collect wave data. By applying
spectral analysis methods, such as the Fast Fourier Transform (FFT) method, to the radar
backscatter from the ocean surface, the so-called Doppler spectrum is calculated, and
from this the directional wave spectrum and wave measurements are obtained.

Because of the random nature of the ocean surface, spectral measurements are subject to
random variability. In order to reduce variability, and hence to obtain relatively precise
estimates, each spectrum is usually calculated by averaging a number of FFT estimates.
Naturally, this method requires long data series, and problems may arise. In rapidly
varying sea conditions, for example, successive FFT estimates may be quite inconsistent
with each other (in non-stationary conditions), and then the spectrum estimate obtained
by averaging is not only difficult to interpret but it may also be distorted.

It is known that the more recent spectral analysis methods such as methods based on
autoregressive (AR) and autoregressive-moving average (ARMA) stochastic models can
provide stable estimates from short data sets. Thus these methods are potentially good
alternatives to the FFT, as they avoid problems inherent to the use of large data sets. The
aim of this thesis is to investigate how some of the modern spectral analysis methods may
be used to obtain reliable spectral estimates from small data sets.

Unlike the FFT method, the AR- and ARMA-based methods presuppose specific
parametric forms for the spectral function, and therefore consist in estimating certain
parameters from the data (as opposed to estimating the function itself). The modified

covariance method and Burg’s method are among several methods of estimating the

parameters of the spectral function.



The choice between the different models 1s based on the shape of the Doppler spectra; it
is concluded that an AR process conforms better with the available data. Among the
various estimation methods, the modified covariance method proves to be more reliable.
In order to validate our choice, we carried out several comparisons with the FFT method.
The modified covariance method with smaller data sets 1s shown to give satisfactory
results, comparable to those of the FFT method as usually applied, while the FFT method
with smaller data sets performs poorly. Accurate wave measurements are still obtained
by reducing the amount of data by a factor of four.

The calculation of directional wave spectra from Doppler spectra estimated with the new

technique also gave satisfactory results.
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Glossary of abbreviations and symbols

Abbreviations

AR Autoregressive

ARMA Autoregressive Moving Average

CWT Continuous Wavelet Transform

FFT Fast Fourier Transform

FMICW Frequency Modulated Interrupted Continuous Wave
HF High Frequency

OSCR Ocean Surface Current Radar

MA Moving Average

MSE Mean Square Error

PSD Power Spectral Density

RMLE Recursive Maximum Likelihood Estimation

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

WT Wavelet Transform

Symbols

a scale factor

a, autoregressive parameters of a pth order AR process
a’’ autoregressive parameters for the modified covariance method
b, moving average parameters of a gth order MA process
Bias(.) bias

c velocity of light

cor(.) correlation coefficient

CWT(t,a) continuous wavelet transform

y 2 chi-square distribution

el (.) forward linear prediction error

e (.) backward linear prediction error

f frequency

£ Bragg frequency

fy Doppler shift

J radar radar frequency



Af, theoretical frequency difference
g earth’s gravity

Y () autocorrelation function

H, significant wave height

I identity matrix

J reflection matrix

k ocean wavenumber

k, reflection coefficients

A radar wavelength

MSE(.) mean square error

n normalised Doppler frequency
N data set length

N (11,0' 2) normal distribution of mean p and variance & °

Vv, radial component of the target speed towards the radar
p AR model order

q MA model order

r Bragg ratio

T verlap fractional overlap

! Pearson Pearson’s correlation coefficient

r(.) autocorrelation sequence
R range

R, autocorrelation matrix

pr linear prediction error

S(k,0) full directional spectrum

S(f) true PSD function

S(f) estimate PSD function

S, (f) energy spectrum

S.(f) periodogram

STFT(z, f) short-time Fourier transform

cT integral under the positive Bragg peak
c integral under the negative Bragg peak
c,M) normalised power spectrum of the second-order backscatter
T sample interval

T, mean period

T time location

T, signal propagation delay



direction of wave travel

propagation direction of the Bragg waves, along the radar beam towards
from the radar

propagation direction of the Bragg waves, along the radar beam away from

the radar
wind direction

white noise process
variance
time series



Chapter 1

Introduction

High-Frequency (HF) radar systems have the unique ability to picture the evolution of
wave dynamics over a wide sea areca under any weather conditions. The wave
measurements are obtained from the HF radar by inverting a non-linear integral
equation describing the relationship between the power spectrum of the radar
backscatter and the ocean wave directional spectrum. This power spectrum is known

as the Doppler spectrum.

The present techniques for obtaining the Doppler spectrum have a major shortcoming:
they require too long data sets. This 1s not acceptable for two reasons. First, the sea-

state can only be considered stationary in sufficiently short time periods, shorter than

the ones presently used. Second, the measurements can be subject to wind and wave

variabilities.

In this thesis, we solve this problem by looking at new spectral techniques. These

methods work with shorter data sets.

The work at Sheffield on HF radar remote sensing aims to measure the ocean wave
directional spectrum over large areas of the coastal ocean. This spectrum contains
information on both locally-generated wind waves and swell components from distant
storms. In fact, the HF radar system measures backscatter from the ocean surface, in
other words the moving waves, as well as from anything else such as ships. This
backscatter is converted to the Doppler spectrum, which leads to current and wave
measurements. The quality of the Doppler spectrum is responsible for the accuracy of
these wave measurements. Thus, it is necessary to use a spectral estimation method
which gives the best quality of this spectrum.

Figure 1.1 shows a typical Doppler spectrum. Barrick (1972) developed two strong

mathematical theories to describe this spectrum. The first-order theory represents the

two distinct peaks (see label A 1n figure 1.1) and this provides current measurements.
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The continuum surrounding these two peaks is the second-order theory (see label B in

figure 1.1). Wave measurements are extracted from this contribution.

Periodogram
152 4.27 402 077 052 027 002 023 048 073 098 123.1.48

452 .27 4.02 077 052 027 002 023 048 073 098 123 148
Frequency H2

10

20

Doppler Spectral Power dB
40 30

Figure 1.1: Typical Doppler spectrum showing (A) first- and (B) second-order
contributions.

The usual spectral technique used to produce the Doppler spectrum is the periodogram
(Harris 1978). This is based on the averaging of several spectra obtained by the Fast
Fourier Transform (FFT), which is a fast algorithm applying the Fourier transform to
the signal. This method will be described in the next chapter.

In order to get wave measurements, it is essential to reduce reasonably the variance in
the Doppler spectrum. This is achieved with the periodogram by averaging a certain
number of Doppler spectra, which leads to the necessity of using long data series.
Therefore, non-stationarity present in the sea state can become a major problem for
wave measurements. If the current varies considerably, this can lead to a smearing of
the first-order peaks and then prevent the separation of the first- and second-order
parts of the spectrum which is necessary to get the ocean wave directional Spectmﬁl.

Figure 1.2 illustrates this kind of problem and shows split peaks. One possible way to

overcome this problem is to reduce the averaging process and therefore use shorter

2
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data collection times, hence the need for alternative spectral analysis methods.

PERIODOGRAM
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Figure 1.2: Doppler spectrum showing split peaks.

When the sea conditions are varying very quickly, the measurement period may not be
sufficiently short to get enough information about the different sea states. This is the
case for some measurements of the Petten experiment in the SCAWVEX program
(Wyatt, 1997d). This experiment was carried out on the Dutch North Sea coast at
Petten (see figure 1.3). The measurements were conducted during the storm season
(from November to December 1996) and originated from (with a twenty-minute cycle)
two HF radars (WERA systems), represented as M and S in figures 1.4, 1.5 and 1.6.
As can be seen in these figures, in some parts of the sea region covered (for example,
along longitude 4.40), the wind direction (shown by arrows) and the significant wave
height (shown by shadows) change considerably during this period of time.
Therefore, one cannot be sure that twenty minutes is short enough to measure wind

and hence wave variations, which 1s another motivation to work with short data

collections. Also, it is obvious that this problem may occur when the data collections



Chap. 1: Introduction 4

are longer, for example, in the case of the OSCR system (another HF radar system
which will be introduced later on) where these collections take place over one hour.

The objective of this work is to develop a spectral estimation method which allows us

to use short time data collection.

oz
et
% w. i;a_
F° =~
I/
Petten /
i =
.' I,-j
T o
= Y

Figure 1.3: Measurement location of the Petten experiment.

The modem spectral estimation methods have the potential, when used with HF radar
data, of increasing the temporal resolution in current measurements thus allowing the
monitoring of rapidly varying oceanographic conditions. Kahn (1991) showed that the
ocean clutter can be modelled with two narrowband Bragg signals with time-varying
frequencies and postulated that the time vanations of the Bragg frequencies are related
to ocean wave height. For estimating the radial component of surface current flow
from HF radar measurements (Martin and Kearney, 1997), autoregression analysis is
intrinsically more accurate than the FFT technique with short data sets. But nothing
has been done concerning wave measurements. This thesis deals not only with current
measurements but also the use of such techniques is investigated in wave

measurements. In another words, the second-order part of the Doppler spectrum

becomes very important in this research.
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Figure 1.4: HF radar coverage showing wind measurements (by arrows) and wave
measurements (within shaded area). These measurements were taken at 6pm on 12

November 1996.
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Figure 1.5: HF radar coverage showing surface wind measurements (by arrows) and
wave measurements (within shaded area). These measurements were taken at 6:20pm

on 12 November 1996.
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Figure 1.6: HF radar coverage showing surface wind measurements (by arrows) and
wave measurements (within shaded area). These measurements were taken at 6:40pm

on 12 November 1996.
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Chapter 2 of this thesis is concerned with HF radar measurements. Two HF radar
systems other than the WERA system are presented: the PISCES and OSCR systems,
which supply data for this work. The standard technique for producing the Doppler
spectrum, the periodogram, is described. Since wave measurements are obtained from
the Doppler spectrum, we give a detailed description of the first- and second-order
parts of this spectrum and present these wave parameters. Also, the statistics of the
backscattered data are discussed because these will be useful in the following
chapters.

Chapter 3 provides a review of modern spectral analysis methods. Four different
spectral estimations are presented and applied to HF radar systems: 1. the
autoregressive spectral estimation suitable for spectra with sharp peaks; 2. the
autoregressive moving average spectral estimation able to represent different spectral
shapes; 3. the eigenanalysis-based frequency estimation producing peaks of
narrowband spectra and 4- the recursive maximum likelihood estimation (RMLE)
which is restricted to real data. One spectral analysis method is selected according to
the nature of the HF radar Doppler spectrum with its dynamic range and distinct

peaks. This is the modified covariance method based on the autoregressive spectral

estimation.

Chapter 4 describes the modified covariance method and points out its major problem,

the selection of the model order. As well, this chapter defines the problem of split

peaks as mentioned above and emphasizes the importance of using the modified

covariance method.

In order to validate the modified covariance method, we need to compare it with the
periodogram. To do so, two methods of comparison are introduced in Chapter 5. One
is based on the Monte Carlo simulation study, which evaluates the performance of the
different spectral methods. The second uses wave-buoy measurements. By extracting
the wave parameters from the different spectral estimates, we can compare these
quantities with the wave-buoy parameters.

The results obtained from these comparisons are presented in Chapters 6 (for the

OSCR system) and 7 (for the PISCES system).

The conclusion of this work is in Chapter 8.



Chapter 2

HF Radar Measurements

Radio oceanography was first introduced during World War II. The objective was to
provide a radar map of the surrounding ocean in order to get ship locations and was
not to measure waves. At the time, sea echoes from the ocean were undesirable and
this is why people called it “clutter”. However, this phenomenon was of great interest
for scientists who wanted to measure waves and understand the mechanisms behind it.
It was Crombie (1955) who first established the relationship between the scattering of
coherent HF radar (operating at frequencies 3-30 MHz) and waves on the ocean

surface. Since then, HF radar systems have been developed and become a powerful

tool for remote sensing of the sea-state.

Two HF radar systems (OSCR and PISCES) are described in this chapter. We also
present the Doppler spectrum and its characteristics, since the spectrum is essential to

obtain both current and wave measurements. Finally, the nature of the HF radar data

is statistically analyzed in order to apply some methods in the following chapters.
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2.1 What is an ocean wave ?

HF radar systems are used to provide measurements of the ocean waves.

Wave motion is carried out by particles of water exhibiting circular motion as the
wave travels. At the surface of the sea, these circular motions can have different
amplitudes. Waves are generated by the wind either by distant storms or locally. The

waves created by the distant storms are known as “swell”. Having long wavelengths,

they can travel long distances with low attenuation. The locally driven waves are

more complex. When the wind blows over the sea, short-wavelength waves, called
“wind-sea”, are formed. As these build up, the energy is transferred into longer

waves with larger amplitudes.

2.2 HF radar systems

HF radar systems are used for remote sensing of the sea-state (Paduan and Graber,

1997). They provide monitoring of ocean surface waves and current over a wide

surface area of the sea.

A transmitted radio wave 1s scattered from any surface of ocean with which it
interacts. This backscatter is received at the radar which measures the time and phase
differences between the transmitted and received waves. The resultant power
spectrum, referred to as the Doppler spectrum, which i1s based on the FFT, is

computed. This spectrum is essential to get measurements about the ocean waves.

Two HF radar systems are used for this work: the PISCES (not an acronym, c.f.
OSCR) system, intended for long range measurement of both current and waves, and
the OSCR (Ocean Surface Current Radar) system, a short range high resolution

system, developed for coastal current measurements. In order to eliminate directional

10
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ambiguities, both the OSCR and PISCES systems comprise two radars positioned a
distance apart from each other along the coast (Wyatt, 1987).

2.2.1 Concept

Radar stands for Radio Detection and Ranging. The radars have a principal radio

frequency, the carrier, set by a frequency synthetizer.

For a pulse radar (e.g. the OSCR system as described below), this continuous signal is
pulsed on and off by an modulator. The short bursts of radio energy that result are
amplified by a transmitter and sent to the antenna via a switch. The radio wave travels

away from the radar at the speed of light, is scattered from a target and returns to the

radar.

The range, R, of the target is computed from the signal propagation delay T, by

R=c1,/2, 2.1)

where ¢=3x10° m/s is the velocity of light, the velocity at which the radio wave

travels.

The wave length of the radio wave, A, is related to the frequency, f, by

A=c/f. (2.2)

The change in the frequency of the radio signal caused by the motion of the target is
called Doppler shift. This shift is related to the velocity of target by

Af = f,=2v, [\, (2.3)
where v, is the radial component of the target speed towards the radar. The Doppler

shift was named after C.J Doppler (1803-1853). He pointed out that the color of a

luminous body and the pitch of a sounding body are changed by the relative motions

of the body and the observer.

The radio wave frequencies that range from 3 to 30 MHz are classified as high
frequencies, HF. These HF radio waves have two alternate modes by which they can
reach surface points beyond the horizon. The first involves diffraction by the curved
earth: at HF, a vertically polarised wave can be diffracted a considerable distant

beyond the horizon due to the much longer wavelength and the highly conductive

11
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propertics of sea water at these frequencies. This mode of radio propagation is
referred to as the “ground-wave” or “surface wave” mode. The second mode of HF
propagation, referred to as “skywave”, results from the presence of the ionosphere

above the earth. Sea echo has been observed by both these modes.

2.2.2 OSCR system

The OSCR system (Wyatt 1994 and Wyatt and Ledgard 1996), has been developed to

provide solutions to coastal engineering problems, such as erosion problems or

sandbank movements.

As a pulse radar, this system uses a HF (25.4-27 MHz) radio frequency to map surface
current patterns over a large area of the ocean. It is a land based portable radar system
and consists of two radars, termed the master and slave, placed a distance apart from
each other. For the work discussed in this thesis, experiments were conducted along
the Holderness coastline (Prandle et al., 1996) and the radar sites were approximately
15 km apart from each other. In order to avoid the signals interfering with each other,
each unit makes independent measurements sequentially. These measurements were

taken at up to 559 cell positions with a range extending to 40 km offshore with a cell

resolution of 1 km?. As a pulse radar, range gating 1s carried out in time domain. A
single FFT provides the power spectrum at each range. It collects data for just five
minutes over a twenty-minute cycle. At present, three separate five-minute data sets
have to be averaged in order to obtain stable spectral estimates for wave

measurements (current measurements are made using the five-minute data), thus

measurements represent an hourly average.

Since these measurements have been collected in coastal regions they may be subject
to variations on time scales that are often less than one hour, leading to uncertainty in

the interpretation of the data. This problem was already mentioned in the Introduction

with the Petten experiment.

12
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2.2.3 PISCES system

The PISCES system was used to monitor waves and currents in the Celtic sea area.

Two radars were set up. One was located on the South Wales coast, the other one on

the North coast of Devon (Wyatt, 199)5).

PISCES is not a pulse radar but a FMICW (Frequency Modulated Interrupted
Continuous Wave) radar; it transmits and receives a sweep in frequency (from

frequency f; to frequency f,), repeated for the duration of the measurement. (The

WERA system mentioned in Chapter 1 is a FMCW system. The difference occurs in
the use of the transmitter and receiver.) For the FMICW radar, the receiver is
switched off when the transmitter 1s working and vice-versa. Each sweep is processed
using a FFT, the frequency bins of which identify the phase and amplitude of
backscatter from consecutive range bins. The range resolution is determined by the

total frequency difference, f,—f,, typically twenty kHz giving a resolution of

C | : . . :
m= 75km. Consecutive sweeps then contribute to a time series of
1~ J2

backscatter for each range cell. A second FFT is required to provide the power
spectrum of backscatter at that range. This second stage is identical to the processing
which is employed by pulse radars (such as the OSCR system as described above),

providing complex samples for each range bin.

To obtain stable estimates, taking account the random nature of the sea surface, a
certain amount of averaging of the second FFT is necessary. Therefore, about three
minute FFTs averaged over about 30 minutes have been used. As has been said in
Chapter 1, this can lead to problems in very variable sea conditions, particularly if

measurements are required over a large area.

13
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2.3 Doppler spectrum

To get the ocean parameters, we compute the Doppler spectrum from the time series

data obtained from the different HF radar systems. The method, usually used to

produce the Doppler spectrum, is the well-known periodogram (Marple, 1987 and
Harris, 1978).

2.3.1 Periodogram

The periodogram consists of segmenting the data into overlapping segments and

averaging the sample spectrum of each segment.

Assume a complex stationary data set x(0),...,x(N —1) of N data points, which is

divided into P segments of M samples each. Each segment is shifted with a shift Q

(see figure 2.1).

For both systems, we have taken M =512 and Q=128. Hence the overlap is

512-128
512

=T75% .

region of overlap

Figure 2.1: Partition of segments for overlapped processing.

14
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The purpose of overlapping segments is to increase the number of segments in order

to decrease the variance of the power spectrum density (PSD) estimate (see next

section).

In order to reduce the effect of sidelobes (spurious peaks surrounding the main lobe)

and decrease the estimation bias, a window 1s applied in each segment before

computing the sample spectrum. Thus the p™ segment consists of the samples:

O0<m<sM-1

xP(m) = wim)x(m+ pQ), 0< p< P—1 (2.4)

where w(m) = 0.35875— 048829 ¢o %‘Jﬂ)mlmzsco i:}"f-)+0.0116800 EAE;"-) is

the Blackman-Harris window (minimum 4-sample). From the range of the windows
available, this window is recommended by Harris (1978) because of its efficiency in

reducing spectral leakage and because i1t has the lowest correlation coefficient (see

next section) for a 75% overlap.

Then, the sample spectrum of the p™ segment is

1

SPf)== XD, “Yorsrshhr @)

M-~1
where T is the sample interval, U = T Y w?(m) is the discrete-time window energy,

m=0

M-l
and XP(f) =TI x”me™ is the discrete Fourier transform.

m={}

The quantity U is present to remove the effect of the window energy bias in the final

PSD estimate, the periodogram:

1 p-

(=287 NhrsFshr (2.6)

2.3.2 Correlation coefficient

The correlation coefficient shows the correlation existing between 2 successive

segments and the window efficiency. It is defined by

15



Chap. 2: HF Radar Measurements 16

M-l
3 W(m)w(m+(1 Foverar )M )
COT (Tyyepap) = #5———g > Jor 0=r,., <1, (2.7)
ZOW (m)
M-0 . : : : :
where 7., = Y, is the fractional overlap and W(m) is the window Fourier
transform.

When P segments are averaged, the variance of the average, O3, ..cx , is related to

the individual variance of the segments, G .y enr» (Harris 1978), for a 75%-overlap,

by:

9—4@-@- _d {1+ 2cor®(0.75)+ 2cor* (0. 5)}-—-——{cor (0.75)+2cor* (0. 5)} (2.8)

Cs SEGMENT

2
GAVERAGE

1
If there is no overlapping, then ————— = — (2.9)
GSEGMEW P
C* 2 . 1 1
Also, we have =3~ == With G Jyspce = — and O Jguerr == (2.10)
Ospouenr M 1 2

i is the degree of freedom of the “averaged” periodogram. The degree of freedom of
the periodogram for each segment without overlapping (Priestley, 1981) is 2.

This last formula is due to the distribution of the periodogram. Assuming that the
initial process is a Gaussian purely random process, Priestley (1981) proved that the

periodogram follows a x2 distribution. This property of normality will be shown

later in section 2.6.1.

In our case, using the Blackman-Harris window (minimum 4-sample), the different

values taken by the correlation coefficient are: cor(0.75) =0.46 and cor(0.5) =0.038.

Hence, with the PISCES system, we have

2

O
o N=4608,M=512,0=128,P=33=—222% 0043 in the case of

O SEGMENT
overlapping,
o 2
o N=4608,M =512,0=128, P =9=—75% =011 if we do not overlap.

o SEGMENT

16



Chap. 2: HF Radar Measurements 17

And for the OSCR system, we need to combine the equations (2.8), (2.9) and (2.10).
For each segment of 896 data points, we overlap 4 segments of 512 points and obtain

a “first” periodogram. Then, we average these 3 “first” periodograms in order to
produce the final periodogram.

GiVERAGE — 0 1 1

e N=2688,M=512,0=128,P=4X3=12=—; in the case of

O seGMENT
overlapping,
G 2
e N =2688M=>512,0=128, P=3=——""-=0333 if we do not overlap.
| O seGmeNT

G 2

e N=896M=512,0=128,P=4=—""""-=033 in the case of overlapping
cj..'S‘EG}ld':‘:'.'}'w'T

one segment of 896 point data.

Therefore, overlapping is important to decrease the PSD estimate variance. The
variance reduction with the OSCR system is limited by the operational constraint, so
that we cannot do as well as with the PISCES system. As can be seen with the OSCR
system, the fact of averaging 4 segments produced from the 5-minute collection
period is not sufficient to reduce the PSD estimate variance. This is the reason that 3
separate 5-minute data sets are averaged and overlapped in order to obtain satisfactory
quality signal to noise for wave measurements. We could extend averaging over
longer periods, but this option is not acceptable. Non-stationarity is to be avoided as
far as possible. The PSD estimate variance is used to determine the confidence

intervals for wave measurements (Wyatt 1991).

17



Chap. 2: HF Radar Measurements 18

2.3.3 Applications

2.3.3.1 OSCR system

Figure 2.2 illustrates a periodogram obtained from the OSCR system. We recall that a
raw file contains 3 segments of 896 samples, in other words 2688 data points. Each
segment represents one S-minute measurement and 1s separated by 20 minutes, so that
it corresponds roughly to one hour measurement. For each segment, using a 75%-
overlap, 4 segments, each of 512 samples, have been overlapped and averaged. Then

the 3 resulting segments are averaged. In total, 12 segments have been used.

2.3.3.2 PISCES system
Briefly, the PISCES system provides files of 4608 data samples, this corresponds to a

30-minute measurement cycle. In order to obtain the periodogram (figure 2.3), 33
segments (of 512 samples) have been used, also using a 75%-overlap.
As it can be seen, the fact that the variance is more reduced for this system makes the

periodogram in figure 2.3 look “smoother” than the one obtained with the OSCR

system shown in figure 2.2.

452 127 102 077 082 027 002 023 048 073 003 123 +v1.48
o

-10

-20

Doppler Spectral Power dB
30

40

A0

3+ '-
452 .27 402 O.77 052 027 002 023 048 073 098 123 148
Frequency H2

Figure 2.2: Periodogram from the OSCR system (measurement taken at 3pm on 27
December 1995), N =2688 and P=12.
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Figure 2.3: Periodogram from the PISCES (measurement taken at 8a.m. on 28 March
1987), N =4608 and P =33.

2 4 First-order measurements

Figure 2.4 shows a typical Doppler spectrum obtained from the OSCR system. It was
Crombie (1955) who deduced the Bragg scatter mechanism or first-order effect
characterized by two prominent peaks symmetrically spaced about the carrier
frequency (Forget et al., 1981 and Wyatt, 1990a), represented by A in figure 2.4. This
mechanism was seen to be “Bragg scatter”, the same phenomenon responsible for

scatter of X-rays in crystals and light rays from diffraction gratings.

The ocean wave-trains present on the sea interact with the radar wave. The sea-waves

of wavelength A 75 2 X 7‘/ , 3X %....where A is the radar wavelength, backscatter

almost all the energy toward the radar. Those having wavelengths equal to A 5, and

moving toward (positive Doppler frequency) and away from (negative Doppler
frequency) the radar, give the strongest echo (Barrick, 1977). This is illustrated in

figure 2.5. For such waves, the dispersion relation linking wavelength A to wave

19
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velocity is v = i\’g%n where g is the earth’s gravity (Tucker 1991). When there is

no surface current, the peaks are located at the Doppler frequencies * f,, with

2V gf radar
A e

, f,.... being the radar frequency (see section 2.1.1). In the

presence of a surface current, the peaks are at frequencies f, £ f,, where

PAY , : :
f, = -—ﬁ-‘i (v, being the radial component of surface current towards the radar) is

C

a frequency shift proportional to the magnitude of the current. Determining this shift

is the principle behind measuring the surface current.

Periodogram

452 1.27 402 077 052 027 002 023 043 073 098 123 149
o -

o (&
0
o g &
:
(B
R K
Q.
PP
ko
(& B

O
85 v
0
i
O
I{l
A Al
B B B
3 2
452 437 4.02 077 052 027 002 023 043 073 093 123 1.48

Frequency Hz

Figure 2.4: Doppler spectrum from the OSCR system showing (A) first- and (B)
second-order contributions (measurement taken at 3pm on 27 December 1995).
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transmitted wave p I

backscattered
wave

Figure 2.5: Diagram showing the Bragg scatter mechanism, given by the University of
Hamburg.

The two Bragg peaks are separated with the expected quantity, 2 £, , which allows us

to check that any spectral method we apply correctly locates the first-order peaks (see

Chapter 3). This quantity will be referred to as the theoretical frequency difference

given by:

2 4}zg.‘radar
27 C |

Afr:‘?'fb" (2'11)

The difference in amplitude of the two peaks is related to the wind direction. 6{0 . For

example, a wind blowing predominantly towards the radar results in the approaching

Bragg line that is greater than the receding line. The directional distribution of ocean

waves is usually assumed to be of the form:

(g5
COS” : (2.12)

2

where s is a spreading coefficient.

This model allows sea waves to be generated in all directions except directly upwind,

which qualitatively agreed with observations (Heron et al., 1985). Figure 2.6 shows

21
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different directional distributions from equation (2.12) with &, = 0° depending on the

choice of the spreading coefficient s (s=7,2 and 3).

120 : &0

ar "
l“

210

240 : 300

Figure 2.6: Superposition of four directional distributions, corresponding to different
spreading coeflicients s, represented in green for s=/, in red for s=2 and blue for s=3.

In this case, the wind directionis €, =0".

The Bragg ratio, r, is defined by (Wyatt et al., 1997a)

2s 9_ _em
k. COS B
CP hE (2.13)

o' + o )
cos""’( . 2 3

\ J

where o and o are the integrals under the positive Bragg peak and negative peak

respectively and " and & are the known propagation directions of the Bragg

waves, along the radar beam towards and away from the radar respectively.

If we refer these directions to the radar beam direction, & =0 and @' = 7z . then the

equation (2.13) becomes

22
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y 14 cos 20
COS O = -——T——-

Because Vo € R, - [—cos2g * Ve finally get
sin“o = —

Vr-1

(1+cos8,) =r(l—cosf, ) => cosf, = (2.15)
Ur+1

Figure 2.7 shows the superposition of the different solutions to the equation (2.15)

obtained for the wind direction 0, related to the Bragg ratio r. In order to have a

broad directional distribution, we disregard the solutions given by s 24 (see figure

2.7). For example, when r=2, we obtain in function of the spreading coefficient s the

following angles for 0 :

@ S=1, em =70.5"

The angular difference obtained with a spreading coefficient s=1 and the other

spreading coefficients is too large in regard of the error range given by earlier

experiments which is around 10° (Wyatt and Ledgard, 1996). Also, the directional
distribution in this case when s=1 is too large, in another words, two close values of r
result in a large difference between the respective wind directions. Thus, we disregard
the solution with a spreading coefficient of 1. Finally, the spreading coefficient is

taken to be two in our case because a broader directional distribution is shown

especially when r 21 (Wyatt et al., 1997a).

When the radar beam direction, 0, , is taken into account, we then obtain

cos@, 0, =T (2.16)

23
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With a single radar measurement, the obtained value of @, can be either clockwise or

anticlockwise from the radar beam; to resolve this ambiguity a second radar is used.

0.8
s=1]
08
3=
0.4
5=3
0.2 5=5
s=J0
=,
0 ] 2 3 3 5 &) 7

I

Figure 2.7: Superposition of different curves describing the relationship between the
cosine of the wind direction ¢ and the Bragg ratio 7.

2 5 Second-order measurements

In contrast to the “spiky” feature of the first-order effect, the second-order continuum
surrounding the main Bragg peaks, marked as B in figure 2.4, is a continuous function
of frequency. It is produced by: 1. non-linear ocean waves of the correct wavelength
which do not satisfy the linear dispersion relationship propagating with different speeds
and giving rise to different Doppler shifts; and 2. double electromagnetic scattering
processes also giving different Doppler shifts. From hydrodynamic and

electromagnetic theory, Barrick (1977) developed an expression for the second-order
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spectrum. He showed that the second-order part of the backscattered spectrum may be

described by the following normalised equation :

0,
c,Mm)=[Kn,0)S(k’,8")S(k,0)do (2.17)
0,

where K is a coupling function describing double scattering processes and non-linear
interactions between pairs of ocean waves, which define its two constituent parts: the

electromagnetic and hydrodynamic coupling coefficients,

N is the normalised Doppler frequency (such that the negative Bragg peak
occurs at | = —1 and the positive Bragg peak at | = +1),
k=k(n,0) and k'=k’(n",6") are the ocean wavenumbers of the interacting

waves obeying the constraint k + k’ = 2k, where k, is the radar wavenumber,

S(k,0) is the full directional wave spectrum,
and 0, and 0, define limiting angles (Holden and Wyatt, 1992).

o,(M) is the normalised power spectrum of the second-order backscatter. It is

divided by the first-order Bragg power in order to cancel unknown factors such as
path loss and system gains. This convenient normalization was first suggested by

Hasselmann (1971). The full directional spectrum, S(k,8), can be expressed by

(Tucker 1991):
S(k,0)=S5(f) G(f,9) (2.18)

where S(f) is one-dimensional spectrum and G(f,0) expresses how the energy at

frequency fis distributed by direction of wave travel.

The aim of the work at Sheffield 1s to assess the use of HF radar systems for

measuring S(k,0) . Parameters such as significant waveheight, mean period and mean

direction can be determined from S(k,0).

The significant waveheight, Hg, is defined as (Tucker, 1991)

H =4,/T¢(f)df (2.19)
0
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27
where -j—fl:q)( f)= IS(k,B)dB and ¢(f) 1is the spectral density function. In other
0

words, H provides a measure of the total energy in the wave spectrum.

The mean wave period T, is related to the inverse of the average frequency of the

spectrum and is defined as

e

= 2.20
° o) faf (2:20)

By inverting the non-linear Fredholm equation (2.17), the full directional wave

spectrum, S(k,0), can be determined. A number of methods have been developed to

solve this equation (Lipa et al., 1986 and Howell, 1990). For this work, we use the
Wyatt inversion method (Wyatt, 1990b and Wyatt and Atanga, 1997b). Initial

conditions concerning the wave parameters (such as Hg, T, and shortwave direction)

are necessary to initiate this inversion method. They are extracted directly from the
second-order continuum when normalized with respect to the first-order spectrum.

These first estimates are used to model the wind wave spectrum, S(k’,8’) in equation

(2.17), as a Pierson-Moskowitz spectrum with a cos* directional distribution (Wyatt
and Atanga, 1997Db).

We are interested in these expressions for Hg and 7, because they will be useful to

make comparisons between the periodogram and the selected modern spectral method
(see Chapter 3). If we can measure these parameters with sufficient accuracy from our

new spectral estimates we can proceed to test the accuracy of the inversion.

2.5.1 Significant waveheight, H,

Two expressions for H using G,(1), have been developed by Wyatt (1986):

e for the waves traveling perpendicular to the radar beam:

H.=0R , ac R regression coefficient (2.21)

e for all other waves:
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H, = BRY , B,y e R regression coefficients (2.22)

where R= [[o,(M)dn+ | [o,(M)dn, n being the normalised Doppler frequency
\’ Fy \/ F,

(such that n} = —1 at the negative Bragg peak and nj =1 at the positive one),

G ,(n) the normalised power spectrum of the second-order backscatter (it is divided

by the first-order Bragg power),

Fp = [0-4113*“3]\{“ € FB}’ Fy = [TIBJ-GTIB]\{TI = FB}=

Fp = {frequencies N contributing to the first - order spectrum},

and 1z =1, the normalised Bragg frequency.

A question arises: which of these two values for Hy is the correct one ? This can be

only determined with additional information from a second radar or another system,
such as wave buoy system (see Chapter 5 section 5.2.1). When two HF radar systems

are used, the final value for H; 1s obtained by averaging the two closest quantities

given by equations (2.21) or (2.22) resulting from each radar.

2.5.2 Mean wave period, T

As for H, a formula for T has been derived (Wyatt, 1986):
[o 5 (M)dn fo,m)dn

F F
gl fo4—r i abeR  (2.23
Io'zﬁﬂl"lldn ’ Iczlhl"lldn ’ N

Fy F,

I,

where fj is the Bragg frequency,
F, = [OanB]\{n € FB}’ F, = [nB*an]\{n € FB}’

and a and b are regression coefficients.
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2.6 Data analysis

In the following chapters, we will use the fact that the data are complex Gaussian. So

we need to check this property for HF radar data.

The stationarity of the data was assumed for the application of the periodogram in
section 2.3.1 and this property has always been assumed for HF radar data. Since to
show the stationarity of a signal is a very difficult task, this assumption is also made in
this work. This will be necessary for the application of modern spectral techniques
presented in the next chapter and the application of the Monte Carlo simulation study,
a method of comparison described in Chapter 5. But, we propose here a preliminary
investigation using the Wavelet analysis, a time-frequency method, which allows us to
analyse non-stationary and interference effects present in the data. For some cases of

HF radar data, non-stationarity has been identified with the Wavelet analysis.

2.6.1 Complex normality

Complex normality stands for a complex process following a Gaussian distribution.
To investigate complex normality, we show first the normality of the real and

imaginary parts of the data and then, the zero-correlation between the real and

imaginary parts.

2.6.1.1 Normality

We have used an algorithm from Numerical Recipies in C (Press et al., 1988): the
Kolmogorov-Smirnov test. The program 1s included in Appendix C because there are
errors in the published code (p492). The test is well explained by L. Sachs (1984, p
330).

The Kolmogorov-Smirnov goodness of fit test 1s:

H, : F(x)=F,(x) forallx

#H, : F(x)# Fy,(x) forsome x (2.24)
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the null hypothesis, H,, that the sample comes from a population with known
distribution function, F,(x), is tested against the alternate hypothesis, H ,, that the
population underlying the sample does not have F,(x) as its distribution.

The Kolmogorov-Smirnov statistic measures discrepancy as the maximum absolute

difference:

D = max|Fy (x) - Fy(x) 2.25)

]
where Fy(x)= ~ > (number of observations < x) and N the number of data

points.

The significance level, oy, of an observed value of D 1s given by the probability

P(D > observed) = Qx5 (VN D)=t

where Qgs(A) =2, (~1) ’“'"le"'zjerLz is a monotonic function (Press et al., 1988, p491)
j=1

satisfying the limit conditions :

{ Qks(0) =1

Oks () =0

Large values of D (D 2 0.05) show that the cumulative distribution function of data
is significantly different from the normal distribution.
We did several Kolmogorov-Smirnov tests for each system (PISCES and OSCR) on
the real part {x;,...,xy} and the imaginary part {y,,...,yy} of the data with
N = 1000, and small values of D were obtained. For example, with the PISCES and

OSCR files used to produce the periodograms seen in figures 2.2 and 2.3, we found:

D = 0027 (real part)

le :
e OSCRiile {D = 0.017 (imaginary part)

D = 0.027 (real part)

le :
o PISCESile { D = 0.026 (imaginary part)

Therefore, we can accept the normality for both real and imaginary parts of the HF

radar data.
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2.6.1.2 Correlation
We use the Pearson’s correlation coefficient (Press et al., 1988):

Z(xf“f)(yf-?)

T pearson = —Z—JW_“W (2.26)

for pairs of quantities (x;,y, ),-=L_ v»Where X and y are respectively the mean of the
x;’sand y;’s.
In our case, the pairs (x;,y; )H_ v Tepresent respectively the real and imaginary parts

of the data.
<0.05, it must be close to 0. If

r

Pearson

To have no correlation, we must have

=1, then it means complete correlation.

rPea rson

For both systems, different files were tested and correlation was not present between

the real and imaginary parts. For example, with the data used to produce the
=0.001.

periodograms seen in figures 2.2 and 2.3, we find that

rPea rson

Therefore, since the zero-correlation between the real and imaginary parts of the data

can be assumed and since the normality of the different parts were shown, we can

assume that the data are complex Gaussian.

2.6.2 Wavelet analysis

This section introduces the wavelet analysis which describes how the spectral content
of a signal changes in time. This time-frequency analysis provides the opportunity to

interpret interference and non-stationary effects and show the quality of the data.

Until now, we have used the Doppler spectrum with its two distinct peaks in order to
get wave parameters (€.g. significant wave height, mean period, etc.), but we do not
know when the frequencies of these two peaks occurred.

In Chapter 1, we saw that the time variations of the Bragg frequencies are related to
the ocean wave height (Kahn 1991), in other words to the second-order contribution.

Further information in the time domain might help to understand these variations and
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then interpret interference effects. Therefore, we are interested in applying the

wavelet analysis to HF radar data.

The Wavelet Transform (WT) is of interest for the analysis of non-stationary signals,

because it provides an alternative to the classical Short-Time Fourier Transform
(STFT).

In contrast to the STFT, which uses a single analysis window, the WT uses short
windows at high frequencies and long windows at low frequencies.

For some applications it is desirable to see the WT as a signal decomposition onto a
set of basis functions, called wavelets. They are obtained from a single prototype
wavelet by dilations and contractions. The prototype wavelet can be thought of as a
bandpass filter. In a WT, the notion of scale is introduced as an alternative to

frequency, leading to a so-called time-scale representation. This means that a signal is

mapped into a time-scale plane (the equivalent of the time-frequency plane used in the

STFT).

2.6.2.1 Non-Stationary Signal Analysis

The aim of signal analysis is to extract relevant information from a signal by

transforming it.

For stationary signals x(z) , that is, signals whose statistical properties do not involve

time, the natural “stationary transform ” is the well-known Fourier transform:

X(f) = Tx(t)e'zj“f’dt .27

The analysis coefficients X (f) define the notion of global frequency, f, in a signal.

They are computed as inner products of the signal with sinewave basis functions of

infinite duration. As a result, Fourier analysis works well if x(¢) is composed of a

few stationary components.

However, any abrupt change in time in a non-stationary signal x(t) is spread out over

the whole frequency axis in X(f).

Therefore, an analysis adapted to non-stationary signals requires more than the Fourier

Transform. The usual approach is to introduce time dependency in the Fourier
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analysis while preserving linearity. The idea is to introduce a “local frequency”

parameter (local in time) so that the “local” Fourier Transform looks at the signal

through a window over which the signal is approximately stationary. Another
(equivalent) way 1s to modify the sinewave basis functions used in the Fourier

Transform to basis functions which are more concentrated in time (but less

concentrated in frequency).

2.6.2.2 The Short-Time Fourier Transform : Analysis with Fixed Resolution

Consider a signal x(t) and assume it is stationary when seen through a window g(t)
of limited extent, centered at time locationt .
The FT of the windowed signals x(t)g" (t —1) yields the STFT:

STFT(t,f) = [x()g (t—1)e /™ dt (2.28)
:vrhi‘ch mapé the signal into a two-dimensional function in a time-frequency plane
(z.1).
The parameter f 18 similar to the Fourier frequency and many properties of the

Fourier transform carry over to the STFT. However, the analysis here depends
critically on the choice of the window g(¢).
An alternative view is based on a filter bank interpretation of the same process. Ata

given frequency f , equation (2.28) amounts to filtering the signal * at all times ” with

a bandpass filter having as impulse response the window function modulated to that

frequency.
A possible drawback to the time and frequency resolution can be shown. Consider the

ability of the STFT to discriminate between two pure sinusoids. Given a window

function g(¢) and its Fourier transform G(f), define the bandwidth Af of the filter

as
, _[FA6uar
(|G| df

where the denominator is the energy of g(7).

. Af (2.29)
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Two sinusoids will be discriminated only if they are more than Af apart. Thus, the

resolution in frequency of the STFT analysis is given by Af . Similarly, the spread in
time is given by At as:

" A2 gl dr

[l ds

where the denominator is again the energy of g(¢).

(2.30)

Two pulses in time can be discriminated only if they are more than At apart.

}

Now, resolution in time and frequency cannot be arbitrarily small, because their

I;roduct is lower bounded.

'tI:hel Time - Bandwidth product must satisfy the inequality: Ar Af = 1/4w : the

Uncertainty principle or Heisenberg inequality. It means that one can only trade time
resolution for frequency resolution, or vice versa. Gaussian windows are therefore
often used since they meet the bound with equality.

More important is that once a window has been chosen for the STFT, then the time-
frequency resolution given by (2.29) and (2.30) is fixed over the entire time-frequency

f)lane since the same window is used at all frequencies.

2.6.2.3 The Continuous Wavelet Transform : a multiresolution Analysis

To overcome the resolution limitation of the STFT, one can imagine letting the

resolution At and Af vary in the time-frequency plane in order to obtain a

multiresolution analysis. Intuitively, when the analysis is viewed as a filter bank, the

fifne resolution must increase with the central frequency of the analysis filters. We

therefore impose that Af is proportional to f:

A _

— . = ¢ where c Is a constant. (2.31)

f

The analysis filter bank is then composed of band-pass filters with constant relative
bandwidth (so-called “ constant-Q ” analysis). Another way to say this is that, instead
of the frequency responses of the analysis filter being regularly spaced over the

frequency axis (as for the STFT case), they are regularly spread in a logarithmic scale.
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When (2.31) 1s satisfied, we see that Af and therefore also At changes with the

centre frequency of the analysis filter. Of course, they still satisfy the Heisenberg
inequality (2.30), but now, the time resolution becomes arbitrarily good at high
frequencies, while the frequency resolution becomes arbitrarily good at low

frequencies.

A generalization of the concept of changing resolution at different frequencies is

»”

obtained with so-called “ wavelet packets ”, where arbitrary time-frequency

resolutions (within the uncertainty bound (2.30) ) are chosen depending on the signal.
The Continuous Wavelet Transform (CWT) follows the above ideas while adding a

simplification: all impulse responses of the filter bank are defined as scaled, (stretched

or compressed) versions of the same prototype A(z) :

1
ha(t)="'_"h(r )
T

| L.
where a is a scale factor. The constant _J: 1s used for energy normalization. This
a

results in the definition of the CWT:

CWT, (T,a) =-1—-Ix(t)h*(t_1)dt. (2.32)

\/[Z] a

To make the connection with the modulated window used in the STFT clearer, the

basic wavelet A(¢) in (2.32) could be chosen as a modulated window:
h(t) = g(t)e /™"
Then the frequency responses of the analysis filters indeed satisfy (2.31) with the

identification:

_f
f

The local frequency f =-f—°-, whose definition depends on the basic wavelet, is no
a

longer linked to frequency modulation (as was the case for the STFT) but is now
related to time-scalings. This is the reason why the terminology “ scale » is preferred
to “ frequency ” for the CWT, the word “ frequency ” being reserved for the STFT.

Note that we define scale in wavelet analysis like the scale in geographical maps:

since the filter bank impulse responses in (2.32) are dilated as scale increases, large
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scale corresponds to contracted signals, while small scale corresponds to dilated

signals.

2.6.2.4 Wavelet Analysis and Synthesis

Another way to introduce the CWT 1s to define wavelets as basis functions:
(2.31) & CWT,(t,a) = [x(t)h, . (t)dt

which measures the “similarity”’ between the signal and the basis functions

h, . (1) = —l—h(t —t J called wavelets.

Ja \ a

The wavelets are scaled and translated versions of the basic wavelet prototype h(t) .

dad
The reconstruction of x(t) = cﬂ CWI, (t,a)h, . (1) azt (2.33)

a>0 a

is satisfied whenever h(t) is of finite energy and band pass (which implies that it
oscillates in time like a short wave, hence the name * wavelet ). More precisely, if

h(t) is assumed sufficiently regular, then the reconstruction condition is [A(t)dt = 0.

Note that the reconstruction takes place only in the sense of the signal’s energy. A

signal may be reconstructed only with zero mean.

2.6.2.5 Scalograms

The spectrogram, defined as the square modulus of the STFT, is a very common tool
in signal analysis because it provides a distribution of the energy of the signal in the

time-frequency plane.

A similar distribution can be defined in the wavelet case. Since the CWT behaves like

an orthonormal basis decomposition, it can be shown that it preserves energy. We

have
2 dtda

a2

=E

X

[[lcWT, (x,a)

where E, = _ﬂx(t)lzdt is the energy of the signal x(¢).
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This leads us to define the wavelet spectrogram or scalogram as the squared modulus
of the CWT. It is a distribution of the energy of the signal in the time-scale plane,

: . dtda _
associated with measure ——, and thus expressed in power per frequency unit, like

a

the spectrogram. However, in contrast to the spectrogram, the energy of the signal is

here distributed with different resolutions.

2.6.2.6 Application

We have been using the Morlet wavelet:
h(t)= eZime-O.Stz—e*hz

and analysing the scalograms given by this wavelet basis. The Morlet wavelet is a
normalized, Gaussian-enveloped complex sinusoid with zero mean. It is only nearly

orthogonal but offers satisfactory resolution and stability.

fP;igure 2.9 exhibits the scalogram of a good PISCES file, EB0319.011 (measurement
taken at 11am on 19 March 1987). As can be seen, it contains 2 main parts which
correspond to the 2 main Bragg peaks given by the spectral estimate shown in figure
7 8. Here, the frequency scale is different from the spectral ones: the zero Doppler is
shifted to the right by 1.25Hz. Between these two rows, there is a “small valley”
which means that the frequencies between 0.6 and 1.5Hz during all the emission of
the signal are not powerful enough to show up (for the power scaling here). Figure

2 10 shows the scalogram from 0.7Hz to 1.4Hz. The power is much lower than the

one contained in the peaks of figure 2.9.
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Figure 2.8: Periodogram from the PISCES (measurement taken at 1la.m. on 19
March 1987), N =4608 and P =33.
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Figure 2.9: Morlet scalogram obtained from the PISCES file EB0319.011.
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Figure 2.10: Morlet scalogram obtained from the PISCES file EB0319.011, showing
the frequencies from 0.7Hz to 1.4Hz.

Plotting the data of this file, we can see that the real and imaginary parts behave in the

same way. Figures 2.11 and 2.12 show the first 2000 samples.
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Figure 2.11: First 2000 real data points of the PISCES file EB0319.011.
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Figure 2.12: First 2000 imaginary data points of the PISCES file EB0319.011.

With reference to the PISCES file EB0316.008 (measurement taken at 8am on 16
March 1987), the scalogram (figure 2.13) seems to be similar when compared with the
previous one. Figure 2.14 shows its periodogram. There 1s some perturbation at the

large negative frequencies and the total frequency difference is not very close to the

theoretical one: Af =0527344Hz and Af, = 0.532674Hz .

1000
800
600

400

200

Frequercy (Hz) Time (s)

Figure 2.13: Morlet scalogram of the PISCES file EB0316.008.
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Figure 2.14: Periodogram of the PISCES file EB0316.008.

But if we look more at the scalogram, we can notice that at the beginning (in time) for
the first row (foreground), the power tends to have less variability during the 500
seconds (which correspond roughly to the first 1500 data points). Figure 2.15 exhibits
the Autoregressive (AR) PSD estimate which does not use the first 2000 samples.
This spectral estimate 1s obtained from a modern spectral method, the modified
covariance method, which will be presented in the following chapter and fully
described in Chapter 4. It no longer contains the perturbation noted in the figure 2.14

and also a better estimation of Af is obtained: Af =0532227Hz. The signal is

plotted in figures 2.16, 2.17, 2.18 and 2.19. For the first 2000 data points (figures
2.16 and 2.17), note that the real and imaginary parts are very different particularly at
the beginning. For figures 2.17 and 2.18, they vary in a similar way.
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Figure 2.15: AR PSD estimate of the PISCES file EB0316.008. The first 2000 data
points are not used and the perturbation of the figure 2.14 has disappeared.
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Figure 2.16: Real part of the first 2000 data points of the PISCES file EB0316.008.
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Figure 2.17: Imaginary part of the first 2000 data points of the PISCES file
EB0316.008.
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Figure 2.18: Real part of the last 2609 data points of the PISCES file EB0316.008.
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Figure 2.19: Imaginary part of the last 2609 data points of the PISCES file
EB0316.008.

Another interesting example 1s given by the periodogram of the file EB0327.021
(figure 2.20, measurement taken at 21pm on 27 March 1987). Figure 2..21 exhibits its
scalogram where peaks show up only at the beginning of the record. If we look at this
file, we notice that the first 700 samples are much larger in amplitude than the rest.
Figures 2.22 and 2.23 show respectively the periodogram and the AR PSD estimate
(obtained by the modified covariance method as well), with N = 700. They give a
satisfactory ~ estimation of the frequency difference, Af =0532227Hz

(Af, =0533065Hz ) and the level of the noise has reduced by about 10 dB.
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Figure 2.20: Periodogram of the PISCES file EB0327.021
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Figure 2.21: Morlet scalogram of the PISCES file EB0327.021.
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Figure 2.22: Periodogram of the PISCES file EB0327.021 using only the first 700

data points.
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Figure 2.23: AR PSD estimate of the PISCES file EB0327.021 with
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The last example we propose concerns the problem of split peaks shown in figure 1.2.
Figure 2.24 exhibits the scalogram of the same file originating from the OSCR system.
The measurement was taken at 6pm on 6 January 1996 from the cell 55. As it can be
seen, two rows appear as for the previous cases with the PISCES system. If we zoom
into the region containing the most powerful frequencies, figure 2.25 (a), with the top
view (b), we can see clearly that the Bragg frequency has moved during the hour

measurement. We can also notice there 1s an anomaly during the period of time 600-

700s; no signals show up.

We can see already that the wavelet analysis 1s useful and promising. It can tell us
when the information is the most reliable and show the quality of the data. It reveals

lack of stationarity and emphases the importance of using modern spectral methods.
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Figure 2.24: Morlet scalogram obtained from the same OSCR file as shown in figure
1.2 (cell 55, measurement taken at 6pm on 6 January 1996).
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Figure 2.25: Morlet scalogram obtained from the same OSCR file as shown in figure
1.2 (cell 55, measurement taken at 6pm on 6 January 1996), showing the frequences
from 0.4Hz to 0.7Hz, side view (a) and top view (b). The rectangular highlights in (b)

show the moving Bragg frequency.
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Chapter 3

Modern Spectral Estimation

This section provides a review of techniques for the modern spectral estimation. We
are interested in finding the most appropriate to our applications in other words HF
radar systems for ocean monitoring.

The motivation of using such methods is the use of short data sets while providing
stable spectral estimates. In order to select the most efficient and reliable modern
spectral method, the different methods are tested on the data collected by the PISCES
system. Some methods are limited by the amount of data which can be used, which
leads us to take data sets of 100 samples. In this chapter, we just consider the first-
order effect. We look at the position of the two main Bragg peaks and compare the
total frequency difference to the theoretical one (see equation (2.11)). The second-
order contribution will be investigated in the following chapters.

Four different spectral estimations are described and applied: 1. the autoregressive

spectral estimation suitable for spectra with sharp peaks; 2. the autoregressive moving

average spectral estimation able to represent different spectral shapes; 3. the
eigenanalysis-based frequency estimation producing peaks at narrowband spectra and

4. the recursive maximum likelihood estimation (RMLE) which is restricted to real

data.
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3.1 Historical review

The ocean wave measurements are obtained from the periodogram based on the FFT
processing. This classical spectral technique was introduced by Shuster (1898). In
1927, Yule proposed an alternative analysis method by performing a least squares
autoregression analysis of the following model :

u(k) = b(Dulk = 1) +b2)u(k - 2)+¢e(k),
with €(k) small random error at each time &k, b(l) and b(2) 2 arbitrary values and

u(k) the signal, in order to search for any periodicities in the data.

The solution of this regression equation is a damped sinusoid. The normal equations

resulting from this analysis have been called the Yule-Walker equations. Walker

(1931) used this technique to investigate damped sinusoidal time series.

The year 1930 marked a major turning point for spectral analysis. It was Wiener who,
by publishing his classic paper “Generalized Harmonic Analysis” (1930) placed
spectral analysis on a firm statistical basis in its treatment of random processes.
Precise statistical definitions of autocorrelation and power spectral density (PSD)
were given for stationary random processes. These two functions of a random process
were shown to be related via a continuous Fourier transform, which is the basis of the
Wiener-Khintchine theorem. Wold (1938) introduced the terms moving average and
linear autoregression for time-series model. He was the first to describe the
relationship between the autoregressive parameters and the autocorrelation sequence
as the Yule-Walker equations. He also introduced a very important decomposition
theorem for stationary time series. It asserted that any stationary random process
could be expressed as the sum of a deterministic component and a one-sided moving-
average process driven by a white noise. This theorem led Kolmogoroff (1939) to

formulate and solve the linear prediction problem. In 1948, Barlett suggested the

computation of a spectrum from the autoregressive coetficients.
The prime motivator for the current interest in high-resolution spectral estimation
from limited data sets may be attributed to Burg (1967). He developed the maximum

entropy spectral analysis which is related to autoregressive spectral analysis. Since
then, many modern spectral analysis methods have been developed because of their

ability to provide high frequency resolution from short data sets (Marple, 1987 and
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Kay, 1988). Figure 3.1 shows an example of this ability. Two power spectra are
presented, both resulted from a sum of two complex exponential functions plus a
noise term. One is obtained by the conventional FFT and the other one by the Burg
method. As it can be seen, the two peaks are thinner with the Burg method; higher

frequency resolution is obtained.

The fact that fast algorithms have been developed 1s an important consideration for

real-time operation.

FFT Burg method
0 O
-10 -10
3.-20 T.-20
3 Iz
2 -30 2 30
5_40 B _40
= =
=50 -50
-60 60
0 00 100 0 80 100
Frequency Frequency
(a) (b)

Figure 3.1: Power spectra over 128 frequency points resulted from the FFT (a) and
the Burg method (b), showing the differences in the frequency resolution.

3.2 Autoregressive Spectral Estimation

Let {x(l ),eeen X(N )} be N consecutive samples of the time series of ocean
backscatter at one range cell.
The observed sequence {x( 1),...,x(N )} 1s assumed to be the output from a pth order

autoregressive (AR) model driven by a white noise process u(n), in other words the

current output sample x(n) is assumed to be a weighted sum of p past output samples

plus a noise term:
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x(n)+ Z a,x(n—k) =u(n) 3.1)
k=1

where a;, is AR parameter k of a pth order AR process.

The linear prediction problem is simply stated as follows. Given the observations

x(s),s < n, we wish to estimate the next sample x(n),n>0. Consequently, the AR(p)

process is a linear prediction problem.

A

Our objective is to compute the AR power spectral estimate p (f) (Marple, 1987)
| AR

once the AR parameters have been estimated:

N,

A Tp
p(fl)l=7—>  (3.2)
AR

4 .
1+ X 4 (n)e™ /™"

n=1
where T is the sample interval,

A a
0 is an estimate of the driving noise variance,

and 4 (n) are the AR parameter estimates.

To do so, we have computed the covariance and the modified covariance methods
which are based on a least squared linear prediction approach and the Burg method
which estimates the reflection coefficients (Marple, 1987, p 195 and 213). These

coefficients are provided by the Levinson recursion :
a,(n) =a,_(n)+k,a, (p~n), (3.3)

where k, = a,(p) -
All these methods are described by Marple (1987) and Proakis-Manolakis (1992).
The modified covariance method is fully described in the next chapter. In Appendix

B, a brief description of the Burg method 1s given.

For the location of the two main peaks, the modified covariance and Buré methods
give similar results on the PISCES data. For example, figures 3.2 and 3.3 show the
AR PSD estimates of the PISCES file EB0328.008 (measurement taken at 11am on 28

March 1987). The estimated frequency difference i1s the same for these two

techniques: Af =0.620117Hz and the theoretical frequency difference is:

Af, = 0.620583Hz.
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When the difference between Af and Af, is smaller than one frequency bin,

AF 0.00594 (OSCR system) _
where AF 1is the frequency range and N the

h=——=
N 0.00488 (PISCES system)

number of frequency points, we assume that “Af 1s close to Af,”. This is the case

for the last examples.

Marple (1987, p224-229) describes estimator characteristics and the different
anomalies met in the autoregressive spectra. The main difference between the Burg
and the modified covariance techniques is that in the Burg method the phenomenon of
spectral line splitting can occur. This phenomenon 1s not the same problem
mentioned in the Introduction. Figure 3.4 exhibits a Burg spectral estimate that has
split the first main peak into two peaks and figure 3.5 exhibits a modified covariance
spectral estimate that does not contain line splitting at the same frequency. Herring
(1980) studied the cause of line splitting in the Burg method. In the case of two
complex sinusoids in high signal-to-noise ratio (SNR) of 40-50dB, it was shown that

it is difficult to explain this phenomenon. No evidence of line splitting has ever been

| observed with the modified covariance method (Marple, 1987, p226).

Therefore, we prefer to work with the modified covariance method because it is more

reliable in this aspect.

3.3 Autoregressive Moving Average Spectral Estimation

The AR model is by far the most widely used (see previous section). It is suitable for
representing spectra with narrow peaks, it results in very simple linear equations and

the decomposition theorem due to Wold (1938) asserts that any autoregressive moving

average (ARMA) or moving average (MA) process may be represented uniquely by an

AR model of possibly infinite order.
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Figure 3.2: Doppler spectrum of the PISCES file EB0328.008, obtained by the
modified covariance method with N =100 and p =25. .
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Figure 3.3: Doppler spectrum of the PISCES file EB0328.008, obtained by the Burg
method with N =100 and p =25.
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Figure 3.4: Doppler spectrum obtained by the Burg method using the file
EB0329.011 with N =90 and p=30. The largest negative frequency peak between

~050Hz and —0.25Hz splits into two peaks.
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f‘igure 3.5: Doppler spectrum obtained by the modified covariance method using the
file EB0329.011 with N =90 and p = 30. No line splitting occurs.
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However, the ARMA model can generate diverse spectral shapes and it may be

appropriate to our case. It can be expressed by:
p p oo -
x(n) ==Y, ayx(n—k)+ Y bu(n—k)= 3 h(ku(n—-k), (3.4)
k=1 k=0 k=0

where a,; is the AR parameter k of a pth order AR process, b, the MA parameter &

of a gth order MA process and h(k) is a casual filter with h(0) =1.

Unlike the extensive range of algorithms to produce AR PSD estimates, there have
been few algorithms developed for ARMA PSD estimates. This is due to the
difficulty of estimating simultaneously the MA and AR parameters of the ARMA

model. Iterative optimization techniques have been developed to solve the nonlinear

equation obtained for the autocorrelation sequence r,, (m)=E(x(n+m)x"'(n)) (E

being the expectation) :

r. (-m) form<0

p q
r..(m)= _zaerx(m—k)+pw2bkh*(k—m)for O0s<m<qg. (3.5
k=1 k=0
p
—Zakru(m-k) for m>q
k=1

But these techniques involve important computations and are not guaranteed to
converge. Therefore, we implemented a suboptimum technique (Marple, 1987, p
285). This technique estimates the AR and the MA parameters separately in 3 steps :

1. estimation of the AR parameters with the covariance method, a,,..,a , from

the original data based on a least-squares ARMA Yule-Walker technique.
2. production of a residual time sequence by filtering the data with a filter based

on the last AR parameters,

3. estimation of the MA parameters from the residual time sequence b,,.. b, .

The ARMA Yule-Walker equations (Marple, 1987, p 182) describe the relationship

between the autoregressive parameters of the ARMA model and the autocorrelation

sequence.
Then, the ARMA PSD estimate can be evaluated:
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q

b, exp(-2 jrkfT)
Parma(f)=Tp, [, (3.6)
1+ ), a, exp(-2 jnlfT)
{=1

where we have taken small values of p=g.

When p is too large, we find that the total frequency difference is biased:
Af(p=35)=0620117Hz (see fig. 3.6) and Af(p=25)=0.751953Hz (see fig. 3.7).

Figures 3.6 and 3.7 are obtained from the file EB0319.011.
This method is comparable to the AR methods with taking small values of p. Good

estimation of the frequencies are obtained. Figure 3.6 exhibits the ARMA PSD

estimate and its total difference frequency estimate, Af = 0.620117Hz, is close to the
theoretical one, Af, =0.620583Hz. But it is preferable to use the Burg or the

modified covariance method in view of fact that the ARMA method is limited by the

orders p and ¢ and its computation takes (at least) twice the time of the modified

covariance method (Marple, 1987).
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Figure 3.6: Doppler Spectrum of the PISCES file EB0319.011 obtained by an ARMA
model with N =100 and p=¢g=5.
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Figure 3.7: Doppler Spectrum of the PISCES file EB0319.011 obtained by an ARMA
model with N =100 and p=qg=25.

3.4 Eigenanalysis-Based Frequency Estimation

This method described in Marple (1987, p 361) and Proakis et al. (1992, p 278),

divides the information in the autocorrelation matrix R, of a random process {x(n)}

into 2 vectors subspaces, one a signal subspace and the other a noise subspace:

r. (0) ...r..(p)
R — AX XX ’ .
y l:rxx( P) .., (0)} (5

where r, (m)= E (x(n +m)x” (n)) :
This creates frequency estimators and their plots show sharp peaks at the frequency
locations of sinusoids or narrowband spectral components.

These frequency estimators are not true PSD estimators because they do not preserve

the measured process power. Therefore, this method is only worthwhile for the

estimated frequency difference between the two main peaks.
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Hickey et al. (1995) have used this technique in order to get radar surface current

measurements, and good results (compared with the conventional FFT-based method)

have been obtained.

Here is a view of the eigen-decomposition method for sinusoids in white noise:

where the amplitudes {4, } and the frequencies {f;} are unknown and the phases

{q> ,} are statistically independent random variables uniformly distributed on (0,215) :

Then, x(n) 1s wide-sense stationary with the autocorrelation function

_ N~ 2jnfm
Y, (m) = ép,-e e (3.9)

The observed sequence 18

y(n) = x(n) + w(n) (3.10)
where w(n) is a white noise sequence with spectral density 62 .
Its autocorrelation function is

Yy (M) =Y o (M) +06,8(m),m=0%1,.£(n—-1)  (3.11)

and its autocorrelation matrix is

I =I_+0cil (3.12)

Yy

where I'_, is the autocorrelation matrix for x(n) of rank p:
p | |
i=1

where H denotes the Hermitian transpose operation.

Now, we are ready to do the eigen-decomposition of I‘y), . Let the eigenvalues {7\.,}

be ordered in decreasing value with A, 2A,..2A,,,M being the rank of I',, and

M 2 p. And let the corresponding eigenvectors be denoted as {v;,i =1..M }.

Assume that

H., _
v, V;=0;.

(3.14)

In the absence of noise, we have

Kl' * O,i — l..p
A,

l=lp:+-2"=lM =0

p o
and I',, = Y A,vv" .  (3.15)
i=1
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The vectors v,,i=1.p are called the principal eigenvectors and the values

A;,i = L.. p the principal eigenvalues.

M
Also, we can write that c2l=c%Y vy, . (3.16)
i=1

Then,

The set {vi,i = 1.. p} represents the signal subspace and {v,-,i =p+1..M } the noise

subspace which is orthogonal to the principal eigenvectors. Therefore, the vectors

{s,-} are linear combinations of the principal eigenvectors and are orthogonal to the

vectors in the noise subspace.

Consider the weighted spectral estimate:

M
P()= 3 wls (Fw (3.18)

k=p+l

where {v,,k = p+1..M} are the eigenvectors in the noise subspace, {w, } the set of

positive weights and s(f) = [l,ezj“f on @t T DS ] the complex sinusoidal vector.

Note that at f = f;,s(f;) =s; , we have P(f;)=0,i=1.p. Then %’(f) can

estimate the frequencies of the sinusoidal components.

The MUSIC (stand for MUltiple SIgnal Classification) sinusoidal frequency estimator
is a special case in which w, =1,Vk:

1
S s# " |

k=p+l

(3.19)

Pyusic(f) = M

The estimate of the sinusoidal frequencies are the peaks of PMUSIC ( f ) .

In our case, we would prefer to get two peaks. 20 tests with the PISCES data have
showed that we can get a good estimation of the most important peak. For example,
figure 3.8 (file EB0319.011, measurement taken at 11am on 19 March 1987) exhibits
the two peaks and a good estimation of the total frequency, Af =0.620117Hz,

compared to the theoretical one, Af, =0.620583Hz, and figure 3.9 (file EB0329.011,
measurement taken at 11am on 29 March 1987) with the same Af, shows what occurs

in almost all the cases (only one peak), here at the frequency f, =037Hz. Taking
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the former f, and half of the theoretical frequency difference, an approximation of

the shift frequency, f,, can be obtained. Therefore, this technique is of interest in

surface current calculations.

However, since it is impossible to get the second-order contribution, we prefer to use

the autoregressive spectral estimation.
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Figure 3.8: MUSIC estimate of the PISCES file EB0319.011 with
N =90 and p=2.
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Figure 3.9: MUSIC estimate of the PISCES file EB0329.011 with
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3.5 Recursive MLE method

The Maximum Likelihood Estimation (MLE) method proposed by Kay (1983)

develops an estimate of the reflection coefficients, k,, and the order update of the
autoregressive coefficients, a,(l),...,a,(p), which are provided by the Levinson

recursion seen in section 3.1 equation (3.3). A description of this technique is given

in Appendix C.

It requires that X = {x(l),...,x(N )} be a real Gaussian random process because it

rapidly becomes complicated in the complex case : the cubic equation (see Appendix
C equation (C.16)) which produces the estimates of reflection coefficients, is too

difficult to be solved: the unknown appears as its modulus and as itself.

The probability density function PDF of a real AR(p) 1s denoted by:
p(X;a(D,..a(p)c?).  (320)

Let a= (a(l),..,a(p))r. Then

p(X;a(l),..,a(p),02)= p(x(P)seer x(N) 1 X(1),.., X(p — 1);a,62)

3.21
x p(x(1),...x(p-1);a,6%) -

For large data records (more than 20 samples) which is the case here (100 samples),
the maximization of the PDF or likelihood function can be effected approximately by

maximizing only the conditional PDF in the right-hand-side of equation (3.21). The
effect of the PDF p(x(l),..,x( p—-1)a,0 2) on the MLE will be small as long as the

poles are not too close to the unit circle (see Kay, 1983). With this approximation the

conditional PDF can be maximized by assuming that X = {x(1),...,x(N)} is a
Gaussian random process. We have shown that this is true for our data (see Chapter 2

section 2.9).

The MLE method is used on the real or imaginary parts of the data. Another version
of the subroutine TEST of the algorithm is included in Appendix A because of errors

in the published code (Kay, 1988, p 267). Determining the root of the cubic equation
which is the maximum likelihood estimate of the reflection coefficient, we must check

firstly if the parameter D is positive (see Kay, 1983, section Il p 58).
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This estimator is a closer approximation to the true MLE than the one obtained by
linear prediction methods. Operating in a recursive way, 1t successively fits higher
order AR models to the data (and the estimated all-pole filter 1s guaranteed to be
stable). The RMLE does well with respect to the absence of spurious peaks and
resolvability of closely spaced peaks. However, the requirement of real data is too
restrictive. This method is not as good as the modified covariance or Burg method for
spectral peak location estimations. Using the real part of the data (file EB0319.011),
figures 3.10 and 3.11 exhibit respectively the RMLE spectrum and the periodogram,
giving the same frequency (around 0.3Hz) for the first-order peak as shown in figure
2.6. They are similar and of course both are symmetric, due to the absence of the
imaginary contribution.

Therefore, we prefer to leave this method aside.
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Figure 3.10: RMLE spectrum from the real part of the PISCES file EB0319.011 with
N =100.
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Figure 3.11: Periodogram from the real part of the PISCES file EB0319.011.

3.6 Summary

In this chapter, four different modern spectral estimations were considered. We chose

to work with the autoregressive spectral estimation and particularly, with the modified
covariance method because of its reliability and efficiency concerning the position of

the two Bragg peaks. A full description of this technique is given in the next chapter.
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Chapter 4
The Modified Covariance Method

In the previous chapter, we presented several modern spectral estimation method. The
modified covariance method, introduced by Marple in 1980, was chosen because it
revealed to be the most reliable and efficient concerning the first-order part of the
spectrum.

A full description of this technique, based on the autoregressive spectral estimation, is
given for completeness. It is supplemented by some details not presented elsewhere.
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