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Abstract

In recent years, antiferromagnets have become one of the the primary classes
of magnetic materials studied for spintronic device applications. The devel-
opment of new experimental techniques has made these materials easier to
study, though challenges remain as the compensated order makes it difficult
to resolve the dynamics of individual sublattices, and their multi-sublattice
structure means the magnetic symmetry is typically lower than their fer-
romagnetic counterparts, permitting more complicated Hamiltonians and
making the development of physical models difficult. As a result, compu-
tational techniques are playing an increasing role in advancing research on
antiferromagnets. Proper parameterisation of these computational models
is vital for realistic and reproducible research.

This work aimed to better understand the thermodynamics of the pro-
totypical easy-plane antiferromagnet NiO. NiO is considered to be a simple
antiferromagnet, yet there are several conflicting models which have been
used to explain different phenomena in this material. No model thus far has
been able to describe all aspects of this material. In order to understand
complex antiferromagnetic materials, it is vital that we have a complete
understanding of the simplest examples.

In this work, a combination of analytic and numerical calculations are
used which are compared to the best available experimental measurements
throughout. Analytic calculations of the finite temperature behaviour of an-
tiferromagnets are primarily based on Linear Spin Wave Theory (LSWT).
Numerical simulations are a combination of spin dynamics calculations us-
ing the Landau-Lifshitz-Gilbert (LLG) equation and Monte Carlo methods
applied to atomistic models of magnetic materials. A stochastic Langevin
term is used to augment the LLG equation which allows modelling at finite
temperatures.

In Chapter 4 of this work, we develop a framework of tools to cre-
ate an atomistic model of NiO which hasn’t been used previously in the
literature and is consistent with both neutron scattering experiments and
advanced ab-initio calculations, has the correct ground state, and is con-
sistent with the magnetic symmetry of the crystal. In Chapter 5, we use
constrained Monte Carlo and analytic calculations to show that the tem-
perature dependence of the easy-plane anisotropy in NiO–from magnetic
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dipole-dipole interactions–deviates from the Callen-Zenner scaling for a uni-
axial magnetocrystalline anisotropy. Further, we derive new expressions for
the temperature dependence of the sublattice magnetisation and spin wave
stiffness using linear spin wave theory, then compare this to atomistic sim-
ulations implemented with a thermal Langevin field which is consistent
with Bose-Einstein statistics, as well as experimental measurements. From
this, we are able to quantify at which temperature the first order expan-
sion of Holstein-Primakoff operators breaks down, and we show that the
temperature dependence of the Kittel mode is approximately the same as
the sublattice magnetisation. Using atomistic simulations, we calculate the
temperature dependence of the magnetic damping (magnon scattering) and,
by comparing with experimental measurements, we show that damping due
to magnon-electron and magnon-phonon scattering is negligible at low tem-
peratures. In Chapter 6, we show that all experimentally observed resonant
modes in NiO appear using our model but that many of these modes are
non-linear in origin so cannot be understood using the linear spin wave ap-
proximations which have been used previously. This gives new insight into
the physics of NiO which helps the interpretation of dynamical experiments,
and resolves the discrepancies between previous models and the observed
phenomena in NiO. In the final chapter, we develops a new method for
calculating the finite temperature value of macroscopic parameters in any
magnetic material. This leverages the fundamentals of thermodynamics and
statistical mechanics, and has broad applications for the multiscale model-
ling of magnetic materials.
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Modern computers use semicondutor transistors to do computation. At the time of
writing, the Taiwan Semiconductor Manufacturing Company (TSMC) uses a 3nm litho-
graphy processes to produce computing chips, and Intel has a roadmap which includes
plans for a 2nm lithography node which corresponds to less than 10 silicon atomic
spacings. Single atom control of semiconductor manufacturing will mark the end of
semiconductor innovation in both speed and power usage. To combat the slow-down
of performance improvements for computing devices, companies are increasingly using
specialist accelerator cards such as:

• Graphics processing units (GPUs)

• Neural processing units (NPUs)

• Tensor processing units (TPUs)

• Application specific integrated circuits (ASICs),

as well as traditional central processing units (CPUs). Each of these have architec-
tures (configurations of transistors and memory technologies) which are optimised to
perform specific tasks. These accelerator cards are used in everything from internet of
things (IoT) devices to supercomputers. But, they suffer from the physical limits of
semiconductor technologies.

Moving data between dynamic random access memory (DRAM), static RAM (SRAM),
and the CPU itself uses a huge amount of energy (over 50% for a microprocessor in
2012 [1]). So, another technique to improve efficiency is to use new, innovative comput-
ing architectures called non Von Neumann architectures such as in-memory comput-
ing [2] which combines the role of random access memory (RAM) and CPU to improve
energy efficiency; others are exploring completely new models of non-deterministic com-
puting (probabilistic computing) [3].

Memory storage manufacturers are struggling with similar problems. Semiconductor-
based solid state disks (SSDs) are now sold in greater quantities than magnetic hard
drive disks (HDDs), though hard drives still dominate in the total storage produced [4].
Technologies like heat assisted magnetic recording (HAMR) are being developed to im-
prove the performance and storage capacities of hard drives but SSDs have the same
difficulties innovating as CPUs because of the physical limits of near single atom control
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of semiconductor manufacturing. Other technologies like phase change memory were
promising, but have now been abandoned by all large companies.

For all of these applications, magnetic materials offer a new path to innovation.
These are spintronic devices which combine the control of spin degrees of freedom
with conventional electronics. Magnetic random access memory (MRAM)–a spintron-
ics technology–is already used in low power devices [5]. MRAM uses ferromagnetic
tunnel junctions to encode information in the relative orientation of two ferromagnetic
layers which can be controlled electrically using bit lines and word lines, as with SSDs.
But, MRAM devices are much more energy efficient and are resistant to data corruption
from rare events like cosmic rays, so create fewer errors in data sensitive applications
like space and banking [2, 6]. MRAM is a large part of TSMC’s technology roadmap for
embedded devices [5] with new spin-orbit torque (SOT) switching mechanisms driving
innovation. Ferromagnets have the problem of stray fields, slow dynamics, and poor
integration with complementary metal oxide (CMOS) manufacturing processes which
are ubiquitous in the semiconductor industry. Stray fields limit the density of bits in
MRAM devices, slow dynamics limits the operational frequency of these devices, and
poor compatibility with CMOS makes adoption by private companies slow. Yet mag-
netic materials can be used to make accelerator cards discussed above; probabilistic
computing devices, and compute-in-memory devices, so are a viable route to post-
silicon computing. The emerging field of quantum computing promises exponential
improvements in computing performance for specific applications like catalysis, medi-
cine, and AI [7]. Magnetic materials can also be used as storage devices for quantum
processors [8, 9] which is one of the most significant problems for the long-term scalab-
ility of quantum computers.

Antiferromagnets don’t suffer from the same drawbacks as ferromagnets because of
their compensated order, so are being explored as a class of materials which could be
used in next generation computing and memory storage devices. They’re fast (THz
resonant dynamics), and have no stray field. But, they still suffer with poor CMOS
compatibility. Compensated order means these materials can be difficult to measure
experimentally. So, to better understand these materials, and to aid the design of
devices, computational simulations–like those used in this work–are an important tool
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to advance the field. Even some of the most well studied antiferromagnets like NiO are
still poorly understood. It’s very difficult to create useful devices from these materials
until we understand them at a fundamental level. The work carried out here aims to do
just this; using fundamental physical laws including symmetry and thermodynamics,
and applying multiscale parameterisation using cutting edge methods, we study NiO
and resolve the discrepancies in the literature of this material. In this work, we show
that its dynamics are more complex than have been considered in previous works, that
the thermodynamics requires careful consideration, that magnetocrystalline anisotropy
isn’t needed to fully explain observations of NiO, and we are able to separate different
sources of energy losses from the magnetic system. The final chapter develops a new
framework for studying thermodynamics in magnetic materials to ensure correct para-
meterisation of finite temperature theoretical and continuum models which is applicable
to both ferromagnets and antiferromagnets.
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Theory of Magnetism
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2.1 The Spin Angular Momentum of an Electron

2.1 The Spin Angular Momentum of an Electron

Electrons carry angular momentum. For electrons bound to atoms, there are two
sources of angular momentum: orbital angular momentum and spin angular momentum.
Orbital angular momentum, given by the quantum operator L̂ or the classical vector L,
is simple to understand. It arises from the motion of electrons around the nucleus of an
atom which creates current loops and induces magnetic fields by Faraday’s law. Spin
angular momentum has no classical analogue; it is predicted by quantum mechanics
and is an intrinsic property of the electron, rather than emergent from its motion in
space. Spin can be derived from the Pauli exclusion principle of fermions, and the first
experimental confirmation that subatomic particles carry spin was the Stern-Gerlach
experiment in 1921 which led to Stern winning the 1943 Nobel prize in physics [10, 11].

The spin of an electron is represented by the total spin angular momentum |S| =√
S(S + 1)∗, where S is the spin quantum number (equal to 1

2 for an electron), or as
a classical magnetic moment µ = µSS, where µS is the spin magnetic moment and
S is the classical spin vector of unit length. Since electrons are spin-1

2 particles, the
measurement of an electron’s spin along a quantisation axis is either +1

2 or −1
2 . Mag-

netic order arises because of the interaction of electron spins with their environment.
Each spin is a dipole moment which has an associated magnetic field. When the spins
of electrons in matter are correlated, there is magnetic order. In crystalline materials,
electrons orbiting an atom can have an effective (spin) magnetic moment which isn’t an
integer multiple of 1

2 , either because of the delocalisation of electrons (so atoms don’t
have an integer average number of electrons) or because of the orbital contribution to
the total magnetic moment (due to spin-orbit coupling). The approximation of repres-
enting quantised spins as classical vectors is valid in the limit of large spin S � 1

2 . In
this limit, there are many spin states that a particle can occupy and the quantum spin
state can be thought of as occupying an approximately continuous set of states (ie a
vector). Under this approximation, all information about quantum states is lost and
quantum effects such as superposition and the exclusion principle are lost.

In the rest of this chapter, we introduce and/or derive the interactions between
electron spins and their environment in crystalline materials which will be used in this

∗We choose to drop factors of ~ for simplicity.
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2.2 Origin of Exchange

work. Other interactions exist in different materials, but we limit ourselves to those
found in NiO.

2.2 Origin of Exchange

The classical Heisenberg Hamiltonian is the most common model for exchange in three-
dimensional materials with localised charges. Heisenberg exchange is written as∗

H = −1
2
∑
i,j

SiJijSj , (2.1)

where the sum is over all spins, Jij is the exchange tensor which permits anisotropic
terms such as Dzyaloshinskii-Moriya interaction (DMI) and two-ion anisotropy, S are
classical spin vectors of unit length, and the factor of 1

2 accounts for the double counting
of interactions in the summation. This choice of classical Hamiltonian is an approx-
imation. Spontaneous magnetic order is a purely quantum effect which is most clearly
shown by the Bohr-van Leeuwen theorem [12]. It proves the net magnetisation of a clas-
sical electron gas, which is held in a constant magnetic field and in thermal equilibrium,
must be zero. So, any Hamiltonian model of a magnetic material should be composed of
quantum operators (not classical vectors), and may not necessarily take the same form
as Heisenberg exchange†. The approximation of Heisenberg exchange is most valid for
insulating magnetic materials‡ and at low temperatures; though scientists have long
been surprised by the close agreement of analytic theories and computational models
with experiments when using this very simple Hamiltonian.

To understand the origin of exchange, first consider the magnitude of different
energies for electrons in solids (see Fig. 2.1). The energy of magnetic dipole-dipole
interactions–in units of the Boltzmann constant kB–is of the order of 1K for unpaired
electron spins on neighbouring atoms. This is much too low to account for ferromagnets
with Curie temperatures of ∼ 1000K. Electrostatic interactions within an atom are of

∗Technically this is an augmented Heisenberg model. The typical definition Heisenberg exchange
is H = − 1

2
∑

i,j
JijSi · Sj .

†Higher order model Hamiltonians like biquadratic exchange can be important in certain material
systems [13].

‡Under the Born-Oppenheimer / adiabatic approximation–electron dynamics are much faster than
spin dynamics, and lattice dynamics are much slower, so can be separated–Heisenberg exchange can
still be used.
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2.2 Origin of Exchange

Figure 2.1: Comparison of energy scales for electrons in solids.

the order 105K which is too large to account for magnetic behaviour. Instead exchange
lies in between these energy scales and electrostatic interactions between unpaired elec-
trons on neighbouring atoms must be responsible for magnetic ordering. In the first
theories of bonding between atoms, the repulsion of unpaired electrons was ignored
as a perturbation. Including this perturbation leads to magnetic order in many-body
electron theories.

By the Pauli exclusion principle, overall antisymmetry of electron wavefunctions
must be preserved. This, combined with Coulomb interactions between electrons,
means ferromagnetic and antiferromagnetic exchange interactions can be derived in
a variety of model systems. In Appendix A, we derive a very simple model of both
ferromagnetic and antiferromagnetic direct exchange in a hydrogen molecule. The com-
bination of Coulomb interactions between electrons and the Pauli exclusion principle,
which couples the kinetic and spin degrees of freedom, leads to Heisenberg exchange
in all solids and molecules. Table 2.1 gives some microscopic theories of exchange and
the materials they apply to. An analytic expression for the exchange interactions can-
not be obtained because the many-body problem is usually incalculable. In this case
ab-initio methods such as density functional theory (DFT) can be used to numerically
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2.2 Origin of Exchange

approximate the solution of the many-body Schrödinger equation, from which exchange
interactions can be extracted.

Table 2.1: Common models of the exchange interaction in solids.

Type of Exchange Materials Key Concepts

Direct Exchange [14, 15] N/A

Electrons which give rise to

magnetism are localised and have

non-zero covalency. Examples

include Fe, Co, Ni, EuS, EuO.

Superexchange [16]
Mott and

Charge-Transfer
Insulators

Ionic bonding, non-magnetic

atoms mediate the coupling.

Double exchange [17] Mixed Valence Metals
High oxidation atoms have

unoccupied states which are

coupled by non-magnetic atoms.

RKKY [18–20] Heavy Metals

Coupling between itinerant

electrons and nuclear magnetic

moments or localised electron

spins. Dominant in rare-earth

metals and alloys.

Antisymmetric exchange [21, 22] N/A

DMI–bonds between neighbours

lack an inversion centre. Mediated

by relativistic spin-orbit coupling

at non-magnetic sites.

2.2.1 Superexchange Interaction

We give additional qualitative consideration to the superexchange interaction as it is
the dominant mechanism for exchange in NiO. In many materials of scientific interest
within antiferromagnetic spintronics, there is very little overlap of orbitals between
nearest atoms–species are ionically bonded. Early models of the electron structure in
3d transition metal salts struggled to reconcile the conflicting properties of a antiferro-

9



2.2 Origin of Exchange

magnetic exchange and their insulating nature∗. This is remedied by considering both
next nearest neighbour electron tunnelling and direct exchange [16, 23].

Consider a MnO crystal, the Mn2+ cations have a single valence electron and the
O2- anions have a filled 2p orbital. Non-zero overlap of orbitals only occurs over 180◦

bond angles (see Fig. 2.2). Electron transfer events from one manganese ion to another
permits an indirect exchange interaction via the oxygen ligand over a 180◦ bond. An
antiferromagnetic exchange interaction of the form (A.5) is recovered. For exchange
over a 90◦ bond angle, there is zero overlap of electron orbitals so a purely ferromag-
netic, direct exchange Hamiltonian governs the interactions between these spins.

3dy 3dy

3dx 3dx

2py

2py

Mn O MnMn

O

3dy

3dy

3dx

3dx

2py

2py

Mn

Mn

Figure 2.2: Representation of superexchange in MnO. The exchange interaction over
a 180◦ bond is antiferromagnetic due to non-zero overlap of orbitals (left). Over a 90◦

bond, exchange is ferromagnetic due to direct exchange (right).

These effects are most concisely expressed by the Goodenough-Kanamori rules [24–
27] which state the following:

• When there is a non-zero overlap of orbitals both direct exchange and electron
transfer events occur (antiferromagnetic exchange).

• When there is no overlap of orbitals only (ferromagnetic) direct exchange can
occur.

∗Only theories of direct exchange existed during this period. Antiferromagnetic direct exchange
requires large hopping integrals (delocalisation) as can be seen in Appendix A.

10



2.3 Magnetocrystalline Anisotropy

• The interaction has a higher energy when there is a greater overlap of orbitals.

This gives a qualitative argument why transition metal salts are almost exclusively
antiferromagnets with small ferromagnetic interactions.

2.3 Magnetocrystalline Anisotropy

Exchange couples spins in crystals and molecules such that there is a quantisation
axis along which all electron spins are aligned. Considering only exchange, the choice
of quantisation axis, ẑ, is free; there is continuous symmetry of the magnetisation
vector around the unit sphere. Magnetocrystalline anisotropy breaks this continuous
symmetry so that there are well defined preferred directions for the magnetisation vector
with respect to the crystal axes. Magnetocrystalline anisotropy requires both crystal
field splitting, which gives preferred directions for orbital moments, and the relativistic
spin-orbit interaction which couples the preferred directions of orbital moments to the
spin moments. In Appendix B, we derive the relativistic Hamiltonian which gives rise
to spin-orbit coupling and derive expressions for the magnetocrystalline anisotropy in
rare earth elements (limit of strong spin-orbit coupling), and in a lighter transition
metal with hexagonal crystal symmetry (limit of strong crystal field splitting). Here,
we state these results and give a qualitative discussion for a cubic 4f material. The
first order relativistic Hamiltonian for a single electron orbiting an atom in a magnetic
field with hydrogen-like electron orbitals can be written as

Ĥ = p̂2

2me
− p̂4

8m2
ec

2 + V + ~2

8m2
ec

2∇
2V − e

2mec
(L̂ + 2Ŝ) ·B

+ ~2

2m2
ec

2∇V (L̂ · Ŝ) + e2

2mec2 A2,

(2.2)

where p̂ is the momentum operator, me is the electron rest mass, c is the speed of light
in a vacuum, V is the electric potential due to the atomic nucleus, L̂ = L̂xx̂+L̂yŷ+L̂zẑ
is the vector orbital angular momentum operator, Ŝ = Ŝxx̂ + Ŝyŷ + Ŝzẑ is the vector
spin angular momentum operator, B is the applied magnetic field, ~ is the reduced
Planck constant and A is the vector potential of the magnetic field. The most relevant
single electron terms for studying magnetic systems are

Ĥ = − e

2mec
(L̂ + 2Ŝ) ·B + ~2

2m2
ec

2∇V (r)(L̂ · Ŝ) + V (r). (2.3)
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2.3 Magnetocrystalline Anisotropy

The first term is the Zeeman energy for an electron in a magnetic field, the second
is the spin-orbit coupling and the final term is the electric potential. Next, a simple
phenomenological description of the origin of magnetocrystalline anisotropy is given
for 4f elements where spin-orbit coupling is the dominant energy term. For the 3d
elements, see Appendix B.

To minimise the energy of an atom in free space, spherically symmetric orbitals
with unquenched angular momentum (〈L̂〉 6= 0) are occupied. The electron density
(probability amplitude of the wavefunction) of this orbital is shown in Fig. 2.3.

Figure 2.3: Electron density for a 4f electron with m = ±3 (n = 4, l = 3).

In the absence of other atoms, this orbital can be rotated freely with no change in
energy. Inserting this atom into a periodic lattice introduces an additional energy term
due to the Coulomb repulsion of neighbouring electron densities. To add this to the
Hamiltonian (2.3), we make a transformation to the electric potential

V (r) 7→ V0(r) + VCF(r). (2.4)

The additional term is the crystal field potential. It is periodic as each atom experi-
ences the same potential due to identical neighbour displacements in the static state
(neglecting phonons). This introduces an angular dependence to the energy of this
electron orbital with hard and easy axes. The angular dependence of the electron
orbital is coupled to the spin degree of freedom by the spin-orbit interaction; in the
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2.4 Magnetic Dipole-Dipole Interactions

limit of large spin-orbit coupling, the spin angular momentum is rigidly coupled with
the orbital moment (known as spin-momentum locking). So, when changing the mag-
netisation direction of a crystal by applying an external magnetic field, the electron
density is rotated in the same manner. The shape of the magnetocrystalline anisotropy
depends on the lattice structure and its magnitude depends on both the strength of
the spin-orbit interaction and the strength of the crystal field∗.

Qualitatively, the shape of the anisotropy can be determined for a given system by
a thought experiment considering only the symmetry of the crystal and the sign of the
effective charge density at other lattice points. In Fig. 2.4, a magnetic ion is located
at the origin which is embedded in a simple cubic crystal field with negative effective
charges at lattice points. The Coulomb repulsion between the electron density of the
central atom and its crystal field is maximised when the orbital lies in the planes of
minimum nearest-neighbour distance (the xy, yz and xz planes) which corresponds to
hard spin directions along the x-, y-, and z-directions. The repulsion is minimised when
the spin moment is parallel to the 〈111〉 directions. So, the 〈111〉 are easy axes. This
corresponds to a cubic magnetocrystalline anisotropy. Moving from Pauli operators to
classical spin vectors, the first two cubic anisotropy terms are given by

ε = −K1
[
(SxSy)2 + (SySz)2 + (SzSx)2

]
−K2 [SxSySz]2 , (2.5)

where ε is a single spin energy, Ki are anisotropy constants, and Su = S · û is a
component of the classical spin vector. Assuming only one anisotropy constant is non-
zero, the negative point charges in Fig. 2.4 mean that either K1 < 0, or K2 > 0.
This simple thought experiment can be applied to any magnetic material if the site
symmetries of the crystal, and electron valences are known. A rigorous symmetry-based
framework for determining permitted magnetocrystalline anisotropies is discussed in
Chapter 4.

2.4 Magnetic Dipole-Dipole Interactions

As discussed in Section 2.2, the exchange interaction is a many-body electronic effect
mediated by the Coulomb interaction. The most fundamental purely magnetic inter-

∗These are highly dependent on the nuclear charge, the magnitude of the screened charge of the
crystal field, and the interatomic distance.
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2.4 Magnetic Dipole-Dipole Interactions

Figure 2.4: Crystal field interaction of an |l = 3,m = ±3〉 electron orbital with nearest
neighbour cations along the principal axes. (left) High energy state, and (right) low
energy state. Arrow represents the spin magnetic moment which remains parallel to
the orbital moment in the limit of strong spin-orbit coupling.

action is the magnetic dipole-dipole interaction. Every magnetic moment has a dipole
field, with which it interacts with other magnetic moments. This is the reason two bar
magnets repel or attract dependent on their orientation. For discrete localised magnetic
dipoles, the interaction is given by the following Hamiltonian

H = −1
2
∑
i 6=j

µ0
4π

3(µi · r̂ij)(µj · r̂ij)− (µi · µj)
|rij |3

, (2.6)

where µ0 is the permeability of free space, µi is the vector dipole moment of the
magnetic dipole at site i, rij = rj − ri is the displacement vector between the moments
at sites i and j, and the factor of 1

2 accounts for the double counting of interactions
in the summation. The dipole-dipole interaction is dependent on both the distance
between two moments, as well as their alignment. In solid state systems, the magnetic
moments are unpaired electron spins which are assumed to be localised on an atomic
site. In this case, the magnetic moment is written as µi = µS,iSi where µS,i is the spin
magnetic moment and Si is the spin vector. The discrete dipole-dipole interaction is
then

H = −1
2
∑
i 6=j

µ0µS,iµS,j
4π

3(Si · r̂ij)(Sj · r̂ij)− (Si · Sj)
|rij |3

. (2.7)

In crystals, the dipole-dipole interaction has two contributions; intrinsic dipole-dipole
interactions and extrinsic dipole-dipole interactions. Intrinsic dipole-dipole interactions
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2.4 Magnetic Dipole-Dipole Interactions

are dependent on the symmetry of the magnetic crystal and give rise to a dipolar
anisotropy which is distinct from magnetocrystalline anisotropy. Extrinsic dipole-dipole
interactions are dependent on the size and shape of a sample of a magnetic crystal. In
the next sections, these two sources are discussed.

2.4.1 Shape Anisotropy

Shape anisotropy is dependent only on the geometry of a magnetic material of finite size.
In ferromagnets, the stray dipole field stores energy. This leads to preferred directions
of magnetisation which reduce the free energy of the system. The theory of shape an-
isotropy in ferromagnets is well known and will not be reproduced here (see [28] or [29]
for further reading). Modern research on magnetic materials for spintronic applica-
tions almost exclusively uses thin films of magnetic material. Assuming a continuous
description of the magnetisation (rather than discrete, as above), the shape anisotropy
of these near two-dimensional systems is given by the following energy functional

E = 1
2µ0M

2
s

∫
V

[m(r) · ẑ]2 d3r, (2.8)

where Ms is the finite temperature saturation magnetisation of the uniform ferromag-
net, the integral is over the whole volume V of the ferromagnet, m(r) is the continuous
reduced magnetisation field, and ẑ is the out of plane direction of the film. The shape
anisotropy is minimised when the magnetisation lies in the plane of the thin film and
takes the same form as a uniaxial magnetocrystalline anisotropy with K = 1

2µ0M2
s .

In infinite antiferromagnets there is no stray field; magnetic moments are com-
pensated. But, in finite sized antiferromagnets, both compensated and uncompensated
magnetic surfaces and interfaces introduce an extrinsic contribution to the total dipole-
dipole interaction. These are not strictly shape anisotropies but deserve discussion here.
The case of uncompensated surfaces is easiest to understand; if a layered antiferromag-
net is cleaved such that there is a layer of spins which are ferromagnetically aligned,
then there is a small net magnetisation at the surface (see for example figure 1a of [30])
which has an energy contribution of the form of equation (2.8). Compensated interfaces
are conceptually more complicated; näıvely these surfaces have a vanishing magnetic
dipole field everywhere. But, by symmetry, a non-zero surface magnetisation can be
induced because of the broken symmetry (see figure 1c, d of [30]), and must be induced
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2.4 Magnetic Dipole-Dipole Interactions

in linear magnetoelectric materials [31]. The small induced surface magnetisation leads
to an additional extrinsic contribution to the dipole-dipole interaction–just like an
uncompensated interface–which can be used to read and write the state of an antifer-
romagnet [32, 33]. This can explain why exchange bias occurs with similar magnitude
at both compensated and uncompensated antiferromagnetic interfaces [30, 34].

2.4.2 Dipole Anisotropy

In addition to the extrinsic contributions to the dipole-dipole interaction discussed
above, (infinite) magnetic crystals with non-cubic magnetic site symmetries have an
anisotropic energy contribution from dipole-dipole interactions (see Fig. 2.5). We call
this a dipole anisotropy to distinguish this intrinsic contribution from the extrinsic
shape anisotropy. In ferromagnets, this is usually small compared to magnetocrystalline
anisotropies and single sublattice ferromagnets typically have a magnetic symmetry
which is close to cubic. In ferrimagnets and antiferromagnets, the changing direction
of spin vectors at different sites means the symmetry is often far from cubic, and the
dipole anisotropy can be large–even in the ground state. Additionally, since dipole-
dipole interactions are long-range pairwise interactions, rather than local interactions
(as with magnetocrystalline anisotropy), an easy-plane dipole anisotropy can break the
degeneracy of antiferromagnetic spin wave branches and change their polarisation, in
addition to introducing a gap in the spin wave spectrum [35]. No single-ion energy can
introduce a similar effect, so calculating the discrete dipole-dipole interaction explicitly
can be important when studying dynamical effects.
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2.4 Magnetic Dipole-Dipole Interactions

Figure 2.5: (left) Depiction of an antiferromagnet which has cubic crystal symmetry
and non-cubic magnetic symmetry. (right) Depiction of a ferromagnet which has both
cubic crystal and cubic magnetic symmetry. The antiferromagnet (left) has negligible
shape anisotropy but has a non-zero intrinsic dipole anisotropy whereas the ferromagnet
(right) has a non-zero shape anisotropy but the intrinsic dipole anisotropy vanishes.
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3.1 Scales of Modelling

3.1 Scales of Modelling

In modern science, simulations of physical systems are increasingly playing a large role
in research. Simulations aid in understanding complex phenomena that are difficult to
study analytically, enable high throughput material screening without expensive exper-
iments, and are used to help interpret experimental results. As such, there are many
computational tools available to researchers which range from small scale ab-initio
methods, through device-scale continuum methods. The idea of multiscale modelling
is to parameterise more heavily approximated methods using less approximate meth-
ods to reduce the loss of information when going from a less- to more-coarse grained
simulation.

The inclusion of temperature in most computational models is not simple. Stat-
istical mechanics tells us that temperature is only well defined by the averaging of
microscopic thermal fluctuations (ie in atomistic simulations). Temperature can be
included in ab-initio methods such as time-dependent DFT (TD-DFT). But, the addi-
tional computational cost means that it is difficult to obtain good statistical sampling
so these simulations have limited value. At the other end of the spectrum, stochastic
thermal fields have been included in micromagnetic models to include the effect of
temperature. But micromagnetism is only strictly valid at zero temperature. Micro-
magnetic formalisms such as those which use the Landau-Lifshitz-Bloch equation [36]
attempt to resolve this but still require finite temperature values for material paramet-
ers such as the magnetisation m(T ), exchange stiffness A(T ), and transverse χ⊥(T ) and
longitudinal susceptibilities χ‖(T ) which must be calculated using other methods [37]
(mean-field approximation, atomistic spin dynamics, etc). The inclusion of stochastic
fluctuations in micromagnetism should instead be thought of as a tool which introduces
randomness to ensure that the micromagnetic system doesn’t get stuck in local equilib-
ria. The temperature of a micromagnetic simulation is not the same temperature that
appears in statistical mechanics. The loss of microscopic degrees of freedom means the
entropy of a micromagnetic simulation is distinct from the entropy of an equivalent
supercell which is simulated using atomistic spin dynamics or Metropolis Monte Carlo.
This is why the micromagnetic energy is usually written as a free energy which doesn’t
include the energy that cannot be extracted due to entropy (F = U − TS, TS is not
available to do work). Atomistic methods like spin dynamics and Monte Carlo are
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3.2 Metropolis Monte Carlo

the most useful tools for calculating finite temperature properties of materials as these
simulations can contain millions of atoms in an ensemble and thermal averaging can
occur over nanosecond time periods. These atomistic ensemble methods are the tools
used in this work.

There are three main assumptions in these atomistic methods:

1. Spins are localised on an atomic site by the Born-Oppenheimer / adiabatic ap-
proximation. This assumes that electron dynamics and spin dynamics occur on
separable timescales, orders of magnitude apart.

2. Spins are approximated as classical unit vectors rather than quantum states. This
means that purely quantum effects cannot be included and the method is valid at
intermediate temperatures (ie incorrect at very low and very high temperatures).

3. Statistical averaging by importance sampling closely approximates the full parti-
tion function.

The above approximations are best applied to insulating magnets. The problem of
quantum versus classical thermal distributions can be partially mitigated when using
a quantum thermostat in spin dynamics simulations (discussed in Chapter 5).

3.2 Metropolis Monte Carlo

In principle, the whole partition function must be known to determine the thermody-
namic averages. In reality, this is only calculable in very small systems. For a discrete
lattice of N spins represented as classical unit vectors, the partition function is given
by 2N integrals

Z =
∫

e−βH(θ1,φ1,...,θN ,φN )dθ1dφ1...dθNdφN , (3.1)

where β = 1/kBT , and θi, φi are the azimuthal and polar angles of each spin vector.
The Metropolis algorithm is an example of importance sampling. The algorithm ensures
that highly probable states are sampled more frequently by always accepting trial moves
which are lower in energy, and higher energy moves are sampled using a Boltzmann
factor to calculate the acceptance probability. States which have low probability (high
energy) contribute very little to the partition function so have a low probability of
being sampled. In the limit of a large number of sampled states, the set of sampled
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3.2 Metropolis Monte Carlo

states–which is a subset of the total states of the system–converges to the expected
Boltzmann distribution of energies and represents the distribution of the complete
partition function to arbitrarily high accuracy (by increasing the number of Monte
Carlo steps). The degree of convergence can be measured during simulations but a fixed
number of steps is usually used in practise (> 105 steps is sufficient for most systems at
most temperatures). The Metropolis-Hastings algorithm can be summarised into the
following steps

1. Choose a random spin Si.

2. Choose a trial state S′i.

3. Calculate the energy difference between the old state and the new state ∆E =
E(S′i)− E(Si).

4. Pick a random number r ∈ [0, 1].

5. If r ≤ exp(min{0,− ∆E
kBT
}), accept the trial state. Else, reject the trial state.

The initial state of a Monte Carlo simulation is perfectly ordered. Since the system
is coupled to a thermal bath of fixed temperature, energy and entropy are exchanged
until the system reaches thermal equilibrium∗. So, the first few steps (∼ 104) of a
Monte Carlo simulation are discarded for equilibration, and the remaining steps are
used for statistical averaging. In a single simulation the temperature is kept fixed, so
the system is known as a canonical ensemble and the free energy is minimised. This
method is useful but doesn’t allow access to dynamical effects, and doesn’t allow the
use of different thermostats; classical statistics is built into the algorithm by using a
simple Boltzmann factor. For these functionalities, we need to use a dynamical method
such as atomistic spin dynamics. In this work, Monte Carlo methods are used because
the Metropolis algorithm can be altered to give access to the temperature scaling of
macroscopic parameters. The algorithm we use in this work is called constrained Monte
Carlo [38] which is discussed in Chapter 5.

∗The thermal bath is identical to an infinitely large environment, so the decrease in energy and
entropy of the thermal bath due to the magnetic system is effectively zero.
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3.3 Atomistic Spin Dynamics

Atomistic spin dynamics calculates the time evolution of localised classical magnetic
moments on a discrete crystal lattice by the stochastic Landau-Lifshitz (LL) equa-
tion∗ [41], which includes a precessional torque consistent with quantum mechanics
and a phenomenological damping torque. The Landau-Lifshitz equations for a canon-
ical ensemble are written

∂Si
∂t

= −|γ| [Si ×Bi + αiSi × (Si ×Bi)] , (3.2)

where γ = gµB/~ is the gyromagnetic ratio of a free electron, αi is the dimensionless
damping constant (Table 4.5), and the local field Bi = ξi − (1/µs,i)∇SiH contains all
interactions from the Hamiltonian (4.17) and a stochastic thermal field ξi. The LL or
Landau-Lifshitz-Gilbert (LLG) equation can be used at the atomic level, as well as at
the micromagnetic and macrospin levels. The equation is very successful at modelling
magnetic materials, primarily because the local field Bi, and the applied torques, can
be augmented to include the effect of magnetic field pulses [42], laser pulses (using
LLB) [43], as well as spintronic effects such as spin-transfer and spin-orbit torques [44].

Just like Metropolis Monte Carlo, atomistic spin dynamics samples the most prob-
able states of the system. The formal connection with statistical mechanics can be found
in work by Gyorffy [45] and standard textbooks [46]. In addition, spin dynamics can be
used to study the relaxation of a system from non-equilibrium states so experiments can
be replicated in a simulation, as well as allowing non-classical thermal statistics to be
used (of particular interest is the Bose-Einstein thermostat, discussed in Section 5.1).
The spin dynamics algorithm is a simple numerical integration of many coupled partial
differential which is very easily parallelised on a computer. The implementation used in
this work uses a fourth order stochastic Runge-Kutta integrator which can be deployed
on both CPUs and GPUs. The ease of parallelisation means that atomistic spin dy-
namics can be much faster than Monte Carlo simulations when implemented on GPUs,
allowing larger systems to be simulated for longer integration times, which gives better
thermal statistics and higher quality results–often better than the most cutting edge

∗We choose the Landau-Lifshitz form of damping, rather than the Gilbert damping [39], because
the latter changes the frequency of spin waves by a factor 1/(1 + α2). We want spin wave frequencies
to be consistent with the ab-initio calculations [40].
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3.3 Atomistic Spin Dynamics

experiments [47]. The stochastic thermal field, ξ, must obey fluctuation-dissipation
theorem. The fluctuation-dissipation theorem which gives Boltzmann statistics means
the thermal field must have the following properties

〈ξαi (t)〉t = 0

〈ξαi (t) ξβj (t′)〉 = 2α
µS,iγi

δijδαβδ(t− t′)kBT
(3.3)

where α, β are Cartesian components. The damping is included phenomenologically and
its value is taken from experiments. There are many sources of damping in magnetic
systems (see Fig. 3.1) but these are almost impossible to quantify without simulating
the magnetic, electronic, and lattice simultaneously. So phenomenological damping
parameters must be used. In most cases, this is sufficient.

Indirect Damping Direct Damping

Lattice Environment

Electrons

Spin-orbit 
coupling

Defects

k = 0
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Figure 3.1: Energy transferred to and from the uniform (k = 0, resonant) modes of
magnetic system excited by an external EM source. Sources of losses (damping) can
be broadly separated into direct and indirect processes. Direct sources of damping are
spin-lattice and spin-electron scattering processes where energy immediately leaves the
magnetic system. Indirect sources of damping are mediated by spin-spin processes.
Figure reproduced from [48].
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Chapter 4

Developing Material Specific Models Using
Symmetry and Multiscale Parameterisation

24



4.1 Outline

4.1 Outline

In this chapter we develop a framework of tools needed to create realistic models of
magnetic materials. Since high performance computing is easily accessible in most uni-
versities, tools like atomistic spin dynamics and micromagnetics are commonly used
by researchers as a quick and easy way to model magnetic materials and devices–a
trend which has been accelerated due to the COVID-19 pandemic. The problem is
that, while many different models can be tuned to match experimental results (some
atomistic models even have a different crystal lattice to the material being modelled!),
predictions from unrealistic models which include highly idealised interactions or in-
clude interactions which do not obey the symmetry of the magnetic crystal, will always
be incomplete or incorrect when used in different contexts. Despite this, tools like
atomistic spin dynamics are very important in understanding the underlying physics
of antiferromagnets as the dynamics can be very complex, there can be many mechan-
isms which can explain a given observed phenomenon, and the microscopic degrees of
freedom are not accessible experimentally due to the zero net magnetisation (though
are accessible in atomistic simulations). As an example, for many-sublattice antiferro-
magnets, some resonance modes (eigenfrequencies) cannot be experimentally observed
using macroscopic measurements of antiferromagnets because of phase cancellation of
the different sublattices [49]; microscopic techniques that employ light scattering can
observe these. So, these modes cannot be measured using typical experiments (without
applying a forced oscillation) yet they can carry spin currents and impact the per-
formance of antiferromagnetic devices [49]. It is therefore important that models of
antiferromagnets do not alter this physics. The importance of fundamental principles
such as symmetry in magnetism has been made clear by the recent discovery of alter-
magnetism, a new class of magnetic materials which have symmetries which are distinct
from both ferromagnets and antiferromagnets. Altermagnets have zero net magnetisa-
tion like an antiferromagnet, yet the Fermi surface is spin polarised like a ferromagnet.
These materials permit giant magnetoresistance (GMR), and have a strong anisotropic
(k-dependent) spin Hall effects which aren’t mediated by weak relativistic spin-orbit
coupling–something which cannot exist in ferro-, ferri-, or anti-ferromagnets [50–55].

The rest of this chapter is outlined as follows. First, we give an introduction to
NiO, an antiferromagnetic material which is usually modelled using extremely simpli-
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fied interactions that don’t always obey the symmetry of the magnetic crystal, despite
the fact that symmetry uniquely determines the microscopic interactions which are
required to stabilise its equilibrium state. Second, we describe the constraints that
lattice and magnetic symmetry imposes on permitted spin Hamiltonians. Then, we
discuss the use of point charge models of crystalline materials and show how it can be
used to determine the dominant contributions to the magnetic anisotropy. Finally, we
discuss best practices for parameterising exchange interactions in a magnetic material.
Throughout this chapter, these tools will be applied to NiO, but these processes should
be used to develop magnetic models of all materials.

4.2 Introduction to NiO

Above the Néel temperature, NiO has the space group Fm 3m. Below the Néel tem-
perature the magnetic space group is Cc2/c [56, 57] and the corresponding magnetic
point group is the non-magnetic (type I) group 2

m . At low temperature, a magneto-
strictive distortion reduces the non-magnetic space group to R3m [58]. The antifer-
romagnetic order has propagation vector q = (1

2 ,
1
2 ,

1
2) with spins lying perpendicular

to the propagation direction [57]. This means spins form alternating ferromagnetically
aligned (111) sheets which are antialigned with neighbour (111) sheets (see Fig. 4.2).
Within the (111) plane, spins have three-fold symmetry [59] and lie close to one of
the 〈112̄〉 directions [60–62]. The above details have a long and complicated history.
Schron [63] attempted to clarify this with a very comprehensive literature review but
complicates things further because their ab-initio results gives the wrong sign of the
anisotropy, which gives a magnetic space group which contradicts modern experiments.

The ordering into sheets is a direct result of the exchange interaction. In idealised
theories of superexchange (Goodenough-Kanamori rules [24, 64]), the nearest neighbour
interaction (J1) is small and ferromagnetic in sign because the interaction is between
a Ni orbital ionically bonded to an oxygen px orbital, and a Ni orbital bonded to an
oxygen py orbital (orthogonal orbitals). Whereas the next nearest neighbour inter-
action (J2), is large and antiferromagnetic in sign due Ni sites attached to the same
oxygen orbital (180◦ bond angle). The analysis of experiments and theoretical studies
have often relied on two sublattice macrospin approximations which cannot include
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4.2 Introduction to NiO

the nearest neighbour coupling. At the atomic level however, neglecting the nearest
neighbour interactions leads to four uncoupled, interpenetrating simple cubic antifer-
romagnetic lattices (see Fig. 4.1). This produces a model with four uncoupled Néel
vectors which can deviate from one another. So, any Hamiltonian which ignores J1 is
paramagnetic as there is no global order. Including the nearest neighbour coupling is
therefore essential in modelling at the atomic scale.

Figure 4.1: A NiO supercell. Oxygen sites are omitted. Dark atomic sites denote ‘up’
sites, lighter coloured sites denote ‘down’ sites. Red bonds show atoms connected by
next nearest neighbour (J2) exchange from a corner site (2 of the 8 sublattices). Many
atoms are uncoupled.

Another nuance is that the nearest neighbour interaction couples both parallel and
antiparallel pairs of spins. Because these are different sublattices, J1 can be further split
into J1+ and J1− (see Fig. 4.2). J1+ denotes the exchange coupling between aligned
nearest neighbours, and J1− denotes the exchange coupling between antialigned nearest
neighbours. In some works a single value is used for both nearest neighbour exchange
couplings [65–67]. However, due to the equal strength coupling of the 4 pairs of sub-
lattices, the nearest neighbour exchange energy is constant for all configurations of the
four Néel vectors. This case is equivalent to excluding the nearest neighbour coupling
because there is no energy penalty for moving one of the Néel vectors relative to the
other three. Detailed analysis of the magnon spectra measured by neutron diffraction
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4.2 Introduction to NiO

experiments [59] and state of the art electronic structure calculations [40] show that
there is a considerable splitting of the nearest neighbour exchange ∆J1 = J1+ − J1−

with ∆J1/(J1+ + J1−) ∼ 25%. The splitting of the nearest neighbour exchange is
small compared to the antiferromagnetic next nearest neighbour exchange interaction
J2 (∆J1/J2 ∼ 1%) but it is still significant. J1+ and J1− are two orders order of mag-
nitude larger than the magnetic dipole anisotropy energy, and the splitting ∆J1 is a
factor of ∼ 30 larger than the dipole anisotropy. Therefore the effect of this exchange
splitting on spin waves is larger than the effect of dipole effects at finite k vectors.
Despite this, the splitting is usually neglected [68].

The origin of the splitting is often stated to be a small (∼ 0.1% [59]) magnetostricit-
ive contraction of the (111) planes that vanishes at the Néel temperature and sets the
direction of the antiferromagnetic ordering within a domain. This is often justified by
stating that a splitting of the J1 interaction is forbidden in a perfectly cubic crystal [69].
It is true that the non-magnetic crystal point group (m 3m) does not permit this split-
ting. But, the magnetic point group of the magnetic crystal depicted in Fig. 4.2 (2/m)
does permit the splitting of J1. This means that the splitting cannot be mediated by the
crystal. Instead the local change in the electronic structure due to the onset of magnet-
ism introduces the splitting. The splitting of J1 due to the magnetic symmetry being
less than cubic is seen in advanced ab-initio calculations even when the non-magnetic
symmetry is cubic [40]. Simpler methods, which are known to be poor approximations
of Mott insulators∗ such as NiO, do not observe the splitting of J1 for the cubic atomic
lattice (monoclinic magnetic symmetry) and must add the structural distortion, which
reduces the non-magnetic symmetry from m 3m to 3m, by hand to observe the splitting
of J1 [69] which is required for antiferromagnetic ordering. To further complicate this,
it has been shown–using modern experiments which simultaneously measures magnetic
and structural properties–that the magnetostrictive distortion occurs at 471K, far be-
low the Néel temperature TN = 523K [58]. This differs from the often quoted view
that the distortion vanishes at the Néel temperature. There are now two cases; above
471K there is splitting, or there is not. If the splitting of J1 persists above 471K, it
will be reduced by the increase in crystal symmetry (accompanied by an increase in

∗In modern literature NiO is classified as a charge-transfer insulator which differs slightly from a
Mott insulator, though the difference is unimportant here [70, 71].
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4.2 Introduction to NiO

J2 due to the bond angle returning to 180◦), but remains sufficiently large to maintain
the antiferromagnetic state. If the J1 splitting vanishes above 471K, biquadratic ex-
change must stabilise the antiferromagnetic state [69]. It is likely that the difference
between the two cases is smaller than the precision of any experimental data available
(though biquadratic exchange was shown to be negligible in MnO, a very similar an-
tiferromagnet [72]). Additionally, we expect the reduction of the splitting above 471K
to have the same order of magnitude as the distortion (∼ 0.1%). So, for our atom-
istic model, we choose the simplest case of vanishing biquadratic exchange, negligible
structural distortion, and constant splitting of J1 through the whole temperature range.

J1+

J1-

J2

Figure 4.2: Magnetic structure of NiO. Oxygen sites are grey without vectors. Ni sites
are darker spheres with spin vectors. Spins are aligned parallel within the [111] plane,
which are antiparallel to neighbour planes. Green and yellow bonds show a nearest
neighbour interaction, the purple bond shows a next-nearest neighbour interaction.

While the antiferromagnetic ordering into sheets is uniquely determined by ex-
change, the preferred direction of the spins is due to anisotropies. The ground state
configuration was the subject of debate for many years [73–81], with several competing
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4.2 Introduction to NiO

theories [82–84]. It is now well known that the easy-plane anisotropy is due to magnetic
dipole-dipole interactions. For our model of NiO, we calculate magnetic dipole-dipole
interactions between distance spins without mapping the resulting dipole anisotropy
onto a single-ion magnetocrystalline anisotropy. For many-ion interactions like the
dipole-dipole interaction, correlations between distant spins plays an important role in
the temperature dependence of the resulting anisotropy and leads to different dynam-
ical phenomena. Analytic theories like Callen-Zener theory can, in principle, be used to
calculate the temperature dependence of many-ion interactions by considering partial
and full rotations of the spin system. But, this is intractable in practice. Mapping this
onto a single-ion energy is an assumption that trivialises the complexities of dipole-
dipole interactions.

In the next sections, we will discuss single-ion anisotropies in detail. For this, we
choose to name anisotropies by the rank of the anisotropy tensor and the class of point
groups which the term is unique to (uniaxial is not unique to any, this is a special
case). This helps clarify the nomenclature of anisotropies. For example, a first order
cubic anisotropy becomes a rank-4 cubic anisotropy (4th order in direction cosines),
and a first order uniaxial anisotropy becomes a rank-2 uniaxial anisotropy (quadratic
in direction cosines). In NiO, there is an additional anisotropy that breaks the degen-
eracy of the easy-plane. Various magnetocrystalline anisotropy terms have been used
to account for the preferred 〈112̄〉 directions within the plane including a rank-6 cubic
anisotropy [68], a rank-6 hexagonal anisotropy [66], and a rank-2 easy-plane anisotropy
which is perpendicular to the (111) plane [59, 85]. Neumann’s principle states that the
symmetry of any physical property or interaction–any Hamiltonian term–must contain
all the symmetry operations operations of the crystal point group. Additionally, if the
crystal is magnetic, any Hamiltonian term which is mediated by the magnetic moments
(dipole-dipole interaction, J1 splitting, etc) has reduced symmetry constraints and must
only contain the symmetry operations of the magnetic point group (in older literature,
these non-magnetic energies are called static [86] as they are time independent). These
magnetism mediated terms are often treated perturbatively [86]. In some cases, for
reasons other than symmetry, these energy terms are not small and cannot be treated
perturbatively. This is the case for NiO–the magnetocrystalline anisotropy is very small
because the mediating oxygen ions have low nuclear charge implying vanishingly small
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4.2 Introduction to NiO

spin-orbit coupling but the magnetic dipole-dipole contribution is orders of magnitude
larger. Magnetic dipole-dipole interactions in bulk crystals cancel whenever the mag-
netic symmetry is cubic, but the monoclinic magnetic point group 2

m has much lower
symmetry, so the dipole contribution must be non-zero.

In any magnetic material, the symmetry of magnetocrystalline anisotropy is determ-
ined by the symmetry of the crystal field and must contain the symmetry operations
of the crystal point group. The symmetry requirements of the magnetocrystalline an-
isotropy differs from exchange since the symmetry of exchange is determined by the
symmetry of the local electronic structure which includes spin-splitting in magnetic ma-
terials. Similarly, the dipole-dipole interaction is mediated only by magnetic moments
so its symmetry must contain the elements of the magnetic point group. The magnetic
space group allows another magnetostrictive reduction in symmetry so that the crystal
point group is 2

m1′, but this has never been observed. Excluding crystalline aniso-
tropies by symmetry is discussed in the next section. But, we will state an important
result here. From Hartmann’s definitions of point group generating matrices [87], and
applying Neumann’s principle to even rank tensors of magnetocrystalline anisotropy
constants [86]∗, one can show that both the rank-6 hexagonal anisotropy and rank-2
uniaxial anisotropy are forbidden for crystal point groups m 3m and 3m†. Despite be-
ing able to reproduce certain experiments, these models must be incomplete and cannot
represent the real system. This is justified by the difficulty in measuring the in-plane
magnon mode; if this is due to a simple crystalline anisotropy, it should be measurable
in all samples of similar quality, yet this is not the case. The ability to measure the
low frequency mode is highly dependent on the experimental method, and the choice
of experiment geometry. The 3m generating matrix M10 forbids the hexagonal term
and both generating matrices for m 3m forbid the hexagonal term.

∗Some ferromagnets and all ferri-/antiferro-magnets have point groups which lack spin reversal
symmetry. These can permit crystal anisotropies which are given by odd-rank tensors of the direction
cosines [86, 88]. These cannot be magnetocrystalline in origin (magnetoelastic coupling, dipole-dipole,
etc) and generally we expect their contribution to be small in NiO.

†3m permits a [111] rank-2 uniaxial anisotropy but the (11̄0) easy-plane term seen in the literat-
ure [59, 85, 89]
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4.3 Symmetry

4.3 Symmetry

4.3.1 Point Groups

A crystal point group P is the set of rotations and reflections (operations P ∈ P) which
preserves all points in the crystal. This is a global property of the crystal and these
operations can have a single, or many points in space where these operations can be
applied and the crystal is preserved. Such sites are called centres of symmetry c. We
shall only consider crystals with centres of symmetry which are also atomic sites; these
crystals are named centrosymmetric. Not all atoms in a crystal must be a centre of
symmetry. The point group of a site may differ from the point group of the crystal.
But, we only consider magnetocrystalline anisotropy (which is invariant under spin in-
version) in NiO. In this case, the magnetic site symmetries and the crystal symmetry
give the same permitted terms.

The point groups of non-magnetic crystals are split broadly into seven categor-
ies of decreasing symmetry (minimal symmetry given in parentheses): cubic (12-fold),
hexagonal (6-fold), tetrahedral (4-fold), trigonal (3-fold), orthorhombic (2-fold), mono-
clinic (2-fold) and triclinic (1-fold / none). In total there are 32 unique non-magnetic
point groups. Point groups are represented by a combination of numbers and letters
which tells us directly what operations can be applied to the crystal. For example 2

m

is the symbol for one of the monoclinic point groups. 2 denotes a two-fold rotation (a
180◦ degree rotation around some axis ŵ), m denotes a mirror plane (a reflection in the
plane perpendicular to ŵ) and 1

m means that m can be applied to the crystal after 2 has
already been applied. The only additional symbol needed to define the international
symbols is an overbar (ie 2) which means the operation must be accompanied by space
inversion, multiplying by −1. The point group 2

m therefore has four elements: the
identity 1, 180◦ rotation about ŵ Rw(π), a reflection in the uv-plane Mw, and space
inversion −1 = Rw(π) ◦Mw where û, v̂, ŵ is a basis, R is a rotation matrix, and M is
a mirror matrix.

Any point group can be generated from one, two, or three matrices which we call
generating matrices M. The list of generating matrices for the 32 point groups are
given in Table 4.1 and the list of generating matrices are given in Table 4.2.
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4.3 Symmetry

These 32 non-magnetic point groups do not consider spin reversal symmetry (often
called time reversal symmetry, though this is debated). If spin reversal symmetry is also
considered there are 122 point groups which can be derived from the 32 non-magnetic
groups. Only certain point groups are compatible with ferromagnetic, antiferromag-
netic and ferrimagnetic crystals. Magnetic point groups are much more diverse than
their non-magnetic counterparts and a more detailed description is out of the scope
of this work. Interested readers are directed to the following sources for further read-
ing [56, 86, 91–93]. In practice, when classifying the symmetries of magnetic crystals,
the point of greatest importance is that including magnetic symmetry can only reduce
the number of elements of the non-magnetic point group–it is not possible for a trigonal
lattice with three-fold symmetry to have a cubic magnetic point group with four-fold
symmetry.

The lattice point group of NiO is either the cubic group m 3m, or the trigonal
point group 3m dependent on the temperature (a reduction in symmetry occurs at
471K [58]). In both cases, the magnetic point group is the monoclinic point group 2

m1′

which includes spin reversal symmetry 1′∗.

4.3.2 Neumann’s Principle

Classifying the symmetry of crystals is of great importance. Symmetry can uniquely
determine the physical effects that are permitted in a material; static properties like
magnetocrystalline anisotropy, strain tensors and thermal expansion coefficients, dy-
namic properties like spin Hall effects, Peltier effect tensors and thermal conductivity,
or optical properties like birefringence, Kerr effects, and second harmonic generation.
To make use of the point group, we need to use Neumann’s principle which states that
any symmetry operation in the point group must also be a symmetry operation of
any physical property of the crystal (this is also true of individual site symmetries at
a microscopic level too). In maths, this means that the tensor describing a material
property such as the magnetocrystalline anisotropy ρij must be invariant under the

∗Sometimes 2
m

is quoted but the magnetic space group contains all the elements of 2
m

as well as
all the time reversed elements when combined with a translation. It is therefore accepted that the
magnetic point group should be 2

m
1′.
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4.3 Symmetry

Table 4.1: List of non-magnetic point groups and some of their properties. Reproduced
from [87] and symbols are corrected using the Bilbao Crystallographic Server [90].

Symmetry Class Symbol Generating Matrices # Elements of P Basis Vectors
Triclinic 1 M0 1

1 M1 2
Monoclinic 2 M1 2

m M3 2 e3||2 or e3||2̄
2
m M2, M3 4

Orthorhombic 222 M2, M4 4 e1||2 or e1||2̄
mm 2 M2, M5 4 e2||2 or e2||2̄
mmm M3, M5, M6 8 e3||2

Trigonal 3 M9 3
3 M10 6 e1||2 or e1||2̄

3 2 M4, M9 6 e2 ⊥ 2 or e2 ⊥ 2̄
3m M5, M9 6 e3||3 or e3||3̄
3m M5, M10 12

Tetragonal 4 M7 4
4 M8 4

4 2 2 M4, M7 8 e1||2 or e1||2̄
4
m M3, M7 8 e2||2 or e2||2̄

4mm M5, M7 8 e3||4 or e3||4̄
4 2m M4, M8 8
4
m

2
m

2
m M3, M5, M7 16

Hexagonal 6 M11 6
6 M12 6

6m 2 M5, M12 12 e1||2 or e1||2̄
6 2 2 M4, M11 12 e2 ⊥ 2 or e2 ⊥ 2̄

6
m M3, M11 12 e3||6 or e3||6̄

6mm M5, M11 12
6
m

2
m

2
m M3, M5, M11 24

Cubic 2 3 M2, M13 12 e1||2
3m M2, M14 24 e2||3, e3||2
4 3 2 M7, M13 24 e1||4 or e1||4̄
4 3m M8, M13 24 e2||4 or e2||4̄
m 3m M7, M14 48 e3||4 or e3||4̄
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4.3 Symmetry

Table 4.2: The generating matrices for the non-magnetic point groups and a description
of its effect.

M0 =


1 0 0
0 1 0
0 0 1

 Identity M1 =


−1 0 0
0 −1 0
0 0 −1

 Space inversion

M2 =


−1 0 0
0 −1 0
0 0 1

 Two-fold rotation

about e3
M3 =


1 0 0
0 1 0
0 0 −1

 Reflection in

e1e2-plane

M4 =


1 0 0
0 −1 0
0 0 −1

 Two-fold rotation

about e1
M5 =


−1 0 0
0 1 0
0 0 1

 Reflection in

e2e3-plane

M6 =


1 0 0
0 −1 0
0 0 1

 Reflection in

e1e3-plane
M7 =


0 −1 0
1 0 0
0 0 1

 Four-fold rotation

about e3

M8 =


0 −1 0
1 0 0
0 0 −1


Four-fold

inversion-rotation

about e3

M9 =


−1

2 −
√

3
2 0

√
3

2 −1
2 0

0 0 1

 Three-fold rotation

about e3

M10 =


1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 −1


Three-fold

inversion-rotation

about e3

M11 =


1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

 Six-fold rotation

about e3

M12 =


−1

2 −
√

3
2 0

√
3

2 −1
2 0

0 0 −1


Six-fold

inversion-rotation

about e3

M13 =


0 0 1
1 0 0
0 1 0


Three-fold rotation

about the [111]

direction

M14 =


0 −1 0
0 0 −1
−1 0 0


Three-fold rotation

about the [111]

direction
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4.4 Symmetry Constraints on the Magnetic Hamiltonian

application of all the elements of a point group

ρij = Pikρjk , ∀P ∈ P. (4.1)

Einstein summation of repeated indices is assumed. Often physical properties can
have non-negligible higher order contributions which must obey the same symmetry
requirements by tensor products of the elements of the point group

ρijkl = PimPjnρklmn , ∀P ∈ P. (4.2)

For some material properties, the lattice point group may be used; for others, the mag-
netic point group must be used. Magnetocrystalline anisotropy is entirely determined
by the lattice crystal field. This crystal field is invariant under spin (time) reversal
symmetry so the magnetocrystalline anisotropy must also be invariant under spin re-
versal. This means odd rank tensors vanish. This can be seen by writing an odd rank
contribution in terms of the direction cosines α

E = ρijkαiαjαk. (4.3)

Each of the direction cosines must be invariant under the operation P , so

ρijkαiαjαk = ρijkPilαlPjmαmPknαn. (4.4)

Since there is an odd number of copies of the point group operation P on the right
hand side, and time inversion is a point group operation, we have that ρijkαiαjαk =
(−1)3ρijkαiαjαk so ρijk = 0.

4.4 Symmetry Constraints on the Magnetic Hamiltonian

4.4.1 Permitted Magnetic Anisotropies in NiO

The dominant source of magnetic anisotropy in NiO is due to dipole-dipole interactions.
The result is a uniaxial easy plane anisotropy [80, 82, 83] which is very long-range (see
Section 4.5.4). Whenever the magnetic symmetry is less than cubic, a non-zero dipole
anisotropy exists even in infinite systems. Spin-orbit coupling is small in this material
because the interstitial oxygen atoms are very light–even if the crystal field is large, the
small spin-orbit coupling means the resulting magnetocrystalline anisotropy is small.
The crystalline anisotropies are determined solely by the lattice symmetry, rather than
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4.4 Symmetry Constraints on the Magnetic Hamiltonian

the magnetic symmetry. But, since the anisotropy is due to the configuration of mag-
netic moments, the resulting anisotropy must obey the symmetry of the magnetic point
group 2

m1′. NiO is an antiferromagnet, yet the magnetic point group is a paramagnetic
point group which contains spin reversal and implies no magnetic order. The reason
for this seemingly contradictory classification is because the half of the magnetic space
group elements contain rotations with spin inversion (ie 2′) must be accompanied by a
translation to preserve the crystal (denoted in Seitz notation by {2′|v}). The other half
of the space group elements do not contain time inversion so don’t need a translation
from one magnetic sublattice to another (ie {2|0}). Since the space group contains
elements with both the point group operations 2 and 2′, then the global magnetic point
group must also contain both of these elements. This means there is more than one
unique nickel site and these sites will have different point groups. The simplest case is
two magnetic sublattices (Ni↑, Ni↓) whose point groups are separated by spin inversion
P↑ = 1′P↓, though more than two sublattices are possible. Unlike for magnetocrys-
talline anisotropy, we will not give all the permitted terms here as the dipole-dipole
interactions are calculated explicitly rather than being mapped to an effective aniso-
tropy, since dipole-dipole interactions allow complex spin wave modes [35] and have
unexpected temperature dependences [94]. The symmetry does not need to be prede-
termined. Instead we only draw attention to the fact that a (111) easy-plane anisotropy
is forbidden by the lattice point group but is permitted by the magnetic point group.

4.4.2 Permitted Crystal Anisotropies in NiO

Using equation (4.2), the permitted anisotropies can be constructed using symmetry
arguments. The non-magnetic lattice of NiO has point group m 3m or 3m which are
generated by matrices M7 and M14, and M2 and M14 respectively. The space group
(point group operations + translations which generate the crystal) of NiO in both of
these cases contains only two unique sites; one nickel site and one oxygen site which are
separated by translation. This means each of the distinct magnetic sites in the mag-
netic crystal have identical crystal fields and experience the same magnetocrystalline
anisotropy. Additionally the oxygen and nickel site have the same site point symmetry.
In this case, we can use the lattice point group m 3m without further analysis. For
rank-2 magnetocrystalline anisotropy, we must solve the following system of matrix
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equations

ρij = Mik
7 ρjk, (4.5a)

ρij = Mik
14ρjk. (4.5b)

This reduces the allowed components of ρij such that the only allowed anisotropy is
ρ00(α2

1 +α2
2 +α2

3). By the definition of direction cosines we have α2
1 +α2

2 +α2
3 = 1. So,

the only permitted rank-2 magnetocrystalline energy E2 is an isotropic energy offset
E2 = ρ00. Constant energy offsets can be discarded, so rank-2 magnetocrystalline an-
isotropies (quadratic in α) are forbidden in cubic crystals. After applying the symmetry
constraints, the permitted fourth order anisotropy energy for m 3m is

E4 = k0(α4
1 + α4

2 + α4
3) + k1(α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1), (4.6)

where k1 are anisotropy constants (lower case to show the index is not related to the
order). For rank-6, the permitted magnetocrystalline anisotropies are

E6 = k2(α6
1 + α6

2 + α6
3) + k3(α1α2α3)2

+ k4(α4
1α

2
2 + α4

2α
2
3 + α4

3α
2
1 + α2

1α
4
2 + α2

2α
4
3 + α2

3α
4
1).

(4.7)

Using simple crystal symmetry arguments, the number of magnetocrstalline anisotropy
constants to be determined has been reduced from 34 to just 5. m 3m has the highest
number of symmetry elements, each of which gives an additional (and distinct) equation
which the anisotropy tensor must obey, so the anisotropy tensor has the fewest non-
zero terms. The deviation from m 3m for NiO is very small, even at zero temperature.
The angles of the axes of conventional cell go from being perfectly orthogonal (90◦)
to making a ∼ 90.1◦ angle with one another [59]. So, the anisotropy constants of the
magnetocrystalline anisotropies which are permitted by 3m but forbidden by m 3m will
also be negligibly small. For completeness, the allowed anisotropies for the point group
3m are given in Table 4.3. The direction cosines of 3m which appear in Table 4.3 are in
a different basis to the direction cosines of m 3m which appear in Table 4.6, so cannot
be compared without applying a transformation to a common basis. An example basis
transformation is given below

(α1α2)2 + (α2α3)2 + (α3α1)2 m 3m to 3m−−−−−−−−→1
4
[
(α2

1 + α2
2)2
]

+ 1
3
[
α4

3
]

−
√

2
3
[
α1α3(3α2

2 − α2
1)
]
.

(4.8)
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Table 4.3: Permitted magnetocrystalline anisotropy terms for the non-magnetic point
group 3m in the basis where e1 = [112̄], e2 = [11̄0], e3 = [111].

Anisotropy Rank Anisotropy Rank Anisotropy Rank Anisotropy Rank
α2

3 2 α4
2 4 α3

1α
2
2α3 6 α1α2α4

3 6
(α2

1 + α2
2) 2 α3

2α3 4 α3
1α2α2

3 6 α1α5
3 6

α4
1 4 α2

2α
2
3 4 α3

1α
3
3 6 α6

2 6
α3

1α2 4 α2α3
3 4 α2

1α
4
2 6 α5

2α3 6
α3

1α3 4 α4
3 4 α2

1α
3
2α3 6 α4

2α
2
3 6

α2
1α

2
2 4 α6

1 6 α2
1α

2
2α

2
3 6 α3

2α
3
3 6

α2
1α2α3 4 α5

1α2 6 α2
1α2α3

3 6 α2
2α

4
3 6

α2
1α

2
3 4 α5

1α3 6 α2
1α

4
3 6 α2α5

3 6
α1α3

2 4 α4
1α

2
2 6 α1α5

2 6 α6
3 6

α1α2
2α3 4 α4

1α2α3 6 α1α4
2α3 6

α1α2α2
3 4 α4

1α
2
3 6 α1α3

2α
2
3 6

α1α3
3 4 α3

1α
3
2 6 α1α2

2α
3
3 6

Most of the literature states that the spins lie in the {111} planes, with preferred
〈112̄〉 axes within these planes [59, 66, 95, 96]. Ignoring the crystal distortion, no com-
bination of the (111) easy-plane dipole anisotropy and magnetocrystalline anisotropies
which are permitted by symmetry (Table 4.6) give preferred directions of exactly 〈112̄〉
(six-fold symmetry), and it is inconceivable that a 0.1% change in conventional bond
angles could introduce a non-negligible in-plane crystal anisotropy (further justifica-
tion in Section 4.5.3). This is in agreement with observations [61, 62, 97] and previous
models [68], where there is a non-zero component of sublattice magnetisation parallel
to [111]. The component of sublattice magnetisation parallel to [111] doesn’t change
the magnetic symmetry [57]. Both experimental papers and the theoretical model find
non-zero out of plane components of the sublattice magnetisation. The observed de-
viation from (111) is incredibly small so none interpret this as having a ground state
which is not 〈112̄〉. Instead this is discarded as an artefact or experimental error. There
are two additional experiments which show the three-fold symmetry more convincingly.
First, Qiu et al [98] measured the THz emission from a (111) grown single crystal film
of NiO by the inverse spin Hall effect (ISHE) signal generated in a Pt capping layer.
The THz emission has three-fold symmetry upon rotating about the [111] direction
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(figure 3 b-g). A similar THz time domain ellipsometry experiment [99]–which gives
access to the orientation of induced dynamics–shows that, when applied to the ∼ 1THz
mode, the induced magnetisation dynamics have three-fold symmetry, confirming the
presence of a non-zero [111] component of the Néel vector.

The choice between a rank-4 cubic anisotropy, a rank-6 cubic anisotropy, a rank-6
hexagonal anisotropy, and a rank-2 easy-plane anisotropy may seem unnecessarily par-
ticular, especially when the values of the anisotropy constants can be arbitrarily chosen
so that the resonant frequencies match the experimental measurement [66, 68, 85].
But, the choice of magnetocrystalline anisotropy changes the character (eigenvectors)
of the magnon modes∗, determines whether certain optical coupling mechanisms or
magnetic transport phenomena are allowed by symmetry [99–101], and imposes cer-
tain constraints on which experimental geometries are required to observe certain
magnon modes. All pump-probe experiments which measure the in-plane, ∼ 100GHz
magnon mode have pump incidences which are not perpendicular to the [111] dir-
ection [89, 102, 103]. In work by Kampfrath [104], both pump and have propaga-
tion vectors along the (111) surface normal and the 100GHz mode is absent, and Tz-
schaschel [89] shows additional light polarisation selection criteria for the modes.

The choice of anisotropy also changes the relative amplitudes of known magnon
modes†, it can introduce additional modes which may, or may not exist, and the choice
breaks the continuous symmetry of the easy-plane in different ways introducing different
possible soft modes which are no longer zero energy oscillations. So, the choice of
anisotropy is important to predict which resonance modes can feasibly be measured
in bulk (most modes vanish due to phase cancellation / destructive interference of
the eigenoscillations) as well as to predict which experimental methods–and in which
geometries–these modes can be measured.

∗Only a uniaxial anisotropy appears in a linearised macrospin model. All other proposed magneto-
crystalline anisotropies are highly non-linear.

†The amplitude is affected by different levels of non-linearity; a rank-2 (11̄0) easy-plane anisotropy
will give a much larger amplitude for the 100GHz magnon mode than a rank-6 hexagonal anisotropy
because the amplitude of the mode is first order in the sublattice deflection amplitude compared to
fifth order for the rank-6 anisotropy
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4.4.3 Permitted Exchange Terms in NiO

The exchange interaction is complex. It is an emergent interaction in many-body sys-
tems from the combined effect of the Pauli exclusion principle and electron-electron
Coulomb interactions. Exchange is also constrained by the symmetry of the crystal.
Since the electron band structure is spin-split in magnetic materials, and the band struc-
ture gives information about the Coulomb interactions, then the exchange interaction
must obey the symmetry of the magnetic point group. Despite this, it is generally ex-
pected that the deviation from the symmetry of the lattice is small as the contributions
compatible with the magnetic symmetry are a back action on the electronic structure.
Mott insulators such as NiO are an exceptional case. Electronic structure calculations
such as density functional theories (DFT) which approximate electron correlations in
crystals as free-electron-like (LDA, LSD, or GGA) cannot qualitatively describe Mott
insulators, where deviations from free-electron behaviour creates a gap in the electronic
structure. This shows that electronic correlations (magnetism) have a strong effect on
the electronic structure and the magnetic back action contributions to the exchange
interaction will be considerable. The reduction in (spatial) symmetry constraints by
using the magnetic point group cannot introduce DMI–this requires that the interac-
tion vectors between three neighbouring sites do not have an inversion centre [105]–but
it can split the value of exchange for neighbours of different magnetic sublattices with
the same interaction distance. This is the case for NiO. The next nearest neighbour
interaction (J2) couples pairs of spins which are on opposing sublattices (J2S↑ · S↓),
whereas the nearest neighbour interaction couples both pairs of opposing sublattices
(J1S↑ · S↓) and the same sublattice (J1S↑ · S↑ and J1S↓ · S↓). The magnetic symmetry
allows the value of exchange for interactions like S↑ · S↓ and S↑ · S↑ to take different
values. The cubic symmetry of the lattice in NiO is sometimes used as an argument
to forbid the splitting of J1 into J1+ and J1− [69]∗. This is not true, however, as the
magnetic symmetry determines the allowed exchange interactions.

∗A problem with reference [69] is that they say that type A and type B magnetic crystals have
different lattice symmetries but have not realised that their type A and type B crystal also have
different magnetic symmetries. Their depiction of type B cannot be a commensurate magnet (multiple,
non-integer magnetic propagation vectors are required for order).
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4.5 Parameterising the NiO Hamiltonian

Now the magnetic Hamiltonian terms that must be considered have been reduced only
to terms which are permitted by symmetry, we must parameterise the Hamiltonian
constants. The most important parameters for magnetic Hamiltonians are:

• Lattice parameter, a

• Spin magnetic moments, µS,i

• Exchange interaction vectors and their strength, rij and Jαβij

• Anisotropy constants, Ki,n

• Magnetic damping, αi

Where the Latin subscripts i, and j are used to index spins in a supercell, the subscript
n indexes the anisotropy constants (which can be different for each spin), and the
Greek superscripts α, and β denote the tensor components of exchange (for symmetric
Heisenberg exchange this is a scalar multiplied by the identity matrix). The next
sections will describe the experimental measurements and theoretical calculations which
yield the most accurate values of the above parameters∗.

4.5.1 Experimental Measurements

The most accurate and reliable methods for determining lattice constants are x-ray
scattering techniques. X-ray diffraction equipment exists in most experimental re-
search groups and even tabletop apparatus is accurate enough for most applications,
including measuring the 0.1◦ distortion in NiO. Measuring magnetic properties of anti-
ferromagnets can be difficult but inelastic neutron scattering (INS) is a very powerful
technique which gives access to structural properties (though the resolution is not as
good as XRD) as well as high resolution information about the magnon spectrum.
In principle, the magnon spectrum contains all the magnetic information of a system
including anisotropies but the magnon gap at the Brillouin zone centre is too small
to resolve in the available INS data for NiO [59]. Resonant inelastic x-ray scattering
(RIXS) is another method which gives information about the magnon spectrum but
its energy resolution is not as good as neutron scattering. Both of these techniques
require highly specialised synchrotron facilities, but inelastic neutron scattering allows

∗We exclude magnetic damping as this can vary by orders of magnitude between samples.
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Table 4.4: The microscopic parameters for NiO from experimental measurements [59,
111]. Units are listed and may be different from the original reference.

Parameter Value
a 4.17Å
J2 -1.91 meV
J1+ 1.35 meV
J1− 1.39 meV
µS 1.60µB

exchange interactions and anisotropies to be determined with much greater accuracy
than RIXS. The magnetic moment can also be difficult to measure experimentally. In
principle, it can be measured using INS but this isn’t available for NiO. Paramagnetic
resonance techniques allow the magnetic moment to be estimated at high temperature.

In the case of NiO, there is a range of measurements available in the literature to
work from: inelastic neutron scattering [59, 106, 107], RIXS [108], spherical neutron
polarimetry [97], neutron diffraction [58, 74, 75, 109–111], x-ray photography [112, 113],
XRD [114, 115]. Only Hutchings [59] and Betto [108] directly measure the magnetic
dispersion and fit this to a magnetic Hamiltonian. Of these, only Hutchings is able to
resolve the splitting in the nearest neighbour exchange–required to give the measured
ground state–because of the higher energy resolution of INS. Ressouche [97] uses spher-
ical neutron polarimetry to give the most precise confirmation of the magnetic structure
of NiO (which has a small component perpendicular to the (111) plane). And, Bal-
agurov [58] uses specialist high-resolution neutron diffraction to simultaneously measure
the temperature dependence of the structural distortion and magnetic ordering, and
finds that they have different transition temperatures. The magnetic moment is diffi-
cult to measure directly so is typically inferred from fitting neutron scatting data [111]
and in NiO, the spin is expected to be non-half-interger because, despite being an in-
sulator, there is significant covalency and the orbital moment is not quenched [116–118].

Using these experimental measurements, we can neglect the crystal distortion (<
0.1◦) and an experimentally parameterised magnetic model of NiO should use the para-
meters listed in Table 4.4.
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4.5.2 Ab-initio Calculations

NiO is a Mott insulator; spin correlations cause a strong Coulomb repulsion which cre-
ates a gap in the electronic structure. This is a problem for most DFT based methods
which cannot accurately represent these systems. Some DFT methods allow a value of
the Coulomb repulsion to be inputted but this requires information to be known about
the system a priori. Quoted values for the band gap vary. An open access database
using DFT states 2.30eV [119], whereas experiments range from 2.5− 4.3eV [120, 121].
Additionally, DFT methods which do not include the screened Coulomb interaction–
including those which add in repulsion phenomenologically–do not consistently give
the splitting of the nearest neighbour exchange interaction [122, 123]. These used cubic
crystals but it has been known for many years that the distortion cannot completely
explain the exchange splitting, so must exist even in its absence [124]. Others claim
that the distortion is needed to create the splitting [69] even though their type B mag-
netic crystal (depicted in figure 2d) does not have the same symmetry as NiO–their
magnetic crystal cannot be described by a single magnetic propagation vector so it
cannot be collinear.

Instead of inferring the Coulomb repulsion (by using methods like LDA+U), it is
preferable to use methods which include the effect of charge screening and correla-
tions without this approximation. It avoids many of the problems described above.
The quasi-particle self-consistent GW (QSGW) method is an ab-initio method which
doesn’t have to rely on DFT∗ and is parameter free [40, 125]. This method gives very
good agreement with experimental measurements for parameters like spin magnetic
moments, spin wave energies, and the dielectric function without artificially adding
additional parameters such as the screened Coulomb interaction into the calculation,
though it does not calculate lattice parameters, instead this is taken from neutron scat-
tering experiments. Such methods are the most reliable (free of bias by the arbitrary
choice / tweaking of parameters) for estimating magnetic parameters. For NiO, the
values calculated using QSGW are given in Table 4.5.

At the time of writing, there are no ab-initio methods which include both relativistic
effects and screened Coulomb interactions with sufficient accuracy to calculate realistic

∗The implementation of QSGW in [40] uses LDA+U DFT.

44



4.5 Parameterising the NiO Hamiltonian

Table 4.5: Microscopic Hamiltonian parameters for NiO. All parameters are taken
from [40]. For exchange nn means nearest neighbour and nnn means next nearest
neighbour.

Property Symbol Value
Spin magnetic moment µS 1.71µB

Exchange (nn ↑↑) J1+ −0.77 meV
Exchange (nn ↑↓) J1− −1.00 meV
Exchange (nnn) J2 −14.7 meV

Lattice parameter a 4.17Å
Cubic anisotropy constant K 0.001 meV

Dimensionless damping α 0.005
Dipole cutoff radius Rcut 5a

values of the magnetocrystalline anisotropy constants in highly correlated materials
such as NiO. So, we chose an ab-initio method which gives accurate parameters for
exchange interactions, as these are more important than magnetocrystalline anisotropy
constants.

4.5.3 Point Charge Model of Magnetic Anisotropy in NiO

In Section 4.4, we eliminated magnetocrystalline anisotropies which are forbidden by
symmetry in NiO. There are no experimental measurements nor theoretical calculations
which give a reasonable value for a magnetocrystalline anisotropy that isn’t forbidden
by symmetry, though there are cases where a crystal field with the correct symmetry
has been considered. For example Battle [126] discusses a trigonal field due to nickel
sites in CoO:Ni alloys and Low [127] similarly measures the trigonal crystal field split-
ting of nickel sites in MgO:Ni to estimate the spin-orbit coupling of nickel ions.

Without adequate measurements or calculations, the best we can do to calculate the
non-negligible anisotropy terms is to use a point charge model of the crystal field. Point
charge models are infrequently used because many magnetic materials of interest are
metallic, so the large screening of the Coulomb interaction and highly non-local electron
wavefunctions means point charge models give poor agreement [128]. Additionally, in
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rare-earth materials where spin-orbit coupling is much larger than the crystal field, a
point charge calculation of the crystal field is not representative of the eigenstates of
the system. NiO, however, is a large band gap insulator with low spin-orbit coupling
between nickel and oxygen sites so electronic and spin-orbit effects are small. There-
fore we expect a point charge model to give a good estimate of the relative strength of
different permissible anisotropy terms.

For our point charge model, we use a (111) oriented cubic crystal (initially with no
distortion, space group Fm 3m), with spins lying in the (111) plane. The non-magnetic
point group m 3m has five anisotropy terms which are permitted by symmetry. These
are given in Table 4.6.

Table 4.6: Permitted magnetocrystalline anisotropy terms for the non-magnetic point
group m 3m in the basis where x̂ = [100], ŷ = [010], ẑ = [001].

Anisotropy Term Rank
(α4
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The rank-4 anisotropies are equivalent (within a constant energy offset) and can
related by using the identity α2

1 +α2
2 +α2

3 = 1. We expect that the rank-6 contributions
are small in comparison, but the term (α1α2α3)2 has been used in the literature [68].
So, we choose to fit two anisotropy terms given by the following Hamiltonians

H = −Kc1
∑
i

[
(Sxi S

y
i )2 + (Syi Szi )2 + (Szi Sxi )2

]
(4.9a)

H = −Kc2
∑
i

[Sxi S
y
i S

z
i ]2 . (4.9b)

In the (111) oriented basis the Cartesian axes are given by the following crystallographic
directions x̂ = [1/

√
6, 1/

√
2, 1/

√
3], ŷ = [1/

√
6, −1/

√
2, 1/

√
3], x̂ = [−2/

√
6, 0, 1/

√
3].
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In this basis, the rank-4 and rank-6 cubic anisotropies are

H = −K1
12
∑
i

[
3(Sxi )4 + 4

√
2(Sxi )3(Szi ) + 6(Sxi )2(Syi )2

− 12
√

2(Sxi )(Syi )2(Szi ) + 3(Syi )4 + 4(Szi )4
]
,

(4.10a)

H = − K2
11664

∑
i

[
(
√

6Sxi −
√

3Szi )2(
√

6Sxi − 3
√

2Syi + 2
√

3Szi )2

× (
√

6Sxi + 3
√

2Syi + 2
√

3Szi )2
]
.

(4.10b)

For the point charge model, we choose to only include the effect of the six interstitial
first neighbour oxygen atoms–further shells of neighbours will adjust the amplitudes
by a small amount and introduce additional higher rank anisotropies. The next shell
consists of twelve nickel sites. The crystal field potential due to the twelve nickel sites is,
at most, half the size of the potential due to the six nearest oxygen sites, and the shape
of the potential due to nickel sites is inherently higher order due to a larger number
of sites. Including the shell of nickel sites would introduce unnecessary complexity to
a crystal anisotropy which is already very small. The displacement vectors between a
nickel site at the origin and the six nearest oxygen sites are

r1 = 1
2(v3 + v1)

r2 = 1
2(v3 − v1)

r3 = 1
2(v3 − v1 − 2v2)

r4 = −1
2(v3 + v1)

r5 = −1
2(v3 − v1)

r6 = −1
2(v3 − v1 − 2v2),

(4.11)

where v1 = a(
√

2
2 , 0, 0), v2 = a(−

√
2

4 ,
√

6
4 , 0), v3 = a(0,

√
6

6 ,
√

3
3 ) and a = 4.17Å is the

lattice parameter. Assuming the sites have opposite charge (Ni2+, O2-), we can write
the effective crystal field interaction as a Coulomb potential

VCF(x) =
6∑
i=1

−1
|ri − x| . (4.12)

The crystal field here is unitless. One could approximate the magnitude of the crystal
field splitting by using the ionic charges Ni2+ and O2− but this neglects the effect of
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charge screening by the nuclei. To estimate the strength of the resulting magneto-
crystalline anisotropy, the strength of the spin-orbit coupling and the magnitude of
the orbital angular momentum of unpaired (but strongly correlated) electrons must be
known. To avoid this complexity, we are only interested in the shape of the resultant
anisotropy (which has the same shape as the crystal field), and the relative contribu-
tions of the permitted anisotropies. Ignoring the distortion, the point charge model
gives a rank-4 cubic anisotropy (see Fig. 4.3) with a small rank-6 contribution (∼ 2%
of the rank-4 energy).

Figure 4.3: Polar energy surfaces for (left) a (111) oriented cubic NiO crystal from the
point charge model, (right) the difference between the point charge model and optimised
anisotropy Hamiltonian. The crystallographic (111) plane is depicted in orange and the
axes on the right plot are 200 times smaller than the left.

Additionally, we created a point charge model which includes the contraction of
crystallographic (111) planes. Hutchings [59] gave a low temperature change in bond
angles of 6′ which is equivalent to 0.1◦. We chose a much larger contraction; a 5%
(∼ 0.8◦) reduction in the distance between (111) planes so that any change in the
point charge model could be resolved. The contraction was implemented by the trans-
formation v3 : a(0,

√
6

6 ,
√

3
3 ) → a(0,

√
6

6 , 0.995
√

3
3 ). The expressions for the displacement

vectors remain the same but their numerical value changes due to the change in basis
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vector v3. This does not preserve the volume of unit cell but, for the purpose of determ-
ining the change in magnetocrystalline anisotropy, this is unimportant as the lattice is
frozen and magnetoelastic coupling is ignored.

As an aside, it may, at first glance, seem that the trigonal point group 3m does
not permit a rank-4 cubic anisotropy. It does not appear directly in Table 4.3 because
the direction cosines have a different basis; α1 = [100] for the cubic anisotropies in
Table 4.6, and α1 = [112̄] for the trigonal anisotropies in Table 4.3. But, with an
appropriate rotation, the rank-4 cubic anisotropy can be written in terms of the trigonal
direction cosines as

(α1α2)2 + (α2α3)2 + (α3α1)2 m 3m to 3m−−−−−−−−→1
4
[
(α2

1 + α2
2)2
]

+ 1
3
[
α4

3
]

−
√

2
3
[
α1α3(3α2

2 − α2
1)
]
.

(4.13)

Comparing with Table 4.3, each term in square brackets on the right hand side is ad-
missible by 3m. So a rank-4 cubic anisotropy is a special case of the permitted 3m
terms.

Including the trigonal contraction in the point charge model is expected to introduce
additional uniaxial anisotropy contributions along the [111] direction. We chose to add
both a rank-2 and rank-4 uniaxial anisotropy as well as a 3m compatible trigonal
anisotropy which, in the (111) basis, are given by

H = −Ku1
∑
i

(Szi )2 (4.14a)

H = −Ku2
∑
i

(Szi )4 (4.14b)

H = −Kt1
∑
i

[
Sxi S

z
i [3(Syi )2 − (Sxi )2]

]
. (4.14c)

Linear regression was performed, by hand, on the values of the rank-4 and rank-6 cubic
anisotropies kc1 and kc2 for the cubic cell, and rank-2 uniaxial ku1, rank-4 uniaxial ku2

and rank-4 trigonal kt1 anisotropies for the distorted cell until the difference between
the point charge model and Hamiltonian energy surface was ∼ 0.01%. The optimised
values are given below in Table. 4.7∗. The table includes the maximum energy dif-
ference ∆max between the point charge model and the anisotropy Hamiltonian. The

∗Another set of optimised anisotropy constants was obtained which have similarly small difference
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energy surface for the point charge model and the difference between the point charge
model and anisotropy Hamiltonian for the distorted crystal are shown in Fig. 4.4 (no
difference between the model and Hamiltonian can be observed by eye). Both visually
and numerically this is almost identical to the cubic point charge model in Fig. 4.3,
even though the distortion has been exaggerated by nearly an order of magnitude.

Figure 4.4: Polar energy surfaces for a (111) oriented NiO crystal including the trigonal
contraction. (left) The point charge calculation, (right) the difference between the point
charge model and the optimised anisotropy Hamiltonian. The crystallographic (111)
plane is depicted in orange and the axes on the right plot are 200 times smaller than
the left.

The anisotropy terms for the distorted crystal were chosen as the reduction in sym-
metry is expected to be very close to cubic with additional anisotropies compatible with
the trigonal point group 3m. All values are normalised such that kc1 = 1. Lowercase
constants k are used as they are unitless. Hamiltonian anisotropy constants must have
units of energy per spin which can be estimated from experimental measurements of
the spin dynamics and crystal field splitting.

from the point charge model. These are not presented here but have a non-zero ku2. It has previously
been pointed out that the anisotropies here are not orthogonal, and that using spherical harmonics can
be beneficial to uniquely specify the magnetocrystalline anisotropy in a material [129].
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Table 4.7: Unitless anisotropy constants determined from the point charge model of
NiO. The maximum difference ∆max between the point charge model and the anisotropy
Hamiltonian is also included.

Anisotropy Constant Cubic Value (kc1) Trigonal Value (kc1)
kc1 1 1
kc2 0.168 0.168
ku1 0 -0.107
kt1 0 0.005
ku2 0 0

∆max 0.0014 (∼ 0.1%) 0.0055 (∼ 0.6%)

The point charge model shows that the anisotropy constant for rank-6 cubic aniso-
tropy Kc2 is ∼ 17% of the rank-4 cubic anisotropy constant Kc1. This may not seem
negligible at first glance. But, the energy difference between maxima and minima for
these two anisotropies is not 17%. The single spin energies of these anisotropies are
given by

Ec1 = −Kc1
[
(SxSy)2 + (SySz)2 + (SzSx)2

]
(4.15a)

Ec2 = −Kc2(SxSySz)2. (4.15b)

The pair of crystallographic directions [001] and [111] are an easy and hard axis for a
spin with either a rank-4 cubic anisotropy (Ec1) or a rank-6 cubic anisotropy (Ec2).
The energy difference between these two directions for each anisotropy is

∆Ec1 = Kc1
3 , (4.16a)

∆Ec2 = Kc2
27 . (4.16b)

So, a rank-6 cubic anisotropy would need to have an anisotropy constant 9 times lar-
ger than a rank-4 anisotropy to have the same energy barrier between easy and hard
directions. Taking this into consideration, for the cubic NiO crystal with space group
Fm 3m, the energy contribution of the rank-4 anisotropy is |∆Ec1| = 0.3̇ and the rank-
6 anisotropy contribution has |∆Ec2| = 0.0062̇. The effect of rank-4 anisotropy is ∼ 50
times larger than the effect of the rank-6 term.
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4.5.4 Convergence of the Dipole-Dipole Interaction

In atomistic simulations, we calculate the magnetic dipole-dipole interaction between
discrete magnetic moments directly. This is computationally very expensive and, in
principle, the interaction of a magnetic moment with every other magnetic moment
in the ensemble should be calculated. For a supercell which contains 24,576 magnetic
moments (this is small for a simulation), there are over 600,000,000 dipole interactions
which must be calculated. Since the strength of the dipole-dipole interaction is propor-
tional to |rij |−3, we reduce the computational overhead of the dipole-dipole term by
using a spherical cutoff radius; neighbours outside this radius are omitted from calcula-
tions. Fig. 4.5 shows the energy difference between the hard axis and easy plane in NiO
as a function of the cutoff radius R in units of the lattice parameter a = 4.17Å. The
cutoff radius for all simulations was chosen to be Rcut = 5a, unless otherwise stated∗.
This is equal to Rcut = 20.85nm. This value of the cutoff radius has good convergence
of the energy difference, which means the dipole-dipole interaction in simulations of
NiO has 2,122 nearest neighbours per spin (compared to 18 for exchange).
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Figure 4.5: Dipole anisotropy energy difference between the Néel vector lying along [112̄]
and [111] against the maximum interaction distance in units of the lattice parameter.

∗In very thin films and nanoparticles of NiO, the ground state is not necessarily an easy-plane, or
even collinear. But in bulk-like systems, the ground state is always a collinear easy (111) plane.
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4.5.5 Summary of the Magnetic Model of NiO

We choose the ab-initio parameters for the all atomistic simulations of NiO. These
parameters give the best agreement with experiments and are the least sensitive to
choices made in experimental measurement and/or fitting. It is also much newer than
the best neutron diffraction experiments by Hutchings in 1972 [59]. The total magnetic
Hamiltonian is

H =− 1
2
∑
i,j

JijSi · Sj

− 1
2
∑
i 6=j

µ0µS,iµS,j
4π

3(Si · r̂ij)(Sj · r̂ij)− (Si · Sj)
|rij |3

−
∑
i

Ki

[
(Su
i S

v
i )2 + (Sv

i S
w
i )2 + (Sw

i S
u
i )2
]
,

(4.17)

where the unit vectors û, v̂, ŵ are given by û = [1/
√

6, 1/
√

2, 1/
√

3], v̂ = [1/
√

6,
−1/
√

2, 1/
√

3], and ŵ = [−2/
√

6, 0, 1/
√

3]. The microscopic material parameters used
in all atomistic simulations are given in Table 4.5.

By considering both the lattice and magnetic symmetries of NiO, we have created
a spin Hamiltonian which obeys Neumann’s principle and is commensurate with global
antiferromagnetic ordering. The material parameters and exchange interactions were
then parameterised using both high resolution experimental measurements (Table 4.4)
and carefully selected ab-initio methods (Table 4.5)–the difference in material para-
meters between these two are small so we can be confident that the model accurately
reflects reality. The relative strengths of the magnetocrystalline anisotropy constants
were estimated using a point charge model of the crystal field which unequivocally
shows that there is a non-zero (albeit very small) out of plane component of the sub-
lattice magnetisation. Since no reliable measurements or calculations of the strength
of the leading order magnetocrystalline anisotropy are available in the literature, a
simple order of magnitude estimation from the magnitude of the measured out of plane
sublattice magnetisation is used∗ [60]. Aside from this, the model presented has no
parameters which are altered to agree with experiment. The tools presented above

∗In Chapter 6, we analyse the eigenfrequencies of NiO in the linear approximation and find that the
magnetocrystalline anisotropy doesn’t introduce any additional eigenmodes so the anisotropy constant
cannot be estimated from the low frequency mode.
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are very powerful and a similar process should be used to create models of magnetic
materials to ensure the model is realistic, is not forbidden by symmetry, and can be
used to confidently predict the microscopic behaviour of magnetic materials which is
especially important in antiferromagnets.
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Thermodynamics of NiO
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5.1 Thermostats

In atomistic spin dynamics calculations, the stochastic thermal field must obey fluc-
tuation dissipation theorem. The stochastic thermal field ξi(t)–which is often called a
thermostat–is defined by its correlations. These are

〈ξαi (t)〉t = 0 (5.1a)

〈ξαi (t) ξβj (t′)〉 = 2α
µS,iγi

δ(i, j)δ(α, β)δ(t, t′)ϕ(f, T ), (5.1b)

where α, β are Cartesian directions and ϕ(f, T ) is the power spectrum of the thermal
noise. Most atomistic spin dynamics codes use classical, white thermal noise. This
means that there are a similar number of k = 0 spin waves and Brillouin zone edge spin
waves. Since magnons are approximately bosons∗, the power spectrum of the thermal
noise should follow a Bose-Einstein distribution, even when spin is not quantised [131,
132]. This method was first applied to molecular dynamics [133] and has since been
applied to spin dynamics [132]. By using Planck statistics, we populate thermal spin
waves such that the there are many more low energy spin waves than high energy ones.
The white and Planck power spectral functions ϕ(f, T ) are given by†

• Classical ϕcl(f, T ) = kBT

• Semi-classical ϕq(f, T ) = hf/exp(hf/kBT ).

When ϕq is used, as in Fig. 5.1, analytic theories such as Bloch’s law [130, 134, 135]–
which shows that the decrease in the saturation magnetisation due to temperature in a
ferromagnet is proportional to T 3/2–are recovered in simulations without any fitting or
temperature rescaling as seen in other work [131, 136]. When temperature is rescaled,
Bloch’s law can be recovered from simulations with white noise, but the incorrect pop-
ulation of spin waves across the Brillouin zone will have strange effects on spin wave
interactions and the temperature dependence of other observables such as the spin wave

∗Magnon states (Holstein-Primakoff operators) are not perfectly orthogonal so cannot be perfectly
bosonic [130]. The truncation of the binomial expansion of Holstein-Primakoff operators to linear in
boson operators is an approximation ie

√
2S
(
1− 1

2S â
†
i âi
)1/2

âi ≈
√

2Sâi
†There are many equivalent nomenclatures for these two cases. For classical statistics, one will

often see the following terms used; white noise, Boltzmann statistics, Maxwell-Boltzmann distribution,
equipartition, Gaussian thermal noise, Johnson-Nyquist noise, Rayleigh-Jean law. For quantum boson
statistics, the following are used; coloured noise, Planck statistics, Bose-Einstein distribution, energy
quantisation, etc.
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5.1 Thermostats

stiffness, anisotropy and damping. In Fig. 5.1, the breakdown of Bloch’s law can be
seen at high temperature and is discussed in Section 5.2. As predicted by quantum
theory, the thermodynamics of a simulation using a quantum thermostat becomes de-
pendent not only on the values Jij , but also on the spin magnetic moment µS (or the
spin quantum number S for truly quantum systems). This additional degree of free-
dom means it is even more important to carefully parameterise the Hamiltonian of the
system when using a quantum thermostat.
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Figure 5.1: The temperature dependence of the magnetisation of a simple cubic ferro-
magnet with uniaxial magnetocrystalline anisotropy (J1 = 3×10−21J, K = 1×10−23J,
µS = 1µB and a = 3Å) using atomistic spin dynamics. Calculations using both the
classical and quantum thermostat are included. The curve is the analytic expression
for Bloch’s law (5.3).

This is not a perfect method. In the limit of low damping, this implementation
of coloured noise breaks fluctuation-dissipation theorem. A different implementation,
which requires two magnetic damping parameters [137], introduces a ‘memory’ of pre-
vious states to ensure fluctuation-dissipation theorem is obeyed–though the idea of a
memory in the thermal fluctuations of quantum systems isn’t new [138–140]. In prac-
tice, α > 10−3 is sufficient to ensure fluctuation-dissipation theorem is obeyed–this is
small for most metals but is large compared to insulators like YIG [141] and NiO [142].
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5.2 Sublattice Magnetisation

It is important to discuss the limitations of using coloured thermostats to introduce
quantum effects into classical systems. By using a quantum thermostat we have ex-
cellent quantitative agreement with experiments for temperatures away from absolute
zero and away from the critical temperature. Since this is a classical method, purely
quantum effects such as superposition, tunnelling and zero point fluctuations are not
observed. And, since this is still a three-dimensional Heisenberg model, we have not
changed the universality class, so observe a classical scaling exponent [143, 144]∗. When
using methods like atomistic spin dynamics for multiscale materials specific modelling
we are often working on time-, temperature-, and length-scales where these quantum
effects are not important. Instead, we care about macroscopic observables such as the
magnetisation, or thermodynamic effects like spin wave softening, and linewidth broad-
ening so that we can explain and/or predict the behaviour of devices at this scale. In
this case, correctly populating the spin wave spectrum so that the magnetisation and
magnon-magnon scattering cross-sections are quantitative compared to experiments is
sufficient. If quantum effects must be included then quantum Monte Carlo simulations
must be used which are limited to ∼100 atoms (this is a nondeterministic polynomial
complexity problem [146]) or two-dimensional models [147], instead of the hundreds of
thousands or millions of spins that can be accessed using three-dimensional atomistic
spin dynamics.

5.2 Sublattice Magnetisation

The sublattice magnetisation of an antiferromagnet has a different temperature de-
pendence to ferromagnets. Ferromagnets have quadratic dispersions so follow Bloch’s
law [134]. Bloch’s law has a very simple premise–each magnon is a delocalised spin flip
so the finite temperature magnetisation is related to the total number of magnons. The
number of occupied magnon states can be calculated analytically by a small k approx-
imation and using Bose statistics to estimate the magnetisation. Though the theory
was originally derived by Bloch, Dyson [130] created the modern spin wave theory of
magnetic materials, giving very comprehensive consideration of the effects of spin wave
occupations, the shape of the spectrum and the non-orthogonality of magnon states
(non-bosonic contributions); a second article was published at the same time applying

∗Though the critical exponents of real materials can be closer to the 3-dimentional Heisenberg
model than the 3-dimensional Ising model (see figure 7 of [145], for example).
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5.2 Sublattice Magnetisation

this theory to a simple anisotropic ferromagnet [135]. This is a generalised Bloch’s law
and introduced a number of higher order terms, but these are rarely used. For a bulk
isotropic ferromagnet with conventional lattice parameter a, spin magnetic moment
per atom µS , and only contains nearest neighbour exchange of strength J in a small
magnetic field applied H = H0ẑ, the Hamiltonian is

H = −1
2
∑
i,j

JijSi · Sj − µ0µS
∑
i

SziH0, (5.2)

and, assuming the applied field is small, Bloch’s law is given by

mz(T ) =
〈∑

i

Szi

〉
= 1− gµB

µS

νWSΓ(3/2)ζ(3/2)
4π2

(
kBT

JµSa2/gµB

) 3
2

(5.3)

where g is the Landé-g factor∗, Γ is the gamma function, and ζ is the Riemann zeta func-
tion. This comes from a direct evaluation of the magnon number operator 〈〈n̂k〉k〉T in
the low temperature limit. The number operator for magnons is related to the thermal
noise power by 〈n̂k〉T = 〈ϕq(f, T )〉T . The noise power is evaluated numerically and we
do not take the low temperature limit (as in Bloch’s law). Therefore, simulations using
a quantum thermostat include all higher order effects, and results are quantitative to
higher temperatures where the quantisation of spin plays determines the critical expo-
nents of the system; since the spins in our simulations are continuous unit vectors, these
still belong to the classical Heisenberg model universality class. For antiferromagnets,
however, the linear dispersion means that the low temperature approximation of the
magnon number 〈n̂k〉k has a different expression. This is a little known fact in the field
and researchers either assume Bloch’s law is valid in antiferromagnets, or a Brillouin
function is used to estimate the sublattice ms(T )† [142]. The antiferromagnetic ana-
logue to Bloch’s law was derived by Kubo [148] which gives a quadratic temperature
dependence of the sublattice/staggered magnetisation. In Appendix D we derived the
exchange magnon Hamiltonian for NiO including both nearest and next nearest ex-
change, and the exchange splitting. We reproduce a few steps here for the derivation

∗This form of Bloch’s law is for classical spins. For the quantum case, Si ·Sj → Ŝxi Ŝ
x
j +Ŝyi Ŝ

y
j +Ŝzi Ŝzj

so one must multiply the second term by S2 (not S(S + 1)).
†We use ms(T ) to distinguish between the absolute value |m(T )| =

(∑
i
(−1)iSi

)
·
(∑

i
(−1)iSi

)
and by taking some quantisation axis (ie ẑ) to measure the saturation ms(T ) =

∑
i
(−1)i(Si · ẑ). Both

Bloch’s law and Kubo’s expression for antiferromagnets are only valid with respect to a quantisation
axis because of the uncertainty principle’s stipulation that Ŝx, Ŝy and Ŝz cannot simultaneously be
measured in a quantum system.
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5.2 Sublattice Magnetisation

of a modified Kubo T 2 law. Ignoring zero point fluctuations (atomistic simulations are
classical so we do not observe this), we begin with the following form of the the second
order magnon Hamiltonian operator

Ĥ(2) =
∑

k
Ak
(
â†kâk + b̂†kb̂k†

)
+Bk

(
âkb̂k + â†kb̂

†
k

)
, (5.4)

where

Ak = −Sz[J1+(γ+
k − 1) + J1− + J2], (5.5a)

Bk = −Sz[J1−γ
−
k + J2γ

(2)
k ], (5.5b)

γ+
k = 1

3

[
cos

(
a

2(kx + ky)
)

+ cos
(
a

2(ky + kz)
)

+ cos
(
a

2(kx − kz)
)]

, (5.5c)

γ−k = 1
3

[
cos

(
a

2(kx − ky)
)

+ cos
(
a

2(ky − kz)
)

+ cos
(
a

2(kz + kx)
)]

, (5.5d)

γ
(2)
k = 1

3 [cos (kxa) + cos (kya) + cos (kza)] , (5.5e)

J = J
S2 are the exchange interaction strengths∗, z = 6 is the number of neighbours for

each exchange interaction, â†k and b̂†k are the creation operators for bosonic excitations
which are localised on the ↑ and ↓ sublattices respectively, âk and b̂k are the correspond-
ing annihilation operators. All other material parameters are given in Table 4.5. There
are off-diagonal terms in the above Hamiltonian which means the localised magnons of
the two sublattices are coupled. We wish to rewrite this in the form

Ĥ(2) = hfk(α̂†kα̂k + β̂†kβ̂k), (5.6)

where hfk are the linearised magnon energies, α̂†k and β̂†k are the creation operators of
the two linearised magnons, and α̂k and β̂k are the corresponding annihilation operat-
ors. The excitations described by α, β are not localised on a sublattice. Instead these
are linearised/diagonalised using a Bogoliubov transformation which is k-dependent.
We choose the following form of the Bogoliubov transformation âk

b̂†−k

 =

 uk −vk

−vk uk

 α̂k

β̂†−k

 (5.7)

where uk = [(Ak + hfk)/2hfk]1/2, vk = [(Ak − hfk)/2hfk]1/2, and hfk =
√
A2

k −B2
k.

To calculate the reduction in sublattice magnetisation due to temperature, we must
∗We write the exchange like this to ensure agreement with our classical definitions of the exchange

Hamiltonian. In other chapters calligraphic exchange constants are used for macroscopic parameters.
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5.2 Sublattice Magnetisation

find expressions for the Ŝz operators on the ↑ and ↓ sublattices in terms of α and β

operators. Using the above transformation and the canonical commutation relations,
these are given by

Ŝ↑z = N↑S −
∑

k
â†kâk = NS −

∑
k

(
u2

kα̂
†
kα̂k + v2

kβ̂
†
−kβ̂−k

)
(5.8a)

Ŝ↓z = N↓S −
∑

k
b̂†kb̂k = NS −

∑
k

(
v2

kα̂
†
−kα̂−k + u2

kβ̂
†
kβ̂k

)
. (5.8b)

Since the magnon Hamiltonian (5.4) can be written as a symmetric matrix, both sub-
lattices have the same energies and occupations. So, the sublattice magnetisations
and the Néel vector have the same temperature dependence (this is not true for ferri-
magnets) which can be calculated by counting the number of thermal magnons. We
now want to move back to classical spins while retaining the boson number operators
〈
∑

k α̂
†
kα̂k〉 = 〈∑k β̂

†
kβ̂k〉 = 〈∑k n̂k〉 which, in combination with ignoring zero point

fluctuations, becomes equivalent to numerical atomistic spin dynamics with a quantum
thermostat. Moving from quantised magnons to classical spin waves looks like a simple
transformation but has a few consequences which aren’t often made explicit. We of-
ten think of the Heisenberg model in terms of classical spin vectors of unit length S
but in atomistic spin dynamics these are actually magnetic moments µ = µSS. So,
the (quantum) spin angular momentum S must be transformed to a classical magnetic
moment using gµBS = µS

∗. This means that classical spin waves carry spin angular
momentum µSW = µS , and we retain the normalisation factor 1/NS in Bloch’s law
(ms(T ) = 1 − (1/NS)〈n̂k〉), even in the classical case. Moving to classical magnetic
moments from quantised spins also justifies the absence of zero point fluctuations since
a classical equation of motion with a classical Hamiltonian and classical spins always
has the trivial ground state of perfectly aligned moments with no fluctuations.

Returning to the derivation of a modified Kubo T 2 law, the finite temperature Néel
vector for classical magnetic moments (quantum operators become functions) is given

∗One may initially think the transformation should use the total spin angular momentum |S| =√
S(S + 1) but we have intentionally used the operator Ŝz which is given (with respect to some ground

state |0〉) by Ŝz|0〉 = S|0〉. Therefore the transformation from quantised spin to classical spin angular
momentum is given by S → µS/gµB .
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by

ls(T ) =
〈

1
N

∑
i

(−1)iSsi

〉
= 1

2

〈
1
N↑

∑
i∈↑

Ssi

〉
− 1

2

〈
1
N↓

∑
j∈↓

Ssj

〉

= 1− gµB
µS

[ 1
2N↑

〈〈
u2

kα
†
kαk + v2

kβ
†
−kβ−k − ukvk

(
α̂†kβ̂−k + α̂kβ̂−k

)〉〉
+ 1

2N↓

〈〈
v2

kα
†
−kα−k + u2

kβ
†
kβk − ukvk

(
α̂kβ̂−k + α̂kβ̂−k

)〉〉 ]
= 1− gµB

NµS

〈〈(
u2

k + v2
k

)
nk
〉〉
,

(5.9)

where N = N↑ + N↓ is the total number of magnetic moments, the quantisation axis
s for NiO is the easy plane∗, u2

k + v2
k = |Ak/hf(k)|, and the inner and outer angle

brackets denote the sum over k and thermal average, respectively.

Using equations (5.5), (5.6), and (5.7), the classical spin wave spectrum for our
model of NiO is†

hf(k) = gµB
√
z

µS

√
[J1+(γ+(k)− 1) + J1− + J2]2 − [J1−γ−(k) + J2γ2(k)]2, (5.10)

where z = 6 is the number of neighbours for all three exchange interactions, and γ(k)
are the continuous structure factors in the limit of an infinite crystal. The remainder
of the derivation is very similar to Bloch’s law; take the small-k limit for spin waves
to obtain a linear spin wave spectrum (quadratic in Bloch’s law), then compute the
generalised Watson integral [149] using substitution. The above expression is more
complex than those used previously as it includes the nearest neighbour interaction
(and its splitting). The additional mathematical complexity in our final expression
for ls(T ) is expected to give better agreement with experiments and our numerical

∗Since the temperature dependence is independent of the anisotropy we were free to choose the
z-direction as the quantisation axis but in practise the quantisation axis can in fact be a plane. The
only requirement by the uncertainty principle on the derivation is a pair of orthogonal measurements
which are usually taken to be Ŝz and |S|2 = S(S + 1).

†In addition to removing the quantisation of spin, we have also removed the quantisation of k which
is equivalent to the assumption of an infinite system. In an atomistic simulations we have a discrete
lattice with a finite number of atomic sites so k is, in fact, quantised.
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5.2 Sublattice Magnetisation

simulations. In the small-k limit the spectrum becomes

hf(k) ≈ gµB
µS

a

[
2J2(J2 + J1−)|k|2 + J1−(J2 + J1−)(|k|2 − kxky − kykz + kzkx)

+ J1+(J2 + J1−)(|k|2 + kxky + kykz − kzkx)
]1/2

.

(5.11)

The inclusion of the split nearest neighbour interaction introduces some anisotropy to
the dispersion relation. But, we can safely ignore this since terms like kxky are odd
and vanish in the generalised Watson integral. Now we have

hf(k) = gµB
µS

√
(J2 + J1−)(2J2 + J1− − J1+)|k|a

= D|k|,
(5.12)

where D = gµBa
µS

√
(J2 + J1−)(2J2 + J1− − J1+) is the spin wave stiffness. The factor

u2
k + v2

k in equation (5.9) was introduced by the Bologliubov transformation and is
k-dependent; in the classical, small-k limit it is proportional to 1/|k|. So, we define the
constant λ by the relation u2

k + v2
k ≈ λ/|k|. In the small-k limit, λ is

λ ≈
√

6|J2 + J1−|
a
√

(J2 + J1−)(2J2 + J1− − J1+)
. (5.13)

The reduction of the staggered magnetisation at finite temperature ∆ls(T ) = 1− ls(T ),
can be calculated by substituting u2

k + v2
k ≈ λ/|k| into equation (5.9), and replacing

the number operator with a generalised Watson integral. This gives

∆ls(T ) = gµB
µS

νWS

(2π)3

∫ kmax

k=0

∫ π

θ=0

∫ 2π

φ=0

(
λ

k

)
k2 sin θ

eDk/kBT − 1
dφ dθ dk

= gµB
µS

νWSλ

(2π)3

∫ kmax

k=0

∫ π

θ=0

∫ 2π

φ=0

k sin θ
eDk/kBT − 1

dφ dθ dk,
(5.14)

where νWS = a3/4 is the Wigner-Seitz volume. By using the substitution x = Dk/kBT

and integrating from x = 0 to ∞, the staggered magnetisation is given by

ls(T ) = 1− gµBνWSλ

12µS

(
kBT

D

)2
. (5.15)

Including all three exchange terms, the reduction in staggered magnetisation is ∆ls(T ) ≈
5.08×10−7 T 2. By neglecting the J1 contributions in the analytic calculation, the reduc-
tion in staggered magnetisation is ∆ls(T ) ≈ 5.31×10−7 T 2. For a two sublattice model
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5.2 Sublattice Magnetisation

(ignoring the problem of four uncoupled sublattices), the nearest neighbour interactions
stabilise the magnetisation against thermal fluctuations. Though the difference is small
(∼ 4%). But, as discussed in Chapter 4, the nearest neighbour splitting is required for
an antiferromagnetic state to be the equilibrium state at all temperatures. Similar to
Dyson’s treatment for ferromagnets, there are higher order corrections that can be in-
cluded into the theory. For ferromagnets, the first order approximation is proportional
to T 3/2, higher order corrections due to the shape of the spectrum are proportional to
T 3/2+n where n indexes the correction to the shape of the spectrum, and the lowest
correction due to spin wave interactions is proportional to T 4. In antiferromagnets,
the series can be written in a similar way, but is both qualitatively and quantitatively
different; the first order approximation is proportional to T 2, corrections due to the
shape of the spectrum are proportional to T 2(1+n), and the first correction due to spin
wave interactions is proportional to T 6 [150].
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Figure 5.2: Comparison of Kubo’s T 2 scaling from Eq (5.15) including both nearest
neighbour and next nearest neighbour exchange and atomistic spin dynamics with a
quantum thermostat. Both 〈|l|〉 and ls(T ) = 〈(1/N)∑i(−1)iS⊥i 〉 are plotted, and ⊥
denotes the in-plane component of the spin moment.

In older literature, there were various discussions and speculations on the applic-
ability of magnon theories on antiferromagnets because of zero point fluctuations in
addition to the typical problems of non-orthogonal states and truncation of Holstein-
Primakoff operators [148, 150, 151] which led to the use Schwinger boson mean-field
(SBMF) theory which writes spin operators exactly Schwinger bosons instead of an
approximate Taylor expansion of Holstein-Primakoff operators [152]. This theory is
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5.2 Sublattice Magnetisation

applicable throughout the whole temperature range and doesn’t require an ordered
equilibrium state. But, the theory is applied numerically using Green’s functions so
doesn’t yield easy to use analytic power laws in temperature. This means it is usually
confined to highly anisotropic low dimensional systems [152] and systems with complex
equilibrium states such as spin glasses, which aren’t well described by spin wave the-
ories [153].

Using linear spin wave theory, we now have an analytic expression to compare our
numeric results with. We can’t comment on the applicability of magnon theories on
truly quantum systems, but we can compare the first order theory with the calculated
temperature dependence from spin dynamics simulations using the quantum thermo-
stat∗. The simulations evaluate the full spin wave Hamiltonian–not simply the second
order contribution–and includes the full shape of the spin wave spectrum instead of a
linear approximation. In general, we expect first order theories of antiferromagnets to
be slightly worse approximations than for ferromagnets because the system is inherently
more ‘quantum’ (ie zero point fluctuations). It can be seen from the low temperature
data of Fig. 5.2 that, at low temperatures, both 〈|l|〉 and ls(T ) lie above the analytic
theory. This is in contrast to Fig. 5.1 where the simulation calculated m(T ) for an
isotropic ferromagnet always lie below the analytic expression for Bloch’s law. This is
likely due to the relatively strong anisotropy in NiO. The effect of anisotropy can be in-
cluded in the theory [148, 154]; the effect on the spin wave stiffness is negligible. But, at
very low temperatures, the > 1THz magnon gap introduced by the anisotropy prevents
the occupation of low-k magnons, stabilising the sublattice magnetisation from thermal
fluctuations. The effect of magnon freezing persists to temperatures much greater than
the effective temperature of the gap (see figure 1 of Eisele [154]). The deviations from
the simple theory are small enough that calculating a more complex expression will
give no new insight into the system. Even if the effect of anisotropy was included in the
theory, it is expected that 〈|l|〉 will still lie above the theory because of the requirement
from quantum mechanics that a quantisation axis/plane must be chosen.

Since the numerical calculations and analytic expression are derived from identical
models of NiO, we can confidently say that the first order approximation of the tem-

∗NiO is expected to be well described by spin wave theories.
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5.2 Sublattice Magnetisation

perature dependence of staggered magnetisation should only be used for temperatures
less than ∼ 40% of the Néel temperature–in metals, the agreement between experi-
ments and spin wave theory is expected to break down at lower temperatures. In a
typical ferromagnet, Bloch’s law to first approximation can be applied up to ∼ 60%
of the Curie temperature (at least for our generic simple cubic ferromagnet 5.1). For
completeness, a comparison between the classical and quantum thermostat is given in
Fig. 5.3.
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Figure 5.3: The temperature dependence of the staggered magnetisation calculated
using atomistic spin dynamics. Calculations using both the classical and quantum
thermostat are included.

Comparing with experimental measurements of the magnetisation is of more prac-
tical interest so that material and device properties can be predicted. The exper-
imentally measured Néel temperature is TN = 523K [58]. Our model gives excellent
agreement, the Néel temperature of the semi-quantum simulation is TN ≈ 535K–typical
spin dynamics simulations, which use Boltzmann statistics, have Néel temperatures of
around half the experimental value. Fig 5.4 shows the ms(T ) curves for both single
crystal and powder samples. As expected, the powder samples are significantly differ-
ent from the semi-quantum simulation. Here the simulated supercell is larger than the
average particle sizes of the powder samples. Since the dipole-dipole interaction is very
long range (convergence for Rcut > 20Å), and spin-lattice coupling is large [155, 156],
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5.2 Sublattice Magnetisation

finite size effects are more prominent in the experiment than the simulation. For single
crystals (Fig 5.4 (left)), there is a lack of data at cryogenic temperatures and the
deviations from the simulation at these temperatures highlights the failure of thermo-
stating at high temperatures. In Section 5.5, we show quantitative agreement through
the temperature range 50− 450K. The experimental data used in Section 5.5 is shown
in Fig 5.5. Despite the data of Moriyama and Van Doorn being taken over 40 years
apart, and on different single crystal samples, the shapes of the temperature depend-
ences are almost identical.
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Figure 5.4: Temperature dependence of the sublattice magnetisation in NiO. Both in-
clude the semi-quantum atomistic simulation in addition to neutron diffraction experi-
ments on (left) single crystal samples, and (right) powder samples. Experimental data
is taken from Roth [75], Van Doorn [107], Rinaldi-Montes [157], and Negovetic [158].
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Figure 5.5: Comparison of the temperature dependence of resonant frequency (Mor-
iyama) and the Van Doorn. Data from Moriyama is a private communication, the
method and crystal details can be found here [142].

5.3 Anisotropy

5.3.1 Callen-Zener

Callen-Zener theory [159, 160] has been very successful in both experiments and nu-
merical models at describing the temperature dependence of macrospin single-ion an-
isotropy constants in magnetic materials [38, 161–163]. The theory is applicable to
both ferromagnetic and antiferromagnetic ordering in any material where the aniso-
tropy can be considered as a perturbation to the exchange Hamiltonian. In materials
where the anisotropy is two-ion, or is of the same order of magnitude as the exchange,
and in metallic magnets where the anisotropy is highly non-local, the theory breaks
down [164–168]. The paper of H. Callen and E. Callen [159] gives a comprehensive
overview of the complicated history of finite temperature theories of anisotropy and
generalises Zener’s 1954 derivation [160] which rewrites magnetocrystalline (single-ion)
anisotropies with anisotropy constants Ki in terms of spherical harmonics Y m

l (θ, φ)
(effectively a different basis) where l is the azimuthal quantum number (quanta of or-
bital angular momentum), m is the magnetic quantum number (projection of l along a
quantisation axis) with anisotropy constants κj . l can only take even values because of
spin inversion symmetry of the mediating lattice (as in Section 4.4). Zener shows that
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the temperature dependence of these anisotropy terms can be written as the thermal
average of equilibrium spin fluctuations ms(T ) about the spherical harmonic 〈Y 0

l (θ)〉.
This is independent of the shape of ms(T ), and it is independent of whether the un-
derlying physics is classical or quantum–it simply accounts for the curvature of the
anisotropy Y m

l (θ, φ) by calculating integrals of the form

κ(T )
κ(0) =

∫
Y m
l (θ, φ) e−H/kBT dθdφ∫

e−H/kBT dθdφ
. (5.16)

The integrals can, in principle, be calculated in the basis of Ki. But, the mathematical
evaluation does not have an obvious analytic solution. The purpose of Chapter 7 is
to create a new framework where the curvature of anisotropies (and even exchange)
can be calculated in numeric simulations using simple thermal averages of functions of
the order parameter, in equilibrium, and free from constraints or complicated sampling
methods. The inability to work in the basis of Cartesian magnetocrystalline anisotrop-
ies with constants Ki means Callen-Zener theory is rarely used outside of the often
quoted m3 and m10 scaling of rank-2 uniaxial anisotropy and rank-4 cubic anisotropy
respectively.

5.3.2 Constrained Monte Carlo

The constrained Monte Carlo (CMC) method is a specialist Monte Carlo algorithm
which calculates the temperature dependence of anisotropies in magnetic systems [38].
The method constrains the direction of the order parameter using a biased Metropolis
Monte Carlo algorithm; there is no fictitious field imposing the constraint so the shape
of free energy landscape and the scaling of the pseudo-equilibrium free energy are
preserved∗. The constraint leads to a persistent (non-zero) torque, T, on the order
parameter l̂, T = −l̂ × ∂F/∂ l̂. The free energy difference along a path between two
staggered magnetisation states can then be calculated as

F (̂l) = F (̂l0) +
∫ l̂

l̂0
(̂l′ ×T) d̂l′, (5.17)

where l̂ = 1
N

∑N
i Rim̂i is the staggered magnetisation. The staggered magnetisation

applies a rotation Ri to each magnetic sublattice m̂i in the system so that all sub-
∗The pseudo-equilibrium requires that the anisotropy is sufficiently small such that the temperature

dependence is dominated by exchange. This is the same requirement as Callen-Zener theory.

69



5.3 Anisotropy

lattice magnetisations align parallel; for a collinear antiferromagnet this is the Néel
vector. l̂0 is the direction of the order parameter at some initial direction, the easy axis
for example, and T ≡ T(̂l′) is the torque acting on the staggered magnetisation. The
anisotropic contribution to Hamiltonian energy has the same scaling as the torque, so
the thermal average of the torque is calculated at a point of maximal torque for mul-
tiple temperatures to determine the anisotropy scaling. For an easy-plane anisotropy
maximum torque is 45◦ from the easy-plane. The anisotropy scaling is usually written
as a power law of the order parameter ls(T ),

K(T )
K(0) =

(
ls(T )
ls(0)

)α
. (5.18)

We apply this method here to calculate the torque τ i experienced by the magnetisation
mi of sublattice i, due to the dipole anisotropy, for a given microstate by the following
sum over magnetic moments

τ i = −
Ni∑
j

Sj ×
∂H
∂Sj

, (5.19)

where j are indices for spins in sublattice i∗. The total torque on the order parameter
τ for a microstate in NiO is then τ = ∑8

i=1(−1)iτ i and the expectation value of the
torque T is given by the thermal average T = 〈τ 〉.

This Monte Carlo method cannot use the quantum thermostat–in fact there is no
thermostat. Instead a classical Boltzmann function determines the thermodynamics so
it is equivalent to spin dynamics with white noise. But, since in Section 5.3.1 we noted
that the Callen-Zener theory is independent of the details of the thermodynamics used,
the magnetisation scaling of the effective macrospin anisotropy constant is still valid ie
K(ms) is valid for any ms(T )†.

We apply constrained Monte Carlo to the dipole anisotropy in NiO and fit a power
law of the saturation sublattice magnetisation. The dipole anisotropy is found to scale
as the second power of the sublattice magnetisation, Kdip ∼ m2

S(T ), where Kdip is
∗In systems with multiple sources of anisotropy, like NiO, the torque is calculated per Hamiltonian

term.
†We also show later in Fig. 7.8 that the constraint in constrained Monte Carlo changes the shape

of ms(T ) compared to a system without any constraints using Metropolis Monte Carlo.
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the effective macrospin uniaxial anisotropy constant (see Fig. 5.6). Deviations from
Kdip ∼ m2

S(T ) can only be seen using logarithmic axes and occur for ms(T ) < 0.1, at
which point the observed magnetisation is likely a remanent of the constraint rather
than true magnetic order.
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Figure 5.6: The effective dipole anisotropy strength in NiO as a function of the finite
temperature sublattice magnetisation. (right) has logarithmic axes.

The dominant dipole anisotropy in NiO is very non-local. Holstein and Primakoff [169]
showed that–using magnon theories similar to those used in Section 5.2–in the absence
of correlations between distant neighbours, and to second order in magnon number op-
erators, the dipolar anisotropies scale as m2. The absence of correlations permits the
splitting of the thermal average of a pair of localised magnon number operators 〈n̂in̂j〉
into 〈n̂i〉〈n̂j〉. This requires that localised magnons are distant from one another–or
that only k = 0 modes are appreciably occupied. In NiO, since the four interpenetrat-
ing simple cubic antiferromagnetic sublattices are only weakly coupled by the nearest
neighbour splitting ∆J1 ∼ 0.7meV/spin, correlations between the sublattices will be
small. This magnetisation scaling is the same as shape anisotropy in non-spherical
ferromagnets where the long range dipole interactions are uncorrelated. If correlations
are important, then 〈n̂in̂j〉 < 〈n̂i〉〈n̂j〉 and the magnetisation scaling exponent is less
than two, as is the case for Cr2O3 [94]. To further justify the m2 scaling, we calculated
an analytic expression for the dipole-dipole interaction in the limit of an infinite system
by applying a Poisson summation to an infinite two-dimensional (111) sheet of NiO,
then sum over neighbouring sheets. The expression is derived for spin vectors aligned
along [111], and along directions within the (111) plane. The difference between an in
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plane, and out of plane, direction is taken to evaluate the zero temperature anisotropy
strength. The detailed derivation is given in Appendix C. The final expression for the
zero-temperature energy difference between the hard-axis and easy-plane is

∆E = −176
√

2πµ0µ2
S

3a3

∞∑
n=−∞

(−1)n
[ ∞∑
k=1

k cos (kb1 ·Rn) e−Ck|Rn·ẑ|

+ 8
11

∞∑
l=1

l cos (lb2 ·Rn) e−Cl|Rn·ẑ| +
∑
±

∞∑
k,l=1

2k2 ± kl + l2√
k2 ± kl + l2

× cos ((kb1 ± lb2) ·Rn) e−C
√
k2±kl+l2|Rn·ẑ|

]
(5.20)

where C = 8
√

6π/(3a) with a as the lattice parameter, µ0 is the permeability of
free space, n indexes the layers of [111] ordered sheets, k and l are harmonic indices,
Rn = nv3 is the vector position of an atom in the n-th sheet, v3 = a(0,

√
6/6,
√

3/3),
and b1 = (4π/a)(1/

√
2, 1/
√

6), b2 = (4π/a)(0, 2/
√

6) are reciprocal lattice vectors.
The sum over harmonics in reciprocal space converges very quickly. Summing over
n ∈ [−3, 3], k, l ∈ [1, 3] compared with summing over more than 10 layers (above and
below) and 10 harmonics gives a difference of only 0.001%. The value for the energy
difference using equation (5.20) is ∆E = −0.04652 meV/spin, and the direct summa-
tion over spins within a radius of 5a gives ∆E = −0.04695 meV/spin. The difference
between these two methods is less than 1%.

The prefactor in equation (5.20) contains µ2
S and its coefficient is a sum over

k-vectors∗. At finite temperature, we take the mean-field approximation such that
〈µ2
S〉 = [µSms(T )]2, where each magnetic moment is reduced by the value of the re-

duced magnetisation, we reproduce the scaling we find numerically. This means that
the dipole anisotropy in NiO behaves in a similar way to the shape anisotropy in a
thin film ferromagnet. Intuitively this makes sense. The magnetic structure of NiO
is composed of antialigned two-dimensional ferromagnets (an atomically thin synthetic
antiferromagnet), each of which has a stray dipole field that interacts with neighbouring
ferromagnetic sheets.

∗For the case of Cr2O3, because of symmetry, it is unlikely that the dipole-dipole interaction can
be written in such a simple way.
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5.4 Spin Wave Stiffness

The spin wave stiffness, D, was introduced in Section 5.2. It is the k-independent
coefficient of the magnon spectrum in the small-k limit. The spin wave stiffness is tem-
perature dependent–at finite temperatures the spin wave spectrum is said to soften.
This is true of other quasiparticle excitations like phonons, plasmons, and excitons.
Softening due to temperature is often ignored outside of magnetism because its effect
is very weak (see [170] for phonons).

Similar to the magnetisation, a first approximation of the temperature dependence
of the spin wave stiffness can be derived analytically by using non-linear magnon the-
ories. Dyson’s rigorous non-Holstein-Primakoff theory of spin waves briefly discusses
this (see equation (111) of [130]) but the complicated theory makes any physical inter-
pretation of the results difficult. The first simple explanation of softening instead came
later from Keffer and Loudon [171]. They realised that the softening of the spin wave
stiffness due to temperature must be related to the total energy of magnons per spin
angular momentum∗ (‘per spin angular momentum’ implies we retain the normalisa-
tion of 1/NS like in Bloch’s law). We make a small adjustment to this interpretation
here (in line with modern understanding) by saying that the whole magnon spectrum
is renormalised, rather than simply the spin wave stiffness†. In other research fields
this is called a magnon pressure, an attractive force between magnons, or the temper-
ature dependence of the effective chemical potential (magnochemical potential) which
includes kinetic energy‡. For a ferromagnet, the finite temperature spin wave spectrum

∗Since the Hamiltonians considered in this project contain only magnetic terms (frozen lattice and
frozen electrons), the change in internal energy due to temperature is only due to spin waves ie the
total magnon energy ε(T ) is equal to ∆U(T ) = U(0)− U(T ).

†Keffer and Loudon [171] give a very clear classical interpretation using localised spin waves; it is
easier to add a spin wave to a magnetic site when the instantaneous non-equilibrium position deviates
from the ground state due to an existing spin wave. This picture is the same as pushing a broken down
car–it’s easier to push along the road once it is already moving.

‡The intrinsic chemical potential of magnons is zero because its rest mass is zero. But, thermal
magnons have an average kinetic energy which is temperature dependent because of their number
and their interactions; this is the extrinsic chemical potential. Examples of other external chemical
potentials include gravitational potential energy, the energy at the Fermi level (electrostatic energy)
for electrons, or the energy of mobile magnetic particles in magnetic fields[172].
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is given by
〈hfk〉 = hfk

[
1− gµB

NµS
〈(1− γk)n̂k〉

]
, (5.21)

where the single angle bracket is a thermal average. This expression, and the idea of
magnon softening, is well known in the neutron scattering community as it is used to
extrapolate low temperature measurements of exchange interactions to zero temperat-
ure values [173]. The derivation of the above expression is very involved, so we will
not reproduce it here [174–178]. But, the simplest case is of a Hartree-Fock renor-
malisation where four-magnon operators can be approximated by two non-interacting
pairs, or equivalently a one-loop self-energy Feynman diagram (no scattering) [179].
Evaluating the above magnon renormalisation for a simple cubic ferromagnet is easy.
Transforming to classical magnetic moments, we have

〈hf(k)〉 = hf(k)
[
1− gµBνWS

µS

Γ(5/2)ζ(5/2)
4π2

(
kBT

JµSa2/gµB

) 5
2
]
. (5.22)

The above T 5/2 scaling only applies for insulating ferromagnets. In conductors, there
is an additional term proportional to T 2 which can be dominant at very low temper-
atures [180, 181]∗. Just like Bloch’s law, the temperature dependence of the spin wave
softening in an antiferromagnet is different due to the linear dispersion. The algebra for
an antiferromagnet is much more complex. But, in the end, the only adjustment mov-
ing from a one-sublattice ferromagnet to a two-sublattice antiferromagnet is to include
the Bogoliubov transformation. For a two sublattice antiferromagnet, the first order
approximation of the finite temperature spin wave spectrum is then [150, 182, 183]

〈hf(k)〉 = hf(k)
[
1− gµB

2NµS

〈
n̂k

(u2
k + v2

k)

〉]
(5.23)

where the factor 2 accounts for the double counting of magnons. Evaluating this for
NiO, and moving to classical spin waves, we get

〈hf(k)〉 = hf(k)
[
1− gµBνWSπ

4

15(2π)2µSλ

(
kBT

D

)4]
, (5.24)

∗Izuyama and Kubo [181] derive magnon, phonon, and electron contributions to the softening in
ferromagnets. The T 2 term is electronic in origin and two terms are proportional to T 5/2: one electronic
and one magnetic. Stringfellow [180] shows that this leads to an increase of the stiffness proportional
to T 5/2.
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where D = gµBa
µS

√
(J2 + J1−)(2J2 + J1− − J1+), and λ is again given by

λ =
√

6|J2 + J1−|
a
√

(J2 + J1−)(2J2 + J1− − J1+)
. (5.25)

We can test the validity of this theory by running numerical atomistic spin dynamics
simulations of NiO using the quantum thermostat. The spin wave spectrum is the space
and time Fourier transformation of the spin correlation function. This representation is
often called the dynamic structure factor Sαβ(k, f) (α and β denote Cartesian directions
of spin components). For a large system in thermal equilibrium, the dynamic structure
factor is often written as

Sαβ(k, f) = 1√
2π

1
N

N∑
i=1

∑
j 6=i

eik·rij
∫ ∞
−∞

ei(2πf)t
〈
Sα(ri, 0), Sβ(rj , t)

〉
dt (5.26)

where N is the number of localised magnetic moments, rij = rj − ri is the dis-
placement vector between magnetic moments i and j, Sα is the α component of
the classical spin vector, and angle brackets denotes the thermal average of correla-
tions,

〈
Sα(ri, 0), Sβ(rj , t)

〉
=
〈
Sα(ri, 0)Sβ(rj , t)

〉
−
〈
Sα(ri, 0)

〉〈
Sβ(rj , t)

〉
[184, 185].

To avoid the confusion of thermal (time) averages inside a time integral, we prefer the
following definition [186]

Sαβ(k, f) = 1
2πN lim

tmax→∞

∫ tmax

0
ei(2πf)τ

[ 1
tmax

∫ tmax

0
ρα(k, t)ρβ(k, t+ τ)dt

]
dτ, (5.27)

where ρα(k, t) = ∑N
i=1 eik·riSαi (t). Since the above definition is a convolution integral

and includes the limit that tmax → ∞, rather than an explicit integral over infinite
time, the connection with numerical methods is clear; convolutions are easily calcu-
lated in discrete time numeric simulations using fast Fourier transforms or periodogram
methods used in signal processing. Additionally, the limit makes the requirement of
well-converged thermal statistics clear.

Figure 5.7 shows two finite temperature spectra of NiO. The spin wave softening
can be seen by the bare eye. To extract the temperature dependence of the spectrum,
we take the peak intensity of the spectrum at each point in k-space and fit the resultant
spectrum to equation (5.10), using temperature dependent exchange parameters. The
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fitting equation is

hfk(T ) = gµB
√
z

µS

[(
J1+(T )(γ+

k − 1) + J1−(T ) + J2(T )
)2

−
(
J1−(T )γ−k + J2(T )γ(2)

k

)2
] 1

2

,

(5.28a)

γ+
k = 1

3

[
cos

(
a

2(kx + ky)
)

+ cos
(
a

2(ky + kz)
)

+ cos
(
a

2(kx − kz)
)]

, (5.28b)

γ−k = 1
3

[
cos

(
a

2(kx − ky)
)

+ cos
(
a

2(ky − kz)
)

+ cos
(
a

2(kz + kx)
)]

, (5.28c)

γ
(2)
k = 1

3 [cos (kxa) + cos (kya) + cos (kza)] . (5.28d)

¡ X M X ¡ L ¡
0

20
40
60
80

100

h
f k

 (m
eV

)

Fit

¡ X M X ¡ L ¡
0

20
40
60
80

100

h
f k

 (m
eV

)

Fit

Figure 5.7: Thermal spin wave spectra at T = 40K (left) and T = 500K (right) for
NiO calculated using atomistic spin dynamics. Γ is the Brillouin zone centre, M is the
point k = [0, 2π

a , 0], and L = [πa ,
π
a ,

π
a ] with respect to the primitive lattice vectors. The

magnetic Brillouin zone is twice the size of the non-magnetic zone because the primitive
cell contains two magnetic Ni atoms. Orange curves are the finite temperature fitting

The temperature dependence of the extracted curves is given in Fig. 5.8. The data
chosen for fitting was taken along the path Γ → M as this is sensitive to J2, J1−,
and J1−. The path Γ → L is independent of J1+, so J1+(T ) cannot be determined
using this path. All three effective exchange terms have the same temperature de-
pendence. The spin wave spectrum is very weakly temperature dependent; at ∼ 95%
of the critical temperature we have hfk(500K) ≈ 0.76hfk(0K). The thermal spin
wave spectrum from atomistic spin dynamics includes all elastic and inelastic spin
wave interactions, and conserves the total length of spin vectors (total angular mo-
mentum) so includes a kinematic interaction∗, not simply the Hartree-Fock renorm-

∗The connection with the kinematic interaction in Dyson’s quantum treatment is not clear.
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alisation given by equation (5.24). So, it is surprising that the leading order approx-
imation from spin wave theory, (5.24), gives such close agreement with the numeric
calculations. Additionally, if the J1 terms are not included in equation (5.24), the
spin wave stiffness is predicted to drop off much quicker than is observed; including
J1, equation (5.24) gives hfk(T )/hfk(0) ≈ 3.69× 10−12 T 4. Whereas ignoring J1 gives
hfk(T )/hfk(0) ≈ 4.40× 10−12 T 4. Fig. 5.9 shows a spectrum above TN . The spectrum
can still be observed, but the peak extraction of the spectrum becomes difficult. No
extra information would be gained by fitting above TN , though correlations have been
measured experimentally in ferromagnets [187]. The expression derived for the temper-
ature dependence of the spectrum agrees to very high temperatures ∼ 95%TN . This is
in contrast to the expression for the magnetisation which only agrees to ∼ 40%∗. Since
the spin wave interactions are weak–demonstrated by the weak temperature dependence
of the spectrum–then the additional terms which have a non-negligible contribution to
the temperature dependence of the sublattice magnetisation must be the corrections
to the spectrum shape, as well as the kinematic term which limits the total angular
momentum carried by classical spin waves in the system to 2µS

gµB
N (up to 2NS magnons

in the quantum case).
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Figure 5.8: The temperature dependence of the thermal spin wave spectra for NiO.
Both panels show the same data with different axis limits.

∗Self-consistent methods have been shown to obtain very close agreement with experiments for both
the magnetisation and spin wave energies in MnO, another antiferromagnet which is described by the
same spin Hamiltonian [177].
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Figure 5.9: A spin wave spectrum of NiO above TN at 600K. The spectrum is not flat
so magnetic correlations persist above TN .

5.5 Resonance and Damping

The work of this section was carried out while the author was a JSPS (Japan Soci-
ety for the Promotion of Science) summer fellow in collaboration Takahiro Moriyama
at the group of Teruo Ono in the Department of Materials Chemistry, Kyoto Univer-
sity. Moriyama provided experimental measurements of the temperature dependent
frequency of the ∼ 1THz resonance mode, as well as the temperature dependence of
its linewidth (effective macrospin Gilbert damping) in a 0.45mm thick single crystal
slab of NiO. The sample and method are identical to those in the reference [142]. Ex-
perimental details will be briefly discussed here–a thorough discussion on experimental
measurements of AFMR is discussed in the next chapter. Modern experimental meas-
urements of magnetisation dynamics in antiferromagnets use THz time-domain spec-
troscopy (THz-TDS), and various pump-probe spectroscopy methods [89, 100, 103];
Raman scattering, Brillouin light scattering (BLS) and infrared (IR) absorption tech-
niques are used in older literature on antiferromagnets [68, 188–190]. These methods
measure slightly different phenomena in an antiferromagnet, and the distinction can
become important when studying the fundamental properties of a material. The data
presented here uses a continuous wave (cw) THz spectroscopy measurement; this is
simply infrared absorption by NiO (which is sensitive to free oscillations), but the cre-
ation of the THz radiation uses photomixing [191] instead of a tuneable laser source∗.

∗At the time of writing, there are very few THz lasers, none are commercially available. Ad-
vances have been made using semiconductor lasers [192], otherwise free electron laser sources which
use expensive particle accelerators must be used [193].
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A pair of tuneable lasers operating at different frequencies (in the near-infrared range
∼ 350THz) are combined to produce a laser with a tuneable beating frequency in the
far-infared range (0THz–2THz). After the photomixed radiation is passed through the
sample, absorption is detected by a second photomixer and detector which is sensitive
to the change in frequency mixing of the incident and output radiation. For single
crystal samples, interference between the incident and backscattered beam, known as
Fabry-Perot interference, must be removed to obtain the magnetic absorption [142].
The processed data provided by Moriyama is shown in Fig. 5.10.
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Figure 5.10: The temperature dependence of the resonant frequency (left) and its
linewidth (right) in a bulk single crystal of NiO measured experimentally by continuous
wave THz spectroscopy.

The resonant dynamics of antiferromagnets can be difficult to measure in bulk
samples. Microwave resonance experiments on thin films, or surface sensitive spin-
pumping experiments can be used. But, as seen in section 5.2, the temperature de-
pendence of magnetic properties of thin films and nanoparticles can be significantly dif-
ferent from bulk samples. Light scattering techniques have been used on bulk samples
of NiO, but the large amplitude of lattice dynamics makes analysis difficult [188, 189].
Similarly, optical absorption techniques have been used [190]. But, until recently, high
resolution and low noise measurements of dynamics in the THz gap have been absent.
Despite this, the temperature dependence of resonance in NiO has been of scientific in-
terest for decades [190, 194]. Studying thermal magnetisation dynamics is much easier
using computational methods. The calculation of the dynamic structure factor in the
previous section gives access to the resonant dynamics of the system. But, the con-
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volution methods used to calculate the spin wave spectrum in simulations don’t give
sufficiently high energy resolution to accurately extract the gap at k = 0. Instead, we
use a much simpler method. The atomistic simulations contain eight sublattices (a pair
for each coupled simple cubic antiferromagnet). The magnetisation of each sublattice
α at time t, given by mα(t) = (1/Nα)∑i∈α Si, is written to a file at a given interval
∆t. The time between writing to the file is chosen to balance frequency resolution and
total time of the simulation∗. The Nyquist frequency, fmax, is the maximum frequency
that can be sampled for a given ∆t, and is given by

fmax = 1
2∆t . (5.29)

To choose ∆t, we need to know the frequency that we wish to sample. The resonance
frequency for a two sublattice macrospin model of NiO at zero temperature is given
by†

f0 = 2|γ|
µS

√
z(J2 + J1−)Ku, (5.30)

where |γ| = 2.80 × 1010s−1T−1 is the gyromagnetic ratio of an electron, and Ku =
−0.04695meV is the effective strength of the dipole anisotropy at zero temperature for
the atomistic model. This gives a resonant frequency of f0 ≈ 1.19THz. Therefore we
choose ∆t = 125 fs giving a Nyquist frequency of fmax = 4 THz � 1.19 THz. The
power spectrum of resonant dynamics is calculated from the magnetisation time series
using Welch’s method. Welch’s method is a periodogram method for estimating the
power spectral density of a signal. Welch’s method is advantagous over a windowed
FFT; a windowed FFT is insensitive to signals at the edges of the window, so useful
information is lost. Welch’s method splits a signal into smaller overlapping subsets of
the original signal. A windowed FFT is calculated for each overlapping segment, then
Welch’s method averages these segments. The overlap ensures that the data at the
edges of the window of each segment are well sampled, reducing the loss of informa-
tion. This method sacrifices some frequency resolution for an increased signal to noise
ratio. The reduced noise is not due to smoothing, but is a result of the geometrical
averaging of the time series, and the noise/resolution are tuned by changing the length
of the segments. The lineshape of the resonance mode is expected to be approximately

∗These simulations run on GPUs and the process of writing to file requires slow memory synchron-
isation between the GPU and CPU, so minimising the number of file writes speeds up computation.

†The result is stated here, it is derived in the next chapter (Chapter 6). The effect of J1+ is ignored
in a two sublattice model so the resonance in atomistic simulations differs from this result.
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Lorentzian since the lineshape of the dynamic susceptibility is Lorentzian [142]; though
the lineshape of the resonance becomes asymmetrical in systems where the magnon
lifetime is frequency dependent (as with the quantum thermostat∗) [140, 195, 196].
In addition to the resonance peak, spectral leakage from the thermostat can be ob-
served in the magnetisation dynamics which is given by the Bose-Einstein distribution.
Therefore, we choose a fitting function for the Fourier transform of a component of a
sublattice magnetisation m(f) ··= FT [m(t)], which includes both a Lorentzian peak
and a Bose-Einstein background. The fitting function is given by

m(f) = A1
π

σ

(f − f0)2 − σ2 + A2 hf

ehf/kBT − 1
, (5.31)

where A1 is the Lorentzian amplitude, 2σ is the full width at half maximum (FWHM)
of the Lorentzian and σ = ∆f is the linewidth, f0 is the peak centre of the Lorentzian,
A2 is the amplitude of the Bose-Einstein background, T is fixed to the temperature
of the simulation being fitted. Fig. 5.11 shows an example of the fitted magnetisation
dynamics.

The lowest temperature measurement of the resonant mode by Moriyama was
1.07(91)THz at 77K; at 50K the resonant frequency extracted from a simulation was
1.16(22)THz. The Néel temperature of the sample used by Moriyama wasn’t measured
and the Néel temperature of the simulation model using the quantum thermostat was
between 530K and 540K. To compare the shape of temperature dependence of f , we
want to ignore the small differences in low temperature values of f and small differences
in the Néel temperature. So, we show normalised in the next figures. Fig. 5.12 shows
the temperature dependence of the resonant mode measured experimentally and from
simulations using a quantum thermostat when both frequency and temperature are
normalised. Both curves show excellent agreement through the measured temperature
range. And, unlike the experimental measurements of m(T ) (Fig. 5.4), these meas-
urements of f(T ) aren’t complicated by finite size effects or limited by experimental
accuracy.

The resonant frequency in NiO has a very similar temperature dependence to the
sublattice magnetisation. The reason for this can be shown simply using Eq. 5.30.

∗In spin dynamics simulations with a classical thermostat, asymmetry is still observed, though
smaller than when using the quantum thermostat.
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Figure 5.11: Example power spectral density (PSD) of the magnetisation dynamics
of NiO from an atomistic simulation at T = 50K. The orange curve is fitted using
equation (5.31). Asymmetric deviations from the fitted Lorentzian lineshape can be
seen by eye.

Replacing zero temperature macroscopic constants with finite temperature constants,
we have

f(T ) = 2|γ|
µS

√
z(J2(T ) + J1−(T ))Ku(T ). (5.32)

As shown in the previous section, the spin wave stiffness is very weakly temperature de-
pendent, so can be ignored. Ku(T ), however varies as m(T )2. Making the substitutions
{J2(T ), J1−(T ), Ku(T )} ≈ {J2(0), J1−(0), Ku(0)m(T )2} then

f(T ) = 2|γ|m(T )
µS

√
z(J2(0) + J1−(0))Ku(0), (5.33)

Or f(T )/f(0) ≈ m(T ). Fig 5.14 shows the normalised temperature dependence of both
the resonant frequency and magnetisation, and confirms that they have the same tem-
perature scaling.
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Figure 5.12: (blue points) Spin dynamics calculated resonant frequency normalised to
the estimated Néel temperature (540K) and the resonant frequency at 50K (1.16THz).
(orange points) Experimental measurements of the resonant frequency normalised to
the estimated Néel temperature (500K) and the resonant frequency at 77K (1.08THz).
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Figure 5.14: Curves normalised to TN = 540K for: (blue points) spin dynamics cal-
culated resonant frequency normalised to the resonant frequency at 50K (=1.16THz),
(orange points) spin dynamics calculated sublattice magnetisation against temperature.

Now we have confirmed the semi-quantum model of NiO gives quantitative in-
formation about the temperature dependence of the resonant frequency, we can use
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Figure 5.13: (blue points) Spin dynamics calculated resonant frequency. (orange points)
Experimental measurements of the resonant frequency.

it–in combination with the experimental measurements–to discern new information
that isn’t accessible in either observation alone. In the simulations, only the magnetic
degrees of freedom are modelled; in experiments every degree of freedom (magnetic,
lattice, electronic, environment) can influence magnetic measurements. In particular,
non-magnetic (direct) sources of damping are almost impossible to disentangle from
magnetic (indirect) sources of damping in experiments. By comparing both measures
of the linewidth, we can distinguish the direct and indirect sources of temperature
dependent damping in NiO. The direct sources of damping in NiO are quite simple.
Spin-electron losses are small because of the large band gap in NiO, so direct damping
is dominated by spin-lattice processes. To begin, let αsim(T ) and αexp(T ) denote the
effective (macrospin) finite temperature Gilbert damping measured in simulations and
in experiments, respectively. We can write the simulation Gilbert damping as

αsim(T ) = α0fM (T ), (5.34)

where α0 is the microscopic Gilbert damping (temperature independent) and fM (T )
is the temperature dependence of losses due to indirect damping processes (magnon-
magnon interactions). The experimentally measured temperature dependent damping
can be written as

αexp(T ) = αMfM (T ) + αP fP (T ) + αEfE(T ), (5.35)

84



5.5 Resonance and Damping

where αM is the zero temperature value of Gilbert damping due to indirect magnon-
magnon processes, αP is the zero temperature damping due to magnon-phonon inter-
actions, αE is the zero temperature damping due to magnon-electron interactions, and
fP (T ), fE(T ) are their temperature dependences. Since NiO is a large band gap insu-
lator, below the Néel temperature, we can make the approximation αE = 0 (3eV band
gap≈ 35, 000K). This reduces (5.35) to

αexp(T ) = αMfM (T ) + αP fP (T ). (5.36)
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Figure 5.15: Curves for the effective (macrospin) temperature dependent Gilbert damp-
ing extracted from the linewidth of the resonant mode measured using (blue) semi-
quantum simulations, and (orange) experiments.

Fig. 5.15 shows the temperature dependence of the effective Gilbert damping cal-
culated from both simulations and experiments. Up to ∼ 400K both sets of data show
excellent agreement. Below 400K, both experiments and simulations show a weak lin-
ear increase in the effective damping with temperature. Since the linear increase is
observed in both data, we attribute this to indirect magnon-magnon losses (fM (T ));
magnon-phonon are approximately constant below 400K. Therefore, at low temperat-
ure, we can say that fM (T ) = C1T and can estimate the magnitude of αM from α0.
The fit is shown in Fig. 5.16.
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Figure 5.16: Data shown in Fig. 5.15 including linear fits to values below 400K.

The values of the fit give αsim(T < 400K) = 1.76α0T and αsim(T < 400K) =
2.78 × 10−4T . The assumption that the constant C1 = 1.76 is applicable to both
simulations and experiments requires that magnon-magnon interactions are calculated
quantitatively in simulations when using the quantum thermostat, and that magnon-
phonon contributions to the temperature dependence are negligible in this temperature
range. Given the quantitative agreement of all other temperature dependent parameters
with experimental values shown in this chapter, the former assumption is valid; the
latter assumption will be discussed shortly. We can then equate the ratio of the damping
constants αM and α0 with the ratio of the fitted gradients,

αM
α0

= 2.78× 10−4

17.6α0
, (5.37)

which gives αM ≈ 1.6 × 10−4. The remainder of the damping in experiments is due
to direct magnon-phonon losses, such that αP ≈ 3.4 × 10−4. We will not attempt to
estimate fP (T ), but this simple analysis is the first estimation of direct and indirect
sources of damping in a single crystal sample of NiO.

There are two phonon modes in NiO; the transverse optical (TO) and longitudinal
optical (LO) modes. Aytan et al [197] measured the TO and LO phonon modes at 12.1
and 17.6THz, respectively∗. Disentangling the losses through each of these phonon
modes is outside the scope of this work but it is worth noting that the effective temper-

∗Data reproduced in the following reference which is easier to extract the relevant frequencies [198].
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atures of the TO and LO mode are approximately 580 and 850K, respectively. Given
the high effective temperatures of these modes, we postulate that the reason we are
able to ignore magnon-phonon losses below 400K is because the phonon population is
sufficiently low at these temperatures that the magnon-phonon interaction cross section
is negligible. At 400K, the phonon population rapidly increases as the exponent in the
Boson number operator approaches unity and is accompanied by an increase in the
magnon-phonon interaction cross section.

5.6 Conclusion

In this chapter, it has been shown that by using the carefully parameterised model of
NiO from Chapter 4 and specialist semi-quantum spin dynamics, it is possible to gain
a quantitative understanding of complex magnetic materials without post-processing.
The very close agreement between experiments, semi-quantum simulations, and ana-
lytic theory for the thermodynamic parameters presented here validates the use of
Bose-Einstein thermostats in numerical calculations to predict the finite temperature
behaviour of magnetic materials. All implementations of spin dynamics should use
Bose-Einstein thermostats as a standard tool to better align the results of simulations
with experiments. It has been shown that the dipole anisotropy has a temperature
scaling consistent with shape anisotropy, which differs from the scaling expected from
Callen-Zener theory when using a magnetocrystalline anisotropy with the same shape.
New equations have been derived for the temperature dependence of the spin wave stiff-
ness in NiO, which show excellent agreement with both simulations and experiments.
The most significant result from this chapter is that we have used high precision exper-
iments and simulations to separate direct and indirect contributions to the magnetic
damping in NiO which allows a more thorough understanding of losses in magnetic
systems which can be used to guide device engineering and has been missing from the
literature.

87



Chapter 6

Dynamics in NiO
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6.1 Fundamentals of Antiferromagnetic Resonance

6.1 Fundamentals of Antiferromagnetic Resonance

Before discussing antiferromagnetic resonance (AFMR), it is useful to first understand
how ferromagnetic resonance (FMR) is measured. In thin film ferromagnets, the most
common FMR experiments [199, 200] use a vector network analyser (VNA) to generate
and detect radio frequency (RF) AC electrical currents which are passed through a
metallic co-planar waveguide (CPW) to generate propagating EM radiation (B-field
and E-field) which is selectively absorbed by the ferromagnet. There are then three
modes of operation; the first has no static external magnetic field, whereas the other
two have a uniform static applied magnetic field from a Helmholtz coil or split-pair
superconducting magnet. The three modes are

1. The frequency of the RF radiation is swept through some range and the absorbed
power is measured. The peak absorption corresponds to the natural frequency of
the ferromagnet.

2. The external field strength is held constant and the RF current is swept to find
the peak absorption.

3. The frequency of RF radiation is held fixed and the magnetic field strength is
swept through some range. Peak absorption occurs when the natural frequency
of the ferromagnet is equal to the RF frequency.

The first case of external field-free measurements requires two anisotropies in the
ferromagnet to create a gap in the magnon spectrum [201], and the ferromagnet is not
necessarily saturated, so allows non-equilibrium switching dynamics to be studied [202].
For simple ferromagnets, an external magnetic field is required to introduce a gap. So,
the second or third operating modes must be used to observe a peak. VNA-FMR
experiments are limited by the maximum frequency that the VNA can generate and
detect; typically they have maximum operating frequencies of ∼ 100GHz [203]. An-
other common FMR technique uses an optical cavity rather than electrical contacts,
and the experimental equipment is identical to electron spin resonance (ESR) / electron
paramagnetic resonance (EPR). Instead of using a CPW to electrically generate RF
EM radiation, a sample is inserted into a cavity which spatially confines EM radiation
of specific frequency (often a few fixed frequencies [204]) that is shone onto it. This
method requires an external magnetic field which is swept through a range of field
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6.1 Fundamentals of Antiferromagnetic Resonance

strengths. For a given magnetic field strength, some optical radiation is absorbed by
the ferromagnet, the rest is reflected, and the absorbed power is measured. This optical
method can operate at higher frequencies than VNA-FMR (∼ 270GHz [205]) but has a
poorer signal-to-noise ratio [200]. Pulsed inductive microwave magnetometry (PIMM)
is a another non-equilibrium driven technique [199, 202]. Because of the frequency
constraints, FMR techniques cannot be used to measure AFMR in antiferromagnets of
technological interest which have high Néel temperatures∗, and high natural frequen-
cies†.

Experimental techniques used to measure AFMR are usually optical, rather than
electrical‡, because of the THz gap–non-linear crystals such as GaAs can be used to
generate and detect THz EM radiation but electrical technologies cannot reach these
frequencies. Experimental techniques which measure the dynamics of an antiferromag-
net can be broadly separated into two categories; those that measure free oscillations,
and those that measure driven oscillations. Driven experiments can then be further di-
vided into near-equilibrium and non-equilibrium measurements§. A summary of these
techniques is given in Table 6.1.

Experiments which directly measure the free dynamics of the system (also called the
normal modes, natural frequencies, or eigenfrequencies) include techniques which are
similar to conventional FMR measurements where the absorbed power of EM radiation
is measured, as well as optical scattering techniques where individual photons create
or absorb thermal magnons. Driven dynamics are measured by inducing–sometimes
large–perturbations to the antiferromagnetic order, and measure the relaxation from
the perturbed state to the equilibrium state. Fundamentally, these two categories are
measuring different properties of the material; non-driven experiments are measuring
the thermal eigenstates of the system, and driven experiments measure the relaxation
of forced oscillations which, by definition, are not eigenoscillations. This difference is
clear in macrospin theories of magnetic resonance which yield different expressions for

∗Some examples of ESR measurements of AFMR are given here [206, 207]
†Some techniques can be used at very high frequencies but these can only be used on powder

samples [208]
‡Although the first measurement of AFMR used ESR [209, 210].
§Zhang [211] gives a good summary of of near-equilibrium and non-equilibrium pump-probe tech-

niques in the context of ferroelectrics.
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6.1 Fundamentals of Antiferromagnetic Resonance

Table 6.1: Experimental techniques used to measure AFMR. The methods are separ-
ated into those that measure free and driven oscillations. Driven techniques are further
divided into near-equilibrium and non-equilibrium techniques.

Free Oscillations
Driven Oscillations

Near-Equilibrium Non-Equilibrium

IR absorption [190] THz-TDS [99, 103]
Pulsed field, optical
detection [94, 212]

Raman
scattering [68, 189]

OPOP [89, 102, 103] OPOP [89, 102, 103]

BLS [188] VNA-AFMR [213]
Quasi-optical

backward-wave-
oscillator [214, 215]

cw-THz
spectroscopy [142, 216]

THz pump Faraday
probe [217]

THz pump Faraday
probe [217]

OPTP [218] OPTP [218]
TPOP [100]

ISRSa [99, 219, 220]

aISRS is sometimes called THz-TDS [219] but the excitation is highly non-equilibrium stimulated
Raman scattering [220].

the frequencies of free and forced oscillations [221, 222]. The differences in frequencies
are negligible for small driving amplitudes, but can vary drastically above a threshold
amplitude (see for example figure 9.2 of [222]). Here we will state the result for a zero
temperature two sublattice macrospin model of NiO, the result is derived in Section 6.2.
For a two sublattice (n = 2) fcc antiferromagnet with only next nearest neighbour
exchange interactions (J2, z = 6 neighbours) and easy-plane anisotropy of strength
Ku, the frequency of free oscillations is given by f0 = 2|γ|

µS

√
zKu [J2 + J1−], whereas the

frequency of forced oscillations using an out of plane, linearly polarised AC magnetic
field is given by fAC = 2|γ|

µS

√
Ku (z [J2 + J1−]−Ku). The zero temperature material

parameters for NiO are J2 = −14.7meV, Ku = −0.04695meV, and µS = 1.71µB which
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gives the following frequencies

f0 ≈ 1.1887THz (6.1a)

fAC ≈ 1.1884THz. (6.1b)

A difference of less than 0.03% is indeed negligible∗. But, in antiferromagnets with
many sublattices and highly non-linear energy terms like a cubic anisotropy, this differ-
ence can determine which characteristic frequencies of the system can be measured by
a given experimental technique, and in which geometries (see for example section 3.2.1
and 3.2.2 of [49]). Other complexities like parametric excitations and frequency mix-
ing become important in driven experiments which use broadband THz pulses or large
driving amplitudes, where non-linear oscillations couple to resonant modes [222, 224–
226].

For NiO, the most comprehensive experimental measurements of free oscillations are
by Grimsditch [68, 188, 189], where both Raman and Brillouin light scattering (BLS)
were used to measure the magnon modes. A total of five modes were measured: 30GHz,
120GHz, 390GHz, 1.14THz, and 1.29THz. It is important to note that the 1.29THz
mode was attributed to surface magnons in earlier work [227–229]; in Section 6.3 we
argue this mode can exist in bulk, however. Light scattering techniques are very use-
ful for studying the free oscillations of antiferromagnets as all magnon modes can be
measured by using a combination of two techniques, one of which is sensitive to Raman
active modes, and the other to infra-red (IR) active modes. Aside from the compre-
hensive measurements of Grimsditch, the literature on resonance in NiO is convoluted.
Take, for example, articles by Kampfrath et al [104] and Satoh et al [102] (the papers
have some shared authors and were published in the same year). Both Kampfrath and
Satoh use a pump-probe technique but Kampfrath measures a single magnon mode at
∼ 1THz, whereas Satoh measures two modes at 1.07THz and 140GHz. There were
three difference between these pump-probe experiments:

1. Kampfrath used a THz-frequency pump; Satoh used an optical-frequency pump.

2. Kampfrath used linearly polarised pump and probe beams; Satoh used circularly
polarised pump and a linearly polarised probe.

∗In metallic or half-metallic magnets, electron heating in OPTP experiments results in electron
heating and far from equilibrium spin dynamics which is not included in the above equatioins [223].

92



6.1 Fundamentals of Antiferromagnetic Resonance

3. The experiment of Kampfrath had pump and probe co-propagating along the [111]
direction. In Satoh’s, the probe propagated along [111] but the pump propagation
vector had a 7◦ angle with [111]. Additionally, Satoh chose a T -domain where
spins are aligned within the (11̄1), not aligned perpendicular to the sample surface
(111).

Any of these differences could feasibly create the necessary conditions for exciting and
observing the lower frequency mode. We neglect the first difference immediately be-
cause the difference in frequency only changes the absorbed power; Kampfrath calcu-
lates that the absorbed power will heat the NiO volume by less than 10µK, and Satoh
justifies a non-thermal origin by showing that both modes reverse the rotation angle
of the beam upon reversing the pump helicity (a unidirectional dependence must be
magnetic in origin), as well as estimating that one pump photon is absorbed per 104

Ni atoms in the 100µm spot (we estimate this to be ∼ 1K per Ni site). We can also
neglect the difference in pump polarisation as the origin; THz absorption measure-
ments using circularly polarised light by Moriyama et al∗, which had a propagation
vector along [111] did not observe any modes between 98GHz and the high frequency
mode at 1.09THz for both single crystal, and polycrystalline, samples of NiO [142].
A low frequency mode was also missing from thin film measurements using the same
method [216]. From this, we can assume circularly polarised light propagating along
[111] cannot excite the mode at ∼ 140GHz. The mode at ∼ 140GHz must’ve been
observable by Satoh because of the chosen propagation vectors of the pump and probe
with respect to the spin orientation. T -domains in single crystals of NiO have di-
mensions ∼ 100µm and S-domains, which originate from the small magnetocrystalline
anisotropy, have dimensions . 1µm [230]. The probe spot size of 40µm in Satoh’s ex-
periment will cover many S-domains so samples spins which point along [121] (almost
parallel to the pump propagation vector [111]), and spins aligned with [101̄] (perpen-
dicular to [111]). By conservation of momentum, the absorbed optical radiation must
include a component out of the (11̄1) plane which excites the ∼ 140GHz mode. It is
likely that this mode is thermally excited but the destructive interference of the amp-
litudes on different pairs of sublattices means it cannot be observed by an excitation
propagating perpendicular to the easy plane†.

∗This is a free oscillation method, cw-THz spectroscopy.
†Bossini [231] reaches a similar conclusion, though the 140GHz mode is an eigenfrequency of the
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There are other similar cases where different numbers of modes have been ob-
served using the same technique. An inexhaustive collection of experiments is given in
Table 6.2.

Table 6.2: Some experimental measurements of AFMR in NiO. Grimsditch’s meas-
urements [68, 188, 189] are used to label the resonances f1 through f5. Experiments
are ordered by the dynamics they measure: free oscillations, near-equillibrium driven
oscillations, then non-equilibrium driven oscillations. Pre-2000 measurements of free
oscillations using IR absorption [190, 194] and Raman spectroscopy [227] are included
last because of the low resolution and sensitivity of the experiments.

Measurement technique(s) f1 f2 f3 f4 f5 f6

BLS1 + Raman2 [68] 30GHz1 120GHz1 — 390GHz1 1.14THz2 1.29THz2

OPTP3 + THz-TDS4 [103, 232] — 100GHz3 — 500GHz4 1.10THz3,4 1.30THz3

OPOP [89, 102] — 140GHz — — 1.07THz —
TPOP [100] — — 230GHza — 1.00THz —
TPOP [104] — — — — 1.00THz —

ISRS [99] — — — ∼ 400GHzb 1.00THz —
ISRS [219] — — — — 1.00THz —
ISRS [233] — — — — 1.00THz —
ISRS [234] — — — — 1.00THz —

IR Absorption [194] — — — — 1.10THz —
IR Absorption [190] — — — — 1.09THz —

Raman [227] — — — — 1.13THz 1.31THz

aInferred from the sum-frequency and difference-frequency signals at 0.77THz and 1.23THz.
bNot reported but visible in figure 3c.

From the above table, it is clear that the further from equilibrium the system is, the
fewer magnon modes are measurable. Though, this is likely a combination of the relative
amplitude of f4 being much larger than other modes far from equilibrium because of the
higher density of states of the Kittel mode compared to other non-linear modes, as well

system (we disagree) using a magnetocrystalline anisotropy which is fobidden by symmetry and requires
multiple T domains to be observed (see discussion below figure 4).

94



6.2 Linearised Macrospin Models

as the phase cancellation of sublattices with opposite deflections for f2. Additionally, as
the distance from equilibrium in a measurement increases, the frequency of f4 decreases
due to the reduction of the effective macrospin exchange and dipole anisotropy field in
the non-equilibrium state∗. This is not a new idea, Stremoukhov et al [236] have shown
analytically that the measured resonance in THz pump-ISHE probe experiments is
dependent both on the pump frequency and the oscillation amplitude (see also [237]). In
the rest of this chapter we use the model developed in Chapter 4 in both the macrospin
approximation, and numerical calculations of the thermal dynamics using atomistic
spin dynamics to elucidate the origin of the measured modes f1, ..., f6.

6.2 Linearised Macrospin Models

The coupled Landau-Liftshiz-Gilbert equation for multiple magnetic sublattices, in-
dexed by i, in an effective magnetic field is typically written in the following form

Ṁi = −γMi ×Hi + α

Mi,s

(
Mi × Ṁi

)
, (6.2)

where MA,B is the sublattice magnetisation vector of sublattice A and B, Ms is the
saturation magnetisation (with MA,s = MB,s = Ms), γ is the gyromagnetic ratio of
an electron, Hi is the effective field, α is the dimensionless damping parameter. We
use the LLG equation here because it is simpler to manipulate algebraically, and the
linewidth takes the typical Lorentzian form. The atomistic calculations use the LL
equation, however (a simple transformation of γ and α moves from one equation to
the other). To simplify calculations, we choose to rewrite the LLG equation such that
parameters are normalised to single spin values, rather than per volume typically used
in experiment. This reduced form of the LLG equation is

ṁA,B = γ

Ms
mA,B × hA,B − α (mA,B × ṁA,B) , (6.3)

where m are the unit magnetisation vectors, and h = −µ0µSHeff = ∂H
∂m is the reduced

field, which has units of Tesla. We repeat the atomistic Hamiltonian here for easy
comparison

∗Bowlan [235] shows, in sections 3.1 and 3.2, that the induced THz dynamics in OPTP experiments
on antiferromagnetic insulators is by spin-lattice thermalisation (phonons initially excited) which mod-
ulates the exchange interactions.
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H =− 1
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∑
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∑
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,

(4.17)

where the unit vectors û, v̂, ŵ are given by û = [1/
√

6, 1/
√

2, 1/
√

3], v̂ = [1/
√

6,−1/
√

2, 1/
√

3],
ŵ = [−2/

√
6, 0, 1/

√
3]. The microscopic material parameters used in all atomistic sim-

ulations, unless otherwise stated, are given in Table 4.5.

6.2.1 Two Sublattice Model

The free energy functional for a two sublattice macrospin model of NiO from the
Hamiltonian 4.17, plus an external driving field is

F =− (J +A)m̂1 · m̂2

−Ku
∑
i=1,2

(m̂i · ẑ)2

−Kc
∑
i=1,2

[
(mu

im
v
i )2 + (mv

im
w
i )2 + (mw

i m
u
i )2
]

− µSBext(t) · [m̂1 + m̂2] ,

(6.4)

where m̂i are sublattice magnetisation vectors of unit length, J is the next nearest
neighbour exchange coupling, A is the antiparallel nearest neighbour exchange coupling
(related to J1−), Ku is the easy-plane energy (must be calculated from the atomistic
dipole-dipole interaction), Kc is the cubic anisotropy energy, Bext(t) is the external
driving field, the unit vectors û, v̂, ŵ and the magnetisation components mu

i , mu
i , mw

i

have the same definition as the atomistic Hamiltonian (4.17). The zero temperature
value of these parameters are given in Table 6.3 (notice that the parallel nearest neigh-
bour exchange J1+ does not appear in the free energy functional).

In the absence of an external AC magnetic driving field and assuming equilib-
rium (no damping) and choosing the equilibrium sublattice magnetisations as mi =
[mu

i ,m
v
i ,m

w
i ] = [(−1)i,mv

i (t),mw
i (t)]. The matrix representation of the linearised
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Table 6.3: Algebraic and numeric values of the parameters found in the two sublattice
free energy functional for NiO when mapped from the atomistic Hamiltonian. z = 6
is the number of neighbours for the atomistic exchange interactions given by exchange
constants J2, J1+ and J1−.

Symbol Atomistic Expression Numeric Value
J zJ2 −88.2 meV
A zJ1− −6.0 meV
P zJ1+ 4, 62 meV
Ku — −0.04695 meV
Kc K 0.001 meV

coupled LLG equations are given by ṁv
1

ṁw
1

ṁv
2

ṁw
2

 = γ

µS

 0 J+A+Kc
3 +2Ku 0 J+A

−J−A 0 −J−A 0
0 −J−A 0 −J−A−Kc

3 −2Ku
J+A 0 J+A 0

 mv
1

mw
1

mv
2

mw
2

 (6.5)

The components of sublattice magnetisation containing v are in the easy plane, whereas
those containing w are out of plane. From the above matrix equation, the resonant
frequencies are given by the eigenvalues of the resonance matrix. Solving for these gives
a single mode with eigenfrequency

f5 =
√

6γ
√

(J +A) (Kc + 6Ku)
3µS

, (6.6)

with two eigenvectors (polarisations of the eigenmode) which are given by

ν1 =



i
√

6
√

(J+A)(Kc+6Ku)
6(J+A)

1
i
√

6
√

(J+A)(Kc+6Ku)
6(J+A)

−1

 , (6.7)

and

ν2 =



i
√

6
√

(J+A)(Kc+6Ku)
6(J+A)

−1
i
√

6
√

(J+A)(Kc+6Ku)
6(J+A)

1

 . (6.8)
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The numeric values are f5 = 1.19THz, ν1 = [−0.022i, 1,−0.022i,−1], and ν2 =
[−0.022i,−1,−0.022i, 1]. These are left- and right-handed elliptically (almost linearly)
polarised AFMR modes. In the absence of the cubic anisotropy, these are identical to
two decimal places and the expression for the resonant frequency reduces to 2γ

√
−JKu
µS

.

6.2.2 Eight Sublattice Model

To show, unequivocally, that there is only a single resonant mode in a linearised model
of NiO, we repeat the calculation in the extreme case that all eight magnetic sublattices
have distinct dynamics. The free energy functional for an eight sublattice model of NiO
is given by

F = −J4

4∑
i=1

[m̂i+ · m̂i−]− A12

4∑
i=1

∑
j 6=i

[(m̂i+ · m̂j−) + (m̂i− · m̂j+)]

− P12

4∑
i=1

∑
j 6=i

[(m̂i+ · m̂j+) + (m̂i− · m̂j−)]−Ku

4∑
i=1

∑
±

(m̂i± · ẑ)2

−Kc

4∑
i=1

∑
±

[
(mu

i±mv
i±)2 + (mv

i±mw
i±)2 + (mw

i±mu
i±)2

]
,

(6.9)

where fractional coefficients account for the overcounting of microscopic exchange in-
teractions in the macrospin model; overcounting is necessary to couple the sublattices
correctly. The resulting matrix form of the coupled LLG equations must be represen-
ted by a square matrix of dimension 16. The matrix was calculated using a computer
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algebra system (SymPy), rather than by hand. The matrix is given below

γ
µ
S

                    

0
C

0
J 4

0
P 12

0
A 12

0
P 12

0
A 12

0
P 12

0
A 12
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A 4
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P 12
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0
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(6.10)

where C = A
4 + J

4 + Kc
24 + Ku

4 −
P
4 . Computing the eigenvalues and eigenvectors of this

matrix symbolically would take a very long time and is unnecessary for our purpose.
A numeric calculation is sufficient to show that, in the linearised approximation, there
are no eigenfrequencies below 1THz. Using a numeric solver in SymPy, the following
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eigenfrequencies are obtained
f5 = 1.19THz

λ = 5.06THz

λ′ = 5.19THz,

(6.11)

Indexed frequencies like f5 correspond to experimentally measured modes in Table 4.4,
other eigenvalues are denoted by λ. The eigenvectors of the 1.19THz mode are almost
identical to the numeric values of the two sublattice model. As before, no resonance
frequencies below 1THz are calculated. Since the 140GHz mode has been observed
using experiments which measure free oscillations, this mode must arise from the non-
linear terms in the LLG equation; either due to the nonlinear nature of the cubic
anisotropy, or it is a second order term due to exchange/dipole interactions mediated
by damping∗. This highlights the failure of first order, linear approximations to the
dynamics of simple antiferromagnets. Instead of introducing arbitrary anisotropy terms
so that additional modes appear in the solutions of linearised equations of motions,
more advanced analytic techniques [222, 226] or numerical spin dynamics simulations
(Section 6.3 should be used. Additionally, linear model should be used with caution
when studying more complex materials.

6.3 Spin Dynamics

By using atomistic spin dynamics, rather than linearised macrospin models, we can
observe all linear and nonlinear modes of the system; it isn’t possible to determine an
analytic expression for the modes. But, by comparing with the analytic expressions
above and other similar Hamiltonians, it’s possible to infer the origin of these modes. In
this section three Hamiltonians are used, all of which include the splitting of the nearest
neighbour interaction, and all of which use α = 5× 10−4–this is an order of magnitude
lower than in the previous chapter to ensure nonlinear modes are not overdamped. The
first Hamiltonian omits the cubic anisotropy and replaces the dipole-dipole interaction
with a single-ion uniaxial magnetocrystalline anisotropy of the same strength as the
easy-plane dipole anisotropy (∆E = −0.04695 meV/spin). This Hamiltonian is labelled

∗The coupled macrospin LLG equations for an antiferromagnet inherently give rise to inertial
dynamics of the Néel vector, even in the absence of damping [238].
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Hu and is given by

Hu =− 1
2
∑
i,j

JijSi · Sj −
∑
i

Ku [Su
i ]2 , (6.12)

The next Hamiltonian, labelled Hdip, omits the cubic anisotropy, and includes the
dipole-dipole interaction with a reduced cutoff radius Rcut = 3a, rather than 5a. Hdip

is given by
Hdip =− 1

2
∑
i,j

JijSi · Sj

− 1
2
∑
i 6=j

µ0µS,iµS,j
4π

3(Si · r̂ij)(Sj · r̂ij)− (Si · Sj)
|rij |3

,

(6.13)

The final Hamiltonian, Hdip,c includes the dipole-dipole interaction with reduced cutoff
radius of 3a, and the cubic anisotropy. It is given by

Hdip,c =− 1
2
∑
i,j

JijSi · Sj

− 1
2
∑
i 6=j

µ0µS,iµS,j
4π

3(Si · r̂ij)(Sj · r̂ij)− (Si · Sj)
|rij |3

−
∑
i

Ki

[
(Su
i S

v
i )2 + (Sv

i S
w
i )2 + (Sw

i S
u
i )2
]
,

(6.14)

For Hu, the omission of the cubic anisotropy allows us to determine whether any of the
modes f1, ..., f6 are mediated by the cubic anisotropy. If all modes can be observed
in a simulation using Hu, then the modes which aren’t predicted by the linearised
macrospin models must arise from nonlinear processes involving exchange and the easy-
plane anisotropy which are mediated by damping. In this case, an analytic derivation
of these modes must include damping in a macrospin model but can ignore the small
magnetocrystalline anisotropy. Additionally, the choice of a uniaxial magnetocrystalline
anisotropy was made to reduce the computational cost of simulations; including dipole-
dipole interactions with Rcut = 5a for a large supercell of [32× 32× 8] unit cells each
containing 24 Ni atoms∗ meant that a 48 hour simulation using a Tesla V100 GPU
had a total integration time of ∼ 0.045ns. Such a short integration time doesn’t give
sufficiently low noise to resolve the low frequency modes (100GHz corresponds to an
oscillation period of 0.01ns). Using a magnetocrystalline uniaxial anisotropy means
that the temperature dependence of the observed modes will be incorrect–especially

∗This equates to 196,608 spins. Typical spin dynamics simulations contain at least 10, 000 spins to
eliminate finite size effects [239].
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those which are strongly dependent on the effective macrospin anisotropy constant (ie
the 1.19THz Kittel mode). But, at low temperature, this is sufficient to determine
whether a mode can be observed without the cubic anisotropy.

6.3.1 Hamiltonian Validation

The full Hamiltonian (4.17) has complex k = 0 dynamics, and it has been shown that
the dipole-dipole interactions affect both k = 0 and k 6= 0 spin waves [35]. To ensure
that substituting the dipole-dipole anisotropy with a uniaxial magnetocrystalline aniso-
tropy of the same strength is valid, we must first compare the dynamics of simulations
using Hamiltonians Hdip and Hu. Fig. 6.1 shows the power spectrum of the total in
plane magnetisation mIP using Hu, Hdip, and Hdip,c. The time series of the total in
plane magnetisation is calculated by the following equation

mIP(t) = 1
8

8∑
i=1

mIP
i (t) = 1

8

8∑
i=1

√
[mu

i (t)]2 + [mv
i , (t)]

2. (6.15)

The sublattice magnetisation at a given time is calculated by the usual sum over the
ensemble. The three plots of Fig. 6.1 are almost identical; all modes are present in all
three, and their relative amplitudes are very similar. AlthoughHu has much lower noise
and there are small deviations in the peak centres due to the poor convergence of the
dipole-dipole interaction when using Rcut = 3a. Nevertheless, for studying fixed, low
temperature dynamics, Hu, Hdip, and Hdip,c can be used interchangeably. This simple
comparison shows that we are able to reproduce all modes of interest using any of
these three Hamiltonians (at least for mIP); the k = 0 dynamics are robust against the
addition of the small cubic anisotropy, and exchange-dipole spin waves are unimportant.
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Figure 6.1: Power spectra of the total in plane magnetisation of NiO at 100K using
Hamiltonians Hu, Hdip, and Hdip,c. Due to the difference in computational difficulty of
the Hamiltonians, the total simulation times were 101ns, 7.7ns, and 9.2ns respectively.

6.3.2 Discussion

In this section, we aim to show that all of the experimentally measured modes in
Table 6.2 can be observed in simulations which don’t include a cubic anisotropy. And,
we aim to show that the combination of components of sublattice magnetisations re-
quired to observe these modes are available experimentally (experiments are not sens-
itive to single sublattice magnetisation dynamics, for example). Modes will be indexed
using the same frequencies as in Table 6.2 (f1, ..., f6), plots will be shown on a log-
arithmic scale to ensure low amplitude modes are not overlooked, all simulations use
the quantum thermostat to ensure the relative amplitude of k = 0 and k 6= 0 modes
is large (as expected in a real sample), and all simulations output the magnetisation
every 0.125ps giving a Nyquist frequency of 4THz.

A natural starting point is to consider the characteristic frequencies of a single sub-
lattice mi. This is not experimentally measurable, but gives information about the most
fundamental characteristic frequencies of the system. Fig. 6.2 shows the spectral dens-
ity of the out of plane component of a single sublattice magnetisation, mOOP

1+ . There are
two characteristic frequencies at 1.19 and 2.81THz; all eight sublattices have the same
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peak centres. The in plane dynamics (shown in Fig. 6.3) are much more complicated.
To reduce noise in the spectral density, Fig. 6.3 shows the average spectral density of
all sublattices; the average of the magnetisation time series (mα(t) = 1

8
∑8
i=1m

α
i (t))

causes interference between modes of different sublattices (which have different po-
larisations, even for the same frequency mode). But, the average in frequency space
(1

8
∑8
i=1FFT {mα

i }) does not. This spectral averaging increases signal-to-noise and en-
sures that observed peaks in the spectrum are characteristic frequencies of the system,
rather than noise. The characteristic frequencies of the in plane sublattice dynamics
(up to 2.5THz) are: ∼ 310GHz, ∼ 675GHz, ∼ 1.04THz, ∼ 1.62THz, ∼ 2.38THz. These
characteristic frequencies don’t correspond to the frequencies observed experimentally
but strongly indicates that the dynamics of NiO (even when excluding the cubic aniso-
tropy and exchange-dipole spin waves) cannot be understood by linearised models.
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Figure 6.2: The spectral density of the out of plane component of a single sublattice
magnetisation for a simulation using Hu.
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Figure 6.3: The spectral density of the in plane component of sublattice magnetisation
(averaged across all sublattices) for a simulation using Hu. Vertical red lines are placed
at 310GHz, 675GHz, 1.04THz, 1.62THz and 2.38THz.

The simplest, highest amplitude mode in NiO is the Kittel mode; this is the
frequency at which the out of plane component of the total Néel vector (lOOP =
1
8
∑8
i=1(−1)ilOOP

i ) oscillates. In the previous chapter we showed that, at zero tem-
perature, our atomistic model of NiO gives f5 = 1.19THz. Fig. 6.4 shows that the out
of plane component of the total Néel vector only has a single mode and that the out of
plane component of total magnetisation has no modes in equilibrium; well calibrated
experiments in geometries which are only sensitive to out of plane dynamics can only
measure one mode (such as those by Moriyama [142]). The absence of any modes in
the power spectrum of mOOP means that both the 1.19THz and 2.81THz modes seen
in a single sublattice (Fig. 6.2) destructively interfere in the summation of sublattices;
inter-sublattice coupling via the split nearest neighbour exchange determines the relat-
ive polarisation of these modes which leads to the constructive/destructive interference
for the total magnetisation and total Néel vector, respectively.
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Figure 6.4: The spectral density of the out of plane component of the total Néel vector
(left) and total magnetisation (right) for a simulation using Hu.

Now we consider the in plane dynamics of the total Néel vector. All contributions
from the total Néel vector and total magnetisation are experimentally accessible. But,
the dynamics of the total Néel vector have much higher amplitude than the total mag-
netisation because, in equilibrium, real samples will be almost perfectly compensated.
Fig. 6.5 shows the PSD of lIP. Two modes are immediately identifiable at 1.19 and
2.26THz. If this were a nonequilibrium or driven experiment which included a large
field pulse or tuneable AC driving field similar to Baierl [100], we may ascribe the
2.26THz mode to the second harmonic of the Kittel mode. But, in this equilibrium
spin dynamics simulation, there is no mechanism for the second harmonic to be excited
so this must be a k = 0 spin wave whose amplitude is too low to be measured exper-
imentally. This is irrelevant to device applications, but may need to be considered in
very high sensitivity light scattering experiments.
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Figure 6.5: The spectral density of the in plane component of the total Néel vector for
a simulation using Hu. Vertical red lines are placed at 1.19THz, and 2.26THz.

The low frequency peaks in Fig. 6.5 require more detailed consideration; Fig 6.6
shows the low frequency data, four modes can be resolved: ∼ 20GHz, 110GHz, 160GHz,
and 280GHz. The lowest frequency mode is consistent with f1 measured by Grims-
ditch [68], though this mode could be due to spectral leakage. Due to computational
constraints, it isn’t possible to more clearly resolve such low frequency dynamics. Al-
though spectral leakage from the thermostat always appears in simulations as a mono-
tonic decrease in amplitude except for PSD(f = 0) (see mOOP in Fig. 6.4). The
amplitude at f = 0 is lower than the first frequency bin because Welch’s method re-
duces the sensitivity to constant time offsets (ie at f = 0); this is a severe limitation
of a typical FFT method. Since Fig. 6.6 shows a monotonic increase between f = 0
and f = 0.05THz, we deduce that there is a mode at low frequency. But, the resolu-
tion at low frequency is not high enough to obtain a good estimate of the frequency.
A similar conclusion could be drawn from the two modes at 110GHz and 160GHz.
Rather than two distinct peaks, it’s possible that these are a single broad peak of
frequency 135GHz because of the poor sampling of low frequency dynamics. Discount-
ing this technicality, these two modes are consistent with the low frequency mode f2

(measured experimentally between 100 and 140GHz) which is often associated with an
additional magnetocrystalline anisotropy. There is no additional anisotropy present in
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this model, so previous interpretations miss key physics in this material (leading to the
use of forbidden Hamiltonian terms). Further, the mode at 280GHz can be mapped
onto f3 which has been inferred from the sum- and difference-frequencies measured by
Baierl [100].
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Figure 6.6: The spectral density of the in plane component of the total Néel vector for
a simulation using Hu. Vertical red lines are placed at 20GHz, 110GHz, 160GHz, and
280GHz.

We have now identified the measured resonance modes f1, f2, f3, and f5 in a simu-
lation of NiO which includes only a uniaxial anisotropy and exchange. Aside from the
Kittel mode, f5, these resonant frequencies are due to nonlinear dynamical processes
which are mediated by the intersublattice coupling and damping∗. The remaining
modes can be observed by considering the in plane component of the total magnetisa-
tion seen in the Section 6.3.1. The spectral density of the in plane component of the total
magnetisation is shown in Fig. 6.7. Five low amplitude modes are highlighted which
have frequencies: 385GHz, 680GHz, 1.04THz, 1.38THz, and 1.68THz. The 1.68THz
peak is likely f6, which is strongly temperature dependent and has been measured to
merge with the Kittel mode at ∼ 250K [68, 103]. The present model slightly overestim-

∗These modes disappear in simulations which have small supercells, when damping is large and
when the classical thermostat is used. This strongly suggests a highly nonlinear process which is very
easily damped.
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ates the frequency of the Kittel mode and has a large splitting of the nearest neighbour
exhange J1. It is likely that this mode is mediated by the splitting which, in the present
model, may be larger than in real samples. Alternatively, the coupling of spin waves
in different S-domains within a T -domain, or the domain dynamics, at elevated tem-
peratures could explain the observed merging of f5 and f6. The 1.04 and 1.38THz
peaks are evenly spaced at either side of the Kittel mode (−0.15GHz and +0.19THz,
respectively). Baierl [100] noted that their nonequilibrium measurement of the Kittel
mode (1.00THz) had shoulders at 0.77 and 1.23THz which they ascribed to the mixing
(sum-frequency and difference-frequency) of in plane and out of plane modes. It is
reasonable to assume that the shoulders observed in the experiment are the same as
those measured here, and the mixing is between the Kittel mode f5 and the nonlinear
f2 mode at ∼ 160GHz (1.19−0.16 = 1.03THz). We do not observe the mixing frequen-
cies in the spectrum of the Néel vector because the amplitude of the Kittel mode is
orders of magnitude larger than the mixing frequencies in equilibrium, but experiments
which strongly excite the system out of equilibrium are able to measure this. The peaks
at 385 and 680GHz are not easily reconciled with experimental measurements, though
f4 has been measured in a wide frequency range, anywhere from 390GHz to 500GHz
(see Table 6.2). In particular, Kohmoto [103] measures a very broad feature in the
THz-TDS transmittance which is centred around 500GHz∗. Taking the mean of the
two frequencies, 385 and 680GHz, we arrive at a centre average of ∼ 440GHz which is
near the middle of the experimentally measured values.

∗The lowest frequency measurable in their THz-TDS experiment is around 300GHz. So, it is possible
that two modes are present but the experiment doesn’t have sufficient sensitivity at low frequency.
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Figure 6.7: The spectral density of the in plane component of the total magnetisation
for a simulation using Hu. Vertical red lines placed at 385GHz, 680GHz, 1.04THz,
1.38THz, and 1.68THz.

In an experimental measurement, the sample will contain inhomogeneities and the
sample area which is probed by the measurement will contain multiple domains∗, as
considered experimentally by Higuchi [99]. We can apply some simple post-processing
to our simulation data to emulate sublattice mixing in neighbouring domains. The eight
sublattices are labelled m1+, m1−, m2+, m2−, m3+, m3−, m4+, and m4−. In a two
sublattice model all + sublattices are equivalent and the − sublattices are antiparallel.
The calculation of the Néel vector time series is

l(t) = 1
8

8∑
i=1

(−1)imi(t). (6.16)

Having multiple domains within the spot size of an experiment means there is an
unequal mixing of these sublattices. We can include a multiplier to each sublattice,
ensuring there is an equal mixture of + and − sublattices so the sampled dynamics are
compensated. Four random multipliers were chosen between 0.9 and 1.1 which sum to
four. These are applied to the sublattices. The equation for the mixed Néel vector is

∗Even if a single T -domain is chosen, there is no known procedure to produce an S-domain large
enough to measure a single domain.
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then

l′(t) = 1
8
[
1.07m1+(t)− 0.93m1−(t) + 0.90m2+(t)− 1.10m2−(t) + 1.07m3+(t)

− 0.90m3−(t) + 0.93m4+(t)− 1.10m4−(t)
]
.

(6.17)

This is a crude approximation of the effect of domains. But, in our case, we are only
interested in the interference of the eigenoscillations of the eight sublattices, so this
simple convolution of the sublattice dynamics is sufficient. The spectral density of the
in plane component of l′ is shown in Fig. 6.8. Modes f1, f2, f3, f5, and f6 can be seen
on the plot which doesn’t use a logarithmic scale, so these modes have a large (experi-
mentally accessible) amplitude. The missing f4 mode has very low amplitude and can
be seen in Fig. 6.9. It is surprising that this mode has been measured experimentally
given its small amplitude but we can attribute this mode to a non-zero magnetisation,
suggesting that experimental methods are highly non-equilibrium. Higuchi [99] meas-
ured two modes in addition to the Kittel mode at ∼ 400GHz and ∼ 800GHz (see figure
3c) using stimulated Raman scattering but these were not discussed in the main text.
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Figure 6.8: The spectral density of the in plane component of the convoluted Néel vector
for a simulation using Hu. Vertical red lines placed at f1 = 20GHz, f2 = 100GHz,
f ′2 = 160GHz, f3 = 285GHz, f5 = 1.19THz, and f6 = 1.62THz.
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Figure 6.9: The spectral density of the in plane component of the convoluted magnet-
isation m′ for a simulation using Hu. Vertical red lines placed at f4 = 385GHz and
f ′4 = 680GHz.

The convolution carried out here shows that under realistic experimental conditions,
where inhomogeneities and unequal numbers of domains leads to imperfect mixing of
sublattice magnetisations, all of the modes which have been reported in the literature
can be understood by a simple model containing only exchange and uniaxial anisotropy
but which must include nonlinear dynamics through damping. Including additional
anisotropies is an incorrect interpretation of the physics of this material.
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Thermodynamic Stability
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7.1 Introduction

The finite temperature parameterisation of micromagnetic and macrospin models of
magnetic materials is often approached in an ad-hoc manner. Material parameters such
as the exchange stiffness A, anisotropy constants K, and DMI strength are tweaked so
that simulations and analytic models agree with a single reference point of the physical
system, such as the domain wall width∗ Usually this tweaking doesn’t involve any sanity
checks against experimental values of material parameters, or calculating other metrics
(such as resonance frequencies). This leads to computer simulations which are said
to be representative of samples which have been measured experimentally, but uses
unrealistic input values for material properties. There are a few reasons why the finite
temperature parameterisation of continuum models–specifically exchange stiffness and
DMI strength–from atomistic models and experiments isn’t treated rigorously:

1. Direct experimental measurements of exchange stiffness and DMI are difficult and
require complex multi-step experimental procedures which requires a large degree
of approximation in the analysis of experiments [240–244].

2. The experimental method chosen to measure the same macroscopic parameter in
the same material can heavily influence the measured temperature dependence.
Niitsu [245] has collected temperature dependent exchange stiffness measurements
from the literature in elemental Fe and Ni (figures 2 and 3) which highlights this
issue.

3. There are many publications which report conflicting expressions for the same
parameter in similar materials. For example, see Niitsu [245] for exchange stiff-
ness or the the following references for the helicity modulus (discussed in Sec-
tion 7.3.2) [246–255].

4. There are insufficient computational methods to directly investigate micromag-
netic quantities. Constrained Monte Carlo [38] is a very useful tool but can only
measure anisotropic terms, not leading order energies like the exchange stiffness.
Some publications, such as Moreno [256], resort to fitting domain walls which

∗Often domain walls are too small to resolve using microscopy techniques so the width of a domain is
used which has a stronger and more complex dependence on material parameters and inhomogeneities.
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are forced into the system by including antiperiodic boundary conditions∗, un-
der the assumption that K(T ) exactly follows the Callen-Callen scaling within
the domain wall. In atomistic simulations, all microscopic degrees of freedom
are accessible so it should be possible to evaluate finite temperature macroscopic
parameters without this type of inference.

5. Naming conventions in magnetism means that distinct material properties such
as exchange stiffness A and spin wave stiffness D, are used interchangeably. This
means their temperature dependences are also confounded [145, 257].

6. The fields of thermodynamics and statistical mechanics were established before
modern magnetism, so a lack of magnetism-specific language and literature means
the barrier to entry is high†–most literature is written in terms of fluids and
gases so astronomers, biophysicists, and engineers benefit from well developed
frameworks for studying thermal properties in their fields. Additionally, magnon
theories such as those used in Chapter 5 are often thought of as complete theories
of the thermodynamics of magnetic materials.

7. The increased availability of computing resources within universities (especially
GPUs) means tools like micromagnetism are widely used by both researchers
experienced in magnetism, and those new to the field. Coupled with the in-
creased pressure from academic journals to include computational modelling in
publications, it is easy (and often encouraged) to include micromagnetic models
regardless of how realistic the are.

These problems become very important in complex systems with many compet-
ing energy terms which can lead to spin reorientation transitions [258], Morin trans-
itions [259], and multiple magnetic phase transitions in chiral magnets [260]. A thermo-
dynamic understanding of magnetisation textures like skyrmions is vital for material
exploration and device engineering, but the complexity of the Hamiltonians of skyrmion

∗Antiperiodic boundary conditions are expected to introduce strange artificial interactions because
of spin waves propagating across these mirror boundaries, and pinning introduced at the supercell edges
is already known to change m(T ). In general, forcing domain walls into a computer simulation has
unknown effects the on free energy landscape.

†Even the most fundamental ideas such as the difference between free and internal energy are poorly
understood and evoke strong opinions in the magnetism community.
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hosting materials means computational methods must be able to deconvolve the tem-
perature dependence of these competing energy terms to gain useful insights. Methods
currently available to researchers do not have the specificity for these use cases. In
the case of exchange, some efforts have been made to use atomistic numerical models
to calculate these macroscopic properties of magnetic materials [38, 256, 261–264] but
these methods often require fitting and the use of assumptions. In this chapter we
aim to solve some of these issues by developing a theoretical framework for calculating
the temperature dependence of macroscopic magnetic properties (effective anisotropy
constants, effective exchange constants, etc) from simple thermal averages which are
independent of the method used to evaluate them–analytic mean field approximations,
spin wave theories, or numerical atomistic models (both quantum and classical). We
name these parameter-specific thermal averages stability coefficients after the work of
Debenedetti [265]. Stabilty coefficients are derived from the fundamental principles of
thermodynamics, and are independent of magnetism. The underlying principles are not
new, but the connection between stability coefficients and multiscale parameterisation
from statistical ensembles has never been made.

The chapter is outlined as follows. First, we describe some specific cases in mag-
netism where the above problems have led to inaccuracies in the literature. Next, we
rewrite main postulates and results of classical thermodynamics using language which
is independent of liquids, gases, and molecules, as well as giving key examples applied
to modern magnetism∗. Then, we discuss the geometric interpretation of thermody-
namics and state some results from differential geometry. Finally, we derive stability
coefficients which allow us to express the finite temperature internal energy of any para-
meter, from any macroscopic/mean field description of a thermodynamic ensemble, in
terms of simple expectation values of microscopic parameters. The internal energy
stability coefficients are related to the free energy stability coefficients by a simple in-
tegral (the Gibbs-Helmholtz equation). We derive the stability coefficients for a rank-2
uniaxial magnetocrystalline anisotropy and the exchange stiffness in a micromagnetic

∗Modern magnetism here means mesoscale magnetic devices; thin films of ferromagnets, ferrimag-
nets and antiferromagnets which can be used for computing and memory devicese. This is in contrast
to other literature on the thermodynamics of magnetic materials which typically describes bar magnets
in electric fields, hysteresis of permanent magnets in terms of reversible and irreversible processes, and
which completely fails to describe antiferromagnets.
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model of ferromagnetism.

7.1.1 Measuring Exchange Stiffness

Without rigorous theoretical language and tools, experiments cannot be designed to
measure the thermodynamic property that was intended. A perfect example of this is
exchange stiffness, A. The spin wave stiffness, D, is the coefficient of the spin wave
spectrum in the small-k limit 〈hf〉 ≈ D(T )k2 (for a ferromagnet). A spin wave is a
dynamical excitation with an instantaneous (in time) deviation from the magnetisation
direction which is neither fixed, nor an equilibrium value. It is a free eigenoscillation
of the system. The exchange stiffness A, on the other hand, is related to the energy
required to twist the magnetisation (not individual spins); it is a static solution of the
free energy functional which is a stable equilibrium state of a ferromagnet. The exist-
ence of domain walls, or twists in the magnetisation, do not require dynamics. Despite
this, researchers often compare the temperature dependence of these two distinct prop-
erties [145, 257]. This comes from the comparison of the zero temperature expressions
for these properties∗:

A(T = 0) = 1
3

∑
α=x,y,z

1
4

1
NνWS

∑
i,j

Jijr
α
ijr

α
ij

 , (7.1a)

D(T = 0) = 1
3N

∑
i,j

|γ|
µS,i

Jij |rij |2, (7.1b)

where the summation is over all spins in the lattice, N is the total number of spins, νWS

is the volume of the Wigner-Seitz cell, γ is the gyromagnetic ratio, and rij = rj − ri
is the displacement vector between two spins. For a simple cubic ferromagnet with a
single magnetic sublattice, these reduce to

A(T = 0) = J

2a, (7.2a)

D(T = 0) = 2|γ|
µS

Ja2. (7.2b)

∗Note that we differ from other references because we explicitly use a classical Hamiltonian for both
calculations.
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The zero temperature relationship between these two parameters is then

A0 = 1
4
D0
|γ|

[
µS
a3

]
, (7.3)

where A0 = A(T = 0), and D0 = D(T = 0). The term in square brackets is equal
to the zero temperature saturation magnetisation, though these are purely microscopic
expressions; no coarse graining has been included. The final relationship is then

A0 = 1
4
D0Ms,0
|γ|

, (7.4)

where Ms,0 = Ms(T = 0) is the zero temperature saturation magnetisation. This result
is very useful for calculating the exchange stiffness at zero temperature. But, this is
often used incorrectly at finite temperature. There is no derived relationship between
these parameters at finite temperature. Yet, in the absence of a simple expression for
A(T ) written in easily measured finite temperature parameters, researchers improvise
by making all parameters temperature dependent in that hope that it gives a reasonable
guess without any further thought on the assumptions made. In practice this means
that the following relationship is used

A(T ) = 1
4
D(T )M(T )
|γ|

. (7.5)

We reiterate that equation (7.5) has no theoretical justification. Any theoretical res-
ult, computational model, or experiment using the temperature dependence of spin
waves as an analogue for the exchange stiffness is missing some information about the
underlying thermodynamics of the system. Readers may see this as nit-picking but
the micromagnetic free energy for exchange and the linearised magnon Hamiltonian
have different curvatures, so relate to the thermal averaging of different functions of
spins in the ensemble. Some carefully designed experiments such as those which use
perpendicular standing spin waves (PSSW) [266, 267] are more directly probing the
exchange stiffness but these often neglect to include finite size and interfacial effects or
rely on tweaking micromagnetic simulations to verify their analysis [268]. So, PSSW
methods have similar problems to computational methods that force domain walls into
the system.
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7.1.2 Anisotropy

Section 5.3.1 briefly describes the Callen-Zener theory of the temperature dependence
of magnetocrystalline anisotropies due to the thermal fluctuations of spins∗. We will
not discuss this theory further but there are a few things which suggests this is not
the most general form of the theory. First, calculating the scaling of non-local interac-
tions such as exchange, the dipole interaction and two-ion anisotropies is difficult using
this theory. Both partial rotations and full/isomorphic rotations must be considered
separately which increases the complexity of calculations [159]. Second, the theory is
limited to the spherical harmonic representation of crystal anisotropies. Antiferromag-
nets can permit non-crystalline anisotropies of odd rank (a unidirectional anisotropy
of the form cos3 θ, for example) but the scaling of these anisotropies aren’t known,
and aren’t easy to calculate using Callen-Zener since time reversal no longer preserves
energy. Next, deriving magnetisation power law scalings from spherical harmonics is
unintuitive† because very few researchers express magnetocrystalline anisotropies as a
series of spherical harmonics with anisotropy strength given by coefficients κl,m (l and
m are the usual orbital and azimuthal momenta which indexes spherical harmonics).
Instead, the anisotropy is usually written using expansions of the direction cosines with
coefficients K. The temperature dependence of a given K contains a convolution of the
spherical hamonic coefficients κl,m which leads to some articles misquoting the results of
Callen-Zener theory. As an example, consider a cubic ferromagnet with non-negligible
first and second cubic anisotropy constants

E = Kc1[(mxmy)2 + (mymz)2 + (mzmx)2] +Kc2[mxmymz]2 (7.6)

where mx, my, mz are Cartesian components of the magnetisation, and Kc1, Kc2 are
the cubic anisotropy constants. This can be rewritten in terms of spherical harmonics
as [86]

E = κ0 + κ4,0Y4,0 + κ4,4Y4,4 + κ6,0Y6,0 + κ6,4Y6,4, (7.7)

with the following values of κ‡

∗Changes to the crystal field splitting and spin-orbit coupling are negligible over the temperature
range of magnetic ordering.

†Though it has been argued that spherical harmonics are preferable because they form an orthonor-
mal basis, whereas direction cosines have considerable overlap leading to ambiguity in the values of
K [129].

‡In general, the spherical harmonic transform (similar to a Fourier transform) calculates numeric
values of the coefficients.
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Table 7.1

κ Value in terms of K

κ0,0
21K1+K2

105

κ4,0 −11K1+K2
55

κ4,4 −11K1+K2
9240

κ6,0
2K2
231

κ6,4 − K2
41580

Table 7.2

K1(T )
K1(0) Value in terms of κ(T )

κ(0)

K1(T )
K1(0)

κ4(T )
κ4,0(0) −

1
11
κ6,0(T )
κ6,0(0)

K2(T )
K2(0)

κ4,0(T )
κ4,0(0)

The values in Table 7.2 are approximations which are calculated by inspecting
Table 7.1 and choosing to include only κ4,0 and κ6,0. The theory of Callen-Callen and
Zener shows that terms with the same value of the total angular momentum l have the
same anisotropy scaling (ie κ4,0(T )

κ4,0(0) = κ4,3(T )
κ4,3(0) ≡

κ4(T )
κ4(0) ), and gives the following result

κ4(T )
κ4(0) ' 〈mz〉10 (7.8a)

κ6(T )
κ6(0) ' 〈mz〉21 (7.8b)

From the relations in the table on the left, this implies that
11K1(T ) +K2(T )
11K1(0) +K2(0) ' 〈mz〉10 (7.9a)

K2(T ) ' K2(0)〈mz〉21 (7.9b)

This is usually approximated to

K1(T ) ' [K1(0) + 1
11K2(0)]〈mz〉10 − 1

11K2(0)〈mz〉21 (7.10a)

K2(T ) ' K2(0)〈mz〉21 (7.10b)

This creates a problem. Considering equation (7.9) in the limit that K1 ∼ 0, we
have

K2(T )
K2(0) ' 〈mz〉10, (7.11a)
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K2(T )
K2(0) ' 〈mz〉21. (7.11b)

This is a contradiction; K2 cannot scale as both the 10th and 21st power of the mag-
netisation. This simple calculation shows the theory is not rigorous when transforming
from coefficients κ to constants K–whether the contradiction is a real effect or due to
an approximation wasn’t investigated. Another issue is that there is often confusion
between Akulov’s derivation [269], and the general Callen-Zener theory [160]. This is
because Akulov’s derivation is reproduced in the Callen paper before the Callen-Zener
theory is derived [159]. The general theory requires good knowledge of crystal symmet-
ries, and has a high barrier to entry for those studying magnetic phenomena at micro-
magnetic length scales because the relationship between coefficients κ and constants
K is rarely considered in this context. Akulov’s derivation is much more intuitive but
fails for higher order local anisotropies (the author finds it only works for Ku1 and Kc1)
and can’t be applied to any multispin interaction (exchange, magnetic dipole-dipole
interaction, etc). Finally, the connection between the microscopic description and the
free energy difference is not well established by this theory; a partition function is never
manipulated yet the finite temperature anisotropy is called the free energy F [159, 269]
even though this is not true; expectation values over using the Hamiltonian are always
internal energies. Above, E has been used simply as the energy. This is acceptable for
a macroscopic/continuum energy; since there is no entropy, the free energy and internal
energy coincide. But, when parameterising macroscopic models from microscopic ones,
the internal energy scaling is often used for exchange but the free energy scaling is
used for anisotropies. In the rest of this section, we discuss a very general method of
calculating the temperature dependence of continuum and mean-field parameters from
a canonical ensemble based on the partition function which can be used for any energy
term.

Akulov [269] made a simple conjecture; the equilibrium (easy direction) thermal
fluctuations of spins can be projected onto a hard direction to measure the reduction of
the potential barrier (due to crystal anisotropy) between adjacent easy directions. The
equilibrium fluctuations are also applied to the easy direction to measure the finite tem-
perature potential well. The energy difference between the finite temperature potential
well and potential barrier is the energy required for the magnetisation to transition
between two easy directions. The scaling of the transition barrier is precisely the tem-
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perature scaling of the macrospin anisotropy constant. This is a simple, and very
powerful insight which recovers the Callen-Zener power scaling for uniaxial and cubic
magnetocrystalline anisotropies. This caused the author to think about the thermody-
namics of magnetic systems from the viewpoint of geometry and curvature, ultimately
leading to this chapter of work. In addition to the work of Akulov, Zener, and the
Callens, this chapter has been heavily influenced by the following works [265, 270–278].

7.2 Classical Thermodynamics

7.2.1 Introduction

Thermodynamics–in the most abstract sense–is a quantitative description of how energy
(heat, work, etc) can be added to–and extracted from–a system. Here, a ‘system’, is
some macroscopic amount of physical material such as a tank of water, a vial of a
chemical, a ferromagnet, or a package in a warehouse that needs to be moved. In
this section, a brief and general description of thermodynamics will be given with
the understanding that we will later discuss equilibrium statistical mechanics which
focuses on the thermodynamics of states rather than thermodynamic processes. This is
to prevent confusion with traditional literature which often describes the specific case
of the thermodynamics of fluids and gases.

7.2.2 State Variables, Total Energy and Conjugacy

The state of any physical system is described mathematically by variables. In typical
literature on the thermodynamics of gases, the named state variables are the temper-
ature of the environment T , entropy S, the pressure of the environment p, volume V ,
the chemical potential of the constituent particles µ, and the number of particles N .
In general, a system can be described by many other parameters besides these but we
will use these as a base point to generalising the description of a system.
The internal energy of a system U is the total energy. It is the sum of all energies in
the system; all kinetic and potential energies of the microscopic degrees of freedom. In
the description of gases, the internal energy is

U =
∫
TdS − pdV + µdN. (7.12)
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Temperature and entropy are special variables which are not specific to a given system,
but the other terms are specific to the way work can be done by a container of gas
molecules which can change volume and exchange particles with the environment. In
general, we can write the total energy as

U =
∫
TdS +

∑
i

YidXi, (7.13)

where {Yi} are intensive variables and {Xi} are extensive variables. The definition
of intensive and extensive are not very strict but the name is often used in literature.
Instead, we prefer to call these variables thermodynamic fields {Yi} and thermodynamic
displacements {Xi} (or macroscopic fields and macroscopic observables) which gives a
physicist a better intuition of how these variables work. If a sealed piston in an engine
is displaced by changing expanding, then the conjugate field (pressure) will decrease
to push the system towards equilibrium. Each Xi is conjugate to the variable Yi, this
means that each Yi is given by a partial derivative

Yi = ∂U

∂Xi
. (7.14)

For the classical Heisenberg model of a ferromagnet, examples of thermodynamic fields
are the effective magnetic field µ0H∗, skyrmion chemical potential µQ, and domain
wall chemical potential µDW. Their conjugate thermodynamic displacements are the
magnetisation M, topological charge nQ, and domain wall momentum KDW. An equi-
valent thermodynamic description of a classical Heisenberg ferromagnet can be written
in terms of spin waves. This description has distinct thermodynamic fields; the chem-
ical potentials for spin waves with a specified k-vector {µki} and the corresponding
thermodynamic displacements are the spin wave numbers of different k-vectors {nki}.

In Eq 7.13 we have written the total internal energy in integral form. Computing
the integral–assuming ground state values of the thermodynamic displacement variables
are zero–gives U = TS−pV +µN . We can also write the total change in internal energy

∗The literature usually states this is the applied magnetic field. We make this generalisation because
we are studying magnetism on crystals at the mesoscale which have complex interactions (as well as an
applied magnetic field) instead of the limiting case of idealised isotropic ferromagnets. This also shows
the link between classical Heisenberg model more clearly, and helps reduce confusion when considering
thermodynamics.
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as a differential which follows directly from Eq 7.13

dU = TdS +
∑
i

YidXi (7.15)

We now have enough information to define the four laws of thermodynamics.

7.2.3 The Zeroth Law

The zeroth law is a statement about equilibrium. It states that if two thermodynamic
systems (vials of fluid, domains in a ferromagnet, etc) are both in equilibrium with a
third system, then the first two systems must also be in equilibrium with each other.
Equilibrium between two systems means that they are connected by some boundary
which allows the flow of heat (but nothing else) and that there is no net heat flow from
one system to the other. In simple terms; they have the same temperature.

In maths, this is formulated by the following. Let U1, U2, U3 be the internal energies
of three systems which are functions of Ts, Ss, {Xs,i}, {Ys,i} where s ∈ {1, 2, 3} denotes
the number of the system. The zeroth law can then be written mathematically as

(T1 = T3) ∧ (T2 = T3) ⇐⇒ (T1 = T2), (7.16)

where the wedge symbol ∧ is the logical AND operator.

7.2.4 The First Law

The first law is a mathematical statement of conservation of energy. Before writing
this, we first need to introduce work W and heat Q. Similar to the discussion of ther-
modynamic fields/displacements, the expression for work is dependent on the degrees
of freedom of the system considered. Heat is independent of the system. Heat Q is the
total change in thermal energy of a system and is written

Q = T∆S. (7.17)

Work is how a thermodynamic system can affect other systems through its macroscopic
variables. The typical description is in terms of mechanical work which interacts with
other systems by changes in pressure and volume, for example a human metabolises
sugars in the body to move muscles which allows them to lift a heavy box. The human
applies mechanical work to the box which changes its gravitational potential energy.
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But many forms of work exist dependent on the system, it could be the work done by a
change in direction of the stray field of a ferromagnet on an adjacent paramagnet, how
a blackbody experiences radiation pressure, or how an apple falls from a tree due to
the work done by the gravitational field of the Earth. The work done by the system W

is the total change in energy due to the change in thermodynamic fields, but excluding
the energy unavailable due to entropy (TS). Again inspecting Eq 7.13, each conjugate
pair of fields/displacements gives a unique type of work that the system can do to its
environment Wi

Wi =
∫
YidXi. (7.18)

These forms of work could be mechanical (windmill), electromagnetic from mechanical
(dynamos/alternators), electrochemical (batteries), thermomechanical (combustion en-
gines, refrigerators/heat pumps), etc. The first law of thermodynamics states that any
change in internal energy is the difference between the thermal energy added and the
work done by the system

∆U = Q−W. (7.19)

Instead of defining W as the work done by the system, one can define the work done
on the system. The work done on the system by the environment leads to a change in
sign of Eq 7.19 so it reads ∆U = Q+W .

7.2.5 The Second Law

We have already partially stated the second law. The definition of the internal energy
U given by Eq 7.13 is part of the statement of the second law. The second part of the
second law can be formulated in many ways. Here are a few

• Heat can never pass from a colder to a warmer body without some other change
(work), connected therewith occurring at the same time. - Clausius 1854 [279]

• It is impossible for a self-acting machine, unaided by any external agency to con-
vey heat from one body to another at a higher temperature. - Kelvin/Thompson
1851 [280]

• Every process occurring in nature proceeds in the sense in which the sum of the
entropies of all bodies taking part in the process is increased. In the limit, i.e.
for reversible processes, the sum of the entropies remains unchanged. - Planck
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1897 [280]

• In every neighbourhood of any state S of an adiabatically enclosed system there
are states inaccessible from S. - Carathéodory 1966 [281]

Some of these statements are equivalent, some only partially describe what is known
as the second law in modern thermodynamics. The definition we will use is that the
entropy of an isolated system will always increase over time. To fully understand this,
we need to define reversible and irreversible processes.

A reversible process is one which no energy is lost as friction, magnetic damping,
or used to change the chemical state of a system. And, a process where the system
is in equilibrium throughout the process. The statement of constant equilibrium is
the same as a quasi-static process ie. so slowly that incremental changes to thermody-
namic displacements X are small enough that the thermodynamic fields Y are constant.
Examples are isothermal expansion of a gas, angular rotation of the magnetisation dir-
ection by an external magnetic field (hysteresis is irreversible, only processes where
domain walls do not move are reversible). An irreversible process is any other process.

For reversible processes, the loop/contour integral of the thermal energy change at
constant temperature is zero ∮

δQ

T
= 0. (7.20)

But for irreversible processes, this must be less than zero∮
δQ

T
< 0. (7.21)

In Equation 7.13, the thermal energy is the first term

δQ = TdS (7.22)

So the entropy is defined by the irreversibility of a process. The entropy of a system is
a measure of disorder. The contour integral of reversible processes, states that there is
no change in entropy. For an irreversible process, there must be an entropy increase.
This is the second law.

7.2.6 The Third Law

The third law is a weaker statement and is not often considered part of classical ther-
modynamics. It is, however, important in the statistical mechanical view of thermo-
dynamics. The third law states that, in the limit that temperature goes to zero, the
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entropy reaches a constant value

S(T → 0)→ S0. (7.23)

The value of S0 is given by the number of degenerate ground states. That is, given the
number of microstates W (sets of {Xi, Yi}) such that U(T = 0, {Xi}, {Yi}) = U0 the
ground state energy, then the entropy at zero temperature is

S0 = kB ln(W ). (7.24)

If the system has a single ground state then S0 = 0. The above is valid for both
discrete and continuous systems but W is not always countable. Take for example,
a classical Heisenberg ferromagnet with uniaxial anisotropy. There are two ground
states; Si = ẑ∀i and Si = −ẑ∀i so W = 2. But the isotropic Heisenberg ferromagnet
has infinitely many ground states, so W = ∞. In general, for continuous systems at
finite temperature, the entropy is given by the H-theorem [282, 283]

S = −kB
∫
p(X) ln(p(X))dX, (7.25)

where p(X) = 1
Z e
−βH(X) is the probability of a microstate X.

7.2.7 Thermodynamic Potentials

Thermodynamic potentials are fundamental equations. A fundamental equation is any
equation from which we can obtain all knowledge about a system [284]. All thermo-
dynamic potentials are equivalent as they can all be derived–under certain constraints,
called natural variables–from the internal energy U which itself is a thermodynamic
potential. The internal energy is the total energy of the system; it includes heat en-
ergy as well as all thermodynamic fields present in the system and its expression has
already been given above in Eq 7.13. A new thermodynamic potential is constructed by
turning one or more thermodynamic fields into an independent variable by a Legendre
transformation. For example, the Helmholtz free energy is a Legendre transformation
of the internal energy with respect to temperature. This constrains the temperature
(a thermodynamic field) to a fixed value and the entropy now becomes an independent
variable ie U(T, {Xi})→ F (S, {Xi}). The number of thermodynamic potentials which
can be constructed is only limited by the number of thermodynamic fields. The typical
thermodynamic potentials in the literature for chemical systems are the Helmholtz free
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Table 7.3: Expressions for the partition function Z for quantisation of energy (columns)
and coordinates (rows) assuming there are only two three-dimensional variables p and
q which describes the state of an object i (i ∈ 1, ..., N) in the ensemble.

Potential Differential Constants (Natural variables)
U = TS +∑

i YiXi dU = TdS +∑
i YidXi {Xi}

F = ∑
i YiXi dF = dU − (TdS + SdT ) T , {Xi}/S

H = U − pV dH = dU + pdV + V dp p, {Xi}/V
G = U − TS − pV dH = dF + (pdV + V dp) T , p, {Xi}/{S, V }

energy F , enthalpy H, and Gibbs free energy G. Each is relevant for a thermodynamic
process (where work is done) for a constant thermodynamic field (ie T ) and all thermo-
dynamic displacements held constant, except the conjugate to the constant field (S).
The expression for each potential is given in Table 7.3.

We are not studying processes, however. We are studying (equilibrium) states in
canonical ensembles, in which case all displacements are constant [285, 286].

7.2.8 Equilibrium States in Thermodynamics

In Section 7.2.5, the second law of thermodynamics was written in terms of a ther-
modynamic process. It states that the entropy of any closed system will increase over
time. A consequence of this is that, at equilibrium, entropy will be maximised–this is
the principle of maximum entropy. By taking a Legendre transformation of the internal
energy, we can write the entropy as a function of the thermodynamic displacements
S ≡ S(U, {Xi}). The maximum entropy principle for an equilibrium state (the point
R0 = (U0, {Xi0})) imposes the following mathematical constraints

∂S

∂Xj

∣∣∣∣∣
R0

= 0, ∂2S

∂X2
j

∣∣∣∣∣
R0

< 0 ∀j (7.26)

The vanishing first derivative ensures there is no thermodynamic field acting on the
system, this ensures the state is a local extremum of the entropy but doesn’t determine
whether this is a maximum or minimum. The second requirement for equilibrium is
that the second derivative is negative. This ensures that the entropy surface is concave
ie. for any infinitesimal change in a thermodynamic displacement X1 from the value
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X10, given by X1 = X10 + δX1 then the entropy at the displaced point must be less
than the equilibrium value, S(X1 + δX1) < S(X1).

Figure 7.1: A 1-dimensional entropy surface. The points x1, x2, x3 are stationary
points. The point x1 is a local maximum (S′(x1) = 0, S′′(x1) < 0) which is sometimes
called metastable. The point x2 is the global minimum (S′(x2) = 0, S′′(x2) > 0). The
point x3 is the global maximum (S′(x3) = 0, S′′(x3) < 0, S(x3) > S(x1)). This is the
most probable state of the system at this temperature.

We can reframe the principle of maximum entropy as a principle of minimum in-
ternal energy. Partial derivatives have the following property(

∂z

∂y

)
x

= −
(
∂x

∂y

)
z

/(
∂x

∂z

)
y
, (7.27)

which, along with the relation ∂U
∂S = T allows us to write(

∂U

∂X1

)
R0

= −
(
∂S

∂X1

)
R0

/(
∂S

∂X1

)
X1

= −T
(
∂S

∂X1

)
R0

. (7.28)

A similar processes can be applied to the second derivative with the the negative sign
changing the inequality. The principle of minimum energy is then

∂U

∂Xj

∣∣∣∣∣
R0

= 0, ∂2U

∂X2
j

∣∣∣∣∣
R0

> 0 ∀j. (7.29)
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We can immediately write this as the principle of minimum Helmholtz free energy.
Since all displacements are held constant except X1∗, any derivative of the internal
energy is equal to the derivative of the Helmholtz free energy

∂U

∂X1

∣∣∣∣
R0

= ∂

∂X1

(
TdS +

∑
i

YidXi and
)∣∣∣∣∣

R0

,

∂F

∂X1

∣∣∣∣
R0

= ∂

∂X1

(
−SdT +

∑
i

YidXi

)∣∣∣∣∣
R0

with

dS = dT = dXi = 0, ∀i 6= 1

(7.30)

which simplifies to
∂U

∂X1

∣∣∣∣
R0

= ∂F

∂X1

∣∣∣∣
R0

= Y1 (7.31)

For the free energy, the conditions for equilibrium are

∂F

∂Xj

∣∣∣∣∣
R0

= 0, ∂2F

∂X2
j

∣∣∣∣∣
R0

> 0 ∀j. (7.32)

Note that, although the second derivatives of the internal and free energies are equal
when all other quantities are fixed (denoted by R0), this assumes that the system is
completely isolated. In practice, we are interested in a system which is coupled to a
heat bath. When the temperature of the heat bath varies, entropy and other energies
are exchanged, so that the second derivatives no longer equate.

7.2.9 Limits of Stability and stationary points

In the above section, the condition for equilibrium was that the second derivative of the
bulk free energy with respect to a bulk thermodynamic variable was positive definite.
Stable points on the internal energy (temperature not fixed) surface are a very similar
concept to equilibrium points. In perfectly isolated systems at fixed temperature, all
equilibrium points are stable. But, in general, not all equilibrium points are stable.
The concept of stability allows small local fluctuations in macroscopic observables due
to the thermodynamic contact of a system with its environment–even in equilibrium as
defined by the first law. When close to a phase transition, these fluctuations can cause
the spontaneous transition from one phase to another; passing sound through water

∗Sometimes we are interested in non-equilibrium states where dS is considerable. Other methods
must be when the entropy of the state is large. For magnetic anisotropy, any change is low entropy
since exchange brings order to the system.
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supercooled to below the freezing temperature 0◦C locally changes molecular spacing
(even if the global average spacing is constant) which causes the water to spontaneously
freeze [287]. The macrostate parameters of the total system were held constant but the
transition still occurred because of the local changes. Supercooled water is an example
of an unstable equilibrium position.

We can formally derive the condition for stability by a thought experiment. Con-
sider a thermodynamic system which is prepared in some state (a point on the free
energy surface, F ({Xi})) and suppose it is then immediately isolated (parameters {Xi}
fixed). Now suppose the system is separated into two identical subsystems A and B

which are isolated from one another–the typical thought experiment is partitioning a
sealed box of gas molecules into two Fig. 7.2 but an equivalent magnetic version is given
in Fig. 7.3.

Figure 7.2: A depiction of the stability thought experiment. The grey region is a
vacuum, the white region is a perfectly isolated container, points with arrows are in-
distinguishable gas molecules and their velocity. The black dashed line separating the
two sides of the sealed container is a fictitious partition separating the system into two
subsystems A (left) and B (right).

Since the subsystems are identical they have the the same macrostate which implies:

1. Both subsystems and the total system are described by the same bulk free energy
functional FA({Xi}) = FB({Xi}) = F ({Xi}),
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Figure 7.3: Stability thought experiment in a ferromagnet. The grey region is a vacuum,
the white region is a perfectly isolated container, arrows are indistinguishable thermal
classical magnetic moments (precession given be dashed line). The black dashed line
separating the two sides of the sealed container is a fictitious partition separating the
system into two subsystems A (left) and B (right).

2. Both subsystems have the same values of macroscopic observables {Xi,A} =
{Xi,B} = {Xi,0},

3. Both subsystems have the same value of the free energy FA = FB = F ({Xi,0})
and,

4. The total free energy of the system is F ({Xi}) = F ({Xi,A}) + F ({Xi,B}) =
2F ({Xi,0}).

Now suppose a process p transfers a small amount of a macroscopic parameter X ∈
{Xi} from subsystem A to subsystem B (volume by moving the partition, chemical
potential/temperature by Maxwell’s daemon, magnetisation by spin current, etc); we
can write this process mathematically by p : (XA, XB)→ (XA − δX,XB + δX). Since
the subsystems are initially identical then XA = XB = X0, by applying p to the pair of
subsystems (XA, XB) we can write p : (XA, XB)→ (X0− δX, X0 + δX). If the system
is stable then, by the second law, the sum of the free energies of the subsystems after
the process must be greater than or equal to the total free energy before the process:

F (X0 − δX0) + F (X0 + δX0) ≥ 2F (X0) (7.33)

If this inequality is not met then removing the partition between the two subsystems
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would cause process p (ie crystallisation of H2O molecules) to continue until a stable
equilibrium point is reached (ice). A lack of stability close to phase boundaries is the
reason for coexisting phases (ie coexistence of steam and water at 100◦C, coexisting
hcp and fcc grains in a Co crystal, etc).

Equation (7.33) is the 1-dimensional condition for stability and, in the limit of small
fluctuations δX → 0, can be written as any point X0 which satisfies

∂F

∂X

∣∣∣∣
X0

= 0 and ∂2F

∂X2

∣∣∣∣∣
X0

≥ 0. (7.34)

These conditions are satisfied for any equilibrium macrostate (F ′(X) = 0, F ′′(X) > 0)
and any stationary inflection point (F ′(X) = 0, F ′′(X) = 0). For any non-isolated
system at the limit of stability ∂xxF = 0, heat and work can be exchanged with the
environment which allows the system to fall into the energy well depicted in Fig. 7.4.
Any point R′ such that ∂xxF (R′) = 0 is a stationary point and indicates a phase trans-
ition.

7.2.10 Energy as a Regular Surface

In the previous sections, the entropy and free energy were called surfaces without jus-
tification. A surface is a two-dimensional object in three-dimensional space, higher
dimensional surfaces are called manifolds–throughout we will use the term surface to
describe a manifold of any dimension for brevity. Writing the bulk internal and free
energies as regular parameterised surfaces (sometimes called a Monge patch, or the
graph of a function with two variables) allows us to state and apply powerful tools
from differential geometry to thermodynamics without proof. A regularly paramet-
erised surface (RPS) M , is a continuous and smooth subset of R3 which can be written
parametrically in the form M = [u, v,G(u, v)]. Here, continuous means that there are
no holes in the surface and smooth means the surface is infinitely differentiable with
respect to u and v at every point r = (u, v).

The constraint that surfaces must be continuous and continuously differentiable
means polar coordinates are usually used so that the graph G can be written in terms
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Figure 7.4: The free energy surface of a system that undergoes a first order phase
transition at T3. T1 is the lowest temperature, the corresponding curve is coloured dark
blue, T4 is the highest temperature, the corresponding curve is dark red. Temperatures
T1, T2, and T3 have two equilibria (stationary points) but T4 only has one. The second
equilibrium position is added as a point on the curve. The second equilibrium position
at T3 is an inflection point so it is unstable.

of trigonometric and exponential functions (which are continuous and continuously dif-
ferentiable). We can write the bulk internal energy of macrospin models of magnetic
materials in this form. Let us restrict our thermodynamic system to a canonical en-
semble (fixed temperature) of ferromagnetic classical magnetic moments localised on
fixed lattice sites (no mechanical degrees of freedom). The order parameter is the
magnetisation M (or sublattice magnetisations Mi) and the thermodynamic displace-
ments are the polar Θm and azimuthal Φm angles of the reduced magnetisation vector
(m = M/|M|)∗. The thermodynamic field is the effective magnetic field H (which
can include many energy terms). The internal energy surface can be constructed from
a single spin Hamiltonian, Hi = Si ·

(
∂H
∂Si

)
≡ H(θi, φi) (the case of spin-spin interac-

tions will be considered later). We can replace the microscopic spin angles θi and φi

with bulk order thermodynamic displacements when take the Hamiltonian expectation
∗We use the reduced magnetisation as we do not want to convolute the scaling of mean field

parameters and the scaling of Ms(T )
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value. That is, we can write the bulk internal energy as

U(ΘM ,Φm)|T ≡ 〈H〉|T (ΘM ,Φm). (7.35)

The bulk internal energy surface at fixed temperature is then MU = [Θ,Φ, U(Θ,Φ)|T ].
Some results from differential geometry will now be stated for an n-dimensional sur-
face M = (x1, ..., xn, G(x1, ..., xn)). For results which are written for two-dimensional
surfaces (ie G ≡ G(xi, xj)), it is assumed that all xk, k 6= i, j are fixed.

The connection with constrained Monte Carlo is now clear. Since CMC fixes the
magnetisation directions ΘM and ΦM , it allows the direct evaluation of 〈H〉|ΘM ,ΦM ,T .
In the original paper by Asselin [38], the torque is connected with the free energy.
In Fig. 7.6 we clearly show that, by using CMC, the temperature dependence of
the internal energy difference between an easy and hard axis for a uniaxial ferro-
magnet (∆U(T ) = 〈H〉|ΘM=π/2,ΦM=0,T − 〈H〉|ΘM=0,T ) is identical to the temperat-
ure dependence of the torque. The most obvious direction to investigate the dis-
crepancy, is to carefully consider whether the partition function can be written as
Z(q) = ∑

α exp (−βH(ξα, q)) (equation C1 of [38]). By definition, the partition func-
tion is the sum over all possible microstates for all possible macrostates. Z(q) is a
subset of the true partition function Z =

∫
dqZ(q), Z(q) is the sum over all microstates

which are in the macrostate q. We make no further attempts to reconcile this contra-
diction, but the author is confident that the macroscopic torque measured in CMC is
related to the internal energy, not the free energy (see Fig. 7.6). Next, we state some
properties of surfaces from geometry.

Curvature

Consider a point r0 = (x0, y0) on an RPS which is given by the graph of G(x, y). The
curvature of G(x, y) at the point r0 along the x-direction is

kx(r0) =
[
∂2G

∂x2

]
r0

(7.36)

The curvature of G(x, y) at the point r0 along a generic direction n̂ is

kn =
[
xnynn − xnnyn
(x2
n + y2

n)3/2

]
r0

(7.37)
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First Fundamental Form

The first fundamental form I of an RPS which is given by the graph of G(x, y) is

I =

(1 +G2
x) GxGy

GxGy (1 +G2
y)

 (7.38)

The determinant of the first fundamental form is det(I) = 1 +G2
x +G2

y.

Second Fundamental Form

The second fundamental form II of an RPS which is given by the graph of G(x, y) is

II = 1√
1 +G2

x +G2
y

Gxx Gxy

Gxy Gyy

 . (7.39)

The determinant of the second fundamental form is

det(II) = 1√
1 +G2

x +G2
y

[
(GxxGyy)−G2

xy

]
= 1√

det(I)
|D2G|, (7.40)

where |D2G| is the Hessian determinant of G.

Principal Curvatures

The principal curvatures κ1, κ2 of G(x, y) at a point r0 = (x0, y0) are the maximum and
minimum values of the curvature. The principal directions e1, e2 are the directions of
principal curvature. The principal curvatures and principal directions at an equilibrium
positions are given by the eigenvalues and eigenvectors of the second fundamental form
II.

Gaussian Curvature

Consider a point r0 = (x0, y0) on an RPS which is given by the graph of G(x, y). The
Gaussian curvature K(r0) is the product of the two principal curvatures K(r0) = κ1κ2.
Its value is the ratio of the determinants of the second and first fundamental forms
which can be simplified to

K(r0) = det(II)
det(I) =

[
(GxxGyy)− (Gxy)2

(1 +Gx +Gy)2

]
r0

(7.41)

If K(r0) = 0 then one or both of the principal curvatures are zero.
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Mean Curvature

The mean curvature H is the average of the two principal curvatures H = 1
2(κ1 + κ2).

For a Monge patch, this is given by the following expression

H = 1
2

Tr(I ◦ II)− Trasym(I ◦ II)
det(I)

= 1
2

(1 +G2
x)Gxx + (1 +G2

y)Gyy − 2GxGyGxy
(1 +G2

x +G2
y)3/2

(7.42)

7.2.11 Calculating Principal Curvatures

In general, if we are not at an equilibrium position–either by a constraint in an atomistic
simulation, or by applying (and then removing) a small magnetic field in an experiment–
then the principal curvatures are given, in terms of the mean and Gaussian curvatures
K, H, by the following expression

κ1 = H+
√
H2 −K

κ2 = H−
√
H2 −K

(7.43)

This contains both first and second derivatives of the free energy surface so any con-
straint of the system from equilibrium requires the free energy scaling to take into
account effective thermodynamic field.

Point on a Surface

Points on a surface can be classified by the gradient and principal curvatures at that
point. When studying thermodynamics, the classification of points on an energy sur-
face determine whether that state is an equilibrium state and its stability.

A stationary point is a point vecr0 on a surface G(x, y) which has vanishing gradient
∇Gr0 = 0. In this case, the first fundamental form reduces to the identity matrix and
the second fundamental form reduces to the Hessian matrix. Points on surfaces can be
further classified by the values of the principal curvatures. We are only interested in a
few cases

Case 1: κ1 < 0, κ2 < 0

Points where both principal curvatures are negative are called concave–if you
travel along the surface in any direction, the value of ∇G(x, y) will decrease.
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Additionally if the point is a stationary point ∇G = 0, then the point is a
maximum. Moving along any direction will decrease the value of G. If the
point is stationary and both principal curvatures are negative and of equal size
κ1 = κ2, then the maxima are symmetric ie G(x0 ± ε, y0) = G(x0 ∓ ε, y0) =
G(x0, y0 ± ε) and the same is true of the gradient, an example is the [111] dir-
ection (≡ (θ = cos−1(1/

√
3), φ = π/4)) on the surface of a first order cubic

anisotropy f(θ, φ) = sin2 θ cos2 θ + sin4 θ sin2 φ cos2 φ.

Case 2: κ1 = 0, κ2 < 0

This point has constant gradient along the e1 direction and the gradient decreases
along the e2 direction. If the point is a stationary point, then G(x, y) is constant
along e1 and decreases along e2. This is the case for any point on the outer surface
of a tube.

Case 3: κ1 = 0, κ2 = 0

This point is either any point on a surface which can be parameterised as a plane
ie the surface of a sphere.

Case 4: κ1 > 0, κ2 = 0

The classification of this point reads the same as Case 2, replacing ‘decreases’
with ‘increases’. An example is any point on the inner surface of a tube.

Case 5: κ1 > 0, κ2 > 0

These points are convex. The gradient along any direction increases. If the point
is also stationary, this is a minimum point. On a free energy surface, these points
are local equilibria. An example is any point r = (0φ) on the surface a first order
cubic anisotropy.

Case 6: κ1 < 0, κ2 > 0
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When the principal curvatures have opposite sign, the gradient increases in one
direction and decreases in another. If this point is also a stationary point, then
this is a saddle point (minimum in one direction, maximum in the other). An
example is the [110] direction ([110] ≡ (θ = 0, φ = π/2)) on the surface of a first
order cubic anisotropy.

These are summarised in Table 7.4

Table 7.4: Classification of points on a surface by their principal curvatures.

κ1 < 0 κ1 = 0 κ1 > 0

κ2 < 0 Concave ellipsoid Concave cylinder Hyperboloid

κ2 = 0 Concave cylinder Plane Convex cylinder

κ2 > 0 Hyperboloid Convex cylinder Convex ellipsoid

7.3 Bulk Internal Energy Scaling

The literature in magnetism has never been very clear on what is meant by the ‘free
energy scaling’ of material parameters, primarily because the thermodynamics of mag-
netism is difficult∗. From thermodynamics we understand that entropy prevents us from
extracting all of the available (internal) energy in a steam engine and that the energy
which can be extracted is the free energy, but this doesn’t translate well to magnetic
systems. It is plausible to imagine extracting energy from domain walls or skyrmions
in a ferromagnet by converting the time dependent dipole field into an electric cur-
rent, so the extracted electrical power must be related to the free energy of a domain
wall. However, the thought experiment doesn’t translate well to spintronic devices that
make use of quasiparticle excitations like magnons. The question of whether domain
wall widths are related to free energies or internal energies is even more confusing.
Regardless, we derive expressions for the internal energy scaling of macroscopic prop-
erties in Section 7.3.1 and by using the Gibbs-Helmholtz equation (7.73) we can easy

∗The author has been dissuaded from this avenue of study at more than one conference
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calculate the temperature dependence of free energies from internal energies.

Akulov’s simple method of projecting equilibrium fluctuations around the z-direction
of a cubic ferromagnet onto the maxima along [111] and [101] gives us a hint about
something more fundamental about the free energy scaling of bulk material properties
using the fluctuations (entropy) calculated from microscopic considerations. Akulov’s
method is attractive because simple expectation values are easy to calculate and are
independent of the numerical method used. This would mean we can use advanced
semi-classical dynamical methods [132] (Section 5.1) which more accurately calculates
the temperature scaling of the order parameter so the validity of using a Callen-Zener
magnetisation scalings and Bloch’s law can be verified. These dynamical methods are
very attractive from the view of computation as well; they are embarrassingly parallel
algorithms that work best on GPUs. Constrained Monte Carlo, on the other hand,
cannot be parallelised so calculating the bulk free energy scaling of any large system
with dipole-dipole interactions is computationally very difficult. It also means we can
calculate the temperature scaling of non-local interactions such as exchange, DMI and
dipole-dipole interactions which cannot be written as a simple power of the magnet-
isation. As we will show in this section, Akulov’s method doesn’t work for most cases,
only first order uniaxial and first order cubic anisotropies coincide with the stabil-
ity coefficients and Callen-Zener theory. Outside of magnetism, the use of stability
coefficients is commonplace [265, 270, 288–290] but the connection between stability
coefficients and statistical mechanics (ie simulations) in any field has been missed. We
develop this here so that no complicated sampling methods are required to calculate
the temperature dependence of macroscopic models.

7.3.1 Stability Coefficients

There have been many attempts to calculate the scaling of micromagnetic and mean-
field properties of magnetic materials from ensemble methods. But these methods don’t
employ the standard tools from thermodynamics which are used in other areas of physics
(molecular dynamics, astrophysics and fluids) [273, 291–293]. This is because thermo-
dynamic theory isn’t usually written in terms of magnetism. The literature which does
consider magnetism is in the context of macroscopic ferromagnets–bar magnets in solen-
oids, the effect of bulk magnetostriction on mechanical properties–or focuses on Landau
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theory which does consider microscopic degrees of freedom and is only applicable near
the critical temperature. None of these are very easily applicable to modern magnetism
thin film ferromagnetism or multisublattice magnetism. Additionally Landau theory is
of little interest to modern researchers that want to investigate properties of devices far
below the critical temperature. So, much of the knowledge of the applicability of ther-
modynamics in magnetism has been lost, or is considered niche in the wider community.

The tools which are used extensively in molecular dynamics and astrophysics come
from thermodynamics and statistical mechanics, and can be used on any system of any
arbitrary constituent objects. In addition, the description of curvatures of the preced-
ing section did not limit which points on the surface we were considering. This means
we can use those expressions to calculate both equilibrium and non-equilibrium thermal
stability of different bulk internal energies.

Thermodynamic stability measures more than simply the point at which a phase
transition occurs, it also measures the relative stability of an equilibrium state–the in-
ternal energy scaling of a mean-field parameter in an equilibrium position. The second
derivative of the internal energy with respect to an order parameter is known as a
stability coefficient [265]. For equilibrium states at zero temperature, it has a singular
positive value and decreases monotonically until the critical temperature. At the crit-
ical temperature, the bulk internal energy landscape becomes flat with respect to the
mean-field parameter and increasing the temperature further has no effect because the
order parameter vanishes. These properties are the exact requirements for a ‘proper’
metric with which to parameterise a macroscopic description of a microscopic system
(macrospin models, micromagnetism, etc).

In general, stability coefficients can be measured with respect to an arbitrary num-
ber of variables. To calculate multi-variable stabilities, we must use the framework
developed in section 7.2.11. A multivariable stability coefficient is given by the equa-
tion for the principal curvatures (7.43). Sometimes, we do not want the scaling along the
direction of maximum curvature. Instead, transitions between different magnetisation
states are usually along paths of minimum curvature. For a rank-4 cubic anisotropy,
switching occurs via the 〈110〉 directions, not the 〈111〉 directions because the energy
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barrier (and curvature) are lower. In general, the scaling along different directions
are not equal–the internal energy landscape does not scale uniformly when thermal
fluctuations are added to the system. In condensed matter, we parameterise the mag-
netisation by the the angles Θ and Φ on the unit sphere. So, for now, we will limit
ourselves to the two-variable stability coefficients. The bulk internal energy scaling of
a macroscopic parameter K(T ) is given by the ratio of the stability coefficient Υ∗ at
temperature T and temperature T = 0

K(T ) = K(0) ΥK(T )
ΥK(0) , (7.44)

where angle brackets denote thermal averaging and the subscript K means that ΥK is
the stability coefficient of the bulk internal energy term which contains K. All stability
coefficients can be written as the expectation value of magnetic moments in equilibrium.
Using an atomistic method based on a canonical ensemble, the vectors of all spins can be
accessed. So a stability coefficient can always be measured–the internal energy scaling
with respect to temperature. Although, for studying the temperature dependence of
mean-field parameters in textures like domains which are non-equilibrium states with
respect to exchange (they minimise the stray field in FMs so are equilibrium states
of real systems) then the internal energy difference must be calculated using different
methods. This is because the entropy of a twisted state and a homoegeneous state
differ. This is not included in the calculation of a stability coefficient. Instead the
internal energy difference ∆U(T ) due to the thermodynamic displacement X1 between
the equilibrium position r0 and a non-equilibrium position r′ is given by

∆U(T,X1)
∆U(0, X1) =

[
∂2U(T, r′)
∂2X1

− ∂2U(T, r0)
∂2X1

]/[
∂2U(0, r′)
∂2X1

− ∂2U(0, r0)
∂2X1

]
. (7.45)

As an example, consider the case of an easy-axis uniaxial ferromagnet which has the
following Hamiltonian

H = −1
2
∑
i,j

JijSi · Sj −K0
∑
i

(Si · ẑ)2, (7.46)

where Jij is the exchange interaction, Si is the classical spin unit vector of spin i, and K0

is the uniaxial anisotropy constant (the subscript 0 denotes the microscopic parameter).
∗The symbol Υ is chosen to match the helicity modulus used in previous literature and originates

from the symbol for surface tension (γ) used in older thermodynamics literature [288].
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For a macrospin model, the bulk internal energy only has one term–a macrospin can
only have a single value of the magnetisation vector (unlike micromagnetism). The
bulk internal energy is then

U(Θ,Φ, T ) = 〈H〉(Θ,Φ) = −K(T ) cos2(Θ). (7.47)

The second derivative of the internal energy with respect to Θ–assuming the magnet-
isation is in equilibrium so the first derivatives can be ignored–is then

∂2U

∂Θ2 = 2K(T )
[
cos2(Θ)− sin2(Θ)

]
, (7.48)

which can be written in terms of the microscopic variables as

∂2H
∂Θ2 = 2K0

〈
[cos2(θ)− sin2(θ)]

〉
= 2K0

〈
[(S · ẑ)2 − |S× ẑ|2]

〉
= 2K0

〈
(S · ẑ)2 −

[
(S · x̂)2 + (S · ŷ)2

]〉
.

(7.49)

The final step shows that we must to choose from two orthogonal paths. This is import-
ant because, at the microscopic level, a magnetic moment given by S = [ 1√

2δ,
1√
2δ, 1−δz]

contributes equally to the path which passes through x̂ and the path which passes
through ŷ. Ignoring the orthogonality of the directions x̂ and ŷ would reduce this
3-dimensional energy surface to a 2-dimensional one–even though fluctuations are 3-
dimensional. Now, using the Cartesian basis, let’s choose the path from +ẑ to −ẑ
which passes through x̂ (Φ = 0) so the term (s · ŷ) does not contribute to the internal
energy scaling along the orthogonal path. The stability coefficient Υ along the path
Φ = 0 is then

Υ(T )|Φ=0 = 2K0
〈

(S · ẑ)2 − (S · x̂)2
〉
. (7.50)

Since the ferromagnet is isotropic in the xy-plane, the stability coefficient along any
path is given by

Υ(T ) = 2K0

〈
(S · ẑ)2 − 1

2 |S× ẑ|2
〉
. (7.51)

This is then normalised to zero temperature giving

K(T )
K(0) =

〈
(S · ẑ)2 − 1

2 |S× ẑ|2
〉
. (7.52)
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Figure 7.5: Illustration of internal energy surface of a uniaxial anisotropy at various
temperatures. The anisotropy is given by the internal energy function (7.47) where
Θ is the polar angle of the order parameter. The two minima are the points Θ = 0
and Θ = π (or m = ẑ and m = −ẑ). T1 = 0 , T4 ≈ Tc, and T1 < T2 < T3 < T4.
The curvature of the internal energy surface is greatest for T = 0 and becomes flat
(vanishing curvature) at T = Tc.

We can now calculate the bulk internal energy scaling of the uniaxial anisotropy
in terms of expectation values of the microscopic parameters which accounts for the
curvature of the uniaxial energy surface. This should be calculated in equilibrium
using common tools like Metropolis Monte Carlo or atomistic spin dynamics and
doesn’t require the use of complex methods like constrained Monte Carlo or meta-
dynamics [38, 294]. We can now see the connection with both Akulov’s method (see
Section 7.1) and the Callen-Zener theory. In the former, the equilibrium fluctuations
(
〈
cos2 θ

〉
) are projected onto a hard direction (

〈
sin2 θ

〉
) and the difference between these

energies is taken as the bulk internal energy scaling. Callen-Zener theory integrates the
equilibrium fluctuations over the anisotropy surface. Since these both use equilibrium
fluctuations, there is no change in entropy so they are calculating the internal energy
scaling of the equilibrium position. We reiterate that Akulov’s approach this is a crude
approximation of the curvature and only works for specific edge cases like this one.
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7.3.2 Exchange

Unlike magnetocrystalline anisotropy, there is some literature on the stability coefficient
of exchange. In older literature, this is called the helicity modulus or spin stiffness [246–
255]. Each of the previous references use different definitions of the spin stiffness and
obtain different expressions for the same quantity. It was noted in 1999 that there
are two definitions of the helicity modulus [295]. The original definition of the helicity
modulus is described in the language of Bose superfluids in equilibrium. Bose super-
fluids are uniform boson gases in which have undergone condensation. This exactly
describes a uniform ferromagnet in which all magnons are in the k = 0 state. The
requirement of uniformity and Bose-Einstein condensations means this cannot describe
a ferromagnet with antiperiodic boundary conditions. A ferromagnet with antiperiodic
boundaries would contain both Ŝ = 1 and Ŝ = −1 magnons on either side of the domain
wall, violating the requirement of a Bose condensate. Instead it measures the collective
phase of the Bosons at low temperature–it is the second derivative of the Hamiltonian
with respect to the wavevector of a boson (magnon), in the limit that the spin wave
vector goes to zero ∂2(hfk)

∂k2

∣∣∣
k→0

[246]. This is, by definition, the spin wave stiffness.
The authors of the original paper weren’t consistent in their definition of the helicity
modulus as they didn’t consider this distinction. So, the superfluid density was used
to describe the difference between periodic and antiperiodic boundary conditions. This
mistake created the confusion and conflicting expressions for the helicity modulus in
the literature. It was also a large source of confusion for the author while developing
the above thermodynamic methods for magnetism. So, while the helicity modulus is
often used to describe the free energy penalty due to exchange of adding a domain to
the spin system, in most cases, the expression is simply the spin wave stiffness. This
is not the quantity that many set out to measure–the finite temperature scaling of the
exchange stiffness is distinct from this. The temperature scaling of the spin wave stiff-
ness describes a macrospin model of dynamics with a fundamentally different internal
energy functional. In this picture, the stability coefficient for spin wave stiffness is a
chemical potential for spin waves, it answers the question “How much energy will it cost
to create a k = 0 spin wave in a uniform ferromagnet which contains 〈nk〉T thermal
spin waves?”. This macroscpin model does not allow twists which are static textures
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in magnetisation in space so cannot represent the temperature dependence of exchange
stiffness.

Instead, the energy functional which is used in continuum methods like micromag-
netism, and which defines the exchange stiffness, is a second order multipolar (Taylor)
expansion of the exchange interaction∗ which introduces the required spatial degrees of
freedom into the space independent Heisenberg Hamiltonian†. The relevant stability
coefficient answers questions like “In a uniform ferromagnet magnetised along ẑ, how
much energy does it cost it to add an infinitesimal twist to the magnetisation from
the z-direction towards the y-direction which propagates along the x-direction?”. The
energy function due to exchange in a continuum model is given by

E(T ) =
∫
V

d3r Aαβ(T )
(
∂m(r)
∂rα

)
·
(
∂m(r)
∂rβ

)
(7.53)

where r is the position in the continuum field, α and β are Cartesian indices, the integral
is over the volume V of the magnetic system, m(r) is the unit magnetisation field, and
Aαβ(T ) is the finite temperature exchange stiffness. Einstein summation of Cartesian
indices is assumed. The zero temperature expression for exchange stiffness can be
found by taking the second order multipolar expansion of the Heisenberg exchange
Hamiltonian. The first step is to rewrite the dot product of two spins, which is defined
by four angles θi, φi, θj , and φj , as a single vector which corresponds to the angular
deviation of the two spins from parallel

H = −1
2
∑
ij

JijSi · Sj

= −1
2
∑
ij

Jij(Si · Sj)

= −1
2
∑
ij

Jij [1−
1
2(∆Sij) · (∆Sij)],

(7.54)

∗The first order multipole expansion uniquely vanishes in equilibrium everywhere except at inter-
faces and surfaces.

†Interaction vectors are not necessary to completely define the Heisenberg Hamiltonian, only a
set of interaction indices is required and the magnetic moments can exist anywhere in space without
changing the Hamiltonian energy. Of course, real systems must be crystalline.
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where ∆Sij can be written in a few different forms

∆Sij = (Sj − Si)

= [sin(aij), sin(bij), sin(cij)]

= [x̂ · (Si × Sj), ŷ · (Si × Sj), ẑ · (Si × Sj)] ,

(7.55)

and, aij , bij , and cij are the yaw, pitch, and roll angles between spins Si and Sj∗. This
is an exact expansion of the dot product. The next step is to add the interaction vector
for the second order multipole expansion of the discrete system

H = −1
2
∑
ij

∑
α,β=x,y,z

Jij

1− 1
2

(
∂Sij
∂rαij

)
·

∂Sij
∂rβij

 rαijrβij
 , (7.56)

where rij = rj − ri. The derivatives in the above equation are simple finite differences
due to the discrete nature of the system. We retain them here because it makes the
process of coarse graining when moving to micromagnetism clear. The above Hamilto-
nian contains a constant energy offset. We can remove this and write the interacting
part of the exchange Hamiltonian as

Hint = 1
4
∑
ij

∑
α,β=x,y,z

Jij r
α
ijr

β
ij

(
∂Sij
∂rαij

)
·

∂Sij
∂rβij

 . (7.57)

Information about thermal fluctuations, and magnetisation textures like domains and
other nonuniformities is contained within the spin vectors Si. In micromagnetism, the
Hamiltonian is replaced with a temperature-free energy functional (F , U , or simply
E), summations over spin vectors are replaced with integrals over the volume of the
magnetic material V , and derivatives of the discrete spin vectors are replaced with the
derivative of a continuous magnetisation field ∂Sij

∂rij →
∂m(r)
∂r which allows the coarse

graining required for simulations of µm devices. Applying this transformation from
microscopic Hamiltonian to macroscopic energy functional gives

E(m(r)) =
∫
V
dr3 ∑

α,β=x,y,z

 1
NνWS

∑
ij

Jijr
α
ijr

β
ij

(∂m(r)
∂rα

)
·
(
∂m(r)
∂rβ

)
, (7.58)

where N is the number of spins in the system, and νWS is the Wigner-Seitz volume. The
factor in square brackets contains a summation over the discrete lattice. This allows

∗These angles are loosely related to direction cosines by α1 = cos
(
aij
|aij |

)
, α2 = cos

(
bij
|bij |

)
, and

α3 = cos
(
cij
|cij |

)
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the macroscopic energy to be parameterised from the zero temperature microscopic
model; it defines the zero temperature exchange stiffness tensor Aαβ(T = 0) which is
written as

Aαβ(0) = 1
4

1
N νWS

∑
i,j

Jij r
α
ij r

β
ij . (7.59)

Replacing the lattice sum in the free energy function for the exchange stiffness tensor
gives

E(m(r)) =
∫
V
dr3 ∑

α,β=x,y,z
Aαβ

(
∂m(r)
∂rα

)
·
(
∂m(r)
∂rβ

)
, (7.60)

We can now use the continuum energy functional and interaction Hamiltonian to calcu-
late the stability coefficient of the exchange stiffness for Bloch-type twists∗. Since the
exchange stiffness measures the energy cost of putting a twist into a continuous mag-
netisation field, the stability coefficient calculation must include both the propagation
vector and the twist angle. So, instead of applying simple derivatives, we instead wish
to apply operations of the form kαrαij

|k·rij |
∂

∂∆Sαij
where k is the unit propagation vector of

the magnetisation twist of interest. The prefactor kαrαij
|k·rij | is unitless and normalised. It

allows us to distinguish between pairs of spins which have a displacement vector parallel
to the propagation vector from those which are perpendicular (so shouldn’t contribute
to the observable). The derivative ∂

∂∆Sαij
measures the deviation between neighbour

spins in the direction parallel α. We can rewrite the prefactor using delta-like functions
δ(α) = kα∆rαij

|k·rij | . Using this, the stability coefficients for the exchange stiffness tensor
which are sensitive to the temperature dependence of Bloch walls are given by

Υαβ(T ) =
〈
δ(α)δ(β) ∂2H

∂∆Sαij ∂∆Sβij

〉
(7.61)

The simplest micromagnetic models use diagonal exchange stiffness tensors so we give
these terms here. We choose to write the stability coefficients in terms of the spin
deviation angles aij , bij , cij

Υxx(T ) =
〈

∂2H
∂2∆Sxij

〉
=
〈
∂2H
∂2aij

〉
=
〈∑

ij

Jijδ(x)
[
sin2(aij)− cos2(aij)

]〉
. (7.62)

∗Néel twists have different expressions for the exchange stability coefficients because the propagation
vector and twist direction are perpendicular. In simple magnets without DMI, these will coincide but
is an important detail for skyrmion research.
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The temperature dependence of the diagonal components of the exchange stiffness
tensor are then

Axx(T )
Axx(0) =

〈∑
ij

Jijδ(x)
[
sin2(aij)− cos2(aij)

]〉/∑
ij

Jijδ(x)


Ayy(T )
Ayy(0) =

〈∑
ij

Jijδ(y)
[
sin2(bij)− cos2(bij)

]〉/∑
ij

Jijδ(y)


Azz(T )
Azz(0) =

〈∑
ij

Jijδ(z)
[
sin2(cij)− cos2(cij)

]〉/∑
ij

Jijδ(z)

 .
(7.63)

It is more intuitive to work with spin vectors rather than spin deviation angles. Trans-
forming back to spin vectors, these are

Axx(T )
Axx(0) = 1∑

ij Jijδ(x)

〈∑
ij

Jijδ(x)
[
(Syi Szj − Szi S

y
j )2 − (Szi Szj + Sxi S

x
j )2
]〉

Ayy(T )
Ayy(0) = 1∑

ij Jijδ(y)

〈∑
ij

Jijδ(y)
[
(Szi Sxj − Sxi Szj )2 − (Szi Szj + Syi S

y
j )2
]〉

Azz(T )
Azz(0) = 1∑

ij Jijδ(z)

〈∑
ij

Jijδ(z)
[
(Sxi S

y
j − S

y
i S

x
j )2 − (Sxi Sxj + Syi S

y
j )2
]〉

(7.64)

These expressions explicitly measure the finite temperature scaling of the exchange stiff-
ness in ferromagnetic systems which host Bloch domain walls in the equilibrium state.
Similar expressions can be obtained for Néel-type twists to the magnetisation where the
propagation vector and magnetisation twist direction are perpendicular. This is strictly
valid for domain walls of infinite length. For very tight domain walls, the contribution to
the free energy scaling due to the non-equilibrium entropy difference between the twis-
ted and homogeneous states (dS) will be large. Using the Gibbs-Helmholtz equation to
calculate the temperature dependence of the free energy allows the entropy difference
in the homogeneous state at different temperatures to be inferred; it cannot calculate
the entropy difference between a homogeneous state and highly non-equilibrium state
(unless the internal energy difference between these states is measured). The approx-
imate entropy contribution can be investigated by measuring the magnetisation within
a domain wall, an idea which is similar to the work of Atxitia [261]. The magnetisation
is a very good proxy for the entropy. The Boltzmann entropy expression, S = kB ln(Ω),
includes the number of microstates for a given macrostate, Ω. And, although Ω is in-
finite in a classical three-dimensional Heisenberg model, it is proportional to the radius
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of the cone that the magnetisation makes with the quantisation axis. So, the difference
between the saturation magnetisation of a homogeneous ferromagnet mz(T ) can be
compared with the average saturation magnetisation within a domain wall which can
be calculated using a rotating reference frame mu(T ) = ∑

i m(xi) · u(xi), where xi are
the discrete positions in the ferromagnet along the propagation vector of the domain,
m(xi) is the magnetisation of the layer of spins located at xi, and u(xi) = m(xi)

|m(xi)| is the
quantisation axis for the magnetisation in the layer of spins at xi∗.

7.3.3 Comparison with constrained Monte Carlo

Constrained Monte Carlo (CMC) [38] calculates the temperature scaling of internal
energy differences between different points on the internal energy surface by calculating
average macroscopic torques (proportional to the first derivative of the internal energy)
by fixing the order parameter direction to a non-equilibrium direction. CMC can be
used for all constraints on the order parameter but in equilibrium positions the torque
vanishes at all temperatures. The macroscopic torque surface is flat (zero torque for all
order parameter constraints) above the critical temperature in systems which undergo a
second order phase transition. When applied to magnetism, CMC is almost equivalent
to the stability coefficient method of calculating bulk free energy parameters for all
single-ion, local Hamiltonian terms (magnetocrystalline anisotropies), and any non-
local Hamiltonian terms which do not induce magnetic order on their own (dipole-dipole
interactions, two-ion anisotropies). But constrained Monte Carlo cannot calculate the
temperature scaling of Heisenberg exchange, DMI or higher order exchange terms (such
as biquadratic exchange).

There is another way of using constrained Monte Carlo. Instead of running a single
simulation along a direction of maximum torque, you can run two simulations, one
which constrains the order parameter along an easy direction, another along a hard
direction. This is a direct calculation of the barrier between two adjacent easy axes (ie
a numeric verification of Akulov’s method). A visualisation of the different points on

∗In simulations |m(T )| is not the correct magnetisation. Bloch’s law and the quantum nature of
magnetism requires a quantisation axis along which the magnetisation must be measured. So, mz(T )
should be used in the bulk and mu(T ) should be used in the domain walls.
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Figure 7.6: Comparison of the finite temperature scaling of the effective anisotropy in a
mean field model of a uniaxial ferromagnet using two different methods of constrained
Monte Carlo, and the stability coefficient method here.

the internal energy surface that each of these methods samples is given in Fig. 7.8.

Fig. 7.6 shows the extracted magnetisation scalings of the uniaxial anisotropy con-
stant K(m) for the three methods. The calculations give identical temperature de-
pendences of the macrospin anisotropy constant. This is further verification that CMC
measures internal–not free–energies. All three methods are taken from simulations us-
ing the same temperature range. Despite this, the stability coefficient method, which
uses Metropolis Monte Carlo, doesn’t have the same values as the two CMC methods.
All three methods measure the same magnetisation scaling of the anisotropy constants
(K(m)), but the constraint in CMC changes the magnetisation curve m(T ) compared
to Metropolis Monte Carlo (see Fig. 7.7). In CMC, m(T ) is independent of the con-
straint direction but the difference compared with Metropolis Monte Carlo is clear.
The constraint doesn’t allow the system to fully relax so m(T ) is always higher than
the value calculated using Metropolis Monte Carlo. This means the entropy is lower
(and the free energy is higher) in CMC simulations. The use of the Gibbs-Helmholtz
equation, which integrates the internal energy difference (∆U(T ) = N ×K(T )), should
only be used to calculate free energy differences when using the stability coefficient
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method because Metropolis Monte Carlo allows the system to fully equilibrate.

We have now verified the validity of the stability coefficient method (for uniaxial
anisotropy) by comparing with the well established CMC method. Stability coefficients
allow the finite temperature scaling of any macrospin parameter (including the exchange
stiffness) to be calculated in the equilibrium state of the system. Stability coefficients
are trivial to extend to antiferromagnets and avoids the additional complications in
CMC where users can choose to constrain a single sublattice or all sublattices. Stability
coefficients can also be calculated using dynamical methods like atomistic spin dynamics
which can be augmented with a quantum thermostat to obtain quantitative information
about the finite temperature scaling of material parameters. This is expected to be very
important for exchange stiffness which can’t be written as a simple power law of the
magnetisation. In materials where there are multiple exchange interactions, stability
coefficients can separate their contributions to the exchange stiffness tensor as well as
their temperature dependences. Comparisons of the temperature dependence of the
spin wave stiffness D(T ) and exchange stiffness A(T ) are of great importance to verify,
or disprove, the commonly used finite temperature relationship in equation 7.5.
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Figure 7.7: Comparison of the magnetisation curves using Metropolis Monte Carlo
(∇2U), and constrained Monte Carlo when the constraint is 45◦ from the easy axis
(CMC τ) and when the constraint is along the easy axis (CMC ∆E).

152



7.3 Bulk Internal Energy Scaling

Figure 7.8: Visual representation of the points on the energy curve where the temper-
ature scaling of anisotropy is calculated using different methods.

7.3.4 Connecting the Internal and Free Energies

We have shown that constrained Monte Carlo and stability coefficients allow the tem-
perature scaling of material parameters used in macrospin and continuum models to
be determined according to the internal energy of the ensemble. Oftentimes, we do
not want the internal energy scaling. But, as discussed in many statistical physics
textbooks [143], the free energy cannot be accessed easily from a canonical ensemble
because it cannot be calculated by thermal averaging of microscopic degrees of freedom.
Instead, the partition function must be known, which is incalculable in most systems
of interest. This means various complicated Monte Carlo and ensemble methods have
been developed to calculate the free energy scaling of macrosopic parameters [38, 296].
Here, we show that the free energy scaling of macrospin/continuum material paramet-
ers can be obtained from the internal energy scaling using only the definition of the
free energy,

F := U − TS, (7.65)

And the definition of the internal energy in statistical mechanics,

U := 〈H〉 . (7.66)
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First, we note that if the Hamiltonian of a system is composed of N terms–as is the
case with magnetic materials–such that H = ∑N

i Hi. Then, the internal energy can be
separated into contributions from individual Hamiltonian terms

U =
〈

N∑
i

Hi

〉
=

N∑
i

〈Hi〉 . (7.67)

Now, we return our attention to equation (7.65). The differential form of this equation
is

dF = dU − TdS − SdT, (7.68)

Taking the partial derivative of U with respect to T , and keeping all other parameters
constant, we get

S = − ∂F

∂T

∣∣∣∣
U
. (7.69)

We can then substitute this expression for the entropy into the definition of the free
energy (7.65), dropping the evaluation at constant U (as Eq. (7.65) satisfies this) giving

F = U + T

(
∂F

∂T

)
. (7.70)

We can rearrange this to
U = F − T

(
∂F

∂T

)
, (7.71)

which is an expansion of the chain rule. By reversing the chain rule, we can simplify
this to

U = −T 2 ∂

∂T

(
F

T

)
. (7.72)

This is the Helmholtz free energy equivalent of the Gibbs-Helmholtz equation. It
is a linear partial differential equation which allows the free energy to be calculated
self-consistently with the internal energy. The solution of the free energy from equa-
tion (7.72) is

F (T )− F (0) = −T
∫ T

0

U(τ)− U(0)
τ2 dτ, (7.73)

where τ is a dummy variable for temperature. This equation gives a very simple rela-
tionship between free energies and internal energies, and the integral can be calculated
numerically using computer simulation measurements of U(T ). In the field of molecu-
lar dynamics, the term ‘thermodynamic integration’ can refer to one of many methods
of estimating free energy differences from internal energy differences, including this
one [297]. By equation (7.67), the quantity inside the integrand can be separated such
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that the free energy difference is a sum of contributions from different Hamiltonian
terms. First we replace the internal energies with sums of Hamiltonian terms under
thermal averaging

∆F (T ) = −T
∫ T

0

U(τ)− U(0)
τ2 dτ

= −T
∫ T

0

[ 1
τ2

] [ N∑
i

(〈Hi〉τ −Hi,0)
]
dτ,

(7.74)

where Hi,0 is the zero temperature (ground state) value of the i-th Hamiltonian term.
We are free to move the summation outside of the integrand such that

∆F (T ) = −T
N∑
i

[∫ T

0

(〈Hi〉τ −Hi,0
τ2

)
dτ

]
. (7.75)

Now, we write the free energy difference ∆F (T ) as a sum of contributions ∆F (T ) =∑N
i ∆Fi(T ), where each ∆Fi(T ) is given by

∆Fi(T ) = −T
∫ T

0

(〈Hi〉τ −Hi,0
τ2

)
dτ. (7.76)

By definition (7.67), this means that the entropy of a composite Hamiltonian can also
be separated into contributions from each Hamiltonian term. This does not mean that
the behaviour of the system as a whole can be separated into contributions from each
Hamiltonian term. In fact the opposite is true; it is well known that competing energy
terms in a system can lead to complex equilibrium states that couldn’t be predicted
from any Hamiltonian term alone. The nuance here is that complex effect that com-
peting Hamiltonian terms have on the surfaces F , U , and S are hidden in the thermal
averages; the thermal averages are handled by numerical calculations on the composite
system. This is not mutually exclusive with separating the contributions of individual
Hamiltonian terms to the free energy difference. As with constrained Monte Carlo,
this means that the same macrospin parameter may have a different temperature de-
pendence in systems composed of different Hamiltonian terms (for example, see figure
1 of [298]).

The stability coefficients used earlier in this section can be used to calculate the
temperature dependence of macrospin and continuum material parameters from the
free energy, rather than the internal energy, as in Fig. 7.6. Previously, the stability
coefficients Υ(T ) were normalised by their zero temperature value to calculate the
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temperature dependence of material parameters. Here, we first calculate the free energy
scaling before normalising. To distinguish from the internal energy stability coefficients
Υ(T ), we denote the free energy stability coefficients by Ξ(T ). In the derivation of the
Gibbs-Helmholtz relation 7.73, we assumed that, at zero temperature, the free energy
and internal energy were equal (F (0) = U(0)). Thus, the zero temperature value of Ξ
is equal to the zero temperature value of Υ (Ξ(0) = Υ(0)). Ξ(T ) is calculated by

Ξ(T ) = Υ(0)− T
∫ T

0

(Υ(τ)−Υ(0)
τ2

)
dτ. (7.77)

There are large differences between internal energy differences Υ and free energy dif-
ferences Ξ. To illustrate these differences

We can replace the internal energy with the thermal average of the Hamiltonian

F (Θ,Φ)|T = 〈H〉 |Θ,Φ,T − TS(Θ,Φ)|T (7.78)

By taking the second derivative with respect to the Θ direction of the order parameter
we arrive at

∂2F (Θ,Φ)
∂Θ2

∣∣∣∣∣
Θ,Φ,T

=
〈
∂2H
∂θ2

〉∣∣∣∣∣
Θ,Φ,T

− T ∂2S(Θ,Φ)
∂Θ2

∣∣∣∣∣
Θ,Φ,T

. (7.79)

From Eq. 7.79, it is clear that the calculations of Akulov, Callen, Zener, which cal-
culates the temperature dependence using equilibrium thermal fluctuations, as well as
constrained Monte Carlo don’t include the temperature dependent curvature of the
entropy, despite calling the derived energies free energies.
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Direct Exchange in a Hydrogen Molecule
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Consider two hydrogen nuclei (protons) separated by some fixed distance (Born-Oppenheimer
approximation), with two orbiting electrons. The electron field Hamiltonian is

Ĥ = Ĥ0 + 1
2

∫
dr1

∫
dr2

∑
σ,σ′

ĉ†σ(r1)ĉ†σ′(r2) e2

4πε0|r2 − r1|
ĉσ′(r2)ĉσ(r1), (A.1)

where Ĥ0 =
∫
dr
∑
σ c
†
σ(r)

[
p̂2

2me + V (r)
]
cσ(r) is the non-interacting electron Hamilto-

nian, V (r) is the potential due to the hydrogen nuclei, c†σ(r) and cσ(r) are electron
field operators, σ = {↑, ↓} is the spin state of an electron field, e is the magnitude of
the electron charge, ε0 is the permittivity of free space, r is the position. By making
the tight-binding approximation, we can treat the electron-electron interaction as a
perturbation such that the solutions of the interacting two-electron problem are linear
combinations of the non-interacting electron orbitals of hydrogen. We can also choose
the lowest energy orbitals of the hydrogen atom–an s-orbital which can contain a spin-
up electron and/or a spin-down electron. The creation and annihilation operators for
electrons with spin σ in s-orbitals localised on nucleus i are given by

ĉ†iσ =
∫

dr ψi(r)ĉ†σ(r) (A.2a)

ĉiσ =
∫

dr ψi(r)ĉσ(r), (A.2b)

where ψi(r) is the wavefunction of an electron in an s-orbital localised at the nucleus
i. Removing constant energies, the Hamiltonian is then

Ĥ = −
∑
i,j

∑
σ,σ′

tij ĉ
†
iσ ĉjσ′ +

∑
ijkl

∑
σσ′

Uijkl ĉ
†
iσ ĉ
†
jσ′ ĉkσ′ ĉlσ (A.3)

where

tij =
〈
ψi|Ĥ0|ψj

〉
(A.4a)

Uijkl = 1
2

∫
dr1

∫
dr2ψ

†
i (r1)ψ†j(r2) e2

4πε0|r2 − r1|
ψk(r2)ψl(r1), (A.4b)

tij is the energy cost for an electron to tunnel from site i to j, and Uijkl is the Cou-
lomb repulsion of the electrons. This is the Hubbard Hamiltonian. Labelling the two
hydrogen nuclei A and B, and removing small terms (assuming the overlap of electron
wavefunctions is small), the interacting Hamiltonian is reduced to

Ĥ = −t
∑
i

[
ĉ†i↑ĉi+1↑ + ĉ†i↓ĉi+1↓

]
− U

∑
i

[
Ŝzi Ŝ

z
i+1 + 1

4 (n̂i↑n̂i↓ + n̂i↓n̂i↑)
]
,

(A.5)
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where

t =
〈
ψA|Ĥ0|ψB

〉
=
〈
ψB|Ĥ0|ψA

〉
(A.6a)

U = 1
2

∫
dr1

∫
dr2ψ

†
A(r1)ψ†B(r2) e2

4πε0|r2 − r1|
ψA(r2)ψB(r1), (A.6b)

n̂iσ = ĉ†iσ ĉiσ is an electron number operator, and Ŝzi = 1
2(n̂i↑ − n̂i↓) is the Pauli-z spin

operator. t is usually called the hopping integral, and U is the Coulomb repulsion. In
the tight binding approximation, the hopping integral is negligibly small (not valid for
hydrogen but the model is still useful) and we can assume that each hydrogen orbital
is half filled (n̂i = 1) and the Hamiltonian reduces to

Ĥ = −2JŜzAŜzB, (A.7)

which is the familiar Ising model where we have set the exchange coupling J = U .
The above Hamiltonian has an additional factor of 2 compared to our definition of the
Heisenberg Hamiltonian in (2.1). This is the definition typically used in the ab-initio
electronic structure community and is a large source of confusion for researchers in
magnetism∗. Outside of this section we will use the definition given at the beginning
of the chapter (2.1).

Since a hydrogen molecule only has a pair of spin-1/2 electrons, we did not derive
Heisenberg exchange–more complex systems are required for this [300]. Direct exchange
in insulators can only be ferromagnetic in sign. U is the Coulomb repulsion so can only
be positive in sign, giving a ferromagnetic Ising Hamiltonian. If take the opposite limit
where electron states are highly covalent, rather than ionic (U → ∞), then the full
Hamiltonian is not diagonalisable†. Instead we must reduce the Hilbert space to only
covalent states of interest. This can be achieved by downfolding [269, 302] the matrix
form of the Hamiltonian. Suppose a 4× 4 operator E is written in the form

E =

A B

B† C

 , (A.8)

∗For example here [299] the exchange interactions have been doubled which is why the critical
temperature is close to experimental values despite using classical Monte Carlo methods which should
give a Tc which is approximately half the experimental value.

†The Hamiltonian cannot be written as a Slater determinant. DFT methods such as LDA, LSD,
and GGA assume linearised electron wavefunctions are given by a single Slater determinant, this is
why they show poor agreement in correlated materials [301].
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where A, B, and C are 2× 2 operators. The operator can be partitioned from the full
Hilbert space by computing

G(E) =

E −A B

B† E − C

−1

(A.9)

We can then choose quasideterminant ofG(E) which corresponds to the block of interest
ie G(E)00 ∼ A. Then we have G(E)00 = E − [A + B(E − C)−1B†], and Ĥ′ = A +
B(E − C)−1B†. This is an approximation but in the limit the the coupling terms B
are small compared to the states of interest then we can replace the variable E with a
constant E0. Writing the Hubbard Hamiltonian (A.5) in matrix form (Ĥ = X[Ĥ]X†)
gives

[Ĥ] =


U 0 −t t

0 U −t t

−t −t 0 0
t t 0 0

 (A.10)

which is written in the basisX =
(
ĉ†A↑ĉ

†
A↓, ĉ

†
B↑ĉ
†
B↓, ĉ

†
A↑ĉ
†
B↓, ĉ

†
A↓ĉ
†
B↑

)
or in Dirac notation

X = (|↑↓, 0〉 , |0, ↑↓〉 , |↑, ↓〉 , |↓, ↑〉). We are interested in the states in the bottom right
quadrant (block). The partitioned Hamiltonian is then

Ĥeff =

−t −t
t t

E − U 0
0 E − U

−1−t t

−t t



≈ −2t2
U

 1 −1
−1 1

 ,
(A.11)

where we have set E = 0 and the reduced basis is X′ = (|↑, ↓〉 , |↓, ↑〉). Diagonalising
this Hamiltonian gives two eigenstates

E1 = −4t2
U

ψ1 = 1√
2

(|↑, ↓〉 − |↓, ↑〉)

E2 = 0 ψ2 = 1√
2

(|↑, ↓〉+ |↓, ↑〉) .
(A.12)

The first is the lowest energy state and corresponds to antiferromagnetic alignment of
electron spins in covalent orbitals (singlet); the second is the high energy ferromagnetic
(triplet) state. We can relate this to the exchange coupling by J = −2t2

U .
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Appendix B

Microscopic Origin of Magnetocrystalline
Anisotropy
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B.1 Outline

B.1 Outline

In this appendix we first derive the relativistic Hamiltonian for electrons localised on
an atomic site in an electric potential V and an applied magnetic field B. The electric
potential includes both the periodic crystal field potential and the potential from the
atomic site. Then, in Section B.3, we consider the crystal field as a perturbation of the
real spherical harmonics to show splitting of valence electron energies in crystals. Next,
in Section B.4, we discuss the difference between real and complex spherical harmonics.
Finally in Sections B.5.1 and B.5.2, a qualitative expression for the anisotropy in a 4f
material is derived (B.5.1), and a quantitative expression is derived for the uniaxial
anisotropy in a hexagonal 3d material (B.5.2).

B.2 Relativistic Origin of Spin-Orbit Coupling

Following Skomski [303], the relativistic energy of an electron in motion is given as

E = mec
2

√
1 + v2

c2 , (B.1)

where me is the rest mass of an electron, v is the electron velocity measured in an
inertial reference frame, and c is the speed of light. This can be expanded in a power
series

E = mec
2 + 1

2mev
2 − 1

8m
2
ev

4. (B.2)

The first term is the rest energy of an electron, the second term is the non-relativistic
kinetic energy, the third term is the first relativistic correction to the kinetic energy. If
we näıvely equate the electron momentum p = v

c we can rewrite Eq B.1 as

m2
ec

4 = (E2 − c2p2), (B.3)

p should be a three-vector p so this relation isn’t valid. Pauli remedied this by using a
property of the Pauli matrices (σ · a)2 = |a|2. The use of Pauli operators separates the
electron wavefunction into two components which are the spin resolved states. This can
then be used in the Dirac equation which is the relativistic analogy to the Schrödinger
equation, where the wavefunction is now a Dirac two-spinor which can be thought of
as a two component wavefunction in complex space. The Hamiltonian for a particle in
an electromagnetic field is given by

Ĥ = 1
2me

cα̂ ·
[
σ̂ · (p̂− e

cA)
]2 +mec

2β̂ + V 1, (B.4)
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B.2 Relativistic Origin of Spin-Orbit Coupling

where σ̂ is the triplet of Pauli operators σ̂ = (σ̂x, σ̂y, σ̂z) defined by σ̂ · a = axσ̂x +
ayσ̂y+azσ̂z, p̂ is the momentum operator and A is the vector potential of the magnetic
field. The operators α̂, β̂ are given below

α̂ =

0 σ̂

σ̂ 0

 β̂ =

1 0
0 1

 (B.5)

The Hamiltonian can be simplified further by using the vector identity

(σ̂ · a)(σ̂ · b) = (a · b)1+ iσ · (a × b). (B.6)

Now the Hamiltonian can be decomposed into the form

Ĥ =

 mec
2 + V cσ̂ · (p̂− e

cA)
cσ̂ · (p̂− e

cA) −mec
2 + V

 . (B.7)

By defining the Dirac spinor as ψ = (ψa, ψb)
ᵀ , we can decompose the Hamiltonian into

two coupled equations

(mec
2 + V )ψa + cσ̂ · (p̂− e

cA)ψb = Eψa (B.8a)

cσ̂ · (p̂− e
cA)ψa − (mec

2 − V )ψb = Eψb (B.8b)

If we rearrange the second equation of Eq B.8 and define W = E + mc2, then the
solutions are given by the self-consistent equation

ψb = 1
W + 2mc2 − V

[
cσ̂ · (p̂− e

cA)
]
ψa. (B.9)

We will now skip the derivation of the zeroth order relativistic correction which includes
Zeeman interactions between electrons and the magnetic field. We can express the first
coefficient of equation (B.9) as a constant K by computing the partial fractions giving

K = 1
W + 2mec2 − V

= 1
2me

(
1− V −W

2mec2

)−1
. (B.10)

By defining p̃ = (p̂− e
cA) we can eliminate the wavefunction ψb. Substituting into the

coupled equations (B.8), we obtain a single solution[(σ · p̃)K(σ · p̃)
4m2c2 + V

]
ψa = Wψa. (B.11)

ψa is no longer correctly normalised, but this equation is exact and relativistic. To nor-
malise, we must choose take a Taylor expansion of K and move any terms proportional
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B.2 Relativistic Origin of Spin-Orbit Coupling

to W terms to the right hand side. The first order relativistic correction in the Taylor
expansion is

K ≈ 1
2me

(
1 + V −W

2mec2

)
, (B.12)

and the solution to the Dirac equation becomes[
(σ̂ · p̃)2

2me
+ V − (σ̂ · p̃)V (σ̂ · p̃)

4m2
ec

2

]
ψa =

(
1 + (σ̂ · p̃)2

4m2
ec

2

)
Wψa. (B.13)

Now define the normalisation factor N

N =
(

1 + (σ · p̃)2

4m2c2

) 1
2

≈ 1− p̂2

8m2c2 , (B.14)

such that ψa → N−1ψ. The problem becomes

N−1
[

(σ · p̃)2

2m + V − (σ · p̃)V (σ · p̃)
4m2c2

]
N−1ψ = N−2Wψ. (B.15)

The Hamiltonian, wavefunction and energy have been remornalised for consistency.
The normalised Hamiltonian now takes the form

Ĥ =
(

1− p̂2

8m2
ec

2

)[
(σ̂ · p̃)2

2me
+ V − (σ̂ · p̃)V (σ̂ · p̃)

4m2
ec

2

](
1− p̂2

8m2
ec

2

)
. (B.16)

Expand the first term, this becomes

(σ̂ · p̃)2 =
[
σ̂ · (p̂− e

c
A)
]2

= p̂2 + e2

c2 A2 − e

c
(L̂+ 2Ŝ) ·B),

(B.17)

where L̂ = p̂ × r is the electron total orbital angular momentum operator and Ŝ =
1
2 σ̂ is the total spin angular momentum operator. Keeping terms up to (v/c)2, the
Hamiltonian simplifies to

Ĥ = p̂2

2me
− p̂4

8m2
ec

2 + e2

2mec2 A2 − e

2mec
(L̂+ 2Ŝ) ·B

+ V − 1
8m2

ec
2

{
p̂2, V

}
+ (σ̂ · p̃)V (σ̂ · p̃)

4m2
ec

2 ,

(B.18)

where curly braces denote the anticommutator. Let’s now consider the final two terms
to first order
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B.3 Crystal Field Interactions and Quenching

(σ̂ · p̃)V (σ̂ · p̃) = (p̂V ) · p̂+ V p̂2 + iσ̂ · (p̂V )× p̂− 1
2

{
p̂2, V

}
= −1

2(p̂2V )− (p̂V ) · p̂− V p̂2.
(B.19)

The final term of the first line is the spin-orbit coupling σ̂ · (∇V )× p̂ which can be
simplified into the usual form for V ≡ V (r). All but two terms cancel giving the total
Hamiltonian

Ĥ = p̂2

2me
− p̂4

8m2
ec

2 + V + ~2

8m2
ec

2∇
2V − e

2mec
(L̂+ 2Ŝ) ·B

+ ~2

2m2
ec

2∇V (L̂ · Ŝ) + e2

2mec2 A2
(B.20)

The first term is the non-relativistic kinetic energy of the electron, the second term
is its first order relativistic correction, the third term is the Darwin term responsible for
the hyper-fine structure of the atom, the fourth is the Zeeman energy for an electron
in an atomic orbital, the fifth term is the spin-orbit coupling under the approximation
of a spherical potential which is commonly used in most density functional theories,
and the final term is a relativistic correction to the kinetic energy due to the magnetic
potential.

B.3 Crystal Field Interactions and Quenching

We derived the above Hamiltonian for an atom with hydrogen-like (spherical) potentials
in free space to arrive at the spin-orbit coupling (SOC) term. This is an approximation
and SOC has a general more general tensor form. However, we will continue using the
approximation of orbitals expressed as spherical harmonics. In materials research, we
are not considering single atoms. Instead, our atoms are embedded in crystals with
periodic structures. Other atoms in a crystal change the energies of valence electron.
This is the crystal field splitting. Crystal field splitting can be made explicit by taking
the electric potential V in equation (B.11), and separating the single-atom potential
and the crystal field potential by the substitution V = V0(r) + VCF(r), where V0(r) is
the Coulomb potential for an electron orbiting a single atom and VCF(r) is the Coulomb
potential due to other atoms in the crystal. VCF allows interactions between the electron
orbitals of neighbouring atoms. Fig. B.1 shows some of the real (R3) 3d electron orbitals
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B.3 Crystal Field Interactions and Quenching

which are described by three quantum numbers: n the principal quantum number, l
the orbital quantum number, and m the magnetic quantum number.

3dx2−y2 3dz2 3dxy 3dxz 3dyz

Figure B.1: The 3d atomic electron orbitals (n = 3, l = 2) in the basis of real spherical
harmonics. Colour indicates the sign of the wavefunction. The expressions for the
orbitals are given in terms of spherical harmonics in Table B.1.

Table B.1: Expressions for some of the real 3d orbitals given in terms of the real and
complex spherical harmonics.

Orbital Real Harmonics Complex Harmonics
3dx2−y2 Y3,2

1√
2(Y −2

3 + Y 2
3 )

3dz2 Y3,0 Y 0
3

3dxy Y3,−2
i√
2(Y −2

3 − Y 2
3 )

3dxz Y3,1
1√
2(Y −1

3 − Y 1
3 )

3dyz Y3,−1
i√
2(Y −1

3 + Y 1
3 )

Intuitively, if we add in the nearest neighbour atoms from the crystal, the electron
density will experience an attractive force from the nuclei of other sites because of
electron charge screening. This change in potential lifts the degeneracy of the real
electron orbitals. The position of these atoms will determine which of the five orbitals in
Fig. B.1 has the lowest energy. Consider the orbitals 3dx2−y2 and 3dxy, if this is inserted
into an fcc lattice with one species, there will be sites along the twelve diagonals given
by [±1± 10], [∓1± 10], [0± 1± 1], [0∓ 1± 1], [±10± 1], and [∓10± 1]. The atoms
have a net positive effective charge which favours the 3dxy orbital since the electron
density is, on average, closer to the positive effective charges than the 3dx2−y2 . This
can be seen in Fig. B.2.
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B.3 Crystal Field Interactions and Quenching

3dx2−y2 3dxy

Figure B.2: Real spherical harmonic orbitals of an electron embedded in an fcc crys-
tal lattice. (left) 3dx2−y2 orbital and (right) 3dxy orbital. Grey points represent the
effective point charge of neighbouring atoms.

The lifting of electron orbital degeneracy is usually depicted as an energy-level
diagram, so we will also do this here. Fig. B.3 shows the energy level diagram for
an atom in an fcc crystal. The energy-level diagram would differ in a tetragonal or
hexagonal crystal. In general, the localised electron wavefunctions in a crystalline
material will not be described by either the real spherical harmonics, nor the complex
ones. Describing the crystal field with energy level diagrams like Fig. B.3 is still useful.
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B.4 Quenching of Orbital Angular Momentum

𝐸 |x! −𝑦!⟩
|z!⟩

|xy⟩
|zx⟩
|yz⟩

𝑒!

𝑡"!

Figure B.3: Energy level diagram for the 3d shell of an atom in free space (left) and
in an fcc crystal (right). All energy levels on the left are degenerate, crystal field
interactions breaks this degeneracy on the right. In a simple cubic lattice, the |xy〉 and
|x2 − y2〉 states would switch places.

B.4 Quenching of Orbital Angular Momentum

The derived Hamiltonian shows that the origin of spin-orbit coupling, and as we will
later see, the magnetocrystalline anisotropy arises due to the existence of a persist-
ent orbital angular momentum. In 3d transition metals, it has been shown that the
magnetic moment arises almost exclusively from the spin moment. So, an important
question remains–if the orbital moment is quenched, why is magnetocrystalline aniso-
tropy non-zero?

The answer lies in our choice of basis for electron orbitals. If we limit ourselves to
spherical harmonic orbitals, we have the principle quantum numbers n, l and m. The
spherical harmonics are independent of n as this affects the radial component of the
wavefunction only. The resulting spherical harmonics Y m

l have both real and imaginary
components–an example is given below (Eq B.21)

Y −2
2 =

√
3

8π
(x− iy)2

r
. (B.21)
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B.5 Magnetocrystalline Anisotropy

This is the valid picture when relativistic effects are ignored. If spin-orbit and
crystal field interactions are included, a superposition of states |±m〉 is favourable. By
taking the expectation value of this state, we find that the average (measurebale) orbital
moment is zero. We can now construct a new orthonormal basis set which exists in real
space where m is no longer a ‘good’ quantum number ie these quantum numbers do not
describe the eigenstates. These are the states we saw above (Fig B.3), an example of
the new states is given by equation (B.22). In reality the exact wavefunctions will be
none of these - a mixing of appropriate orbitals takes place so a small remnant orbital
moment is measured.

Y ±ml =

√
(−1)±1

2 (Y m
l ± Y −ml ) (B.22)

We can now quantify what is meant by quenching. When spin-orbit coupling is large
compared to crystal field interactions, electrons have a lower energy when in orbitals
with spherical symmetry (ie s-like orbitals) and the orbital moment is unquenched
(non-zero). When crystal field interactions dominate, orbital momentum is quenched
so the eigenstates are given by the real spherical harmonicsz

B.5 Magnetocrystalline Anisotropy

We will now look at the origins of anisotropy for two types of materials; 3d transition
metals and the 4f rare-earths. The rare earths are easier to understand as it involves
unquenched orbitals (large spin-orbit coupling) so the anisotropy can be considered as
the energy difference between the energy levels given in Fig. B.3. The transition metals
are described by almost completely quenched orbitals so the single-ion anisotropy arises
as a perturbation due to spin-orbit coupling. This is the reason that rare-earths usually
have a much higher anisotropy than the 3d transition metals. The problem may seem
complicated but, in reality, when studying spin-only Hamiltonians the magnetocrystal-
line anisotropies have the same expressions and obey the same symmetry requirements
irrespective of the basis of electron orbitals. This is only a problem for chemists and
physicists which calculate electronic structures, and the relative strength of the crys-
tal field and spin-orbit coupling determines which part of the electronic structure is
diagonalised first.

169



B.5 Magnetocrystalline Anisotropy

B.5.1 4f Rare-Earths

In these metals, the spin-orbit coupling is the dominant energy term in the single spin
Hamiltonian (exchange is a many-spin effect). This means l and m are good quantum
numbers and the complex basis |ψ4f 〉 ∈ {|m〉} describes the electron density. The high
orbital angular momentum state |m = ±3〉 can be seen below

〈m = ±3|m = ±3〉 = |Y ±3
3 (θ, φ)|2 = 35

64π sin6(θ) (B.23)

Figure B.4: Electron probability density for a 4f electron with m = ±3.

This electron density can be recast as an electric quadrupole with ellipsoidal charge
density. The figure above would be represented as an oblate ellipsoid (truncated at
the poles), whereas |m = 2〉 and |m = 1〉 would be prolate ellipsoids. The circular
shape of the probability amplitude minimises the SOI and is unquenched. As the SOI
dominates, the spin degree of freedom and the electron density are tightly bound. This
means, when changing the spin orientation, we are in fact moving both the spin ori-
entation and electron density of the 4f shell. The energy barrier between the easy and
hard axes is then the difference in electrostatic energy due to the crystal field potential.
There are many models to approximate this energy difference for various systems.

We can now qualitatively consider what form of magnetocrystalline anisotropy vari-
ous materials should have. Nd3+ ions have a charge distribution as in Fig. B.4. Suppose
this is in a lattice where its nearest neighbours are cations along the principle cartesian
axes (cubic crystal). The negative crystal field interaction means these are the hard
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B.5 Magnetocrystalline Anisotropy

axes and that the 〈111〉 directions are the easy axes as they are the points furthest
away from the 6 nearest neighbour atoms (see Fig. B.5). From the phenomenological
equations for MAE, we infer that this lattice must have cubic anisotropy. To ensure
the 〈111〉 directions are easy, the constant K1 must be less than zero, or K2 must be
greater than zero (see equation (B.24)). This simple argument can be applied to any
magnetic material if the lattice symmetry and electron valence is known.

E = −K2
[
(SxSy)2 + (SySz)2 + (SzSx)2

]
−K2 (SxSySz)2 (B.24)

Figure B.5: Crystal field interaction of a |n = 4, l = 3, m = 3〉 electron orbital with
nearest neighbour cations along the principle axes. (left) High energy state; (right)
low energy state. Arrow represents the spin magnetic moment which maintains a fixed
direction with respect to the spatial distribution of charge.

B.5.2 3d Transition Metals

The 3d elements are much lighter than the 4f elements so the SOI is small. Now,
crystal field is large and spin-orbit coupling is a perturbative effect. The orbitals in
these elements are almost completely quenched so can be approximated as the real space
wavevectors in the form of Eq B.22. These are static, unlike in the 4f elements where
SOC cannot be broken by the crystal field interaction and the electron density moves
with the spin orinetation. If spin-orbit coupling was zero, the energy of the magnetic
system would have no angular dependence (zero anisotropy). If we now consider the
magnetic Hamiltonian for a single electron in a 3d element with the inclusion of a
uniaxial crystal field and spin-orbit coupling with respect to the two xy plane orbitals
|ψ1〉 = |xy〉 and |ψ2〉 = |x2 − y2〉, the energy is given by
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B.5 Magnetocrystalline Anisotropy

E01|ψ〉 =

A 0
0 −A

 |ψ〉+ 2λ cos θ

 0 i

−i 0

 |ψ〉 (B.25)

Where 2A is the crystal field alignedting - the difference in orbital energies see Fig
B.3, λ is the spin-orbit coupling constant, |ψ〉 is the Dirac spinor

(
|ψ1〉
|ψ2〉

)
and θ is the

angle between the spin direction and the z-axis. By diagonalising this matrix, we obtain
the eigenvalues

E0 = −
√
A2 + 4λ2 cos θ

E1 =
√
A2 + 4λ2 cos θ

(B.26)

Given we assumed only one valence electron, the lower energy state E0 will be
occupied. We can estimate the anisotropy constant by taking the difference between
the easy and hard axes θ = 0◦ and θ = 90◦ giving

K1 =
√
A2 + 4λ2 −A (B.27)

We can take an expansion for small λ which yields

K1 ≈
2λ2

A
(B.28)

This approximation is specific to a uniaxial system, but this can be generalised for
other anisotropies.
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Analytic Calculation of the Dipole Anisotropy
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C.1 Preamble

x

y
z

R
r

v1

v2
𝝆

Figure C.1: A single plane of (111) textured NiO with Ni sites represented as grey
spheres. Oxygen sites have been removed for clarity. Primitive intraplane vectors are
denoted v1 and v2. Vectors ρ, R, and r are labelled. ρ is position of an atom relative
to the origin and is equal to nv1 +mv2 where n, m are integers. R is the position in
space we choose to calculate the effective field. r = R− ρ is the vector between a spin
at position ρ and the point in space R.

C.1 Preamble

Following Tsymbal et al [304] we will show that the dipole anisotropy can be written as
∆Edip ∼ m2(T ). The total dipole anisotropy of bulk NiO can be split into two contri-
butions; intraplane dipole interactions (triangular ferromagnetic film one atom thick)
and interplane dipole interactions. The intraplane contribution is well known from
magnetostatics–shape anisotropy. Interplane contributions from antiparallel planes of
spins cannot be calculated in this way, but its energy contribution will be a sum over
atomically thin ferromagnets (which must also scale as m2(T )). We can calculate both
inter- and intra-plane energies on the same footing by transforming the infinite sum-
mation of spins in the magnetic scalar potential to the Fourier components (a Poisson
sum) from infinite 2D triangular sheets of spins (see Figure C.1). Using this, we can cal-
culate the magnetic field from the 2D lattice at any arbitrary point in space (including
at other lattice sites) to calculate the total effective field from all neighbouring sheets.
This sum in 2D k-space and another sum over neighbour planes should converge faster
than the calculation in real space, and we can express the energy in terms of m2(T ).

For a single (111) oriented sheet of NiO, there is only a single magnetic site in
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the primitive cell, located at the origin. The intraplane vectors (see Figure C.1) are
v1 = (1/2, 0, 0) a′ and v2 =

(
−1/4,

√
3/4, 0

)
a′ in units of a′ =

√
2a, a is consistent with

the main text. The interplane vector which connects this sheet of spins to neighbouring
antiparallel sheets is v3 = (0,

√
3/6,
√

6/6)a′. We are applying a Fourier transform on a
2D plane, so we only need to calculate the intraplane recirprocal lattice vectors. These
are b1 = 4π/a′

(
1, 1/
√

3
)

and b1 = 4π/a′
(
0, 2/
√

3
)
. The magnetic scalar potential

at some point in space R = (x, y, z) for a system of discrete magnetic moments µi at
positions ρi is given as

Φ(R) = 1
4π
∑
i

µi · (R − ρi)
|R − ρi|3

, (C.1)

This scalar potential is consistent with the definition of the dipole-dipole interaction
given by equation (2) in the main text. For the next steps, we defining Φ′ = 4πΦ to
make calculations simpler. For the 2D film of NiO, the sum over atomic sites ρi can
be written as a sum over integers n and m, and ρnm is a linear combination of the
intraplane lattice vectors

ρnm = nv1 +mv2 =
(

1
2na

′ − 1
4ma

′,

√
3

4 ma′, 0
)

(C.2a)

ri = R − ρi =
(
x− 1

2na
′ + 1

4ma
′, y −

√
3

4 ma′, z

)
(C.2b)

C.2 Calculating By

The ground state of NiO is spins lying in the (111) plane, we can choose the magnetic
moments lying in the y-direction. At finite temperature, and in thermal equilibrium,
we can write

µnm = µSŷ, ∀ (n,m) (C.3)

Substituting ri and µnm into the reduced magnetic scalar potential gives

Φ′(x, y, z) =
∞∑

n,m=−∞

µS
(
y −

√
3

4 ma
′
)

[(
x− 1

2na
′ + 1

4ma
′
)2

+
(
y −

√
3

4 ma
′
)2

+ z2
]3

2
(C.4)

We make use of Poisson’s summation formula to apply a Fourier transform. For a
function f(na) in 1D this is

∞∑
n=−∞

f(na) = 1
a

∞∑
k=−∞

∫ ∞
−∞

f(x)e−i 2π
a
kxdx, (C.5)
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where 2π
a is the reciprocal lattice vector. This can easily be generalised to two dimen-

sions:
∞∑

n,m=−∞
f(na,ma) = 1

a2

∞∑
k,l=−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−i 2π
a
kx e−i 2π

a
lydxdy (C.6)

Our function is an implicit function of na, ma. We have something of the form f ≡
f(x − 1

2na + 1
4ma, y −

√
3

4 ma). Translations in function variables transform have the
following property when applying a Fourier transform

∞∑
n=−∞

g(na− x) = 1
a

∞∑
k=−∞

e−i 2π
a
kx
∫ ∞
−∞

g(x′) ei 2π
a
kx′dx′ (C.7)

A dummy variable x′ has been introduced. There is another consideration for the
magnetic potential as the lattice vectors v1, v2 are non-orthogonal. In Eq C.6 the
coefficient 1

a2 must be replaced with the area subtended by the in-plane vectors |v1×v2|.
The Fourier transform of Φ′ is

Φ′(x, y, z) = 1
|v1 × v2|

∞∑
k,l=−∞

e−i(kb1·R+lb2·R)

×
∫ ∞
−∞

∫ ∞
−∞

dx′dy′ µSy
′

[x′2 + y′2 + z2]
3
2

ei(kb1·R′+lb2·R′), (C.8)

where b1, b2 are the intraplane reciprocal lattice vectors, and k, l are the Fourier
coefficients. Substituting the reciprocal lattice vectors and the area of a single atom
into the potential, we have

Φ′(x, y, z) = 8µS√
3a′2

∞∑
k,l=−∞

e
−i 4π

a′

(
kx+ 1√

3ky+ 2√
3 ly
)

×
∫ ∞
−∞

∫ ∞
−∞

dx′dy′ y′

[x′2 + y′2 + z2]
3
2

e
i 4π
a′

(
kx′+ 1√

3ky
′+ 2√

3 ly
′
)

(C.9)

The double integral in the above equation can be calculated analytically. Taking the
result from Tsymbal [304] the integral is,∫ ∞

−∞

∫ ∞
−∞

dxdy y

(x2 + y2 + z2) 3
2

ei 2π
a
Axei 2π

a
By = 2πi B√

A2 +B2 e−
2π
a

√
A2+B2|z| (C.10)
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with A = 2k and B = 2
√

3
3 (k + 2l). After substituting A and B, the integral simplifies

to

∫ ∞
−∞

∫ ∞
−∞

y′dx′dy′

[x′2 + y′2 + z2]
3
2

e
i 4π
a′

(
kx′+ 1√

3ky
′+ 2√

3 ly
′
)

= πi (k + 2l)√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z| (C.11)

Substituting this into Φ′ and collecting coefficients gives

Φ′(x, y, z) = 8√
3
µSπ

a′2

∞∑
k,l=−∞

i(k + 2l)√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky+ 2√
3 ly
)

(C.12)

The summations can be reduced from k, l ∈ (−∞,∞) to k, l ∈ [0,∞) by splitting
terms of the form ∑∞

k=−∞ ke−ikx into ∑∞k=0
(
ke−ikx − keikx

)
which can be further sim-

plified into trigonometric functions. Splitting the first term of Φ′ with k as a prefactor,

∞∑
k=−∞

∞∑
l=−∞

i k√
k2 + kl + l2

e
−i 4π

a′

(
kx+ 1√

3ky+ 2√
3 ly
)

=

∞∑
k=1

{ ∞∑
l=1

i
[

k√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky+ 2√
3 ly
)

+ k√
k2 − kl + l2

e−
8
√

3π
3a′
√
k2−kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky−
2√
3 ly
)]

+ k

|k|
e−

8
√

3π
3a′ |k||z|e

−i 4π
a′

(
kx+ 1√

3ky
)

−
∞∑
l=1

i
[

k√
k2 − kl + l2

e−
8
√

3π
3a
√
k2−kl+l2|z|e

−i 4π
a′

(
−kx− 1√

3ky+ 2√
3 ly
)

+ k√
k2 + kl + l2

e−
8
√

3π
3a
√
k2+kl+l2|z|e

−i 4π
a

(
−kx− 1√

3ky−
2√
3 ly
)]

− k

|k|
e−

8
√

3π
3a′ |k||z|e

−i 4π
a′

(
−kx− 1√

3ky
)}

(C.13)
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noting that the k = 0 and l = 0 coefficients are zero. This can be further simplified to

∞∑
k=−∞

∞∑
l=−∞

i k√
k2 + kl + l2

e
−i 4π

a′

(
kx+ 1√

3ky+ 2√
3 ly
)

=

2
∞∑
k=1

∞∑
l=1

k√
k2 − kl + l2

sin
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

e−
8
√

3π
3a′
√
k2−kl+l2|z|

+ 2
∞∑
k=1

∞∑
l=1

k√
k2 + kl + l2

sin
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

e−
8
√

3π
3a
√
k2+kl+l2|z|

+ 2
∞∑
k=1

sin
(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z| (C.14)

Next, we evaluate the second term of Φ′ (with 2l as a prefactor)

∞∑
k=−∞

∞∑
l=−∞

i 2l√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky+ 2√
3 ly
)

=

∞∑
k=1

{ ∞∑
l=1

i
[

2l√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky+ 2√
3 ly
)

− 2l√
k2 − kl + l2

e−
8
√

3π
3a′
√
k2−kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky−
2√
3 ly
)]

+
∞∑
l=1

i
[

2l√
k2 − kl + l2

e−
8
√

3π
3a′
√
k2−kl+l2|z|e

−i 4π
a′

(
−kx− 1√

3ky+ 2√
3 ly
)

− 2l√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z|e

−i 4π
a′

(
−kx− 1√

3ky−
2√
3 ly
)]}

+
∞∑
l=1

i
[

2l
|l|

e−
8
√

3π
3a′ |l||z|e−i 4π

a′
2√
3 ly − 2l

|l|
e−

8
√

3π
3a′ |l||z|ei 4π

a′
2√
3 ly
]

(C.15)

which can be simplified to

∞∑
k=−∞

∞∑
l=−∞

i 2l√
k2 + kl + l2

e−
8
√

3π
3a′
√
k2+kl+l2|z|e

−i 4π
a′

(
kx+ 1√

3ky+ 2√
3 ly
)

=

− 2
∞∑
k=1

∞∑
l=1

2l√
k2 − kl + l2

sin
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

e−
8
√

3π
3a′
√
k2−kl+l2|z|

+ 2
∞∑
k=1

∞∑
l=1

2l√
k2 + kl + l2

sin
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

e−
8
√

3π
3a′
√
k2−kl+l2|z|

+ 4
∞∑
l=1

sin
(

8
√

3π
3a′ ly

)
e−

8
√

3π
3a′ |l||z| (C.16)
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Combining equation C.14 and C.16, the reduced potential is

Φ′(x, y, z) = 8√
3
µSπ

a′2

[
2
∞∑
k=1

∞∑
l=1

k√
k2 − kl + l2

sin
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

× e−
8
√

3π
3a′
√
k2−kl+l2|z| + 2

∞∑
k=1

∞∑
l=1

k√
k2 + kl + l2

sin
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

× e−
8
√

3π
3a′
√
k2+kl+l2|z| + 2

∞∑
k=1

sin
(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

− 2
∞∑
k=1

∞∑
l=1

2l√
k2 − kl + l2

sin
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

e−
8
√

3π
3a′
√
k2−kl+l2|z|

+ 2
∞∑
k=1

∞∑
l=1

2l√
k2 + kl + l2

sin
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

e−
8
√

3π
3a′
√
k2−kl+l2|z|

+ 4
∞∑
l=1

sin
(

8
√

3π
3a′ ly

)
e−

8
√

3π
3a′ |l||z|

]
(C.17)

which simplifies to

Φ′(x, y, z) = 16√
3
µSπ

a′2

[ ∞∑
k=1

∞∑
l=1

(k − 2l)√
k2 − kl + l2

sin
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

× e−
8
√

3π
3a′
√
k2−kl+l2|z| +

∞∑
k=1

∞∑
l=1

(k + 2l)√
k2 + kl + l2

sin
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

× e−
8
√

3π
3a′
√
k2+kl+l2|z| +

∞∑
k=1

sin
(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

+ 2
∞∑
l=1

sin
(

8
√

3π
3a′ ly

)
e−

8
√

3π
3a′ |l||z|

]
(C.18)

Now we must transform the reduced potential back into a magnetic field. The field is
written

B(x, y, z) = −µ0∇Φ(x, y, z) = −µ0
4π∇Φ′(x, y, z) (C.19)
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First calculating ∂Φ′
∂x

∂Φ′
∂x

= 16√
3
µSπ

a′2

[ ∞∑
k=1

∞∑
l=1

(k − 2l)√
k2 − kl + l2

(4π
a′
k

)
cos

(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

× e−
8
√

3π
3a′
√
k2−kl+l2|z| +

∞∑
k=1

∞∑
l=1

(k + 2l)√
k2 + kl + l2

(4π
a′
k

)
× cos

(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

e−
8
√

3π
3a′
√
k2+kl+l2|z|

+
∞∑
k=1

(4π
a′
k

)
cos

(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

]
(C.20)

which can be simplified to

∂Φ′
∂x

= 64√
3
µSπ

2

a′3

[ ∞∑
k=1

∞∑
l=1

(k − 2l)k√
k2 − kl + l2

cos
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

× e−
8
√

3π
3a′
√
k2−kl+l2|z| +

∞∑
k=1

∞∑
l=1

(k + 2l)k√
k2 + kl + l2

cos
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

× e−
8
√

3π
3a′
√
k2+kl+l2|z| +

∞∑
k=1

k cos
(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

]
(C.21)

Then calculating ∂Φ′
∂y

∂Φ′
∂y

= 16√
3
µSπ

a′2

[ ∞∑
k=1

∞∑
l=1

(k − 2l)√
k2 − kl + l2

(4π
a′

( 1√
3k −

2√
3 l)
)

cos
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

e−
8
√

3π
3a′
√
k2−kl+l2|z| +

∞∑
k=1

∞∑
l=1

(k + 2l)√
k2 + kl + l2

×
(4π
a′

( 1√
3k + 2√

3 l)
)

cos
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

e−
8
√

3π
3a′
√
k2+kl+l2|z|

+
∞∑
k=1

(
4
√

3π
3a′ k

)
cos

(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

+ 2
∞∑
l=1

(
8
√

3
3a′ l

)
cos

(
8
√

3π
3a′ ly

)
e−

8
√

3π
3a′ |l||z|

]
(C.22)
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which can be simplified to

∂Φ
∂y

= 64
3
µSπ

2

a′3

[ ∞∑
k=1

∞∑
l=1

(k − 2l)2
√
k2 − kl + l2

cos
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

× e−
8
√

3π
3a′
√
k2−kl+l2|z| +

∞∑
k=1

∞∑
l=1

(k + 2l)2
√
k2 + kl + l2

cos
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

e−
8
√

3π
3a′
√
k2+kl+l2|z| +

∞∑
k=1

k cos
(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

+ 2
∞∑
l=1

2l cos
(

8
√

3π
3a′ ly

)
e−

8
√

3π
3a′ |l||z|

]
(C.23)

We want to calculate By. Using equation C.19, this is

By = −16
3
µSµ0π

a′3

[ ∞∑
k=1

∞∑
l=1

(k − 2l)2
√
k2 − kl + l2

cos
(4π
a′

(
kx+ 1√

3ky −
2√
3 ly
))

× e−
8
√

3π
3a′
√
k2−kl+l2|z| +

∞∑
k=1

∞∑
l=1

(k + 2l)2
√
k2 + kl + l2

cos
(4π
a′

(
kx+ 1√

3ky + 2√
3 ly
))

× e−
8
√

3π
3a′
√
k2+kl+l2|z| +

∞∑
k=1

k cos
(4π
a′

(
kx+ 1√

3ky
))

e−
8
√

3π
3a′ |k||z|

+ 2
∞∑
l=1

2l cos
(

8
√

3π
3a′ ly

)
e−

8
√

3π
3a′ |l||z|

]
(C.24)

For this to be useful, the harmonics must be summed over, and the coordinates of an
atom in another film by inputted as R = (x, y, z). This gives the dipole field due to a
(111) sheet of NiO at arbitrary distance. The same procedure needs to be undertaken
for a film magnetised out-of-plane to calculate the energy difference.

C.3 Calculating Bx

For consistency, we can check the anisotropy is easy plane by calculating Bx and check-
ing its value is equal to By. For completeness, we include the derivation of the dipolar
field for spins lying in the x-direction here. The reduced magnetic potential is

Φ′(x, y, z) = 8µS√
3a′2

∞∑
k,l=−∞

e
−i 4π

a′

(
kx+ ky√

3 + 2ly√
3

) ∫ ∞
−∞

∫ ∞
−∞

x′

[x′2 + y′2 + z2]
3
2

× e
− 4π√

3a′

(
kx+ ky√

3 + 2ly√
3

)
dx′dy′ (C.25)
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The integral is identical to the one in C.9 upon relabelling x and y giving

Φ′ = 16πµS
a′2

∞∑
k,l=−∞

k√
(k + 2l)2 + 3k2 ie

−i 4π
a′

(
kx+ ky√

3 + 2ly√
3

)
e−

4π√
3a′
√

(k+2l)2+3k2|z| (C.26)

Unlike C.9, when separated, k = 0 gives are no terms

Φ′ = 16πµS
a′2

[ ∞∑
k=1

1
2i

(
e

i 4π
a′

(
kx+ ky√

3

)
− e
−i 4π

a′

(
kx+ ky√

3

))
+

∞∑
k,l,=1

{
k

2i
√
k2 + kl + l2(

e
i 4π
a′

(
kx+ ky√

3 + 2ly√
3

)
− e
−i 4π

a′

(
kx+ ky√

3 + 2ly√
3

))
e−

8π√
3a′
√
k2+kl+l2|z|

+ k

2i
√
k2 − kl + l2

(
e

i 4π
a′

(
kx+ ky√

3−
2ly√

3

)
− e
−i 4π

a′

(
kx+ ky√

3−
2ly√

3

))
e−

8π√
3a

√
k2−kl+l2|z| (C.27)

This can be reduced to

Φ′ = 16πµS
a′2

[ ∞∑
k=1

sin
(4π
a′
k
(
x+ y√

3

))
e−

8π√
3k|z| +

∞∑
k,l,=1

{
k√

k2 + kl + l2

× sin
(4π
a′

(
kx+ ky√

3 + 2ly√
3

))
e−

8π√
3a′
√
k2+kl+l2|z|

+ k√
k2 − kl + l2

sin
(4π
a′

(
kx+ ky√

3 −
2ly√

3

))
e−

8π√
3a′
√
k2−kl+l2|z|

}]
(C.28)

As before, reintroduce a factor 1
4π and differentiate to get the dipolar field

Bx = −4µ0µS
a′2

[ ∞∑
k=1

(4π
a′
k

)
cos

(4π
a′
k
(
x+ y√

3

))
e−

8π√
3k|z| +

∞∑
k,l,=1

{(4π
a′
k

)

× k√
k2 + kl + l2

cos
(4π
a′

(
kx+ ky√

3 + 2ly√
3

))
e−

8π√
3a′
√
k2+kl+l2|z|

+
(4π
a′
k

)
k√

k2 − kl + l2
cos

(4π
a′

(
kx+ ky√

3 −
2ly√

3

))
e−

8π√
3a′
√
k2−kl+l2|z|

}]
(C.29)

Collecting 4π
a′ terms we have

Bx = −16µ0µS
a′3

[ ∞∑
k=1

k cos
(4π
a′
k
(
x+ y√

3

))
e−

8π√
3k|z| +

∞∑
k,l,=1

{
k2

√
k2 + kl + l2

cos
(4π
a′

(
kx+ ky√

3 + 2ly√
3

))
e−

8π√
3a′
√
k2+kl+l2|z|

+ k2
√
k2 − kl + l2

cos
(4π
a′

(
kx+ ky√

3 −
2ly√

3

))
e−

8π√
3a′
√
k2−kl+l2|z|

}]
(C.30)
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C.4 Calculating Bz

The reduced magnetic scalar potential for an out-of-plane spin configuration is given
by

Φ′(x, y, z) =
∞∑

n,m=−∞

µSz[(
x− 1

2na
′ + 1

4ma
′)
)2

+
(
y −

√
3

4 ma
′
)2

+ z2
] 3

2
(C.31)

Upon applying a Fourier transform this becomes

Φ′(x, y, z) = 8µS√
3a′2

∞∑
k,l=−∞

e
−i 4π

a′

(
kx+ ky√

3 + 2ly√
3

) ∫ ∞
−∞

∫ ∞
−∞

zdx′dy′

[x′2 + y′2 + z2]
3
2

× e
i 4π
a′

(
kx+ ky√

3 + 2ly√
3

)
(C.32)

The double integral can be simplified by letting the exponential function take the form
ei(ax+by) where a and b are now dummy coefficients. The following integral can be
calculated analytically ∫ ∞

−∞

∫ ∞
−∞

dxdy z eiax eiby

[x2 + y2 + z2]
3
2

(C.33)

Rewriting in cylindrical polar coordinates this becomes∫ ∞
0

∫ 2π

0
dθdr z r eir(a sin θ+b cos θ)

[r2 + z2]
3
2

(C.34)

The integral over θ be factorised to give∫ ∞
0

dr z

[r2 + z2]
3
2

∫ 2π

0
eir(a sin θ+b cos θ) dθ (C.35)

To compute the inner integral, we need the following result from the definition of the
zeroth order Bessel function of the first kind

2πJ0(x) =
∫ 2π

0
eix sin θ dθ =

∫ 2π

0
eix cos θ dθ (C.36)

Extending this result to the case when the exponent is a sum of trigonometric functions
gives ∫ 2π

0
eix(a sin θ+b cos θ) dθ = 2πJ0(x

√
a2 + b2) (C.37)

Our simplified integral is therefore∫ ∞
0

dr z

[r2 + z2]
3
2

∫ 2π

0
eir(a sin θ+b cos θ) dθ =

∫ ∞
0

z r dr
[r2 + z2]

3
2

[
2πJ0(r

√
a2 + b2)

]
(C.38)
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The integral over r is a standard result, its derivation is more detailed than required
for this calculation. The result is

2π
∫ ∞

0

z r J0
(
r
√
a2 + b2

)
[r2 + z2]

3
2

dr = 2πz e−
√
a2+b2|z|

|z|
(C.39)

Now we can return to the reduced potential, upon substitution this yields

Φ′(x, y, z) = 16πµS√
3a′2

sign(z)
∞∑

k,l=−∞
e
−i 4π

a′

(
kx+ 1√

3ky+ 2√
3 ly
)

e−
8π√
3a′
√
k2+kl+l2|z| (C.40)

As with the in-plane calculation, the sum can be split into trigonometric functions.
Explicitly for the case when l = 0, we have a term

∞∑
k=−∞

∣∣∣∣∣
l=0

e−
4π
a′ (kx+ 1√

3ky) e−
8π√
3a′ |k||z| = 2

∞∑
k=1

cos
(4π
a′

(
kx+ 1√

3ky
))

e−
8π√
3a′ k|z| (C.41)

Expanding the summations we obtain

Φ′ = 16πµS√
3a′2

sign(z)
[ ∞∑
k=1

(
e

i 4π
a′ k

(
x+ y√

3

)
+ e
−i 4π

a′ k

(
x+ y√

3

))
e−

8π√
3k|z|

+
∞∑
l=1

(
ei 8π√

3a′ ly + e−i 8π√
3a′ ly

)
e−

8π√
3a′ l|z| +

 ∞∑
k=1

+
−∞∑
k=−1


×

 ∞∑
l=1

+
−∞∑
l=−1

 e
−i 4π

a′

(
kx+ ky√

3 + 2ly√
3

)
e−

8π√
3a′
√
k2+kl+l2|z|

]
(C.42)

The final term inside the double summation can be rewritten as
∞∑

k,l,=1

{(
e

i 4π
a′

(
kx+ ky√

3 + 2ly√
3

)
+ e
−i 4π

a′

(
kx+ ky√

3 + 2ly√
3

))
e−

8π√
3

√
k2+kl+l2|z|

+
(

e
i 4π
a′

(
kx+ ky√

3 + 2ly√
3

)
+ e
−i 4π

a′

(
kx+ ky√

3 + 2ly√
3

))
e−

8π√
3

√
k2+kl+l2|z|

}
(C.43)

We can rewrite this as

Φ′ = 32πµS√
3a′2

sign(z)
[ ∞∑
k=1

cos
(4π
a′

(kx+ ky√
3)
)

e−
8π√
3a′ k|z| +

∞∑
l=1

cos
( 8π√

3a′
ly

)
e−

8π√
3a′ l|z|

+
∞∑

k,l=1

{
cos

(4π
a′

(kx+ ky√
3 + 2ly√

3)
)

e−
8π√
3a′
√
k2+kl+l2|z|

+ cos
(4π
a′

(kx+ ky√
3 −

2ly√
3)
)

e−
8π√
3a′
√
k2−kl+l2|z|

}]
(C.44)
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By reintroducing the factor 1
4π and differentiating, we yield the effective field

Bz = −8µ0µS√
3a′2

sign(z)
[ ∞∑
k=1

(
− 8π√

3a′
k sign(z)

)
cos

(4π
a′

(kx+ ky√
3)
)

e−
8π√
3a′ k|z|

+
∞∑
l=1

(
− 8π√

3a′
l sign(z)

)
cos

( 8π√
3a′

ly

)
e−

8π√
3a′ l|z| +

∞∑
k,l=1

{(−8π√
3a′

×
√
k2 + kl + l2sign(z)

)
cos

(4π
a′

(kx+ ky√
3 + 2ly√

3)
)

e
−8π√

3a′
√
k2+kl+l2|z| +

(−8π√
3a′

×
√
k2 − kl + l2sign(z)

)
cos

(4π
a′

(kx+ ky√
3 −

2ly√
3)
)

e−
8π√
3a′
√
k2−kl+l2|z|

}]
(C.45)

Factoring out − 8π√
3a′ sign(z) gives

Bz = 64πµ0µS
3a′3

[ ∞∑
k=1

k cos
(4π
a′

(kx+ ky√
3)
)

e−
8π√
3a′ k|z| +

∞∑
l=1

l cos
( 8π√

3a′
ly

)

× e−
8π√
3a′ l|z| +

∞∑
k,l=1

{√
k2 + kl + l2 cos

(4π
a′

(kx+ ky√
3 + 2ly√

3)
)

e−
8π√
3a′
√
k2+kl+l2|z|

+
√
k2 − kl + l2 cos

(4π
a′

(kx+ ky√
3 −

2ly√
3)
)

e−
8π√
3a′
√
k2−kl+l2|z|

}]
(C.46)

C.5 Calculating the Dipole Anisotropy

Now both the in-plane and out-of-plane magnetic field from an atomic film of (111)
textured NiO have been derived, the above equations are analytic and only the first
few (∼ 10) harmonics will have to be summed for the field to converge to sufficient
precision. The energy can then be calculated by taking the dot product of the field
with a spin direction which is parallel, or antiparallel to the spin direction considered.

The position vector R = (x, y, z) does not have to be close to the origin as all
terms are periodic with the reciprocal lattice vectors. Recalling the intraplane transla-
tion vectors v1 = (1/2, 0, 0) a′ and v2 =

(
−1/4,

√
3/4, 0

)
a′, and the interplane lattice

vector v3 and is v3 = (0,
√

3/6,
√

6/6)a′ where a′ =
√

2a as defined at the beginning.
The displacement vector between the origin and an atom in the nth layer is given by
substituting Rn = nv3, where n is an integer, into the analytic form of the dipolar field
(this is not the closest atom, but this is irrelevant for infinite systems). The out-of-
plane dipole-dipole energy for a single spin at the origin due to an ensemble of spins in
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C.5 Calculating the Dipole Anisotropy

thermal equilibrium assuming the zeroth layer of spins is pointing in the +z-direction
can be calculated by summing over layers. The energy is given by

Ez = −µS
∑
n

(−1)nBz(Rn) (C.47)

where the factor (−1)n accounts for the antiparallel alignment of neighbouring sheets.
We are free to choose the thermal sublattice magnetisation because we assume the
anisotropy–and the external applied field strength in an experiment to force this state–
is small enough not to affect the thermodynamics of the sublattice magnetisation. The
same approximation is made in the calculation of Bloch’s law, and Kubo’s extension to
antiferromagnets [148]. The dipole energy with the spins lying in the x-direction is

Ex = −8µ0µ2
S

a′3

∞∑
n=−∞

(−1)n
[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8π√

3k|z| +
∞∑

k,l,=1

{
k2

√
k2 + kl + l2

× cos ((kb1 + lb2) ·Rn) e−
8π√
3a′
√
k2+kl+l2|z| + k2

√
k2 − kl + l2

× cos ((kb1 − lb2) ·Rn) e−
8π√
3a′
√
k2−kl+l2|z|

}]
(C.48)

The dipole energy with spins lying in the z-direction is

Ez = 64πµ0µ2
S

3a′3
∞∑

n=−∞
(−1)n

[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8π√
3a′ k|z| +

∞∑
l=1

l cos (lb2 ·Rn)

× e−
8π√
3a′ l|z| +

∞∑
k,l=1

{√
k2 + kl + l2 cos ((kb1 + lb2) ·Rn) e−

8π√
3a′
√
k2+kl+l2|z|

+
√
k2 − kl + l2 cos ((kb1 − lb2) ·Rn)) e−

8π√
3a′
√
k2−kl+l2|z|

}]
(C.49)

Let’s define ϕ±kl =
√
k2 ± kl + l2 to write this more succinctly, this gives

Ex = −8µ0µ2
S

a′3

∞∑
n=−∞

(−1)n
[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8π√

3k|z| +
∞∑

k,l,=1

{
k2

ϕ+
kl

×

cos ((kb1 + lb2) ·Rn) e−
8π√
3a′ ϕ

+
kl
|z| + k2

ϕ−kl
cos ((kb1 − lb2) ·Rn) e−

8π√
3a′ ϕ

−
kl
|z|
}]
, (C.50)
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and

Ez = 64πµ0µ2
S

3a′3
∞∑

n=−∞
(−1)n

[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8π√
3a′ k|z| +

∞∑
l=1

l cos (lb2 ·Rn)

× e−
8π√
3a′ l|z| +

∞∑
k,l=1

{
ϕ+
kl cos ((kb1 + lb2) ·Rn) e−

8π√
3a′ ϕ

+
kl
|z|

+ ϕ−kl cos ((kb1 − lb2) ·Rn)) e−
8π√
3a′ ϕ

−
kl
|z|
}]

(C.51)

We can calculate the effective uniaxial anisotropy energy difference by K(T ) = 〈∆E〉 =
Ex − Ez, remembering that all calculated energies thus far are for a single atom. The
thermal energy difference is

∆E = −88πµ0µ2
S

3a′3
∞∑

n=−∞
(−1)n

[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8π√
3a′ k|z|

+ 64
88

∞∑
l=1

l cos (lb2 ·Rn) e−
8π√
3a′ l|z| +

∞∑
k,l=1

{(
ϕ+
kl + k2

ϕ+
kl

)

cos ((kb1 + lb2) ·Rn) e−
8π√
3a′ ϕ

+
kl
|z| +

(
ϕ−kl + k2

ϕ−kl

)

× cos ((kb1 − lb2) ·Rn)) e−
8π√
3a′ ϕ

−
kl
|z|
}]

(C.52)

Using

ϕ+
kl + k2

ϕ+
kl

= k2 + (ϕ+
kl)2

ϕ+
kl

= k2 + k2 + kl + l2√
k2 + kl + l2

= 2k2 + kl + l2√
k2 + kl + l2

, (C.53)

and
ϕ−kl + k2

ϕ−kl
= k2 + (ϕ−kl)2

ϕ−kl
= k2 + k2 − kl + l2√

k2 − kl + l2
= 2k2 − kl + l2√

k2 − kl + l2
(C.54)

We can simplify this to

∆E = −88πµ0µ2
S

3a′3
∞∑

n=−∞
(−1)n

[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8π√
3a′ k|z|

+ 64
88

∞∑
l=1

l cos (lb2 ·Rn) e−
8π√
3a′ l|z| +

∞∑
k,l=1

{
2k2 + kl + l2√
k2 + kl + l2

× cos ((kb1 + lb2) ·Rn) e−
8π√
3a′
√
k2+kl+l2|z| + 2k2 − kl + l2√

k2 − kl + l2

× cos ((kb1 − lb2) ·Rn)) e−
8π√
3a′
√
k2−kl+l2|z|

}]
(C.55)
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Remembering that a′ is not the cubic lattice parameter, substituting a = a′/
√

2
gives

∆E = −176
√

2πµ0µ2
S

3a3

∞∑
n=−∞

(−1)n
[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8
√

6π
3a k|z|

+ 64
88

∞∑
l=1

l cos (lb2 ·Rn) e−
8
√

6π
3a l|z| +

∞∑
k,l=1

{
2k2 + kl + l2√
k2 + kl + l2

cos ((kb1 + lb2) ·Rn)

× e−
8
√

6π
3a
√
k2+kl+l2|z| + 2k2 − kl + l2√

k2 − kl + l2
cos ((kb1 − lb2) ·Rn))

× e−
8
√

6π
3a
√
k2−kl+l2|z|

}]
(C.56)

Rewriting z in terms of Rn gives

∆E(T ) = −176
√

2πµ0µ2
S

3a3

∞∑
n=−∞

(−1)n
[ ∞∑
k=1

k cos (kb1 ·Rn) e−
8
√

6π
3a k|Rn·ẑ|

+ 64
88

∞∑
l=1

l cos (lb2 ·Rn) e−
8
√

6π
3a l|Rn·ẑ| +

∞∑
k,l=1

{
2k2 + kl + l2√
k2 + kl + l2

cos ((kb1 + lb2) ·Rn)

e−
8
√

6π
3a
√
k2+kl+l2|Rn·ẑ| + 2k2 − kl + l2√

k2 − kl + l2
cos ((kb1 − lb2) ·Rn))

× e−
8
√

6π
3a
√
k2−kl+l2|Rn·ẑ|

}]
, (C.57)

This concludes the derivation. We have derived an analytic expression which shows
the dipole anisotropy can be written as proportional to µ2

S .In the thermodynamic limit
we can write this as 〈µ2

S〉 ≈ µ2
S [m(T )]2. The expression was calculated numerically for

finite ranges in the summation and we obtain a zero temperature value for the effective
uniaxial anisotropy constant of Ku = −0.4695meV/moment.
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Exchange Magnons in NiO
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Following the standard methods given in [148], we will calculate the linear magnon
Hamiltonian for NiO assuming a two sublattice model–an eight sublattice model is
possible but is unnecessarily complicated for our use of the magnon Hamiltonian. First,
we want to write the classical Hamiltonian (4.17) of the main text in terms of quantum
mechanical Pauli operators. We distinguish operators from functions by using a hat so
the Hamiltonian function H becomes the Hamiltonian operator Ĥ, for example. The
Hamiltonian operator for NiO is an XYZ model

Ĥ = −1
2
∑
i,j

Jij
[
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

]
, (D.1)

where Jij = Jij/S
2, S is the spin quantum number, and Ŝx, Ŝy, Ŝz are the Pauli

operators. Next, we rewrite this in terms of the spin ladder operators Ŝ+ = Ŝx+iŜy and
Ŝ− = Ŝx−iŜy which can be inverted to give Ŝx = 1

2

[
Ŝ+ + Ŝ−

]
and Ŝy = 1

2i

[
Ŝ+ − Ŝ−

]
.

The Hamiltonian is now

Ĥ = −1
2
∑
i,j

Jij
[
Ŝzi Ŝ

z
j + 1

2
(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)]
. (D.2)

We now introduce Holstein-Primakoff boson creation and annihilation operators for
both the ‘up’ and ‘down’ sublattices. These are â†, â, b̂†, b̂. If we index spins on the
‘up’ sublattice by ↑ and ‘down’ spins by ↓, then the Holstein-Primakoff operators are
related to the spin operators by

Ŝz↑ = S − â†↑â↑ (D.3a)

Ŝ+
↑ =

√
2S

1−
â†↑â↑

2S

1/2

â↑ (D.3b)

Ŝ−↑ =
√

2Sâ†↑

1−
â†↑â↑

2S

1/2

(D.3c)

Ŝz↓ = −S + b̂†↓b̂↓ (D.3d)

Ŝ+
↓ =

√
2S

1−
b̂†↓b̂↓

2S

1/2

b̂↓ (D.3e)

Ŝ−↓ =
√

2Sb̂†↓

1−
b̂†↓b̂↓

2S

1/2

. (D.3f)
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We want a magnon Hamiltonian which is bilinear in boson operators (linear in magnon
number operators), Ĥ(2). The above can then be simplified by a Taylor expansion
about â†↑â↑ = 0 or b̂†↑b̂↑ = 0 giving

Ŝz↑ = S − â†↑â↑ (D.4a)

Ŝ+
↑ =

√
2Sâ↑ (D.4b)

Ŝ−↑ =
√

2Sâ†↑ (D.4c)

Ŝz↓ = −S + b̂†↓b̂↓ (D.4d)

Ŝ+
↓ =

√
2Sb̂↓ (D.4e)

Ŝ−↓ =
√

2Sb̂†↓. (D.4f)

Now we separate the Hamiltonian operator into sublattices giving

Ĥ = −1
2
∑
i,j∈↑
J1+δ(|rij |, |v1|)

[
Ŝzi Ŝ

z
j + 1

2
(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)]

− 1
2
∑
i,j∈↓
J1+δ(|rij |, |v1|)

[
Ŝzi Ŝ

z
j + 1

2
(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)]

−
∑

i∈↑. j∈↓
J1−δ(|rij |, |v1|)

[
Ŝzi Ŝ

z
j + 1

2
(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)]

−
∑

i∈↑. j∈↓
J2δ(|rij |, |v2|)

[
Ŝzi Ŝ

z
j + 1

2
(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)]
(D.5)

where δ are Kronecker deltas, rij = rj − ri is the displacement vector between spins i
and j, |v1| = 1√

2a is the nearest neighbour distance, and |v2| = a is the next nearest
neighbour distance. The final two terms don’t double count interactions so there is no
factor of 1

2 . Further splitting into Hamiltonians for each exchange term Ĥ = Ĥ1+ +
Ĥ1− + Ĥ2 and substituting the Holstein-Primakoff operators, we get

Ĥ1+ = −1
2
∑
i,j∈↑
J1+δ(|rij |, |v1|)

[ (
S − â†i âi

) (
S − â†j âj

)
+ S

(
âiâ
†
j + â†i âj

) ]

− 1
2
∑
i,j∈↓
J1+δ(|rij |, |v1|)

[ (
b̂†i b̂i − S

) (
b̂†j b̂j − S

)
+ S

(
b̂ib̂
†
j + b̂†i b̂j

) ]
,

(D.6)

Ĥ1− = −
∑

i∈↑. j∈↓
J1−δ(|rij |, |v1|)

[(
S − â†i âi

) (
b̂†j b̂j − S

)
+ S

(
âib̂j + â†i b̂

†
j

)]
, (D.7)
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and,

Ĥ2 = −
∑

i∈↑. j∈↓
J2δ(|rij |, |v2|)

[(
S − â†i âi

) (
b̂†j b̂j − S

)
+ S

(
âib̂j + â†i b̂

†
j

)]
. (D.8)

Again, we only wish a linear theory. Ignoring constant energy terms and those with
more than two boson operators we have

Ĥ1+ = −1
2
∑
i,j∈↑
J1+Sδ(|rij |, |v1|)

[
âiâ
†
j + â†i âj − â

†
i âi − â

†
j âj
]

− 1
2
∑
i,j∈↓
J1+Sδ(|rij |, |v1|)

[
b̂ib̂
†
j + b̂†i b̂j − b̂

†
i b̂i − b̂

†
j b̂j
]
,

(D.9)

Ĥ1− =
∑

i∈↑. j∈↓
J1−Sδ(|rij |, |v1|)

[
âib̂j + â†i b̂

†
j − â

†
i âi − b̂

†
j b̂j
]
, (D.10)

and,
Ĥ2 =

∑
i∈↑. j∈↓

J2Sδ(|rij |, |v2|)
[
âib̂j + â†i b̂

†
j − â

†
i âi − b̂

†
j b̂j
]
. (D.11)

Since Ĥ1− and Ĥ2 have the same expressions of magnon operators we can combine
them. The total magnon Hamiltonian is then Ĥ = Ĥ↑↓ + Ĥ‖. So,

Ĥ‖ = −1
2
∑
i,j∈↑
J1+Sδ(|v1|)

[
âiâ
†
j + â†i âj − â

†
i âi − â

†
j âj
]

− 1
2
∑
i,j∈↓
J1+Sδ(|v1|)

[
b̂ib̂
†
j + b̂†i b̂j − b̂

†
i b̂i − b̂

†
j b̂j
]
,

(D.12)

Ĥ↑↓ = S
∑

i∈↑. j∈↓
(J2δ(|v2|) + J1−δ(|v1|))

[
âib̂j + â†i b̂

†
j − â

†
i âi − b̂

†
j b̂j
]
. (D.13)

Now we can take a Fourier transform so we can work with delocalised excitations. The
fourier transformation is given by

âi →
1√
2N↑

∑
k
âkeik·ri (D.14a)

â†i →
1√
2N↑

∑
k
â†ke−ik·ri (D.14b)

b̂i →
1√
2N↓

∑
k
b̂ke−ik·ri (D.14c)

b̂†i →
1√
2N↓

∑
k
b̂†keik·ri (D.14d)
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The Fourier transforms of âi and b̂i differ in sign of the exponential. This is because
they carry angular momenta of opposite sign. By imposing orthonormality, we replace
terms like âiâ†j by N−1

↑
∑

k âkâ
†
ke−ik·rij . Or, by applying the canonical commutation

relation
[
âk, â

†
k′

]
= δkk′

∗, this becomes âiâ†j → N−1
↑
∑

k â
†
kâke−ik·rij . By the conserva-

tion of moment, terms like âib̂†j transform as âib̂†j → (N↑N↓)−1/2∑
k âkeik·ri b̂†−kei(−k)·rj .

Applying these conditions, we have

Ĥ‖ =− S

4N↑
∑
i,j∈↑

∑
k
J1+δ(|v1|)

[
âkâ

†
keik·rij + â†kâke−ik·rij − 2â†kâk

]
− S

4N↓
∑
i,j∈↓
J1+δ(|v1|)

[
b̂kb̂
†
ke−ik·rij + b̂†kb̂keik·rij − 2b̂†kb̂k

]
,

(D.15)

Ĥ↑↓ = S

2
√
N↑N↓

∑
i∈↑. j∈↓

∑
k

(J2δ(|v2|) + J1−δ(|v1|))
[
âkb̂ke−ik·rij

+â†kb̂
†
keik·rij − â†kâk − b̂†kb̂k

]
.

(D.16)

Since the sum over k is symmetric, this can be written as

Ĥ‖ =− 1
4N↑

∑
i,j∈↑

∑
k
J1+Sδ(|v1|)

[
â†kâk

(
eik·rij + e−ik·rij

)
− 2â†kâk

]
− 1

4N↓
∑
i,j∈↓
J1+Sδ(|v1|)

[
b̂†kb̂k

(
eik·rij + e−ik·rij

)
− 2b̂†kb̂k

]
,

(D.17)

Ĥ↑↓ = S

2
√
N↑N↓

∑
i∈↑. j∈↓

∑
k

(J2δ(|v2|) + J1−δ(|v1|))
[1
2 âkb̂k

(
eik·rij + e−ik·rij

)
+1

2 â
†
kb̂
†
k

(
eik·rij + e−ik·rij

)
− â†kâk − b̂†kb̂k

]
.

(D.18)

We can then identify trigonometric functions giving

Ĥ‖ =− 1
4N↑

∑
i,j∈↑

∑
k
J1+Sδ(|v1|)

[
2â†kâk cos (k · rij)− 2â†kâk

]
− 1

4N↓
∑
i,j∈↓
J1+Sδ(|v1|)

[
2b̂†kb̂k cos (k · rij)− 2b̂†kb̂k

]
,

(D.19)

Ĥ↑↓ = S

2
√
N↑N↓

∑
i∈↑. j∈↓

∑
k

(J2δ(|v2|) + J1−δ(|v1|))
[
âkb̂k cos (k · rij)

+â†kb̂
†
k cos (k · rij)− â†kâk − b̂†kb̂k

]
.

(D.20)

∗We do not care about offsets so this becomes âkâ
†
k = â†kâk
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We can now evaluate the sum over spins but must also ensure we sum over the expo-
nentials correctly. First we must introduce the structure factors γk which are given by

γ+
k = (z1+)−1∑

δ1+

cos (k · δ1+) (D.21a)

γ−k = (z1−)−1∑
δ1−

cos (k · δ1−) (D.21b)

γ
(2)
k = (z2)−1∑

δ2

cos (k · δ2) , (D.21c)

where z is the number of neighbours for a given exchange interaction. In our case
z1− = z1+ = z2 = 6. The summations over spins are given by

∑
i,j∈↑
J1+δ(|v1|) cos (k · rij)→ 2N↑J1+z1+γ

+
k (D.22a)

∑
i∈↑, j∈↓

J1−δ(|v1|) cos (k · rij)→ 2(N↑ +N↓)J1−z1−γ
−
k (D.22b)

∑
i∈↑, j∈↓

J2δ(|v2|) cos (k · rij)→ 2(N↑ +N↓)J2z2γ
(2)
k (D.22c)

Now assuming N↑ = N↓ = N/2, we can write the Hamiltonian terms as

Ĥ‖ = J1+zS
∑

k
(â†kâk + b̂†kb̂k)(1− γ−k ) (D.23)

Ĥ↑↓ = −Sz
∑

k

[
(J2 + J1−)(â†kâk + b̂†kb̂k) + (J2γ

(2)
k + J1−γ

−
k )(âkb̂k + â†kb̂

†
k)
]
.

(D.24)
The bosonic excitations â†, b̂† are not linearised; the excitations are coupled. It’s more
convenient to work in an orthonormal basis of the excitations so that we can calculate
the energies of these independent excitations. This means that the linearised magnons
are not localised to a single sublattice. The process of linearising magnons is called a
Bogoliubov transformation but this is exactly the same procedure as diagonalising a
matrix by calculating eigenvalues and eigenvectors (though with a non-trivial metric for
compatibility with commutation relations [85, 305]). Choosing the basis X = (âk, b̂

†
−k)

then we can the Hamiltonian as Ĥ = X†HX where H is the following matrix

H =

Ak Bk

Bk Ak

 (D.25)
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where Ak = Sz
(
J1+(1− γ−k )− J1− − J2

)
and Bk = −Sz

(
J1−γ

+
k + J2γ

(2)
k

)
. Intro-

ducing linearised/diagonalised boson operators α̂†k, α̂k, β̂†k, and β̂k, which are related
by the transformation  âk

b̂†−k

 =

 uk −vk

−vk uk

 α̂k

β̂†−k.

 (D.26)

The eigenvector components are uk =
√

(Ak + hfk)/2hfk, vk =
√

(Ak − hfk)/2hfk.
The Hamiltonian can now be written as Ĥ = Y †(hfk1)Y with Y = (α̂k, β̂

†
−k)>. The

eigenfrequency is then hfk =
√
A2

k − B2
k which can be expanded to

hfk = z

S

√(
J1+(1− γ+

k )− J1− − J2
)2
−
(
J1−γ

−
k + J2γ

(2)
k

)2
. (D.27)
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Magnetfeld,” Z. Phys. 7, 249–253 (1921).

[11] NobelPrize.org, “The nobel prize in physics 1943,” .

[12] Baptiste Savoie, “A rigorous proof of the Bohr–van Leeuwen theorem in the semi-
classical limit,” Rev. Math. Phys. 27, 1550019 (2015).

[13] Bernard Rodmacq, Karine Dumesnil, Philippe Mangin, and Martine Hennion,
“Biquadratic magnetic coupling in NiFe/Ag multilayers,” Phys. Rev. B 48, 3556–
3559 (1993).

[14] W. Heisenberg, “Mehrkörperproblem und Resonanz in der Quantenmechanik,”
Z. Phys. 38, 411–426 (1926).

[15] Paul Adrien Maurice Dirac, “On the theory of quantum mechanics,” Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character 112, 661–677 (1926).

[16] P. W. Anderson, “Antiferromagnetism. Theory of Superexchange Interaction,”
Phys. Rev. 79, 350–356 (1950).

[17] Clarence Zener, “Interaction between the d-shells in the transition metals. ii.
ferromagnetic compounds of manganese with perovskite structure,” Phys. Rev.
82, 403–405 (1951).

[18] M. A. Ruderman and C. Kittel, “Indirect Exchange Coupling of Nuclear Magnetic
Moments by Conduction Electrons,” Phys. Rev. 96, 99–102 (1954).

[19] Tadao Kasuya, “A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s
Model,” Prog. Theor. Phys. 16, 45–57 (1956).

197

http://dx.doi.org/ 10.1063/5.0153212
http://dx.doi.org/ 10.1063/5.0153212
http://dx.doi.org/ 10.1088/0957-4484/12/2/323
http://dx.doi.org/ 10.1088/0957-4484/12/2/323
http://dx.doi.org/10.1007/bf01332793
https://www.nobelprize.org/prizes/physics/1943/summary/
http://dx.doi.org/10.1142/s0129055x15500191
http://dx.doi.org/ 10.1103/PhysRevB.48.3556
http://dx.doi.org/ 10.1103/PhysRevB.48.3556
http://dx.doi.org/10.1007/bf01397160
http://dx.doi.org/10.1103/physrev.79.350
http://dx.doi.org/10.1103/PhysRev.82.403
http://dx.doi.org/10.1103/PhysRev.82.403
http://dx.doi.org/10.1103/physrev.96.99
http://dx.doi.org/10.1143/ptp.16.45


BIBLIOGRAPHY

[20] Kei Yosida, “Magnetic Properties of Cu-Mn Alloys,” Phys. Rev. 106, 893–898
(1957).

[21] I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antifer-
romagnetics,” J. Phys. Chem. Solids 4, 241–255 (1958).
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O. Chubykalo-Fesenko, “Temperature-dependent exchange stiffness and domain
wall width in Co,” Phys. Rev. B 94, 104433 (2016).

[257] P. Dürrenfeld, F. Gerhard, J. Chico, R. K. Dumas, M. Ranjbar, A. Bergman,
L. Bergqvist, A. Delin, C. Gould, L. W. Molenkamp, and J. Åkerman, “Tun-
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