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Abstract

This doctoral thesis explores the development of efficient drone control methods in the dynamic

landscape of drone networks within the Internet of Things (IoT). As drones become increasingly

integrated into the IoT ecosystem, addressing the complexities and challenges inherent in their

coordination becomes paramount for ensuring reliability and efficiency.

The thesis starts with a thorough exploration of IoT concepts alongside drone networks, outlining

key application domains and describing state-of-the-art solutions, particularly in localisation and

tracking. Additionally, it examines advanced drone route planning strategies, highlighting the

opportunities they present and the critical challenges they entail.

The main body of the thesis introduces novel cooperative algorithms, drawing from deterministic

principles and artificial intelligence (AI) techniques. Inspired by natural phenomena such as flocking

birds, these algorithms enable drones to collaboratively determine their routes for tracking mobile

sensors within dynamic IoT environments. As the efficacy of these methods is demonstrated, it

becomes apparent how they enhance drone cooperation and significantly improve tracking efficiency.

Building upon this foundation, the thesis next introduces an innovative deep reinforcement

learning (DRL) scheme, empowering autonomous drone agents to efficiently develop optimal

data collection strategies within an IoT network. By harnessing DRL, drones continually acquire

insights from their environment and actions, adapting to changes and making intelligent decisions to

optimise their data collection policies. The scheme adapts state-of-the-art algorithms to effectively

scale to high-dimensional state-action spaces commonly encountered in real-world IoT applications.

This research contributes to the ongoing discourse surrounding drone-IoT integration, offering

novel approaches to drone control. The introduction of these methods opens up new avenues for

creating more efficient, and autonomous drone networks within the IoT paradigm, highlighting the

untapped potential of AI in this context, and setting the stage for future development in the field.
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Chapter 1

Introduction

1.1 Background and motivation

The Internet of Things (IoT) is seen as one of the most rapidly advancing technologies in the area of

computing and networking nowadays. It constitutes a breakthrough environment in which cutting-

edge science is utilised to offer solutions towards the improvement of diverse human activities. The

vision of the IoT aims at the seamless integration of several objects that act as smart devices with

existing networks, allowing the embedment of information from diverse communication systems

in the environment [1]. The distinct objectives and the specialised behaviour of such devices is

captured by appropriate software inside the IoT infrastructure which allows their interconnection

and global operation. Towards this vision, IoT devices are starting to become a thriving aspect of

everyday life, with the number of uniquely identified "things" increasing at an exponential rate [2].

Unmanned aerial vehicles (UAVs), also referred to as drones, is a technology that has exhibited a

lot of research interest and is expected to enter the grand scheme of the IoT, offering vast potential in

public and civil applications. The most common definition of a drone is that of an engine-powered

aerial vehicle which uses aerodynamic forces to provide lift and operates without a human pilot

onboard. Drones can be categorised based on the technology they utilise into fixed-wing aircraft,

single or multi copter rotorcraft, while their size can range from very small (nano/micro drones) to

1
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(a) Quadcopter drone mid-flight. Image source:
Unsplash. [6]

(b) Fixed-wing drone mid-flight. Image source:
Quantum-Systems. [7]

Figure 1.1: Multicopter and fixed-wing drones.

large, often resembling small airplanes. According to the use case, they can be either controlled

remotely or fly autonomously. Figure 1.1 illustrates an example of different types of drones.

The use of drones, started as part of military operations that included a single, large unmanned

vehicle, communicating with a centralised ground controller as part of an unmanned aircraft system.

The key issues in this architecture are the need for persistent connection with the control station and

the base station as well as the provision of access functionality. More importantly, a possible failure

in the drone of such a system, leads to an unsuccessful operation. Nowadays, the proliferation of

sensor technology has enabled drones to act as sensing devices that are being utilised in cooperative

aerial communication networks [3]. This allowed further widening in the capacity of potential

applications. It has been showcased that the use of several small drones organised in formations

called swarms, offers novel solutions in various areas, such as agriculture, environment inspection,

disaster detection, search and rescue operations, infrastructure maintenance, and more [4].

For instance, in the domain of agriculture, specifically in the field of smart farming, the use of

drones is considered a significant breakthrough technology [5]. In this context, drones are expected

to greatly assist in a more efficient utilisation of the land, providing useful insight regarding the

health of the plants with respect to the quality of production. In addition, drones can be utilised

to monitor the farming area and identify the driest fields thus providing insight towards a more

efficient water allocation, resulting in reduced waste.

In applications of security, environment monitoring and disaster detection, drone networks can

2
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be utilised to monitor a designated area, using their equipped sensors to detect abnormalities and

immediately call for help. For instance, in search and rescue operations drones can use dedicated

sensors to search for victims, so that a rescue party can be dispatched to their location. Forming a

cooperative network, drones can share a common map and communicate the areas already monitored,

effectively increasing the efficiency when searching [8].

Efficient control algorithms are critical for optimising the performance of drone swarms, espe-

cially in scenarios involving remote environments or drone-assisted IoT networks. Despite the rapid

advancements in this domain, significant challenges persist in fully realising the potential of drones

within IoT networks. These challenges encompass technical limitations and strategic considerations,

which are crucial for the successful deployment and operation of drone networks.

One of the primary challenges is the management of drone routes in prolonged missions.

Current battery technologies impose constraints on operational time, limiting the duration of flights.

Therefore, optimising route planning becomes essential to efficiently utilise the available energy

to successfully complete the mission. Addressing these challenges is important, as it enables the

resolution of various real-world problems and also facilitates the seamless deployment of drone

networks in remote environments. In addition, another significant obstacle in the efficient control

of drone swarms lies in devising solutions that leverage simple algorithms and sensors onboard

the drones. While advanced algorithms and sensor technologies exist, incorporating complex

systems can lead to increased computational overhead and energy consumption, thereby limiting

the scalability and practicality of drone swarm deployments. Therefore, developing streamlined

algorithms that can effectively govern drone movements and data collection strategies using minimal

computational resources is essential for realising the full potential of drone networks within IoT

environments.

In light of these challenges, the domain of control algorithms for drone swarms represents a

rich research area with several opportunities for exploration and advancement. Unraveling these

challenges can lead to an assortment of refined applications that contribute to solving diverse

problems across numerous fields. Moreover, overcoming these obstacles is instrumental in enabling

3
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the widespread adoption and effective utilisation of drone networks, thereby offering transformative

benefits to society at large.

This thesis aspires to present sophisticated drone control methods to address challenges, with

key focus in providing efficient navigation mechanisms inside drone networks in the context of IoT

infrastructures. Along the journey towards this goal, a series of novel solutions uniquely tailored

towards specific applications will be proposed and adaptive shemes will be introduced, designed

with an inherent flexibility to adjust to real-world problems.

4
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1.2 Aims and objectives

The main aim of this doctoral thesis is to innovate the sphere of drone control within IoT networks,

specifically in the realm of efficient route planning. This aim can be categorised into three primary

objectives.

• Investigate and devise deterministic techniques for cooperative drone control: The

first objective is to delve into deterministic strategies of drone control. This involves an

examination of structured methods based on rules, their performance and potential drawbacks.

This aspect of the research aims to identify potential areas of improvement and set the stage for

the application of more advanced methodologies. The key goal is to identify, understand, and

evaluate the possibilities of enhancing deterministic control mechanisms with state-of-the-art

techniques, such as AI.

• Investigate and devise deep learning methods for swarm coordination and cluster for-

mation: The second objective is to investigate the application of deep learning methods to

drone control, with a specific focus on cluster formation. This aspect of the research aims

to understand how AI can contribute to more efficient and effective management of drone

fleets, and to evaluate how it can facilitate the deterministic strategies. The formation of

clusters is critical, as it can offer ways of enhancing the efficiency and effectiveness of mission

execution.

• Investigate and devise a deep reinforcement learning framework for optimising drone

route planning: The third objective focuses on the use of deep reinforcement learning for

route planning optimisation. The key goal is to take drone control a step further by learning

optimal policies towards achieving the mission goal and to continually adapt to changes

in real-time. Focusing on the design of systems that can learn from their environment and

conform to induced constraints, can help reduce the need for human intervention and increase

the overall control efficiency.

5
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Through the pursuit of these objectives, this thesis intends to offer a series of innovative

solutions to the specific challenges encountered in the control of drones within IoT infrastructures.

By introducing adaptive schemes with the inherent flexibility to adjust to real-world problems, the

ultimate goal is to contribute to the evolution of efficient, intelligent drone control systems, bringing

tangible benefits to a wide range of applications and sectors.

1.3 Outline of the thesis

Following in this thesis, there are five distinct chapters: a review of the associated literature explored

by the research effort in the context of the thesis, three chapters - each dedicated to analysing and

tackling one of the primary defined research objectives, and a chapter that discusses the findings,

evaluates the achievement of goals and concludes the thesis.

Chapter 2 delves into the background of the work and is structured to provide an exhaustive

analysis of the relevant research and literature that establishes the foundation for this thesis. The

chapter begins with a comprehensive overview of the IoT paradigm, establishing its critical role

in current technological landscapes. The focus then shifts to drone networks, discussing their

distinct characteristics, operational applications with a focus on localisation and tracking methods,

and the challenges and current techniques in optimisation of route planning. This forms a solid

understanding of the capabilities and limitations of current drone networks. The latter part of the

review examines the prospective role of AI in drone swarm management. It begins by assessing the

application of machine learning in drone control before exploring how deep reinforcement learning

techniques can be used to achieve efficient drone navigation.

Chapter 3, titled "Development of a new Deterministic Technique for Drone Control" involves

the study of a deterministic method in the realm of cooperative drone control. This chapter sets

the stage by introducing the foundation of a new deterministic technique, followed by an extensive

examination of its application in the control of drones. It provides an in-depth analysis of how

this technique is leveraged to enhance cooperation among drones in a mobile IoT sensor tracking

6
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application for search and rescue operations. Furthermore, it evaluates the strengths and weaknesses

of the method, shedding light on potential challenges and areas for improvement. The findings of

this investigation pave the way for the subsequent exploration of AI in drone control, setting up a

comparative framework for different control strategies.

Chapter 4, titled "Advancing Drone Control: Deep Learning in Cluster Formation", signifies a

transition from traditional deterministic techniques, delving into the application of deep learning

methodologies within the scope of drone cluster formation and swarm coordination. In this chapter

the design and implementation of a deep learning model that can facilitate the formation of drone

clusters is introduced, highlighting its ability to create efficient and adaptable swarm formations, fur-

ther improving the mobile IoT sensor tracking performance of the purely deterministic scheme. The

exploration of deep learning leads into the next step of the research: the use of deep reinforcement

learning for optimising the drone route planning.

Chapter 5, titled "Multi-Agent Drone Route Planning Optimisation" signifies the apex of this

research journey, integrating the understanding gained from previous chapters to tackle a different

more complex problem, that of optimising multi-agent drone route planning for efficient data

collection in an IoT context. The chapter primarily focuses on the introduction of a novel deep

reinforcement learning framework, demonstrating its capacity to manage the dynamic nature of

multi-agent systems and optimise drone routes given multiple constraints. Detailed investigation and

analysis reveals how the proposed framework can result in efficient and adaptable drone networks

that are equipped to handle intricate real-world scenarios. This chapter signifies the importance of

intelligent systems in drone route planning optimisation, but also illustrates their potential to greatly

enhance the field of drone control within IoT infrastructures.

Finally, chapter 6 concludes the research with a review of key findings, their implications, and

future prospects. It analyses research outcomes, acknowledges limitations, and suggests future

research directions. It ends by highlighting the untapped potential in intelligent drone control

optimisation, inspiring further innovation in the domain.
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8



Chapter 2

Background

2.1 Internet of Things

The core concept of the Internet of things revolves around the discrete identification of an assortment

of smart objects inside a global network. The virtual behaviour and functionality of these objects

has to be captured under an overlay network that communicates with the Internet itself, while

their physical attributes need to be seamlessly integrated into this network [2]. Inside the Internet

of Things, architectures are characterised by self organising capabilities and utilise correlative

communication protocols for the device interconnection, based on standardised intelligent interfaces.

Viewed from an abstract perspective, the Internet of Things incites a vision of the Internet

escaping the digital world, embracing reality and becoming an active part of everyday activities.

"Things" inside the IoT are becoming dynamic participants in human processes, by accessing

Internet services, communicating among each other through information exchange, and interacting

with people. The proliferation of sensor technology has enabled smart objects to perceive their

context, while reacting to data sensed from their environment, either autonomously or through

human intervention [9].

Considering the variety of cases in which humans need to access remote data on a timely manner,

or that inter-device interactions are required in the context of IoT, it is evident that deciding on
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a self-contained architecture, appropriate for all issues, is inherently challenging [10]. The very

foundation on which the Internet of Things is based, inevitably leads to scalability issues, since the

IoT scope exceeds that of a local environment [9]. Adjacent to this challenge comes the need for

IoT infrastructures to support the immediate integration of new smart objects when needed and to

assist in their self configuration inside the specific environment [1].

Interoperability is a vital characteristic of the Internet of Things and is seen as one of the most

important concerns for the realisation of this paradigm. Smart devices demonstrate a pronounced

variety, leading to issues regarding their unique visual representation inside the IoT. Evidently, these

issues affect their portrayal as nodes inside a network, but also expand into the way their produced

data is communicated and represented in the architecture of the system [9].

Besides the prominent issues mentioned above, the vision of an Internet of Things faces

additional challenges that add to the complexity of undertaking this endeavour. Utilising appropriate

technologies, the realisation of the IoT should account for security and privacy concerns, provide

methods for the required autonomy features [11], take into consideration energy constraints and

allow staightforward service discovery mechanisms [12].

In the direction of this evergrowing vision of an Internet of Things, new classes of smart objects

are finding their way inside the grand architecture. The insertion of drones in this paradigm as a

special type of aerial devices, allows the expansion of the idea and the envisioning of the Internet

of Flying-Things [13]. Consequently, there is a growing demand for novel approaches that will

enable the seamless integration of drones in the Internet of Things, conceptualising demanding

networking techniques, but paving the way for a significant amount of diverse IoT applications in

the process [14].

2.2 Unmanned aerial vehicle networks

Research in the realm of swarm coordination in the context of drone networks has proven to be

a daunting task, bringing forth numerous issues that need addressing, before such networks can
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be effectively operationalised. At first glance, conventional frameworks utilised in mobile ad-hoc

networks (MANETs) and vehicular ad-hoc networks (VANETs) may appear suitable, however,

research efforts in that direction do not fully contend with some prominent aspects of drone

behaviour [15]. Thus, a fresh perspective is required, leading to the advent of the flying ad-hoc

network (FANET). These networks aim at a more effective intercommunication between the drones,

support schemes for the connection among multiple drone systems and facilitate the control of the

autonomous movement of drones [16]. The distinctive aspects of FANETs and their dissimilarities

with traditional mobile and vehicular networks are discussed below.

2.2.1 Distinct characteristics

Most mobility models employed to characterise the behaviour of nodes in MANTEs or VANETs

are largely two-dimensional. The former are typically governed by the "random walk" model [17],

while the latter are commonly associated with the "Manhattan" model [18]. However, in many

instances, nodes within a drone network may navigate in three dimensions, while the alteration in

their position might occur rapidly. Drones often boast velocities reaching up to 100 m/sec, which

vastly outpaces the typically low speeds observed in conventional mobile networks. As a result,

the direct application of mobility models from previous paradigms to FANETs proves inadequate,

demanding substantial modification and adaptations [19].

Network topology also serves as a notable distinguishing element separating FANETs from

traditional mobile networks. In a network of interlinked drones, the relative positions of nodes

may undergo frequent changes, and thus the topology experiences recurring alterations. This is a

common issue in drone networks, as nodes periodically need to disconnect from the network for

recharging or due to fault occurrences. When this occurs, they are replaced by new nodes, leading

to the continual creation and dissolution of unique network links. In essence, FANET topology is

marked by its highly dynamic nature, as drones unpredictably join or disconnect from the network.

The literature suggests that a mesh topology may often be suitable among the drones, while a star

topology can be effectively used between the drones and the base station [20].
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Figure 2.1: Mobile, vehicular and flying ad-hoc network.

The specific application of the deployed drone network significantly influences the network

topology. For example, in surveillance or agriculture contexts, the topology tends to remain largely

stationary, as drones need to hover over a designated area. However, in sensing applications like

search and rescue missions or disaster detection scenarios, the network’s topology undergoes rapid

changes. There are various use cases where node density is sparse, making network partitioning

a frequent occurrence. In such instances, it is crucial for the network to have self-reconfiguring

capabilities [21]. This poses substantial challenges in smoothly transferring provided services to a

functioning drone and maintaining consistent network communications.

Perhaps one of the most defining characteristic that distinguishes FANETs from conventional

ad-hoc networks is their limited energy availability. Drones are battery constrained, and the flight

time of small UAVs is typically limited. This is in contrast to nodes in mobile and vehicular

networks, which are equipped with energy sources that can last considerably longer or be recharged

during operation. Therefore, enhancing energy efficiency is paramount in drone networks, and it is

crucial to develop efficient control methods to optimise power usage within the swarm [20]. For

instance, efficient path planning is a pivotal aspect that can significantly enhance network longevity

and minimise energy consumption in drone networks. By optimising travel routes, the distance and

complexity of maneuvers drones need to undertake are effectively reduced, leading to lower energy

expenditure [22]. Furthermore, well-planned paths contribute to the balanced energy usage across

all drones, preventing overuse of individual units and thus prolonging the collective operational
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Figure 2.2: Drone equipped with camera in a forestry application. Image source: Unsplash. [24]

time of the network.

2.2.2 Operational applications

Applications of drone networks span across diverse domains, including agriculture, disaster manage-

ment, surveillance, and environmental monitoring. The interplay of multiple drones in a networked

ecosystem allows for enhanced operational capabilities, efficiency, and robustness, presenting novel

opportunities for exploration and innovation. For instance, research in the domain of forestry has

recently experienced a growing remote sensing initiative, with the incorporation of drones in sensing

systems providing a versatile and appealing solution, while at the same time reducing costs. In

essence, deployed drone networks can offer benefits in a diversity of forest applications, including

canopy height estimation, monitoring wildfires, and sustaining forest management. Existing ap-

proaches demonstrate high potential, however extensive research is still required to identify proper

methodologies that can prove effective in the diverse conditions encountered in forests, and that

satisfy each unique case [23]. An example of a camera equipped drone in a forestry application is

shown in Figure 2.2.

A noteworthy strategy within UAV-assisted forestry involves the fusion of drone photogrammetry

and structure from motion methodologies [25,26]. The approach is examined in [27] which harnesses

13



Chapter 2. Background

an open-source photogrammetric toolbox to model the canopy surface of deciduous trees. Imagery

collected from a fixed-wing drone is integrated with a LiDAR model, with the resultant hybrid

system utilised to determine forest elevation. The findings from this approach have shown to be

similar with existing data and measurements acquired from manned LiDAR aircraft.

The concept of using drones for fire discovery as well as real-time wildfire monitoring exists at

the core of the drone application domain, and the immense potential it can offer has been perceived

since the early stages of this notion. In contrast to traditional methods that include the use of human-

piloted aircraft, small drones constitute a more affordable alternative that can prove essentially

useful in hostile terrains, by avoiding possible risks a pilot may face. Detection and tracking of a

forest fire can be achieved using video sequences obtained from drones [28], as well as through

infrared sensors by performing histogram segmentation and optical flow deconstruction [29]. Once

a fire has been detected, a group of drones can identify the optimal path to each fire spot by using

heuristics [30] or other methods.

Remote sensing has proven to be highly valuable in precision agriculture applications as

well, offering a wide range of benefits. UAV-assisted networks are extensively utilised to aid in

various agronomic use cases, including crop area measurement, yield assessment, detection of

infestations or weather-related damage, and soil condition inspection [31]. These applications

commonly involve equipping drones with multi-spectral visual sensors and employing autonomous

monitoring techniques. This approach is showcased in the 3D imaging system presented in [32]

which effectively extracts essential data towards the enhancement of crop management. Similarly,

drones can be employed for livestock monitoring, as demonstrated in [33]. The described approach

utilises an artificial neural network combined with a clustering algorithm to analyse remote images

captured by a drone, exhibiting high accuracy in livestock counting, providing reliable results

even in moderately crowded areas. Overall, the integration of drone remote sensing technologies

with precision agriculture has led to the development of advanced analytics tools that can process

relevant data to provide actionable insights. These tools are crucial in optimising irrigation schedules,

identifying nutrient deficiencies, and enhancing the overall productivity of agricultural operations.
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2.2.3 Localisation and tracking

In the context of this thesis, the area of mobile target tracking through drone networks holds high

relevance, closely aligning with the conducted research. Over the years, this field has attracted sig-

nificant interest, with numerous approaches proposed in the literature. In particular, the deployment

of drone swarms equipped with diverse sensors presents opportunities for innovative solutions in

localisation applications. While robust localisation techniques typically rely on visual sensors for

effective detection and tracking of moving objects, these methods often require real-time execution

of energy-intensive image recognition algorithms, thus posing challenges to the crucial aspect

of energy preservation in UAV-assisted networks. Therefore, there is a pressing need to develop

efficient algorithms that leverage alternative sensor types with lower energy demands [34].

In the field of localisation, triangulation has long been a popular and widely adopted method,

relying on calculated angles between known locations and incorporating distance estimates from the

target to establish its position through the formation of triangles. Trilateration, a similar approach,

relies on distance measurements using the intersection of formed circles to determine the target’s

location. A network of drones equipped with electronic surveillance sensors that provide Received

Signal Strength Indication (RSSI) of a radio frequency (RF) emitter may be deployed to calculate

the distance from it based on a log-normal shadowing model. A fusion center can then collect this

information from the drones and utilise trilateration to calculate the position of the RF source [35].

Such methods are effective, particularly when the target emits at high frequencies, as simulation

analyses indicate.

Extensive research has been devoted to utilising optimal control techniques for localisation

and tracking problems, leading to the proposal of various control schemes in recent literature.

In this field, the Kalman filter [36] is a powerful mathematical tool used to estimate the state of

a system based on noisy measurements. At its core, the Kalman filter is based on a recursive

estimation algorithm that maintains an estimate of the system state by iteratively incorporating new

measurements and updating the state estimate. This estimation process leverages two fundamental

principles: the system’s dynamics model and the measurement model. By combining these models
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Figure 2.3: Diagram illustrating the control process, where the probability map and Kalman filter are
independently built and subsequently merged within a path planner. [37]

with statistical assumptions, the Kalman filter provides a principled framework to compute the

optimal state estimate and its associated uncertainty.

An optimal control localisation algorithm which relies on Kalman filters is described in [37]. The

proposed framework consists of a two-layer structure that incorporates two observers in conjunction

with a path planning algorithm. The first observer utilises Kalman filters to estimate the states of

the objects by integrating observations of objects with simple velocity models. The second observer

estimates the state of the open area by employing a probability map, which records the drone’s

movement within the open area and determines the probable locations of new objects. For drone

path planning, it is assumed that an autopilot system is available, enabling the generation of a path

instead of directly considering actuator inputs. The path planning algorithm integrates combinatorial

optimisation and continuous optimal control techniques to prioritise between exploring uncharted

areas and tracking known objects. The control architecture is illustrated in Figure 2.3.

The validation of the algorithm is conducted through simulation, comparing it to multiple base

cases and a case where perfect knowledge of object positions is assumed. Monte Carlo simulations

are executed with an open area defined by its X- and Y-coordinates, a specified number of objects

following a predetermined equation, and a drone with a limited field of view tasked with searching
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and tracking the objects. The simulations involve varying two parameters: the number of objects

and the size of the area. The results of the simulations demonstrate that the algorithm exhibits

significantly superior performance compared to the base cases, showcasing an improvement of

approximately 5-15%. However, it performs around 20-25% worse than the case where perfect

knowledge of object positions is available.

A motion planning algorithm is also presented in [38], where a group of drones cooperatively

track a target by optimising their intercommunication and sensing with a remote base station. The

described scheme effectively integrates these objectives to accomplish the target tracking mission

while ensuring appropriate connectivity with the remote base station. The algorithm takes into

account realistic communication environments to generate trajectories for information-gathering

by the multi-UAV system. The performance of target fusion and estimation relies not only on

the overall information contained in the UAVs’ measurement data sets but also on the successful

transmission of measurement packets to the base station. Based on this concept, a co-optimised

communication and sensing scheme is devised to enhance the overall performance of the system.

The sensing scheme is developed based on a framework of distributed receding horizon opti-

misation. At each time step, the planned control inputs and trajectories are received by each UAV

from the other drones. Subsequently, based on the estimates of the target state and future state

predictions of the other drones, each drone optimises its own control inputs and plans its trajectory.

The co-optimisation of communication and sensing manifests through the balance between commu-

nication reliability and sensing utility, with the objective of maximising the overall information gain

transmitted to the base station. Thus, the trajectory planning process of the algorithm incorporates

both communication and sensing objectives to achieve an optimal performance in target tracking.

Noteworthy methods in this domain also incorporate model predictive control (MPC) algorithms

which allow swarms of drones to cooperatively localise an RF source in a decentralised manner [39].

The algorithm can be executed by the local onboard computers of each drone, structured in a

double-layered architecture that ensures software portability. It operates by collecting localised

information from neighboring drones and adjusting its velocity accordingly. The algorithm is
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engineered to attain both a convergence rate and a steady-state regularity of the flock. The ultimate

configuration of the flock is determined by the combination of the communication range and the

desired inter-drone distance. The utilisation of a decentralised system for multi-drone coordination

offers several advantages, including reduced communication complexity and the emulation of

anonymity among the drones. The communication process is simplified as broadcasting does

not necessitate peer-to-peer handshaking. The interaction range of each drone is determined by

the broadcast radius, which establishes a localised sensing area. Moreover, the system maintains

anonymity, with all calculations and controls being executed on an onboard minicomputer of each

drone. This design enhances security and reduces vulnerability to external interference.

Similarly, the study in [40] adopts a receding horizon control (RHC) strategy for multiple

target localisation. The proposed approach, rooted in hybrid system theory, employs a nonlinear

MPC algorithm to facilitate real-time motion planning that optimises ergodicity concerning a

distribution characterised by the expected information density across the sensing domain. The

algorithm’s objective is to achieve real-time coverage and target localisation, adapting its actions

based on sensor feedback to continually update the expected information density. By focusing

on tracking a non-parameterised information distribution across the terrain instead of individual

targets in isolation, the approach is fully decoupled from the estimation process and the number of

targets. Furthermore, the algorithm is designed to be distributable across multiple agents, allowing

each agent to independently compute its own control while sharing coverage statistics across a

communication network. The overview of the ergodic control process is illustrated in Figure 2.4.

The findings indicate that this approach has the potential to effectively handle the challenges

associated with coverage, search, and target localisation in a comprehensive manner. By directing the

robots to track a non-parameterised information distribution across the terrain rather than individual

targets in isolation, the approach achieves complete decoupling from both the estimation process

and the number of targets. The methodology is validated through simulations and experiments

specifically focused on target localisation, demonstrating its capability to operate independently of

the number of targets being tracked.
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Figure 2.4: Ergodic control flowchart. [40]

The study presented in [41] describes a hierarchical MPC algorithm, which is a modified version

of the MPC approach, utilised to streamline the computation of a suboptimal control sequence for

addressing the drone control problem. In its basic form, the MPC algorithm dynamically solves

an open-loop optimal control problem over a finite horizon, utilising the system’s state at a given

time as the initial state and the available information at that instant. Building upon this foundation,

the hierarchical variant of MPC further divides the problem into a sequence of sub-problems, each

characterised by its own time horizon and control objectives. This division facilitates the calculation

of a suboptimal control sequence, thereby simplifying the management of the drones.

The study presented in [42] examines a context where the RF source transmits signals inter-

mittently using fixed-wing drones equipped with angle-of-arrival (AOA) sensors. The described

system relies in a decentralised architecture whereby each drone determines its path cooperatively

based on the information received by neighbouring drones and on the data provided by its sensor.

Control actions are taken based on a cost function regarding the distance that each drone needs to

cover, the number of active drones assisting in the current target localisation, and the number of

adjacent drones. When the cost function goes below zero, the corresponding drone proceeds to

assist in the localisation, otherwise it retains its current actions. To accommodate for the intermittent

transmission, the algorithm integrates the information of multiple AOA sensors over time. The

study investigates the performance of three localisation techniques: triangulation, angle-rate, and
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Kalman filtering using simulation experiments and concludes that a combination of these can yield

a generally accurate localisation method.

Employing measurements of the Doppler frequency in the received signal, the method in [43]

manages to lead a drone to a distant RF emitter, by continuously adjusting the trajectory using

bearing estimates. At a first stage the drone follows a random circular trajectory, while storing

frequency and bearing measurements. In order to filter the stored values and minimise effects of

multipath fading, an outlier rejection technique is applied to the frequency measurements. At the

second stage, the drone derives changes in Doppler at regular intervals for a persistent trajectory

control that leads it towards the RF source. The study demonstrates the increased performance

of this method through simulation experiments; however the required receiver operations have an

increased complexity, compared to simply extracting the RSSI.

The issue of frequency drifts over time is effectively tackled by calculating the difference

between two sets of frequency measurements. These measurements are obtained by perturbing

the bearing around the current trajectory. By adopting this approach, the algorithm succeeds in

substantially mitigating the impact of carrier frequency offset and drift. It is worth noting that

these offsets and drifts change at a much slower rate compared to the duration of the iteration step.

Moreover, the degree of perturbation can be heightened to enhance resilience against measurement

noise, albeit resulting in increased travel distance as a trade-off. The algorithm demonstrates

convergence towards the proximity of the emitter, whereby the net distance traversed is only slightly

larger (approximately 10%) than the initial line-of-sight distance between the UAV and the emitter.

Through simulation results, an illustrative UAV trajectory and the corresponding estimated frequency

are presented, taking into account the presence of multipath, carrier frequency offset, and frequency

drift for that specific trajectory. The received signal power profile along the trajectory, as well as the

spatial variations in received power, are also depicted. Lastly, it is shown that this method effectively

addresses various technical challenges, including unknown carrier frequency offset, frequency drifts,

direction ambiguity, and noise in observations.

Relying on DOA, AOA, or similar sensors is not always convenient, especially when involving
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small multi-rotor drones. As a result, simpler alternative methods such as passive RSSI sensors,

are often preferred. In this context, an RHC algorithm governing the path planning of an RSSI

sensor-equipped drone swarm, is described in [44], towards the goal of localising a mobile RF

transmitter. At the core of the algorithm, a predictive model for the Fisher information matrix (FIM)

is employed to estimate the potential FIM values for the set of potential courses of action. This

predictive model serves as the basis for formulating the optimal course of action through local

optimisation, enabling the system as a whole to pursue the goal within a finite receding horizon.

The state estimation of the target and the FIM optimisation around that point are carried out using an

Extended Kalman Filter (EKF). The linear state transition of the target drone state vector simplifies

the prediction stage of the EKF. By utilising the EKF estimator, the target location estimation is

updated and predictions are made based on the most recent data available.

The application of localising intermittently transmitting mobile RF sources is also examined

in [45], leading to a scenario where the RSSI measurements are not continuously available. The

employed system model involves a group of drones equipped with omnidirectional RSSI sensors.

These sensors receive intermittent, omnidirectional transmissions from a target that exhibits stochas-

tic movement. A general stochastic linear time-invariant model is utilised to describe the target’s

movement, which encompasses various stochastic movement models that can be represented as

linear models. The received power at each RSSI sensor is modeled, taking into account Friis

channel attenuation, log-normal fading, and the distance from the target. The measurement model is

completed by adding thermal noise to the received power, resulting in an accurate representation of

the final measurement. The measurement model characterises the RSSI measurements as unbiased

noise added to the expected value of the measurement. Expanding on this model, the FIM for

the next estimation cycle is derived, and steepest descent path planning is formulated based on

the determinant of the FIM. An EKF is utilised, which incorporates a minimum risk detector to

determine if the target was transmitting during the current time step, enabling the estimation to be

updated accordingly. The flowchart of the model is illustrated in Figure 2.5.

In the examined scenario, the drones are tasked to patrol a designated area of interest and
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Figure 2.5: RSSI model based on stochastic and deterministic submodels. [45]

pinpoint the sporadic RF source via a two-stage technique. The first phase involves the task of

localisation, where the drones estimate the target location, given the previous RSSI measurements,

based on a recursive Bayesian estimator. In the second phase, the optimal future trajectory is

determined, with the goal of reducing the localisation error by taking into consideration the current

estimation, using a steepest descent path planning algorithm. Findings from simulations suggest that

the recursive Bayesian estimator slightly outperforms an EKF in the first phase, while the steepest

descent algorithm displays major benefits in the second stage, when compared to a bioinspired

approach.

The current domain of research in drone localisation methods reveals several notable research

gaps that require further exploration. Related to these gaps is the fact that most methods require

complex or multiple antennas for direction of arrival, Doppler frequency, or angle of arrival

measurements. While effective, such approaches may face challenges in practical implementation

for small drones due to size and weight constraints. Additionally, these antenna configurations can

introduce complexity in terms of system integration and may not be ideal for resource-constrained

platforms. Finally, such antennas might be more susceptible to faults or accumulate errors over time.

Contrary approaches utilise RSSI sensors which deal with most of these challenges. However, most

existing techniques involve the conversion of RSSI to distance specifically using signal propagation

models, which can be imprecise in dynamic environments.
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In addition, many prevailing strategies rely on sophisticated algorithms that demand extensive

computational resources, often surpassing the capabilities of onboard processing units of drones.

This creates a critical bottleneck in real-time applications where swift and efficient decision-making

is imperative. Therefore, there is need for methods that rely on simple sensors which are lightweight

and small such as RSSI antennas, and for the development of algorithms capable of deriving accurate

solutions with minimal computational overhead at the same time.

Furthermore, while deterministic methods have shown promise in addressing certain challenges

in drone localisation, they often rely on predefined rules or models, which may not fully capture the

complexity of real-world environments. In contrast, AI approaches offer the potential to adapt and

learn from data, thereby enhancing the robustness and flexibility of localisation algorithms.

Addressing these research gaps is essential for advancing the field of localisation and tracking

using drones, ensuring robustness, efficiency, and feasibility for real-world applications. The

research effort of this thesis aims to develop innovative approaches that mitigate these limitations,

enabling the development of accurate and energy-efficient drone localisation techniques in the IoT

context.

2.2.4 Optimisation in route planning

The problem of multi-UAV route planning is a complex and compelling area of research, which

also holds high relevance to the research outcomes of this thesis. It involves the optimisation of

paths for a fleet of drones to achieve a set of objectives efficiently and effectively. The problem falls

within the broader context of combinatorial optimisation problems, as it requires a solution among a

discrete set of possibilities. Being closely related to graph theory, it encapsulates several challenges.

Primarily, it includes the optimal determination of efficient paths for individual drones, taking into

account their capabilities, current status, and overall mission objectives.

The complexity of this problem scales exponentially with the number of drones and tasks, making

it a non-deterministic polynomial-time hard (NP-hard) problem. Hence, traditional algorithms

like brute force or exact methods become computationally infeasible for larger instances. From
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Figure 2.6: Multi-UAV route planning problem. The solution involves optimal target assignment and path
planning.

a combinatorial optimisation perspective, the multi-UAV route planning problem is considered

a variant of the multiple travelling salesman problem (m-TSP), in which the agents must obey

additional constraints. While searching for the shortest path to visit the desired set of locations, the

drones need to consider the limited flight time, obstacles, or onboard storage when designing the

optimal path plan [46]. Over the years several approaches have been devised to provide solutions to

such problems in this context.

Taking inspiration from biological systems found in nature, many methods involve the use of

swarm intelligence to govern the collective behavior of agents [47]. These techniques typically

involve the design of meta-heuristics to search large decision spaces, without specific assumptions

about the optimisation problem at hand. To achieve the decentralised control of multiple drones, the

study in [48] describes a particle swarm optimisation (PSO) algorithm using a receding horizon

approach. The problem complexity is reduced through discretisation, with focus given on collision

avoidance by adding dynamic safe distance constraints. The PSO algorithm, a population-based

optimisation method, is utilised to optimise the performance index of the RHC framework, by
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mimicking the social behaviour of bird flocking or fish schooling. It iteratively updates the position

and velocity of each particle in the swarm based on its own experience and the experience of

neighbouring particles to find the optimal solution. Ultimately, the described method is specif-

ically designed to enable real-time generation of optimal trajectories for multiple drones, while

simultaneously ensuring collision avoidance.

A "comprehensively improved" PSO (CIPSO) method is used in [49] by adaptively tuning the

parameters to enhance the convergence speed of the algorithm when designing the optimal formation

for the drone path planning. The rapidity and optimality of automatic path planning are enhanced by

the described algorithm through several means. Firstly, the particle initial distribution is enhanced

by adopting a chaos-based logistic map. Secondly, the commonly used constant acceleration

coefficients and maximum velocity are replaced with adaptive linear-varying ones, which can adjust

to the optimisation process and improve the optimality of solutions. Lastly, a mutation strategy is

introduced to replace undesired particles with desired ones, thereby accelerating the convergence

speed of the algorithm. The comprehensive improvements made to the PSO, result in accelerated

convergence and improved solution optimality, as evidenced by conducted simulations. In particular,

the improved PSO method was evaluated through Monte-Carlo simulations for varying drone

formation scenarios. The simulation results were compared with those of other PSO algorithms, and

the described algorithm demonstrated higher performance in convergence speed, solution optimality,

success rate, and procedure running time. The outcomes regarding the formation path failure rate

and the improved percentage of different methods compared to standard PSO, are listed in Table

2.1.

Meta-heuristics such as adaptive genetic algorithms (GA), have also been successfully employed

Table 2.1: Comparison of PSO methods in formation path failure rate and improvement over standard
PSO. [49]

Metric SPSO LCPSO LVPSO CBPSO PMPSO CIPSO

Failure rate 5.6% 4.2% 2.2% 3.2% 2.8% 0.8%
Improvement – 25% 67.71% 42.86% 50% 85.71%
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Figure 2.7: Flowchart of the genetic algorithm based on simulating annealing. [51]

in cooperative task assignment inside multi-UAV systems [50] to accelerate the search for good

solutions. The efficiency of GA can be improved by using a second selection operation based on

simulated annealing (SA) [51], which relies on the path length to reduce the loss in the evaluation

function. In the described method, termed ISAFGA and illustrated in Figure 2.7 the acceptance

criteria of the SA solution are refined, facilitating the exploration beyond local optima, and a

threshold is introduced to determine the suitability of accepting the new solution. Furthermore, the

encoding of the drone task sequence and the modification of the GA selection operation through the

double selection process contribute to improved performance. The study argues that the integration

of the enhanced SA method in the mutation and subsequent selection operations increases the

diversity of individuals and significantly enhances the algorithm’s efficiency in determining the task

allocation order.

Further improvements in GA algorithms can also include population enhancement methods by

generating alternative paths through ant colony optimisation [52]. In this method, the main focus

lies in improving the convergence process by providing a good initial population that drives the pop-

ulation to optimality, as this choice determines how efficiently the optimisation algorithm converges

to a local or global optimum. This is achieved through the utilisation of an ant colony optimiser,

Voronoi diagrams, and clustering methods. The described enhancements in the initial population

include both random and controlled diversity. After evaluating this technique in checkpoint-based

drone path planning problems in varying environments, such as rural, urban, and spatial type terrain

models, the study argues that this approach provides effective paths for a drone, while demonstrating
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a reduction in computational time. However, the comparison of compute times with other methods

is not clearly specified, leaving uncertainty regarding the specific methods used for benchmarking.

2.3 Artificial intelligence in UAV swarns

Artificial Intelligence in drone control involves the utilisation of machine learning algorithms

and other AI methods to guide the navigation and actions of drones autonomously, negating the

necessity for human interference, even in terms of pre-programming rules for the said control.

Equipped with AI, drones can process environmental data collected through different sensors and

cameras, formulating decisions pertaining to their flight path and mission objective realisation.

Tasks traditionally deemed complex and hazardous for humans, such as infrastructure inspection,

surveillance, or search and rescue in remote zones, can be accomplished efficiently and securely by

AI-integrated drones.

When compared to heuristic or alternative traditional approaches, AI offers several unique

advantages. The key difference lies in its ability to learn from experience and adapt the behaviour of

the drone according to accumulated data, gradually enhancing its performance. This characteristic

also facilitates the effective operation in dynamic and unpredictable environments, demonstrating

robustness in challenging situations by being able to manage uncertain or noisy data. In addition

to the above, AI can be more effective when handling high-dimensional data and solving intricate

problems, unlike conventional algorithms that often struggle with complicated, multidimensional

decision-making scenarios. For this reason it is usually the optimal choice for tasks such as path

planning or cooperative control of multiple drones.

2.3.1 Machine learning in drone control

Building on the previously mentioned characteristics of AI in drone swarms, several studies have

examined the feasibility and effectiveness of ML in managing drone control. The work in [53]

explores the control of a drone swarm in GPS-denied environments, based on a dead reckoning
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Figure 2.8: Master-slave drone configuration for emergency response. [54]

approach. To address the challenge of environmental deviations that introduce errors, the study

incorporates an ML model trained on a spatio-temporal dataset, derived from the drone’s location

history and swarm network structure, to predict and correct for these disturbances. The evaluation

of the model demonstrates the effectiveness of the method and the enhancements it offers compared

to structure-based techniques.

Similarly, the study in [54] examines the effectiveness of search and rescue activities during

emergencies, considering a drone swarm as a candidate for the emergency communication network.

The employed swarm operates in a self-organised manner and relies on an ML model for the drone

communications based on the path-loss profile. The work uses a 2D swarm control model that

considers the drone velocities, to generate a dataset based on multiple triangular swarm formation

techniques and applies K-means clustering to predict the swarm cluster formation. In addition,

the study investigates the prediction of RSS based on the drones’ reallocation in the swarm. After

the training process generates the path-loss profile, the prediction of received signal strength is
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utilised to determine the reallocation of drones, and a dataset is generated for clustering using a

triangular-based swarm formation concept.

The described framework relies on a master-slave configuration, in which the leading drone is

the master, while two following drones are considered slaves, as illustrated in Figure 2.8. In the

master–slave network, there is a need for a radar sensor on each element of the unit swarm. Every

master drone of the unit swarm has the ability to communicate with its two subsequent drones.

Consequently, a sub-cluster is formed by joining multiple unit swarms and the expansion of this

sub-cluster is the formed swarm. The study demonstrates a strong agreement between the proposed

swarms and swarm distances, indicating the effectiveness of this method in predicting received

signal strength and power loss for drone swarms, signifying its applicability for search and rescue

operations.

Leveraging the periodic probe requests broadcasted by Wi-Fi devices, the study presented in [55]

outlines a strategy for inferring user locations during search and rescue missions. The employed

method involves a drone extracting the RSSI and physical address of a Wi-Fi device from the

transmitted probe requests, while traversing through specific, GPS-identified locations. Then, an

ML algorithm based on the random forest model is deployed to classify the device’s position into

one of several pre-determined location zones. Despite the decent accuracy achieved in designating

the correct zone, the associated geographical region must be pre-defined and segmented into suitable

zones to appropriately train the algorithm in advance through this method.

2.3.2 Deep reinforcement learning for efficient drone navigation

Deep reinforcement learning (DRL) is a subfield of machine learning that combines deep learning

(DL) and reinforcement learning (RL). In contrast to traditional ML, which often requires explicit

labeling of data for supervised learning, or deals with pre-existing data in unsupervised learning,

DRL agents operate by interacting with an environment to learn optimal actions through trial-and-

error, thus learning from the consequences of their actions. The core premise of RL is the concept

of "reward", by which the agent makes decisions within an environment, based on its current state,
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Figure 2.9: The deep reinforcement learning cycle.

to maximise a cumulative reward. At each time-step, the agent tries an action, and the environment

responds with a corresponding reward and the new state into which it has progressed. The DL

aspect is utilised to interpret complex, high-dimensional inputs. In essence, DRL combines neural

networks that interpret large inputs with RL to build sophisticated action policies. The DRL learning

cycle is depicted in Figure 2.9.

In the field of combinatorial optimisation, route planning problems for multi-UAV operations

have been traditionally solved by mathematical optimisation algorithms and heuristic methods.

However, these are often deemed not very suitable in large-scale scenarios, due to the complex and

dynamic nature inherent in such tasks [56]. Heuristics are often designed based on assumptions

and simplifications that may not hold in real-world scenarios, leading to suboptimal solutions. In

addition, such methods require significant computational resources and are often not scalable for

large-scale problems. DRL approaches have emerged as a promising solution to address these

challenges. These methods leverage neural network architectures to learn optimal policies directly

from perceived data, enabling more scalable and efficient solutions [57]. DRL algorithms can

effectively handle complex, high-dimensional state-action spaces, and are capable of dealing with

dynamic and uncertain environments.

In recent research, policies derived from DRL have been successfully employed to address
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Figure 2.10: The structure of the multi-agent deep deterministic policy gradient framework. [58]

multi-UAV route planning problems without relying on predetermined heuristic rules. For instance,

in [58] the problem of task assignment within a fleet of drones is formulated as a multi-agent RL

system, and target selection and path planning are solved concurrently by utilising a reward-based

approach, based on a three-layered structure, as shown in Figure 2.10. The first layer is the task

abstraction layer, which transforms the task optimisation process into the corresponding reward

structure convergence procedure. The second layer is the multi-agent system training layer, which

trains the agents to learn the optimal policy using the reward structure. The third layer is the policy

execution layer, which executes the learned policy to achieve the task goals.

The experimental evaluation of the framework involves the navigation of drone agents, while

avoiding collisions with each other and designated threat areas. Various metrics are considered,

including the collision probability between agents, the collision probability between agents and
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threats, and the task completion rate, with the performance investigated for different widths of the

threat areas. The results indicate the efficacy of the multi-agent framework, as the collision rate

between agents decreases and the task completion improves with longer training times. When the

width of the threat areas increases, the performance of the agents naturally deteriorates. Interestingly,

the baseline scenario with a threat width set to zero performs worse than the subsequent case with a

minimum positive width value.

The flight formation of multiple drones through dynamic spectrum communications is in-

vestigated in [59]. The optimal communication strategies are derived from a combined DRL -

long-short-term memory (LSTM) network approach to accelerate the convergence speed. The eval-

uation of information exchange among drones incorporates the concept of Quality of Experience

(QoE) to assess the communication system’s performance, considering the number of successful

transmissions and the associated delay. The packet loss of the drones is modeled using the M/G/1

queuing model, determining the communication priority. To account for the involved delay, the

reward function is designed to consider both Quality of Service and QoE.

The experimental analysis illustrates the advantages of the combined DRL approach, compared

to traditional reinforcement learning in terms of throughput rate. Furthermore, the use of the priority

mechanism on the queuing model, helps to classify the importance of the drone task and ensure

successful exchange of formation data in time. Through the use of this mechanism the algorithm is

able to reduce delay by 83% based on simulation results.

By optimising the data-transmission scheduling and hovering time, the study in [60] optimises

the power usage in a UAV-aided communication network, illustrated in Figure 2.11. A stochastic

scheduling algorithm is utilised based on the actor-critic DRL architecture, to optimise data-

transmission scheduling and drone hovering time to minimise the total energy consumption. Within

an actor-critic architecture, the stochastic policy generated by the actor network maps states to

actions, while the quality of the policy is assessed by the critic network through the estimation of

the expected cumulative reward. The presented algorithm utilises various techniques to restrict

the action space, which otherwise experiences exponential growth due to the combinatorial nature
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Figure 2.11: A UAV-assisted communication network. [60]

of the problem. Numerical evaluations reveal that the described method yields energy savings

of approximately 25-30% compared to conventional DRL algorithms and significantly reduces

computational times from the second-level to the millisecond-level.

The study in [61] presents a drone navigation recommender system that combines sensor data

with DRL. The system uses two deep learning techniques: proximal policy optimisation for DRL,

enabling navigation learning with minimal information, and LSTM networks to provide memory

for overcoming obstacles. The system works in a partially observable environment, adopting a

step-by-step approach to navigating dynamic and potentially hazardous conditions. The algorithm

uses data from sensors on-board the drone, including obstacle detection data from the collision

avoidance mechanism, as well as the drone’s current direction obtained either via the on-board

navigation system or from a compass mounted with the sensors. This data is used as input to an

off-policy deep learning model to recommend the direction of travel for the drone according to the

current prevailing conditions, surroundings, and sensor readings.

In the study, a simulator was employed to replicate the drone’s environment and generate

sensor data that faithfully corresponded to real-world data, mimicking the inputs sensed by actual
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sensors in the given scenario. The accuracy and efficiency of the learned model were then evaluated

against these test cases to demonstrate its performance. The study focuses on the significance of

testing the learned model in the simulator, as it enhances confidence in the safety of the navigation

recommender system and allows for the identification of any limitations or challenges that may

arise when implementing the algorithm in real-world scenarios. Nonetheless, it is acknowledged

that testing the model solely in the simulator has inherent limitations in terms of the level of

assurance that can be demonstrated. To obtain additional assurance and provide evidence of system

performance unaffected by integration with other components, real-world testing is deemed crucial.
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Chapter 3

Development of a new Deterministic

Technique for Drone Control

This chapter provides an in-depth exploration into a deterministic method proposed for effectively

controlling drone swarms. This area of research has been steadily gaining traction, driven by the

potential applications of drone swarms in numerous fields, including surveillance, search and rescue,

agriculture, and more. The deterministic approaches underscore a level of predictability in system

behavior, using predefined rules or mathematical models to dictate the actions and interactions

within the drone swarm. These techniques offer a structured way of governing drone movements,

interactions, and task execution, ensuring a degree of certainty amidst complex, multi-agent systems.

The focus of this chapter will be to present, analyse and evaluate a new deterministic technique

for drone swarm control, and discuss its applicability, strengths, limitations, and prospects for

further improvements. While following chapters investigate the potential of AI-based solutions,

this chapter emphasises the value and relevance of deterministic methods, particularly in scenarios

where computational efficiency is crucial and where the system’s behaviour needs to be thoroughly

understood and meticulously controlled.
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3.1 Introduction

As discussed in the previous chapter, the proliferation in drone technology has catalysed the

emergence of new solutions in areas such as environment [62], surveillance [63], disaster manage-

ment [64], and search and rescue operations [65–67]. In these contexts, detecting and tracking of

individuals become critical in providing necessary assistive services and drones can serve as vital

tools towards this goal. Upon locating an individual, they have the ability to provide communication

services and transmit the person’s location, thereby facilitating the dispatch of a rescue team.

Given that communication can frequently become impaired in disaster scenarios, conventional

centralised solutions may not always be accessible, thus necessitating the deployment of decen-

tralised approaches. In light of this, the concept of IoT has undergone a swift progression towards

the realisation of intelligent solutions that are practical in rapidly changing environments lacking

established infrastructure [68]. IoT frameworks can provide services such as context awareness [69],

localisation, and tracking [70], which can be crucial in emergency circumstances, and are particularly

valuable in situations where centralised solutions are not optimal.

Various strategies exist for addressing the challenge of localising and tracing a moving target.

These include methods involving visual sensors [71], RF time of arrival [72], AOA [73], time

difference of arrival [74], Doppler and direction of arrival [75], and RSSI [76] sensors. While

algorithms employing visual features can effectively track an object in numerous tracking scenarios,

they are often unsuitable for long-range search and tracking operations due to their computational

intensity and the requirement for a pre-engineered, centralised architecture. Moreover, time of

arrival or related techniques operate on intricate antennas as opposed to simpler RSSI antennas, they

frequently encounter synchronisation issues and may impede the mobility of the drones. Given the

vital consideration of energy constraints in drone operations, simpler approaches are often favoured

to extend flight time and ensure mission completion within the available timeframe. RSSI techniques

present promising solutions in this context. However, they come with the significant issue of signal

loss in the communication pathway, which is caused by multi-path fading and shadowing.
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This study presents a new strategy, whereby a swarm of multi-rotor drones that incorporate RSSI

antennas, collaborates to track a mobile target of interest. Leveraging a deterministic algorithm,

this approach is able to coordinate the movement of the drones to achieve increased efficiency

when tracking. The described strategy can orchestrate the mobility of the fleet, relying solely on

the RSSI values measured at every drone. The drones exchange information and synchronise their

movements to track and closely follow the mobile RF source. The signal propagation model used in

this method is adopted from the report presented in [77]. This model is demonstrated to offer more

precise estimations of the signal strength within high-velocity mobile networks, in contrast to the

log-distance or the free-space model.

The proposed algorithm offers a real-time scheme that allows drones to perform tracking

autonomously, functioning in the absence of centralised solutions or pre-existing infrastructure.

The technique’s nature offers the advantage of keeping the fleet in the vicinity of the target without

necessitating awareness of its precise location or distance calculations that are frequently unreliable.

Unlike similar methodologies, the introduced scheme can operate in wide-ranging areas, with

limitations only governed by the power of the measured signal and the RF antenna’s sensitivity

equipped at the drones (e.g., a range of up to 3 km in diameter). As demonstrated by evaluation

simulations, this strategy outperforms trilateration based solutions.

The methodology proposed distinguishes itself from common practices as it addresses critical

aspects pertinent to real-world scenarios. In pursuit of this objective, it employs simple RSSI

sensors equipped on the drones, instead of more complex antennas like DOA or AOA sensors, as

suggested by other approaches. Moreover, it integrates the use of agile and compact multi-rotor

drones, as opposed to the less flexible and cost-effective fixed-wing drones. Finally, with respect to

the tracking scheme, the described method differs from related studies as it does not involve the

conversion of the received signal’s power into a distance from the target, a process that inevitably

introduces errors due to signal fluctuations.
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3.2 System description

This section describes the conceived system that addresses the cooperative target tracking problem.

It primarily outlines the components that constitute the system, while the following part provides an

analysis of the path-loss framework employed for the RSSI model.

3.2.1 System components

The system’s key components are as follows:

• Mobile Target: Within the context of the proposed application, this is typically an individual

lost in a large environment, equipped with an IoT device, or any mobile target attached with a

sensor device.

• IoT Device: This constitutes an embedded system or the IoT equipment held by the target.

The device is integrated with a sensor, that utilises a wireless interface to relay the sensor’s

data.

• Tracking Agents: The multi-rotor drones assigned to locate the moving target and keep it in

vicinity. The drones incorporate antennas to receive signal strength and a network interface

enabling inter-agent communication. Each drone is capable of identifying its own location

via a GNSS sensor and is fitted with a basic flying command apparatus. This system enables

them to uphold persistent altitude and velocity, and navigate to specified GNSS locations

through controlled steering angles.

• On-board Processing Unit: The onboard mechanism of the drones, that establishes inter-

drone connectivity via an appropriate network interface. This unit also possesses the com-

puting capability necessary to implement the collaborative tracking scheme and govern the

drones’ navigation in real-time.
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3.2.2 Path loss model

Empirical evidence indicates that, owing to additional reductions from environmental factors, the

signal is not correctly modeled by the free-space model in reality. To accurately represent the

change in measured signal strength in this study, the loss is calculated through the adoption of the

signal propagation model presented in [77]. Applicable to a network of mobile entities moving in

free space at high velocities and long distances, this model aligns with the drone speed range in the

scenario under consideration. Figure 3.1 showcases the difference of the adopted and the free-space

model.

According to the analysis in [77], the signal loss in moving rural networks, can be represented

as follows:

PL = 41.1log10(d)+17.2+20log10( f /5), (3.1)

where d represents the distance between the transmitter and receiver, and f represents the frequency

of the signal in G H z.

By adding the target transmission power (PT x), as well as the transceiver’s and receiver’s antenna

gains (GT x and GRx), the RSSI at each drone is calculated as follows:

RSSI = PT x − [41.1l og10(d)+17.2+20l og10( f /5)]+GT x +GRx , (3.2)

Finally, by substituting the power of the transceiver (10 dBm), the transceiver’s and receiver’s

antenna gains (2 dBi ), and configuring the frequency to 2.4 G H z, the RSSI can be calculated as

follows:

RSSI = 3.17−41.1log10(d) (3.3)

The scenario under consideration involves drones operating in an unobstructed setting with

few obstacles that might induce multi-path propagation; nonetheless, the problem of shadowing
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Figure 3.1: Contrast between the free-space and the employed model. The dashed line illustrates path loss in
line with the free-space propagation model. The green line showcases path loss based on the utilised scheme.

persists. To account for the impact of slow fading that arises from this problem, the final RSSI value

is obtained by adding a Gaussian random variable with mean µ = 0 and standard deviation σ.

3.3 Control algorithm

As previously stated, the aim of the drones within this study is to approach the target and maintain a

proximity to provide assistive services. Leveraging the data on the signal strength at each drone, the

proposed method entails a straightforward and reliable way to coordinate the collective movement

of the swarm in response. The algorithm unfolds in two stages, which are examined in subsections

3.3.1 and 3.3.2.

In the initial stage, termed the "individual search phase", each drone’s objective is to survey the

area for the most powerful signal. Upon identifying this signal, it summons the remaining drones to

its location, indicating the start of the tracing process. The drones then form a swarm and advance

to the second stage, referred to as the "cooperative tracking phase". Here, a control algorithm is
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employed to synchronise their movements, ensuring efficient tracking. In both stages the RSSI

sampling takes place at a frequency of 0.5 seconds.

3.3.1 Individual search phase

During this stage, the search area is initially segmented into a number of sectors, determined by the

available drones. Presuming the swarm consists of R drones, with R ≥ 3, the area is divided into R

circular sectors, each spanning an angle of θ = 360/R degrees and assigned to a single drone. Each

drone begins its movement in alignment with the bisector of its corresponding segment, continuing

until the criterion for transitioning to the cooperative phase is fulfilled. This condition is deemed

satisfied when at least one drones achieves an RSSI threshold as calculated by Equation 3.3, which

is tenfold stronger than the RSSI at the next nearest drone to the target (difference of 15 dB). An

Figure 3.2: Instance of an individual search phase with three drones. Drone A satisfies the condition for the
fleet to form and commence the cooperative tracking stage.
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example of when this condition is met is illustrated in Figure 3.2. It is worth noting that minor

discrepancies in the initiation time of the cooperative phase have negligible impact on the overall

efficacy of the tracking scheme.

3.3.2 Cooperative tracking phase

When a drone meets the terminating criteria of the individual search phase, all drones transition into

the cooperative tracking phase and commence their swarm movement towards the target. Through

the utilisation of RSS measurements, the employed strategy ensures that the drones successfully

approximate the target and sustain proximity.

The fundamental principle of the algorithm lies within the changes in RSSI recorded over time.

A gradual raise in signal strength suggest that the drone is approaching the target, indicating to

sustain its current trajectory. On the contrary, reductions in signal strength indicate that the drone

is diverging from the target, thus suggesting the need for a revised directional movement. The

adjustment of direction is influenced by the awareness of each drone’s current proximity to the

target and their corresponding positions within the swarm, as described further below.

To mitigate the signal fluctuations resulting from shadowing in the wireless channel, an aug-

mented strategy is employed. Prior to a decision for change in direction, several consecutive RSS

measurements are accumulated in a sample window, and the ultimate value is computed as the

average of these samples. However, the considerable distances associated with the context of the

examined scenario may render a fixed window size unsuitable. Therefore, the size of the sample

window is adaptively modified in response to the RSSI. The correlation between the RSSI value

and the dimension of the sample window was decided based on an iterative process of trial and

error which determined that high window sizes are appropriate for low RSSI, with exponentially

decreasing sizes giving better results as the RSSI gets higher.

Upon determining two successive mean RSSI values, the algorithm calculates the difference, as

outlined in Algorithm 1, to evaluate the drone’s current status relative to the target. A positive result

categorises the drone as "approaching the target", while a negative value signals the "diverging"
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Algorithm 1: Determine Drone Status
while cooper ati ve_tr acki ng _phase = tr ue do

samples_aver ag e ← 0 ;
j ← 1 ;
while j ≤ 2 do

RSSI ← 0 ;
i ← 1 ;
while i ≤ sample_wi ndow_si ze do

i s_hal t i ng ← f al se ;
RSSI [i ] ←GetRSSI ;
samples_aver ag e[ j ]+= RSSI [i ] ;
if RSSI [i ] ≤ hal t_thr eshol d then

i s_hal t i ng ← tr ue ;
end
i ++ ;

end
samples_aver ag e[ j ]/ = sample_wi ndow_si ze ;
j ++ ;

end
if i s_hal t i ng = f al se then

if samples_aver ag e[1] > samples_aver ag e[2] then
appr oachi ng ← f al se ;

else
appr oachi ng ← tr ue ;

end
end

end

status. This data regarding the status is broadcasted to the swarm, governing the upcoming decision

of every drone according to Algorithm 2.

The process begins by determining the drone associated with the highest RSSI value across

the swarm, designating it as the "nearest". Then, when a drone’s present status is identified as

"diverging", its RSSI is compared to the swarm’s maximum RSSI. If this drone’s RSSI is lower,

it adjusts its trajectory towards the "nearest" drone. However, if the RSSI is higher, it executes

a predetermined rotation. The degree of this rotation, as validated in [78] via a geometrical and
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Algorithm 2: Determine Drone Direction
RSSI ←GetRSSI ;
max_RSSI ← M ax ;
near est_dr one ←Get Near est ;
if appr oachi ng = f al se then

if RSSI < max_RSSI then
Fol low Near est ;

else
Per f or mRot ati on ;

end
end
sample_wi ndow_si ze ←GetW i ndowSi ze;

numerical assessment, guarantees the drone’s progressive approach towards the target.

Beyond following the tracking algorithm, the drones integrate a strategy for collision avoidance,

utilising their respective GNSS coordinates. As part of this strategy, each drone verifies its separation

from the rest in the swarm upon every RSS measurement, and pauses movement should this

separation drop below five meters. The adherence of the drones to the cooperative algorithm gives

rise to a flocking behavior within the swarm. This emergent behaviour enables the drones to tail the

target effectively, by incrementally progressing towards a "nearest" zone and sustaining proximity.

3.4 System evaluation

An extensive assessment of the described tracking algorithm was carried out through the develop-

ment of a simulator based on the Processing development environment and Java. The simulation

environment, is designed to support different tracking algorithms and offers a graphical display of

the simulated scenarios. The primary objective of these simulations was to examine the efficacy of

the proposed algorithm through its performance comparison with a standard tracking method. The

trilateration technique was selected as the benchmark, given its foundational role in the majority

of tracking schemes. To enhance the accuracy of the trilateration process, insights from the study

in [79] were incorporated. The coordination of the drones was optimised following the study’s
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Table 3.1: Key simulation parameters.

Parameter Value

Environment area 28 km2

Swarm size 3 - 20
Target speed 1.4 - 3 m/s
Drone speed 11 - 15 m/s
Sample window size 3 - 17
Drone altitude 100 m
Drone halting distance 115 m
Target TX power 10 dBm (10 mW)
Drone RX sensitivity -92 dBm
Target TX antenna gain 2 dBi
Drone RX antenna gain 2 dBi
Signal frequency 2.4 GHz

recommendations, ensuring a triangular formation was maintained during the RSSI sampling, thus

preventing the occurrence of collinear readings. The results obtained in the context of the research

conducted in this chapter are published in [80].

In the conducted simulations, the drones depart from an identical initial position, traversing

the search area with a uniform velocity and established altitude. In every instance, the target is

randomly positioned on a spot within a circle that has a 3 km radius. To ensure that the target

initial positions remain consistent, identical random seeds are employed across both algorithms.

The target’s movement is modelled after a random waypoint pattern, set at a pace of 1.4 m/s, which

corresponds to a human’s walking speed. Table 3.1 outlines the key parameters of the simulations.

The "halting distance" denotes the maximum proximity at which the drones should approach the

target.

In the first part of the evaluation, the performance of the proposed method is compared to that

of the reference algorithm with respect to the increase in standard deviation of the noise due to

fading (σ). In the next part, the two methods’ efficiency is investigated under a practical σ value

expected in real conditions, with respect to the increase in drone velocity. Finally, the concluding

phase of the assessment focuses on the evaluation of the proposed method with respect to higher
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target velocities and increased number of drones. For all evaluations, emphasis is given on the key

performance indicators below:

• Minimum time: The duration is quantified from the start until the first drone achieves the

proximity of the halt distance to the target.

• Average distance: This metric calculates the mean distance from the target to the nearest

drone.

• Halting cycles: This denotes the percentage of simulation cycles where the nearest drone

remains static because its RSSI lies within the halting threshold.

• Sustained proximity cycles: This refers to the percentage of simulation cycles during which

the nearest drone maintains a position within the halting distance.

Figure 3.3a plots the minimum time required by the two methods to approach the target against

the standard deviation σ of the additive noise. The target’s speed is set to 1.4 m/s and the drone

velocity is 14 m/s. The graph indicates the proposed algorithm’s resilience to the increasing values

of σ, illustrating its robustness under diverse conditions. This trend continues in Figure 3.3b,

which plots the mean distance of the nearest drone from the target. Increased noise appears to

have little impact on the proposed algorithm. However, in the trilateration algorithm, the accuracy

declines substantially under noisy conditions, causing its tracking performance to falter significantly,

particularly when σ surpasses values of 5.

The diagrams illustrated in Figure 3.4a and Figure 3.4b showcase the percentage of simulation

cycles where the nearest drone remains static or stays within halting distance respectively. Examin-

ing the static cycle outcomes, both algorithms exhibit comparable results under conditions of low

noise. However, as the noise level increases towards realistic or higher values, the proposed solution

demonstrates an edge. When considering the duration of time the drones can sustain proximity, the

proposed method clearly outperforms the trilateration method.
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(a) Minimum elapsed time until the nearest
drone reaches the target (lower is better).

(b) Average distance between the nearest drone
and the target (lower is better).

Figure 3.3: Minimum time and average distance versus the standard deviation of noise due to fading (σ).

(a) Percentage of cycles where the drone re-
mains static because the RSSI is in halting
threshold (higher is better).

(b) Percentage of cycles during which the drone
manages to stay within halting distance (higher
is better).

Figure 3.4: Halting and sustained proximity cycles versus the standard deviation of noise due to fading (σ).

The plotted graphs reveal that the proposed method excels over trilateration, even demonstrating

robust performance in highly noisy settings. The key to its efficiency is the strategic avoidance of

direct distance calculations using the RSS. Rather, the decision-making process relies on identified
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(a) Minimum elapsed time until the nearest
drone reaches the target (lower is better).

(b) Average distance between the nearest drone
and the target (lower is better).

Figure 3.5: Minimum time and average distance versus the drone velocity.

(a) Percentage of cycles where the drone re-
mains static because the RSSI is in halting
threshold (higher is better).

(b) Percentage of cycles during which the drone
manages to stay within halting distance (higher
is better).

Figure 3.6: Halting and sustained proximity cycles versus the drone velocity.

deviations in the RSSI thereby displaying an enhanced capacity to withstand signal strength

fluctuations.

In the next stage of the assessment, the impact of drone velocities on the performance of the
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(a) Minimum elapsed time until the nearest
drone reaches the target, versus the σ of noise
due to fading.

(b) Minimum elapsed time until the nearest
drone reaches the target, versus the size of the
swarm.

Figure 3.7: Minimum time for different target and drone speeds.

two methods is evaluated. In these evaluations, the standard deviation of fading noise is fixed at

a realistic value (σ=3) as proposed in [81], and the drone speeds vary between 11 and 15 m/s.

Figure 3.5a depicts the results regarding the minimum elapsed time. Predictably, a reduction in

time required for the drones to approach the target is observed as the speed increases. The average

target distance as a function of the drone’s speed is visualised in Figure 3.5b, which indicates that

increases in drone speed also result in decreases in the average distance the drones maintain from

the target. These findings underscore the enhanced efficiency of the proposed algorithm in target

tracking under realistic noise levels, regardless of drone velocity.

When examining the time duration that the drones remain static due to being in a halting RSSI

threshold, both methods achieve marginal improvements with higher speeds, as demonstrated in

Figure 3.6a. However, the proposed algorithm has a clear advantage over trilateration in maintaining

proximity as the drones’ speed increases, indicated by the results of Figure 3.6b. Interestingly, the

proposed method exhibits high effectiveness even at slower speeds, potentially offering advantages

in energy-constrained or low-speed requirement scenarios.
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The evaluation concludes by assessing the efficiency of the proposed method against increased

target velocities and inspecting the impact of the swarm’s size on the overall tracking process. The

minimum time needed to approach the target against the standard deviation σ of the additive noise is

plotted in Figure 3.7a. In the examined scenario, the target’s velocity varies from 1.4 to 3 m/s, while

the drone velocity is set at a constant 14 m/s. The graph reveals minor fluctuations in the algorithm’s

performance across different target speeds, a predictable outcome given the significant contrast in

speed between the target and the drones. Figure 3.7b visualises the minimum time needed by the

nearest drone to approach the target, plotted as a function of the swarm size. For lower drone speeds,

the outcomes illustrate a higher performance relative to higher number of drones. The algorithm’s

efficiency however, does not appear to be significantly influenced by a swarm size exceeding seven

drones.

Figure 3.8 shows the graphical interface of the developed simulator that executed the above

experiments. The interface provides data regarding the speed of both the target and the drones, the

current RSSI, and critical parameters including the standard deviation of noise and the dimensions

of the sample window. It also displays the actual distances between the target and each drone. By

rendering such information accessible, the simulation facilitates a comprehensive understanding

of the algorithm’s operation, fostering a deeper comprehension of its operational mechanics. To

facilitate the analysis of the algorithm’s performance, the simulator is exporting all the simulation

metrics into spreadsheet files. Therefore, patterns and trends can be discerned visually within the

simulation, and a more extensive and in-depth analysis is then carried out using the exported data,

augmenting the comprehensive assessment of the algorithm’s performance.

3.5 Discussion

In the scope of this chapter, a novel cooperative algorithm, facilitating a swarm of drones in locating

and following a mobile target was presented. The ability to provide robust tracking by solely

leveraging measurements of the RF signal power radiated by IoT equipment held by the target,
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Figure 3.8: Depiction of the simulator’s graphical interface, wherein the red dot indicates the target, and the
green dots represent individual drones.

proved challenging but effective. This accomplishment was derived from the decomposition of the

tracking task into two distinct stages: the individual search phase and the cooperative tracking phase.

The system was assessed in a comprehensive evaluation through a series of diverse simulations,

which suggested the enhanced efficiency of the presented strategy in comparison to trilateration

based algorithms. Additionally, the evaluation results confirmed the algorithm’s capability to retain

effectiveness under increased levels of signal attenuation due to slow fading.

Figure 3.9 portrays the navigational path pursued by three drones under a scenario of realistic

slow fading. The depicted trajectory underscores the effectiveness of the swarm’s approach to

the target utilising the deterministic algorithm. This level of performance is attained without any

knowledge about the RF source’s location, relying on the successful implementation of appropriate

directional adjustments when deviating from the target.

The prospective applications of this tracking scheme center on search and rescue use cases,

and on delivering localisation and relay services in dynamic environments, particularly when

conventional network infrastructure is absent. The following chapter contemplates the exploration
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Figure 3.9: Trajectory of a swarm of three drones navigating based on the RSSI from the target, under
realistic slow fading conditions.

of AI techniques to augment the described deterministic method.
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Chapter 4

Advancing Drone Control: Deep Learning in

Cluster Formation

This chapter explores the interaction between AI and drone swarm coordination. It investigates how

group formations within the swarm are shaped by deep learning techniques for clusterisation, aiming

to enhance the organisational efficiency. This approach moves beyond conventional deterministic

methods, enabling dynamic adaptation of the swarm to improve overall effectiveness. By merging

the predictability of structured techniques with the adaptive potential of AI, the chapter highlights

the potential for integrating deep learning into swarm control.

4.1 Introduction

Ever since the advent of machine learning as a key component of artificial intelligence, a vast body of

research has been invested in its comprehensive incorporation within IoT networks, aspiring to devise

efficient and resilient algorithms [82, 83]. Fundamentally, ML involves building models which aim

to solve knowledge acquisition challenges, employing learning methodologies that augment system

capacities by discerning patterns within the supplied data [84, 85]. Implementing ML techniques

within IoT networks poses significant advantages, largely owing to the dynamic characteristics of the
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associated settings. For example, in scenarios such as environmental monitoring, the nodes may be

mobile, or even if fixed, their position might shift gradually as a result of environmental alterations

(e.g., soil erosion or sea turbulence). In smart city concepts, AI methodologies can be leveraged

to improve transportation in the evolving mobility paradigm [86]. Furthermore, IoT networks

might be deployed for data collection in locations that are difficult to access or hazardous, often

marked by uncertain conditions, or in settings where precise mathematical models are challenging

to develop [87]. In such instances, robust systems supported by ML can be applied, empowering

the network to self-adapt, relying on low-complexity approximations. Therefore, ML strategies

are anticipated to serve as an essential technology enabling the efficient operation of IoT networks,

facilitating a plethora of novel applications [88].

Given the energy restrictions inherent in IoT nodes in the investigated context, drones can

effectively reduce the transmission power needed by sensor devices through dynamic placement,

while ensuring reliable coverage [89]. Therefore, they provide a flexible and efficient approach

localising sensors and offering relay services to distant locations within an IoT infrastructure. The

methodology presented in this chapter aims to facilitate such applications, empowering a swarm of

drones to locate an IoT sensor node in an unspecified position, solely based on the RF broadcast

signal emitted by the sensor. Enhancing the deterministic algorithm of the previous chapter, the

system employs a DL model which conducts clustering of the swarm based on the RSSI and current

coordinates of each drone. Based on this model, the new algorithm identifies remote drone groups

at predetermined intervals, recalling them to the base to conserve energy while maintaining the

clusters that appear to have more effectively approximated the target sensor. The control algorithm

is augmented through the following key contributions:

• The introduction of a graph representation of the drone network, enabling the use of a graph

convolutional network (GCN) architecture.

• The implementation of regular interval clusterisation within the network, according to the

RSSI and current drone locations, featuring a dynamic number of clusters at each interval.
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• The introduction of a deep learning loss function to optimise the clusters.

• The augmented method still operates without explicit knowledge of the target sensor location

or reliance on distance estimates.

4.2 Methodology

In the scenario under consideration, the target node is characterised as an IoT gateway that might

be positioned on, or in proximity to an IoT device. The engaged drones function as mobile

relays, tasked with collecting information or ongoing status reports from the target device. This

collected data is intended for a data center, which receives it through the support of the drones. The

objective is to track the IoT source node by harnessing wireless signal observations, facilitated by

omnidirectional RSSI sensors installed in the drones. This section introduces the GCN concept

and its use in clustering within the drone network, to enhance the swarm coordination in efficiently

approaching the target sensor.

4.2.1 AI-assisted control

The nature of GCN architectures gives them the ability to capture complex, non-Euclidean structured

data, such as the drone networks in the context of this chapter. These networks have non-grid

structures, thereby making them challenging to address using traditional convolutional neural

networks, which excel at handling grid-like data such as images or time-series [90]. GCNs, as

a part of the broader family of geometric DL, have emerged as a powerful tool to address this

shortcoming. They utilise graph structures to detect object relations in high-dimensional data,

enabling learning on irregular data structures. They leverage the principle of local connectivity,

also known as neighbourhood aggregation, to generate representations of nodes based on their

neighbours, thereby capturing both local and global graph structures [91]. Essentially, in a GCN,

the feature representation of each drone in the swarm network is recursively updated based on the
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representations of its local neighbours. Thus, a message-passing mechanism is employed where a

node gathers information from its neighbours and updates its representation accordingly.

Similar to the previous chapter, the aim of the control algorithm here is to guide the drone fleet

to the unidentified location of the mobile sensor with high efficiency. Given that the drones are

exclusively equipped with RSSI sensors, their navigation is wholly dependent on the information

regarding the signal power detected at their antennas throughout the operation. For the path loss

model, the scheme described in 3.2.2 is utilised once again, to accurately measure the signal

attenuation in the highly mobile network, thus the RSSI is calculated based on Equation 3.2.

In the scenario under consideration, all drones are initially deployed from a single location

and begin to move in random, fixed directions until a pre-determined threshold of RSSI difference

between the two nearest drones is registered. Periodically, the employed GCN model performs a

network clustering operation, segregating the swarm into drone groups based on their proximity to

the target and their spatial locations. Leveraging the unsupervised learning paradigm, the model

adeptly partitions the drones into optimal clusters without the need for pre-training at any specific

location or labeled data.

Subsequently, the algorithm performs ordering of the clusters according to their proximity to

the target, eliminating those that are deemed distant. The drones associated with the distant clusters

then execute a return trajectory to the base. This strategic clustering and pruning approach enables

the method to retain drone groups that are more likely to converge on the target effectively while

minimising the overall energy expenditure by grounding unnecessary drones.

The entire tracking process is depicted in the flowchart shown in Figure 4.1. Upon reaching the

RSSI termination threshold, the rest of the swarm transitions into a cooperative mode and navigates

based on the deterministic strategy presented in the previous chapter, enabling the drones to closely

trail the target sensor. The optimum frequency at which the clustering operation is performed was

investigated through extensive simulation evaluations. It was observed that, in general, shorter

intervals tend to yield higher performance. However, for the final implementation, a clustering

interval of 30 seconds was chosen as it strikes a satisfactory balance between robust performance
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Figure 4.1: Flowchart illustrating the proposed process for tracking the IoT device.

and practical feasibility for real-world applications.
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4.2.2 Deep learning clustering for swarm formation

The deployment of GCNs for graph partitioning purposes within drone swarms promises significant

benefits. The adjacency matrix of the graph can be used to represent the topology of the swarm

network, where each node represents a drone, and the edges represent the communication links.

The drone’s features include its state information (i.e., position and RSSI from the target). The

application of GCNs can facilitate the breaking down of the global swarm into smaller, more

manageable sub-swarms or clusters. By learning the optimal clustering, different groups can be

controlled based on criteria such as spatial proximity. Furthermore, due to the dynamic nature

of drone swarms, GCNs are highly suitable as they can naturally adapt to changes in the graph

topology (e.g., drones joining or leaving the swarm).

The method adopted in this chapter merges the "graph partitioning using attention-based pooling"

(GAP) framework [92] with a newly designed DL loss function of the RSSI, with the aim of

clustering drones based on their proximity to the RF source. Characterised by its ability to generalise,

this technique facilitates the joint optimisation of the target loss function, thereby fine-tuning the

model for this specific graph structure. After the resulting clusterisation, the algorithm ranks the
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Figure 4.2: Architecture of the employed graph convolutional network. The input dimensions are n x 3,
where n is the number of drones in the swarm network. The output layer is of n x 1 dimensions.
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clusters and retains those demonstrating the best proximity to the target.

The employed model incorporates four GCN layers to perform convolution on the graph data,

with a subsequent application of a Rectified Linear Unit (ReLU) activation function on each.

Following in the architecture are two fully connected layers, designed to scale the output to the

decided number of clusters. Finally, a softmax function is placed in the end to output the probability

distribution of the drones over the multiple clusters. Figure 4.2 illustrates the complete architecture.

This arrangement enhances the feature representations and leads to a better correlation between

the input parameters in the cluster challenge under consideration. The size of the layers was tuned

based on the specific problem and data to avoid issues related to over-fitting.

4.2.3 Graph representation of network

The utilisation of the GCN architecture requires a depiction of the drone network through a graph

model to act as input to the DL network. Within the examined network, all nodes are engaged

in intercommunication, thus a fully-connected graph is created. The graph represents the drones

as vertices and their inter-connections as edges. This representation leads to the deduction of the

degree and adjacency matrices, which in turn are used to derive the normalised Laplacian matrix of

the graph. The normalised Laplacian with respect to the spectral properties of the graph is calculated

by [93]:

Lnor mali sed = I −D− 1
2 AD− 1

2 , (4.1)

where I represents the identity matrix and D, A correspond to the degree and adjacency matrices

respectively. Furthermore, the data related to each drone’s spatial coordinates and RSSI derived from

the RF source are formulated in another matrix. The GCN model is built using the aforementioned

matrices, and is trained to output the most fitting clusterisation.
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4.2.4 Loss function

The training procedure involves a specified loss function with the objective to optimise for the RSSI

within each individual cluster, defined as follows:

LRSSI = 1

N

N∑
n=1

|Y r |, (4.2)

where Y denotes the output matrix from the neural network, while r represents a vector containing

the RSSI values. Through the optimisation of this function, the model constructs the clusters and

categorises every node. To maintain a balanced distribution of drones in each partition an additional

loss is added, shown in the following equation:

Lbalance = max
(
0,

n

k
−σY

)
, (4.3)

where n denotes the number of drones, k the number of clusters, and σ represents a hyperparameter

used to adjust the relief degree.

4.2.5 Dynamic calculation of optimal cluster count

The dynamic characteristics of the designed control algorithm result in varying numbers of drones

positioned in different locations each time the GCN model is invoked. As such, determining the

optimal number of clusters to be generated by the model in advance poses a challenge. This

number is critical as it directly influences the algorithm’s performance, and therefore it needs to be

determined dynamically based on the current conditions. While it may seem intuitive that increasing

the number of clusters would improve the performance, at a certain point there are diminishing

returns, leading to a phenomenon known as over-fitting. While this point can be identified by several

methods, in the context of this chapter, the ’elbow’ method was selected.

The efficiency of the control algorithm inherently fluctuates with differing numbers of clusters.

Given that every experimental scenario presents a unique setup at each clustering interval, it’s
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Figure 4.3: Plot illustrating the elbow method, where the evaluation of the distortion score involves computing
the summation of squared distances between each point and its designated centre. In this example, the optimal
cluster number is 3.

intrinsically challenging to find a universal correlation. In light of this complexity, the ’elbow’

method facilitates the automation of the entire procedure, leading to the identification of an optimal

cluster count. Although there may be instances where it could produce a less-than-ideal solution, it

generally yields optimal results in the majority of cases in the considered scenario.

To employ the ’elbow’ method, k-means clustering is performed over a range of varying k

values, with the sum of squared errors being computed for each distinct k. The sum for each k is

then plotted, resulting in a line chart reminiscent of an arm, as can be seen in Figure 4.3. The ’elbow’

point signifies the optimal k value, beyond which the integration of an additional cluster doesn’t

substantially enhance the model’s ability to capture patterns in the dataset. The identification of the

’elbow’ point is accomplished mathematically by computing the gradient of the graph between each

pair of k values and deducing where the most significant shift occurs.
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Table 4.1: Simulation parameters for each investigated scenario. The main difference lies in the drone speed
and the starting distance of the target.

Parameter Scenario 1 Scenario 2

Number of drones 45 45
Clusterisation interval 30 s 30 s
Drone altitude 100 m 100m
Drone velocity 40 km/h 50 km/h
Target velocity 5 km/h 5 km/h
Target distance 2 km 3 km
Target TX power 10 mW 10 mW
Target TX gain 2 dBi 2 dBi
Drone RX gain 2 dBi 2 dBi
Signal frequency 2400 MHz 2400 MHz
Total duration 1000 s 1000 s

4.3 Experimental setup

In order to assess the efficacy of the AI-assisted control algorithm, a test-bed featuring two distinct

tracing scenarios was constructed:

1. The initial scenario involves drones that maintain a velocity of 40 km/h, while the target

sensor is randomly positioned at a distance of 2 km from the designated deployment site.

2. For the subsequent scenario, the target is placed 3 km away from the drone deployment site,

and the drones’ sustain a speed of 50 km/h.

Under both scenarios, the target sensor’s mobility is governed by a random waypoint model,

with the drones navigating based on the described algorithm of section 5.3. Each experimental

scenario is executed with a variety of noise due to slow fading (simulated with the standard deviation

of σ) to evaluate how the algorithm performs under different conditions. The impact of fast fading is

deemed negligible due to the vast distances involved and the open environment in which the drones

operate, therefore multi-path propagation is not considered. Besides a varying σ, the evaluation

includes a varying RSSI threshold at which the clustering procedure is set to terminate. To increase
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the reliability of the results, each experiment is repeated fifteen times with different random seeds

for the target position and the directions of the drones, with the average result considered as the

final outcome. The specific parameters of the target sensor and the drones used in the simulation are

listed in Table 4.1.

The scenarios were investigated using an enhanced version of the simulator developed in the

context of the previous chapter, updated to incorporate the use of the new GCN model. The

adjustments allow the extraction of clustering outcomes at every interval based on the new scheme.

During each experiment, the simulator is programmed to generate all drone positions and RSSI

values at each clusterisation interval, which are used to extract the data that serve as input to the

GCN model, which in turn produces a series of integers specifying the indices of the drones that

belong to the less efficient cluster. The input dimensions are n x 3, corresponding to each drone

with their unique RSSI reading, along with x and y coordinates. Since all drones fly at the same,

constant altitude, the z coordinate does not affect the result and is omitted. As before, the simulator

provides visual depictions of the drones and target, and displays numerical data pertaining to the

parameters and measured metrics. Following the completion of the experiments, the conclusive

outcomes are compiled and exported. The simulator during different timestamps is illustrated in

Figure 4.4: Simulation snapshots at different timestamps. The target sensor is depicted by a red square, and
the drones are represented by dots. In the left sub-figure, the swarm is depicted 90 seconds after the algorithm
initiation. The middle sub-figure is 120 seconds in, while the last depicts the following mode after reaching
the threshold that denotes the termination of the clustering process.
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Figure 4.4.

4.4 Evaluation

This section describes the findings from the conducted simulations across both scenarios. The

primary focus of these experiments is to assess whether the previously introduced deterministic algo-

rithm could be effectively augmented through AI-assisted control, and to provide a comprehensive

comparison of the two methods under varying conditions. The evaluation involves quantifying the

performance across three metrics: the time needed for the swarm to approach the sensor, the mean

distance each drone traverses during the tracking operation, and the aggregate distance covered by

the entire fleet. The results obtained in the context of the research conducted in this chapter are

published in [94].

4.4.1 Results

Figures 4.5a and 4.5b showcase the time, in seconds, necessary for the sensor to be located, plotted

against the standard deviation σ of the Gaussian noise, for the two scenarios under consideration.

Results of the AI-assisted control algorithm at varying clusterisation termination thresholds, are

compared with outcomes from the purely deterministic method. When the sensor is positioned

2 km away, the AI-assisted algorithm seems to perform optimally when the clustering stops at a

20 dB threshold. However, an overall average termination threshold of 15 dB appears to offer a

more consistent performance across both sensor placements. Regardless of the RSSI threshold, the

findings suggest that AI-assisted control surpasses the purely deterministic approach, providing a

time advantage of nearly 60 seconds in some instances.

Figures 4.6a and 4.6b effectively present the results, comparing both methods, in terms of mean

distance traversed per drone, across both scenarios. The metrics regarding the total distance covered

by the entire fleet are similarly illustrated in the graphs of figures 4.7a and 4.7b. Generally, the

AI-assisted method performs most efficiently at a threshold of 20 dB, with each drone traversing,
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(a) Target positioned 2 km away from the swarm
deployment point.

(b) Target positioned 3 km away from the swarm
deployment point.

Figure 4.5: Comparison of the time taken for the first drone to locate the sensor, plotted against the standard
deviation (σ) of the additive noise. The two algorithms are compared at clustering termination thresholds of
10, 15, and 20 dB of RSSI.

(a) Target positioned 2 km away from the swarm
deployment point.

(b) Target positioned 3 km away from the swarm
deployment point.

Figure 4.6: Comparison of the mean distance each drone traverses, plotted against the standard deviation (σ)
of the additive noise. The two algorithms are compared at clustering termination thresholds of 10, 15, and 20
dB of RSSI.
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on average, approximately 1 km less in comparison to the purely deterministic algorithm. When

assessing the aggregate distance of the entire fleet throughout each experiment, the benefits of

AI-assisted control become even more apparent. This result is further justified given that the new

method systematically eliminates distant drone groups, retaining only those that demonstrated the

highest effectiveness in reaching the target. A close observation of the values in these plots provides

insight into the number of remaining active drones; a lower total distance tends to imply fewer

drones present at the end.

Table 4.2 provides a comprehensive overview of the mean results when the sensor is positioned

2 km from the swarm deployment location, examining all values for the standard deviation σ of the

additive noise, across all RSSI termination thresholds, for both algorithms. The AI-assisted method

consistently demonstrates higher efficiency in all metrics, regardless of the selected threshold,

particularly notable in the reduction of total distance traversed by the fleet.

The findings indicate that through the AI-assisted control the augmented algorithm proves to

be more efficient in terms of both the time required to reach the sensor and the aggregate distance

(a) Target positioned 2 km away from the swarm
deployment point.

(b) Target positioned 3 km away from the swarm
deployment point.

Figure 4.7: Comparison of the total distance covered by the entire swarm, plotted against the standard
deviation (σ) of the additive noise. The two algorithms are compared at clustering termination thresholds of
10, 15, and 20 dB of RSSI.
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Table 4.2: Summary of average results across all standard deviation σ values of the additive noise, for both
algorithms, at varying RSSI termination thresholds. Time and distance are quantified in seconds and meters
respectively. Sensor positioned 2 km away from the swarm deployment point.

Threshold AI-assisted control Purely deterministic

Time Average distance Total distance Time Average distance Total distance

10 260 8661 249032 332 9201 414214
15 268 8351 126716 295 9270 417322
20 251 8222 99191 268 9345 420705

Figure 4.8: Comparison of the time taken by the first drone to approach the target device at a 2-kilometer
distance, considering varying levels of additive noise dispersion. Outcomes obtained when employing and
not employing the elbow method for identifying the cluster count.

traversed, especially when a 20 dB threshold is applied. Therefore, employing the new method at a

real-world implementation is deemed suitable, as it demonstrates greater efficiency in the distances

traversed by the swarm, leading to a lower energy expenditure in each mission.
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4.4.2 Ablation study

For a deeper understanding of the advantages of applying the "elbow" technique, which dynamically

computes the optimal cluster count as opposed to pre-defining a fixed number, the first scenario was

examined in an experiment without dynamic adjustment. The time metric evaluating the time taken

for the first drone to approach the sensor, is illustrated in Figure 4.8. The cluster count is set at 4 in

the non-dynamic setting, and the termination threshold at 20 dB. The graph portrays an enhanced

efficiency when leveraging the ’elbow’ technique to determine the cluster number, with the swarm

reaching the sensor roughly 10-20 seconds quicker, influenced by the present noise. This suggests

the high value of integrating a heuristic strategy to calculate the ideal cluster number, as opposed to

retaining a fixed count regardless of the swarm size.

4.5 Discussion

This chapter delved into the task of deploying a swarm of AI-assisted drones with the goal of

tracking a remotely placed sensor in an IoT setting. The deterministic method described for such

tasks in the previous chapter, was augmented by the incorporation of a cluster formation technique

using AI. The foundation of the new algorithm relies on modeling the swarm network as a graph

structure, and employing a GCN architecture to identify clusters among the drones. The model uses

features of the drone coordinates and RSSI readings from the sensor to perform optimal clustering.

By prioritising the clusters that are more effective in advancing towards the sensor and dismissing

those deemed inefficient, the control algorithm demonstrates a remarkable effectiveness in leading

the swarm near the target. The changing dynamics in the drone fleet necessitate the use of the

heuristic ’elbow’ method which plays a critical role in deducing the ideal cluster count at each

interval, with these clusters being optimally formed by optimising the designed loss function.

The simulation experiments that serve as the empirical validation of the augmented algorithm,

illustrate the higher performance of this approach over the purely deterministic method. The findings

highlight the high potential of incorporating AI and specifically GCNs in the context of swarm
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coordination.

However, it should be noted that deploying AI models, and in particular GCNs, onto drones

presents challenges as they require significant computational resources for training, which may

exceed the capabilities of resource-constrained drones. While training in simulators can mitigate this

issue, disparities between simulated and real-world environments, such as sensor noise, environmen-

tal dynamics, and communication constraints, can affect the model’s performance when deployed

in real applications. Addressing these challenges requires careful consideration of computational

efficiency, model adaptability, and the fidelity of simulation environments to real-world conditions.

To conclude, with the knowledge gained from this investigation, the vision of using dynamic, AI-

based approaches in real-world scenarios is significantly enhanced, offering a robust foundation for

the development of next-generation drone control solutions in challenging environments. Particularly

in settings where traditional network infrastructure might be lacking or entirely absent, these

findings could lead to significant advancements in search and rescue operations and in providing

communication and location services.

The study in this chapter provides a first glance into the workings of AI and lays a solid

groundwork for the next chapter, which aims to harness the full potential of deep learning by

developing an advanced deep reinforcement learning scheme. The new scheme targets the solution

of complex decision-making problems in the context of IoT applications, involving the development

of policies that allow the drones to act optimally towards their goal given several constraints.
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Chapter 5

Multi-Agent Drone Route Planning

Optimisation under Constraints

The previous chapters explored the critical role of drones in the field of IoT and investigated

deterministic and AI-assisted methods for swarm coordination in IoT sensor localisation contexts.

Building on that foundation, this chapter is dedicated to the development and optimisation of

multi-agent drone route planning strategies, which is an area of paramount importance when dealing

with more complex operations and larger scale environments.

This chapter delves into the inherent complexities involved in multi-agent systems, where the

main challenge is not only the design of an optimal route for each individual drone but also the

coordination among multiple drones to ensure mission success while satisfying certain constraints.

Therefore, the importance of each drone as an independent decision-making entity is addressed

under the prism of it being part of a broader, coordinated system. The proposed algorithmic

framework leverages novel computational strategies and optimisation methods, aimed at improving

UAV-assisted data collection efficiency in IoT applications. In the developed system, each drone

builds a distinct neural network which is trained through complex trade-offs between exploration

and exploitation to develop effective action-selection policies.
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5.1 Introduction

The field of UAV-assisted data collection has sustained a growing research initiative, particularly

within the framework of IoT networks [95]. In the context of the applications examined in this

thesis, these networks encompass sensing devices with small battery capacities, restricted to emit

low-power broadcasting signals [96]. Drawing near to IoT devices and ensuring robust line-of-sight

connections to terrestrial sensors, multi-UAV systems serve as adaptable data acquisition and relay

platforms [97, 98]. The realisation of the required autonomy in these applications, necessitates an

intricate control system, capable of learning efficient trajectories and guiding the drones based on

intelligent decisions [99].

The realm of multi-UAV route planning can be seen as a variation of the m-TSP [100], which

lies within the domain of NP-hard problems. Because of their inherent intricacy, an optimal solution

to such problems is rarely achieved within a manageable computational timeframe. Solutions

that are generally accepted for large-scale NP-hard problems can be produced by approximation

algorithms [101], while typical approaches often involve heuristic algorithms such as PSO [102],

genetic algorithms [103, 104], or the use of quantum annealing [105]. These methods are highly

regarded for their ability to provide satisfactory outcomes efficiently. Despite this, an increased

complexity of combinatorial optimisation problems, is associated with high-dimensional spaces, in

which the volume of data necessary to provide satisfactory solutions often expands exponentially,

giving rise to what is known as the "curse of dimensionality," a phenomenon that poses significant

challenges to even the most advanced computational methods.

In response to the complexity of high-dimensional CO problems, recent studies have shown that

the primary issue can be broken down into more manageable sub-problems, more easily solved

through heuristic algorithms [106]. For instance, in the case of multi-UAV task scheduling, a

problem partition might entail distinct task allocations for each drone, achieved through simulated

annealing algorithms [107] or ant colony optimisation [108]. However, the generalisation abilities

of these strategies are often limited by the need for human-crafted rules to supplement the heuristic
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frameworks in relation to the specific problems they address. Reinforcement learning emerges as a

potential substitute, due to its capability to automate the search conducted by heuristic methods, via

the self-supervised training of agents, without need for labelled data.

Nevertheless, despite the successful application of RL methods in combinatorial optimisation

problems, the "curse of dimensionality" persists when additional constraints are introduced and

the space complexity is increased [109]. Considering the history of reinforcement learning in

this context, the introduction of deep neural network architectures has resulted in the favourable

deployment of deep reinforcement learning methods within the field. With the aid of advanced

training techniques, DRL allows the involved agents to develop decision-making policies, capable of

offering solutions efficiently, that do not rely on human-engineered rules, thus enhancing flexibility

and adaptability.

Considering the aforementioned points, the focus of this chapter lies in the introduction of a

multi-agent deep reinforcement learning (MADRL) strategy that is designed for efficient route

planning in UAV-assisted data collection scenarios. The problem under consideration involves

drones, assigned to an end-to-end task of collaborative data acquisition from terrestrial IoT sensors,

which concludes with offloading their payload at a designated server facility. To prevent data

redundancy, each sensor should be visited exactly once, and the drones must adhere to a constrained

storage capacity. In addition, they are permitted to offload at the data center only upon confirmation

that the collection task has finished. This leads to a significant increase in the complexity of the

decision space, particularly with the incorporation of multiple drones.

The agents’ learning ability is significantly enhanced by the integration of a double deep Q-

learning [110] strategy. This strategy harnesses two distinct neural networks per agent - the first

devoted to devising the final action selection policy, and the second employed for the evaluation of

actions, thus eliminating overestimation issues.

To ensure the effective evaluation of the proposed method within the context of the defined

problem, a suitable RL environment is developed, able to encode unique mission instances into

sequential states that are utilised by the training algorithm. The constructed environment features
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a tailored reward function designed to guide the training procedure in alignment with the DRL

strategy.

The core contributions of the proposed approach are summarised as follows:

• A novel cooperative MADRL strategy is introduced, tasked with building efficient action-

selection policies for individual drones. This strategy empowers each drone to develop

a unique policy, thus facilitating distinct action-taking capabilities in every state of the

environment. The resulting policies leverage collective environmental information, avoiding

reliance on individual observations for the action selection.

• A custom RL environment is designed specifically to facilitate data collection use cases. It

accommodates multiple agents and supports the encoding-decoding of mission instances to

sequential states.

• A new reward function is described, designed to effectively train agents for optimal action

selection within the environment. The reward function incorporates elements of reward

shaping and uses a global reward scheme, facilitating cooperative learning among the drones.

5.2 Mathematical model and framework description

5.2.1 Problem formulation

This chapter considers an environmental monitoring application in which a wireless sensor network

acts as the integral part of an IoT architecture. In the considered application, terrestrial IoT sensors

transmit data which is collected by drones deployed as aerial data collection stations. The drone

set is expressed as U = 1,2, ..., N , where N corresponds to the total number of drones, and the

sensor set is expressed as S = 1,2, ...,K , where K denotes the total number of sensors. A square

grid is used to represent the environment, where each drone or sensor position corresponds to a

2D matrix, in which every location li j is identified by its row index i ∈Z,0 ≤ i < X and its column

index j ∈Z,0 ≤ j < Y .
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To successfully complete the mission, a certain number of drones, denoted by n, must depart

from the starting location, collect data from a specified number of sensors (k), and navigate to the

data center located at the ending location to offload their payload. The number of steps that drone n

needs to arrive at sensor k is denoted as tnk and calculated as |in − ik |+ | jn − jk |. The drones have a

limitation on the amount of data they can store due to their onboard storage capacity, denoted as C .

Lastly, a binary decision variable vnk , is used to keep track of which drone has loaded data from

which sensor as follows:

vnk =


1, drone n collects data from sensor k

0, otherwise
(5.1)

The goal set by the objective function is to minimise the number of steps required for each agent

to reach the solution:

mi n
N∑

n=1

K∑
k=1

tnk vnk (5.2)

Subject to the following constraints:

N∑
n=1

vnk ≤ 1,∀k ∈ S, (5.3)

K∑
k=1

vnk ≤C ,∀n ∈U , (5.4)

N∑
n=1

K∑
k=1

vnk = S, (5.5)

that guarantee that each sensor is visited by no more than one drone (5.3), the capacity of each

drone is not exceeded (5.4), and data from all sensors have been loaded (5.5).

75



Chapter 5. Multi-Agent Drone Route Planning Optimisation under Constraints

Figure 5.1: Example of environment with 2 drones and 4 sensors.

5.2.2 Custom environment

In order to examine the solution to the problem under consideration, a new RL environment

is devised and developed, utilising the OpenAI Gym library [111]. The environment is built

in accordance to the core Gym API functions, and is able to incorporate multiple agents. The

cooperative interaction of the agents within the environment utilises a sequential decision-making

process. This process is designed based on a Markov Game, which extends Markov Decision

Processes to multi-agent settings. The aim is to collectively maximise the obtained reward and

successfully complete the mission. An illustration of the environment can be seen in Figure 5.1.

A Markov Game utilises a set of states S , to express all possible arrangements of the envi-

ronment and the N agents participating. To control the behaviour of the agents, the environment

incorporates a set of actions A and a set of observations O. With respect to these factors, an action is

chosen by each agent u based on a learned policy πu : Ou × Au → [0,1], which determines the subse-

quent state of the environment through a transition function T : S × A1 × ...× AN →S . Throughout

this process, each agent is awarded a unique reward based on a reward function ru : S × Au →R,

and acquires a new observation ou : S →Ou . The aim of the agents in the Markov Game is to

maximise the total reward obtained, within the designated time-step horizon T :
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RT =
T∑

t=0
γt r t

u , (5.6)

where γ is a discount factor, which ranges from 0 to 1. The purpose of γ is to reduce the value of

future rewards, making them less valuable than immediate rewards.

5.2.3 State space

In order for the agents to act effectively within the environment, a clear representation of the

environment’s state is essential. To achieve this, discrete states are introduced as a way to abstract

the navigation in a continuous space. These states are expressed by an integer, encoding the positions

of the agents, their available storage, and the data collection status (i.e., the sensors from which

data has been loaded). Each state is mapped to a distinct integer through a bijective mathematical

function, which also allows the recovery of the state, given the corresponding value. The agents

make decisions within the discrete time horizon, where, at each time step, a state transition function

(see Section 5.2.5) is employed to update the environment state based on the actions of the agents

and to provide a reward (see Section 5.2.6). The state space encompasses the set of unique states

that define the range of possible configurations in which the environment can exist.

5.2.4 Action space

Assuming that the drone agents possess a flight control system that enables basic navigation, the

environment allows for a set of actions denoted as A, which comprises four fundamental movement

actions, along with two supplementary actions specifically designed for loading or offloading data

from the sensors. The collection of actions defining the action space of the environment is listed in

Table 5.1.
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Table 5.1: Action space of the developed environment.

Action No. Action Description

0 Move south
1 Move north
2 Move east
3 Move west
4 Load data
5 Offload data

5.2.5 Transition function

Through the transition function, the environment is able to progress from state st at time-step t to

state st+1 at time-step t +1, after each agent has selected a discrete action. Given a subset of actions

At and a state s, the transition function T (s, At ) is employed to calculate a 4-dimensional vector

t = [p, s′,rG , f ], with p representing the probability that the actions in At will result in a transition

to state s′, yielding a combined reward rG . The variable f is a boolean that indicates if the problem

has been solved (i.e., mission completed).

5.2.6 Reward function

The reward function provides a way to encode the quantitative criteria that assess the impact of

every agent’s action on the environment. This function is utilised to calculate an integer value

for every state transition under a corresponding action, with R(st , at , st+1) expressing the reward

obtained by an agent at state st when selecting action at , and updating the environment to state st+1.

The received reward rL is computed based on the following equation:

rL = rl oad + rstor ag e + ro f f l oad + rstep + rdone , (5.7)

where rload is provided according to the success of the loading action as follows:
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rload =


+10, loaded from new sensor

−5, attempted to load from same sensor

−5, attempted to load from empty location

(5.8)

In addition, when attempting the load action, rstor ag e is assigned the value of -5 if the drone’s

storage capacity is exceeded, or 0 otherwise. Similarly, for the action of offloading data, a negative

value of -5 is allocated to ro f f l oad if the drone attempts to offload data at an incorrect position, or 0

otherwise. Lastly, the agents receive a reward of -5 at each time step through rstep , as an incentive

to promptly progress towards the solution, and a highly positive reward (rdone) is received, when

the mission is successfully completed.

In summary, as per the reward function, when a drone agent successfully loads data from an

unvisited sensor, a positive reward (+10) is granted, while if the drone attempts to load data that

has already been collected or at a location without an available sensor (i.e., lacking an established

communication link with a sensor), a negative reward (-5) is received. Similarly, when a drone

attempts to offload data at a position away from the data center, a negative reward (-5) is also

gained. A notably high positive reward is earned when a drone offloads the data at the data center,

while ensuring all sensors have been visited and their corresponding data collected, to strongly

incentivise the correct approach to accomplish the mission. Furthermore, in a technique known as

reward shaping [112], each drone obtains a negative reward (-5) after each time-step to encourage

achieving the solution in the minimum possible time. The selection of the granted rewards was

refined iteratively and subjected to sensitivity analysis to evaluate its impact on agent behaviour and

effectiveness.

It is important to note that the reward function assesses the actions chosen by individual agents,

from which they acquire a local reward (rL). Within the framework of the cooperative multi-agent

setting of this environment, this local reward serves to shape the global reward (rG ), which acts as a

learning signal within the transition function, enabling the calculation of the total combined reward
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for all drones and reflecting the overall performance of the system.

5.3 Cooperative deep reinforcement learning control

The process of reinforcement learning revolves around iterative and exploratory interactions between

the agent and the environment, which aim to effectively train the agent to approach a solution to the

problem. In order to maximise the expected total reward, the Q-learning algorithm [113] can be

applied to any finite Markov Decision Process in this context. This algorithm produces a strategy,

known as a ’policy’, which maps each tuple ’(state, action)’ to a corresponding Q-value. In simple

and small-scale environments, this mapping process can be efficiently handled using a Q-table.

However, in complex environments where the state space or the number of agents increases, the

effectiveness of Q-tables diminishes exponentially. Given the complexity of the problem introduced

in subsection 5.2.1, the method introduced in this chapter incorporates a nonlinear Q-function

approximator in the form of an artificial Deep Neural Network, known as the Deep Q-network

(DQN) [114], which utilises given states to derive the corresponding Q-values for each potential

action.

5.3.1 Multi-agent double DQN framework

DQNs are recognised for their ability to effectively handle high-dimensional spaces by employing

multiple interconnected layers of neurons in their architecture. However, when using artificial neural

networks as Q-function approximators, it is important to consider the potential divergence that can

occur during training. This divergence primarily arises from the fact that in basic architectures,

future Q-values are evaluated using the same policy that determines the action selection. To mitigate

the overestimation of Q-values in Deep Q-learning, the introduced method adopts the Double Deep

Q-learning concept [110] to develop the training architecture. The approach involves the utilisation

of a second distinct neural network, known as the ’target network’, to evaluate Q-values. The target

network is synchronised with the main network at specific intervals during training, enabling the
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main network to converge towards stable targets.

Based on this architecture, a cooperative double DQN strategy, referred to as CoopD2Q, is

proposed. In this strategy, each agent develops their own main and target networks, as well as

an independent memory buffer. The detailed architecture and training strategy are presented in

subsections 5.3.2 and 5.3.3. It is worth noting that in addition to Double Q-learning, there are

other extensions of the DQN algorithm, such as Dueling DQN [115], which separates the Q-value

estimation into two processes. However, given the nature of the proposed system model, a dueling

architecture is found to be less efficient, as evidenced by the associated experiments.

In Double Q-learning, the calculation of Q-values for the target network is accomplished by

applying the Bellman equation in the following manner:

yt = rt+1 +γmaxQ(st+1, a′; θ̄), (5.9)

where θ̄ represents the target network parameters and γ indicates the discount factor. Therefore, the

gradient loss is computed as follows:

Lt (θ) = Es,a,r,st+1 [(rt+1 +γmaxQ(st+1, a′; θ̄)−Q(s, a;θ))2], (5.10)

where Q(s, a;θ) represents the predicted Q-value and Es,a,r,st+1 indicates the Q-function of the

current policy.

Although the target network effectively addresses the challenge of converging to unstable

targets, the issue of generalisation over correlated input data still persists. To mitigate this concern,

a memory buffer, commonly referred to as ’experience replay’, is employed to store recent tuples of

(s, A, s′,r ). At specific update intervals, a mini-batch of these samples is selected from the memory

buffer to update the parameters using the gradient descent calculation of Equation 5.10. In the

devised multi-agent DQN architecture, each agent is trained using their own individual main and

target network, alongside a distinct memory buffer, as illustrated in Figure 5.2.
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Figure 5.2: The proposed cooperative double DQN framework for drone route planning.

5.3.2 Model structure

In order to accurately estimate the Q-function, the training and target networks of each agent are

constructed utilising the sequential model of the Keras API, as depicted in Figure 5.3. The input

dimensions corresponding to the cardinality of the environment’s state set are then reduced to

a lower space using an Embedding layer. This is succeeded by a Reshape layer that transforms

the preceding output into a 1-rank tensor of the same size. Following this, four Dense layers are

applied, whose parameters are trained and updated during the back-propagation process to facilitate

network convergence. Each Dense layer employs the ReLU activation function, except for the final

layer, which utilises a linear activation function, having output dimensions equivalent to the action

space of the environment. Utilising Dense layers enables the network to acquire knowledge from

the combined features of the preceding layers, albeit at the expense of increased computational

complexity.

5.3.3 Training strategy

In order to enhance the learning capability of the DQN agents, this study utilises an ϵ-greedy training

strategy, where the agents initially choose random actions, but gradually shift towards selecting
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Figure 5.3: The structure of the employed DQN model. The Embedding layer is denoted by the black colour,
the Reshape layer is shown in gray, and the Dense layers are represented in teal.

actions with the maximum known Q-value, as expressed in Algorithm 3. A control hyperparameter

is employed to regulate how ϵ is gradually annealed to 0.1, ensuring the balance between exploration

and exploitation during the learning process.

Algorithm 3: Action selection strategy
Input :The predicted Q-values for each agent: Qi ;
the current time-step of training: t i mestep;
the number of random time-steps: max_r andom_steps;
the ϵ-greedy variable: ϵ; number of agents: num_ag ent s;
Output :The set of selected actions of each agent:

A = {a1, a2, ..., ai };
p ← r andom(0,1);
if t i mestep < max_r andom_steps or ϵ> p then

for i ← 0 to num_ag ent s do
ai ← r andom(0,6);
A ← (A, ai );

else
for i ← 0 to num_ag ent s do

ai ← ar g max(Qi (s, a));
A ← (A, ai );

return A;
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Rather than training the networks for a fixed number of epochs, the proposed strategy continues

indefinitely until a satisfactory global reward is achieved, as depicted in Algorithm 4. At the start

of each epoch, the environment is initialised to a random state, while in each epoch, the training

persists for a specific number of steps (max_tr ai n_steps) to enhance efficiency. During each

step, the agents employ the ϵ-greedy strategy outlined in Algorithm 3 to select actions, and the

environment is updated accordingly using the transition function. Following this, each computed

tuple (s, ai , s′,rG ) is stored in the agents’ memory buffer, which at any given time, retains the last

memor y_si ze tuples.

To increase training stability, the target network is updated only after a certain number of

actions, by utilising a random mini-batch sampled from the memory, as regulated by the hy-

perparameter (t ar g et_upd ate_i nter val ). Moreover, the learning process is controlled by the

mai n_upd ate_i nter val , which determines the frequency of updating the weights of the main

Algorithm 4: Multi-agent DQN training strategy
rG ←−∞;
while rG < opti mal_r ew ar d do

s ← r andomEnvSt ate();
for tr ai n_step ← 0 to max_tr ai n_steps do

get set A of actions using Algorithm 3;
decay ϵ;
transition env based on s and A, get s′ and rG ;
for i ← 0 to ag ent_number do

memor yi ← [s, ai , s′,rG ]);

if t i mestep % acti ons_be f or e_upd ate = 0 then
for i ← 0 to ag ent_number do

get a random sample from memor yi ;
update target Qi -values using Eq.5.9;
calculate gradient using Eq. 5.10;

if t i mestep % t ar g et_upd ate_i nter val = 0 then
for i ← 0 to ag ent_number do

net wor ki ← t ar g et_net wor ki ;
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training network with the target network. The main hyperparameters governing the learning process

are detailed in Table 5.2.

5.4 Evaluation

In order to evaluate the effectiveness of the proposed multi-agent DQN strategy within the defined

system model, a range of experiments are conducted in two unique phases. During the first stage,

three DQN algorithms are employed to train a single agent, with the objective of assessing the

convergence performance of each model. During the second stage, given the considerable time

required for the models to converge, two scenarios are devised in which two cooperative agents are

trained simultaneously. In the first scenario, the conventional DQN algorithm is employed, and in

the second scenario, the introduced Double DQN strategy is utilised to train both agents. For both

scenarios a spatial environment was designed as an 8 x 8 grid, with each cell representing a length

of 100 meters.

5.4.1 Experimental environment

The training for all scenarios is performed on a Linux system, utilizing the CUDA API on an Nvidia

GPU with a computation capability of 6.1. In the initial stage, a custom environment is generated,

featuring the placement of 3 IoT sensors at predetermined locations. For each algorithm, a single

Table 5.2: The key hyperparameters that control the learning process.

Hyperparameter Description

lr Learning rate
max_train_steps Training steps per epoch
exploration_steps Steps for exploration
greedy_steps Steps for exploitation
memory_size Length of the memory buffer
target_update_interval Target network update frequency
main_update_interval Main network update frequency
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agent undergoes training for a duration of 250k time-steps. The Adam optimiser is utilised to update

the network parameters every 750 steps based on a mean squared error (MSE) loss, employing a

learning rate of 10−3. Lastly, the memory size is constrained to 50k, while the maximum number of

training steps per epoch is established at 300.

In the second evaluation stage, the employed environment features the presence of 4 IoT sensors.

In the two considered scenarios, the two cooperative agents undergo training for a total of 10k

epochs or until a sufficient global reward is attained. During this stage, the target network is updated

at intervals of 1000, while utilising a batch size of 32. The memory size and the maximum steps per

epoch remain consistent at 50k and 300, respectively, while the exploration steps are set to 1000,

and the greedy steps to 40k. The parameters of the networks are updated using the Adam optimiser

with a learning rate of 5×10−4 in this case. In addition, these scenarios employ the Huber loss

for the back-propagation in the target network as it demonstrates increased sensitivity to outliers

compared to MSE. The Huber loss quantifies the error between the predicted and target Q-values,

which are computed based on the Bellman equation (5.9), as follows:

Lδ =


1
2 (y − ŷ)2 f or

∣∣(y − ŷ)
∣∣≤ δ,

δ(|y − ŷ |− 1
2δ), other wi se

(5.11)

where δ represents a hyperparameter that governs the threshold at which the function shifts from

quadratic to linear.

5.4.2 Learning performance

Table 5.3 outlines the respective training durations for each algorithm. While the single agent

scenarios reach completion in a relatively quick manner during the training process, the multi-agent

setting demands a significant amount of time for the models to converge due to the exponential

expansion of the state space. Figure 5.4 illustrate the training results during the initial evaluation

stage, corresponding to the standard DQN, Double DQN, and Dueling DQN algorithms.

The conducted experiments reveal that the DQN algorithm falls short of achieving convergence
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(a) DQN (b) Double DQN (c) Dueling DQN

Figure 5.4: Cumulative reward obtained by the three DQN algorithms in the single agent environment.

and even fails to sustain a positive reward after completing 250k time-steps. On the other hand,

Dueling DQN exhibits the ability to maintain a consistent positive reward, although it also falls short

of full convergence. By contrast, the Double DQN algorithm offers the highest level of stability,

as observed through its early convergence and the sustained maintenance of a maximum reward

throughout the training duration.

The outcomes of the experiments are also reflected in the relationship between the number of

training steps and the number of epochs, as depicted in Figure 5.5. In the standard DQN case, the

training is continued for max_tr ai n_steps in each epoch until the end. In contrast, the Dueling

approach successfully reduces the required steps to approximately 200 towards the later epochs.

Remarkably, the Double DQN algorithm demonstrates very high efficiency, necessitating a minimal

Table 5.3: Time required for each algorithm to finish training the agents.

Algorithm Training Time
DQN (single-agent) 29 min
Double DQN (single-agent) 28 min
Dueling DQN (single-agent) 29 min
DQN (multi-agent) 30 hours
CoopD2Q (multi-agent) 11 hours
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(a) DQN (b) Double DQN (c) Dueling DQN

Figure 5.5: Required training steps per epoch by the three DQN algorithms in the single agent environment.

number of steps to conclude training in each epoch, even as early as 1000 epochs have passed.

The findings obtained from the experiments provide support for the hypothesis that the simple

DQN algorithm is susceptible to overestimating Q-values, whereas the Double DQN algorithm

effectively addresses this issue. In contrast, while the Dueling DQN model eventually achieves con-

vergence, the training process demonstrates comparatively lower efficiency. This can be attributed

to the fact that the Dueling architecture aids in distinguishing between situations where the choice

of action is insignificant and cases where action selection is crucial. However, in the environment

under consideration, the actions tend to exhibit similar Q-values, thus diminishing the informative

value of the estimations provided by the Dueling DQN approach.

When examining the performance of the standard DQN algorithm in comparison to the in-

troduced Double DQN approach in a multi-agent context, a similar trend emerges. The global

running reward attained by both agents throughout the training duration is depicted in Figure 5.6a.

CoopD2Q establishes a significant lead over standard DQN early on and achieves the target reward

prior to 5,000 epochs. On the other hand, exhibits slower growth, reaching the target reward values

at over 7000 epochs. The higher efficiency of CoopD2Q is further demonstrated when evaluating

the training loss for each method, as illustrated in Figure 5.6b which depicts the loss of the agents

versus the epoch number, for the two algorithms. Despite the steady decrease in loss observed
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(a) Global cumulative reward for the standard
DQN and CoopD2Q algorithms.

(b) Training loss of the CoopD2Q and the stan-
dard DQN algorithms.

Figure 5.6: Running reward and agent loss during training in the multi-agent setting.

over time in both algorithms, the DQN algorithm shows significantly higher and more variable loss

values, highlighting a significant instability in learning performance.

The disparity in performance between the two algorithms, although still significant, is less

evident when examined in the multi-agent setting. This observation can be attributed to the

substantial level of cooperation among the agents and the relatively predictable and stable nature of

their interactions. As a result, the overestimation of Q-values is less pronounced. Therefore, while

the inclusion of a distinct target network in CoopD2Q proves advantageous in scenarios where

Q-values are prone to overestimation, the increased complexity in the architecture (requiring an

additional network per agent) slightly impedes the convergence of the model.

5.4.3 Testing performance

The evaluation of the trained agents’ performance was carried out in both a single-agent and a

multi-agent setting, encompassing a total of 3000 tests. The environment was configured to a

random state for each test to ensure a diverse range of initial conditions. The results of these

evaluations are presented in Tables 5.4 and 5.5, providing insights into the average reward attained
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by each algorithm, the average number of steps taken per episode (limited to a maximum of 50),

and the success rate of completing the mission.

In the context of the single-agent evaluation, exceptional performance is demonstrated by the

Double DQN algorithm, successfully completing all missions with maximum reward and minimum

steps. In contrast, both standard DQN and Dueling DQN achieve a low reward, with the latter

slightly surpassing the former by successfully finishing approximately 17% of the missions. It

is worth noting that although standard DQN and Dueling DQN exhibit subpar performance, it is

reasonably possible that with an increased training limit, they would eventually converge towards

adequate performance levels. This comparative analysis primarily aims to provide an informative

insight into the performance potential of these methods within the threshold at which the Double

DQN reaches optimal outcomes. Therefore, it provides a guiding indication of their prospective

efficiency in the more time-intensive context of the multi-agent setting.

Within the multi-agent setting, CoopD2Q outperforms the standard DQN method and demon-

strates higher performance, even when examining only the cases of successful missions, as depicted

in Table 5.5. Although the DQN algorithm offers satisfactory outcomes, the significant difference

Table 5.4: Agent performance in the single-agent setting.

Algorithm Average Reward Average Steps Success Rate
DQN -68.84 50 0%
Double DQN 690.97 10.02 100%
Dueling DQN 47.11 42.47 17.46%

Table 5.5: Agent performance in the multi-agent setting. The ’Overall’ metrics represent performance
across all test cases, while the ’In successful’ metrics focus specifically on the cases where the mission was
completed successfully.

Algorithm Overall In successful

Average reward Average steps Success Rate Average Reward Average steps

DQN 226.71 17 66% 343.50 12
CoopD2Q 256.92 14.25 71.5% 359.33 11
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in training duration (close to 3x times higher) highlights its considerably lower efficiency.

5.4.4 Ablation study

An ablation study is conducted on the multi-agent environment, to examine the impact of the onboard

storage capacity limit. The environment under consideration involves the use of 4 IoT sensors and

2 drones, excluding the storage constraint specified in Equation 5.4. The study entails training

the cooperative agents by utilising the introduced CoopD2Q method, to investigate variations in

learning capability. Remarkably, the training duration demonstrates a notable decrease, reaching

the optimal global reward in just 1.6 hours, as compared to the 11 hours required previously. The

attained cumulative reward, and the mission success rate, are presented in Figure 5.7. The outcomes

demonstrate a highly stable training process, leading to a rapid increase in the success rate. These

findings highlight the negative impact of an additional constraint on the decision space’s size and

the resulting challenge in training multiple agents with distinct decision-making policies.

Figure 5.7: Global cumulative reward and success rate in the multi agent setting, without the storage
constraint. Note the two lines are plotted using different y-axes.
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5.5 Discussion

This chapter built upon the knowledge gained in the previous chapters and focused on harnessing

the full potential of deep learning techniques to solve complex decision-making problems in the

context of IoT applications. Specifically, the chapter investigated a multi-agent deep reinforcement

learning approach and introduced a new framework to address the route planning problem in a

devised UAV-assisted IoT data collection scenario.

The problem under consideration was formulated as an extension of the m-TSP with additional

constraints, such as considering the drones’ onboard storage capacity. The objective was to develop

efficient decision-making policies that allow multiple drone agents to cooperatively tackle the

challenge of jointly optimising their routes, while ensuring that each sensor is visited only once

and all data are collected without exceeding the storage limits. In response to this need, the chapter

proposed the CoopD2Q framework, which is based on a Double DQN architecture.

To facilitate the application of the multi-agent DRL approach in the devised problem, a new

environment capable of encoding and decoding unique mission instances was designed and devel-

oped. This environment, in conjunction with a novel reward function, provided a global learning

signal to the agents, aiming to maximise their long-term rewards. The reward function was carefully

designed to guide the agents towards optimal decision-making and route planning strategies, with

high efficiency.

The experimental analysis served as empirical validation for the effectiveness of the CoopD2Q

approach in solving the complex route planning problem in the UAV-assisted data collection context.

The results highlighted several advantages of the proposed method over different DQN methods.

Through an enhanced training stability, the training process in CoopD2Q contributes to more reliable

and consistent model convergence. In addition, the models achieve the convergence significantly

quicker compared to their counterparts. Lastly, the agents trained through CoopD2Q showcase

improved performance when solving problem instances in evaluation scenarios. They are able

to achieve higher success rates, obtain larger rewards, and arrive at the optimal solution in fewer
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time-steps, indicating the higher efficiency of the introduced method.

One potential weakness in this approach is the synchronisation problem that may arise during

the agent deployment. If the drones fail to synchronise effectively, it can lead to inefficiencies and

suboptimal route planning outcomes. Without proper synchronisation, drones may inadvertently

visit the same sensor multiple times or miss certain sensors altogether, resulting in incomplete data

collection or redundant data acquisition. To address this, it is crucial to incorporate such cases into

the training process, simulating errors or delays in the communication, and adjusting the learning

process accordingly. However, this induces additional complexity during training.

The findings from this chapter highlight the significant contributions of applying DRL techniques

in UAV-assisted IoT architectures. The successful implementation of the CoopD2Q approach

signifies a leap forward in addressing the complexities associated with route planning, especially

when considering additional constraints. This research has direct implications for areas such

as environmental monitoring, disaster response, and surveillance systems, where efficient route

planning and data collection are crucial.

By harnessing the full potential of DRL, this chapter paves the way for the development of

sophisticated decision-making schemes in the context of advanced IoT applications. The integration

of DRL techniques with UAV-assisted IoT networks opens up possibilities for improving efficiency,

scalability, and adaptability in various domains. The findings provide valuable insights into the

dynamics of multi-agent DRL but also establishes a solid foundation for further advancements in

the field, as it can be easily adapted to an assortment of optimisation problems in IoT.
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Chapter 6

Conclusions

6.1 Summary of research

The introductory chapter of the thesis laid the groundwork for the research on efficient drone

control algorithms, by providing the essential context and outlining the involved objectives of the

study. The chapter discussed a brief background on the Internet of Things, and offered a concise

overview of the history and significance of drone technologies, with an emphasis on their diverse

application across various industries, such as agriculture, remote sensing, or emergency response.

The motivation behind the research stemmed from the growing demand for drone applications, with

requirements for improved drone performance. The pressing challenges faced by existing drone

control algorithms, including high energy consumption, limited flight time, complex navigation

decisions, and suboptimal performance in varying environmental conditions, were identified. Based

on these challenges, specific thesis aims and objectives were established, to address them effectively.

The core aim was to develop and optimise efficient control algorithms to govern the collective

behaviour of drones organised in swarms, to enhance the overall performance, and ensure reliable

operation under different environmental scenarios.

Chapter 2 was dedicated to exploring the background of the research and was structured to offer

a comprehensive analysis of the relevant literature and research that formed the foundation of the
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thesis. The chapter commenced with an overview of the Internet of Things paradigm, establishing

its crucial role in the current technological landscape. The focus then transitions to drone networks,

covering their unique features and practical use-cases. This includes an in-depth look at localisation

and tracking, alongside the challenges and current methods employed in route planning optimisation.

This analysis facilitated a profound comprehension of the present capabilities and limitations of

drone networks inside the IoT. The latter part of the chapter delved into the role of AI in drone swarm

management. Initially, it evaluated the implementation of machine learning in drone control and

subsequently explored the utilisation of deep reinforcement learning techniques to achieve efficient

drone navigation. Through this analysis, the potential advantages and challenges of integrating AI-

driven approaches in drone swarm management were unveiled. By synthesising an extensive body

of literature, the second chapter facilitated a profound understanding of the background pertaining

to IoT, drone networks, and the prospective applications of AI in drone control. This critical analysis

served as a strong basis for the ensuing chapters, wherein novel approaches to optimise drone

control algorithms were proposed, and the prospects of efficient drone swarm management through

AI-driven methodologies were further explored.

Chapter 3 offered a thorough investigation into the application of deterministic methods for

effectively controlling drone swarms. This research domain has been steadily gaining prominence

due to the vast potential of drone swarms across diverse fields, including search and rescue, which

this research targeted. Deterministic approaches emphasise predictability in system behavior by

employing predefined rules or mathematical models to govern the actions and interactions within

the drone swarm. These techniques provide a structured framework for managing drone movements,

interactions, and task execution, thereby ensuring a level of certainty in complex multi-agent

systems. The main focus of this chapter was to introduce, analyse, and assess a novel deterministic

technique for drone swarm control, exploring its applicability, strengths, limitations, and potential

for further enhancements. While the following chapters explored AI-based solutions, this chapter

emphasised the significance and relevance of deterministic methods, particularly in scenarios where

computational efficiency and meticulous control over system behavior are paramount considerations.
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Chapter 4 explored the integration of AI with drone swarm coordination, specifically focusing

on group formations within the fleet. The chapter delved into the powerful capabilities of deep

learning in cluster formation, providing an efficient organisational structure for the drones. Unlike

conventional deterministic methods, this approach enabled dynamic adaptation of the swarm,

enhancing efficiency dynamically. By combining the predictability of deterministic techniques

discussed in the previous chapter with the adaptive potential of AI, the chapter advocated for the

integration of deep learning in swarm control. This synthesis presented a compelling argument

for the synergistic utilisation of both approaches to advance drone control and enhance the overall

performance and effectiveness of drone swarms.

Chapter 5 focused on the crucial aspect of multi-agent drone route planning optimisation,

which becomes imperative in complex operations and larger environments. After exploring the

significance of drones in the IoT context and investigating deterministic and AI-assisted methods

for swarm coordination in the previous chapters, this chapter emphasised the need for efficient

route planning when dealing with multiple drones, in complex combinatorial optimisation problems.

The research delved into the complexities of multi-agent systems, where optimising routes for

individual drones must be synchronised with overall mission success and constraints satisfaction.

The algorithmic framework proposed in this chapter employed innovative computational strategies

and optimisation techniques based on deep reinforcement learning, to enhance the UAV-assisted

data collection efficiency in IoT applications. Each drone in the system operated as an independent

decision-making entity, but was also a part of the coordinated fleet. The developed system leveraged

neural networks, with each drone building its unique network, trained through intricate trade-

offs between exploration and exploitation, enabling the development of effective action-selection

policies. By employing these advanced computational approaches and optimisation methods, the

chapter significantly improved the coordination and efficiency of multi-agent drone route planning

for IoT applications, resulting in more efficient data collection and mission accomplishment.

97



Chapter 6. Conclusions

6.2 Key findings

6.2.1 Deterministic drone control

The first core findings of the research involved the evaluation of the new deterministic control

scheme. The introduced algorithm utilised readings of the RF signal strength transmitted by an IoT

device held by the moving target, to effectively lead the drones to close distance. By decomposing

the tracking task into two stages – individual search and cooperative tracking – the algorithm

demonstrated enhanced efficiency compared to trilateration based methods, particularly under high

signal attenuation conditions. Throughout the evaluations, key performance indicators were used to

assess the system’s performance:

• Minimum time: The introduced control scheme exhibited resilience to increasing values

of noise, showcasing robustness under diverse conditions. In contrast, the trilateration

algorithm’s accuracy declined substantially under noisy conditions, resulting in a significant

faltering of its tracking performance and the time required to reach the target.

• Average distance: The proposed algorithm demonstrated little impact from increased noise,

maintaining consistent performance, while the trilateration algorithm suffered from decreased

accuracy as noise levels rose, leading to inability in maintaining close distance to the sensor.

• Halting cycles: Under conditions of low noise, both algorithms achieved comparable results

in the duration of time the nearest drone remained static. However, the proposed algorithm

demonstrated an edge as noise levels increased towards realistic or higher values.

• Sustained proximity cycles: The proposed algorithm clearly outperformed the trilateration

method in sustaining proximity to the target over time.

In the next stage of the assessment, the impact of drone velocities on the performance of the two

methods was evaluated. The proposed algorithm exhibited enhanced efficiency in target tracking

under realistic noise levels, regardless of drone velocity. Lastly, the efficiency of the deterministic
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control scheme was assessed against increased target velocities and the impact of the swarm’s size

on the overall tracking process. The algorithm’s performance showed minor fluctuations across

different target speeds, while the number of drones in the fleet had a varying influence on the

system’s efficiency, with higher performance observed for higher swarm sizes at low drone speeds,

when the total size does not exceed seven drones.

Overall, the cooperative deterministic scheme presented in the first part of the research offered

a promising solution for efficient drone swarm tracking of mobile IoT targets. Its reliance on RF

signal deviations instead of distance calculations, strategic decomposition of the tracking task,

and ability to maintain accuracy in noisy environments make it a valuable advancement in the

field of drone control algorithms. The findings contribute to enhancing drone swarm management

capabilities, showcasing its potential for a wide range of practical applications, particularly in the

field of search and rescue.

6.2.2 Cluster formation through deep learning

The second core part of the research outlined the key findings of evaluating the potential effectiveness

of integrating AI-assisted control into the previously introduced deterministic algorithm, to govern

cluster formation inside the fleet. A comprehensive comparison of the two schemes was performed

under diverse conditions, measuring three essential metrics: the time needed for the swarm to

approach the IoT sensor, the mean distance covered by each individual drone during tracking, and

the overall distance traveled by the entire fleet.

The outcomes revealed that the AI-assisted control algorithm exhibited notable advantages over

the purely deterministic approach. Specifically, it showcased improved time efficiency in locating

the sensor and demonstrated higher overall fleet efficiency. Moreover, the AI-assisted method

resulted in reduced average distance covered by individual drones during the tracking procedure,

indicating enhanced operational efficiency. Notably, the analysis indicated that optimal performance

was achieved when the AI-assisted algorithm utilised a specific termination threshold for clustering,

showcasing the greatest efficiency in distances traversed by the swarm, leading to reduced energy
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expenditure in each mission.

Finally, this stage of the research explored the advantages of employing the "elbow" technique,

dynamically determining the cluster count, rather than using a fixed value. The investigation

highlighted the superiority of the dynamic approach, with the swarm reaching the sensor more

efficiently, emphasising the value of adaptive strategies in achieving optimal tracking outcomes.

6.2.3 Multi-agent route planning under constraints

In the third and final part of the research, the evaluation involved the investigation of a new

multi-agent cooperative DRL policy to optimise UAV-assisted data collection in IoT networks,

under constraints. At first, the convergence performance of three DQN algorithms was assessed

by training a single agent in a custom environment with three IoT sensors. The Double DQN

algorithm exhibited the highest stability, achieving early convergence and sustained maximum

reward throughout the training duration. In contrast, the standard DQN algorithm failed to achieve

convergence and sustain a positive reward. The Dueling DQN approach demonstrated consistent

positive reward, but its convergence was comparatively less efficient.

Next, the evaluation focused on training two cooperative agents simultaneously in an environ-

ment with four IoT sensors, using the introduced CoopD2Q method. The new DRL algorithm,

which relied on the extension of Double DQN for multi-agent contexts, outperformed the standard

DQN algorithm, achieving the target reward in fewer epochs. However, the added complexity

slightly impacted the model’s convergence due to the requirement of an additional network per

agent, heavily affecting the training time.

In both single-agent and multi-agent settings, CoopD2Q demonstrated superior performance

compared to the standard DQN algorithm. CoopD2Q achieved higher rewards and success rates,

completing missions in a more efficient manner. Finally, an ablation study conducted in the multi-

agent environment revealed that the introduction of an additional constraint, such as the storage

capacity limit, considerably impacts the training duration. Without an extra constraint, the training

process demonstrates a rapid decrease in training time, indicating the challenge of training multiple
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agents with distinct decision-making policies under constrained conditions.

Overall, the findings support the effectiveness of the CoopD2Q algorithm for multi-agent

cooperative tasks and highlight the benefits of addressing the issue of Q-value overestimation, and

improving training stability through the proposed DRL approach. The study provides valuable

insights into the convergence performance of various DQN algorithms in both single-agent and

multi-agent contexts, shedding light on their potential applicability and efficiency in real-world

scenarios, for various problems of combinatorial optimisation nature, which are often involved in

IoT networks.

6.3 Addressing thesis objectives

The primary aim of this thesis was to advance the field of drone control within IoT networks,

specifically focusing on optimising route planning for efficient and intelligent operations. By

introducing adaptive schemes capable of real-world problem-solving, the ultimate goal was to

contribute to the advancement of drone control systems, bringing tangible benefits across various

sectors and applications in IoT. This aim has been successfully accomplished through the fulfillment

of three key objectives: 1) investigate and devise deterministic techniques for cooperative drone

control, 2) investigate and devise deep learning methods for swarm coordination and cluster

formation, and 3) Investigate and devise a deep reinforcement learning framework for optimising

drone route planning.

Firstly, the thesis extensively explored deterministic techniques for cooperative drone con-

trol, delving into pre-defined strategies, evaluating their performance, and identifying potential

limitations. By introducing a new deterministic control algorithm, and critically analysing its

implementation, a level of certainty was achieved when governing the navigation of drones in

unstructured environments, applicable in remote IoT networks. Through this method, the thesis

laid the foundation for incorporating cutting-edge methodologies, particularly those driven by AI,

to enhance and complement the deterministic control mechanisms. This formed the basis for the
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investigation and development of more flexible and adaptable drone control systems, aimed at

further improving their performance and robustness in real-world scenarios.

Secondly, the thesis examined and developed deep learning methods to optimise swarm coordi-

nation through adaptive cluster formation. This in-depth exploration of AI solutions based on deep

learning, was essential for understanding how more advanced algorithms can contribute to efficient

drone fleet management. By focusing on cluster formation, the research sought to enhance energy

efficiency and mission execution effectiveness. The incorporation of deep learning methodologies

proved to be pivotal in optimising cluster formation, enabling drones to work cohesively and achieve

superior operational efficiency in more complex IoT environments.

The third objective centered on the design and implementation of a deep reinforcement learning

framework for optimising drone route planning, under certain constraints. This novel approach

managed to take drone control to a higher level by allowing drones to learn and adapt continuously

based on real-time feedback, through a constant reward-based approach. Deep reinforcement

learning enabled drones to autonomously learn from their interactions with the environment,

allowing them to make intelligent decisions and optimise route planning dynamically. By reducing

the reliance on human intervention, the research successfully achieved higher levels of autonomy

and efficiency in drone operations, which is required to realise the required degree of autonomous

operation in data collection applications inside IoT networks.

The integration of advanced AI-driven techniques within traditional deterministic strategies

has significantly transformed the capabilities of drone control within IoT networks. Furthermore,

through the novel DRL framework, the thesis demonstrated the development of intelligent, adaptable,

and efficient drone control systems that can effectively navigate complex environments, optimise

cluster formation, and dynamically plan routes based on real-time feedback. These achievements

have profound implications across diverse industries, as they enable drones to perform a wide range

of tasks more effectively and autonomously, leading to increased efficiency and reduced operational

costs in various applications, particularly in the emergency response and remote sensing sectors.
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6.4 Strengths and limitations

One of the main strengths of this thesis lies in its comprehensive approach to addressing the

challenges in drone control within IoT networks. The investigation of new deterministic techniques,

followed by the successful integration of state-of-the-art AI methodologies, demonstrates the

research’s innovative nature and its contribution to the evolution of drone control systems. The

exploration of deep learning methods for swarm coordination and cluster formation showcases the

research’s practical significance in providing adaptive management, enhancing energy efficiency

and mission execution effectiveness, particularly in dynamic environments. Additionally, the

development of a novel deep reinforcement learning framework for optimising route planning

highlights the thesis’s commitment to pushing the boundaries of autonomous drone control, under

the presence of limitations and constraints. By achieving the aim of innovating drone control within

IoT networks, the thesis exhibits its potential to significantly impact industrial sectors, leading to

more efficient, reliable, and intelligent drone missions.

Despite its strengths, this research also exhibits certain limitations. One such drawback pertains

to the complexity and computational overhead associated with the AI-driven methodologies intro-

duced. The implementation of deep learning networks inside the DRL framework in real-world

applications may need special computational resources and time, requiring intricate planning in

resource-constrained environments. Moreover, the evaluation of these techniques through simu-

lations may not fully capture the nature of real-world scenarios, necessitating further validation

through physical drone experiments. Additionally, while the research successfully showcases

the potential advantages of AI-driven techniques, it is essential to acknowledge the challenges of

interpretability and explainability in AI-based drone control systems. The use of AI algorithms

often leads to "black-box" decision-making, which may hinder understanding and trust in critical

operations. As AI becomes more integrated into drone control, addressing these interpretability

challenges becomes crucial for ensuring safe and reliable operations.
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6.5 Future directions

The research conducted in this thesis opens up several exciting and promising future directions

that can further advance the field of drone control within IoT networks. Firstly, as AI technologies

continue to evolve, future research can focus on developing more interpretable and explainable

AI-driven drone control systems. Addressing the "black-box" nature of AI algorithms will be

crucial for gaining trust and confidence in autonomous drone operations. Techniques such as model

introspection, attention mechanisms, and interpretable deep learning architectures [116] can be

investigated to provide insights into the decision-making process of AI-based drone control systems.

Additionally, investigating the integration of uncertainty estimation methods in AI algorithms

can help assess the reliability and confidence of AI-driven decisions, making the systems more

transparent and accountable.

Secondly, future research can further explore the synergies between AI and deterministic

techniques in drone control. Hybrid methods that intelligently switch between deterministic and

AI-based strategies depending on the complexity of the task and environmental conditions may be

investigated, to potentially enhance the system’s adaptability and performance. Investigating how

AI can optimise the parameters and configurations of deterministic algorithms may also further

improve their efficiency and effectiveness.

Furthermore, the safety and security of drone operations constitute critical concerns for future

research. Addressing issues such as cyber threats and privacy concerns in AI-driven drone control

systems will be essential for deploying drones in critical IoT infrastructures Developing robust

fail-safe mechanisms and testing the resilience of AI-based control systems against adversarial

attacks will be pivotal in ensuring safe and secure drone missions.

Finally, looking ahead, another promising avenue for future research in the context of drone

control within IoT networks lies in exploring the potential of quantum optimisation techniques.

Quantum computing, with its ability to efficiently solve complex optimisation problems, through

properties of quantum hardware has the potential to revolutionise the field of drone route planning
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and resource allocation. Traditional optimisation algorithms may yet face challenges in handling

larger combinatorial problems, which are common in drone swarm coordination and route planning

inside complex IoT environments. Quantum optimisation algorithms, such as Quantum Anneal-

ing [117] and Variational Quantum Algorithms [118], offer the advantage of leveraging quantum

principles like superposition, tunneling, and entanglement to investigate a vast solution space and

find optimal solutions rapidly. Algorithms based on these principles can enable the simultaneous

exploration of multiple possible drone routes and configurations, resulting in more optimal determi-

nation of flight paths. Therefore, integrating quantum optimisation into drone control systems could

lead to significant advancements in efficiency and performance. Moreover, quantum optimisation

could enhance resource allocation strategies, such as energy-efficient task assignment and dynamic

adaptation to changing environmental conditions. By harnessing quantum computing’s power, drone

control systems may achieve unprecedented levels of scalability and adaptability, supporting more

extensive swarm missions and highly dynamic scenarios. However, it is important to acknowledge

that as of writing this thesis quantum computing is still in its early stage, and practical quantum

hardware capable of tackling real-world problems remain a significant challenge. As such, quantum

computing for drone control remains a future possibility rather than an immediate implementation.

Nevertheless, as the field of quantum computing matures, exploring its application to drone control

will be a captivating and impactful direction for future research.
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