
Learning SAT Encodings for

Constraint Satisfaction

Problems

Felix Ulrich-Oltean

PhD

University of York
Computer Science

September 2023

Abstract

Constraint programming addresses many interesting and challenging prob-

lems in our world, including recent applications to contexts as diverse as al-

locating refugee relief funds, short-term mine planning and hardware circuit

design.

Users define their problems in high-level modelling languages which in-

clude descriptive global constraints. One of the most effective ways to solve

constraint satisfaction problems (CSPs) is by translating them into instances of

the Boolean Satisfiability Problem (SAT). For some global constraints in CSPs

there exist many algorithms which encode the constraint into SAT; choosing an

appropriate SAT encoding can alter the ultimate solving time dramatically.

We investigate the problem of selecting the best SAT encoding for pseudo-

Boolean and linear integer constraints. Many machine learning techniques are

explored, applied and evaluated to aid this selection. The result is a significant

improvement in performance compared to the default choice and to the single

best choice from a training set. The approach is successful even for previously

unseen problem classes and it greatly outperforms a sophisticated general

algorithm selection and configuration tool.

This work provides a thorough empirical study and detailed analysis of each

stage in the machine learning process as applied to choosing SAT encodings.

It does this in three phases: firstly by using generic CSP instance features to

select an encoding per constraint type for each instance, then by introducing

new features which focus on the constraint types in question, and finally by

learning to select encodings for individual constraints.

We find that even generic instance features can produce good predictions,

but that the specialised features introduced give more robust performance es-

pecially when predicting for unseen problem classes. Training to predict per

constraint shows potential and leads to better performance for some prob-

lem classes, but per-instance selection is still competitive across the corpus

of problems as a whole.

ii

Contents

Author Declaration vii

Acknowledgements viii

List of Figures x

List of Tables xii

List of Code Listings xiv

Glossary xv

1 Introduction: Solving Problems by Searching for Truth 1

1.1 Constraint Programming . 2

1.2 Motivation . 5

1.3 Thesis and Research Questions . 6

1.4 Structure . 7

1.5 Summary of Contributions . 9

1.6 Style and Conventions . 10

2 Background: Constraint problems and Boolean SAT 11

2.1 Constraint Satisfaction and Optimisation . 12

2.1.1 Formal Definition of CSP . 12

2.1.2 Constraints . 12

2.1.3 Solving CSPs . 14

2.1.4 Describing CSPs: Constraint Modelling 15

2.1.5 Competitions . 17

2.2 The Boolean Satisfiability Problem . 19

2.2.1 Definitions . 19

iii

Contents

2.2.2 SAT Solvers . 20

2.2.3 SAT Encodings . 23

2.3 Encoding Linear Integer Constraints to SAT . 25

2.3.1 Expressing Linear Integer Constraints as Pseudo-Boolean 25

2.3.2 Pseudo-Boolean Constraints with At-Most-One Partitions 26

2.3.3 Performance of SAT Encodings . 28

2.4 Constraint Reformulation and Solving with Savile Row 29

2.5 Summary . 31

3 Background: Machine Learning, Portfolios and Constraints 32

3.1 Machine Learning . 33

3.1.1 Types of Machine Learning . 33

3.1.2 Designing a Machine Learning System 35

3.2 Using Constraint Solving and Machine Learning Together 44

3.2.1 To Augment or Replace? . 44

3.2.2 Tuning versus Collaborating . 45

3.2.3 Copy the Expert or Discover a Policy Independently? 46

3.3 Portfolio Approaches, Algorithm Selection and Configuration 47

3.3.1 Building a portfolio . 47

3.3.2 Measuring Performance . 49

3.3.3 Algorithm Selection Case Studies . 51

3.4 Summary . 54

4 Selecting Encodings using Generic Features 56

4.1 Method . 57

4.1.1 The problem corpus . 57

4.1.2 Features . 59

4.1.3 The Encodings . 59

4.1.4 Training . 60

4.2 Experimental Setup . 64

4.2.1 Solving Problem Instances and Extracting Features 64

4.2.2 Cleaning the Dataset . 64

4.2.3 Splitting the Corpus, Training and Predicting 66

4.2.4 Evaluating Performance . 67

4.3 Evaluation . 67

iv

Contents

4.3.1 Results . 67

4.3.2 The Elusive Virtual Best for SAT Solving 72

4.3.3 Analysis of the Configuration Space . 73

4.4 Summary . 76

5 Learning Using Specialised Constraint Features 77

5.1 New Features for PB and LI Constraints . 78

5.1.1 The Anatomy of PB and LI Constraints 78

5.1.2 The Features . 79

5.2 Extended Results . 80

5.2.1 Results . 81

5.3 Comparison with AutoFolio . 86

5.4 Feature Importance . 88

5.5 Summary . 91

6 IndiCon: Learning to Select Encodings for Individual Constraints 93

6.1 The Promise and Challenges for Per-Constraint Predictions 94

6.1.1 A Motivating Example . 94

6.1.2 Obtaining Timings to Build a Training Dataset 97

6.1.3 Evaluating Performance . 98

6.1.4 To Tree or Not to Tree, or Not All PBs are Equal 99

6.2 Method . 100

6.2.1 Corpus . 102

6.2.2 Building on lipb to Extract Features of Individual PB Constraints . . 104

6.2.3 Clustering the Individual Constraints 106

6.2.4 Generating Labelled Training Data . 110

6.2.5 Training Classifiers . 115

6.2.6 Testing IndiCon . 116

6.3 Results and Analysis . 118

6.3.1 Targetting PB and LI in Isolation . 119

6.3.2 Comparison with LeaSE-PI . 122

6.3.3 Setting Both PB and LI Constraints . 123

6.4 Evaluation . 125

6.4.1 Revisiting the Challenges . 125

6.4.2 Back to MRCPSP . 125

v

Contents

6.4.3 Conclusions . 126

6.5 Summary . 127

7 Conclusion 128

7.1 Revisiting the Thesis and Research Questions 128

7.2 Lessons Learned . 131

7.3 Limitations . 132

7.4 Future Work . 133

Appendices 135

A Featuresets 136

B Neural Network Trial 140

C Research Data Statement 142

Bibliography 143

vi

Author Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, university. All

sources are acknowledged as references.

In this thesis dissertation, the use of the pronoun “we” refers to the author and reader

collectively.

I have presented parts of the work in this thesis previously at the following venues:

CP2020 Doctoral Programme The short paper Learning SAT Encodings for Individual Con-

straints outlines some initial investigations into whether performance gains might

be made from selecting different SAT encodings for pseudo-Boolean constraints. The

idea is introduced of ultimately selecting encodings for individual constraints.

CP2021 Doctoral Programme My submission Learning to Choose SAT Encodings for Pseudo-

Boolean and Integer Sum Constraints describes early versions of the work in Chap-

ters 4 and 5.

ModRef 2021 Workshop The paper Selecting SAT Encodings for Pseudo-Boolean and Lin-

ear Constraints: Preliminary Results [1] written with my PhD supervisors presents

some results from Chapters 4 and 5 without predictions for unknown problem classes.

It also begins to explore feature importance.

CP2022 Conference Our paper Selecting SAT Encodings for Pseudo-Boolean and Linear

Integer Constraints [2] written with my supervisors presents the work in Chapters 4

and 5 concisely, including predicting for unknown problem classes and more about

feature importance.

Constraints Journal 2023 Our paper Learning to Select SAT Encodings for Pseudo-Boolean

and Linear Integer Constraints [3] written with my supervisors extends the work of

the previous entry to include more encodings and more analysis.

vii

Acknowledgements

Although a PhD is a very individual pursuit, its success depends on the support, guidance

and patience of many parties. I am indebted to so many people and organisations who

have contributed to my realising a long-held dream. Because ranking importance is a

fool’s game, I will cowardly opt to present my thanks in a roughly chronological order.

I am immensely grateful to:

• my wife Emma and our children Elisei, Estera, Eva and Ezechiel who encouraged and

supported me through this ambition to dedicate several years to in-depth study

and research. I thank them for the sacrifices they made to enable me to pursue this

dream.

• Elaine Silson, the head teacher Allerton High where I had taught for 10 years, for

giving me time and space to explore the possiblity of pursuing a PhD.

• the UK Engineering and Physical Sciences Research Council who funded my PhD with

grant EP/R513386/1.

• Peter Nightingale, my principal supervisor, for his patience, care, attention to detail

and relentless encouragement through some difficult patches along the way.

• James Cussens (James I) and James Walker (James II) for complementing Pete’s advice

and for their encouragement and guidance based on years of previous PhD supervi-

sion experience.

• the whole Computer Science department at the University of York, in particular the

post-graduate admin team, who made me feel welcome and part of the “team” from

day one.

• the CP group at University of St Andrews for their virtual open door, their many col-

laborations and inviting me into their thriving research community. In particular I

want to thank Ándras, Chris, Ian G., Ian M., Joan, Mun See, Nguyen, Özgur and Ruth.

viii

• Jordi Coll, Mateu Villaret and Miquel Bofill at Universitat de Girona for letting me get

on board with their paper in the very early days of my PhD.

• the University of York High Performance Computing service, Viking and the Research

Computing team for providing and supporting the Viking Cluster, on which I carried

out the bulk of my experiments.

The following software has been instrumental in my investigations throughout this

thesis and in the communcation of the results in this document.

scipy [4] for statistical tests and the drawing of dendrograms

Savile Row [5] for implementation of SAT encodings, and for the base on which to imple-

ment feature extraction and encoding selection

scikit-learn [6] for the implementation of machine learning algorithms

seaborn [7] for quick visualisations to help analyse results

matplotlib [8] for infinitely customiseable plots

ix

List of Figures

1.1 A simple constraint problem: planting crops . 4

1.2 Comparison between imperative programming and constraint programming . 4

2.1 Overview of Savile Row constraint programming pipeline 30

3.1 Modes of using ML with constraint solving . 46

3.2 An example of solver comparison . 50

4.1 PAR10 performance for various encoding portfolio sizes 62

4.2 Flow diagram summarising experimental investigation 65

4.3 Prediction performance using f2f and f2fsr features against reference times . 70

4.4 Survival plot shoing number of instances solved within given time 70

4.5 Variation in SAT solving time . 72

4.6 Distribution of virtual best encodings . 73

4.7 Performance profile of selected encodings on the entire corpus 75

5.1 Prediction performance using all four featuresets 84

5.2 Survival plot shoing number of instances solved within given time 84

5.3 Distributions of prediction accuracy across the 50 split, train, predict cycles

using our preferred setup. 85

5.4 Frequency with which encodings are selected by LeaSE-PI 85

5.5 Permutation feature importance . 89

5.6 Distribution of mean permutation feature importance 89

6.1 MRCPSP run times with same or different encodings 96

6.2 Indicon timing challenges . 99

6.3 Overview of steps in IndiCon . 101

6.4 Agglomerative clustering dendrograms . 109

6.5 Instance weights across corpus . 115

x

List of Figures

6.6 Trimming identical constraints . 115

6.7 Comparison of IndiCon with LeaSE-PI . 122

6.8 Performance of IndiCon setting both types of encoding 123

6.9 IndiCon and LeaSE-PI by constraint model . 124

xi

List of Tables

2.1 Constraint solving competition results . 18

3.1 Selected ML classification algorithms . 38

4.1 Problem corpus . 66

4.2 Performance summary . 69

4.3 The 20 best encoding configurations across the corpus 74

5.1 Features introduced to describe PB and LI constraints 79

5.2 Performance summary including new features 82

5.3 Performance comparison with AutoFolio . 87

5.4 Top 20 features in lipb . 91

6.1 Corpus of problems used for IndiCon . 103

6.2 IndiCon Features . 105

6.3 Results of sequential feature selection . 111

6.4 Design choices in IndiCon . 119

6.5 Performance summary for IndiCon . 121

A.1 The f2f features . 136

B.1 Performance of MLP classifier setup . 140

B.2 Result of hyperparameter tuning for a neural network 141

xii

List of Algorithms

2.1 High-level overview of DPLL SAT-solving . 22

2.2 High-level overview of CDCL SAT-solving . 22

6.1 Sampling problems to test combined IndiCon predictions 117

xiii

List of Code Listings

2.1 An Essence Prime constraint model for Sudoku 16

6.1 Extract from original constraint model for MRCPSP 95

6.2 Extract from adapted constraint model for MRCPSP 95

6.3 Sample cluster allocation in IndiCon . 112

6.4 Sample cluster labelling in IndiCon . 113

xiv

Glossary

arc consistency (AC) Given a constraint C in a constraint satisfaction problem (CSP) and

a decision variable X ∈ scope(C), the variable X is arc consistent if every value in

its domain has at least one supporting value in the domain of every other variable

in scope(C). xvi, 15

at-most-one (AMO) A constraint across a number of Boolean variables stipulating that no

more than one of them should be set to True. 13, 133

Boolean satisfiability problem (SAT) A very basic CSP where all variables are Boolean (i.e.

can be assigned either a value of True or False). The single constraint is expressed

in propositional logic, connecting the variables with the logical operations NOT, AND

and OR. 5–7, 11

constrained optimisation (CO) An umbrella term for various approaches to solving prob-

lems with constraints, usually trying to minimise or maximise the result of an objec-

tive function. 1, 3, 8, 133

constraint optimisation problem (COP) A CSP which additionally has an objective func-

tion which is to be either minimised or maximised. 12

constraint programming (CP) The practice of solving CSPs, which typically involves mod-

elling a problem using a constraint modelling language, and then searching for so-

lutions while using deduction and reformulation along the way to reduce the search

space. 1–3, 5, 6, 8, 132

constraint satisfaction problem (CSP) A problem which consists of a set of variables X ,

their respective domains D and a set of constraints C. Each constraint imposes

restrictions on what values individual variables can take (unary constraints) or what

combinations of values can be taken by some subset of X . The subset of X which

xv

Glossary

is constrained by a particular constraint Ci is called the scope of Ci. xv, xvii, 3–7, 9,

11, 12, 14, 15, 133

Essence Prime The constraint modelling language used by Savile Row. Essence Prime can

be written by human modellers, but it can also be produced by the Conjure tool [9]

from problem specifications written in the Essence language. The Essence Prime

language is described within the Savile Row manual [10]. xvii, 16, 29, 94–97, 102, 103,

105, 128, 132

generalised arc consistency (GAC) A constraint C has generalised arc consistency if each

of the variables in its scope has arc consistency (AC). In other words, for any partial

assignment to a variable X in C, there exists at least one supporting value in each

other variable in scope(C) for every value in the domain of X . See also AC. 15, 24

graph neural network (GNN) A neural network which is specifically designed to learn from

data which can be modelled as a graph structure, such as social networks or chemical

compounds. 133

linear integer (LI) A constraint of the form (
∑

qixi) ⋄ k over the set of integer variables

{x1 . . . xn} with associated integer coefficients (a.k.a. weights) {q1 . . . qn} and a com-

parison operator ⋄, usually ≤ (less than or equal to) 8, 9, 13, 98–100, 103, 104, 106,

107, 111, 112, 115–117, 120–123, 126–130, 132

machine learning (ML) The processing of data in order to build a representation from

which useful predictions can be made 2, 6, 8–10, 15, 54, 129–132

multi-mode resource-constrained project scheduling problem A scheduling problem in

which tasks can be performed in different modes which affect the amount of re-

sources consumed; the tasks may have precedence constraints and the resources

may be either renewable or non-renewable. See [11] 10, 94, 95

PAR10 Penalised average runtime with a tenfold penalty for runs which time out. 49, 62

penalised average runtime (PAR) A metric for the running time of a program. Each run

which exceeds a given timeout is assigned a time equal to the timeout multiplied

by a predefined multiplier. Several runs are usually executed and their average time

reported. 49

pseudo-Boolean (PB) A constraint of the form (
∑

qixi) ⋄ k over the set of boolean vari-

ables {x1 . . . xn} with associated integer coefficients (a.k.a. weights) {q1 . . . qn} and a

xvi

Glossary

comparison operator ⋄, usually ≤ (less than or equal to) 8, 9, 13, 94, 97–100, 102–107,

110–112, 114–117, 120–123, 125–130, 132

SAT encoding A scheme for representing a variable, constraint, or entire CSP as a Boolean

SAT formula. The term can refer to the resulting SAT formula, or to the algorithm

which produces it. 5, 6, 9, 93, 96, 97, 100, 103, 106, 127–129, 131–133

Savile Row A model reformulation tool, or “modelling assistant” which takes constraint

models written in Essence Prime and re-formulates them with a given target solver

in mind, applying simplifications and optimisations along the way. Savile Row is

described in more detail in [5, 10]. xvi, 8, 11, 29, 96–100, 102–106, 116–119, 123, 125,

126, 129–134

single best The single best algorithm is the algorithm which solves the instances in the

training set in the quickest overall time. In this work we are usually referring to the

encoding or combination of encodings – this is because SAT encodings are essen-

tially algorithms. 130

xvii

Chapter 1

Introduction: Solving Problems by

Searching for Truth

� Our problems are all solvable �

Olivia Rodrigo

Constraints abound in our world. At the time of writing, societies are grappling with

the realities of exhaustible natural resources, a diminishing time frame within which to

address existential crises and ever more demand on fixed budgets. Increasingly technol-

ogy is being looked towards to play a major role in addressing some of these universal

challenges.

The broad field of constrained optimisation (CO) develops algorithms and approaches

which seek to find the best solutions to problems where potentially competing restrictions

have to be satisfied by making optimal or at least appropriate decisions with the “levers”

that are available. While researchers in this field would never claim to have the answers

to all the world’s problems, there are many real-life contexts where this research makes a

positive contribution to solving difficult problems. Examples of applications from a recent

conference in this field1 include: allocating refugee relief funds for the UNHCR [12], short-

term mine planning [13], and strategies for water flow control [14].

Artificial intelligence has never had a higher public profile, but with its ubiquity in

modern life come many questions about trustworthiness, fairness and explainability. One

significant advantage of CO in general and constraint programming (CP) in particular is that
1CP2023 was the most recent constraint programming (CP) conference at the time of writing. Pro-

ceedings are available at https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=
16301. Constraint programming is one specific approach to constrained optimisation.

1

https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16301
https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16301

1.1. Constraint Programming

answers to difficult questions are arrived at by using exact deduction rather than good

guesses, and can therefore be explained and justified more easily than approximation-

based machine learning (ML) systems such as neural networks.

At the same time, ML can play a vital role in CP to aid decision making during the exact

solving process. This thesis considers one particular approach to problem-solving: ex-

pressing problems using a constraint modelling language, translating the resulting model

into a basic logic formula, and finally solving it using a highly efficient solver. Our focus is

primarily on how we can choose translations from constraint models to logic formulae in

a way that leads to the problem ultimately being solved faster.

In this introductory chapter I present:

• a high-level overview of the context for my work, namely solving problems using the

constraint programming approach,

• the motivation for this work, briefly suggesting opportunities for improving the state

of the art in constraint solving,

• the aims of this work stated as research questions,

• the structure for the remainder of this dissertation,

• a preview of the contributions made to the research field by this thesis, and

• some notes regarding what to expect in terms of style and conventions.

1.1 Constraint Programming

When computers are used to solve a problem, there are at least two overarching ap-

proaches that can be adopted: imperative and declarative. In the first case, the program-

mer or software engineer devises a set of exact steps to be taken in order to solve the

problem or achieve the required behaviour. The latter method is to capture and commu-

nicate clearly the desired features of a solution as well as the known facts and to let the

computer come up with an answer. Both ways of tackling complex problems have their

potential pitfalls, especially in capturing accurately the requirements or the exact nature

and features of the problem at hand. However, by adopting a declarative approach, we

hope to benefit from:

• a clear statement of the desired solution, unobscured by “what to do”, and therefore

a higher likelihood of actually answering the real problem;

2

1.1. Constraint Programming

• mathematically sound deduction steps which will give us a reliable solution, reduc-

ing the risk of making a mistake in coming up with an algorithm;

• not “re-inventing the wheel”, i.e. using existing robust solving algorithms which are

applied to our definition of a problem;

• portability of our model not only to different hardware, but more excitingly to dif-

ferent categories of solving technologies.

In this thesis I specifically concentrate on the declarative approach called constraint

programming (CP), which is a subdiscipline of constrained optimisation (CO). Constraint

programming is concerned with solving constraint satisfaction problems (CSPs). CSPs can

model many interesting, important and complex real-life problems ranging from formal

verification of hardware systems to allocation of resources, multi-criteria scheduling and

layout optimisation. Being a declarative approach, the promise of CP is that a user de-

scribes a problem precisely and the computer solves it or declares that no solution is

possible. This ambition has affectionately been named the Holy Grail of Computer Pro-

gramming and progress towards the ultimate goal has been discussed and documented

regularly [15].

Let us introduce and illustrate a simple CSP. Imagine a farmer who needs to plant 3

types of crop in their fields in such a way that adjacent fields do not have the same crop.

Figure 1.1 represents the layout of the fields (labelled A-G) using edges to show which fields

are adjacent on the farm. In this CSP, we model the fields as decision variables A to G, each

of which have a domain of {1, 2, 3}, to stand for the available crops. A possible solution

to the problem is the following assignment, which is shown on the right of Figure 1.1:

{A← 1, B ← 2, C ← 1, D ← 3, E ← 2, F ← 1, G← 3}

More specific definitions of CSPs and details of CP will be given later in the thesis. For

now it might be interesting to visualise this approach to programming and to compare

it with the imperative approach. In Figure 1.2 we see a very high-level view of the CP

“pipeline” presented as analogous to the steps taken in imperative programming.

Of course this is a very simplified summary, but it helps us to think about the steps

involved and to make some observations of what is important at each stage of the pro-

cess. In both cases it is vital that the real-world situation is captured accurately in the

first instance to ensure that the program actually addresses the real problem. For both

disciplines there is potential for creativity in how the programmer uses abstraction to

3

1.1. Constraint Programming

A B C

D E

F G

1 2 1

3 2

1 3

Figure 1.1: Planting crops: an illustration of a simple CSP. Left: a farmer’s fields represented by
nodes labelled A-G, with edges showing which fields are neighbouring. Right: a possible assign-
ment of crops to fields to avoid using the same type of crop in neighbouring fields.

real-life problem

human or AI under-
standing and simpli-
fication of problem

high-level algorithm in
pseudo-code, diagram,
or other representation

mathematical or textual
description of decision

variables and constraints

concrete, machine-
interpretable but

also human-readable

computer program, writ-
ten in Java, Rust, C++, ...

constraint model writ-
ten in Essence Prime,

MiniZinc, XCSP3, ...

low-level, not eas-
ily human-readableexecutable program low-level representation,

e.g. as a Boolean formula

final outputprogram out-
put or behaviour

solution(s) or
“UNSAT” output

design “solution” based
on agreed requirements

describe problem based
on agreed understanding

a human or AI
codes the algorithm

a human or AI mod-
els the problem

compile translate,
reformulate

execute search for solutions

focus of the thesis

Imperative Programming Constraint Programming

Figure 1.2: An analogy between the imperative programming process and the constraint program-
ming “pipeline”, showing a high-level view of how a problem might be tackled using the two ap-
proaches. The slanted boxes represent information at various stages. The earlier stages are tra-
ditionally carried out by humans, although increasingly AI agents are being developed which can
carry out the first two steps with varying degrees of success. The blue ellipse and label highlight
where the thesis fits into the process.

4

1.2. Motivation

represent the situation using their language of choice. The subtle difference is that in CP,

the programmer’s chief concern is to ensure that the model they produce gives an ac-

curate representation of the features of the problem, whereas in traditional (imperative)

programming, the programmer has to engineer the way to achieve the goal too.

We now come to the part of the pipeline which is explored in this thesis. A compiler

takes a program written in a high-level language and transforms it into low-level machine

code, effectively re-formulating the algorithm in terms of simpler (but less human read-

able) steps. In CP, the human-readable and expressive model can also be transformed

into a simpler, lower-level definition of the problem. This is sometimes called model re-

formulation, and, just as the details of a compiler can make a huge difference in the ef-

ficiency of the eventual executable, reformulation of constraint models can lead to huge

improvements in the ultimate solving performance. One reformulation which has proven

very effective and popular is to express the constraint model as an instance of the Boolean

satisfiability problem (SAT). There are however many schemes which can translate a CSP

into a SAT instance. The work in this thesis is mainly concerned with choosing the best

scheme for this step of the CP pipeline.

1.2 Motivation

As mentioned above, one popular and increasingly powerful way of solving a CSP is by

translating it into SAT. SAT solving technology has advanced apace in recent years and it

is a key part of many competition-winning CSP solvers.

Many ways to encode a CSP into SAT have been developed. A SAT encoding for a con-

straint type refers to scheme which represents the constraint as a Boolean formula. In

this context the term “encoding” can refer to the resulting formula (the SAT formula is an

encoding of the CSP constraint), or more generally to the process by which the translation

is achieved, i.e. an algorithm or a mathematical definition. For many types of constraint

there exist several alternative encodings. When encodings are described in literature, ac-

companying experiments often show that, depending on the problem at hand, the choice

of encoding can have a significant effect on the time in which the problem is solved, or

the memory space requried to reach a solution.

In many areas of computer science complementary algorithms exist for solving a given

problem, that is to say the algorithms can outperform each other on different inputs.

The idea of using a porfolio of algorithms is well studied and has indeed been applied

5

1.3. Thesis and Research Questions

with some success to constraint programming but not, to my knowledge, to the issue of

choosing a suitable SAT encoding at the constraint level. Users of some constraint solving

tools can make the choice of SAT encoding per constraint type explicitly, but no proposed

framework or tool exists for making the choice dynamically based on the specifics of the

problem being solved.

An experienced practitioner of CP or SAT solving could be expected to consider aspects

of a problem and, drawing on experience, make a prediction for which encoding might be

the best choice. In the pursuit of the ideal “tell the computer the problem and the com-

puter will solve it”, there is a gap in the CP user’s toolkit for this expert recommendation to

be made automatically. One ubiquitous application of ML is precisely this role of standing

in for a human expert to make recommendations. The work for this thesis is motivated by

the hope that ML techniques can be employed to speed up the solving of CSPs by making

good choices when it comes to which SAT encoding to use.

A further desired contribution is that a thorough investigation of selecting SAT encod-

ings for constraints will lead to new insights and of course new data about the relationship

between the nature of the problem being solved and the kind of encoding that works well.

1.3 Thesis and Research Questions

Having identified the research gap and the motivation for this research in the previous

section, I can briefly state my overall thesis as follows:

Thesis
The solving of constraint satisfaction problems can be made faster by using
machine learning to select SAT encodings for constraints.

The thesis statement above is quite brief for the sake of readability. More specifically:

• The thesis assumes that the problem is to be translated into SAT and solved by a SAT

solver.

• The thesis takes constraint satisfaction problems to mean finite integer domain

problems, i.e. where the decision variables can take either integer or Boolean values,

and each variable has a domain of finite size.

• This thesis restricts itself to studying two types of constraints: pseudo-Boolean and

linear integer.

6

1.4. Structure

In investigating this thesis, I pose the following related research questions, which are

then addressed in the technical chapters.

Research Question 1

To what extent does the choice of SAT encoding for constraints affect problem-

solving performance?

Addressed in Chapters 2 and 4

Research Question 2

Can a good SAT encoding choice be made for unseen CSP instances based on generic

instance features?

Addressed in Chapter 4

Research Question 3

Can the quality of encoding selection be improved by the use of features which are

specific to the relevant constraints?

Addressed in Chapter 5

Research Question 4

Is it practical to learn to set encodings for individual constraints within a problem

instance? Does it lead to performance improvements compared to a single encoding

choice per constraint type?

Addressed in Chapter 6

1.4 Structure

The rest of this thesis dissertation is structured as follows:

Chapter 2, Background: Constraint problems and Boolean SAT formally defines the types

of problems (CSPs) we are dealing with. The constraint solving pipeline is introduced in

more detail. Encoding to the SAT is described as one way to solve CSPs. Schemes for

encoding specific constraints into SAT are introduced, specifically for pseudo-Boolean and

linear integer constraints. We consider literature which shows how the choice of encoding

7

1.4. Structure

can affect the solving performance. Savile Row is introduced as a reformulation tool which

can support the research carried out for this thesis.

Chapter 3, Background: Machine Learning, Portfolios and Constraints begins with an

overview of potentially relevant ML techniques. We go on to explore how ML and CO are

being used together to improve solving performance. Finally the idea of portfolios for

algorithm selection is discussed, along with existing applications to the CP pipeline.

Chapter 4, Selecting Encodings using Generic Features describes the first attempt to

predict good encodings for pseudo-Boolean (PB) and linear integer (LI) constraints us-

ing features of the problem instances. The experimental setup is described in detail and

the results are presented in a variety of formats to allow analysis. Finally the results are

discussed and it is shown that it is indeed possible to predict good encodings on a varied

corpus of problems.

Chapter 5, Learning Using Specialised Constraint Features explores whether it is pos-

sible to improve on the performance achieved in the previous chapter by devising and

using custom problem features which are concerned with the specific constraints whose

encodings we are trying to predict. The new features are introduced and the experiments

are repeated to evaluate the effect of the new features. Additionally the ML framework

used so far is compared to the off-the-shelf algorithm selection tool AutoFolio and it is

shown that our custom setup performs better for our task. Finally a measure of feature

importance is described and analysed for our featuresets.

Chapter 6, IndiCon: Learning to Select Encodings for Individual Constraints advances

the research to a more fine-grained decision level, setting a different encoding for each

individual constraint (IndiCon), rather than a single choice across the instance as before.

The chapter begins by setting out some of the challenges that come with trying to learn to

set encodings at this level. I describe some methods I designed to gather useful training

data. The results of experiments using various setups are presented and evaluated.

Chapter 7, Conclusion evaluates how the findings from each technical chapter relate to

the research questions and the overall thesis. Some limitations of this study are explained

and avenues for extending or applying this work are suggested.

8

1.5. Summary of Contributions

1.5 Summary of Contributions

The first three chapters introduce the thesis and set out the background to the work. Below

is a summary of the contributions made in the three technical chapters.

In Chapter 4, Selecting Encodings using Generic Features:

• the novel design of LeaSE-PI, incorporating ideas from portfolio-building and pair-

wise predictions

• a detailed empirical investigation and analysis of ML-based predictions of SAT en-

codings across a varied corpus of CSP instances

• the resulting dataset, published online 2 alongside [3], which includes the problem

corpus and all the timing results, as well as the code necessary to reproduce the

experiments

• an investigation into the volatility of the “virtual best” encoding due to random el-

ements in SAT solving

• an analysis of the configuration space, i.e. how the available choices of encodings

perform across the entire corpus

In Chapter 5, Learning Using Specialised Constraint Features:

• a new set of features measuring aspects of the PB and LI constraints in a problem

instance

• a further empirical investigation into the difference between using constraint-specific

features and generic features

• an analysis of feature importance

• an empirical comparison of the performance of AutoFolio against the LeaSE-PI spe-

cialised setup

In Chapter 6, IndiCon: Learning to Select Encodings for Individual Constraints:

• three methods of obtaining training data for individual constraints

• a novel systematic clustering-based way to extract more fine-grained timing infor-

mation without trying every single combination of encodings for each constraint
2https://github.com/felixvuo/lease-data

9

https://github.com/felixvuo/lease-data

1.6. Style and Conventions

• an empirical investigation and analysis of various ML setups for choosing encodings

for each individual constraint of a type

• discussion of the opportunities and challenges of this approach, and comparison of

the automated approach against the intuitive manual separation of constraints in

the multi-mode resource-constrained project scheduling problem (MRCPSP).

1.6 Style and Conventions

Writing Person As stated in the author declaration, I use the pronoun “we” to refer to

the author and reader collectively. I use the first-person singular “I” to refer to specific

actions or decisions I have made while working on this thesis.

Special Terms I have tried to (re)introduce the full name for each acronym, abbreviation

and initialism when first used in a chapter, using the short version thereafter. Special terms

such as these are also listed in the Glossary. Some terms used in this dissertation can

have different meanings in different contexts. An obvious example is SAT, which can stand

for the Boolean satisfiability problem in general, or for a given instance of the problem

expressed as a logical function of its Boolean variables. I have tried to make the meaning

clear from the context.

Epigraphs � These tiny snippets of song lyrics are here purely to make the reader smile,

as music has been a faithful companion to me through the often isolated work on this

PhD, especially during the pandemic. Please feel free to ignore them.

10

Chapter 2

Background: Constraint Satisfaction,

Combinatorial Optimisation and Boolean

Satisfiability

� You’re yes, then you’re no �

Katy Perry

The introduction explained why solving constraint problems efficiently is of great ben-

efit in many fields. I now go on to define constraint satisfaction problems (CSPs) more

formally and to review established methods of describing and solving CSPs, including by

encoding to the Boolean satisfiability problem (SAT). I highlight some of the relevant is-

sues to bear in mind when choosing an encoding by looking at how general constraint

solvers and SAT solvers proceed towards a solution.

In this chapter I outline:

• what CSPs are specifically in the context of this thesis

• the structure of a general constraint solver

• a successful method for solving CSPs efficiently, namely by translating to the lower-

level Boolean satisfiability problem (SAT)

• how some higher level expressive constraints can be encoded into Boolean logic

• the impact of encoding choice on solving performance

• why Savile Row can help with experiments in this thesis

11

2.1. Constraint Satisfaction and Optimisation

2.1 Constraint Satisfaction and Optimisation

2.1.1 Formal Definition of CSP

For the purpose of this thesis, I define a CSP as follows.

Definition 1 (CSP) A constraint satisfaction problem P is a triple consisting of:

a set X of n decision variables X = ⟨x1, . . . , xn⟩

a domain D(xi) for each decision variable, where each

domain is either a set of integers, or the set {⊤,⊥}

D = ⟨D(x1), . . . , D(xn)⟩

a set of m constraints, each of which imposes condi-

tions on subsets of X

C = ⟨C1, . . . , Cm⟩

It is often the case that, as well as needing to satisfy a number of constraints, we are

interested in maximising some score or minimising some cost. The addition of such an

objective creates a constraint optimisation problem (COP), defined more formally below.

Definition 2 (Constraint Optimisation Problem) A constraint optimisation problem is a Con-

straint Satisfaction Problem with the addition of:

• an objective function mapping the values of a subset of the decision variables to an

integer objective value, and

• an instruction to either maximise or minimise the result of the objective function

Definition 3 (Solution) A solution to a CSP (or COP) is a complete assignment of values to

all variables x1 . . . xn such that every variable xi is assigned a value from its domain D(xi)

and all constraints are satisfied (they evaluate to true). If multiple satisfying assignments

exist, then the problem has multiple solutions. When no satisfying assignment exists, the

problem is said to have no solution, or to be unsatisfiable.

2.1.2 Constraints

Constraints restrict what combinations of values may be assigned to variables. The vari-

ables affected by a constraint are called its scope.

Practically, constraints can be defined in various ways. Here are a few examples:

• Unary constraints have a scope of size 1, applying a restriction on the values that

can be assigned to a variable. An example could be that the value must be even.

12

2.1. Constraint Satisfaction and Optimisation

• Binary constraints can be defined for pairs of variables, for example demanding that

x1 ̸= x2

• Extensional constraints explicitly list all allowable (or conversely disallowed) com-

binations of values for the variables in their scope – this is sometimes called a table

constraint

• Intensional constraints use a language to describe the restriction, for instance using

arithmetic and logical constructs such as x1 + x2 = x3

• Global constraints are constraints which can be applied to any number of variables.

The AllDifferent({xa, xb . . .}) constraint is a global constraint which can be declared

on any set of variables to say that their values must be distinct from each other.

In this thesis the focus is on linear integer (LI) and pseudo-Boolean (PB) constraints.

We are also interested in at-most-one (AMO) constraints occuring over the variables in a

PB constraint. I give definitions below for these three global constraints.

Definition 4 (Linear Integer Constraint) A linear integer (LI) constraint constrains a set of

n integer variables x1 . . . xn so that

n∑
i=1

qixi ⋄ k

where k is an integer constant, q1 . . . qn are integer coefficients (also known as weights)

corresponding to x1 . . . xn, and ⋄ is a comparison operator, such as =, ̸=,≤, <,≥, >.

Definition 5 (Pseudo-Boolean Constraint) A pseudo-Boolean (PB) constraint is defined over

a set of Boolean decision variables x1 . . . xn with associated integer coefficients q1 . . . qn

such that
n∑

i=1
qixi ⋄ k

where k is an integer constant and ⋄ is a comparison operator.

In effect a PB constraint is identical to a LI constraint whose variables can only take

the values 0 or 1.

Definition 6 (At-most-one constraint) An at-most-one (AMO) constraint is defined over a

set of Boolean variables and requires that zero or one of the variables is set to true.

13

2.1. Constraint Satisfaction and Optimisation

2.1.3 Solving CSPs

To search for a solution (or all solutions) to a CSP, a solver must assign values to variables

from their respective domains and ensure that all constraints are satisfied. In this thesis,

we are interested in sound and complete solvers, by which I mean solvers which guarantee

that:

• if no solution is found then no solution exists, and

• if solutions exists, they are all found.

However, achiving the guarantees above can be prohibitively slow for very hard prob-

lems, so there are situations where incomplete solvers may still be useful. For instance,

it may be sufficient for a majority of constraints to be satisfied. Alternatively, we may be

searching for the optimal value in a constraint optimisation problem, but be happy to set-

tle for a result which is “good enough” according to some measure of quality, rather than

demanding the provably optimal answer. Although these approaches are of practical use,

we do not consider them in this thesis.

A constraint solver typically implements the following actions:

Extend a partial assignment The solver needs to select a ⟨variable ← value⟩ pair to ex-

tend the current assignment. Initially no values are assigned.

Check constraints When an assignment has been made or extended, the solver needs to

check that all constraints are satisfied.

Propagate implications of assignments When a partial assignment is made, it may be

possible to use the contraints in the problem to make further deductions. For in-

stance if a variable we’ve just assigned a value to is in the scope of an AllDifferent

constraint, then we can remove that value from the domains of all other variables

in the scope.

Backtrack If a dead end has been reached, the last assignment must be undone and an-

other value tried. If there are no more values to try at that level, the solver needs to

backtrack further and undo earlier assignments to other variables.

The performance of a solver is improved by giving careful attention to the details of

how the actions above are implemented. Many heuristics are available for the first action

14

2.1. Constraint Satisfaction and Optimisation

of selecting a variable and then a value, known as Variable-ordering Heuristics and Value-

ordering Heuristics respectively. For example, in [16], a number of variable orderings are

trialled at the start of the solving process to train a machine learning (ML) model; this

model then periodically switches heuristics by considering a number of features of the

ongoing search.

Constraint solvers employ efficient algorithms to update variable domains in light of

the latest assignment and thereby reduce the search space for later assignments. This is

called lookahead and can take various forms. Custom propagators are typically imple-

mented for certain global constraints – these propagators use specialised data structures

and algorithms to remove values from other variable domains which are incompatible with

that constraint. For example, the well-regarded constraint solver Chuffed [17] implements

10 global propagators including alldiff, circuit and table.

Another type of lookahead which has been much researched is the notion of arc con-

sistency (AC). An individual variable Xi ∈ scope(Ci) is arc consistent with respect to Ci if

and only if, when a partial assignment has been made, every value in its domain has at

least one supporting value in the domain of each other variable in scope(Ci). If every vari-

able in a constraint has AC, then the constraint is said to have generalised arc consistency

(GAC). An entire CSP is deemed to have GAC if and only if every constraint in it has GAC.

Maintaining AC can be computationally expensive and is not always the most efficient way

to search for a solution. As far back as 1994 a sixth variation of an algorithm to implement

AC was being proposed and debated in [18]. As we will see soon, arc consistency is still an

interesting property when it comes to SAT encodings.

Finally, some constraint solvers can perform the backtracking step intelligently by

learning new facts during the search. Again, Chuffed demonstrates this by learning no-

goods – assignments which cannot take part in a solution. These nogoods can inform

non-chronological backtracking (sometimes called backjumping): in situations where a

nogood is discovered which does not include the most recently assigned variable, the

solver can “jump” over that last decision.

2.1.4 Describing CSPs: Constraint Modelling

We have seen a formal definition of CSPs and had an overview of how they can be solved.

However, for CSPs to be practically useful, humans need to be able to express problems

easily but precisely. Constraint modelling is the process of describing a “real-life” prob-

lem (of course this could be a puzzle or a toy problem) in terms of decision variables,

15

2.1. Constraint Satisfaction and Optimisation

Listing 2.1: A constraint model written in Essence Prime describing the class of Sudoku puzzles.
This model is taken from the Essence Prime language description in the Savile Row manual [10].

1 language ESSENCE’ 1.0

2 letting range be domain int(1..9)

3 given clues : matrix indexed by [range, range] of int(0..9)

4 find M : matrix indexed by [range, range] of range

5 such that

6 forAll row : range .

7 forAll col : range .

8 (clues[row, col]!=0) -> (M[row, col]=clues[row, col]),

9 forAll row : range .

10 allDiff(M[row,..]),

11 forAll col : range .

12 allDiff(M[..,col]),

13 forAll i,j : int(1,4,7) .

14 allDiff([M[k,l] | k : int(i..i+2), l : int(j..j+2)])

constraints, and optionally an objective function.

A large and growing collection of constraint solving systems exist. Each one tends to

require its own modelling interface. This is usually either a constraint modelling language

or an API (application programming interface). In the former case a model is written by

the human modeller in the given language and then passed to the solver as input; in the

latter case a library is imported and the constraint model is build programatically using a

general-purpose programming language.

Popular constraint modelling languages like MiniZinc [19] and Essence [20] allow the

user to define a model which describes a whole class of problems with parameters for

which values can be supplied to create a particular problem instance. A basic example

would be a Sudoku puzzle – a general model setting out the variables and constraints can

be written, but for a particular instance the user needs to supply the pre-filled values.

For this thesis I use the Savile Row modelling assistant [5] which takes models written

in the Essence Prime language (previously known as Essence’). An example constraint

model written in Essence Prime is shown in Listing 2.1 and describes a standard 9 by 9

Sudoku puzzle. Even in this small example we see some of the expressive power that

Essence Prime allows:

• The model describes the whole class of 9 by 9 Sudoku puzzles – the given directive

(line 3) is used to define parameters of any particular instance.

16

2.1. Constraint Satisfaction and Optimisation

• Decision variables are defined using the find key word (line 4).

• Parameters and decision variables can be expressed as matrices (lines 3 and 4).

• Constraints can be defined using quantifiers variables. For example in lines 6-8 the

model ensures that every pre-filled number “clue” is maintained in the result matrix.

• Global constraints such as allDiff in lines 10,12,14 allow for more succinct human-

readable models.

• Matrix comprehension provide a flexible and powerful way to express constraints

within data structures. Our example model uses this facility in lines 13-14 to enfore

the rule that each 3 by 3 “box” in our Sudoku puzzle must contain different values.

Savile Row applies various simplifications and reformulations to produce lower-level

models specifically optimised for various target solvers. For example it can produce FlatZ-

inc, the same output format as the MiniZinc complier, or target other CP solvers like Minion

[21], Chuffed [22, 23] and Gecode [24]. It can also encode CSPs into Boolean formulae for

SAT solvers, which makes it particularly useful for my research, as we will see later in this

chapter.

2.1.5 Competitions

Competitions are held yearly to promote the development of constraint solving algo-

rithms. These competitions give interesting insights into the state of the art. The com-

petitions described below encourage the research community to submit interesting and

challenging problems. These problems may arise from real-life applications or may be

theoretically interesting and hard to solve. Teams of researchers enter their solvers (mul-

tiple submissions are often allowed) into different tracks which place restrictions on either

the type of problem or on the solver technology. I report on two such competitions which

are well-regarded in the community – recent results from these reveal that a highly com-

petitive approach to solving CSPs is to encode them fully or partially to Boolean formulae

which can then be solved by SAT solvers.

MiniZinc Challenge

The MiniZinc challenge [25] has been held anually since 2008 as part of the International

Conference on Principles and Practice of Constraint Programming. The exact tracks (cat-

egories) have varied over the years but for the last decade the competition has featured

17

2.1. Constraint Satisfaction and Optimisation

Table 2.1: Constraint solving competition results from https://www.minizinc.org/
challenge.html and https://www.xcsp.org/competitions/

MiniZinc Challenge 2022 XCSP Competition 2022

Rank Fixed Free Parallel Main CSP Main COP

1 OR-tools OR-tools OR-tools PicatSAT PicatSAT
2 SICStus Prolog PicatSAT PicatSAT Fun-sCOP (cadical) CoSoCo
3 JacOP Choco 4 Geas Choco Mistral

the following three: the fixed track demands that solvers use the search order annotation

given in the problem specification (for variable and value ordering), the free track allows

solvers to use any search ordering, and the parallel track allows any search order as well

as the use of several processing cores. In all cases the problems are fixed domain CSPs,

with all variable domains being Boolean, integer, enumerated, or matrices of these types.

Table 2.1 shows the results from the latest competition at the time of writing. Note that

the MiniZinc Challenge winner in each of the three tracks mentioned above is OR-tools [26],

a CSP-solving solution from Google. OR-Tools uses a “clause-learning SAT solver as its

base layer” according to the description submitted to the MiniZinc 2022 challenge [27].

PicatSAT [28] also employs a SAT solver (Kissat [29]) once it has encoded problems into a

Boolean formula.

XCSP3

The XCSP3 [30] language was launched with the intention of facilitating the comparison of

algorithms for solving constrained combinatorial problems (CSPs and COPs). Its authors

describe it as an intermediate format occupying a space between expressive modelling

languages such as MiniZinc or Essence and low-level languages like FlatZinc or SAT. XCSP3

retains some structure of models that is lost when using a flat low-level format.

The authors also organise a yearly constraint solver competition for solvers which are

able to take XCSP3 as their input. The results of the competition in 2022 [31] are also shown

in Table 2.1. Once again we see that the top places go to solvers which rely on SAT solving

technology – in this case PicatSAT and Fun-sCOP (using the CaDiCaL SAT solver).

SAT Competition

The results discussed above indicate that translating a CSP to SAT and handing it over to

a SAT solver is a method which is effective for a wide range of problems, given the vari-

18

https://www.minizinc.org/challenge.html
https://www.minizinc.org/challenge.html
https://www.xcsp.org/competitions/

2.2. The Boolean Satisfiability Problem

ety of benchmark problems submitted to the constraint solving competitions. One final

argument for pursuing this route to solving CSPs is that SAT solving technology is itself

showing impressive progress. In effect, once we’ve encoded our CSP as a SAT problem, we

continue to benefit from improvements in SAT solving algorithms. Having won the 2020

edition of the SAT Competition [32], the authors of Kissat [29] carried out an interesting

investigation1. They ran the last 19 competition winners (2002-2020) on the full set of

benchmarks from some of the competitions using modern hardware and operating sys-

tems. The results showed that the winning solver in 2020 was able to solve between 2 and

5 times more instances than the winner from 2002, depending on which year’s benchmark

problems were used.

2.2 The Boolean Satisfiability Problem

In order to benefit from the power of SAT solvers, a CSP needs to be translated into a

Boolean formula. This process is called encoding and any particular schema for carrying

out the translation is termed a SAT encoding. In this section I define the Boolean Satisfi-

ability Problem (SAT for short), I give a broad description of how SAT solving works, and

illustrate some basics of the SAT encoding process.

2.2.1 Definitions

The Boolean Satisfiability Problem (sometimes referred to simply as SAT) is a special case

of the Constraint Satisfaction Problem where all the variables are Boolean, i.e. take the

value True or False.

Definition 7 (Boolean Satisfiability Problem) A Boolean Satisfiability Problem P consists

of a pair ⟨X, F ⟩ where X is a set of decision variables x1 . . . xn each with domain D(xi) =

{True, False} and F is a formula in propositional logic made up of variables from X con-

nected with the logical operators AND, OR and NOT. A solution to such a problem is an

assignment of True or False to each variable in X such that F evaluates to True.

Although a SAT problem can be defined using any formula in propositional logic, it is

most common to use Conjunctive Normal Form. This is the input format expected by most

SAT solvers, and it supports many of the techniques employed by SAT solving algorithms,
1More details and plots at http://fmv.jku.at/kissat/, last accessed 14th March 2023

19

http://fmv.jku.at/kissat/

2.2. The Boolean Satisfiability Problem

such as unit propagation. The CNF format means that for a solution to a SAT problem, an

assignment needs to make at least one literal true in every single clause in the formula.

Definition 8 (Literal) A literal is a Boolean variable which may be negated.

Definition 9 (Conjunctive Normal Form) A propositional formula in Conjunctive Normal Form

(CNF) is a conjunction of clauses, where each clause is a disjunction of literals. An example

formula in CNF is (a∨b)∧(¬b∨¬c)∧(¬a∨¬b∨c); in this formula a, b and c are the variables;

a and ¬b are literals; the expressions in parantheses are the clauses.

A solution to a SAT problem is either:

• the output “UNSAT”, i.e. unsatisfiable, or

• the aoutput “SAT” and an assignment of values to its variables which satisfies the

formula

SAT solvers can normally provide proof of unsatisfiability. They are also usually able

to output all satisfying assignments for a satifiable problem.

2.2.2 SAT Solvers

Most modern solvers are loosely based on the DPLL algorithm [33] summarised in Algo-

rithm 2.1 – this summary is based on a master class given at the CPAIOR conference in

2020 [34, 35] by Armin Biere, the chief author of a string of recent competition-winning

SAT solvers. DPLL searches the assignment space in a depth-first order and backtracks

when the current assignment makes the formula unsatisfiable. Each branch of the search

tree is expanded as the next unassigned variable is assigned a value. At this point, the im-

plications of this choice are propagated to all affected clauses based on various boolean

constraint propagation rules, but principally the idea of unit propagation.

Unit Propagation

Unit propagation is illustrated in the sequence of steps below.

starting formula (a ∨ ¬b ∨ c) ∧ (b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬d ∨ e) ∧ (c ∨ d)

choose b← F (T) ∧ (¬c) ∧ (¬a ∨ ¬d ∨ e) ∧ (c ∨ d)

c← F by UP (T) ∧ (T) ∧ (¬a ∨ ¬d ∨ e) ∧ (d)

d← T by UP (T) ∧ (T) ∧ (¬a ∨ e) ∧ (T)

20

2.2. The Boolean Satisfiability Problem

In this example, the first line shows the starting formula (the SAT problem) in CNF. In the

second line we have chosen to assign a value of False to variable b. This means that the

first clause is now satisfied and can be simply replaced with True2. In the second and third

clauses b appears as a positive literal; our assignment means that b cannot satisfy those

clauses, so b is removed from them. The second clause is now a unit clause, having only

one “free” literal remaining; in order to satisfy it, we must make c false. The result of this

unit propagation is shown in the third line. Now the second clause is satisfied but we

also produce another unit clause – the fourth one. We can apply unit propagation again,

assigning True to d resulting with the formula shown on the last line.

Learning Clauses from Conflicts

A major advance in solving SAT came with the introduction of conflict-driven clause learn-

ing (CDCL), first seen in the solver GRASP [36]. The key improvement is that when an

assignment fails, it is possible to analyse the conflict to determine which variable assign-

ments contributed to the conflict. This allows two new actions. Firstly, a conflict clause

can be derived (or “learned”) and added to the current formula – this clause ensures that

the algorithm avoids searching assignment spaces which can never lead to a solution.

Secondly, once a conflict has been analysed, it is possible to “back-jump”, i.e. backtrack

several decisions at once, rather than undoing each decision chronologically. The CDCL

algorithm is still based on DPLL but is implemented as a loop, rather than recursive calls.

The state consists of the current formula (or clause database), the current assignments

and the decision level, which records how many variables have been assigned by choice

rather than unit propagation. A high-level summary of the CDCL approach is given in Al-

gorithm 2.2, inspired by Chapter 4 of the Handbook of Satisfiability [37].

Other SAT-solving Tricks

The ability to learn new clauses and backtrack non-chronologically (Algorithm 2.2 lines 8-

10) cuts down a lot of redundant search. In addition to these savings, many other advances

have also been made in aspects such as:

• efficient lazy data structures for clauses which minimise processing time during con-

straint propagation

• variable selection heuristics which use information gathered during conflict analysis
2We can drop a satisfied clause from the formula but I keep the clauses here for clarity when referring to

the nth clause

21

2.2. The Boolean Satisfiability Problem

Algorithm 2.1: High-level overview of DPLL SAT-solving, adapted from [34]. The
algorithm takes an initial formula F0 and returns a result of either SAT or UNSAT;
in the former case, it also returns the satisfying assignment

Data: A formula F0 in conjunctive normal form
Result: Either SAT or UNSAT, and a truth value assignment for each variable in F0

1 Function DPLL(F, A):
2 ⟨F ′, A′⟩ ← BCP(F ,A) // boolean constraint propagation
3 if F ′ = ⊤ then // every clause is True
4 return ⟨SAT, A′⟩
5 if ⊥ ∈ F ′ then // an empty (unsatisfied) clause exists
6 return UNSAT

7 {x← v} ← Select(F ′, A′) // choose an unassigned variable x and a value v

8 ⟨r, A′′⟩ = DPLL(F ′, A′ ∪ {x← v}) // branch on x = v

9 if r = SAT then
10 return ⟨SAT, A′′⟩
11 else // did not succeed with x = v, try x = ¬v

12 return DPLL(F ′, A′ ∪ {x← ¬v})

13 DPLL(F0, {}) // first call with original formula and no assignments

Algorithm 2.2: High-level overview of solving SAT using conflict-driven clause
learning (CDCL), adapted from [37]

Data: A formula in conjunctive normal form
Result: Either SAT or UNSAT, and the satisfying assignment in the former case

1 if unit propagation results in conflict then
2 return UNSAT

3 while unassigned variables remain do
4 carry out “in-processing”
5 choose variable and value and increment decision level
6 unit propagate
7 if conflict arises then
8 analyse conflict
9 add any learned clause

10 determine which decision level to backtrack to
11 if backtrack level is less than zero then
12 return UNSAT

13 else
14 backtrack

15 return SAT and current assignment

22

2.2. The Boolean Satisfiability Problem

• targeted deletion of learned clauses in order to balance the amount of data held

(and consulted) in memory with the potential savings in search the learned clauses

afford

• re-starting search using a carefully designed schedule, preserving learned clauses

A more in-depth treatment of these aspects of SAT solving are given in the aforementioned

Handbook [37].

2.2.3 SAT Encodings

We now return to the crucial step of encoding a constraint satisfaction problem into a

SAT problem. Knowing something about how SAT problems are solved should help us to

consider what makes a good encoding.

Two decades ago, Bailleux [38] passionately highlighted the importance of choosing

good encodings:

In the challenges that are organized for SAT, only two categories of submis-

sion are welcomed: solvers and benchmarks. The issue of improving the pro-

posed encodings in ignored. As the most interesting benchmarks are the hard-

est ones, ignoring the encoding may have this consequence: some intrinsically

easy problems may be made hard by an inappropriate encoding, and, as they

are hard, they may be considered as interesting benchmarks. If the final goal is

the practical solving of hard real world problems and not only to make solvers

overcome inappropriate encodings by rediscovering in the CNF formulas some

deductions that are obvious in the original problem, then a careful encoding is

crucial and must be considered as a third type of contribution beside solvers

and benchmarks in the challenges organized for SAT.

Since then, many papers have been published proposing new SAT encodings for variables

and constraints. These encodings are usually evaluated on problem instances inspired by

or taken directly from real-life problems.

Variables and Constraints

As explained at the start of this chapter in Definition 1, this thesis only considers CSPs

with integer or Boolean domains. A SAT encoding scheme needs to accurately represent

the variables and constraints in the original CSP. Although this thesis in effect treats the

23

2.2. The Boolean Satisfiability Problem

encodings as black boxes (an algorithm in a portfolio), it may be useful to appreciate the

broad ideas used in SAT encodings in order to interpret the findings of my experiments

later on. I therefore give a brief overview below and refer to other literature for more

in-depth descriptions of the encodings used in this thesis.

Any Boolean variable in a CSP can trivially be represented by a variable in a SAT for-

mula. To represent an integer decision variable X from a CSP, an encoding must provide

Boolean variables and clauses for which there exists exactly one solution for each value

in the domain of X .

Arguably the most basic way to encode X into SAT is to create a SAT variable for every

possible value in X ’s domain – the SAT variable is set to true if the integer variable has

been assigned that value. To complete the encoding, clauses must be created which en-

sure that exactly one of the SAT variables representing the variable’s domain is allowed

to be on. This is called a direct encoding. Many alternative schemes exist, such as the

order encoding, which is based on inequalities, with each SAT variable indicating whether

a certain value in the domain has been reached. There are also log encodings based on a

bit representation of integers, where each SAT variable is true if that bit is equal to 1 in the

binary representation of the value. These encodings are described in more detail in [39] –

in the same work the authors also show how it is sometimes beneficial to use more than

once encoding and introduce channeling clauses to keep the representations consistent

with each other.

Often the encoding scheme chosen for variables is determined by the nature of the

constraints being encoded. For example the support encoding [40] operates in the context

of binary (pairwise) constraints. Clauses are used to link any value in variable X with any

supporting domain values in variable Y, for every combination of X and Y covered by a

constraint in the CSP. When encodings are defined for global constraints, a key component

is how the variables are encoded into SAT variables and clauses.

We encountered the concept of generalised arc consistency (GAC) earlier in this chap-

ter. Recall that GAC ensures that once a value has been assigned to a variable X , the

domains are pruned for all other variables which co-participate in any constraint with X ,

so that those domains no longer contain any values which could not be used in at least

one extended satisfying assignment. Some SAT encodings are able to guarantee that GAC

is maintained by unit-propagation. In other words, when a variable assignment has been

made to the integer variable X then, once the Boolean variables are set correctly to re-

flect this assignment, we can apply unit propagation. After unit propagation has been

24

2.3. Encoding Linear Integer Constraints to SAT

completed, the SAT variables now represent the pruned domains of the original CSP vari-

ables, as defined by GAC. SAT encodings which have this property are said to UP-maintain

GAC. Referring to Bailleux once again [41], we read that:

... all things being equal, the more a solver propagates, the more efficient it is.

On the other hand, encodings which UP-maintain GAC generally produce larger

formulae than the other ones because they must encode each potential impli-

cation of a literal. Of course, larger formulae slow down unit propagation. It is

then not always clear which is the best trade-off between the size of encodings

and their ability to enforce propagations.

Some SAT encodings have a weaker property, called consistency checker, defined in [42]

and [43]. This property ensures that at least one clause is falsified via unit propagation if

any partial assignment cannot be extended to a satisfying assignment for the constraint.

2.3 Encoding Linear Integer Constraints to SAT

In the introduction I explained that I am focussing on linear integer (LI) and pseudo-

Boolean (PB) constraints for two main reasons: their ubiquity in constraint problems and

the wealth of encodings designed to translate them into SAT. These factors are underlined

by projects such as PBLib [44] in 20153. This library of PB and related encodings allows

users to experiment with 6 PB encodings, 3 cardinality encodings and 7 AMO encodings.

2.3.1 Expressing Linear Integer Constraints as Pseudo-Boolean

Another motivating factor is that PB encodings can form the basis of LI encodings. For

example, consider the following LI constraint with the integer variables x1 and x2 in its

scope:

2x1 + 5x2 ≤ 11, x1, x2 ∈ {1, 2}

The constraint could also be expressed using the following PB constraint:

2y(x1=1) + 4y(x1=2) + 5y(x2=1) + 10y(x2=2) ≤ 11, yi ∈ {0, 1}

where the Boolean variables yi represent values taken by the integer variables. To com-

plete this direct encoding, we would also need AMO constraints to ensure that for each
3At the time of writing the most recently maintained fork of PBLib was hosted at https://github.com/

master-keying/pblib

25

https://github.com/master-keying/pblib
https://github.com/master-keying/pblib

2.3. Encoding Linear Integer Constraints to SAT

integer variable only one value in its domain was selected:

AMO(y(x1=1), y(x1=2)) ∧AMO(y(x2=1), y(x2=2))

and finally a clause corresponding to each x variable to ensure that a value is assigned:

(y(x1=1) ∨ y(x1=2)) ∧ (y(x2=1) ∨ y(x2=2))

2.3.2 Pseudo-Boolean Constraints with At-Most-One Partitions

We saw above one situation where PB constraints together with AMO constraints can pro-

vide a useful model. In fact, there are many examples where PB and AMO constraints

naturally go together.

As a toy example, let us imagine starting a new job and being allowed to equip our own

office. We are working to a budget and have been given a catalogue of priced items we

can choose from. We can only choose one desk, one seat and one hardware bundle from

the options available. In this case a PB constraint would represent the fact that the sum

of the prices of the chosen items cannot exceed our budget. An AMO constraint would

partition the available items into categories, allowing us just one pick from each category.

Bofill et al. present a comprehensive study [43] of several SAT encodings for PB con-

straints which are then optimised for problems where the variables in the PB are also sub-

ject to AMO constraints. The experimental section tests these encodings on several prob-

lem classes containing PBs with AMOs, including: combinatorial auctions, nurse schedul-

ing and resource-constraint project scheduling.

The key observation in the work cited above is that when AMO constraints are present

over the variables of a PB, it is possible to greatly reduce the size of the encoding and

therefore achieve big gains in solving performance. The reduction in size stems from the

fact that for any AMO partition the maximum value that can be contributed to the total is

no longer the sum of weights in that partition but rather the maximum weight. The authors

take six existing SAT encodings for PB and “generalise” them to use the AMO constraints

if they exist. In addition, they create two new variants of one encoding (the generalized

totalizer). I list each encoding below with a brief summary.

MDD This encoding is based on the Binary Decision Diagram (BDD) encoding [45] – BDDs

are directed acyclic graphs which end on either True or False, with the edges rep-

resenting variable assignments. In MDDs (which stands for Multi-valued Decision

Diagrams and were originally introduced in [46], all the variables contained in an

26

2.3. Encoding Linear Integer Constraints to SAT

AMO group are represented by a single node, with the edges once again providing a

path through to True or False, one assignment at a time.

GSWC The Generalized Sequential Weight Counter encoding adapts the SWC [47] logic cir-

cuit which uses one counter for each coefficient in the PB to build the sum sequen-

tially. In GSWC one counter is used for each AMO group.

GGTd This encoding (and the two which follow) adapt the Generalized Totalizer [48] SAT

encoding for PB, which in turn generalises the Totalizer [38] encoding for cardinality

constraints. Totalizers are based on binary trees where each coefficient in a PB is

represented by a leaf node. SAT variables in the parent nodes represent possible

sums of their descendant nodes until the root node is reached which has SAT vari-

ables for all the possible totals. The binary tree can be built in different ways. In

GGTd the tree is built to be a balanced tree.

GGT In this encoding the binary tree is built using the minRatio heuristic, which is de-

scribed in detail and evaluated in [43]. As the tree is being built bottom-up, minRa-

tio is designed to join nodes in a way which minimises the number of distinct sums

represented at the proposed parent node – it does this by calculating the ratio be-

tween the number of values that a parent would actually require to represent all

possible sums and the product of the number of values each of the two children

nodes represent.

RGGT The Reduced Generalized Totalizer uses the observation that sometimes there are

several values represented at a node of the tree for which any of them would lead

to the same ultimate state for the constraint. SAT variables can therefore be used

to represent ranges of values rather than just individual values – this can lead to a

more compact representation.

GMTO The n-Level Modulo Totalizer (MTO) [49] is a version of the Generalized Totalizer

mentioned previously, but the possible sums are represented in a mixed radix base,

in theory allowing this encoding to deal with larger integer values more scalably. As

with the GGT encoding above, GMTO uses a leaf node to represent all the values in

an AMO group.

GGPW The Global Polynomial Watchdog encoding [41] relies on a “watchdog” formula. This

formula breaks down the coefficients into their bit values and outputs True if an as-

signment has violated the constraint. This output is generated via unit propagation

27

2.3. Encoding Linear Integer Constraints to SAT

after any assignment is made. As with the other encodings GPW is compressed in

light of AMO groups and becomes GGPW.

GLPW Devised by the same authors as GPW, the Local Polynomial Watchdog (LPW) encod-

ing follows a similar design (using bit arithmetic) but is more thorough in following

up on assignments; the watchdog formula doesn’t just signal inconsistency for the

constraint, instead it enforces arc consistency for all variables in the PB, setting to

False any variable which can no longer participate in an extended assignment.

The propagation properties of the encodings above is detailed in the paper; in summary,

they all “UP-maintain GAC” apart from GMTO and GGPW. GGPW does have the consistency

checker (CC) property.

2.3.3 Performance of SAT Encodings

The extensive work on PB(AMO) constraints explored above includes experiments with

several problem classes and using two different SAT solvers to compare performance. The

results show clearly that different encodings excel for different problem classes. The au-

thors’ chosen performance metrics are the solving time quartiles and the number of time-

outs for each of the classes of benchmark problem.

In [50] Abío et al. present several SAT encodings for linear integer constraints includ-

ing modifications to previously designed encodings, for example BDD-Dec which uses a

logarithmic encoding of coeffients before building a BDD. In this work, the authors opt for

a more unusual way to gauge performance – the pseudo-harmonic average distance from

the solutions found and the best solutions known. The argument is that their benchmarks

are so difficult that often the optimal solution is not found in the allotted time, in which

case it is awarded a distance-from-best of infinity. Their distance metric can deal with

infinite distances and is also less sensitive to outliers than something like an arithmetic

mean.

Both of the investigations above conclude that different encodings seem to suit dif-

ferent problem characteristics. This suggests that a portfolio of encodings is valuable for

any general constraint solving solution which uses SAT as the ultimate solver.

Whereas the authors in both cases above provide analysis and commentary regarding

which encodings perform well in particular problems, there is no clear or simple guide

to selecting encodings for a new problem class. The PB(AMO) paper [43] suggests that

one potentially fruitful avenue for further work is “to automatically select an appropriate

28

2.4. Constraint Reformulation and Solving with Savile Row

PB(AMO) encoding based on properties of the PB(AMO) constraint, such as the number of

variables, the magnitude of the coefficients, and the sizes and number of the cells in the

AMO partition. Given that there is no single best encoding, and differences in performance

are often substantial, an accurate encoding selection method would be valuable”. This is

a central motivating factor for the work I present in this thesis.

2.4 Constraint Reformulation and Solving with Savile Row

In this chapter we have seen that many constraint solvers exist, accepting different lan-

guages to describe constraint models. Some constraint solvers seek to solve the problem

end-to-end, while others re-formulate the model and output a problem definition ready

for another “back-end” solver to take over.

As explained earlier in Section 2.1.4 I use Savile Row [5, 10] for the experiments in

this thesis. Savile Row is named after the famous London street which houses numerous

high-quality tailors – this is because Savile Row “tailors” its model to the chosen tar-

get back-end for any given execution, for example trying to make use of any specialised

propagators available in the target solver if applicable. Figure 2.1 shows the pipeline within

which Savile Row operates. The problem is modelled using the Essence Prime language

– particular instances of a problem are defined via parameter files or the command line.

There also exists a language called Essence [20] which provides a higher level of abstrac-

tion through types such as functions, partitions and sets – model specifications written

in Essence can be translated into Essence Prime models by the Conjure [9] tool. Savile

Row can target a range of solver-specific output formats, ranging from classic constraint

solvers like Gecode [24] to learning solvers like Chuffed [23], to SAT and MaxSAT solvers

[29], and recently even SMT solvers [51].

It is especially helpful that Savile Row implements the eight PB(AMO) SAT encodings

we encountered above in Section 2.3.2, namely MDD, GSWC, GGT, RGGT, GGTd, GMTO, GGPW

and GLPW. Savile Row also implements its own “Tree” encoding which shares some de-

sign features with the totaliser-based encodings. However, the Tree encoding differs in

being able to represent integer variables and negative coefficients natively, whereas the

PB(AMO) encodings listed above require the constraint to be transformed to a normal

form first (details in [43]). The other difference is that Tree is not AMO-aware, i.e. it does

not take any advantage of AMO group partitions over its decision variables. More details

on the Tree encoding are given in [3]. The encodings above can be invoked for LI and PB

29

2.4. Constraint Reformulation and Solving with Savile Row

problem specifi-
cation in Essence

.param file defin-
ing an instance

Conjure

constraint model
in Essence Prime

.param file defin-
ing an instance

Savile Row

CNFFlatZinc SMT-LIB2

SAT solver,
e.g. Kissat

SMT solver,
e.g. Boolector

Constraint solver,
e.g. OR-tools

Solution or UNSAT Solution or UNSATSolution or UNSAT

Figure 2.1: An overview of the context within which Savile Row operates. Problems are written
in Essence Prime or optionally produced by the Conjure tool. Savile Row produces lower-level
models suitable for a range of target solvers.

constraints separately when calling Savile Row with a problem instance, e.g. one can ask

for LIs to be encoded using GGPW while using MDD for PBs.

Savile Row offers many optimisation steps. Of particular interest is the ability to auto-

detect AMO groups in problem instances [52]. Sometimes AMO constraints are explicitly

defined in the constraint models, but it is also sometimes possible to detect such AMO

groups implicitly from the whole constraint model. This means that we, the user, can

automatically benefit from the more compact PB(AMO) encodings in more instances.

One final pertinent feature of Savile Row is that it can deal with constraint optimisation

as well as satisfaction problems. Some target solvers support optimisation directly, so

Savile Row can output the relevant objective function. In the case of the SAT back-end,

it is not possible to specify optimisation problems, as the only output is a Boolean SAT

formula in CNF. Savile Row supports optimisation by iteratively calling the SAT solver with

new bounds encoded into the formula, using a bisecting strategy.

30

2.5. Summary

2.5 Summary

This chapter begins by explaining more formally some of the key terms and concepts used

throughout this dissertation, including definitions of CSPs, COPs, LI and PB constraints. I

follow this with a brief overview of constraint programming: how constraint satisfaction

problems are expressed using constraint modelling languages and how constraint solvers

can search for a solution.

I point out that translation to SAT has been shown to be an effective method to solve

CSPs, as evidenced by the types of solvers which have been successful in recent CSP solv-

ing competitions. SAT solving as a more specialised type of CSP is explored and some

key SAT solving algorithms sketched out. I then briefly introduce how CSP variables and

constraints can be encoded into Boolean variables and formulae.

We go on to consider in more detail the specific case of encoding PB constraints into

SAT, drawing heavily on the work in Bofill et al.’s paper [43] on encoding PB constraints

when AMO groups exist over the PB’s decision variables. Here we discover that a wide

variety of encoding schemes exist which are complementary in the sense that different

encodings perform best for different problem classes.

The chapter concludes with an introduction to the Savile Row the tool which can help

us investigate how to make good SAT encoding choices for CSPs.

Having established that many competitive and complementary algorithms exist for

encoding LI and PB constraints, the next chapter reviews literature where portfolios of

algorithms have been used to make good choices for new problems, especially by the

application of machine learning to features of the problem instance being solved.

31

Chapter 3

Background: Machine Learning, Portfolios

and Constraints

� I’m hooked into, hooked into machine �

Regina Spektor

We have seen that many pipelines exist for solving constraint problems, each with

myriad implementation choices. Machine learning (ML) has been employed successfully

both in choosing the method used to address a given problem, and to optimise the chosen

method. Given the variety of problems which can be expressed with constraint models and

the huge effect that choices in the pipeline can have on performance, it is both challenging

and potentially rewarding to develop systems which can make good choices reliably.

In this chapter we briefly zoom out to look at how ML and constraint solving can help

each other before we focus on efforts which use ML to enhance the performance of con-

straint solving both in general and in the specific setting of translating CSPs to SAT.

In summary, this chapter covers:

• a very high-level overview of relevant machine learning terms and techniques

• a brief exploration of how ML and constraint solving can be used together

• the use of portfolios for algorithm selection and some examples of systems which

use ML to tune the constraint solving process

32

3.1. Machine Learning

3.1 Machine Learning

Very broadly speaking, machine learning (ML) refers to the processing of data in order to

build a representation from which useful predictions can be made. The data from which

the ML system “learns” is called training data and the processing of this data is the training

phase. During this phase, a representation of the data called a model is used. The training

process can be described as fitting a model to the training data. The fitted model can then

be used to make predictions about data in the testing, evaluation or indeed production

phases. Generally the intention is that the ML model can generalise, meaning it can make

useful predictions for previously unseen data. This fails if a model is fitted too closely to

the training data – this phenomenon is called overftting, and many techniques have been

developed to avoid it. The training and prediction rely on a set of features for each item

in the data – this set of features is typically a vector of numerical values but could be any

collection of measurements or observations.

3.1.1 Types of Machine Learning

Machine learning can be grouped into three main types and all are potentially relevant to

our domain of constraint satisfaction and optimisation.

Supervised Learning uses labelled data to construct its model. The examples in the train-

ing data each have a label and the ML algorithm can build its model to predict the

correct label for new data points. This label could be categorical, in which case the

task is called classification, or it could be a value in a regression task. An example

could be sentiment analysis from a piece of text, i.e. determining whether the text

is positive, neutral, comic, threatening, etc. In the training data, each piece of text

is labelled with the relevant category. When a new piece of text is presented, the

ML model predicts which label is most appropriate. A further application of super-

vised learning is for ranking; in some ways this task is akin to both classification

and regression in the sense that we are dealing with distinct items but are look-

ing for a prediction which tells us how those items should be ordered according to

some desirable criterion. An application of ML ranking could be in assisting medical

triage [53].

Reinforcement Learning employs the idea of rewarding actions. The system takes a se-

quence of actions and a reward function is used to calculate the score either after

33

3.1. Machine Learning

each individual action or at the end. The model which is developed in this approach

is called a policy and it determines what action should be taken next given the fea-

tures of the current state and what it has learned so far from the rewards it has

received. Reinforcement learning could for instance be used in a robot to feed back

how well it is doing in attaining a goal, such as navigating a room full of obstacles.

The features at each stage could be its sensor data and the reward could be made

up of whether it has hit something and how close it is to its destination.

Unsupervised Learning describes the search for patterns or groupings in data without

outside intervention or guidance. This approach seeks to find out to what extent the

data can be organised into clusters which share similar features in some way. One

potential application could be splitting a team of athletes into a number of groups

based on their physical and fitness readings in order to design different workouts.

Deep Learning As well as an excellent and concise explanation of the ML terms described

above as part of a survey of the applications of ML to combinatorial optimisation,

Bengio et al. [54] also dedicate a separate entry to deep learning [55], which can be

applied to supervised, unsupervised or reinforcement learning. In deep learning, a

network of neurons (nodes) is organised in layers, with values being output by one

layer of neurons and becoming inputs into the next layer. Each neuron processes the

inputs subject to its own parameters and outputs a value after applying an activation

function. Each node’s parameters (usually a weight for each input, and an additional

bias) are learned by repeatedly adjusting them in response to a score calculated on

the output of the final network layer. This adjustment is typically done using back-

propagation, an algorithm based on partial differentiation.

In some scenarios it is very difficult or expensive to obtain sufficient labelled data to

train an accurate model using supervised learning. This has led to the development of

further types of ML, which are a hybrid of supervised and unsupervised learning, such as:

Semi-supervised Learning can be applied when many training samples are available, but

only a small proportion of them are labelled. A recent survey [56] of semi-supervised

learning techniques provides a taxonomy to organise the many approaches which

can fall in this category. The authors’ chief distinction is between inductive and

transductive methods. In the former case unlabelled data is used in addition to la-

belled examples in the training of a model, for instance by training a classifier on

34

3.1. Machine Learning

labelled data and then using that classifier to predict labels for unlabelled data, pro-

ducing “pseudo-labelled examples” which are then used to train an eventual clas-

sifier. In the latter set-up, unlabelled data are assigned labels according to their

proximity to labelled examples and the whole set is then used in training. Of course,

many assumptions are made and this type of learning can only be applied effectively

under certain conditions.

Self-supervised Learning is a subclass of unsupervised learning where something is learnt

from the data without having a task in mind. The model thus trained has picked out

potentially relevant features of the data and can then be used to carry out a specific

classification or generation task. This approach has been used in image classifi-

cation through the use of “pretext” tasks [57]. A more general overview is given in

[58] where self-supervised techniques are described in additional contexts such as

natural language processing and graph learning.

3.1.2 Designing a Machine Learning System

Let us consider some of the elements which make up an ML system – these aspects may

need careful consideration when it comes to applying ML to the problem of selecting good

encodings for CSPs.

Which ML Agorithm

The most important choice to be made, in a sense, is which ML algorithm to use. Or, at

least, we can say that it is helpful to make this choice early when designing an ML pipeline

because the choice of algorithm could impact other aspects, such as how the features

should be pre-processed, or the hardware that might be required to run the algorithm.

The choice of ML algorithm determines the type of model used, i.e. the kind of data

structure that will represent the data. During training, a fitted model is produced which

represents what has been learned from the training data. During the rest of this disser-

tation, I generally use the word model to mean a fitted model. Some ML algorithms do

not create any separate model; instead, they use the existing training data to make new

predictions.

Here is a brief overview of some popular ML algorithms for supervised learning, all of

which can be used for classification or regression:

35

3.1. Machine Learning

Decision Trees [59] are models which, once constructed, present a path of logical tests

from root to leaf which yield the predicted label or value for the features presented.

To construct decision trees, a recursive algorithm selects a variable and a value pair

(initially for the root) which is most discrimating with respect to the target labels.

This evaluation is usually done on the basis of statistical impurity or entropy. De-

cision trees are easily interpretable and relatively fast to train, but they can suffer

from overfitting to the training data, i.e. not generalising well. Some techniques can

be used to mitigate overfitting, such as limiting the depth of the tree, or insisting

that a leaf node must match a minimum number of items in the training set.

Forests of decision trees seek to address the overfitting tendencies of single trees by

training several trees. At prediction time, each tree “votes” for a solution, and these

votes are aggregated in some way to produce an overall prediction. The most fa-

mous algorithm using such an arrangement is Random Forests [60], which employs

two random elements: each tree is generated using a bootstrap sample of training

examples, and random subsets of features are used when constructing the trees. An-

other competitive arrangement is a forest of Extremely Randomised Trees [61], where

the attribute to branch on and the threshold values are chosen at random. Forests

of trees retain some advantages of using decision trees: the input data need not be

scaled, and the features can contain different data types. Interpretability becomes

more difficult as the decision is made from averaging the votes of individual trees.

Gradient Tree Boosting iteratively builds a sequence of trees which are retrained at each

stage in a way which focusses attention on previously misclassified entries. This is

done by training on “pseudo-residuals” of the training data – these residuals are

obtained from the derivative of the loss function. Full details are given by Friedman

in [62] along with further enhancements, such as random perturbations at each stage

leading to more robust predictions. A very fast implementation of boosted trees is

XGBoost [63] which has been popular in the last decade, and often recommended as

a good first tool to try on a problem.

K Nearest Neighbours is a technique which relies on the actual training data rather than

building a representation. In order to predict the label or value for a new item, this

algorithm finds the K nearest examples in the feature space and returns an average

of their labels.

36

3.1. Machine Learning

Support Vector Machines [64] map the training data into a higher-dimensional space and

then calculate a hyperplane which achieves the largest separation between two

groups of points. These decision boundaries are stored as a small set of support

vectors, which makes it a memory-efficient algorithm. Different kernel functions can

be used for the mapping – this versatility can be used to tailor the support vectors

to different input distributions.

Multi-layer Perceptrons are the basic implementation of artificial neural networks and

the basis for the idea of deep learning, which was introduced above. MLPs consist

of an input layer, an output layer and at least one hidden layer. The number of nodes

in the input and output layers tend to be related to the number of features in the

input and the number of possible labels in the output respectively. Choosing an

effective architecture (i.e. how many hidden layers of what size) for such a network

is a complex design problem, and generally neural networks tend to require a large

amount of input data to converge on a model. However MLPs have been shown to be

effective for many classification and regression tasks and offer immense flexibility.

Ensemble methods combine several separate predictors to arrive at a final output, the

idea being that different component estimators may have complementary prediction

strengths across the expected distribution of inputs. Random forests are an example

of an ensemble; however ensembles can also be made up of different classes of

predictors.

The supervised ML algorithms mentioned above are summarised in Table 3.1, which

highlights some key advantages and disadvantages of each algorithm.

In addition to algorithms for supervised learning as outlined above, I also use unsu-

pervised learning in this thesis. Recall that in unsupervised learning, there are no labels

with the data to indicate what the right value or class is. Instead the user seeks to organ-

ise the data in some way depending on the characteristics exhibited by the data. Below I

give a brief introduction to some potentially useful unsupervised learning algorithms.

Principal Component Analysis is a method for representing data in fewer dimensions while

retaining as much information as possible. It operates by finding linear combina-

tions of variables and ranking them by how much they explain the variance of the

original data. PCA can be useful for visualising multi-dimensional data or for reduc-

37

3.1. Machine Learning

Table 3.1: A summary of selected ML algorithms and some potentially relevant considerations

Model Advantages Disadvantages

Decision Trees explainable, quick to train prone to overfitting
Random Forests features don’t need scaling explainability
Gradient boosting can converge quickly may overfit for noisy data
K Nearest Neighbours simple to implement, fast (no

training), few hyperparameters
models grow very large

Support Vector Machines memory efficient can be slow to train on large
datasets, can be difficult to pick
good kernel

Multi-layer Perceptron very flexible, can find complex
patterns

many architecture design
choices

ing the number of features in order to speed up the operation of another learning

algorithm.

K-means Clustering assigns data points to a pre-defined number of clusters K. Initially

K centroids are randomly generated in the data space. Iteratively, each data point is

assigned to its nearest centroid, after which the centroids are updated to the mean

location of their assigned members. The process is repeated until the centroids

effectively stop moving between iterations.

Agglomerative Clustering begins by treating each datum as a cluster. A neighbourhood

radius is repeatedly increased so that clusters join together when they are within a

given distance from each other. There are different ways to measure the distance

between clusters and indeed different ways to calculate the nominated location of

a cluster from the locations of its constituent members in the feature space. With

this method, it is possible to either pre-determine the number of clusters required,

or to examine the jumps in distance where clusters join in order to decide how many

clusters to use.

Autencoders are a class of artificial neural network which can be used to create a lower-

dimensional representation, or embedding of the training data. At its simplest, the

network contains output nodes which match the input nodes exactly, but a smaller

internal layer, which represents the embedding of a given input. The network is

trained to make the output match the input exactly; the idea is that any structure

inherent is the data is learned so that the original input can be recreated from a

38

3.1. Machine Learning

compressed representation. This architecture can for instance be used to address

noisy data, or to reconstruct an example when there are gaps in the data.

Splitting Data for Training, Tuning and Testing

I made the distinction earlier between the training, evaluation and production phases of

an ML project. The data used at each stage is vital:

• During training, the data used should be varied enough to allow the ML algorithm

to be exposed to as much of the relevant feature space as possible so that it can be

well-prepared to return a prediction for new unseen examples.

• During testing or evaluation, the data should be distinct from the training data so

that we can judge whether our system is making good predictions, rather than just

returning a previously seen “answer”. At the same time we would be expected to test

on examples that come from the same underlying distribution as the training data

and ultimately the expected live or production data.

• By the time an ML system is in production, its designers, operators and users would

need to be satisfied that the system has been trained to work well with the type of

data it faces in the live setting.

The statements above are open to a lot of interpretation and debate which would

need to take place in the context of a specific application. There are many deployment

scenarios where failure to properly consider the data used at all stages of design could

result in anything from inconvenience to death. The safe and ethical deployment of ML

systems is very topical, and a lot of the analysis is focussed on the type of data used to

train and test such solutions. An interesting framework for thinking about the assurance of

ML systems in more general terms is provided in [65], where the authors argue specifically

that data should be managed to “help ensure that ML training and verification datasets

are Relevant, Complete, Balanced, and Accurate.”

Especially in the context of academic and scientific exploration, it is expected that we

judge the effectiveness of a system as objectively as possible. It is therefore necessary

to be clear about how training and test examples have been separated during the de-

velopment of a solution. In our case, both training and test instances are to be drawn

from a subset of the general distribution of constraint satisfaction problems. Once such

a relevant corpus of problems has been assembled, it is important to ensure that the test

39

3.1. Machine Learning

data is not seen at all during the training phase. Should such data leakage occur, it would

damage the reliability of any conclusions made from the testing phase.

ML-related literature often mentions validation data. Although this is sometimes used

as just another name for test data, it is in fact usually referring to a split made within the

training phase. Most ML algorithms have hyperparameters that can be set; for example

how many neighbours to consider in a K-nearest neighbour classifier. It is common to set

some of these hyperparameters by automated tuning – for this purpose, the training set

is itself separated. One popular way to do this is called K-fold cross-validation; it splits

the training data into chunks, say five chunks A-E. The algorithm would be run with certain

hyperparameters to build a model trained on data in A-D, and then used to predict labels

for chunk E. This split would be repeated 5 times, with each chunk playing the part of a

test set. The scores from each of the 5 iterations, or folds would then be averaged to give

the overall score for that particular configuration of hyperparameters.

Features

Modern ML systems can operate on a wide variety of data ranging from audio recordings to

tabular numerical data to infra-red images to graph structures. Each data point is usually

represented as a set of features – these could be the pixels in one image or the sensor

readings at one location at one time. Traditionally, and in the case of most of the ML

algorithms summarised earlier, features take the form of rational numbers, although some

algorithms (such as decision trees) can work well with discrete integers, Boolean values

or categorical data. It is often necessary to pre-process data sets in order to make them

suitable for a particular algorithm. Some relevant aspects are introduced below.

Cleaning Some ML algorithms cannot handle missing values in any of the expected fea-

tures, in which case it is important to deal with such data points. One can choose to

exclude items with incomplete information, although in some circumstances this would

waste a lot of precious other information. More commonly, a value is imputed for a missing

feature. Imputation calculates a reasonable value by considering the distribution of val-

ues in the rest of the data set for that particular feature – this value could be an average,

or simply a random sample from the rest of the distribution.

Scaling or Encoding It is sometimes necessary to scale feature values in order to achieve

sensible results – for instance if the features “number of children” and “value of house”

40

3.1. Machine Learning

were both supplied to an algorithm which represented data points in multi-dimensional

space, the influence of the two features would be very unbalanced. Common techniques

include linearly scaling all values between 0 and 1, or normalising a feature’s distribution

to end up with a mean of 0 and standard deviation of 1. Categorical values sometimes

need to be encoded as numbers, which can be done by a sparse “1-hot” encoding, where

each possible category is represented by a Boolean variable, and a true value means the

item belongs in that category - this also means multiple categories can be applied to one

example.

Selection A valuable pre-processing option is to reduce the number of features pre-

sented to the algorithm by considering whether all raw features actually provide useful

information. In some cases, it may be that two features are so tightly correlated that re-

moving one of them has no impact on the prediction capability of the trained model. For

some algorithms, a smaller number of features means faster training times. Fewer fea-

tures may also avoid an algorithm learning from features which ultimately are not so rele-

vant. There are many approaches to feature selection, including using correlation metrics

to identify features which in effect give duplicated information. Another approach is di-

mensionality reduction where the data points are projected to a lower-dimensional space,

taking care to keep data points distinct from each other.

Importance It can be useful to measure or rank the importance of features in terms of

their contribution to the quality of prediction. If we can obtain this information, we can

use it for instance to do feature selection, focussing only a subset of features with high

importance. It may also be useful in explaining how the ML system reaches its conclusions.

Finally, an idea of which features are important could feed back to the very start of the

lifecycle of a project and place a greater emphasis on obtaining accurate values for those

features. Some algorithms can produce feature importance values as part of their normal

operation, for example decision trees have to calculate which feature is most discrimat-

ing at every node. Other techniques also exist, such as permutation feature importance

(see the section titled “exporing the random forest mechanism” in [60]) which shuffles the

values of one variable at a time, and measures the related degradation in prediction accu-

racy. A more comprehensive technique called sequential feature selection [66] considers

subsets of features by iteratively removing one feature at a time from the full feature set

or by growing the feature set one at a time. In either orientation, the result is a set of

41

3.1. Machine Learning

features beyond which the performance starts degrading or respectively stops improving

beyond a pre-set threshold.

Extraction A final consideration is how the features are obtained in the first place. In

some cases this is obvious, e.g. once an image exists, its features are the individual pixels.

In other situations, useful features may need to be calculated. For example, if the item

under consideration was a graph, we may want to extract some information about the

graph such as the average node degree. A compromise needs to be struck between how

informative the features are and how long it takes to compute them – when dealing with

large graphs it can be computationally expensive to extract certain useful features. This

balance applies in many settings, not just with graphs.

Hyperparameters

Almost all ML algorithms allow for design choices to be passed in as hyperparameters.

Examples include the number of clusters to create using K-means clustering, the maxi-

mum tree depth for a random forest, and the configuration of hidden layers in a neural

network. These general-purpose ML algorithms can be made more effective in the appli-

cation scenario by selecting hyperparameters well.

Although some heuristics can be applied from shared good practice in literature, it

is common to tune the hyperparameters by repeatedly training one type of ML model

using with different hyperparameter values. To avoid depleting the full dataset, hyperpa-

rameter tuning is often done using a technique called k-fold cross-validation (CV), intro-

duced above in the discussion on splitting data. This technique allows us to test out one

configuration of hyperparameters and obtain a performance score. The search for good

hyperparameters can thus be automated; the hyperparameter space can be explored in

different ways including a basic grid search. In this approach, the user provides a finite

set of candidate values for each hyperparameter, and k-fold CV is used to score each pos-

sible combination systematically. This can obviously be very time-consuming, especially

if the underlying ML models take a long time to train. An alternative approach to finding

a good hyperparameter assignment is to use randomised grid search, where values are

sampled from each candidate set and a fixed number of trials are carried out. Even more

sophisticated is the sequential halving approach [67] in which increasing training budgets

are allocated as unpromising configurations are discarded.

An important element of hyperparameter tuning is the choice of scoring function. Most

42

3.1. Machine Learning

ML algorithms have a default metric for the quality of predictions on a test set. For exam-

ple in the scikit-learn library, classification algorithms default to accuracy_score

which is the fraction of samples correctly classified, and for regression the default is the

coefficient of determination or R2. In some settings, the user may wish to optimise the

hyperparameters using a more specific application-inspired score. Perhaps misclassifica-

tion can be said to have degrees of significance. For example if an ML system predicts

paths through a graph it could predict a non-optimal path whose length is in fact quite

close to the best one. In this case we might want our scoring function to represent this

near-miss with a better score than a path which was much worse.

Hyperparameter tuning can also in effect suffer from overfitting – the tuning process,

whether manual or automated, results in a decision of what particular features the ul-

timate model should have, e.g. how deep the trees should be in a random forest. This

decision is made on the basis of the training data available and it’s therefore possible

that the hyperparameters chosen lead to models which are much better for the training

data than the production data they will need to operate on.

Some Pitfalls

Finally in this section, we draw out some of the main dangers to watch out for when cre-

ating an ML system.

Overfitting If we train our model too well on the training data, in particular on some

of the noise that may be present, we run the risk of creating a model which does not

generalise well to unseen examples. Many tactics exist to mitigate this risk, including

• ensuring a diverse training set,

• avoiding overspecialised models, e.g. by using dropout (not fully connecting all

nodes) in neural networks, or restricting our forest to using shallower trees,

• using an ensemble of different types of model.

Unbalanced data If in the training phase the distribution of labels is uneven, the model

may not learn well. For example, if 99% of training data shows healthy plants, then an ML

classifier trying to predict disease in plants will get excellent accuracy scores by simply

predicting health each time, but this would be a useless system. Some ML algorithms are

43

3.2. Using Constraint Solving and Machine Learning Together

more susceptible to poor predictions in this scenario. It can be addressed in various ways,

for instance by

• curating the training data carefully to achieve good balance of target labels,

• over- and under-sampling items with the minority and majority labels from the train-

ing data,

• synthesising extra examples for a particular category entirely artificially, or by per-

turbations to genuine data.

Opaqueness or Lack of Explainability Some ML algorithms are completely white-box in

the sense that it is easy to interpret how a trained model produces a prediction, as is the

case for a basic linear regression or for a decision tree. In the majority of cases, however,

such explanations are impossible to extract completely. There are some techniques which

go some way towards understanding how an ML system reached its decision. This differs

depending on the details of each algorithm, but for instance it may be possible to trace the

contribution of an input value through a neural network to see to what extent it influences

the overall result. Another contribution to explainability is to extract feature importance

information – the ranking of variables can at least point the user to which parts of the

input most affect the overall result. An interesting survey of efforts towards explainable

artificial intelligence (XAI) in more general terms can be found in [68].

Following this broad overview of ML systems and the various aspects which need careful

consideration when designing an ML solution, we now look at how ML has been applied

to the process of solving constraint problems.

3.2 Using Constraint Solving and Machine Learning Together

Figure 3.1 illustrates the different arrangements in which machine learning and constraint

solving have been described in the literature we refer to below.

3.2.1 To Augment or Replace?

Kotary et al. [69] describe two main senses in which machine learning and constrained

optimisation1 (CO) can co-operate to advance the performance of automated problem-
1Constrained Optimisation is a more general term encompassing constraint programming and other re-

lated technologies which seek to find a solution to a problem involving decision variables and constraints
imposed on those variables

44

3.2. Using Constraint Solving and Machine Learning Together

solving.

In ML-augmented CO machine learning techniques are used to make choices as part of

an established constraint optimisation algorithm. Any arbitrary choice can be made with

reference to an ML model. Some examples are: guiding search by determining the variable

and value order, deciding when to re-start search, or choosing which learned constraints

to “forget”.

On the other hand, in end-to-end CO learning the aim is to build ML systems which

learn how to solve CSPs/COPs entirely, or at least to find very good approximate solu-

tions. This approach is described by Vesselinova et al. [70] in the domain of graph-based

combinatorial optimisation. The authors summarise several works which use either super-

vised learning or reinforcement learning to predict solutions. In many cases the solution

quality approaches or exceeds exact methods.

One additional set-up explored in Kotary et al.’s survey [69] is to employ traditional

constraint solving as a layer of a neural network providing “structured logical inference”.

With the explosion of applications of ML across every imaginable sector of society and

industry, it is becoming increasingly important to provide guarantees regarding the out-

put of ML systems. Constraint solving can play a role in ensuring that certain conditions

have to be met by the outputs of complex ML systems, especially where a combination

of outputs is produced. The permitted output combinations can potentially be modelled

with constraints. A fun example is Lafleur et al.’s work[71] which modifies a music genera-

tor based on deep reinforcement learning by adding a constraint programming step which

ensures that output obeys music theory rules.

3.2.2 Tuning versus Collaborating

On the subject of applying ML to combinatorial optimisation, Bengio et al. also present

a survey of techniques [54], similarly categorising the approaches broadly into end-to-

end learning and ML-augmented CO. They subdivide the second into learning to configure

algorithms and ML alongside optimisation algorithms. This latter division makes the dis-

tinction between ML being used once outside of the CO algorithm, or being employed

during the execution of a CO algorithm, having access to the intermediate state so as to

inform next steps in the CO solving process.

45

3.2. Using Constraint Solving and Machine Learning Together

Problems Constraint Solver Solutions

ML Model

features
extracted

configures
hyperparameters

A. ML-augmented CO: ML configures CO hyperparameters

Constraint SolverProblems Solutions

ML Model

features
extracted

exposes
state informs heuristics

B. ML-augmented CO: ML informs in-process decisions

Constraint SolverProblems Solutions

ML ModelProblems Solutions

learns to mimic

C. End-to-end: ML learns from CO

ML ModelProblems Solutions

D. End-to-end: ML learns to solve CO problems

Figure 3.1: Different arrangements for the use of ML in solving CO (constraint) problems, as pre-
sented in the cited literature. A: ML configures the hyperparameters based on features of the
problem instance at hand. B: ML uses features of the problems and information about the solver’s
state to inform heuristics as search proceeds. C: An ML model has learned to mimic the solutions
of an exact algorithm from past solving runs. D: An ML model has been supervised to learn to solve
CO problems directly.

3.2.3 Copy the Expert or Discover a Policy Independently?

The authors cited above [54] make a further interesting disctinction when it comes to the

ML itself. The two cases considered are when an ML system tries to mimic the choices of

an expert or oracle versus an ML system learning to make decisions based on an eventual

reward, essentially using the reinforcement learning (RL) paradigm. The former approach

is supervised learning where the ML is trained on choices which are deemed to be opti-

mal or desirable based either on empirical or theoretical expert knowledge. In the latter

case, a reward function is constructed which encapsulates the desired characteristic of

46

3.3. Portfolio Approaches, Algorithm Selection and Configuration

the system, for example good quality solutions or a fast solving time.

This thesis is concerned with making good choices when it comes to using SAT encodings

of constraints. This would be expected to fit broadly into arrangement A in Figure 3.1,

setting configuration options for the constraint solver based on information about the

problem instance. There might also be a way for the ML to receive further information

from the constraint solver to inform its recommendation of SAT encodings, which would

place it closer to the second arrangement, i.e. providing support during the constraint

solving process even after the solver has been called.

3.3 Portfolio Approaches, Algorithm Selection and Configuration

In our particular situation, we are essentially looking to choose from a menu of options,

rather than the more general idea of hyperparameter tuning, where the decision space

could include continuous numeric variables. A lot of success has been reported for sys-

tems which “choose the best tool for the job”, drawing from a portfolio of available algo-

rithms to attempt to solve a given problem as quickly or well as possible. This process is

called algorithm selection and is explored and formalised by Rice in [72].

We could also consider our task as algorithm configuration [73], where a constraint

solving algorithm exposes the choice of SAT encodings as a parameter to be configured or

tuned.

The thesis draws from both approaches, considering our setup as an algorithm con-

figuration challenge where the algorithm in question is called solve a CSP/COP. Inside

this algorithm we can delegate the task of encoding constraints into SAT to any one of a

number of available schemes which are themselves algorithms, thus enacting algorithm

selection.

3.3.1 Building a portfolio

For any type of task there may be a vast range of algorithms to choose from, but it may

be inpractical or undesirable to employ them all when constructing a solving pipeline for

the task. Practically, it may be that effort is required to prepare data in a way that each

algorithm can consume, or that some of the algorithms have fairly similar competence

profiles, or indeed that some algorithms might dominate others for all the intended tasks,

i.e. outperforming them in all conceivable situations, therefore making some algorithms

47

3.3. Portfolio Approaches, Algorithm Selection and Configuration

redundant.

Construction

Muñoz et al. [74] investigate and evaluate 5 algorithm construction methods:

Random K simply selects at random K algorithms from the available pool

Top K chooses the best K all-round performers, i.e. the algorithms which solve the most

problems in the training set within a given time limit

Sequential Forward greedily adds one algorithm at a time such that each addition yields

the largest reduction in runtime; this technique can be run until a fixed portfolio size

is achieved or until the potential runtime is within a given threshold of the absolute

best possible runtime from the entire available pool

Sequential Backward is similar to the previous approach, but eliminates one algorithm at

a time from the portfolio until a target size is reached, or the performance degrades

too much

Mixed Integer Programming Here the construction problem is framed as a MIP problem,

which seeks to minimise the average maximum regret of chosen items.

The authors try out these techniques on problem instances from the ASLIB library [75],

which contains a wide variety of algorithm selection scenarios. They conclude that the

Sequential Forward technique appears to be the best for balancing both overall perfor-

mance in terms of low regret and best robustness.

Complementarity

It is clearly desirable to build a portfolio which is robust, i.e. solves most of the prob-

lems likely to be encountered in a reasonable time. However, when it comes to designing

the candidate algorithms, this has not necessarily been foremost in the minds of the de-

signers. Solver capability is often tested and recognised by performance in competitions;

these competitions tend to reward the best all-rounders.

Dang [76] argues that complementarity is important and therefore a good addition to

a portfolio is not necessarily the best all-round performer, but rather the algorithm which

fills in the gaps left by the existing members of the portfolio.

48

3.3. Portfolio Approaches, Algorithm Selection and Configuration

3.3.2 Measuring Performance

Before referring to some relevant work on algorithm selection, it may be beneficial to

discuss how we might measure the effectiveness of a solution – in our case a solution

which brings to bear ML-based predictions to solving constraint problems. In the previous

chapter I have already mentioned competitions for solving CSPs and SAT. Each of those

competitions has their own scoring mechanisms, but there tend to be some common com-

ponents.

What to Measure

Here are various metrics which can contribute to a final score or judgement, be it for a

solving competition, or simply for judging the effectiveness of a proposed new system.

penalised average runtime (PAR) The average running time is calculated for a solver over

a set bechmark of problems. If a problem is not solved within a set timeout period, then

that run is given the value of p×t where p is a penalty factor, and t is the timeout period. A

tenfold penalty is very common, and the corresponding figure is called PAR10. PAR5, PAR2

and PAR1 are also found in literature. A reasonable penalty factor takes into account the

distribution of solving times. For example, if it is possible that a solution will never be

found, then a higher penalty should be applied to timed out runs. In PAR the arithmetic

mean is most common, but other averages could also be used.

of Instances Solved We can simply set a timeout and report how many of the instances

in the problem corpus were individually solved within that time. Some care may be needed

if the solving strategy involves randomness. It may be fairer to make several runs of each

solver on each problem and use an average. The number of instances solved can also be

visualised as a “cactus” or “survival” graph to show how the timelimit interacts with the

number of problems solved.2 An example is shown in Figure 3.2, comparing 19 years’ worth

of SAT competition winners.

Speedups Another way to report the performance of a proposed solution is to calculate

the speed up achieved compared to the state of the art, or some other clear baseline.

When using speedup ratio as a measure, one must be careful and clear about how this
2Although “cactus” and “survival” are sometimes mixed up, the cactus plot should have # of instances

along the x axis, with the plots shooting up like a cactus and better solutions being further right, whereas a
survival plot has the time on the x axis, so higher is better.

49

3.3. Portfolio Approaches, Algorithm Selection and Configuration

0 1 000 2 000 3 000 4 000 5 000
0

50

100

150

200

250

CPU time

so
lv

ed
in

st
a
n
ce

s
SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020

maple-lcm-disc-cb-dl-v3-2019

maple-lcm-dist-cb-2018

maple-lcm-dist-2017

maple-comsps-drup-2016

lingeling-2014

abcdsat-2015

lingeling-2013

glucose-2012

glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008

berkmin-2003
minisat-2006
rsat-2007

satelite-gti-2005

zchaf-2004

limmat-2002

data produced by Armin Biere and Marijn Heule

Figure 3.2: An example of solver comparison using a survoval plot: instances from the 2020 SAT
Competition solved by historical winning solvers. Plot from http://fmv.jku.at/kissat/

is aggregated to arrive at a final figure. If we had a thousand fold speed up on an easy

problem but took twice as long on a harder problem it would be grossly misleading to

report an average speed up of (1000 + 0.5)÷ 2 = 500.25.

Pseudo-harmonic Mean One example of a novel measure used in a particular context is

the pseudo-harmonic average distance from the solutions found and the best solutions

known introduced in [50]. The authors calculate for any solution given a distance from

the best-known solution. Because sometimes no solution is reached within the timeout,

this distance ends up being infinite, and their custom metric deals with this to give a

meaningful and interpretable measure.

Offline Time and Energy

A potentially important consideration when comparing systems is the amount of time

taken to train the model – this time is generally not taken into account when comapring

the solving performance of an ML-enhanced CO algorithm. At runtime the ML model can

usually provide predictions almost instantly, but in the offline phase, many CPU years may

have gone into training the model.

In our age of ML algorithms which train on billions of data points and use a tremen-

dous amount of computing power (and energy), one could argue that a balance needs to

50

http://fmv.jku.at/kissat/

3.3. Portfolio Approaches, Algorithm Selection and Configuration

be struck between sheer performance and the energy expended to secure that speedup.

A full discussion of green AI issues is beyond the scope of this thesis (see [77] for a review

of green AI research), but it’s an issue worth bearing in mind and it may be preferable to

favour a solution which is simpler (or less resource-hungry) in training if it is still compet-

itive according to the relevant metrics.

3.3.3 Algorithm Selection Case Studies

Kotthoff’s survey of algorithm selection approaches [78] explains that the Algorithm Se-

lection Problem is frequently applied in Artificial Intelligence contexts. In this paper many

aspects and stages of this paradigm are explored specifically in the field of “Combinato-

rial Search” – essentially CSPs. For example, some systems use a rank-based scheduling

approach, i.e. they predict the relative expected performance of the various algorithms

for the problem in question and then they allocate CPU time in proportions according to

the ranking. Other systems start a number of algorithms in parallel, then perform some

analysis of progress and then re-schedule CPU time accordingly.

Below I present some existing solutions which apply portfolio approaches to some

aspect of solving constraint problems.

SATzilla

One celebrated example of algorithm selection is the SATZilla portfolio SAT solver [79];

this solver won several medals in the 2007 and 2009 SAT competitions. It chooses which

specific solver to call based on extracting features of the SAT problem instance. SATZilla

also includes a “pre-solve” stage where it runs a set of pre-solvers for a fixed time – the

extracted metrics then predict the best solver to choose to solve the problem.

As the first portfolio-based SAT solver to achieve success in international SAT solving

competitions, SATzilla made a significant leap forward in performance. Their approach,

according to the authors, “can be considered to be a classifier with an error metric that

depends on the difference in runtime between algorithms.” One interesting distinction

they make with other work is that they do not equally penalise the not-best-performing

solvers, rather recognising that some solvers are nearly the best. This enables them to

sometimes choose a non-optimal (but nearly-optimal) solver quickly and get on with solv-

ing the problem, achieving a better solving time overall.

The performance gain from applying a portfolio was so great, that the SAT competitions

eventually banned portfolio approaches in order to encourage developers to focus on

51

3.3. Portfolio Approaches, Algorithm Selection and Configuration

improving the SAT solving algorithms themselves.

SUNNY-CP

SUNNY-CP was a very successful portfolio-based constraint solver, which was adapted

from just working on CSPs to deal with COPs too in [80]. It labels itself as a “lazy portfolio-

based approach”. It uses a portfolio of 8 solvers: CPX, G12/FD, G12/LazyFD, G12/CBC,

Gecode, MinisatID, Chuffed, and G12/Gurobi. SUNNY-CP operates by extracting instance

features from MiniZinc problem descriptions. It then consults either a CSP-oriented knowl-

edge base, or one trained on COPs, based on the problem at hand. An algorithm based on

KNN regression is then applied to construct a schedule of solvers to run.

MeSAT

Tackling a challenge closely related to the theme of this thesis, the authors of MeSAT [81]

present an ML-based system for choosing between SAT encodings for CSPs. They propose

combinations of existing SAT encodings for integer variables – a KNN algorithm is then

used to select between the menu of encoding choices based on features of the problem

instance at hand. The authors claim that it is possible to learn to make good choices

from easier problems – the trained model can then extrapolate to harder instances and

still make good predictions which lead to better performance than using the best single

encoding.

Variable Encodings MeSAT uses the existing direct, support and log encodings for inte-

gers, as well as creating some hybrid encodings by using clauses from two base encodings

to create the direct-support and direct-order encodings.

Constraints The authors adapt the structure of existing SAT encodings for global con-

straints to make use of the hybrid variable encodings they proposed. Global constraints

affected include all-different, global-cardinality, nvalue and cumulative.

ML Setup MeSAT uses syntactic features of the constraint problems for its learning and

prediction. These 70 features consider the distribution of the types of constraint in a

problem, as well as the types of variables and their domains. The chosen model is K-

Nearest Neighbours, where a new instance is assigned the same SAT encoding scheme

that worked best for the nearest k training instance in the feature space, when considering

PAR10 solving time.

52

3.3. Portfolio Approaches, Algorithm Selection and Configuration

Performance The experiments showed that the portfolio approach improved the number

of instances solved compared to picking any single encoding scheme. It was a little difficult

to assess the performance fully, as the penalty given for a timed out run was the timeout

time (i.e. PAR1). When the authors tried to speed up training by only training on easy

instances, they still achieved some success, but much more limited than when training on

a uniform sample of the instances available in their corpora.

Proteus

Operating in a similar space, but at a higher level of abstraction, the Proteus “hierarchical”

portfolio solver [82] takes a CSP (or COP) as input and makes decisions in three stages;

first it considers whether to use a specialised constraint solver or to translate the problem

to SAT. In the second case it then chooses which SAT solver to employ and finally selects

between different encodings of the problem to SAT.

Solvers For its constraint solvers, Proteus can choose between Abscon, Choco, Mistral

and Gecode. If a problem is encoded to SAT, the solvers available are: Clasp, Cryptominisat,

Glucose, Lingeling, MiniSAT and Riss. Although the choice of solvers is not specifically

justified in [82], it is likely to have been a representation of the state of the art at the time,

with solvers having complementary strengths.

Encodings The direct and support encodings feature as they did in MeSAT. In Proteus

there is also a hybrid direct-order encoding. Although global constraints are mentioned, it

is not clear exactly which global constraints are implemented and how they are translated

to SAT.

ML models The authors describe trying out many ML algorithms; their chosen setup is

to use regression models (mostly linear regression) to make the decisions at the three

levels.

Performance PAR10 is used to compare the performance of Proteus with the best pos-

sible performance achievable by using any of the single routes, such as solving them all

by a direct constraint solver. For example, the results show a twofold improvement com-

pared to always going directly to CP solvers, but being able to chose the best solver for

the instance (the authors call this VB CSP for virtual best using CSP solvers), and a tenfold

improvement compared to always using SAT. This could be interpreted as discouraging

53

3.4. Summary

to the SAT route, but the paper itself shows that their problems are roughly evenly split

between ones that do better with SAT solvers versus CSP solvers. Furthermore, in more

recent competitions, SAT-based constraint solvers have consistently performed best and

work has continued on SAT encodings for specific constraints which greatly improve per-

formance in certain settings.

AutoFolio

In contrast with the other systems described above, AutoFolio [83] is a general algorithm

selection tool which the authors are confident “can be applied out-of-the-box to pre-

viously unseen algorithm selection scenarios”. In the empirical evaluation, the authors

do compare AutoFolio’s performance with other algorithm selection solutions on bench-

marks comprised of CSP, SAT and related problems and show impressive performance wins

over systems which are more specialised to the particular class of problems solved. Aut-

oFolio is a very sophisticated system which potentially does much more than our context

requires. For instance it is able to produce a schedule of solvers to try, in a sense placing

bets on which algorithms might pay off very quickly.

AutoFolio essentially operates by considering a set of existing ML-based algorithm se-

lection solutions which have been pre-tuned. AutoFolio re-configures the hyperparam-

eters for these selectors according to its own training data by using a technique called

sequential model-based algorithm configuration (SMAC). By estimating the likely runtime,

it then creates a schedule of solvers to try. In its implementation AutoFolio uses several

ML techniques introduced above, including random forests, gradient boosted trees, and

k-means clustering.

3.4 Summary

In this chapter I have introduced some key concepts in the area of machine learning (ML),

and explored some research which has used ML techniques to improve the performance

when it comes to solving constraint satisfaction and optimisation problems.

I gave an overview of the broad categories of machine learning along with examples

of how they might be applied and some of the advantages and limitations of various ML

algorithms. I attempted to lay out some of the important issues relevant to the design of

a system based on ML. We saw that a lot of work has been done in bringing together ML

and constraint solving (sometimes referred to as CO or combinatorial optimisation). The

54

3.4. Summary

way ML and CO interface can be very different with work ranging from setting some initial

parameters for CO algorithms using ML predictions to ML systems which aim to carry out

the entire solving process.

Many choices exist at every stage of the solving process, all of which can be delegated

to a trained ML “assistant”. We looked at how portfolios of algorithms can be constructed

and chosen from to perform sub-tasks in the solving process.

We finished by summarising some work which specifically related to choosing SAT en-

codings for aspects of a CSP by employing ML methods.

In the next chapter, I present my first attempt to choose SAT encodings using ML for a

specific type of constraint.

55

Chapter 4

Learning to Select Encodings Using Generic

Instance Features

� You’re simply the best �

Tina Turner

Research Question 1

To what extent does the choice of SAT encoding for constraints affect problem-

solving performance?

Research Question 2

Can a good SAT encoding choice be made for unseen CSP instances based on generic

instance features?

We saw in Chapter 2 that encoding CSPs to SAT can be a very effective way to solve

them, but that the encoding scheme chosen for variables and constraints can make a big

difference to the solving performance. In Chapter 3 we reviewed work which uses machine

learning to make good choices about how to encode various aspects of a CSP into SAT –

choices leading to faster solving times on average. These works principally focussed on

the encoding chosen for the CSP variables. The focus of my thesis is on selecting encodings

for the constraints themselves.

The previous related works (MeSAT and Proteus) contain instances of the same prob-

lem class in their training and test sets, in other words they make predictions for instances

of problems which have already been seen in the training phase. In this chapter I attempt

56

4.1. Method

a further scenario where predictions are made for instances of problem classes which

have not been seen during training. This is both a much more challenging proposition

and provides the basis for making a good initial decision for a user who hasn’t had the

time or expertise to fine-tune the encodings for the problem they’re attempting to solve.

In this chapter I describe my first attempt to select good SAT encodings for linear in-

teger (LI) and pseudo-Boolean (PB) constraints. PB and LI constraints are covered ex-

tensively in literature and have several SAT encodings available. Empirical studies have

shown that different encodings are suited to different problems – the expectation is that

it should be possible to predict which encoding would be a good choice for a problem

instance based on its features. For the sake of readability I will often refer to the process

outlined in this chapter as LeaSE-PI, which stands for Learning to Select Encodings Per

Instance.

The chapter contains:

• an outline of the stages and design decisions involved in conducting an empirical

investigation into the research question posed above

• a detailed description of the experimental setup

• a presentation of the results of the experiment

• a discussion of the findings

4.1 Method

This initial investigation considers a diverse collection of problems and goes on to extract

features of the problem instances, train some classifiers which then make predictions on

held-out sets of problems. These predictions are then evaluated to address the research

question posed above.

4.1.1 The problem corpus

In order to have access to a wide variety of problem classes, I begin with a corpus from a

recent paper [51] which uses Savile Row. The collection of 65 constraint models with a to-

tal of 757 instances has the added advantage that the models are written in Essence Prime,

Savile Row’s input language. I also add two problem classes from recent XCSP3 competi-

tions [84]: the Balanced Academic Curriculum Problem (BACP) and the Hamiltonian Cycle

Problem (HCP) (the XCSP3 language and competitions were introduced in Section 2.1.5).

57

4.1. Method

Here is a brief overview of just some of the problem classes and the categories they

belong to into to give the reader an idea of the variety in the corpus:

Combinatorial Problems

Balanced Incomplete Block Design A classic combinatorial problem of arranging ob-

jects into blocks such that each object appears a given number of times and

pairs of objects appear together a set number of times

Langford’s Arranging pairs of blocks so that blocks of the same colour have a dis-

tinct and contiguous number of blocks between them

Equidistant Frequency Permutation Arrays Finding a set of codewords so that any

pair has a given Hamming distance

Scheduling

Nurse Rostering Creating a weekly schedule respecting working rules and nurses’

preferences

Balanced Academic Curriculum Assigning students to courses, with required credits

per semester and course pre-requisites

Car Sequencing Ordering cars to enable different options to be installed according

to assembly-line restrictions

Games and Puzzles

N Queens Placing queens on a chessboard so they don’t attack each other

Blackhole Solitaire A patience card game requiring steps to potential completion

Sudoku A grid puzzle where the numbers in each row, column and “box” have to be

distinct

Unfortunately this collection has a very skewed distribution of instances per problem

class, ranging from just 1 to 100. To mitigate this, I firstly limit the number of instances

per class to 50 by taking a random sample where more instances are available; secondly,

I add instances to existing classes where it is easy, such as when instance parameters are

just a few integers. Some of the problem instances and indeed whole problem classes

end up being dropped in the cleaning phase of dataset preparation, which is described in

Section 4.2.2.

58

4.1. Method

4.1.2 Features

Using fzn2feat to obtain the f2f featureset

We saw in Chapter 3 that features of CSP instances can be extracted and used to make

predictions at various points in the solving process. I begin by using the static features

extracted by the fzn2feat tool, created by Amadini et al [85] as part of the higher-level

feature extractor mzn2feat. These 95 instance features relate to the number and types

of variables and their domains, the types and sizes of constraints and features of the

objective in optimisation problems. From now on we will call this featureset f2f. The

full list of features can be found at https://github.com/CP-Unibo/mzn2feat and

is reproduced in Appendix A.

The fzn2feat tool requires FlatZinc models as input – we generate these using Sav-

ile Row’s standard FlatZinc back-end. Some features are not applicable, e.g. there are

no float variables in Essence Prime and Savile Row does not produce all the same anno-

tations.

Using Savile Row’s internal model to generate the f2fsr features

In our context the ultimate aim is not to produce FlatZinc; our intended output is a

SAT formula. Savile Row applies various reformulations with the target solver in mind,

so it may be preferable to consider the constraint model targetting the SAT back-end just

before encoding to SAT takes place, rather than targeting FlatZinc simply to produce

instance features, and then running Savile Row again to actually solve the problem using

a SAT back-end.

I reproduce the features in f2f as faithfully as possible based on the internal model in

Savile Row just before the final step of producing the SAT formula. I call this featureset

f2fsr. As well as representing a more relevant constraint model, the use of this featureset

has the advantage that it is quicker to generate because Savile Row does not need to be

run twice.

4.1.3 The Encodings

The PB (and therefore LI) encodings available in Savile Row include all AMO-aware encod-

ings introduced in Section 2.3.2. Here is a brief reminder of their design.

MDD binary decision trees

59

https://github.com/CP-Unibo/mzn2feat

4.1. Method

GSWC counter logic circuit

GGT binary “totalizer” tree with all possible sums represented in node variables, here

built with the minRatio heuristic

GGTd as above, but using a balanced tree

RGGT another totalizer, this time using intervals where possible to reduce the number of

variables

GMTO a mixed-radix totalizer

GGPW uses a bitwise formula to spot constraint violation

GLPW bitwise arithmetic enforcing arc consistency for each variable

In addition, recall that Savile Row also provides the Tree PB and LI encoding which is

not AMO-aware. Tree does UP-maintain GAC, except when the comparator is = or ̸=.

4.1.4 Training

Classifiers

I have evaluated several classifier models from the scikit-learn library [6], including

forests of extremely randomised trees, K-nearest neighbours, multi-layer perceptrons, as

well as the XGBoost classifier [63]. In Appendix B I include an example of one of the ex-

ploratory experiments trying out a neural network classifier and comparing it to the per-

formance of the setups fully featured in this dissertation.

While searching for the best prediction model I have also experimented with regres-

sors. I have trained regressors to predict the runtime for the different encoding config-

urations in order to select the encoding with the lowest predicted runtime. For each ML

model tested (decision trees, random forest, gradient boosting), the regressor approach

performs worse than using the classifier variant.

After exploratory experiments I conclude that three classifiers work particularly well

for our task: decision trees, random forests and gradient boosted decision trees.

For the decision tree classifier, I tune the splitting citerion, maximum tree depth, the

maximum number of features and the minimum number of samples per leaf.

Thescikit-learn implementation of random forests is based on Breiman’s work [60],

but uses an average of predicted probabilities from its decision trees rather than a simple

60

4.1. Method

vote. I implement the recommendations of Probst et al. [86] who investigated hyperpa-

rameter tuning for random forests and concluded that the number of estimators should

be set sufficiently high (we use 200) and that it is worth tuning the number of features,

maximum tree depth, and sample size.

For the gradient boosted trees I use the histogram-based gradient boosting classifier

from scikit-learn which is “inspired by LightGDM” [87]. Gradient boosting creates an

ensemble of trees sequentially, at each stage putting more emphasis on the training ex-

amples which have been most badly misclassified so far. I tune the learning rate, maximum

tree depth and maximum number of iterations.

I use randomised search with 50 iterations and 5-fold cross-validation to tune the hy-

perparameters for all classifiers mentioned above. I experimented with more tuning iter-

ations but it did not lead to improved prediction quality.

A Pairwise Approach with a Complementary Portfolio

If a classifier makes a poor prediction, the consequences vary. It is possible that the

chosen encodings lead to a running time which is very close to that of the ideal choice;

the opposite is also true and misclassification can be very expensive. To address this

issue, I follow a similar approach to the pairwise classification used in AutoFolio [83]: an

ML model is trained for each of the possible pairs of encoding configurations. An encoding

configuration is a (LI encoding,PB encoding) pair drawn from the encodings summarised

in Section 4.1.3.

When making predictions, each model chooses between its two candidate configura-

tions. The configuration with most votes is chosen; if two or more configurations have

equal votes, the winner is the one which produced the shortest total running time over

the training set. This approach effectively creates a predicted ranking of configurations

from the features and often leads to better performance than using a single random for-

est classifier. Taken as a whole, the pairwise setup has access to richer training data in the

sense that instead of each instance having one label with the target encoding, we have

a verdict on each pairwise contest. The voting mechanism is also a good guard against

constly misclassification – a bad choice of encoding would have to win several contests

to become the eventual winner.

Given that 81 encoding configurations are possible (9 PB encodings × 9 LI encodings)

we would need to tune and train
(81

2
)

= 3240 classifiers, which is computationally expen-

sive. Fortunately it is not necessary - it is possible to approach the virtual best perfor-

61

4.1. Method

2 4 6 8 10 12 14 16
Portfolio size

2

4

6

8

10

12

PA
R1

0
/ V

B

VB time

GGPW_Tree
(10.92)

Tree_Tree
GGPW_GGPW
(3.37)

Tree_Tree
GGPW_GGPW
GGPW_GGT
(1.80)

Tree_Tree
GGPW_GGPW
GGPW_GGT
GGT_MDD
(1.28)

RGGT_Tree
GGPW_GGPW
Tree_MDD
GGPW_GGT
GGT_MDD
(1.21)

RGGT_Tree
GGPW_GGPW
Tree_MDD
GGPW_GGT
GGT_MDD
GGPW_GGTd
(1.16)

Figure 4.1: The virtual best PAR10 run-time on our whole corpus for a range of portfolio sizes, as a
multiple of the overall virtual best; the resulting portfolios (of li_pb configurations) are shown for
sizes 1 to 6.

mance even if we limit ourselves to a subset of the configurations available by building a

suitable portfolio.

I seek to retain performance complementarity as described in [88] from a much re-

duced portfolio size. The portfolio is built from the timings in the training set using the

sequential forward method described in [74]. It is a greedy approach and works as fol-

lows. I begin with a single encoding configuration in the portfolio and then successively

add the configuration which would lower the virtual best PAR10 time by the biggest mar-

gin. Configurations are added in this manner until we have a portfolio of 6. I repeat the

process using each of the 81 configurations as the starting element and finally select the

best-performing portfolio from these 81.

To investigate how close to the virtual best we can get when we reduce the number

of configurations available, I ran the portfolio building algorithm on the entire corpus of

problems. Figure 4.1 shows that this portfolio reduction has a small impact on the virtual

best performance across our corpus – the virtual best time for a portfolio of size 6 is

within 16% of the time achievable with all configurations. As fas as I’m aware this is a

novel application of a portfolio approach to the selection of SAT encodings.

In addition to the pairwise voting scheme, I implement two further customisations

when training the classifiers:

Sample Weights Firstly we aim to give more importance to instances which are harder

(with a longer virtual best runtime) and where the encoding choice makes a bigger

difference. Each of these two criteria would make misclassification potentially more

costly, that is, in contrast to a problem which was either quick to solve or where

62

4.1. Method

all encodings performed similarly. To implement this prioritisation, each instance is

given a positive integer weight w according to the formula

w = ⌊log10 (10 + tV B ×
tV W

tV B
)⌋ = ⌊log10 (10 + tV W)⌋

where tV B and tV W are the very best and very worst runtimes respectively for the

instance. 1 The hardness is represented by tV B and the variability by tV W
tV B

. The

product of these two components cancels to just tV W , so the resulting weighting is

essentially the order of magnitude of the very worst time.

Custom Loss Secondly, I provide a custom loss function for the cross-validation used dur-

ing hyperparameter tuning. This function simply returns the difference in time be-

tween the runtime of the chosen encoding configuration and the virtual best for that

instance.

In order to provide a more complete comparison I also implement two additional al-

ternative setups:

Single Classifier I use a single classifier with the same portfolio of 6 configurations (com-

bining PB and LI encodings). I use a generous allowance of 15 times the iterations

allocated to each classifier in the pairwise setup to compensate for the fact that the

single classifier is doing the work of the 15 pairwise classifiers. I also include another

setup with a more restricted budget of just 60 iterations.

Separate LI/PB Choice I modify the pairwise setup to make a separate prediction for LI

and PB constraints, choosing a portfolio of 6 encodings for each encoding type. This

approach has its difficulties because when labelling the dataset with the best en-

coding for one type of constraint, the encoding of the other constraint type must be

chosen somehow – I set this to the single best for the training set. This setup is more

expensive in terms of training time, effectively repeating the entire process for each

constraint type under consideration, rather than taking advantage of a complemen-

tary portfolio across two (or more) encodings. However, if one expands LeaSE-PI to

include other constraint types beyond PB and LI, this approach would scale better,

given that each extra constraint type introduces another dimension in the configu-

ration space.
1The weighting does not need to be an integer as far as the classification algorithms are concerned, but

the initial intention was to let us group problems for the sake of discussion.

63

4.2. Experimental Setup

4.2 Experimental Setup

The experimental process is illustrated in Figure 4.2 and it involves:

• Running Savile Row with different encoding choices in order to collect runtime in-

formation and to extract features.

• Cleaning the resulting dataset.

• Carrying out 50 split, train, predict cycles with each of our machine learning setups,

using the same train/test splits in order to allow fair comparison across the setups.

• Using the predicted encoding choices to identify the resulting runtimes.

• Aggregating the “predicted” runtimes and calculating reference times for compari-

son.

In this section I set out the details of how the experiment was designed and conducted.

4.2.1 Solving Problem Instances and Extracting Features

I run Savile Row on every instance in the corpus with each of the 81 encoding configu-

rations. The CNF clause limit is set to 5 million and the Savile Row time-out to 1 hour.

Automatic detection of At-Most-One constraints [52] is switched on. I use Kissat as the

SAT solver because it formed the basis of the top performers in the 2021 and 2022 SAT

competitions [32]. I use the latest release available at the time, sc2021-sweep [89], with

default settings and a separate time limit of 1 hour. The experiment is run on the Viking re-

search cluster with Intel Xeon 6138 20-core 2.0 GHz processors; the memory limit for each

job is set to 8 GB. I carry out 5 runs (with distinct random seeds) for each configuration to

average out stochastic behaviour of the solver.

To extract the features I run each problem instance once with the Savile Row feature

extractor and once to generate a standard FlatZinc file (using the -flatzinc flag) fol-

lowed by fzn2feat [85]. The time required to extract the features is also recorded.

4.2.2 Cleaning the Dataset

I calculate the median runtime over 5 runs for each instance and encoding configuration.

A result is marked as timed out if the total runtime (Savile Row+ Kissat) exceeds 1 hour.

To decide what penalty to apply to runs which time out, I consider all instances for which

64

4.2. Experimental Setup

problem instances
(.eprime models, .param files)

Savile Row ex-
tract features

Savile Row solve
with SAT backend

Savile Row out-
put flatzinc

fzn2feat

feature ex-
traction timesfeaturessolving times

drop instances without PB/LI or
where all encodings time out;

apply PAR10

cleaned dataset calculate reference
and prediction times

train/test split

training set test set

select best 6 encod-
ing configurations

portfolio

train classifiers

trained classifiers predict and vote

predicted encoding
configurations

aggregated prediction
data for analysisfor each splitting method and setup,

perform 50 cycles with different seeds

Figure 4.2: An overview of the steps involved in our experimental investigation. The white boxes
with solid borders represent data; the grey boxes represent processes.

every configuration finishes within the allocated time. The mean worst/best ratio is 13.06

and the median ratio is 4.91. I also consider those problem instances which are not solved

with any encoding configuration in less than 1 minute, i.e. harder problems. In this case

the worst/best mean ratio is 9.18 so I believe it fair to penalise a time-out by a factor of 10.

I therefore use PAR10, i.e. assigning 10 hours to any result which takes longer than our 1

hour time-out limit. This is the same penalty applied in other related literature [82, 83, 81]

which addresses the problem of selecting SAT encodings for CSPs.

Having applied PAR10, I filter the corpus as follows. Instances are dropped if they

contain no PB or LI constraints. I also exclude any instances which end up requiring no

SAT solving – Savile Row can sometimes solve a problem in pre-processing through its

automatic re-formulation and domain filtering. Finally I exclude instances for which all

configurations time out. At this point, 614 instances of 49 problem classes remain in the

65

4.2. Experimental Setup

Table 4.1: Number of instances (#), mean number of PB constraints (PBs) and mean number of LI
constaints (LIs) per instance for each problem class in the eventual corpus.

Problem Class # PBs LIs Problem Class # PBs LIs
killerSudoku2 50 1811.2 129.9 carSequencing 49 435.7 0.0
knights 44 170.5 336.9 langford 39 146.2 0.0
opd 36 21.9 76.2 knapsack 28 1.0 1.0
sonet2 24 10.0 1.0 immigration 23 0.0 1.0
bibd-implied 22 410.6 0.0 efpa 21 162.8 0.0
handball7 20 705.0 1206.0 mrcpsp-pb 20 90.0 45.7
n_queens 20 1593.0 0.0 bibd 19 338.7 0.0
briansBrain 16 0.0 1.0 life 16 0.0 438.9
molnars 16 0.0 4.0 n_queens2 16 309.0 0.0
bpmp 14 14.0 0.0 blackHole 11 202.2 0.0
pegSolitaireTable 8 59.9 0.0 pegSolitaireState 8 59.9 0.0
pegSolitaireAction 8 59.9 0.0 magicSquare 7 136.0 36.0
peaceArmyQueens1 7 0.0 1008.0 peaceArmyQueens3 6 0.0 4.0
quasiGrp5Idem 6 586.7 0.0 golomb 6 59.2 38.7
quasiGrp7 6 410.7 0.0 quasiGrp6 6 410.7 0.0
quasiGrp4NonIdem 4 1067.5 208.0 quasiGrp3NonIdem 4 1067.5 208.0
quasiGrp5NonIdem 4 389.0 0.0 quasiGrp4Idem 4 416.0 208.0
bacp 4 0.0 25.0 quasiGrp3Idem 4 458.0 208.0
waterBucket 4 0.0 46.0 discreteTomography 2 240.0 0.0
solitaire_battleship 2 72.0 16.0 plotting 1 1.0 28.0
nurse 1 27.0 42.0 grocery 1 0.0 2.0
farm_puzzle1 1 0.0 2.0 diet 1 0.0 6.0
sokoban 1 0.0 24.0 sonet 1 3.0 1.0
contrived 1 0.0 4.0 sportsScheduling 1 166.0 64.0
tickTackToe 1 6.0 14.0

corpus; Table 4.1 shows the number of instances for each problem class and the mean

number of PB and LI constraints per instance.

4.2.3 Splitting the Corpus, Training and Predicting

For each of the classifier setups and featuresets, I run a split, train, predict cycle 50 times.

Random seeds 1 to 50 are used to co-ordinate the splits so that I can compare the pre-

diction power of the different feature sets and setups using the same training and test

sets.

For each cycle, the aim is an 80:20 train:test split using two approaches. The split-

by-instance approach simply selects instances at random with uniform probability – with

this sampling method, instances of any given problem class are usually found in both

the training and test sets. The split-by-class approach also splits problems randomly but

ensures that all instances of a problem class end up either in the training or the test set,

meaning that predictions are being made on unseen problem classes. With this method,

a minimum proportion of 20% is enforced for the test set. Due to the varying number of

66

4.3. Evaluation

instances per problem class, the test set can end up being slightly larger than 20% and

correspondingly the training set is then slightly less than 80%.

Prior to training the classifiers, the portfolio of available configurations is built based

on the runtimes of the training set. Then the training instances are labelled for each pair-

wise classifier with the configuration that has the shorter runtime. For each pairwise clas-

sifier, the hyperparameter space is randomly searched and the model is fit to the training

set. Finally, the models are used to make predictions using the test set ready for evalua-

tion.

4.2.4 Evaluating Performance

To evaluate the impact of using the learnt encoding choices, I calculate two benchmarks

commonly used in algorithm selection [88]: the Virtual Best (VB) time is the total time

taken to solve the instances in a test set if we always made the best possible choice

from all 81 configurations; and the Single Best (SB) time is the total time taken to solve

the instances in a test set when using the single configuration that minimises the total

solving time on the training set. In addition we consult: the time taken using Savile Row’s

default (Def) configuration, which is the Tree encoding for both PB and LI constraints, and

finally the Virtual Worst (VW) time to indicate the overall variation in performance of the

encoding configurations in the portfolio. From here onwards I sometimes refer to these

selection methods as selectors along with the ML models which select encodings based

on sets of features.

4.3 Evaluation

4.3.1 Results

In Table 4.2 we see the total PAR10 runtime across all fifty test sets for the predicted en-

coding configurations from each of the eleven classifier setups, four feature sets and two

splitting methods. The predicted runtimes include the time taken to extract the features.2

For ease of comparison, I give the runtime as a multiple of the virtual best time. For exam-

ple, a figure of 2.00 in Table 4.2 means that the predictions across the fifty test sets led to a

total runtime which was twice as long as the runtime achieved if we always chose the best
2For the f2fsr (extracted directly from Savile Row), the feature extraction time added a median of 9%

(mean 21%) to the overall running time. The features extracted via fzn2feat added 66% (median), 72%
(mean).

67

4.3. Evaluation

available configuration. The reader is reminded that the two splitting strategies (by class

vs. by instance) yield different test sets for the fifty seeds, as explained in Section 4.2.3.

The machine learning predictors work well, outperforming the SB and Def configu-

rations. In the majority of cases the f2fsr features (extracted directly from Savile Row)

lead to better predictions than the ones resulting from exporting to FlatZinc first (the f2f

featureset). It is difficult to declare a particular setup as the best overall – the gradient

boosting algorithm works best for the split-by-instance setting, the decision tree performs

well for split-by-class. For the classifiers based on random forests, the sample weighting

and custom loss functions do improve performance.

In a recent survey, Kerschke et al. state that “State-of-the-art per-instance algorithm

selectors for combinatorial problems have demonstrated to close between 25% and 96%

of the VBS-SBS gap” [88]. In these terms, the ML-based predictions close up to 46% of

the VB-SB gap for unseen classes and 81% for seen classes. The split-by-class setting is

both a more difficult challenge and closer to a real-world deployment, where a user may

seek to solve a new problem on whose class the ML model has not been previously trained.

However, both settings have realistic applications. To carry out further analysis I therefore

select a “preferred” setup which performs competitively in both settings (by instance and

by class). I choose the fourth entry in the table: pairwise random forest classifiers with

sample weighting and custom loss, using a portfolio of combined configurations for PB

and LI encodings. This setup shows less variability across the featuresets and still closes

up to 71% and 41% of the VB-SB gap for seen and unseen problam classes respectively.

Figure 4.3 summarises the performance for our preferred setup. On the left it shows

the distribution of mean predicted PAR10 times per test set. The mean values are marked

with diamonds and correspond to the numbers reported in Table 4.2, albeit not scaled. On

the right I report the distributions of timeouts per test set for each selector. Recall that

we cleaned our corpus so that each remaining instance could be solved using at least one

encoding configuration – this explains why there are no timeouts with the VB selector.

We see that the runtimes are markedly more skewed when splitting by class, indicating

that in one or more of the 50 trials, the choice made by all four non-VB selectors was

rather poor, leading to some combination of longer runtimes and more timeouts. This

effect is not observed when splitting by instance because the instances of any problem

class are divided between the training and test set (in a ratio of 80:20), meaning firstly

that any challenging problem classes are only contributing a small number of instances

to the test set, and secondly that when it comes to the ML classifiers and the SB classifier,

68

4.3. Evaluation

Table 4.2: Total PAR10 times over the 50 test sets as a multiple of the virtual best configuration
time. The best time for each combination of setup and splitting method is shown in bold. The
predicted runtimes include feature extraction time. In the setup details, the classifiers are ran-
dom forest (RF), decision tree (DT) or gradient boosted (GB) and they either predict for pairwise
combinations of encodings or make a single multi-label prediction; Co/Sep shows whether LI and
PB encodings were selected separately or as a combined choice; SW means sample weighting is
used; CL indicates custom loss used in cross-validation; Tuning refers to the number of cycles of
hyperparameter tuning.

Split-by-Instance Reference Times
Virtual Best Single Best Default Virtual Worst

1.00 13.87 17.84 123.70

Split-by-Instance Predicted Times
Setup Details Features

Classifier Selector Co/Sep SW CL Tuning f2f f2fsr

RF Pairwise Voting co - - 50× 15 7.99 5.63
RF Pairwise Voting co ✓ - 50× 15 6.33 5.36
RF Pairwise Voting co - ✓ 50× 15 6.01 4.74
RF Pairwise Voting co ✓ ✓ 50× 15 5.40 4.69
RF Single Classifier co ✓ ✓ 750 3.91 3.70
RF Single Classifier co ✓ ✓ 60 3.95 3.70
RF Single Classifier co - - 750 10.34 9.64
RF Pairwise Voting sep ✓ ✓ 50× 15× 2 6.53 6.67

DT Pairwise Voting co ✓ ✓ 50× 15 6.00 6.06

GB Pairwise Voting co ✓ ✓ 50× 15 4.25 3.97
GB Single Classifier co ✓ ✓ 750 4.25 3.44

Split-by-Class Reference Times
Virtual Best Single Best Default Virtual Worst

1.00 25.40 17.15 160.96

Split-by-Class Predicted Times
Setup Details Features

Classifier Selector Co/Sep SW CL Tuning f2f f2fsr

RF Pairwise Voting co - - 50× 15 15.07 15.01
RF Pairwise Voting co ✓ - 50× 15 16.80 14.90
RF Pairwise Voting co - ✓ 50× 15 16.42 15.30
RF Pairwise Voting co ✓ ✓ 50× 15 15.69 15.19
RF Single Classifier co ✓ ✓ 750 20.59 19.15
RF Single Classifier co ✓ ✓ 60 22.01 19.49
RF Single Classifier co - - 750 19.72 19.93

RF Pairwise Voting sep ✓ ✓ 50× 15× 2 16.91 14.10
DT Pairwise Voting co ✓ ✓ 50× 15 17.63 14.05
GB Pairwise Voting co ✓ ✓ 50× 15 19.26 17.45
GB Single Classifier co ✓ ✓ 750 24.54 19.76

69

4.3. Evaluation

0 500 1000 1500 2000 2500 3000 3500
Mean Time (sec)

VB
SB

Def
f2f

f2fsr

Se
le

ct
or

Split by instance

0 2 4 6 8 10 12
of timeouts

0 2000 4000 6000 8000
Mean Time (sec)

VB
SB

Def
f2f

f2fsr

Se
le

ct
or

Split by class

0 5 10 15 20 25 30
of timeouts

Figure 4.3: Prediction performance using f2f and f2fsr features against reference times. We show
mean PAR10 runtime (left) and number of timeouts (right) per test set across the 50 cycles with
our preferred setup (pairwise random forests, sample weights, custom loss). Outliers are indicated
with crosses and represent values more that 1.5 × IQR outside the quartiles.

500 1000 1500 2000 2500 3000 3500
Time (seconds)

5200

5400

5600

5800

6000

6200

of

 in
st

an
ce

s s
ol

ve
d

split by instance

VB
SB
Def
f2f
f2fsr

2600 2800 3000 3200 3400 3600
Time (seconds)

5800

5900

6000

6100

6200

6300

of

 in
st

an
ce

s s
ol

ve
d

split by instance

500 1000 1500 2000 2500 3000 3500
Time (seconds)

5600

5800

6000

6200

6400

6600

6800

7000

of

 in
st

an
ce

s s
ol

ve
d

split by class

VB
SB
Def
f2f
f2fsr

2600 2800 3000 3200 3400 3600
Time (seconds)

6500

6600

6700

6800

6900

7000

of

 in
st

an
ce

s s
ol

ve
d

split by class

Figure 4.4: The number of problem instances individually solved within a given time for the ref-
erence selectors and our preferred predictor using different feature sets. The figures on the left
show the full performance profile; on the right we zoom in to see how many instances are solved
by the selectors as we approach our timeout limit of 1 hour.

70

4.3. Evaluation

each problem class has been considered in the training phase.

In terms of timeouts the ML-based choices are better than both the single best and

default choices, although in the split-by-class setting this is only narrowly the case. When

predicting encodings for seen problem classes, the ML models are able to bring down the

mean number of timeouts per test set dramatically from 5 and 6 for SB and Def to below

2. In the split-by-class setting, this reduction is more modest, bringing the mean down to

just below 5 from just above 5.

One striking observation is that in the case of unseen problem classes one particularly

bad trial has dragged up the mean runtime, taking away from what would otherwise have

been a much better performance for the f2fsr features. We observe this in both the number

of timeouts and the PAR10 plots. The lowest box plots show that in one trial there were

30 timeouts (out of approximately 130 instances). With the tenfold penalty, this trial has

a mean PAR10 time of over 8000 seconds, compared to the next worst trial, which has a

PAR10 mean time of less than 4000 seconds.

An unexpected aspect of the results is the relative performance of the default (Def)

and single best (SB) configurations. When splitting by instance, the result is not surprising,

with the SB outperforming the default. However, this is reversed when splitting by class.

This indicates that in some cases the best encoding choice for the problem classes in the

training set performs extremely badly on the instances in the test set. This could happen,

for instance, if one or two problem classes in the test set have a lot of difficult instances

– the single best choice (from training) might be an encoding whose size increases much

faster than others and results in breaking the clause limit, memory limit, or time limit.

In either of those three cases the penalty time of 10 times the timeout is then recorded.

On the other hand, although the default choice (Tree_Tree) was not the single best on the

training set, it performs well enough on the test set to avoid the heavy penalties.

An additional visualisation of selector performance is given in Figure 4.4, showing the

number of instances solved as the time allowed is increased up to the timeout of 1 hour.

With both splitting strategies we observe that the ML selectors follow a similar trajectory.

It is interesting that in split-by-instance the default configuration is able to solve more of

the easier problems, but is then overtaken by all the other selectors. In split-by-class, the

single best is unable to catch up to the other selectors, for reasons discussed above. The

default encoding is indeed a good choice for Savile Row as it keeps pace with “smarter”

selectors until the 3000 seconds mark.

71

4.3. Evaluation

4.3.2 The Elusive Virtual Best for SAT Solving

Having evaluated the effectiveness of the approach, let us pause to consider the nature

of the ideal we are pursuing, namely the Virtual Best. The intention is to train a machine

learning system to predict the encoding configuration which would match the virtual best

performance for that instance. It turns out that determining the virtual best is not straight-

forward. SAT solvers use randomness, for example to assign values to variables when re-

starting search. This stochastic element means that the same CNF formula may be solved

in a different runtime (or number of steps) depending on the random seed. We can there-

fore can get different winning encoding configurations for one problem instance, as the

CNF formula produced by one encoding may not always be solved more quickly that that

produced by a different encoding.

We can observe the extent of the “fickleness” of the virtual best with two plots. In Fig-

ure 4.5 we see the variation in solving times for a random selection of problem instances

and encodings. Each data point represents the 5 solving times recorded when solving a

given SAT formula with Kissat. The plot uses error bars to show the longest and shortest

solving times as well as the median time. We can see that in some cases, the difference

in solving times can be more than an order of magnitude.

Instance

100

101

102

103

So
lv

in
g

Ti
m

e
(s

)

Figure 4.5: Variation in SAT solving time for a sample of 100 SAT formulae from the corpus. The
vertical bars span the range of minimum to maximum for each formula; the solid black line shows
the median time.

The second illustration of this difficulty is given in Figure 4.6, which shows the result

of a small experiment. For a random selection of instances, I sample at random one of

the solving runs for each configuration and record which configuration is the winner, i.e.

72

4.3. Evaluation

GG
PW

_G
GP

W
GG

PW
_G

GT
d

GG
PW

_G
SW

C
GG

PW
_R

GG
T

GG
T_

GG
T

GG
T_

GM
TO

GG
T_

RG
GT

GG
Td

_G
GP

W
GG

Td
_G

GT
d

GG
Td

_M
DD

GG
Td

_T
re

e
GL

PW
_G

SW
C

GL
PW

_R
GG

T
GM

TO
_G

GP
W

GM
TO

_G
GT

d
GM

TO
_G

SW
C

GM
TO

_R
GG

T
GS

W
C_

GG
T

GS
W

C_
GL

PW
GS

W
C_

M
DD

GS
W

C_
Tr

ee
M

DD
_G

GT
M

DD
_G

LP
W

M
DD

_G
SW

C
M

DD
_R

GG
T

RG
GT

_G
GP

W
RG

GT
_G

GT
d

RG
GT

_G
M

TO
RG

GT
_M

DD
Tr

ee
_G

GP
W

Tr
ee

_G
GT

d
Tr

ee
_G

M
TO

Tr
ee

_M
DD

Tr
ee

_T
re

e

Encodings Configuration (LI_PB)

bibd-i...dline1
bpmp/3345

brians...fe-4-5
efpa/efpa12

handball7/17
killer...-sol27
killer...-sol39

knight...-10-01
mrcpsp...3029_6

nurse/nurse_7
opd/fl..._25_08

opd/sm..._28_14
peacef...ens-05
pegSol...aire17

quasiG...upX_09
quasiG...upX_14
semigr...emi-08
semigr...emi-15

sonet2/sonet5-4
sonet2/sonet7

In
st

an
ce

0

20

40

60

80

100

Figure 4.6: The variable identity of the virtual best encoding. For each randomly sampled instance,
100 “contests” are carried out, in which 1 runtime is sampled with replacement from the 5 available
for each encoding configuration and the winning configuration recorded. The heatmap shows the
distribution of such winners. Some encoding configuration labels are missing due to the limited
space.

has the shortest solving time. The plot shows the distribution of the so-called virtual best

encoding configuration after 100 such contests. Note that for some instances there is an

almost even distribution among several encodings, whereas occasionally one encoding

configuration consistently emerges as the best - for example in the fifth entry, the handball

scheduling problem.

As explained earlier, in practice I narrow the choice by using a smaller portfolio of

encoding configurations, and attempt to produce a “good” (rather than “the best”) predic-

tion by training classifiers on pairwise contests. In addition, I seek to mitigate the effect of

the elusive virtual best by running the solver 5 times for each encoding configuration and

using the median runtime as the basis of the labels in the dataset. Nevertheless I hope

this small exploration emphasises the challenge of the task at hand.

4.3.3 Analysis of the Configuration Space

To conclude the account of the empirical investigation let us briefly analyse the config-

uration space in which we are making encoding choices. I have argued already that the

73

4.3. Evaluation

task of selecting suitable SAT encodings is not just a simple classification task. The obser-

vations below may shed some further light on important considerations when selecting

encodings for a set of problems.

Table 4.3: Summary of the 20 best encoding configurations across the problem corpus by two
different criteria. Left: the encodings which are best most frequently, showing the number of “wins”
and the mean runtime for the instances on which it wins; the mean is rounded to the nearest
second. Right: the encodings whose allocated instances in the virtual best selection have the
highest total runtimes, and their contribution as a percentage of the total VB runtime. Encodings
appearing in both top 20 lists are highlighted in bold type.

Most Frequent Winners Biggest Contributions to VB
Encodings (LI_PB) Wins Mean Time Encodings (LI_PB) % of VB
Tree_Tree 73 46 GGPW_GGPW 23.2
RGGT_Tree 31 127 RGGT_Tree 5.7
GGPW_GGPW 26 611 GPW_Tree 5.4
MDD_Tree 26 30 GGPW_GGT 5.3
GGPW_Tree 25 148 GGT_MDD 5.0
GGTd_Tree 24 28 Tree_Tree 5.0
GLPW_Tree 21 7 Tree_MDD 4.3
GGT_Tree 21 29 GGPW_RGGT 3.3
GSWC_Tree 19 17 GSWC_GGT 2.8
Tree_MDD 19 153 GGPW_GMTO 2.7
GGPW_MDD 18 16 GLPW_MDD 2.6
Tree_RGGT 15 21 GSWC_GSWC 2.6
GMTO_MDD 14 57 GLPW_GGTd 2.3
Tree_GGPW 13 77 GGT_RGGT 1.6
Tree_GGTd 11 76 GSWC_GGPW 1.6
GGPW_GGTd 11 76 MDD_GGTd 1.6
Tree_GSWC 11 43 GGT_GGPW 1.5
GGPW_RGGT 10 223 GGTd_GSWC 1.5
GGPW_GGT 10 362 Tree_GGPW 1.5
RGGT_GGPW 10 7 MDD_GMTO 1.4

In Table 4.3 I list the 20 best performing encoding configurations across the entire

cleaned corpus3 using two different criteria. Firstly, according to how often an encoding

configuration is the best available; secondly, calculating the proportion of the total VB

runtime allocated to a configuration. For instance, we see that Tree_Tree is the clear winner

in the former league table, with more than twice as many wins as the next entry (73 vs.

31). However, the instances on which it wins have a mean runtime of 46 seconds. We

can calculate its contribution to the VB as roughly 73× 46 ≈ 3400s, approximate because

the mean is rounded. On the other hand, RGGT_Tree wins fewer times but the relevant

instances are almost three times harder with a mean runtime of 127 seconds, making a

contribution to the VB of approximately 31× 127 ≈ 3900s.
3Here each problem instance in the corpus is considered once, rather than sampled as part of a test set.

Recall also that the cleaned corpus only contains instances for which at least one encoding configuration
terminates before the timeout, so the PAR10 penalty does not apply here.

74

4.3. Evaluation

0 500 1000 1500 2000 2500 3000 3500
Run time (seconds)

550

560

570

580

590

600

610

of
 in

st
an

ce
s s

ol
ve

d

LI Encoding
GGPW
RGGT
Tree
PB Encoding
GGPW
GGT
RGGT
Tree
MDD

Figure 4.7: Performance profile of selected encodings on the entire corpus, showing how many
problems can be individually solved within a given time, up to the timeout of 1 hour. The LI en-
coding is represented by the line colours and the PB encoding by the marker shape. We show the
encoding configurations which appear in the top 20 both in terms of their contribution to VB and
the number of times they are the best (see Table 4.3).

Figure 4.7 shows the performance profile of the encoding configurations which appear

in both top 20 lists, and highlighted in bold in Table 4.3. As before, we see that GGPW is a

great choice for LI constraints, appearing in 4 of the top 8 combined performers, whereas

there is greater variety in the PB encodings in the best configurations. Figure 4.7 also

demonstrates that these “top” encoding choices are excellent all-rounders – the top 2 are

each able to solve over 600 of the 614 instances in the cleaned corpus (in which every

instance is solvable within the timeout by at least one encoding configuration from the

full set of 81).

In terms of prediction accuracy, choosing Tree_Tree most often makes sense, and in-

deed this is the default encoding provided by Savile Row. This is an excellent choice if

the task is to solve very many problems, each of which are individually relatively easy, i.e.

would solve in under a minute on our hardware. If, instead, the task is to solve “harder”

problems, then, at least according to our corpus of problems, GGPW is a good choice for

both LI and PB constraints. Recall that all encodings except Tree take advantage of AMO

groups to reduce the size of the SAT encoding – another important consideration when

selecting an encoding.

75

4.4. Summary

4.4 Summary

This chapter has described the design of LeaSE-PI, a machine learning system with which

I attempt to select good encoding configurations for constraint problems, where “good”

encodings lead to shorter solving times. This is initially done on the basis of generic

instance features. I go on to document an experiment which rigorously examines the

effectiveness of the system and then to evaluate the results for many variations of the ML

setup.

Addressing the research question posed, I find that the ML predictions do lead to per-

formance improvements, even when predicting for unseen problem classes.

We also see that Savile Row’s default configuration is competitive, and we consider

how difficult it is to even decide what the virtual best encoding configuration is due to the

random elements in SAT solving. Finally we survey the collection of available encodings,

discussing more broadly what makes a good encoding choice.

In the next chapter I will show that performance improvements are achievable by using

features which specifically consider the relevant constraints. I will go on to discuss in more

detail the complex issue of determining which features are important.

76

Chapter 5

Learning Using Specialised Constraint

Features

� I wish I was special �

Radiohead

Research Question 3

Can the quality of encoding selection be improved by the use of features which are

specific to the relevant constraints?

In the previous chapter I showed that it is possible to outperform the Single Best clas-

sifier by training ML models to predict an encoding choice. This worked very well for known

problem classes and with some success even for unseen problem classes. However, there

is an obvious limitation to the approach. The choice being made concerns which encoding

to use for pseudo-Boolean (PB) or linear integer (LI) constraints but the features used do

not directly measure anything about those actual constraints.

The next stage, outlined in this chapter, is to design and extract features which directly

measure aspects of the constraints we are interested in.

The chapter contains:

• a description of a new set of features introduced to capture characteristics of the LI

and PB constraints in a CSP instance

• results of repeating the experiments introduced in the previous chapter with the

new features

77

5.1. New Features for PB and LI Constraints

• a comparison with AutoFolio, an established off-the-shelf algorithm configuration

tool

• a discussion of feature importance

5.1 New Features to Describe Pseudo-Boolean and Linear Integer

Constraints

The f2f and f2fsr features introduced in Section 4.1.2 can identify and describe CSPs well

enough to make good predictions about what SAT encodings could work well for new

instances and even new classes of problems. We now consider how to specifically describe

the PB and LI constraints within a CSP.

5.1.1 The Anatomy of PB and LI Constraints

Recall that we describe an LI constraint as having the form

∑
qixi ⋄ k

where each xi is a decision variable with a finite integer domain, qi is an associated integer

coefficient and ⋄ is a comparison operator. PB constraints are a special case of LI con-

straint where all the decision variables are Boolean. As explained in the previous chapter,

I extract features just before Savile Row’s internal model is encoded to a Boolean formula.

By this stage Savile Row has transformed any PB or LI constraint so that the comparison

is either = or ≤.

For our purpose then a PB/LI constraint can be said to be characterised simply by the

list of coefficients and the upper limit k. However, the possibility of partitioning the qixi

terms into at-most-one groups brings an additional factor into consideration.

At-Most-One Groups

In the background chapter on SAT encodings we saw that when the decision variables in

PB constraints are also subject to At-Most-One (AMO) constraints, it is possible to produce

more compact encodings. These encodings can lead to much faster solving in some cases

than encodings which are not AMO-aware. In Savile Row, LI constraints can be represented

as PB constraints with AMO groups.

78

5.1. New Features for PB and LI Constraints

Table 5.1: New features for pseudo-Boolean and linear integer constraints. For each aspect of
a constraint listed in the left column, we calculate the aggregates in the right column. In the
aggregation functions, IQR means inter-quartile range, skew refers to the non-parametric skew
and ent is Shannon’s entropy. The identifier for each aspect is given in brackets and the rows are
numbered for easier reference. Features are extracted separately for the PB and LI constraints in
an instance.

Aspect of constraint Aggregate

1 Number of (PB or LI) constraints (count) not applicable
2 Number of terms (n) min, max, mean, median, IQR,

skew, ent, sum
3 Sum of coefficients (wsum) sum, skew, IQR
4 Minimum coefficient (q0) min, mean
5 Maximum coefficient (q4) max, median, mean
6 Median coefficient (q2) median, skew, ent
7 IQR of coefficients (iqr) median, skew
8 Coefficients’ quartile skew (skew) mean, min, max, ent
9 Distinct coefficient values (sep) mean, max

10 Ratio of distinct coefficient values to number of coefficients
(sepr)

mean, max

11 Number of At-Most-One groups (AMOGs) (amogs) mean
12 Mean size of AMO group (asize_mn) mean
13 Mean AMOG size ÷ number of terms (asize_r2n) mean
14 Mean maximum coefficient size in AMOGs (amaxw_mn) mean
15 Skew of maximum coefficient in AMOGs (amaxw_skew) mean, ent
16 Upper limit (k) (k) mean, median, max, IQR, ent,

skew
17 k × number of AMOGs (k_amo_prod) mean, IQR, ent

It is important to take into account the AMO groups when describing PB / LI constraints,

because they can have a big effect on the resulting encoding. For instance, the PB con-

straint x1 + 2x2 + 3x3 + 4x4 + 5x5 ≤ 8 has a left-hand side which could sum to 15 if all

decision variables were true. However, if a partition with AMO groups {x1, x2, x3}, {x4, x5}

existed then the maximum sum now reachable would be 8, requiring fewer SAT variables

to cover all possible sums. Indeed AMO-aware encodings could even declare a PB trivially

true in light of the AMO groups, for example if the sum of the maximum coefficients from

each group is less than the upper limit for the whole PB.

Some of the features I introduce attempt to capture some of the interaction between

the AMO groups, the coefficients, and the upper bound k.

5.1.2 The Features

The parameters of constraints considered for the PB-related features are summarised in

Table 5.1 and fall into some broad categories.

79

5.2. Extended Results

Aspects 2-8 address the distribution of coefficients (also often referred to as weights)

within a PB constraint by considering: how many terms exist (n), the sum of all the coeffi-

cients (wsum), the middle and extreme values (q0, q2, q4), the spread of coefficient values

(iqr) and how skewed the coefficients are (skew).

Parameters 9-10 look at how many separate coefficient values exist as a number (sep)

and as a proportion of the number of terms (sepr). These parameters distinguish between

constraints where most coefficients are the same and those where the decision variables

have a variety of associated coefficients.

In rows 11-15 I consider AMO groups: firstly how many exist (amogs) and how big they

are (asize_mn, asize_r2n), and secondly how big the maximum weights in each group

are (amaxw_mn, amaxw_skew). The maximum coefficients in each group determine the

biggest overall total theoretically obtainable.

The parameter set also contains the upper bound k and a result (k_amo_prod) which

estimates the maximum encoding size for some encodings under consideration.

These parameters are obtained for each PB/LI constraint in an instance – these are

then aggregated for the whole instance using the functions listed in the right column of

Table 5.1. This is done separately for the PB and LI constraints in an instance. Although

ultimately they are represented in the same way, it may be important to record whether

the constraint came specifically from a pseudo-Boolean constraint or from a more general

LI constraint such as a sum. When the 17 parameters are aggregated across the instance

using the various summary functions, the resulting number of features is 45 collected

separately for the LI and PB constraints separately, leading to a total of 90 features.

5.2 Extended Results with Generic and Specialised Features

The 90 features described above form the lipb feature set. I have created a further fea-

tureset combi which is the union of the specialised lipb and generic f2fsr features. I now

present the results of training with the new features alongside the previous results which

used only generic features.

Here is a summary of all four featuresets used in the experiments presented in this

chapter:

f2f The features produced by the fzn2feat tool on FlatZinc output from Savile Row.

f2fsr The same features extracted directly from Savile Row.

80

5.2. Extended Results

lipb The specialised set of features described in Section 5.1.

combi The union of lipb and f2fsr

5.2.1 Results

In Table 5.2 I present the updated performance results to include the predictions made

using the new featuresets. The table reports the results in the same way as Table 4.2 in the

previous chapter, giving the PAR10 times for the predicted encodings as a multiple of the

virtual best (VB) time. Once again I present for reference the single best (SB) obtained by

selecting the encoding configuration which yielded the lowest total time on the instances

in each training set. The results using the default (Def) encoding of Tree_Tree are also

shown.

On Performance

A striking initial observation is that in the split-by-class setting, the new featuresets be-

come the best performing for all but one setup. Even when splitting by instance, the new

featuresets improve the performance in seven out of 11 cases. Using the new features, we

go from being able to close 46% of the VB-SB gap for unseen classes to 59%, placing us

closer to the VB than to the SB and considerably outperforming the default setting.

The PAR10 performance is shown using boxplots in Figure 5.1, once again giving us the

distribution of total times per test set, this time incorporating the new features too. We

also observe the number of timeouts on the right-hand side. The new featuresets seem

to have minimal impact in the split-by-instance setting, but are helpful when splitting by

class, bringing down the mean time per test set and reducing the number of timeouts.

Combining the specialised features with the generic ones seems to in fact reduce perfor-

mance – the mean PAR10 time and the mean number of timeouts is lower when using lipb

than using combi, although this is explained by the one outlier (with 20 timeouts!) which

is produced by the combi predictions but avoided by lipb. Overall the evidence suggests

that using the specialised features to predict encodings for unseen problem classes is a

more robust approach than relying on generic instance features.

Recall that in the previous chapter I selected one setup as preferred; this is the fourth

entry in the results table (Table 5.2) using pairwise RF classifiers with custom scoring and

sample weighting. In the expanded results with the new featuresets we see that this setup

is still the best performing choice on unseen problem classes and competitive on seen

81

5.2. Extended Results

Table 5.2: Total PAR10 times over the 50 test sets as a multiple of the virtual best configuration time.
The best time for each combination of setup and splitting method is shown in bold. The predicted
runtimes include feature extraction time. In the setup details, the selection is either done via
pairwise voting or a single multi-label classifier; DT is a decision tree classifier, RF is random forest,
GB is a gradient boosting classifier; Co/Sep shows whether LI and PB encodings were selected
separately or as a combined choice; SW means sample weighting is used; CL indicates custom loss
used in cross-validation; Tuning refers to the number of cycles of hyperparameter tuning.

Split-by-Instance Reference Times
Virtual Best Single Best Default Virtual Worst

1.00 13.87 17.84 123.70

Split-by-Instance Predicted Times
Setup Details Features

Selection Co/Sep SW CL Tuning f2f f2fsr lipb combi

Pairwise RF co - - 50× 15 7.99 5.63 5.87 5.86
Pairwise RF co ✓ - 50× 15 6.33 5.36 5.10 4.99
Pairwise RF co - ✓ 50× 15 6.01 4.74 4.57 4.75
Pairwise RF co ✓ ✓ 50× 15 5.40 4.69 4.43 4.57

Single RF co ✓ ✓ 750 3.91 3.70 3.77 3.81
Single RF co ✓ ✓ 60 3.95 3.70 3.98 3.83
Single RF co - - 750 10.34 9.64 9.11 8.90
Pairwise RF sep ✓ ✓ 50× 15× 2 6.53 6.67 5.60 5.81

Pairwise DT co ✓ ✓ 50× 15 6.00 6.06 7.14 5.99
Pairwise GB co ✓ ✓ 50× 15 4.25 3.97 4.14 3.58
Single GB co ✓ ✓ 750 4.25 3.44 4.12 3.69

Split-by-Class Reference Times
Virtual Best Single Best Default Virtual Worst

1.00 25.40 17.15 160.96

Split-by-Class Predicted Times
Setup Details Features

Selection Co/Sep SW CL Tuning f2f f2fsr lipb combi

Pairwise RF co - - 50× 15 15.07 15.01 14.17 12.55
Pairwise RF co ✓ - 50× 15 16.80 14.90 13.21 12.77
Pairwise RF co - ✓ 50× 15 16.42 15.30 14.97 11.16
Pairwise RF co ✓ ✓ 50× 15 15.69 15.19 11.00 11.84

Single RF co ✓ ✓ 750 20.59 19.15 13.17 14.53
Single RF co ✓ ✓ 60 22.01 19.49 13.56 13.52
Single RF co - - 750 19.72 19.93 15.18 16.50

Pairwise RF sep ✓ ✓ 50× 15× 2 16.91 14.10 12.02 12.71

Pairwise DT co ✓ ✓ 50× 15 17.63 14.05 20.1 16.04

Pairwise GB co ✓ ✓ 50× 15 19.26 17.45 14.51 12.25
Single GB co ✓ ✓ 750 24.54 19.76 14.84 15.02

82

5.2. Extended Results

classes. It’s worth noting that the setup which predicts separately for PB and LI also does

well on unseen problem classes. As mentioned in the previous chapter, this latter setup

could become even more significant if we extended the number of constraint types we

want to deal with – this setup would potentially scale better as each classifier would con-

tinue working in one dimension of the configuration space rather than three or more.

Let us return to the “survival” plot, this time with all four featuresets in Figure 5.2,

showing the number of instances solved as time is increased. With both splitting strate-

gies we observe that the featuresets emerge in the order lipb, combi, f2fsr, f2f with the

lipb-predicted encodings enabling most instances to be solved within the timeout. When

splitting by instance, the results for the new featuresets are very close to the original

generic points; however, when splitting by class, there is a clear advantage for the spe-

cialised featuresets.

A further insight is provided by Figure 5.3 which shows the accuracy of predictions

across the 50 training and test sets – in this figure we see how often the pairwise classifier

ends up making exactly the “right” decision, i.e. picking the best encoding available from

the portfolio. In the split-by-instance scenario the prediction accuracy is fairly consistent

across feature sets; however, for unseen classes we observe something unexpected. The

f2f features lead to the most accurate predictions, but, as discussed above, the overall

performance in terms of the resulting runtimes is considerably worse – this could be ex-

plained by the extra time required to output FlatZinc and then run the feature extractor.

The specialised features enable the pairwise classifier to produce a more robust predic-

tion, in the sense that even when the prediction made is not the absolute best encoding

choice, the selected encoding tends to provide performance closer to the best.

On Encoding Choices

Figure 5.4 shows the frequency with which different encoding configurations are predicted.

Recall that although we use a portfolio of 6 encodings, the portfolio is generated from the

training set; consequently the portfolios are different across the 50 sets. The VB column

shows a smooth distribution of ideal encoding choices from the full range of encodings

available. In both splitting scenarios we observe five configurations preferred by the clas-

sifiers: RGGT_Tree, GGPW_GGPW, Tree_MDD, GGPW_GGTd and GGT_MDD. Additionally, in

the split-by-class task GGPW_Tree is also used very often. The GGPW encoding for LI con-

straints is popular in these choices and can therefore be considered a very good single

choice in many settings; remember that when illustrating the building of a portfolio using

83

5.2. Extended Results

0 500 1000 1500 2000 2500 3000 3500
Mean Time (sec)

VB
SB

Def
f2f

f2fsr
lipb

combi

Se
le

ct
or

Split by instance

0 2 4 6 8 10 12
of timeouts

0 2000 4000 6000 8000
Mean Time (sec)

VB
SB

Def
f2f

f2fsr
lipb

combi

Se
le

ct
or

Split by class

0 5 10 15 20 25 30
of timeouts

Figure 5.1: Prediction performance using all four sets of features against reference times. We show
mean PAR10 runtime (left) and number of timeouts (right) per test set across the 50 cycles with
our preferred setup (pairwise random forests, sample weights, custom loss). Outliers are indicated
with crosses and represent values more that 1.5 × IQR outside the quartiles.

500 1000 1500 2000 2500 3000 3500
Time (seconds)

5200

5400

5600

5800

6000

6200

of

 in
st

an
ce

s s
ol

ve
d

split by instance

VB
SB
Def
f2f
f2fsr
lipb
combi

2600 2800 3000 3200 3400 3600
Time (seconds)

5900

5950

6000

6050

6100

6150

6200

6250

6300

of

 in
st

an
ce

s s
ol

ve
d

split by instance

500 1000 1500 2000 2500 3000 3500
Time (seconds)

5600

5800

6000

6200

6400

6600

6800

7000

of

 in
st

an
ce

s s
ol

ve
d

split by class

VB
SB
Def
f2f
f2fsr
lipb
combi

2600 2800 3000 3200 3400 3600
Time (seconds)

6600

6700

6800

6900

7000

of

 in
st

an
ce

s s
ol

ve
d

split by class

Figure 5.2: The number of problem instances individually solved within a given time for the ref-
erence selectors and our preferred predictor using different feature sets. The figures on the left
show the full performance profile; on the right we zoom in to see how many instances are solved
by the selectors as we approach our timeout limit of 1 hour.

84

5.2. Extended Results

0 20 40 60 80 100
Accuracy (%)

f2f

f2fsr

lipb

combi

Fe
at

ur
es

Split by instance

0 20 40 60 80 100
Accuracy (%)

Split by class

Phase
test
train

Figure 5.3: Distributions of prediction accuracy across the 50 split, train, predict cycles using our
preferred setup.

the whole corpus in Figure 4.1, the single-choice winning configuration was GGPW_Tree. In

the distribution of predictions made, there is more variety in the PB encoding selected,

with five different choices featuring in the six top configurations mentioned.

f2f

f2fsr

lipb

combi

VB

Fe
at

ur
es

et

Split by instance

Tree_Tree

RGGT_Tree

MDD_Tree

GGTd_Tree

GGPW_Tree

GGT_Tree

GGPW_GGPW

Tree_MDD

GGPW_GGTd

Tree_GSWC

GGPW_GGT

GGT_MDD

0 1000 2000 3000 4000 5000 6000
Instances

f2f

f2fsr

lipb

combi

VB

Fe
at

ur
es

et

Split by class

Figure 5.4: Frequency of each configuration (li_pb) selected across the 50 test sets when using each
feature set with our preferred setup. We also show the virtual best (VB) configuration distribution
for comparison. The colour indicates the LI encoding and the fill pattern shows the PB encoding.
Only the top 12 most used configs (of 81 in total) are shown in the legend.

85

5.3. Comparison with AutoFolio

Statistical Significance and Effect

As well as comparing PAR10 times, it may be worth considering statistical tests to interpret

the value of our approach.

Because the distribution of runtimes in the split-by-class trials is skewed, we use a

non-parametric statistical test to report on the significance of the improvement achieved

by using our classifier. We apply the Wilcoxon Signed-Rank test for paired samples on

the 50 mean times from the SB selector choices and our preferred selector using the lipb

features. Using a two-tailed test, we obtain a p value of 6.5× 10−5 (well below even a 1%

significance level) and an effect size of −0.62 using the rank-biserial correlation method

which would usually be interpreted as a medium to large effect.

The Vargha-Delaney A measure [90] provides another way to assess the effect size.

When applied to our preferred setup and featureset, the Vargha-Delaney A value is very

close to 0.5 (for predictions with lipb versus single best) if we apply it instance-by-instance

to the nearly 7000 individual test runtimes – a figure which suggests no effect at all. If,

instead, we take each of the 50 test runs in turn and consider the combined runtime, we

obtain a value of 0.38, pointing to a small effect (the authors of the test indicate that a

value below 0.36 would be a medium effect). However this VD-A analysis only considers

whether a value drawn from one distribution is higher than from the other distribution on

more occasions and as such has no sense of how much we might be “winning” or “losing”

by. This argument is well made in [91] especially related to the sphere of search-based

software engineering. This paper suggests that careful processing of the data is needed

to avoid the trap of a completely wrong conclusion were one to use the VB-A measure

naïvely.

5.3 Comparison with AutoFolio

To further contextualise the performance of LeaSE-PI, I compare with AutoFolio [83], a so-

phisticated algorithm selection approach which automatically configures algorithm selec-

tors and “can be applied out-of-the-box to previously unseen algorithm selection scenar-

ios.” I use the latest version of AutoFolio available at the time of running the experiments

(the 2020-03-12 commit which adds a CSV API to the 2.1.2 release) with its default settings.

I use the algorithm selection component of AutoFolio to make a single prediction per in-

stance, turning on the hyperparameter tuning option; I do not use its pre-solving schedule

generation.

86

5.3. Comparison with AutoFolio

Table 5.3: Performance of LeaSE-PI against AutoFolio, given as PAR10 times over the 50 test sets
as a multiple of the virtual best. The preferred LeaSE-PI setup is featured (using pairwise random
forests, sample weighting and custom loss for tuning). The best time for each combination of
setup and splitting method is shown in bold. The predicted runtimes include feature extraction
time. Tuning refers to the number of cycles of hyperparameter tuning for LeaSE-PI and to the time
budget given to AutoFolio.

Split-by-Instance Predicted Times
Setup Details Features

Selection Co/Sep SW CL Tuning f2f f2fsr lipb combi

Pairwise RF co ✓ ✓ 50× 15 5.40 4.69 4.43 4.57

AutoFolio co n/a n/a 1 hour 22.19 24.18 20.63 21.02
AutoFolio co n/a n/a 2 hours 26.71 27.59 22.63 22.19
AutoFolio co n/a n/a 4 hours 22.76 25.40 22.45 23.47

Split-by-Class Predicted Times
Setup Details Features

Selection Co/Sep SW CL Tuning f2f f2fsr lipb combi

Pairwise RF co ✓ ✓ 50× 15 15.69 15.19 11.00 11.84

AutoFolio co n/a n/a 1 hour 24.28 27.31 24.21 26.79
AutoFolio co n/a n/a 2 hours 26.90 31.85 25.26 25.84
AutoFolio co n/a n/a 4 hours 24.88 25.36 23.66 30.22

To compare as fairly as possible, I train AutoFolio on exactly the same training data,

and test on the same test sets as above. The ML system I implement takes less than 5

minutes to train using 8 cores on the cluster, so I allow AutoFolio 1 hour on one core to

tune and train. I also run it with a more generous budget of 2 hours and 4 hours to see if

its performance improves. The runtime performance based on AutoFolio’s predictions is

shown in Table 5.3 alongside the preferred LeaSE-PI setups.

The LeaSE-PI predictions lead to better runtimes than AutoFolio’s with five times faster

solving on seen problem classes and more than twice as fast on unseen classes. AutoFo-

lio is designed to be a general algorithm selection and configuration system able to make

good predictions when choosing between different solvers. It is likely that AutoFolio’s

sophisticated decision-making is better suited to problems that run much longer or to al-

gorithms for which the likelihood of timeouts or non-termination is more of an issue. It is

interesting to note that AutoFolio performs better with the lipb features than the generic

instance features. Allowing AutoFolio more time for tuning leads to marginal improve-

ment with some feature sets, but in some cases actually results in worse performance, for

example with split-by-instance and the combi features.

87

5.4. Feature Importance

5.4 Feature Importance

I investigate the relative importance of instance features by using a measure called per-

mutation feature importance. Breiman [60] calculates “variable importance” in random

forests by recording the percentage increase in misclassification when each variable (fea-

ture) has its values randomly permuted compared to when all features are used. Permut-

ing the values means that the distribution is preserved but the feature effectively becomes

noise. I implement this analysis but record the mean increase in PAR10 time when each

feature is permuted, effectively giving the extra runtime cost when the feature is lost. Each

feature is randomly permuted 5 times and the mean time increase recorded. The distri-

bution of feature importance thus calculated is shown in Figure 5.5. I report on the lipb

features and on the combi feature set which additionally contains the generic features

from f2fsr. Only the top 20 features ordered by mean importance are shown.

Note that permutation feature importance is applied at prediction time to the test set,

unlike the Gini (entropy) feature importance measure which is provided by thescikit-learn

implementation of random forests but is calculated during training, as it observes how im-

portant the features are during the tree building phase. Other forms of feature importance

exist too, for example one can compute a priori the correlation between each feature and

the target value in the dataset if carrying out a regression.

We can see in Figure 5.5 that for both feature sets the median feature importance in

the majority of cases is close to zero, but the mean importance varies considerably. This

suggests that there are no features which are dominant on their own – most of the time

a missing feature incurs no loss of prediction performance. Indeed sometimes removing

a feature can improve performance, as shown by some negative costs in most box plots.

However, the means of the distributions show that there are cases where each of the top

features shown is able to prevent a costly wrong choice. The full extent of the variation

of the mean feature importance is shown in Figure 5.6.

In the top 20 combi features we find a roughly equal mix of generic features and fea-

tures specific to PB/LI constraints (the names of these features have prefixes pb_ and

li_), when it comes to predicting for known problem classes (i.e. split by instance). This

is in keeping with the similar performance of the f2fsr and libp featuresets as shown pre-

viously in Table 4.2. It is likely that when splitting by instance the system is, to a large

extent, recognising problem classes rather than picking out traits of PB/LI constraints.

When predicting for unseen problem classes, the proportion of PB/LI to generic fea-

88

5.4. Feature Importance

0 1000 2000 3000

li_sepr_mn
li_amo_mn

li_asize_r2n_mn
li_k_skew

li_n_iqr
li_n_sum

li_asize_mn_mn
li_sep_mn

li_wsum_iqr
li_k_ent

li_q4_med
li_amaxw_skew_ent

li_n_skew
li_k_med

li_k_amo_prod_ent
li_n_ent

li_sep_max
pb_skew_ent

pb_count
pb_asize_r2n_mn

lipb, split by instance

5000 0 5000 10000 15000

pb_amo_mn
pb_count
pb_n_iqr

pb_n_sum
pb_k_max

pb_k_amo_prod_mn
pb_asize_mn_mn

pb_wsum_iqr
li_amo_mn

pb_n_ent
pb_skew_mn

pb_n_max
pb_q4_mn
pb_k_med

pb_skew_ent
pb_k_skew

li_skew_ent
li_sep_mn
li_k_med
pb_k_mn

lipb, split by class

1000 0 1000 2000 3000 4000
Cost (seconds)

li_amo_mn
li_amaxw_skew_mn

c_max_domdeg_cons
c_avg_deg_cons
li_asize_mn_mn

d_ratio_array_cons
li_asize_r2n_mn

c_max_deg_cons
li_k_skew

li_sepr_mn
d_ratio_int_vars

d_bool_vars
li_wsum_skew

c_avg_domdeg_cons
v_max_dom_vars
c_ent_dom_cons

d_ratio_bool_cons
gc_global_cons

v_sum_dom_vars
li_n_iqr

combi, split by instance

0 2000 4000 6000
Cost (seconds)

pb_k_med
c_sum_dom_cons

c_ent_deg_cons
pb_n_iqr

li_amaxw_mn_mn
c_min_domdeg_cons

li_asize_mn_mn
li_wsum_iqr

v_cv_deg_vars
v_ratio_vars
li_sepr_max

pb_skew_mn
pb_wsum_sum

c_max_domdeg_cons
li_skew_ent

li_amaxw_skew_ent
pb_sep_mn

pb_k_amo_prod_mn
li_k_amo_prod_iqr

pb_skew_ent

combi, split by class

Figure 5.5: Permutation feature importance: increase in PAR10 time over 50 cycles. Top 20 features
shown according to mean importance. Outliers are omitted, defined as being beyond 1.5 × IQR
away from the box. The mean importance over the 50 cycles is shown by a diamond. Features
beginning li_ or pb_ refer to LI/PB features as listed in Table 5.1; the other feature names refer
to the generic instance features from the combi feature set.

0 25 50 75 100 125 150 175
Rank

5000

2500

0

2500

5000

7500

Im
po

rta
nc

e

Featureset
combi
lipb

Split
class
instance

Figure 5.6: The mean permutation feature importance across the 50 cycles for every feature in the
lipb and combi featuresets, from most to least important.

89

5.4. Feature Importance

tures in the top 20 rises to 14:6, supporting the hypothesis that making choices about

which encodings to choose for certain constraint types is better served by using features

relating to those constraints in the problem instance.

Let us consider the importance of features related to PBs as distinct to LIs. Starting

with the split-by-instance plot in Figure 5.5 (top left) we note that most of the top features

relate to LIs (17 to 3); this is almost entirely reversed when splitting by class (16 to 4 in

favour of PB features). One possible explanation is that there are more LIs on average

than PBs in the corpus, so LI features could be more useful in recognising previousy seen

classes; in the by-class case, the choice of PB is harder so PB-related features are more

important here. We saw that the generic features performed competitively in the split-by-

instance setting. However, when it comes to predicting for unseen problem classes, we

know that the LI/PB related features are more discriminating as shown in the performance

results (Table 4.2). We have also seen that there is more variation in the best PB encoding

than the best LI encoding (with GGPW often winning for LI) and so it follows that the PB-

related features are more prominent in this harder setting.

As a final discussion point relating to feature importance, we look in more detail at

the top 20 features from the lipb featureset when used on unseen problem classes. We

have already observed the disparity between the mean and median of the permutation

feature importance. In Table 5.4 I list the top 20 features by mean and by median. A

positive median value tells us that a feature is more often than not valuable in making

good predictions. The mean indicates the overall contribution in a different way, i.e. how

much time is lost on average per prediction batch across the 50 cycles when a feature is

replaced with noise. The features highlighted in bold type appear in both top-20 lists and

so can help to explain what kinds of features are most helpful. These mostly pertain to

size, e.g. pb_n_sum is the total number of terms across all PBs, pb_k_max is the highest

upper bound k, pb_amogs_size_mn_mn is the mean of the mean size of the AMO groups

in PBs, pb_count is the number of PB constraints.

There are limitations to how much we can read into the permutation feature impor-

tance (PFI), in particular because of two factors: PFI considers features in isolation and

we have quite a large number of features. A feature α may be discriminating but could

be masked by another feature β with which it is highly correlated, so when we permute

α’s values, there may not be a great loss in prediction performance while the information

from β remains. Thus we could wrongly conclude that α is not very valuable. We have

also seen that the features in libp and f2fsr can give comparable prediction performance

90

5.5. Summary

Table 5.4: The 20 most important features in the lipb feature set by their mean and median per-
mutation feature importance (PFI). Features which appear in both top-20 lists are highlighted in
bold. These PFI values were obtained in the split-by-class task and are averaged over the 50 split,
train, predict cycles.

Top 20 by Mean Top 20 by Median

PFI (seconds) PFI (seconds)

Feature Mean Median Feature Mean Median

pb_amogs_mn 8899.11 2.15 pb_n_sum 6573.40 114.78
pb_count 8190.50 3.33 pb_k_max 5412.10 68.36
pb_n_iqr 7889.19 0.69 pb_amogs_size_mn_mn 4661.48 30.20
pb_n_sum 6573.40 114.78 pb_k_amogs_prod_ent 1435.01 19.70
pb_k_max 5412.10 68.36 pb_wsum_sum 591.30 11.05
pb_k_amogs_prod_mn 5048.18 -0.36 li_skew_ent 2118.24 4.61
pb_amogs_size_mn_mn 4661.48 30.20 pb_n_min 323.83 3.66
pb_wsum_iqr 4462.16 -0.29 li_sepr_max -1823.14 3.43
li_amogs_mn 4313.62 1.70 pb_count 8190.50 3.33
pb_n_ent 3048.54 3.01 pb_n_ent 3048.54 3.01
pb_skew_mn 2950.82 0.00 li_n_med -164.57 2.22
pb_n_max 2703.56 -0.21 pb_amogs_mn 8899.11 2.15
pb_q4_mn 2390.52 -0.05 li_amogs_size_mn_mn 1168.76 2.11
pb_k_med 2337.28 -0.27 pb_k_amogs_prod_iqr 226.67 1.76
pb_skew_ent 2237.81 0.84 li_amogs_mn 4313.62 1.70
pb_k_skew 2192.99 -1.11 li_skew_mn 1213.57 1.13
li_skew_ent 2118.24 4.61 pb_k_ent 516.36 1.07
li_sep_mn 2055.11 0.05 li_count 422.29 0.87
li_k_med 1748.99 0.26 pb_skew_ent 2237.81 0.84
pb_k_mn 1513.33 0.04 pb_n_iqr 7889.19 0.69

(especially when splitting by instance) even though they consider different aspects of a

CSP.

It is very difficult to draw strong conclusions about which features are the most sig-

nificant. Many algorithms exist to aid feature selection before applying machine learning

methods. Although further work in reducing the featuresets could be of value, I have

shown that better predictions are achievable when using only the constraint-specific fea-

tures in the split-by-class setting.

5.5 Summary

In this chapter I have extended LeaSE-PI by introducing features relating to PB and LI

constraints. I have then presented the experimental results incorporating all four sets

of features and shown that the specialised features improve performance considerably

91

5.5. Summary

when predicting for unseen problem classes, but make less difference when the constraint

model has already been seen in training.

To assess whether LeaSE-PI is a competitive approach, I have compared with Auto-

Folio, an established and successful algorithm configuration solution. In the context of

this particular task, i.e. selecting PB/LI SAT encodings, LeaSE-PI proved much better that

AutoFolio. We also saw that the specialised features introduced in this chapter also led

to better choices than generic features when used by AutoFolio.

I have calculated a measure of feature importance and analysed what it says about

the relative importance of the LI-focussed features versus the PB-focussed ones in the

context of my problem corpus. I have also discussed the difficulties present in trying to

reliably identify the most important features.

The work presented so far still contains a major limitation: the choice of encoding is

made once for all the LI constraints and once for all PB constraints in an instance. The

next chapter explores how we might make a more fine-grained choice.

92

Chapter 6

IndiCon: Learning to Select Encodings for

Individual Constraints

� You can go your own way �

Fleetwood Mac

Research Question 4

Is it practical to learn to set encodings for individual constraints within a problem

instance? Does it lead to performance improvements compared to a single encoding

choice per constraint type?

Constraint-specific features have increased our prediction power. However, so far I

have chosen the same encoding for all constraints of one type in an instance. This could

be problematic for at least two reasons:

1. Any given problem instance might contain many constraints of the same type but

with quite different features. A single encoding selection may not be the best for all

the constraints of that type.

2. So far I have aggregated features of individual constraints in order to produce a fea-

ture vector per instance. This means that if we had a few different profiles of con-

straint, say from different parts of the constraint model, we could be losing valuable

information by aggregation.

Here I set out my attempt to select SAT encodings based on the features of individual

constraints. I will refer to this system as LeaSE-IndiCon or, more briefly, just IndiCon.

93

6.1. The Promise and Challenges for Per-Constraint Predictions

This chapter comprises:

• an introduction to the motivation for IndiCon and an initial look at the expected

challenges,

• an account of my attempts to overcome these challenges,

• a description of IndiCon i.e. my proposed method for learning to select encodings

for individual constraints,

• the results of training and testing IndiCon with a variety of design choices, and

• an evaluation of the results

6.1 The Promise and Challenges for Per-Constraint Predictions

6.1.1 A Motivating Example

To illustrate how finer control of encoding choices might be useful in practice, let us con-

sider a particular problem as an example. The multi-mode resource-constrained project

scheduling problem (MRCPSP) has been studied thoroughly; it features in the PB(AMO)

paper [43] we encountered in Chapter 2 and has extensive literature devoted to it, such

as [92]. In MRCPSP a project to be planned has activities which can be carried out in dif-

ferent modes – the mode determines how long an activity takes and how much resource

it consumes. The resources themselves can be renewable or non-renewable. The con-

straint model therefore contains two slightly different sets of pseudo-Boolean constraint,

one for each class of resource. The fact that each activity can only be carried out in one

mode leads to the presence of at-most-one (AMO) constraints which partition the pseudo-

Boolean (PB) constraints. AMO constraints are also required to account for precendence

relations, with tasks not being able to proceed concurrently.

A small extract of the constraint model written in Essence Prime is shown in List-

ing 6.1. The snippets show two important constraints which ensure that resource com-

sumption does not exceed availability – this is done separately for the renewable and

non-renewable resources. In this formulation, renewable constraints are replenished at

each time step, so the demand on a renewable resource from all the active jobs at one

time step must not exceed the resource available. Non-renewable resources are not re-

plenished at any stage. The sum constraint in lines 4-9 is posted for every renewable

resource and every time step to check that the resources demanded by the active jobs do

94

6.1. The Promise and Challenges for Per-Constraint Predictions

Listing 6.1: Selected extracts from the original constraint model written in Essence Prime for the
multi-mode resource-constrained project scheduling problem (MRCPSP) – this model uses the sum
constraint.
1 $ --- Renewable resources ---
2 forAll t : int(0..horizon) .
3 forAll r : int(1..resRenew).
4 sum(
5 [
6 active[j,m,t] * resUsage[j,m,r]
7 | j: int(1..jobs), m: indexOf(durations[j,..])
8]
9) <= resLimits[r],

10
11 $ --- Non-renewable resources ---
12 forAll r : int(resRenew+1..resources) .
13 sum(
14 [
15 resUsage[j,m,r] * (mode[j]=m)
16 | j: int(1..jobs), m: indexOf(durations[j,..])
17]
18) <= resLimits[r],

Listing 6.2: Selected extracts from the adapted Essence Prime model for the MRCPSP, using the
explicit amopb constraints
1 $ extra parameters to choose which PB(AMO) encoding to use
2 given enc_ren, enc_non : int(1..10)
3
4 $ --- Renewable resources ---
5 forAll t : int(0..horizon) .
6 forAll r : int(1..resRenew).
7 amopb(
8 [
9 [resUsage[j,..,r], [active[j,m,t] | m : indexOf(durations[j,..])]]

10 | j: int(1..jobs)
11],
12 resLimits[r],
13 enc_ren
14),
15
16 $ --- Non-renewable resources ---
17 forAll r : int(resRenew+1..resources) .
18 amopb(
19 [
20 [resUsage[j,..,r], [mode[j] = m | m : int(1..maxmode)]]
21 |j:int(1..jobs)
22],
23 resLimits[r],
24 enc_non
25),

95

6.1. The Promise and Challenges for Per-Constraint Predictions

not exceed the corresponding resource limit. Lines 12-18 introduce the sum constraints

for each non-renewable resource. For both types of resource, the reader will notice that

the resource consumption is dependent on m, i.e. the mode in which the job is done.

In Listing 6.2 the two constraints described above are replaced with explicit amopb

constraints. Essence Prime’s amopb constraint implements the PB(AMO) constraints and

allows for a specific encoding choice to be made in the model. The three parameters to

amopb are: a list of (coefficient, Boolean decision variable) pairs, the upper limit, and the

SAT encoding choice.

101 102 103

Total runtime (sec)

j3018_1.mm
j3012_6.mm

j3011_3
j3020_7.mm
j3018_2.mm
j3012_3.mm

j3016_7
j3012_1
j3016_2

j3017_8.mm
j3011_6

j3015_7.mm
j3015_4.mm

j3020_4
j309_7

j3013_6.mm
j3013_2
j3045_5

j3053_9.mm
j3037_10

In
st

an
ce

Policy
same
diff

Figure 6.1: MRCPSP runtimes with same or different encodings for renewable and non-renewable
constraints

I carried out an initial exploratory experiment, following the suggestion of my PhD

advisor Peter Nightingale. I manually set the choice of PB(AMO) encoding in the constraint

models for the renewable and non-renewable resources. I was able to use the 8 PB(AMO)

encodings in Savile Row, giving 64 possible combinations of encoding. I took a random

sample of 20 instances from the PSPLIB library of project scheduling problems [93] and

ran each instance with all 64 configurations 5 times with the Kissat SAT solver, recording

the median run time.

96

6.1. The Promise and Challenges for Per-Constraint Predictions

The results of this experiment are shown in Figure 6.1. The plot highlights the runtime

of the encodings where both sets of PB constraints were assigned the same encoding in

blue to distinguish them from the times when different encodings were set (in orange). If

we consider the left-most blue and orange dots in each instance, we can see the best time

possible when using a single encoding (like in LeaSE-PI) versus making separate choices.

It appears that in some cases a sizeable improvement might be possible if separate en-

codings could be chosen. The gains from separate choices over a single choice are not

huge in this particular experiment, but it suggests that there is room for improvement by

allowing separate choices to be made. We must also consider several limitations of this

experiment which could account for the fairly small potential gains shown:

• I only changed the PB constraint choice, but in other scenarios there might be other

constraint types where we can adopt a more fine-grained choice.

• It was not easy to manually demand a Tree encoding for this experiment, so only

the other 8 encodings available to LeaSE-PI were used. Tree is a very competitive

encoding so could unlock further gains.

• The way I partitioned the constraints here was based on intuition and on the ease

of manually parameterising the encoding used for the two different constraints as

they’re expressed in the Essence Prime model. Ultimately each individual constraint

could be encoded using a different scheme, leading at least in theory to bigger po-

tential “wins”.

With the encouragement that partitioning the encoding choice can lead to perfor-

mance improvements in a concrete case, we now turn our attention to some of the an-

ticipated difficulties as I attempt to make decisions at a lower level, for each constraint

rather than per instance. We will initially consider three aspects: obtaining useful training

data, testing the system for the purpose of development and evaluation, and navigating

some implementation issues for PBs in Savile Row.

6.1.2 Obtaining Timings to Build a Training Dataset

So far the thesis has looked at making one choice of SAT encoding per type of constraint

per instance. Casting our minds back to Chapter 4 (Selecting Encodings using Generic

Features), we saw that all the timing data was obtained up front. I ran all the instances in

the corpus with every combination of encodings. This meant that when I was trying out a

97

6.1. The Promise and Challenges for Per-Constraint Predictions

new ML setup, the main time cost was how long it took to train the relevant ML models.

Once they were trained, generating predictions is almost instantaneous for most models.

From the predictions, I could then simply look up how long it took Savile Row + Kissat to

solve any instance in the corpus using that predicted combination of PB and linear integer

(LI) encoding.

It is however impractical to obtain timing data for every possible combination of en-

codings for each constraint in an instance. Many of the problems in my corpus have hun-

dreds of PB or LI constraints in them – setting each constraint separately would give a

huge number of combinations. For example, 9 encoding choices across 100 constraints

would require us to time 9100 solver runs (if we ran with just one seed). Even if the mean

runtime was 1 second, it would amount to 8× 1087 CPU years! The original combined run-

time of the timing data used in the previous two chapters is approximately 2 CPU years.

We see then that in order to generate timing data on a practical scale, a more selective

approach is required.

6.1.3 Evaluating Performance

As restated above, the evaluation step in the previous chapters was very quick because all

possible combinations were already timed. When setting individual constraint encodings,

we cannot practically pre-time all the combinations. The only way to test how well the

ML selections work is to actually run the solving pipeline (Savile Row + Kissat) and record

how long it takes. Purely in terms of computing resource, this is clearly a slower way to

try out different ML setups.

In Figure 6.2 I attempt to illustrate this difficulty. We see that in the LeaSE-PI, only one

large solving run is necessary in order to obtain all the timings. For every different ML

setup that we want to investigate, some training time is required, but this tends to be

much shorter, even with 50 trials1. The resulting predictions and evaluations are almost

instant to compute. This all means that it is possible to quite quickly try out different

learning setups, each new one perhaps requiring an average of around one hour of “wall

time”. However, when it comes to IndiCon, we need to solve the problems afresh with the

individual encoding selections predicted by the ML, with several runs to mitigate stochas-

tic variation in the SAT solver and once again with 50 different test/train splits to avoid

evaluating an unrepresentative set of results.
1Recall that I did 50 trials to obtain a distribution of performance results over the random train/test splits

98

6.1. The Promise and Challenges for Per-Constraint Predictions

solve each instance
with each encoding
config

evaluate
predict
train ML model

tri
al

1
tri

al
2

tri
al

n

time

LeaSE-PI

solve each instance
initially with each
encoding config

solve with system-
atic encoding configs

configure constraint
encodings

evaluate

predict and solve on
50 test sets

train ML models

tri
al

1

tri
al

2

time

IndiCon

Figure 6.2: Timing challenges in evaluating performance of different setups. Top: LeaSE-PI required
one large solving effort to obtain all the timings, the ML training, prediction and evaluation phases
were relatively quick for each setup. Bottom: to test each setup, Savile Row must be run with the
predictions to obtain the solving times for evaluation.

The time-consuming aspect of this investigation is compounded by two further factors,

the details of which will be explained later in this section. Firstly, the PB and LI constraints

are trained for separately, so the configuration of encoding choices per constraint and

accompanying timing runs need to be done separately. Secondly, all the training relies

on the initial per-constraint encoding choices - this configuration is very important, but

every time it is changed all the subsequent training and testing would need to be done

again.

6.1.4 To Tree or Not to Tree, or Not All PBs are Equal

As we saw in previous chapters, Savile Row implements the Tree encoding for PB/LI con-

straints and this encoding is very competitive, coming out as the best choice most often

both in the PB and LI context for the varied corpus used in Chapters 4 and 5. However,

in Savile Row this encoding is implemented in a slightly different way to the 8 PB(AMO)

encodings mentioned in the previous two chapters and which were added into Savile Row

more recently.

The PB(AMO) constraints described in [43] are implemented assuming that normali-

sation steps have been taken. These steps are detailed in the paper and they ultimately

99

6.2. Method

ensure that the constraint is in the form ∑n
i=0 qixi ≤ K, with positive coefficients qi.

Savile Row can encode a sum of the form ∑n
i=0 qixi = K directly using the Tree en-

coding, but in order to use the PB(AMO) encodings, such a sum has to be broken into two

separate less-than-or-equal constraints. This will have implications for how we extract

features of PB/LI constraints and how we implement the ML-predicted choice at runtime.

In this section I have laid out some of the barriers in the way of building on LeaSE-PI

to develop an ML-based system for predicting SAT encodings for individual (PB and LI)

constraints. In the following sections I explain how I take on this challenge.

6.2 Method

Having discussed the various considerations and challenges faced, I now present my method

for setting up IndiCon. Figure 6.3 gives an overview of the steps involved; if we compare

to the steps required for LeaSE-PI (as shown back in Figure 4.2), we note two major dif-

ferences, which have already been commented on in this chapter. Firstly, the labelled

training data cannot be generated directly from the initial timing runs. Instead, we need

to somehow produce per-constraint labels. Secondly, the results for analysis cannot be

obtained by simply referring to the existing timings and applying the predictions.

The IndiCon process described in this section is applied either in the context of PB or

LI constraints. Later on in this chapter I present an experiment which combines predic-

tions for both constraint types, but it is important to understand that, in contrast to the

approach used in LeaSE-PI, for this implementation of IndiCon, I try to learn to predict

encodings for one constraint type. I have applied the entire process separately to PB and

to LI constraints.

Let us begin with a high-level summary of the steps involved, as a companion to Fig-

ure 6.3, using the same numbers as the diagram for the steps and referring to the lettered

labels for any data consumed or produced.

1. We start with a corpus of problems (A). We solve the instances initially with a single

encoding choice per constraint type (as in previous chapters) and record the timings

(B). These will help us identify good default encoding choice for the instance.

2. We extract features of each individual PB or LI constraint in the problem instances

(C).

100

6.2. Method

(A) relevant problem in-
stances (with PBs or LIs)

(1) solve using Savile Row
with single encoding choice

(B) single-choice timings

(2) extract features

(C) constraint features

(3) cluster constraints

(D) constraints la-
belled with cluster id

(4) prepare systematic en-
coding choices per constraint

(E) encoding settings

(5) use Savile Row to solve

(F) timing data with clus-
tered encoding settings (6) create per-constraint labels

(G) ML dataset

Preparation
of ML Dataset

(7) train/test split

(I) test instances(H) training data

(8) train ML model

(J) trained model (9) use Savile Row to solve

(K) indicon tim-
ings for evaluation

Training
and Testing

provide base
encoding

Figure 6.3: The steps involved in IndiCon. The slanted boxes with rounded corners represent data;
the grey rectangles show processes. Processes which may take a long time have been drawn with
a thicker border. Boxes have been labelled with numbers 1-9 for processes and letters A-K for
data to make it easier to comment on the diagram in the text. The stages have been separated
by dashed boundaries into the initial ML dataset preparation stage and the split/train/test phase
which is repeated several times for different ML setups, and run with 50 different random seeds
for each setup.

101

6.2. Method

3. We use a clustering algorithm to group all the constraints across all instances into

clusters with similar features (D).

4. We prepare a number of encoding settings (E) for each instance so that we can sys-

tematically try different encodings for constraints by cluster. More details are given

later in Section 6.2.4.

5. Each problem is solved using Savile Row with the per-cluster encoding settings (E)

and we record the runtimes (F).

6. The timing results (F) allow us to generate a training set with the best encoding label

for each constraint.

We are now in a position to configure and train an ML model on the features and labels

obtained above. For the sake of robustness, the entire process of splitting the corpus,

training and testing is repeated several times for each setup.

7. The corpus of problems (A) is split into training and testing instances (H,I), keeping

instances from the same problem class apart.

8. An ML model is trained (J) to predict per-constraint encodings.

9. To evaluate performance, we run the instances in our test set (I), consulting the

ML model (J) from Savile Row to decide which encoding to use for each individual

constraint, and recording the time taken (K) in order to analyse the performance

resulting from the particular setup being used.

Through the rest of this section I present the details of the steps introduced above.

6.2.1 Corpus

I begin with the the same corpus of problems used in Chapters 4 and 5. I attempt to expand

the corpus by considering all the problem classes in the PB(AMO) paper [43] on which

Savile Row’s implementation of PB encodings is based. MRCPSP already features in my

corpus, but for the other problem classes it has proven difficult to obtain usable instances.

This is either because there were no models available in the Essence Prime constraint

modelling language, or because the instances available in that dataset are solved in such

a quick time by Kissat that they are not challenging enough to make a contribution to this

study.

102

6.2. Method

Table 6.1: The corpus of problems used for IndiCon. The problems are mostly the same as in
Table 4.1, but with extra instances for some problem classes. We show the name of the problem
class, followed by the number of instances (n) and the mean number (c̄) of PB or LI constraints per
instance of each problem class, rounded to the nearest integer.

c̄ c̄

Problem n PB LI Problem n PB LI

killerSudoku2 50 2473 194 magicSquare 6 232 57
nurse-sched 50 207 0 golomb 6 59 58
carSequencing 49 1024 0 peacefulQns3 6 0 6
knights 44 255 505 qGroup5Idemp 6 880 0
langford 39 231 0 qGroup6 6 756 0
opd 33 36 103 qGroup7 6 756 0
knapsack 24 1 1 bacp 4 0 53
sonet2 24 10 1 qGroup4Idemp 4 756 378
immigration 23 0 1 waterBucket 4 0 69
bibd-implied 22 651 0 qGroup4NonIdemp 4 1641 378
efpa 20 244 0 qGroup5NonIdemp 4 825 0
handball7 20 894 1809 qGroup3Idemp 4 825 378
mrcpsp-pb 20 100 62 qGroup3NonIdemp 4 1641 378
n-queens 20 1859 0 jp-encoding 2 0 2631
bibd 19 537 0 sol-battleship 2 111 48
molnars 17 0 6 discTomography 2 600 0
briansBrain 16 0 1 sokoban 1 0 36
life 16 0 786 plotting 1 1 28
n-queens2 16 361 0 sonet 1 4 1
bpmp 14 21 0 grocery 1 0 3
blackHole 11 303 0 sportsScheduling 1 249 96
pegSolAction 8 92 0 diet 1 0 7
pegSolState 8 92 0 contrived 1 0 6
pegSolTable 8 92 0 tickTackToe 1 9 21
peacefulQns1 7 0 5141 farm-puzzle1 1 0 3

One exception is the nurse scheduling problem. It is possible to access the full set

of problems in NSPLIB [94] and convert them to Essence Prime format relatively easily. I

obtain useful instances by converting the optimisation problem into a decision problem

with a given upper bound. This allows us to run several hundred instances and obtain a

random sample of 50 instances with a useful level of difficulty, i.e. which are solved in a

non-trivial time but don’t time out with the default SAT encoding settings in Savile Row.

The resulting corpus is shown in Table 6.1. Recall that IndiCon attempts to learn either

about PB or LI constraints separately. This means that when setting up training for one of

the constraint types, say PB, only problems which have some PB constraints (conversely

LI) are used, so a smaller corpus of problems is available. For example, if we refer to

103

6.2. Method

Table 6.1 we see that opd instances would feature when training for PBs and LIs, whereas

nurse-sched will only be used to train for PBs and bacp only for LIs.

6.2.2 Building on lipb to Extract Features of Individual PB Constraints

In Chapter 5 I define some aspects of PB/LI constraints which are then aggregated to

make the specialised featureset lipb. In order to describe individual constraints, I have

adapted the feature extraction code in Savile Row to output the features of individual

constraints, indexed by their path in the constraint model. In addition to the constraint

aspects introduced previously and discussed in Chapter 5 I also introduce some extra

features. The full list of features used by IndiCon is shown in Table 6.2. The motivation

behind the new features is briefly described below:

• is_equality records whether the constraint uses the = comparator rather than

being an inequality; this has implications for how the constraint is encoded, as men-

tioned above in Section 6.1.4. I will explain further below how constraints are iden-

tified as relevant by Savile Row and how the equalities are treated differently to

inequalities.

• amog_maxw_med is the median maximum weight across AMO groups and gives more

information about the distribution of maximum weights in the AMO groups when

coupled with the existing mean measure amog_maxw_mn.

• amog_maxw_mn2k is the ratio of the average maximum coefficient in any AMO group

to the upper limit k and could be an indication of how difficult the constraint will be

to satisfy, with a higher value meaning a tighter constraint.

• amog_maxw_sum (the sum of the maximum coefficients) tells us the size that the

“left-hand side” of the comparison could potentially reach.

• amog_maxw_sum_k_prod (the sum of maximum coefficients multiplied by the up-

per limit k) is a rough predictor of the maximum number of clauses required for

some of the encodings.

Note that in the feature descriptions, as in literature on PB constraints, the words coeffi-

cient and weight are used interchangeably, hence the use of w in many feature identifiers,

e.g. amog_maxw_sum which could also be described as the sum of the maximum weights.

Below is a brief discussion of some technical implications of extracting IndiCon fea-

tures.

104

6.2. Method

Table 6.2: Individual Constraint Features used by IndiCon, with their identifier and brief descrip-
tion. The New column shows new features added just for IndiCon.

New Feature Description

n Number of terms
wsum Sum of coefficients
q0 Minimum coefficient
q2 Median coefficient
q4 Maximum coefficient
iqr IQR of coefficients
skew Coefficients’ quartile skew
sepw Number of distinct coefficient values
sepwr Ratio of distinct coefficient values to number of coefficients

✓ is_equality Is it an equality constraint?
k Upper limit K

amogs Number of At-Most-One groups (AMOGs)
amog_size_mn Mean size of AMOGs
amog_size_mn_r2n Mean AMOG size ÷ number of terms

✓ amog_maxw_med Median size of the maximum coefficient across AMOGs
amog_maxw_mn Mean size of the maximum coefficient across AMOGs

✓ amog_maxw_mn2k The ratio of amog_maxw_mn : k
✓ amog_maxw_sum Sum of the maximum coefficients in each AMOG

amogs_maxw_skew Skew of the maximum coefficient in AMOGs
✓ amog_maxw_sum_k_prod amog_maxw_sum ×k

Identifying Pseudo-Boolean Constraints

We noted in the motivating example at the start of this section that a PB constraint can be

declared in different ways in Essence Prime. In the two different versions of the model for

MRCPSP we used firstly an implicit definition, using the sum constraint over expressions

containing boolean decision variables, and secondly an explicitly constructed amopb con-

straint, which at the time of writing was an experimental addition in a development branch

of Savile Row. The first method is the standard way to define a PB constraint, and gener-

ally speaking this is desirable as we would want the modeller to focus on describing their

problem. The “modelling assistant” (Savile Row) recognises that the constraint in ques-

tion can be expressed as a PB, potentially with its terms partitioned into AMO groups.

For IndiCon, we are interested in how Savile Row identifies PB constraints in two

phases of operation: feature extraction and the actual encoding stage. For feature ex-

traction, I already implemented code which identifies all constraints and the variables in

their scope in order to produce the f2fsr generic feature set used in Chapter 4. Savile Row

provides a method to identify constraints which end up being encoded as PB, so they can

be examined and their features recorded. Recall that we extract features as late as possi-

105

6.2. Method

ble before the SAT encoding phase, so Savile Row has carried out all simplifications and

reformulations, meaning the details of any PB constraint at this stage are exactly what

will be encoded into SAT. For the eventual encoding phase, I have modified Savile Row to

set the intended encoding choice for each relevant constraint according to the selections

received from calling IndiCon.

Dealing with (In)Equalities

The PB(AMO) encodings used in Savile Row rely on the constraint being in a normal form

where all coefficients are positive and the comparator operation is≤; full details are given

in [43]. PB or LI constraints with the equality (=) operator need to be split into two con-

straints, one with ≤ and one with ≥. The latter needs transforming into the aforemen-

tioned normal form. Potentially we might want to encode these two resulting constraints

using different encoding schemes.

To make matters even more interesting, Savile Row’s native implementation of PB

constraints (called Tree and described in more detail in [3]) deals with equality constraints

in a slightly different way. Tree also creates two inequalities but is able to reuse variables

across the two constraints, making it potentially a more compact encoding. As we saw

from our results with LeaSE-PI, Tree is a very competitive encoding.

This then is how I extract features to support both the PB(AMO) and the Tree encod-

ings. IndiCon records the features of the original PB constraint (whether an inequality or

an equality). If it is an equality, it then instructs Savile Row to construct the two PB(AMO)

constraints (unattached to the “live” constraint model). The features of these two con-

straints are then also recorded so that the ML model can predict their encoding in case

the original PB constraint is to be encoded using PB(AMO)s rather than Tree.

6.2.3 Clustering the Individual Constraints

Because we are seeking to predict encodings per constraint, we need to obtain training

data in a different way than was done for LeaSE-PI. Previously we timed solving runs for

our corpus of instances setting the SAT encoding choices per-instance; this enabled us to

assign a best encoding label to each instance on which to train our ML classifiers. Now that

we seek to make predictions for individual constraints within instances, we need to adapt

how we arrive at a best encoding label for a feature row describing a single constraint. I

describe below the attempted approaches.

106

6.2. Method

Early Attempt #1: Learning from Host Instances

A relatively straighforward initial approach is to use the timings information from LeaSE-

PI, where the encoding is set once for all constraints of a given type. I then construct a

training set where I label the target encoding for each constraint to be the best encoding

available for the host instance that the constraint appears in. This is an easy way to gener-

ate a training set, but it relies heavily on the assumption that constraints of one type will

have similar characteristics within one problem instance. In a sense the whole motivation

for IndiCon is to challenge that assumption; nevertheless, it may still be a useful, albeit

imperfect, way to begin to make predictions per constraint.

Early Attempt #2: Clustering within Instances

If, however, we assume that constraints of the same type occurring within a problem in-

stance have different features, then it makes sense to try and set different encodings for

different constraints. Given that it is not feasible to try out every encoding combination, I

partition constraints within instances by using an unsupervised clustering algorithm. This

way, if an instance contains more than one constraint of the type we’re insterested in (in

our case PB or LI), we can try different encoding choices for all constraints in a cluster and

record the resulting performance. Now we can pick out the best encoding per cluster and

associate that as the target label for all the constraints in the cluster as we’re constructing

our dataset.

One decision that needs to be made with this approach is how many clusters to use. We

have noted already that different problems have vastly different numbers of constraints

(whether PB or LI). Clearly no clustering is required where only one relevant constraint

exists, but for problems with many constraints, the number of clusters must be somehow

chosen. This number needs to balance finer granularity with practical feasability. Two

clusters might be too few to really capture the different types of constraints in the prob-

lem, whereas ten clusters would require running thousands of different encoding config-

urations just for that one instance. For this cluster-within-instances approach I use up to

5 clusters to achieve this balance.

This method has been helpful initially to set up the entire IndiCon pipeline with clus-

tering, but does not feature in the full investigation as the number of clusters is so arbi-

trary.

107

6.2. Method

Clustering Across the Corpus

Clustering in the way described above is simple to implement, but treating each problem

instance in isolation potentially suffers from some issues:

• we might miss out on patterns across the wider corpus

• we could be creating a false separation in some instances where in fact all the con-

straints might be near-identical, but simply with different decision variables in their

scope

• we have to set the number of clusters once and apply that number to all the in-

stances in the corpus. This arbitrary judgement may not reflect the distribution of

constraints accurately.

Seeking to address the issues raised above, I have also implemented a clustering

scheme which considers the corpus as a whole rather than partitioning constraints per

instance. I use agglomerative clustering (introduced in Section 3.1.2) to determine the

number of clusters globally by running the clustering algorithm and recording the distance

values which cause clusters to be merged. The documentation for the agglomerative clus-

tering implementation in scikit-learn recommends that the features are first scaled

to the range [0, 1]. The distance between clusters is therefore defined as the Euclidean

distance between the two feature vectors representing the location of the clusters.

We can observe the way the constraints in our corpus are clustered in Figure 6.4. Recall

that each data point (in this case the feature vector of a constraint) begins by being its own

cluster. As we increase the allowed distance between points in a cluster, we see clusters

merging.

Let us look at the top dendrogram in Figure 6.4 as an example. We see that as the

distance passes 12, 6 clusters become 5. The data remains split into 5 clusters all the way

up until the distance is 19. After this point, the clusters keep joining quite quickly until we

reach a distance of 27 and we’re left with 2 clusters. These clusters remain distinct until

we allow a distance of 49, at which point all constraints would fall into the same cluster.

For our purpose of partitioning constraints in the problem corpus, we note that 2 clusters

and 5 clusters remain stable for the largest ranges of distances (approximately 22 and

7 respectively). Although the data organises well into 2 clusters, I have chosen to use 5

clusters as this is also a relatively large gap between clustering points and it also allows

us to try more configurations for our encodings while still being practical to investigate.

108

6.2. Method

(20
)
(16

5)
(11

4)(27
)
56

94 (6) (5) (11
)
(18

1)
(33

2)
(25

4)
(29

1)
(11

1)(32
)
(36

)
(32

)
14

17 (6) (5) (11
)
(12

8)
(18

2)
(20

5)(27
)
(91

)
(10

5)
(37

9)
(50

9)(12
)
(33

)
(13

6)
(22

92
)

Constraints

0

10

20

30

40

50

Di
st

an
ce

Constraint type: pb, # of features = 21

(a)

#c ∆d

2 22.30
3 1.89
4 5.49
5 7.88
6 3.13
7 0.41
8 1.10
9 0.37
10 0.32

(b)

(4) (15
)
(22

)
(15

) (2) (16
)
(68

)
(22

2) (4) (6) (13
)
(77

)
(38

)
(49

)
(13

5)
(51

3)
11

81(13
) (7)

(10
2)
(12

6)(65
)
(81

9)
15

06 (3) (3) (5) (4) (5) (10
) (7)

Constraints

0

2

4

6

8

Di
st

an
ce

Constraint type: pb, # of features = 8

(c)

#c ∆d

2 0.21
3 0.77
4 1.53
5 0.53
6 2.16
7 0.13
8 0.05
9 0.25
10 0.27

(d)

(20
4)(35

)
(36

2)
(24

9)
(21

7)
(17

6)(45
)
(85

6)(6)
(10

6)(90
)
(92

8)(4) (16
)
(48

9)
(82

5)(46
)
(39

7)
(40

9)
(64

3)
(14

4)
(11

0)
(81

5)
(17

30
)
13

27
(22

4)
(13

4)
(17

49
)
(74

1)
(68

6)
(68

0)
(62

2)

Constraints

0

20

40

60

80

Di
st

an
ce

Constraint type: sum, # of features = 21

(e)

#c ∆d

2 46.31
3 7.71
4 0.98
5 0.31
6 5.46
7 0.57
8 4.07
9 1.09
10 1.87

(f)

45
24(10

)
(20

) (9) (47
)
(20

)
(13

3)
(11

0)(82
)
(13

6)
(24

0)
(38

6)
(17

2)
(15

9)(98
) (8)

(18
8)
(11

7)
(60

6)
(23

1)
(18

92
)
(20

2)(10
)
(15

07
)
(78

)
(41

) (2) (26
)
(30

9)
(41

7)
(88

1)
(14

1)

Constraints

0.0

2.5

5.0

7.5

10.0

12.5

Di
st

an
ce

Constraint type: sum, # of features = 8

(g)

#c ∆d

2 4.07
3 2.51
4 0.91
5 1.10
6 0.33
7 0.86
8 0.62
9 0.02
10 0.04

(h)

Figure 6.4: Dendrograms (on the left) showing the results of agglomerative clustering. The y-axis
shows the Euclidean distance between clusters. Along the x-axis the bracketed labels indicate how
many leaves would eventually be shown under that branch; labels without brackets give the index
of individual constraints where the cluster size is 1. The right column shows the range of distance
(∆d) spanned by each number of clusters (#c), i.e. the heights of the vertical lines on the left-hand
dendrograms. The clustering algorithm was run on the full set of IndiCon features (plots a,e) as
well as on a reduced set of 8 most important features (c,g).

109

6.2. Method

More Focussed Clustering with Fewer Features

The clusters of constraints used to label the training sets could potentially have a signifi-

cant impact on the learning. One way to ensure that the clustering is as useful as possible

is to focus on those features which are important for making good predictions.

In order to investigate this potential effect, I attempt to select a subset of features

on which to base the clustering. I used the Sequential Feature Selection (SFS) method

introduced in Section 3.1.2 and implemented by the scikit-learn library [6]. To keep

options open as to which particular classifier to use later on, I employ SFS with four differ-

ent classifiers which showed promise in preliminary experiments: Decision Tree, Random

Forests, Gradient Boosted Trees and Multi-Layer Perceptron. I run SFS with a target of 10

features in “forwards” mode, i.e. starting with an empty featureset and adding features

greedily to improve the classification accuracy.

Sequential feature selection works by evaluating the predictions made by a classifier

– in order to do this we need a ground truth to be able to judge the classification quality.

I use the same data as for LeaSE-PI, namely a single encoding choice per instances with

aggregated features, i.e. the lipb featureset.

Once SFS identifies the 10 most important features for each classifier, I combine the

results and keep the features which appear in more than one result. These are instance

features, aggregated over all the constraints in the instance. One final necessary step then

is to identify the aspect of a constraint which is represented in these “winning” features.

For example q2_skew (the skew across all constraints of the median number of terms

in each PB) is deemed important for classification of PB instances, so I select q2 (the

median number of terms in a PB constraint) as one of the IndiCon features to cluster on.

The results of the SFS and the resulting individual aspects are shown in Table 6.3.

6.2.4 Generating Labelled Training Data

Once each individual constraint is associated to a cluster, we need a way to try out dif-

ferent combinations of encodings for those constraints in order to obtain runtimes – by

comparing these runtimes we can then generate the target labels to train on. The excep-

tion is the first attempt described above, for which we can obtain our runtimes just as

before (in LeaSE-PI), running each instance with each encoding across all constraints (5

times to mitigate any randomness in the SAT solver). However, we can view this approach

as one particular case of the more general clustered approach where the number of clus-

110

6.2. Method

Table 6.3: The results of sequential feature selection with four classifiers (decision tree, random
forest, gradient boosted trees and multi-layer perceptron) for PB and LI constraints. The frequency
column shows for how many classifiers each feature appear in the top 10 most important features.
The root aspects of features which appear more than once are shown in bold type.

PB constraints LI constraints
Feature Frequency Feature Frequency

q0_min 4 q0_min 4
q0_mn 4 q0_mn 4
q2_med 4 amogs_size_mn_r2n_mn 3
iqr_med 3 count 3
k_med 3 iqr_skew 3
q4_med 3 k_iqr 2
skew_min 3 k_skew 2
amogs_size_mn_mn 2 q2_skew 2
q2_skew 2 sepr_mn 2
q4_max 2 skew_ent 2
skew_max 2 amogs_maxw_skew_ent 1
amogs_maxw_skew_ent 1 amogs_maxw_skew_mn 1
k_amogs_prod_iqr 1 amogs_size_mn_mn 1
k_iqr 1 k_amogs_prod_ent 1
k_skew 1 k_ent 1
n_ent 1 n_ent 1
n_min 1 n_iqr 1
sep_max 1 n_skew 1
sepr_mn 1 sepr_max 1

skew_min 1
skew_mn 1
wsum_iqr 1
wsum_skew 1

ters happens to be 1. For the rest of this subsection we will focus on how to obtain timing

data for clustered constraints.

Again we have to strike a balance between an exhaustive search and a practical experi-

ment. Recall that we have 9 candidate encodings. If we had an instance with say 5 clusters

of constraints, then the comprehensive approach would be to try every possible combi-

nation – however, that would amount to 95 combinations (plus we would want to solve

it 5 times and take an average). A compromise is to choose a good default encoding for

all constraints and then only change the encodings of one cluster of constraints in turn.

This way the example above with 5 clusters would require (1 + 8× 5) = 41 combinations;

this is made up from one combination where all 5 clusters are set to the default and then

each of the 5 clusters is set to the 8 remaining encoding choices in turn. Working with

41 combinations is still a lot, but is feasible on a modern high-performance computing

111

6.2. Method

Listing 6.3: A sample of how constraints are allocated
instance conpath cluster
------------------- ------------ -------
mrcpsp-pb/j3028_9 T_0_1769 1
mrcpsp-pb/j3028_9 T_0_1770 1
mrcpsp-pb/j3028_9 T_0_1771 0
mrcpsp-pb/j3028_9 T_0_1772 0

-- ROWS OMITTED --
n_queens2/queens-75 T_0_0__0_tmp 2
n_queens2/queens-75 T_0_0__1_tmp 0
n_queens2/queens-75 T_0_0 4
n_queens2/queens-75 T_0_100 2

cluster.

To illustrate this stage of IndiCon further, consider Listing 6.3 which shows a small

sample of the information we have after clustering globally, i.e. across all instances in the

corpus – each constraint in an instance is allocated to a cluster. Recall that where the PB

or LI constraint is an equality we generate the two inequalities that would be needed if

we use an encoding other than Tree – these extra constraints are identified with the suffix

_tmp. From this information we can determine how many clusters are represented in each

instance. We are then in a position to set the encoding for each constraint systematically,

by trying each encoding one cluster at a time, while keeping the encodings of the other

clusters set to a base encoding, which was the previously determined best encoding for

that instance. We end up with several encoding configurations for each instance, a small

sample of which is shown in Listing 6.4. We can see that for the j3028_9 instance of

MRCPSP, two of the global clusters feature and that the encoding deemed best overall for

the PBs in that instance was GGPW - this becomes the base encoding. We end up with

17 different encoding configurations to solve and time. In the next example, we see the

first few and last few entries for an instance of the N queens problem. In this case three

clusters feature so we produce 25 configurations, i.e. the base configuration where all

clusters of constraints are set to Tree, and the 8 other encodings in each of the 3 clusters.

At the end of this stage, once we have solved the instances in our corpus with all the

systematic variations of encodings, we obtain a set of timings which allow us to generate

training data for an ML model; more specifically, we can now assign a best encoding label

to each individual constraint. For each constraint we filter the results to just consider the

times when we were varying the encoding in the cluster that our constraint belongs to.

From the fastest configuration of these, we select the encoding in our constraint’s cluster

“slot”. So for example, looking again at Listing 6.4, if our constraint was in the queens-75

112

6.2. Method

Listing 6.4: A sample of the individual constraint setting by cluster to produce timing information
on which to train.

instance label base
------------------- -------------- ----
mrcpsp-pb/j3028_9 ggt.ggpw ggpw
mrcpsp-pb/j3028_9 ggth.ggpw ggpw
mrcpsp-pb/j3028_9 ggpw.ggpw ggpw
mrcpsp-pb/j3028_9 glpw.ggpw ggpw
mrcpsp-pb/j3028_9 gmto.ggpw ggpw
mrcpsp-pb/j3028_9 gswc.ggpw ggpw
mrcpsp-pb/j3028_9 mdd.ggpw ggpw
mrcpsp-pb/j3028_9 rggt.ggpw ggpw
mrcpsp-pb/j3028_9 tree.ggpw ggpw
mrcpsp-pb/j3028_9 ggpw.ggt ggpw
mrcpsp-pb/j3028_9 ggpw.ggth ggpw
mrcpsp-pb/j3028_9 ggpw.glpw ggpw
mrcpsp-pb/j3028_9 ggpw.gmto ggpw
mrcpsp-pb/j3028_9 ggpw.gswc ggpw
mrcpsp-pb/j3028_9 ggpw.mdd ggpw
mrcpsp-pb/j3028_9 ggpw.rggt ggpw
mrcpsp-pb/j3028_9 ggpw.tree ggpw

n_queens2/queens-75 ggt.tree.tree tree
n_queens2/queens-75 ggth.tree.tree tree
n_queens2/queens-75 ggpw.tree.tree tree
n_queens2/queens-75 glpw.tree.tree tree
n_queens2/queens-75 gmto.tree.tree tree
n_queens2/queens-75 gswc.tree.tree tree
n_queens2/queens-75 mdd.tree.tree tree
n_queens2/queens-75 rggt.tree.tree tree
n_queens2/queens-75 tree.tree.tree tree
n_queens2/queens-75 tree.ggt.tree tree
n_queens2/queens-75 tree.ggth.tree tree

--- ROWS OMITTED ---
n_queens2/queens-75 tree.tree.mdd tree
n_queens2/queens-75 tree.tree.rggt tree

instance and assigned to the first cluster, we would find the fastest mean runtime for the

first 9 configurations as shown and select the name of the encoding in the first part of the

label. By associating this best encoding label with the individual constraint features, we

generate the training set.

Weighting

Having generated encoding configurations systematically, we still face at least two chal-

lenges when using timing results from solved instances to generate “best encoding” labels

for each constraint.

Firstly, as we discussed in Section 4.1.4 when describing sample weighting, for some

instances the choice of encoding may be more significant, so we may want to pay more

113

6.2. Method

attention to those instances as their misclassification could be costlier. We can use sam-

ple weighting when training our classifiers to address this issue. We weight instances by

their virtual best (VB) time to promote the “harder” instances. We can also weight those

instances where the choice of encoding makes the most difference to runtime. For IndiCon

I adapted the weighting formula to be

W = log2(2 + med(T)
min(T) ×min(T)) = log2(2 + med(T))

where T is the set of runtimes for the instance from all the different encodings, min is the

minimum time (VB), and med is the median time. This differs from the sample weighting

used in LeaSE-PI in a few aspects:

• Instead of using the ratio max(T)
min(T) to signify how much an instance is affected by en-

coding choice, I have opted for med(T)
min(T) . The intuition behind this is to focus on the

better half of the encodings, given that really bad encodings are very unlikely to be

chosen given the pairwise arrangement of classifiers.

• I have switched the logarithm base from 10 to 2 in order to make the weighting less

steep, hoping to learn from the medium-difficult cases a bit more than just from the

very hard cases, which was likelier with the earlier base.

• The weight is now a float rather being restricted to integers. For LeaSE-PI, I thought

discrete weightings would be useful for categorising and reasoning about the differ-

ent tiers of importance, but I didn’t anticipate needing to do this in IndiCon.

The resulting distribution of weights is illustrated in Figure 6.5 to give a sense of the

range of difficulty and sensitivity in the problem corpus. Instances further to the right

are harder, i.e. they have a longer virtual best runtime. Instances further up are more

sensitive to the choice of encoding, i.e. they have more variation in runtime depending

on the encoding chosen.

A second challenge is that there are vastly different numbers of constraints of a given

type across the different problem instances so it’s possible to end up with a very imbal-

anced training set. Suppose problem A has 5 PB constraints but problem B has 500. It

seems undesirable to consider 100 times more training rows from problem B than prob-

lem A.

To go some way towards addressing this imbalance, I trim the dataset by dropping any

duplicate feature rows from instances. In many instances, there are multiple constraints

114

6.2. Method

100 101 102 103

VB time (s) ~ problem difficulty

100

101

102

103

M
ed

ia
n/

VB
 ~

 e
ffe

ct
 o

f e
nc

. c
ho

ice
Instance weights for PB constraints

Weight
2.5
5.0
7.5
10.0
12.5
15.0

100 101 102 103

VB time (s) ~ problem difficulty

M
ed

ia
n/

VB
 ~

 e
ffe

ct
 o

f e
nc

. c
ho

ice

Instance weights for LI constraints

Weight
2.5
5.0
7.5
10.0
12.5
15.0

Figure 6.5: Instance weighting prior to training. The horizontal axis shows the VB time as a measure
problem difficulty. The vertical axis represents difference in time between the median-performing
encoding and the VB. The size and colour of marker indicate the resulting weighting for each in-
stance. The left and right plots show subsets of problems which contain PB and LI constraints
respectively.

100 101 102 103

of constraints in each instance

full

trimmedPh
as

e

PB constraints

100 101 102 103 104

of constraints in each instance

Ph
as

e

LI constraints

Figure 6.6: Distribution of number of constraints per instance before and after trimming to reduce
duplicates. The x scale is logarithmic and the means are shown using white diamonds.

which are essentially identical apart from exactly which variables they cover. For training

an ML model, these identical constraints can be collapsed into one row. The effect of doing

this is shown in Figure 6.6. We see that the mean number of constraints per instance is

reduced from 592 to 45 for PB constraints and from 388 to 53 for LI constraints.

6.2.5 Training Classifiers

For IndiCon we are training each ML model to choose between encodings for one type of

constraint at a time, in contrast with the general approach for LeaSE-PI, where we consider

combinations of encoding choices across two constraint types.

I choose the initial setup for IndiCon on the basis of what worked well in the previous

chapter. We observed that on unseen problem classes the best performing setup over-

115

6.2. Method

all was when random forest classifiers were trained on the specialised lipb featureset to

choose between two encoding configurations at a time, which I called “pairwise” classifi-

cation (Table 5.2). So pairwise classification by random forests is the starting setup, incor-

porating the weighting decisions outlined above (i.e. paying more attention to instances

if they were harder or more sensitive to different encodings, and removing duplicated

feature vectors within instances).

I have also tried other classification algorithms, again inspired by what seemed to work

well for LeaSE-PI, namely gradient boosted trees, and basic decision trees. Additionally I

group these three classifiers into a voting ensemble.

LeaSE-PI benefitted from a custom scoring function during hyperparameter tuning. I

implemented the same function for IndiCon, the function simply reporting what the extra

cost in seconds is of a particular set of predictions compared to the best known encoding

configuration – for IndiCon this evaluation was done with reference to the cluster that

each constraint belongs to. Initial experiments show that this custom tuning score func-

tion does not improve overall performance. I therefore try an additional tweak, which

is to use the logarithm of the runtime penalty incurred. The idea here is to avoid being

dominated by a small number of bad choices.

6.2.6 Testing IndiCon

As mentioned before and illustrated in Figure 6.3, we can no longer simply look up the

timings that IndiCon’s predictions would result in. Instead, the per-constraint predictions

need to be implemented and the resulting encoding solved. Initially I test IndiCon on

PBs and LIs separately given that the whole training workflow has been based on one

constraint type. For each constraint type (PB or LI) the train/test split is carried out with

50 seeds. I train the classifiers on the training set and then run Savile Row with IndiCon

on the test instances. I only use IndiCon to set the encoding type in question (e.g. PB

constraints), leaving the other types of constraints to be encoded according to Savile

Row’s defaults.

I also go on to carry out two further comparisons in order to evaluate IndiCon in the

context of the results of the previous system (LeaSE-PI).

Further Comparison #1: With LeaSE-PI

We saw in the previous two chapters that it was possible to achieve good speedups over

the default and single best encodings with LeaSE-PI which selects one encoding for all the

116

6.2. Method

Algorithm 6.1: The process of sampling suitable problems and trained ML models
to test using IndiCon for both PBs and LIs in one solving run.

Data: A set S of ⟨I, s, t⟩ triples where I is a problem instance, s ∈ {1..50} is the ID
of the train/test split, and t is True if I is in the test set for split s; the
per-instance feature set F for our corpus of problems; the number n of
tests required

Result: A set C of ⟨Ii, MP B
i , MLI

i ⟩ triples where I is a problem instance, and MT is
a model trained for constraint type T

1 Function SampleSuitableTests(S, F, n):
2 J ← all instances in our corpus which have both PBs and LIs (according to F)
3 A← ∅
4 foreach ji ∈ J do
5 SP B

i ← the split IDs in the PB trials where ji was in the test set
6 SLI

i ← the split IDs in the LI trials where ji was in the test set
7 A← A ∪ {⟨ji, M(x), M(y)⟩ | x ∈ SP B

i , y ∈ SLI
i } where M(x) and M(y) are

the trained ML models from splits x and y for PBs and LIs respectively
8 C ← a uniform random sample of size n from A (with replacement)
9 return C

constraints of one type in an instance. I have compared the performance of IndiCon with

the best LeaSE-PI setup, namely pairwise random forests with custom loss and sample

weighting using the lipb featureset (see Table 5.2).

The train/test splits are not identical for LeaSE-PI and IndiCon, because for IndiCon I

prepare separate corpora for PB and LI constraints, pruning instances from each corpus

which don’t have the target constraint type. To enable the comparison, I sample with

replacement ten PAR10 results from LeaSE-PI and ten from IndiCon for each instance in

the IndiCon corpus, doing this separately for PB and LI. The mean PAR10 time across the

sampled results is then used for each instance to compare performance.

Further Comparison #2: Both Types of Constraint

I have developed the IndiCon code in Savile Row to be able to set the encodings of both PB

and LI constraints in one run by making separate calls to the relevant trained ML models.

To make this experiment fair I ensure that I only consult trained models which have not

seen the classes of constraint problems I am testing on. I test on problem instances which

contained both PBs and LIs. I sample 3000 triples from the 11142 available combinations

of problem instance, PB-trained model and LI-trained model. The process of preparing

suitable test candidates for this combined experiment is summarised in Algorithm 6.1.

Again, each of these Savile Row + IndiCon executions is run 5 times with different seeds.

117

6.3. Results and Analysis

A Note on Timings and Fairness

To make IndiCon work “live” and to be able to test it by actually solving instances and

timing the process, we need Savile Row, which runs in Java to be able to interrogate the

trained classifier for predictions. The training library is scikit-learn, a Python library.

In its prototype form, for the purpose of the thesis, IndiCon calls Python from Java once

for each type of constraint considered. This invocation takes a very long time, as python

has to be started up and the relevant libraries and trained models loaded. This process

can take several seconds even on the high-performance cluster.

This overhead could be addressed in many ways in order to make the whole pipeline

more efficient. Here are some suggestions:

Client-server A server process could be running in the background, which has the rele-

vant classifiers and libraries loaded. The server listens for requests from Savile Row

containing a feature matrix and returns the recommended encodings.

Re-implement ML in Java The ML component could be written in Java and be directly part

of the Savile Row code.

However, for the purposes of this investigation, I have addressed this issue by dis-

counting the overhead in the following way:

1. Savile Row times how long it takes from starting the external process which calls

Python to receiving the encoding back; let’s call this time Ttotal

2. The python script lease-indicon itself records the time elapsed from once the

libraries and ML model is loaded to when it has finished outputting the selections

as text; let’s call this time Tpredict.

3. Savile Row calculates Ttotal−Tpredict and reports it as LeaseTime in its .infometa-

data file.

4. In the analysis, I deduct LeaseTime from the total time for a “run”.

6.3 Results and Analysis

So far in this chapter I have set out the motivation behind selecting different encodings for

individual constraints, described some of the inherent challenges and proposed a work-

flow for implementing and testing such a system. I now present the results for IndiCon

118

6.3. Results and Analysis

having tried out some of the different design choices described in the preceding Method

section. These choices are summarised in Table 6.4.

Table 6.4: Summary of design choices in IndiCon at various stages

Name Options Description

Clustering scope corpus, instance Whether clusters are determined globally across
the whole corpus or within each instance

Clustered on all,sfs Whether the clustering was done on all features
or on a subset chosen by sequential feature se-
lection

of clusters 1 . . . How many clusters to partition constraints into
of features for clus-
tering

1 . . . How many features to consider when doing the
clustering

Classifier dtree, rf, gb, . . . Which classifier to use
Instance features T/F Whether whole-instance aggregated features are

also added to the per-constraint feature vector
Classification type single, pairwise Whether to train a single multi-class classifier or

use a pairwise voting approach
Custom loss no, raw, log Custom loss function for hyperparameter tuning

Once again, all experiments were carried out on the Viking high-performance cluster

at the University of York with the same software versions and almost identical settings as

for LeaSE-PI (see Section 4.2.1). Here is a brief re-cap:

• Viking has over 100 nodes, each with 2 Intel Xeon 6138 20-core 2.0 GHz processors;

the memory limit per job is set to 6GB.

• Savile Row is run with AMO detection switched on, a SAT clause limit of 10 million,

a timeout of 1 hour.

• Kissat sc2021-sweep is used again, with its own 1-hour timeout.

• Each solving run is repeated with 5 different seeds; the median runtime is then cal-

culated and a 10-fold penalty is applied for any total runtime over 1 hour to give

PAR10 results.

6.3.1 Targetting PB and LI in Isolation

To evaluate the performance of IndiCon I compare to the virtual best time achievable by

using a single encoding. We have discussed already that it is practically impossible to

calculate a true virtual best because running every single combination of encodings for

119

6.3. Results and Analysis

every constraint in an instance is prohibitive in all but the simplest cases. Our reference

is called VB* in this chapter to emphasise that this is a single-choice virtual best. I have

also calculated the single best (SB) result again, which is the result of choosing the one

encoding which performed best on the training set.

The results for the setups I tried are shown in Table 6.5; as discussed this is just a small

exploration of all the possible setup combinations that could be implemented. However,

we can make some interesting observations even from these trials.

Constrasting the performance on instances with PB constraints versus the ones with

LI constraints, we notice that IndiCon easily beats the single best (SB) choice with many

of the setups, whereas in the LI case the best performing IndiCon setup (6.44×VB) is not

as good as the SB encoding choice (4.53) from the training set applied to all LIs in the

test instances. To some extent this echoes the findings in previous chapters that for LI

constraints there is less meaningful complementarity in the choice of encodings, whereas

for instances with PBs, the best encoding choice varies much more. The stark finding

that IndiCon is so far unable to beat SB may unveil what could have been masked in the

previous chapters by the fact we were predicting the encodings for both PB and LIs. Even

when we used a separate ML classifier to choose the PB and LI encodings in LeaSE-PI we

applied the choice together.

What is very surprising is that the two best-performing setups for PB do not make

use of any clustering at all – they use 1 cluster (rows 1,2). In effect, we just label each

constraint in our training set with the encoding that was best for the instance as a whole.

Even when we consider the LI results, the setup which uses no clustering (row 1) is very

close in performance to the top performer (row 5) with PAR10 × VB values of 6.70 and 6.44

respectively.

Once again random forests seem to give the best results, for both constraint types. It

is encouraging to see that a simple decision tree can in fact perform very close to random

forest of trees, as seen in row 1 in the PB table. In this setup (as in all the pairwise rows),

the classifier learns to predict between two encodings. Decision trees are the most in-

terpretable of the classifiers used and therefore it may be possible to extract meaningful

rules for choosing between two encodings.

It is striking that the attempted enhancements do not seem to improve performance.

We observe, for example that when the custom loss function is applied for hyperparameter

tuning it degrades performance – see for example PB rows 4,5, and 6.

We also note that there is once again evidence in support of the pairwise classifica-

120

6.3. Results and Analysis

Table 6.5: IndiCon performance for a variety of implemented setups, ordered from best to worst
performing. Each setup is tested over 50 train/test splits. The performance is measured using
PAR10 and shown as a multiple of the Virtual Best* (* single-choice) time. For reference, Single
Best time is also shown as a multiple of VB*. The tables show reference and performance times
separately for the corpus with PB constraints (top) and with LI constraints (bottom). The best
performance is indicated in bold. †This setup used 300 hyperparameter tuning cycles, whereas
the rest of the setups used only 50.

Reference Times (PB)

Virtual Best* Single Best

1.00 11.58

IndiCon performance (PB)

Setup Details PAR10

Row Clust. on Clusters Classifier Inst. feats Classif. type Cust. loss × VB*

1 all 1 DT - pairwise - 5.69
2 all 1 RF - pairwise - 5.57
3 all 1 RF - single - 15.66
4 all 5 DT - pairwise - 8.29
5 all 5 DT - pairwise log 14.96
6 all 5 DT - pairwise raw 8.49
7 all 5 DT ✓ pairwise log 10.80
8 all 5 DT ✓ single - 12.13
9 all 5 GB - pairwise - 8.10

10 all 5 GB - pairwise raw 10.65
11 all 5 RF - pairwise - 8.46
12 all 5 RF - pairwise raw 9.48
13 all 5 ensemble† - pairwise - 8.58
14 all 5 ensemble - pairwise - 10.05

Reference Times (LI)

Virtual Best* Single Best

1.00 4.53

IndiCon performance (LI)

Setup Details PAR10

Row Clust. on Clusters Classifier Inst. feats Classif. type Cust. loss × VB*

1 all 1 RF - pairwise - 6.70
2 all 6 DT - pairwise - 16.24
3 all 6 GB - pairwise - 11.12
4 all 6 GB - single log 11.24
5 all 6 RF - pairwise - 6.44
6 all 6 ensemble - pairwise - 12.69
7 sfs 3 GB - single log 13.49

121

6.3. Results and Analysis

PAR10 (seconds)

LeasePI

Row 5: DT, pwise, 5 clu, log

Row 1: DT, pwise, 1 clu

Row 2: RF, pwise, 1 clu

Row 3: RF, sing, 1 clu

Row 8: DT, sing, 5 clu, ifs

Row 7: DT, pwise, 5 clu, log, ifs

Row 9: GB, pwise, 5 clu

Row 14: ens, pwise, 5 clu

Row 11: RF, pwise, 5 clu

Row 4: DT, pwise, 5 clu

Row 6: DT, pwise, 5 clu, raw

Row 12: RF, pwise, 5 clu, raw

Row 10: GB, pwise, 5 clu, raw

Row 13: ens, pwise, 5 clu, hpt+

Se
tu

p
PB constraints

10 1 100 101 102 103 104

PAR10 (seconds)

Row 5: RF, pwise, 6 clu

Row 1: RF, pwise, 1 clu

LeasePI

Row 4: GB, sing, 6 clu, log

Row 3: GB, pwise, 6 clu

Row 7: GB, sing, 3 clu, log, sfs

Row 6: ens, pwise, 6 clu

Row 2: DT, pwise, 6 clu

Se
tu

p

LI constraints

Figure 6.7: Distribution of PAR10 runtimes for various IndiCon setups and LeaSE-PI on a sample of
instances. A sample of 10 results were taken for each instance from both the LeaSE-PI experiments
and the IndiCon experiments. The setups are separated by constraint type, with PB at the top and
LI at the bottom. The results ordered by the mean time, which is shown with a white diamond. The
label for each setup refers to the rows in Table 6.5 and contains an abbreviated summary of each
setup, as set out more fully in Table 6.5.

tion approach - we see that for PB problems, the fastest and slowest setups share every

configuration detail apart from the fact that the fastest uses pairwise classifiers whereas

the slowest uses a single 9-way classifier for the 9 available encodings (rows 2,3).

6.3.2 Comparison with LeaSE-PI

In Figure 6.7 we compare the results of using IndiCon at runtime to set the encodings

with the simulated results from the best performing setup in LeaSE-PI. This may not be a

122

6.3. Results and Analysis

VB*
Default

LeasePI
IndiCon

Selector

100

101

102

103

104

PA
R1

0
ru

nt
im

e
(s

)

10 1 100 101 102 103 104

PAR10 LeasePI (s)

10 1

100

101

102

103

104

PA
R1

0
In

di
Co

n
(s

)

Figure 6.8: Comparison of IndiCon and LeaSE-PI performance on sample of instances when IndiCon
has been used to set both PB and LI constraints. Left: distribution of PAR10 times for the single-
choice virtual best (VB*), default encoding (Def), best LeaSE-PI setup and IndiCon with the best
performing setups for each of PB and LI constraints. Right: the PAR10 times for the best LeaSE-PI
setup versus IndiCon setting both types of encoding.

completely fair comparison given that LeaSE-PI was able to set both PB and LI constraints

at the same time. What we can observe though is that the performance of the IndiCon

setups is competitive.

Considering the PB experiments in Figure 6.7 we see that in terms of mean perfor-

mance, none of the setups beat LeaSE-PI in this contest. The closest IndiCon setup by

both mean and median is dtree-cl2 which corresponds to row 5 in Table 6.5, with the

next two setups matching the two top entries in the table, which also happen to be the

best performers.

Looking at the setups which were predicting the LI encodings, the IndiCon performance

is again similar to LeaSE-PI in terms of the median. This time, however, some of the setups

do achieve a better mean PAR10, pushing LeaSE-PI into third place.

6.3.3 Setting Both PB and LI Constraints

The results of running Savile Row with IndiCon to set both PB and LI constraints is shown

in Figure 6.8, once again comparing with the performance of LeaSE-PI. For this trial, Savile

Row called on the best setups for each constraint type; these two setups are in bold in

Table 6.5. Every solving run used a model which had not previously seen the problem class

in question. The plots use the mean PAR10 time per instance when 10 results are sampled

from each system (LeaSE-PI and IndiCon).

123

6.3. Results and Analysis

model = handball7

model = killerSudoku2

model = knapsack

model = knights

model = mrcpsp-pb

model = opd

100 101 102 103 104

PAR10 (s)

model = sonet2

LeasePI
IndiCon

Figure 6.9: Comparison of IndiCon and LeaSE-PI performance broken down by constraint model
where there were at least 10 instances in the sample.

The performance of IndiCon in this experiment very nearly matches the best LeaSE-PI

setup. From the box plots we can see that the means are almost identical: 1118 seconds

for LeaSE-PI and a slightly better 1111 seconds for IndiCon. For the rest of the distribution,

LeaSE-PI has a slight edge. The better mean but worse median for IndiCon points to better

performance in some of the harder problems.

From the scatter plot on the right of Figure 6.8 we see a fairly consistent performance

between the two selectors, without any extreme differences as there are no crosses in the

top left or bottom right corners. In terms of timeouts we see that both systems sometimes

win and sometimes lose over each other.

One final comparison is shown in Figure 6.9, where we see a breakdown by constraint

model (problem class). I have only plotted those problem classes for which at least 10

instances were available. Again we note the broadly similar performance of the two se-

lectors. For two problem classes (knapsack and knights) IndiCon avoids some longer

running times and timeouts suffered by LeaSE-PI. Conversely, LeaSE-PI does better on

killerSudoku2.

124

6.4. Evaluation

6.4 Evaluation

6.4.1 Revisiting the Challenges

Back in Section 6.1 I explained some of the new challenges faced by trying to train and

predict at the constraint level. It is perhaps worth reflecting on how successfully these

challenges have been overcome by IndiCon and what work remains to be done.

1. I firstly pointed out that it was practically impossible to try out every encoding for

every constraint in order to have a perfect training set. The compromise of cluster-

ing and varying one cluster’s encodings in turn gave me the chance to try different

encodings within problem instances.

2. To test IndiCon I had to actually implement an end-to-end system which made use

of the ML-provided selections as part of the solving pipeline. This prototype had

serious performance issues in terms of loading Python – the overhead time was

discounted when calculating overall runtimes but clearly the pipeline would have

to be optimised for IndiCon to be a practical solution for other users. What was

definitely problematic was that it took a long time to try out new setups, especially if

the changes were earlier on in the process, e.g. trying out another clustering strategy.

3. The implications of using the PB(AMO) encodings rather than the Tree encoding and

of dealing with inequalities resulting from an equality constraint were overcome with

relative ease by extending Savile Row.

6.4.2 Back to MRCPSP

At the start of the chapter I presented a motivating example focussed on the MRCPSP

scheduling problem. By inspecting the constraint model, it seemed like the PB constraints

could be intuitively split into two groups. Having carried out clustering on the whole cor-

pus of problems involving PB constraints, I thought it would be interesting to see whether

the intuition was reflected by the automated categorisation.

Following the results of the agglomerative clustering, as described in Section 6.2.3, I

chose to use 5 clusters for all the PBs represented in the corpus. In the corpus were 20

instances of MRCPSP. Of these, the clustering method assigned a single cluster to 2 of the

instances, three clusters to one further instance and two clusters to the remaining majority

of 17 instances. It’s not clear whether the two clusters identified by the unsupervised

125

6.4. Evaluation

algorithm in most instances are split in the same way as the difference we observed in the

model, but it is encouraging to see that there is broad agreement about there being two

groups of constraints with different properties.

6.4.3 Conclusions

IndiCon was a natural next step after designing, investigating and reporting on the selec-

tion of encodings for entire instances (LeaSE-PI). The work on IndiCon is exploratory and

just begins to address some of the challenges and to draw out some lessons. I attempt

below to distil what I have observed through the work and the results presented in this

chapter.

There is potential for improving on LeaSE-PI There are many cases where IndiCon out-

performed LeaSE-PI on individual problems. With more investigation it may be pos-

sible to beat LeaSE-PI more consistently.

The configuration space is barely explored I showed that there are many design choices

in the setup of IndiCon and I have only been able to investigate a few combinations.

There was a lot of wasted time Once clusters were assigned and systematic encoding se-

lections were set up, these were used to solve the problems in the corpus. However,

it may have been possible to stop early and abandon solving runs which were not

going to beat the current best for a particular cluster. A more dynamic approach

might enable further investigations of the configuration space in the same amount

of compute time.

Simple seems best In several aspects, it seems that the simpler solution led to better

results. The most glaring example is that it was possible to get better results when

using unclustered, single-choice data to obtain the training set, as observed in the

best performing setup for PB constraints. Similarly, the use of a custom loss function

for the hyperparameter tuning did not generally yield better predictions. Even the

choice of classifier points to the possibility that simplest is best, with basic decision

trees performing close to the best, at least for PB constraints.

IndiCon could offer better modularity I essentially carried out the same investigation sep-

arately for PB and LI constraints, sharing the approaches and techniques, but sep-

arating out the data. At the end, however, it was possible for Savile Row to call on

IndiCon for two different types of constraints and use their suggestions in the same

126

6.5. Summary

solving run. This idea is open to expansion, where trained models can be learned

for any types of constraints for which SAT encodings with complementary strengths

exist.

IndiCon should scale better The preferred setup in LeaSE-PI, which was the best perform-

ing in the split-by-class experiment, would struggle to scale easily beyond two con-

straint types. We discussed in the previous chapter how the ML setup which pre-

dicted the PB and LI encodings separately might be the foundation of a more scalable

solution based on LeaSE-PI. Similarly IndiCon would not suffer from being appliedto

more dimensions in configuration space, i.e. more constraint types.

6.5 Summary

In this chapter we broke the problem of chosing SAT encodings down to the level of in-

dividual constraints, investigating whether we can take advantage of this finer-grained

control to improve performance further. I began with the intuition that when looking at

some problems written in a constraint modelling language, it is possible to see that for a

given constraint type, different constraints are introduced with potentially different struc-

tures.

I described a few challenges that needed to be overcome in order to train models and

test the results meaningfully. I gave a detailed account of the method used to imple-

ment IndiCon, my name for a system for learning to select SAT encodings at the level of

individual constraints.

IndiCon was tested thoroughly and compared to the predecessor described in earlier

chapters, which I named LeaSE-PI for convenience. A variety of tests were presented to

help analyse the effectiveness of this approach.

I showed that IndiCon is competitive with LeaSE-PI and outperforms it in some cases. I

also noted some suprising findings about what seemed to work well, which often tended to

be the simpler design solutions. The investigation into IndiCon is limited, not least by the

fact that trying out different setups is very time-consuming. However, there is potential

to use IndiCon as a key component of a scalable, modular system for selecting good SAT

encodings across a range of constraint types.

127

Chapter 7

Conclusion

� I’m sure everything will end up alright �

Audioslave

At the start of this document, I set out the proposed thesis and some more specific

research questions which this dissertation has attempted to address. In this chapter I:

• summarise the findings from the three technical chapters in light of the thesis state-

ment and research questions,

• reflect on some of the limitations of this research, and

• propose potential future work based on remaining open questions.

7.1 Revisiting the Thesis and Research Questions

The thesis was initially posed as follows:

Thesis
The solving of constraint satisfaction problems can be made faster by using
machine learning to select SAT encodings for constraints.

The work presented in this dissertation supports the thesis as far as selecting SAT

encodings for pseudo-Boolean (PB) and linear integer (LI) constraints for problems ex-

pressed in the Essence Prime.

The three technical chapters each support the assertion as they approach the chal-

lenge with increasing levels of specialisation. In Chapter 4 generic instance features are

128

7.1. Revisiting the Thesis and Research Questions

used to select encodings with some success, reducing the gap between the single best

and the virtual best encodings. When constraint-specific features are used in Chapter 5

we are able to close the gap even further, especially for unseen problem classes. Finally,

in Chapter 6 we see that in some cases we can improve the performance further by setting

the encodings for each constraint in an instance separately.

Let us review the findings in more detail, using the initial research questions as prompts.

Research Question 1

To what extent does the choice of SAT encoding for constraints affect problem-

solving performance?

The literature we review in the background chapters points to the potential perfor-

mance gains if we can choose SAT encodings well. In [43] the authors report large vari-

ations in encoding size and solving time between their eight PB(AMO) encodings, with

the best encoding varying between different problem classes and indeed for different in-

stances within a problem class. The MeSAT [81] and Proteus [82] systems were both shown

to benefit from choosing different variable encodings by using machine learning (ML) on

features of problem instances. The PB and LI encodings implemented in Savile Row use

different variable encodings too, so we also expect to make gains in our context.

This expectation is indeed confirmed by the investigation into a complementary port-

folio of encodings presented in Chapter 4. We see that if we simply choose the one combi-

nation of encodings for PB and LI constraints which is the best overall, we solve the corpus

over 10 times slower than if we had access to the full range of encodings (see Figure 4.1).

The next challenge was therefore to unlock this complementarity by using ML to predict

the best encodings.

Research Question 2

Can a good SAT encoding choice be made for unseen CSP instances based on generic

instance features?

In Chapter 4 I describe the LeaSE-PI framework which implements a number of ML

setups to choose between a subset of available encodings. This subset (or portfolio) is

constructed by determining the best 6 combinations of encodings for PB and LI constraints

as observed from data in the training set. The portfolio size is a practical compromise

between training time and complementarity.

The instances are initially represented by “off-the-shelf” generic features generated

129

7.1. Revisiting the Thesis and Research Questions

by the fzn2feat tool [85] – these features only contain general information about the

variables and their domains, as well as about the types of global constraints present in

the instance. Even so, we are able to make predictions which lead to a 75% reduction in

PAR10 time compared to the single best (SB) on seen problem classes and a 45% reduction

for unseen problem classes.

Chapter 4 also comments on the toolkit of available encodings from which we’re se-

lecting. We observe that the default encoding provided by Savile Row (Tree) is very com-

petitive, being the best choice both for PB and LI most often for our corpus of problems.

However, that does not necessarily mean it’s the best encoding overall; in fact the GGPW

encoding is the best if the goal is to bring the overall runtime down for solving the entire

corpus.

Research Question 3

Can the quality of encoding selection be improved by the use of features which are

specific to the relevant constraints?

This question too was positively answered in Chapter 5, where I construct a new fea-

tureset lipb based entirely on the constraints we are interested in. Not only do these extra

features help when combined with the generic instance features, the specialised feature-

set on its own is actually sufficient to match the performance of the combined featureset

in many of the ML setups. When it comes to predicting encodings for unseen problem

classes, the lipb features lead to the best performance, in particular when used with ran-

dom forests in a pairwise classification setup. In this setting, the time saved compared to

single best (SB) increases to 57%.

In the same chapter we compare the performance of the ML setup constructed in this

paper with AutoFolio, which is an advanced algorithm selection and configuration system.

The solution presented here, LeaSE-PI, is approximately twice as fast as AutoFolio when

predicting for unseen problem classes and five times faster on known problem classes. It

is interesting to note that AutoFolio performed best when using just the lipb featureset.

With the introduction of new features I also study feature importance in our context.

It is very difficult to isolate the importance of an individual feature, but we are able to

make some general observations about the featuresets in this study. For example, the top

20 most important features contain a roughly equal balance of generic and specialised

features when predicting for known problem classes; however, when predicting for unseen

classes, the specialised PB/LI features are a lot more valuable.

130

7.2. Lessons Learned

Research Question 4

Is it practical to learn to set encodings for individual constraints within a problem

instance? Does it lead to performance improvements compared to a single encoding

choice per constraint type?

I introduce IndiCon in Chapter 6, in which we learn that selecting SAT encodings for

individual constraints can work well and certainly outperforms the previous LeaSE-PI ap-

proach for some problems. However, the overall performance across the entire problem

corpus is in fact very similar, so one might question whether the extra complication is

worth it. With so many design choices to be made, the scope for exploration is vast. I set

out many aspects which can be varied, such as: how to group constraints for obtaining

training data, the use of whole-instance features for added context, a variety of ML algo-

rithms, different custom scores for hyperparameter tuning, just to name a few. Even with

the limitations in computing resource and time, it was possible to “win” on many instances

with some of these setups, so I believe the potential remains for much more significant

gains across a wider range of problems.

During the IndiCon investigation it emerged that simpler is best on at least two occa-

sions. Firstly decision trees were able to get fairly close to the performance of random

forests. This is exciting because decision trees are explainable and could potentially be

used to construct a sensible default heuristic for choosing encodings per-constraint. Sec-

ondly, the elaborate scheme I created for obtaining clustered training data was in fact

outperformed by the training set in which I used 1 cluster, in other words where I labelled

each constraint simply based on what worked well for the parent instance as a whole.

In summary, the answer to the research question is a tentative yes: IndiCon is a solu-

tion which sets encodings separately for each constraint within Savile Row, and it does

lead to improved performance over LeaSE-PI, but only slightly and with great variation

across problem classes. However, with so many design choices available, and just a few

explored within the scope of this thesis, more significant gains may be possible.

7.2 Lessons Learned

I believe some overarching conclusions may be drawn from the work presented in this

thesis dissertation:

131

7.3. Limitations

Good defaults are possible with ML In the introduction I mention the “holy grail” of pro-

gramming where a user states the problem and the computer solves it. In that spirit, this

thesis has shown that it is possible to build a constraint solving pipeline which helps non-

expert users to choose sensible initial settings (in our case SAT encodings). This is surely

a good ambition. Of course a constraint programming (CP) expert employed to tackle a

specific problem type for an industrial application can still have their own say over en-

codings, but the settings obtained by ML could provide a good starting place for such an

advanced user to begin fine tuning.

Clarity of Purpose is Important ML literature provides many ways to measure the suc-

cess of a particular trained model – in the case of a classification problem such as ours,

that metric might simply be the percentage accuracy, i.e. what proportion of the model’s

predictions are exactly the same as the very best? We’ve seen that as an overall metric this

is quite brittle, especially in our case, where second-best might well be good enough. It

is important therefore to be clear about the overall purpose or objective. I aimed to solve

a set of problems as quickly as possible. We see that the most popular encoding config-

uration across the corpus is not necessarily the choice which solves the entire corpus in

the quickest time. I used this reasoning to try to improve the performance, for instance

by adding a custom scoring function to the hyperparameter tuning stage.

7.3 Limitations

Hopefully the findings summarised above can inform practice and inspire further research.

I re-state below some of the known limitations of this work, so that the findings may be

understood in their proper context.

Constraint Types The thesis explores only PB and LI constraints. This is both because

they can make a big difference to solving time and because a large number of comple-

mentary encodings are available in Savile Row.

Problem Corpus The intention was to use as wide a variety of problems as possible, but

to be able to use Savile Row; I was therefore limited to problems which were already ex-

pressed in Essence Prime, or could be translated faithfully and easily from other constraint

languages. This means that the corpus is still quite limited and could be expanded much

further by a dedicated effort to translate more constraint models from the more popu-

132

7.4. Future Work

lar MiniZinc language [25], or by carrying out a similar work using a different constraint

solving pipeline.

Problem Size For practical reasons I set a runtime limit of 1 hour for my investigations.

Some more challenging problems exist which would take longer to solve and for which

the choice of SAT encoding could be crucial.

7.4 Future Work

More Constraint Types One easy extension of this work is to consider other constraint

types where a suite of encodings with complementary strengths is available. For instance I

informally carried out some experiments with the at-most-one (AMO) constraint, for which

several SAT encodings are available in Savile Row – this trial showed that different encod-

ings were best on different problems.

Constraint Neighbourhood Constraints in constraint satisfaction problems (CSPs) do not

tend to occur in isolation – there is often overlap between the variables involved in differ-

ent constraints. It might be informative to gather constraint features about neighbouring

constraints, especially in the case where we’re making selections per-constraint.

Graph Neural Networks Constraints problems are often represented as graphs. Graph

neural network (GNN)s have received much attention recently and have been applied in

various ways to the field of constrained optimisation (CO) [95]. One possible research di-

rection would be to use GNNs to predict encodings per constraint or per instance. The

graph representation may be able to capture the structure of a problem better than tab-

ular data.

More Efficient Generation of Training Data The generation of timing data was particularly

time-consuming in IndiCon especially when trying out different encoding assignments for

the same instance. It may be possible to dramatically reduce the number of wasted runs

by employing something like the capping method in irace [96] to stop a solving run which

has exceeded the best time already obtained.

Heuristics from Simple ML Models In IndiCon decision trees proved quite competitive

with random forests. By inspecting the learned trees, it may be possible to design good

133

7.4. Future Work

simple heuristics for constraint tools such as Savile Row to choose how to encode a con-

straint on-the-fly.

134

Appendices

135

Appendix A

Featuresets

I use four featuresets to make per-instance predictions in this thesis, as described in the

technical chapters (Chapters 4 to 6). This appendix lists the features in the f2f featureset,

which is provided by the fzn2feat tool [85]. The other featuresets are not described

here because:

• f2fsr attempts to extract the same features as f2f

• lipb is described in detail in the dissertation

• combi is simply the union of f2fsr and lipb.

Table A.1: Name and brief description of each feature in the f2f featureset as produced by
fzn2feat

CONSTRAINT FEATURES (27)

c_avg_deg_cons Average of the constraints degree

c_avg_dom_cons Average of the constraints domain

c_avg_domdeg_cons Average of the ratio constraints domain/degree

c_bounds_d No. of constraints using "boundsD" annotation

c_bounds_r No. of constraints using "boundsR" annotation

c_bounds_z No. of constraints using "boundsZ" or "bounds" annotation

c_cv_deg_cons Coefficient of Variation of constraints degree

c_cv_dom_cons Coefficient of Variation of constraints degree

c_cv_domdeg_cons Coefficient of Variation of the ratio constraints domain/degree

136

c_domain No. of constraints using "domain" annotation

c_ent_deg_cons Entropy of constraints degree

c_ent_dom_cons Entropy of constraints domain

c_ent_domdeg_cons Entropy of the ratio constraints domain/degree

c_logprod_deg_cons Logarithm of the product of constraints degree

c_logprod_dom_cons Logarithm of the product of constraints domain

c_max_deg_cons Maximum of the constraints degree

c_max_dom_cons Maximum of the constraints domain

c_max_domdeg_cons Maximum of the ratio constraints domain/degree

c_min_deg_cons Minimum of the constraints degree

c_min_dom_cons Minimum of the constraints domain

c_min_domdeg_cons Minimum of the ratio constraints domain/degree

c_num_cons Total no. of constraints

c_priority No. of constraints using "priority" annotation

c_ratio_cons Ratio no. of constraints / no. of variables

c_sum_ari_cons Sum of constraints arity

c_sum_dom_cons Sum of constraints domain

c_sum_domdeg_cons Sum of the ratio constraints domain/degree

DOMAIN FEATURES (18)

d_array_cons No. of array constraints

d_bool_cons No. of boolean constraints

d_bool_vars No. of boolean variables

d_float_cons No. of float constraints

d_float_vars No. of float variables

d_int_cons No. of integer constraints

d_int_vars No. of integer variables

d_ratio_array_cons Ratio array constraints / total no. of constraints

d_ratio_bool_cons Ratio boolean constraints / total no. of constraints

d_ratio_bool_vars Ratio boolean variables / total no. of variables

d_ratio_float_cons Ratio float constraints / total no. of constraints

d_ratio_float_vars Ratio float variables / total no. of variables

137

d_ratio_int_cons Ratio integer constraints / total no. of constraints

d_ratio_int_vars Ratio integer variables / total no. of variables

d_ratio_set_cons Ratio set constraints / total no. of constraints

d_ratio_set_vars Ratio set variables / total no. of variables

d_set_cons No. of set constraints

d_set_vars No. of set variables

GLOBAL CONSTRAINT FEATURES (4)

gc_diff_globs No. of different global constraints

gc_global_cons Total no. of global constraints

gc_ratio_diff Ratio different global constraints / no. of global constraints

gc_ratio_globs Ratio no. of global constraints / total no. of constraints

OBJECTIVE FEATURES (8)

o_deg Degree of the objective variable

o_deg_avg Ratio degree of the objective variable / average of var. degree

o_deg_cons Ratio degree of the objective variable / number of constraints

o_deg_std Standardization of the degree of the objective variable

o_dom Domain size of the objective variable

o_dom_avg Ratio domain of the objective variable / average of var. domain

o_dom_deg Ratio domain of the objective variable / degree of the obj. var

o_dom_std Standardization of the domain of the objective variable

SOLVING FEATURES (11)

s_bool_search Number of "bool_search" annotations

s_first_fail Number of "int_search" annotations

s_goal Solve goal (1 = satisfy, 2 = minimize, 3 = maximize)

s_indomain_max Number of "indomain_max" annotations

s_indomain_min Number of "indomain_min" annotations

s_input_order Number of "input_order" annotations

s_int_search Number of "int_search" annotations

s_labeled_vars Number of variables to be assigned

s_other_val Number of other value search heuristics

138

s_other_var Number of other variable search heuristics

s_set_search Number of "set_search" annotations

VARIABLE FEATURES (27)

v_avg_deg_vars Average of the variables degree

v_avg_dom_vars Average of the variables domain

v_avg_domdeg_vars Average of the ratio variables domain/degree

v_cv_deg_vars Coefficient of Variation of variables degree

v_cv_dom_vars Coefficient of Variation of variables degree

v_cv_domdeg_vars Coefficient of Variation of the ratio variables domain/degree

v_def_vars Number of defined variables

v_ent_deg_vars Entropy of variables degree

v_ent_dom_vars Entropy of variables domain

v_ent_domdeg_vars Entropy of the ratio variables domain/degree

v_intro_vars Number of introduced variables

v_logprod_deg_vars Logarithm of the product of variables degree

v_logprod_dom_vars Logarithm of the product of variables domain

v_max_deg_vars Maximum of the variables degree

v_max_dom_vars Maximum of the variables domain

v_max_domdeg_vars Maximum of the ratio variables domain/degree

v_min_deg_vars Minimum of the variables degree

v_min_dom_vars Minimum of the variables domain

v_min_domdeg_vars Minimum of the ratio variables domain/degree

v_num_aliases Number of alias variables

v_num_consts Number of constant variables

v_num_vars Total no. of variables variables

v_ratio_bounded Ratio (aliases + constants) / total no. of variables

v_ratio_vars Ratio no. of variables / no. of constraints

v_sum_deg_vars Sum of variables degree

v_sum_dom_vars Sum of variables domain

v_sum_domdeg_vars Sum of the ratio variables domain/degree

139

Appendix B

Neural Network Trial

In early experiments I included a neural network in the set of ML models used to predict good en-
codings. I used MLPClassifier from the scikit-learn library [6]: a basic feed-forward neural
network which trains using backpropagation. I left many choices to the default, such as using the
ReLU activation function, and the adam optimiser. As with other models, I usedRandomizedSearchCV
to tune some hyperparameters including the hidden layer structure.

I show here the results of one trial as an example. I used the lipb and combi featuresets to train
and predict using the split-by-class policy. For the interested reader, Table B.2 shows the resulting
hyperparameter choices from one iteration of training. The performace results in terms of PAR10
time compared to the virtual best over 50 split/train/predict cycles are shown in Table B.1. We
can see that the prediction quality is not as good as when we use random forests. It also takes
considerably longer to train the neural network classifier.

Table B.1: A limited set of results from a trial of MLP-based classifiers in the split-by-class scenario,
using two featuresets. Performance is measured as the mean PAR10 time divided by the mean
virtual best time. The table shows the best performing setup from LeaSE-PI too for comparison.
The training times are approximate times as the test was run on a laptop - the “user” time is given
in minutes.

Results (× VB)

Selector Training time lipb combi

Pairwise RF 21 CPU minutes 11.00 11.84
MLP 86 CPU minutes 13.73 14.34

140

Table B.2: Best hyperparameter values found by randomised search with cross-validation on one
training run using the split-by-class policy and the lipb features. The first column shows which
encoding configurations were being paired up. The tuned hyperparameters are the hidden layer
structure, whether early stopping is used if the loss is not dropping any more, and the L2 regular-
isation rate.

Hyperparameters

Encodings pair Hidden Layer Sizes Early Stopping? L2 Rate (α)

tree_mdd/gpw_ggth [230, 72, 34] True 0.042
tree_mdd/rggt_tree [217, 164, 99] True 0.095
tree_mdd/ggth_mdd [148, 122, 101] True 0.089
tree_mdd/gpw_ggt [245, 240, 165, 27] False 0.084
tree_mdd/gpw_swc [244, 214, 208, 199, 164] True 0.037
gpw_ggth/rggt_tree [165, 114, 109, 62, 47] False 0.058
gpw_ggth/ggth_mdd [195, 185, 127, 33] False 0.100
gpw_ggth/gpw_ggt [194, 75, 23] True 0.084
gpw_ggth/gpw_swc [217, 164, 99] True 0.095
rggt_tree/ggth_mdd [230, 72, 34] True 0.042
rggt_tree/gpw_ggt [134, 86, 81] False 0.026
rggt_tree/gpw_swc [194, 75, 23] True 0.084
ggth_mdd/gpw_ggt [195, 185, 127, 33] False 0.100
ggth_mdd/gpw_swc [74, 18] True 0.095
gpw_ggt/gpw_swc [230, 72, 34] True 0.042

141

Appendix C

Research Data Statement

As part of preparing the journal paper [3] which covers the work in Chapters 4 and 5 I set up a
public repository at https://github.com/felixvuo/lease-data where interested readers
can access the software, problem corpus and results. It is also available under a DOI at https:
//doi.org/10.5281/zenodo.8380691.

142

https://github.com/felixvuo/lease-data
https://doi.org/10.5281/zenodo.8380691
https://doi.org/10.5281/zenodo.8380691

Bibliography

[1] Felix Ulrich-Oltean, Peter Nightingale, and James Alfred Walker. Selecting SAT Encodings for
Pseudo-Boolean and Linear Constraints: Preliminary Results, October 2021.

[2] Felix Ulrich-Oltean, Peter Nightingale, and James Alfred Walker. Selecting SAT Encodings for
Pseudo-Boolean and Linear Integer Constraints. In Christine Solnon, editor, 28th International

Conference on Principles and Practice of Constraint Programming (CP 2022), volume 235 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1–38:17, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CP.2022.
38.

[3] Felix Ulrich-Oltean, Peter Nightingale, and James Alfred Walker. Learning to select SAT en-
codings for pseudo-Boolean and linear integer constraints. Constraints, November 2023.
doi:10.1007/s10601-023-09364-1.

[4] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vander-
Plas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature

Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[5] Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, October 2017. doi:10.1016/j.artint.2017.07.001.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[7] Michael L. Waskom. Seaborn: Statistical data visualization. Journal of Open Source Software,
6(60):3021, 2021. doi:10.21105/joss.03021.

143

https://doi.org/10.4230/LIPIcs.CP.2022.38
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://doi.org/10.1007/s10601-023-09364-1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.21105/joss.03021

Bibliography

[8] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007. doi:10.1109/MCSE.2007.55.

[9] Özgür Akgün, Alan M. Frisch, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightin-
gale. Conjure: Automatic Generation of Constraint Models from Problem Specifications. Arti-

ficial Intelligence, 310:103751, September 2022. doi:10.1016/j.artint.2022.103751.

[10] Peter Nightingale. Savile Row Manual, November 2021. arXiv:2201.03472, doi:10.
48550/arXiv.2201.03472.

[11] Andreas Drexl and Juergen Gruenewald. Nonpreemptive Multi-Mode Resource-Constrained
Project Scheduling. IIE Transactions, 25(5):74–81, September 1993. doi:10.1080/

07408179308964317.

[12] Sameela Suharshani Wijesundara, Maria Garcia de la Banda, and Guido Tack. Addressing prob-
lem drift in UNHCR fund allocation. In Roland H. C. Yap, editor, 29th International Conference

on Principles and Practice of Constraint Programming (CP 2023), volume 280 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), pages 37:1–37:18, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CP.2023.37.

[13] Younes Aalian, Gilles Pesant, and Michel Gamache. Optimization of short-term underground
mine planning using constraint programming. In Roland H. C. Yap, editor, 29th International

Conference on Principles and Practice of Constraint Programming (CP 2023), volume 280 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–6:16, Dagstuhl, Germany,
2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CP.2023.
6.

[14] Vincent Barbosa Vaz, James Bailey, Christopher Leckie, and Peter J. Stuckey. Predict-Then-
Optimise Strategies for Water Flow Control. In Roland H. C. Yap, editor, 29th International

Conference on Principles and Practice of Constraint Programming (CP 2023), volume 280 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:10, Dagstuhl, Germany,
2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CP.2023.
42.

[15] Eugene C. Freuder. Progress towards the Holy Grail. Constraints, 23(2):158–171, April 2018.
doi:10.1007/s10601-017-9275-0.

[16] Hongbo Li, Yaling Wu, Minghao Yin, and Zhanshan Li. A Portfolio-Based Approach to Se-
lect Efficient Variable Ordering Heuristics for Constraint Satisfaction Problems. In Christine
Solnon, editor, 28th International Conference on Principles and Practice of Constraint Pro-

gramming (CP 2022), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 32:1–32:10, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CP.2022.32.

144

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.artint.2022.103751
http://arxiv.org/abs/2201.03472
https://doi.org/10.48550/arXiv.2201.03472
https://doi.org/10.48550/arXiv.2201.03472
https://doi.org/10.1080/07408179308964317
https://doi.org/10.1080/07408179308964317
https://doi.org/10.4230/LIPIcs.CP.2023.37
https://doi.org/10.4230/LIPIcs.CP.2023.6
https://doi.org/10.4230/LIPIcs.CP.2023.6
https://doi.org/10.4230/LIPIcs.CP.2023.42
https://doi.org/10.4230/LIPIcs.CP.2023.42
https://doi.org/10.1007/s10601-017-9275-0
https://doi.org/10.4230/LIPIcs.CP.2022.32

Bibliography

[17] Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed. https://github.com/chuffed/chuffed/, 2018.

[18] Christian Bessière. Arc-consistency and arc-consistency again. Artificial Intelligence, 65(1):179–
190, January 1994. doi:10.1016/0004-3702(94)90041-8.

[19] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. MiniZinc: Towards a Standard CP Modelling Language. In Christian
Bessière, editor, Principles and Practice of Constraint Programming – CP 2007, Lecture Notes
in Computer Science, pages 529–543, Berlin, Heidelberg, 2007. Springer. doi:10.1007/

978-3-540-74970-7.

[20] Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández, and Ian
Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,
13(3):268–306, September 2008. doi:10.1007/s10601-008-9047-y.

[21] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.
In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors, ECAI 2006,

17th European Conference on Artificial Intelligence, August 29 - September 1, 2006, Riva Del

Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings,
volume 141 of Frontiers in Artificial Intelligence and Applications, pages 98–102. IOS Press,
2006.

[22] Geoffrey Chu, Maria Garcia de la Banda, and Peter J. Stuckey. Automatically Exploiting Sub-
problem Equivalence in Constraint Programming. In Andrea Lodi, Michela Milano, and Paolo
Toth, editors, Integration of AI and OR Techniques in Constraint Programming for Combinato-

rial Optimization Problems, Lecture Notes in Computer Science, pages 71–86, Berlin, Heidel-
berg, 2010. Springer. doi:10.1007/978-3-642-13520-0_10.

[23] Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, a Lazy Clause Generation Solver. https://github.com/chuffed/chuffed/, 2018.

[24] Gecode Team. Gecode: Generic constraint development environment.
https://www.gecode.org/, 2019.

[25] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The MiniZinc
Challenge 2008–2013. AI Magazine, 35(2):55–60, June 2014. doi:10.1609/aimag.v35i2.

2539.

[26] Laurent Perron and Vincent Furnon. OR-Tools. https://developers.google.com/optimization/,
March 2022.

[27] MiniZinc Challenge 2022. https://www.minizinc.org/challenge2022/challenge.html.

145

https://doi.org/10.1016/0004-3702(94)90041-8
https://doi.org/10.1007/978-3-540-74970-7
https://doi.org/10.1007/978-3-540-74970-7
https://doi.org/10.1007/s10601-008-9047-y
https://doi.org/10.1007/978-3-642-13520-0_10
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1609/aimag.v35i2.2539

Bibliography

[28] Neng-Fa Zhou and Håkan Kjellerstrand. The Picat-SAT Compiler. In Marco Gavanelli and
John Reppy, editors, Practical Aspects of Declarative Languages, Lecture Notes in Com-
puter Science, pages 48–62, Cham, 2016. Springer International Publishing. doi:10.1007/
978-3-319-28228-2_4.

[29] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat, Para-
cooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo, Nils
Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT

Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department of

Computer Science Report Series b, pages 51–53. University of Helsinki, 2020.

[30] Frederic Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. XCSP3: An
Integrated Format for Benchmarking Combinatorial Constrained Problems, November 2022.
arXiv:1611.03398, doi:10.48550/arXiv.1611.03398.

[31] Gilles Audemard, Christophe Lecoutre, and Emmanuel Lonca. Proceedings of the 2022 XCSP3
Competition, September 2022. arXiv:2209.00917.

[32] SAT Competitions. https://satcompetition.github.io/.

[33] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, July 1962. doi:10.1145/368273.368557.

[34] Armin Biere. SAT: CPAIOR 2020 Masterclass. http://fmv.jku.at/biere/talks/Biere-CPAIOR20-
tutorial.pdf, September 2020.

[35] Armin Biere. SAT: CPAIOR 2020 Masterclass. https://www.youtube.com/watch?v=t3bJcU1aQJI,
September 2020.

[36] JP Marques Silva and KA Sakallah. GRASP-A new search algorithm for satisfiability. In Pro-

ceedings of International Conference on Computer Aided Design, pages 220–227. IEEE, 1996.
doi:10.1109/ICCAD.1996.569607.

[37] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Chapter 4. Conflict-Driven Clause Learning
SAT Solvers. Handbook of Satisfiability, pages 133–182, 2021. doi:10.3233/FAIA200987.

[38] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Francesca Rossi, editor, Principles and Practice of Constraint Programming – CP

2003, pages 108–122, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[39] Hendrik Bierlee, Graeme Gange, Guido Tack, Jip J. Dekker, and Peter J. Stuckey. Coupling Differ-
ent Integer Encodings for SAT. In Pierre Schaus, editor, Integration of Constraint Programming,

Artificial Intelligence, and Operations Research, Lecture Notes in Computer Science, pages 44–
63, Cham, 2022. Springer International Publishing. doi:10.1007/978-3-031-08011-1_5.

146

https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
http://arxiv.org/abs/1611.03398
https://doi.org/10.48550/arXiv.1611.03398
http://arxiv.org/abs/2209.00917
https://doi.org/10.1145/368273.368557
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1007/978-3-031-08011-1_5

Bibliography

[40] Ian P. Gent. Arc consistency in SAT. In Frank van Harmelen, editor, Proceedings of the 15th

European Conference on Artificial Intelligence, ECAI’2002, Lyon, France, July 2002, pages 121–
125. IOS Press, 2002.

[41] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of pseudo-boolean
constraints into CNF. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Test-

ing - SAT 2009, pages 181–194, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[42] Christian Bessiere, George Katsirelos, Nina Narodytska, and Toby Walsh. Circuit Complexity
and Decompositions of Global Constraints, May 2009. arXiv:0905.3757, doi:10.48550/
arXiv.0905.3757.

[43] Miquel Bofill, Jordi Coll, Peter Nightingale, Josep Suy, Felix Ulrich-Oltean, and Mateu Villaret.
SAT encodings for Pseudo-Boolean constraints together with at-most-one constraints. Artifi-

cial Intelligence, 302:103604, January 2022. doi:10.1016/j.artint.2021.103604.

[44] Tobias Philipp and Peter Steinke. PBLib – A Library for Encoding Pseudo-Boolean Constraints
into CNF. In Marijn Heule and Sean Weaver, editors, Theory and Applications of Satisfiabil-

ity Testing – SAT 2015, Lecture Notes in Computer Science, pages 9–16, Cham, 2015. Springer
International Publishing. doi:10.1007/978-3-319-24318-4_2.

[45] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and V. Mayer-Eichberger. A New
Look at BDDs for Pseudo-Boolean Constraints. Journal of Artificial Intelligence Research,
45:443–480, November 2012. doi:10.1613/jair.3653.

[46] Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. Compact MDDs for pseudo-boolean
constraints with at-most-one relations in resource-constrained scheduling problems. In Pro-

ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pages 555–562, 2017. doi:10.24963/ijcai.2017/78.

[47] Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A Compact Encoding of Pseudo-
Boolean Constraints into SAT. In Birte Glimm and Antonio Krüger, editors, KI 2012: Advances in

Artificial Intelligence, Lecture Notes in Computer Science, pages 107–118, Berlin, Heidelberg,
2012. Springer. doi:10.1007/978-3-642-33347-7_10.

[48] Saurabh Joshi, Ruben Martins, and Vasco Manquinho. Generalized Totalizer Encoding for
Pseudo-Boolean Constraints. In Gilles Pesant, editor, Principles and Practice of Constraint

Programming, Lecture Notes in Computer Science, pages 200–209, Cham, 2015. Springer In-
ternational Publishing. doi:10.1007/978-3-319-23219-5_15.

[49] Aolong Zha, Miyuki Koshimura, and Hiroshi Fujita. N-level Modulo-Based CNF encodings
of Pseudo-Boolean constraints for MaxSAT. Constraints, 24(2):133–161, April 2019. doi:

10.1007/s10601-018-9299-0.

147

http://arxiv.org/abs/0905.3757
https://doi.org/10.48550/arXiv.0905.3757
https://doi.org/10.48550/arXiv.0905.3757
https://doi.org/10.1016/j.artint.2021.103604
https://doi.org/10.1007/978-3-319-24318-4_2
https://doi.org/10.1613/jair.3653
https://doi.org/10.24963/ijcai.2017/78
https://doi.org/10.1007/978-3-642-33347-7_10
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/s10601-018-9299-0
https://doi.org/10.1007/s10601-018-9299-0

Bibliography

[50] Ignasi Abío, Valentin Mayer-Eichberger, and Peter Stuckey. Encoding Linear Constraints into
SAT. arXiv:2005.02073 [cs], May 2020. arXiv:2005.02073.

[51] Ewan Davidson, Özgür Akgün, Joan Espasa, and Peter Nightingale. Effective Encodings of Con-
straint Programming Models to SMT. In Helmut Simonis, editor, Principles and Practice of Con-

straint Programming, Lecture Notes in Computer Science, pages 143–159, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-58475-7_9.

[52] Carlos Ansótegui, Miquel Bofill, Jordi Coll, Nguyen Dang, Juan Luis Esteban, Ian Miguel, Peter
Nightingale, András Z Salamon, Josep Suy, and Mateu Villaret. Automatic detection of at-most-
one and exactly-one relations for improved SAT encodings of pseudo-boolean constraints. In
International Conference on Principles and Practice of Constraint Programming, pages 20–36.
Springer, 2019. doi:10.1007/978-3-030-30048-7.

[53] Jamie Miles, Janette Turner, Richard Jacques, Julia Williams, and Suzanne Mason. Using
machine-learning risk prediction models to triage the acuity of undifferentiated patients en-
tering the emergency care system: A systematic review. Diagnostic and Prognostic Research,
4(1):16, October 2020. doi:10.1186/s41512-020-00084-1.

[54] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial op-
timization: A methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, April 2021. doi:10.1016/j.ejor.2020.07.063.

[55] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015. doi:10.1038/nature14539.

[56] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. Machine

Learning, 109(2):373–440, February 2020. doi:10.1007/s10994-019-05855-6.

[57] Longlong Jing and Yingli Tian. Self-Supervised Visual Feature Learning With Deep Neural Net-
works: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):4037–
4058, November 2021. doi:10.1109/TPAMI.2020.2992393.

[58] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
Supervised Learning: Generative or Contrastive. IEEE Transactions on Knowledge and Data

Engineering, 35(1):857–876, January 2023. doi:10.1109/TKDE.2021.3090866.

[59] Leo Breiman. Classification and Regression Trees. Routledge, New York, October 2017. doi:
10.1201/9781315139470.

[60] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001. doi:10.1023/A:
1010933404324.

[61] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine

Learning, 63(1):3–42, April 2006. doi:10.1007/s10994-006-6226-1.

148

http://arxiv.org/abs/2005.02073
https://doi.org/10.1007/978-3-030-58475-7_9
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.1186/s41512-020-00084-1
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1109/TPAMI.2020.2992393
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1

Bibliography

[62] Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis,
38(4):367–378, February 2002. doi:10.1016/S0167-9473(01)00065-2.

[63] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794, San Francisco California USA, August 2016. ACM. doi:10.1145/2939672.

2939785.

[64] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, September 1995. doi:10.1007/BF00994018.

[65] Rob Ashmore, Radu Calinescu, and Colin Paterson. Assuring the Machine Learning Lifecycle:
Desiderata, Methods, and Challenges. ACM Computing Surveys, 54(5):111:1–111:39, May 2021.
doi:10.1145/3453444.

[66] F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of techniques for large-scale
feature selection. In Edzard S. Gelsema and Laveen S. Kanal, editors, Machine Intelligence and

Pattern Recognition, volume 16 of Pattern Recognition in Practice IV, pages 403–413. North-
Holland, January 1994. doi:10.1016/B978-0-444-81892-8.50040-7.

[67] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost Optimal Exploration in Multi-Armed
Bandits. In Proceedings of the 30th International Conference on Machine Learning, pages
1238–1246. PMLR, May 2013.

[68] Roberto Confalonieri, Ludovik Coba, Benedikt Wagner, and Tarek R. Besold. A historical per-
spective of explainable Artificial Intelligence. WIREs Data Mining and Knowledge Discovery,
11(1):e1391, 2021. doi:10.1002/widm.1391.

[69] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-End
Constrained Optimization Learning: A Survey, March 2021. arXiv:2103.16378, doi:10.
48550/arXiv.2103.16378.

[70] Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, and Magnus Boman. Learning
Combinatorial Optimization on Graphs: A Survey With Applications to Networking. IEEE Access,
8:120388–120416, 2020. doi:10.1109/ACCESS.2020.3004964.

[71] Daphné Lafleur, Sarath Chandar, and Gilles Pesant. Combining Reinforcement Learning and
Constraint Programming for Sequence-Generation Tasks with Hard Constraints. In Christine
Solnon, editor, 28th International Conference on Principles and Practice of Constraint Pro-

gramming (CP 2022), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CP.2022.30.

149

https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/3453444
https://doi.org/10.1016/B978-0-444-81892-8.50040-7
https://doi.org/10.1002/widm.1391
http://arxiv.org/abs/2103.16378
https://doi.org/10.48550/arXiv.2103.16378
https://doi.org/10.48550/arXiv.2103.16378
https://doi.org/10.1109/ACCESS.2020.3004964
https://doi.org/10.4230/LIPIcs.CP.2022.30

Bibliography

[72] John R. Rice. The Algorithm Selection Problem. In Morris Rubinoff and Marshall C. Yovits,
editors, Advances in Computers, volume 15, pages 65–118. Elsevier, January 1976. doi:10.

1016/S0065-2458(08)60520-3.

[73] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimization
for General Algorithm Configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent

Optimization, Lecture Notes in Computer Science, pages 507–523, Berlin, Heidelberg, 2011.
Springer. doi:10.1007/978-3-642-25566-3_40.

[74] Mario Andrés Muñoz, Hamed Soleimani, and Sevvandi Kandanaarachchi. Benchmarking algo-
rithm portfolio construction methods. In Proceedings of the Genetic and Evolutionary Com-

putation Conference Companion, GECCO ’22, pages 499–502, New York, NY, USA, July 2022. As-
sociation for Computing Machinery. doi:10.1145/3520304.3528880.

[75] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Van-
schoren. ASlib: A benchmark library for algorithm selection. Artificial Intelligence, 237:41–58,
August 2016. doi:10.1016/j.artint.2016.04.003.

[76] Nguyen Dang. A portfolio-based analysis method for competition results. In ModRef 2022,
Haifa, Israel, July 2022.

[77] Roberto Verdecchia, June Sallou, and Luís Cruz. A systematic review of Green AI. WIREs Data

Mining and Knowledge Discovery, 13(4):e1507, 2023. doi:10.1002/widm.1507.

[78] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. In Christian
Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O’Sullivan, and Dino Pedreschi,
editors, Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Ap-

proach, pages 149–190. Springer International Publishing, Cham, 2016. doi:10.1007/

978-3-319-50137-6.

[79] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-based
algorithm selection for SAT. Journal of artificial intelligence research, 32:565–606, 2008.
doi:10.1613/jair.2490.

[80] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. SUNNY-CP: A sequential CP portfolio
solver. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC ’15,
pages 1861–1867, Salamanca, Spain, April 2015. Association for Computing Machinery. doi:

10.1145/2695664.2695741.

[81] Mirko Stojadinović and Filip Marić. meSAT: Multiple encodings of CSP to SAT. Constraints,
19(4):380–403, October 2014. doi:10.1007/s10601-014-9165-7.

[82] Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. Proteus: A Hierarchical Port-
folio of Solvers and Transformations. In Helmut Simonis, editor, Integration of AI and OR

150

https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1145/3520304.3528880
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1002/widm.1507
https://doi.org/10.1007/978-3-319-50137-6
https://doi.org/10.1007/978-3-319-50137-6
https://doi.org/10.1613/jair.2490
https://doi.org/10.1145/2695664.2695741
https://doi.org/10.1145/2695664.2695741
https://doi.org/10.1007/s10601-014-9165-7

Bibliography

Techniques in Constraint Programming, Lecture Notes in Computer Science, pages 301–317,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-07046-9.

[83] Marius Lindauer, Holger H. Hoos, Frank Hutter, and Torsten Schaub. AutoFolio: An Automat-
ically Configured Algorithm Selector. Journal of Artificial Intelligence Research, 53:745–778,
August 2015. doi:10.1613/jair.4726.

[84] Gilles Audemard, Frédéric Boussemart, Christophe Lecoutre, Cédric Piette, and Olivier
Roussel. XCSP3 and its ecosystem. Constraints, February 2020. doi:10.1007/

s10601-019-09307-9.

[85] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor
for a portfolio of constraint solvers. In Proceedings of the 29th Annual ACM Symposium on

Applied Computing, SAC ’14, pages 1357–1359, New York, NY, USA, March 2014. Association for
Computing Machinery. doi:10.1145/2554850.2555114.

[86] Philipp Probst, Marvin N. Wright, and Anne-Laure Boulesteix. Hyperparameters and tuning
strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3):e1301, 2019.
doi:10.1002/widm.1301.

[87] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[88] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated Algorithm
Selection: Survey and Perspectives. Evolutionary Computation, 27(1):3–45, March 2019. doi:
10.1162/evco_a_00242.

[89] Helsinki Institute for Information Technology University of Helsinki, Tomáš Balyo, Nils Frol-
eyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Proceedings of SAT Compe-
tition 2021 : Solver and Benchmark Descriptions. 2021.

[90] András Vargha and Harold D. Delaney. A Critique and Improvement of the CL Common Lan-
guage Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statis-

tics, 25(2):101–132, June 2000. doi:10.3102/10769986025002101.

[91] Geoffrey Neumann, Mark Harman, and Simon Poulding. Transformed Vargha-Delaney Effect
Size. In Márcio Barros and Yvan Labiche, editors, Search-Based Software Engineering, Lec-
ture Notes in Computer Science, pages 318–324, Cham, 2015. Springer International Publishing.
doi:10.1007/978-3-319-22183-0_29.

[92] Alfredo S. Ramos, Pablo A. Miranda-Gonzalez, Samuel Nucamendi-Guillén, and Elias Olivares-
Benitez. A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Schedul-
ing Problem Solved with a Multi-Start Iterated Local Search Metaheuristic. Mathematics,
11(2):337, January 2023. doi:10.3390/math11020337.

151

https://doi.org/10.1007/978-3-319-07046-9
https://doi.org/10.1613/jair.4726
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1145/2554850.2555114
https://doi.org/10.1002/widm.1301
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.3102/10769986025002101
https://doi.org/10.1007/978-3-319-22183-0_29
https://doi.org/10.3390/math11020337

Bibliography

[93] Rainer Kolisch and Arno Sprecher. PSPLIB - A project scheduling problem library: OR Software
- ORSEP Operations Research Software Exchange Program. European Journal of Operational

Research, 96(1):205–216, January 1997. doi:10.1016/S0377-2217(96)00170-1.

[94] Mario Vanhoucke and Broos Maenhout. NSPLib – A Nurse Scheduling Problem Library: A tool
to evaluate (meta-)heuristic procedures. page 11.

[95] Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial Optimization and Reasoning with Graph Neural Networks. Journal

of Machine Learning Research, 24(130):1–61, 2023.

[96] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration. Op-

erations Research Perspectives, 3:43–58, January 2016. doi:10.1016/j.orp.2016.09.002.

152

https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/j.orp.2016.09.002

	Author Declaration
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	Glossary
	Introduction: Solving Problems by Searching for Truth
	Constraint Programming
	Motivation
	Thesis and Research Questions
	Structure
	Summary of Contributions
	Style and Conventions

	Background: Constraint problems and Boolean SAT
	Constraint Satisfaction and Optimisation
	Formal Definition of CSP
	Constraints
	Solving CSPs
	Describing CSPs: Constraint Modelling
	Competitions

	The Boolean Satisfiability Problem
	Definitions
	SAT Solvers
	SAT Encodings

	Encoding Linear Integer Constraints to SAT
	Expressing Linear Integer Constraints as Pseudo-Boolean
	Pseudo-Boolean Constraints with At-Most-One Partitions
	Performance of SAT Encodings

	Constraint Reformulation and Solving with Savile Row
	Summary

	Background: Machine Learning, Portfolios and Constraints
	Machine Learning
	Types of Machine Learning
	Designing a Machine Learning System

	Using Constraint Solving and Machine Learning Together
	To Augment or Replace?
	Tuning versus Collaborating
	Copy the Expert or Discover a Policy Independently?

	Portfolio Approaches, Algorithm Selection and Configuration
	Building a portfolio
	Measuring Performance
	Algorithm Selection Case Studies

	Summary

	Selecting Encodings using Generic Features
	Method
	The problem corpus
	Features
	The Encodings
	Training

	Experimental Setup
	Solving Problem Instances and Extracting Features
	Cleaning the Dataset
	Splitting the Corpus, Training and Predicting
	Evaluating Performance

	Evaluation
	Results
	The Elusive Virtual Best for SAT Solving
	Analysis of the Configuration Space

	Summary

	Learning Using Specialised Constraint Features
	New Features for PB and LI Constraints
	The Anatomy of PB and LI Constraints
	The Features

	Extended Results
	Results

	Comparison with AutoFolio
	Feature Importance
	Summary

	IndiCon: Learning to Select Encodings for Individual Constraints
	The Promise and Challenges for Per-Constraint Predictions
	A Motivating Example
	Obtaining Timings to Build a Training Dataset
	Evaluating Performance
	To Tree or Not to Tree, or Not All PBs are Equal

	Method
	Corpus
	Building on lipb to Extract Features of Individual PB Constraints
	Clustering the Individual Constraints
	Generating Labelled Training Data
	Training Classifiers
	Testing IndiCon

	Results and Analysis
	Targetting PB and LI in Isolation
	Comparison with LeaSE-PI
	Setting Both PB and LI Constraints

	Evaluation
	Revisiting the Challenges
	Back to MRCPSP
	Conclusions

	Summary

	Conclusion
	Revisiting the Thesis and Research Questions
	Lessons Learned
	Limitations
	Future Work

	Appendices
	Featuresets
	Neural Network Trial
	Research Data Statement
	Bibliography

