
 

Forests and Fuel 

Development of a Simple Biomass Comparison Model 

 

 

 

William J. Rolls 

Submitted in accordance with the requirements for the degree of  

Doctor of Philosophy 

 

The University of Leeds 

School of Earth and Environment  

 

October 2023 

  



ii 

The candidate confirms that the work submitted is his own, except where work which 

has formed part of jointly-authored publications has been included. The contribution of 

the candidate and the other authors to this work has been explicitly indicated below. The 

candidate confirms that appropriate credit has been given within the thesis where 

reference has been made to the work of others. 

Published work 

Elements of Chapters 2 and 3 have been previously published as: 

Rolls, W. and Forster, P.M. 2020. Quantifying forest growth uncertainty on carbon 

payback times in a simple biomass carbon model. Environmental Research 

Communications. 2(4), p.045001. DOI 10.1088/2515-7620/ab7ff3 

Available from https://iopscience.iop.org/article/10.1088/2515-7620/ab7ff3  

This paper was primarily the work of W Rolls, with support, editorial comments, and 

oversight by P. M Forster  

 

 

 

 

 

No trees were harmed in the making of this publication. 

This copy has been supplied on the understanding that it is copyright material and that 

no quotation from the thesis may be published without proper acknowledgement.  

© 2023 The University of Leeds and William Jack Rolls  

https://iopscience.iop.org/article/10.1088/2515-7620/ab7ff3


iii 

Acknowledgements 

It is entirely possible that I have made this look far harder (and more dramatic) than 

strictly necessary. That said, without the abnormally persistent investment of time, 

energy, financial and emotional support from some improbably kind people, we 

wouldn’t be here. Specifically, I need to thank (in no particular order): 

The teams at Drax and UBoC for funding me, and my supervision team: Piers Forster, 

Dominick Spracklen, and Rebecca Heaton. Thank you for your supervision, influence, 

advice, and support, it is genuinely appreciated.  

Gwilym Pryce, Julia Steinberger, and Stephen Hall for accidentally becoming my 

(completely unofficial) shadow supervisory team and talking me down where necessary 

(although, Julia, I haven’t forgotten that this whole business was your idea in the first 

place). 

My parents, Jack and Elspeth, for teaching me to think, Margot, for being completely 

awesome, and Jim and Helen, for all the positivity and the use of the spare room “for 

science”[Citation needed]. 

Abby and James. You didn’t ask to have a dad trying to keep far too many plates 

spinning, but you have handled it marvellously with style and grace (and a bare 

minimum of sarcastic comments). 

My wonderful (and long suffering) wife Lizzie. Thank you, it was more than I deserved.  

And everyone else, there are far too many people to mention, but I couldn’t have done it 

without you.  





v 

Abstract 

Forest-sourced biomass combustion is a popular climate change mitigation technology 

used to decarbonise electricity generation. Disagreement in the literature on the 

sustainability of biomass deployment limits policy development. (Chapter 1). The 

project addresses this uncertainty by development of the Simple Biomass Comparison 

Model (SBCM) to explore the effect of contrasting assumptions and experimental 

designs. 

An existing model first developed by Sterman et al. (2018a) was identified, analysed in 

detail and replicated in Python to form SBCM (Chapter 2). SBCM produced a good (but 

inexact) match for the training data and previously published results. To improve this, 

the forest growth component of SBCM was re-parameterised (Chapter 3) against the 

original training data. A significant divergence (p = 0.00002) in species with long 

growth curves arising from numerical instability in the forest growth function was 

identified. Analysis of the original supply-chain (Chapter 4) revealed a number of 

parameterisation errors. These were corrected, and new scenarios for BECCS and gas 

were developed. These led to large decreases in payback period.  

SBCM was modified to improve several inaccurate assumptions in the original model 

(Chapter 5) by introducing variable rotation length and silvicultural thinning. Shorter 

rotation lengths resulted in a mean increase in modelled yield of 10.9 GJ.ha-1.a-1 for 

non-plantation forests and 7.7 GJ.ha-1.a-1 for plantations. This highlights the weakness 

of payback as a suitable metric for biomass uptake. 

The study concludes (Chapter 6) that conventional biomass use may be more 

appropriate than other technologies in some contexts over some time-periods, but that 

this is by no means certain. Without some form of BECCS technology, biomass remains 

a low carbon option at best, and is heavily dependent on a sustainable supply chain to 

achieve positive environmental outcomes. 

Further work to develop clear methods and processes is strongly recommended.
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Chapter 1. Background and a review of the literature 

In which the Author embarks on a perilous endeavour 

1.1 Introduction 

Wood fires are a fundamental part of human history, pre-dating virtually every other 

technology. Evidence exists that suggests that fire has been used by hominids over 

hundreds of thousands of years (James et al., 1989) and that the controlled use of fire 

may have had a significant influence on the evolution of modern humans (Wrangham, 

2017; Sandgathe and Berna, 2017; Stepka et al., 2022). Wood fires have been in regular 

use across recorded history and this traditional use of wood still contributes around 6% 

of the world’s energy needs today (Ritchie et al., 2022b). 

While it is hard to deny the atavistic appeal of traditional fires (or their utility to some of 

the poorest people on earth) a less aesthetically pleasing industrial scale use of wood as 

a fuel has been steadily increasing in recent years. This has been described as an 

economic use for poor quality timber, and as an alternative “carbon neutral” source of 

energy to address climate change concerns (Reid et al., 2020). The sustainability of this 

course of action has been the subject of debate (Slade et al., 2018; Mather-Gratton et al., 

2021) and much research (Welfle et al., 2020) with little prospect of a simple set of 

conclusions in the near future (Robledo‐Abad et al., 2017). 

This chapter seeks to identify the core issues at stake in the debate and review the 

current literature in order to identify the various arguments, assumptions, and 

interpretations which has led to such a confusing range of conclusions. This includes a 

review of the background, addressing the underpinning elements of the debate (Section 

1.2), followed by a detailed assessment of the terminology and assumptions used in the 

scientific literature (Section 1.3). Based on this review, a number of conclusions are 

drawn (Section 1.4) which are used to outline a programme of research to identify how 

model parameters, assumptions and reporting metrics affect the apparent sustainability 

of biomass supply chains (Section 1.5). 



2 

1.2 Background 

1.2.1 Climate change 

The global climate is undergoing a period of rapid change, and it is now “unequivocal” 

that human activities are the primary cause (Cubasch et al., 2013; Arias, Bellouin, 

Coppola, R. Jones, et al., 2021). This is taking place because of changes to Earth’s 

energy budget through alteration of absorption spectra of the atmosphere and land 

surface. These changes to the quantities of energy trapped by the atmosphere are 

primarily caused by anthropogenic emissions of greenhouse gases (GHGs) which are 

transparent to visible light, but opaque in the infra-red wavelengths and changes in land 

use which alter the surface albedo (Arias, Bellouin, Coppola, R.G. Jones, et al., 2021). 

For example (as shown in Figure 1.1) annual emissions of carbon dioxide (CO2) – the 

most significant GHG (Arias, Bellouin, Coppola, R. Jones, et al., 2021) have been rising 

since the dawn of industrial revolution (Ritchie et al., 2022a). 

 
Figure 1.1. Annual global CO2 emissions 1750-2021 (data from Ritchie et al., 2022a). Global 

emissions of CO2 have shown no appreciable decrease since the start of the industrial revolution. These 

emissions are primarily caused by the combustion of fossil fuels. 

The result of these changes is that “Human-induced warming reached approximately 

1°C … above pre-industrial levels in 2017, [and is] increasing at [around] 0.2°C … per 

decade…” (Hoegh-Guldberg et al., 2018) shown in Figure 1.2. 
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Figure 1.2. Global temperature anomaly 1860-2019 relative to 1960-1990 mean value (data from 

Osborn et al., 2021) Global temperatures, while showing variation, exhibit a strong correlation with CO2 

emissions over the post industrial revolution period. 

This significant and rapid alteration of the earth’s energy balance is already having far-

reaching consequences in terms of weather events, the cryosphere, and sea levels; with 

substantial repercussions for the biosphere and human societies (Field et al., 2014; 

Pörtner et al., 2022) 

An international effort is underway to address the challenges posed by climate change. 

This effort, centred about the United Nations Framework Convention on Climate 

Change (UNFCC, Kuyper et al., 2018) aims to develop policies and activities which 1) 

mitigate: “reduce the sources or enhance the sinks of greenhouse gases” (Edenhofer et 

al., 2014) or 2) adapt: “[adjust] to actual or expected climate and its effects” (Field et 

al., 2014). 

The transition away from activities which emit climate forcing agents (primarily CO2) is 

far from certain, and projections suggest that – depending on future policy decisions 

about technologies and activities, the range of possible outcomes is substantial (Stocker 

et al., 2013; Riahi et al., 2017; Arias, Bellouin, Coppola, R. Jones, et al., 2021; Shukla et 

al., 2022).  

A common feature of scenarios which result in lower emissions and less severe 

warming, is a decarbonised energy (Meckling et al., 2017) and transport (Gota et al., 

2019) infrastructure. Another is the removal of CO2 from the atmosphere directly 

through negative emissions technologies (Daggash et al., 2019; Fawzy et al., 2020; 

Carton et al., 2020) and enhancement of existing biospheric carbon sinks such as forests 

(Doelman et al., 2020). 
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1.2.2 Climate change, carbon, and the terrestrial biosphere 

Anthropogenic climate change is caused through a number of different pathways, these 

include: the release of greenhouse gases (e.g. CO2, CH4, N2O, halocarbons, ozone); 

changes to the hydrological cycle (drainage of wetlands, contrails, and stratospheric 

water vapour); the release of particulate matter (aerosols); and changes to the global 

surface reflectivity (albedo) - mainly through land use changes (LUC), and black carbon 

deposition on snow (Myhre et al., 2013; Arias, Bellouin, Coppola, R. Jones, et al., 2021) 

The relative impact of these factors is shown in Figure 1.3 below. 

 

Figure 1.3. Effective Radiative Forcing (ERF) values for different climate forcers plotted using 

data from (Arias, Bellouin, Coppola, R. Jones, et al., 2021, table. AIII.3). CO2 the principle focus of this 

study is the most significant climate forcer, primarily due to its abundance. 

The majority of climate forcing is caused by CO2 but this is primarily due to the 

quantity emitted. Methane, nitrous oxide and halocarbons all have greater global 

warming potentials than CO2, but have a smaller overall effect because of their lower 

relative abundance (Arias, Bellouin, Coppola, R. Jones, et al., 2021, table. 7.15). 

CO2 is primarily emitted as a result of carbon release from geological storage by the 

extraction and combustion of fossil fuels (Arias, Bellouin, Coppola, R. Jones, et al., 

2021), and the cement and steel industries (van Ruijven et al., 2016; Bataille, 2020) – all 

of which generate significant quantities. Other sources of CO2 include the 
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decomposition of methane released from permafrost (Holm et al., 2020; Ridolfi et al., 

2021) and agriculture (Jackson et al., 2020), and directly from combustion of recently 

living matter from the terrestrial biosphere through wildfires (Volkova et al., 2021), 

LUC (Shukla et al., 2019) land clearance and the use of wood products as fuel (Reid et 

al., 2020) as shown in Figure 1.4 below. 

 

Figure 1.4. A simplified schematic of the global carbon cycle (adapted from Ciais et al., 2013 fig. 

6.1). Flows which are primarily human mediated are shown in red, the overwhelming majority of these 

result in a net gain in atmospheric carbon. 

The climate sensitive interactions which take place within the terrestrial biosphere are 

extremely complex, and this complexity is exacerbated by human influences and 

processes.  

The net ERF of the terrestrial biosphere is not static, as growth, mortality, and 

seasonality are continually taking place. This includes a range of factors such as albedo 

change due to seasonal forest senescence and snow cover (Jääskeläinen and Manninen, 

2021); changing carbon stocks due to growth, and mortality (Matthews et al., 2016), 

carbon fertilisation (Ziegler et al., 2021), the release of biological volatile organic 

compounds (Scott et al., 2018; Rap et al., 2018) and the release of methane and CO2 

from the decomposition of organic material (Megonigal and Guenther, 2008). 
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Human interactions further increase this complexity by deliberate (and accidental) 

changes in land use (Kassas, 1995), harvesting crops and timber, artificial fertilisation, 

soil disturbance, and changes in site hydrology (Shukla et al., 2019). Wider landscape-

scale stochastic factors such as fire, pests, and diseases while being natural features of 

undisturbed landscapes also tend to change in terms of frequency, intensity, and duration 

as a result of human land management practices (Brankatschk, 2019). 

Of the radiative forcing factors caused by human interactions with the terrestrial 

biosphere, the emissions of CO2 are the most significant (as shown in Figure 1.3). These 

take place primarily when changes occur in the soils of wetland and permafrost 

dominated habitats and during deforestation (Olsson et al., 2019) or forest harvesting 

operations (Buchholz et al., 2014). 

As with the controlled use of fire, human interactions with forests have been taking 

place since before recorded history (Williams, 2006; Ellis, 2011; Ellis et al., 2013), and 

these interactions have had a profound influence on the nature of forest carbon storage. 

However, the assessment of forest carbon stocks is not an exact science, and margins of 

error when estimating carbon volumes remain high (Parrott et al., 2012; Olschofsky et 

al., 2016). As such the forest carbon cycle is commonly simplified to account for the 

most significant flows of carbon, while omitting minor factors which occur well within 

the uncertainty range of larger effects. An example of a simplified schematic used for 

modelling the forest carbon cycle is shown below in Figure 1.5. 
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Figure 1.5. A simplified schematic of the carbon cycle within an undisturbed forest (derived from 

Smith et al., 2006; Matthews et al., 2016) 

This schematic shows an approximation of the carbon stocks and flows within a forest 

at stand level, but omits a great deal of detail and context. Many forest modelling 

approaches exist (described more fully in section 3.2.3 below) for different purposes 

and these focus on different aspects of forest growth and management. Suffice to say at 

this point, that forests and the climate are intimately linked and this this linkage is very 

strongly affected by human influences.  

1.2.3 Forest growth and retention as a climate change mitigation strategy 

Deforestation is a significant driver of climate change (Shukla et al., 2019). Forests 

currently cover around 30% of the global ice-free land surface (Shukla et al., 2019; FAO 

and UNEP, 2020). This area is a substantial reduction on historical forest cover as an 

area of approximately 1.8 billion ha had been felled prior to 2010 (Martin et al., 2012). 

Large scale deforestation has been responsible for the release of an estimated 180 GtC 
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into the atmosphere between 1750 and 2011 (Stocker et al., 2013) and the trend towards 

deforestation has been consistent over the whole of human history (Williams, 2006; 

Ellis, 2011; Ellis et al., 2013).  

A large international effort is underway to prevent further deforestation and to replant 

significant areas of forest (Angelsen, 2014; UNFCCC, 2021b). The effort is intended to 

reduce emissions from deforestation, restore damaged carbon sinks, and provide greater 

resilience and adaptability to terrestrial ecosystems and human societies (FAO, 2018). 

This has been primarily carried out via the reducing emissions from deforestation and 

forest degradation in developing countries (REDD+) framework in developing nations – 

although this approach has been widely criticised (Asiyanbi and Lund, 2020) and via 

nationally implemented forestry strategies within the developed world, which are 

reported on via the UNFCCC (IPCC, 2006).  

1.2.4 Biofuels as a climate change mitigation strategy 

Increasing the scale and significance of bioenergy technologies has also become a key 

element of the global effort to decarbonise transport fuels and energy supplies in the 

face of climate change (Chum et al., 2011; Craggs and Gilbert, 2018; Funk et al., 2022). 

These technologies derive energy from a wide range of biological feedstocks including  

‘…the biodegradable fraction of products, waste and residues from biological origin 

from agriculture (including vegetal and animal substances), forestry and related 

industries including fisheries and aquaculture, as well as the biodegradable fraction of 

industrial and municipal waste’ (EU, 2009 article 2e).  

The logic of using biologically sourced fuels as opposed to fossil fuels is relatively 

straightforward: a crop regrows, reabsorbing carbon from the atmosphere. This means 

that over a complete cycle of harvest, combustion, and regrowth the total amount of 

carbon added to the atmosphere is approximately zero (Fargione et al., 2008). This 

simple rationale (as shown in Figure 1.6) has been used to justify a significant 

development of biofuel supply chains worldwide (Slade et al., 2018). 
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Figure 1.6. The logic of the carbon neutrality of energy derived from biomass fuels. As shown in 

the schematic, over time, the carbon absorbed by photosynthesis is approximately equal to the carbon 

released during decomposition of dead material (a). If this material is burned to provide useful energy (b) 

we simply increase the rate of a process (decomposition) which would have occurred in any case. This 

simplistic logic ignores the change in rate of transfer of carbon from the biosphere to the atmosphere, 

supply chain emissions, and a potential decrease in the biospheric carbon pool which occurs through 

deforestation if this material has an economic value. 

Biofuels have been popular globally because they allow direct substitution for existing 

fossil fuelled systems with a minimum of infrastructure modification and expense 

(Slade et al., 2018). This has led to an extremely rapid uptake which has resulted in a 

number of unintended consequences and uncertainties about  

1. Their efficacy as an emission reduction technique (Holtsmark, 2015). 

2. The effect on land use (Creutzig et al., 2015). 

3. The effect on global biodiversity and existing carbon stocks (Searchinger et al., 

2018). 

These concerns have become a significant underpinning of anti-biomass energy 

campaigns, largely as a result of work by environmental NGOs (Mather-Gratton et al., 

2021 e.g. Brack, 2017a; Dogwood Alliance, 2012; RSPB et al., 2012 and others) as 

discussed further below (Section 1.2.6). 
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1.2.5 Forest-sourced biofuels (biomass) 

Solid biofuels are derived from a very wide range of different feedstocks (EU, 2009). 

These include agricultural residues (Werther et al., 2000), woody post-consumer waste 

(Röder and Thornley, 2018) dedicated woody energy crops (Bajwa et al., 2018), and 

woody by-products of manufacturing and secondary processing (Malkki et al., 2003). 

While a number of these feedstock sources are relatively uncontroversial; others raise 

significant questions. Biomass fuel, defined here as: solid, forest-sourced material 

(broadly equivalent to “woodfuel” FAO, 2001 or ‘forest fuel’; BSI, 2014) represents an 

extreme case due to its extended rotation length (Thornley, 2018).  

The use of forest-sourced biomass has been widely supported globally (Reid et al., 

2020) and use of this material has shown a marked increase as a result, as shown in 

Figure 1.7 below. In particular the UK has become the largest importer of biomass 

pellets globally (circa 8.8 million tonnes or 21% of global output in 2019 - Forest 

Research, 2020; FAO, 2020) principally for use in power generation (Figure 1.8). All 

future projections under the shared socioeconomic pathway (SSP) scenarios assume a 

substantial increase in the use of biomass fuels both with and without the 

implementation of carbon capture and storage (CCS) technologies (see also Chum et al., 

2011). Under scenarios which meet the 1.5°C (>50%) target, global carbon dioxide 

removal (CDR) from bioenergy with carbon dioxide capture and storage (BECCS) is 

estimated at 30–780 GtCO2 by 2100 (Shukla et al., 2022) as shown in Figure 1.9. 

 
Figure 1.7. Global primary solid biomass fuel consumption for electricity generation 1990-2018 

(data from IEA, 2020). The global demand for biomass used in electricity generation (as opposed to 

traditional uses such as cooking etc.) has quadrupled since 1990. 
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Figure 1.8. Primary biomass fuel use, UK (data from BEIS, 2022a). Biomass use in the UK has 

risen from around 3,000 GWh.a-1 in 2000 to around 55,000 GWh.a-1 in 2019 (an eighteen-fold increase) 
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Figure 1.9. Projected future use of global biomass demand for electricity generation (data from 

van Vuuren et al., 2017; Fricko et al., 2015; Fujimori et al., 2017; Calvin et al., 2017; Kriegler et al., 

2017; Rogelj et al., 2018; Gidden et al., 2019). Significant increases in energy derived from biomass are 

projected under virtually all the SSP scenarios. This may take the form of conventional first-generation 

biomass to power (notably in SSP3-60) or as bioenergy with carbon capture and storage (BECCS, 

notably in SSP4-26) 

1.2.6 The debate 

The extraction of silvicultural thinnings, branch wood, brash, roundwood, and stumps 

(see Appendix A for definitions) directly from the forest as a feedstock has highlighted a 

striking contradiction inherent in the dual objectives of biomass use and forest carbon 

storage (Taeroe et al., 2017; Schlesinger, 2018; Favero et al., 2020) 

On one hand biomass is an attractive alternative to fossil fuels which regenerates over 

time allowing a single area of land to replace fossil fuel emissions a number of times 
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over (Timmons et al., 2016). It has also been generally welcomed by the forestry sector 

as a marketable use for poor quality timber (Malmsheimer et al., 2011). Biomass has 

been perceived as a potential revenue stream encouraging active forest management, 

displacing fossil fuels, and effectively utilising material which previously may have 

been left in the forest to rot (Abt et al., 2012; Dupuis et al., 2021) contribute to forest 

fire risk (USDA Forestry Service, 2009; Mitchell et al., 2009) or otherwise be excluded 

from supply chains (Lamers et al., 2014).  

On the other hand, production of biomass fuel requires release of carbon from an 

existing sink (Ter-Mikaelian et al., 2015). Felling within forests may affect biodiversity, 

and fears exist that primary forests may be converted to intensively managed 

plantations, or felled and removed altogether (Olden, 2016; Brack, 2017b; Brack, 

2017a). While it is true that forests will often regenerate, if re-planted or left 

undisturbed, this may take a very long time (Norton et al., 2019); resulting in elevated 

atmospheric carbon concentrations for decades or even millennia (Mitchell et al., 2012). 

The regenerative loop which led biofuels to be described as carbon neutral still exists, 

but the disparity in speed between combustion and regrowth results in a long period of 

elevated atmospheric CO2 within the cycle – during which elevated radiative forcing 

takes place (Beddington et al., 2018). The production of biomass may also displace 

material otherwise destined for longer lived harvested wood products (HWPs) 

conceivably reducing potential carbon storage in the “anthropospheric” carbon pool 

(Sathre and Gustavsson, 2006; Gustavsson et al., 2017). 

Over-simplified communication derived from the academic literature looking at this 

issue, and a poorly constrained range of results has led to a polarised and confused 

debate within the public sphere about the environmental effects of biomass use, and the 

advisability of support (Cătuţi et al., 2020). For example, in 2012, Searchinger wrote a 

discussion paper (Searchinger, 2012) on the UK Government Bioenergy Strategy 

(DECC, 2012) his (un-reviewed) paper was critical of the strategy which failed (in his 

opinion) to correctly model the payback times for biomass use. Searchinger’s paper 

(which was based on a single extreme-case scenario in the original report) was then 

used by Friends of the Earth, Greenpeace, and the Royal Society for the Protection of 

Birds (RSPB) among others, to inform their policy report “Dirtier than coal?” (RSPB et 

al., 2012). This report, gained national publicity in the press (EJNow, 2012; Kinder and 
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Gray, 2012; Huyton, 2013) and has since been quoted in other influential policy 

documents (Brack, 2017b).  

This simplification of the complexities of biomass carbon cycling risks turning the 

discussion around the sustainability of biomass fuel into a polarising series of “biomass 

is good / bad” statements in the public sphere (e.g. Galeon, 2018; Stock, 2017; 

Moomaw, 2018a; Moomaw, 2018b; Slade et al., 2018; Olden, 2016; Sterman et al., 

2022). 

1.3 Bioenergy emission accounting frameworks  

As we might expect, the apparent contradiction between supporting forest retention, and 

forest felling for use as fuel has been discussed extensively. The debate can best be 

summarised in the question: Is energy from forest-sourced biomass sustainable, and 

does it produce a net benefit in terms of atmospheric carbon dioxide within a timeframe 

consistent with our greenhouse gas emission targets? 

A substantial body of literature has grown around this apparently simple question 

(Welfle et al., 2020) and has a very wide range of possible answers (Buchholz et al., 

2016; Bentsen, 2017). The discussion has been further hampered by a lack of clarity; 

this is due to the heterogeneity of the terms, methods, assumptions, system boundaries, 

and metrics (not to mention misconceptions, as described by Ter-Mikaelian et al., 2015) 

evident within the literature (Holtsmark, 2013; Laganière et al., 2017; Giuntoli et al., 

2020). 

The two main methods (O’Brien et al., 2012; Liu et al., 2018) for assessing the carbon 

balance of human activity are 1) the method as produced by the IPCC (Eggleston et al., 

2006; refined by Buendia et al., 2019) and 2) Life Cycle Assessment (LCA: ISO, 2006a; 

ISO, 2006b). These methods differ primarily in terms of system boundaries, and the 

inclusion / exclusion of non-CO2 GHGs (Cellura et al., 2018). In practice, biomass 

carbon accounting does not sit comfortably in either camp.  

In using the IPCC framework, firm boundaries are introduced around geographical 

territories which separates the forest and the end user into different accounting silos in 

the case of internationally traded commodities. For example, forest biomass harvesting 
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is reported as a loss in stored carbon under “agriculture / forestry and other land use” 

(Eggleston et al., 2006 Volume 4) “biomass combustion for power generation” however, 

is calculated at a zero rate (to prevent double counting: Eggleston et al., 2006 Volume 

2). This gives rise to a potential “accounting error” if forest loss is not accurately 

reported: extensively discussed by Searchinger and others (Searchinger et al., 2009; 

Haberl et al., 2012).  

Using an LCA method would appear to be an obvious solution, LCA boundaries are 

tailored to the supply chain, rather than a specific territory. However, LCA is predicated 

on the concept of units of impact (tCO2e, tN2O etc.) per unit of product (Bjørn et al., 

2018). This value when looking at a biomass fuel with a long forest recovery time is not 

static, and if a static value is used, considerable uncertainty then exists about what time 

horizon is most appropriate (Liptow et al., 2018; Albers et al., 2020). The use of 

Dynamic Life Cycle Assessment (DLCA) couples existing LCA techniques with a 

temporal element to identify the changes, but a plethora of different assumptions, data 

sources, specific supply chain circumstances and methods, does not lend itself to clear 

comparisons (Hauschild, 2018; Perkins and Suh, 2019).  

A significant number of authors have attempted to bridge this gap with the majority 

opting to develop independent hybrid solutions (Welfle et al., 2020); based on, but not 

limited by existing methods. 

To briefly summarise, the mechanics of biomass carbon accounting lies in mass balance 

of four distinct carbon pools: fossil carbon, the terrestrial biosphere, the anthroposphere 

(Guest, Bright, et al., 2013), and the atmosphere; over time (Paustian et al., 2006; 

Watson, 2009) as shown in Figure 1.10.  
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Figure 1.10. A schematic of the carbon accounting mass balance showing the four carbon pools and 

the direction of flows between them. 

Based on this method the mass balance of carbon over time can then be described as in 

Equation 1.1 below. The sum of the changes of carbon at each point within the supply 

chain dictates the resulting change in total emissions. Crucially, ΔCsite is not static over 

time as the biomass crop regrows and reabsorbs carbon. Equation 1.1 has been written 

with reference to carbon – the main source of climate impact when burning biomass, but 

a number of other terms could be added to include other on-site effects such as albedo, 

aerosols, and non-CO2 GHGs although these effects are small by comparison (Gutierrez 

et al., 2005) 

 
Equation 1.1. Biomass carbon accounting mass balance.  

Ter-Mikaelian, et al. (2015) describe seven “errors” in the interpretation of this mass 

balance which they encountered in the literature at the time of writing. While it is not 

entirely clear to what extent all of these “errors” are indeed erroneous; some being 

deliberate methodological choices, they are useful in illustrating the extent of 

disagreements over the underlying systems, metrics, and assumptions surrounding 

system boundaries (a common one being the assumption that one or more of the 

elements of Equation 1.1 are equal to zero). Considerable divergence exists within the 

literature over terminology, metrics, assumptions and experimental design as discussed 

below. 
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1.3.1 Terminology and metrics 

One of the key attractive qualities of biomass fuels is their regenerative capacity. This 

means that (as discussed earlier in Section 1.2.4) they have previously been described as 

“carbon neutral” (Lippke et al., 2011). They have also been described in terms of the 

time taken for them to reach a more beneficial atmospheric carbon balance than fossil 

fuels, this has been reported in terms of “payback period” (Jonker et al., 2014), “carbon 

debt repayment” (Mitchell et al., 2012; Malcolm et al., 2020), and “carbon sequestration 

parity” (Hanssen et al., 2017). These terms have been used inconsistently within the 

literature (Giuntoli et al., 2020), and it seems likely that a number of misunderstandings 

have taken place as a result of this; both within the scientific discourse and the wider 

public / policy sphere. 

It should be noted that the majority of this terminology describes “stand level” models 

of forest growth. This is a mid-scale approach between a model which describes the 

behaviour of individual trees and a model which describes a forested landscape. There 

are a number of strengths and weaknesses to this approach, which are discussed on page 

22. 

Carbon neutrality 

The term “carbon neutral” is widely used in both the scientific and grey literature 

(Agostini et al., 2014; Johnston and van Kooten, 2015; Nabuurs et al., 2016). This term 

is problematic, and given widespread use, is likely to be defined far more by common 

usage than as an actual technical term (Murray and Dey, 2009; Miner and Gaudreault, 

2013). The ambiguity in defining “carbon neutral” may lead to misconceptions, and 

without explicit description of the underlying assumptions it becomes potentially 

misleading. For example (Malmsheimer et al., 2011) writing more than a decade ago 

identified six different possible definitions of carbon neutrality, each addressing 

different system boundary conditions and timescales. 

Biomass has historically been described as carbon neutral (Gunn et al., 2012; Miner and 

Gaudreault, 2013; Klein et al., 2015; Bjørn et al., 2018; Liu et al., 2018) and this 

argument has been used to support a number of different policy decisions (Giuntoli et 

al., 2014; Agostini et al., 2014).The ambiguity of the term, when combined with the 

uncertainties and slow rate of turnover of the carbon cycle when applied to forest 
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carbon, has rendered future use questionable. Additionally, as described by Ter 

Mikaelian et al. (2015) there has been an assumption in the past that wood is inherently 

carbon neutral, and thus biomass use incurs no carbon debt (often also neglecting 

supply chain emissions). This has been (rightly) criticised (e.g. Murray and Dey, 2009) 

and it is arguable that new references to carbon neutrality tend to be identified with this 

simplistic position. As such, it is doubtful whether the term carbon neutral should be 

used at all in this context, since it is so open to misinterpretation and misrepresentation. 

Carbon debt and carbon sequestration parity 

Carbon debt is a term (popularised by Fargione et al., 2008) used to describe the 

temporal imbalance between carbon release and sequestration from bioenergy systems 

(Lamers et al., 2016).  

While a wide range of versions and uses of the term exist (Domke et al., 2008; 

Malmsheimer et al., 2011; Ter-Mikaelian et al., 2011; Jonker et al., 2014; Bentsen, 2017 

all use subtly different terminology for example); Mitchell et al. (2012) describe an 

internally consistent nomenclature using four key terms to define carbon debt as shown 

below in Table 1.1, and Figure 1.11 

Table 1.1. Definition, and comparison, of terms and metrics 

Term  Definition Alternative nomenclature 

Carbon debt 

(gross) 

A loss of carbon storage when compared 

with the maximum equilibrium carbon 

storage possible on the site (Mitchell et 

al., 2012). Based on this definition 

virtually all sites which are not 

undisturbed wilderness will carry some 

level of carbon debt in perpetuity (unless 

abandoned over a very long time) as 

shown in Figure 1.11a. 

• A reduction in the ‘Stable 

ecosystem carbon level’ 

(Jonker et al., 2014) 

• ‘Foregone carbon 

sequestration’ (AEBIOM, 

2013) 

• ‘Persistent carbon debt’ 

(Reid et al., 2020) 
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Carbon debt 

(net) 

A temporary loss of carbon storage when 

compared with pre-harvesting (reference 

baseline) site conditions (Fargione et al., 

2008; AEBIOM, 2013) shown in Figure 

1.11b 

• Typically referred to in the 

literature simply as ‘carbon 

debt’ (as in Nabuurs et al., 

2016) However, a 

substantial number of 

authors do not specify or 

define which kind of carbon 

debt they are using.  

• ‘Cyclical carbon debt’ (Reid 

et al., 2020) 

Carbon debt 

repayment 

The point at which there has been no net 

emission of carbon from the site over 

time – where regrowth has reabsorbed 

the carbon removed through harvesting. 

This can be described in terms of gross 

(Figure 1.11a) or net (Figure 1.11b) 

carbon debt. 

This is analogous to using a static point 

or reference baseline (Ter‐Mikaelian et 

al., 2015) i.e. comparing a scenario with 

its own pre-existing conditions. 

• Carbon cycle neutrality 

(Malmsheimer et al., 2011) 

• Carbon Neutral Period (Ter-

Mikaelian et al., 2011). 

• Carbon Payback Period 

(Jonker et al., 2014) 

• Carbon debt repayment time 

(AEBIOM, 2013) 

• Payback period (Reid et al., 

2020) 

Carbon 

sequestration 

parity (CSP) 

The point at which carbon savings 

through substitution and site regrowth 

are equal to the estimated carbon 

emissions of what would have occurred 

otherwise. Generally used to describe the 

point at which biomass production 

becomes more advantageous than 

alternative options. This is analogous to 

using a dynamic anticipated future 

baseline (EPA, 2011; Miner and 

Gaudreault, 2013; Buchholz et al., 2016) 

• Carbon offset parity point 

(Mitchell et al., 2012) 

• Carbon Parity (Nabuurs et 

al., 2016) 

• Break-Even Period (Ter-

Mikaelian et al., 2011) 

• Years to [carbon] neutrality 

(Domke et al., 2012) 

• Life-cycle neutrality 

(Malmsheimer et al., 2011) 

• Substitution neutrality 

(Malmsheimer et al., 2011) 
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or comparing the scenario with a 

counterfactual.  

This is generally defined in terms of time 

and is also described as a payback period 

(as shown in Figure 1.11c).  

• Payback time (Agostini et 

al., 2014; Bentsen, 2017) 

• Payback period (Reid et al., 

2020) 

• Fossil fuel parity (Agostini 

et al., 2014) 
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Figure 1.11. Illustrations of gross / net carbon debt, and carbon sequestration parity at stand level. 

Gross carbon debt (a) is the difference between current managed forest site carbon and maximum 

possible natural ecosystem forest site carbon. Gross carbon debt repayment takes place when gross 

carbon debt is equal to zero, however in the absence of an existing mature ecosystem on site, the point at 

which this takes place is uncertain. Net carbon debt (b) is the difference between current site carbon and 

the carbon on site before operations take place. This is prone to error due to the dividend then debt 

perspective described by Ter Mikaelian et al. (2015) discussed on page 24. Net carbon debt repayment 

takes place when site carbon returns to the level measured before changes took place. Carbon 

Sequestration Parity (c) occurs when biomass becomes the most advantageous strategy with respect to 

atmospheric carbon, i.e. where the biomass scenario reaches parity with the alternative. The time taken 

for this to occur is described as the payback period. All graphs are illustrative and not to scale 

The critical difference between these metrics is the comparison carbon pool. Net carbon 

debt, and net carbon debt repayment compare a site with itself in a pre-defined state, 

whereas gross carbon debt and CSP account for comparison relative to some other 

scenario (a hypothetical maximum, or counterfactual using a different fuel type). While 

comparison of a scenario with itself may show whether it has a net carbon loss or gain, 
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it does not show whether the scenario is an optimal use of site NPP (Haberl and 

Geissler, 2000; Mitchell et al., 2012) as discussed in Chapter 5. 

The usefulness of metrics is also closely tied to scale (Cherubini, Guest, et al., 2013). 

Assumptions of large-scale biomass use, which are more applicable to policy makers at 

the national level, include greater uncertainty than those made at a small landscape or 

stand level. Equally, stand-level calculations while potentially carrying a lower level of 

uncertainty may prove misleading when expanded to landscape scale (Cintas et al., 

2017). 

1.3.2 Assumptions and experimental design 

Scale 

Spatial scale is a significant factor in forest modelling techniques. Forest models exist 

which range in detail from the description of biological processes within individual 

trees (Somers, 1994; Perttunen, 1996; Elkin et al., 2012), to the rates of growth across 

entire biomes (e.g. Mladenoff, 2004; Scheller and Domingo, 2005; Best et al., 2011; 

Clark et al., 2011; Xiao et al., 2017). In each case, limits of understanding and 

computational resources, as well as potential margins of error and the intended purpose 

of the model largely dictate the scale and scope (Burkhart and Tomé, 2012).  

The majority of biomass studies adopt a stand-level approach. These models are 

generally far simpler than models describing individual trees, and require fewer 

parameters (and a less complete understanding of underlying biological processes). It is 

arguable that the methods of forest mensuration already have a high margin of error, and 

that this justifies a statistical approach (Weiskittel, 2011) or that models are designed to 

be a general representation for describing trends and characteristics rather than an exact 

simulation for accurate measurement (Borges et al., 2014). Stand level models do not 

have to be spatially explicit beyond a general approximate growth curve for a woodland 

area, and can be scaled up to describe a landscape relatively quickly by assuming that 

the landscape is composed of a number of discrete stands (as in Eliasson et al., 2013). 

There is a long history of the use of “yield tables” in forestry (Edwards and Christie, 

1981; Matthews and Mackie, 2006; Smith et al., 2006; Matthews et al., 2016) and their 

strengths and limitations are well known. 
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Stand level models; however, have limited spatial resolution and generally fail to 

represent mixtures of species or age classes well, unless those mixtures have been 

directly studied (Matthews and Mackie, 2006). The statistical approximation of forest 

behaviour is often based on a very specific “prescription” of silvicultural operations 

(closely defined thinning years, patterns and quantities for example) and when a stand is 

managed differently, then the statistical representation of future growth becomes 

progressively less reliable (Vanclay, 1994). This is also true where site conditions vary 

(in topography, altitude, soil type, precipitation, climate change etc.) as the statistical 

relationship will have been determined with a specific set of site conditions in mind. 

Finally, when extrapolating a stand level model to a landscape scale, a number of large-

scale influencing factors may not be handled correctly. Stochastic events such as fire, 

pests, diseases, and other natural threats such as high winds are not homogeneous across 

a forested landscape (Salas et al., 2016; Buchholz et al., 2016). The growth of individual 

stands is partially determined by their location, stochastic risk, and the behaviour of 

adjacent stands and this may represent limitations in the resulting landscape-scale 

model, unless it is being used for idealised representation rather than a detailed analysis 

of real-world predicted yield. 

Spatial Boundaries 

It is well documented that the scale of modelling changes the apparent emissions of 

biomass production and use (AEBIOM, 2013; Hammar et al., 2019; Kalt et al., 2019), 

this poses two potential inconsistencies. Stand level modelling shows a clear fluctuation 

in site carbon over the full rotation (as shown in Figure 1.12a) this results in the 

characteristic saw-tooth graph common in forest carbon accounting (Lamers and 

Junginger, 2013). When stands are aggregated into a landscape scale model, this pattern 

is obscured by the accumulated growth in other stands, leading some (Strauss, 2011; 

Nabuurs et al., 2016) to argue that “carbon neutrality exists on a landscape scale”. This 

assertion depends entirely on the baseline assumptions (not to mention the specific 

definition of carbon neutrality) as it counts from a fixed reference point, and does not 

take into account forgone sequestration potential of trees if they are not felled.  

This inconsistency, described well by Cintas et al. (2017) lies in the geographical area 

being studied. Some studies assume that the boundary of the study area increases as 

more forest areas are dedicated to biomass production as shown in Figure 1.12b 
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(Cherubini, Guest, et al., 2013; Jonker et al., 2014). while others assume fixed boundary 

to the study area - as Cintas et al. (2017) recommend shown in Figure 1.12c. This 

distinction is important because it effectively also determines the system boundary. In 

using a fixed area, a measured biomass system either takes credit for regrowth in forests 

which were not felled for biomass (leading to an incoherent system boundary) or 

assumes that the site carbon reference point lies at the point of planting: the dividend 

then debt approach - one of the “errors” described by (Ter-Mikaelian et al., 2015). This 

is discussed further in Chapter 6. 

 
Figure 1.12. An illustration of stand-level, increasing area, and fixed area approaches to the spatial 

boundary question. Apparent fluctuation in carbon stock over time decreases as we increase the area 

studied (mean values across the study area are represented by the dotted lines). This obscures the loss of 

carbon caused by felling, because it becomes less significant when compared to the landscape annual 

increment. The resulting loss of potential carbon sequestration is handled inconsistently in the literature. 

Temporal boundaries 

Temporal boundaries in forest sourced biomass also have a profound influence over the 

apparent sustainability of use. This is not so much caused by the long rotation periods 

typical in forest management as an implicit assumption of baseline. Forestry 

professionals, concerned with the successful planting and growth of a crop, tend to 

assume a “bare site” baseline with no pre-existing carbon – the “dividend then debt” 

approach (Strauss, 2011; Ray, 2012; Strauss, 2013; Dwivedi et al., 2019). According to 

this perspective a site accumulates carbon over a forest rotation, which is then released 

on felling and combustion; this ties in naturally with forest management calculations of 

yield (as in Broadmeadow and Matthews, 2003). The dividend then debt approach is a 

minority view, however; as it assumes that the site is bare (not forested) without human 

action, and that the important factor is the amount of carbon stored on site (Ter-

Mikaelian et al., 2015). In contrast, the more widely used “debt then dividend” 
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perspective assumes that the baseline condition for a forest is as a large carbon store, 

and that any release of that carbon incurs a debt that must be repaid. This perspective 

takes a longer view (assuming most sites capable of growing trees will have been 

forested before human intervention) and one more relevant to the climate (forest carbon 

is only important in this case because it is directly linked to atmospheric carbon). 

 
Figure 1.13. Illustration of temporal boundaries. Assuming a site is bare before intervention is 

common when the perspective is on a final crop (which has an economic value)- the dividend then debt 

approach. This, however, implies that the site has always been bare when we look at it with respect to 

atmospheric carbon. Most studies looking at climate change and forest carbon use the debt then dividend 

approach as the focus is on the atmospheric carbon pool and not specific site conditions. 

System boundaries 

System boundaries, while affected by spatial and temporal considerations, are also 

heavily influenced by the range of different products included within the analysis. 

Products such as coal may not have any large markets that do not result in combustion 

(World Coal Association, 2020) the same is not true of wood. Biomass fuels are 

frequently described as occupying a single (less valuable) niche within the forestry and 

timber processing industries (Simangunsong et al., 2017; Lu and El Hanandeh, 2017) 

however, use of timber for combustible fuel precludes its use for alternative products. 

The range of possible uses for timber is heavily influenced by the species and size of 

tree harvested (Lal and Alavalapati, 2014) as well as current market values (Colnes et 

al., 2012), and this in turn is largely dictated by silvicultural practice (Matthews, 1989). 

The principle of silvicultural thinning is that removal of a proportion of the crop 

(Usually about 30% - Hart and Evans, 1991) concentrates growth in the remaining trees, 

and allows selection of the final crop for improved “form” (better sawmilling 

characteristics) leading to increased production of material at the lowest grades (the 

thinnings) and material at the highest grades (the final crop). The simple fact that forest 
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harvesting operations typically produce multiple fractions of material suitable for 

different uses and influence the range of fractions produced in future years leads to a 

complex picture.  

A consequence of this complexity has been the widespread use of simple models which 

omit nuanced silvicultural systems. By omitting other harvested wood products (HWPs) 

and any non-fuel products from the calculation, such studies (e.g. Peñaloza et al., 2019) 

effectively remove a wide range of variables which allows easier understanding of the 

process. This is analogous to a use of an attribution LCA (LCA-A) approach – simply 

considering the emissions caused by the use of the product compared to the use of an 

alternative product – over a consequential LCA (LCA-C) which also takes into account 

the effect of consumption on the production and impacts of other related products 

(Brander et al., 2009; Peñaloza et al., 2019). While both approaches are valid and can be 

adapted to become dynamic LCA (as in most studies that incorporate forest growth 

Beloin-Saint-Pierre, Albers, et al., 2020; Beloin-Saint-Pierre, Padey, et al., 2020) they 

vary in scope and as such are not directly comparable with one another.  

Counterfactual choice 

The effects of biomass use are highly dependent on what we assume to take place when 

biomass is not used (Lamers and Junginger, 2013; Bentsen, 2017; Mather-Gratton et al., 

2021). This includes a counterfactual fuel type, supply chain, and end use efficiency 

(Sterman et al., 2018a) and, as described above, also includes implicit assumptions 

about the alternative use of the forest (Lamers and Junginger, 2013). This may include 

other HWPs but also may not – assumptions of non-intervention management regimes 

in the counterfactual being reasonably common (e.g. Sterman et al., 2018a). It should be 

noted that a counterfactual including non-intervention is effectively an assumption that 

forest management is driven solely by biomass production (AEBIOM, 2013) which, 

given the low value of biomass in comparison to other wood products (Timber Update, 

2021) seems a less likely scenario. The assumptions inherent in the choice of 

counterfactual (as in Berndes et al., 2016) reference case (as in Lamers and Junginger, 

2013) or baseline (as in Ter‐Mikaelian et al., 2015) has a significant impact on the 

apparent costs and benefits of biomass fuel use.  
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The infrastructure required to convert biomass to electricity is considerable, but is 

frequently excluded from studies: generally being assumed to be of a comparable 

magnitude to that required for fossil fuels (Reid et al., 2020). While it could be argued 

that this is a reasonable assumption in the case of coal infrastructure, it is not 

necessarily reasonable in the case of gas, and even less so in the case of nuclear, or 

renewables such as solar and wind. This may be a convincing reason for the popularity 

of coal as a counterfactual fuel choice, although it has also been argued (Sterman et al., 

2018b) that coal has been used specifically because of its low end use efficiency in 

comparison to other fossil fuels which increases the attractiveness of biomass fuels by 

comparison. Setting the system boundary at the point of fuel delivery rather than 

infrastructure development is a limitation shared by many studies although given the 

wider existing issues of inconsistency of assumptions, approach, and experimental 

design, a simplification of this aspect of the assessment is not unreasonable. 

Modelling approaches 

The need to provide quantifiable estimates of future forest yield has been recognised for 

many years (Evelyn, 1664; von Carlowitz, 1713) and has stimulated the development of 

a range of a theoretical structures to enable forest valuation and planning forest 

operations (Assmann, 1970; Taylor et al., 2009). Forest models have significantly 

advanced since the development of computers, which has allowed the use of 

increasingly complex methods, and greater volumes of data (Vanclay, 1994; Peng, 

2000). However, even with substantial increases in computing power that have taken 

place during the last forty years, forests remain difficult to model (Mitchard, 2018). 

Forests are heterogeneous, dynamic systems which incorporate a large number of 

processes, and are subject to a wide range of external factors. in addition to this, growth 

takes place on multi-decadal timescales which limits opportunities for empirical testing 

(Somers, 1994; Perera et al., 2015).  

Growth models seek to represent the growth of trees or a group of trees by some 

combination of process simulation of causal relationships (described as mechanistic 

models by Porté and Bartelink, 2002) and statistical representation (Weiskittel, 2011). 

These models reflect the assumptions of the writers and have parameters based on a 

wide range of different data sources; they also reflect the limitations present in our 

ability to model natural systems accurately.  
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While a number of different models and methods are used to estimate forest growth 

(Assmann, 1970; Weiskittel, 2011; Burkhart and Tomé, 2012), the inclusion of resulting 

estimates of forest carbon change in a model which describes the wider context of a 

biomass supply chain is relatively uniform; however, 99.5% of bioenergy modelling 

research published between 2000 and 2018 used bespoke models (around 44,000 papers 

Welfle et al., 2020). These models are designed for use on different operating systems 

and software platforms, using different mathematical methods and using different 

combinations of assumptions (as discussed above) but will generally include a forest 

model with a series of wider assumptions about growth rates, system boundaries, 

silvicultural systems, harvested wood products, counterfactuals and occasionally other 

factors such as economic drivers (Holmes et al., 2008; Abt et al., 2010; Abt et al., 2012; 

Duden et al., 2017) and stochastic tree mortality (Burkhardt et al., 2014).  

1.3.3 The range of results 

Based on the very large number of papers published on the subject, and the extensive 

range of methods, assumptions, and metrics used, it is difficult to arrive at a series of 

direct comparisons. Indeed, it is arguable that the scale of the analysis required would 

justify a significant research project in its own right. A small sample of superficially 

comparable papers where payback periods are quoted (or can be derived from the 

experimental design) is shown in Figure 1.14. While it would not be appropriate to draw 

firm conclusions from an unrepresentative sample of papers; based on the range of 

possible results it seems reasonable to accept that the potential payback period for 

forest-sourced biomass fuel is, at best, poorly constrained (as argued by Bentsen, 2017; 

Buchholz et al., 2016; Lamers and Junginger, 2013; Giuntoli et al., 2020).  
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Figure 1.14. A small sample of the published payback periods. Many of these studies use differing 

modelling methods and experimental assumptions, and are based on differing scenarios. The resulting 

range of payback periods extends from <1 year to 10,000 years.  

Based on the literature assessed, it is possible to provisionally identify a number of 

themes which reoccur and seem worthy of further research. A number of studies show 

(or strongly imply) that payback period is shortest where relative carbon debt is 

minimised. This may occur because the initial carbon debt is small (i.e. a small 

proportion of forest carbon is used as fuel, or there is little carbon on site to begin with) 

if the debt is repaid quickly (as in shorter rotational management of fast-growing crops) 

or if counterfactual scenarios have particularly high emissions (e.g. stochastic tree 

mortality is high in the counterfactual, and the comparison fuel is very low efficiency 

Mitchell et al., 2012; Buchholz et al., 2016; Sterman et al., 2018a).  

1.4 Conclusions 

Forest-sourced biomass combustion is a widely used climate change mitigation 

technology used to decarbonise electricity generation, with global use of biomass fuels 

expected to continue increasing for decades to come (as shown in Figure 1.9 above). It 

has been argued that this development is incompatible with enhancement of the 

terrestrial biosphere as a carbon pool (e.g. Favero et al., 2020).  
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Given that biomass use removes carbon from the terrestrial biosphere and emits that 

carbon to the atmosphere as CO2, there is an obvious risk that developing global 

biomass supply chains will undermine international climate change mitigation efforts. 

As such, action should be taken to ensure that biomass payback times are as short as 

possible. 

In the scientific literature, there is a high level of variation between published payback 

periods and other sustainability metrics (as shown in Figure 1.14). This level of 

variation means that, while it is possible to identify scenarios which have particularly 

high or low probabilities of a sustainable outcome, the boundary between these two 

states is poorly constrained. The diverse range of models, methods, assumptions, and 

parameterisations used in the literature is likely to be, in part, driving the high level of 

variations in results (Giuntoli et al., 2020). 

The heterogeneity of reported results and apparently conflicting conclusions has led to 

over-simplified communication of the benefits and costs of biomass production and use, 

which has undermined public support (Slade et al., 2018). As a result, the sustainability 

of forest-sourced biomass fuels is now hotly contested (Mather-Gratton et al., 2021).  

The lack of clarity in the literature, and the existence of well-funded campaigns both for 

and against biomass use (Mather-Gratton et al., 2021) limits the ability of policy makers 

to make informed choices regarding forest management and support / regulation for 

biomass development. As Buchholz et al. point out: 

“for carbon payback period calculations to provide operational insights to decision 

makers, future research should focus on creating consistent accounting principles 

including the consideration of stochastic disturbance, temporal scales, quantifying and 

reporting uncertainties, standardization of carbon pools evaluated, GHG emission 

metrics considered, and baseline definition.” (Buchholz et al., 2016, p.288). 

A large degree of variation does still exist in the reported outcomes, and it remains 

unclear to what extent this variation is driven by real-world conditions such as site, 

species, and silviculture, and to what extent it is driven purely by diverse perspectives 

and assumptions made while modelling the outcomes.  
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As such there is a demonstrable need for a simple replicable modelling framework to 

facilitate comparisons between modelling assumptions and methods using the same 

underlying parameters and data. This work can then be used to identify the degree to 

which the apparent variation in biomass carbon studies is due to different formats and 

assumptions, and the degree to which real-world variation exists. 

1.5 Research outline 

The core research goal is to develop a robust modelling framework which is adaptable 

to account for a wide range of different methodological assumptions while remaining 

simple and freely available, enabling intercomparisons between approaches. The 

primary, overarching research question being: 

How do model parameters, assumptions and reporting metrics affect the apparent 

sustainability of biomass supply chains?  

Model development (Chapter 2) 

Outline 

Rather than undertake the ground-up development of yet another model, an assessment 

of existing work was undertaken in order to find an appropriate structure to adapt and 

modify. Chapter 2 describes the process of identifying an appropriate model and 

includes a detailed analysis of the model chosen, a description of the model replication 

as the Simple Biomass Comparison Model (SBCM), and testing to ensure that results 

from both models match. 

Research Questions 

1. Given the need for an adaptable modelling framework to compare the sustainability 

of biomass fuel supply chains; which existing, published model is the most 

appropriate for conversion and adaptation?  

2. How does the selected model work, what are its strengths and weaknesses, and what 

assumptions are implicit in the model structure? 

3. How can this model be enhanced, making use of its strengths while addressing its 

weaknesses? 
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4. Can the existing published results from the model be reproduced in a replicated 

version? 

Forest model (Chapter 3) 

Outline 

The model chosen in Chapter 2 (as published by Sterman et al., 2018a) is formed of two 

main elements describing the forest site, and the biomass supply chain from forest to 

end use.  

On testing the model in Chapter 2, small discrepancies were observed between the 

original results from the forest site model as published by Sterman et al., and results 

obtained from SBCM. Chapter 3 seeks to address these inconsistencies and identify the 

cause. 

Research Questions 

1. How is the data used to train the model by Sterman et al. derived, and is it the most 

appropriate? 

2. Are the parameters obtained by Sterman et al. the most appropriate to replicate the 

forest growth curves supplied by Smith et al. (2006) or can improvements be made? 

3. To what extent does uncertainty exist between the training data, forest growth as 

described by Sterman et al. (2018a) and forest growth described in SBCM?  

4. What effect does an improved choice of parameters have on predicted carbon 

storage values, and payback times for different region and species combinations? 

Supply chain model (Chapter 4) 

Outline 

The second of the two main model components is a series of functions describing 

emissions released by the biomass supply chain, and the emissions caused by an 

equivalent counterfactual scenario. Chapter 4 describes an assessment of the 

parameterisation of this aspect of the model and a critique of the counterfactual 

scenarios developed by Sterman et al. 
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Research Questions 

1. Are the parameters used by Sterman et al. the most appropriate for the supply chains 

they describe, and should they be modified in SBCM? 

2. Sterman et al. rely heavily on a counterfactual of electricity generated using coal. Is 

this still the most appropriate counterfactual? 

3. Are there any other supply chains which could be modelled using SBCM that would 

be more appropriate than those currently in use?  

4. How does revision of the supply chain parameters within the model change the 

apparent sustainability of biomass fuels 

Silvicultural assumptions (Chapter 5) 

Outline 

The Sterman et al. model as originally written was designed to identify the area of forest 

needed to supply a specified value of energy. The assumption implied by this 

configuration is that forest area is elastic, while energy demand is fixed. Chapter 5 

includes an assessment of this assumption, as well as an examination of the broader 

silvicultural assumptions in the model (which have been criticised in the wider 

literature; see Prisley et al., 2018) 

Research Questions 

1. What do Sterman et al. assume about silvicultural systems in developing their 

model?  

2. What are the implications of these assumptions, are they justified, and could they be 

improved? 

3. How does modification of these assumptions within the model change the apparent 

sustainability of biomass fuels? 

Conclusions (Chapter 6) 

Outline 

Chapter 6 summarises the conclusions as identified in earlier chapters and applies them 

to the overall research question. This analysis is used to examine the strengths, 
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weaknesses, and limitations of the work as carried out; and to identify lessons learned 

and future research opportunities. 

Research Questions 

How do model parameters, assumptions and reporting metrics affect the apparent 

sustainability of biomass supply chains? 
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Chapter 2. Model development 

In which the Author dismantles everything,  

and (contrary to his own expectation) reassembles it in good order. 

Elements of this chapter have been previously published as Rolls, W. and Forster, P. M. 

2020. Quantifying forest growth uncertainty on carbon payback times in a simple 

biomass carbon model. Environmental Research Communications. 2(4), p.045001. 

DOI 10.1088/2515-7620/ab7ff3. This paper was primarily the work of W. Rolls, with 

support, editorial comments, and oversight by P. M. Forster  

2.1 Introduction 

As previously discussed, forest-sourced biomass combustion is a widely supported 

climate change mitigation technology used to decarbonise electricity generation (Rogelj 

et al., 2018). While uptake of this technology has been rapid and is expected to continue 

for many years to come (as shown in Figure 1.9) the sustainability of this course of 

action has not yet been fully determined. A high level of variation between published 

payback periods and other metrics exists in the scientific literature (Bentsen, 2017) and 

this is likely to be, in part, driven by the diverse range of models, methods, assumptions, 

and parameterisations used (Giuntoli et al., 2020).  

The apparently conflicting conclusions reached in the literature, has led to confusion 

within the public discourse and as a result, the sustainability of forest-sourced biomass 

fuels is widely contested (Mather-Gratton et al., 2021).  

In order to identify to what extent this variation is driven by real-world conditions such 

as site, species, and supply chain emissions, and to what extent it is driven purely by 

diverse perspectives and assumptions made while modelling the outcomes, there is a 

demonstrable need for a simple replicable modelling framework. This will facilitate 

comparisons between modelling assumptions and methods using the same underlying 

data.  
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2.1.1 Research questions 

The broad operational objective for this chapter is to identify, analyse, replicate, and test 

a simple model to allow further comparison of biomass carbon payback periods, 

specifically addressing the research questions: 

1. Given the need for an adaptable modelling framework to compare the sustainability 

of biomass fuel supply chains; which existing, published model is the most 

appropriate for conversion and adaptation?  

2. How does the selected model work, what are its strengths and weaknesses, and what 

assumptions are implicit in the model structure? 

3. How can this model be enhanced, making use of its strengths while addressing its 

weaknesses? 

4. Can the existing published results from the model be reproduced in a replicated 

version? 

2.2 Initial analysis 

2.2.1 Identifying a model 

A very large range of different models, assumptions and approaches exists in the 

literature (Welfle et al., 2020) rendering an exhaustive categorisation and analysis 

beyond the scope and capacity of this study. The extensive range of different approaches 

reinforces the argument in favour of an intercomparison tool and, since one of the core 

requirements of the tool is an ability to be configured for a range of different settings, 

the specific model chosen for adaptation is less important than its ease of use and 

accessibility. 

A number of criteria were used to assess the suitability of published models for 

modification and adaptation. Models were assessed using a cross section of the 

literature on the basis of a series of questions: 

1. Is the model freely available, and does it require proprietary software to run? 

2. Is the model licenced for modification / adaptation / re-distribution? 
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3. Is the model code open-source with a full description of the internal assumptions, 

logic, and processes? 

4. Is the model relatively simple and easy for an end user to grasp? 

5. Can the model be configured for a range of different site / forest growth types? 

6. Does the model operate on a platform that requires advanced knowledge of a low-

level or little-used programming language to modify? 

7. Does the model produce values comfortably within the range of published results? 

A substantial number of published papers make use of bespoke modelling techniques 

which are perhaps more usefully referred to as “calculations”. These are studies making 

use of a mathematical model without developing software or distributable code (e.g. Abt 

et al., 2010; Cherubini, Bright, et al., 2013; Cherubini, Guest, et al., 2013; Laganière et 

al., 2017; Malcolm et al., 2020). While there is no fundamental reason why these papers 

should not provide the relevant information to develop a more widely applicable tool, in 

the overwhelming majority of examples assessed, the implementation of the work in 

these papers was either designed to work within a specific development environment or 

answer highly specific research questions. This tended to result in extremely brief 

discussion of the underlying mathematical component of the model without the full 

description of logic, assumptions and calculation order needed for a wider or more 

general-purpose application.  

The majority of published papers which did use a more comprehensive modelling 

framework were deemed inappropriate for this exercise, based on the criteria above. 

These included systems which were: 

• Proprietary and therefore not available outside the relevant institutions and not 

necessarily subject to peer review e.g. CARBINE (Forest Research, n.d.) and C-

Flow (CEH, n.d.) 

• Closed-source: while the finished model is publicly available, the source code is 

hidden or compiled and therefore cannot be modified e.g.: CO2fix (European 

Forest Institute, 2004; Schelhaas et al., 2004), G4M (Turkovska and Gusti, 

2015; IISA, 2022), CBM-CFS3 (Kurz et al., 2009; Canadian Forest Service, 
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2019). These models tended to have additional licencing restrictions limiting 

modification and redistribution. 

• Highly complex: including a significant level of detail, functions, or add-ons 

requiring a high level of background knowledge for modification / customisation 

e.g.: LANDIS (Mladenoff, 2004), EFIScen (European Forest Institute, n.d.), 

Landcarb (Pacific Northwest Research Station, n.d.) 

• Developed using programming languages that require a high level of technical 

knowledge to modify: limiting the accessibility of the software even if it has 

been distributed freely e.g. G4M ([C++] IISA, 2022), LANDIS II ([C#] 

LANDIS-II Foundation, 2022), FORCARB2 ([FORTRAN] Heath et al., 2010)  

• Based on system boundaries not appropriate for this study – e.g. forest models 

with no supply chain modelling (Gonzalez-Benecke et al., 2010; 2011; 2012; 

2015) or a very broad range of functions extending into other areas of forest and 

energy decision making beyond the scope of this study e.g. BVCM (ETI, 2015) 

A short overview of assessed models is included in Appendix B 

The Sterman et al. model 

In an exception to these barriers and limitations, Sterman et al. (2018a) describe a model 

which they developed to address the lack of clear guidance for policy makers, showing 

the effects of biomass production and use. This simple model is designed to be 

incorporated into a wider framework (C-ROADS), but can be easily configured and run 

quickly as an independent model to give indicative results. Sterman et al. suggest the 

use of the model as a “flight simulator” (Sterman et al., 2013) to inform policy scenarios 

in a real time iterative development process, without recourse to more in-depth and 

resource intensive modelling resources.  

The Sterman et al. model: strengths 

This model fits the choice criteria above well since it is: freely available (Sterman et al., 

2018a); licenced for modification / redistribution (Creative Commons, 2018; Sterman et 

al., 2018a), open-source and provides a well-described simple framework for 

development of future work. (Prisley et al., 2018). The model has been configured using 

publicly available data (Smith et al., 2006) for a range of site types and species mixtures 
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in the USA and produces results which are comfortably within an indicative range of 

published payback periods.  

The Sterman et al. model: weaknesses  

While the Sterman et al. model has a number of strengths in terms of reproducibility, 

transparency of logic, and access to the code, the model is written in the VENSIM 

software (Venata Systems, 2017) developed for systems dynamics modelling. It requires 

a full professional license of VENSIM to run the code distributed with Sterman et al., 

2018a which is expensive, and the setup requires detailed knowledge of both this less 

commonly used development framework and terminology and notation used within 

system dynamics. Assumptions about spatial, temporal, and systems boundaries are 

hard-coded into the model and these require re-evaluation given that the model itself has 

been criticised (primarily for an oversimplification of silvicultural systems [Prisley et 

al., 2018] addressed later in Chapter 5) and has a number of questionable decisions 

made in parameterisation (in particular the values for efficiency of fuel use, which are 

quietly corrected in Dwivedi et al., 2019 - addressed in Chapter 4). These weaknesses 

indicate that the Sterman et al. model is not, as published, appropriate to meet the 

selection criteria as described above, but that it could be used as a starting point for an 

alternative implementation of the logic and structures of a model (and be re-

parameterised).  

Summary 

Based on this evaluation, the Sterman et al. model was deemed suitable for further 

development. The model was first analysed in detail and then replicated using the basic 

framework and mathematical structure of the original in a more accessible format. This 

allowing for detailed modification of calculation order, scenario settings, and 

parameterisation. 

2.3 The Sterman et al. model: full analysis 

The Sterman et al. model is available under an open access licence, and is shown as 

implemented in VENSIM below (Figure 2.1). The graphical nature of the VENSIM 

software, while potentially useful in visualising complex systems, is limited in that 
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every variable must be visually present on the schematic. This can lead to complex 

diagrams as shown below. 

 
Figure 2.1. Schematic of the Sterman et al. model as implemented in Vensim by Sterman et al. 

(2018a). The model is relatively simple (although a full graphical representation of the model is 

somewhat confusing) 

The modelling framework can be conceptualised as containing two discrete 

components:  

1. A supply chain model handling a calculation of the volume of fuel required to 

meet a specified electricity demand and the resulting carbon emissions 

associated with production and use. 

2. A forest site model calculating the area of forest required to meet a defined fuel 

demand, and the changes in forest, soil, and atmospheric carbon over time as the 

forest used for fuel production regrows.  
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These components are linked and used to compare distinct emissions scenarios. The 

model estimates the carbon emissions associated with meeting a defined energy demand 

from biomass, and this is then compared with a counterfactual scenario in which 

electricity is generated using a fossil fuel (usually coal) instead. In the biomass scenario, 

the model goes on to estimate the rate of carbon reabsorption on the forest site, and to 

calculate the time required for the scenario to result in a lower net carbon emission than 

the counterfactual. This is described as reaching “carbon payback” (carbon 

sequestration parity as described by Mitchell et al., 2012) as discussed in Chapter 1. 

2.3.1 Supply chain 

The Sterman et al. model derives the total quantity of energy required (including 

allowances for waste / losses) from efficiency parameters and a user-defined energy 

demand. It then determines the emissions (tonnes of carbon) associated with the 

production and end use of the fuel required to generate this quantity of electricity. When 

assessing biomass supply chains, the model uses the fuel requirement to determine the 

forest area needed to meet demand. This is shown in schematic form in Figure 2.2 and 

in Equations 2.1 to 2.3. 

 

 

Figure 2.2. Schematic of the supply chain in the Sterman et al. model. An external input: energy 

demand, and the efficiencies of the supply chain are used to determine the total amount of fuel energy that 

is required to meet electricity demand (Equation 2.1). The emissions associated with producing the 

required quantity of fuel energy, and from combustion, are then calculated (Equation 2.2) to produce an 

emissions value per unit of energy supplied. In the case of biomass fuel, the total quantity of fuel needed 

to meet demand (incorporating all supply chain and end use losses and forest carbon storage) are used to 

calculate the area of mature forest required to meet demand (Equation 2.3). 
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Equation 2.1. Input fuel energy required to meet electricity demand. The efficiencies of production 

and use are dimensionless variables, both energy demand and fuel energy required are expressed in GJ. 

 

 
Equation 2.2. Carbon emissions arising from energy generation. The emissions arising from the 

production of each unit of fuel energy (the result of Equation 2.1) and the final use (tC), based on 

emissions (tC.GJ-1) 

 

 
Equation 2.3. Area requirement. The total area (ha) of forest required to meet the fuel demand is 

calculated from the fuel energy required to meet demand (in GJ: the result of Equation 2.1) the fuel 

available per ha (felling intensity is dimensionless, forest carbon in tC.ha-1) and the carbon intensity of 

biomass fuel combustion i.e. the tonnes of carbon needed to produce 1 GJ of energy (emissionuse) 

Once the necessary area of mature forest has been determined, the model combines the 

emission of carbon associated with fuel combustion to meet the desired energy demand 

and the ongoing negative emissions over time from the regrowth of the calculated area 

of forest (using the forest sub-model). 

The default parameters used by Sterman et al. for the supply chain model are examined 

in more detail in Chapter 4.  

2.3.2 Forest Site 

The Sterman et al. model calculates the rate of four different carbon flows as the forest 

regenerates, and uses these to maintain running yearly totals of the carbon stored in the 

forest (above-ground); soil (below-ground); and atmosphere as shown in Figure 2.3. 

Carbon flows are described below in Equations 2.4-2.8. 
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Figure 2.3. Schematic of the forest site carbon balance in the Sterman et al. Model. Each of the 

flows labelled is governed by equations described below. 

The total flux of carbon from atmosphere to forest (Net Primary Productivity or NPP) is 

equal to Gross Primary Productivity (GPP) minus a value for autotrophic respiration. 

GPP is calculated using a growth function to model the increase in forest mass over 

time (tonnes of carbon: the result of Equation 2.4) multiplied by a function to account 

for carbon fertilisation (Equation 2.5). This is then converted to NPP by subtracting the 

result of a simple proportional transfer of carbon from forest to atmosphere (Equation 

2.6) 

 
Equation 2.4. Forest growth. The rate of forest growth is a function of the existing forest carbon on 

site (forestC in tC.ha-1) the maximum potential biomass for the site (forest Cmax in tC.ha-1) and the 

dimensionless constants K, V, and φab (a fractional rate of carbon flux from atmosphere to biomass). This 

function is based on a stand-level, statistical approximation of growth (Weiskittel, 2011) using a 

Chapman-Richards growth function (Richards, 1959; Pienaar and Turnbull, 1973; Zhao-gang and Feng-

ri, 2003) modified to include a “fractional carbon flux from atmosphere to biomass” (Sterman et al., 

2018a). 
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Equation 2.5. Gross Primary Productivity. Total GPP (tC.ha-1) as equal to the growth per ha 

multiplied by a function to account for carbon fertilisation. This is based on a “bio-stimulation 

coefficient” – Sterman et al. use a value of 0.42 (Sterman et al., 2018a) and the relative change between 

current (C1) and pre-industrial (C0) atmospheric CO2 concentrations (after Wullschleger et al., 1995). 

 

 
Equation 2.6. Autotrophic respiration. The rate at which biomass carbon is released into the 

atmosphere via respiration (in Figure 2.3) is based on the current forest carbon on site (tC.ha-1) and φba a 

dimensionless fractional rate of carbon flux from biomass to atmosphere 

The remaining flows in figure 2.4 representing heterotrophic respiration, and organic 

carbon deposition from the forest to soil carbon pools are calculated in a similar way: as 

a proportion of the total carbon in each pool per year (Equations 2.7 and 2.8) 

 
Equation 2.7. Organic carbon deposition. The rate at which forest carbon is deposited in forest soils 

(in Figure 2.3) based on the current forest carbon on site (tC.ha-1) and φbs a dimensionless fractional rate 

of carbon flux from biomass to soils. 

 

 
Equation 2.8. Heterotrophic respiration. The rate at which decomposition releases biomass carbon 

from forest soils into the atmosphere (in Figure 2.3) is based on the current soil carbon on site (tC.ha-1) 

and φsa a dimensionless fractional rate of carbon flux from soil to atmosphere. 

2.3.3 Parameters 

Sterman et al. parameterised the forest site model for eight different forest types (listed 

in Table 2.1) in three different regions of the USA (shown in Figure 2.4). This was done 

by using a least-squares non-linear regression method, which is common (‘invariably’ 
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used Burkhart and Tomé, 2012, p.239) within forest model development. The method 

uses a solution-finding algorithm to fit a mathematical representation of the forest 

growth curve to data-points with the minimum degree of error. This provides an 

approximation of actual forest growth behaviour which can be used to predict forest 

growth values where actual data is not present (e.g. in different time-steps, or over 

extended time periods). In this case, the model was trained using average values for 

forest and soil carbon produced by the USDA (Smith et al., 2006). This dataset was 

constructed using a combination of sample plots, and interpolation of data using the 

FORCARB2 model (Smith et al., 2006, p.13; Heath et al., 2010). While uncertainties 

exist, and the data is not appropriate for site specific (stand-level) modelling, (Smith et 

al., 2006, p.17) it has been widely used in other projects (e.g. Jenkins et al., 2010; Pan et 

al., 2011; Lawler et al., 2014; Adams et al., 2018) for high-level estimates of carbon 

storage. The resulting model represents a statistical approximation of forest growth (as 

defined by Weiskittel, 2011) which allows interpolation of values between the 5-year 

intervals in data points and extrapolation beyond the end of the dataset (although this is 

subject to considerable uncertainty in some species, as discussed in Chapter 3.) 

Table 2.1. Species / region types covered by the Sterman et al. model 

Region of USA Common name  Scientific name  

North East (NE) 

Maple / beech / birch Acer / Fagus / Betula 

Oak / hickory Quercus / Carya 

Oak / pine Quercus / Pinus 

South Central (SC) 

Oak / hickory Quercus / Carya 

Oak / pine Quercus / Pinus 

Short-leaved / loblolly pine plantation P. taeda / P. echinata  

South East (SE) 

Short-leaved / loblolly pine plantation P. taeda / P. echinata 

Long-leaved / slash pine plantation* P. palustris / P. elliottii  

*Occasionally incorrectly labelled in Sterman et al. (2018a supplementary material) as long-leaved / 

loblolly pine.  
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Figure 2.4. Map showing regions of the USA covered by the Sterman et al. model. These regions 

include three of the eight biogeographical areas covered by the forest carbon data (Smith et al., 2006) 

species / region types are listed in Table 2.1 above. 

The curve-matching methods are described in more detail in their supplementary 

material (Sterman et al., 2018a) but, in summary, Sterman et al. restricted the matching 

algorithm to parameter values which resulted in two set conditions:  

• The first value of the points forming the matched curve (y(x=0)) must equal the 

first value of the Smith et al. (2006) data.  

• The curve must result in the smallest achievable root mean squared error 

(RMSE) values between the data and modelled output.  

Their method resulted in values for carbon with RMSE errors generally less than 

3.1 tC.ha-1 for forest (above-ground) carbon and 6.7 tC.ha-1 for soil (below-ground) 

carbon. 

2.3.4 Scenarios 

Sterman et al. applied their model to a number of scenarios representing a range of 

potential biomass production and use mechanisms (described fully in Appendix C). 

These include a coal-based counterfactual (scenario cf), several scenarios which are 

most appropriate for diagnostic purposes: S0 (zero carbon energy), S1 (regenerating 

coal), and S4 (non-regenerating biomass); four stand-level scenarios: S2 (25% thinning) 
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S3 (95% clear-fell), S5 (deforestation and conversion to agriculture) and S6 (clear-fell, 

with subsequent species change). Two additional scenarios are also considered, looking 

at landscape level impacts of biomass use based on long term projections of energy 

demand, S7 (sustained yield with ongoing demand growth) and S8 (sustained yield with 

attenuating demand growth). Broadly speaking, the scenarios are not as well described 

as the rest of the model, and there are a number of elements which bear closer 

consideration. These are examined in more detail in Chapter 4. 

2.3.5 Assumptions 

A number of implicit assumptions are evident in the Sterman et al. model, and these are 

reflected in where the system boundaries and baselines are set.  

The Sterman et al. model is not spatially explicit (all forest stands are assumed to be 

equivalent to each other). Total forest area is assumed to remain unchanged over the 

modelled timeframe in scenarios S0 to S6, and assumed to grow with demand in 

scenarios S7 and S8 an expanding forest boundary (described in Jonker et al., 2014 and 

criticised by; Cintas et al., 2017) discussed on page 23.  

Sterman et al. assume that 1) all forest growth not directly related to a felling for 

biomass fuel should be omitted; and 2) all forests are completely mature at the point of 

felling (where the baseline is set). Given the stated aim of prioritising model simplicity 

this represents a valid interpretation of the argument as stated by Ter-Mikaelian et al. 

(2015).  

One further assumption made by Sterman et al. (2018a) bears additional consideration. 

In the counterfactual case, forest growth is omitted entirely. This is an “error” 

(according to Ter-Mikaelian et al., 2015) as it “fails to account for changes in forest 

carbon stocks in the absence of harvest for bioenergy”: that is, the flux of carbon from 

forest to atmosphere is assumed to equal zero in the counterfactual scenario. This is 

arguably sensible: if we assume that all forests have reached an “equilibrium point” 

before felling, then the flux should be equal (or close) to zero in any case. However, 

potential variations in the time taken to reach equilibrium (as discussed later in Chapter 

3) changes in the carbon fertilisation over time (a proposed addition to the model 

governed by Equation 2.5) and the potential inclusion of more nuanced silvicultural 
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systems turn this into a potential source of error; as it assumes that in the absence of 

bioenergy production, the forest carbon pool is completely outside the system boundary. 

This issue is difficult to resolve and is examined in more detail in Chapters 5 and 6. 

2.3.6 Comparison with other published results 

Direct comparison of the payback times calculated by Sterman et al. with other 

published work is extremely difficult. This is due to the wide variation in terms of 

method, assumptions, and site type present in the literature as discussed in Chapter 1. 

Sterman et al. (2018a) state that their results (from scenarios S2 and S3: thinning and 

clear-fell) vary between 4 years (Southern USA pine plantations scenario S2) and 104 

years (North-Eastern oak / hickory forest scenario S3) as shown in Table 2.2. This is 

comfortably within the (admittedly large) range of published values (as illustrated in 

Figure 2.5 below).  

Table 2.2. Payback periods calculated by Sterman et al. (2018a supplementary material table S7) 

Region / species mix 
Scenario S2 (25% fell) payback 

period (years) 

Scenario S3 (95% fell) payback 

period (years) 

Northeast maple / beech / birch 79 101 

Northeast oak / hickory 87 104 

Northeast oak / pine 52 85 

South-central oak / hickory 52 82 

South-central oak / pine 44 64 

South-central shortleaf / loblolly 

pine plantation 
4 12 

Southeast shortleaf / loblolly pine 

plantation 
4 12 

Southeast longleaf / slash pine 

plantation 
4 12 
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Figure 2.5. Published payback periods highlighting the results obtained by Sterman et al. (2018a). 

These results (as also shown in Figure 1.14) were comfortably within the middle of the range of papers 

assessed. 

2.4 Method 

The model as published by Sterman et al. (2018a) was first replicated using a general-

purpose, object-oriented, high-level programming language (Python) and released as the 

Simple Biomass Comparison Model (SBCM). This is further described in Rolls and 

Forster (2020) and is available to download from github.com/Priestley-Centre/SBCM. 

Python is the most popular (i.e. accessible) programming language globally, with 

around a 30% market share (Carbonnelle, 2021). While a huge range of different open-

source libraries are available to add to existing Python capabilities, use of these was 

kept to a minimum to prevent potential future compatibility issues developing. Project 

functionality primarily depends on the “SciPy stack” (Jones et al., 2001) although a 

number of other additional minor elements were implemented using other libraries, all 

of which are available as standard elements of the Anaconda Python distribution 

(Anaconda Inc., 2018). Full documentation for the project was written to ensure that 

third parties are able to access, use, and modify the project which was made available 

under an open-source (MIT) licence (as used by Sterman et al.). 

https://github.com/Priestley-Centre/SBCM
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2.4.1 SBCM Structure 

SBCM 1.0 is based on four files in the Core_Model folder. These are usable with the 

Python libraries which come bundled with the anaconda Python distribution (Anaconda 

Inc., 2018) and should be platform and operating system independent.  

The required libraries are: 

• Matplotlib 3.3.2 (Hunter et al., 2019) 

• NumPy 1.19.2 (part of the SciPy stack: Jones et al., 2001) 

• Pandas 1.1.3 (Augspurger et al., 2019) 

• Warnings, and Math – both part of the Anaconda 1.7.2 distribution (Anaconda 

Inc., 2018). 

The files that form the core of SBCM are  

SBCM.py The main model file. Contains the scenario object which is 

used to run the simulation and generate results. 

Variables.py A file containing all of the parameters for forest growth, the 

original model training data from the USDA (Smith et al., 

2006) and supply chain efficiency and emissions parameters. 

Functions.py Contains all the functions for calculations used by SBCM.py 

Formatting.py A small file containing housekeeping functions for formatting 

output correctly 

All code was configured using the Black code formatter (Langa et al., 2019) to 

standardise formatting for ease of editing. 

SBCM.py 

In its simplest form, SBCM.py contains a scenario object which describes a 

comparison between counterfactual emissions, based on coal, and a biomass scenario 
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based on a user-selected forest region / species combination. It imports default variables 

for forest growth and supply chain efficiency from variables.py, and uses these 

variables to describe energy demand, starting conditions, felling regime and other 

scenario values. These default to conditions used by Sterman et al. but can be modified 

to represent alternative or specialised scenarios. 

Once the scenario parameters and starting values have been determined (or altered by 

the user) the initialise function calculates emissions from the counterfactual and 

biomass scenarios, and the forest area required to meet demand (Equations 2.1 to 2.3). It 

also builds a series of lists to keep track of: 

• Time (year) 

• Counterfactual emissions (tC) 

• Biomass emissions (tC) 

• Forest carbon (tC.ha-1) 

• Soil carbon (tC.ha-1) 

• Gross carbon debt (tC.ha-1) 

• Carbon saved (counterfactual emission – biomass emission in tC) 

After initialisation, the model is run for a set number of years using the runstep 

function. For each year the model calculates a value for forest regrowth (using 

Equations 2.4 and 2.5) and appends updated values to the lists described above.  

Once the model has been run, the report function converts the values to a 

pandas DataFrame and saves the result to a comma delimited (.csv) file for further 

analysis.  

Variables.py 

Variables.py (as the name suggests) contains a list of variables to run the model. For 

each of the forest types assessed by Sterman et al. (2018a) the file contains: a forest / 

species code, a series of variables for the growth function, equilibrium values, and 

training data values from Smith et al. (2006). Variables.py also contains values for 

emissions and efficiency of biomass and coal systems and a pre-calculated carbon 
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fertilisation value (the result of Equation 2.5 for 2018 to allow comparison with the 

results published by Sterman et al.). These are discussed in more detail in Chapter 4. 

Functions.py 

Functions.py contains all the mathematical functions that make the model work. 

Forest site equations remain unchanged from Sterman et al. as described above in 

Equations 2.1 to 2.8 and Figure 2.3. The supply chain component of the model has been 

expanded to include the inverse calculations as described below in Equations 2.9 to 2.11 

and Figure 2.6. 

 

 

Figure 2.6. Schematic of the supply chain model used in SBCM. Three additional functions (in red) 

have been added (as described by Equations 2.9, 2.10, 2.11). These are the inverse of existing equations 

2.1, 2.2 and 2.3  

 

 
Equation 2.9. Electricity produced from a known quantity of fuel. Energy is in GJ (electric), and 

efficiencies of production and use are expressed as dimensionless constants. This is the inverse of 

Equation 2.1. 
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Equation 2.10. Fuel used to generate a known emission. GJ of fuel based on a total emission (tC) and 

the carbon intensities of production and use (both in tC.GJ-1). This is the inverse of Equation 2.2. 

 

 
Equation 2.11. Fuel supplied by a known area of forest. Fuel (GJ) is calculated from the intensity of 

emission (tC.GJ-1), area (ha), felling intensity (%), and biomass present on a forest site (tC.ha-1). This is 

the inverse of Equation 2.3. 

Formatting.py 

Formatting.py simply contains a function to correctly manage fonts within the 

matplotlib visualisation library and function to return the full forest type / species 

description when handed a model input code (forest_labels). These have no effect 

on the model results, they are simply included to correctly format output for display. 

A note on execution order and resolution 

While the Sterman et al. model has no specified execution order, it is necessary to 

define one to ensure that all coding is consistent and results are transparent. In SBCM, 

operations take place at the end of the year. In each year, operations take place in the 

order: fell, plant, grow, thus we assume that the starting condition values represent 

conditions where trees were planted at the very beginning of year 0 and have grown for 

the duration of that year.  

The tightest temporal resolution possible in SBCM is one year. While it is possible to 

code for shorter timesteps, without extensive modification to account for seasonal 

variation in woodland growth, results from these timesteps would suffer from 

substantially reduced accuracy. 
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2.4.2 Testing SBCM 

SBCM was configured to reproduce output from Sterman et al. (2018a) to allow direct 

comparisons with their range of published results and check that the model was 

functioning as expected.  

100-year growth curve comparison 

For each region / species combination SBCM was initialised using the parameters as 

published by Sterman et al. The model was then run for a 100-year period, tracking 

above-ground and below-ground carbon. The resulting values were displayed 

graphically and compared with the equivalent results as published by Sterman et al. 

(2018a supplementary material figure S2 on page 11). As the values used to generate the 

original graphical output were not available, this was carried out by setting the 

background of the SBCM output to transparent and overlaying the two images. 

Forest carbon equilibrium values comparison 

For each region / species combination SBCM was set up with a felling age of 500 years. 

This was then run for 10 rotations, to allow any variability in soil carbon to stabilise. 

Forest (above-ground) equilibrium values were then compared with those already 

published (Sterman et al., 2018a supplementary material table S3 on page 12). 

Root Mean Squared Error (RMSE) comparison 

Root Mean Squared Error (shown in Equation 2.12) is a simple calculation based on the 

average residual (difference between expected and observed values) for a given dataset.  

 
Equation 2.12. Root mean squared error (RMSE) is equal to the square root of the mean squared 

difference between expected (e) and observed (o) values (the residuals). The units are whatever the values 

of e and o are expressed in. 

This can be expressed using the math and sklearn libraries included in Anaconda in 

Python as: 
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from sklearn.metrics import mean_squared_error 

from math import sqrt 

rmse = sqrt(mean_squared_error(predictions-observations)) 

 

For each region / species combination, SBCM values for forest and soil carbon were 

compared with the original training data from Smith et al. (2006) based on carbon 

predictions at stand age intervals of 5 or 10 years to either 90 or 125 years (depending 

on species). The RMSE for this comparison was then compared with results from the 

same exercise as published by Sterman et al. (2018a supplementary material table S2 on 

page 10). 

Supply chain scenarios comparison 

For each region / species combination SBCM was initialised using the parameters and 

scenario information as published by Sterman et al. for scenarios cf and S0 to S5 

(Sterman et al., 2018a supplementary material table S6 on page 19) and described more 

fully in Appendix C. 

The resulting values were displayed graphically and compared with the equivalent 

results as published by Sterman et al. (2018a supplementary material figure S3 on page 

21). As when testing the growth curves above, the values used to generate the original 

graphical output were not available, so this was carried out by setting the background of 

the SBCM output to transparent and overlaying the two images. 

Payback period comparison 

Finally, SBCM was initialised using the parameters published by Sterman et al. and run 

for the two most “realistic scenarios” (Prisley et al., 2018): S2 (a 25% felling) and S3 (a 

95% felling) to calculate the payback period relative to a coal counterfactual. These 

payback periods were compared with the results as published by Sterman et al. (2018a 

supplementary material table S7 on page 22). 

2.5 Results and Discussion 

2.5.1 100-year growth curves 

The forest growth model match was initially very good, resulting in a very close 

duplication of the Sterman et al. model for periods of less than 100 years. Soil and 
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forest carbon storage values (Figure 2.7) are visually indistinguishable from the 

equivalent results published by Sterman et al. (as shown in Sterman et al., 2018a 

supplementary material figure S2 on page 11) when overlayed. 

 
Figure 2.7. A comparison of results from SBCM and underlying USDA training data from (Smith et 

al., 2006) when applied to eight forest types in the USA. Plantations are denoted by *. These results are 

visually indistinguishable from results obtained by Sterman et al. (as shown in Sterman et al., 2018a 

supplementary material figure S2 on page 11). 

2.5.2 Equilibrium values 

SBCM, however; did not produce an exact match for “equilibrium values” (i.e. the total 

carbon storage in a fully mature woodland) over extended time periods. The values 

calculated by the Sterman et al. model (Sterman et al., 2018a supplementary material 

table S3) were published without reference to the time frame over which they were 

obtained, but discussion with the authors revealed that the time period used for the 
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published values was 500 years (Sterman, 2018). Values from SBCM did not agree over 

the same time period and exhibited a discrepancy of up to 36 tC.ha-1 in forest carbon (as 

shown in Table 2.4, and Figure 2.8). 

Table 2.3. Equilibrium values from the Sterman Model vs results from SBCM. 

Region / species 

Forest carbon equilibrium 

(tC.ha-1 at 500 years) Discrepancy (tC.ha-1) 

Sterman et al. SBCM 

NE maple / beech / birch 158 188 +30 

NE oak / hickory 280 316 +36 

NE oak / pine 165 176 +11 

SC oak / hickory 211 217 +6 

SC oak / pine 156 180 +24 

SC shortleaf / loblolly pine plantation 131 134 +3 

SE shortleaf / loblolly pine plantation 141 142 +1 

SE longleaf / slash pine plantation 130 130 +0 
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Figure 2.8. Equilibrium values from the Sterman Model compared with SBCM for above-ground 

carbon at 500 years. Plantation forests marked with *.  

It is notable that the three plantation species / site combinations (marked with * in 

Figure 2.8) do not exhibit this variation, which is as high as 19% of above-ground 

carbon in the most extreme case. This is examined in greater detail in Chapter 3. 

2.5.3 Root Mean Squared Error 

Agreement between the models in terms of RMSE was found to be good, but a number 

of small differences were apparent between values generated by SBCM and those 

published by Sterman et al. (Sterman et al., 2018a Supplementary material table S2) as 

shown below in Figure 2.9 and table 2.4.  

The maximum divergence (found in south-central oak / hickory forests) was a decrease 

of RMSE by 680 kgC.ha-1 (or a decrease of 0.3% of above-ground carbon at 

equilibrium for that forest type) when using SBCM. In each case this divergence is well 

within the margin of error for the measurement of standing forests – calculations of 

forest carbon precise to the nearest kilogramme per hectare seem naive in their 

optimistic implication of accuracy – but the difference in RMSE values indicates a 

possible variation in procedural accuracy between the two models. This suggests that 

more substantial variability is possible, and this is more extensively addressed in 

Chapter 3. 



 

59 

 
Figure 2.9. RMSE relative to the training data for SBCM and the Sterman et al. model. The degree 

of disagreement is not consistent across the forest types studied, but in every case, it is less than 0.3% of 

standing timber mass. 

 

Table 2.4. RMSE relative to the training data for SBCM and the Sterman et al. model (all values 

are in tC.ha-1). No observable differences were present in the soil RMSE scores, some small 

discrepancies were present when comparing forest (above-ground) carbon.  

  

Sterman et al. SBCM Change * 

Soil Forest Soil Forest Soil Forest 

NE maple / beech / birch 6.611 1.518 6.611 1.511 0.000 -0.007 

NE oak / hickory 5.415 3.046 5.415 2.873 0.000 -0.173 

NE oak / pine 6.026 1.358 6.026 1.395 0.000 0.037 

SC oak / hickory 2.615 1.531 2.615 0.851 0.000 -0.680 

SC oak / pine 2.072 0.554 2.072 0.465 0.000 -0.089 

SC shortleaf / loblolly pine plantation 1.522 0.666 1.522 0.663 0.000 -0.003 

SE shortleaf / loblolly pine plantation 1.7 0.826 1.700 0.722 0.000 -0.104 

SE longleaf / slash pine plantation 1.672 0.759 1.672 0.773 0.000 0.014 

Mean 3.454 1.282 3.454 1.157 0.000 -0.126 

*Change columns are equal to the (SBCM RMSE value - Sterman et al. RMSE value) 



60 

2.5.4 Supply chain scenarios 

When SBCM was applied to the scenarios described in (Sterman et al., 2018a) again the 

match with the Sterman Model was good, but not perfect. A reproduction of the 

scenarios which incorporate a single forest stand and a single energy demand (no 

species change or sustained yield) is shown in Figure 2.10.  

 
Figure 2.10. A reproduction of Sterman et al. scenarios S0-S5 using SBCM (Sterman et al., 2018a 

supplementary information page 19). 

SBCM results compare well with results published by Sterman et al. (2018a 

supplementary information: Figure S3 on page 21) but do show very minor 

discrepancies, particularly in scenario S5 (deforestation, with soil carbon emissions 

enabled). Because the change in above-ground and below-ground carbon over the first 

hundred years of growth is essentially identical in the two models when starting from a 
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common point, and because of the known discrepancies in equilibrium values for 

above-ground carbon (shown in section 2.5.2), this suggests that soil carbon or 

equilibrium values are not well constrained in the Sterman et al. model either. Varying 

starting conditions between the models, and growth rates are addressed in more detail in 

Chapter 3. 

2.5.5 Payback periods 

The disagreement between the Sterman et al. model, and SBCM results in a margin of 

error of <7 years when calculating payback periods for Sterman et al. scenarios S2 and 

S3 (shown in Figure 2.11). This is proportionally less significant on sites with longer 

rotation duration, but remains concerning. In every case, SBCM calculates a longer 

payback period than that reported by Sterman et al. and this is believed to be a result of 

the calculation order as described on page 53. The discrepancy implies that the Sterman 

et al. model contains an off-by-one error which effectively assumes that the initial value 

of above-ground carbon on site is greater than zero. Essentially assuming that the initial 

values in the training data represent the total carbon stored in planted trees (at the 

beginning of the first modelled year) rather than the first year’s growth (at the end of the 

first modelled year).  
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Figure 2.11. Payback periods from Sterman et al. and SBCM (2018a supplementary material table 

S8). Results are shown for scenarios S2 and S3: a 25% “thinning” and a 95% clear-fell. 

2.6 Conclusions 

Given the need for an adaptable modelling framework to compare the sustainability of 

biomass fuel supply chains, the model as published by Sterman et al. (2018a) was 

identified as a good starting point for modification. 

As described in detail in Section 2.2, the Sterman et al. model represents an attempt to 

produce a simple framework to calculate the effects of displacing coal with a forest-

sourced biomass fuel. It is freely available, open-source, is licenced for modification, 

and a detailed description of the internal assumptions, logic, parameters, and processes 

has been published (Sterman et al., 2018a). The model is relatively simple, makes use of 

publicly available data for training (Smith et al., 2006) and produces results which fall 

comfortably within the range of outcomes in the literature. 

The model suffers from a number of weaknesses and while these are not 

insurmountable, they do require additional work to correct. Firstly, implementation is 

via a less well-known coding language which is a proprietary system which, while free 

for a basic version, carries a substantial financial cost to the end user to replicate the 

work in Sterman et al. (2018a). This limits access to what is otherwise very well 

documented code. Secondly, attention has also been drawn to assumptions in 
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parameterisation and scenario development (Prisley et al., 2018; Dwivedi et al., 2019). 

In particular, a number of the scenarios detailed by Sterman et al. are of questionable 

utility in real-world situations, as they rely on assumptions about forest management 

which are “unrealistic” (Prisley et al., 2018).  

The Sterman et al. model was enhanced by recoding the model in a more accessible 

language. This ability to revise conditions easily, as well as modifying assumptions and 

scenarios is an important requirement if the model is to accurately compare different 

modelling techniques and approaches.  

SBCM represents a more accessible implementation of the Sterman et al. model, it was 

coded in Python and thoroughly tested against the results published by Sterman et al. 

(2018a). Based on these tests SBCM was found to match the existing published results 

closely, but not exactly.  

The forest site sub-model in SBCM reproduces Sterman et al. results well for the first 

hundred years (Figure 2.7) and achieves a near-identical fit to the training data to that 

reported by Sterman et al. (Figure 2.9). Equilibrium values for forest carbon, on the 

other hand, do not match published results precisely (Figure 2.8) and it seems likely that 

values for soil carbon also disagree.  

When the supply chain sub-model is incorporated into the calculation, SBCM 

reproduces a close approximation of results published by Sterman et al. (Figure 2.10). A 

small degree of uncertainty remains however; particularly in scenarios which are 

strongly focussed on the emissions of carbon from soils (e.g. Sterman et al. scenario 

S5). The disagreement between implementations of the model, results in a noticeable 

variation in payback period (Figure 2.11).  

While SBCM is an acceptable approximation of Sterman et al. model, in that it 

produces very similar results, these results do not match exactly. As such, further 

research was deemed necessary to address these discrepancies. 
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Chapter 3. Assessing the forest model 

In which the Author goes down a hole in search of a rabbit, 

and is, instead, ambushed by a hydra. 

Elements of this chapter have been previously published as Rolls, W. and Forster, P.M. 

2020. Quantifying forest growth uncertainty on carbon payback times in a simple 

biomass carbon model. Environmental Research Communications. 2(4), p.045001. 

DOI 10.1088/2515-7620/ab7ff3. This paper was primarily the work of W. Rolls, with 

support, editorial comments, and oversight by P. M Forster  

3.1 Introduction 

As discussed in Chapter 1, the measurement and modelling of forest growth has been 

used to give indications of future yield for a many years (Samuelson, 1976). The 

application of these models to biomass production and carbon accounting is more 

recent, but has become widespread (Welfle et al., 2020). This has resulted in a need (as 

identified in Chapter 1) for a modelling framework to compare methodologies 

addressing the sustainability of biomass fuel supply chains. The model as published by 

Sterman et al. (2018a) was identified as a suitable candidate for modification as 

described in Chapter 2. This model was analysed in detail, replicated, and tested, the 

results from these tests indicating that while the new model (SBCM) produced a good 

match for the training data and results as published by Sterman et al., this match was not 

exact. In particular, discrepancies were observed in “equilibrium” carbon (i.e. the total 

carbon present in mature forest), and reported payback period.  

These findings raise a number of questions about the forest modelling techniques and 

data used by Sterman et al. (2018a). A core requirement of the modelling framework as 

described in Chapters 1 and 2 is reproducibility and, while the discrepancies between 

the Sterman et al. model and SBCM are not excessive, they remain persistent.  

This chapter includes a more detailed overview of forest modelling techniques in this 

context, an analysis of the baseline data and how this was translated into the model by 

Sterman et al. and an attempt to rebuild a new parameter set for SBCM from the same 

data.  



66 

3.1.1 Research questions  

The central objective for this chapter is to explore the parameterisation of the SBCM 

model and its relationship with the model published by Sterman et al. and its training 

data. This is to identify whether the parameters developed by Sterman et al. are 

justified; whether a better model fit with the training data is possible, and whether this 

eliminates previously observed disagreement.  

This work specifically addresses the research questions: 

1. How is the data used to train the model by Sterman et al. derived, and is it the most 

appropriate? 

2. Are the parameters obtained by Sterman et al. the most appropriate to replicate the 

forest growth curves supplied by Smith et al. (2006) or can improvements be made? 

3. To what extent does uncertainty exist between the training data, forest growth as 

described by Sterman et al. (2018a) and forest growth described in SBCM?  

4. What effect does an improved choice of parameters have on predicted carbon 

storage values, and payback times for different region and species combinations? 

To assess the quality of the growth model parameters used by Sterman et al. in fitting 

their model to the training data, and to identify whether a closer match is possible, 

SBCM was re-parameterised. This was carried out using the original training data (from 

Smith et al., 2006) and a dual-response non-linear regression based on the scipy 

Python library. The resulting growth curves were assessed in terms of their fit to the 

original training data, and the effects of these changes on predicted carbon storage and 

payback periods were compared. The observed increase in uncertainty resulting from 

this exercise was then analysed and used to inform future research objectives.  

3.2 Forests, silviculture, and modelling 

3.2.1 Forests 

While the original use of the word “forest” referred to a legal demarcation between 

jurisdictions rather than any specification of actual land-cover (Schama, 1996; 

Rackham, 1998) general usage has grown to define it as a geographical unit dominated 
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by the presence of trees. Technical definitions vary between different countries, 

incorporating different biomes, but the definition used by the UNFCCC is: 

“…a minimum area of land of 0.05-1.0 hectares with tree crown cover (or equivalent 

stocking level) of more than 10-30 per cent with trees with the potential to reach a 

minimum height of 2-5 metres at maturity in situ. A forest may consist either of closed 

forest formations where trees of various storeys and undergrowth cover a high 

proportion of the ground or open forest. Young natural stands and all plantations which 

have yet to reach a crown density of 10-30 per cent or tree height of 2-5 metres are 

included under forest, as are areas normally forming part of the forest area which are 

temporarily un-stocked as a result of human intervention such as harvesting or natural 

causes but which are expected to revert to forest” (UNFCCC, 2001 Annex, Section 

A:1.a).  

This formal definition has been the subject of some criticism (Sasaki and Putz, 2009) as 

it depends heavily on the application of country or biome-specific criteria for local 

conditions (stocking density and tree size varies significantly between dryland forests 

and tropical rainforest for example). This, they argue, can lead to severe degradation of 

some forest areas before a change of land-use occurs under the formal definition. The 

UNFCCC definition is, however, is broadly equivalent to definitions in use by United 

Nations Food and Agriculture Organization (FAO, 2012) the United Nations Convention 

on Biological Diversity, and the International Union of Forest Research Organizations 

(Chazdon et al., 2016). 

Forests vary in terms of their characteristics, however, they do have a number of 

common features in terms of ecosystem services (Raum, 2018). These are defined by 

the Millennium Ecosystem Assessment as supporting, provisioning, regulating, and 

cultural services (Reid et al., 2005) as shown in Figure 3.1 below. 
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Figure 3.1. Ecosystem services provided by forests (after Reid et al., 2005) 

Forests cover a significant proportion of the global land surface (about 30%) or an area 

of approximately 4 billion ha (FAO, 2016). However, since the beginning of human 

civilisation, the trend towards deforestation has been consistent and widespread 

(Williams, 2006; Ellis, 2011; Ellis et al., 2013). Fuelled by the industrial revolution, the 

industrialisation of the agricultural sector, and dramatic increases in human population 

pressures, the area of global forested land has been decreasing at some level ever since 

(FAO, 2012).  

3.2.2 Silviculture 

The nature of human interaction with forested areas varies significantly. It may involve 

no active management, or various silvicultural and arboricultural management 

techniques up to and including total species replacement or deforestation (Martin et al., 

2012). Because of the long-lived nature of most tree species, the majority of sites will 

carry a legacy of previous management in addition to the contemporary management 

patterns, and this is likely to have a lasting effect on species mixture and age-structure. 

(Duncker, Raulund-Rasmussen, et al., 2012) 

Forests can be categorised based on the intensity and degree of regulation of human 

interactions as shown below in Figure 3.2. 



 

69 

 
Figure 3.2. A schematic categorisation of forest management definitions based on the degree of 

planned management and intensity of human interaction. 

It is important to recognise that a significant proportion of global forest area is 

unmanaged, that is: either human interactions are either not taking place at all (as in 

wilderness areas: see Luyssaert et al., 2014; Cherubini et al., 2016) or that they are 

taking place without planned management (Ter-Mikaelian et al., 2008). These 

“unregulated” forest areas being subject to site clearance for other industries, un-

restricted deforestation, or felling specific valuable species (Wunder et al., 2012)  

Of the managed forest areas, many are managed according to “traditional” or non / pre-

industrial management practices such as coppicing, or silvo-pastoral methods 

(Richardson et al., 2002). This study specifically focusses on the remaining forests 

which are managed “scientifically” (Siiskonen, 2007; Klooster, 2009) i.e. carefully 

planned silvicultural operations intended to optimise a specific outcome. 

Management of forests according to “scientific” silvicultural methods represent one of 

the main sources of biomass fuels for industrial use (World Bioenergy Association, 

2020). Silvicultural systems are generally designed to maximise either yield or 

economic return (discussed in Chapter 5) and rely on accurate measurement of standing 

timber volume and estimates of the rate of forest growth.  

3.2.3 Forest Models 

While it is not impossible for experienced foresters to gain a general sense of the growth 

trajectory of a forest stand by eye, this is not an easy skill to learn, and a qualitative 

assessment is difficult to translate into a reliable quantitative figure (Weiskittel et al., 

2011). The need to provide quantifiable estimates of future forest yield has been 
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recognised for many years (e.g. von Carlowitz, 1713) and has stimulated the 

development of a range of a theoretical structures to enable forest valuation and 

planning forest operations (Assmann, 1970; Taylor et al., 2009).  

As discussed in Section 1.3.2, the simplest (and earliest) forms of forest model are 

simple statistical tables, indicating expected yield based on known silvicultural 

prescriptions, species, and site conditions (Burkhart and Tomé, 2012). Yield tables 

remain in use within large sections of the forest industry (Porté and Bartelink, 2002). 

For example in the UK, the Forestry Commission has published (and continues to 

maintain) yield tables for commercially grown species (Hamilton and Christie, 1971; 

Edwards and Christie, 1981; Matthews et al., 2016). While these tables can provide 

useful estimates of growth, they rely on rigid scenarios, which do not account for 

unscheduled silvicultural operations, previous management, variations in allometric 

relationships, or changes in growing conditions. Yield tables are also less common for 

mixtures of species, or for forests where age classes are spatially mixed, so their use is 

largely confined to even-aged, monoculture forestry. This is of particular concern given 

the expected changes to the climate which on some sites may take place within the 

duration of a single forestry rotation. 

Yield tables, while giving some useful statistics on likely tree mortality and timber 

volume, rarely provide information on any variable which is not directly linked to 

saleable timber output. While this is (perhaps) acceptable in commercial softwood 

stands, it does not account for a large amount of information outside the model which 

has a bearing on modern forest management. These omissions are deeply relevant to this 

study as total carbon storage is not equal to the saleable proportion of stem volume, but 

also includes branch-wood, particularly in decurrant species (e.g. Corbyn et al., 1988; 

Fowler and Rennie, 1988; Dahle and Grabosky, 2009) and soil carbon (Peckham and 

Gower, 2011). 

While yield tables have remained in use in some areas of a sector comfortable with slow 

rates of change, the wider forestry industry has moved away from simple sustained-

yield management of monocultures towards more complicated management structures 

intended to provide multiple ecosystem services (Timsina et al., 2022; Tebėra and 

Semaškiene, 2023) 
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The advent of computational modelling and a recognition of the limitations In such 

simple techniques (Pretzsch et al., 2015) has led to a rapid increase in the number and 

sophistication of forest models since the late 20th century (Vanclay, 1994; Peng, 2000). 

Forests however, remain difficult to model since they are dynamic natural systems 

incorporating a large number of processes and are subject to a wide range of potential 

external factors.  

In assessing more sophisticated models, it is important to distinguish between the 

formula or function describing the growth of a forest, and the model (its application). 

While the use of these terms is not by any means standardised (Weiskittel, 2011; 

Burkhart and Tomé, 2012) in this study function applies to the broadest application of a 

mathematical framework, formula or equation refers to the specific expression of that 

function and, and model refers to an operational computer-based application of the 

formula.  

Models are typically composed of one or more differential equations (Borges et al., 

2014) which describe the behaviour of trees based on different parameters and existing 

growth. These seek to represent the growth of trees or a group of trees by some 

combination of process simulation of causal relationships (Porté and Bartelink, 2002) 

and statistical approximation. Taylor et al. (2009) categorise the latter as “empirical” 

models, in that they do not attempt to describe actual physical processes, but merely the 

end result. This categorisation is criticised by Weiskittel et al. (2011) who point out that 

the more appropriate description of this kind of models is statistical (based on probable 

outcomes) as all models must be validated against empirical data to be useful. In reality, 

however, these terms define where models sit in terms of a continuum rather than 

discrete categories, and most models can be considered to be hybrids of the two 

methods (Weiskittel et al., 2011).  

A number of competing categorisations of models have been used in the past (Porté and 

Bartelink, 2002). Categorisations range from the three category system as proposed by 

Munroe (1974) which makes simple distinctions about the distance dependency 

(whether or not spatial distribution of trees is taken into account) and scale; to the 

twenty nine categories proposed by Vanclay (1994). Porté and Bartelink (2002) identify 
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seven different criteria that have been used to categorise models in the past and then 

propose their own as shown in Figure 3.3 below. 

 
Figure 3.3. Different modelling strategies for woods and trees after Porté and Bartelink (2002) 

This hierarchy, while omitting some detail in terms of methodology, does allow for clear 

terminology when discussing different models. According to this nomenclature Sterman 

et al. (2018a) use data from a stand-level, distance independent, average tree yield table 

(Smith et al., 2006) to parameterise a growth curve (a modified Chapman-Richards 

function, see Burkhart and Tomé, 2012, sec. 6.4.4). This is used to generate results for a 

conceptual landscape, distance independent, landscape scale model. 

3.3 Method 

3.3.1 Training data 

For growth functions to give meaningful and useful indications of future yield, they 

must be calibrated (trained) to data from forests in the real-world. This is a particularly 

difficult task, partly because of the long rotation length of many commercially grown 

species (Somers, 1994; Perera et al., 2015), partly because of the heterogeneity of site 

conditions and growth characteristics of tree species (Skovsgaard and Vanclay, 2013), 

and partly because non-destructive measurement of trees and soil carbon results in 

lower accuracy measurement (Matthews and Mackie, 2006). A range of (somewhat 

uncomfortable) solutions to these issues exist, but the underlying difficulties associated 



 

73 

with forest measurement mean that the accuracy of predictions is relatively low when 

compared to annual agricultural crops.  

The multi-decadal study periods required to measure a forest stand from planting to 

felling are a significant barrier to data collection (Somers, 1994; Perera et al., 2015). To 

measure the same stand at recurrent intervals may require a commitment to a particular 

management regime of over a century and, particularly in the light of climate change, 

there is no guarantee that site conditions, ownership, stochastic factors, management 

objectives, and measurement protocols will remain consistent throughout.  

Forests have generally been a lower-priority land use when compared to agriculture 

(Rackham, 1998), which means the diversity of forest site types is typically high, being 

relegated to areas with uneven topography, marginal soils, etc. (Evans et al., 2015). Due 

to this lower prioritisation, and an extended lifecycle, trees have generally received less 

attention in terms of selective breeding than agricultural crops, this means that many 

tree species tend to exhibit significant heterogeneity of form (Larson, 1963) 

The variation in growth characteristics between (and within) species and the size of 

mature trees makes accurate non-destructive measurement difficult (Matthews and 

Mackie, 2006). This is further compounded by disagreements in terms of measuring 

conventions (Brokaw and Thompson, 2000) and the wide range of literature describing 

allometric relationships (Globallometree.org, 2018). 

Given the high degree of natural variation in the rate and nature of tree growth and the 

logistical issues surrounding measurement of individual trees, the standard response has 

been to take a statistical approach to sampling. A proportion of the total population is 

considered to be a representative sample and this has been measured and used as a 

proxy. This takes place spatially, but also temporally in the form of a chronosequence of 

sites: samples of the population with similar characteristics and site types at different 

stages of maturity (Chazdon, 2013). This allows the collection of data from trees in a 

broad series of age categories, but sacrifices control of factors such as topography, 

geology and soils, precipitation, management history etc.  

The incorporation of soils into forest models is a relatively recent development. Early 

forest models treat soils as a site characteristic which is not subject to change, and 
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assume that any reduction in soil fertility for multiple forestry rotations can be 

accounted for by simply adjusting yield in the forest model (as in Hamilton and 

Christie, 1971; Edwards and Christie, 1981; Matthews et al., 2016). Soil carbon stocks 

have not been widely considered in the context of land use and climate change until 

relatively recently (Guo and Gifford, 2002) and while a range of soil carbon modelling 

approaches exist (e.g. Schmid et al., 2006) their relationship with forest models is far 

from mature.  

A consequence of these problems has been a lack of reliable data to calibrate or “train” 

mathematical functions used in modelling forest carbon dynamics over large areas. 

Locally relevant datasets have been published in the literature, but these are often 

limited in scope to specific species or geographical regions. Larger scale datasets, such 

as those used by national governments in reporting under climate change commitments 

are often either reported as a fixed inventory, rather than as a complete dataset showing 

the change over time (McCullagh et al., 2017) or are not spatially linked – so soils and 

forest carbon are reported independently of one another (Mills-Novoa and Liverman, 

2019; Pauw et al., 2020). 

The Smith et al. data used by Sterman et al. is a widely used dataset (e.g. Jenkins et al., 

2010; Pan et al., 2011; Lawler et al., 2014; Adams et al., 2018; Tinkham et al., 2018) 

published by the United States Department of Agriculture (USDA). This dataset 

provides generic growth curves for a range of biogeographical regions and species 

mixtures across the contiguous USA including an estimate of soil carbon. These were 

developed using the Forest Inventory and Analysis (FIA) database (Miles et al., 2001) 

which incorporates data from many thousand sample plots across the country. These 

datapoints were then analysed using the Aggregate Timberland Analysis System (Mills, 

1992; Haynes, 2003) and the FORCARB2 model (Smith and Heath, 1990; Heath et al., 

2002; Woodbury et al., 2007) to produce high level approximations of mean growth 

curves for each of the species / region combinations. This dataset is unusual in that it 

has a clear sampled growth curve for a range of different species, and includes soil 

carbon at a national level (although the estimates of soil carbon as opposed to forest 

floor detritus remain somewhat simplistic). While the data is provided for large 

biogeographical regions, the authors caution against using the data to predict growth on 

specific sites - emphasising that since they have been based on national averages, they 
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are unlikely to provide accurate results at stand or local level. Nevertheless, the result is 

an accessible dataset giving indications of growth for different forest sites over the first 

90-125 years which can be widely adapted to allow researchers access to similar data 

for intercomparison and generic use. 

The Smith et al. data (an example of which is shown below in Table 3.1 and Figure 3.4) 

includes values for age and standing forest volume, followed by estimates of carbon in 

tonnes partitioned into different categories: live trees, standing dead wood, understorey 

down (fallen) dead wood, forest floor, and soils. No management activity is modelled, 

so stands are assumed to be unthinned, and planted at an average spacing for sites of 

that type (or regenerated naturally). This, again, is an extremely simple rendering of a 

forest growth curve, but as the authors are at pains to point out, it is designed to give a 

generic picture, rather than a detailed projection for a specific site  
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Table 3.1. An example of the Smith et al. (2006) dataset: Regional estimates of timber volume and 

carbon stocks for maple / beech / birch stands with reforestation of land in the Northeast biogeographical 

region of the USA. Blue shaded areas were combined into an “above-ground” carbon figure, and orange 

shaded areas are considered “below-ground” by Sterman et al. (2018a). 

Stand 

age 
Volume Live tree 

Standing 

dead 

Under-

story 

Down 

dead 

wood 

Forest 

floor 
Soil 

Total 

non-soil 

Years m3.ha-1 ------------------------------------- t.ha-1------------------------------------- 

0 0 0 0 2.1 32 27.7 69.6 61.8 

5 0 7.4 0.7 2.1 21.7 20.3 69.6 52.2 

15 28 31.8 3.2 1.9 11.5 16.3 69.6 64.7 

25 58.1 53.2 5.3 1.8 7.8 17.6 69.6 85.7 

35 89.6 72.8 6 1.7 6.9 20.3 69.6 107.8 

45 119.1 87.8 6.6 1.7 7 23 69.6 126 

55 146.6 101.1 7 1.7 7.5 25.3 69.6 142.7 

65 172.1 113.1 7.4 1.7 8.2 27.4 69.6 157.7 

75 195.6 123.8 7.7 1.7 8.8 29.2 69.6 171.2 

85 217.1 133.5 7.9 1.7 9.5 30.7 69.6 183.2 

95 236.6 142.1 8.1 1.7 10.1 32 69.6 193.9 

105 254.1 149.7 8.3 1.6 10.6 33.1 69.6 203.4 

115 269.7 156.3 8.5 1.6 11.1 34.2 69.6 211.7 

125 283.2 162.1 8.6 1.6 11.5 35.1 69.6 218.8 
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Figure 3.4. Carbon stocks in NE maple / beech / birch forest . Based on data published by USDA 

(Smith et al., 2006) carbon partitioning into above-ground (green)and below-ground (orange)as used by 

Sterman et al. (2018a). 

As shown in Figure 3.4 above, Sterman et al. combined the live tree / understorey 

values as above-ground biomass and also combined the standing dead timber, down 

dead wood, forest floor, and soil values as below-ground carbon. This is a further 

simplification, and it could be argued that it misses some nuances: the live trees 

category includes stumps and coarse roots and standing dead wood, which can often be 

incorporated into the biomass supply chain; and the understorey could reasonably be 

expected to include herbaceous plants as well as woody shrubs and young trees. In 

general, however, this simple partitioning of material into above-ground (i.e. fit for fuel 

production) and below-ground (not considered) is in keeping with the generic character 

of the dataset.  

Sterman et al. then use the growth tables for replanting an existing forest site. This is 

consistent with their assumption that forests are only felled when mature (as described 

in Section 2.3.5 p47) but does raise some complexities around the spatial boundary 

conditions (see Section 1.3.2 p23) in order to meet demand, this deserves further 

consideration and is examined further in Chapter 5. While a method for partitioning 

felled material into different harvested wood product (HWP) categories is included by 

Smith et al., this was not used by Sterman et al., presumably for reasons of simplicity. 
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This represents an opportunity for further development of the model as discussed later 

in Chapter 6. 

Following determination of the basic values to be used in the growth curves, Sterman et 

al. then used a non-linear regression technique to ensure the best possible fit between 

the results from the growth function (Equation 2.4) and the training data published by 

Smith et al. (2006). 

Using the same assumptions as Sterman et al. SBCM was reconfigured to identify 

parameter sets which matched the training data from Smith et al. (2006). 

3.3.2 Fitting the curve 

In the work published in their 2018 paper, Sterman et al. used the optimizer function 

in Vensim (Venata Systems, 2017) to test a range of possible parameterisations against 

the training dataset described above and choose values which obtained the closest 

match. Their method tested this using a combination of least squares non-linear 

regression and Markov Chain Monte Carlo methods. This is described in more detail in 

their supplementary material (attached to Sterman et al., 2018a) but, in summary, they 

restricted the matching algorithm to parameter values which resulted in two set 

conditions:  

• The first value of the points forming the matched curve (y(x=0)) must equal the 

first value of the Smith et al. (2006) data.  

• The curve must result in the smallest achievable root mean squared error 

(RMSE) values between the data and modelled output.  

A similar approach was used in SBCM using the scipy Python library (Jones et al., 

2001). This library includes a range of different methods for curve fitting, and how to 

handle outlying data. The process was complicated by the nature of the dataset and 

matching function. A match of a single function to a single dataset, is relatively 

straightforward, however the functions governing below-ground and above-ground 

carbon in SBCM are intimately linked (using overlapping parameters). This required an 

adaptation of the code to introduce a dual-response matching above-ground and below-

ground carbon values simultaneously. 
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A full set of possible combinations was used to identify new parameters which when 

applied to the growth function resulted in a fit with the Smith et al. data which was as 

good as or better than that provided by Sterman et al. 

The optimize.leastsquares function from the Python scipy library contains a 

range of different algorithms for curve fitting (Table 3.2). These represent methods for 

identifying parameter sets which achieve a good degree of agreement with the training 

data based on a given formula.  

Table 3.2. Algorithms from the scipy.optimize.leastsquares function (discussed in 

detail in Scipy.org, 2019). 

Algorithm Source 

trf Trust Region Reflective (Branch et al., 1999) 

lm Levenberg-Marquardt algorithm (Moré, 1978) 

dogbox A trust region reflective implementation using a rectangular trust region (Voglis 

and Lagaris, 2004; Nocedal and Wright, 2006) 

Scipy also provides a range of “loss functions” (described in Table 3.3). These 

decrease the relative importance given to outliers when fitting the model to the data 

depending on the distance between each point and the residual. This is more important 

in noisy data sets which contain a lot of outliers and less certain trends, but were 

included to provide the maximum range of possible outcomes.  

Table 3.3. Loss functions providing different weight to outliers (discussed in detail in Scipy.org, 

2019). The weighted value of a data point (ρ(z)) changes relative to the residual (z).  

Loss function Formula 

linear 
 

soft_l1 
 

Huber 
 

Cauchy 
 

arctan 
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The quality of the match between the modelled trend and the training data is assessed 

during the curve fitting exercise by attempting to minimise the RMSE. Since the 

process assesses the training data point by point, is insensitive to error location, and 

uses overlapping parameter sets, it is possible for the system to identify a good match at 

a local level rather than globally (for the trend as a whole) and provide skewed results. 

This is where one part of a data-series achieves a very good fit, while the cumulative 

error is simply propagated to another part of the series. The RMSE method is limited in 

this regard as it gives equal weighting to each residual; this weakness, however is 

relatively simple to detect by simply plotting the results and observing any wide 

divergence (as shown later in Figure 3.5).  

3.4 Results and analysis 

For each of the eight region / species combinations as used by Sterman et al. (described 

in detail in Section 2.3.3 on page 45), a full range of possible combinations of algorithm 

and loss functions (as described above in Tables 3.2 and 3.3) were attempted in two 

permutations: firstly, with the model parameters unconstrained (simply looking for the 

best fit possible, with very loose limits on possible parameter values) and, secondly with 

constraints applied – requiring the first value in the results to equal the first value in the 

training data (±1 tC.ha-1). This resulted in 240 specific combinations of region / species, 

algorithm, loss function, and constraints. In each case, the fit of the modelled output to 

the training data was assessed by calculating the RMSE. Of the 240 permutations 

assessed, 93 failed to reach a solution, and of the 147 successful attempts, 41 achieved a 

lower RMSE score than reported by Sterman et al. (2018a) as shown in Table 3.4. 
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Table 3.4. RMSE results from a full suite of curve fitting methods and loss functions. Constrained 

runs are marked with (c), cells shaded in orange represent an improvement on the RMSE achieved by 

Sterman et al., cells shaded in blue are the best results obtained in the exercise. NB No iterations using 

the Levenberg-Marquardt algorithm were successful in finding a workable solution and cells marked with 
a b (trf / Huber iterations for SC oak / pine forest) while achieving a better RMSE than Sterman et al., 

were discarded due to clear anomalies in soil carbon levels. Plantations are denoted with *. 
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Sterman 4.79 4.33 4.37 1.94 1.50 1.17 1.31 1.30 

trf / linear  3.76 3.50 - 1.39 1.05 0.95 1.05 1.05 

trf / linear (c) 4.53 4.01 4.13 1.78 1.33 1.03 1.16 1.15 

trf / soft_l1  4.08 55.32 3.71 32.74 - 34.15 36.90 1.24 

trf / soft_l1 (c) 4.75 4.19 4.30 1.82 1.36 8.35 9.17 8.61 

trf / Huber  4.09 3.90 3.73 32.74 0.61a 34.33 37.09 34.43 

trf / Huber (c) 4.74 4.25 4.31 1.83 0.86b 1.07 1.20 1.19 

trf / Cauchy  - 107.09 51.12 36.26 - 97.12 1.54 1.51 

trf / Cauchy (c) 77.92 23.84 75.66 2.00 1.45 1.18 1.32 1.30 

trf / arctan  27.98 61.76 37.70 61.69 32.30 47.30 86.81 78.70 

trf / arctan (c) 77.54 113.76 11.48 36.34 25.42 84.41 48.64 80.38 

lm (all 10 runs) No iterations of the Levenberg-Marquardt algorithm achieved a workable result 

dogbox / linear  221.50 - 77.89 243.36 216.81 220.41 209.08 63.85 

dogbox / linear (c) 40.65 34.10 41.13 85.87 86.46 1.03 1.16 136.21 

dogbox / soft_l1  195.94 207.01 226.92 250.63 251.73 230.49 218.23 217.04 

dogbox / soft_l1 (c) 175.51 161.58 15.83 - 1.78 109.16 107.76 1.19 

dogbox / Huber  - - - 70.67 37.29 77.52 60.87 181.61 

dogbox / Huber (c) 176.65 98.14 - 1.83 - 1.07 14.88 19.55 

dogbox / Cauchy  237.78 202.54 228.28 241.62 224.50 224.20 216.44 209.67 

dogbox / Cauchy(c) 15.12 - 6.95 - 69.51 75.11 10.01 7.11 

dogbox / arctan  234.88 211.64 238.83 252.02 253.21 231.76 223.96 231.55 

dogbox / arctan (c) 207.40 181.43 208.46 474.17 240.29 316.85 195.35 153.74 
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In virtually every case, the best results were obtained by the Trust Region Reflective 

(Branch et al., 1999) method. No iterations of the Levenberg-Marquardt algorithm 

(Moré, 1978) were successful in reaching a useful result.  

In two cases when using the Trust Region Reflective algorithm and Huber loss function 

for SC oak / pine forest the resulting RMSE was lower than the value achieved by 

Sterman et al. but it quickly became apparent that the results were badly skewed. These 

cases (labelled a and b in Table 3.4) resulted in a strong upward linear trend in soil 

carbon (as shown in Figure 3.5). The model was run for a long time-horizon (5,000 

years) and no evidence of this upward trend attenuating was found. Regardless of the 

excellent RMSE score, these results were deemed anomalous and discarded. 

 
Figure 3.5. An example of anomalous result for south-central oak/pine forest. Using the Trust 

Region Reflective algorithm and Huber loss function; the match between forest carbon results and the 

training data is good, however the value for soil carbon increases linearly with no attenuation.  

At this point, for each region / species combination there exists a number of possible 

solutions all of which improve the fit of the model to the training data. For example, 

Figure 3.6 shows six different modifications to the parameters for North East maple / 

beech / birch forest (as well as the training data, and the fit as published by Sterman et 

al.) While the forest (above-ground) carbon values are relatively well clustered, the 

uncertainty associated with below-ground (soil) carbon is around 90 tC.ha-1 at maturity. 
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Figure 3.6. Results from curve fitting to North East maple / beech / birch forest data. Six possible 

curves were identified which fit the data better than the parameters identified by Sterman et al. While 

agreement on above-ground carbon levels is reasonably good, there is notable variation in predicted 

below-ground carbon values. 

3.4.1 Quantifying the effects of re-parameterisation 

Having identified a subset of 39 possible parameterisations which resulted in an 

improved RMSE score compared to Sterman et al. (as shown in Table 3.5 and Figure 

3.7); SBCM was run to determine the effects of these changes on predicted carbon 

storage and payback period. 
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Table 3.5. Subset of results from Table 3.4 which show a measurable improved RMSE compared 

to Sterman et al. Constrained runs are marked with (c), cells shaded in blue are the best results obtained 

for each species / region combination. Plantations are denoted with *. 
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Sterman 4.79 4.33 4.37 1.94 1.50 1.17 1.31 1.30 

trf / linear  3.76 3.50  1.39 1.05 0.95 1.05 1.05 

trf / linear (c) 4.53 4.01 4.13 1.78 1.33 1.03 1.16 1.15 

trf / soft_l1  4.08  3.71     1.24 

trf / soft_l1 (c) 4.75 4.19 4.30 1.82 1.36    

trf / huber  4.09 3.90 3.73      

trf / huber (c) 4.74 4.25 4.31 1.83  1.07 1.20 1.19 

trf / cauchy (c)     1.45    

dogbox / linear (c)      1.03 1.16  

dogbox / soft_l1 (c)        1.19 

dogbox / huber (c)    1.83  1.07   
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Figure 3.7. A comparison of RMSE values from SBCM and published by Sterman et al. (2018 

Supplementary table S2) and those obtained by re-parameterisation of the model. Only values of 

parameterisations with a better fit than Sterman et al. are shown for clarity. Plantations are denoted 

with *.  

The Sterman et al. model assumes that forests are fully mature when felled. As such the 

quantity of carbon stored in the forest is directly related to the area of forest required to 

meet energy demand (Equation 2.3). This takes place because the model is designed to 

quantify forest area required to meet a defined energy need: if the quantity of carbon per 

hectare is high, the model will assume that fewer hectares are needed to meet demand, 

and conversely if the quantity of carbon per hectare is low, the model will assume that 

more hectares are required. This directly affects the rate of carbon reabsorption because 

two hectares of forest will tend to have a greater annual growth increment than a single 

hectare – so forests with large pre-existing carbon pools will tend to take longer to 

recover. This issue surrounding the elasticity of area in the model is addressed in more 

detail in Chapter 5.  

To assess the variation in mature forest carbon storage, the model was first run for a 

5000-year timescale using the full range of parameter sets identified above. It was not 

possible to calculate payback period at this point, because the model’s starting 

(“equilibrium”) conditions were unknown, so the model was run with incorrect starting 

values for soil and forest carbon for a sufficient length of time to ensure that maximum 

stored carbon given the site and species selected had been reached. A substantial 
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variation was observed in the estimated carbon storage on site at maturity for model 

runs using parameters which achieved similar RMSE scores. This was particularly 

noticeable in non-plantation forests (as shown in Table 3.6) where the range of possible 

results exceeded 100 tC.ha-1 in three cases.  

Table 3.6. Variation in site carbon based on different parameter sets for SBCM. The possible 

outcomes in terms of on-site carbon show very different results depending on parameterisation used. 

Plantations are denoted by * 

 

Below-ground carbon 

min – max (tC.ha-1) 

Above-ground carbon 

min – max (tC.ha-1) 

Whole site variation  

(tC.ha-1) 

NE maple / beech / birch 216 - 303 188 - 202 101 

NE oak / hickory 166 - 183 317 - 350 50 

NE oak / pine 197 - 272 176 - 189 88 

SC oak / hickory 158 - 349 191 - 217 217 

SC oak / pine 172 - 394 180 - 186 228 

SC shortleaf / loblolly pine* 65 - 67 134 - 134 2 

SE shortleaf / loblolly pine* 100 - 104 142 - 142 4 

SE longleaf / slash pine* 136 - 139 130 - 131 4 

 

Having established the carbon storage at maturity for each of the parameter sets, the 

model was run again using these values to define correct starting conditions. In each 

case, the supply-chain model used the original parameterisation for supply chain 

efficiencies and emissions as published in Sterman et al. (2018a) to allow a comparison 

with the original model results. The scenario used was based on a clear-fell of mature 

forest in order to supply biomass (equivalent to scenario S3 in Sterman et al., 2018a, 

described in detail in Appendix C). This was compared with a coal-based counterfactual 

scenario with an implicit assumption that there would be no emissions from the forest 

site in the absence of biomass production (discussed further in Chapter 5). While it is 

acknowledged that this may not be appropriate (Ter-Mikaelian et al., 2015; Koponen et 

al., 2018) it was used to allow a direct comparison of results with those obtained by 

Sterman et al. (2018a). Payback periods (as shown in Table 3.7) varied by up to 48 years 

depending on model parameters used. As when looking at mature site carbon, this 

degree of divergence was striking in the non-plantation forests.  
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Table 3.7. Payback periods using different growth model parameters in SBCM. The 

parameterisations with the lowest RMSE score are highlighted in blue. All values are in years.  
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Sterman 107 109 91 88 68 15 15 16 

trf / linear  80 103  57 47 14 14 15 

trf / linear (c) 106 108 90 82 62 14 15 15 

trf / soft_l1  60  60     15 

trf / soft_l1 (c) 98 107 58 76 59    

trf / huber  59 97 59      

trf / huber (c) 98 107 85 75  14 15 15 

trf / cauchy (c)     56    

dogbox / linear (c)      14 15  

dogbox / soft_l1 (c)        15 

dogbox / huber (c)    75  14   

 

        

max 107 109 91 88 68 15 15 16 

min 59 97 58 57 47 14 14 15 

Range of results 

(max-min) 

48 12 33 31 21 1 1 1 

mean 87 105 74 76 58 14 15 15 

 

3.4.2 Addressing the wide uncertainty range 

Based on these observations, further analysis was undertaken to address possible causes 

of this discrepancy. Simply: what is different about the non-plantation forests which 

could explain the variation, and is there any quantifiable effect that could cause it? 
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As described above, the time taken for a site to fully recover from felling and return to 

maturity is variable, based on the speed of forest growth and the total carbon on site to 

be re-captured. This has a significant impact on payback periods, since the time to reach 

carbon sequestration parity is closely related to the time for a forest site to return to a 

pre-felling state (discussed in more detail in Chapter 5).  

The non-plantation forests, in contrast to plantations, take longer to reach maturity and 

have higher carbon stocks per ha when fully grown. Sterman et al. assumed maturity of 

both forest and soil at year 500 (Sterman, 2018) and based their starting conditions on 

carbon stocks estimated at this point. When identifying starting conditions in SBCM (as 

described above) a 5000-year cut-off was used, because; while the time taken for above-

ground carbon to stabilise is indeed approximately 500 years (as shown in Figure 3.8), 

soil carbon takes substantially longer in some cases (as shown in Figure 3.9).  

 
Figure 3.8. Time required for above-ground carbon to reach maturity on forest sites. The bars 

represent the maximum and minimum possible outcomes based on the range of parameterisations 

described in Table 3.5. In each case the parameters chosen by Sterman et al. result in maturity before 

500 years. 
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Figure 3.9. Time required for below-ground carbon to reach maturity on forest sites in terms of 

below-ground carbon. The bars represent the maximum and minimum possible outcomes based on the 

range of parameterisations described in Table 3.5. The time required for non-plantation sites to reach 

maturity is close to or in excess of the 500-year assumption used by Sterman et al. 

This observation raises a further question: If SBCM has been trained using the same 

data as the Sterman et al. model, why is the time required for a site to reach equilibrium, 

and the total carbon stored on site when mature so uncertain? All of the 

parameterisations of the growth curve identified in Table 3.5 fit the available data as 

well as, or better than, those published by Sterman et al., so why do they not agree more 

closely? 

Figure 3.10 shows the range of possible outcomes based on the range of growth curves 

listed in Table 3.5. Each of the plantation forests show a tight agreement between 

different model runs, while the non-plantation forests show a much poorer level of 

agreement, particularly with respect to soil carbon. The vertical lines on each graph 

represent the limit of the training data used to predict these curves, either 90 or 125 

years depending on region / species. The degree of extrapolation which takes place in 

the non-plantation forests is variable, but is generally extremely large, while plantation 

forests have all reached maturity within the limit of the training data.  
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Figure 3.10. A range of possible outcomes based on the parameters identified for SBCM in Table 3.5 

Shaded areas contain the full range of outcomes possible with a better fit than those obtained by Sterman 

et al. ±RMSE. Solid lines indicate the results obtained from SBCM under the Sterman et al. 

parameterisation. The vertical lines represent the temporal limit of the training data: any values to the 

right of the line are the result of extrapolations. 

3.4.3 Significance 

The observation that uncertainty in outcome appeared to be higher in cases where the 

training data was not available for a full growth curve, was assessed to identify any 

statistical significance. Data was available for all species / region types for a period of at 

least 90 years, although three species mixtures in the north-east region had training data 

to 125 years. In five of eight cases (the non-plantation forests) both SBCM and Sterman 

et al. were making predictions of forest growth over a substantially longer period of 

time. In each of these cases, the level of uncertainty arising from re-parameterisation 

was also high. In contrast, faster growing species mixtures (the plantation forests) which 
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all reached maturity within the 90-year timeframe showed much higher degrees of 

agreement between parameterisations. This observation implied that the projecting 

growth curves too far beyond the training data could produce more variable output. 

The strength of the relationship between the degree to which results were extrapolated 

from the training data and uncertainty was assessed using a simple linear regression 

from the linregress function embedded in the scipy library.  

The results of this test (shown in Figure 3.11) indicate a strong relationship (r2 = 0.99) 

with a very high confidence (p < 0.00002).  

 
Figure 3.11. Mean extension of time to maturity beyond the training data compared with mean site 

carbon at maturity for different region / species types. Error bars represent standard deviation, and 

although they are not visible in the plantation forests (*) this is because the deviation is too small to 

extend beyond the graph marker (not because they were omitted). A strong correlation (high r2, very good 

confidence) was found to exist, trend line formula is y ≈ 295.52 + 0.10x (scalar values are rounded for 

brevity).  

This significant relationship raises a number of questions about the validity of results 

produced for the non-plantation forests.  
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3.5 Discussion 

3.5.1 Results in context 

Sections 3.3 and 3.4 represent a detailed analysis of the process of fitting growth curves 

to the Smith et al. training dataset. A large number of analyses were conducted and 

require some interpretation. This section is intended to summarise the earlier findings, 

discuss the implications, and put them in context to improve clarity and provide a basis 

for later conclusions. 

Using the same training data as Sterman et al. in their 2018 paper (Smith et al., 2006) a 

non-linear regression was developed using Python and SBCM to see if the match 

between SBCM and the Sterman et al. model (as reported in Chapter 2) or the fit of the 

growth curve with the training data could be improved.  

A full suite of methods and loss functions from the scipy.optimize function were 

used to attempt 240 individual matching attempts. 41 of these returned results with a 

smaller RMSE value than that reported by Sterman et al. (see Table 3.4). Two of these 

results were discarded due to anomalous results as illustrated in Figure 3.5 and the 

remaining 39 results (approximately five per species / region combination) were used to 

construct representative growth curves (an example of this is shown in Figure 3.6).  

The increase in the range of possible parameterisations achieved a modest decrease in 

RMSE over the original Sterman et al. model and an improved fit with the training data. 

It also, however, resulted in a substantial increase in the range of possible outcomes. In 

particular, the predicted carbon stored in mature forest sites (at “equilibrium” Sterman et 

al., 2018a) and payback period. This expanded range of uncertainty is illustrated in 

Tables 3.6 and 3.7.  

3.5.2 Impacts on carbon storage 

Figure 3.12 below shows the range of possible carbon storage values at maturity based 

on the parameterisations described in Table 3.5 for each region /species combination. In 

each of the non-plantation forests the range of possible outcomes in terms of carbon 

storage increases, largely due to an expansion in estimated soil carbon. The values 
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published by Sterman et al., are, in most cases, at the extreme minimum end of carbon 

storage for each forest. In contrast, the variation between plantation forests remains low. 

 
Figure 3.12. An illustration of the range of potential site carbon storage at maturity based on the 

parameterisations used in Table 3.5. Bars indicate the upper and lower boundaries of total site carbon 

(both above-ground: blue and below-ground: orange carbon). Mean values are for the entire site. The 

range of potential carbon storage is substantially larger for the non-plantation forests, and the values 

published by Sterman et al. tend to be at the lowest end of these estimates. 

The time required for a site to reach maturity varies substantially depending on 

parameterisation. In most cases this took far longer than was accounted for in the initial 

Vensim based model (recall that Sterman et al. used a 500 year time horizon: Sterman, 

2018) as shown in Figures 3.8 and 3.9. 

3.5.3 Changes in payback periods 

Taking the range of growth curves into account and running the model for the full range 

of improved parameterisations using a 95% clear-fell scenario (equivalent to Sterman et 

al. scenario S3 which is described more fully in Appendix C) it becomes apparent that 

the range of possible payback periods expands, particularly in the non-plantation forests 

(as shown in Table 3.8 and Figure 3.13).  
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Table 3.8. Payback period ranges from figure 3.13. showing the number of years for different 

parameterisations to reach payback when compared to a coal counterfactual. In every case the value 

obtained using the parameters published by Sterman et al. results in the longest payback period. All 

values are in years, plantations are denoted with *. 
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Max payback 107 109 91 88 68 15 15 16 

Sterman et al. 

payback 

107 109 91 88 68 15 15 16 

Mean payback 87 105 74 76 58 14 15 15 

Min payback 59 97 58 57 47 14 14 15 

 

 

 
Figure 3.13. Time for biomass usage to pay back (reach carbon sequestration parity) under different 

parameterisations. In all cases the payback periods reported by Sterman et al. are higher than payback 

periods represented by other parameterisations. Once again, the variation between minimum and 

maximum values is far lower in the plantation forests (*). 

In each case, the values obtained using the Sterman et al. parameterisation fall at the top 

of the range of possible outcomes, and multiple estimates of shorter payback periods 

also fit the available data at least as well.  
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3.5.4 Causes of uncertainty 

As shown in Figure 3.11, there is a clear, statistically robust, relationship between the 

degree to which the growth curves have been extrapolated beyond the training data and 

the degree to which different model runs disagree. 

The Sterman et al. model and SBCM both make use of a Chapman – Richards growth 

function (Richards, 1959; Pienaar and Turnbull, 1973; Zhao-gang and Feng-ri, 2003; 

Sterman et al., 2018a) to estimate forest growth rates. The results shown in Figure 3.10 

appear to support the assertion in Burkhart and Tomé (2012) that the Chapman – 

Richards growth function results in more accurate outcomes when an asymptote is 

included in the training data, due to the function’s tendency toward numerical instability 

(Ratkowsky, 1983). In this case, the training data for all of the non-plantation forests is 

effectively incomplete because it does not include a value at (or close to) the asymptote, 

while the training data for plantations (with their faster growth rate) does include an 

asymptotic value. 

3.6 Conclusions 

Analysis of the training data published by Smith et al. (2006) and used by Sterman et al. 

(2018a) shows that it is a widely used (Jenkins et al., 2010; Pan et al., 2011; Lawler et 

al., 2014; Adams et al., 2018) high-level regional dataset from the USA. The dataset is 

based on a large-scale network of sample plots with additional software-based analysis, 

and is designed to provide consistent generic values for a range of species mixtures 

across ten biogeographical regions. While the authors caution against reliance on the 

data at smaller site-specific scales, it does provide a useful tool for comparison across 

studies. Given the aim of Sterman et al. to assess the carbon balance of transatlantic 

biomass trading, this dataset is appropriate, particularly in view of the limited 

alternatives available. 

Based on the work above, it is possible to produce a range of parameterisations which 

improve the fit of estimated forest and soil carbon levels to their training data over the 

earlier approach adopted by Sterman et al. (2018) as shown in Table 3.5. A number of 

these improvements are modest, but SBCM consistently achieves a lower RMSE score 

compared to the training data than those published by Sterman et al.  
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In improving the fit of the growth model to its training data (as shown in Table 3.5 and 

Figure 3.7) a striking divergence was identified between results for plantation and non-

plantation forests. Plantations typically show very little disagreement between the 

results; values published by Sterman et al. the training data published by Smith et al., 

and results from SBCM generally agree well. This is evident in estimates of: site carbon 

at maturity (overall variation <=4tC.ha-1 as shown in Table 3.6) payback period 

(variation <= 1 year Table 3.7) and time to reach site maturity (variation <=1 year for 

above-ground carbon Figure 3.8 and <=53 years for below-ground carbon Figure 3.9) 

In contrast, the non-plantation (“natural”) forests show substantial variation between 

different parameter sets with comparable RMSE scores. Estimates of: site carbon at 

maturity (overall variation 50-228 tC.ha-1 as shown in Table 3.6) payback period 

(variation 21-48 years Table 3.7) and time to reach site maturity (variation 24-198 years 

for above-ground carbon Figure 3.8 and 287-3230 years for below-ground carbon 

Figure 3.9) all show a larger degree of uncertainty in the later phases of growth. 

In assessing these differences (shown in Figure 3.10) it became apparent that a strong 

statistical correlation exists (r2 = 0.99, p < 0.00002.) between the range of possible 

outcomes and the degree to which growth curves have been projected beyond the 

training data. A likely reason for this increase in uncertainty is the susceptibility of the 

Chapman-Richards growth function to numerical instability where the asymptote is not 

known (Ratkowsky, 1983) Burkhart and Tomé (2012) - as in the case of the slower 

growing forest types.  

It is reasonable to conclude on this basis that it is not possible to determine which 

parameterisations for these forests are more likely to be accurate from this training data 

alone when using either the Sterman et al. model, or SBCM. It is even possible that the 

values preferred by Sterman et al. may be the best fit with real-world situations; we 

simply do not have enough information to tell without either improving the training data 

or modifying the growth function used by the model.  

Improvements to the training data would include site carbon measurements over a 

longer time-series to include the asymptote of forest growth – although collecting this 

data could prove problematic due to the relative scarcity of forest sites meeting the 

necessary criteria. This could be due to a lack of forests of sufficient age to form robust 
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conclusions, a lack of forests with documented similar management histories, and the 

increased likelihood of some stochastic interruption to forest management over an 

extended time period.  

A more realistic option would be to modify the growth function used by the model to 

predict future growth. While it seems reasonable to expect that this would result in a 

better agreement between models, it could not conclusively be said to improve model 

accuracy without some form of real-world measurement to confirm any predictions.  

SBCM produces results which are similar to those published by Sterman et al. (2018a) 

and can be used to calculate a range of parameter sets which improve the model fit with 

the training data. The underlying growth function used by Sterman et al. and replicated 

in SBCM relies heavily on the completeness of this training data, as without access to 

values late in the growth curve, results become increasingly inconsistent. While a 

number of issues affecting the reliability of the work carried out by Sterman et al. 

(2018a) have been identified; particularly the efficiency of biomass use (alluded to by 

Dwivedi et al., 2019 discussed in Chapter 4) and the plausibility of forestry supply 

chains (Prisley et al., 2018 discussed in chapter 5) the inconsistency of results from non-

plantation forests has not been widely discussed (with the obvious exception of Rolls 

and Forster, 2020 which represents the published version of Chapters 2 and 3) 

This disagreement was reflected in the variability of estimated carbon storage in mature 

forests and forest soils (Figure 3.6), as well has having a significant impact on the time 

required for sites to return to this mature state post felling (Figures 3.8 - 3.9). 

Uncertainties of carbon storage rate and magnitude have a substantial impact on the 

payback periods for non-plantation woodlands, and in each of the cases studied the 

parameters reported by Sterman et al. (2018a) resulted in the longest possible payback 

periods (as shown in Figure 3.13, and Figure 3.8) of between 68 and 107 years for non-

plantation forests.  

Based on these findings, it is reasonable to assume that the parameter values with the 

lowest RMSE are the most appropriate for use elsewhere in this study (see Appendix 

D), but that results referring to the non-plantation forests should be treated with an 

abundance of caution due to the high degree of uncertainty at longer rotation lengths. 
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These conclusions identify a number of limitations to the model and present a number 

of potentially fruitful avenues for further research, including modifications to the forest 

growth function to reduce uncertainty, and re-parameterisation for additional forest 

types in new biogeographical regions. These are discussed in more detail in Chapter 6. 
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Chapter 4. Assessing the supply-chain model 

In which the Author considers how hard it is to move 

things around and then set fire to them.  

4.1 Introduction 

As discussed in Chapter 1, the development of bioenergy technologies has become a 

key element of the global effort to decarbonise energy supplies in the face of climate 

change (Craggs and Gilbert, 2018). Bioenergy has risen in popularity globally because it 

allows direct substitution for existing fossil fuelled (often coal-based) systems with a 

minimum of infrastructure modification and expense (Slade et al., 2018).  

In their paper of 2018, Sterman et al. use the model described in Chapter 2 to analyse a 

range of different scenarios and cite payback periods when compared to a counterfactual 

case predicated on transatlantic supply of biomass to replace coal use in western Europe 

(see Figures 2.10 and 2.11). Based on parameters derived in Chapter 3 describing forest 

growth in a set of eight site / species combinations on the eastern continental USA, this 

chapter examines the parameters chosen by Sterman et al. to describe the supply chains 

for biomass fuels and coal (their preferred counterfactual case). 

4.1.1 Research questions 

The broad operational objective of chapter is to assess the validity of parameters for the 

supply chain component of the model as published by Sterman et al. (described in 

Section 2.3.1) the degree to which the counterfactual scenarios employed by them are 

appropriate for future use, and whether others may be more useful. Specifically 

addressing the research questions: 

1. Are the parameters used by Sterman et al. the most appropriate for the supply chains 

they describe, and should they be modified in SBCM? 

2. Sterman et al. rely heavily on a counterfactual of electricity generated using coal. Is 

this still the most appropriate counterfactual? 

3. Are there any other supply chains which could be modelled using SBCM that would 

be more appropriate than those currently in use?  
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4. How does revision of the supply chain parameters within the model change the 

apparent sustainability of biomass fuels? 

4.2 Initial analysis 

4.2.1 Supply chain modelling in SBCM 

The Sterman et al. model derives the total quantity of energy required (including 

allowances for waste / losses) from the supply chain component of the model described 

in Section 2.3.1. This uses a specified demand for the final quantity of electricity 

required, then modifies it using variables for efficiency and supply chain losses to 

determine the initial biomass needed to meet demand and the emissions resulting from 

generation (as shown in schematic form in Figure 2.3, Figure 4.1and in Equations 2.1 to 

2.3). 

 
Figure 4.1 Block diagram showing the SBCM approach to supply chain.  A fuel feedstock is 

harvested / mined and then processed and transported to the point of use. This results in emissions 

(tC.GJ-1 handled by the Emissionproduction parameter) and losses caused by production inefficiencies, use 

of some biomass fuel for drying, decomposition, etc. (handled by the Efficiencyproduction parameter – a 

dimensionless proportional loss). The conversion of fuel to electricity is handled in a similar way with a 

dimensionless variable describing whole process efficiency (Efficiencyuse) and a carbon intensity 

parameter describing the associated emissions (Emissionuse). 

Sterman et al. use a total of ten scenarios to test their model and illustrate their results; 

these vary in quality and usefulness (Table 4.1 and Appendix C). 
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Table 4.1. A summary of the Sterman et al. supply chain scenarios. These are described in more 

detail in Appendix C 

Code Name Scenario description 

Cf Counterfactual 
The emissions from electricity generation from coal 

combustion. 

S0 
Zero-carbon 

energy source 

Electricity is assumed to be supplied with no associated carbon 

emission. While this is superficially applicable to renewables, it 

does not take into account building and infrastructure emissions 

so the comparison is incomplete. 

S1 Regenerating coal 

A combination of the supply chain emission and efficiency 

values for coal, with the regenerative capacity of biomass (the 

opposite of S4). Possible utility for diagnostic purposes.  

S2 25% “thinning” 

The emissions associated with electricity generation from 

biomass combustion, where biomass is sourced from forests 

with a 25% felling intensity. 

S3 95% clear-fell 

The emissions associated with electricity generation from 

biomass combustion, where biomass is sourced from forests 

with a 95% felling intensity. 

S4 Inert biomass 

A combination of the supply chain emission and efficiency 

values for biomass, with the regenerative capacity of coal i.e., 

none in this model (the opposite of S1). Possible utility for 

diagnostic purposes.  

S5 

Deforestation and 

land use 

conversion 

The emissions associated with electricity generation from 

biomass combustion with total site deforestation, without 

regeneration, but with subsequent release of carbon from soils 

(e.g. following conversion to agriculture).  

S6 
Clear-fell with 

species conversion 

As modelled in scenario S3, however, the species (at full 

biological maturity) which is felled, is replaced with a different 

species. This leads to a disparity between the carbon released 

by felling, and the potential uptake available through regrowth. 

Sterman et al. apply this to a “natural” forest replaced by a 

plantation and use it as an illustration of a loss of site carbon 

storage potential. 
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Code Name Scenario description 

S7 

Sustained yield 

(continued demand 

growth) 

Instead of modelling the emissions associated with a one-off 

pulse of supplied electricity, the model is modified to produce a 

sustained yield of energy on an annual basis. This annual 

demand is either assumed to continue to increase over time 

(scenario S7) or increase to a pre-determined point, and then 

remain the same (scenario S8). These scenarios are limited 

because they do not reflect rotational forest management 

accurately (as discussed in Chapter 5) 

S8 

Sustained yield 

(attenuating 

demand growth) 

 

In order to test the supply chain aspects of the model (rather than run diagnostic tests on 

the model itself) scenarios S2 (25% fell) and S3 (95% fell) were chosen as being the 

closest to real-world conditions (Prisley et al., 2018). While it is acknowledged that 

scenarios S5 and S6 could potentially occur, it is debatable as to whether these scenarios 

would tell us anything new. It is already widely acknowledged that deforestation and 

reduction of stored carbon from mature forests is unsustainable (UNFCCC, 2021a) and 

exploring these scenarios further does little to reduce the uncertainty identified in earlier 

chapters. 

4.2.2 Supply chain parameters 

Coal variables 

Sterman et al. derived parameters for the coal counterfactual from a variety of sources 

as shown in Table 4.2. These were largely derived from global statistics and generic 

conversion factors, as well as an LCA assessment of UK based coal-fired power plants 

(Odeh and Cockerill, 2007) 
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Table 4.2. Sterman et al. published parameters for coal supply chains. Adapted from Sterman et 

al. (2018a supplementary material table S5). 

Parameter Description Value Source 

Efficiencyproduction 
Processing efficiency representing 

supply chain losses (d’less) 

0.89 IEA, 2016 

Efficiencyuse 

Combustion and conversion 

efficiency (fuel energy to electricity 

d’less) 

0.35 IEA, 2016 

Emissionproduction 
Supply chain carbon intensity 

(tC.GJ-1) 

0.0015 Odeh and Cockerill, 

2007  

Emissionuse  
Carbon intensity of combustion and 

electricity generation (tC.GJ-1) 

0.025 EIA, 2016; IEA, 2016 

 

The bulk of these values were calculated using simple conversion factors to express 

values in common terms (Sterman et al., 2018a, supplementary information pp 16-17) 

and require little further explanation. The only exception to this is the derivation of the 

efficiency of production which was calculated using global data from 2014 (IEA, 2016) 

as shown in Equation 4.1. 

 
Equation 4.1. The efficiency of global coal production was calculated using Total Primary Energy 

Demand from coal (TPED) Total Fuel Consumption (TFC) and Power Generated from coal (PG). The 

result is a unitless measure of coal production efficiency. Sterman et al. calculate 0.89 (or 89%) efficient 

(Sterman et al., 2018a, supplementary material table S5) 

The parameters chosen by Sterman et al. for coal are of variable quality. IEA figures, 

while likely to be reliable, were not particularly recent when the paper was published (in 

2018, data was from 2014) and are now quite dated. They also represent global 

averages, and while it is arguable that this is appropriate to estimate the efficiency of a 

global supply chain, when the paper specifically addresses the transatlantic supply of 

fuel to western Europe and the UK more local values would be more appropriate if 

available. The paper by Odeh and Cockerill while more locally appropriate, is even 

older (2007). Based on these concerns, a revision of the parameters describing the coal 

supply chain was undertaken as described in Section 4.3.1. 
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Biomass variables 

As with the parameters describing the coal supply chain above, Sterman et al. identified 

values from a variety of sources (as shown in Table 4.3).  

Table 4.3.  Sterman et al. published parameters for biomass supply chains. Adapted from Sterman 

et al. (2018a supplementary material table S5). 

Parameter Description  Value Source 

Efficiencyproduction 
Processing efficiency representing supply 

chain losses (d’less) 
0.725* Röder et al., 2015 

Efficiencyuse 
Combustion and conversion efficiency (fuel 

energy to electricity d’less) 
0.25 

FPL, 2004; NEA, 

2011 

Emissionproduction Supply chain carbon intensity (tC.GJ-1) 0.0012 Röder et al., 2015 

Emissionuse  
Carbon intensity of combustion and 

conversion to electricity (tC.GJ-1) 
0.027 

EPA, 2014; 

Leturcq, 2014 

*On closer examination of the data source this value may be incorrect. Recalculating and assuming a 

8.5% supply chain loss, and 18% of the fuel used for drying, it appears that this value should be 0.735 

(Röder et al., 2015, table 1) 

Again, the parameters chosen by Sterman et al. for the biomass supply chain are of 

variable quality. In some cases, the values are likely to be relatively robust (the value for 

processing efficiency from Röder et al., 2015 for example - although it appears to have 

been miscalculated) others are less certain and require further scrutiny. In particular, the 

variable for combustion efficiency is simply incorrect. This parameter was derived from 

a combination of an unreferenced information note published by the US Department of 

Agriculture (FPL, 2004), and the “power” component of medium scale wood-pellet 

CHP system in another unreferenced calculation tool published by the Netherlands 

Energy Agency (NEA, 2011). Neither of these values are appropriate, one because it 

refers to small / medium systems running in the USA and is out of date, the other 

because it refers to medium scale systems using CHP technologies, which are less 

efficient at generating electricity alone. This can be seen in NEA (2011) in the contrast 

between the 25.4% efficiency quoted by Sterman et al. (cell H12 on the “Wood Pellets – 

CHP” tab) and the 39.2% efficiency provided by the same source for wood pellet co-

firing (cell H12 on the “Wood Pellets – Cofiring” tab). In both of these references, 
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values were cited without references to other work, so it is impossible to see how they 

were derived. 

Again, due to concerns about the relevance and appropriateness of these values, a 

revision of the parameters describing the biomass supply chain was undertaken as 

described in Section 4.3.1. 

4.2.3 New counterfactual scenarios 

Coal represents nearly half of the world’s primary energy supply (44% - Birol, 2022) as 

shown in Figure 4.2 and is expected to remain a significant component of global energy 

infrastructure for some time to come (Rentier et al., 2019; Brauers et al., 2020). It is 

however the “dirtiest” of the fossil fuels, and the UNFCC has reached broad agreement 

that unabated coal combustion should be phased out as soon as possible (UNFCCC, 

2021a).  

 
Figure 4.2. Global energy supply 2021 breakdown by energy source (Birol, 2022) 

Coal has been a popular benchmark for assessing the sustainability of forest sourced 

biomass use (Reid et al., 2020) and, while it has been argued that this is appropriate 

because of the similarities between biomass and coal supply chains and use (Slade et al., 

2018), it has also been suggested that coal represents the most polluting fossil fuel, and 
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as such it is easier to portray biomass use in an attractive light by comparison (Sterman 

et al., 2018b).  

Since coal remains such an important commodity in terms of global fuel supply, 

retention of this counterfactual is reasonable (assuming an improvement in the 

parameters used as described in 4.3.1), but it also represents the lowest bar in terms of 

emissions. A wide range of other power generation technologies exist and it is difficult 

to argue in favour of biomass by simply stating that it less bad than the fuel with the 

highest carbon emissions. To address this issue, a natural gas counterfactual was also 

developed (described in 4.3.2). Gas is the second most widely used primary energy 

source globally (13%, Birol, 2022) and is the cleanest of the fossil fuel technologies.  

Biomass Energy with Carbon Capture and Storage (BECCS) has been widely described 

as being a true carbon dioxide removal (CDR) technology (Shukla et al., 2022). 

Engineering solutions vary but the essential logic is: forest growth removes carbon from 

the atmosphere, the resulting woody biomass is burned for energy, but the carbon is 

stored to prevent re-release into the atmosphere. This process results in lower 

efficiencies (since a proportion of the electricity generated is used to compress and store 

the resulting CO2) but this is less important because emissions are being captured.  

BECCS has been assumed by IPCC to be a core transition technology over the coming 

years to reduce emissions (Fricko et al., 2015; van Vuuren et al., 2017; Fujimori et al., 

2017; Calvin et al., 2017; Kriegler et al., 2017; Rogelj et al., 2018; Gidden et al., 2019) 

while other CDR technologies are still being developed and are not yet fully market 

ready (Ganeshan et al., 2023). Two BECCS scenarios (described in 4.3.2) were 

developed to allow for a range of efficiencies of conversion and use.  

4.3 Method 

4.3.1 Part 1. revising the existing variables 

As discussed in Section 4.2.2 a number of concerns were identified with respect to the 

parameters used by Sterman et al. in their published data. These parameters are variable 

in quality due in part to their age, and partly due to the data sources chosen by Sterman 

et al. In each case, the calculation or conversion undertaken by Sterman et al. was 
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replicated and where newer or more reliable data sources were available, these were 

used instead.  

Coal variables 

Coal Efficiencyproduction 

The calculation carried out by Sterman et al. (Equation 4.1) using 2014 values from the 

IEA (2016) data was replicated using more recent data (2021) also from the IEA (Birol, 

2022). This resulted in an apparent improvement in the efficiency of coal supply chains 

from 0.89 to 0.97. While the reasons for this improvement are not described, it is 

reasonable to assume that low efficiency coal supply chains are becoming less 

financially viable. Since this value is calculated from values for unabated coal use it is 

not influenced by potential changes introduced by the development of coal CCS 

programmes.  

Coal Efficiencyuse 

The existing value for the conversion of fuel to electricity was revised for a UK context 

using the Digest of UK Energy Statistics (DUKES) data published by the UK 

government (BEIS, 2022a, table 5.6). This resulted in a small drop in efficiency from 

0.35 to 0.334. Again, this is not surprising as the UK has spent considerable resources 

on reducing a national reliance on coal for energy generation (DESNZ, 2023). This 

change of efficiency implies that the remaining operational units are no longer being 

invested in at the same rate and are being nursed to the end of their operational lives 

rather than being actively developed. 

Coal Emissionproduction 

The emissions associated with coal production were revised using the UK government 

greenhouse gas reporting conversion factors (BEIS, 2022b). This resulted in a large 

increase in the “well to tank emissions” associated with coal from 0.0015 tC.GJ-1 to 

0.0040 tC.GJ-1. While this is a more generic figure than that published by Odeh and 

Cockerill (2007) and other authors (e.g. Venkatesh et al., 2012) it does represent a 

consistent methodological framework to assess the difference between coal, gas, and 

biomass supply chains (since values are supplied for each). 
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Coal Emissionuse 

The emissions associated with coal fired electricity generation are apparently well 

established. Sterman et al. cite three sources all quoting 0.25 tC.GJ-1. This was 

confirmed using more recent data and replicating the calculation carried out by Sterman 

et al. The calculated emissions from use changed from 0.02467 tC.GJ-1 calculated by 

Sterman et al. using 2014 data to 0.0242 tC.GJ-1 from 2021 (BEIS, 2022b). 

Biomass variables 

Efficiencyproduction 

In assessing this value, a wide range of variation was observed. A number of studies 

have addressed the issue of dry matter loss during biomass supply chains (e.g. 

Thörnqvist, 1985; Jirjis, 1995; Nurmi, 1999; Hirsmark, 2002; Hamelinck et al., 2005; 

Sikkema et al., 2010; Filbakk et al., 2011; Nurmi, 2014; Röder, 2018; Routa et al., 2018; 

Liu et al., 2018; Beagle and Belmont, 2019; Sgarbossa et al., 2020). The majority of 

work carried out on this area focusses on the loss of dry matter to decomposition rather 

than waste, and does not include additional losses due to fuel use in the drying process. 

Values were identified from 

• Röder et al. (2015): 8.5% supply chain loss, 18% drying loss 

• Hamelinck et al. (2005) 12.8% supply chain loss, 12.5% drying loss 

• Sgarbossa et al. (2020) 16% drying loss 

Data on decomposition losses was heavily dependent on fuel type and site conditions, 

and thus highly variable (see Table 4.3)  
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Table 4.4. Examples of the variation of dry matter losses in biomass supply chains in the literature 

due to decomposition 

Study 
Range of decomposition  

losses (%) 

Filbakk et al., 2011 15-30 

Hirsmark, 2002 21 

Jirjis, 1995 12-21 

Nurmi, 1999 20 

Sikkema et al., 2010 7 

Thörnqvist, 1985 7-21 

In view of this wide range of results the parameter for the efficiency of biomass supply 

chains was revised upward slightly from 0.725 to 0.738 based on average supply chain 

losses from Röder et al. (2015) and Hamelinck et al. (2005) and drying losses based on 

these two sources with the addition of Sgarbossa et al. (2020). This value represents one 

of the greater areas of uncertainty within the supply chain model parameterisation. 

Efficiencyuse 

The existing value for electricity generation from biomass was revised for a UK context 

using the Digest of UK Energy Statistics (DUKES) data published by the UK 

government (BEIS, 2022a, table 5.6). This resulted in a substantial increase in 

efficiency in the conversion of biomass fuel to electricity from 0.25 to 0.369. In contrast 

to the flawed data used by Sterman et al. the DUKES data represents measurements of 

fuel use and energy output reported under a statutory mechanism for power stations in 

the UK, and is considered to be significantly more reliable. 

Emissionproduction 

The emissions associated with biomass fuel production were revised using the UK 

Government greenhouse gas reporting conversion factors (BEIS, 2022b). This resulted 

in a large increase in the “well to tank” emissions associated with biomass from 0.0012 

tC.GJ-1 to 0.0028 tC.GJ-1. While this is a more generic figure than that published by 

Röder et al. (2015) it again, represents a consistent methodological framework to assess 

the difference between coal and biomass supply chains.  
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Emissionuse 

The emissions arising from biomass combustion for electricity generation were 

recalculated using data from the Phyllis2 database (ECN, n.d.). Based on a mean 

calorific value for untreated wood of 20.12 GJ.t-1 (daf or dry, ash-free higher heating 

value or HHV) and a mean carbon content of 50.76% daf, these were calculated as 

0.0252 tC.GJ-1. This is a slight decrease when compared to Sterman et al. since the 

value used in their model apparently used the lower heating value (LHV) for wood.  

The LHV is a less appropriate metric in this case, because it double counts a factor 

reducing the efficiency of biomass conversion to electricity. Moisture content within 

fuel changes the apparent calorific value per tonne because of the heat required to 

remove it before combustion. This can be mitigated to some extent by heat recovery 

systems so it could be argued that large users can gain more energy per tonne of fuel by 

using these technologies. However, in this case SBCM (and the Sterman et al. model) 

calculate based on tonnes of carbon into the system and GJ of electricity leaving it. As 

such, including a loss of efficiency for moisture content which is already included in the 

absolute values is redundant.  

 

4.3.2 Part 2. New counterfactuals 

Natural gas variables 

Efficiencyproduction As with the coal parameter, the gas supply chain efficiency parameter was 

derived from IEA data (Birol, 2022) using Equation 4.1 and values for 

natural gas 

Efficiencyuse As described above, the efficiency of combustion and electricity 

generation was derived from the DUKES data (BEIS, 2022a)  

Emissionproduction As with coal and biomass parameters, well to tank efficiency and 

electricity generation emissions were derived from the UK government 

conversion factors (BEIS, 2022b) 
Emissionuse  
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BECCS variables  

Efficiencyproduction The same variables were used as for the revised biomass scenario as 

described above 

Efficiencyuse As described above, combustion efficiency was derived from the DUKES 

data (BEIS, 2022a) with between 10% and 34% of electricity generated 

assumed to be used in capturing emissions (Slameršak et al., 2022) 

Emissionproduction The same variables were used as for the revised biomass scenario as 

described above 

Emissionuse Emissions associated with combustion and electricity generation were 

assumed to have been reduced by 90% due to carbon capture, with a 

1.4% leakage factor in handling before long terms storage – a total 

reduction of 88.6% (Slameršak et al., 2022) 

 

4.3.3 Revised parameters summary 

The new parameters as calculated for each of the scenarios described above are 

summarised in Table 4.5 

Table 4.5. Revised parameters for the supply chain model as calculated in sections 4.3.1 and 4.3.2 

The values used by Sterman et al. are included in brackets for comparison  

Para

meter 

Efficiencyproduction Efficiencyuse Emissionproduction Emissionuse 

Descrip-

tion 

(units) 

Processing efficiency 

representing supply 

chain losses (d’less) 

Combustion and 

conversion efficiency 

(fuel energy to 

electricity d’less) 

Supply chain carbon 

intensity (tC.GJ-1) 

Carbon intensity of 

combustion and 

conversion to 

electricity (tC.GJ-1) 

Biomass 
0.738 

(0.725) 

0.369 

(0.25) 

0.0028 

(0.0012) 

0.0252 

(0.027) 

Coal 
0.97 

(0.89) 

0.334 

(0.35) 

0.004 

(0.0015) 

0.0242 

(0.025) 

Gas 0.884 0.485 0.002 0.014 

BECCS 0.738 0.244 - 0.332* 0.0028 0.0029 

* Upper and lower boundaries as per (Slameršak et al., 2022) 
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4.3.4 Testing 

Using the new parameters for forest growth as identified in Chapter 3 (detailed in 

Appendix D) a suite of comparisons was undertaken to compare the old and new 

parameter sets for the supply-chain sub model and the new scenario options of BECCS 

implementation and natural gas (as shown in Figure 4.3). Each comparison was 

undertaken using an assumed energy demand of 106 GJ as a one-off pulse and then no 

further energy required over time; for a total of 8 Species / region combinations. This 

was carried out simulating a 95% clear-fell scenario, and a 25% selection felling 

scenario (equivalent to Sterman et al. scenarios S3 and S2 as described in Appendix C) 

this resulted in 192 possible comparisons (8 region-species combinations, 12 parameter 

combinations and 2 felling intensities. 

 Coal (old 

params) 

Coal (new 

params) 

Natural Gas 

Biomass (old params) 

 

   

Biomass (new params) 

 

   

BECCS (lower efficiency 

estimate) 

   

BECCS (higher efficiency 

estimate) 

   

Figure 4.3. A schematic of the biomass / counterfactual scenarios. Each combination was run using 

each of the species / region cases, under a 25% and 95% felling scenario 
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4.4 Results and discussion 

As described above, an SBCM model run was carried out for each of the species / 

region cases using both the original and revised parameters for biomass and coal, as 

well as three new possible scenarios: natural gas, and a high / low efficiency range for 

BECCS. These runs were carried out assuming either a 25% or 95% felling rate as per 

Sterman et al. scenarios S2 and S3. An example of the output is shown in Figure 4.4 and 

Figure 4.5 below. 

 
Figure 4.4. Results for a NE maple / beech / birch forest 95% clear-fell scenario. Payback periods 

using new parameterisations are 195 years vs natural gas, 33 years vs coal, and 0 years for both BECCS 

scenarios.  
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Figure 4.5. Results for a SE shortleaf / loblolly pine plantation 95% clear-fell scenario. Payback 

periods using new parameterisations are 20 years vs natural gas, 9 years vs coal, and 0 years for both 

BECCS scenarios. 

Using this output, payback periods were calculated for a range of scenarios (see 

Appendix E for results in full). As expected, the emissions associated with natural gas 

were much lower than either biomass or coal, and the emissions associated with the 

BECCS scenarios were much lower than any other cases studied. This disparity in 

emissions was reflected in the payback periods as shown in Figure 4.6 and Figure 4.7.  
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Figure 4.6. Payback periods based on a 95% clear-fell. Payback periods decrease substantially 

when using a revised biomass efficiency value, but this is offset by the increase in payback periods when 

compared with a natural gas counterfactual. BECCS scenarios are not shown in this graph since in every 

case the payback was 0 years. Plantations are denoted with * 

 

 
Figure 4.7. Payback periods based on a 25% fell. Payback periods decreased by an average of 14 

years compared to clear-felled sites (discussed in more detail in Chapter 5). As above BECCS scenarios 

are not shown in this graph since in every case the payback was 0 years. Plantations are denoted with * 

The revision to the coal counterfactual parameters has a small impact on payback 

periods resulting in an overall reduction of between 0 and 4 years depending on species 
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and felling intensity. The modification of the biomass parameters however, resulted in a 

large decrease in emissions per unit of energy (around 33%) and this had a strong 

influence on payback period when compared with the parameters used by Sterman et al. 

This was expected, since the parameter they used for efficiency was extremely low (as 

described in Section 4.2.2). In the case of “natural” forests, changes in the biomass 

parameter resulted in payback periods decreasing by between 20 and 73 years. This was 

less obvious for plantation forests, where reductions were more modest (between 2 and 

6 years). 

The new counterfactual comparison using natural gas led to a large increase in payback 

periods (as might be expected). Gas usage for power generation is between 11% and 

15% more efficient than the solid fuels studied, and the emissions resulting from 

production and use are both substantially lower (see Table 4.5). In the case of natural 

forests, payback periods increased by between 47 and 162 years when compared with 

natural gas, and again, this increase was less marked in plantation forests (between 5 

and 11 years).  

The emission reduction associated with the capture and storage of emissions from 

BECCS had a profound impact on the payback period: in every case, the initial emission 

associated with BECCS was lower than the emission generated by the counterfactual 

case. This means that there is no payback period per se, because we are no longer 

considering a marginal case, BECCS results in lower emissions than the counterfactual 

at the point of combustion which goes on to decrease further over time i.e., payback 

period is instantaneous. This illustrates a weakness in using the payback period as a 

metric because it is impossible to tell using the payback period alone whether the high 

or low efficiency BECCS scenario is better, we can only say that they both outperform 

natural gas and coal. This weakness is discussed further in Chapter 5 as it also relates to 

the cumulative emissions associated with multiple rotations. 

A disparity exists between payback periods of a 95% clear-fell and a 25% felling (as 

shown in Figure 4.6 and Figure 4.7). Felling intensity has an impact on payback period 

because it is intrinsically linked to site recovery time and the area required to meet 

demand as discussed in Chapter 5. The failure of Sterman et al. to properly account for 

thinning – relying instead on an assumption that 25% of a mature forest would be felled 
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has an effect on payback period because it occurs at a different point on the forest 

growth curve. Again, this is discussed further in Chapter 5.  

4.5 Conclusions 

The parameters used by Sterman et al. to describe supply chains show significant 

weaknesses. The existing parameters were recalculated to address these weaknesses and 

this resulted in substantial implications for payback periods estimated by the model for 

biomass compared with a coal counterfactual. In all cases, the modification of existing 

parameters resulted in a decrease in payback periods compared to those reported by 

Sterman et al.  

The widespread use of coal counterfactuals in studies of this type is perhaps 

understandable due to the similarities of supply chains handling solid fuels, but it has 

been suggested that coal is used because it represents the most carbon intensive 

counterfactual (Sterman et al., 2018b). The validity of this criticism is debatable but 

based on this, and in view of international commitments to phase out coal use 

(UNFCCC, 2021a), it is becoming clear that coal can no longer be used in isolation as a 

valid business as usual scenario.  

Given the limited usefulness of comparisons with coal, another counterfactual based on 

natural gas was added to the model. Gas is the cleanest and most efficient fossil fuel 

technology; as such this was deemed to give a more robust comparison and forestall any 

allegations of “cherry-picking” counterfactuals.  

While simple combustion for primary energy generation remains the dominant use of 

biomass globally, use of carbon capture and storage technology is expected to become 

widespread in the near future (Shukla et al., 2022). To account for this, two further 

parameter sets were developed to provide indications of the change in payback periods 

associated with BECCS (based on high and low estimates of efficiency).  

The modifications to scenarios resulted in a range of changes to the apparent 

sustainability of biomass use in this context.  
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• Updates to the coal and biomass parameter sets resulted in a dramatic fall in 

payback period compared to the results published by Sterman et al. (2 to 33 

years compared with 4 to 104 years in Sterman et al., 2018a supplementary 

material table S7)  

• Introduction of a natural gas counterfactual scenario demonstrated that other 

technological solutions can result in lower emissions over extended periods of 

time when compared to conventional biomass use in some forest types (up to 

253 years in NE maple / beech / birch forest under a 95% fell: Figure 4.7 and 

Appendix E). 

• While the efficiency value for BECCS is poorly constrained compared to other 

supply chain parameters (Table 4.5), initial indications are that BECCS 

outperforms a gas counterfactual by a substantial margin leading to payback 

within a year in all cases. 

There are however, some limitations to these findings. It is arguable that gas is a less 

appropriate fuel to be compared directly with biomass. Since a core assumption of the 

modelling framework is that the emissions associated with building the infrastructure 

for consumption and conversion to electricity are broadly comparable. Alternative 

energy sources such as wind, solar, and hydro have no direct emissions from use, and 

operate differently in terms of infrastructure and distribution (which is a key argument 

in rejecting the use of Sterman et al. scenario S0). Nuclear power has high infrastructure 

and well to pump emissions, emits no carbon directly from use, but is likely to have 

substantial additional post-use emissions associated with spent fuel storage. These other 

energy sources were deemed to be too different to biomass for a direct comparison to be 

drawn without an expansion of the system boundary to include development of a power 

station or equivalent installation. 

While payback periods showed a substantial reduction, none of the conventional 

biomass scenarios resulted in negative emissions. The model does not allow for this, 

because it is based on a single pulse of CO2 at the beginning of the run. A single rotation 

beginning at full biological maturity can recover virtually all of the carbon released on 

combustion, but cannot recover supply chain emissions as well, so while it can be said 

to be “carbon lean” in relation to the counterfactual, without some element of BECCS, 
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it will not achieve true negative emissions. This is addressed by modifications to the 

silvicultural assumptions in the model described in Chapter 5. 

Finally, the model works on a basis of energy supplied. This has a substantial impact on 

the scenarios available for testing, because it limits the silvicultural management of the 

forest area to the simplest operation available – a single clear-fell. It is not possible to 

increase the complexity of the silvicultural operations (as called for by Prisley et al., 

2018) to integrate thinning, or vary felling age within the model as it currently stands 

because only one operation is modelled per run. This limits both an assessment of the 

effect of forest yield on payback period, and whether some scenarios can result in 

negative emissions over a reasonable timeframe. Again, these issues are addressed more 

completely in Chapter 5.  
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Chapter 5. Including Silviculture 

In which the Author carefully cuts down a hypothetical forest. Repeatedly. 

5.1 Introduction 

As discussed in Chapter 1, the global deployment of bioenergy has been rapid due to the 

prospect of low carbon energy generation as a climate change mitigation technology 

(Chum et al., 2011; Craggs and Gilbert, 2018; Funk et al., 2022). This has not been 

without controversy as a number of authors have highlighted concerns about the 

efficacy of biomass use, as an emission reduction technique (Holtsmark, 2015), the 

effect on other land uses (Creutzig et al., 2015) and their effect on global biodiversity 

and existing carbon stocks (Searchinger et al., 2018). A critical concern raised in this 

debate is the sustainability of forest management operations in producing biomass fuel, 

and while the IPCC recognises that trade-offs may exist as part of the integration of 

biomass production (Calvin et al., 2023), a number of authors (e.g. Olden, 2016; Brack, 

2017a; Brack, 2017b) now simply equate biomass production with unsustainable forest 

management.  

The need to manage forests sustainably has been recognised for a very long time 

(Evelyn, 1664; von Carlowitz, 1713). Although definitions of sustainability have 

evolved (Grober, 2012) and have long been a subject of some debate among foresters 

(Samuelson, 1976). In this case, sustainable forest management is loosely based on 

Brundtland’s famous definition of sustainability (Brundtland, 1987)* as: the ability to 

produce ecosystem services (specifically carbon regulation) without degrading the 

forest’s ability to continue producing those services in the future. 

It is clear that the ecosystem services of carbon sequestration and storage which this 

study addresses are part of a range of other benefits derived from forests (see Figure 

3.1) and production of one service may preclude maintenance or production of others. A 

qualitative judgement is therefore required to identify which scenarios may be 

 
* “development that meets the needs of the present without compromising the ability of future generations 

to meet their own needs” (Brundtland, 1987) 
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considered acceptable or not. As such, it is arguable that of the scenarios described by 

Sterman et al. some can simply be described as unsustainable in terms of carbon 

management without undertaking further study. For example, scenario S5 – 

(deforestation with land use conversion) eliminates the forest’s ability to regrow, and 

cannot be considered sustainable forestry (even if there are excellent reasons for 

adopting this management strategy e.g. open habitat restoration). Others such as 

scenarios S2 and S3 (25% and 95% fell) are more debatable: their payback periods 

described in Chapter 4 suggest that they can result in a more beneficial carbon balance, 

but the implicit assumption of forest maturity before felling suggests that other 

regulating and cultural ecosystem services may be adversely affected (not to mention 

biodiversity in forest ecosystems.)  

As discussed in Chapter 3, this study focuses on forests under “scientific management” 

(Figure 3.2) and on the carbon balance of different management decisions. It does not 

address wider qualitative questions regarding the desirability of different ecosystem 

services, concentrating specifically on the effects of emissions arising from biomass 

production and use.  

The scenarios used by Sterman et al. (2018a) make a number of assumptions about 

forest management (described in Chapter 4 and Appendix C) which vary in terms of 

their applicability to real-world forest management systems. This is well described by 

Prisley et al. (2018) who conclude that “many of the assumptions on which their 

primary wood bioenergy scenario is based are not realistic”. This chapter is concerned 

with addressing these assumptions and addressing the implications for carbon balances 

when they are modified.  

At this stage the model represents either an area required to supply a single pulse of 

energy, or a single stand producing an intermittent energy supply depending on 

management decisions. While it does not yet represent a model which can handle a 

forested landscape (discussed further in Section 6.4), the modifications described in this 

chapter allow stand-level calculations to assess the model against known forest 

management practices. 
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5.1.1 Research questions 

This chapter describes an analysis of the forest management practices assumed by 

Sterman et al. followed by a number of modifications made to SBCM to broaden the 

range of possible silvicultural systems that may be considered. Research questions for 

this chapter are specifically:  

1. What do Sterman et al. assume about silvicultural systems in developing their 

model?  

2. What are the implications of these assumptions, are they justified, and could they be 

improved? 

3. How does modification of these assumptions within the model change the apparent 

sustainability of biomass fuels? 

5.2 Background 

5.2.1 Sustainable forest management  

Historically, it is difficult to overstate the importance of timber as a natural resource 

(Schama, 1996; Rackham, 1998). As such, the economics of timber production and 

management have been the subject of close study since the Enlightenment. The 

development of the modern science of forestry has been attributed to the need for yield 

regulation to protect forests during the late Early Modern Period (From around 1650: 

Grober, 2012). A number of significant changes in land management were taking place 

during this period, heavily influenced by first the agricultural and later the industrial 

revolutions, and this resulted in codification of existing methodologies (e.g. Evelyn, 

1664) or the development of new paradigms of sustainable forest management (e.g. von 

Carlowitz, 1713). These changes were primarily concerned with the sustainability of 

ongoing production (Grober, 2012) and led to silviculture as it exists today.  

Current best practice in well-regulated forestry maximises the forest’s value to society 

in terms of ecosystem services, (UN, 2011) but this is often of secondary concern to the 

economic demands of forest owners who (perhaps understandably) often prioritise 

personal benefits over those to the wider community (Rojas et al., 2016). 
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While a range of different variations in forest management exist to ensure specific 

results (which are by no means limited to timber production or any other single 

ecosystem service); where forests are managed from a production standpoint, they tend 

to fall within two clear categories. Either maximisation of biological productivity of a 

site (yield) or maximising economic performance. 

Yield maximisation 

Sustained yield is very easy to conceptualise: the forest is divided into a number of 

compartments equal to the rotation age, divided by the felling frequency; thus, a 50 ha 

forest which is managed on a 50-year rotation would be composed of 50, 1 ha 

compartments if felling takes place every year, or 25 2 ha compartments if felling takes 

place every other year and so on. Felling takes place in the oldest compartment in each 

management period, and results in a number of age classes within the forest equal to the 

number of compartments. This is known as a “normal” forest, or a forest which exists in 

a “steady state” (Newman, 2002; Pommerening and Murphy, 2004) 

The timber output from such a forest is maximised in perpetuity if the compartments are 

felled at the point of maximum mean annual increment (i.e. the age where the mean 

growth over the rotation is as high as possible as shown in Figure 5.1) This basic 

structure can then be varied depending on the species, site variables, and desired timber 

size, but changes will often result in a loss of total timber volume (although not 

necessarily of value).  
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Figure 5.1. An illustration of the current annual increment and mean annual increment. Current 

Annual Increment (CAI: blue) represents the per year growth of the forest (green). Mean Annual 

Increment (MAI: in orange) is the expanding (or cumulative) mean of all earlier values of CAI. The point 

of Maximum Mean Annual Increment (MMAI) as shown by the dotted line, is the long-term maximum 

yield of the site. 

Note that this only works for forests which have a growth pattern which follows a 

logistic curve. Mixtures of tree species which are more likely to follow a logarithmic 

curve (as shown in Figure 5.2) will always have a MMAI at year 1, because that is the 

point of fastest growth. In these more complex cases, a different approach is necessary, 

and these forests tend to be managed to favour specific objectives such as target timber 

diameter (Duncker, Barreiro, et al., 2012) 
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Figure 5.2. A comparison of growth curves for different species / region cases in the training data. 

The plantation forests tend to follow a logistic growth pattern (left) while the non-plantation forests – 

which include a range of different species with different growth rates – tend to follow a logarithmic curve 

(Smith et al., 2006). 

Economic maximisation 

The yield maximisation approach does not necessarily result in the same outcomes as 

the calculation of an optimum economic rotation age. This approach, originally 

developed by Martin Faustmann in 1849 (Viitala, 2006), and later refined by Pressler in 

1860 and Ohlin in 1921 (Amacher et al., 2009) results in the rule that ‘The landowner 

should clear-cut an even-aged stand at an age where the marginal return of delaying 

harvest is equal to the opportunity cost of delaying harvest, where the latter is given by 

foregone rents accruing to the future value of the stand and the land’ (Amacher et al., 

2009 proposition 2.1, p21) This is shown graphically in Amacher et al. (2009 fig. 2.5 

p16) and further described qualitatively by Vukina et al. (2001, p.55)  

This economic approach depends on the maximisation of the net present value (NPV) or 

the discounted costs and revenues associated with forest management in perpetuity. This 

calculated NPV of a forest may be based on a number of different parameters such as 

timber price, product assortment, forest yield, rotation age and discount rate. At its most 

basic, NPV is equal to the sum of discounted future costs and revenues over future years 

as described in Equation 5.1 below. 
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Equation 5.1: The simplest version of the discounting formula; where, NPV equals the sum of 

discounted costs and revenue at each future year (t) where the discount rate (representing the time 

preference) is expressed as a dimensionless variable (Price, 1989).  

Theoretically, this should be calculated for every year from 0 to some indefinite point in 

the future, but in practice revenues and costs which are at a distant future point will 

(assuming a positive discount rate) become so small as to become negligible. More 

complex methods exist to model the NPV over whole rotations, or a perpetual series of 

operations (Price, 1989), but since the magnitude of costs and revenues tend toward 

zero the further we look into the future and forestry operations are rarely a symmetrical 

series of events, this simple form of the equation is usually the most practical. 

This economic assessment may result in different outcomes to the biological 

maximisation approach as it depends on the economic value of the timber, rather than 

simply its size (Lal and Alavalapati, 2014; Buongiorno et al., 2014). As such it has been 

criticised by the forestry industry (Samuelson, 1976) as producing a maximised 

economic output which is not necessarily in keeping with sustainable silvicultural 

practice. This is because a strong preference for early revenue (a high discount rate) can 

have a severe downward pressure on optimal rotation lengths, to the point where simply 

felling the forest and investing the money elsewhere is the optimum economic course of 

action. 

Using Equation 5.1, it is possible to show that the point of maximum mean annual 

increment is equal to the point of maximum NPV when the discount rate is equal to 0 as 

shown in Equation 5.2. 
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Equation 5.2. Maximised mean annual increment and net present value equivalence. If the discount 

rate → 0, then the term (1+discount rate)t → 1. The point of maximum NPV (based on a number of 

potential values of t) is then equal to the point of maximised future revenue with no time preference; thus, 

the strategy of felling at MMAI is valid from an economic point of view, if no time preference (or variable 

timber value) is expressed. 

However, when time preferences are expressed (discount rate is > 0) in the absence of 

an increasing economic value for more mature timber, the rotation length providing the 

maximum NPV decreases rapidly (as shown in Figure 5.3), until it becomes apparent 

that the rate of economic growth in forest investments is less than other alternatives (see 

Hotelling, 1931; Vukina et al., 2001). It is worth pointing out that while conventionally 

discount rates are positive (denoting a time preference nearer the present) there is no 

mathematical reason why they should not be negative, denoting an increasing value the 

longer a resource is maintained, or a greater importance at some time in the future 

(Price, 2017). It is arguable that this may be applicable to carbon in the context of 

forestry (Anthoff et al., 2009; Timmons et al., 2016) which would tend to increase 

optimum rotation lengths from an economic maximisation point of view. 
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Figure 5.3. The value of the forest as shown in Figure 5.1 under different discount rates. The point 

of maximum net present value (assuming 1 m3 of wood = 1 [unspecified] monetary unit) based on four 

different time preferences (discount rates) As discount rate increases, optimal rotation length 

(annotations) decreases. 

Thinning 

Thinning is a silvicultural tool used to enhance the value of a stand of trees at the final 

felling stage (Matthews, 1989). A proportion of trees in a forest stand are removed 

during the rotation, which reduces competition between trees for light and nutrients, this 

means that the remaining trees are able to grow more rapidly. The length of the rotation 

will generally then be extended to allow the forest to take advantage of this reduction in 

competition (Hart and Evans, 1991). The overall effect is that the growth of the stand is 

concentrated among fewer, larger stems. These are typically more valuable from an 

economic point of view, but are also more likely to be converted into high quality 

products with a long life-expectancy (storing carbon). Thinning generally removes trees 

with poor timber quality, health issues, and other defects (Gonçalves, 2021). This 

improves the resilience of the stand as a whole to stochastic natural disturbance (fires, 

pests, etc.) by removing more susceptible trees from the site while also introducing 

opportunities for the forest composition to be modified to cope with changing 

management objectives, climatic factors etc. (Szmyt, 2021).  
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The interrelationships between site, species, rotation length, thinning operations and 

forest yield are extremely complex, and the subject of a substantial body of literature 

(e.g. Matthews, 1989; Hart and Evans, 1991; Kerr and Haufe, 2011; Matthews et al., 

2016).  

5.2.2 Sustainable forest management in the context of biomass production 

As discussed in Chapter 3, forests are complex natural systems which are managed with 

varying skill and efficiency for a wide array of different management objectives. These 

objectives can change quickly relative to the rate of forest growth and have a strong 

impact on management techniques and regimes.  

The increase in demand for biomass fuels has influenced timber markets, and as such is 

likely to have had an impact on forest management decisions. Assessments of this 

impact have been made (e.g. Galik et al., 2009; Abt et al., 2010; Abt et al., 2012; Duden 

et al., 2017) but disagreement remains over its nature and whether the impact is 

positive.  

The introduction of a market for poor quality timber can arguably support an increase in 

forest management activity, increasing the forest area through new planting, and 

management for high quality timber through providing value for thinnings (Abt et al., 

2012). On the other hand, an increasing value for poor quality timber could lead to a 

downward pressure on rotation length by incentivising early felling of forests to meet 

demand (Schulze et al., 2012) it could also result in previously unmanaged, ecologically 

valuable forests being brought under active management resulting in a loss of 

ecosystem services and stored carbon (as alleged in EIA, 2022; Anon, 2022). 

A full assessment of the impact of these market forces on forest management in this 

context is outside the scope of this study, but it is notable that both the yield and 

economic maximisation strategies described above have the effect of reducing rotation 

length relative to that assumed by Sterman et al.  

It is arguable that managed forests do not ever become fully biologically mature, 

carrying a very long-term gross carbon debt and repaying a net carbon debt relatively 

rapidly. If this is the case, then modelling a scenario where fully mature forest is felled 
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for biomass is inaccurate and unhelpful. However, a transition of long-neglected, old-

growth or primary forest to active management would indeed incur a substantial new 

gross carbon debt. Forestry governance and sustainability are also outside the scope of 

this study, but it is argued some environmental campaign groups that this does take 

place (FERN et al., 2011; RSPB et al., 2012; Dogwood Alliance, 2012; Brack, 2017a; 

Brack, 2017b; EIA, 2022).  

5.3 Analysis 

Sterman et al. observe forests from an end user’s point of view. While this is perhaps 

understandable, given the debt then dividend approach described in Chapter 1, in their 

assessment of forest production, they make a number of assumptions about forests and 

forest management which do not reflect conventional forestry practice (Prisley et al., 

2018). 

Firstly, and most obviously, they assume that the forest area available for biomass 

production is completely elastic i.e., infinite in potential area, and there are no 

biophysical, economic, regulatory, or other constraints on fuel availability. Fuel 

availability is simply determined by fuel demand.  

Secondly, all forests are assumed to be fully mature (“at equilibrium”) before felling. 

This implies that the forests concerned remain unthinned, are not managed under either 

of the silvicultural systems described above and are essentially wild. Since under the 

Sterman et al. model, forests are felled once and then allowed to regenerate back to full 

maturity, this effectively ignores the rotational aspect of forest management as any 

mature forest is interchangeable with any other mature forest of the same type. 

Thirdly, in spite of an assertion that scenario S2 comprises a 25% thinning (Sterman et 

al., 2018a; Sterman et al., 2018b) it simply does not. The operation as specified takes 

place in a mature forest, and no further subsequent action takes place: this is a felling 

operation removing 25% of the final crop. It is not specified, but this could represent 

either a partial clear-fell of the forest area, or a selection felling targeting a particular 

species or growth pattern, some hybrid of the two, or even a prelude to species 

conversion as partially described in scenario S6. Such operations do take place in 

managed stands (Matthews, 1989), but without a clearer description it is not possible to 
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determine which is intended. The functional use of thinning as a management tool is 

essentially either ignored or misinterpreted in the original Sterman et al. model. Where 

results relating to a “25% thinning” are reported (scenario S2) they seem to indicate a 

general decrease in payback period (as shown in Figures 2.11, 4.5 and 4.6) over a clear-

fell (scenario S3) operation. This is to be expected; as area is elastic in the Sterman et al. 

model, the 25% felling takes place over a much wider area of forest (3.8 times the area 

used by a 95% fell) in order to meet the pre-defined energy requirement. The increase in 

area means that the potential NPP available for site recovery is substantially larger 

resulting in a lower payback period.  

Finally, uncertainty remains about the fate of material harvested from woodlands. 100% 

of felled material is described as going to biomass. This neglects the wide range of 

potential end uses for felled timber, the majority of which have a higher economic value 

(Jasinevičius et al., 2017) and a greater value in terms of carbon storage (Parobek et al., 

2019; Paluš et al., 2020). This is perhaps understandable in an illustrative model, since 

the assumptions required to account for harvested wood products would require a 

significant increase in the complexity of the model as well as potentially obfuscating the 

results of minor changes to the end user. More concerningly, Sterman et al. do not 

describe the fate of the 5% of forest carbon remaining after their 95% clear-fell scenario 

(S3). Whether the 5% remains as living biomass (remaining in the forest carbon pool as 

assumed in SBCM), is converted to dead wood (part of the soil carbon pool) or is 

assumed to be burned (moving to the atmospheric carbon pool) is not specified and is 

left unclear.  

5.4 Method 

Sterman et al. make three key assumptions about forest management in their model: 

1. That forest area managed for biomass production is infinite and elastic. 

2. Forests are only felled when completely mature 

3. Thinning (as traditionally understood) does not take place 

These assumptions were adjusted by introducing two substantial modifications to 

SBCM: to allow it to operate on a fixed area basis (producing a variable amount of 
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energy based on a fixed forest area as described in 5.4.1) and to allow repeated felling 

of an existing stand on an ongoing basis to a variable degree – supporting repeated 

felling and thinning (described in 5.4.2). 

A number of further modifications were made to SBCM* to consolidate earlier work. 

These included some incremental upgrades to the code to improve usability of the 

model, a template system to allow for standard scenarios to be pre-coded separately, the 

full incorporation of new growth function parameters as defined in Chapter 3, new 

scenarios using gas and BECCS as described in Chapter 4, and code to calculate mean 

annual increment, payback periods, and some other cosmetic adjustments.  

5.4.1 Energy vs area basis 

The SBCM code was modified to allow operation in one of two different modes for 

biomass fuel.  

Energy basis 

The energy required is provided by the user. Equation 2.1 is used to determine the fuel 

required to meet demand, and Equation 2.3 is used to determine the area of forest 

needed to harvest that quantity of fuel. Equation 2.2 is used to determine the emissions 

from both the biomass and counterfactual scenarios. This is the default approach used 

by Sterman et al. (shown in Figure 5.4) 

 
* SBCM 2.0 is available from the author and included in electronic supplementary materials. 
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Figure 5.4. The energy basis calculation. Fuel requirement, forest area and resulting emissions are 

determined by energy requirement. 

Area basis 

The forest area is supplied by the user. Equation 2.11 is then used to determine the 

amount of fuel available, and Equation 2.9 is used to describe the total amount of 

energy available from this much fuel. As with the energy basis calculation, Equation 2.2 

is then used to determine the emissions from both the biomass and counterfactual 

scenarios. 

 

Figure 5.5. The area basis calculation. Fuel availability, energy supplied and resulting emissions 

are determined by available forest area. 

This code was then run for a full range of site/species cases at different stages of 

maturity to demonstrate the interrelationships between area requirement, energy 

production, and payback period. At this stage all model runs were run as a single felling 

per model run in isolation – no rotations were applied. 
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5.4.2 Rotations 

An additional function fell was added to SBCM 2.0 as well as an independent tracker 

of stand age (as distinct from the modelled time period relied on by SBCM 1.0). On 

each runstep the model was modified to check whether the stand is to be thinned or 

clear-felled and call the fell function as required. This function recalculates the forest 

carbon value based on felling intensity, and calculates additional emissions from both 

biomass and counterfactual sources.  

By using this new method, a range of forest rotation lengths were tested and used to 

describe the relationships between rotation length, site yield, carbon saved, and payback 

period.  

For each site / species case, two rotation lengths were identified (as shown in Table 5.1). 

A long rotation based on the time taken for forests to reach at least 99% maturity – a 

near-end estimate of the fully mature assumption, and a short rotation. The short 

rotations were calculated in two ways: the non-plantation forests which are highly 

mixed in terms of species, predominately follow a logarithmic curve growth pattern (as 

shown in Figure 5.2 above). In these cases, the rate of growth begins quickly and then 

steadily decreases over time without an inflection point, as such, any calculation of 

MMAI will be during the first modelled year: the point of maximum increment. For 

these forests, felling was assumed to take place when the forest was at 66% of maturity 

by mass. This is not intended to represent an optimum rotation length for these forests, 

but to provide a more realistic hypothetical for comparison with the extended rotation 

lengths required for full maturity. The plantation forests, being typically composed of a 

small number of more closely related pine species, showed a much clearer growth 

pattern on a logistic curve, and these were assumed to have a shorter rotation length 

equal to MMAI.  
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Table 5.1. Rotation lengths used to assess forest yield and payback period. 

Tree species Age of MMAI Age of 66% 

maturity by mass 

Age of 99 % 

maturity by mass 

NE maple / beech / birch 2 80 323 

NE oak / hickory 2 115 484 

NE oak / pine 2 71 238 

SC oak / hickory§ 40§ 72 202 

SC oak / pine 2 76 273 

SC shortleaf / loblolly 

pine* 

26 23 41 

SE shortleaf / loblolly 

pine* 

28 24 41 

SE longleaf / slash pine* 32 28 45 

* Denotes plantations which were calculated using MMAI, all other forest types were assumed to be 

worked on a rotation length resulting in 66% of mature yield by mass. 
§SC oak / hickory is an edge case. While it does appear to have a growth curve which fits the logistic 

pattern a 66% maturity value was used to allow comparison with the other non-plantation forests. 

5.4.3 Thinning 

The results published by Sterman et al. suggest that a 25% thinning results in a decrease 

in payback period compared to a simple clear-fell. However, as discussed in 5.3 above 

their model does not simulate a true thinning, merely a 25% final felling. Using the 

modifications to SBCM and rotation lengths described in section 5.4.2 a hypothetical 

series of thinnings were introduced in a more realistic way compared to the original 

model. These were assumed to take place when the forest reached 50% and 75% of 

mass at final felling age. In each case, 25% of the crop was assumed to be removed and 

the final rotation length was extended to allow stand recovery before final felling. This 

extension to the rotation length is intended to allow the remaining trees to take 

advantage of additional light and other site resources made available through thinning. 

In the illustrative example in Figure 5.6, the time required for the forest stand to recover 

from the first thinning (time A) and second thinning operations (time B) is added to the 

overall rotation length, which extends the rotation by C years. The total amount of 

timber removed from site is equal to two thinnings plus a final felling, but over an 

extended period of time.  
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Figure 5.6. Rotation length modification with thinning. The time taken for a forest stand to recover 

from a first (A) and second (B) thinning was added on to the overall rotation length (C = A+B) to allow 

the remain trees in the forest stand to take advantage of site resources made available during the 

thinning.  

A full range of rotations used and thinning years is shown below in Table 5.2 
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Table 5.2. Rotations lengths (years) used to assess the impact of thinning on forest yield and 

payback period.  

Species 
Short rotation 

(unthinned) 

Short rotation 

(thinned at 

[ages]) 

Long rotation 

(unthinned) 

Long rotation 

(thinned at 

[ages]) 

NE maple / beech / birch 80 
127 

[31, 110] 
323 

379 

[52, 118] 

NE oak / hickory 115 
184 

[43, 156] 
484 

564 

[73, 167] 

NE oak / pine 71 
109 

[31, 95] 
238 

281 

[48, 100] 

SC oak / hickory 72 
106 

[35, 95] 
202 

241 

[52, 99] 

SC oak / pine 76 
118 

[32, 103] 
273 

321 

[50, 109] 

SC shortleaf / loblolly pine* 26 
32 

[18, 27] 
41 

47 

[19, 27] 

SE shortleaf / loblolly pine* 28 
34 

[19, 28] 
41 

47 

[21, 29] 

SE longleaf / slash pine* 32 
38 

[23, 32] 
41 

47 

[24, 32] 

* denotes plantations which were calculated using MMAI, all other forest types were assumed to be 

worked on a rotation length resulting in a felling of 66% of mature mass. 

5.5 Results and Discussion 

5.5.1 Area vs. energy basis and forest age 

Area and energy basis calculation is a pre-determined setting in SBCM 2.0. This means 

that an area basis calculation will calculate an initial energy supplied, and an energy 

basis calculation will calculate the required area (as described in 5.4.1). If SBCM is run 

for a single mature stand under energy basis, and the resulting area required to meet 

demand is used as an input variable for a similar single mature stand on an area basis, 

there are no differences between models results. If, however, the age of the felled area is 

varied, a number of aspects of the relationship between payback, area requirement, and 

energy supply can be observed, as shown below in Figure 5.7 



138 

 
Figure 5.7. Payback, area requirement and energy output on energy and area bases. Calculations 

were carried out for conventional biomass supplied from a southeast short-leaved / loblolly pine 

plantation and a coal counterfactual using both energy (top row) and area basis (bottom row) 

calculations for a range of different rotation lengths. The relationship between energy and area is stable 

once the forest is biologically mature, but varies significantly when forests are felled earlier. 

Firstly, there are no differences between payback periods when comparing area and 

energy basis calculations. This is because payback is intimately tied to site recovery rate 

and SBCM is either confining felling to a single area and reducing energy output or 

maintaining energy output and increasing the area of a homogeneous forest type. Since 

there is no variation in any forest recovery parameters, no variability is shown in 

recovery rate. As shown in Figure 5.8 below payback is influenced by three key factors; 

the depth of the initial trough is determined by amount of carbon on site (per ha), and 

the comparative efficiencies of production and use from the base and counterfactual 

cases. The time taken to reach payback (carbon saved >0) is then determined by the rate 

of growth (equivalent to the rate of site recovery). 
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Figure 5.8. The anatomy of payback. An initial drop in saved carbon occurs where the 

counterfactual results in a lower carbon emission than biomass fuel. This is determined by the relative 

emissions of supply and use, and the total carbon present in the felled stand. The steepness of the 

recovery phase is a directly linked to forest regrowth. Carbon Sequestration Parity (or payback) occurs 

when saved carbon >0. Not to scale 

Site recovery rate is dictated by the quantity of carbon removed and the forest growth 

parameters, which are calculated per hectare and as such it is not affected by the basis of 

model calculation used.  

When energy production is fixed, however; the area required to meet demand becomes 

extremely high in very young forests; to the point where it is analogous to mowing an 

annual crop. A very small harvest per ha over a wide area is quickly recovered and 

payback of less than a year is common in forests younger than 5 years. It is likely that 

modelled rotation lengths of less than this are essentially meaningless since the 

underlying assumptions about planting and harvesting are no longer valid. 

When the area of forest is fixed, the energy supplied in short rotations is very low, 

because we are again, felling a very small quantity of timber. This rises as the felled 

forest grows with age increasing the available fuel from the site. As with the energy 

basis calculation, the model becomes unreliable for very young forests. 

Based on these results it becomes apparent that the age of a forest when felled has an 

impact on the payback period, and either the quantity of energy supplied, or the area of 
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forest required (depending on calculation basis). It is possible to optimise biomass 

supply chains simply for energy supplied, carbon per hectare, or low payback periods, 

but without a combined metric which takes account of several key variables, this 

optimisation tends to result in unintended consequences elsewhere. Sterman et al. have 

implicitly assumed an extremely long rotation length (to full forest maturity) which 

based on these results would suggest that they report a maximum possible payback 

period for each species / region case. 

5.5.2 The effect of rotations 

By applying an area basis calculation and setting SBCM to model repeated felling of the 

same site, the utility of shorter rotations becomes apparent. In the scenario shown in 

Figure 5.2 a single ha of south eastern plantation of short-leaved and loblolly pine was 

managed on two different rotation lengths (28 years and 41 years, as described in 

Section 5.4.2). Payback is achieved at either 12, or 13 years, and the quantity of carbon 

saved (the difference between biomass and counterfactual emissions) continues to rise 

on a step-wise basis at each point of felling. The emissions do not become negative 

because, while the forest site is able to recoup virtually all of the carbon released by 

felling and combustion, it does not recover supply chain emissions. 

In contrast, Figure 5.10 shows a scenario using the same region / species case, but 

compares a natural gas counterfactual against a high efficiency BECCS scenario. Since 

the BECCS scenario emits less carbon than natural gas at the point of combustion, the 

payback period is equal to zero. The biomass still emits carbon from combustion (even 

if it is less than the counterfactual) but becomes carbon negative between 10 and 12 

years into the first rotation. Rather than simply comparing the relative merits of 

different scenarios, this allows use of negative carbon emissions as a metric by direct 

comparison with an absolute value. Each rotation then incrementally reduces biomass 

carbon emissions while the counterfactual emissions continue to rise.  
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Figure 5.9. The effect of multiple rotations on payback period (conventional biomass) . In this case 

(a coal counterfactual and a conventional biomass supply chain based on 1 ha of SE shortleaf / loblolly 

pine plantation) payback is achieved between years 12 and 13 depending on rotation length (r). 

Subsequent rotations increase the carbon saved compared to the counterfactual (the difference between 

cumulative emissions) but remain positive in terms of carbon emissions. The upper graph shows the early 

stages of the rotation in greater detail. 
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Figure 5.10. The effect of multiple rotations on absolute emissions (BECCS). In this case (a natural 

gas counterfactual and a high efficiency BECCS case based on 1 ha of SE shortleaf / loblolly pine 

plantation) payback is achieved in year zero and carbon negative operation occurs between years 10 and 

12. As above, subsequent rotations still increase the carbon saved compared to the counterfactual, but 

also result in an ongoing reduction in atmospheric carbon. The upper graph shows the early stages of the 

rotation in greater detail. 

5.5.3 Varying rotation length 

Varying rotation length is a standard tool in forest management. As described above, 

foresters aim to optimise timber production or economic value through felling forests at 

the right age. This may be calculated in a purely biological sense, or in an economic 

sense, based on the change in value of the crop over time. 

The forests described on a single-rotation basis as used by Sterman et al. have been 

assumed to reach full biological maturity before felling, with no further subsequent 
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felling taking place (or at least not within the modelled timeframe). These assumptions 

essentially assign an extremely long rotation period to modelled forests which has a 

number of effects. Firstly, when applied to the non-plantation forests with very long 

growth periods they imply that felling is restricted to stands of mature trees (notably 

those with the greatest economic value, and value in terms of ecosystem services). 

Secondly, the extended rotation lengths suggest that productive land ceases to be 

productive when trees have been felled on site – basically, a forest can only be used 

once. This ignores the extensive history of land management described earlier and the 

core rationale behind using biomass fuels: that an area of land can produce energy 

multiple times. 

As described in Section 5.4.2, SBCM was configured for an area basis (1 ha) calculation 

and run for the rotation lengths in Table 5.1: a “to maturity” long rotation and a more 

plausible short rotation based on either the point of MMAI or a 66% of estimated final 

growth by mass. This resulted in a number of forest growth curves with associated 

energy production (examples are shown below in Figure 5.11 and Figure 5.12), as well 

as values for energy supplied per hectare per year, and payback periods (Table 5.3). 
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Figure 5.11. Growth and energy production for NE maple / beech / birch forest under a 66% mature 

(80 year) and an extended full maturity (323 year) rotation. The shorter rotation results in a substantial 

increase in yield over time as it repeats the early (rapid) phase of growth four times while the long 

rotation spends a significant period (about 240 years) with a much slower growth rate. 

 

 
Figure 5.12. Growth and energy production for SC shortleaf / loblolly pine plantation under a 

MMAI (26 year) and an extended full maturity (41 year) rotation. The difference between these rotation 

lengths is less marked than in Figure 5.11 due to the faster general growth rate of these forests, however 

the short rotation still outperforms the longer one over a number of rotations. 
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Table 5.3. The effect of rotation length on yield and payback. In every case, a longer rotation 

length results in a decrease in energy yield per year, and an increase in payback period when compared 

to the counterfactual. The BECCS counterfactuals are all omitted from this table since in every case 

payback is <1 year. Plantations denoted with * 

 

Rotation length 

(years) 

Realised energy 

yield  

(GJ.ha-1.a-1) 

Coal payback 

(years) 

Gas payback 

(years) 

NE maple / beech / 

birch 

80 17.7 11 52 

323 6.5 28 62 

NE oak / hickory 115 21.4 17 75 

484 7.6 44 90 

NE oak / pine 71 18.5 12 48 

238 8.2 28 58 

SC oak / hickory 72 19.0 13 51 

202 10.1 21 57 

SC oak / pine 76 17.6 10 50 

273 7.3 17 56 

SC shortleaf / 

loblolly pine* 

26 45.3 11 20 

41 35.0 12 22 

SE longleaf / slash 

pine* 

32 37.4 16 26 

41 33.6 17 27 

SE shortleaf / 

loblolly pine* 

28 45.9 12 22 

41 37.0 13 23 

 

Because of the variation in growth curve type (as described in Figure 5.2) and the 

associated impact of growth rates on payback periods (described in Figure 5.8) the 

relationship between rotation length and payback period shown in Table 5.3 is not 

immediately clear. It is notable that in every case, the shorter rotation outperforms the 

longer on a species-by-species basis; however, this reveals less about the strengths and 

weaknesses of different management techniques than the limitations of payback as an 

indicator of effective forest management. By changing the metric to an average energy 

yield per hectare per year (as in Table 5.3) it becomes easier to see the correlation 

between rotation length and actual energy output (shown in Figures 5.13 and 5.14).  
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Figure 5.13. realised energy yield for a NE maple / beech / birch forest under varying rotation 

lengths. A 66% mature (80 year) and an extended full maturity rotation (323 years) are shown for 

comparison. As discussed in Section 5.2.1, forests with a logarithmic growth pattern reach maximum 

yield at year 1, so a 66% mature rotation length was used instead.  

 

 
Figure 5.14. realised energy yield for a SE shortleaf / loblolly pine plantation under varying rotation 

lengths. A MMAI (28 year) and an extended full maturity rotation (41 years) are shown for comparison. 

The graph shows a clear peak at the point of maximum yield, which corresponds to the MMAI used to 

determine the shorter rotation length.  
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Based on this analysis, it is clear that while payback gives indication as to the relative 

time required for biomass to break even in terms of carbon emissions compared to the 

counterfactual case, it does not provide enough information to determine an appropriate 

forest management strategy. A measurement of mean annual energy supply per hectare 

for each rotation (as shown in Figure 5.14) suggests that an optimised solution for yield 

does not conform directly to payback period in all cases. For example, north-east maple 

/ beech / birch forest yields 17.7 GJ.ha-1.a-1 on an 80-year rotation while south-central 

shortleaf / loblolly pine yields 45.3 GJ.ha-1.a-1 on a 26-year rotation (as shown in Table 

5.3 above) however, both species show a payback period of 11 years. This further 

demonstrates the weaknesses of payback period as a metric, as it fails to account for 

cumulative gain in carbon savings which takes place over multiple rotations (as shown 

in Figures 5.11 and 5.12). 

5.6 The effect of thinning 

Sterman et al. cite their scenario S2 as an example of 25% thinning and assign lower 

payback values to these results. As discussed earlier in Section 5.3, this application of 

“thinning” is actually a 25% clear-fell. As the payback period metric is directly 

influenced by the quantity of carbon removed per hectare it will tend to show a more 

rapid recovery (the initial trough in the graph will be less extreme as indicated in Figure 

5.8). This is because of the energy basis calculation used by Sterman et al. - the 25% 

“thinning” uses 3.8 times the land area of the 95% clear-fell resulting in a substantial 

increase in the NPP available for regrowth.  

The primary function of thinning is not to increase yield, but to modify the forest site to 

encourage a change in the growth of the remaining trees in a stand (as described in 

section 5.2.1). There is however a clear relationship between the timing of a felling, 

payback periods, and yield. As such, a short series of trials were undertaken to identify 

possible impacts of thinning on wider modelled yield. It should be noted that these 

scenarios were not intended to reflect real-world forestry practice exactly. Thinning can 

be a time consuming and expensive operation (Chang et al., 2023) and undertaking it 

for the purposes of producing a comparatively low-value product such as biomass fuel 

as a final crop seems unlikely in real-world conditions.  
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As described in section 5.4.3 above, a range of indicative thinning ages were determined 

(see Table 5.2) based on MMAI or stand mass. These were modelled and compared to 

equivalent unthinned stands examples of the results are shown below in Figures 5.16 

and 5.17) 

 
Figure 5.15. Forest growth in a stand NE maple / beech / birch forest under thinning and no-thin 

scenarios on long and short rotations.  
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Figure 5.16. Forest growth in a stand SC shortleaf / loblolly pine plantation under thinning and no-

thin scenarios on long and short rotations. Note that all rotation lengths are substantially shorter than 

those used in Figure 5.15. Forest growth in a stand NE maple / beech / birch forest above. 

Since the timing and yield of biomass is dependent on independently derived variables 

for each region / species case, an annual energy yield (GJ.ha-1.a-1) was calculated for 

each case, under each management regime. This included the sum of energy derived 

from thinnings and then from a final felling per rotation and is shown in Figure 5.17 

below. 
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Figure 5.17. Energy yield from thinned and unthinned forest stands on a long rotation (to full 

maturity) and a short rotation (to either 66% of final mass, or the point of MMAI as described in 5.4.2).  

The results were consistent with the themes which have been observed in earlier 

chapters. These is a clear separation between plantation and non-plantation forests in 

terms of yield and behaviour. 

The non-plantations all showed the highest yield when unthinned under a short rotation. 

Thinning resulted in a very minor change in yield with a commensurate change in 

payback period (≤ 2 years) in some cases. This may be because of the timing of the 

thinnings; the slow growth rate of these species at higher maturities may not have 

allowed full recovery after thinning before the final felling. 

Conversely, the energy yield per ha from plantation forests was improved by thinning in 

every case, but this increase was not large enough to result in a change in payback 

period (as shown in Table 5.4 below).  

These findings are in clear contrast to the results published by Sterman et al. where 

thinning of a forest resulted in a (sometimes very substantially) shorter payback period 

in all cases. 
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Table 5.4. Payback periods under different felling regimes and rotation lengths compared to the 

revised coal and gas counterfactuals described in Chapter 4. In spite of measurable changes in yield, 

relatively minor changes in payback period took place. 

 

Short rotation 

unthinned 

Short rotation 

thinned  

Long rotation 

unthinned 

Long rotation 

thinned  

 Coal Gas Coal Gas Coal Gas Coal Gas 

NE maple / 

beech / birch 

11 52 12 62 28 150 27 182 

NE oak / hickory 17 85 19 90 44 190 44 234 

NE oak / pine 12 48 13 58 28 115 28 141 

SC oak / hickory 13 51 13 57 21 88 21 95 

SC oak / pine 10 50 10 56 17 97 17 104 

SC shortleaf / 

loblolly pine* 

11 20 11 22 12 23 12 25 

SE shortleaf / 

loblolly pine* 

12 22 12 23 13 24 13 26 

SE longleaf / 

slash pine* 

16 26 16 27 17 28 17 29 

 

Based on these results, it is apparent that thinning results in a minimal change in the 

total energy realised per hectare when compared to no-thin scenarios. Contrary to the 

findings of Sterman et al., the resulting changes in payback period are minimal. 

It should be noted that these results are based on the assumption that all felled biomass 

is used for biomass fuel. As discussed earlier, the primary purpose of thinning is not to 

increase yield per se, but to change the type of yield (Gonçalves, 2021). This 

mechanism is designed to produce timber with higher economic value to the forest 

manager which argues strongly against it being used for fuel, and in favour of use for 

higher value items. As such the increased cost associated with thinning to produce a 

higher quality final crop is essentially wasted if the final crop is also used to produce 

biomass. This is discussed in more depth in section 5.7 below. 
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5.7 Conclusions 

As originally written, the Sterman et al. model contains several inbuilt assumptions 

which do not allow for a more nuanced assessment of forest management techniques: 

The model was designed to identify the area of forest needed to supply a specified value 

of energy. The assumption implied by this configuration is that forest area is infinitely 

elastic, while energy demand is fixed.  

The model also assumes that all forests are felled at biological maturity (an 

“equilibrium” point) and are then allowed to return to this state. This, is in effect, an 

assumption that only mature forests (aged between 45 and 484 years depending on 

species and region) are felled for biomass fuels. In making these assumptions, they 

ignore studies which suggest that multiple rotations of fast-growing species may be 

more sustainable than fewer rotations of slower growing species (e.g. Mitchell et al., 

2012) and a significant and long standing body of research on forestry and silvicultural 

practice (Prisley et al., 2018). 

Sterman et al. assume that felling takes place on a site at the beginning of the model run 

and does not occur again within the modelled timeframe. This is partially offset in their 

scenarios S7 (sustained yield with continued demand growth) and S8 (sustained yield 

with attenuating demand growth); although in both of these cases, new forest blocks are 

generated to meet demand, rather than old ones being reused. In each case, this means 

that forests can only be felled at the point of biological maturity and as such, they track 

the effects of site regrowth, rather than the effect of forest management. Rotational 

forest management and partial felling (thinning) of forest stands is completely omitted. 

While Sterman et al. do identify a scenario as thinning (their S2) since the forest is 

mature when felled this is simply a selection felling or a clear-fell of 25% of the forest 

area.  

These assumptions suggest a number of implications for the results as published by 

Sterman et al. specifically:  

1. Unreliable estimates of forest area required for biomass production due to an 

increasing area without reusing existing sites. 
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2. Unreliable estimates of payback periods for forests with particularly long growth 

curves. This is because the assumption of a larger carbon stock on a forest site 

results in an unrealistically high net carbon debt before repayment (see Table 5.3, 

and Figure 5.8). 

3. Incorrect statements about the impacts of forest thinning on energy production. The 

elasticity of area and assumption of “thinning” at maturity used by Sterman et al. 

means that the reduction in payback period shown in their findings is at best 

uncertain (as shown in Table 5.4). 

Payback is used as the primary metric for judging sustainability of biomass supply 

chains. This does take account of the relative emissions from biomass and 

counterfactual supply chains as well as the rate of site regrowth, and is robust for the 

scenarios that Sterman et al. use. However, it does not take account of the efficiency of 

fuel production with respect to land use, and is limited to scenarios where the 

counterfactual initially appears more attractive. When the biomass scenario has a lower 

initial emission than the counterfactual (as with BECCS) the payback period allows no 

comparison between scenarios.  

As discussed in Section 5.5.1, in calculating area requirement based on energy demand 

Sterman et al. have reached an incomplete solution for the forested area required to 

meet demand. This is based on an erroneous assumption that forested areas must return 

to a point of maturity following felling.  

Modifying rotation lengths changes the average rate of growth for an area of land 

(Section 5.5.2). Reducing rotation length has a variable effect (depending on growth 

curve type) but generally results in an increase in forest production allowing a forest to 

regrow and displace emissions from the counterfactual case many times, rather than the 

single time assumed when using a long rotation. As shown in Figure 5.17 and Table 5.4, 

reducing rotation lengths (described in Section 5.4.3) resulted in an mean increase in 

yield of 10.9 GJ.ha-1.a-1 for non-plantation forests and 7.7 GJ.ha-1.a-1 for plantations. 

The timing and intensity of thinning operations are variable and imply questions about 

the final use of timber (as discussed in Section 5.5.3). While the use of thinnings and a 

final crop for biomass fuel is unlikely in real-world scenarios, this cannot be explored 
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more completely without additional work to add harvested wood products to the 

modelled supply chain. Based on a limited range of possible thinning strategies using 

the assumption that all felled carbon is destined for biomass use, it is clear that in most 

cases the introduction of a thinning regime has a minor effect on yield across a rotation 

(as shown in Figure 5.17). This does not support the findings of Sterman et al. who 

suggest that thinning substantially reduces payback periods in all cases.  

SBCM 2.0 is able to model a fixed area able to supply a single pulse of energy, or an 

intermittent energy supplied depending on management decisions. This could be 

improved to simulate a wider forested landscape of many stands required to produce an 

annual supply and represents a step towards the inclusion of harvested wood products 

and economic factors within the model framework. These and a number of further 

improvements are discussed in more detail in Chapter 6. 
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Chapter 6. Conclusions 

In which the Author has a long, hard, think about what he did. 

6.1 Introduction 

As discussed in detail in Chapter 1, forest-sourced biomass combustion is a widely used 

climate change mitigation technology used to decarbonise electricity generation. While 

the literature reflects a substantial level of uncertainty as to the sustainability of this 

course of action (Bentsen, 2017; Giuntoli et al., 2020), global use of biomass fuels is 

expected to continue increasing for decades to come (Rogelj et al., 2018). 

The uncertainty surrounding the sustainability of biomass fuels (reported payback 

periods which span four orders of magnitude - Mitchell et al., 2012) has been poorly 

communicated with little reference to the wide range of different assumptions, methods 

and approaches used. This has led to a lack of clarity in the public sphere and among 

policy makers. As a result, the sustainability of forest-sourced biomass fuels is now 

hotly contested (Mather-Gratton et al., 2021). 

The aim of this thesis is to address uncertainty by attempting to identify how model 

parameters, assumptions and reporting metrics affect the apparent sustainability of 

biomass supply chains. 

This chapter includes a summary of work carried out as part of this research programme 

on a chapter-by-chapter basis, with direct reference to the research questions described 

in Section 1.5. The work is then critically assessed with regard to limitations and this 

assessment is used to propose future research topics and avenues of exploration. 

6.2 Summary of research 

6.2.1 Chapter 2: Model development summary 

Chapter 2 describes the identification, analysis, replication, and initial testing of a 

simple model to assess the sustainability of biomass supply chains as described in 

Chapter 1. 
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Given the need for an adaptable modelling framework to compare the 

sustainability of biomass fuel supply chains; which existing, published model is the 

most appropriate for conversion and adaptation? 

As discussed in Section 2.2, a large range of different models, calculations, and 

approaches exists in the literature (Welfle et al., 2020). As such, an exhaustive 

categorisation and analysis is beyond the scope and capacity of this study. Models were 

identified based on a snowball search of the current literature on the basis of a series of 

questions (Section 2.2.1) largely intended to select for accessibility and ease of 

modification. A strong candidate for adaptation was identified (Sterman et al., 2018a) 

which fit the requirements well. The Sterman et al. model is simple, free, licenced for 

modification, has open-source code and is well documented. Weaknesses in the model 

do exist, but because of the quality of the documentation, these are not insurmountable.  

Given the proliferation of models designed to address the sustainability of biomass 

fuels, it is reasonable to assume that other candidates for adaptation are available. Since 

the initial choice of model was very much a starting point for future work, the specific 

model chosen was rather less important than subsequent modification. 

How does the selected model work, what are its strengths and weaknesses, and 

what assumptions are implicit in the model structure? 

The Sterman et al. model (described in detail in Section 2.3) is composed of two parts. 

A fuel supply chain model (Figure 2.2) is used to estimate fuel requirement, emissions, 

and the counterfactual scenario. A forest growth model (Figure 2.3), is used to estimate 

the mass balance of carbon moving between the atmosphere, forest, and soil carbon 

pools. The model has some strengths in that it provides a clearly defined, transparent 

framework under an open-source licence with logical well documented code, and freely 

available training data (Smith et al., 2006). Of all the models assessed, the Sterman et 

al. model was by far the most transparent in terms of documentation and application. 

Conversely, the model also suffers from a number of structural weaknesses, being 

reliant on less well-known proprietary modelling software to run (Vensim - Venata 

Systems, 2017) and relying on a number of parameters, assumptions and scenarios of 

questionable reliability. Initial analysis of the model identified clear issues with the 

supply chain parameters (particularly for biomass combustion) and assumptions about 

silvicultural practices discussed by Prisley et al. (2018).  
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How can this model be enhanced, making use of its strengths while addressing its 

weaknesses? 

After a detailed analysis of the Sterman et al. model (Section 2.3) a redeveloped version 

of the model was built using Python: The Simple Biomass Comparison Model (SBCM)* 

This replication was intended to improve accessibility as well as be easily configurable 

for a wider range of parameters and scenarios.  

SBCM specifically utilises the strengths of the Sterman et al. model (i.e. open-source, 

licenced for modification, simple) while addressing previously identified weaknesses 

(such as inaccessible coding language) and allowing further study of the parameters and 

scenarios used. Later chapters (3, 4, and 5) describe how work was carried out to 

address weaknesses in the forest model, supply chain model, and silvicultural 

assumptions. 

Can the existing published results from the model be reproduced in a replicated 

version? 

SBCM was tested against results published by Sterman et al. (2018a) to ensure that the 

replication of earlier work was successful. The initial match between results from 

SBCM and the Sterman et al. model was very good – producing visually identical 

growth curves over the first 100 year-period. SBCM, however; did not produce an exact 

match for “equilibrium values” (i.e. the total carbon storage in a fully mature woodland) 

over extended time periods, and payback periods did not agree. After testing, this 

discrepancy was isolated to the forest growth model and was investigated in detail in 

Chapter 3  

6.2.2 Chapter 3: Assessing the forest model summary 

Chapter 3 describes a detailed analysis of the forest growth sub-model and the 

investigation of minor discrepancies between the results from SBCM and those 

originally published as described in Chapter 2.  

 
* available at https://github.com/Priestley-Centre/SBCM 
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How is the data used to train the model by Sterman et al. derived, and is it the 

most appropriate? 

The data used to train the model is a high-level regional dataset from the USA, based on 

a combination of direct measurement using chronosequence values from a large scale 

network of sample plots, interpolated using the LANDCARB model (Smith et al., 

2006). While it does not provide spatially explicit stand level information (beyond 

biogeographical region) it does provide a robust, easily accessible indicative values for 

above and below-ground carbon for a range of forests of different ages in the 

continental USA. This dataset is unusual in that it includes estimated values for soil 

carbon as well as carbon in forest biomass, and no more appropriate datasets were 

identified. 

Are the parameters obtained by Sterman et al. the most appropriate to replicate 

the forest growth curves supplied by Smith et al. (2006) or can improvements be 

made? 

Using this data, a dual-response least squares non-linear regression was carried out in 

Python to produce revised parameters for SBCM to plot curves for forest and soil 

carbon over time. In every case, SBCM was able to produce at least one 

parameterisation which improves the fit of estimated forest and soil carbon levels to 

their training data over the Sterman et al. model. A number of these improvements are 

modest, but the growth curves generated using SBCM parameterisations developed in 

Chapter 3 consistently outperform those using parameterisations published by Sterman 

et al. (2018a). 

To what extent does uncertainty exist between the training data, forest growth as 

described by Sterman et al. (2018a) and forest growth described in SBCM?  

In improving the fit of the SBCM growth model to its training data, a clear difference 

was observed between results for plantation and non-plantation forests. Plantations 

typically show good agreement between the values published by Sterman et al. the 

training data published and results from SBCM (variation in site carbon at maturity 

<=4tC.ha-1 variation in payback period <= 1 year). In contrast, the non-plantation 

forests show substantial variation between different parameter sets with comparable 
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RMSE scores (variation in site carbon at maturity 50-228 tC.ha-1 variation in payback 

period 21-48 years) all show a larger degree of uncertainty in the later phases of growth. 

A statistically significant correlation was identified (r2 = 0.99, p < 0.00002) between the 

range of possible outcomes and the degree to which growth curves have been projected 

beyond the training data. A likely candidate for this increase in uncertainty is the 

susceptibility of the Chapman-Richards growth function to numerical instability where 

the asymptote is not known (Ratkowsky, 1983; Burkhart and Tomé, 2012) as in the case 

of the slower growing forest types.  

It is reasonable to conclude on this basis that it is not possible to determine which 

parameterisations for these forests are more likely to be accurate from this training data 

alone when using either the Sterman et al. model, or SBCM. It is even possible that the 

values preferred by Sterman et al. may be the best fit with real-world situations; we 

simply do not have enough information to tell without either improving the training data 

or modifying the growth function used by the model.  

What effect does an improved choice of parameters have on predicted carbon 

storage values, and payback times for different region and species combinations? 

Uncertainties of carbon storage rate and magnitude have a substantial impact on the 

payback periods for non-plantation woodlands, and in each of the cases studied the 

parameters reported by Sterman et al. (2018a) resulted in the longest possible payback 

periods of between 68 and 107 years for these forest types. 

Based on these findings, it is reasonable to assume that the parameter values with the 

lowest RMSE are the most appropriate for use elsewhere in this study (see Appendix D) 

but, that these parameters are only reliable for non-plantation forests when the length of 

the rotation is less than 100 years, in contrast to the biological maturity assumption used 

by Sterman et al. (this is discussed in Chapter 5).  

6.2.3 Chapter 4: Assessing the supply-chain model summary 

Having assessed the reliability of the forest growth sub-model in Chapter 3, a number of 

assumptions used in the supply-chain sub-model were assessed in Chapter 4.  
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Are the parameters used by Sterman et al. the most appropriate for the supply 

chains they describe, and should they be modified in SBCM? 

The parameters used by Sterman et al. to describe supply chains were assessed and 

significant weaknesses were identified. Values for the coal counterfactual were out of 

date in some cases, and the value for biomass end use efficiency was found to be 

incorrect by nearly 12%. In each case, values were updated where more appropriate and 

recent sources were available. 

Sterman et al. rely heavily on a counterfactual of electricity generated using coal. 

Is this still the most appropriate counterfactual? 

The widespread use of coal counterfactuals in studies of this type is perhaps 

understandable due to the similarities of supply chains handling solid fuels, but in view 

of international commitments to phase out coal use (UNFCCC, 2021a), it is becoming 

clear that coal can no longer be used in isolation as a valid business as usual scenario. 

Are there any other supply chains which could be modelled using SBCM that 

would be more appropriate than those currently in use?  

Given the limited usefulness of comparisons with coal, another counterfactual based on 

natural gas was added to the model. Gas is the cleanest and most efficient fossil fuel 

technology, and was deemed to give a more challenging comparison.  

While simple combustion for primary energy generation remains the dominant use of 

biomass globally, use of carbon capture and storage technology is expected to become 

widespread in the near future (Ganeshan et al., 2023). To account for this, two 

additional parameter sets were developed to provide indications of the change in 

payback periods associated with BECCS. 

How does revision of the supply chain parameters within the model change the 

apparent sustainability of biomass fuels? 

Using more reliable data sources, payback periods for electricity generated from 

conventional biomass combustion were shown to decrease relative to coal when 

compared to the results published by Sterman et al. for 25% and 95% felling scenarios. 
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Payback periods decreased by between 20 and 73 years in the non-plantation forests and 

between 2 and 6 years in plantations. 

Unsurprisingly, payback periods increased substantially when conventional biomass use 

was compared with natural gas: by between 47 and 162 years for non-plantations, and 

between 5 and 11 years in plantation forests. 

In every case, the initial emission associated with BECCS was lower than the emission 

generated by the counterfactual; resulting in a payback period of less than 1 year. This 

highlights the potential of BECCS as a CDR technology, but also illustrates the 

limitations of payback period as a metric. Payback only shows the relative difference 

between a biomass scenario and a counterfactual when the counterfactual produces less 

CO2 initially than the biomass system. As such, it is not possible to identify which of the 

two BECCS scenarios was more advantageous using this metric. This limitation is 

discussed more completely in Chapter 5. 

6.2.4 Chapter 5: Including silviculture summary 

Sterman et al. make a number of contested statements about forestry management 

practices (Sterman et al., 2018a; Prisley et al., 2018; Sterman et al., 2018b). In view of 

these, and having established limitations to the validity of the forest model for very long 

rotations on non-plantation sites (Chapter 3) this chapter describes an analysis of the 

forest management practices assumed by Sterman et al. followed by a number of 

modifications made to SBCM to broaden the range of possible silvicultural systems 

considered. The limitations of payback period as a metric, the use of energy and area 

basis calculation, and the optimisation of forest yield are discussed in more detail. 

What do Sterman et al. assume about silvicultural systems in developing their 

model?  

In the Sterman et al. model, forest area is assumed to be infinite and fully elastic, forests 

are assumed to be felled at full biological maturity and silvicultural thinning as it is 

traditionally understood is replaced with a partial felling of mature forest. This ignores 

conventional forestry practice (described in Section 5.2.1) which aims to maximise 

forest yield (either in volume or financial terms) for a limited area rather than simply 

waiting until the forest has stopped growing before felling. 
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What are the implications of these assumptions, are they justified, and could they 

be improved? 

First SBCM was updated to version 2.0* to allow it to run with a fixed area (and elastic 

energy production) and to allow repeated felling of a single area. This change in 

perspective allows an analysis of forest yield, rotation length, and silvicultural thinning 

in the context of biomass production (these modifications are described in section 5.4). 

The assumptions made by Sterman et al. have a number of effects. Extremely long 

rotation lengths result in the maximum possible payback period for each species / region 

case and can effectively waste potential yield from a forest site. This is obscured by a 

reliance on the energy basis calculation which simply recalculates area to compensate, 

and can lead to unreliable estimates of area requirement. In simulating a 25% felling, 

the model assumes an increase in area requirement by a factor of 3.8 compared to a 95% 

clear-fell scenario. This meets the energy demand, but skews the site recovery (and thus 

payback period) since NPP from a much greater area is available to support regrowth. 

How does modification of these assumptions within the model change the apparent 

sustainability of biomass fuels? 

In calculating area requirement based on energy demand Sterman et al. have reached an 

incomplete solution for the forested area necessary to supply fuel. In real-world 

conditions forest area is finite, and limits potential energy production rather than the 

other way round. This has minimal effect on results if we assume that forested areas 

must return to a point of maturity following felling, but when very short rotation lengths 

are applied, it can lead to excessive area requirements (as shown in Figure 5.7). 

Varying rotation lengths is a standard silvicultural technique (Section 5.2.1) and this 

practice changes the average rate of growth for an area of land over time. The effect is 

harder to observe when operating on an energy basis, and when measuring the effect of 

a single felling operation, but becomes increasingly important when working on a fixed 

area and modelling a series of felling operations on the same site. Rotation lengths can 

generally be tailored to optimise forest NPP, allowing a site to regrow and displace 

emissions from the counterfactual case many times, rather than the single time assumed 

 
* Available from the author and included in electronic supplementary materials. 
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when using a long rotation. As described in Section 5.4.2 modified rotation lengths 

resulted in a mean increase in yield of 10.9 GJ.ha-1.a-1 for non-plantation forests and 

7.7 GJ.ha-1.a-1 for plantations.  

While conventional biomass use does not lead to negative carbon emissions, the relative 

difference between biomass emissions and the counterfactual increases every rotation 

leading to a cumulative carbon saving over time. This cumulative effect is maximised 

when forests are managed to maximise yield. The same is true for BECCS scenarios, 

except that the divergence between counterfactual emissions and BECCS emissions is 

more marked and BECCS also functions as a CDR technology i.e., the cumulative 

BECCS emissions become negative.  

The work in this chapter highlights a number of weaknesses inherent in the use of 

payback as a metric. Without detailed control over other variables, it is possible to show 

very low payback periods at the expense of extremely low energy production or 

extremely high area requirement. When biomass emissions are lower than the 

counterfactual (as in BECCS scenarios) payback cannot be used in isolation to identify 

the most advantageous course of action.  

6.3 Addressing the overarching research question 

The research goal described in Chapter 1 was to identify how model parameters, 

assumptions and reporting metrics affect the apparent sustainability of biomass supply 

chains. While the research conducted was not exhaustive (limitations and next steps are 

discussed in Section 6.4) a number of firm conclusions can be identified. 

6.3.1 Parameters 

The model parameters used in SBCM fall into two clear categories based on the forest 

and supply chain sub models. This can be generalised to describe specific impacts on 

payback (as shown in Figure 5.8) as the depth of the initial drop in carbon saved 

depends principally on relative emissions of biomass use and the counterfactual 

scenario – governed by the supply chain parameters, and the steepness of the recovery is 

based on the rate of forest growth – governed by the forest growth model. 
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As such, minor changes in the forest model parameters (Chapters 2 and 3) result in 

substantial effects in terms of the apparent sustainability of the biomass scenario. As 

shown in Figure 5.8, this is partly caused by the total carbon emitted on combustion i.e. 

the net carbon debt; and partly on the rate of regrowth – which depends on the intensity 

of felling, site, and species. Payback periods are also highly sensitive to counterfactual 

scenario (shown in Chapter 4). While some supply chain parameters are not well 

constrained (biomass supply chain losses being particularly difficult to quantify) the 

general effect of moving away from a conventional biomass: coal counterfactual 

scenario is significant.  

Based on this finding, it is reasonable to conclude that the apparent sustainability of 

conventional biomass depends to a great extent on the accuracy of these 

parameterisations (as explored in Chapters 3 and 4). 

6.3.2 Assumptions 

As discussed in Chapter 1, there are a wide range of different assumptions made in 

studies of this type. It is possible to produce results which appear to be based on 

comparable methods, while making radically different assumptions about system 

boundaries, counterfactual operation, silvicultural practice, and metric calculation. In 

particular, the assumptions about how forests are managed in response to biomass fuel 

production (as explored in Chapter 5) have a strong influence on the apparent payback 

period.  

The complexity of modelling required to develop a fully coherent / exhaustive set of 

possible assumptions is very high, and as such many studies (including this one) opt to 

simplify the possible range of scenarios in favour of reducing complexity to a more 

manageable level. For example, it is not possible to fully take into account forest 

management and growth in a counterfactual scenario without including assumptions 

about management for a range of alternative HWPs. Failure to do so restricts the model 

to an implicit assumption that forests are unmanaged (or simply carbon inert) in the 

counterfactual. This limitation is discussed in more detail in Section 6.4. 
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6.3.3 Metrics 

Payback period is a useful metric for communicating results but only when adequately 

contextualised. While no consensus of minimum acceptable payback period or 

standardised counterfactual case were identified, the idea that shorter payback periods 

are generally better is easy to understand and intuitive. Care needs to be taken that 

counterfactual cases are stated for clarity, but continued use of this metric is advisable. 

The metric does have limitations which are evident when comparing scenarios where 

biomass emissions are smaller than the counterfactual. When the biomass scenario 

incorporates BECCS, a time to reach carbon negative operation may be more 

appropriate. While it is tempting to see this as a separate metric, it is essentially a 

payback period against a hypothetical energy source with zero initial emissions. It is 

important to recognise that this is not the same as a comparison with wind or solar 

energy, because this would imply an assumption of equality in infrastructure emissions 

which is not valid.  

Based on these conclusions, a recommended form of reporting is suggested as: 

The “payback” time required for electricity generated by biomass to result in a lower 

emission than the alternative was estimated at [X] years, when compared with an 

equivalent amount of energy generated using [counterfactual]. This estimate assumes 

that the biomass fuel is sourced from sustainably managed forests which will regenerate 

over time.  

or 

The time required for electricity generated by biomass with carbon capture and storage 

to result in a net reduction in CO2 from the atmosphere was estimated at [X] years. This 

estimate assumes that the biomass fuel is sourced from sustainably managed forests 

which will regenerate over time.  

6.3.4 Comparison with other work 

Based on the findings described in earlier chapters, the payback periods for 

conventional biomass as calculated by SBCM have reduced from those published by 

Sterman et al. when compared to coal in both duration and uncertainty (Figure 6.1).  
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Figure 6.1. SCBM comparison with other published results (coal scenario). SBCM (in green) 

shows a marked reduction in payback period compared to the Sterman et al. model (orange) as well as a 

decrease in the range of possible outcomes. 

In contrast the comparison with a gas counterfactual (Figure 6.2) shows a substantial 

increase, although this is not consistent across the forest types studied. 
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Figure 6.2. SCBM comparison with other published results (gas scenario). SBCM (in green) shows 

an increase in payback periods, as well as substantial increase in the range of possible results.  

It should be noted that these examples do not show BECCS scenarios due to the 

inability of payback to describe negative emissions meaningfully. The BECCS scenarios 

resulted in negative absolute emissions by between 10 and 44 years. 

6.4 Model application and usefulness 

This work clearly demonstrates the need for better comparisons between different 

models, techniques, and experimental assumptions. This is particularly true in an 

increasingly polarised and toxic public debate on the sustainability of biomass fuels. 

While it is tempting to express surprise that so little agreement has yet been reached in 

the academic literature over accepted conventions when conducting this kind of study, 

this is perhaps explained by difficulties in conceptualisation, particularly in view of 

their superficial simplicity.  

The development of SBCM is primarily intended to address this issue and allow 

researchers to compare their work with existing findings and to properly and completely 

articulate the assumptions they make when publishing new work.  

SBCM provides a fully documented, accessible starting point for researchers working 

on the sustainability of forest-sourced solid biofuels, and it is hoped that it will provide 
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some common ground when addressing this subject. It is also hoped that further work 

on this subject will allow the simplification of the terms used in this area to be clearer 

when disseminating the findings to policy makers and an increasingly sceptical public. 

6.5 Limitations and further research possibilities 

As with any work of this kind, the research undertaken has boundaries and limitations. 

In most cases these limitations also represent a range of interesting and potentially 

fruitful avenues for further research. These have not been pursued further due to 

constraints of time, capacity, scope, and budget, but could provide opportunities for 

further development. 

6.5.1 Forest growth modelling 

SBCM 2.0 provides a robust model for forest growth and soil carbon in eight forest 

types as discussed in Chapter 2. However, as identified in Chapter 3, the application of 

the Chapman-Richards growth curve to training data without a clear asymptote is 

problematic and this means that for the non-plantation forests, the model becomes 

unreliable for periods longer than 100 years. This does not preclude its use for shorter 

periods, but does call into question the extremely long rotations used by Sterman et al. 

as discussed in Chapter 5.  

An obvious opportunity for further research would be to upgrade SBCM with one or 

more alternative growth functions and additional training data (if available) to provide a 

comparison for balance and to check whether the different growth functions are able to 

further improve the model over longer periods. 

In addition to this, SBCM could relatively simply be adapted to include forest types 

elsewhere in the USA, using the original training data, or for other world regions and 

forest types. In particular, the UK does not appear to have an open-source peer-reviewed 

software-based model available to the forest industry and this could provide a useful 

tool. Further work would need to take place to improve the accessibility of the model, 

calculate parameterisations for a range of growth rates for each species, and identify 

high quality soil data or an appropriate soil carbon model such as YASSO (Viskari et al., 

2022), but an approximation based on existing yield tables would not be difficult to 

achieve.  
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6.5.2 Improve the response to climate change 

SBCM as it stands includes the code to correct for carbon fertilisation (Equation 2.5). 

This was not used in this research to minimise confusion when results were compared 

directly with existing published work. This could be the subject of further work to 

simulate the expected response of specific forest types to changing atmospheric CO2 

and coupled with a model dealing with atmospheric carbon such as FaIR (Leach et al., 

2021). This would allow further research looking at the long-term effects of forest 

management and biomass use over time. Further additions could be made to include 

other non-CO2 GHGs and other climate effects such as albedo change, although this 

would risk adding a spatially explicit component to the model which is not supported by 

the existing training data. 

6.5.3 Supply chain modelling 

The supply chain modelling in SBCM is very simple. This is beneficial during 

development, when attempting to identify clear causes and effects, or when dealing with 

hypothetical scenarios, but less useful when addressing real-world conditions. If work is 

carried out to improve the forest growth component of the model – to provide site-

specific data to inform management decisions for example, further work would also be 

needed to improve the resolution of the supply chain model. At present SBCM would 

not be an appropriate tool to guide decisions about processing technologies, transport 

routes, or infrastructure site. Work of this kind has been used by the UK government for 

reporting purposes in the (now rather dated) B2C2 Calculator (E4Tech, 2015) but has 

not been clearly coupled with a forest management model. 

6.5.4 Harvested wood products 

SBCM follows the assumption that all felled material is used for fuel purposes. While 

this may sometimes be the case the low value of biomass fuel compared to other HWPs 

would suggest that it is not the preferred market for timber. HWPs have different life 

expectancies usually modelled by half-life (Braun et al., 2016) and require different 

types / qualities of timber for production. The life expectancy of HWPs could well be 

expected to have a profound impact on the mass balance of carbon following woodland 

management. Biomass fuels in SBCM are assumed to have a life-span of <1 year, but a 

range of other products (building timber for example) could be expected to immobilise 
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carbon for a much longer period. The interrelationship between this variable lifetime, 

the counterfactual scenario and forest management is extremely complex as it could 

potentially include a range of forest supply chains for different products and a cascade 

of post-use products re-entering the supply chain, as well as a larger number of different 

counterfactual products 

The product assortment available from forests depends on the shape of felled trees 

(form) the species, length and diameter. These are all dictated by site conditions, 

particularly initial spacing, and the timing and intensity of silvicultural thinning. This 

links closely with the enhancements proposed in Section 6.5.1  

6.5.5 Economics 

A number of authors (Schulze et al., 2012; Roberge et al., 2016) have suggested that 

increasing the economic value of poor quality timber will lead to a downward pressure 

on rotation length. This is impossible to quantify with any certainty without the addition 

of an estimate of economic value for different HWPs and an estimate of product 

assortments defined by different management decisions as described in 6.5.1 and 6.5.4. 

While economic valuation of different product streams is likely to be relatively simple, 

the implications for inclusion of other HWPS make this modification of the model 

extremely difficult to develop in a coherent and comprehensive way.  

6.5.6 Forested landscapes 

SBCM operates at a stand level – an intermediate spatial scale which models a 

homogenous area of forest at the same age. This can, in theory, be expanded simply to 

cover a forested landscape by simulating a number of stands with different ages 

simultaneously (as illustrated in Figure 1.12). Combining these in a coherent system 

boundary raises difficulties because different methods imply different assumptions 

about attribution of carbon flows and baselines. 

As discussed in Section 1.3.2 a landscape scale model is difficult to justify without the 

inclusion of HWPs since omission risks either assuming forest growth does not exist in 

the counterfactual, that biomass use can take advantage of the net carbon flux generated 

by producing products outside the temporal system boundary, or adopting the widely 

rejected dividend then debt approach (as shown in Table 6.1) 
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Table 6.1. The implications of spatial boundaries and HWPs 

 Static boundary Expanding boundary 

HWPs 

excluded 

Forest areas are included within the 

boundary which are either fully 

mature, or are partially grown. This 

means we either assume that mature 

forests blocks are being felled solely 

for biomass, or the (negative) carbon 

flux from part grown forests can be 

counted towards biomass use when 

they were felled for some other 

reason. The only coherent way of 

handling this is by adopting the 

dividend then debt perspective. 

Forest areas are added to the model 

as they reach a baseline (rotation 

age). Again, this implies that 

biomass fuel is the only reason for 

felling, and also fails to take account 

of forest growth in the counterfactual 

case. It is arguable that we could 

assume forest growth is more or less 

static in the counterfactual but the 

only situation when this would take 

place is if these forests had reached 

full biological maturity i.e. an 

assumption that old growth forest is 

felled exclusively for biomass use. 

HWPs 

included 

This is coherent, but we will need to 

make some assumptions about 

existing HWPs already in circulation  

Again, this does not take account of 

forest management in the 

counterfactual case.  

 

6.5.7 More counterfactual nuance 

A number of other scenarios could be added (as discussed in 4.5). These could be 

developed to reduce supply chain uncertainties for biomass production, further constrain 

the value for the efficiency of BECCS, and increase the number of cases studied. To 

develop this fully would require modification of the model to include an estimate of 

infrastructure emissions, since SBCM currently assumes that the emissions inherent in 

installation and development of infrastructure are equal across all technologies. This 

assumption while plausible for a coal counterfactual and (slightly less so) for a gas 

counterfactual is not valid when looking at other fuels. Renewables have no fuel supply 

emissions per se, and nuclear energy which generates no direct CO2 from use, has 

radically different infrastructure requirements including long-term spent fuel storage. 

This could be combined with modifications to the supply chain modelling to allow 
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greater variability in assumptions regarding transport and processing emissions for 

different fuel types as discussed in Section 6.5.3. 

6.5.8 Additional extensions / possible minor changes 

Finally, a number of extensions, updates, and modifications of the code would allow 

wider comparisons / analysis, and improve accessibility for an end user.  

Add new metrics 

SBCM currently uses payback period as the primary metric. This has weaknesses as 

described in Chapter 5, but is intuitive and easily understood. An additional metric of 

“absolute payback” or time to negative carbon emissions could be added to the model to 

compensate for these weaknesses (particularly when addressing the effectiveness of 

BECCS). Alternatively, other metrics exist such as gross and net carbon debt (described 

in Chapter 1), and the GWPbio (as promoted by Cherubini et al., 2012). These are less 

widely used (and less easy to conceptualise) but could facilitate wider comparisons with 

other published work. 

Usability / UI improvements 

While SBCM is a simple model, which is easy to conceptualise and configure. It does 

require a working knowledge of Python to modify and operate. Introduction of a user-

interface (UI) would remove this barrier and increase accessibility to a wider audience. 

Code optimisation 

One of the most common criticisms of Python as a coding language is that execution of 

code is slow compared to lower-level languages. Considering the simplicity of the 

model, some aspects of SBCM take a long time to run in a Python environment (the 

identification of new parameters described in Chapter 3 takes around 10 minutes for 

example). It seems likely that bottlenecks exist in the code, and that these could be 

addressed by optimisation of the code as written, by conversion of some modules to 

Cython (which compiles Python code to .exe format) or by some other method. 
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Automated margins of error 

As described in Chapters 3, and 4 uncertainties exist in both the forest site sub model, 

and in the parameterisation of supply chains. This can be communicated, but at present 

relies on the end user to intimately understand the methods and processes used in the 

model and address them manually. An extension to SBCM could include more 

structured sensitivity testing and automated error bar reporting (potentially including 

standardised graphical output). This would improve the clarity of results communication 

and allow more robust comparisons with other tools. 

Higher level assumption / methodological choice 

The majority of comparisons in this study have been developed manually based on 

explicit descriptions of assumptions, parameters, and the like. A useful further 

development of SBCM would be to separate out parameter use, assumptions, and 

methods used – essentially setting them as higher-level functions rather than requiring a 

more detailed understanding of SBCM implementation to deliver. 

6.6 Final Conclusions 

The development and use of SBCM to assess the impacts of different parameters, 

assumptions, and metrics on biomass supply chains has successfully illustrated a 

number of critical points. The highly heterogeneous set of different methods present in 

the literature effectively obfuscates the sustainability of biomass use, and while it is 

possible (without much effort) to identify scenarios which are clearly sustainable or 

otherwise, the range of uncertainty leads to a substantial grey area. This work attempts 

to articulate the effects of different assumptions made which have an effect on the 

apparent desirability of biomass supply chains as a sustainable climate change 

mitigation technology. 

This study reinforces the conclusion that conventional forest-sourced biomass use does 

not generally result in negative emissions over any timeframe and as such never reaches 

a point where net emissions equal zero (which some might call “carbon neutrality”). 

Referring to Equation 1.1 (page 16) ΔCsite is able to (though does not always) return to 

zero if full site recovery occurs, the supply chain however inevitably involves emissions 

of some type and there is no mechanism for reversing these without an increase in ΔCsite 
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above pre-felling (or pre human) levels or some other form of carbon removal. As such, 

conventional biomass sourced directly from forests is best viewed as a low(er) emission 

energy technology, rather than a panacea for zero emission global energy generation. 

Alternative sources of biomass fuel (such as energy crops, agricultural waste, and post-

consumer woody waste) are expected to have different carbon emission profiles, but are 

outside the scope of this study.  

Given that this work focusses primarily on the payback periods associated with different 

biomass and counterfactual comparisons, it seems reasonable to make some 

recommendations on the forest / region cases which could be deemed to be acceptable. 

These recommendations will not remain static, and if we take 2050 as the functional 

deadline for net zero operation of international energy generation technologies, the 

obvious solution would be to adopt a gradual reduction in acceptable payback period or 

time to net zero operation to ensure that this deadline is not breached.  

Based on the results of this work, when operating conventional biomass to electricity 

supply chains, some plantation forests could continue to be used in the short term when 

compared to natural gas (payback periods indicate continued use for the next 2-4 years) 

and a wider range of forests remain acceptable when compared to coal (payback periods 

suggest continued use for the next 9-26 years: see Table 5.3). While this makes sense in 

principle, the limitations of payback period as a metric are once again apparent. A 

payback period of zero is not equivalent to a net emission of zero, and the times 

required for negative emissions operation with BECCS range between 10 and 44 years. 

In all cases, conventional biomass combustion without CDR technologies should be 

halted before 2050. It is hoped that supply chains these could be converted to BECCS 

operation. BECCS scenarios including the storage of a high proportion of site carbon 

post combustion allows the ΔCatmosphere (from Equation 1.1) to become negative when 

the initial carbon debt is repaid. This certainly has a more attractive carbon profile than 

conventional biomass, and represents a CDR technology which could be implemented 

at scale. This is not to say that a wholescale reliance on BECCS is automatically 

desirable, for a number of reasons: 

• Global forests provide a wide range of ecosystem services (Figure 3.1) and use 

of biomass for fuel may preclude the maintenance and production of these other 
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services. There are a worrying number of allegations of mature forests with a 

high value for other ecosystem services being felled for biomass production. As 

described elsewhere, deforestation for fuel production is not a sustainable 

strategy.  

• Global fertile land area also provides a number of services, and an expansion of 

forest planting while advantageous in some cases, could lead to reductions in 

agricultural productivity and hardship to human populations in others. 

• The volatility of carbon stored via CCS is variable depending on technology, but 

in many cases is not geologically stable. This suggests that BECCS might be a 

temporary fix rather than a permanent solution 

• The rate of global forest growth does not allow a wholescale switch to any form 

of biomass technology because it simply is not large enough. This emphasises 

the conclusion that biomass use represents, at best, part of a climate change 

mitigation solution. 

• Depending on a wider range of assumptions and counterfactual scenarios 

(described in Section 6.4) other uses for forest products may prove to be a more 

effective use for the NPP represented by the Earth’s forests. This study does not 

take account of HWPs or the emissions associated with their equivalents if the 

supply chain is diverted into fuel production.  

• While BECCS has a payback period of zero years, as described above, this is not 

the same as net zero operation with respect to carbon. Some perturbation of the 

atmospheric carbon pool still exists. The net damage caused by BECCS may be 

relatively small when compared with conventional fossil fuels, but this is not the 

same as saying that no damage occurs.  

This study highlights and reinforces the need for a more comprehensive understanding 

and agreement on the appropriate methods and assumptions to make in this context.  

Electricity generated using biomass fuels is clearly not an optimum long-term solution 

to decarbonising the world’s energy generation. BECCS is an improvement on 

conventional biomass combustion and can result in a net reduction in atmospheric 

carbon levels, but this takes time to accomplish and relies on close monitoring of forest 

sites and supply chains. These findings are consistent with the approach that forest-
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sourced biomass should be considered a transition technology rather than a desired end 

point.  

There is a clear need for tight regulation of the use of biomass fuels, with a consensus 

on the methods used to compare alternative supply chains. Acceptable payback periods 

or times taken to achieve negative emissions should be clearly defined and reduced 

annually to conform to international emission targets. This should be harmonised with 

wider work assessing the carbon impacts of burning energy crops, post-consumer 

woody waste, and agricultural residues.  

In the face of strong political, social, and business interests competing to define 

coherent (and favourable) narratives, the scientific community must reach a consensus 

on best practice in this field. Further research to provide definitive guidance for policy 

makers and clearly articulate the costs and benefits for this technology is urgently 

needed. 
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Appendix A: Glossary and abbreviations 

Term Description 

Age class Trees within a forest which were planted in the same year. 

Arboricultural 
Relating to the care and management of individual trees (as 

opposed to silviculture, which is the management of forests) 

BECCS 
Biomass Energy with Carbon Capture and Storage (discussed 

in section 4.2.3)  

Branch-wood 

Wood from tree branches, far more branch-wood is present in 

decurrant tree species, and this is not always well quantified 

in forest growth models. 

Bioenergy 

Energy derived from biological material. May be used for 

heat only applications, combined heat and power (CHP), and 

electricity generation. May be used as gas (biogas), liquid 

(e.g. biodiesel and bioethanol) or solid (e.g. wood chips, 

pellets, or logs). See Section 1.2.4 

Biomass 

May simply refer to the mass of biological material in a 

system (the original ecological meaning) or as it is used here: 

energy from the combustion of solid, forest-sourced material. 

See section 1.2.5 

(Forest) Block A management unit of forest 

Brash 

Residues from forest harvesting, usually composed of small 

diameter branches, leaves, and twiggy material arising from 

silvicultural operations. Occasionally called “lop and top”. 

BVOC Biological Volatile Organic Compounds 

Carbon debt (net and gross) 
The loss of carbon incurred between felling and regrowth of a 

forest site (see Section 1.3.1) 

Carbon neutrality 
An operation with no net carbon emission -though a wide 

range of definitions exist: see Section 1.3.1 

Carbon Sequestration Parity 

(CSP) 

The point at which a biomass scenario results in a lower 

emission than the counterfactual. Discussed in Section 1.3.1 

CDR Carbon Dioxide Removal [technology] 

CH4 Methane (a GHG) 



214 

CHP  

Combined Heat and Power. Refers to technologies which 

utilise the waste heat from combustion in addition to 

generating electricity. 

Clear Fell A forest felling operation which removes all trees from a site. 

Closed / Open-source 
Refers to whether the underlying code used for a piece of 

software is available publicly (open) or not (closed) 

CO2 Carbon Dioxide (a GHG) 

Compartment A forest management area (sometimes called a block) 

Coppicing 

A traditional forest management system which relies on tree 

species which regrow from the stump after felling. 

Historically this has been used to produce straight low 

diameter poles for a large range of purposes. 

Decurrant 
Tree species with large spreading branches (typically 

hardwoods in the UK). The opposite of Excurrant 

DLCA 

Dynamic Life Cycle Assessment. An LCA approach which 

estimates emissions associated with a product and includes 

subsequent emissions over time. 

DUKES Digest of UK Energy Statistics (e.g. BEIS, 2017) 

ERF Effective Radiative Forcing 

Excurrant 
Tree species with large spreading branches (typically 

hardwoods in the UK). The opposite of Decurrant 

GHG Greenhouse Gas 

GPP 
Gross Primary Productivity. The rate of photosynthesis on 

site 

Form 

Used in forestry to describe good or bad sawmilling 

characteristics. Trees with good form will generally have a 

straight stem with minimal side branches. Poor form could 

include excessive branching, rot or disease, an uneven shaped 

stem, multiple stems etc.  

HWP Harvested Wood Product 

IPCC Intergovernmental Panel on Climate Change 
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LCA 

Life Cycle Assessment. A method for estimating the 

emissions associated with production of a product, its use, 

and disposal.  

LCA a 

Attributional Life Cycle Assessment. A simple assessment of 

the emissions associated with production of a product in 

isolation 

LCA c 

Consequential Life Cycle Assessment. An assessment of the 

emissions associated with production of a product including a 

range of indirect effects such as the changes in the use of 

other products which result  

LUC Land Use Change 

LULUCF Land Use, Land Use Change, and Forestry 

N2O Nitrous Oxide (a GHG) 

NPP 
Net Primary Productivity (equal to GPP minus carbon 

emitted through autotrophic respiration) 

NPV 
Net Present Value. The value of an asset based on the 

discounted income and costs expected in the future 

O3 Ozone (a GHG) 

Payback (period) The time taken to reach CSP (discussed in Section 1.3.1) 

Plantation 
A human-planted regularly spaced, even-aged forest (often a 

monoculture).  

RMSE 

Root Mean Square Error (see Equation 2.12) a statistic 

measuring the fit of observed and expected values. Used here 

to judge the success of a non-linear regression 

Rotation 

A full managed lifecycle of a forest including planting, 

growth, and final felling. Used to describe the length of time 

a forest is left to grow (rotation-length) and when it is due to 

be felled (rotation age)  

Roundwood 
Timber as it grows in the tree (i.e., in the round rather than 

having been processed) 

SBCM Simple Biomass Comparison Model  

Silvicultural 
Relating to the care and management forests (as opposed to 

arboriculture, which is the management of individual trees) 
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Silvicultural Thinning 

A silvicultural tool used to enhance the value of a stand of 

trees at the final felling stage. A proportion of trees are felled 

early which changes the growth patterns of remaining trees 

(discussed in Section 5.2.1). Trees removed for this purpose 

are described as “thinnings” 

Silvo-pastoral 

A historical forest management practice which combines the 

management of land for useful timber, and grazing / shelter 

for livestock. 

SSP 

Shared Socioeconomic Pathway(s). Scenarios developed by 

the IPCC to estimate the changes in a range of different 

technologies relating to climate change (see Section 1.2.5) 

Stand A general description of a unit of forest 

Stem-wood 
Wood that comes from the stem of a tree (as opposed to the 

branches) 

Stocking density The number of trees per unit of area 

Understorey  Plant species which grow under the forest canopy 

UNFCCC United Nations Framework Convention on Climate Change 

Yield class 
A classification of growth rate used in UK forestry, based on 

estimated average increment in m3.ha-1.yr-1 over the rotation. 
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Appendix B: Biomass supply chains model analysis 

Table B.1 An overview of biomass supply chain models with reference to the selection criteria 

described in Section 2.2 

Name 
Publishe

r(s) 

Open 

source 

Platfor

m 
Notes 

Biomass 

and 

Biogas 

Carbon 

Calculator 

(B2C2) 

(Denvir et 

al., 2015) 
No Unknown 

Hard coded assumptions in compiled software 

(.exe) 

No site regrowth factored in (assumes biomass is 

carbon neutral at source following IPCC accounting 

convention) 

Used to calculate processing and end use emissions 

for UK Renewable Heat Incentive qualification. 

Biomass 

Environm

ental 

Assessme

nt Tool 

(BEAT / 

BEAT2) 

(Defra, 

2010) 
No 

VBA 

(with MS 

Access 

and Excel 

Technoeconomic planning tool – identifies 

economic and environmental costs and benefits for 

a range of different biomass supply chains.  

No site regrowth factored in (assumes biomass is 

carbon neutral at source following IPCC accounting 

convention) 

Includes a wide range of different bioenergy 

feedstocks and end uses which are not required for 

this programme of research 

Air 

emissions, 

Greenhou

se gas 

emissions, 

and 

Energy 

use model 

for the 

Bioecono

my 

(Bioecono

my AGE) 

(Zaimes, 

2015) 
No MS Excel 

Whole bioeconomy model which includes a range 

of feedstocks and processes.  

Focussed mainly on transport biofuel (not solid 

biofuels) 

Described briefly in (Rogers et al., 2017; Dunn et 

al., 2020) 

UK and 

Global 

Bioenergy 

Resource 

Model 

(Bates and 

Gandy, 

2017) 

No 
MS Excel 

(& VBA) 

National – level model estimates the potential UK 

and global bioenergy fuel resource available to the 

UK from 2015 to 2050 under different scenarios. 
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Name 
Publishe

r(s) 

Open 

source 

Platfor

m 
Notes 

Biomass 

Value 

Chain 

Model 

(BVCM) 

(ETI, 

2015) 
No AIMMS 

Proprietary model for high-level assessments of 

biomass supply, processing, and use model 

including forest regrowth.  

Growth is limited to the first 50 years in the case of 

forest rotations, maximum temporal resolution is 5 

years. 

Described in (Samsatli et al., 2015) 

CARBIN

E 

(Forest 

Research, 

n.d.) 

No Fortran 

Proprietary research owned by FR, not available for 

research or modification  

Described in (Robertson et al., 2003) 

CBMCFS

3 

(Canadian 

Forest 

Service, 

2019) 

No Unknown 

Proprietary research owned by CFS, free to use, not 

available for modification 

Described in (Kurz et al., 2009) 

C-Flow 
(CEH, 

n.d.) 
No Excel 

Proprietary research owned by CEH, not available 

for research or modification  

Described in (Robertson et al., 2003) 

CO2fix 

(European 

Forest 

Institute, 

2004) 

No C++ 

Closed source model (although free to use) 

produced by the EFI 

Described in (Schelhaas et al., 2004) 

EFI GTM  

European 

Forest 

Institute 

No Unclear 

Global forest sector model, includes a very wide 

range of different elements including international 

trade, market pricing and HWP recycling.  

Described in (Kallio et al., 2004) 

EFIScen 

(European 

Forest 

Institute, 

n.d.) 

Yes C++ 

Open-source but requires detailed knowledge to use 

(and knowledge of C++) 

Described in (Sallnäs, 1990) 

FORCAR

B2 
USDA Yes 

FORTRA

N 
Described in (Heath et al., 2010) 

Global 

Forest 

Model 

(G4M) 

(IISA, 

2022) 
Yes C++ 

Described in by (Kindermann et al., 2006; 

Kindermann et al., 2013; Gusti and Kindermann, 

2011) 

GORCA

M 

Oak Ridge 

Laborator

y / 

Not 

available 
Unknown 

Described by (Schlamadinger et al., 2003)  

Older model no longer available 
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Name 
Publishe

r(s) 

Open 

source 

Platfor

m 
Notes 

Joanneum 

Research 

Growth, 

Yield and 

Carbon 

Balance 

Models 

for 

Southern 

Pine 

Stands 

(Carbon 

Resources 

Science 

Center - 

IFAS - 

University 

of Florida, 

n.d.)/ 

Yes MS excel 

Very thorough set of model for the growth of a 

range of pine species in the southern USA. Limited 

to forest growth, without biomass supply chains or 

counterfactual scenarios. 

Described in (Gonzalez-Benecke et al., 2010; 

Gonzalez-Benecke et al., 2011; Gonzalez-Benecke 

et al., 2012; Gonzalez-Benecke et al., 2015; 

Gonzalez-Benecke et al., 2017) 

Land Carb 

(Pacific 

Northwest 

Research 

Station, 

n.d.)  

No ? 

Not clear whether this is still available, website is 

broken link 

 Optimised for Pacific North West 

Landis 

PRO 

University 

of 

Missouri 

Yes c# 

Described in (Mladenoff, 2004) 

Not clear whether this is still available, website is 

broken link 

Landis II 

(LANDIS

-II 

Foundatio

n, 2022) 

yes c# 

Large scale forest landscape model 

Very complex 

Features in many publications (available here: 

https://www.landis-ii.org/publications) but initially 

described in (Scheller and Domingo, 2005) 

Sub-

Regional 

Timber 

Supply 

(SRTS) 

Southern 

Forest 

Resource 

Assessme

nt 

Consortiu

m 

Yes MS Excel 

Landscape scale model giving long term, high-level 

estimates of timber forest yield in the south eastern 

USA 

Does not include supply chains or end use 

Sterman et 

al. model 

Sterman et 

al. 
Yes Vensim 

Analysed in the main document 

Described in (Sterman et al., 2018a) 

ToSIA 

European 

Forest 

Institute  

No Java 

Optimised for the north-west Atlantic coast of 

Europe (Ireland, Iceland, Scotland, and parts of 

Norway, Sweden and Finland) 

Proprietary software, not open source. 

https://www.landis-ii.org/publications
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Name 
Publishe

r(s) 

Open 

source 

Platfor

m 
Notes 

Woodland 

carbon 

code 

calculator 

(UK 

Woodland 

Carbon 

Code, 

2021) 

Yes MS Excel 

An Excel version of the UK forest yield tables 

(Matthews et al., 2016) 

Provides rough (and heavily padded) estimates of 

woodland carbon sequestration in a UK context. 

Does not include biomass supply chains or end use. 
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Appendix C: Sterman et al. scenarios 

Table C.1. Scenarios used by Sterman et al. (2018a) with added names and descriptions 

Code Name Scenario description 

Cf Counterfactual The emissions from coal combustion. 

S0 
Zero-carbon 

energy source 

The emissions associated with producing an equivalent amount 

of energy from a hypothetical energy source with zero carbon 

emissions per unit of energy. Since the emissions cited in 

Sterman et al. (2018a) are indexed to a counterfactual baseline, 

this is included to provide an indication of the emissions 

associated a baseline of zero. 

S1 Regenerating coal 

This hybrid scenario is a combination of the supply chain 

emission and efficiency values for coal, with the regenerative 

capacity of biomass fuel (essentially the opposite of scenario 

S4). Since there are fundamental differences between coal and 

biomass supply chains, its utility is questionable. This scenario 

assumes a 25% felling intensity of mature forest. 

S2 25% thinning 

The emissions associated with biomass use, where biomass is 

sourced from forests with a 25% felling intensity. The 

assumptions made by Sterman et al. regarding the nature of 

thinning, are not correct since this seems to be a 25% fell of a 

fully mature forest and a thinning takes place before the trees 

are mature. This is discussed at greater length in Chapter 5 

S3 95% clear-fell 

The emissions associated with biomass use, where biomass is 

sourced from forests with a clear-fell management plan. This is 

assumed to recover 95% of the standing biomass for fuel use. 

The assumed fate of the remaining 5% is not described by 

Sterman et al.  

S4 Inert biomass 

The emissions associated with total site deforestation, without 

regeneration or subsequent release of carbon from soils. This 

hybrid scenario is a combination of the supply chain emission 

and efficiency values for biomass, with the regenerative 

capacity of coal (i.e. none within the modelled timeframe) 

essentially the opposite of scenario S1. 
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Code Name Scenario description 

S5 

Deforestation and 

land use 

conversion 

The emissions associated with total site deforestation, without 

regeneration, but with subsequent release of carbon from soils 

(e.g. following conversion to agriculture). This leads to a loss of 

site carbon without the opportunity to recover carbon through 

the negative emissions associated with forest regrowth. 

S6 
Clear-fell with 

species conversion 

As modelled in scenario S3, however, the species (at full 

biological maturity) which is felled, is replaced with a different 

species. This leads to a disparity between the carbon released 

by felling, and the potential uptake available through regrowth. 

As in scenario S3, the assumed fate of the remaining 5% is not 

described by Sterman et al. 

S7 

Sustained yield 

(continued demand 

growth) 

Instead of modelling the emissions associated with a one-off 

pulse of supplied energy, the model is modified to produce a 

sustained yield of energy on an annual basis. This annual 

demand is either assumed to continue to increase over time 

(scenario S7) or increase to a pre-determined point, and then 

remain the same (scenario S8). These scenarios are limited 

because they do not reflect rotational forest management 

accurately (as discussed in Chapter 5) 

S8 

Sustained yield 

(attenuating 

demand growth) 
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Appendix D: Revised forest model parameter values (from Chapter 3) 

Table D.1  Revised parameterisations for the forest growth model as described in Chapter 3 

 NE maple / beech / birch NE oak / hickory NE oak / pine SC oak / hickory SC oak / pine SC shortleaf / loblolly pine* SE shortleaf / loblolly pine* SE longleaf / slash pine* 

forest_start 0.0 0.0 0.340281301096724 5.42945516622011 3.65268974558872 4.0135458190631 4.28585292676176 4.08908392634156 

soil_start 118.447213201702 99.3525392306797 112.435248693524 50.7449560638913 59.953955472225 71.4900652676356 102.080169133964 139.908346501841 

B 391.120695434745 999.98066533353 245.824688209949 525.902073071337 207.437397248961 174.735497838745 145.058305977820 158.381546556469 

phi_ab 0.000000403802129175386 0.000915177518296519 0.0063476052809224 0.0525499310427132 0.00365515757620042 0.284482533957661 0.206569020813397 0.261363046096014 

k 0.0057664386372377 0.00292198301404347 0.00792870522461342 0.00298640631404372 0.00942813788630074 0.0027517036240606 0.00301352269954644 0.00100611255289063 

v 1.38571943653264 0.924633593893648 1.30275288757678 1.49999999999999 1.22984447502163 0.726671377676232 0.902693651454447 0.813397397057516 

phi_ba 0.000183124443593115 0.0 0.000000000029945935021 0.0499965643738088 0.0000105004470048127 0.0499999569334574 0.000000000004410111289 0.0364802871181941 

phi_bs 0.00753710354311497 0.00655935870360692 0.0056205453767558 0.00243237936614515 0.00199235840621598 0.00561918616334578 0.00452915503914184 0.00590304833703096 

phi_sa 0.0059431566238568 0.0123179468226925 0.004195988464765840000 0.001331958318115520000 0.000929724539265572000 0.011209041027797500000 0.006191643539750210000 0.005525104654706860000 

RMSE 3.75847703888947 3.50037731470384 3.70651663369493 1.38643291574463 1.04563944496873 0.953968451997551 1.05173974551195 1.04512436809478 
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Appendix E: Full results from supply chain parameter 

modelling (Chapter 4) 

Table E.1 Payback periods under a 25% fell scenario 
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Natural Gas 

NE maple / beech / birch 0 0 187 244 

NE oak / hickory 0 0 199 244 

NE oak / pine 0 0 116 160 

SC oak / hickory 0 0 56 75 

SC oak / pine 0 0 87 120 

SC shortleaf / loblolly pine* 0 0 8 10 

SE shortleaf / loblolly pine* 0 0 7 9 

SE longleaf / slash pine* 0 0 7 9 

Coal (new 

params) 

NE maple / beech / birch 0 0 29 95 

NE oak / hickory 0 0 47 119 

NE oak / pine 0 0 17 55 

SC oak / hickory 0 0 9 29 

SC oak / pine 0 0 13 43 

SC shortleaf / loblolly pine* 0 0 2 4 

SE shortleaf / loblolly pine* 0 0 2 4 

SE longleaf / slash pine* 0 0 2 4 

Coal (old 

params) 

NE maple / beech / birch 0 0 33 98 

NE oak / hickory 0 0 52 122 

NE oak / pine 0 0 19 58 

SC oak / hickory 0 0 10 30 

SC oak / pine 0 0 15 44 

SC shortleaf / loblolly pine* 0 0 2 4 

SE shortleaf / loblolly pine* 0 0 2 4 

SE longleaf / slash pine* 0 0 2 4 
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Table E.2 Payback periods under a 95% fell scenario 

Counterfactual 

fuel 
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Natural Gas 

NE maple / beech / birch 0 0 195 253 

NE oak / hickory 0 0 200 245 

NE oak / pine 0 0 150 196 

SC oak / hickory 0 0 95 122 

SC oak / pine 0 0 106 144 

SC shortleaf / loblolly pine* 0 0 19 22 

SE shortleaf / loblolly pine* 0 0 20 23 

SE longleaf / slash pine* 0 0 19 22 

Coal (new 

params) 

NE maple / beech / birch 0 0 33 102 

NE oak / hickory 0 0 47 120 

NE oak / pine 0 0 32 82 

SC oak / hickory 0 0 22 56 

SC oak / pine 0 0 18 55 

SC shortleaf / loblolly pine* 0 0 8 14 

SE shortleaf / loblolly pine* 0 0 9 15 

SE longleaf / slash pine* 0 0 8 14 

Coal (old 

params) 

NE maple / beech / birch 0 0 37 106 

NE oak / hickory 0 0 52 123 

NE oak / pine 0 0 36 85 

SC oak / hickory 0 0 24 58 

SC oak / pine 0 0 20 57 

SC shortleaf / loblolly pine* 0 0 8 14 

SE shortleaf / loblolly pine* 0 0 9 15 

SE longleaf / slash pine* 0 0 9 14 


