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Abstract 

Tropical forests play a crucial and diverse role in the Earth’s climate. Not only do they 

sustain human life and ecosystems, but they sustain themselves. As forests are lost around 

the tropics, they become less resilient to further changes, threatening to destabilise climate 

systems. Largely, tropical forest loss historically occurred in the Amazon, with the “arc of 

deforestation” in the south-eastern Amazon being the epicentre of change. In recent 

decades, not only has this forest loss become ubiquitous throughout the Amazon but has 

spread to the other tropical forest regions of the Congo Basin and Southeast Asia. During 

the 21st century it has been clear that politics plays a substantial role in the proliferation or 

lack of deforestation. Forest loss in the Amazon had been decreasing however changes to 

governance reversed this trend and we now see increasing rates. In the central African 

countries, a scramble to industrialise has spawned pervasive forest loss, whilst in Southeast 

Asia cash crops such as oil palm have driven significant forest clearance. These land cover 

changes will bring about important changes to climate. 

Satellite data provide tools to empirically assess the climate impacts of land cover change. 

For the last two decades, large numbers of studies have shown observationally that forest 

loss can impact the local climate. The studies show that tropical forest loss can on average 

reduce rainfall and increase temperatures, through modifying the land surface processes 

and fluxes. However, forest loss can manifest in many different ways, with differing patterns 

and scales. We show that the driver of deforestation can have a large impact on the 

response of temperature to forest loss. Across the tropics we show that commodity driven 

forest loss results in ~0.65 K warming, more than triple the warming attributed to forest loss 

driven by shifting agriculture (~0.2 K). We find that most forest loss in the Congo is driven by 

shifting agriculture and correspondingly it has the least warming attributed to forest loss 

(~0.2 K). Projections show that deforestation in the Congo is likely to become more 

industrialised in the future. If the Congo shifts from small scale heterogenous forest loss to 

large scale commercial agriculture, we expect the local warming response to increase.  

Whilst the temperature response to forest loss has commonly been observed, the response 

of precipitation has been more difficult to pin down. Ground-based case studies have shown 

that reductions and increases in precipitation occur when tropical forest is lost. Remotely 
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sensed and ground-based studies consider different mechanisms and impacts due to their 

differing methodology. Here we examine land cover change at a range of spatial scales, 

finding large reductions in observed rainfall over regions of forest loss across the tropics. 

Over the observed period, 2003 - 2017, we analyse 18 precipitation datasets, providing clear 

evidence that forest loss caused reduced local precipitation. The largest reductions occurred 

alongside the largest scales of deforestation, with 0.25 mm/month per percentage point of 

forest loss occurring at the 200 km forest loss scale. Using a land cover change model, we 

estimate that future deforestation is likely to result in large decreases in precipitation 

associated with forest loss. In the Congo, where forest loss is projected to be most severe, 

precipitation by the end of this century will have decreased by 8-10%. 

To understand how land cover change can affect climate, researchers use climate models, 

however the impacts presented vary greatly between models. To recognise why there is 

large uncertainty, we evaluated the local land surface temperature and precipitation 

responses to forest loss in 24 CMIP6 models, using observations as a benchmark. The local 

land surface temperature warms as a result of tropical forest loss, both in the observations 

and models. Over their historical period, most CMIP6 models represented this change well, 

finding a warming of 0.017 K per percentage point of forest loss (K/%), compared to 0.018 

K/% in the observations. The models were less skilful at simulating the precipitation 

response to forest loss, simulating an increase in wet season precipitation. Inter-model 

variability was substantial, with diverging responses occurring across all model scales (from 

~0.5 to ~3 degrees). We related changes in temperature and precipitation to changes in 

albedo, finding those simulated changes depended on the surface albedo response to forest 

loss. Models with less warming and less drying had greater increases in surface albedo due 

to forest loss. Alongside improved knowledge of our climate system, this research provides 

insight for climate model developers looking to improve their model’s representation of 

land surface and climate processes. 

Throughout the tropics, forest loss continues apace, bringing with it, increased 

temperatures and reduced precipitation as shown by the three analysis chapters in this 

thesis. The consequences of these changes are wide ranging and include negative impacts to 

agriculture, air quality, carbon storage, biodiversity and neighbouring forests and 
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importantly occur in addition to rapidly occurring climate change, further strengthening the 

case for forest conservation. 
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Chapter 1 

 

1. Introduction 
 

1.1 Motivation 

Tropical deforestation is an issue of increasing importance within the context of our 

changing climate (Bonan, 2008). Tropical forests provide a range of key benefits to people 

and the environment, from regulating local and regional climate to controlling the energy 

and water transfer between the land surface and atmosphere (Baker and Spracklen 2019; 

Lawrence et al., 2022). Tropical forest loss has taken place in earnest since the 1950s (Rudel 

1997), with the highest rates of loss traditionally in the south-eastern Amazon. Several 

studies assessing the climate impacts of tropical forest loss have focussed on the Amazon 

(Gash and Nobre, 1997; Alves et al., 2017; Baker and Spracklen, 2019), though given 

differences in background climate (Malhi and Wright, 2004; Esquivel-Muelbert et al., 2019), 

biogeography and drivers of forest loss (Lambin and Geist, 2003; Austin et al., 2017; Curtis 

et al., 2018; Pendrill et al., 2022), the climate impacts are unlikely to be uniform across 

tropical continents. In recent decades, tropical deforestation has extended beyond the 

Amazon into the previously less developed southern and central Amazon as well as the 

Congo basin (Tegegne et al., 2016) and Southeast Asia (Seymour and Harris 2019). There are 

substantial differences between the three main tropical forest regions and correspondingly 

the climate impacts across the tropics will vary. 

With the proliferation of tropical forest loss and increased media interest, greater numbers 

of people than ever before are aware and concerned with deforestation and the 

compounding impact it could have on climate change. To a large extent, the public are 

concerned with the impacts on biodiversity and the reduction of carbon storage, however of 

at least equal importance, is the impact on local temperature and rainfall. Assessing the 

impacts of deforestation on local climate is critical to better inform the public and policy 

makers so that effective action and legislation can be integrated to mitigate and remediate 
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impacts. This project aims to bring together existing knowledge of how forests affect climate 

and broaden our understanding of the climate response to deforestation in tropics at local 

scales in both the present and future. In this introductory chapter I will explore historic and 

present tropical land cover change, how vegetation interacts and impacts its environment 

and lastly how we can sense and model these impacts. 

 

1.1.1 Contemporary Tropical Land Cover Change 
 

 

Figure 1.1. Tropical forest cover in 2003 using satellite data from Hansen et al. (2013). Area 

is constrained by latitudes of 30o N-S. Forest cover is shown in 2003 as this is the start year of 

the analysis of climate impacts in Chapter 4. 

 

Forests covering boreal, temperate and tropical lands amount to around 42 million km2 

(Bonan, 2008), providing wide ranging habitats and ecosystem services from carbon storage 

and sequestration to improving social wellbeing. Tropical forests cover only 7% of the land 

surface, however, they contain two thirds of the Earth’s floral and faunal diversity (DeFries 

et al., 2005; Estoque et al., 2019). Figure 1.1 shows the extent and percent coverage of 

tropical forests in 2003, with darker greens showing areas of high forest cover. There are 

three discrete regions of moist tropical forest which are distinguished by their dark green 

colour in Figure 1.1, the Amazon basin, the Congo Basin and Southeast Asia (SEA). 

Table 1.1 describes the forest extent in Brazil, the Democratic Republic of Congo (DRC) and 

Indonesia, which are the largest countries by area in each of the three main tropical forest 

regions. In 2020, Brazil has by far the largest total forest extent. As a percentage of country 
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area however, the DRC has the highest forest cover, followed closely by Indonesia then 

Brazil. 

 

Table 1.1. Forest area in 1990, 2020 and forest area change over time in hectares (ha), for 

each of the three main tropical forest countries (FAO, 2022). The DRC refers to the 

Democratic Republic of Congo. 

Country Forest Cover in 1990 

(ha) 

Forest Cover in 2020 

(ha) 

Forest Change (ha) 

Brazil 588,898,000 496,619,600 -92,278,400 

DRC 150,629,000 126,155,240 -24,473,760 

Indonesia 118,545,000 92,133,200 -26,411,800 

 

Humans have dramatically changed the global land surface (Ramankutty et al., 2008), 

replacing once abundant natural forest with agriculture which now covers large tracts of the 

ice-free land (Ramankutty et al., 2008). The mid-latitudes and tropics were once covered in 

forests however agricultural intensification has meant that 12 million km2 of forests and 

woodlands have been removed globally since 1700 AD (Mahmood et al., 2014) and an 

estimated 18 million km2 (11% of global land surface) is currently farmed. Tropical forest 

loss in the 21st century, shown in Figure 1.2, is pervasive, however there are particular 

hotspots where strong land cover change has occurred in recent decades. These are the 

south-eastern Amazon, Sumatra and coastal Borneo. 

 

 

Figure 1.2. Reductions in tropical forest cover between 2003 and 2020 (Hansen et al., 2013). 
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The rate of tropical deforestation, as opposed to mid-latitude deforestation, increased 

sharply through the 20th century (Rosa et al., 2016). Presently, the highest rates of forest 

loss are in the tropics (Hansen et al., 2013), where agricultural expansion is a primary driver 

of land cover change as population increases demand more space for crops and cattle 

(Curtis et al., 2018). In particular, tropical forest loss has been enhanced by large-scale land 

acquisitions for intensive agriculture (Davis et al., 2020). Deforestation is a vague term and 

fails to capture the nuance of land use change. In recent years, researchers have sought to 

better represent the changes that forests undergo, classifying the forest loss by the 

dominant driver. Curtis et al. (2018) ascribe forest loss to classes such as commodity-driven 

deforestation (CA), shifting agriculture (SA), forestry, wildfire and urbanisation. These 

classes, observed through satellite imagery and sorted by machine learning algorithms 

attempt to bring nuance to the broad definition of deforestation. Across the tropics, forest 

loss ubiquitously results from CA and SA with less, but localised, pressure arising from 

forestry, urbanisation and wildfire. Commodity driven deforestation is dominated by 

commodity agriculture but also includes forest loss associated with mining and industry. 

Commodity agriculture is typified by large scale, intensive and long term or permanent 

conversion of forest to crops or pasture. CA is commonly found in the heavily deforested arc 

of deforestation in the Amazon and Sumatra, where soybeans and rubber are the principal 

crops (Jamaludin et al., 2022). SA is defined by conversion to agricultural land that is later 

abandoned followed by forest regrowth (Curtis et al., 2018). This type of forest clearance is 

dominant in the Congo basin and some parts of Southeast Asia and the Amazon. Both Curtis 

et al. (2018) and Pendrill et al. (2022) highlight difficulties with defining land as cleared by 

SA, including outlining the period of time land is allowed to take to regenerate. SA produces 

a heterogenous landscape of mixed small-scale fields, forest patches and regeneration, 

common across much of the Congo basin (Curtis et al., 2018; Fritz et al., 2022). Of the 

deforested land, only 45-65% becomes agriculturally productive, with the remaining land 

either allowed to regenerate, or transition to other non-agriculture, non-forest land uses 

(Pendrill et al., 2022) and regrowth. Shifting agriculture may be declining globally replaced 
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by more CA (Heinimann et al., 2017; Tyukavina et al., 2017) with potential implications for 

climate. 

Rates of tropical forest loss have historically been the highest in the Amazon, however as 

Amazonian deforestation rates started to decrease at the start of the 21st century, rates of 

deforestation in SEA overtook those in South America (Rosa et al., 2016). Table 1.1 

illustrates that Indonesia has seen the greatest relative losses in forest cover over the period 

1990 to 2020, with losses of 22.2%. This is followed by the DRC with 16.2% and Brazil with 

15.6%, despite having the highest absolute losses in forest cover. 

Ensuring the maintenance of a complete forest structure is integral for the resilience of the 

forest and the life systems it sustains (Watson et al., 2018). Preserving these intact areas in 

officially protected areas (PA) can be effective in reducing deforestation. Bebber and Butt 

(2017) find that PAs have reduced deforestation related carbon emissions by 29% (2000-

2012) when compared to expected deforestation rates. Protected tropical forests in the 

Americas account for a 368.8 TgC y−1 reduction in carbon emissions, whilst in SEA and the 

Congo they account for 25.0 TgC y−1 and 12.7 TgC y−1 respectively (Bebber and Butt, 2017). 

These PAs have varying effectiveness across the tropics, with those in SEA proving 

ineffective at reducing deforestation (Spracklen et al., 2015). Their effectiveness is driven to 

a large extent by individual local factors rather than poor legislature or governance (Bebber 

and Butt, 2017). 

Tropical forests have huge benefits for local and global ecosystems, people and climate 

(Baker and Spracklen, 2019). Observing how these areas change is a crucial part in 

understanding land cover change (LCC) in the tropics (Turubanova et al., 2018). The 

patterns, mechanisms and drivers of LCC vary greatly across the tropics, consequently, the 

impacts of LCC on climate and the atmosphere are expected to differ.  

Here, I summarise the impacts of LCC across the tropics, focussing on the three main 

tropical forest regions, the Amazon Basin, the Congo Basin and SEA.  
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The Amazon 

The Amazon biome is 7 million km2 with tropical humid forests covering 5.3 million km2 

(Marengo et al., 2018) – this represents 40% of the Earth’s tropical forests. Figure 1.3 shows 

the amount of forest cover within the Amazon biome, showing there are large areas of high 

forest cover interspersed with lower forest cover along river and road tributaries. Herein the 

“Amazon” refers to the Amazon biome, however the Brazilian Legal Amazon is frequently 

used in other studies. It is estimated that between 150 and 200 Gt C are stored in the 

Amazon (Malhi et al., 2006), equivalent to 1.5 decades of global anthropogenic carbon 

emissions (Soares-Filho et al., 2006).  

 

 

The Amazon has a long history of degradation and exploitation (Fearnside, 2005), which 

began to accelerate during the 1970s when the Transamazon Highway was created, 

Figure 1.3. Map showing forest cover in the Amazon biome in 2003. The Amazon biome 

(purple) and Brazilian Legal Amazon (red) boundaries shown to demonstrate the different 

definitions of often used by studies considering land cover in the Amazon (source: 

http://terrabrasilis.dpi.inpe.br/en/download-2/). Forest cover data from Hansen et al., 

(2013). 
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increasing the accessibility of previously remote areas of forest. With the road access, 

farmers migrate and settle on these lands, their clearances creating stratified strips of 

cropland perpendicular to the roads, referred to as ‘fish-bone’ deforestation (Pedlowski et 

al., 1997). Once crop yields start to fall, the farmers often convert the degraded land to 

pasture, eventually leaving or selling the land to companies who consolidate the land. Since 

the 1970s, Amazon development has increased, with the most substantial deforestation 

along the ‘arc of deforestation’ in the southern Brazilian Amazon (Davidson et al., 2012), 

which can be seen in Figure 1.2. Through the 1980s and 1990s, agricultural expansion 

continued unabated with greater than 55% of deforestation happening to intact forests 

(Gibbs et al., 2010). As of 2003, around 20% of the original forest has been deforested 

(Soares-Filho et al., 2006; Davidson et al., 2012; Spracklen and Garcia-Carreras, 2015), with a 

business-as-usual projection of 40% by 2050. In Brazil, 1% of the population own 81% of the 

productive land (Armenteras et al., 2019). The remaining land is either unproductive or 

prohibitively expensive, which means that those wishing to purchase, or lease land are faced 

with either financial burden or acquiring land illegally. Deforesting intact or degraded land is 

therefore an attractive option for many rural people. 

The start of the 21st century saw Amazonian deforestation slow, in part due to tighter 

internal legislation controlling LCC and pressure from foreign nations (Nepstad et al., 2014; 

Rosa et al., 2016; Turubanova et al., 2018). Following a period of several years where 

deforestation rates remained relatively stable (Bebber and Butt, 2017), recent evidence 

suggests Brazilian deforestation rates are now starting to rise again (FAO, 2022). 2019 saw 

unprecedented numbers and extent of fires associated with land clearance (Escobar, 2019), 

which echoes the shift to small-scale, patchy deforestation reported by Kalamandeen et al. 

(2018). The authors show that the number of large forest clearings (>50 ha) has been 

significantly reduced (46%, 2001-2014), which is likely due to enhanced monitoring through 

satellite observations leading to more effective policy implementation. However, 

Kalamandeen et al (2018) show that small-scale clearings (<1 ha) have increased in number 

and geographic extent (34% rise from 2001–2007 to 2008–2014). The shift to small-scale 

agricultural clearings may be attributed to the government’s encouragement of remote 

settlement and a lack of enforcement of the Forest Code (Schons et al., 2019).  
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The Congo Basin 

The Congo Basin contains the second largest humid tropical forest (Table 1.1) after the 

Amazon (Tyukavina et al., 2018). The rate and amount of deforestation is less here than in 

the Amazon (FAO, 2022), however in relative terms compared to total forest area, the 

amount of forest loss is similar (Table 1.1). 

 

Figure 1.4. Map showing forest cover in the Congo Basin (outlined in purple) in 2003. Forest 

cover data from Hansen et al., (2013). 

 

The Democratic Republic of Congo (DRC) contains around a third of the Congo Rainforest 

with 1.9 million km2 of forest cover (Hansen et al., 2013), a map of which is shown in Figure 

1.4. The highest forest cover is focussed away from major population hubs in the south and 

east. The other Central African countries that contain tropical forest are Cameroon, Central 

African Republic, Equatorial Guinea, Gabon and the Republic of Congo. In many of these 

countries, deforestation is largely driven by subsistence agriculture, in part because this is 

the only revenue option for much of the population (Rudel, 2013). Countries that export oil 

such as Gabon and Equatorial Guinea can afford to import some of their food, reducing the 

amount of land needed for industrial agriculture, and therefore allowing them to preserve 

more of their primary forest. The economies in these countries are more developed, driving 

rapid urbanisation, which also reduces small-scale rural deforestation (Rudel, 2013). For 
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decades, foreign investment has been an economic cornerstone in central Africa, often in 

return for agro-industrial plantations, and the extraction of timber or minerals, all of which 

drive deforestation (Feintrenie, 2014; Tegegne et al., 2016; Tyukavina et al., 2018).  

 

Southeast Asia 

 

Figure 1.5. Map of forest cover in SEA in 2003. SEA is outlined by two definitions, Southeast 

Asia including Papua New Guinea (purple) and the Political definition of Southeast Asia (red), 

which excludes Papua New Guinea. Our analysis utilises the former, including Papua New 

Guinea (shapefile source: 

https://www.marineregions.org/gazetteer.php?p=details&id=18092). 

 

Southeast Asia (SEA) contains 15% of the Earth’s tropical forest (Sodhi, Posa, et al., 2010; 

Stibig et al., 2014; Estoque et al., 2019). Figure 1.5 shows the spatial coverage of forest in 

SEA, showing densely forest covered land in the interior of Borneo and West Papua, with 

patchier forest cover on Sumatra and the coast of Borneo. We chose to use a modified 

geographical definition of SEA, including Papua New Guinea, rather than the more common 

political definition (Figure 1.5). The present rate of tropical forest loss in Indonesia is the 

fastest among the three regions (Hansen et al., 2013), with the majority of the deforestation 

https://www.marineregions.org/gazetteer.php?p=details&id=18092


   
 

   
 

10 

occurring in humid and low-land forests (Figure 1.2). This loss carries severe impacts for the 

ecosystems dependent on forests (Zeng et al., 2018). Lowland agriculture in SEA is a primary 

driver of deforestation, however Zeng et al. (2018) find that deforestation rates in the 

highlands have previously been underestimated and contribute significantly. Critically, 

agricultural expansion in the highlands often takes places at the expense of primary or 

recovering secondary forests. In the study by Estoque et al., (2019), it was shown that 

between 2005 - 2015, SEA lost 80 Mha of forest, 62% of which was in Indonesia, 16.6% in 

Malaysia, 5.3 % in Myanmar and 5% in Cambodia. In Borneo alone, 18.7 Mha of old growth 

forest was lost over the period 1973 - 2015 (Gaveau et al., 2016). However, there was only 

9.1 Mha of industrial plantation expansion indicating a lag between LCC and plantation 

creation (Gaveau et al., 2016). This complicates the attribution of cause and limits the scope 

of policy to mitigate deforestation. Up to 2014, oil palm plantation was the leading driver of 

deforestation in Indonesia, accounting for two fifths of the deforestation (Austin et al., 

2019). Since 2016 however, oil palm and pulpwood plantations have accounted for <15% of 

the total new deforestation (Seymour and Harris, 2019). Between 2014 and 2015 small-scale 

farming accounted for a quarter of all deforestation (Seymour and Harris, 2019), whilst in 

2015, the fires are attributed to 20% of the years forest loss (Seymour and Harris, 2019). In 

2016 (Austin et al., 2019) and 2019 (Normile, 2019), considerable fire activity was again 

responsible for burning large swathes of forest. 

 

1.2 Land Surface Vegetation Properties and Fluxes 

Land surface properties and fluxes play a substantial role in shaping our climate system. 

There are many vegetation types covering the land surface, all of which have different 

properties and fluxes. I describe here, the dynamic interplay between vegetation, the land 

surface and the atmosphere. 

 

1.2.1 Vegetation Impacts on Land Surface Properties 

Land surface properties are strongly affected by the presence or absence of vegetation, and 

by vegetation type (Lawrence and Vandecar (2015) and references therein). Here I examine 
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the major properties that can be modified by vegetation. The Amazon, Congo and SEA all 

have different LCC transitions and this will modify the land surface properties in different 

ways. 

 

Table 1.2. Key surface property values for tropical forests and pasture. Data from Spracklen 

et al., (2018), adapted from Gash and Nobre (1997). 

Property Tropical Forest Pasture 

Vegetation Height 30 m 0.5 m 

Canopy Cover 100% 85% 

Leaf Area Index 5.2 m2 m-2 1-2.7 m2 m-2 

Albedo 0.13 0.18 

 

Table 1.2 provides an overview of the differences in key surface properties for tropical 

forest and pasture land cover types. Tropical forests have a very dense closed canopy 

structure which provides 100% canopy cover, whilst pasture, with its lower vegetation 

height, provides 85% canopy cover. The 15% decrease in canopy cover from tropical forest 

to pasture corresponds to a decrease in leaf area index of between 2.5 and 4.2 m2m-2. This 

reflects the difference in density, arrangement and size of leaves. Connected to this, the 

amount of radiation reflected by the surface (albedo) of pasture is greater than that of 

tropical forests.  

Figure 1.6 summarises the key differences in surface properties between tropical forests 

and crops or grassland. Forests have greater rooting depths than crops and grasses meaning 

they can access deep soil moisture, providing resilience in times of drought. Forests also 

have higher aerodynamic roughness due to their varied vertical structure, meaning their 

surface generates more turbulence as wind passes across the land than pasture and crops 

(Spracklen et al., 2018). The amount of incident solar radiation absorbed by forests is 

greater as they are darker in colour and they have rougher surfaces, scattering more 

radiation than pasture and crops (Scott et al., 2018). Forests therefore have higher net 

radiations than pasture and crops.  
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Figure 1.6. Surface properties of tropical forest and crop (e.g., Oil palm)/ grassland (e.g., 

pasture). Forests have darker and rougher surfaces than crop and grass land covers. They 

also have lower aerodynamic roughness and have deeper root systems. 

 

The process of LCC can take place over many years (Mahmood et al., 2014) and at a variety 

of length scales from sub-kilometre to hundreds of kilometres. Forest often follows a 

complex and non-linear path to other vegetation types, such as pasture, grassland, after 

which, if abandoned, there is the potential for degraded land to return to forest. When left 

to reforest, the “secondary forest” can mature to have similar properties to undisturbed 

forest (Giambelluca et al., 1997; Spracklen et al., 2018; Wang et al., 2020). Quantifying the 

changing impacts of vegetation of surface properties is therefore complicated and case 

dependent. Below I outline in more detail, the broad impacts that vegetation has on surface 

properties.  
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Albedo 

Albedo is a dimensionless quantity representing the fraction of incident solar radiation that 

is reflected by a surface. Figure 1.6 diagrammatically shows more incident radiation being 

reflected by the “brighter” cropland than the “darker” forests. Since vegetation can change 

the albedo of a surface, it has an important role in maintaining or modifying the surface 

energy budget (Gash and Shuttleworth, 1991). Albedo can be driven by phenology (the 

seasonal change in vegetation), however the impacts in tropical regions are far less 

important than in higher latitude forests. As shown in Table 1.2, the albedo of forest is 

generally lower, due to their dark colour and irregular surface, than the albedo of pasture 

(Gash and Nobre, 1997; von Randow et al., 2004; Spracklen et al., 2018). Similarly, the 

albedo of crops and desiccated soils are greater than forests due in part to their more 

uniform surface. It follows that LCC from forest to pasture or cropland leads to an increase 

in surface albedo. Due to non-linear LCC, changes to albedo are often complex over regional 

scales (Kirschbaum et al., 2011) and indeed, recovering secondary forests can return to 

primary forest albedo values within 15 years (Giambelluca et al., 1997). 

 

Leaf Area Index 

Leaf area index (LAI) measures the leaf surface area per unit ground area (m2m-2). It can be 

estimated from below the canopy at ground level using apparatus to examine the 

percentage canopy cover. It can also be estimated from remote sensing satellite data using 

algorithms (Kim et al., 2012; Ramoelo et al., 2014; Wan, 2014). Tropical forests typically 

have a LAI of ~5.2 m2m-2, substantially higher than pastures with 1-2.7 m2m-2 (Table 1.2). 

Vegetation surface area controls LAI, determining the amount of area available for 

evaporation and gas exchange (Bruijnzeel et al., 2011). Pielke et al. (2007) explain that when 

LAI and therefore interception is reduced, runoff is increased meaning less water is retained 

locally, which can have a direct impact on the amount of vegetation that can survive in the 

environment. Therefore, when forests are deforested, there can be lower water availability 

leading to increased vulnerability of vegetation including adjected forests to environmental 

stress (Laurance and Williamson, 2001). 
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Surface Roughness 

As air passes over land, the surface interacts with the air flow. If the surface is 

heterogeneous, turbulent eddies can form which deflect the flow, creating circulations. 

Forests are a varied land type and as such have a rough surface due to their vertical 

structure and LAI (Table 1.2), whereas crops and pasture have relatively smooth surfaces. 

This increased roughness can effectively transfer heat away from the surface having a 

cooling effect (Spracklen et al., 2018). This cooling effect can be of equal or greater 

magnitude than the warming effect of albedo in the tropics (Davin and de Noblet-Ducoudre, 

2010; Winckler et al., 2019; Lawrence et al., 2022). Where forest has been deforested, the 

surface becomes smoother which reduces the magnitude and speed of turbulent heat 

exchange, resulting in the surface maintaining heat (Spracklen et al., 2018) and a less well 

mixed boundary layer (BL). At local scales, a complex mosaic of forest patches and areas of 

degradation may have higher surface roughness than undisturbed forest (Spracklen et al., 

2018). Over intermediate scales (tens of kilometres), deforestation leaves rough forest 

edges divided by open expanses. This can form larger, mesoscale circulations which induce 

the formation of precipitation (Garcia-Carreras et al., 2010; Khanna and Medvigy, 2014) and 

in this way influence regional climate.  

 

Rooting Depth 

Tropical rainforests can have far deeper roots and greater access to soil moisture than 

pasture, shrubs and grasses. From observations, trees have the greatest rooting depths, 

followed by shrubs and herbaceous species (7.0 ± 1.2 m, 5.1 ± 0.8 m and 2.6 ± 0.1 m 

respectively) (Canadell et al., 1996). As access to soil moisture diminishes through the dry 

season, the ability of the system to maintain a moist environment decreases. Forests in this 

way are more resilient than pasture because their deep roots can access deeper ground 

water, allowing them to grow and transpire longer into the dry season (Nepstad et al., 1994; 

Kleidon and Heimann, 2000). 
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1.2.2 Impact of Vegetation on Land Surface Fluxes 

Forests can modify the exchange of water, energy and gases (Salati et al., 1979; Silva Dias et 

al., 2002; Lovejoy and Nobre, 2018; Spracklen et al., 2018; Baker and Spracklen, 2019) 

between the surface and the atmosphere. Following LCC, these fluxes change, which 

influence the local and regional climate (Nobre et al., 1991; Gash and Nobre, 1997; 

D’Almeida et al., 2007; Grace et al., 2014; Lawrence and Vandecar, 2015; Conte et al., 2019), 

typically resulting in warmer and drier conditions (Bright et al., 2017; Conte et al., 2019). 

Figure 1.7 explores the impact that land cover can have on surfaces fluxes. Each of the main 

fluxes, evapotranspiration, energy, gases and aerosols will be explored in the following 

sections. 

Figure 1.7. Surface fluxes in a tropical forest and crop or grassland. Compared to agricultural 

land, forests have lower albedo, higher aerodynamic roughness and greater access to soil 

moisture. Forests have higher evapotranspiration (ET) and latent heat flux and lower 

sensible heat flux (H). Conversion of forest to crops or grass leads to an increased in 

emissions of CO2 and reduced biogenic emissions (biogenic volatile organic compounds 

(BVOC), primary biological aerosol particles (PBAP)). 
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Evapotranspiration 

Evapotranspiration (ET) is a two-part process that describes the transfer of water from the 

land to the atmosphere. It comprises the physical evaporation and the biological 

transpiration of water from vegetation (including soil). Rooting depth, and therefore the 

availability of soil moisture to the system, is a strong control on the ET flux, since 

transpiration is the uptake of soil moisture through the roots and efflux through the 

stomata during photosynthesis (Seneviratne et al., 2010). ET can also be controlled by 

available surface energy, whereby reductions in precipitation and therefore cloud increase 

incident solar radiation and therefore in ET (Baker et al., 2021).  

The rates of forest ET are generally higher than for other tropical land covers (Jipp et al., 

1998; Zhang et al., 2010) due to a combination of factors including high LAI, deep soil 

moisture access, low albedo and high roughness. Due to high LAI, forests can intercept more 

precipitation allowing for greater rates of evaporation, as well as providing a large surface 

area for transpiration. The ability to access moisture from deep in the soil is part of the 

reason that rainforests can maintain a year-round moist environment. Comparing different 

vegetation types in the Southwest Amazon, von Randow et al. (2004) show that ET over 

forested areas is 20% and 40% greater in the wet and dry season respectively when 

compared to pasture. Critically, Kunert et al., (2017) find that the largest trees are 

disproportionately responsible for ET in the amazon, contributing 70% of the ET in dry 

months. During the dry season, there is less rainfall, therefore transpiration is almost 

entirely responsible for ET (Kunert et al., 2017). These findings outline the importance of 

old-growth and primary forest and the detriment that selective logging of the largest trees 

can have on the regional ET flux. 

Giambelluca et al. (2003) observe the effects of meteorological processes on a small tropical 

forest patch to show that transpiration at the forest edge is enhanced by 

micrometeorological effects. In the same way, high aerodynamic roughness, as found in 

forest land types, enhances evaporative fluxes compared with non-forest. Deforestation 

across the tropics is increasing fragmentation of the forest landscape. The patches of forest 

that remain are decreasing in size (Brinck et al., 2017) which has important consequences 

for habitats, tree mortality and surface fluxes. Brinck et al. (2017) find that 19% of tropical 
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forests sit within 100 m of the forest edge, providing evidence that forest edge effects are of 

significance. These perimeter zones have greater vulnerability to higher wind speeds and 

water stresses as well as exposure to harsher temperature variability. Giambelluca et al. 

(2003) propose that higher rates of ET, due to forest edge effects, could compensate partly 

for the reduction in ET from deforestation.  

 

Energy 

Figure 1.7 shows that incoming (incident) solar radiation is absorbed and reflected in 

different amounts for different land covers. Radiation can be split into sensible (H) (heating 

of the lower atmosphere) and latent heat fluxes. Latent heat flux is described as the energy 

required to change the phase of water from liquid to gas during ET (Giambelluca et al., 

2000). The ratio between the latent and sensible heat fluxes is known as the Bowen ratio 

(Bowen, 1926) and can be described as sensible divided by latent heat. The properties of the 

land surface determine the partitioning of surface net radiation. Forests, with high ET fluxes 

and rough surfaces, convert a greater portion of net radiation into latent energy (lower 

Bowen ratio) than pasture (shown in Figure 1.7), where the partition favours sensible 

heating (Giambelluca et al., 2000; Roy and Avissar, 2002; Restrepo-Coupe et al., 2013). Roy 

and Avissar (2002) present flux tower measurements from the Amazon, finding a Bowen 

ratio of 0.28 and 1.25 over rainforest and pasture respectively. These results outline the 

large differences in the partitioning in energy for different land cover types. Lee et al., 

(2011) explain that the relationship between the Bowen ratio and aerodynamic resistance 

can be expressed as the energy redistribution factor, f which better describes how land 

cover types interact with their environment. With high aerodynamic resistance, forests both 

cool the atmosphere through efficiently dissipating sensible heat and releasing latent heat 

(ET) (Sy et al., 2017).  

Lower albedo leads to higher net surface radiation, resulting in a warmer forest surface 

compared with pasture, whereas the effect of higher latent heating (ET) and greater 

aerodynamic turbulence of forests cools the surface (Baldi et al., 2008; Garcia-Carreras et 

al., 2011). ET and turbulence combine to produce the dominant effect in tropical forests, 
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hence forests have an overall cooling effect (Davin and de Noblet-Ducoudre, 2010; 

Spracklen et al., 2018). 

 

Gases and Aerosols 

A few important sources and sinks of gases and aerosols in the tropical forest environment 

are outlined in Figure 1.7. Forests sequester atmospheric carbon, storing more biomass than 

pasture and cropland, deforestation is therefore a source of CO2. Until the 1930s, LCC was a 

greater source of CO2 to the atmosphere than fossil fuels, wherein it was overtaken (Li et al., 

2017). In the years 1990 to 2010, tropical LCC accounted for around 15% of anthropogenic 

carbon emissions, or 1.4 PgC y-1 (Houghton, 2013) emitted to the atmosphere. 

In tropical forests, the number and mass concentrations of aerosol tend to be small, but 

there is a high organic mass fraction (Martin et al., 2010). Figure 1.7 shows the flux of 

biogenic volatile organic compounds (BVOC) and primary biological aerosol particles (PBAP) 

which oxidise to form secondary organic aerosol (SOA) (Spracklen et al., 2018; Rap et al., 

2018). The emissions of BVOCs also respond readily to changes in temperature levels of CO2 

(Rap, et al., 2018). SOA changes the radiative balance at the surface directly through 

scattering and absorbing radiation and indirectly through altering cloud properties (Scott et 

al., 2014; Rap et al., 2018). Scott et al. (2014) find that overall, SOA likely produces a 

negative radiative effect, further indicating the role forests play in cooling the surface. 

Recently, Rap et al. (2018) show that SOA produces a radiation fertilisation effect by 

diffusing radiation, in this way forest canopies naturally alter the amount of energy they 

receive, providing more energy to grow. 

Fire is an often used mechanism of forest clearance and generates high aerosol mass and 

number concentrations through the burning of biomass (Martin et al., 2010). Similar to SOA, 

black and organic carbon produced from fires scatter and absorb incoming radiation, 

reducing surface and increasing atmospheric temperature (Tosca et al., 2013; Tosca et al., 

2014; Kolusu et al., 2015; Tosca et al., 2015). Through the indirect effect, aerosol form cloud 

condensation nuclei (CCN), the precursors to cloud formation. Where high aerosol 

concentrations prevail, high numbers of CCN increase cloud albedo (Tosca et al., 2014) 
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thereby causing clouds to reflect more incident radiation and cool the surface. Both direct 

and indirect effects work to stabilise the lower atmosphere, which lead to decreases in 

regional precipitation (Boers et al., 2017). Precipitation can be decreased when high CCN 

from smoke particles contribute to high cloud drop numbers which are then too small to 

precipitate (Rosenfeld, 1999; Pielke et al., 2007; Tosca et al., 2014). Aerosol from smoke can 

also inhibit convection (Tosca et al., 2014; Tosca et al., 2015) which limits cloud fraction. 

This can form a positive feedback whereby increased concentration of smoke particles 

inhibit upward lift, which reduces cloud fraction, which warms and dries the surface, 

resulting in favourable conditions for increased fire activity.  

 

1.3 Vegetation Impacts on Temperature and Precipitation 

The analysis in Chapters 3 to 5 explores the impacts of vegetation on temperature and 

precipitation. Here I describe how the differences in surface properties and fluxes between 

different land cover types can alter the land surface temperature (LST) and precipitation. 

LST and precipitation responses to LCC are often interconnected so I describe their impacts 

simultaneously.  

Vegetation type and coverage affects the local and regional land surface temperatures 

(Bonan, 2008). At the local scale, due to their high rates of evapotranspiration, tropical 

forests can be cooler than surrounding croplands and grass through latent heating (Ellison 

et al. (2017) and references therein). In the tropics, individual trees evaporate and transpire 

100s of litres per day, which translates to a cooling equivalent to 70 kWh for every 100 L 

(Ellison et al., 2017). This equates to the same power as 2 household central air-conditioning 

units per day. Utilising their deep roots, trees can maintain this functioning throughout the 

year, even during periods of high stress such as drought (Teuling et al., 2010; Ellison et al., 

2017). Contrastingly, tropical forests have lower albedo than crops and grass, resulting in 

higher sensible heating and a warmer surface (Lee et al., 2011; Li et al., 2015). In the tropics 

these are the two main processes controlling land surface temperature, with ET being 

dominant and therefore controlling land surface temperature, meaning forests are relatively 

cool. 
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Forests can generate low-level clouds (Teuling et al., 2017; Duveiller et al., 2021) through 

convection of their relatively moisture rich environment as well as through the emissions of 

BVOCs (Spracklen et al., 2008; Scott et al., 2014). This increased low-level cloud can increase 

the amount of incident radiation being reflected, therefore cooling the surface (Ban-Weiss 

et al., 2011; Heiblum et al., 2014). This process is tempered by the trapping of long wave 

radiation below the cloud layer. 

The scale, distribution and fragmentation of trees can influence the potential cooling ability 

of the forest (Arroyo-Rodríguez et al., 2017). The cooling benefits of forests are known and 

appreciated by the people living in those regions (Sodhi, Lee, et al., 2010; Meijaard et al., 

2013), who can notice the local scale micro-climates caused by deforestation and degraded 

forests. Using the example of protected forests, Xu et al., (2022) show that these forest 

refuges can buffer against warming air temperatures from LCC, particularly mitigating 

extreme heating events. Extremes in temperature are likely to occur more frequently with 

climate change (Ellison et al., 2017) and preserving forests can be a crucial mitigator of risk 

(Staal et al., 2018; Alves de Oliveira et al., 2021), which can avoid inhospitable environments 

for people and ecosystems (Masuda et al., 2020).  

Vegetation can have a large effect on the amount of precipitation a region receives and 

generates. Observations and modelling studies have comprehensively shown that tropical 

deforestation can influence surface fluxes (Baker and Spracklen, 2019) which drive 

atmospheric motion in the boundary layer (Weaver and Avissar, 2001; D’Almeida et al., 

2007; Scott et al., 2018; Conte et al., 2019), precipitation and the formation of clouds (Sud 

and Smith, 1985; McGuffie et al., 1995; Costa and Foley, 2000; Pielke, 2001; Lawton et al., 

2001; Cutrim et al., 2002; Silva Dias et al., 2002; Durieux et al., 2003; Fisch et al., 2004; Ray 

et al., 2006; Wang et al., 2009; Tosca et al., 2011; Spracklen and Garcia-Carreras, 2015; 

Quesada et al., 2017), however the nature and magnitude of the forcing has been disputed. 

Studies find a range of possible climate impacts due to tropical deforestation, arising from 

using a wealth of different methodologies, different observed mechanisms and scales and 

different climate and land use change datasets. Precipitation has been observed to increase 

by studies which examine small scale deforestation (Chagnon and Bras, 2005; Khanna et al., 

2017). The mechanisms that drive these increase, such as the vegetation breeze 

mechanisms (Figure 1.8) can be very different to the dominant drivers at larger spatial 
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scales. At these larger scales, rainfall can decline as a result of reduced precipitation 

recycling and changes to large scale circulations (Lawrence and Vandecar, 2015; Leite-Filho 

et al., 2021). These different estimates produce an inconsistent and confusing picture when 

considering the overall impact forest loss can have on local and regional climate and lead to 

a need for a unifying narrative.  

 

Figure 1.8. The vegetation breeze mechanism which originates from temperature gradients 

in land cover types. Moist cool air can be drawn from forests towards areas of low pressure 

(higher temperature), thus creating a breeze and potentially forming precipitation over 

deforested land. The subsiding dry may act to suppress precipitation over the forest. 

 

The surface and BL temperatures of tropical forests are generally cooler than deforested 

land. Alkama and Cescatti (2016) show the magnitude of the cooling can be up to 2 K (mean 

annual maximum surface temperature). Through non-radiative processes, eight out of nine 

common LCC scenarios can lead to large increases in surface temperature, with tropical LCC 

accounting for (up to) 75% of all surface warming in recent times (1950-2010, (Bright et al., 

2017)). As a result of warmer surfaces, the BL over pasture is deeper, warmer and drier than 

the BL over forests (Silva Dias et al., 2002). This effect is exacerbated in the dry season (Silva 

Dias et al., 2002) when forests retain the ability to access deep soil moisture, allowing them 
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to maintain a cool and moist surface. The difference in temperature between two different 

land types can initiate local circulations known as vegetation breezes (Pielke, 2001). Garcia-

Carreras et al. (2010) directly observe this effect in their West African field campaign 

showing that the temperature gradient can determine the strength of the breeze. Models 

too predict the existence of deforestation induced vegetation breezes occurring at 

transitions in land cover the Amazon (Baidya Roy et al., 2003; da Silva and Avissar, 2006; 

Roy, 2009; Saad et al., 2010) and West Africa (Garcia-Carreras et al., 2011; Garcia-Carreras 

and Parker, 2011). Figure 1.8 outlines the principal characteristics of this situation; warm 

rising air over pasture generating low pressure, which then draws in moist cool air from 

forests. The convergence of this moist air can lead to cloud formation (Garcia-Carreras et al., 

2011) and precipitation (Wang et al., 2000; Chagnon and Bras, 2005; Roy, 2009; Garcia-

Carreras and Parker, 2011; Funatsu et al., 2012; Negri and Adler, 2018) over pasture and 

cropland. Evidence exists that the opposite response occurs over the forest, whereby the 

subsiding dry air suppresses precipitation (Garcia-Carreras et al., 2011; Garcia-Carreras and 

Parker, 2011) for tens of kilometres into the forest.  

As the scales of deforestation increase to >10 km, thermally driven circulation may be 

superseded (Patton et al., 2005) by the impact of reductions in roughness (Khanna and 

Medvigy, 2014) which combines with lower ET and higher sensible heating to drive 

mesoscale circulation. These circulations are dependent on the magnitude on the depth of 

the atmospheric boundary layer and the turbulent sensible heat flux (Pielke, 2001). High 

sensible heat flux over deforested patches induces vigorous boundary layer development 

and convergent lift provides the mechanical energy necessary for parcels to reach level of 

free convection (Knox et al., 2011). 

Figure 1.9 shows the movement of atmospheric moisture inland across a tropical rainforest 

(adapted from (Eltahir and Bras, 1996; Spracklen et al., 2018), principally through mesoscale 

circulations. Moisture is retained within a system through a series of cycles occurring 

downwind of one another (Fig. 1.9). At a global scale, 70 % of land evaporation rains down 

over land (Tuinenburg et al., 2020). Salati et al. (1979) showed that in the Amazon, as air 

passes from the Atlantic to the West of the basin, moisture is recycled 5 - 6 times. Up to 

40% of terrestrial precipitation can be sourced from terrestrial ET (Van Der Ent et al., 2010), 

though this could be as much as 70% in the southwestern Amazon (50% in Congo basin (Sorí 
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et al., 2017)). These estimates do have uncertainties with the rate of vertical mixing of 

moisture in the atmosphere being the largest source of error (Tuinenburg and Staal, 2020). 

Where there is a large enough break in forest cover, the evaporative flux is diminished, and 

the cycle is muted with less moisture being carried downwind. This can alter the amount of 

precipitation on scales ranging from one to hundreds of kilometres. Using atmospheric back 

trajectory modelling it has been shown that deforestation is likely to strengthen the effects 

of drought downwind of deforested regions throughout the Amazon (Spracklen et al., 2012; 

Bagley et al., 2013). Forests are dependent on this recycling functionality (Zemp et al., 2017; 

Staal et al., 2018); which creates a delicate system whereby removing vegetation decreases 

the moisture availability for the remaining forest and increases the forest’s vulnerability to 

drought (Van Der Ent et al., 2010; Gimeno et al., 2012; Zemp et al., 2017). Further 

exacerbating forest loss potential, positive feedbacks between deforestation and drought 

have been identified in the Amazon (Staal et al., 2015; Staal et al., 2020). 

 

 

Figure 1.9. Precipitation recycling effect of vegetation. Moist air passes inland, where water 

precipitates (P), forests transpire and re-evaporate (ET), and moist air passes downwind. 

Where there is deforestation, more water is lost as runoff and there is less ET, reducing the 

total amount of water recycled. 
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Spracklen and Garcia-Carreras (2015) conducted a meta-analysis of regional and global 

climate models to observe the impacts of tropical deforestation on precipitation. They 

found that using a business-as-usual deforestation regime, precipitation in the Amazon will 

decrease by 8.1 ±1.4% by 2050. Similarly, Spracklen et al., (2012) estimated a decrease of 

12% and 21% in wet and dry season precipitation respectively by 2050. This outlines the 

increased susceptibility of the dry season to climatic changes and the importance of 

vegetation in maintaining the ET flux which feeds precipitation. 

SEA and other maritime environments are potentially less vulnerable to a reduction in 

moisture recycling due to their proximity to water sources (Takahashi et al., 2017), whereas 

the continental Congo and Amazon basins, which rely more heavily on moisture recycling 

for rainfall could be strongly affected. In the event of decreasing ET flux, the maritime 

tropical forests can import moisture directly via the land-sea breeze circulation (Takahashi 

et al., 2017) to compensate for reductions in ET. On larger scales, the intensity and duration 

of the monsoons of countries such as India may be affected by deforestation (Paul et al., 

2016) as reduced evapotranspiration and decreased surface roughness decreases the rain 

recycling and the amount of available precipitable water (Chadwick et al., 2019). 

 

1.4 Observing Changes 

A key way in which scientists view our earth system is to use observations. These can come 

from a variety of sources and using a variety of techniques. Until the 1960s much of our 

observational data was from individual site recordings of weather, climate, and the 

environment. These ground-based observations provide detailed information about a point 

in space, having good spatial coverage in the mid-latitudes but poorly representing the more 

remote areas of the world, especially the tropics. They are particularly useful for 

understanding and comparing mean trends in weather and climate but are more limited for 

enabling us to understand spatial heterogeneity, for example evaluating climate changes 

over different land cover types. Alongside ground-based observations, field and air-craft 

campaigns have increased our knowledge of specific regions over short time periods. They 

provide useful case studies from which to understand specific conditions in detail, however 

lack the basin scale data to make comprehensive conclusions. A key role that ground-based 
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observations play is to provide data to validate satellite and model datasets, in a process 

known as “ground truthing” (Mu et al., 2011; Kim et al., 2012; Ramoelo et al., 2014; Bright 

et al., 2017). Many of the remotely sensed datasets used in this thesis, which are described 

in Chapter 2, use this technique. 

In the human context, a satellite is a machine that humanity has put in space to orbit around 

an object or body, usually the Earth. Since 1957 when Sputnik 1 was launched into space, 

we have launched 1000s of satellites, around a 1000 of which have been or are currently 

used for earth observation. Satellites often orbit in trains or groups, one such grouping is 

the “A-Train” or afternoon constellation (Figure 1.10). 

 

 

Figure 1.10. Schematic showing the international “afternoon constellation” which includes 

the A (OCO-2, GCOM-W1, Aqua, and Aura) and C (CALIPSO and CloudSat) trains in 2019, 

where Aqua is still present in the constellation (source: https://atrain.nasa.gov/). 

 

Three common types of satellite orbit are, geostationary which are very high altitude, polar 

orbiting and non-polar orbiting both of which are low earth orbiting. Near-polar sun 

https://atrain.nasa.gov/
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synchronous orbital satellites, are very common for earth observations as they can provide 

daily near global coverage, including observations of the polar regions. They pass the same 

point on the planet at the same mean solar time allowing for consistent observations of 

physical changes. Typically sun synchronous satellites are at an altitude of 700 - 800 km 

above the earth’s surface and take around 100 minutes to complete a cycle around the 

planet, travelling north-south from pole to pole and taking 1-2 days to scan the entire 

Earth’s surface. Alternatively, some satellites such as the Global Precipitation Measurement 

(GPM) core observatory, are non-polar low earth orbit satellites, providing cover over a 

partial range of latitudes.  

Satellites are vehicles for instruments that carry sensors which detect radiation from a wide 

range of the electromagnetic spectrum. Everything on Earth absorbs and reflects or emits 

radiation, each at a distinct wavelength and frequency, providing a fingerprint, or spectral 

signal by which it can be identified. Satellites scan the Earth’s surface in “swaths”, where the 

size can range from 100s to 1000s km. Instruments can be either passive or active, either 

detecting radiation that reaches them from the earth’s atmosphere or surface (passive), or 

by detecting the reflection of an emitted pulse of radiation (active). The different 

wavelengths, or bands of radiation can provide different information about the earth’s 

atmosphere, surface, oceans and sub-surface. At short wavelengths, visible light is sensed 

which can be used for mapping and monitoring of features. Slightly longer wavelengths in 

the near-infrared range capture living plant materials well, whereas thermal infrared, which 

have longer wavelengths still, can sense temperature and can be used for climate and 

weather detection. Microwaves and radio waves have long wavelengths making them well 

suited to detecting forest structure as well as rainfall and clouds. Passive sensors tend to 

utilise the shorter wavelengths of energy, from microwave to visible, specialising in 

measuring quantities such as sea surface temperature and vegetation properties. Dense 

cloud cover can limit passive satellite retrievals as these wavelengths cannot pass through, 

meaning passive satellites often have poor spatial coverage in the cloudy tropical regions. 

Active sensors, alternatively use longer wavelengths, from microwave to radio, giving them 

the skill to sense vertical atmospheric profiles, precipitation, topography and forest 

structure.  
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1.5 Modelling Changes 

Alongside observations, climate models are a primary way in which scientists can 

understand our past and future climate. There are a great number of climate models, each 

with different aims and capabilities. In general models aim to simulate processes, 

interactions and conditions within a region or the world to allow us to understand more 

about how climate might change in the future. Models represent these processes with 

equations that describe our understanding of the physical, biological and chemical 

processes that happen across the world. The equations range from fundamental principles 

such as the first law of thermodynamics to the complex and unresolved Navier-Stokes 

equations of fluid motion. Within the models, these equations are often referred to as being 

numerically solved, meaning they are too complex to be explicitly implemented and their 

solutions are approximated. 

Figure 1.11. A representation of a climate model, showing the Earth covered in the grid cells 

used by climate models. The inset diagram shows the climatic processes that the model will 

calculate for each cell (https://www.gfdl.noaa.gov/climate-modeling/). 

 

https://www.gfdl.noaa.gov/climate-modeling/
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Since their inception in the 1950s, climate models have become more complex as scientists 

have taken advantage of our greater scientific understanding of processes and increased 

computing power. However, we lack the computational power to model absolutely all 

processes and at the highest resolutions, so climate models divide the world into grid cells. 

Figure 1.11 shows how models split the Earth into a 3D array of grid cells, in which 

calculations about the climate system are made. The spatial resolution of models can range 

from very high resolutions which focus on simulating shorter time scales and smaller 

domains to coarse resolutions (100s km) where simulating global responses for a long time 

period are important. The balance struck can largely depend on the available computing 

resources. To overcome representing complex processes at very high resolutions, most 

climate models use approximations or parametrisations to estimate processes that happen 

at sub-grid scales, such as convection. At every time step, the average or range of values for 

climate or land surface variables are represented by code rather than being calculated, 

hence saving resources. Since we do not know the exact values for every parameter, 

calibration takes place by running the model with a range of possible parameter values to 

test for the most reasonable outcome. In Chapter 5, I discuss how albedo and 

evapotranspiration may need additional tuning to bring the modelled values closer in line 

with observations. This process of calibration is a constantly operating process, designed to 

optimise model performance.  

To simulate future scenarios, climate models move forward in time, taking information 

about the climate system from the past and present and extrapolating to the next time step. 

As with spatial resolution, finding the correct temporal resolution is a balance between 

accuracy and computational power, with climate models often simulating with a 30-minute 

time step. 

Climate models through time have become more advanced and their ability to combine 

more strands of the earth system have evolved. Climate models can now simulate changes 

globally in 3D space, combing strands of models such as atmosphere and ocean, through 

coupling, into one unified model. Latterly, earth system models, such as UKESM1, have been 

developed to build upon the physical core of global climate models, adding the ability to 

simulate carbon, chemistry, ecology and land-use change. Some earth system models 

include Dynamic Global Vegetation Models (DGVMs), which simulate the dynamic behaviour 
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and interactions of vegetation and land surface processes with the atmosphere. This leads 

some models to have more skill at simulating climate impacts of land cover change than 

others. DGVMs simulate vegetation dynamics, land surface processes and carbon and 

biogeochemical cycling. Importantly this can include simulating photosynthesis and 

respiration, energy and water fluxes, nutrient cycling, phenology and vegetation-climate 

interactions and feedbacks. 

Climate models are driven by the past and present data that we pass them. To simulate the 

future, we give models socio-economic scenarios on which to base their predictions. 

Historically, the scenarios used were called Representative Concentration Pathways (RCPs) 

however for the latest IPCC AR6 report, new scenarios were developed called Shared 

Socioeconomic Pathways (SSPs), which range from low to high emission scenarios and span 

a range of likely futures. SSPs are assigned numbers which can be approximately interpreted 

as low (SSP1-2.6), medium-low (SSP2-4.5), medium-high (SSP3-7.0) and high (SSP5-8.5) 

radiative-forcing levels by 2100 (O’Neill et al., 2017). In terms of land-use change, the SSP3-

7.0 scenario has the largest reduction in forest cover over the next century, SSP5-8.5 

scenario has relatively little change, and forest cover increases in the future under the SSP1-

2.6 and SSP2-4.5 scenarios (Lawrence et al., 2016). We expect the models to produce 

differing outcomes due to differences in each model’s representation of the land surface 

and their parameterisations of sub-grid processes (Bell et al., 2015; Crowhurst et al., 2020). 

Using these pathways enables us to gain insight about the impacts a range of socio-

economic decisions would bring. 

There are hundreds of climate models from groups of scientists around the world, each 

outputting thousands of variables including temperatures, precipitation, cloud cover height, 

radiation and wind speeds. The models are used to run experiments to test future scenarios 

such as a doubling of atmospheric CO2, from which these outputs can be used to analyse 

and evaluate changes. Each model will produce different results from an experiment due to 

its differing setup. In order to produce a consensus between models, we can run each model 

using the same experiments to create a model ensemble, providing a better idea of the 

mean change, but also the strengths and weaknesses of each. The Coupled Model 

Intercomparison Project (CMIP) is a collection of model atmosphere-ocean coupled model 

experiments, combining multiple different models and experiments (Eyring et al., 2016). The 
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current iteration of CMIP is CMIP6, involving up to 49 modelling centres from around the 

world producing around 100 distinct models. These prescribed experiments include 

historical runs, future warming scenarios, Atmospheric Model Intercomparison Project 

(AMIP) experiments, abrupt 4x CO2, 1% CO2, paleoclimate and control runs where climate is 

kept constant. The analysis in chapters 4 and 5 utilises historical and future warming 

scenarios from CMIP. Historical runs span from the pre-industrial period in 1850 to near 

present day, using the best concentrations estimates of CO2, CH4, N2O, radiation input and 

outputs, land-use change and many other factors. They don’t replicate the climate exactly as 

they aren’t constrained by real temperature and rainfall observations, rather they rely on 

model physics to represent the historical period. These runs provide insight into model 

performance are an important way in which we can validate the historical simulations 

against observations to assess skill. Similarly, when models are unable to correctly simulate 

processes or familiar climate features, often due to parametrisations simplifying processes, 

we can use bias correction. This can involve nudging the simulation back to reality and is 

important for short term improvements, however ultimately developments to 

parametrisations need to take place for long term improvements (Maraun et al., 2017). 

In contrast, future warming scenarios take SSPs and simulate climate up to and sometimes 

beyond 2100. The SSPs contain differing radiative forcings, leading to differing projections of 

climate over the next century. These range from scenarios where severe emissions 

reductions practices are implemented to business as usual or increased emissions practices. 

In relation to temperature, over the period 1880 – 2100, SSPs forecast a wide range of 

increases in mean temperature of between 1.4 K (SSP1 - 1.9) and 5 K (SSP5-8.5) (Hausfather, 

2019). 

Climate models allow us to observe and understand the impacts that changes to our earth 

system can have. Each model will have a different representation of the land surface and 

therefore a different climate response due to a change in the earth system (Boisier et al., 

2015; Boysen et al., 2020; Baker, De Souza, et al., 2021; Luo et al., 2022; De Hertog et al., 

2022). Alongside providing information about the magnitude and sign of the climate change, 

the model differences can provide insights for model improvement by identifying the 

important parameters driving the change. Climate models largely agree that tropical forest 

loss leads to increases in temperature, albeit with disagreement in magnitude (Winckler et 
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al., 2019; Boysen et al., 2020), however as with observations, changes to precipitation are 

less well agreed upon (Spracklen and Garcia-Carreras, 2015). A recent study from Luo et al. 

(2022) found by simulating idealised deforestation, there was a multi-model mean reduction 

in rainfall of -2.2% due to forest loss, but there was a substantial range in estimates (-5.5% - 

0.1% change across 11 models). Existing model assessments have evaluated changes in 

temperature against satellite observations Li et al., 2015; Alkama and Cescatti, 2016; 

Duveiller, Hooker, et al., 2018) or in-situ measurements (Lee et al., 2011), yet similar 

analysis for precipitation is lacking. The disparity and lack of assessments highlights the 

challenges in arriving at an agreed upon estimate and the need to constrain the model 

parameters to allow simulations to converge on a consistent result. 

 

1.6 Research Objectives 

Understanding and quantifying the impacts of tropical forest loss on climate is critical for 

both creating mitigative climate policy and for simulating future changes in climate. 

Previously, studies have assessed changes using a variety of methods and data, from 

modelling idealised deforestation to ground-based case studies. This thesis aims to bring 

together and build upon our knowledge of the impacts that tropical forest loss has on local 

climate. To do this, I aim to use satellite observations, ground-based observations, climate 

reanalysis and climate models from a wide range of sources, providing both a robust value 

for the climate impacts of forest loss and the ability to contrast each dataset’s resulting 

climate impact. This will provide a strengthened understanding of climate-land interactions 

and additionally insight for product efficacy and improvements.  

 

Impacts of the Driver of Forest Loss on Climate 

There is a well-established link between tropical forest loss, decreases in ET and increases in 

LST, as described throughout Chapter 1. The driver of forest loss is an emerging 

categorisation which describes the characteristics and longevity of forest loss. The differing 

characteristics provide a yet un-explored opportunity to assess how the climate response to 

forest loss may vary given different physical circumstances. In this research I aim to unpack 
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how the driver of tropical forest loss can modify the local climate response and how this 

varies across the three tropical forest regions. To do this I will:  

- Establish the drivers of forest loss across the tropics and between regions. 

- Understand what LCC traits the drivers of forest loss exhibit. 

- Use remotely sensed satellite LST to assess the impact of forest loss. 

- Quantify the effect that different drivers of forest loss have on local climate. 

- Identify the different regional responses. 

- Correlate changes in LST to changes in land surface and climate properties. 

 

Impacts of Forest Loss on Precipitation 

The impacts of tropical forest loss on precipitation have been well studied using climate 

models and ground-based case studies. These analyses have found conflicting results, 

showing that tropical forest loss can both reduce and increase rainfall. Previously studies 

using satellite datasets have been unable to replicate and confirm these findings. In this 

research I will use satellite datasets and a novel approach to untangle the precipitation 

response to tropical forest loss. To do this I will: 

- Unify multiple satellite, ground-based and reanalysis precipitation datasets. 

- Regrid the datasets to a range of spatial scales, spanning high to coarse resolutions. 

- Evaluate the impact of forest loss on precipitation over a range of spatial scales and 

for each category of precipitation dataset. 

- Understand how the precipitation response to forest loss varies regionally. 

- Explore the influence of season on the precipitation response to forest loss. 

- Use a LCC model to project future precipitation changes due to forest loss. 

 

Evaluating Simulated Climate Impacts of Forest Loss 

Climate models and observations have jointly shown that tropical forest loss can impact 

local climate. Simulations often produce diverging or uncertain results with respect to 

temperature and precipitation. The reasons for this disagreement range from analysis 
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methodology to climate model parametrisations. There is an opportunity to present a first 

analysis of both the simulated temperature and precipitation impacts due forest loss across 

the entire CMIP6 model range. This research will tie together our new observational 

understanding of the climate impacts of forest loss and evaluate the ability of the CMIP6 

models to represent these changes. I will explore the reasons for the differences in 

simulated climate responses and assess the changes that could be made in order to provide 

a more consistent understanding. To do this I will: 

- Re-evaluate the observed impact of forest loss on LST and precipitation. 

- Assess using observations the simulated historical temperature response to forest 

loss. 

- Assess using observations the simulated historical precipitation response to forest 

loss. 

- Understand the reasons for simulated and observed discrepancies in the climate 

response to forest loss. 

- Pin-point specific areas for model improvements that can realistically be 

implemented.   

 

Following this introduction, in Chapter 2, I will describe the datasets used in this thesis and 

provide an overview of the key methods used to analyse them. Chapters 3 to 5 contain 

analysis which is either published, submitted or in advanced draft form, with supplementary 

material provided in Appendix A, B and C respectively. Lastly, Chapter 6 contains a synthesis 

of the main findings from the analysis, a discussion of the limitations and uncertainties in 

this analysis and finally, proposals for future directions this research could take. 
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Chapter 2 

 

2 Data and Methodology 
In this Chapter I will outline the data and methods used in the analysis chapters (3-6) of this 

thesis. Firstly, I will examine and detail the important features and inputs of each of the 

remotely sensed, ground-based and model datasets. Then I will describe the core methods 

used to analyse the datasets, adding more detail and discussion than is covered in the 

individual analysis Chapters. 

 

2.1 Data 

This thesis relies on the data collected and produced by others. We use a variety of data 

such as land surface temperature and precipitation, from a variety of sources, ranging from 

satellite remotely sensed, ground-based observations, model-observation hybrids 

(reanalysis) and climate models. It is important when analysing the datasets, to understand 

the types, origins, limitations and differences between them. As such I describe the 

information pertinent to this in turn, summarising the key information in Table 2.1. 

 

Table 2.1. Observational datasets used in the analysis in Chapter 3-6, listing their temporal 

availability (date range), native resolution, categorisation, and their reference. The 

categorisation refers to the three main observational categories used in this thesis of 

satellite, station (referring to ground-based observations) and reanalysis. Present refers to 

the dataset being available at least up to the start of 2023. 

Dataset  Date Range  Native Res.   Category  Reference  

MCD43A3 2001 - present 500 m Satellite Schaaf and Wang, 2021 

MOD16A2GF 2001 - present 500 m Satellite Running et al., 2021 

MOD15A2H 2001 - present 500 m Satellite Myneni et al., 2021 

MOD11A2 2001 - present 0.01 Satellite Wan et al., 2021b 
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MYD11A2 2003 - present 0.01 Satellite Wan et al., 2021a 

MCD12Q1 2001- present 0.05 Satellite Friedl and Sulla-

Menashe, 2022 

Forest Loss, 

Global Forest 

Change (GFC) v1.9 

2000-2022 
30 m x 30 m, 

annual  

Satellite Hansen et al., 2013 

 

Driver 2001-2019 10 km x 10 km Satellite Curtis et al., 2018 

CHIRPS v2.0  1981 – present 0.05  Satellite  Funk et al., 2015 

CMORPH  1998 – present 0.25  Satellite  Xie et al., 2019 

CPC  1979 – present 0.5  Station  Xie et al., 2007 

CRU TS v4.06  1901 – present 0.5  Station  Harris et al., 2020 

ERA5-Land 1950 – present  0.1 Reanalysis  Hersbach et al., 2020 

GPCC v2022  1891 – present 0.25  Station  Schneider et al., 2022 

GPCP v3.2  1996 -2020  0.5  Satellite  Huffman et al., 2022 

GPM v0.6  2000 – present 0.1  Satellite  Hou et al., 2014 

JRA v7.0  1979 – present  0.5625  Reanalysis  Kobayashi et al., 2015 

MERRA-2  1980 – present  0.5x0.625  Reanalysis  Gelaro et al., 2017 

PERSIANN-CCS  2003 – present 0.04  Satellite  Nguyen et al., 2019 

PERSIANN-CDR  1983 – present 0.25  Satellite  Ashouri et al., 2015 

PERSIANN-

CCSCDR  

2003 – present 0.04  Satellite  Sadeghi et al., 2021) 

PERSIANN_NOW  2000 – present 0.04  Satellite  Nguyen et al., 2020 

PERSIANN  2000 – present  0.25  Satellite  Nguyen et al., 2019 

TRMM v3B43  1998 – 2019  0.25  Satellite  Huffman et al., 2007 

UDEL v5.01  1990 – 2017  0.5  Station  Matsuura and 

Willmott, 2018) 

 

2.1.1 Satellite Data 

Satellite data forms a large portion of the data used in this thesis. Satellite remote sensing is 

introduced in Chapter 1, the specifics of the satellites used are detailed and contrasted here. 

We utilise data from two main satellite series, Landsat and the MODIS (Moderate Resolution 

Imaging Spectroradiometer) carrying satellites Terra and Aqua. These are two of the primary 

sources of remote land surface and climate observations, however in 2023 there are several 
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alternatives, notably including from the European Space Agency (ESA) that are not detailed 

here.    

 

Landsat 

Landsat is a collection of 9 near-polar orbiting satellites, the first, Landsat 1 being launched 

in July 1972 and the latest, Landsat 9 being launched in September 2021 (Landsat Science 

Outreach, 2023). The data produced by the Landsat satellite series is one of the primary 

sources of data used in this thesis. The next generation of earth observing satellites, Landsat 

Next is due to be launched in 2029 and will measure a far greater number of spectral bands 

than previous generations (25 compared to Landsat 8/9’s 11 bands). Currently only Landsat 

8 and 9 remain in operation, however in total Landsat has produced continuous earth 

observations for over 40 years, providing a crucial record of land surface and atmospheric 

observations. Landsat 8 and 9 both carry two sensors, the Operational Land Imager (OLI) 

and the Thermal InfraRed Sensor (TIRS) which sense wavelengths from 0.435 – 12.51 μm in 

11 bands, with resolutions of 15-30 m (Landsat Science Outreach, 2023). The OLI receives 

radiation in the visible and infrared spectrum using a ‘push-broom’ sensor to capture 

panchromatic images at 15 m spatial resolution and multi-spectral images at 30 m 

resolution (Landsat Science Outreach, 2023). This allows for the detection of small-scale 

land use and land cover changes, essential for capturing emergent disturbances (Almeida et 

al., 2008). The TIRS measures two thermal bands, recording information about the Earth’s 

thermal energy using Quantum Wll Infrared Photodetectors. These sensors detect longer 

wavelengths, called thermal infrared, and are newer low-cost alternatives to previous 

infrared technology on-board previous Landsat satellites (Landsat Science Outreach, 2023). 

The sensors used on different Landsat iterations have advanced over time causing 

discontinuity, the limitations for our analysis are discussed in Chapter 6. Compared to other 

satellite instruments, the time it takes Landsat to image the entire Earth’s surface is longer 

than Terra and Aqua, at 16 days, however Landsat can capture very high spatial resolution 

data.  

Two examples of datasets used in this thesis that are based upon remotely sensed data 

from Landsat are Global Forest Change and the drivers of forest loss datasets. 
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Global Forest Change 

This product provides information of forest cover change over time and is a Landsat 

satellite-based time series analysis. The dataset was developed by Hansen et al. (2013) in 

the Global Land Analysis and Discovery (GLAD) lab at the University of Maryland. The 

dataset provides annual global forest extent in 2000 and forest loss and gain (up to 2012) 

from 2001-present at 30 m spatial resolution. We do not use forest gain in this thesis due to 

data only being available until 2012, as such it’s methodology will not be discussed. 

The dataset has a wide range of applications and has been extremely popular for analysing 

and comparing trends in forest decline, particularly across the tropics (Li et al., 2016; Baker 

and Spracklen, 2019; Vancutsem et al., 2021; Pendrill et al., 2022; Smith et al., 2023 and 

many more). For all land cover datasets, the definition of vegetation is integral and poignant 

as this can affect the values reported greatly (García-Álvarez et al., 2022). Here trees are 

defined as vegetation taller than 5 m. Tree cover change was measured in terms of crown 

cover, with forest loss being a transition from >50% crown cover to ~0%. Forest cover was 

observed during the growing season, using remotely sensed data originally from Landsat 7’s 

Enhanced Thematic Mapper Plus, but latterly Landsat 8’s Operational Land Imager, a 

transition which is discussed in more detail in the uncertainty and limitations section of 

Chapter 6. Images were classified using existing tree cover maps (Hansen et al., 2011), 

MODIS percent tree cover (Hansen et al., 2003) and image interpretation to delineate forest 

cover, loss and gain. These classified images were fed into a bagged decision tree model to 

predict changes over unseen images. The processing and modelling was made possible by 

using the large resources of Google Earth Engine. The result is a freely available, very high 

resolution annual global forest change dataset. 

 

Drivers of Forest Loss 

This dataset provides information about the driver of forest loss for each cell of tree cover 

loss across the world and was published in 2018 by Curtis et al. (2018). The dataset is 

produced for 2001 - 2019 at 10 km resolution, classifying forest loss into one of five 

categories. These categories are commodity driven deforestation, shifting agriculture, 
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forestry, wildfire, and urbanisation. This dataset is particularly useful for identifying the 

location and proliferation of the distinct drivers of global forest loss and providing insight for 

researchers and governments. 

The dataset is produced by using a model which has been trained on 4699 training samples 

taken from Google Earth. These samples were categorised into five distinct disturbance 

classes based on the dominant visible activity occurring within tree cover loss in each cell. 

This process was iterative, adding more training data for each class until enough “good” 

examples were attained (Curtis et al., 2018). Areas of forest loss were determined using the 

GFC dataset (Hansen et al., 2013). 

For each cell, a visual inspection using Google’s time series imagery was conducted, 

assessing the primary driver of forest loss in each cell. Regional models were created to 

allow for the possibility that the same driver may present differently in different world 

regions. Commodity driven forest loss was classified by signs of existing agriculture including 

oil palm plantations, pasture, or mining as well as zero or minimal regrowth in the years 

post-deforestation. Shifting agriculture was classed as clearings of agriculture or pasture as 

well as historical clearings containing secondary forest or shrubland regrowth. The forestry 

class includes general plantations including wood-fibre as well as processes such as selective 

cutting. Cells were categorised as wildfire if there was strong evidence of a loss event driven 

by fire, however this did not include areas cleared for agriculture. Lastly urbanisation was 

classed as visible urban expansion or intensification. 

The training images, alongside the following datasets: tree cover extent (GFC, (Hansen et al., 

2013)), active fires (MODIS), land cover (Tuanmu and Jetz, 2014) and population count 

(CIESIN, 2018) were inputted to a decision tree model to predict the most likely driver or 

tree cover loss for unobserved cells. The model assigned each cell 5 values representing the 

likelihood of each driver being dominant. If a cell had no single class with >50% likelihood, it 

was assigned the value of its neighbour. Model validation was carried out using 1565 

predicted cells on the training data to assess the model skill. 

Curtis et al. (2018) note that no distinction is made between natural and anthropogenic 

disturbances, and their classes are not labelled as such. They argue that separating human 

from completely natural events such as wildfire is not easy as the two commonly 
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inextricably linked. In addition to this, due to the relatively coarse scale, compared to other 

land classification datasets, there may be multiple drivers contributing to loss in each cell. 

Therefore, cell to cell comparison is unadvisable, instead basin wide insights should be 

prioritised. 

 

Terra and Aqua carrying MODIS 

MODIS is a remote sensing instrument on board the Aqua and Terra satellites operated by 

the National Aeronautics and Space Administration (NASA). Terra and Aqua are sun-

synchronous satellites, meaning they pass overhead with the sun in the same position every 

day. Terra was designed to sense the land surface and was launched in 1999, beginning data 

collection in February 2000. It was followed by Aqua which launched in 2002 and was 

designed primarily to sense water (Smith, 2022). Terra has an equatorial overpass time of 

10:30am whilst aqua has an overpass time of 1:30pm. The overpass time has implications 

for sensing some land surface and climate quantities, in effect providing a morning and 

afternoon reading. TERRA and Aqua orbit at an altitude of 705 km, giving an orbital period 

of 98.8 minutes, completing approximately 14.5 orbits per day. The time taken to revisit the 

same ground track is 233 orbits (16 days) (NASA GSFC, 2023b). For most of its lifetime Aqua 

had been part of the A train, leaving in Jan 2022 due to fuel limitations. 

Terra carries five instruments, with MODIS (Justice et al., 2002) being one, the others being 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Hook et al., 

2001), CERES (Clouds and the Earth’s Radiant Energy System), MISR (Multi-angle Imaging 

Spectro Radiometer) (Diner et al., 2002) and MOPITT (Measurements of Pollution in the 

Troposphere) (Drummond et al., 1999; Drummond, 2002). Aqua meanwhile carries 6 

instruments including MODIS, of which 4 are fully operational, those being AMSR-E 

(Advanced Microwave Scanning Radiometer-EOS) (Kawanishi et al., 2003), AMSU-A 

(Advanced Microwave Sounding Unit) (Mo, 1996) and AIRS (Atmospheric Infrared Sounder) 

(Aumann et al., 2003) (NASA GSFC, 2023b).  

The MODIS instrument can measure 36 spectral bands (groups of wavelengths from 0.4 μm 

to 14.4 μm), allowing for measurements ranging from distribution of clouds to 
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photosynthetic activity. It has a swath of 2330 km (10 km length pointing directly 

downwards, “nadir”). MODIS senses at resolutions from 250 m to 1 km depending on the 

band, with each band having a primary sensing use (Justice et al., 2002). Bands 1-7 (620-

2155 nm) sense land, cloud and aerosol boundaries, bands 8-16 (405-877 nm) sense ocean 

colour, phytoplankton and biogeochemistry, bands 17-19 (890-965 nm) sense atmospheric 

water vapour, bands 20-23 (3.6-8.1 μm) sense surface and cloud top temperature, bands 

24-25 (4.3-4.5 μm) sense atmospheric temperature 26-28 (1.4-7.5 μm) sense cirrus cloud 

water vapour, band 29 (8.4-8.7 μm) senses cloud properties, band 30 (9.6-9.9 μm) sense 

ozone, bands 31-32 (10.8-12.3 μm) again sense surface and cloud top temperatures and 

bands 33-36 (13.2-14.4 μm) sense cloud top height (Justice et al., 2002; NASA GSFC, 2023b). 

The naming convention for MODIS datasets labels datasets originating from Terra and 

MODxx, Aqua as MYDxx and a merged product MCDxx. 

Overtime, improvements have been made to the algorithms that generate MODIS user 

products. The datasets used in this thesis are all MODIS collection 6.1, the latest available at 

time of writing. Collection 6.1 has several technical improvements over collection 6 and is 

strongly recommended to be preferentially used. Some improvements are advancements in 

cloud screening, which results in more skilful identification of cloud contaminated pixels 

which helps reduce errors in products such as land surface temperature. Improvements 

were made to the atmospheric correction algorithm, taking better account of the 

absorption and emission in the thermal bands. Additionally, collection 6.1 uses an updated 

land cover classification which takes advantage of advancements in the estimation of 

surface emissivity (NASA GSFC, 2023a). The entire available MODIS time series has been 

reprocessed with the new algorithms, so there are no issues with discontinuity.  

Each MODIS dataset comes supplied with a Quality Assurance dataset, applicable to each 

product with quality control information derived during production or post-production 

during quality assessment. From this dataset, each pixel is classed on the basis of its 

existence, calibration quality, cloudiness of the scene and application of additional post-

processing. Where applicable when using MODIS products, we have selected pixels that are 

“cloud free” and have a “good” data quality flag. The datasets used in this thesis, which are 

the latest versions available to use in 2023 (Collection 6, version 6.1), are described in detail 

below. 
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Albedo (MCD43A3) 

The albedo of a surface is the ratio of the downwelling radiation incident upon the surface 

and the upwelling energy scattered from the surface. Albedo is a dimensionless quantity 

represented by a value between 0 and 1, where values close to 1 represent a highly 

reflective, light surface and values closer to 0 represent darker, less reflective surfaces (Gash 

and Shuttleworth, 1991). Broadly, forests have dark surfaces and low albedo values typically 

around 0.15 (Gash and Shuttleworth, 1991; Bastable et al., 1993; Culf et al., 1995) whilst ice 

and snow have high albedo values of around 0.6-0.9, dependent largely upon the age of the 

snow and ice (Lee et al., 2011). 

MCD43A3 retrieves both black and white sky albedo at local solar noon for bands 1-7, 

visible, near infrared and shortwave bands. BSA is the integration of the bi-directional 

hemispherical reflectance, it assumes the absence of a diffuse component (i.e., cloud), and 

it is a function of the solar zenith angle. WSA is the integration of directional bi-

hemispherical reflection, and it assumes the presence of a diffuse component (Schaaf and 

Wang, 2021). Whilst MCD43A3 is provided every 16 days, the value presented is a daily 

aggregate of the total available data. The algorithm uses a semi-empirical model to invert 16 

days worth of data into one atmospherically corrected pixel (Schaaf and Wang, 2021). When 

fewer than 7 days worth of data is available, an inversion isn’t possible, and a value is taken 

from a constantly updating look-up table.  

For the analysis in this thesis, we chose to use the combined Terra and Aqua product with a 

500 m spatial resolution as combing the sensors allowed for better coverage and a lower 

incidence of cloud cover. The time of overpass is of lesser importance for sensing albedo 

than for land surface temperature which changes throughout the day. We analysed both 

BSA and WSA and found their results to be broadly similar, leading us to present just BSA in 

the main results. Ito support this, Strahler et al., (1999) outline how albedo is dependent 

upon the land surface rather than atmosphere and find that either WSA or BSA are suitable 

for sensing true surface albedo. When comparing albedo from MODIS observations to 

ground-based or model albedo, Giambelluca et al. (1997) explain that most ground-based 

observations are retrieved at solar-noon and under cloudless conditions, therefore the 

retrieval would be dictated by the directional hemispheric reflectance (BSA). Finally, Zhang 
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et al. (2010) find that in comparison to WSA, BSA has smaller seasonal variance, potentially 

allowing small changes in albedo from land use change to be identified easier.   

 

Evapotranspiration (MOD16A2GF) 

Evapotranspiration (ET) is not directly measured, rather it is a derived quantity based on 

several measurements from different land surface and climate variables and reanalysis from 

models, a process which is outlined in Figure 2.1. ET is the sum of water vapour fluxes from 

soil evaporation, wet canopy evaporation and plant transpiration at the dry canopy surface 

(Mu et al., 2013). It is estimated using the algorithm developed by (Running et al., 2021b) 

and based on the Penman-Monteith equation (Monteith, 1965). The algorithm, detailed by 

Mu et al. (2013), incorporates daily meteorological reanalysis and observations leaf area 

index/ fraction of photosynthetically active radiation (LAI/FPAR), air pressure, temperature, 

humidity, surface albedo, radiation and land cover data. FPAR dictates the vegetation cover 

fraction, allowing for the partitioning of net radiation between soil and vegetation. MODIS 

Albedo, alongside reanalysis radiation and air temperature are used for the calculation of 

net surface radiation and the soil heat flux. Stomatal conductance, aerodynamic resistance, 

wet canopy and soil heat flux from which transpiration can be inferred, is determined using 

model air temperature, vapour pressure deficit, relative humidity and MODIS LAI (Running 

et al., 2021b). MODIS land cover provides the specific biome type, from which biome 

dependant constant values are found from the Biome-Property-Lookup-Table. These ET 

values are largely driven by MODIS GPP and water use efficiency from ground-based eddy 

flux towers. MOD16 products are verified using ET measured by ground-based eddy flux 

towers from 232 watersheds.  
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Figure 2.1. Flowchart of the MOD16A2GF (ET) algorithm (Running et al., 2021b). The 

algorithm combines several inputs ranging from LAI to land cover to provide an estimate of 

evapotranspiration. 

 

In the tropics, retrievals of MODIS LAI and albedo are hampered by high cloud cover, 

resulting in a greatly reduced number of ET tiles being produced. To counter this, MODIS 

uses a year-end (completed and supplied at the end of the year) gap filling process, whereby 

average of the best LAI/FPAR and albedo from the previous 5 years fills the gaps presented 

by ‘poor quality’ LAI/FPAR and albedo (Running et al., 2021b). Poor quality is calculated 

though linear interpolation, examining the previous and next period’s value to determine 

whether the ET value is anomalous (Zhao et al., 2005; Mu et al., 2007). A 5-year period is 

chosen to span interannual global fluctuations such as ENSO which will alter biosphere 

characteristics (Keeling et al., 1995), with longer periods being unrealistic as vegetation 

greenness alongside land use changes over time (Mildrexler et al., 2009; Song et al., 2018). 

Quality control filtering had already been applied in the production of the ET tiles; thus no 

further filtering was necessary. The limitations of this methodology are discussed in detail in 

Chapter 6. 
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Leaf Area Index (MOD15A2H) 

Leaf area index per unit ground area (LAI, dimensionless, m2/m2) is estimated based on an 

algorithm using information from up to 7 spectral bands of surface reflectance (Knyazikhin 

et al., 1999; Myneni et al., 2021). For broadleaf forests such as those in the tropics, it is 

defined as the one-sided green LAI, whereas in coniferous forests, it is one-half the total 

needle surface area per unit ground area. Alongside LAI, FPAR is often used as a quantity to 

investigate vegetation changes. FPAR is defined as the fraction of incident 

photosynthetically active radiation (400−700 nm) absorbed by the green elements of a 

vegetation canopy (Knyazikhin et al., 1999).  

The algorithm which generates LAI combines several streams of information, including near 

infrared and red radiation, MODIS surface reflectance, Normalised Difference Vegetation 

Index (NDVI) and MODIS land cover (providing a range of typical vegetation structural type 

for the biome). These are entered into a look-up-table which provides LAI (Knyazikhin et al., 

1999). LAI saturates with dense canopy covers, such that it is weakly sensitive to canopy 

cover properties, in these cases, the algorithm defaults to using vegetation indices rather 

than spectral information (Fang et al., 2019). We used the quality-control (QC) data layers 

accompanying the LAI to mask cloud-contaminated grid cells and grid cells where the quality 

was not ranked at least ‘good’. 

 

Land Surface Temperature (MOD11A, MYD11A2) 

Land surface temperature (LST) is a very useful quantity for assessing the earth’s surface 

energy balance, climate and land surface changes and hydrological studies, combining 

surface atmosphere interactions and energy fluxes. MODIS LST provides a long term (2001 

to present day) dataset with high spatial resolution (1 km), from which sensible and latent 

heat fluxes (Vining and Blad, 1992; Kimura and Shimizu, 1994) and soil surface temperature 

can be derived. 

LST is calculated from a combination of the MODIS sensor radiance product, MODIS land-

cover products and MODIS cloud masks (Wan, 1999). We used both MOD11 (Terra) and 

MYD11 (Aqua) products in this thesis. The processes to create the datasets are very similar, 
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so are described as one here. We chose to use 8-day LST as this provides sufficient temporal 

resolution. It represents an average of the daily MOD11A1 product. LST is provided with 

both daytime and night time values and associated quality control layers. Using both 

MOD11 and MYD11 allowed us to compare equatorial morning and afternoon LST due to 

the difference in overpass time. 

Wan (1999) describe the method for producing LST as follows. LST is generated using a split-

window algorithm, a radiative transfer equation, which relies on the different thermal 

infrared spectral bands that are emitted from the Earth’s surface (Rozenstein et al., 2014). 

MODIS uses band 31 (11 μm) and band 32 (12 μm), which are differently sensitive to 

atmospheric and surface properties. The adsorption, scattering and emission of infrared 

radiation by the atmosphere are corrected for by using the difference in adsorption 

properties between atmospheric water vapour and CO2. In addition to thermal radiation, 

atmospheric temperature and moisture profiles are required, which can be obtained by 

ground-based, atmospheric infrared sounder as well as the MODIS instrument. The 

algorithm assumes uniformity of the surface, estimating a relationship between the bands 

based on the brightness. The split window algorithm then relates this difference in 

brightness to LST, whilst considering the atmospheric transmittance and surface emissivity, 

which can be derived from land cover classifications and look-up-tables. The split window 

algorithm is applied iteratively to generate an estimate of LST, then computes brightness 

temperatures based on this, and then adjusts the LST first guess accordingly. Ground-based 

measurements from eddy-flux towers are used to validate the remotely sensed LST. 

In the analysis contained within Chapter 3-6, we chose to use land surface temperature as 

opposed to near-surface air temperature as LST is globally readily available at suitable 

temporal and spatial resolutions and is directly applicable to land surface change analysis. 

Using ground-based studies, air temperature and LST have been closely correlated (Good et 

al., 2017), justifying our use of satellite-derived land-surface temperature as a suitable 

metric. 

 

Land Cover Type (MCD12Q1) 

Global land cover types are provided at yearly intervals with 500 m spatial resolution. The 

product is supplied with 13 individual datasets, made up of 8 different classification 
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schemes and 5 quality assurance or masking layers. The classification schemes include the 

International Geosphere-Biosphere Programme (IGBP) (Belward et al., 1999), University of 

Maryland (UMD) (Hansen et al., 2000), Leaf Area Index (LAI) (Myneni et al., 2002), BIOME 

Biogeochemical Cycles (BGC) (Running et al., 2004), Plant Functional Types (PFTs) (Bonan et 

al., 2002) and a newer three-layer Land Cover Classification System (LCCS) from the Food 

and Agriculture Organisation (Sulla-Menashe and Friedl, 2022). In this thesis I use the UMD 

classification system as this is consistent with the GFC data which also originates from the 

UMD. We use the product to identify areas of evergreen broadleaf forest within the tropical 

forest regions. Evergreen broadleaf is defined by UMD classification as “dominated by 

evergreen broadleaf and palmate trees (canopy >2m) with tree cover >60%”. This definition 

is the same used in the IGBP, LCCS1 and LAI classifications however PFT and BGC 

classifications use “dominated by evergreen broadleaf and palmate trees (>2m), with tree 

cover >10%” and “dominated by evergreen broadleaf and palmate trees and shrubs (>1m), 

with woody vegetation cover >10%” respectively (Sulla-Menashe and Friedl, 2022). 

The algorithms take inputs that include MODIS land/ sea mask, reflectance derived from 

MODIS Albedo (Nadir BRDF-adjusted, bands 1-7), spatial texture (band 1), directional 

reflectance, MODIS enhanced vegetation index (EVI), snow-cover, MODIS LST and MODIS 

terrain elevation (Strahler et al., 1999). The product is made using a machine learning 

technique called Random Forest supervised classification, taking sensed MODIS reflectance 

data, with training data from the LCCS (Friedl et al., 2010). To reduce the impact of errors 

causing inter-annual variability, post processing using an algorithm based on Hidden Markov 

Models is applied which reduces variability (Abercrombie and Friedl, 2016). Despite this 

process, the product is not recommended for use in land cover change, before and after 

analysis. The algorithm is verified using a network of test sites with land cover derived from 

the Advanced Very High Resolution Radiometer (AVHRR) and Landsat satellites to 

characterise the accuracy of the classification (Strahler et al., 1999).  

 

2.1.2 Precipitation Data 

Here I outline the complete list of precipitation datasets used in this thesis, which can be 

viewed in synthesis in Table 2.1. It isn’t however an exhaustive list of the datasets available 

as some datasets were excluded from our analysis based on their available spatial or 
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temporal resolution or due to private access. The datasets listed are split into three 

categories, satellite, ground-based and reanalysis. Most satellite precipitation products used 

in this analysis are a combination of remote and ground-based data, however below they 

are categorised by their primary source, either satellite or ground-based. The reanalysis 

datasets by nature take remotely sensed and ground-based observations to drive their 

models, however they are categorised separately as reanalysis datasets. Even within classes 

(satellite, ground-based, reanalysis), the precipitation datasets vary greatly in their 

construction methodology and spatial resolution. This is explored in detail in the following 

sections. As a result of these differences, their estimation of rainfall will be variable, and it 

was therefore important to use a large range of datasets to form an average when 

conducting the analysis, the impact of land use change on rainfall in Chapter 4.   

 

Satellite Precipitation 

 

Figure 2.2. Flowchart for the integration of ground-based and satellite data to make 

precipitation products. The diagram was created by (Sun et al., 2018) adapted from (Hou et 

al., 2014). 
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Satellite precipitation datasets can estimate rainfall amounts, distributions and variability 

near globally and with high temporal resolution. Broadly, they sense precipitation by 

capturing emitted or reflected microwave and infrared radiation and from that inferring 

rainfall (Sun et al., 2018). Often, satellite measurements are validated using ground-based 

observations, where there are station data available, a process described by Figure 2.2. The 

algorithms used to generate rainfall often apply post-processing steps to fill data gaps, 

remove artifacts and biases or assimilate multiple data streams. Satellite datasets have 

significant advantages over ground-based estimates as they can sense near globally at very 

high spatial and temporal resolutions.  

 

CHIRPS 

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) precipitation 

dataset is made by researchers from the USGS (United States Geological Survey) and CHC 

(Climate Hazards Centre) with additional support from USAID (United States Agency for 

International Development), NASA (National Aeronautics and Space Administration) and 

NOAA (National Oceanic and Atmospheric Administration) (Funk et al., 2015). The dataset 

spans 1981 to the present day, making it one of the longest available satellite precipitation 

datasets. It has a spatial extent of 50o N-S and produces data gridded to 0.05 degrees, 

equivalent to around 5 km length at the equator. 

CHIRPS was particularly designed for estimating extremes in rainfall with the aim of 

improving drought early warning systems and environmental monitoring (Funk et al., 2015). 

It is explicitly designed to help provide low latency (time from data acquisition to 

publication), high resolution, gridded precipitation data with a long available time series, 

whilst combing satellite and station data. Other available precipitation datasets often fulfil 

one of these criteria, for example GPCC and CRU which have long data availability but long 

latency, and CMORPH and PERSIANN products have low latency but only take satellite data 

inputs. It allows extreme precipitation events to be put into context using the long time 

series.  
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The CHIRPS algorithm has three main parts, the Climate Hazards group precipitation 

climatology (CHPclim), the satellite only Climate Hazards group Infrared Precipitation 

(CHIRP) and finally the process by which the satellite data is merged with station data 

(CHIRPS) (Funk et al., 2015). CHPclim is built from two sources of long-term station-based 

precipitation means, the first being the Agromet Group of the Food and Agriculture 

Organisation of the United Nations (FAO) and the second being the Global Historical Climate 

Network (GHCN) (Peterson and Vose, 1997), which many of the precipitation datasets used 

in this thesis are also based upon. Together these sources aggregate data from ~50,000 

stations globally. In addition to the standardly applied elevation, latitude and longitude, 

CHPclim takes long term mean monthly data from satellite datasets; the Tropical Rainfall 

Measuring Mission 2B31 (TRMM 2B31) (Huffman et al., 2007) microwave precipitation 

estimates, MODIS land surface temperature, infrared brightness temperatures and CMORPH 

(CPC Morphing) (Joyce et al., 2004) precipitation estimates. In contrast to other 

precipitation climatologies, CHPclim uses a moving window regression, taking a varying 

number of inputs dependent on the available station data. CHIRPS precipitation is estimated 

from a combination CHPclim, a climatology model, remote and ground-based retrievals 

(Huffman et al., 2007; Funk et al., 2015). 

 

CMORPH 

CMORPH (Climate Prediction Center morphing method) is a precipitation product developed 

by the Climate Prediction Center (CPC) at NOAA (Joyce et al., 2004). The dataset is available 

at high temporal and spatial resolution, with the product being gridded to 8x8 km and 30-

minute time steps between 1998 to present day. The spatial extent is near global, from 60o 

N-S. In this analysis we used the CMORPH daily product which is available at 0.25 degrees 

resolution as it was more suitable than sub-hourly for our analysis methods. 

The CMORPH product is particularly useful for driving initialisation of numerical weather 

prediction models as it has high temporal and spatial resolution (Joyce et al., 2004). In 

remote regions in the world, there are few rain gauges, and fewer with higher than 6 hour 

temporal resolution, therefore a global remotely sensed dataset is essential to provide 
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accurate information for these areas. The high temporal resolution also allows for disaster 

mitigation applications as well as longer term climate observation studies.  

CMORPH primarily takes polar-orbiting satellite microwave observations from NOAA, DMSP 

(U.S. Defence Meteorological Satellite Program) and TRMM (Tropical Rainfall Measuring 

Mission) (Huffman et al., 2007), using the instruments Advanced Microwave Sounding Unit-

B (AMSU-B), the Special Sensor Microwave Imager (SSM/I), and the TRMM Microwave 

Imager (TMI) respectively. The method merges these data to form a single, high-resolution 

precipitation estimate. The data is processed by the Climate Prediction Center (CPC) using 

their Morphing Technique (MORPH) (Joyce et al., 2004). Unlike products that average or 

blend microwave estimates, which are often affected by poor retrievals, CMORPH derives 

information from high-temporal resolution geostationary infra-red imagery to propagate 

the precipitation derived from passive microwave radiation. 

 

GPCP 

The Global Precipitation Climatology Project (GPCP) is a precipitation product under the 

umbrella of the World Climate Research Program (WCRP), produced by the Global Water 

and Energy Exchange (GEWEX). It is a long-term homogenous precipitation product taking 

data from rain gauges and satellite inputs (Huffman et al., 2022). 

GPCP is a daily product and has a spatial extent of 55o N-S and a resolution of 0.5 degrees 

with data from mid 2000-2020. Since GPCP has satellite and ground based data inputs, it has 

a wide range of uses, from drought monitoring to disease prediction, however it has daily 

resolution meaning it cannot be used for sub-daily applications.  

The main input for GPCP is taken from the Integrated Multi-satellite Retrievals (IMERG) 

(Huffman et al., 2020) product for GPM, which is comprised of passive microwave (PMV) 

and Infra-red (IR) sensors onboard the GPM constellation of satellites. These data are then 

processed using the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF) 

quasi-Lagrangian time interpolation procedure (Joyce and Xie, 2011) and the Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks – Cloud 

Classification System (PERSIANN-CCS) infrared (IR) recalibration procedure (Sadeghi et al., 
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2021). These steps merge the PMV and IR datasets. Subsequently, rainfall gauge data from 

the Deutscher Wetterdienst (DWD) Global Precipitation Climatology Centre monthly gauge 

analysis (GPCC; (Becker et al., 2013; Schneider et al., 2014; Schneider et al., 2022)) is 

integrated, producing the final merged product. 

 

GPM 

The Global Precipitation Mission (GPM) is a collaboration between NASA and the Japanese 

Aerospace Exploration Agency (JAXA) providing 30-minute precipitation estimates. 

Launched In 2014, it is an extension to the Tropical Rainfall Measuring Mission (TRMM), 

building upon its success in a few key ways. Firstly, GPM provides global data and secondly 

has enhanced ability to sense light rain, a persistent problem for remotely sensed 

precipitation products. GPM has coverage over 60o N-S at 0.1 degrees with a 30 minute 

temporal resolution. Taking advantage of the existing TRMM dataset, GPM continues, 

providing precipitation estimates from 1998 to present day. As a sub-daily dataset, GPM has 

uses for improving numerical weather prediction (NWP) models as well as climate studies 

and resource management (Huffman et al., 2020). 

The measurements come primarily from two instruments; the GPM Microwave Imager 

(GMI) which records 2D spatial patterns and precipitation intensity and the Dual-frequency 

Precipitation Radar (DPR) which provides 3D structure (Huffman et al., 2020). GMI has 13 

microwave bands that observe a range of precipitation types from heavy rain to snow. The 

unified GPM dataset provides a long precipitation dataset by using the Integrated Multi-

satellitE Retrievals for GPM (IMERG) algorithm (Huffman et al., 2020). This takes information 

from all available satellite instruments to gain a global estimate of precipitation which 

covers the majority of the Earth’s surface.  

The IMERG algorithm takes information from The Advanced Microwave Scanning 

Radiometer-2 (AMSR-2) (Kawanishi et al., 2003), JAXA’s Global Change Observation Mission 

- Water 1 (GCOM-W1) satellite (Shimoda, 2005) and The Advanced Technology Microwave 

Sounder (ATMS) instrument (Kim et al., 2014) on the Suomi National Polar-orbiting 

Partnership (SNPP) and NOAA20 satellites. It also takes data from the Sondeur 
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Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) (NOAA NESDIS, 

2020) on the Megha-Tropiques satellite launched by the French Centre National D’Etudies 

Spatiales (CNES) and Indian Space Research Organisation (ISRO), the Microwave Humidity 

Sounder (MHS) instrument (Bonsignori, 2007) on the NOAA19 satellite, the MHS 

instruments on the MetOp series of satellites launched by the European Organization for 

the Exploitation of Meteorological Satellites (EUMETSAT) and lastly the Special Sensor 

Microwave Imager/Sounder (SSMIS) instruments (NOAA NESDIS, 2020) on U.S. Defence 

Meteorological Satellite Program (DMSP) satellites. The PMW sensor data is supplemented 

by IR, from geostationary weather satellites and rain gauge data provided by Global 

Precipitation Climatology Centre (GPCC) (Schneider et al., 2022). In this way, GPM is able to 

offer an integration of many precipitation datasets to provide a very high spatial and 

temporal resolution precipitation estimate. 

 

PERSIANN 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) is a set of remotely sensed precipitation datasets (Nguyen et al., 2019). Within 

PERSIANN there are five different products, PERSIANN, PERSIANN-CCS (Cloud Classification 

System), PERSIANN-CDR (Climate Data Record), PDIR-Now (Dynamic Infrared Rain Rate near 

real-time), PERSIANN-CCS-CDR (Cloud Classification System, Climate Data Record). Each 

product has a similar start point, but different algorithms, which are detailed in turn. The 

datasets are produced by the Center for Hydrometeorology and Remote Sensing (CHRS) at 

the University of California, Irvine (UCI). 

Underpinning all of these datasets is the base PERSIANN algorithm, which uses an artificial 

neural network, a type of machine learning, to detect and determine relationships between 

IR sensed cloud-top temperature and rainfall rates. To correct for bias, additional data from 

passive microwave sensors are used (Nguyen et al., 2019).  
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PERSIANN 

This dataset provides precipitation estimates at 0.25 degrees near globally (60o N-S) and 

with hourly time steps from March 2000 to present day. It takes geostationary IR radiation 

(from GOES-8, GOES-10, GMS-5, Metsat-6, and Metsat-7) and daytime visible imagery from 

low polar orbiting satellites (TRMM, NOAA-15, -16, -17, DMSP F13, F14, F15) and passes this 

through a neural network to produce the estimates (Nguyen et al., 2019). 

 

PERSIANN-CCS 

PERSIANN-Cloud Classification System is a satellite precipitation product with very high near 

global spatial resolution (4x4 km), providing data from 2003 to present day. The dataset 

takes the same base methodology as PERSIANN but adds a cloud classification scheme. 

Using pattern recognition techniques, IR imagery of clouds can be classified to better 

quantify rainfall estimates. The cloud patterns are classified by features such as cloud 

height, areal extent, and variability of texture (Nguyen et al., 2019). The patterns are 

assigned precipitation values based on ground-based radar and TRMM observations. This is 

thought to improve the detection accuracy when using IR imagery to estimate precipitation. 

Figure 2.3 outlines the methodology used to produce PERSIANN-CCS, showing how the 

inputs of IR and PMW are separately treated and combined. The methodology has 

commonality with the other PERSIANN datasets. 
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Figure 2.3. Data processing flow diagram of PERSIANN-CCS (source: 

https://chrs.web.uci.edu/SP_activities01.php) which takes geostationary and polar satellite 

observations and combines with radar and rain gauge data. 

 

PERSIANN-CDR 

The Climate Data Record (CDR) dataset builds upon the PERSIANN algorithm but helps to 

address the need for long-term high spatial resolution precipitation data for climate 

assessments (Ashouri et al., 2015). This dataset has a spatial resolution of 0.25 degrees and 

a daily time series starting in 1983 to present day. CDR utilised IR imagery from GridSat-B1 

and GPCP PMV precipitation. 

 

PDIR-Now 

PDIR-Now is a near real time hourly dataset, providing 4x4 km spatial resolution data with 

very low latency (15-60 minutes). For this it relies on high frequency IR imagery and can be 

used in applications such as flood inundation maps where near real time data access is 

https://chrs.web.uci.edu/SP_activities01.php
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essential. PDIR-Now builds upon the foundation of PERSIANN-CCS, bettering its accuracy in 

keys areas such as rain/no-rain days and seasonal cycles (Nguyen et al., 2020).   

 

PERSIANN-CCS-CDR 

PERSIANN-CCS-CDR combined the long time series of the CDR and the advanced 

precipitation detection abilities of CCS, providing a high spatial resolution (4x4 km), long 

(1983 - present), 3-hourly time series (Sadeghi et al., 2021). In addition to the methods used 

in each separate product, the combined product takes information from NOAA CPC-4km 

global IR products (Xie et al., 2019).  

 

TRMM 

The Tropical Rainfall Measuring Mission (TRMM) was a satellite mission from 1997 - 2015 

designed specifically to enhance our understanding of tropical rainfall distribution and 

intensity (Huffman et al., 2007). It was a joint mission by NASA and JAXA that formed part of 

the NASA Earth Observing System and aimed to provide high spatially and temporally 

resolved precipitation data. The product has a spatial resolution of 0.25 degrees and covers 

50o N-S. Onboard TRMM were five instruments, the Precipitation Radar (PR), TRMM 

Microwave Imager (TMI), Visible Infrared Scanner (VIRS), Clouds & Earths Radiant Energy 

System (CERES) and Lightning Imaging Sensor (LSI) (Huffman et al., 2007). The principal 

instruments for observing precipitation are the PR and TMI, which contribute to the TRMM 

Multi-satellite Precipitation Analysis (TMPA), which form the basis of the end user products 

TMPA 3B43 (monthly) and 3B42 (3-hourly). 

TMPA takes microwave data from multiple satellites in the NASA constellation; SSMI, SSMIS, 

MHS, AMSU-B, AMSR-E and TRMM, with missing data filled in with IR from geostationary 

satellites (Huffman et al., 2007). The assimilated products are scaled to rain gauge datasets 

to ensure biases are limited. As with all precipitation datasets that take data from multiple 

sources, precipitation is at best an estimate, as there will be inconsistencies when data 

sources are launched and decommissioned.  
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With its long time series and high spatial resolution, the product is particularly useful for 

long term analysis of climate change and investigating spatial heterogeneity in precipitation. 

The TRMM project came to an end in 2017 and was superseded by GPM from NASA. GPM 

utilises the available data from TRMM, reprocessing historical data with its proprietary 

algorithm to ensure continuity.  

 

Ground-Based Precipitation 

Ground based observations of precipitation are collected predominantly using rain gauges. 

The data they record represents a snapshot in time and space. In northern mid-latitudes 

there is good coverage of ground-based stations as shown by Figure 2.4, however in the 

tropics, there is often poor coverage, especially in the remote tropical forest regions. Radar 

data do not have the same spatial availability however they are often used for bias 

correction and quality control of rain gauge measurements (Peterson and Vose, 1997; Chen 

et al., 2002; Schneider et al., 2022). 
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Figure 2.4. Global map showing the number of stations used as inputs to the GPCC 

precipitation product in May 2012 (Schneider et al., 2014). Colours represent the number of 

stations contributing to each grid cell on the map. 

 

CPC  

The Climate Prediction Center (CPC) precipitation dataset is constructed by the NOAA 

Climate Prediction Centre, taking data from over 30,000 rain gauge stations. CPC is a daily, 

land only dataset available at 0.5 degrees across the globe for the period 1948 to present 

day (Xie et al., 2007). The high station density makes this data particularly useful, when 

compared to other less dense ground-based datasets, for spatial comparison assessments. 

Whilst it doesn’t have the high resolution of satellite precipitation datasets, it still has 

applications in observing climate variability and drought assessments.  

The rain gauge data originates from a variety of sources, GTS (Global Telecommunication 

System) (Schneider et al., 2022), COOP (Cooperative Weather Observer Program) (Daly et 

al., 2007) and other national databases. On each data point, quality control is performed by 
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comparison with historical records, nearby stations, concurrent radar and satellite 

observations and NWP. Once screened, data are gridded using Optimal Interpolation which 

can take account of orographic effects (Xie et al., 2007). 

 

CRU 

The Climate Research Unit (CRU) is a global gridded weather station dataset, produced and 

maintained by the UK's Natural Environment Research Council (NERC), the US Department 

of Energy and the National Centre for Atmospheric Science (NCAS) (Harris et al., 2020). The 

dataset assimilates data from approximately 4000 weather stations from around the world, 

producing a dataset continuously running from 1901 to near present day at 0.5 degrees.  

CRU can be used to assess global climate and precipitation variability and to derive global 

drought indices such as Standardised Precipitation Evapotranspiration Index (SPEI) and 

other extreme metrics (Harris et al., 2020). Data from the weather stations is cleaned by 

assessing the distance each data point is from the mean and removing data which is >3 

standard deviations away. Assimilating the data uses an angular-distance weighting (ADW) 

interpolation method which takes into account the surrounding amount of anomalous data, 

weighting differently depending on the quality of data. This produces the 0.5o globally 

gridded data. In the recent versions of CRU which use ADW, there is improved traceability 

between each gridded value and the input observations. This allows greater into to assess 

how the quality of the data from each station may geographically vary. 

 

GPCC 

The Global Precipitation Climatology Centre (GPCC) which gives its name to the precipitation 

product is the German contribution to the World Climate Research Programme (WCRP). It is 

the long term assimilation of ~86,000 rain gauges to a global grid (Schneider et al., 2022). 

GPCC provides global gridded monthly data at 0.25 degrees from 1891 to present day, 

making it one of the longest climate time series available. With its long time series and high 

spatial resolution, this product is suitable for evaluating climate changes over long periods 
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and between land cover types. It also has uses for water balance studies, the 

calibration/validation of remote sensing based rainfall estimations and the verification of 

NWP models (Schneider et al., 2014; Schneider et al., 2022). Alongside the full monthly 

precipitation product used in this thesis, there are separate drought indices and rapidly 

available precipitation estimates available. 

Rain gauge data distributed by the GTS is combined with monthly precipitation totals 

calculated from synoptic weather reports (SYNOP) and CPC (Schneider et al., 2022). The rain 

gauges are sourced from CRU, Global Historical Climatology Network (GHCN) (Peterson and 

Vose, 1997) and a variety of national inventories (Schneider et al., 2014). Precipitation 

anomalies are calculated for each gauge and these anomalies are then interpolated on the 

global grid. The product is supplied with error estimates for each data point, so users can 

determine the error level suitable for their analysis. As with all gridded ground-based 

datasets, there are major issues for spatial analysis studies as there are regions across the 

globe with very poor spatial coverage by weather stations and gauges. 

 

UDEL 

This gridded precipitation product was developed at the University of Delaware (UDEL). 

UDEL has global coverage, at 0.5o resolution, with data available from 1900 to 2017 when 

the project terminated (Matsuura and Willmott, 2018). The dataset wasn’t designed for a 

specific use, rather as a general purpose product. It has been used widely, including uses in 

numerical climate model validation and economic applications.  

UDEL takes inputs from observational station data, largely from the Global Historical 

Climatology Network dataset (GHCN2) (Peterson and Vose, 1997), the Global Historical 

Climatology Network Monthly (GHCNM) Version 3 (GHCN3) (Lawrimore et al., 2011), the 

Daily Global Historical Climatology Network (GHCN-Daily) archive (Menne et al., 2012), and 

the Global Surface Summary of Day (GSOD). In addition to this, a few individual records 

were obtained through direct communication with the station owner. 

The station data was interpolated across the globe using the spatial interpolation algorithm 

developed by Shepard (1968), which has been modified by (Willmott et al., 1985) for use on 
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the Earth’s near spherical surface. A digital elevation model (DEM) is incorporated to 

improve the accuracy of the interpolated values. The values presented are grid point 

estimates rather than grid averages. Where stations were closer than 2.5 km to each other, 

a composite was formed of their records. This serves to smooth the data through space and 

time, also allowing for stations with shorter time series to be included in the full dataset, if 

their neighbour has a longer available time series. 

The product was not corrected at source, taking raw precipitation data from the stations. It 

should be noted that biases from under or over catch in station datasets can be significant, 

but difficult to correct for over extensive areas with few nearby data points (Legates and 

Willmott, 1990). An estimation of the interpolation error was created by finding the 

interpolated precipitation value for a region or network of stations, removing the central 

station in the network and calculating the difference between the interpolated and “real” 

station value. This provided the local or station error. 

 

Reanalysis Precipitation 

Reanalysis (retrospective analysis) is the combination of climate models and observations, 

by data assimilation. It is based upon the method used in numerical weather prediction 

(NWP) whereby model forecasts are combined with newly available observations to 

produce a best estimate of the state of the atmosphere and thereby an improved forecast 

(Kobayashi et al., 2015; Reichle et al., 2017; Hersbach et al., 2020). Similarly, reanalysis 

combines these elements, but usually at lower resolutions. Reanalysis datasets take in a 

wide range of current and historical observations and short-range weather forecasts, re-

running the forecasts with modern models to create the most accurate assimilated product. 

Observations that are produced with time lag can be integrated into re-analysis, unlike real-

time analysis, therefore a greater pool of observations can be used. This process overcomes 

the issues generated by sparse and incomplete observations, producing a consistent and 

complete record through time. These datasets have a range of uses, from analysing changes 

in climate to education, policy making and industry. The future of reanalysis datasets is to 

integrate atmosphere and oceanic elements, as currently datasets such as ERA5 are 

atmosphere only. 



   
 

   
 

77 

ERA5 

ERA5 is the successor to ERA-interim, the fifth generation of ECMWF re-analysis (ERA) for 

climate and weather. The European Center for Medium range Weather Forecasts (ECMWF) 

reanalysis combined model output with observations to produce a global combined dataset 

containing a large number of climate and land surface variables. The ERA5-Land dataset is 

available hourly at 0.1 degrees from 1950 to present day for the entire globe. 

Hersbach et al. (2020) detail the full list of satellite and ground-based observations that are 

assimilated to form the observational component of reanalysis. These data include 

observations of temperature, humidity, ozone, column water vapour, cloud liquid water, 

precipitation, ocean surface wind speed, wind vector, land cover, soil moisture and multi-

level pressure. Importantly as Duveiller et al. (2022) note, ERA5 uses seasonally static LAI 

and semi-static land cover representations, both of which can strongly impact the 

precipitation response to forest loss that the dataset produces. The satellite data originate 

from US, European and Japanese space agencies whilst the ground-based is from land 

station, buoys, ships, radiosondes, aircraft and radar precipitation composites (Hersbach et 

al., 2020). Where observations are limited such as in the tropics, where there are few 

weather stations and high occurrence of clouds, the data may be insufficient to overcome 

model biases. 

The analysis in chapter 4 uses total precipitation from ERA5-Land, which is the total 

accumulated liquid and frozen water incident upon the surface. It includes both convective 

and large-scale precipitation that reach the surface, discounting fog and dew that do not 

reach the surface.  

 

JRA 

JRA-55 is the Japanese Meteorological Agency’s (JMA) latest reanalysis product, providing a 

long time series of climate data integrating 4-D observations with models. Data is 

assimilated onto a reduced gaussian grid using a semi-lagrangian advection scheme 

(Kobayashi et al., 2015). Previously the JMA produced JRA-25 which was a 25 year reanalysis 

dataset spanning 1978 to 2004 and has provided the basis for the improved JRA-55 dataset. 
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JRA is a 3-hourly data with a spatial resolution of 0.5625 degrees and temporal range from 

1958 to present day, coinciding with the start of the global radiosonde record.  

Similarly to ERA5, JRA-55 takes observational data from satellite and ground-based sources 

and assimilates this to drive model reanalysis, producing a long and continuous record of 

climate since 1958 (Kobayashi et al., 2015). JRA-25 and 55 take the same observational base 

inputs as ERA-40, which is supplemented JMA archived observations. JRA-55 is known to 

overestimate tropical precipitation compared to ERA-40 and GPCP, likely due to the ‘spin-

down’ problem associated with deep convection in forecast models (Kobayashi et al., 2015). 

We don’t explore this further in chapter 4, however we conclude that no statistically 

significant trends are observed using this dataset, possibly because of this phenomenon. 

 

MERRA-2 

The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) 

is another example of a global atmosphere only reanalysis product, produced by the NASA 

Global Modelling and Assimilation Office (GMAO) (Gelaro et al., 2017). Compared to its 

predecessor, MERRA integrates modern hyperspectral radiance and microwave 

observations, assimilating the meteorological data with a new assimilation method (Reichle 

et al., 2017). MERRA-2 is particularly well suited to surface mass balance estimates over ice 

sheets compared to other reanalysis products.  

Compared to other global reanalysis datasets (JRA-55 and ERA5), MERRA-2 has a shorter 

available time series, from 1980 to present day. Similarly, however it is available at 

0.5x0.625o resolution and in 3-hourly steps. 

The dataset is driven by the Goddard Earth Observing System Atmospheric Data Assimilation 

System (GEOS ADAS), which takes the GEOS model as the basis and incorporates the Global 

Statistical Interpolation (GSI) analysis scheme (Kobayashi et al., 2015). In places around the 

world where there are few ground-based observations, such as tropical forest interiors, the 

observations are driven by the satellite-station merged product, CMAP (NOAA CPC Merged 

Analysis of Precipitation). 
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Figure 2.5. Schematic outlining the bias correction algorithm used in the production of 

MERRA-2 (Reichle et al., 2017). A similar process is utilised by JRA-55 and ERA5 to correct 

their precipitation using observations. 

 

One noticeable difference compared with ERA5 and JRA-55 is that 2 m air temperature is 

not directly assimilated, however a similar array of observations, satellite and ground-based 

are integrated (Kobayashi et al., 2015). Figure 2.5 outlines the process by which modelled 

precipitation in MERRA-2 is bias corrected using satellite and ground-based observations. A 

similar process is used for each variable produced in this reanalysis. 
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2.1.3 Models 

CMIP6 

The models used in Chapter 5 to evaluate the impacts of LCC on local climate are listed in 

Table 2.2. The details of each individual model are described by each modelling institute, 

accessible via the reference listed in Table 2.2. Here I provide an overview of some key 

differences between the CMIP6 models used in this thesis. 

One of the most important factors differentiating the CMIP6 models is their representation 

of the land surface. Differences can arise from the spatial location, number and the types of 

biomes in each region as well as land classifications and their heterogeneity. These factors 

will influence vegetation phenology, LAI, plant growth, ET, albedo and roughness. Alongside 

this, the land cover type will influence the carbon cycling ability of the land affecting 

processes such as photosynthesis and respiration which can in turn impact growth, water, 

energy and gas fluxes. Interactions between the land surface and the atmosphere, such as 

evapotranspiration, surface runoff, soil moisture, and heat fluxes can also be strongly 

affected by the land surface representation. Whilst all models include land surface 

properties and processes, not all include vegetation that changes with time (Dynamic Global 

Vegetation Models). 

The CMIP6 models have a wide range of spatial resolutions from ~0.5o to ~3o, listed in Table 

2.2. Higher resolution models will be able to capture smaller scale features and processes 

differently to coarser resolutions models, which will result in a different representation of 

climate and land surface changes due to forest loss. Related to this is the type and number 

of parametrisations present, with higher resolution models needing fewer approximations 

than coarser models. The parametrisations themselves are different between modelling 

groups, therefore each representation of clouds, precipitation and climate processes will be 

different. All CMIP6 models include atmosphere, ocean and land surface components, 

however some models additionally model ice sheets, atmospheric chemistry and 

importantly for this analysis, dynamic vegetation. The more components and processes an 

earth system model includes, the more computationally expensive and comprehensive the 

model becomes. 
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Other factors that are of lesser importance for the analysis of the climate impacts of land 

cover change are the representation of biogeochemistry, sea ice, permafrost, and aerosol 

and chemical forcings. These will have less of an impact of the results as we largely consider 

the local impacts of land use change and over short time scales.  Overall, models are 

constructed differently leading them to have their own biases. The strength of the CMIP6 

models is in their numbers, with the ensemble mean of the models providing useful insight 

in climate and land surface studies.    

 

GCAM 

The Global Change Assessment Model (GCAM) is an integrated assessment model (IAM) 

used for studying global climate change and its interactions with socio-economic systems 

(JGCRI, 2023). The project is jointly coordinated by the Pacific Northwest National 

Laboratory and Joint Global Change Research Institute (PNNL, JGCRI) for the USA 

Environmental Protection Agency. It analyses the effects of various long-term policy and 

technology choices on greenhouse gas emissions, energy systems, land use, and climate 

outcomes. GCAM is widely used by researchers, policymakers, and organizations to explore 

different mitigation scenarios, evaluate the feasibility of climate targets, inform policy 

decisions, and assess the co-benefits and trade-offs of various strategies related to energy, 

land use, and climate change (JGCRI, 2023). 

To make predictions of future change, GCAM considers a variety of factors such as land use 

change, economics, energy systems and the climate system. A variety of land surface and 

climate datasets are integrated to form GCAM, including satellite datasets from MODIS 

(land cover, land surface and climate variables), and the European Space Agency Climate 

Change Initiative Land Cover (ESA, 2017). GCAM incorporates land use and agricultural 

systems to analyse the impact of land use change, deforestation, and land management 

practices on greenhouse gas emissions, food production, and ecosystem services. 

Additionally, GCAM includes a representation of the climate system and feedbacks to 

capture the interactions between greenhouse gas emissions, atmospheric concentrations, 

land surface and climate changes. 
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Table 2.2. Information about the models used in Chapter 4 to evaluate the changes in local 

climate due to tropical forest loss. Listed is the dataset name, originating institute, resolution 

the model output is supplied at in terms of latitudinal (lat) and longitudinal (lon) resolution 

and the appropriate dataset citation.    

Model Institute Resolution lon, 

lat (degrees) 

Reference 

ACCESS-ESM1-5 CSIRO 1.88 x 1.25 Ziehn et al., 2019 

AWI-ESM-1-1-LR AWI 1.88 x 1.87 Danek et al., 2020 

CanESM5 CCCma 2.81 x 2.79 Swart et al., 2019a 

CanESM5-CanOE CCCma 2.81 x 2.79 Swart et al., 2019b 

CESM2 NCAR 1.25 x 0.94 Danabasoglu, 2019a 

CESM2-FV2 NCAR 2.50 x 1.89 Danabasoglu, 2019b 

CESM2-WACCM NCAR 1.25 x 0.94 Danabasoglu, 2019c 

CESM2-WACCM-FV2 NCAR 2.50 x 1.89 Danabasoglu, 2019d 

CMCC-CM2-SR5 CMCC 1.25 x 0.94 Lovato and Peano, 2020 

CMCC-ESM2 CMCC 1.25 x 0.94 Lovato et al., 2021 

CNRM-ESM2-1 CNRM-CERFACS 1.41 x 1.40 Seferian, 2018 

EC-Earth3-CC EC-Earth-Consortium 0.70 x 0.70 EC-Earth-Consortium, 

2021 

EC-Earth3-Veg EC-Earth-Consortium 0.70 x 0.70 EC-Earth-Consortium, 

2019 

EC-Earth3-Veg-LR EC-Earth-Consortium 1.12 x 1.12 EC-Earth-Consortium, 

2020 

GISS-E2-1-G NASA-GISS 2.50 x 2.00 NASA/GISS, 2018 
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HadGEM3-GC31-LL MOHC 1.88 x 1.25 Ridley et al., 2019a 

HadGEM3-GC31-MM MOHC 0.83 x 0.56 Ridley et al., 2019b 

INM-CM4-8 INM 2.00 x 1.50 Volodin et al., 2019a 

INM-CM5-0 INM 2.00 x 1.50 Volodin et al., 2019b 

IPSL-CM5A2-INCA IPSL 3.75 x 1.89 Boucher et al., 2020 

IPSL-CM6A-LR IPSL 2.50 x 1.27 Boucher et al., 2018 

MPI-ESM-1-2-HAM HAMMOZ-Consortium 1.88 x 1.87 Neubauer et al., 2019 

MPI-ESM1-2-HR MPI-M 0.94 x 0.94 Jungclaus et al., 2019 

UKESM1-0-LL MOHC 1.88 x 1.25 Tang et al., 2019 

GCAM PNNL, JGCR 0.05 x 0.05 JGCRI, 2023 

 

2.2 Methodology 

In this section I will provide an overview of the methods common or core to the analysis in 

the Chapters 3 - 5. I will first describe the data acquisition, followed by how I processed the 

individual datasets. Lastly, I describe and explain the main methods by which I analysed the 

data and why I chose those methods if there were multiple options available. 

 

2.2.1 Data Acquisition 

MODIS 

MODIS datasets were downloaded using the NASA Earth Data download portal 

(https://www.earthdata.nasa.gov/) at their native resolutions for the time periods used in 

the individual studies. For products with a 500 m spatial resolution, there are approximately 

300 tiles comprising one complete global 8-day scene, meaning for a year of data around 

13,000 tiles are required. Tiles were downloaded using the command line utility “wget”. For 

all MODIS datasets, I used 8-day global gridded products in the file format is HDF 

https://www.earthdata.nasa.gov/
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(Hierarchical Data Format), allowing us high spatial and temporal data availability at 

relatively low file sizes. 

 

GFC 

Much of the analysis contained within this thesis is underpinned by the Global Forest 

Change dataset (Hansen et al., 2013). This data can be freely downloaded from Global 

Forest Watch (GFW) (https://www.globalforestwatch.org), a web portal for viewing and 

downloading data, built in partnership with the Global Land Analysis and Discovery (GLAD) 

laboratory at UMD. The data is separated into several classes, ‘treecover2000’, ‘gain’, 

‘lossyear’, ‘datamask’, ‘first’ and ‘last’, of which I downloaded and used ‘treecover2000’ and 

‘lossyear’. Together these provided information about the forest cover extent in 2000 and 

the year in which forest, if applicable, was lost per 30 m resolution pixel. 

 

Driver of Forest Loss 

To classify the drivers of forest loss, I downloaded the drivers of forest loss dataset from the 

supplementary information of the Curtis et al. (2018) manuscript. Similarly, to GFC, the 

dataset is also available from the GFW web portal. This dataset is available globally at 10 km 

spatial resolution from 2001 to 2019.  

 

Precipitation 

In Chapters 4 and 5 I analysed changes in precipitation using up to 18 different precipitation 

datasets (listed in Table 2.1). I downloaded each precipitation dataset from its original 

source, listed here: CHIRPS from https://data.chc.ucsb.edu/products/?C=M;O=D, CMORPH 

from https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/, CPC from  

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html, CRU from 

https://crudata.uea.ac.uk/cru/data/hrg/, ERA5 from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

https://data.chc.ucsb.edu/products/?C=M;O=D
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://crudata.uea.ac.uk/cru/data/hrg/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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levels?tab=overview, GPCC from 

https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html, GPCP 

from https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.1/summary?keywords=GPCPMON, 

GPM from https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/, JRA from  

https://climatedataguide.ucar.edu/climate-data/jra-55 https://jra.kishou.go.jp/JRA-

55/index_en.html, MERRA-2 from https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, 

NOAA (PREC/LAND) from https://psl.noaa.gov/data/gridded/data.precl.html, PERSIANN 

(CCS, CDR, CCS-CDR, PDIR-NOW) from https://chrsdata.eng.uci.edu/, TRMM from 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary, UDEL from 

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html. When downloading, there 

were often multiple dataset options. Where possible I selected the data closest to mean 

monthly total precipitation. 

 

CMIP6 Models 

To analyse output from the 45 global climate models contributing to CMIP6 (Eyring et al., 

2016), I downloaded monthly data from the World Climate Research Program Earth System 

Grid Federation (https://esgf-node.llnl.gov/projects/cmip6/). To complete the analysis in 

Chapter 5, I retrieved historical simulations between 1850 - 2014 from models that provided 

land cover change, evapotranspiration, land surface temperature, albedo and precipitation 

(n=24 used in this analysis).  

 

GCAM 

In Chapter 4, we analysed the impacts of future forest cover change using the Global Change 

Analysis Model (GCAM) from 2015 to 2100. We chose to use the Shared Socioeconomic 

Pathway (SSP) - Representative Concentration Pathway (RCP) scenario SSP3 RCP4.5 which 

represents a middle of the road emissions/ LCC scenario (Chen et al., 2020). The GCAM 

model output was downloaded at 0.05 degrees from https://doi.org/10.25584/data.2020-

07.1357/1644253. 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.1/summary?keywords=GPCPMON
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/
https://climatedataguide.ucar.edu/climate-data/jra-55
https://jra.kishou.go.jp/JRA-55/index_en.html
https://jra.kishou.go.jp/JRA-55/index_en.html
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://psl.noaa.gov/data/gridded/data.precl.html
https://chrsdata.eng.uci.edu/
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
https://doi.org/10.25584/data.2020-07.1357/1644253
https://doi.org/10.25584/data.2020-07.1357/1644253
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2.2.2 Processing 

MODIS  

The datasets were processed and quality control measures were applied using the Python 

packages GDAL (GDAL/OGR Contributors, 2023), Iris (Met Office, 2023) and Xarray (Hoyer 

and Hamman, 2017). Once I had read in each 8-day raw MODIS tiles, we immediately 

applied quality control measures, ensuring that no post-processing had taken place before 

pixels were screened. I selected only pixels with “good” data quality and where the scene 

was “cloud free”. This applied to all MODIS datasets apart from MOD16A2GF (ET) which 

comes pre-processed due to it being gap-filled. Raw MODIS products are in the sinusoidal 

projection, so after quality control, tiles were merged and reprojected to the World 

Geodetic System 1984 (WGS84) projection to allow consistent data analysis with the other 

available datasets.  

Each of these 8-day global scenes were then regridded to the necessary spatial resolutions 

using the Python package Xesmf (Zhuang, 2022) with either conservative normalised, 

bilinear or nearest neighbour schemes (further details on spatial regridding provided 

below). As for all data in this thesis, I analysed data at monthly temporal resolution. The 

MODIS 8 and 16-day gridded data were temporally resampled to monthly time steps using 

Xarray and the individual months were concatenated into annual files, ready for data 

analysis.  

 

GFC 

In each analysis chapter we use slightly different time periods to evaluate changes in forest 

cover, however the process of generating forest cover change is the same. Firstly, I took 

‘treecover2000’ and ‘lossyear’ data layers from GFC, which provide initial forest cover and 

the year in which forest cover was lost, respectively. To read in and manipulate these 

datasets I used the Python packages Xarray and GDAL. To calculate the forest cover extent 

in each subsequent year, I subtracted areas where forest had been lost from the initial 

forest extent. To gain forest cover change, I then differenced the forest loss in the particular 

year, from the initial forest cover. This dataset was then regridded to the appropriate 
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resolution for each analysis by taking the sum of all 30 m complete forest loss pixels within 

each larger aggregated pixel. 

 

Driver of Forest Loss 

The drivers of forest loss dataset came pre-processed by the authors, describing the primary 

driver of forest loss for the period 2001 - 2019. I regridded the dataset to the appropriate 

resolution using the spatial regridding Python package Xesmf and the conservative 

normalised scheme (Zhuang, 2022). 

 

Precipitation 

The precipitation datasets used in Chapters 4 and 5 were available at a range of spatial and 

temporal resolutions, ranging from 4 km to 100 km and 3-hourly to monthly time scales. 

Some of the precipitation datasets came supplied with quality control layers with flags 

indicating the quality of the data, whilst some had quality control measures pre-applied. 

Where possible I screened the data for ‘good’ quality, mitigating the impact of cloud and 

poor-quality retrievals, which particularly impact satellite data. I resampled each dataset, 

using temporal weighting in Xarray to produce monthly means over the analysis time 

period. We chose to analyse the datasets at a range of spatial scales from 5 km to 200 km 

spatial resolution, which required each dataset to be spatially regridded to the 6 different 

grids. The resolutions we chose are standard resolutions (0.05o, 0.1o, 0.25o, 0.5o, 1.0o, 2.0o), 

that almost sequentially double in spatial scale and match the native resolutions of many 

precipitation datasets. The precipitation datasets were categorised into satellite (number of 

datasets, n =10), station (n=4) and reanalysis (n=4) categories for analysis. Each category has 

fundamental differences and similarities, and categorising allows us to compare these 

structural differences.  
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CMIP6 

Each CMIP6 model is supplied at a different resolution as listed in Table 2.2. We chose to 

analyse the model data at their original resolutions, so no spatial regridding took place. We 

constrained the model data ready for analysis using two constraints. Firstly, we constrained 

by the tropics (30° N-S) and secondly by where forest cover was greater than 70% at the 

start of the discrete time periods. We did this to select areas of dense tropical humid forest, 

that would match well to the evergreen broadleaf biome defined by MODIS land cover type 

(MCD12Q1) satellite data. We tested using the MODIS evergreen broadleaf biome to 

constrain the individual models, finding similar pixels were selected and similar results were 

produced by the analysis in each method. We chose to constrain each individual model by 

its own 70% forest cover as forest cover in each model will differ depending on the 

prescribed land cover and dynamics and could produce invalid results if we constrained 

each by the same area. 

To detect simulated changes in local climate due to forest loss we first assessed changes to 

climate over time. We analysed changes over a 16 year period to match the time period 

used by the satellite temperature and precipitation datasets. In general, detecting climate 

changes needs a long time series (Winckler et al., 2017), the longer the time period, the 

more robust the result will be. To increase robustness, but still maintain the common 16 

year time period, I utilised the full available time period of the CMIP6 models, from 1850 - 

2014. I chunked the CMIP6 models into ten 16 year time period “chunks”, starting from 

1854 and ending in 2014. In Chapter 5 we present the median changes over these 16 year 

periods in the main text, as well as the individual chunks in the supplementary material. 

 

GCAM 

To assess forest cover change over the next century, we used GCAM output, which provides 

forest cover in 5 year intervals between 2015 and 2100. To find forest loss, we compared 

each 5 year period to the 2015 baseline. GCAM output is supplied at 0.05 degrees, however 

we analysed changes in precipitation due to forest loss at 2 degrees, so I spatially regridded 

the data using Xesmf’s bilinear interpolation scheme. 
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2.2.3 Spatial Regridding 

The datasets used in chapters 3-6 all have different native resolutions, that is, each is 

gridded using different grid box sizes and shapes. To allow for direct comparisons, these 

datasets need to be gridded on consistent grid sizes and shapes. To do this I use a process 

called regridding which takes the original dataset and translates the data onto a new 

specified grid size and shape. There are many methods that can be used to regrid, from 

simple linear interpolation to more complex conservative and area weighted. To regrid the 

datasets used for analysis in this thesis, I primarily use the python package xESMF (Zhuang, 

2022). In some instances, to add robustness to the results, I also present results regridding 

using SciPy (Virtanen et al., 2020) linear interpolation and Iris (Met Office, 2023) area 

weighted. xESMF is a python interpretation of the Fortran package ESMF (Earth System 

Modelling Framework, (Balaji et al., 2023)) and offers a wide range of tools packaged in an 

easy to use, science ready package. It has the advantage over more simplistic applications 

that it can regrid between regular, rectilinear, and curvilinear grids allowing for accurate 

regridding of most geospatial datasets. xESMF splits the regridding into two steps, by first 

creating an array of weights based on the shape of the source and destination grids, then it 

applies the weights array to the source. The creation of the weights array is expensive, 

however it can then be quickly (re-)applied to speed up the process of regridding multiple 

variables or time steps on the same grids. This is particularly useful when regridding very 

high-resolution data as it can save on memory allocation and allows the process to be run in 

parallel for vast speed improvements. 

There are two main types of datasets used in this thesis, categorical and continuous. The 

categorical datasets include the drivers of forest loss dataset (Curtis et al., 2018) and the 

MODIS land cover dataset which both classify land cover into discrete types, for example 

water and forest types. When regridding we want to conserve these discrete quantities, 

rather than averaging them, so we use nearest neighbour methods to allocate grid cells 

based on a weighting of their immediate neighbours. The majority of the geospatial data 

used in this analysis was continuous data, MODIS LST (MOD11A2) is an example. To modify 

these grids, we want to take an average of the surrounding grids and return the new grid 

shape. For highly spatially correlated data such as LST, bilinear interpolation is sufficient, 

whereby an average is taken of the surrounding cells. For discontinuous variables that are 
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heterogenous spatially and temporally such as 3-hour precipitation, conservative regridding 

is more appropriate. Lastly for land-only datasets such as land surface temperature, we 

masked the oceans to stop “bleeding“ of NaN or zero values into the cells in coastal regions. 

 

2.2.4 Overview of Analytical Methods 

All of the observational and simulated datasets were spatially constrained to the tropics 

region (30o N-S). Spatially constraining had the added benefit of reducing computational 

load when performing calculations or storing output. Throughout the analysis, we also 

constrained the observational datasets by the MODIS evergreen broadleaf land cover type 

(Sulla-Menashe and Friedl, 2022). This spatial constraint was applied by masking by areas 

that were within the evergreen broadleaf biome at the start of the analysis period (this year 

differed for the different analyses). The CMIP6 models were constrained by their own forest 

cover extents, a process described in more detail in the processing section. The third spatial 

constraint applied to all datasets in Chapters 3 and 4 was the regional shapefiles, denoting 

the Amazon Basin, the Congo Basin and Southeast Asia, the shapes of which can be seen in 

Chapter 1. These areas were defined by shapefiles and applied to the datasets using the 

Python package Rioxarray (Hoyer and Hamman, 2017). 

 

Moving window 

To analyse the changes in local climate due to forest loss, I calculated the changes in climate 

over time and used a moving-window nearest neighbour approach, developed by (Baker 

and Spracklen, 2019) to understand how deforestation can modify the climate. To calculate 

changes over time, I took multi-year averages at the start and end of the analysis period to 

compensate for the effect of inter-annual variabilities, such as anomalously hot or dry years. 

When calculating the changes over time, I tested the sensitivity of the analysis to the 

number of averaged years (3 or 5 years) and the total length of analysis period. Broadly the 

results presented (Extended Data Figure B.3) were insensitive to changes in average time 

and total time period length.  
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The moving window analysis method takes the information about how the climate or land-

surface has changed over time from deforested regions and pairs this to information from 

nearby forested regions. This pairing is essential for isolating the local impacts from the 

background climate and the differences due to geographical features such as elevation. 

Figure 2.6 shows a diagram of the 5x5 (number of pixels) window used to select 

“deforested” and nearby “forested” pixels, with the pixel and window size and differing 

depending on the analysis. To add robustness and to test the impacts of window size on our 

results, chapters 3 and 4 compare this effect, finding similar results are produced when 

using either 3x3 or 5x5 window sizes (Extended Data Figure B.3). 

Figure 2.6. A diagram showing the 5x5 nearest neighbour moving window. 

 

In Chapter 3, we used two different nearest neighbour moving window methods. The first 

method involved discretely defining forest and deforested categories of land cover using the 

GFC data. Here the transition between forest and deforested was calculated in what we 

termed a “threshold” analysis. The second method calculates forest loss of deforested areas 

relative to forest loss in neighbouring areas with less forest loss (control), producing a 

difference between the deforested and forest in terms of a percentage point coverage. This 

difference is subtle, with the second method allowing for a broader comparison of the 

impacts of forest loss on local climate. In both methods the deforested pixel is compared to 
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the mean of the control pixels within the moving window, where there must be at least one 

control pixel per window. 

The threshold approach defines “forest” areas by having greater than 90% forest cover at 

the start of the analysis period and maintaining greater than 90% throughout the analysis. 

“Deforested” areas are categorised by having greater than 90% forest cover at the start of 

the period and less than 70% forest cover at the end of the analysis. This categorical method 

is presented in published work by (Baker and Spracklen, 2019). To test the sensitivity of the 

results to changes in these thresholds, further thresholds were defined, with the results 

presented in the Supplementary Figure A.2, showing the results to be broadly insensitive to 

this change. 

The per percentage point method doesn’t define thresholds of forest change, however it 

still utilises the moving window nearest neighbour approach. Rather, the method compares 

all deforested areas with nearby areas of forest that have lost less forest. Hence comparing 

the two regions, we can present changes in climate and land surface as a function of forest 

loss. In addition, we specified that deforested pixels must have lost more than 0.1 

percentage points of forest loss than their paired controls. We calculated the change in the 

variable, for example precipitation, of the deforested pixel relative to the change in 

precipitation of the control pixel as the precipitation change of the deforested pixel over the 

analysis period (e.g., 20xx to 20xx) minus the precipitation change over the control pixel. For 

precipitation, we reported precipitation changes (ΔP) as a function of forest loss in units of 

mm month-1 %-1. To further mitigate the impact of background climate on the analysis, in 

Chapter 4, we tested additionally constraining deforested and control pixels, requiring them 

to have less than 10% difference between mean monthly precipitations. We showed that 

the results were insensitive to this test (Supp. Figure B.7). This method has the advantage of 

including more pixels in the analysis than the threshold approach, overcoming the issue 

whereby some tropical regions in the threshold analysis had too few pixels to retrieve a 

change value. In addition to reporting the absolute changes in precipitation, we also report 

the changes relative to the background precipitation levels, in terms of %/% (ΔP/P) (an 

example of which is shown in Supplementary Figure B.2).  
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Seasonal Analysis 

In all analysis chapters, we explored the climate impacts of forest loss in the different 

seasons. The seasons we chose to analyse were the wet, dry and transition seasons, defined 

as the wettest/driest 3 months of the year and the remaining 6 months respectively. The 

wettest and driest 3 months of the year were calculated for each individual pixel and each 

year, using the satellite datasets in each analysis chapter to find the climatology. For the 

CMIP6 models, we derived the seasonal pattern using the model’s own precipitation values 

as this could substantially vary between models. The impact of selecting the wet and dry 

seasons per pixel meant that adjacent pixels could have different months selected for each 

season and these could change year to year. This ensured that the wettest and driest pixels 

were being selected each year, however years with anomalous precipitation patterns could 

increase the interannual heterogeneity of this spatial pattern. This effect is likely mitigated 

by using multiple satellite precipitation datasets to calculate the climatology. An alternative 

approach could be to select the mean wettest/driest 3 months over all analysed years, 

however if the wet and dry seasons change spatially over time, this could skew the results of 

the analysis. 

 

Statistical Analysis 

To assess the statistical significance of our results, we compared the changes in each 

variable populations control and deforested pixels, first finding their distribution. We tested 

whether the changes over deforested regions were statistically different from changes over 

control regions. To do this we used either the Student’s t-test, Mann-Whitney U and 

Wilcoxon signed-rank test, each having specific attributes making it more suitable to a 

specific case. The Student’s t-test was used on populations that were normally distributed 

and the variances of the groups were approximately equal. The Mann-Whiteney U and 

Wilcoxon test were used in cases when the data wasn’t normally distributed or had a 

skewness. 
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To visualise the error associated with the populations of data, standard error of the mean 

was used to plot error bars on the figures throughout, unless stated. This provided a 

consistent measure of uncertainty throughout the analysis in the thesis.  
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Abstract  

Rapid tropical deforestation is resulting in substantial changes to local and regional climate. 

Tropical forest loss is caused by a range of factors including agriculture and forestry, but it is 

not known whether the climate impacts of forest loss differ for different drivers of forest 

loss.  We used remotely sensed atmospheric and land-surface datasets to analyse whether 

the local climate impacts of tropical forest loss from 2001 to 2019 varied with the driver of 

deforestation. We show forest loss caused by commodity agriculture leads to double the 

warming of forest loss from shifting agriculture. If the transition from shifting agriculture to 

commodity driven deforestation continues across the tropics as projected, we suggest the 

warming due to forest loss could increase. Our study highlights the differing local climate 

impacts of forest loss across the tropics and the important role of deforestation drivers in 

modulating the climate response. 
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Plain language summary 

Tropical forests provide a range of biophysical services to their ecosystems, from recycling 

moisture to moderating local temperatures. When forests are lost, these services are 

altered. We quantified, using remotely sensed data, the amount by which tropical forest 

loss impacts the climate local to the forest loss. Over the 2001-2019 period, we found 

warming across the tropics as a result of forest loss, with the greatest warming in the 

Amazon. This warming increased when greater amounts of the forest canopy were 

removed. Warming due to forest loss in the Congo was lower because of the less 

industrialised nature of the forest loss. We show that a shift to commodity agriculture has 

the potential to double the warming currently found in the Congo. 

 

Key points: 

1. Local climate impacts of forest loss vary across the tropics 

2. Tropical forest loss induces local warming 

3. Commodity agriculture drives double the warming of shifting agriculture 

 

3.1 Introduction 

Tropical forests cover around 7% of the world’s land surface (Estoque et al., 2019) and 

account for around 45% of global forests (FAO and UNEP, 2020). Rapid deforestation is 

occurring across the tropics (Hansen et al., 2013, van Cutsem et al., 2023), causing loss of 

biodiversity and ecosystem services and changes to climate (IPBRES, 2019). Tropical 

deforestation impacts the climate at local (Alkama and Cescatti, 2016; Baker and Spracklen, 

2019), regional (Spracklen et al., 2018; Marengo et al., 2018; Cohn et al., 2019) and global 

(Scott et al., 2018; Johannes Winckler et al., 2019) scales through altering the exchange of 

moisture, energy and trace gases between the land surface and the atmosphere (Silva Dias 

et al., 2002; Bonan, 2008).  
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Forest loss can occur and manifest in a variety of ways and can be driven by both natural 

and anthropogenic processes. Curtis et al. (2018) categorised these differences into five 

drivers of forest loss, commodity driven, shifting agriculture, forestry, wildfire, and 

urbanisation. Whilst there are widely accepted to be further categories of natural 

deforestation, such as drought, windthrow and pests, Curtis et al. (2018) assert that their 

“categories account for the majority of recent observed forest loss”. Each is characterised by 

traits, and each will leave a different climate impacts signature.  

Agriculture is the most common driver of forest loss in the tropics (Pendrill et al., 2022; Fritz 

et al., 2022), with the two most common drivers of forest loss being commodity agriculture 

(CA) and shifting agriculture (SA). Commodity agriculture is typified by large scale, industrial 

conversion of forest for plantation and pasture, but also includes forest loss associated with 

mining and industry. It is commonly found in the heavily deforested south-eastern arc of 

deforestation in the Amazon and Sumatra, where oil palm and rubber are the principal 

crops (Jamaludin et al., 2022). It is typified by large-scale intensive and long term or 

permanent conversion of forest. Shifting agriculture produces a heterogenous landscape of 

mixed small-scale rotational agriculture, common across much of the Congo basin (Curtis et 

al., 2018; Fritz et al., 2022). Of the deforested land, only 45-65% becomes agriculturally 

suitable, indicating that land abandonment is likely and with it, regrowth. Both Curtis et al. 

(2018) and Pendrill et al. (2022) highlight difficulties with defining land as cleared by SA, 

including outlining the period of time land is allowed to take to regenerate. The amount of 

both CA and SA has varied over time, but as parts of the tropics become more industrialised 

and access increases, SA may decline in favour of CA Heinimann et al., 2017; Tyukavina et 

al., 2017), with potential implications for climate. We currently have poor understanding of 

how the climate impacts of forest loss vary across the tropics. Indeed, observationally little 

is known about the impact that these different drivers of deforestation have on climate.  

Satellite observations have provided high-resolution, spatially comprehensive insights into 

how land use and land use change impacts local climate (Li et al., 2015; Li et al., 2016; 

Alkama and Cescatti, 2016; Bright et al., 2017; Duveiller et al., 2018; Baker and Spracklen, 

2019). Many studies have focussed on impacts on local surface temperature. Alkama and 

Cescatti (2016) showed that daytime surface temperature increases by ~1.5 K in regions of 

tropical forest loss. Li et al. (2016) examined the impact of deforestation on temperature 



   
 

   
 

112 

trends and showed that forest loss generates a 0.28 K decade-1 warming trend across 

tropical forests. In the Amazon, Baker and Spracklen (2019) found that forest loss can 

increase mean annual mean daytime surface temperatures by 0.44 K, with increases up to 

1.5 K in the dry season. Schultz et al. (2017) found daytime surface temperature of tropical 

forests were on average 4.4 K warmer than neighbouring non-forest. 

Here we analyse satellite remote-sensed data to assess how the local climate impact of 

tropical deforestation depends on and is different for the different drivers of deforestation. 

We set out to explore the possible reasons that forest loss generates climate impacts and 

examine these across the tropics and also regionally. 

 

3.2 Data and Methods 

To assess the impact of tropical forest loss on local climate, we used satellite observed 

forest loss from the Global Forest Change (GFC) version 1.9 (Hansen et al., 2013), combined 

with remotely sensed climate and land-surface variables. GFC v1.9 provides forest canopy 

cover in 2000 and subsequent annual forest loss from 2001–2021 at 30-meter (m) 

resolution. We used Terra MODIS collection 6.1 daytime and night time land surface 

temperature (LST) (MOD11C3), black sky albedo (BSA) (MCD43A3), evapotranspiration (ET) 

(MOD16A2GF), leaf area index (LAI) (MOD15A2). We used precipitation (P) data from the 

Climate Hazards Centre (Climate Hazards Group InfraRed Precipitation with Station data, 

CHIRPS v2.0). Information on the drivers of forest loss is from Curtis et al. (2019) and is 

available at 0.1x0.1°. Drivers of forest loss were categorised as either commodity-driven 

deforestation (comm), shifting agriculture (SA), forestry (For), wildfire (WF), and 

urbanization (urb). All datasets were available over the period 2001 – 2019. Information 

about the datasets used in this study can be found in Table 3.1. 

The MODIS datasets are supplied with accompanying quality-control (QC) data layers, with 

which we masked each dataset, removing pixels that had cloud-contamination and where 

the quality was not ranked at least ‘good’. For ET we utilised the gap-filled product which 

takes a range of inputs including LAI (which has had QC applied), vegetation dynamics, 

albedo, land cover and meteorological reanalysis data, proving computed, homogenous ET 

using the Penman-Monteith equation (Monteith, 1965). We therefore didn’t apply any 
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further QC to this dataset. In this analysis we used BSA, which is the integration of the bi-

directional hemispherical reflectance. It assumes the absence of a diffuse component (i.e., 

cloud), and it is a function of the solar zenith angle. We chose to use BSA over white sky 

albedo, which is the integration of directional bi-hemispherical reflection, as it assumes the 

presence of a diffuse component. When analysed both BSA and WSA produced similar 

results. We chose to use LST rather than air temperature or near surface temperature to 

allow for direct comparisons with other similar studies (Li et al., 2015; Alkama and Cescatti, 

2016; Bright et al., 2017; Baker and Spracklen, 2019) and because there is evidence that LST 

and near-surface air temperature from weather stations are closely correlated (Good et al., 

2017). 

 

We analysed the impacts of forest loss at 0.05x0.05° resolution, approximately 5 km length 

at the equator. The datasets were regridded to consistent grids using the python package 

xESMF (Zhuang, 2022). In this analysis we used both datasets with continuous data, for 

example land surface temperature and categorical data such as land cover type. With these 

differences, we used the ‘bilinear’ scheme for the continuous datasets which creates an 

average through space, whilst we used ‘nearest s2d’ (nearest source to destination) for the 

categorical datasets enabling integer values were conserved. We also regridded using the 

python package Iris (Met Office, 2023) using the area weighted scheme and found 

consistent results. We calculated forest loss using the original 30 m data for GFC resolution 

data, then regridded it to 0.05x0.05° by taking the sum of all 30 m pixels within each larger 

pixel, thereby upscaling fine-scale data of complete forest loss. We linearly interpolated 

forest driver data using the python package SciPy (Virtanen et al., 2020). We constrained 

our analysis to the evergreen broadleaf tropical (30°S to 30°N) biome using MODIS land 

cover (MCD12Q1). To isolate impacts in the Amazon Basin, Congo Basin and maritime SEA 

we used shapefiles to delineate those specific regions, the extents of which can be seen in 

the map in Figure 3.1. 

To analyse the local climate impacts of land cover change, we used a moving window 

nearest neighbour approach, as used previously in Baker and Spracklen (2019) and Smith et 

al. (2023). This approach isolates the changes occurring locally due to forest loss, mitigating 

the changes due to differences in geography and background climate. With a pixel size of ~5 
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km length at the equator, the 3x3 grid we used has a length of ~15 km (~225 km2). To test 

the impact of different grid sizes on the results, we used a 5x5 grid (~25 km length) finding 

the results to be consistent (Supplementary Figure A.1). This approach allowed us to find 

the climate changes that have taken place over time and compare these changes in 

deforested regions with those from nearby forests. When calculating the changes over time, 

we compared 5 year means at the start (2001-2005) and end (2015-2019) to reduce the 

impact of interannual variability on the results. We carried out a sensitivity test using 3-year 

means (2001-2003 and 2017-2019) finding the results to be robust to this change 

(Supplementary Figure A.1). 

To calculate the impact to local climate due to forest loss we used two slightly different 

methodologies. First, we used a threshold approach, where we defined forest and 

deforested categories using the GFC dataset. Forest was defined as an area where ‘forest’ 

cover remained greater than 90% for the entire analysis period, whilst ‘deforested’ started 

(in year 2001) as forest with greater than 90% forest cover and transitioned to forest covers 

of less than 70% at the end period (2019). We then found the difference between the two 

categories, presenting the change to climate in terms of each climate variables units. To test 

the impact of the defined forest transition thresholds, we analysed the changes over an 

alternative forest-deforestation transition definition. Here we chose to define deforested 

pixels by those that had greater than 70% forest cover in 2001 and subsequently 

transitioned to less than 70% forest cover by 2019, whilst forest pixels maintained greater 

than 70% forest cover throughout the analysis period. We found similar results, indicating 

that our methodology has little impact on the result presented (Supplementary Figure A.2). 

We further tested the effect of methodology on our results by varying the size of the 

moving window from 3x3 to a 5x5 grid and by changing the length of the mean start and 

end periods from 5 years to 3 years, the results of which are presented in Supplementary 

Figure A.1d. We found that methodology choice didn’t produce statistically different results. 

Broadly, we found that using a 5x5 grid and 3-year mean produced a slightly greater 

increase in temperature due to forest loss than the 3x3 grid and 5-year mean. 

The second method calculates the forest loss of deforested pixels relative to forest loss in 

neighbouring forest pixels, providing the difference between the forest and deforested in 

terms of percentage point coverage. We plot the forest losses for deforested and control 
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data points as histograms in Supplementary Figure A.3, showing the majority of forest 

control pixels changed less than 10% over time and the deforested pixels experienced 

changes of up to and exceeding 50% forest loss. Here we specified that the deforested pixel 

must have experienced more than 0.1 percentage points of forest loss over time than their 

control pixels, which excludes pixels where forest loss is similar to the control. The reported 

value is the change as a function of forest loss, divided by the difference in forest loss 

between deforested and nearby forest pixels. In both methods, we tested using the 

Student’s t-test whether the changes over forest and paired deforested grid cells were 

statistically significantly different from one another. We used both methods to test the 

robustness of the climate change due to forest loss. We again present a range of sensitivity 

tests, calculating the impacts that methodology can have on our results (Supplementary 

Figure A.4), finding that analytical changes can have small impacts to our results. 

We examined the climate impacts in different climate seasons, detecting changes in the dry, 

wet and transition seasons. We calculated the driest and wettest three months for each 

pixel and each year using the CHIRPS precipitation data. From this we found the mean value 

for the land surface and climate variables in those 3 dry and wet months. The transition 

season was calculated as the mean of the remaining 6 months in the year for each pixel in 

each year. 

We related the impact of forest loss on the change in LST to the reduction in canopy cover in 

each grid cell. ∆LST was binned by the reduction in canopy cover (bin width = 2.5%, 

disregarding bins with fewer than 20 data points). We calculated linear regressions for each 

variable as function of canopy cover with 95% confidence intervals using the SciPy Stats 

python package. 
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Table 3.1. Datasets used in this study, listing the variable and product names, their native 

resolutions and their references. The MODIS datasets all utilise the latest collection 6, version 

6.1 data. Spatial resolutions are approximated at the equator. 

Dataset Native Resolution 

(spatial and temporal) 

Reference 

MOD15A2H, Leaf Area Index (LAI) 500 m x 500 m, 8-day Myneni et al., 2021 

MOD16A2, Evapotranspiration (ET) 500 m x 500 m, 8-day Running et al., 2021 

MOD11A2, Land Surface Temperature 

(LST) 
1 km x 1 km, 8-day Wan et al., 2021b 

MYD11A2, Land Surface Temperature 

(LST) 
1 km x 1 km, 8-day Wan et al., 2021a 

MCD43C3, Black Sky Albedo (BSA) 500 m x 500 m, 8-day Schaaf and Wang, 2021 

MCD12Q1, Land Cover Type 500 m x 500 m, annual 
Friedl and Sulla-Menashe, 

2022 

CHIRPS v2.0, Precipitation (P) 5 km x 5 km, monthly Funk et al., 2015 

Forest Loss, Global Forest Change (GFC) 

v1.9 
30 m x 30 m, annual  Hansen et al., 2013 

Driver of deforestation 10 km x 10 km Curtis et al., 2018 

 

To examine the relationships between changes in LST due to forest loss and changes in 

other land surface and climate variables, we fitted linear regressions using Pearson’s 

correlation coefficient, (calculated using SciPy (Virtanen et al., 2020)) to scatter plots, only 

showing the regression lines where the computed correlation coefficients were found to be 

statistically significant and different from zero at the 5% level (p<0.05). We report errors 

throughout as the standard error of the mean. 

 

3.3 Results and Discussion 

Figure 3.1 shows the extent of tropical deforestation in the period 2001 to 2019, 

constrained by the MODIS evergreen broadleaf biome. The three main tropical rainforests, 

the Amazon, the Congo Basin, and Southeast Asia (SEA), are outlined in purple. Forest loss is 

coloured by the dominant driver of deforestation as calculated by Curtis et al. (2018), with 
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the majority of deforestation in the tropics being driven by commodity agriculture (CA, 

Comm) and shifting agriculture (SA). In the Amazon, CA, which is dominant in the southern 

and eastern Amazon and SA are the most common drivers. SA is the dominant driver of 

deforestation in the Congo. Forest loss in SEA is driven by a wide range of drivers, with CA is 

prevalent in Sumatra and the exterior of Borneo. Forestry is the predominant driver in the 

interior of Borneo as well as in Laos and northern Vietnam. In Papua and Papua New 

Guinea, shifting agriculture is the dominant driver. 

 

Figure 3.1. Map showing the drivers of tropical forest loss. Drivers are categorised as 

Commodity Driven (Comm), Shifting Agriculture (SA), Forestry (Forest), Wildfire and 

Urbanisation (Urban). The area is constrained by tropical evergreen broadleaf biome using 

MODIS land cover type (Table 3.1). Purple outlines show the three main evergreen broadleaf 

tropical biomes, from left to right, the Amazon, the Congo basin and Southeast Asia. 

 

Land surface temperatures have changed over time, with changes to background climate. 

These changes are different in different tropical regions and within regions for different 

drivers of forest loss (Supplementary Figure A.5). Predominantly the main drivers of tropical 

forest loss are CA and SA, with fewer incidences of forestry, wildfire and urbanisation driving 

forest loss across the evergreen broadleaf tropics. As such we present and discuss results 

pertaining to changes due to CA and SA driven forest loss, with other drivers presented in 

the supplementary material. 

To explore how forest loss has impacted land surface temperature, we compared changes in 

LST over deforested and nearby forest regions. Tropical forest loss resulted in annual mean 

LST increases of up to 0.7 K across all regions. Both CA and SA show statistically significant 

increases in temperature and the difference between the two groups of temperature 
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changes are significant, showing that the two drivers are independent from one another. 

Across the tropical forest regions, CA results in larger increases in LST than shifting 

agriculture, most notably in the Amazon. Overall, across the tropics there are similar 

numbers of data points in each CA and SA categories, however split by region, there are 

bigger disparities. In the Congo there is almost no CA, as shown by the numbers displayed 

on each bar in Figure 3.2.  

Commodity deforestation has a less variable response than SA to forest loss (Supplementary 

Figure A.6 and A.7d). This could be because CA is likely more industrial and uniform than SA 

which tends to be more heterogenous, and which may return permanently or on a 

rotational basis to forest. Tropical forests can be cooler (Li et al., 2015; Alkama and Cescatti, 

2016; Bright et al., 2017; Duveiller et al., 2018; Lawrence et al., 2022 etc) and wetter 

(Lawrence and Vandecar, 2015; Spracklen et al., 2018; Smith et al., 2023 etc) than the 

croplands and pasture they are replaced with, however regrowth as secondary forest can 

decrease LST. This key difference could explain why in the Amazon, CA leads to double the 

warming of SA.  
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Figure 3.2. Change in annual mean land surface temperature due to forest loss for (a) 

Tropics, b) Amazon, c) Congo, d) SEA. Results are categorised by driver of deforestation (All 

drivers, Commodity Driven deforestation (Comm.) and Shifting Agriculture (SA)) using data 

from Curtis et al. (2018). The change due to forest loss is calculated over the period 2001-

2019 for deforested pixels compared to nearby forested pixels (K). Deforested pixels must 

have been >90% forest in 2001 and less than 70% by 2019, whilst forest pixels must maintain 

>90% forest cover. Error bars show the standard error of the mean and the black values on 

each bar report the number of data points in each category. 

 

The greater warming response of CA compared to the other drivers could result from 

greater amounts of forest loss in regions of CA. To understand how warming varied with the 
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amount of forest loss for the different drivers, we plotted the LST change versus forest loss 

(Figure 3.3). Across the tropics, LST increases linearly with forest loss. Areas with CA 

experienced the greatest forest loss across the tropics. For each driver, the increase in LST 

was greater with increasing forest loss. Forest loss of 20 percentage points led to warming 

of 0.45 K for CA compared to 0.1 K for SA. The Congo overall sees less forest loss than the 

Amazon and SEA, with the maximum being around 75% (Figure 3.3c), however CA and SA 

drive equivalent maximum amounts of deforestation. Figure 3.3d shows that in SEA, after 

60% forest loss there is a large increase in the variability the temperature response, with the 

shading overlapping zero. Due to few available pixels, the response of forestry, wildfire and 

urbanisation are presented only in Supplementary Figure A.8.  

We found that tropical forest loss resulted in local daytime surface warming, as found in 

previous studies (Li et al., 2015; Silvério et al., 2015; Alkama and Cescatti, 2016; Duveiller et 

al., 2018; Baker and Spracklen, 2019). We found complete canopy loss in tropical forests led 

to annual mean warming of 1.52 K, similar to the warming of 1.53 K reported by Alkama and 

Cescatti (2016) based on analysis of similar data over the period 2003 to 2012. Prevedello et 

al. (2019) used a similar moving window analysis technique, to examine the effect of 

pantropical forest change over 2000 - 2010 on climate. They reported a stronger warming, 

with a 50% reduction in canopy cover causing a warming of 1.08 ± 0.25 K compared to 0.95 

K in our analysis. Prevedello et al. (2019) use MODIS Collection 5 (C5) data and do not 

account for interannual variability when calculating climate changes, both of which, in 

addition to the different analysis period, could account for the difference in reported ∆T. 

Tropical forest loss is expected to cause a local daytime warming, due to the reduction of ET 

which decreases the latent heat flux, and reduced surface roughness which reduces 

turbulence and the transfer of heat from the surface, outweighing the cooling due to 

increased albedo (Li et al., 2016; Duveiller et al., 2018; J. Winckler et al., 2019). Schultz et al. 

(2017) analysed both daytime and night-time temperature and found that tropical forests 

were on average 4.4 K cooler than non-forest during the day but only 0.2 K cooler at night. 

The stronger daytime warming reported by Schultz et al. (2017) is likely due to the use of 

different datasets (MODIS C5 LST data), time periods (2003 - 2013), land cover 

classifications, (International Geosphere-Biosphere Programme) and analysis methods (8x8 

grid cells in a 0.5o x 0.5 o window). 
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Figure 3.3. Change in land surface temperature by forest loss for each region ((a) Tropics, b) 

Amazon, c) Congo and d) SEA) and each driver of deforestation (All drivers (All), commodity 

driven deforestation (Comm.) and shifting agriculture (SA)). Results are binned with widths 

of 2.5% forest loss, with each bin plotting the median value within the bin. To be plotted, 

each bin must have >20 data points. Additionally, no data points with >90% forest loss are 

included. The line shading shows the 95% confidence interval. 

 

Whilst calculating the LST response due to forest loss via a threshold approach allows us to 

directly compare with similar observational studies that utilise a similar threshold approach, 

the methodology limits the dataset to regions which have experienced the largest amounts 

of forest loss. This could provide a skewed view of climate impacts, by only selecting data 

points from certain tropical regions. The linear response of LST to forest loss (Figure 3.3) 
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allows us to calculate the change in LST per percentage point of forest loss (Figure 3.4). 

Using this method allows us to consider a greater number and a more homogenous spatial 

spread of data points as we compare every pixel that has experienced loss and is adjacent to 

pixels that have experienced less (number of tropical data points is 182,924, compared to 

number in the threshold analysis, 5041). Whilst in Figure 3.2, changes in LST due to forest 

loss could be due either to different amounts of forest loss in each driver category or 

different response of LST to forest loss, Figure 3.4 shows that CA leads to greater warming 

per percentage point of forest loss. This shows that CA warming isn’t just due to greater 

forest loss. Across the tropics (Figure 3.4a), we find CA drives a warming of 0.02 K per 

percentage point of forest loss more than double the warming of forest loss arising from 

shifting agriculture (0.009 K per percentage point of forest loss). In the Amazon (Figure 

3.4b), where both CA and SA are frequent drivers, commodity agriculture leads to a 

warming of 0.021 K/% compared to 0.0075 K/% for SA.  

Likely we see lower increases in LST per percentage point of forest loss for areas of forest 

cleared by SA as these areas experience periodic land abandonment (Molinario et al., 2015; 

Curtis et al., 2018), leading to forest regrowth (Turubanova et al., 2018; McNicol et al., 

2018). In contrast, forest cleared for commodity production is more likely to remain as 

agriculture.  

Another possible explanation for the lower warming caused by SA is that areas of SA were 

previously partially degraded. This would mean that changes in LST for SA would be lower 

than for CA which fully transition from primary forest to deforested. To investigate this, we 

calculated the fraction of forest loss occurring within intact forest landscapes (Potapov et al. 

(2017) for each driver of deforestation (Supplementary Figure A.9). For CA and SA (whose 

classifications have the majority of data points), deforested pixels were equally more likely 

to been not intact (82 and 79% respectively), suggesting that pixels of SA were not 

previously deforested.  

This analysis considers the impacts of forest loss on local climate, however recent work has 

shown that the non-local impacts can significantly change the observed impact. If forest loss 

also impacts the neighbouring forest areas as Cohn et al. (2019) have shown, which act as 

controls in this study, we may underestimate the local impacts of forest loss. Similarly, 

whilst the regional background climate has been controlled for via the nearest-neighbour 
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analysis, there could still be small impacts on the results arising from differences in 

proximity to moisture sources, latitude and geography. These differences could in particular 

propagate when considering the different temperature responses due to forest loss from CA 

and SA, which have a tendency to occur in discrete locations (Figure 1), especially in the 

Amazon.   

 

Figure 3.4. Change in annual mean temperature due to forest loss per percentage point of 

forest loss categorised by driver of deforestation (All, Commodity Driven deforestation 

(Comm.) and Shifting Agriculture (SA)) using data from Curtis et al., (2018) for (a) Tropics, b) 

Amazon, c) Congo, d) SEA. The change in temperature is calculated change over time (2001-

2019) for deforested pixels, compared to nearby forested pixels (K/ percentage point of 

forest loss (%)). Error bars show the standard error of the mean and the black values on each 

bar report the number of data points in each category. 
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To understand how these changes may vary seasonally, we plotted the changes in LST in the 

driest and wettest three months of each year as well as for the transition season (Figure 

3.5). Using the per percentage point of forest loss method, we found absolute increases in 

LST in all seasons, particularly in the dry season where there is an increase of 0.014 K/% in 

the tropics (Figure 3.5a). Tropics wide dry season temperatures increase more than wet 

season for both CA and SA and the transition season is approximately equal to the dry 

season response. The wet season also tends to have a larger associated error, produced by 

greater variability in the change in LST in that season. Regionally, for all drivers of 

deforestation, the largest increases in LST in the dry season are in the Amazon (0.0165 K/%), 

followed by SEA (0.0135 K/%) and the Congo (0.0085 K/%). In the wet season, there is 

increased cloud coverage, which results in fewer data points being retrieved and there being 

larger uncertainty in the results shown, than for the dry and transition seasons. We tested 

to see if the methodology impacted these results, finding similar pattern (Supplementary 

Figure A.10), however due to less data being available, particularly in the wet season, some 

categories were unable to be plotted. 

To explore whether we can observationally explain these changes in LST due to forest loss, 

we calculated for each driver and region, the change in BSA, ET, LAI, night time LST and day 

night mean LST due to forest loss (Figure 3.6, additionally we relate these quantities 

graphically in Supplementary Figure A.11). We found forest loss consistently increased 

albedo across the tropics, with median increases of between 0.000075 %-1 to 0.000125%-1. 

In-situ observations indicate conversion of tropical forests (albedo of 0.11 to 0.13) to 

pasture (albedo of 0.16 to 0.19) (Gash and Shuttleworth, 1991; Bastable et al., 1993; Fisch et 

al., 1994) would lead to albedo increase of around 0.05, substantially larger than in our 

analysis. We found surface albedo increased by only 0.01 even for grid cells with almost 

complete removal of canopy cover (Figure 3.6a). Loarie et al. (2011) also used MODIS data, 

finding small increases in albedo following deforestation in the southern Amazon with mean 

increases in albedo of 0.028. The small observed increase in albedo after forest loss in 

satellite data at this resolution (0.05°) is likely due to incomplete canopy cover loss at this 

scale or a rapid regrowth of vegetation after forest loss, further supported by the small 

reductions in LAI. Our analysis reports changes in LAI due to forest loss of -0.003 to 0.004. 
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Figure 3.5. Seasonal changes in mean land surface temperature per percentage point of 

forest loss in the dry (orange), wet (blue) and transition (purple) seasons for the (a) Tropics, 

b) Amazon, c) Congo and d) SEA. Results are categorised by driver of deforestation (All 

drivers, Commodity Driven deforestation (Comm.) and Shifting Agriculture (SA)) using data 

from Curtis et al. (2018).The change in temperature is calculated change over time (2001-

2019) for deforested pixels, compared to nearby forested pixels. Error bars show the 

standard error of the mean. 

 

The majority of regions and drivers show decreases in LAI with forest loss, however in SEA, 

SA shows an increase. In SEA, the LST response to forest loss is lower than in the Amazon. In 

SEA, natural forests are usually cleared and replaced with palm oil, rubber or plantation 

forestry (Austin et al., 2019), which tend to have higher rates of ET and LAI than pasture and 

grasses, which leads to lower increase in LST through greater evaporative cooling. The 
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conversion of forest to plantation could explain the increase in LAI in SEA. In Indonesia, 

plantations account for more than 50% of forest loss (Seymour and Harris, 2019), with oil 

palm plantations responsible for two fifths of this expansion (Austin et al., 2019). Palm oil 

tends to be hotter, drier and has 15-20% higher rates of ET than natural forests in SEA (Fan 

et al., 2019; Meijaard et al., 2020). This suggests that in SEA, the dominant driver of ∆T is the 

decrease in surface roughness associated with lower-stature, more homogenous vegetation. 

In the Amazon, Figure 3.6 shows forest loss reduces LAI, increases albedo and increases in 

ET, similarly reported previously (Silvério et al., 2015). They found forest loss induced 

warming of ~0.3 K, compared to 0.44 K found by Baker and Spracklen (2019) and 0.7 K in 

this study. Chen et al., (2020) found inverse relationships between LAI and land surface T at 

the global scale which could primarily be attributed to changes in roughness and thus 

aerodynamic resistance. McAlpine et al. (2018) used MODIS satellite data to show 1.7 K of 

warming associated with lowland deforestation in central Kalimantan. Using ground-based 

measurements, Hardwick et al. (2015) found the expansion and fragmentation of forest by 

oil palm and other cash crops in Borneo has driven T increases of 2.8-6.5 K compared to 

neighbouring forest. Whilst this range is substantially greater than our mean value, we 

found forest loss causes ∆T in SEA of up to 0.6 K (Fig. 3.2). In the Congo, we found small 

changes in LAI, ET and albedo consistent with smaller reductions in canopy cover and 

substantial vegetation regrowth associated with shifting agriculture (Rudel, 2013; Molinario 

et al., 2015). Zeppetello et al. (2020) analysed MODIS land surface T and found warming of 

0.5 K associated with small scale (0-10 km2) forest loss in the Congo. This value exceeds our 

estimate; however, they used different degradation definitions and did not employ a paired 

approach in their analysis, which could explain the greater T increases they observed.   
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Figure 3.6. Change in annual mean (a) BSA, b) ET c) LAI, d) LST day, e) LSTnight, f) LSTdaynight due 

to forest loss per percentage point of forest loss categorised by driver of deforestation (All, 

Commodity Driven deforestation (Comm.) and Shifting Agriculture (SA)) using data from 

Curtis et al., (2018) for (blue) Tropics, (orange) Amazon, (green) Congo, (red) SEA. The 

change in temperature is calculated change over time (2001-2019) for deforested pixels, 

compared to nearby forested pixels (K/ percentage point of forest loss (%)). Error bars show 

the standard error of the mean. 
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Despite a range of policy and corporate commitments, the rate of forest loss driven by CA 

has not declined in recent years (Curtis et al., 2018). The increasing dominance of large-scale 

forest loss in many parts of the tropics (Austin et al., 2017), means that the local warming 

from forest loss has likely increased in recent years. In Brazil, policy initiatives targeting 

large-scale forest loss led to a shift of CA away from Brazil to elsewhere in the tropics (Curtis 

et al., 2018) and did not prevent an expansion of smaller-scale loss across the Amazon (Rosa 

et al., 2012; Kalamandeen et al., 2018; Escobar, 2019; Montibeller et al., 2020), which has 

expanded the spatial extent of deforestation-induced warming across the region. Until 

recently, CA driven deforestation has been relatively limited in the Congo. Our analysis 

indicates that if the scale and extent of CA driven deforestation in the Congo continues to 

increase (Tegegne et al., 2016), then the warming due to forest loss across the Congo could 

double. 

Regional and global climate model simulations largely confirm a warming due to tropical 

forest loss (Boysen et al., 2020). Some models predict tropical deforestation leads to local 

cooling (Bell et al., 2015; Robertson, 2019; Boysen et al., 2020), in contrast to the observed 

response. In these model simulations, the cooling due to increased albedo dominates the 

warming due to reduced ET and surface roughness. We found daytime warming due to 

forest loss was positively related to albedo change (Fig. 3.6a). This confirms that the local 

cooling induced by increased albedo is outweighed by warming due to reduced ET and 

surface roughness associated with canopy cover loss. This remote-sensed analysis can be 

used to evaluate the climate models and ensure they correctly capture this important local 

climate response. 

The local warming induced by tropical forest loss will have major impacts on human 

populations. Extensive social surveys in Indonesia found people appreciate the local cooling 

provided by tropical forests (Wolff et al., 2018). Masuda et al. (2020) found that warming 

due to forest loss reduced the cognitive performance of rural workers in Indonesia. In the 

future as populations expand, increased demand for food, fibre and fuel may accelerate 

forest loss into previously intact tropical forests (Potapov et al., 2017). Continuing rapid 

rates of tropical forest loss will result in additional warming that will pose major challenges 

to hundreds of millions of people, particularly as the threat of heat illness rises under global 

climate change. The carbon storage and resulting global climate benefits of tropical forests 
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are now well recognised and are starting to be valued through international policy 

mechanisms such as REDD+. Our results highlight the important local cooling services 

provided by tropical forests, which are much less well recognised (McKinnon et al., 2016; 

Cheng et al., 2019). Tropical forests also cause cooling (Cohn et al., 2019) and rainfall 

enhancement (Spracklen et al., 2012) at regional scales. A wider appreciation of these local 

and regional climate impacts and the benefits for human well-being could provide a 

valuable argument for local policy makers to support reduced deforestation and 

conservation of remaining tropical forests.      

 

3.4 Conclusions 

This study examined the local climate impacts of tropical forest loss between 2001 and 2019 

using remotely sensed data. We find tropical forest loss causes local land surface daytime 

warming across all three tropical forest regions. Forest loss caused mean daytime warming 

of 0.6 K in the Amazon, 0.47 K in South-East Asia and 0.18 K in the Congo. In all three 

regions, the local warming due to tropical forest loss exceeds the regional warming due to 

climate change over the 2001 to 2019 period. We show that the driver of deforestation has 

a large impact on the magnitude of the warming due to forest loss, with commodity driven 

deforestation producing double the warming of shifting agriculture. In the Congo, the 

smaller reduction in canopy cover, smaller deforestation extent and possible vegetation 

regrowth associated with shifting agriculture, explains the smaller warming induced by 

forest loss. Our analysis suggests that a transition to a commodity-driven forest loss regime 

in the Congo, similar to that of the Amazon, could double the local warming response. The 

projected expansion of commodity agriculture will have major impacts on livelihoods across 

the tropics. Climate and land use policies need to better recognise the local climate 

adaptation benefits of reducing tropical deforestation, particularly deforestation caused by 

commodity agriculture. 
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Abstract 

Tropical forests play a critical role in the hydrological cycle and can influence local and 

regional precipitation (Lawrence and Vandecar, 2015). Prior work has assessed the impacts 

of tropical deforestation on precipitation, but these efforts have been largely limited to case 

studies (Spracklen et al., 2018). A wider analysis of interactions between deforestation and 

precipitation – and especially how any such interactions might vary across spatial scale – is 

lacking. Here we show reduced precipitation over deforested regions across the tropics. Our 

results arise from a pan-tropical assessment of the impacts of 2003-2017 forest loss on 

precipitation using satellite, station-based and reanalysis datasets. The effect of 

deforestation on precipitation increased at larger scales, with satellite datasets showing that 

forest loss caused robust reductions in precipitation at scales greater than 50 km. The 

greatest declines in precipitation occurred at 200 km, the largest scale we explored, where 1 

percentage point of forest loss reduced precipitation by 0.25±0.1 mm month-1. Reanalysis 

and station-based products disagree on the direction of precipitation responses to forest 

loss, which we attribute to sparse in-situ tropical measurements. We estimate that future 

deforestation in the Congo will reduce local precipitation by 8-10% in 2100. Our findings 

https://doi.org/10.1038/s41586-022-05690-1
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provide a compelling argument for tropical forest conservation to support regional climate 

resilience. 

 

4.1 Main 

Tropical forests play an important role in moderating local, regional and global climate 

through their impact on energy, water and carbon cycles (Bonan, 2008). Crucially, tropical 

forests control local to regional rainfall patterns (Lawrence and Vandecar, 2015; Spracklen et 

al., 2018). Evapotranspiration from tropical forests is a strong driver of regional precipitation 

(Spracklen et al., 2012; Staal et al., 2018) contributing up to 41% of basin-mean rainfall over 

the Amazon and up to 50% over the Congo (Baker and Spracklen, 2022). Evergreen tropical 

forests are dependent on high annual rainfall for their survival and productivity (Guan et al., 

2015) and forest-rainfall feedbacks have been highlighted as an important determinant of 

tropical forest stability (Spracklen et al., 2012; Staal et al., 2018; Staal, Fetzer, et al., 2020), 

amid concerns that the exacerbating impacts of droughts and deforestation could threaten 

their viability (Zemp et al., 2017). 

Rapid loss of forests is occurring across the tropics (Hansen et al., 2013). Tropical 

deforestation warms the climate at local through global scales by changing the surface energy 

balance and through emissions of carbon dioxide (Bonan, 2008). The impact of tropical 

deforestation on precipitation is less certain with a range of processes operating at different 

scales. Small-scale deforestation over the southern Amazon has been shown to increase 

precipitation frequency (Chagnon and Bras, 2005; Khanna et al., 2017) due to thermally 

(Garcia-Carreras and Parker, 2011) and dynamically (Khanna et al., 2017) induced circulations. 

At larger scales, deforestation reduces precipitation recycling leading to a reduction in 

precipitation (Lawrence and Vandecar, 2015; Leite-Filho et al., 2021). Over Indonesia, 

deforestation has been linked to declining precipitation (McAlpine et al., 2018), and 

exacerbation of El Niño impacts (Chapman et al., 2020). Global and regional climate models 

predict annual precipitation declines of 8.1 ± 1.4% for large-scale Amazonian deforestation 

by 2050 (Spracklen and Garcia-Carreras, 2015), but an observational study of the impacts of 

tropical deforestation on precipitation across spatial scales is lacking. 
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Here we present the first pan-tropical assessment of the impact of forest loss on precipitation 

based on measurements. We use a satellite dataset of forest cover change over the period 

2003 – 2017 to identify areas of forest loss, with a focus on evergreen broadleaf forests of the 

Amazon, Congo and Southeast Asia (Fig. 4.1). To provide a robust assessment of the impacts 

of deforestation on precipitation, we analysed 18 different precipitation datasets, including 

satellite (n=10), station-based (n=4) and reanalysis (n=4) products (Extended Data Table B.1). 

We compared the precipitation change over pixels experiencing forest loss with neighbouring 

pixels that had experienced less forest loss (see Methods). Comparing against neighbouring 

pixels that will have experienced similar climate change focuses our analysis on the changes 

due to forest loss. To explore the impact of forest loss across scales, we analysed the impacts 

of forest loss on coincident precipitation at a series of spatial resolutions ranging from roughly 

5 km to 200 km (0.05°, 0.1°, 0.25°, 0.5°, 1.0° and 2.0°). 

 

Figure 4.1. Tropical evergreen broadleaf forest cover loss from 2003 to 2017. a) 0.05°, b) 

0.1°, c) 0.25°, d) 0.5°, e) 1.0° and f) 2.0° resolution. The Amazon Basin, Congo Basin and 

Southeast Asia regions used in this study are outlined in purple. Map of the different regions 

made with Cartopy (Met Office, 2022) and Natural Earth. Forest loss data from (Hansen et 

al., 2013).   
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4.1.1 Precipitation response to forest loss 

Observed precipitation responses to tropical forest loss across multiple spatial scales and 

precipitation products are presented in Figure 4.2. Satellite-based precipitation datasets 

suggest that tropical forest loss causes statistically significant (p<0.05) declines in median 

annual-mean precipitation at all scales analysed. At larger scales (>0.5°), reductions exceed 

0.03 mm month-1 for each percentage point loss of forest cover (Fig. 4.2d–f). The largest 

changes are observed at the 2.0° scale (approximately 220 km at the Equator) (Fig. 4.2f), 

where each percentage point reduction in forest cover causes 0.25 ± 0.1 mm month-1 

reduction in annual precipitation. 

 

Figure 4.2. Reductions in precipitation over regions of tropical forest loss. Bars indicate the 

median absolute change in annual precipitation (mm month-1) per percentage point of forest 

loss over 2003 to 2017 in each region (Tropics (a-f), Amazon (g-l), Congo (m-r), Southeast 

Asia (SEA) (s-x)) for each precipitation dataset category (satellite, station, and reanalysis). 

Results are shown for forest loss scales of 0.05° (a, g, m, s), 0.1° (b, h, n ,t), 0.25° (c, i, o, u), 

** ** ** * ** ** n.s. n.s.n.s.n.s.

* * * * * * * * * * * n.s.n.s. n.s.*

* *
*

* * *** ** ** n.s. n.s.n.s.

* n.s.* * ** * ** ** ** n.s. n.s.
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0.5° (d, j, p ,v), 1.0° (e, k, q, w), 2.0° (f, l , r, x). Changes in mean precipitation (calculated as a 

multi-annual mean over 2003-2007 compared to 2013-2017) over deforested regions that 

are significantly (p<0.05) different from control regions are indicated by a ‘*’, bold ‘*’ show 

changes that are significant at p<0.01, and non-significant results are denoted by ‘n.s.’. Error 

bars show ± 1 standard error from the mean. Datasets used in this analysis detailed in 

Extended Data Table B.1. 

 

Analysis of precipitation change as a function of forest loss confirms larger reductions in 

precipitation for larger reductions in forest cover (Extended Data Fig. B.1), although with 

considerable variability, as seen in the modelled response (Jiang et al., 2021). At 2 degrees 

this analysis shows precipitation decreases with forest cover loss up to around 5%, 

thereafter there is an abatement in drying up to our maximum observed forest loss of 

around 35% (Extended Data Fig. B.1), highlighting the non-linearity of precipitation change 

due to forest loss. Linked to this, in Figure 4.2, the area represented by each percentage 

point change in forest loss is different at each resolution interval, with 1 percentage point 

equating to ~25 km2 (approx. at equator) at 0.5 degrees or ~400 km2 at 2 degrees. Scaling 

the precipitation change by area, we find that at 2 degrees, there is a 0.00063 mm month-1 

km2 drying, whereas at 0.5 degrees, there is a drying of 0.0012 mm month-1 km2, or around 

twice the drying per unit area. Further to this, the area of a 2 degree cell (40,000 km2) is 16 

times greater than the area of a 0.5 degree cell (2500 km2), meaning in absolute terms, 

there is 16 times more water being evaluated (40 Mm3 vs 2.5 Mm3). Hence, despite showing 

2 degree cells have half the drying per unit area of 0.5 degree cells, in absolute terms, the 

reduction in precipitation is therefore 8 times greater in the 2 degree case. 

Observed reductions in precipitation are consistent across satellite datasets, with all 10 

satellite precipitation products agreeing on the sign of the rainfall response at 2° over the 

tropics (Extended Data Fig. B.2).  At the 2° scale, significant (p<0.05) reductions in annual-

mean precipitation with forest loss were observed across all tropical regions (Fig. 4.2). 

Reductions in precipitation at 2° based on satellite datasets ranged from 0.48 ± 0.36 mm 

month-1 in SEA to 0.23 ± 0.12 mm month-1 in the Amazon, and 0.21 ± 0.19 mm month-1 in 

the Congo for each percentage point loss in forest cover, with at least 8 out of 10 satellite 

datasets agreeing on the sign of the response within each region (Extended Data Fig. B.2). In 
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SEA, it has been suggested that proximity to the ocean and the replacement of tropical 

forest with plantations as opposed to pasture or cropland may cause reduced sensitivity of 

precipitation to deforestation (Lawrence and Vandecar, 2015). Our analysis suggests that 

forest loss in SEA causes reductions in precipitation consistent with or greater than 

reductions in the Amazon and Congo. 

Station-based datasets and reanalysis products exhibit contrasting annual-mean precipitation 

responses to deforestation at 2.0° (Fig. 4.2). Across the tropics, station-based and reanalysis 

datasets showed no statistically significant changes in annual-mean precipitation due to 

forest loss (Fig. 2f) and there was little agreement with satellite datasets at the regional scale 

(Fig. 4.2l,r,x), with some non-satellite precipitation products showing small increases in 

annual-mean precipitation due to forest loss. Sparse in-situ measurements across the tropics, 

particularly over regions of forest loss, mean that station-based datasets provide a weak 

constraint on precipitation changes. A comparison of station-based precipitation datasets 

revealed higher levels of uncertainty in the tropics, including the Amazon (Harris et al., 2020). 

In regions of sparse data such as tropical forests (Fassoni-Andrade et al., 2021), interpolation 

methods may mask precipitation changes driven by forest loss. Reanalysis products, which 

are numerical models constrained by empirical data, are also expected to be less reliable in 

regions where in-situ data are limited (Haiden et al., 2019). Our results suggest that 

precipitation data based on satellite remote-sensing measurements may have an advantage 

over tropical forest regions where in-situ measurements are sparse or unavailable. For these 

reasons, we focus our analysis on satellite-based datasets and identify where agreement 

between datasets exists. 

Our results are robust (see Extended Data Fig. B.3) to a range of methodological assumptions 

including the length of analysis period, the choice of start and end period and the spatial 

extent of control pixels (See Methods). Our analysis period includes the 2015 - 2016 El Niño 

which resulted in negative precipitation anomalies over many tropical land regions 

(Supplementary Fig. B.1). We found the precipitation response to forest loss was robustly 

negative during both El Niño and non-El Niño years (Extended Data Fig. B.3). Over the Amazon 

and SEA, we see a stronger reduction in precipitation over regions of forest loss during El Niño 

years. The relative impact of El Niño on precipitation is smaller in the Congo (Esquivel-

Muelbert et al., 2019) and correspondingly we do not see a stronger reduction here. A 
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stronger precipitation response to forest loss in regions and periods impacted by El Niño is 

likely due to higher transpiration rates observed in tropical forests during El Niño years (Brum 

et al., 2018) and because rainfall is more sensitive to reductions in moisture recycling during 

drought years (Bagley et al., 2014; Staal et al., 2018). Climate change is expected to lead to 

increased droughts over many tropical regions (Wunderling et al., 2022), which may be 

further exacerbated by ongoing deforestation. 

 

4.1.2 Seasonal precipitation reductions 

Changes in precipitation due to forest loss during the dry, wet and transition seasons are 

nearly consistently negative (Fig. 4.3).  For the tropics, absolute changes in precipitation with 

forest loss are greatest in the wet season (Fig. 4.3a, up to -0.6 mm month-1 per percentage 

point forest loss) whereas relative changes of precipitation with forest loss are similar (-0.2 

%/%) across dry, wet and transition seasons (Supplementary Fig. B.2).  
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Figure 4.3. Changes in seasonal precipitation due to forest loss. a) Tropics, b) Amazon, c) 

Congo, and d) Southeast Asia (SEA). Bars indicate the median change in precipitation per 

percentage point forest cover loss (mm month-1 %-1) for satellite datasets during 2003 to 

2017. Error bars indicate ± 1 standard error from the mean. Changes in mean precipitation 

over deforested regions significantly (p<0.05) different from controls are indicated by a ‘*’, 

with ‘*’ showing changes significant at p<0.01, whereas non-significant results are denoted 

by ‘n.s.’. Results are shown for the wettest 3 months (wet), the driest 3 months (dry) and the 

transition months (remaining 6 months). Datasets used in this analysis detailed in Extended 

Data Table B.1. 

* * * n.s. * * * * * * * * * * * * * * * * * *
n.s.

*

* * * * * * * * * * * * * * * * * * * * * * * n.s.

* * * * * * * * * * * * * * * * * * * **n.s.n.s. *

*n.s. * * * * * * * * * * * * * * *
*
*n.s. n.s. n.s. n.s.n.s.
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In the Amazon, deforestation causes the largest reductions in precipitation during the 

transition season (Fig. 3b) as has been found previously (Fu and Li, 2004; Leite-Filho et al., 

2019; Jiang et al., 2021). 

Previous case studies have indicated that dry season precipitation can increase over 

deforestation in the Amazon (Negri et al., 2004; Chagnon et al., 2004; Chagnon and Bras, 

2005). We observed a non-significant increase in dry season precipitation due to forest loss 

in the Amazon at 2° as well as increases in the Congo at 1° and 2° (Fig. 4.3). In SEA, forest loss 

causes reductions in dry season precipitation across all scales (Fig. 4.3d). The mechanism 

through which forest loss impacts precipitation is likely to change with both season and 

spatial scale. At the smallest scales (5 km) thermally driven impacts are likely to dominate, 

shifting to dynamically driven impacts through reductions to surface roughness, then to 

reductions in moisture fluxes and precipitation recycling at the largest scales (Khanna et al., 

2017; Chambers and Artaxo, 2017). Our observations of greater reductions in precipitation 

due to deforestation at larger spatial scales is consistent with a reduction in moisture recycling 

emerging as the dominant mechanism (Lawrence and Vandecar, 2015). 

 

4.1.3 Comparison with climate models 

A meta-analysis of climate model studies (predominantly global models with > 2° resolution) 

found that forest loss in the Amazon resulted in a mean reduction in annual mean 

precipitation of 0.16±0.13%/% (Spracklen and Garcia-Carreras, 2015), overlapping with our 

value of 0.25%/% (Supplementary Fig. 4.2). Fewer simulations have been conducted for the 

Congo with models predicting a reduction in precipitation of 0.16±0.17%/% (Spracklen et al., 

2018), similar to our reduction of 0.15%/% (Supplementary Fig. 4.2).  The large range of model 

estimates highlights the substantial uncertainty in model predictions. Our observationally-

derived analysis provides support for models that predict reductions in precipitation under 

regional deforestation at global climate model scales.  

Our observational analysis documents for the first time the impacts of deforestation on 

precipitation across the tropics. Applying linear scaling to the reductions in precipitation 

observed in our analysis would suggest complete deforestation could result in reductions in 

annual precipitation of 10-20%. Previous estimates of the impact of complete deforestation 
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on precipitation range from a 16% (Spracklen and Garcia-Carreras, 2015) to 55-70% (Baudena 

et al., 2021) reduction in the Amazon and an 18% (Spracklen et al., 2018) to 50% reduction 

(Duku and Hein, 2021) in the Congo.  

 

4.1.4 Impacts of future deforestation 

To further explore how future deforestation might modify precipitation we combined our 

observationally-derived estimates of precipitation responses to forest cover loss with future 

projections of land cover change from a high-deforestation scenario (see Methods). We 

estimate forest loss from 2015 to 2100 (Fig. 4.4a) could lead to reductions of annual mean 

precipitation of up to 16.5 ± 6.2 mm month-1 in the Congo (Fig. 4.4b), equivalent to 

precipitation declines of 8-10%. Forest loss is projected to be greatest in the western and 

southern Congo (Fig. 4.4c), which will also experience the strongest reductions in 

precipitation (Fig. 4.4d).  

The sensitivity of precipitation to the extent of forest loss is an uncertainty in our analysis, a 

result of the relatively short observational record, compounded by large spatial and temporal 

variability in precipitation. The response of precipitation to forest loss greater than 30%, a 

threshold beyond which large reductions in precipitation have been postulated (Lawrence 

and Vandecar, 2015), is one such uncertainty. Restricting our analysis to the 0-30% forest loss 

that are well sampled in our observational dataset (Supplementary Fig. B.3), through capping 

the impacts of greater forest loss at that of 30%, results in projected annual mean 

precipitation reductions of 6.5 ± 2.6 mm month-1 in the Congo and 6.2 ± 2.5 mm month-1 in 

SEA (Supplementary Fig. B.4). However, restricting our analysis in this way is likely to 

underestimate the precipitation impacts over regions projected to experience the most 

extensive deforestation, including the Congo where mean forest cover is projected to decline 

by 40 percentage points between 2015 and 2100 (Fig. 4.4a).  
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Figure 4.4. Impact of projected future forest loss on annual mean precipitation. a) Mean 

forest cover loss over 2015 – 2100 under SSP3-4.5 for the tropics, Amazon, Congo and 

Southeast Asia (SEA); b) impact of projected forest cover loss on precipitation (P) (± 1 

standard error from the mean); c) spatial pattern of forest cover loss and; d) predicted P 

change (∆P) in 2100 due to forest cover loss. Results are shown for 2.0° resolution. Maps of 

the different regions generated using Cartopy (Met Office, 2022) and Natural Earth. 

 

Previous studies have identified both linear (Akkermans et al., 2014; Zemp et al., 2017) and 

non-linear (Lawrence and Vandecar, 2015; Baudena et al., 2021) responses of precipitation to 

forest loss. Such non-linear interactions and feedbacks have the potential to further amplify 

or moderate the responses predicted here (Staal, Flores, et al., 2020; Leite-Filho et al., 2021). 

Our analysis shows large reductions in precipitation for relatively small amounts of forest loss 

and evidence for reduced sensitivity of precipitation to additional amounts of forest loss 

(Extended Data Fig. B.1). Assuming a non-linear relationship between forest loss and 
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precipitation (see Methods) reduces our projected reductions in precipitation by around 

factor 2 (Supp. Fig. B.5). Our observationally-based approach will miss tipping points in the 

climate system that might be reached as deforestation extent progresses further  (Lawrence 

and Vandecar, 2015). Such tipping points have been postulated for the Amazon under future 

global change (Wunderling et al., 2022; Xu et al., 2022). Thus, the substantial declines in 

precipitation projected in our analysis should be viewed as a conservative estimate of the 

potential precipitation response to future deforestation. Nevertheless, our analysis suggests 

deforestation can drive local and regional precipitation changes that may match or exceed 

those predicted due to climate change over the same period (Kooperman et al., 2018; Z. Chen 

et al., 2020). 

 

4.1.5 Implications of precipitation reductions 

Reductions in precipitation induced by forest loss have important implications for society and 

the sustainability of remaining tropical forest. Deforestation-induced reductions in 

precipitation impact agriculture (Lawrence and Vandecar, 2015; Leite-Filho et al., 2021) and 

hydropower generation (Stickler et al., 2013). On average, crop yields decline by 0.5% for each 

percentage point reduction in precipitation (Challinor et al., 2014). Our results suggest that 

forest-loss induced changes to annual precipitation (Supp. Fig. B.2) could cause crop yields to 

decline by 1.25% for each 10-percentage point loss of forest cover, potentially exacerbating 

the impacts of climate change and future drought events. The maintenance of regional rainfall 

patterns due to forests in the Amazon has been valued at up to US$9 ha-1 yr-1 and US$1.84 

ha-1 yr-1 though sustaining agricultural yields and hydropower generation, respectively (Strand 

et al., 2018). Global cropland area increased by 9% in the past two decades, with even higher 

increases in South America and tropical Africa (Potapov et al., 2022) largely at the expense of 

natural ecosystems. Further agricultural expansion in tropical forest regions may lead to 

overall reductions in production if declines in yield due to deforestation-induced reductions 

in rainfall outweigh increased production from expanded agricultural area (Leite-Filho et al., 

2021). 

 



   
 

   
 

150 

Furthermore, reductions in rainfall over remaining areas of tropical forest are expected to 

lead to additional forest loss (Zemp et al., 2017) as well as impacting species composition 

(Esquivel-Muelbert et al., 2019), carbon sequestration (Li et al., 2022) and fire frequency 

(Aragão et al., 2008). Reductions in dry season precipitation pose a particular threat to forest 

viability by exacerbating seasonal droughts and potentially delaying the onset of the wet 

season and extending the length of the dry season. Increases in dry-season length over recent 

decades have previously been reported for the Amazon (Marengo et al., 2018), and the Congo 

(Jiang et al., 2019) possibly linked to land cover changes (Leite-Filho et al., 2019). 

Deforestation may also shift precipitation patterns, increasing dry season rainfall immediately 

downwind of forest loss and decreasing rainfall in upwind areas (Khanna et al., 2017). Our 

approach is restricted to observing deforestation impacts up to scales of 200 km (see 

Methods). At larger scales, insufficient pixels experienced forest loss during the relatively 

short period of satellite observations for a robust analysis. Deforestation is also likely to alter 

precipitation at these larger scales through reducing moisture recycling leading to reductions 

in rainfall downwind of forest loss (Spracklen et al., 2012; Zemp et al., 2017; Staal et al., 2018; 

Xu et al., 2022). The length scale of moisture recycling has been estimated at 500 – 2,000 km 

in the tropics (Van Der Ent and Savenije, 2011) with a median value of 600 km in the Amazon 

(Staal et al., 2018). In regions downwind of extensive forests, such as the southwestern 

Amazon, up to 70% of precipitation could be sourced from upwind evapotranspiration (van 

der Ent et al., 2010; Sorí et al., 2017). Tropical forest loss could therefore have severe 

implications for precipitation in these regions that are 100s to 1,000s of km downwind of the 

forest loss (Staal et al., 2018). Through missing the impacts at these larger scales, our analysis 

is likely to underestimate the full impacts of deforestation on rainfall. 

Our results highlight the importance of remaining tropical forests for sustaining regional 

precipitation. Despite efforts to reduce deforestation, rates of tropical forest loss have 

accelerated over the last two decades (Feng et al., 2022). Renewed efforts are needed to 

ensure recent commitments to reduce deforestation, including the New York Declaration on 

Forests and The Glasgow Leaders’ Declaration on Forests and Land Use made at COP26, are 

successful. Global efforts to restore large areas of degraded and deforested land could 

enhance precipitation (Tuinenburg et al., 2022), reversing some of the reductions in 

precipitation due to forest loss observed here. 
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4.2 Methods 

Datasets  

We used 18 precipitation datasets, listed in Extended Data Table B.1. All datasets were 

downloaded at the highest available spatial resolution, which for some datasets was 0.04°, 

or approximately 4 km at the Equator. Data were obtained as monthly means or converted 

to monthly mean using the python package Xarray (Hoyer and Hamman, 2017). We 

categorised precipitation datasets as ‘Satellite’ (n=10), ‘Station’ (n=4) and ‘Reanalysis’ (n=4). 

Satellite datasets are those based primarily on data from satellite sensors and include 

datasets which have both satellite and station-based data (i.e., merged datasets). Station 

datasets only include ground-based information from weather stations and rain gauges. 

Reanalysis products are models constrained by surface and satellite data. Precipitation 

datasets have been compared previously over the Amazon (Fassoni-Andrade et al., 2021) 

highlighting the limited station data over tropical forest regions. Time series of precipitation 

(Supp. Fig. B.1) reveal variability across the different datasets highlighting the need to 

analyse impacts of deforestation across multiple datasets.  

To analyse the changes in forest canopy cover, we used data from the Global Forest Change 

(GFC) version 1.9 (Hansen et al., 2013). GFC v1.9 provides forest canopy cover in the year 

2000 and subsequent annual forest loss from 2001 – 2020 at 30 m resolution. We analysed 

forest cover and precipitation changes over the period 2003 to 2017, which was the period 

common to all datasets. 

 

Analysis across multiple spatial scales 

We analysed the impacts of forest loss across a range of scales (0.05°, 0.1°, 0.25°, 0.5°, 1.0°, 

and 2.0°). Each precipitation dataset was analysed at its native resolution and at all lower 

resolutions across this range of scales. Spatial regridding was performed using the Python 

package xESMF (Zhuang, 2022) with a bilinear re-gridding scheme. Two alternative 

regridding methods (xESMF: ‘conservative-normalised’ and iris: ‘area weighted’) were 

tested and had little impact on our results. For GFC data, we calculated forest loss using the 

original 30 m data and converted to each of the six spatial resolutions analysed by taking the 
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sum of all 30 m pixels within each larger pixel. Change in canopy cover from 2003 to 2017 at 

each resolution is shown in Fig. 4.1. 

 

Assessing impact of historical deforestation on precipitation 

We used a moving-window nearest neighbour approach (Baker and Spracklen, 2019) to 

compare the forest loss and precipitation change of each pixel with that of its immediate 

neighbours.  We tested the sensitivity of the analysis to the size of the moving window and 

found similar results for 3x3 and 5x5 (Extended Data Fig. B.2) moving windows. Results from 

the 3x3 moving window approach can been seen in the main paper. We calculated the 

forest loss of each deforested pixel relative to neighbouring control pixels as the forest loss 

of the deforested pixel minus forest loss of the control. We constrained our analysis to the 

tropical evergreen broadleaf biome using the MODIS land cover dataset (Schaaf and Wang, 

2015). To be included in the analysis, deforested pixels must have experienced 0.1% more 

forest loss over time than their neighbouring control pixels. The number of deforested pixels 

analysed varied between analysis resolutions as follows: 0.05°, n=243,254; 0.1°, n=58,660; 

0.25°, n=9,604; 0.5°, n=2,303; 1.0°, n=586; 2.0°, n=123.  We observed similar distributions of 

canopy change for all spatial resolutions analysed (Supp. Fig. B.6).  

We calculated the precipitation change of the deforested pixel relative to the precipitation 

change of the control pixel (ΔP) as the precipitation change of the deforested pixel over the 

analysis period (e.g., 2003 to 2017) minus the precipitation change over the control pixel. To 

reduce the impact of interannual variability in precipitation on our results, we calculated 5-

year means for periods at the start (2003 – 2007) and end (2013 – 2017) (Extended Data Fig. 

B.5) of the analysis period. We then calculated the change in precipitation as the difference 

between the start and end of these multi-year means. We report precipitation changes (ΔP) 

as a function of forest loss by dividing by the difference in forest loss between deforestation 

and control pixels (units of mm month-1 %-1). We also report precipitation change as the 

percentage change in precipitation (ΔP/P, units %) as a function of forest loss (units %/%). 
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To ensure that control pixels and deforested pixels experience a similar background climate 

we conducted a sensitivity test where we restricted our analysis to pixels where the pre-

deforestation precipitation across the control and deforested pixels differed by less than 

10%. Restricting our analysis in this way had little impact on our results (Supp. Fig. B.7) 

showing that our nearest neighbour approach is effective even at the largest scales analysed 

here. 

To explore the role of the analysis period on our results we compared the results for 5-year 

means to shorter 3-year means (2003-2007 compared to 2015-2017) and found consistent 

results (Extended Data Fig. B.3). Our analysis period includes the strong 2015/2016 El Niño 

which resulted in reductions in precipitation over most tropical land regions, particularly in 

2015 (Supp. Fig. B.1). To explore the potential impacts of the 2015/16 El Niño on our 

analysis we estimated the impact of forest loss on precipitation using 3-year (2003-2005 vs. 

2018-2020) and 5-year (2003-2007 vs. 2016-2020) multi-annual means spanning an 

extended time period. The 3-year analysis completely excludes the 2015/2016 ENSO, whilst 

the 5-year analysis excludes 2015, which was the driest year (Extended Data Fig. B.3).  Two 

datasets (TRMM and UDEL) were not available after 2017 so were removed from this 

sensitivity analysis. 

 

Statistical Analysis 

For each category of precipitation data (satellite, station and reanalysis), precipitation 

change values were grouped together for all deforestation pixels and all control pixels. We 

found that precipitation changes for deforested pixels and control pixels, and the difference 

in precipitation change between deforested and control pixels (Extended Data Fig. B.4) were 

normally distributed. Error bars (Fig. 4.2 and 4.3) show ± 1 standard error from the mean 

calculated and displayed using the python package Seaborn (Waskom, 2021). To test 

whether mean precipitation changes over regions of deforestation were statistically 

different from changes over the control areas we used a Student’s t-test. We also used the 

Mann-Whitney test to test for significant differences between median precipitation change 

between control and deforested pixels and found similar results.  
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Seasonal Analysis 

For the satellite datasets only, in addition to calculating precipitation changes at the annual 

timescale, we calculated changes for the dry season (driest 3 months of each year), wet 

season (wettest 3 months of each year) and transition season (remaining 6 months). The 

driest, wettest and transition months were identified for each pixel using each individual 

precipitation dataset. For each season and dataset, we calculated the median change in 

precipitation across all the pixels within the region of interest (see Supp. Fig. B.8-B.10). 

 

Predicting future precipitation change due to forest loss  

We used projections of forest cover change available at 0.05° from the Global Change 

Analysis Model (GCAM) for 2015 to 2100 based on the Shared Socioeconomic Pathway (SSP) 

- Representative Concentration Pathway (RCP) scenario SSP3 RCP4.5, which represents a 

high-deforestation future (M. Chen et al., 2020). GCAM includes the impacts of climate and 

land use on future forest cover. We summed forest cover from all forest categories and 

calculated forest cover loss in each year compared to a 2015 baseline. Forest cover loss data 

were regridded to 2°. We estimated the impact of forest loss on future precipitation at the 

2° scale through multiplying the projected percentage point forest loss for each pixel (%) by 

the observed median change in precipitation per percentage point forest cover loss (mm 

month-1 %-1) across the satellite datasets. To estimate the uncertainty in our predictions we 

applied an upper and lower limit on the sensitivity of precipitation to forest loss based on 

the median value ± 1 standard error from the mean (see error bars in Fig. 4.2) and rescale by 

forest loss. This provides a range of estimated precipitation impacts of future forest loss. We 

also tested the impact on our results of capping future forest loss in each pixel at 30%, 

which is the upper range of forest loss that is well sampled in the observations (Supp. Fig. 

B.3). For each region, we applied the tropical satellite precipitation response to forest loss 

(Fig. 4.2f), meaning our projected regional precipitation changes are a product of the 

regional canopy cover change and the median tropical precipitation response. Our approach 

assumes a linear precipitation response to forest loss, which recent work suggests could 

provide a conservative estimate of deforestation impacts (Baudena et al., 2021). We tested 
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the sensitivity of assuming a linear response of precipitation to canopy cover loss. We fitted 

a non-linear function to the data presented in Extended Data Fig. B.1 through applying the 

median sensitivity of precipitation to forest cover loss (mm month-1 %-1) within each forest 

cover loss bin.  We then scaled by the projected forest cover loss. This approach reduces the 

projected reduction in precipitation to 2.4 mm month-1 in SEA and 1.5 mm month-1 in the 

Congo (Supp. Fig B.5). 

 

Data Availability Statement 

The data used to make the figures in the study are available via the source data links.  Full 

results for all tested resolutions and the code used in this analysis are also available via 

https://doi.org/10.5281/zenodo.7373832. The original datasets are freely available to 

download from the following repositories: CHIRPS from 

 https://data.chc.ucsb.edu/products/?C=M;O=D, CMORPH from 

https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/, CPC from  

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html, CRU from 

https://crudata.uea.ac.uk/cru/data/hrg/, ERA5 from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels?tab=overview, GPCC from 

https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html, GPCP 

from https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.1/summary?keywords=GPCPMON, 

GPM from https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/, JRA from  

https://climatedataguide.ucar.edu/climate-data/jra-55 

https://jra.kishou.go.jp/JRA-55/index_en.html, MERRA-2 from 

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, NOAA (PREC/LAND) from  

https://psl.noaa.gov/data/gridded/data.precl.html, PERSIANN (CCS, CDR, CCS-CDR, PDIR-

NOW) from https://chrsdata.eng.uci.edu/, TRMM from 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary, UDEL from 

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html. Lastly, the GCAM model 

https://data.chc.ucsb.edu/products/?C=M;O=D
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://crudata.uea.ac.uk/cru/data/hrg/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.1/summary?keywords=GPCPMON
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/
https://climatedataguide.ucar.edu/climate-data/jra-55
https://jra.kishou.go.jp/JRA-55/index_en.html
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://psl.noaa.gov/data/gridded/data.precl.html
https://chrsdata.eng.uci.edu/
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
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output used in this study is available from https://doi.org/10.25584/data.2020-

07.1357/1644253 

 

Acknowledgements 

The research has been supported by funding from the European Research Council (ERC) 

under the European Union's Horizon 2020 research and innovation programme (DECAF 

project, Grant agreement no. 771492), and the Newton Fund, through the Met Office 

Climate Science for Service Partnership Brazil (CSSP Brazil). All observational datasets used 

in this study (listed in E.D. Table B.1) are publicly available and are cited in the Data 

Availability Statement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.25584/data.2020-07.1357/1644253
https://doi.org/10.25584/data.2020-07.1357/1644253


   
 

   
 

157 

References 

Akkermans, T., Thiery, W. and Van Lipzig, N.P.M. 2014. The regional climate impact of a realistic 

future deforestation scenario in the congo basin. Journal of Climate. 27(7), pp.2714–2734. 

Aragão, L.E.O.C., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L. and Saatchi, S. 2008. 

Interactions between rainfall, deforestation and fires during recent years in the Brazilian 

Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences. 363(1498), 

pp.1779–1785. 

Bagley, J.E., Desai, A.R., Harding, K.J., Snyder, P.K. and Foley, J.A. 2014. Drought and deforestation: 

Has land cover change influenced recent precipitation extremes in the Amazon? Journal of 

Climate. 27(1), pp.345–361. 

Baker, J.C.A. and Spracklen, D. V 2019. Climate Benefits of Intact Amazon Forests and the Biophysical 

Consequences of Disturbance. Frontiers in Forests and Global Change. 2, pp.1–13. 

Baker, J.C.A. and Spracklen, D. V. 2022. Divergent Representation of Precipitation Recycling in the 

Amazon and the Congo in CMIP6 Models. Geophysical Research Letters. 49(10), pp.1–11. 

Baudena, M., Tuinenburg, O.A., Ferdinand, P.A. and Staal, A. 2021. Effects of land-use change in the 

Amazon on precipitation are likely underestimated. Global Change Biology. 27(21), pp.5580–

5587. 

Bonan, G.B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of 

forests. Science. 320(5882), pp.1444–1449. 

Brum, M., López, J.G., Asbjornsen, H., Licata, J., Pypker, T., Sanchez, G. and Oiveira, R.S. 2018. ENSO 

effects on the transpiration of eastern Amazon trees. Philosophical Transactions of the Royal 

Society B: Biological Sciences. 373(1760). 

Chagnon, F.J.F. and Bras, R.L. 2005. Contemporary climate change in the Amazon. Geophysical 

Research Letters. 32(13), pp.1–4. 

Chagnon, F.J.F., Bras, R.L. and Wang, J. 2004. Climatic shift in patterns of shallow clouds over the 

Amazon. Geophysical Research Letters. 31(24), pp.1–4. 

Challinor, A.J., Watson, J., Lobell, D.B., Howden, S.M., Smith, D.R. and Chhetri, N. 2014. A meta-

analysis of crop yield under climate change and adaptation. Nature Climate Change. 4(4), 

pp.287–291. 



   
 

   
 

158 

Chambers, J.Q. and Artaxo, P. 2017. Biosphere-atmosphere interactions: Deforestation size 

influences rainfall. Nature Climate Change. 7(3), pp.175–176. 

Chapman, S., Syktus, J.I., Trancoso, R., Salazar, A., Thatcher, M.J., Watson, J.E., Meijaard, E., Sheil, D., 

Dargusch, P. and McAlpine, C.A. 2020. Compounding impact of deforestation on Borneo’s 

climate during El Niño events. Environmental Research Letters. 15(8). 

Chen, M., Vernon, C.R., Graham, N.T., Hejazi, M., Huang, M., Cheng, Y. and Calvin, K. 2020. Global 

land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. 

Scientific Data. 7(1), pp.1–11. 

Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W. and Jiang, J. 2020. Global Land Monsoon 

Precipitation Changes in CMIP6 Projections. Geophysical Research Letters. 47(14). 

Duku, C. and Hein, L. 2021. The impact of deforestation on rainfall in Africa: A data-driven 

assessment. Environmental Research Letters. 16(6). 

Van Der Ent, R.J. and Savenije, H.H.G. 2011. Length and time scales of atmospheric moisture 

recycling. Atmospheric Chemistry and Physics. 11(5), pp.1853–1863. 

van der Ent, R.J., Savenije, H.H.G., Schaefli, B. and Steele-Dunne, S.C. 2010. Origin and fate of 

atmospheric moisture over continents. Water Resources Research. 46(9), pp.1–12. 

Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., Lloyd, 

J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S., 

Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., Bonal, 

D., Davila Cardozo, N., Erwin, T., Fauset, S., Hérault, B., Laurance, S., Poorter, L., Qie, L., Stahl, 

C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., Almeida de Oliveira, E., 

Andrade, A., Vieira, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C, G.A., Baraloto, 

C., Camargo, P.B., Barroso, J.G., Bongers, F., Boot, R., Camargo, J.L., Castro, W., Chama 

Moscoso, V., Comiskey, J., Cornejo Valverde, F., Lola da Costa, A.C., del Aguila Pasquel, J., Di 

Fiore, A., Fernanda Duque, L., Elias, F., Engel, J., Flores Llampazo, G., Galbraith, D., Herrera 

Fernández, R., Honorio Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima, A.J.N., Umetsu, R.K., 

Laurance, W., Lopez-Gonzalez, G., Lovejoy, T., Aurelio Melo Cruz, O., Morandi, P.S., Neill, D., 

Núñez Vargas, P., Pallqui Camacho, N.C., Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-

Claros, M., Peñuela-Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, 

C., Ramírez-Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., 

Salomão, R., Silva, N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., 

Torres-Lezama, A., Valenzuela Gamarra, L., van de Meer, P.J., van der Heijden, G., van der Hout, 



   
 

   
 

159 

P., Vasquez Martinez, R., Vela, C., Vieira, I.C.G. and Phillips, O.L. 2019. Compositional response 

of Amazon forests to climate change. Global Change Biology. 25(1), pp.39–56. 

Fassoni-Andrade, A.C., Fleischmann, A.S., Papa, F., Paiva, R.C.D. de, Wongchuig, S., Melack, J.M., 

Moreira, A.A., Paris, A., Ruhoff, A., Barbosa, C., Maciel, D.A., Novo, E., Durand, F., Frappart, F., 

Aires, F., Abrahão, G.M., Ferreira-Ferreira, J., Espinoza, J.C., Laipelt, L., Costa, M.H., Espinoza-

Villar, R., Calmant, S. and Pellet, V. 2021. Amazon Hydrology From Space: Scientific Advances 

and Future Challenges. Reviews of Geophysics. 59(4), pp.1–97. 

Feng, Y., Zeng, Z., Searchinger, T.D., Ziegler, A.D., Wu, J., Wang, D., He, X., Elsen, P.R., Ciais, P., Xu, R., 

Guo, Z., Peng, L., Tao, Y., Spracklen, D. V., Holden, J., Liu, X., Zheng, Y., Xu, P., Chen, J., Jiang, X., 

Song, X.-P., Lakshmi, V., Wood, E.F. and Zheng, C. 2022. Doubling of annual forest carbon loss 

over the tropics during the early twenty-first century. Nature Sustainability. 4(4), pp.441–451. 

Fu, R. and Li, W. 2004. The influence of the land surface on the transition from dry to wet season in 

Amazonia. Theoretical and Applied Climatology. 78(1–3), pp.97–110. 

Garcia-Carreras, L. and Parker, D.J. 2011. How does local tropical deforestation affect rainfall? 

Geophysical Research Letters. 38(19), pp.1–6. 

Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K.K., Sheffield, J., Wood, E.F., Malhi, Y., 

Liang, M., Kimball, J.S., Saleska, S.R., Berry, J., Joiner, J. and Lyapustin, A.I. 2015. Photosynthetic 

seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience. 8(4), 

pp.284–289. 

Haiden, T., Janousek, M., Vitart, F., Ferranti, L. and Prates, F. 2019. Evaluation of ECMWF forecasts, 

including the 2019 upgrade. ECMWF Technical Memoranda. 853(October), pp.1–54. 

Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., 

Stehman, S. V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O. 

and Townshend, J.R.G. 2013. High-Resolution Global Maps of 21st-Century Forest Cover 

Change. Science. 850(November), pp.850–854. 

Harris, I., Osborn, T.J., Jones, P. and Lister, D. 2020. Version 4 of the CRU TS monthly high-resolution 

gridded multivariate climate dataset. Scientific Data. 7(1), pp.1–18. 

Hoyer, S. and Hamman, J. 2017. xarray: N-D labeled Arrays and Datasets in Python. Journal of Open 

Research Software. 5(1), p.10. 

Jiang, Y., Wang, G., Liu, W., Erfanian, A., Peng, Q. and Fu, R. 2021. Modeled response of south 

american climate to three decades of deforestation. Journal of Climate. 34(6), pp.2189–2203. 



   
 

   
 

160 

Jiang, Y., Zhou, L., Tucker, C.J., Raghavendra, A., Hua, W., Liu, Y.Y. and Joiner, J. 2019. Widespread 

increase of boreal summer dry season length over the Congo rainforest. Nature Climate 

Change., pp.1–8. 

Khanna, J., Medvigy, D., Fueglistaler, S. and Walko, R. 2017. Regional dry-season climate changes due 

to three decades of Amazonian deforestation. Nature Climate Change. 7(3), pp.200–204. 

Kooperman, G.J., Chen, Y., Hoffman, F.M., Koven, C.D., Lindsay, K., Pritchard, M.S., Swann, A.L.S. and 

Randerson, J.T. 2018. Forest response to rising CO2 drives zonally asymmetric rainfall change 

over tropical land. Nature Climate Change. 8(5), pp.434–440. 

Lawrence, D. and Vandecar, K. 2015. Effects of tropical deforestation on climate and agriculture. 

Nature Climate Change. 5(1), pp.27–36. 

Leite-Filho, A.T., Soares-Filho, B.S., Davis, J.L., Abrahão, G.M. and Börner, J. 2021. Deforestation 

reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications. 

12(1), pp.1–7. 

Leite-Filho, A.T., de Sousa Pontes, V.Y. and Costa, M.H. 2019. Effects of Deforestation on the Onset 

of the Rainy Season and the Duration of Dry Spells in Southern Amazonia. Journal of 

Geophysical Research: Atmospheres. 124(10), pp.5268–5281. 

Li, Y., Brando, P.M., Morton, D.C., Lawrence, D.M., Yang, H. and Randerson, J.T. 2022. Deforestation-

induced climate change reduces carbon storage in remaining tropical forests. Nature 

Communications. 13(1), pp.1–13. 

Marengo, J.A., Souza, C.M., Thonicke, K., Burton, C., Halladay, K., Betts, R.A., Alves, L.M. and Soares, 

W.R. 2018. Changes in Climate and Land Use Over the Amazon Region: Current and Future 

Variability and Trends. Frontiers in Earth Science. 6(December), p.288. 

McAlpine, C.A., Salazar, A., Seabrook, L., Dargusch, P., Johnson, A., Wilson, K., Syktus, J., Meijaard, E., 

Nordin, H. and Sheil, D. 2018. Forest loss and Borneo’s climate. Environmental Research Letters. 

13(4). 

Met Office 2022. Cartopy: A cartographic python library with a matplotlib interface. , 

http://scitools.org.uk/cartopy/. 

Negri, A.J., Adler, R.F., Xu, L. and Surratt, J. 2004. The Impact of Amazonian Deforestation on Dry 

Season Rainfall. Journal of Climate. 17, pp.1306–1319. 



   
 

   
 

161 

Potapov, P., Turubanova, S., Hansen, M.C., Tyukavina, A., Zalles, V., Khan, A., Song, X.P., Pickens, A., 

Shen, Q. and Cortez, J. 2022. Global maps of cropland extent and change show accelerated 

cropland expansion in the twenty-first century. Nature Food. 3(1), pp.19–28. 

Schaaf, C. and Wang, Z. 2015. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global - 500m 

V006. NASA EOSDIS Land Processes DAAC., https://doi.org/10.5067/modis/mcd43a3.006. 

Sorí, R., Nieto, R., Vicente-Serrano, S.M., Drumond, A. and Gimeno, L. 2017. A Lagrangian 

perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics. 8(3), 

pp.653–675. 

Spracklen, D. V., Arnold, S.R. and Taylor, C.M. 2012. Observations of increased tropical rainfall 

preceded by air passage over forests. Nature. 489(7415), pp.282–285. 

Spracklen, D. V. and Garcia-Carreras, L. 2015. The impact of Amazonian deforestation on Amazon 

basin rainfall. Geophysical Research Letters. 42(21), pp.9546–9552. 

Spracklen, D.V., Baker, J.C.A., Garcia-Carreras, L. and Marsham, J.H. 2018. The Effects of Tropical 

Vegetation on Rainfall. Annual Review of Environment and Resources. 43(1), pp.193–218. 

Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J., Dekker, S., van Nes, E., Rockström, J. and 

Tuinenburg, O. 2020. Hysteresis of tropical forests in the 21st century. Nature Communications. 

11(4978), pp.1–8. 

Staal, A., Flores, B.M., Aguiar, A.P.D., Bosmans, J.H.C., Fetzer, I. and Tuinenburg, O.A. 2020. Feedback 

between drought and deforestation in the Amazon. Environmental Research Letters. 15(4). 

Staal, A., Tuinenburg, O.A., Bosmans, J.H.C., Holmgren, M., Van Nes, E.H., Scheffer, M., Zemp, D.C. 

and Dekker, S.C. 2018. Forest-rainfall cascades buffer against drought across the Amazon. 

Nature Climate Change. 8(6), pp.539–543. 

Stickler, C.M., Coe, M.T., Costa, M.H., Nepstad, D.C., McGrath, D.G., Dias, L.C.P., Rodrigues, H.O. and 

Soares-Filho, B.S. 2013. Dependence of hydropower energy generation on forests in the 

Amazon Basin at local and regional scales. Proceedings of the National Academy of Sciences of 

the United States of America. 110(23), pp.9601–9606. 

Strand, J., Soares-Filho, B., Costa, M.H., Oliveira, U., Ribeiro, S.C., Pires, G.F., Oliveira, A., Rajão, R., 

May, P., van der Hoff, R., Siikamäki, J., da Motta, R.S. and Toman, M. 2018. Spatially explicit 

valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nature Sustainability. 1(11), 

pp.657–664. 



   
 

   
 

162 

Tuinenburg, O.A., Bosmans, J.H.C. and Staal, A. 2022. The global potential of forest restoration for 

drought mitigation. Environmental Research Letters. 17(3). 

Waskom, M. 2021. Seaborn: Statistical Data Visualization. Journal of Open Source Software. 6(60), 

p.3021. 

Wunderling, N., Staal, A., Sakschewski, B., Hirota, M., Tuinenburg, O.A., Donges, J.F., Barbosa, H.M.J. 

and Winkelmann, R. 2022. Recurrent droughts increase risk of cascading tipping events by 

outpacing adaptive capacities in the Amazon rainforest. Proceedings of the National Academy 

of Sciences of the United States of America. 119(32), pp.1–11. 

Xu, X., Zhang, X., Riley, W.J., Xue, Y., Nobre, C.A., Lovejoy, T.E. and Jia, G. 2022. Deforestation 

triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters. 

17(3). 

Zemp, D.C., Schleussner, C.F., Barbosa, H.M.J., Hirota, M., Montade, V., Sampaio, G., Staal, A., Wang-

Erlandsson, L. and Rammig, A. 2017. Self-amplified Amazon forest loss due to vegetation-

atmosphere feedbacks. Nature Communications. 8, pp.1–10. 

Zhuang, J. 2022. xESMF. , https://doi.org/10.5281/zenodo.1134365. 

  

 

 

 

 

 

 

 

 

 

 

 



   
 

   
 

163 

Chapter 5 

 

5 Observed and simulated local climate responses to 

tropical deforestation 
 

Callum Smith1, Jessica C.A. Baker1, Eddy Robertson2, Robin Chadwick2, Douglas I. Kelley3, 

Arthur P. K. Argles2, Caio A.S. Coelho4, Dayana C. de Souza4, Paulo Y. Kubota4, Isabela L. 

Talamoni4 and Dominick V. Spracklen1  

 

1 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 

2 Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK 

3 UK Centre for Ecology and Hydrology, Wallingford. OX10 8BB UK  

4 Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), Instituto Nacional de Pesquisas 

Espaciais (INPE), Rodovia Presidente Dutra, Km 40, SP-RJ, Cachoeira Paulista, SP, 12630-000, 

Brasil 

 

Published in Environmental Research Letters 18(10) (2023), 15th September 2023. Available 

at https://doi.org/10.1088/1748-9326/acf0da 

 

Abstract 

Tropical deforestation has local and regional effects on climate, but the sign and magnitude 

of these effects are still poorly constrained. Here we used satellite observations to evaluate 

the local land surface temperature and precipitation response to tropical deforestation in 

historical simulations from 24 CMIP6 models. We found tropical forest loss leads to an 

observed local dry season warming and reduced wet and dry season precipitation across the 



   
 

   
 

164 

range of scales (0.25° to 2°) analysed. At the largest scale analysed (2°), we observed a 

warming of 0.018±0.001 K per percentage point of forest loss (K %-1), broadly captured in 

the multi-model mean response of 0.017±0.005 K %-1. The multi-model mean correctly 

simulates reduced precipitation due to forest loss in the dry season but simulates increased 

precipitation due to forest loss in the wet season, opposite to the observed response. We 

found that the simulated dry season surface temperature and precipitation changes due to 

forest loss depend on the simulated surface albedo change, with less warming and less 

drying in models with greater increases in surface albedo due to forest loss. Increased 

recognition of the local and regional climate benefits of tropical forests is needed to support 

sustainable land use policy.  

 

5.1 Introduction 

Land cover change alters energy and water fluxes between the surface and atmosphere 

affecting the local and regional climate (Bonan, 2008; Pongratz et al., 2021). Tropical regions 

are experiencing rapid changes to land cover, particularly from deforestation (Hansen et al., 

2013) and forest degradation (Vancutsem et al., 2021). Tropical deforestation has been 

shown to cause local surface warming of greater than 2 K (Alkama and Cescatti, 2016; Bright 

et al., 2017; Duveiller, Hooker, et al., 2018; Baker and Spracklen, 2019). The effect on 

precipitation is more complex and scale-dependent (Lawrence and Vandecar, 2015), with 

increases in precipitation over or near small-scale deforestation (Garcia-Carreras and Parker, 

2011; Khanna et al., 2017; Taylor et al., 2022) and reductions over and downwind of large-

scale deforestation (Spracklen and Garcia-Carreras, 2015). Analysis of satellite precipitation 

suggests tropical forest loss causes reductions in local precipitation, particularly at scales 

larger than 50 km (Smith et al., 2023). 

Climate models have different representations of the land surface and the biophysical 

responses to land cover change, leading to different simulations of the climate response to 

land cover change (Boisier et al., 2015; Boysen et al., 2020; Baker, De Souza, et al., 2021; Luo 

et al., 2022; De Hertog et al., 2022). Most models agree that deforestation in the tropics 

causes local surface warming but disagree on the magnitude of the temperature response 

(Winckler et al., 2019; Boysen et al., 2020). In contrast, some models simulate local cooling 
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over tropical deforestation due to strong increases in simulated surface albedo (Robertson, 

2019). The simulated response of local precipitation to land cover change is even more 

varied. Luo et al. (2022) simulated the impacts of idealised deforestation scenarios and 

found a multi-model mean reduction in precipitation over regions of forest loss of -2.2%, 

with a range of -5.5% to +0.1% across 11 models. Spracklen and Garcia-Carreras (2015) 

synthesised simulated impacts of deforestation in the Amazon basin, finding an average of 

12±11% reduction in annual precipitation due to basin-wide deforestation.  

Previous assessments of climate model responses to land cover change have analysed both 

idealised (e.g., Davin and de Noblet-Ducoudre, 2010; Winckler et al., 2017; Boysen et al., 

2020; Luo et al., 2022) and historical (De Noblet-Ducoudré et al., 2012; Kumar et al., 2013; 

Lejeune et al., 2017) land cover scenarios. Evaluation of simulated climate impacts against 

observations (Duveiller et al., 2018b) have largely focused on temperature from satellite (Li 

et al., 2015; Alkama and Cescatti, 2016; Duveiller, Hooker, et al., 2018) or in-situ 

measurements (Lee et al., 2011). Simulations of the impacts of land cover change on 

precipitation (Luo et al., 2022) have not yet fully been evaluated. We build on this previous 

work by evaluating the impacts of tropical deforestation in the historical CMIP6 simulations 

on both local land surface temperature (T) and precipitation (P) in a consistent manner, 

allowing for crucial model improvement insights to be gleaned. We focus on tropical 

deforestation because of the sustained need for clear evidence to support conservation of 

remaining tropical forests for climate change adaptation and mitigation (Windisch et al., 

2021). We explore how the climate sensitivity to the extent of forest loss depends on 

simulated changes to surface albedo, evapotranspiration (ET), and leaf area index (LAI). We 

evaluate the simulated response using satellite observations, applying a before-after-

control-impact (BACI) approach, where the change in local climate over regions of forest 

loss is compared against the change in climate over control areas with no forest loss. This 

allows us to analyse the simulated and observed responses to deforestation identically. 
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5.2 Data and Methods 

We analysed data from 24 CMIP6 models (CMIP6 Tier 1: historical; dataset information 

listed in Table 5.1), with spatial resolution varying from 0.56 to 2.79 degrees latitudinally. 

We downloaded and processed monthly mean surface albedo, evapotranspiration, leaf area 

index, land surface temperature and precipitation for 1850-2014. 

To evaluate the CMIP6 models, we used satellite data from the period 2003–2019. We 

calculated forest loss from the Global Forest Change (GFC) version 1.9 (Hansen et al., 2013),  

using forest canopy cover in 2000 and subsequent annual forest loss from 2003–2019 at 30 

metre (m) resolution. We used MODIS albedo (MCD43A3), evapotranspiration 

(MOD16A2GF) and leaf area index (MOD15A2) available at 500 m resolution and land 

surface temperature day-night mean (MOD11C3) available at 1 km resolution. We used 

precipitation data from nine datasets, spanning a range of native resolutions from ~4–25 km 

(approx. at equator, Table 5.1 lists the details). 

We analysed the observed impacts of forest loss across four spatial scales (0.25x0.25°, 

0.5x0.5°, 1.0x1.0° and 2.0x2.0°), spanning the spatial resolution of the CMIP6 models. We 

performed Spatial regridding using the Python package Iris (Met Office, 2023) with the area-

weighted regridding scheme. Two alternative regridding methods (xESMF (Zhuang, 2022): 

‘conservative-normalised’ and ‘bilinear’) were tested and had little impact on our results. 

We calculated forest loss at each of spatial resolution by the sum of all 30 m pixels within 

each larger pixel. 

We constrained our analysis to the tropics (30°S to 30°N). We additionally constrained 

satellite datasets by the tropical evergreen broadleaf biome, defined by the MODIS land 

cover dataset (MCD12Q1), and CMIP6 models by areas where their forest cover was greater 

than 70% at the start of the discrete analysis periods. This accounted for the fact that 

simulated forests may be in different geographical areas within each model. We tested both 

constraining CMIP6 models by MODIS evergreen broadleaf and by areas of forest cover 

greater than 70%, finding similar results with both methods. 
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Detecting a robust local climate response to deforestation requires long simulations 

(Winckler et al., 2017). For this reason, we analysed data over 16-year periods. For the 

satellite datasets, this period was 2003-2019, as this was the longest common period of 

precipitation data. For the CMIP6 models, we analysed ten 16-year periods starting in 1854 

and ending in 2014. We selected 16-year periods to match the length of the satellite record 

and report model values as the median across the ten periods. To reduce the impact of 

interannual variability, we compared 5-year means at the start and end of each analysis 

period. 

Land cover change causes both local and non-local climate impacts (Pongratz et al., 2021). 

The local climate impacts of land cover change can be assessed from a single simulation 

through comparing the climate change over regions of land cover change compared to 

neighbouring regions with little or no land cover change (Kumar et al., 2013; Lejeune et al., 

2017). Comparing the change over a pixel with forest loss with its immediate neighbour with 

little or no forest loss removes the impacts of climate change and variability. We adopted 

this approach and analysed the local climate response to forest loss using a moving window 

nearest neighbour approach as used by previous studies (Baker and Spracklen, 2019; Smith 

et al., 2023), here employing a 3x3 grid size. We calculated the forest loss of each 

deforested pixel relative to neighbouring control pixels as the forest loss of the deforested 

pixel minus the forest loss of the control. Calculating the local climate response to land 

cover change in this way may underestimate the true climate response as we don’t account 

for the non-local climate impacts. These non-local impacts are explored with respect to 

tropical land cover change in detail by Butt et al. (2023) and Cohn et al. (2019) who both 

find significant modifications to climate arising from the non-local effects. To be included in 

the analysis, deforested pixels must have experienced more than 0.1 percentage points of 

forest loss compared to their neighbouring control pixels. We calculated the change in each 

variable over the deforested pixel relative to the change of the control pixel. We report 

changes as a function of forest loss by dividing by the difference in forest loss between 

deforested and control pixels. To test whether these changes over regions of deforestation 

were statistically different from changes over the control areas, we used a Student’s t-test 

and the Wilcoxon test, finding similar results from both paired tests. 
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We focused our temperature analysis on the dry season, where there was better availability 

of satellite data for albedo, ET, LAI, and T, as the wet season has more clouds which obstruct 

satellite retrievals. Dry season temperature is also more sensitive to tropical deforestation 

(Baker and Spracklen, 2019). For precipitation, we analysed dry, wet and transition seasons 

as the driest 3 months, wettest 3 months and remaining 6 months, respectively, of each 

year for each pixel. The satellite precipitation value is based on the median of the nine 

satellite precipitation datasets, whilst for the CMIP6 models, we derived each model’s 

season from its own precipitation data. 

To test the relationships between climate variables, we fitted linear regressions using 

Pearson’s correlation coefficient, (calculated using SciPy (Virtanen et al., 2020)) to identify 

whether the computed correlation coefficients were found to be statistically significant and 

different from zero at the 5% level (p<0.05). We report errors throughout as the standard 

error of the mean. 

 

5.3 Results and Discussion 

Figure 5.1 shows the observed impacts of forest loss on local land surface temperature and 

precipitation. We observed dry season warming due to forest loss across all spatial scales 

analysed (Fig. 5.1a). This demonstrates that tropical forest loss caused local warming at 

spatial scales simulated in regional (0.25°x0.25°, ~25 km × 25 km) to global (2.0°x2.0°, ~200 

km × 200 km) climate models. Warming varies from 0.009±0.002 K %-1 (median ± standard 

error of the mean) at 1.0°x1.0° to 0.018±0.001 K %-1 at 2.0°×2.0°. The local land surface 

warming we report here is similar to previous studies such as Alkama and Cescatti (2016) 

who reported that tropical forest deforestation caused a warming of 0.015±0.001 K %-1. 

Duveiller et al. (2020) used a space-for-time approach and reported a warming of 

0.018±0.001 K %-1 for wet tropical forests using 1.0°x1.0° resolution data. In the Amazon, 

Baker & Spracklen (2019) reported deforestation caused dry season land surface warming of 

0.014 K %-1 using 0.05° resolution data. 

We observed reductions in precipitation over regions of forest loss at both an annual scale 

and in the dry, wet and transition seasons (Fig. 5.1b). Forest loss causes a decrease in 

precipitation across all analysed resolutions, with larger reductions as the scale of forest loss 
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increases. At 2° resolution, the annual reduction was -0.18±0.07 mm month-1 %-1. This 

sensitivity is slightly lower than reported by Smith et al. (2023) (-0.25±0.10 mm month-1 %-1 

at 2°) due to small methodological differences, including a longer analysis period (2003-2019 

compared to 2003-2017). Reductions in precipitation were observed throughout the year, 

with the largest absolute reductions in precipitation over regions of forest loss in the wet 

season (-1.12±0.32 mm month-1 %-1) compared to -0.06±0.05 mm month-1 %-1 in the dry 

season and -0.33±0.24 mm month-1 %-1 in the transition season.  

 

Figure 5.1. Observed local response of temperature and precipitation to tropical forest loss from 

2003 to 2019. a) Median dry-season land surface temperature change (∆T) per percentage point of 

forest loss and b) median precipitation change (∆P) per percentage point of forest loss for annual 

mean, dry, wet and transition seasons. Temperature data are from the MODIS MOD11C3 product 

and precipitation data from nine products (Supp. Table C.1). Results are shown at four spatial 

resolutions (0.25°, 0.5°, 1.0° and 2.0°). Error bars indicate the standard error of the mean. Values and 

significance presented in Supplementary Table C.1.  

 

Figure 5.2 compares the simulated and observed impact of forest loss on local dry season 

land surface temperature. Most models (22 out of 24) simulate a warming response 
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consistent with the satellite observations. The simulated surface temperature response to 

forest loss varies from -0.038±0.008 K %-1 (GISS-E2-1-G) to +0.042±0.009 K %-1 (CESM2-

WACCM-FV2). In idealised deforestation simulations, Boysen et al. (2020) found that the 

near-surface air temperature response simulated by CMIP6 models varied between -0.02 K 

%-1 to +0.08K %-1.  

The local surface warming due to forest loss is relatively insensitive to spatial scale, both in 

the models and observations. The multi-model mean warming due to forest loss is 

+0.017±0.005 K %-1 (0.016±0.002 K %-1 for models <1° resolution and 0.017±0.006 K %-1 for 

models >1° resolution), which compares well to the observed warming of 0.018±0.001 K %-1 

(at 2° resolution). Whilst the multi-model mean is close to the observed value, Figure 5.2 

highlights the large variability across models.  

 

Figure 5.2. Change in simulated and observed dry season local surface temperature per percentage 

point of forest loss (ΔT, K %-1), ordered by latitudinal resolution. Simulated changes from the CMIP6 

models (blue bars; datasets listed in Table 5.1) are the median over ten 16-year periods from 1854 to 

2014. Observed results from satellite (orange bars) (Table 5.1) are for 2003-2019, regridded to three 

resolutions (0.5o x 0.5o, 1.0o x 1.0o, 2.0o x 2.0o) to match the range of resolutions from the models. 

Satellite observed forest loss data were from GFC v1.9 (Hansen et al., 2013). Model results are for 
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areas where initial forest cover exceeds 70%, whilst the satellite analysis is constrained by MODIS 

evergreen broadleaf land cover. Error bars show the standard error of the mean calculated across the 

10 time periods for each model. The dashed line separately shows the multi-model mean value for <1 

and >1° spatial resolution models. Values and significance presented in Supplementary Table C.2. 

 

We also analysed the simulated temperature change due to forest loss for each model 

separately over the ten 16-year model periods (Supplementary Figure C.1). Only 7 models 

show consistent warming across all periods. Most models (17 out of 24) show warming and 

cooling in different periods, five of which (CanESM5, CMCC-ESM2, GISS-E2-1-G, MPI-ESM1-

2-HR and UKESM1-0-LL) show a cooling response in four or more of the ten 16-year periods 

contrary to the observed temperature response. This further confirms the need for long 

simulations to robustly diagnose a climate response to land use change from climate 

models.  

Figure 5.3 compares the simulated and observed changes in dry and wet season 

precipitation due to tropical forest loss. The simulated precipitation response to forest loss 

is less consistent than for temperature. In the dry season, 6 of the 24 models simulate 

increases in precipitation due to forest loss, whilst the remaining 18 models simulate 

reductions. In the wet season, 10 of the 24 models simulate an increase, whilst the 

remaining 14 simulate a decrease. Across all models, the multi-model mean response of dry 

season precipitation to forest loss is -0.06±0.08 mm month-1 %-1, comparable to the 

observed change of -0.06±0.05 mm month-1 %-1 (at 2°). The multi-model mean response in 

the wet season is 0.11±0.65 mm month-1 %-1, opposite to the observed response of -

1.12±0.32 mm month-1 %-1. The individual CMIP6 models tend to be oversensitive to forest 

loss (either large increases or decreases) compared to observed changes.  

At the annual scale, the multi-model mean precipitation sensitivity to forest loss is 

+0.06±0.23 % per percentage point of forest loss (% %-1) (Supplementary Fig. C.2), opposite 

in sign to the observed sensitivity of -0.12±0.11 % %-1 (at 2°). Previous studies have also 

reported a wide range in the simulated precipitation response to tropical deforestation. Luo 

et al. (2022) reported Amazon deforestation resulted in a regional annual mean 

precipitation response of –11% to +2% for a 50% reduction in forest cover, equivalent to –
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0.18% to +0.04% per percentage forest loss, with eight out of the eleven models simulating 

decreased precipitation over regions forest loss in the western and southern Amazon basin. 

Spracklen and Garcia-Carreras (2015) reported multi-model mean annual mean sensitivity of 

-0.16±0.13% per percentage point forest loss in the Amazon.  

 

 

Figure 5.3. Change in simulated and observed a) dry and b) wet season precipitation per percentage 

point of forest loss (ΔP, mm month-1 %-1), ordered by latitudinal resolution. Simulated changes from 

the CMIP6 models (blue bars) (datasets listed in Table 5.1) are the median over ten 16-year periods 

from 1854 to 2014. Observed results from satellite (orange bars) (Table 5.1) are for 2003-2019, 

regridded to three resolutions (0.5x0.5o, 1.0x1.0o, 2.0x2.0o) to match the range of resolutions from 
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the models. Model results are for areas where initial forest cover exceeds 70%, whilst the satellite 

results are constrained by MODIS evergreen broadleaf land cover. We calculate the standard error of 

the mean from the ten time periods for each model but from one time period for the satellite data. 

The dashed line separately shows the multi-model mean value for <1 and >1° spatial resolution 

models. Values and significance presented in Supplementary Table C.3. 

Figure 5.4 compares the median dry season sensitivity of temperature and precipitation to 

forest cover loss against the equivalent sensitivity of different land surface variables 

(albedo, ET, LAI) to forest loss. There is substantial variability in the simulated sensitivity of 

albedo, ET and LAI to forest loss. We find large variability in the simulated sensitivity of 

surface albedo to forest loss varying from ~0 to 5.1x10-4 %-1, with 23 of the 24 models 

simulating an increase in surface albedo in regions of forest loss (INM-CM4-8 simulates a 

decrease). A previous assessment of the CMIP5 models also found large variability in the 

simulated albedo response to land use change (Lejeune et al., 2020). For ET, we find 

simulated sensitivity ranges from -1 to +0.5 mm month-1 %-1. Luo et al. (2022) reported that 

forest loss caused annual mean changes of +50 to –150 mm year-1. For LAI, we find a 

sensitivity of -0.006 to -0.002 m2 m-2 %-1. For the Amazon, Luo et al. (2022) also reported a 

wide range in the sensitivity of LAI to forest loss ranging from –2 to +1 m2 m-2, equivalent to 

–0.02 to +0.01 m2 m-2 %-1.  

The local warming due to tropical forest loss can be caused by reducing both ET and surface 

roughness, which increase sensible heating and reduce turbulent heat fluxes (Bright et al., 

2017; Duveiller et al., 2018b). For dry season temperature, we find statistically significant 

relationships (P<0.05) with albedo (r2 = 0.299) and ET (r2 = 0.292). As would be expected 

(Bright et al., 2017; Duveiller et al., 2018; J. Winckler et al., 2019), models with a stronger 

sensitivity of surface albedo (greater surface brightening) and ET (greater ET increases) to 

forest loss tend to show less warming from forest loss. 

Figure 5.4 also shows satellite and in-situ observations. Albedo measurements from satellite 

also suggest increased albedo due to forest loss with a sensitivity of 8.0x10-5 to 1.31x10-4 %-

1, equivalent to an increase in the albedo of 0.008 to 0.013 for complete forest loss. This 

albedo sensitivity to forest loss is relatively well captured by some models (3 simulating 

albedo within the satellite range), whereas 9 models underestimate (< 8.0x10-5 %-1) and 12 

overestimate (> 1.31x10-4 %-1) the sensitivity. Models that overestimate the albedo 
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sensitivity to forest loss underestimate the warming due to forest loss. Constraining the 

albedo sensitivity to deforestation is also important for accurate simulation of the radiative 

forcing due to historical land-use change (Lejeune et al., 2020). 

 

Most models simulate a reduction in ET over forest loss (multi-model mean -0.19±0.06 mm 

month-1 %-1), although there is large variability across models with a range of -1.17 to +0.62 

mm month-1 %-1. The sensitivity of ET to forest loss is related to the change in LAI, as has 

been shown previously (Luo et al., 2022), with models that simulate larger decreases in LAI 

tending to simulate larger decreases in ET following forest loss (Supplementary Fig. C.3). 

Forest loss causes a reduction in simulated ET due to the replacement of forests by grasses 

with lower ET rates, matching the response in idealised deforestation simulations (Boysen et 

al., 2020). Increased ET over regions of forest loss in some models (e.g., CESM) may be due 

to tropical forests being replaced by C4 grasses that are over productive in the moist tropics 

(Boysen et al., 2020), whilst in other models (e.g., GISS-E2-1-G) it may be due to increased 

simulated precipitation over regions of forest loss. 

We found significant positive relationships for dry season precipitation with ET (r2 = 0.564) 

and albedo (r2 = 0.176). Luo et al. (2022) also reported positive relationships between 

changes in precipitation and ET due to deforestation. They also found that the inter-model 

spread in precipitation response to forest loss primarily results from divergent responses of 

evapotranspiration. Previous work has also suggested albedo as an important parameter 

controlling precipitation changes (Dirmeyer and Shukla, 1994; Berbet and Costa, 2003; Costa 

et al., 2007). Dirmeyer and Shukla (1994) found that the local precipitation response to 

forest loss showed a strong sensitivity to the assumed increase in albedo with forest loss 

over a range of 0 to 0.09 (9.0x10-4 %-1). However, they found forest loss reduced 

precipitation when the albedo sensitivity was greater than 3.0x10-4 %-1, opposite to our 

results of increased precipitation in models with greater brightening. 

We note that the satellite-based sensitivity of albedo, ET and LAI to forest loss is less than 

would be expected based on in-situ measurements. In the Amazon, (Culf et al., 1995) 

observed annual mean albedo of 0.13 for tropical forest and 0.18 for pasture, suggesting 

deforestation causes increased albedo of 0.05 or 4.6x10-4 %-1 (plotted as a red star in Figure 
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5.4a, d), about a factor 4 greater than in the satellite measurements. In-situ data represents 

a complete conversion from forest to pasture with correspondingly large changes in albedo. 

In comparison, satellite data observes forest loss at larger scales where remaining tree cover 

and vegetation regrowth may reduce the change in albedo caused by forest loss. 

 

Figure 5.4. Sensitivity of dry season (a-c) land surface temperature (T) and (d-f) precipitation (P) to 

surface albedo (Alb), evapotranspiration (ET), leaf area index (LAI), per percentage point of forest 

loss. Simulated (blue) values show the median change for each model’s ten 16-year periods. We 

report the linear Pearson correlation coefficient squared (r2) and the p-value (p) and plot the linear fit 

where p < 0.05. Results are for areas where initial forest cover exceeds 70%. Satellite values are 

plotted as orange circles, regridded to four resolutions (0.25x0.25o, 0.5x0.5o, 1.0x1.0o, 2.0x2.0o). 

These values are constrained by MODIS land cover evergreen broadleaf area. The red star indicates 

in-situ measurement from (Culf et al., 1995; Restrepo-Coupe et al., 2013). Model key; ACCESS-ESM1-

5: ‘a’ , AWI-ESM-1-1-LR: ‘b’, CESM2: ‘c’, CESM2-FV2: ‘d’, CESM2-WACCM: ‘e’, CESM2-WACCM-FV2: 

‘f’, CMCC-CM2-SR5: ‘g’, CMCC-ESM2: ‘h’, CNRM-ESM2-1: ‘I’, CanESM5: ‘j’, CanESM5-CanOE: ‘k’, EC-

Earth3-CC: ‘l’, EC-Earth3-Veg: ‘m’, EC-Earth3-Veg-LR: ‘n’, GISS-E2-1-G: ‘o’, HadGEM3-GC31-LL: ‘p’, 

HadGEM3-GC31-MM: ‘q’, INM-CM4-8: ‘r’, INM-CM5-0: ‘s’, IPSL-CM5A2-INCA: ‘t’, IPSL-CM6A-LR: ‘u’, 

MPI-ESM-1-2-HAM: ’v’, MPI-ESM1-2-HR: ‘w’, UKESM1-0-LL: ‘y’. 
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In situ observations of dry season ET in the Amazon are around 110 mm month-1 for tropical 

forests and 70 mm month-1 for pasture (Restrepo-Coupe et al., 2013), suggesting 

deforestation causes a reduction of 40 mm month-1 or 0.4 mm month-1 %-1 (plotted as a red 

star in Figure 5.4b, e), around 3.5 times greater than seen in the satellite measurements. 

Challenges with remote-sensed ET data which combine remote sensed and model data 

(Baker, Garcia-Carreras, et al., 2021) may explain the discrepancy with in-situ data. The 

simulated temperature response to forest loss is strongly related to albedo and ET in the dry 

season but less so in the wet season (Baker, Garcia-Carreras, et al., 2021). 

Our analysis focused on assessing the simulated local climate response to tropical 

deforestation and understanding how this depends on the modelled treatment of the land 

surface change. Additional climate responses also depend on simulated atmospheric 

feedback through altering mesoscale circulations (Khanna et al., 2017). Boysen et al. (2020) 

found that increased shortwave radiation due to reduced cloud cover over regions of 

tropical deforestation was more important than changes in surface albedo in some models. 

Luo et al. (2022) found mean reductions in ET over deforested areas (16.9 mm year-1) were 

about 4 times greater than reductions in mean flow convergence (-4.3 mm year-1), 

suggesting local reductions in ET dominate reduced rainfall rather than changes in 

circulation. 

In addition to impacts on temperature and precipitation, deforestation can also impact 

other important climate variables such as causing reductions in low level cloud cover 

(Duveiller et al., 2021). We focused on the local land surface warming due to forest loss, 

though we note that air temperature’s response to deforestation may differ (Winckler et al., 

2019). Deforestation can also cause important changes in the timing and intensity of 

precipitation. In Amazonia, deforestation has extended dry season and delayed the onset of 

the rainy season (Leite-Filho et al., 2021; Commar et al., 2023). In West Africa, deforestation 

has enhanced storm frequency (Taylor et al., 2022). In addition to local impacts, 

deforestation may also change regional climate (Leite-Filho et al., 2020). Tropical 

deforestation can cause reductions in downwind precipitation through reductions in 

moisture recycling (Spracklen et al., 2012; Zemp et al., 2017; Staal et al., 2018) and can alter 

regional temperatures up to 50 km away from the location of land-use change (Cohn et al., 

2019). Deforestation may even alter precipitation in regions far removed from the land use 



   
 

   
 

177 

change through teleconnections (Werth and Avissar, 2005; Pitman et al., 2009; De Noblet-

Ducoudré et al., 2012; Luo et al., 2022).  

 

5.4 Conclusions and Implications 

Our analysis provides further evidence of the local surface warming and drying (reduced 

precipitation) due to tropical deforestation. The multi-model mean captures the observed 

surface warming due to tropical forest loss, with 22 out of 24 CMIP6 models analysed 

simulating warming in response to tropical forest loss. The multi-model mean suggests 

increased annual mean precipitation over regions of tropical forest loss, opposite in sign to 

the observed response. There is large variability in the magnitude of the modelled 

temperature and precipitation responses to deforestation, some of which we attribute to 

different implementations of land use change within CMIP6 models and the subsequent 

changes to albedo and ET. We find the simulated local land surface warming due to forest 

loss is sensitive to the simulated surface albedo change.  

The local warming and drying due to tropical deforestation will have negative impacts on 

human health (Wolff et al., 2018; Alves de Oliveira et al., 2021), agriculture (Lawrence and 

Vandecar, 2015; Leite-Filho et al., 2021), surrounding forests (Zemp et al., 2017; Staal et al., 

2020; Li et al., 2022) and biodiversity (Pardini et al., 2017). A warmer and drier climate will 

also exacerbate the risk of forest fires causing additional forest loss and the potential for 

positive climate feedbacks (Cochrane et al., 1999). Some work has suggested the Amazon is 

close to a tipping point where additional deforestation would drive sufficient drying to 

induce forest dieback (Lovejoy and Nobre, 2019). Future work is needed to assess the 

resilience of remaining tropical forests to a warmer and drier climate. Overall, our analysis 

provides additional impetus for policymakers to account for the local climate impacts of 

tropical deforestation (Duveiller et al., 2020; Pongratz et al., 2021). 
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Table 5.1. CMIP6 model and satellite datasets used in this analysis. Models are grouped by 

spatial resolution (<1°, and ≥1° resolution in latitude). 

Dataset Institute Resolution 

lon, lat 

(degrees) 

Resolution 

grouping 

Reference 

Model     

ACCESS-ESM1-5 CSIRO 1.88 x 1.25 >1° Ziehn et al. (2019) 

AWI-ESM-1-1-LR AWI 1.88 x 1.87 >1° Danek et al. (2020) 

CanESM5 CCCma 2.81 x 2.79 >1° Swart et al. (2019a) 

CanESM5-CanOE CCCma 2.81 x 2.79 >1° Swart et al. (2019b) 

CESM2 NCAR 1.25 x 0.94 <1° Danabasoglu (2019a) 

CESM2-FV2 NCAR 2.50 x 1.89 >1° Danabasoglu (2019b) 

CESM2-WACCM NCAR 1.25 x 0.94 <1° Danabasoglu (2019c) 

CESM2-WACCM-FV2 NCAR 2.50 x 1.89 >1° Danabasoglu (2019d) 

CMCC-CM2-SR5 CMCC 1.25 x 0.94 <1° Lovato and Peano 

(2020) 

CMCC-ESM2 CMCC 1.25 x 0.94 <1° Lovato et al. (2021) 

CNRM-ESM2-1 CNRM-CERFACS 1.41 x 1.40 >1° Seferian (2018) 

EC-Earth3-CC EC-Earth-

Consortium 

0.70 x 0.70 <1° EC-Earth-Consortium 

(2021) 

EC-Earth3-Veg EC-Earth-

Consortium 

0.70 x 0.70 <1° EC-Earth-Consortium 

(2019) 

EC-Earth3-Veg-LR EC-Earth-

Consortium 

1.12 x 1.12 >1° EC-Earth-Consortium 

(2020) 

GISS-E2-1-G NASA-GISS 2.50 x 2.00 >1° NASA/GISS (2018) 

HadGEM3-GC31-LL MOHC 1.88 x 1.25 >1° Ridley et al. (2019) 

HadGEM3-GC31-MM MOHC 0.83 x 0.56 <1° Ridley et al. (2019) 

INM-CM4-8 INM 2.00 x 1.50 >1° Volodin et al. 

(2019a) 

INM-CM5-0 INM 2.00 x 1.50 >1° Volodin et al. 

(2019b) 

IPSL-CM5A2-INCA IPSL 3.75 x 1.89 >1° Boucher et al. (2018) 

IPSL-CM6A-LR IPSL 2.50 x 1.27 >1° Boucher et al. (2018) 
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MPI-ESM-1-2-HAM HAMMOZ-

Consortium 

1.88 x 1.87 >1° Neubauer et al. 

(2019) 

MPI-ESM1-2-HR MPI-M 0.94 x 0.94 <1° Jungclaus et al. 

(2019) 

UKESM1-0-LL MOHC 1.88 x 1.25 >1° Tang et al. (2019) 

Satellite     

MODIS Albedo 

(MCD43A3) 

 0.05 x 0.05 n/a Schaaf and Wang 

(2021) 

MODIS 

Evapotranspiration 

(MOD16A2) 

 0.05 x 0.05 n/a Running et al. (2021) 

MODIS Leaf Area Index 

(MOD15A2) 

 0.05 x 0.05 n/a Myneni et al. (2021) 

MODIS Land Surface 

Temperature 

(MOD11A2) 

 0.05 x 0.05 n/a Wan et al. (2021) 

 

MODIS Land Cover Type 

(MCD12Q1) 

 0.05 x 0.05 n/a Friedl and Sulla-

Menashe (2022) 

CHIRPS Precipitation 

(CHIRPS-2.0) 

 0.05 x 0.05 n/a Funk et al. (2015) 

 

CMORPH  0.25 x 0.25 n/a Xie et al. (2019) 

GPCP v3.2  0.5 x 0.5 n/a Huffman et al. (2022) 

GPM v0.6  0.1 x 0.1 n/a Hou et al. (2014) 

PERSIANN-CCS  0.04 x 0.04 n/a Nguyen et al. (2019) 

PERSIANN-CDR  0.25 x 0.25 n/a Ashouri et al. (2015) 

PERSIANN-CCSCDR  0.04 x 0.04 n/a Sadeghi et al. (2021) 

PERSIANN  0.25 x 0.25 n/a Nguyen et al. (2019) 

TRMM v3B43  0.25 x 0.25 n/a Huffman et al. (2007) 

Global Forest Change 

(GFC v1.9) 

 30 m x 30 m n/a Hansen et al. (2013) 
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Data Availability 

The dataset used in this analysis are all freely available through the following repositories: 

CMIP6 historical data from https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/, CHIRPS 

from https://data.chc.ucsb.edu/products/?C=M;O=D, CMORPH from 

https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/, GPCP from 

https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.1/summary?keywords=GPCPMON, GPM 

from https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/, PERSIANN (CCS, CDR, CCS-CDR, 

PDIR-NOW) from https://chrsdata.eng.uci.edu/, TRMM from 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary, MODIS (MCD43A3, 

MOD16A2, MOD15A2, MOD11A2 and MCD12Q1) from 

https://search.earthdata.nasa.gov/search and Global Forest Change data from 

https://storage.googleapis.com/earthenginepartners-hansen/GFC-2021-

v1.9/download.html. 
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Chapter 6 

 

6 Conclusions 
 

6.1 Synthesis of Findings 

This thesis sought to explore and provide answers to the question of how tropical 

deforestation affects local climate. In Chapter 3 I investigated the local climate impacts on 

land surface temperature arising from tropical deforestation. I built upon existing 

knowledge that states tropical forest loss causes local warming, by investigating the role of 

the driver of forest loss on the warming. I showed that commodity driven forest loss drives 

up to triple the warming of forest loss due to shifting agriculture (Figure 6.1). This has strong 

implications for regions such as the Congo where forest loss is projected to transition away 

from shifting agriculture to commodity driven over the next century, resulting in intensified 

warming.  

Following on, Chapter 4 presents published research showing evidence of large reductions 

in precipitation due to tropical forest loss. Here I analysed 18 satellite, station-based and 

reanalysis precipitation datasets across a range of spatial scales, demonstrating a clear link 

between increasing spatial scale of forest loss and larger reductions in rainfall (Figure 6.1). 

From this, I estimated that projected forest loss this century will decrease precipitation by 8-

10% in the Congo, where LCC is predicted to be the most severe. 

Lastly, I presented submitted research which evaluated using observations, the skill of 

CMIP6 climate models at simulating the climate response due to forest loss. I found that 

models can accurately simulate temperature changes due to forest loss, but they have less 

consistent skill at simulating the observed reduction in precipitation (Figure 6.1). The 

simulated temperature and precipitation responses depended on the change in surface 

albedo, with less warming and drying in models with greater increases in albedo due to 

forest loss. 
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Figure 6.1. Schematic highlighting the main findings of this thesis. Forest loss warms and 

dries the local climate. These impacts are more severe with a transition to more industrial 

and larger spatial scale deforestation. Satellite observations can unpick these trends in 

temperature and precipitation, whilst climate models can simulate changes in temperature 

accurately, but not precipitation. 

 

6.2 Key Results and Discussion 
 

6.3 The Driver of Forest Loss Matters 

In spite of concerted efforts from governments, NGOs and local communities, the rate of 

tropical deforestation has yet to robustly decline (Curtis et al., 2018; Feng et al., 2022). In 

Brazil, whilst policy initiatives have resulted in a shift from large-scale commodity driven 

deforestation to smaller scale pervasive deforestation (Rosa et al., 2012; Kalamandeen et 

al., 2018; Escobar, 2019; Montibeller et al., 2020), in other tropical regions, such as the 

Congo large-scale deforestation is becoming more common-place (Tegegne et al., 2016; 

Austin et al., 2017).  

In Chapter 3 we quantified the impact that the type of deforestation had on the local 

climate, through examining the changes in tropical forest cover over the period 2001 - 2019. 
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We found that across the tropics daytime land surface temperatures warmed by 0.014 K/% 

due to forest loss and that this warming is strongest over regions that had been deforested 

by commodity agriculture (0.02 K/%). This type of deforestation is characterised by large-

scale industrial clear felling for the purpose of cattle rearing or cash crops such as soya. Over 

regions deforested by shifting agriculture, where land is periodically cleared for small-scale 

agricultural purposes, the warming is 0.009 K/%, less than half the observed warming of 

areas deforested by commodity agriculture. This result has particularly strong implications 

for the Congo, where it is projected that forest loss will become more commodity based 

(Tegegne et al., 2016) in the future, which could result in increased warming. 

When compared to shifting agriculture, areas experiencing commodity driven deforestation 

see greater total amounts of forest loss. Across the tropics, we showed that the 

temperature response to forest loss increased linearly. Correspondingly total deforestation 

would lead to ~1.5 K of warming in areas deforested by commodity agriculture (~0.9 K for 

shifting agriculture). These values are similar to those seen in other studies observing 

warming due to tropical forest loss. Alkama and Cescatti (2016) show around 1.53 K 

warming with total forest loss, whilst Prevedello et al. (2019) find 1.08 K for 50% forest loss 

(comparing well our value of 0.95 K). The greater total amount of forest loss therefore only 

goes someway to explaining the greater warming seen in areas of commodity driven forest 

loss. Other possibilities are that regions of shifting agriculture regrow as a result of land 

abandonment, leading to a reduced warming over time. Similar to the work of Poorter et al. 

(2021), further analysis would need to assess the impact of secondary regrowth on the 

warming response.  

Communities that live in the tropical forests and surrounding regions are aware of and 

appreciate the cooling benefit that forests provide (Wolff et al., 2018). Continuing rates of 

tropical forest loss will contribute to the climate warming that in the coming decades will 

make the tropical regions more inhospitable for human life (Masuda et al., 2020; Masuda et 

al., 2021; and references therein). The warming will also impact the ability of forests to store 

carbon (Li et al., 2022), in effect compounding the warming due to climate change further. 

Combined, the local climate impacts of forest loss make for compelling evidence, which 

alongside improved understanding and prediction of weather and climate changes (Senior 



   
 

   
 

194 

et al., 2021) can help inform and enact policy to move away from destructive environmental 

practices.  

  

6.3.1 Observations of Reductions in Rainfall due to Forest Loss 

In Chapter 4 we analysed 10 satellite precipitation datasets, finding robust reductions in 

rainfall as a result of forest loss, particularly strongly at the largest spatial scales. We found 

there was a strong scale dependence, whereby at small scales (5 - 50 km length scales), 

there was no substantial change to precipitation. At scales greater than 50 km, there was a 

robust decline in precipitation up to 0.25 mm month-1 per percentage point of forest loss.  

The maintenance of consistent precipitation is aided by the forest’s own existence, through 

the recycling of precipitated water (Eltahir and Bras, 1996). The availability of rainfall and 

stored rainwater is crucial for agriculture (Zemp et al., 2014), hydropower (Strand et al., 

2018) and human populations. The process of precipitation recycling occurs at scales of 

around 600 km in the tropics (Van Der Ent and Savenije, 2011; Staal et al., 2018), so our 

analysis, which had a maximum scale of 200 km was unable to fully capture this process, 

likely underestimating the impact of forest loss on precipitation. Studies show that forest 

loss is likely to interrupt this crucial process, reducing the transport of moisture which is 

essential for downwind forests and communities (Zemp et al., 2017; Xu, Zhang, et al., 2022). 

Using a combination of observations and models (both moisture and atmosphere), Staal, 

Fetzer, et al. (2020) find this recycling, or forest-precipitation feedback enhances the 

geographic range that tropical forests can exist in, therefore reductions in rainfall could 

reduce their viable range. The southwestern Amazon is the furthest forested area from the 

oceanic moisture source, and as such relies on upwind forests for its moisture, with up to 

70% coming from upwind ET (Van Der Ent et al., 2010; Sorí et al., 2017). This reliance on 

upwind conditions places regions such as the SW Amazon in a precarious position where 

their resilience is dependent on the forest as a whole.  

The analysis in Chapter 4 considers the tropical impacts of forest loss, however there are 

likely different climate responses in regions with different mechanisms or climatologies 

(Taylor et al., 2013; Taylor et al., 2022). In West Africa, Taylor et al. (2022) find that 

deforestation enhances precipitation, due to increased afternoon storm frequency and that 
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precipitation impacts scale with spatial scale of forest loss. In coastal regions, Taylor et al. 

(2022) find a doubling in frequency of storms, due to the enhancement of land-sea 

mesoscale convection. These findings highlight the importance of mesoscale dynamics and 

soil-moisture (Taylor et al., 2013) in driving changes to precipitation. They provide additional 

insight into why we might find differences in rainfall response between the continental 

Amazon and the coastal SEA. 

The reductions that we observed in tropical precipitation have far reaching consequences 

that span society, yet the impacts are unequal. These changes to forest structure and 

functioning will have impacts on species composition (Esquivel-Muelbert et al., 2019), 

carbon sequestration (Li et al., 2022) and fire frequency (Aragão et al., 2008). Consumers in 

the global north are sheltered from the direct impacts of forest loss, whilst tropical 

communities, who are often poorer are strongly affected (Mills Busa, 2013). Consumers can 

use their influence and purchasing power to dissuade tropical governments from 

incentivising destructive practices. A successful policy example is Brazil’s Soy Moratorium 

which produced significant decreases in deforestation (84% decrease between 2004 – 2012 

(Heilmayr et al., 2020)) in response to pressure from NGOs. Deforestation from soy 

decreased to 1% of pre-moratorium expansion, with part of the success due to tracking 

farms which continued to deforest using satellite and airborne sensing (Gibbs et al., 2015). 

As a result of reductions in rainfall due to forest loss, we estimate that crop yields will 

decline by 1.25% for each 10-percentage point loss of forest cover (Challinor et al., 2014). 

The decline of agricultural yields may incentivise further deforestation (Leite-Filho et al., 

2021) and more intensive fertiliser use to keep up with production demand. With further 

deforestation, precipitation will decline again, compounding the issue (Zemp et al., 2017; 

Leite-Filho et al., 2021; Wunderling et al., 2022). Staal, Flores, et al. (2020) highlight this by 

estimating deforestation has caused 4% of the recent observed drying in the Amazon, with 

the reinforcing drought-deforestation feedback predicted to become stronger with greater 

cumulative deforestation. 

These decreases are in addition to a backdrop of climate change, which will make rainfall 

more variable and exacerbate the extreme droughts and floods (Seneviratne et al., 2021).  
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Climate change has been linked to increasing dry-season length in the Amazon and Congo in 

recent years (Marengo et al., 2018; Jiang et al., 2019) and deforestation has the potential to 

further shift and modify these seasons (Leite-Filho et al., 2019). In addition to being 

impacted by land cover change, rainfall can be impacted by the shifting and modifying of the 

dry season (Khanna et al., 2017). These changes may move rainfall geographically with 

increases downwind of forest loss and decreases upwind. These changes could lead to 

increased drought and subsequent forest dieback, ultimately leading to a tipping point 

(Lovejoy and Nobre, 2018).  

In Chapter 4 we showed that for sustained habitability of the tropics, we must drastically 

reduce forest loss in order to abate reductions in rainfall and the precipitous decline of the 

species who live there. Despite decades of calls from around the globe to halt deforestation, 

rates are still increasing (Feng et al., 2022). As we pass another year, with global 

communities increasingly aware of the impact we have on our planet, we must maintain 

pressure on governments to uphold current and future commitments to deforestation 

reductions. 

 

6.3.2 Models Struggle to Simulate Drying due to Forest Loss 

Bringing together our understanding of the impacts of forest loss on local climate, we 

evaluated the skill of the CMIP6 models at simulating observed warming and drying in the 

tropics. Our analysis jointly focussed on evaluating the skill of the models and understanding 

the reasons they exhibited that behaviour. 23 of the 24 CMIP6 models analysed, accurately 

simulated warming due to forest loss, however the response of precipitation due to forest 

loss was divergent. 

Several studies have previously investigated the changes that forest loss can have on 

simulated climate, each with different results. Boysen et al. (2020) found reduced cloud 

cover from idealised deforestation in CMIP5 models led to increased shortwave radiation 

and LST, and a dominance over surface albedo changes. This is opposed by an observational 

study from Duveiller et al. (2021) in which they show that forest loss can increase low level 

cloud, which can act to increase LST. Considering the impact on ET from forest loss, Luo et 

al. (2022) showed how reductions in ET were four times greater than the reductions in mean 



   
 

   
 

197 

flow convergence suggesting, as observed by others (Baker and Spracklen, 2019), that ET 

flux is the dominant reason warming occurs due to forest loss. Our analysis showed that the 

simulated response of LST and precipitation to forest loss depended on the change in 

simulated albedo. There was less drying and less warming in models with larger increases in 

surface albedo. This indicates that albedo is an important value to model accurately in order 

to correctly simulate land surface impacts on climate. 

As we considered in Chapter 4 when examining the impacts of observed forest loss on 

precipitation, land cover changes can affect the frequency, intensity and location of 

precipitation (Leite-Filho et al., 2021; Taylor et al., 2022; Commar et al., 2023). Whilst our 

analysis evaluated average changes, we didn’t quantify spatial and temporal shifts in 

simulated precipitation changes due to forest loss. Further work should examine these 

processes and build upon existing knowledge of the important role of precipitation recycling 

(Spracklen et al., 2012; Zemp et al., 2017; Staal et al., 2018; Baker and Spracklen, 2022) and 

the detriment that forest loss can have on this process. Considering the global impacts of 

tropical forest loss, deforestation can impact precipitation across continents through 

teleconnections (Werth and Avissar, 2005; Pitman et al., 2009; De Noblet-Ducoudré et al., 

2012; Luo et al., 2022). Evaluating the differing ability of models to simulate these changes 

and how observations could be used to verify this, is a clear next step. 

Overall, the findings of this thesis highlight the importance of forest conservation by 

observing significant increases in temperature and reductions in precipitation due to forest 

loss (Figure 6.2). Climate models can also simulate these changes, validating their 

projections of future land cover impacts on climate. As shown in Figure 6.2, these changes 

will have a range of impacts, spanning beyond the well understood carbon implications 

(Seymour et al., 2022). Forest loss will negatively impact agriculture (Lawrence and 

Vandecar, 2015; Leite-Filho et al., 2021), surrounding forests (Foley et al., 2007; Zemp et al., 

2017; Staal, Fetzer, et al., 2020; Li et al., 2022), carbon storage (Li et al., 2022), biodiversity 

(Pardini et al., 2017) and human health (Wolff et al., 2018; Alves de Oliveira et al., 2021). 
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Figure 6.2. Schematic outlining the main implications of tropical forest lost. Tropical forest 

leads to warming and drying, which can feedback, enhancing further forest loss. Agriculture, 

biodiversity, carbon storage and humans are negatively impacted as a result of forest loss. 

Forest loss can be driven, or drive fires which can worsen air quality.  

 

Life in the tropics will also be adversely impacted by increased forest fire risk (Escobar, 

2019; Davies-Barnard et al., 2023) as remaining forests dry out, secondarily causing 

increases in particulate matter which will have local, regional and global health impacts 

(Butt et al., 2020). In addition to health impacts, smoke from fires will have potential 

positive climate feedbacks (Cochrane et al., 1999). Humans, animals and plants will be 

displaced in great numbers in coming decades as climate change creates increasingly 

inhospitable environments (Berchin et al., 2017). These changes will be compounded by 

forest loss (Flores and Staal, 2022), adding to the importance and urgency of conserving the 

remaining forests and afforesting where appropriate. The analysis throughout this thesis 

provides strong evidence and impetus for governments and communities around the world 

to adhere to net zero emission and deforestation pledges and policies. 
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6.4 Discussion of Uncertainties and Limitations 

Uncertainty exists in a variety of settings throughout this thesis and can be broadly broken 

down into three main areas: observational, modelling and analytical uncertainty. Specific 

uncertainties are considered in the individual analysis chapters (3 - 5) whilst here I provide 

an overview of some of the larger sources of uncertainties and limitations.  

 

6.4.1 Observational Uncertainty and Limitations 

There is inherent uncertainty built into the observational datasets used in this thesis. 

Remotely sensed observations from instruments onboard satellites are subject to errors and 

have an associated uncertainty attached to them. Sources of uncertainty arise both from 

sensing the radiation and the mathematical derivation of quantities which can contain 

approximations or parametrisations (Zhao et al., 2020). Cloud is a persistent issue affecting 

the quality of remotely sensed datasets. For most of the datasets used in this thesis, a 

quality control layer was supplied, allowing the user to self-determine which level of quality 

control they wish to apply. Throughout, we have selected pixels that are subject to clear sky 

and where applicable, of ‘good’ data quality. This ensures that we selected the best possible 

quality data to use. This process is limited by the quality of the cloud assessment for each of 

the products, with each instrument providing a different determination of what constitutes 

a cloudy scene. This creates a limitation whereby each product’s cloudy scene doesn’t 

necessarily overlap, so each quality control routine isn’t comparable. 

In the tropics, forests have very dense canopy covers, which create issues for accurately 

assessing LAI from both the ground and remotely (Fang et al., 2019). In Chapters 3 and 5 we 

assess the changes in LAI due to forest loss, finding there to be a variable and inconsistent 

change. This could in part be explained by LAI and NDVI saturation, whereby dense, multi-

layered canopies become indistinguishable as they approach the maximum values. This can 

potentially lead to under/overestimating the change in LAI due to forest loss as saturated 

values are retrieved using a look up table of values (Fang et al., 2019) determined by MODIS 

land cover. Fang et al. (2019) state that LAI saturation could be mitigated by using narrower 

band reflectance (Diner et al., 1999; Gemmell and McDonald, 2000) or non-parametric 

machine learning such as gaussian regression (Verrelst et al., 2015). 
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All land surface products face challenges in representing the land surface accurately, 

especially when pixels fall on transitions between different land cover types. In the case of 

MODIS LST, the assumption is that the pixel can be quantified using the different spectral 

emissions and the thermal infrared band, however this may not always be reliable, 

especially on land cover boundaries or where there are sub-grid fires (Wan, 1999). Common 

to all remotely sensed products is their uncertainty generated when surveying 

topographically complex or structurally heterogenous areas. Since high resolution digital 

elevation models aren’t always integrated into the algorithms which generate these 

datasets (Wan, 1999), there is uncertainty inherent. This can arise when fires within the 

shadows of hills return lower values than they should due to the shadow producing a band 

reflectivity that is close to zero. Similarly, in rugged terrain, radiation can be scattered 

randomly by complex surfaces, meaning it is difficult to completely correct for radiation 

originating from adjacent pixels (Wan, 1999). 

ET is highly derived from other proxy quantities and computed using the Penman-Monteith 

equations (Monteith, 1965), more information about this can be found in Chapter 2. There 

are several sources of uncertainty associated with this product and its derivation. Firstly, 

and most importantly, MOD16A2GF relies heavily on MODIS land cover type, which is a 17-

class land cover classification map (Running et al. 1994, Belward et al. 1999, Friedl et al. 

2010). The main limitation to using the approach is that there is an assumption that the 

biome specific parameters from which ET is derived, do not change with space within the 

biome nor time throughout the year. Borrowing the example given in the MOD16 user 

guide, “... a semi-desert grassland in Mongolia is treated the same as a tallgrass prairie in 

the Midwestern United States. Likewise, a sparsely vegetated boreal evergreen needleleaf 

forest in Canada is functionally equivalent to its coastal temperate evergreen needleleaf 

forest counterpart” (Running et al., 2021). In addition to this, a known limitation of the 

MODIS land cover dataset is that the relatively coarse spatial resolution of 500 m means 

small-scale croplands are often sub-grid and therefore underrepresented and reported as 

natural vegetation (Sulla-Menashe and Friedl, 2022). For ET this could result in an 

overestimated flux as natural vegetation will have higher ET rates than the cropland. A small 

uncertainty comes from the integration of FPAR/LAI into ET, which is an 8-day composite 

product and takes only the maximum value of FPAR/LAI across the 8-days. This produces the 
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assumption that LAI doesn’t vary within those 8-days, which is a limitation when the ET 

product is produced daily. This process of maximum selection is necessary in order to create 

a composite to account for cloud contamination, which is a particular issue in the tropics. 

Gap-filled ET utilises data from non-cloudy temporally adjacent scenes to fill in scenes 

where there is cloud present. This process artificially inserts data where other remotely 

sensed products, such as MODIS LAI and albedo don’t retrieve, creating an inconsistency 

and a limitation when comparing the datasets. 

MODIS ET is a daily product, taking meteorological inputs including air temperature, 

incident PAR and specific humidity, provided by NASA’s Global Modelling and Assimilation 

Office (GMAO or MERRA GMAO). These data are derived from a global circulation model 

which has a resolution of around 0.5o, considerably coarser than the 500 m that ET is 

presented at. This is a limitation as the assumption is made that the coarse meteorological is 

representative of the heterogenous surface. To achieve assimilation, the coarse grid data is 

linearly interpolated, taking data from the four pixels surrounding the 500 m pixel. The 

quality of this process is assessed using ground-based station data from the World 

Meteorological Organisation of >5000 stations. This process is a limitation, as in spatially 

heterogenous areas, with rugged terrain and complex micro-biophysical processes, coarse 

grid meteorological data won’t be sufficient to represent processes at 500 m.  

Alongside remotely sensed climate variables, we widely used the Global Forest Change 

(GFC) dataset (Hansen et al., 2013) to estimate changes in tropical forest cover over time. 

There are three key limitations of our use this dataset, firstly, forest regrowth is provided 

only for the years 2001 - 2012 and as such we exclude this from our analysis. Therefore, 

throughout our analysis we likely mis-calculate the effects of tropical deforestation on 

climate as it is probable that some forests have regrown partially after being deforested, 

reducing the change in the surface properties and fluxes. The second key limitation pertains 

to differences in sensor technology, with the original 2001 - 2012 data using data from 

Landsat 7 which used a ’whiskbroom’ sensor, whereas a ’pushbroom’ sensor is used on 

Landsat 8 and 9. This newer sensor increases per observation dwell time, producing better 

detection of land cover change and creating an inconsistency through time. As well as 

sensor changes, the number of viable observations vary through time, generally increasing 

as the acquisition strategy improves from 150k in the early 2000s to exceeding 250k in 2021. 
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This notably decreased in 2012 where there <100k observations due to a gap between 

Landsat 5’s decommission and Landsat 8 becoming operational. Both of these factors create 

issues when comparing changes through time (GLAD, 2023). The third limitation of the GFC 

data arises from algorithmic changes that were made after 2012. Originally the dataset, 

based on a machine learning algorithm was trained using one algorithm run, however 

subsequent years have been added iteratively. This could result in inter-annual 

inconsistencies (Hansen et al., 2013). Our analysis does not focus on the change in the rate 

of forest loss over time, so it is not heavily impacted by these uncertainties. 

When observing the changes in precipitation due to forest loss, we used data from several 

station based or merged datasets, which combine satellite and station data. In the tropics, 

there are very limited numbers of weather stations, especially in the forest interiors. Data is 

interpolated between stations, providing accurate data within the well covered mid-

latitudes, but less reliable data in the sparsely surveyed tropical forests (Schneider et al., 

2022). This affects station-based datasets, but also merged datasets which integrate or 

validate using station data. 

We take steps to mitigate these limitations, notably by not comparing the forest cover 

change as a time series, which is as discussed would pose problems due to substantial inter-

annual inconsistency. Similarly, we tested our results by carrying out several methodological 

sensitivity tests to ensure robustness. 

 

6.4.2 Model Uncertainty and Limitations 

Climate models carry inherent uncertainty, which can come from a variety of sources, such 

as parameterisations, the quality of forecasts and projected scenarios. In this thesis, I used 

historical simulations from the CMIP6 climate models to assess the impact of historical land 

use change on climate. The most relevant aspect of uncertainty is how well the models can 

represent sub-grid processes in parametrisations.  

A substantial element contributing to uncertainty is our ability to represent clouds 

(Seneviratne et al., 2021). Clouds are difficult to simulate, and they have great importance 

as they can both warm and cool the atmosphere and land surface. At local scales, the 
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formation or not of clouds can be strongly altered by the land surface (Yue et al., 2017). On 

hot days or over warm surfaces, convection can drive rainfall, which can occur on short time 

scales and over small distances (Cutrim et al., 2002). The coarse grid of climate models can’t 

capture these events (Birch et al., 2015), so models use parametrisations to represent the 

average of all the processes. This creates a limitation for observing direct changes from land 

use change which are often sub-grid in scale, particularly in areas experiencing patchy or 

shifting deforestation. In Chapter 5 I evaluated the ability of CMIP6 models to represent 

change in rainfall due to deforestation. There is a substantial spread of results, with some 

models finding increases in rainfall, whilst others find decreases. This uncertainty could in 

part be due to the different resolutions of the models and how they parametrise sub-grid 

processes. ET is another process that may provide a source of model uncertainty. We found 

some models show ET increases (Figure 5.4) with deforestation, which is the opposite to 

observed changes shown by (Chen and Dirmeyer, 2020). This is a known problem in several 

climate models (Cai et al., 2019) and could be responsible for some of the inter-model 

variability in precipitation response. Future atmospheric CO2 increases will provide another 

source of uncertainty as they can modify the land surface properties and fluxes. These CO2 

increases may drive reductions in ET via the plant physiological effect (Chadwick et al., 

2019), which will affect the water budget of some tropical regions. This is strongly region 

dependent and will likely feedback into further land cover change as a result of drought and 

warming.  

 

6.4.3 Analytical Uncertainty and Limitations 

As well as observational and simulated uncertainty, some analytical methods used in this 

thesis carry uncertainty. We attempted where possible to add robustness to the discussed 

results by completing sensitivity analysis. An example of which is in Chapter 4 where we 

tested the effect of different analysis period lengths, finding that our results are insensitive 

to this change. Despite this, there are still areas where our methods are limited or carry 

uncertainty.  

 



   
 

   
 

204 

In Chapter 4 we calculated future precipitation changes due to forest loss based on our 

understanding of the historical precipitation change. Here we estimated that forest loss in 

the future will linearly impact precipitation. There is evidence, that we (Extended Data 

Figure B.1) and others (Akkermans et al., 2014; Lawrence and Vandecar, 2015; Zemp et al., 

2017; Baudena et al., 2021; Wunderling et al., 2022) present, that suggests that future 

changes in land cover could drive linear or non-linear changes to precipitation. In this way, 

we likely underestimate the impacts of deforestation on rainfall. 

We calculated the difference in climate and land surface variables over relatively short time 

periods, less than 20 years. We took account of inter-annual variability by predominantly 

using 5 year averages at the start and end periods to calculate the change over time. Whilst 

we have shown there to be little difference between 3 and 5 year averages (Extended Data 

Figure B.3), 5 years is still short enough for large scale climate oscillations (such as ENSO) to 

potentially influence our results. We tested for the impact of El Niño on our results (shown 

in Extended Data Figure B.3) by shifting the analysis period outside of the strong 2015/16 El 

Niño period, finding consistent results. 

A source of uncertainty, previously discussed, is the climate impact of forest regrowth. 

Throughout this analysis we used the GFC forest loss dataset, which excludes forest 

regrowth. In this way, we expect to underestimate the impacts of forest loss on climate, as 

vegetation replacing clear-cut will have climate and land surface properties more similar to 

the forests, they replaced (Poorter et al., 2021). In SEA, land is predominantly deforested for 

oil palm plantations. Sabajo et al. (2017) show that compared to clear cut land, young oil 

palm has a lower warming impact, which then decreases further when the plantation 

matures. 

The choice of grid size is differently important for different climate and land surface 

variables. For mechanistic changes that occur on sub-grid scales, such as LST changes, the 

smallest analysis scales we use (5 km grid length) will average many sub-grid processes. 

Studies such as Sabajo et al. (2017) use very high-resolution land surface temperature (30 

m) and land classification data to unpick specific case differences. As computing resources 

improve, researchers can utilise fully the very high resolution remotely sensed datasets that 

have recently become available, through which we can produce a more detailed picture of 

the impact of land use change on local climate. The impacts of land use change on 
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precipitation are less dependent on very high-resolution data as the effects are often not 

local to the change and are spread over far larger areas. However, this presents a different 

source of uncertainty, namely attributing changes in precipitation to specific changes in land 

cover. The methods used in Chapter 4 assume that average land cover changes within a grid 

box correspond to precipitation changes in surrounding grid boxes. At small scales of 

deforestation, precipitation can increase, however we are unable to view this mechanism 

possibly because the scale of analysis is too coarse, but also because our analysis method 

cannot attribute specific forest loss to specific non-local precipitation changes. 

When calculating the climate and land surface property changes in the wet and dry season, I 

calculated the wettest and driest three months of each year for each pixel. This allows for 

the possibility that the months selected won’t be consecutive and may vary year to year. 

The impact of this is complicated to assess as the impact is likely to be small when averaged 

across all analysed data points. As we controlled for differences in background climate, the 

impact of inter-annual background temperature variability will be small, however it will 

carry a small uncertainty.  

 

6.5 Future Research Directions 

Much of the work in this thesis focusses on the local and semi-regional climate impacts of 

deforestation. Predominantly, previous studies such as Li et al. (2015); Alkama and Cescatti 

(2016); Li et al. (2016); Bright et al. (2017); Baker and Spracklen (2019) have taken similar 

approaches. There are several ways in which our understanding of the local and regional 

impacts of forest loss can be improved, which I detail below. 

   

6.5.1 Non-local Climate Impacts of Deforestation 

Recently the work of Cohn et al. (2019) has explored the regional climate impacts of 

deforestation, opening up a new range of remote-sensing research possibilities with their 

novel methodology. Cohn et al. (2019) show us that tropical land use change can have 

impacts on maximum air temperature up to 50 km from the site of disturbance. Zeppetello 

et al. (2020) similarly found warming due to forest loss increases with the size of 
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disturbance. Considering precipitation, several studies show (Staal et al., 2018; O’Connor et 

al., 2021; and references therein) forest loss can negatively impact downwind precipitation. 

These studies often use lagrangian moisture tracking models (or atmospheric back 

trajectory models) to quantify the precipitation, or lack thereof transport, enabling a 

window into the regional impacts of land cover change. These studies outline the 

significance of considering remote impacts and how the local climate changes we observe, 

may in fact be influenced by surrounding disturbances. Using approaches that consider how 

climate impacts can overlap and interfere constructively or destructively is crucial to fully 

assess the effects that land use change can have. 

Adjacent to this, building on our knowledge of the effectiveness of protected areas (Xu, 

Huang, et al., 2022), further work could be completed to analyse the potential for their 

relatively cool and wet climate to spill-over into surrounding forest or agriculture. A study 

which can quantify the economic benefit of this effect would be strong evidence to provide 

a case for their protection and expansion. 

 

6.5.2 High Temporal and Spatial Resolution Analysis  

Over the last decade, there have been huge leaps in the quality and availability of remote 

sensing data. Freely available satellite products now provide ultra-high resolution (<30 m) 

images of changes in land cover, surface properties and fluxes. These advances have been 

matched with increasing computing resources and the ability to process and analyse large 

amounts of data. Alongside this, the total observed record has been increasing, such that for 

commonly analysed quantities such as land surface temperature and precipitation, we have 

over 40 years’ worth of data. With these long time series and high-resolution datasets, we 

can provide robust conclusions about the impacts of land use change on climate, and it 

provides the opportunity to observe mechanisms that previously weren’t possible. For 

example, accurately and precisely remotely observing the effect of forest fragmentation on 

microclimate wasn’t previously possible with 500 m resolution data, however with 2-30 m 

spatial resolution data we can start to isolate these impacts more confidently. It is also now 

possible to create satellite ensemble mean changes using the range of satellite products to 
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create a more robust value, for example it is possible to use the freely available data from 

MODIS, Landsat and Palsar to create a land surface temperature ensemble. 

Many of the studies described in this thesis focus on the climate impacts of tropical 

deforestation, however significant land use change occurs throughout the world (Hansen et 

al., 2013; Song et al., 2018; Potapov et al., 2022). In Europe, which has historically been 

heavily deforested, there is the opportunity for large scale reforestation. Models 

investigating the climate impacts of LCC find only small changes in precipitation (Strandberg 

and Kjellström, 2019), whilst Meier et al. (2021) show observationally, that reforestation can 

increase precipitation in the summer by 7.6%. In the mid-latitudes where there is expected 

to be large scale reforestation, climate change assessments can take advantage of the new 

generation of high temporal and spatial resolution observational datasets to unravel trends 

in often difficult to identify young forest growth. 

In recent years, space borne lidar such as the Global Ecosystem Dynamics Investigation 

(GEDI) (Dubayah et al., 2021) have provided very high-resolution surface structure and 

height data, enabling the analysis of global canopy structure. This dataset could be utilised 

as a proxy for surface roughness and allow for the remote quantification of temperature 

and precipitation changes due to roughness changes. 

With more data than ever being available at sub-daily time steps, we can accurately build a 

picture of how land use change can affect climate throughout the day. This allows us to 

calculate maximum and minimum temperatures as well as peak rainfalls, providing greater 

insight into the impacts of forest loss on climate extremes. Of particular interest to the 

people who live in tropical regions is the temperature and precipitation during extreme 

events of drought, flood and heatwave (Wolff et al., 2018; Zeppetello et al., 2020; Masuda 

et al., 2020). Temperature extremes are strong constraints on agricultural productivity 

(Challinor et al., 2014; Cohn et al., 2019) and as with all extremes, can have strongly non-

linear impacts (Schlenker and Roberts, 2009; Lobell et al., 2013). These impacts can be 

explored using metrics such as wet bulb temperature, an often-cited metric for human 

habitability (Masuda et al., 2021). Alongside observations, climate models are critical to 

advancing our understand of climate extremes, however traditional cloud parametrising 

models inherently have difficulty accurately assessing impacts, especially in maritime 

regions such as SEA (Birch et al., 2015). Chapman et al. (2023) show that using convection 
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permitting models, precipitation extremes can be simulated effectively, allowing us a 

window to view the future impacts of forest loss on climate. Further work that analyses the 

impacts of deforestation on extremes using these techniques, is crucial to abate forced 

climate change migration and maintain habitability. 

 

6.5.3 Post-deforestation Climate Impacts 

Largely the changes that occur after deforestation are overlooked by climate studies, 

therefore understanding how the land cover that replaces forest can evolve and how this 

can affect climate is important for future studies to consider. Adams and Garcia-Carreras 

(2023) consider how climate impacts vary with time after deforestation for a site in Africa, 

however this study could be expanded to span the tropics, allowing for an examination 

across different biomes and a wider range of deforestation trajectories. In the bigger 

picture, this analysis could provide evidence for how quickly replanting or secondary 

regrowth could reach climate equivalence of the previously situated primary forests and 

indeed whether it is a realistic ambition that these benefits could be restored. Datasets that 

track evolving land cover such as MapBiomass (MapBiomass, 2023), TerraClass (Almeida et 

al., 2008) and Vancutsem et al. (2021) would be able to provide insight into regrowth 

through time in the tropical forest regions. 

 

The final main area for future research is to utilise machine learning techniques to project 

and simulate the impacts of future and present land use change on climate. Several studies 

and projects currently use machine learning to identify and classify tropical deforestation 

(Hansen et al., 2013; Curtis et al., 2018; and references therein). Using similar techniques 

and existing understanding of the climate impacts of historical deforestation, we could 

simulate the climate impacts of unseen, future deforestation. This could produce a powerful 

persuasive tool, providing evidence to the public and policy makers that persevering our 

remaining forests is an essential endeavour.   
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Appendix A  

Supplementary Materials for Chapter 3 

Figures 

 

Supplementary Figure A.1. The change in (a) Black Sky Albedo, b) ET c) LAI, d) LSTday, e) 

LSTnight, f) LSTdaynight) due to forest loss over time (2001-2019), grouped by region and driver 

of deforestation (all, commodity driven (comm) and shifting agriculture (SA)). The change in 

each variable is the change over time (2001-2019) for deforested pixels compared to nearby 

forested pixels (K). Deforested pixels must have been >90% forest in 2001 and less than 70% 

by 2019, whilst forest pixels must maintain >90% forest cover. Colours show the sensitivity 

tests carried out to assess the robustness of the methods used. Here we test using 3 year 

means at start and end period vs 5 year means (as presented in main text), and 5x5 nearest 

neighbour grid vs 3x3 grid (as presented in main text). 



   
 

   
 

221 

 

Supplementary Figure A.2. Change in annual mean land surface temperature due to forest 

loss for the (a) Tropics, b) Amazon, c) Congo, d) SEA, using an alternative forest-

deforestation threshold method. Results are categorised by driver of deforestation (All 

drivers, Commodity Driven deforestation (Comm.), Shifting Agriculture (SA), Forestry (for), 

Wildfire (WF) and Urbanisation (Urb)) using data from Curtis et al. (2018). The change in 

temperature is the change over time (2001-2019) for deforested pixels compared to nearby 

forested pixels (K). Deforested pixels must have been >70% forest in 2001 and less than 70% 

by 2019, whilst forest pixels must maintain >70% forest cover. Error bars show the standard 

error of the mean. 
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Supplementary Figure A.3. The distribution of forest loss for control (forest, a) and 

deforested pixels (b) for each of the deforestation drivers across the tropics.  
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Supplementary Figure A.4. The change in (a) Black Sky Albedo, b) ET c) LAI, d) LSTday, e) 

LSTnight, f) LSTdaynight) per percent forest loss over time (2001-2019), grouped by region and 

driver of deforestation (all, commodity driven (comm) and shifting agriculture (SA)). Colours 

show the sensitivity tests carried out to assess the robustness of the methods used. Here we 

test using 3 year means at start and end period vs 5 year means (as presented in main text), 

and 5x5 nearest neighbour grid vs 3x3 grid (as presented in main text). 
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Supplementary Figure A.5. Histograms showing the change over time in annual mean 

daytime land surface temperature for the Tropics (a), Amazon (b), Congo (c) and SEA (d). 

Categories are normalised such that bar heights sum to 100. Forest loss are categorised by 

driver of deforestation using data from Curtis et al. (2018). Results shown for the period 

2001-2019, for areas of forest in 2001 as defined by GFC forest cover (Hansen et al., (2013) 

and the MODIS evergreen broadleaf biome.  

 

 

 



   
 

   
 

225 

 

Supplementary Figure A.6. Histograms showing the change in annual mean daytime land 

surface temperature due to forest loss for the Tropics (a), Amazon (b), Congo (c) and SEA (d). 

Categories are normalised such that bar heights sum to 100. Forest loss are categorised by 

driver of deforestation using data from Curtis et al. (2018). Results shown for the period 

2001-2019, for areas of forest in 2001 as defined by GFC forest cover (Hansen et al., (2013) 

and the MODIS evergreen broadleaf biome. 
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Supplementary Figure A.7. The distribution of changes in each variable (a) BSA, b) ET c) LAI, 

d) LST day, e) LSTnight, f) LSTdaynight) due to forest loss using the threshold analysis method. 

Deforested pixels transition from >90% forest cover to <70% forest cover over the period 

2001-2019, whereas forest maintains >90% forest cover. Results are grouped by region 

(Tropics, Amazon, Congo and SEA) and driver of deforestation (All, commodity driven 

(Comm) and shifting agriculture (SA)). 
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Supplementary Figure A.8. Change in land surface temperature by forest loss for each 

region ((a) Tropics, b) Amazon, c) Congo and d) SEA) and each driver of deforestation (All 

drivers (All), commodity driven deforestation (Comm.), shifting agriculture (SA), forestry 

(Forest), wildfire (WF) and urbanisation (Urban)). Results are binned with widths of 2.5% 

forest loss, with each bin plotting the median value within the bin. To be plotted, each bin 

must have >20 data points. Additionally, no data points with >90% forest loss are included. 

The line shading shows the 95% confidence interval. 
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Supplementary Figure A.9. The percentage of deforested pixels in the per percentage point 

of forest loss analysis, grouped by driver of deforestation (All drivers (All), commodity driven 

deforestation (Comm.), shifting agriculture (SA), forestry (Forest), wildfire (WF) and 

urbanisation (Urban)) and by their intact status in the year 2000, as defined by the Intact 

Forest Landscapes dataset (Potapov et al., 2017). 
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Supplementary Figure A.10. Seasonal changes in mean land surface temperature per 

percentage point of forest loss in the dry (orange), wet (blue) and transition (purple) seasons 

for the (a) Tropics, b) Amazon, c) Congo and d) SEA. Results are categorised by driver of 

deforestation (All drivers, Commodity Driven deforestation (Comm.) and Shifting Agriculture 

(SA)) using data from Curtis et al. (2018). The change in temperature is calculated change 

over time (2001-2019) for deforested pixels, compared to nearby forested pixels. Deforested 

pixels must have been >90% forest in 2001 and less than 70% by 2019, whilst forest pixels 

must maintain >90% forest cover. Error bars show the standard error of the mean. 
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Supplementary Figure A.11. Scatter plot showing the change in daytime (a-c), night (d-f) 

and day-night mean (h-j) tropical land surface temperature per percentage point of forest 

loss versus the change in tropical Albedo (a,d,h), ET (b,e,i) and LAI (c,f,j) per percentage point 

of forest loss, for each driver of deforestation. Linear fits are plotted where the relationships 

between the variables are statistically significant (p<0.05). 
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Appendix B  

 

Extended Data for Chapter 4 

Extended Data Table B.1. Precipitation datasets used in Chapter 4. 

Dataset 
Date 

Range 

Highest 

Res 
Inputs Category Reference 

CHIRPS v2.0 
1981 - 

2021 
0.05 

Satellite + 

station 
Satellite Funk et al. (2015) 

CMORPH 
1998 - 

2020 
0.25 

Satellite + 

GPCP 
Satellite Xie et al. (2019) 

CPC 
1979 - 

2021 
0.5 GTS + COOP Station Xie et al. (2007) 

CRU TS v4.06 
1901 - 

2021 
0.5 Station Station Harris et al. (2020) 

ERA5 
1979 - 

2021 
0.1 Numerous Reanalysis Hersbach et al. (2020) 

GPCC v2022 
1891 - 

2020 
0.25 Stations Station Schneider et al. (2022) 

GPCP v3.2 1996 -2020 0.5 

PERSIANN, 

GPROF 

TORVS/AIRS, 

GPCC GAUGE 

Satellite Huffman et al. (2022) 

GPM v0.6 
2000 - 

2020 
0.1 9 satellites Satellite Hou et al. (2014) 

JRA v7.0 
1979 - 

2020 
0.5625 Numerous Reanalysis Kobayashi et al. (2015) 

MERRA-2 
1980 - 

2020 
0.625 Numerous Reanalysis Gelaro et al. (2017) 

PERSIANN-CCS 
2003 - 

2020 
0.04 

Cloud class 

system 
Satellite Nguyen et al. (2019) 
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PERSIANN-CDR 
1983 - 

2020 
0.25 

GridSat B1, 

GPCP 
Satellite Ashouri et al. (2015) 

PERSIANN-CCS-

CDR 

2003 - 

2020 
0.04 

GridSat B1, 

GPCP 
Satellite Sadeghi et al. (2021) 

PDIR-Now 
2000 - 

2020 
0.04 

IR data, 

IMERG, 

WorldClim 2, 

PERSIANN-

CDR, NCEP, 

GPCP, 

GSMAP-NOW 

Satellite Nguyen et al. (2020) 

PERSIANN 
2000 - 

2020 
0.25 

AI on IR and 

VIS from 

geostat 

Satellite Nguyen et al. (2019) 

TRMM v3B43 
1998 - 

2019 
0.25 

PR, TMI, VIRES 

CERES, LSI 
Satellite Huffman et al. (2007) 

UDEL v5.01 
1990 - 

2017 
0.5 GHCN, GSOD Station 

Matsuura and Willmott 

(2018) 

 



   
 

   
 

234 

 

Extended Data Figure B.1. Annual precipitation change as a function of forest loss. Results 

are shown at 2° spatial resolution for all satellite precipitation (P) datasets calculated as the 

change in P over time for deforested data pixels minus change over time for control data 

pixels. Data is binned according to forest cover change (%) with an equal number of pixels in 

each bin. Points show the median and error bars shows ± 1 standard error from the mean. 

Details of each data product are provided in Extended Data Table B.1. 



   
 

   
 

235 

Extended Data Figure B.2. Annual precipitation change due to forest loss for individual 

datasets. Results are shown for 2003 – 2017 for 5 year averages and 3x3 moving window. 

Bars show the median absolute change in annual P (mm month-1) per percentage point tree 

cover loss in each region (Tropics, Amazon, Congo, SEA). Each P dataset is shown separately 

and ordered and coloured by category: satellite (orange), station (yellow) and reanalysis 

(turquoise). The datasets are numbered; 1) CHIRPS, 2) CMORPH, 3) CPC, 4) CRU, 5) ERA5, 6) 

GPCC, 7) GPCP, 8) GPM, 9) JRA, 10) MERRA-2, 11) NOAA 12) PERSIANN-CCS, 13) PERSIANN-

CCSCDR, 14) PERSIANN-CDR, 15) PERSIANN-NOW, 16) PERSIANN, 17) TRMM, 18) UDEL. 

Results are shown for forest loss scales of 0.05°, 0.1°, 0.25°, 0.5°, 1.0°, 2.0°. Details of each 

data product are provided in Extended Data Table B.1. 
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Extended Data Figure B.3: Changes in precipitation due to forest loss for different time 

periods and nearest neighbour comparisons. Changes in annual mean precipitation at 2.0° 

resolution are shown for satellite (red), station (yellow) and reanalysis (green) datasets for 

the tropics (a-f), Amazon (g-l), Congo (m-r) and Southeast Asia (SEA, s-x). Columns show the 

sensitivity of our results to changes in the analysis period, number of years used to compute 

multi-annual means at start and end of the analysis period, and size of the moving window 

used for nearest neighbour comparisons: 2003-2017, 3-year averages and 3x3 nearest 

neighbour (Column 1, a,g,m,s); 2003-2017, 3-year, 5x5 (Column 2; b,g,n,t); 2003-2017, 5-

year, 3x3 (Column 3; c,i,o,u); 2003-2017, 5-year, 5x5 (Column 4; d,j,p,v); 2003-2020, 3-year, 

3x3 (Column 5; e,k,q,w); 2003-2020, 5-year, 3x3 (Column 6; f,l,r,x). Error bars show ± 1 

standard error from the mean. Details of each data product are provided in Extended Data 

Table B.1. Full results for all tested resolutions are available in an online repository 

[https://doi.org/10.5281/zenodo.7373832]. 
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Extended Data Figure B.4: Change in precipitation over deforested, control and difference 

between deforested and control pixels. Change in precipitation over 2003 to 2017 is shown 

for deforested (a, b), control (c, d) and difference between deforested and control pixels (e, f) 

for 0.05° (a, c, e) and 2.0° (b, d, f) resolution. Details of each data product are provided in 

Extended Data Table B.1. 

 



   
 

   
 

238 

Extended Data Figure B.5: Mean precipitation from satellite, station and reanalysis 

datasets. For each class of dataset, satellite (a, d, g), station (b, e, h) and reanalysis (c, f, i), 

the median value for the 5-year multi-annual mean at the start (2003-2007; a, b, c) and end 

(2013-2017; d, e, f) of the analysis period as well as the change over the analysis period (end 

– start; g, h, i) is shown. Mean values across tropical evergreen broadleaf forests are shown 

in units of mm/month at the top of each panel. Maps of the different regions generated 

using Cartopy and Natural Earth. Details of each data product are provided in Extended Data 

Table B.1.  
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Supplementary Materials for Chapter 4 

Figures 

 

Supplementary Figure B.1. Mean annual precipitation (P, mm month-1). a) Tropics, b) 

Amazon, c) Congo and d) SEA. Details of each data product are provided in Extended Data 

Table B.1. Shading indicates 95% confidence intervals. 

 



   
 

   
 

240 

 

Supplementary Figure B.2. Relative annual and seasonal changes in precipitation (P) due 

to forest cover loss. Bars show the median relative change in P per percentage point forest 

cover loss (%/%) for (a) Tropics, b) Amazon, c) Congo, d) SEA between 2003 - 2017.  Results 

shown for forest loss scales of 0.05°, 0.1 0.25, 0.5°, 1.0°, 2.0° for satellite datasets. Error bar 

shows ± 1 standard error from the mean. Details of each data product are provided in 

Extended Data Table B.1.  
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Supplementary Figure B.3. Distribution of historic and projected change in forest cover 

(%). a) observed (2003-2017) from satellite and b) projected (2015-2100) from the GCAM 

model. Data analysed at 2° and coloured by region. Details of each data product are 

provided in Extended Data Table B.1. Full results are available in an online repository 

[https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.4. Impact of projected future forest loss capped to 30%, on 

annual-mean precipitation. a) Mean forest cover loss over 2015 – 2100 under SSP3-4.5 for 

the tropics, Amazon, Congo and Southeast Asia (SEA); b) impact of projected forest cover 

loss on precipitation (P) (± 1 standard error from the mean); Spatial pattern of c) forest cover 

loss and; d) predicted P change (∆P) in 2100 due to forest cover loss. Results are shown for 

2.0° resolution. As Fig. 4 (main text) but impacts of forest loss on precipitation are capped at 

30% forest loss (see methods). Maps of the different regions generated using Cartopy and 

Natural Earth. Details of each data product are provided in Extended Data Table B.1. Full 

results are available in an online repository [https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.5. Impact of projected future forest loss from 2015 to 2100 on 

annual-mean precipitation using a non-linear function. a) Mean forest cover loss under 

SSP3-4.5 for the tropics, Amazon, Congo and Southeast Asia (SEA); b) impact of projected 

forest cover loss on P (± 1 standard error from the mean); Spatial pattern of c) forest cover 

loss and d) predicted P change (∆P) in 2100 due to forest cover loss. As Fig. 4 (main text) but 

impacts of forest loss on precipitation are capped at 30% forest loss and a non-linear 

function based on Extended Data Fig. 1 is used to relate precipitation change to forest loss 

(see methods). Maps of the different regions generated using Cartopy and Natural Earth. 

Details of each data product are provided in Extended Data Table B.1. Full results are 

available in an online repository [https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.6. Distribution of change in canopy cover (CC) for deforested 

pixels minus the change in canopy cover for control pixels, over the period 2003-2017. 

Results are shown at a) 0.05°, b), 0.1°, c) 0.25°, d) 0.5°, e) 1.0°, f) 2.0°. Details of each data 

product are provided in Extended Data Table B.1. Full results are available in an online 

repository [https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.7.  Annual precipitation (P) change due to forest loss calculated 

with restrictions on background P. Results are shown for 5-year averages (2003-2007 & 

2016-2020) with a 3x3 moving window and restricted to control and deforested pixels where 

the annual mean P differs by less than 10%. Bars show the median absolute change in 

annual P (mm month-1) per percentage point tree cover loss in each region (Tropics (a-f), 

Amazon (g-l), Congo (m-r), Southeast Asia (SEA) (s-x)) and for each precipitation dataset 

category (satellite, station and reanalysis). Shown for forest loss scales of 0.05° (a, g, m, s), 

0.1° (b, h, n ,t), 0.25° (c, i, o, u), 0.5° (d, j, p ,v), 1.0° (e, k, q, w), 2.0° (f, l , r, x). Error bars show 

± 1 standard error from the mean. Details of each data product are provided in Extended 

Data Table B.1. Full results are available in an online repository 

[https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.8. Dry season precipitation (P) change due to forest loss during 

2003 – 2017 for individual P datasets. Results are shown for 5 year averages and 3x3 

moving window.  Bars show the median absolute change in dry season P (mm month-1) per 

percentage point forest cover loss in each region (Tropics, Amazon, Congo, SEA). Each P 

dataset is shown separately and ordered and coloured by category: satellite (orange), 

station (yellow) and reanalysis (turquoise). The datasets are numbered; 1) CHIRPS, 2) 

CMORPH, 3) CPC, 4) CRU, 5) ERA5, 6) GPCC, 7) GPCP, 8) GPM, 9) JRA, 10) MERRA-2, 11) 

NOAA 12) PERSIANN-CCS, 13) PERSIANN-CCSCDR, 14) PERSIANN-CDR, 15) PERSIANN-NOW, 

16) PERSIANN, 17) TRMM, 18) UDEL. Results are shown for forest loss scales of 0.05°, 0.1°, 

0.25°, 0.5°, 1.0°, 2.0°. Details of each data product are provided in Extended Data Table B.1. 

Full results are available in an online repository [https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.9. Wet season precipitation (P) change due to forest loss during 

2003 – 2017 for individual P datasets. Results are shown for 5-year averages and 3x3 

moving window.  Bars show the median absolute change in wet season P (mm month-1) per 

percentage point forest cover loss in each region (Tropics, Amazon, Congo, SEA). Each P 

dataset is shown separately and ordered and coloured by category: satellite (orange), 

station (yellow) and reanalysis (turquoise). The datasets are numbered; 1) CHIRPS, 2) 

CMORPH, 3) CPC, 4) CRU, 5) ERA5, 6) GPCC, 7) GPCP, 8) GPM, 9) JRA, 10) MERRA-2, 11) 

NOAA 12) PERSIANN-CCS, 13) PERSIANN-CCSCDR, 14) PERSIANN-CDR, 15) PERSIANN-NOW, 

16) PERSIANN, 17) TRMM, 18) UDEL. Results are shown for forest loss scales of 0.05°, 0.1°, 

0.25°, 0.5°, 1.0°, 2.0°. Details of each data product are provided in Extended Data Table B.1. 

Full results are available in an online repository [https://doi.org/10.5281/zenodo.7373832]. 
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Supplementary Figure B.10. Transition season precipitation (P) change due to forest loss 

during 2003 – 2017 for individual P datasets. Results are shown for 5-year averages and 3x3 

moving window.  Bars show the median absolute change in transition season P (mm month-

1) per percentage point forest cover loss in each region (Tropics, Amazon, Congo, SEA). Each 

P dataset is shown separately and ordered and coloured by category: satellite (orange), 

station (yellow) and reanalysis (turquoise). The datasets are numbered; 1) CHIRPS, 2) 

CMORPH, 3) CPC, 4) CRU, 5) ERA5, 6) GPCC, 7) GPCP, 8) GPM, 9) JRA, 10) MERRA-2, 11) 

NOAA 12) PERSIANN-CCS, 13) PERSIANN-CCSCDR, 14) PERSIANN-CDR, 15) PERSIANN-NOW, 

16) PERSIANN, 17) TRMM, 18) UDEL. Results are shown for forest loss scales of 0.05°, 0.1°, 

0.25°, 0.5°, 1.0°, 2.0°. Details of each data product are provided in Extended Data Table B.1. 

Full results are available in an online repository [https://doi.org/10.5281/zenodo.7373832]. 
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Appendix C  

 

Supplementary Materials for Chapter 5 

Tables 

Supplementary Table C.1. Changes (value) in satellite observed land surface temperature 

(LST) and precipitation (P), reported alongside number of data points in each category and 

statistical significance (p values from both Student’s t-test and Wilcoxon test). Values shown 

for each season and resolution (latitudinal degrees) of satellite dataset.   

Season Model Resolution Variable Value 
# data 

points 

p-value (t-

test) 

p-value 

(Wilcoxon) 

Dry Satellite 0.25 LST 0.01 32540 2.95E-44 1.43E-194 

Dry Satellite 0.50 LST 0.01 8660 3.99E-13 6.77E-51 

Dry Satellite 1.00 LST 0.01 2271 1.79E-05 2.02E-15 

Dry Satellite 2.00 LST 0.02 564 8.42E-02 3.50E-03 

Annual Satellite 0.25 P -0.03 36354 1.87E-02 4.17E-18 

Dry Satellite 0.25 P -0.01 36354 7.86E-01 4.45E-01 

Wet Satellite 0.25 P -0.10 36354 1.24E-08 2.09E-33 

Transition Satellite 0.25 P -0.03 36354 5.65E-06 1.93E-18 

Annual Satellite 0.50 P -0.03 10256 3.33E-02 4.61E-11 

Dry Satellite 0.50 P -0.01 10256 2.87E-02 1.76E-01 

Wet Satellite 0.50 P -0.25 10256 4.06E-08 1.39E-25 

Transition Satellite 0.50 P -0.07 10256 1.11E-05 2.04E-12 

Annual Satellite 1.00 P -0.04 2918 1.76E-02 7.76E-07 
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Dry Satellite 1.00 P -0.06 2918 1.09E-02 2.19E-02 

Wet Satellite 1.00 P -0.56 2918 4.21E-07 4.02E-15 

Transition Satellite 1.00 P -0.27 2918 6.23E-05 1.05E-08 

Annual Satellite 2.00 P -0.18 861 1.95E-02 8.05E-03 

Dry Satellite 2.00 P -0.06 861 8.67E-02 2.33E-01 

Wet Satellite 2.00 P -1.12 861 2.10E-06 2.84E-10 

Transition Satellite 2.00 P -0.33 861 2.70E-03 1.61E-04 
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Supplementary Table C.2. Changes (value) in model simulated land surface temperature 

(LST), reported alongside number of data points in each category and statistical significance 

(p values from both Student’s t-test and Wilcoxon test). Values shown for each season, 

resolution (latitudinal degrees) and model.   

Season Model Resolution Variable Value 
# data 

points 

p-value (t-

test) 

p-value 

(Wilcoxon) 

Annual ACCESS-ESM1-5 1.25 LST 0.01 133 2.37E-02 3.02E-03 

Annual AWI-ESM-1-1-LR 1.87 LST 0.00 224 5.56E-01 6.39E-01 

Annual CanESM5 2.79 LST 0.02 101 1.37E-01 3.79E-03 

Annual CanESM5-CanOE 2.79 LST 0.04 101 4.53E-01 1.46E-01 

Annual CESM2 0.94 LST 0.02 335 6.58E-01 2.33E-04 

Annual CESM2-FV2 1.89 LST 0.02 101 7.07E-02 1.13E-02 

Annual CESM2-WACCM 0.94 LST 0.00 335 3.81E-01 4.31E-02 

Annual 
CESM2-WACCM-

FV2 
1.89 LST -0.01 101 2.90E-01 8.27E-03 

Annual CMCC-CM2-SR5 0.94 LST 0.01 351 1.49E-01 1.28E-02 

Annual CMCC-ESM2 0.94 LST 0.02 351 1.55E-01 3.75E-03 

Annual CNRM-ESM2-1 1.40 LST 0.01 46 4.62E-01 2.87E-01 

Annual EC-Earth3-CC 0.70 LST 0.00 733 2.02E-01 6.16E-02 

Annual EC-Earth3-Veg 0.70 LST 0.00 714 6.66E-03 3.57E-02 

Annual EC-Earth3-Veg-LR 1.12 LST 0.00 365 4.86E-01 2.92E-01 

Annual GISS-E2-1-G 2.00 LST 0.01 86 8.68E-01 3.53E-01 

Annual HadGEM3-GC31-LL 1.25 LST 0.00 72 7.15E-01 7.58E-01 

Annual 
HadGEM3-GC31-

MM 
0.56 LST 0.00 464 5.22E-01 3.76E-01 
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Annual INM-CM4-8 1.50 LST 0.00 20 4.68E-01 1.54E-01 

Annual INM-CM5-0 1.50 LST 0.00 105 4.35E-01 1.58E-01 

Annual IPSL-CM5A2-INCA 1.89 LST 0.03 66 2.29E-03 5.29E-04 

Annual IPSL-CM6A-LR 1.27 LST 0.01 145 1.06E-02 1.61E-05 

Annual MPI-ESM-1-2-HAM 1.87 LST 0.00 316 6.14E-01 9.99E-01 

Annual MPI-ESM1-2-HR 0.94 LST 0.00 449 3.66E-01 9.12E-02 

Annual UKESM1-0-LL 1.25 LST 0.00 215 5.87E-01 3.59E-01 

Dry ACCESS-ESM1-5 1.25 LST 0.02 133 7.56E-01 6.08E-01 

Dry AWI-ESM-1-1-LR 1.87 LST 0.00 224 3.80E-01 4.95E-01 

Dry CanESM5 2.79 LST 0.02 101 2.51E-01 3.99E-02 

Dry CanESM5-CanOE 2.79 LST 0.04 101 1.11E-01 1.46E-03 

Dry CESM2 0.94 LST 0.03 335 2.22E-03 1.28E-05 

Dry CESM2-FV2 1.89 LST 0.04 101 1.60E-02 8.61E-03 

Dry CESM2-WACCM 0.94 LST 0.02 335 1.42E-01 9.72E-03 

Dry 
CESM2-WACCM-

FV2 
1.89 LST 0.00 101 4.72E-02 2.25E-02 

Dry CMCC-CM2-SR5 0.94 LST 0.01 351 8.70E-01 2.18E-01 

Dry CMCC-ESM2 0.94 LST 0.01 351 5.33E-01 1.89E-01 

Dry CNRM-ESM2-1 1.40 LST 0.04 46 3.56E-01 1.95E-01 

Dry EC-Earth3-CC 0.70 LST 0.03 733 5.89E-106 1.44E-109 

Dry EC-Earth3-Veg 0.70 LST 0.02 714 8.06E-103 5.47E-108 

Dry EC-Earth3-Veg-LR 1.12 LST 0.03 365 4.60E-71 6.45E-59 

Dry GISS-E2-1-G 2.00 LST -0.04 86 4.85E-01 1.96E-01 

Dry HadGEM3-GC31-LL 1.25 LST 0.00 72 5.78E-01 1.33E-01 



   
 

   
 

255 

Dry 
HadGEM3-GC31-

MM 
0.56 LST 0.01 464 2.13E-01 6.10E-03 

Dry INM-CM4-8 1.50 LST 0.03 20 1.37E-01 3.28E-02 

Dry INM-CM5-0 1.50 LST 0.04 105 4.10E-03 2.88E-05 

Dry IPSL-CM5A2-INCA 1.89 LST 0.02 66 9.85E-01 8.41E-01 

Dry IPSL-CM6A-LR 1.27 LST 0.02 145 2.31E-01 2.71E-02 

Dry MPI-ESM-1-2-HAM 1.87 LST 0.01 316 4.67E-01 1.35E-01 

Dry MPI-ESM1-2-HR 0.94 LST 0.00 449 9.54E-01 8.24E-01 

Dry UKESM1-0-LL 1.25 LST 0.01 215 7.40E-01 3.85E-01 

Wet ACCESS-ESM1-5 1.25 LST 0.02 133 1.56E-01 7.26E-02 

Wet AWI-ESM-1-1-LR 1.87 LST 0.00 224 1.37E-01 3.52E-03 

Wet CanESM5 2.79 LST 0.02 101 4.81E-01 4.55E-01 

Wet CanESM5-CanOE 2.79 LST 0.05 101 2.68E-01 9.52E-02 

Wet CESM2 0.94 LST 0.02 335 4.14E-01 2.80E-01 

Wet CESM2-FV2 1.89 LST 0.03 101 1.79E-01 2.96E-01 

Wet CESM2-WACCM 0.94 LST 0.00 335 8.07E-01 5.14E-02 

Wet 
CESM2-WACCM-

FV2 
1.89 LST -0.01 101 6.18E-01 8.22E-01 

Wet CMCC-CM2-SR5 0.94 LST 0.00 351 1.97E-02 2.29E-06 

Wet CMCC-ESM2 0.94 LST 0.00 351 6.45E-03 5.54E-04 

Wet CNRM-ESM2-1 1.40 LST 0.02 46 7.33E-01 3.98E-01 

Wet EC-Earth3-CC 0.70 LST 0.00 733 6.02E-02 8.86E-04 

Wet EC-Earth3-Veg 0.70 LST 0.00 714 1.91E-01 6.86E-03 

Wet EC-Earth3-Veg-LR 1.12 LST 0.00 365 2.26E-01 8.72E-03 
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Wet GISS-E2-1-G 2.00 LST 0.00 86 1.36E-01 3.38E-02 

Wet HadGEM3-GC31-LL 1.25 LST 0.01 72 3.21E-01 4.70E-02 

Wet 
HadGEM3-GC31-

MM 
0.56 LST 0.01 464 4.79E-01 3.13E-02 

Wet INM-CM4-8 1.50 LST 0.00 20 7.31E-01 7.29E-01 

Wet INM-CM5-0 1.50 LST 0.00 105 1.38E-01 2.18E-03 

Wet IPSL-CM5A2-INCA 1.89 LST 0.01 66 7.48E-02 5.17E-01 

Wet IPSL-CM6A-LR 1.27 LST 0.00 145 2.83E-01 7.29E-02 

Wet MPI-ESM-1-2-HAM 1.87 LST 0.00 316 1.05E-01 2.35E-02 

Wet MPI-ESM1-2-HR 0.94 LST 0.00 449 4.14E-01 6.22E-02 

Wet UKESM1-0-LL 1.25 LST 0.00 215 7.34E-01 2.05E-01 

Transition ACCESS-ESM1-5 1.25 LST 0.00 133 1.74E-01 1.14E-01 

Transition AWI-ESM-1-1-LR 1.87 LST 0.01 224 9.10E-01 3.51E-01 

Transition CanESM5 2.79 LST 0.02 101 5.52E-02 2.76E-03 

Transition CanESM5-CanOE 2.79 LST 0.03 101 3.12E-01 2.00E-01 

Transition CESM2 0.94 LST 0.03 335 8.10E-01 5.47E-04 

Transition CESM2-FV2 1.89 LST -0.01 101 1.82E-01 2.10E-02 

Transition CESM2-WACCM 0.94 LST 0.00 335 7.19E-01 2.69E-01 

Transition 
CESM2-WACCM-

FV2 
1.89 LST -0.01 101 4.55E-01 6.46E-02 

Transition CMCC-CM2-SR5 0.94 LST 0.02 351 9.00E-02 3.14E-03 

Transition CMCC-ESM2 0.94 LST 0.02 351 8.59E-02 2.79E-02 

Transition CNRM-ESM2-1 1.40 LST 0.02 46 5.71E-01 6.73E-01 

Transition EC-Earth3-CC 0.70 LST 0.00 733 2.96E-01 1.64E-01 
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Transition EC-Earth3-Veg 0.70 LST 0.00 714 2.74E-02 1.13E-01 

Transition EC-Earth3-Veg-LR 1.12 LST 0.00 365 2.10E-01 4.33E-02 

Transition GISS-E2-1-G 2.00 LST 0.00 86 4.64E-01 5.89E-01 

Transition HadGEM3-GC31-LL 1.25 LST 0.00 72 8.77E-01 8.49E-01 

Transition 
HadGEM3-GC31-

MM 
0.56 LST 0.01 464 3.97E-01 2.16E-01 

Transition INM-CM4-8 1.50 LST 0.00 20 2.03E-01 2.40E-02 

Transition INM-CM5-0 1.50 LST 0.01 105 8.26E-01 6.77E-01 

Transition IPSL-CM5A2-INCA 1.89 LST 0.03 66 1.24E-02 9.26E-04 

Transition IPSL-CM6A-LR 1.27 LST 0.02 145 1.91E-03 2.31E-06 

Transition MPI-ESM-1-2-HAM 1.87 LST 0.00 316 1.78E-01 1.01E-01 

Transition MPI-ESM1-2-HR 0.94 LST 0.00 449 8.63E-01 8.14E-01 

Transition UKESM1-0-LL 1.25 LST 0.00 215 3.93E-01 1.26E-01 
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Supplementary Table C.3. Changes (value) in model simulated precipitation (P), reported 

alongside number of data points in each category and statistical significance (p values from 

both Student’s t-test and Wilcoxon test). Values shown for each season, resolution 

(latitudinal degrees) and model. 

Season Model Resolution Variable Value 
# data 

points 

p-value (t-

test) 

p-value 

(wilcoxon) 

Annual ACCESS-ESM1-5 1.25 P 0.49 133 2.64E-01 1.55E-01 

Annual AWI-ESM-1-1-LR 1.87 P -0.32 224 1.45E-01 1.67E-02 

Annual CanESM5 2.79 P 0.00 101 5.91E-01 2.32E-01 

Annual CanESM5-CanOE 2.79 P 1.49 101 8.60E-01 5.61E-01 

Annual CESM2 0.94 P -0.26 335 5.24E-01 3.16E-01 

Annual CESM2-FV2 1.89 P 0.07 101 6.20E-01 1.34E-01 

Annual CESM2-WACCM 0.94 P 0.13 335 6.96E-01 5.53E-01 

Annual 
CESM2-WACCM-

FV2 
1.89 P -0.24 101 5.36E-01 2.94E-01 

Annual CMCC-CM2-SR5 0.94 P -0.14 351 9.00E-01 4.92E-01 

Annual CMCC-ESM2 0.94 P 0.55 351 1.53E-01 6.62E-04 

Annual CNRM-ESM2-1 1.40 P 1.83 46 5.59E-01 5.96E-01 

Annual EC-Earth3-CC 0.70 P 0.03 733 2.75E-01 8.50E-01 

Annual EC-Earth3-Veg 0.70 P -0.02 714 1.32E-04 1.05E-03 

Annual EC-Earth3-Veg-LR 1.12 P -0.04 365 9.31E-01 6.37E-01 

Annual GISS-E2-1-G 2.00 P -0.26 86 6.83E-01 6.28E-01 

Annual HadGEM3-GC31-LL 1.25 P 0.08 72 7.61E-01 8.75E-01 

Annual 
HadGEM3-GC31-

MM 
0.56 P -0.07 464 3.16E-01 9.75E-02 
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Annual INM-CM4-8 1.50 P -0.15 20 9.51E-01 8.12E-01 

Annual INM-CM5-0 1.50 P -0.16 105 8.58E-01 6.60E-01 

Annual IPSL-CM5A2-INCA 1.89 P -0.13 66 4.12E-01 3.80E-01 

Annual IPSL-CM6A-LR 1.27 P -0.08 145 6.14E-01 8.89E-01 

Annual MPI-ESM-1-2-HAM 1.87 P -0.05 316 6.79E-01 9.74E-01 

Annual MPI-ESM1-2-HR 0.94 P -0.14 449 8.28E-01 3.17E-01 

Annual UKESM1-0-LL 1.25 P 0.04 215 7.14E-01 2.84E-01 

Dry ACCESS-ESM1-5 1.25 P 0.25 133 8.77E-01 6.19E-01 

Dry AWI-ESM-1-1-LR 1.87 P 0.00 224 8.17E-01 6.53E-01 

Dry CanESM5 2.79 P 0.01 101 6.37E-01 7.41E-01 

Dry CanESM5-CanOE 2.79 P -0.06 101 2.82E-01 5.41E-01 

Dry CESM2 0.94 P -0.08 335 8.52E-01 9.73E-01 

Dry CESM2-FV2 1.89 P -0.07 101 9.23E-01 5.57E-01 

Dry CESM2-WACCM 0.94 P -0.01 335 8.82E-01 8.01E-01 

Dry 
CESM2-WACCM-

FV2 
1.89 P -0.02 101 8.98E-01 8.46E-01 

Dry CMCC-CM2-SR5 0.94 P 0.20 351 2.18E-01 3.35E-02 

Dry CMCC-ESM2 0.94 P -0.11 351 8.84E-01 9.70E-01 

Dry CNRM-ESM2-1 1.40 P -0.17 46 8.66E-01 7.05E-01 

Dry EC-Earth3-CC 0.70 P -0.10 733 5.22E-30 4.39E-39 

Dry EC-Earth3-Veg 0.70 P -0.07 714 1.58E-21 2.50E-29 

Dry EC-Earth3-Veg-LR 1.12 P -0.07 365 3.25E-08 4.38E-12 

Dry GISS-E2-1-G 2.00 P 0.15 86 9.18E-01 5.28E-01 

Dry HadGEM3-GC31-LL 1.25 P 0.32 72 2.99E-01 5.63E-01 
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Dry 
HadGEM3-GC31-

MM 
0.56 P -0.08 464 6.39E-01 3.71E-01 

Dry INM-CM4-8 1.50 P -0.48 20 7.94E-01 8.41E-01 

Dry INM-CM5-0 1.50 P -0.71 105 3.45E-03 2.14E-05 

Dry IPSL-CM5A2-INCA 1.89 P -0.17 66 1.35E-01 4.62E-01 

Dry IPSL-CM6A-LR 1.27 P -0.15 145 2.02E-01 8.67E-02 

Dry MPI-ESM-1-2-HAM 1.87 P 0.00 316 8.09E-01 5.09E-01 

Dry MPI-ESM1-2-HR 0.94 P -0.03 449 7.03E-01 7.78E-01 

Dry UKESM1-0-LL 1.25 P -0.02 215 6.67E-01 3.62E-01 

Wet ACCESS-ESM1-5 1.25 P 2.92 133 1.89E-02 7.81E-03 

Wet AWI-ESM-1-1-LR 1.87 P -0.21 224 6.47E-01 4.24E-01 

Wet CanESM5 2.79 P -1.64 101 7.86E-01 5.73E-01 

Wet CanESM5-CanOE 2.79 P 4.17 101 5.17E-01 1.79E-01 

Wet CESM2 0.94 P 1.01 335 8.20E-01 6.59E-01 

Wet CESM2-FV2 1.89 P -0.88 101 1.03E-01 2.44E-02 

Wet CESM2-WACCM 0.94 P -0.39 335 5.30E-01 1.37E-01 

Wet 
CESM2-WACCM-

FV2 
1.89 P 0.49 101 8.42E-01 5.87E-01 

Wet CMCC-CM2-SR5 0.94 P 0.26 351 3.99E-01 1.74E-01 

Wet CMCC-ESM2 0.94 P -3.11 351 2.13E-02 4.93E-03 

Wet CNRM-ESM2-1 1.40 P 2.89 46 3.30E-01 2.68E-01 

Wet EC-Earth3-CC 0.70 P 0.08 733 9.04E-01 6.68E-01 

Wet EC-Earth3-Veg 0.70 P -0.05 714 2.68E-03 6.43E-03 

Wet EC-Earth3-Veg-LR 1.12 P 0.06 365 3.68E-01 5.29E-02 
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Wet GISS-E2-1-G 2.00 P -0.22 86 1.74E-01 9.54E-01 

Wet HadGEM3-GC31-LL 1.25 P -1.30 72 8.58E-01 9.60E-01 

Wet 
HadGEM3-GC31-

MM 
0.56 P -0.42 464 2.84E-01 5.15E-02 

Wet INM-CM4-8 1.50 P -0.48 20 6.79E-01 4.98E-01 

Wet INM-CM5-0 1.50 P -0.41 105 2.12E-02 4.19E-05 

Wet IPSL-CM5A2-INCA 1.89 P -0.70 66 5.02E-01 4.57E-01 

Wet IPSL-CM6A-LR 1.27 P -0.61 145 9.51E-01 9.25E-01 

Wet MPI-ESM-1-2-HAM 1.87 P 0.42 316 4.98E-01 3.85E-01 

Wet MPI-ESM1-2-HR 0.94 P -0.62 449 4.28E-01 4.74E-01 

Wet UKESM1-0-LL 1.25 P 1.47 215 5.63E-01 4.41E-01 

Transition ACCESS-ESM1-5 1.25 P 0.36 133 7.20E-01 3.99E-01 

Transition AWI-ESM-1-1-LR 1.87 P -0.52 224 1.99E-02 1.02E-03 

Transition CanESM5 2.79 P 0.01 101 4.58E-01 1.42E-01 

Transition CanESM5-CanOE 2.79 P 1.85 101 5.29E-01 2.91E-01 

Transition CESM2 0.94 P -0.39 335 9.51E-01 9.91E-01 

Transition CESM2-FV2 1.89 P 0.81 101 9.29E-01 4.57E-01 

Transition CESM2-WACCM 0.94 P 0.35 335 7.31E-01 6.67E-01 

Transition 
CESM2-WACCM-

FV2 
1.89 P -0.12 101 9.51E-01 6.03E-01 

Transition CMCC-CM2-SR5 0.94 P -0.46 351 2.36E-01 3.81E-02 

Transition CMCC-ESM2 0.94 P -0.22 351 9.62E-01 7.16E-01 

Transition CNRM-ESM2-1 1.40 P 0.21 46 6.71E-01 2.77E-01 

Transition EC-Earth3-CC 0.70 P 0.02 733 3.90E-01 5.91E-01 
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Transition EC-Earth3-Veg 0.70 P -0.03 714 2.08E-03 6.00E-03 

Transition EC-Earth3-Veg-LR 1.12 P -0.04 365 7.08E-01 7.89E-01 

Transition GISS-E2-1-G 2.00 P 0.10 86 4.74E-01 4.15E-01 

Transition HadGEM3-GC31-LL 1.25 P -0.72 72 3.63E-01 2.84E-01 

Transition 
HadGEM3-GC31-

MM 
0.56 P -0.13 464 5.72E-01 3.65E-01 

Transition INM-CM4-8 1.50 P -0.18 20 3.85E-01 4.30E-01 

Transition INM-CM5-0 1.50 P 0.26 105 2.75E-01 2.77E-02 

Transition IPSL-CM5A2-INCA 1.89 P -0.28 66 9.41E-01 7.81E-01 

Transition IPSL-CM6A-LR 1.27 P -0.61 145 7.34E-01 3.05E-01 

Transition MPI-ESM-1-2-HAM 1.87 P 0.08 316 4.70E-01 6.39E-01 

Transition MPI-ESM1-2-HR 0.94 P -0.16 449 4.47E-01 4.51E-01 

Transition UKESM1-0-LL 1.25 P -0.24 215 1.93E-01 4.43E-02 
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Figures 

 

Supplementary Figure C.1. Median change in simulated dry season local surface 

temperature due to forest loss (ΔT, K %-1). Results are shown for each model and each of the 

ten 16-year time periods, from 1854-2014 (datasets listed in Table C.1). Model results are 

shown for areas where initial forest cover exceeds 70%. Error bars show the standard error 

of the mean for each model and time period. 
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Supplementary Figure C.2. Relative change in precipitation due to forest loss (ΔP, %/%), for 

each model and satellite and for each season. Results are calculated as the change in 

monthly precipitation divided by the mean monthly precipitation for each model and satellite 

dataset. The point represents the median of the pixels for each season, with the error bars 

showing the standard error of the mean. 

 

 



   
 

   
 

265 

 

Supplementary Figure C.3. Correlation matrix showing the relationships between each 

model variable for each season (dry a), wet b), transition c) and annual d)). Results show the 

Pearson correlation coefficient (Pearson’s r) value with colouring indicating a positive (red) 

or negative (blue) relationship. 


