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ABSTRACT 

Despite the number of approaches established for Multiple Criteria Optimisation Problems, 
few of them have been developed for the decision making process. This research work 
proposes a new methodology for the solution of optimisation problems that involve multiple 
criteria emphasising the Decision-Maker's (DM's) preferences model and the use of 
evolutionary computation techniques and fuzzy logic. The use of genetic algorithms (GAs) is 

of vital importance to the development of this research. The use of operations research (OR) 
techniques and decision analysis is also considered vital. The aim of this project is to provide 
a definition of hybrid approaches that combine the strengths of GA and decision analysis. For 
this reason four hybrid models are proposed: 1. The GA-SEMOPS. 2. The fuzzy 

multiobjective genetic optimiser. 3. The GA-PROTRADE. 4. The interactive procedure for 

multiple objective optimisation problems. The main characteristics of these approaches are 
that they handle the DM's preferences in an interactive way and their objective functions are 
formulated using goal levels and surrogate functions. 
In order to demonstrate that these models can be used in different optimisation problems they 
have been applied to different case studies covering examples from environmental systems to 
land and human resource allocation. Each model was studied in depth, comparing the results 
found with those available in literature. In the majority of the cases, it was found that they 
performed better than existing methods. 
The investigations carried out showed that the proposed hybrid models can be considered as a 
very powerful tool for the solution of a wide variety of optimisation problems in situations 
from business to science and engineering. 
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CHAPTER 1 

Introduction 
1.1 Operational Research 

The first scientific area where the study of the design and decision processes were formally 
defined is operational research (OR), as it is called in Britain, or operations research or 
management science (OR/MS), as it is known in the USA. As the main objective of this thesis 
is the study of decision-making, the different definitions or views of different authors of OR 
will be discussed in this chapter. 

Generally, it is considered that OR originated in the World War II period. Cook and Shutler 
(1991) presented a creditable review of the history of OR. They stated that although the idea 
of applying science to the solution of decision problems can be traced from the Greeks, it was 
not until the mid-1930s that a country's national objectives and science objectives became 
one. At that time, a group of scientists led by Robert Watson-Watt was working on the 
development of radar to defend the United Kingdom from German air attack. This group was 
interdisciplinary with scientists from different areas such as mathematics, physics, statistics, 
electronics and psychology and developed a new activity or a new way of visualising and 
attacking a problem. This team had an office in Operational Headquarters, according to Cook 
and Shutler (1991) the door where this group of scientist was working was labelled 
"operational research" that means "research into operations" or perhaps " research within 
operational headquarters". In 1940 Watson-Watt and his team decided to name the new 
activity "operational research" in order to describe the general activity and make it known. 

Professor Patrick Blackett (physicist) who was an active member of the OR group contacted 
his fellow professor at the Massachusetts Institute of Technology in Boston, Philip Morse, to 
share with him how operational research was used in different areas of the war. Blackett and 
other colleagues presented operational research in a special conference, to scientists and 
defence chiefs of the United States. They adopted the idea but changed the name to 
"operations research", because of their use of "adjectival nouns"(Cook and Shutler, 1991), 

setting up OR groups in the different areas of the USA's armed forces (land, sea and air). 

After the war some scientists were convinced that OR could be as useful in peace as it had 
been in war, for this reason, in this period of time the main focus of OR was on quantitative 
approaches to support decision-making. The simplex method proposed by George Dantzig in 
1947, led to the application of OR to non-military problems. This combined with the 
development and growth of digital computers resulted in an extensive range of methods and 
applications. In 1957, Churchman, Ackoff and Arnoff published the first OR textbook, the 
main objective of their book was to visualise OR as a process rather than just a simple set of 
techniques to solve problems. They stated as mentioned above that the main objective of OR 
was to improve operations and for this reason defined a procedure for conducting OR shown 
in Figure 1.1, understanding that a project can be also called research. The phases of this 
procedure are explained in more detail below. 

1 
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Implementation 

Churchman et al. (1957) defined the formulation of a problem (first phase of the research), 
also called the orientation period, as a sequential process that starts with an initial formulation 
and is continuously reformulated until a solution is found. Generally speaking, a problem 
arises when an individual or a group within the organisation wants to improve some aspects 
of current practices and for this reason a decision has to be made. Churchman et al. (1957) 
presented an idealised problem-formulation procedure where the first step was to define the 
components of the problem. 

The components of a problem are: 

1. Decision-maker (DM). It is important to identify the person or group of people who is 
going to make the decision once the problem is solved. 

2. Objectives. These outline the desires of the DM as well as the possible outcomes of 
the problem. 

3. System or environment. The principal components of the system were listed by 
Churchman et al. (1957) as "management, men, machines, materials, consumers, 
competitors, and government and the public". 

4. Alternative courses of action. The researchers have to list all the possible alternative 
courses of action. 

Once the components of the problem are defined the next step is to transform the problem into 
a research problem. To perform the transformation the steps listed below are followed: 

1. Editing the list of objectives. 

2. Editing the list of alternative courses of action. 

3. Defining the measure of effectiveness. 

Construction of the model 

A scientific model is understood as "a representation of the system under study"; it is also 
understood as an instrument that helps in the evaluation of the possible alternatives of action. 

Churchman et al. (1957) classified models into three categories: iconic, analogue and 
symbolic. 

Iconic models. These models' main characteristics are that they "look like what they 
represent", their properties are the same as those of the original and usually are scaled 
up or down making the decision or design process easier to use and more economic. 
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Analogues. It is not always possible to represent all the properties of the original 
system, when this is the case it is necessary to make a "substitution of one property 
for another according to some transformation rules" (Churchman et al., 1957). A 
good example of these kinds of models is graphs because they use distance to 
represent different properties such as time, weight, money, etc. It is easier to modify 
an analogue than an iconic model and also it is considered more general. 

Symbolic models. In these models, "the components and their interrelations" 
(Churchman et al., 1957) are represented by mathematical or logical symbols. The 
models to be studied in this chapter will be mainly symbolic. 

Once the models are described, it is necessary to list the steps in model construction: 

1. Make a list of the components of the system. 

2. Pertinence of the components. To decide whether each of the components should be 
considered in the model. 

3. Combining and dividing the components. Sometimes, it is better to group some 
components. 

4. Substituting symbols. Once the final list of components is completed, it is necessary 
to determine whether each component has a variable or fixed value. 

Solution of the model 

Churchman et al. (1957) stated that to derive a solution it is necessary to follow procedures 
that can be classified into two types: analytic and numerical. They defined the analytic 
procedure as deductive and the numerical procedure (trial and error) as inductive. There are 
certain occasions where none of the procedures mentioned above can be applied. These cases 
are normally those where a term in the equation has to be previously evaluated. Therefore to 
evaluate the term it is necessary to apply the Monte Carlo technique. It is important to bear in 
mind that when the term solution appears it refers to the solution of the model and not to the 
solution of the real system. Analytic and numerical solutions as well as the Monte Carlo 
technique are briefly described below: 

Analytic solutions. When a solution is given in the form of an equation or a set of 
equations it is considered analytic. It is important to bear in mind that some systems 
are somehow restricted. These restrictions are called constraints and are normally 
represented by inequalities. In a more general way, a solution will be considered 
analytic when it is possible to solve the problem using mathematical deduction or 
when different types of mathematical analysis are needed to derive a solution. 

Numerical solutions. This kind of solution is given by the substitution of the symbols 
by numbers and finding which set of numbers gives the "maximum effectiveness" by 
trying every possible combination of numbers. These kinds of solutions are founded 
on a trial an error basis and perform several iterations. 

Monte Carlo Technique. When probability concepts are involved it is not possible to 
apply either analytic or numerical techniques; therefore, a technique called Monte 
Carlo is necessary. This technique is a procedure that helps when mathematical 
expressions are constructed of probability distribution functions and yields 
approximate evaluations of these expressions. 
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Churchman et al. (1957) reviewed the different types of problems that frequently appear in 
industry and government such as inventory problems, allocation problems, waiting-line 
problems, combine inventory-allocation-queuing problems, replacement and maintenance 
problems, and competitive problems. 

Model and solution testing 

The testing will be divided into two categories: model and solution. The kind of data used for 
testing depends on the kind of test to be performed. In the case of model testing, it measures 
the adequacy of the model. In other words, it has to be assessed if the pertinent variables have 
been included or not. These variables are those that have a significant effect on the 
effectiveness of the system. It is also important to be sure that the model accurately represents 
the relationships between the effectiveness measure and the independent variables. Finally, 
the parameters contained in the model should be evaluated properly in order to yield good 
results. 

Testing the solution. It is supposed that a solution given by OR must lead to an improvement 
over the current system, so to know if this improvement has occurred it is necessary to 
compare it to past tests. Therefore the solution testing would determine whether the DM 
adopts that solution or not. For this purpose it is necessary to obtain historical data. 
Sometimes there are no records of this data and then the effectiveness of the new solution 
must be compared with that of the current system. 

Control of the solution 

According to Churchman et al. (1957) a "decision rule is a solution that can be applied 
repetitively". The system's parameters are the variables which define it. It is necessary to bear 
in mind the systems in reality are unstable and for this reason are very likely to change. In 
other words, the relationships between the parameters and the parameters themselves have to 
be adjusted and re-evaluated every time the system changes. Summarising the solution has to 
be controlled due to changes in the system. 

The steps followed for the design of a control system are listed below: 

1. Make a list of the variables, parameters, and relationships that are included or should 
be included in the solution. 

2. Develop a procedure to detect changes in the parameters and relationships. 

3. Definition of the adjustments to be made in the solution when a significant change 
occurs. 

Implementation 

This stage occurs once the solution has been found and tested. An implementation plan is 
needed to assure the operations' improvement. To develop the plan, Churchman et al. (1957) 
proposed answering the following questions, bearing in mind that "the implementation of a 
solution involves people taking action": 

1. Who should do what? 

2. When? 

3. What information and facilities are required to do it? 
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Finally, the most important point in the implementation procedure is the continuous co- 
operation and communication between managers, operators, and researchers. 

After discussing the Churchman et al. (1957) method for OR, it is necessary to discuss some 
other authors' points of view. 

Pidd (1991) named the OR methodology as a "process model". From Figure 1.2 it is possible 
to see that this process model is considered a continuous cycle; in other words, the process 
can be repeated as many times as necessary during the development of the OR project. 

r, 
Problem 

Structuring 

ý1 
Implementation Modelling 

4ý7 
Figure 1.2 Process model 
Adapted from Pidd (1991) 

The process model is defined by three stages: 

1. Problem structuring. This is defined as the process of extracting some agreement 
from a mess. Where mess occurs when there is no agreement or "common view about 
what constitutes an acceptable solution" (Pidd, 1991). 

2. Modelling. According to Pidd (1991) this is considered as the heart of OR and 
involves the use of analysis methods such as mathematics, statistics and computer 
science. The risk of modelling can be the oversimplification of the system which is 
being studied. 

3. Implementation. After the modelling phase is performed, some changes will be 
recommended. It is possible to say that an OR approach is implemented when these 
suggestions are taken into practice. 

One of the main aspects of OR is the use of quantitative analysis. According to Anderson et 
al. (1996), quantitative analysis is divided into four steps: model definition, data preparation, 
model solution and report generation. 

Model definition 

Anderson et al. (1996) define a model as "the representations of real objects or situations". 
The kind of model used to represent a problem through mathematical relationships and 
symbols is called a mathematical model; according to Churchman et al. (1957) this kind of 
model is known as symbolic. A mathematical model is needed when the time and cost of 
experimentation have to be reduced. Another important fact is that the risk of experimenting 
with a real situation is considerably greater than that associated with experimenting with a 
mathematical model. Therefore the better the model represents the real situations the better 
the decisions and conclusions will be. In order to have a good model it is necessary to define 
the objectives and constraints associated to the problem the most accurately possible. The 
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inputs of a model can be classified as either controllable or uncontrollable. The controllable 
inputs are those determined by the DM whilst the uncontrollable are those that cannot be 
influenced. 

Data preparation 

The data that is going to be used by the model has to be prepared. On the one hand, Anderson 
et al. (1996) understand data as "the values of the uncontrollable inputs". Sometimes a 
separate data preparation, after the model has been defined, is needed. On the other hand, 
Curwin and Slater (1991) define a process called data collection where two aspects are 
considered: the need for data and its quality. They focus on numerical data although they bear 
in mind that to solve most problems; it is necessary to take into account the people, the 
enterprise, the culture and the environment. A very important element is the "completeness" 
of data, this is the DM's responsibility because he or she has to determine whether the data 
collected is sufficient or not. A full understanding of the purpose of the data is vital for the 
problem's solution. Some elements attained to data are grouped as follows (Curwin and Slater 
1991): 

1. Population. In order to collect data, it is necessary most of the time to do a survey that 
can be costly, for this reason it is essential to identify the relevant population. 

2. Sources of data. Once the relevant population has been defined, the next step is to 
obtain the data. This is classified as primary and secondary. Primary data has to do 
with the "collection of new data" through observation, questionnaires and group 
discussions, whilst secondary data has to do with "existing data". This means that is 
data collected previously for other purposes. 

3. Numbers and selection. The first type is census. Once the relevant population is 
identified, a census will be applied to the complete and enumerated population, 
without applying any selection procedure. If the relevant population is too big it is 
recommended to select a sample of it. 

The second type is random and non-random selection. To select a random sample each 
element of the population has the same probability of being selected. Usually, a 
computer generates a series of random numbers. When some judgement is required to 
make the selection the sample is called non-random. The most used non-random 
sampling is the selection of a "quota sample". This consists of identifying the 
characteristics sought by the survey, then the proportions of people for each 
characteristic will be determined and a quota will be assigned to the interviewer. 
Another important aspect to consider is the sample's size; to calculate a good sample 
size a procedure that uses an error level is required. The error level is determined and 
the sample's size is the one that attains that level. 

4. Asking questions. Having identified the relevant population and the sample, it is 
necessary to determine the kinds of questions to be asked. In most cases, a 
questionnaire is designed. The main characteristics of the questionnaire are twofold: 
"logical structure" and "thought-out questions" (Curwin and Slater 1991). There are 
two kinds of questions: open and pre-coded. Open questions are those that allow the 
respondents to express their ideas and thoughts. Pre-coded questions are those that 
offer the respondents possible answers or alternatives to be chosen. Once the relevant 
population has been selected and the questionnaire has been designed, an interview 
has to take place. The main element of an interview is the interviewer. There are two 
aspects to consider regarding the interviewer's profile, namely, that this person must 
have had appropriate training and must have the appropriate attitude. Nowadays some 
interviews are made by telephone or using postal questionnaires. 
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5. Non-response. This case basically appears when the survey is applied on a human 
population and it depends on the kind of survey that is being developed. Normally, the 
researcher would like to reduce the non-response to a minimum. 

6. Types of data. There are different types of data such as discrete, continuous, 
categorical or nominal, ordinal and cardinal. Nevertheless, sometimes data is classified 
in quantitative and qualitative. 

Model solution 

According to Anderson et al. (1996), in this phase the analyst or researcher (Churchman et al., 
1957) tries to identify the values of the optimal solution for the model. For this optimal 
solution, identification of any one of the three solutions (analytic, numerical, Monte Carlo 
technique) defined by Churchman et al. (1957) will be used. After the solution is found, the 
DM and the analyst would like to consider its feasibility, for this reason Anderson et al. 
(1996) suggest a model testing and validation phase (as conducted by Churchman, Ackoff, 
and Arnoff). If for any reason the model shows inaccuracies a corrective action has to be 
applied until the testing and validation phase is satisfied. It is possible to note that this process 
is very similar to that proposed by Churchman et al. (1957). 

Report generation 

The reports are prepared using the solution of the model. As shown in Figure 1.3 to make a 
decision the DM needs both qualitative and quantitative information. In this context, the main 
emphasis is on the quantitative approach. 

Qualitative 
Analysis 

Summary 
and 

Evaluation 

Make 
the 

decision 

Quantitative 
Analysis 

Figure 1.3 Problem analysis 
Adapted from Anderson et al. (1996) 

Normally, it is expected that the report gives the DM information about the results and 
recommends him or her a possible decision to make. 

When the amount of data is very large, it is necessary to group it together in order to make the 
numbers more comprehensible. Curwin and Slater (1991) stated that there are three ways to 
present the data: tabulation of data, visual presentation and graphical presentation. 

Tabulation of data. One way is to present the data in numerical order, from the lowest 
to the highest values or vice versa. Examples of this kind of presentation are 
"frequency distribution and cross-tabulation". 

Visual presentation. This way of representing the data is through a chart or a diagram. 
The data will be divided into two types: discrete and continuous. The presentation of 
discrete data can be made through "Pie charts, Bar charts and pictograms". The 
presentation of continuous data can be made through "histograms". 
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Graphical presentation. This is normally used when the relationship between two 
variables has to be shown. Curwin and Slater (1991) consider four types: graph 
plotting, plotting a time series, logarithmic graphs and the Lorenz curve. 

One of the most popular textbooks in the study of OR is the one written by Taha (1997). 
According to him, a typical OR mathematical model is one that relates the variables, 
constraints and objective functions. Figure 1.4 shows the structure of a mathematical model, 
where the objective is to optimise (maximise or minimise) the objective function satisfying 
the constraints. The solution is known as optinnan. 

Maximise or minimise (Objective functions) 

Subject to (Constraints) 

Figure 1.4 Typical OR mathematical model 
Adapted from Taha (1997) 

According to Taha (1997), OR should be viewed in the context of the decision-making 

process. The most used technique to solve optimisation problems is linear programming, 
where all the elements (objectives and constraints) of the model are linear and the variables 
are continuous, although there are other techniques such as integer programming, non-linear 
programming, goal programming, dynamic programming and network programming. 
Practically, the whole of these techniques are computational algorithms. 

Taha (1997) states that an OR team is defined by two essential components: the OR analyst 
and the client. He also states that there are five principal phases for implementing OR: 

1. Definition of the problem. The analyst and the client carry out this process, involving 
three issues: description of the decision alternatives, determination of the objective and 
specification of the limitations. 

2. Construction of the model. Once the problem has been defined, it is necessary to 
transform it into mathematics (mathematical relationships). 

3. Solution of the model. Taha (1997) considers this phase as one of the simplest because 
it consists of the use of standard mathematical algorithms mentioned above (e. g. linear 

programming). It can also involve the use of a heuristic approach or the use of 
simulation, and sensitivity analysis. 

4. Validation of the model. In this phase, it is necessary to check if the model is giving a 
reasonable output and it is behaving as was expected. A way to validate if the output is 

suitable or not is comparing it with historical results (outputs) using the same or 
similar input conditions. In the case that there is no historical data of the problem, for 

comparison purposes, it is necessary to use simulation for the verification of the 
output. 

5. Implementation of the solution. If the model is considered valid, the next step to 
follow is the translation of the results into operating instructions. These instructions 
have to be understandable to the person or group of people who will administer the 

system. 
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Taha (1997) considers the following areas as those of relevant interest within the OR study: 
linear programming as mathematical technique, data envelopment analysis, inventory control, 
project management, queuing theory, computer simulation methods and decision analysis. 

1.2 Handling Preferences 

Preferences are essential in the modelling of decision-making. According to Vincke (1992) in 
the preference structure, it is assumed that a decision-maker has to compare two actions a and 
b where: 

aPb means that action a is preferred to action b 
aIb means that action a is indifferent to action b 

Some authors use indistinctively the terms criteria or preference to denote criteria, for effects 
of this thesis it is important to understand the difference between these two terms. 

The classification of Hwang and Masud (1979) described different stages where the 
information from the DM could be needed. These stages are: 

1. No Articulation of Preference Information. 

2. A Priori Articulation of Preference Information. 

3. Progressive Articulation of Preference Information (Interactive Methods). 

4. A Posteriori Articulation of Preference Information (Nondominated Solutions 
Generation Methods). 

1.3 Overview 

The main objective of this research is to find the solution of optimisation problems (multiple 
criteria decision-making) using OR techniques that can handle the DM's preferences in an 
interactive way. The originality of this research is the way in which it modernises two 
interactive methods proposed in the 1970's and then refines them through contemporary areas 
of research such as genetic algorithms and fuzzy logic. These methods were selected because 
not only can they handle the DM's preferences in an interactive way but they also offer a 
direct way for the development of a hybrid approach using OR and evolutionary techniques. 

Based on this objective the structure of this thesis is described below: 

Chapter One introduces the basic concepts of OR, visualising it more as a methodology than 
as a set of techniques. 

Chapter Two describes the main characteristics of the evolutionary algorithm, giving the 

general procedure and its formal definition. Furthermore, the definitions of genetic 
algorithms, along with their genetic operators are presented. This chapter also describes the 
basic techniques of evolutionary computation to solve a well-known problem called the 
traveling salesman problem (TSP). This problem was chosen because it is not only an NP- 

complete problem but also an optimisation problem and for the purpose of this research gives 
the general idea on how to attack this kind of problem using evolutionary algorithms. This 

chapter presents the most commonly used genetic operators in the solution of the TSP. 

The area of decision theory, which is defined as making a decision by mathematical means, is 
described in Chapter Three. In this chapter the effect of the incorporation of risk and 
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uncertainty in a problem is also discussed, defining some basic characteristics of risk analysis. 
Moreover, an area that involves OR and decision theory called multiple criteria decision- 
making (MCDM) is defined in detail along with the most popular methods for the solution of 
MCDM problems. Finally, the most important operators of multiple objective evolutionary 
algorithms are discussed. 

Chapter Four describes a GA-OR approach where the GA uses an interactive method called 
Sequential Multiobjective Problem Solving (SEMOPS). This new approach is named GA- 
SEMOPS and can be understood as the support system used to help the DM to solve the 
decision problem. In this chapter two case studies are solved: the Bow river case study and 
the nurse-scheduling problem. 

The Bow River Valley is a hypothetical example of an artificial river basin and its 

pollution problems. In this problem there are three pollution sources, the Pierce-Hall 
Cannery, and the towns of Bowville and Plympton towns and the main objective is to 
improve the water quality considering the DM's preferences. The problem is solved 
using two different techniques a real-valued genetic algorithm and a nurtliobjective 
genetic optimiser using a fuzzy rule-based system. This case study is the one 
presented by the authors of the SEMOPS method and it was selected for comparison 
purposes. 

The nurse-scheduling problem consists of generating a schedule of working days and 
days off for each nurse in a hospital subject to hard and soft constraints. The approach 
presented in this thesis considers a multiple objective nurse scheduling problem 
involving the decision making process attached to it. In order to manage this process 
it has been decided to use the SEMOPS method in conjunction with a genetic 
algorithm (GA), developing a hybrid approach that uses the strengths of both 
operations research and evolutionary computation techniques. 

In Chapter Five a GA-OR approach is described where the GA uses the Probabilistic Trade- 
off Development (PROTRADE) method. The main characteristics of PROTRADE are that it 
incorporates uncertainty and risk analysis in the solution of a problem, and it also allows the 
DM to introduce his or her preferences. The new model is called GA-PROTRADE and is 
used to solve a land allocation problem. This case study is a multiple use approach to land 
reclamation and it is solved by means of a real-valued genetic algorithm, considering risk and 
uncertainty. This problem is the one presented by the authors of the PROTRADE method and 
it was selected for comparison purposes. 

Chapter Six introduces a new proposal for the solution of multiple objective optimisation 
problems and describes its main characteristics. This model is called the interactive procedure 
for multiple objective optimisation problems (IPMOOP) and is used for the solution of a 
resource allocation problem in the Automatic Control and Systems Engineering at the 
University of Sheffield. This problem is selected in order to implement a real life application 
of the IPMOOP and to validate it. 

Finally, Chapter Seven outlines the conclusions obtained from the results of this research and 
the future applications for these methods. 

Figure 1.5 shows the relationships between the different chapters and the types of codification 
used in each case study. It is possible to observe that Chapters Two, Four, Five and Six use 
the concepts outlined in Chapter Two, whilst Chapters Four, Five and Six also use the 
concepts presented in Chapter Three. Furthermore, it is also evident that the genetic 
algorithm's codification used in Chapter Two is integer, in Chapter Four for the first case 
study it is real-valued whilst in the second one it is binary string, in Chapter Five it is real- 
valued and in Chapter Six it is binary string. 
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1.4 Contributions 

The main contributions of this research work are: 

GA-SEAtOPS 

GA-PROTRADE 

IPAIOOP 

10 
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Integer 
codification 

Real-valued 
Binary string 

Real-valued 

Binary string 

  The development of a hybrid model called GA-SEMOPS (Chapter Four). The main 
characteristics of this approach are: the use of a surrogate function that can be directly 
understood as the objective function and mapped as the GA's fitness function and the use 
of a set of auxiliary problems reducing the solution space. Additionally, another important 
feature is the use of goal and aspiration levels and finally, the sequential decision-making 
process with the direct intervention of the DM. Another contribution is the demonstration 
of the use of this model to solve different multiple objective optimisation problems and 
different kinds of GAs. 

  The development of a fuzzy multiple objective genetic optimiser (Chapter Four). This 
model is based on a fuzzy rule-based system (FRBS) in order to achieve an automated 
process emulating the DM. Considering that the problem has several objectives, a number 
of fuzzy sets will be assigned to each objective. These sets are defined in terms of 
standard deviations and aspiration levels. Once the fuzzy sets are defined, it is important 
to determine the shapes of the membership functions. Finally the set of rules is created, 
using both the fuzzy set and the membership functions. This set of rules is programmed 
into the automated algorithm. 

  The development of a hybrid approach called GA-PROTRADE (Chapter Five). This 
model allows the introduction of risk and uncertainty in the solution of a problem. One of 
its most important features is that it handles the DM's preferences in two different levels. 
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The first level is based on pairwise comparisons made by the DM to determine the 
importance of each goal compared to the others. This process yields a classification of 
goals from the most preferred to the least important. The second level for handling 
preferences is based on the assignment of a probability of achievement to each goal. The 
DM is asked to define the probability of achievement of each goal creating a new solution 
space and a new surrogate objective function. Therefore, the GA has to be applied again 
finding new solutions. Finally, the DM and the analytic programmer have to decide 
whether or not the solutions found are acceptable and select which one is more suitable. 

  The development of the interactive procedure for multiple objective optimisation 
problems (IPMOOP), in Chapter Six. This procedure is focussed on the decision-making 
process followed when a real life problem is solved. The main objective of this model is 
to visualise the decision-making process as a continuous interaction between the DM and 
the analytic programmer. For this reason a unit called the decision-making process group 
(DMPG) is defined, showing this interaction. This model is based on the formulation and 
solution of an initial problem. In this model an initial problem is proposed because it is 
expected that in the first attempt at a solution of a problem not all the aspects attached to 
it can be visualised. Therefore, after the solution of the initial problem a frnal problem has 
to be formulated and solved. Once the final problem is solved the DMPG unit decides 
whether an acceptable solution has been found or not. This procedure can be applied as 
many times as necessary until a solution found satisfies the DM. 



CHAPTER 2 

Evolutionary Computation 
2.1 Introduction 

Since the main objective in this research, as outlined in Chapter One, is the solution of 
optimisation problems using evolutionary algorithms, it is important here to describe 
evolutionary computation. Moreover, most optimisation methods perform a search to find a 
single-optimal solution whilst evolutionary computation performs a search to find a 
population of solutions. Therefore the outcome in evolutionary computation methods is also a 
population of solutions. 

The origins of evolutionary computation date from the late 1950's when some computer 
scientists started to use the Darwinian evolution theory ("Struggle for Existence") to solve 
optimisation problems (Bäck et at., 2000). In general, evolutionary computation systems 
consisted of using operators that were defined as processes in natural selection (reproduction, 
crossover, and mutation). Despite the flexibility and adaptability of evolutionary computation 
in the searching task it was not until the 1980's when this set of methodologies became well 
known in the scientific community. 

The main purpose of evolutionary computation is to model the evolution process and simulate 
it using a computer. The concept of evolution may be used as one search method to find the 
best solution out of a great number of possible solutions (Mitchell, 1996). The term 
evolutionary computation was defined in 1991 as including three avenues: genetic algorithms, 
evolutionary programming and evolution strategies (Back et al., 1997). If these avenues are 
considered as algorithms then the term "Evolutionary Algorithms" emerges. 

Firstly, this chapter describes the main characteristics of the evolutionary algorithm, giving 
the general procedure and its formal definition. Additionally, the definitions of genetic 
algorithms along with their genetic operators are presented. In subsection 2.2.2, a description 
of evolutionary programming and its operators is given. In subsection 2.2.3, the evolution 
strategies are shown as well as the definition of their recombination, mutation and selection 
operators. A comparison between genetic algorithms, evolutionary programming and 
evolution strategies is presented in section 2.3. 

Secondly, this chapter describes a well-known problem called the Traveling Salesman 
Problem (TSP). This problem concerns a salesman who has to visit n cities with the 
restriction that he must visit each city once. The solution expected is the tour of all the cities 
which implies the minimal cost (Hamiltonian cycles). 

In sub-section 2.4.1 some traditional search methods for the TSP are explained. To solve this 
problem using genetic algorithms a considerable number of crossovers have been developed 
sub-section 2.4.2 contains a summary of these operators. 

Additionally, in sub-section 2.4.3 other methodologies to solve this problem as genetic local 
search, evolution strategies, and evolutionary programming are analysed. Genetic local search 
is a hybrid that consists of the traditional methodologies used in a genetic algorithm. 
Evolution strategies are based on mutation and recombination operators. Genetic algorithms 
sometimes use these mutation operators. 

13 
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Finally, in section 2.5 some applications of TSP for real-world problems are discussed, 
especially for scheduling manufacturing problems. 

2.2 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are instances of algorithms that work with evolutionary 
principles. Genetic algorithms, evolutionary programming and evolution strategies are subsets 
of evolutionary algorithms (Bäck, 2000). 
Michalewicz (1994) describes the following structure of an evolutionary algorithm (he called 
it evolution program): 

Procedure evolution program 

begin 
t+-0 
initialise P(t) 
evaluate P(t) 
while (not termination-condition) do 
begin 

t<-t+1 
select P(t) from P(t - 1) 
alter P(t) 
evaluate P(t) 

end 
end 

In the above, P(t) is a population of individuals, which is initialised at t=0, and this is 
considered as the starting point in the program. An evaluation function is applied and returns 
the fitness, comparing among the solutions. A termination-condition is stated, determining the 
number of iterations the program is going to run. The counter t is incremented by one; an 
individual is selected from the previous population of individuals and is altered by a "genetic" 
operator. It is necessary to evaluate the new P(t); the program will run until the termination- 
condition is reached and it will return the solution of the problem. 

Basically, the genetic operators will be classified in three asexual, sexual and panmictic as 
shown in the following definition (Bäck, 1996): 

Definition 2.1 
A genetic operator ve : IP -> Iq is called 

sexual :H 30'0: IZ->I : 
U©(a1) """, ap)=(v'B(ail , ajl)) ..., U'©(aiq, ajq)) 

where Vk E {i, """, q} ik, jkE{i, ""., p} 
are chosen at random, 

(2.1) 
asexual :H3 U'g :I --> I: 

vo (ät, ... , än) _ (t)'o (ät), ... , Uo (äp)) AP=q, 

panmictic :H 3v'e: Ip->I " 
., 

v© 
(äp ..., äP) = (VB(pl)... 

ýäp)ý..., VO 
(äl)... 

ýäp)) 
q 
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where I= Ax x AS is the space of individuals, AX, A, s denote arbitrary sets, v© is the genetic 
operator, p is the initial population size and q is the population size after the genetic operator 
is applied (q and p can be equal), and ä is an individual of the population selected for the 
genetic operation. 

Recombination is an example of a sexual or panmictic operator whilst mutation is an asexual 
operator; recombination and mutation operators will be explained in more detail in sub- 
sections 2.2.1.2,2.2.1.3,2.2.3.1, and 2.2.3.3. 

2.2.1 Genetic Algorithms 

John Holland first proposed genetic algorithms (GAs), and Goldberg (1989) followed up his 
research; these algorithms basically simulate genetics (Fogel, 1994). 
As stated in (Goldberg, 1989): 

"Genetic algorithms are search algorithms based on the mechanics of natural selection 
and natural genetics. They combine survival of the fittest among string structures with 
a structured yet randomised information exchange to form a search algorithm with 
some of the innovative flair of human search. In every generation, a new set of 
artificial creatures (strings) is created using bits and pieces of the fittest of the old, an 
occasional new part is tried for good measure. While randomised, genetic algorithms 
are no simple random walk. They efficiently exploit historical information to 
speculate on new search points with expected improved performance. " 

GAs are stochastic algorithms that use Darwinian struggle for survival based on natural 
evolution. The main purpose of the original GA was to solve optimisation problems using 
binary strings (0's and l's). These strings (chromosomes) are taken from a certain domain 
space. GAs start with a population of strings instead of using a single point, generating 
successive populations of strings (offspring). The population of strings is considered as a set 
of potential solutions; these solutions are evaluated by an objective function that plays the role 
of an environment (Bäck, 2000). 

Normally a GA has three operators: 1. Reproduction, 2. Crossover, and 3. Mutation. The 
definitions of these three operators are presented to give a general idea of the GA's operators; 
later on they will be presented more in detail. 

1. Reproduction is the process in which strings with the maximum objective function values 
have more probability of being copied (living), while the strings with the minimum 
objective values will not be used (die) in the next generation. 

2. Crossover is the process in which the reproduced strings are mated randomly and each 
pair of strings swaps their characters starting from a position of the strings that is 
randomly selected. 

3. Mutation is the process that alters one or more genes (chromosome positions), with a 
determined probability (mutation rate). This process is considered as a secondary 
mechanism (Goldberg, 1989). Michalewicz considers mutation to be an important genetic 
operator; sometimes it is utilised prior to crossover. 

Eshelman et al. (1989) stated that the effectiveness of GAs is based on the exploitation of the 
result found (past) joined to the exploration of new areas in the search space. Then, the 
selection operator is a mean for exploitation and the mutation and crossover operators are 
means for exploration. 
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The terminology used in GA has its roots not only in the field of genetics but also in computer 
science. Table 2.1 presents the correspondence between "natural" and "artificial" 
terminology. 

Natural Genetic Algorithm 
Chromosome String 
Gene Feature, character, or detector 
Allele Feature value 
Locus String position 
Genotype Structure 
Phenotype Parameter, set, alternative solution, a decoded 

structure 
Epistasis Non-linearity 

Table 2.1 Comparison of Natural and GA terminology 
Adapted from Goldberg (1989) 

In GA, the chromosomes are often binary strings, and it will be necessary to modify or 
convert the original problem into a convenient form, taking potential solutions and converting 
these into binary representation. In this case the problem will be modified to support the 
binary representation as it is shown in Figure 2.1. 

Original 
Problem 

1 
Binary coding 

of 
chromosomes 

Genetic 
Algorithm 

1 
Modified 
Problem 

Figure. 2.1 Codification process for GAs. 
Adapted from Michalewicz (1994). 

Some applications of Genetic Algorithms are optimisation, automatic programming, machine 
learning, economics, immune systems, ecology, population genetics, evolution and learning, 

and social systems (Mitchell, 1996). 

There are other codification structures for GAs such as real-valued vector or floating-point 
representation; these are discussed in greater depth in Chapter Four. 

2.2.1.1 Selection in GA 

Selection can be considered as an operator in GA (Deb, 2000). The main objective of this 
operator is to select the best solutions from the population and delete the poor solutions. In 
some cases the selection operator is the combination of reproduction and selection. To define 
a selection procedure it is necessary to divide it into 3 principal steps (Grefenstette, 2000): 

1. The objective function must be mapped to fitness function. 
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2. The probability distribution is created using the fitness as a basis. 

3. The samples are drawn from the probability distribution. 

The objective function is mapped to fitness function. Defining the objective function as: 

f: K, -*R (2.2) 

where R is the set of real numbers and KX is the object variable space, the objective function 
measures are cost and reward. Reward is measured in a maximising problem and cost in a 
minimising problem. The fitness function is defined as follows: 

ý: KX-ýR+ (2.3) 

where R+ is the set of positive real numbers, then the fitness function maps the scores of the 
objective function to a non-negative set. The fitness function can be defined in terms of the 
objective function: 

0(k, (t)) = g(Ak; (t))) (2.4) 

where k; E K,. The next issue to consider is if an individual has a very high performance, the 
fitness function will tend to assign similar fitness values to the members of the population, 
leading to premature convergence. To solve this problem fitness scaling is necessary; this 
scaling is defined as a time-varying linear transformation of the objective value (Grefenstette, 
2000): 

¢(k, (t)) = a[gk, (t)) - fi(t)] (2.5) 

where a is -1 for minimisation problems and +1 for maximisation problems and 6(t) is the 
worst value seen in the last few generations. 

Different methods of selection exist: proportional selection, tournament selection, rank-based 
selection, boltzman selection and other selection methods (Blickle, 2000), (Grefenstette, 
2000b). 

The proportional selection method consists of creating a number of offspring in proportion to 
an individual's fitness. This method works generating a probability distribution: 

P prop(ii _ o(I` JoW 

i=1 

(2.6) 

where u is the population size, then this procedure of calculating the proportional probability 
will be applied to each individual of the population. With this probability distribution it is 
possible to select one parent to use for reproduction purposes. One of the best known methods 
of proportional selections is the roulette wheel. In the roulette wheel selection each individual 
in the population will have a slot of the wheel, the size of the slot depending on the fitness of 
the individual. Every time it is necessary to select an individual the roulette wheel will be 
spun. Then the individuals with better fitness will be more likely to be reproduced as part of 
the offspring. 

In tournament selection a group of individuals is chosen randomly (Blickle, 2000). These 
individuals participate in a tournament where the one with the best fitness value wins. The 
winner is inserted into the next population. In order to obtain the new population this process 
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is repeated x times. This selection procedure could be implemented in a polynomial time 
complexity O(x) , and scaling and translation do not affect it. 

rE {1,2,..., x} 
P(t) _ {PI , Pz, P3, ... , Pn} 
P(t) E Ix 
P'(t) ={ P't, P'2, P'3, ... , p'X} 

(2.7) 

where P(t) is the initial population, n is the number of individuals and r is the tournament 
size (arbitrary). To denote the population after selection P'(t) is used. 

The algorithm that describes the tournament selection procedure is presented below, where 
bestind is defined as the function that selects the individual with the best fitness from the 
subset taken from P(t) of size r. 

Tournament selection algorithm 

Algorithm ( int i, ) 
i<-1; 

r <- random(; 
while (i<_ r) 
{ 

} 

p'; E- bestind(P(t), r) 
iE-i+1; 

In rank based selection (Grefenstette, 2000b) the probability of selection is determined by the 
rank of the individual's fitness. Following the steps of the general selection process: 1. The 
objective function must be mapped to fitness function. 2. The probability distribution is 
created using the fitness as a basis. 3. The samples are drawn from the probability 
distribution. 

1. Mapping the objective function to fitness is represented by: 

O(ai) = 8Aa; ) (2.8) 

where 0 is the fitness function, f is the objective function and S is -1 when it is desired to 
minimise and +1 when it is desired to maximise. 

2. For ranking there are different methods such as linear ranking, non-linear ranking, (µ, X), 
(µ+a. ), and threshold selection (the last three methods are used in evolution strategies). As an 
example of these ranking methods linear ranking is explained below. 

If the size of the population is u, fitness is ranked from zero for the worst fitness individual 
and , u-1 for the best. Once, the individuals are ranked a selection probability is assigned. This 
selection probability is proportional to the individual's rank. The selection probability for 
each individual is defined as follows: 

1 a rank 
[rank(9/ 

1J+ 
ý_ ill! Výýrank - arm)kl 

(l 
Prank rll = (2.9) 

II 
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where ar,,,, k is the number of offspring assigned to the worst individual, and 8,,,, k is the 
expected number of offspring to be assigned to best individual during each generation 
(Grefenstette, 2000b). Given ar,,,, k =2- ßrank 

, and I< ßrank <_ 2, then the expected number of 
offspring of the best individual is no more than twice the number of the population average. 
This prevents the algorithm from having a premature convergence when a very good 
individual (super individual) appears. 

2.2.1.2 Crossover in GA 

Crossover is a recombination operator. In GAs there are several kinds of crossover such as 
one point, two point, multiple-point, uniform, segmented and shuffle. 

As Goldberg (1989) defined the one-point crossover consists of selecting randomly two 
individuals from the parent population, selecting a random position in the chromosomes (to 
choose the position a uniform distribution is used) and swapping the segments to the right 
hand side of the position selected. This will generate two new individuals (offspring). 

In Eshelman et al. (1989) the two-point crossover consists of a chromosome considered as a 
ring and two numbers randomly selected that will segment the chromosome and will produce 
two offspring. 

De Jong (1975) proposed a generalised crossover model where a new variable was 
considered. This variable is the number of crossover points and is called CP, to have the one- 
point crossover case CP is equal to 1, for the two-point crossover CP is equal to 2. The 
chromosome is still considered as a ring for an even CP and for an odd CP one of the crossing 
points is considered fixed in position 0. Both of these cases produce two new children. If CP 
is greater than 2 the crossover is known as multiple-point (Figure 2.2). 

Parent 1 Parent 2 

Figure 2.2 Multiple-point crossover with CP =4 

According to Syswerda (1991) the uniform crossover exchanges bits with fixed probability; 
this operator uses a crossover mask. This mask consists of a string the same size than the 

chromosomes where for each bit the mask parity determines which of the two parents will 
give its bit to the child. This crossover is called uniform due to the fact that the distribution of 
1-bits is uniform with a bit probability of occurrence of 0.5. Hence the mask is randomly 
generated and for each mask there is a corresponding inverse mask. 

Segmented crossover is considered a variant of multiple-point crossover that allows the 

variation of the crossover positions (points). 

Eshelman et al. (1989) introduced the shuffle crossover. This technique is very similar to one- 
point crossover. It consists of a random shuffle of the bit positions in both parents, having 
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swapped the segments to the right of the crossover position it is necessary to unshuffle the 
offspring to recover the original ordering positions. 

2.2.1.3 Mutation in GA 

Basically, mutation is understood as the process of generating a new child from one and only 

one parent, in : jP --+ jP. To apply the mutation operator to a binary string (chromosome) 

ä= (a1, " ", aP) EI= {0,1}P it is necessary to fix a probability of mutation p,,, (this 

probability is small) and to determine positions ij randomly, where ij E{1, ..., p} (such 
positions have the same probability p,,, of being chosen). In other words, pn, is the probability 
of independently inverting each a, thus after the mutation operator is applied the new 
individual is W= m(ä) where in : {0,1)P --+ {0,1)" and 

n': - 5 a; 
1-4 

u> P,,, 

uSP,,, 
(2.10) 

-II1 

where it denotes a uniform random variable U({0,1 }) (Bäck et al., 2000). 

2.2.2 Evolutionary Programming 

Fogel et al. (1966) developed evolutionary programming (EP). Initially their objective was to 
develop artificial intelligence through the simulation of natural evolution. They showed that 
to have intelligent behaviour it was necessary to predict environment (the organism is only as 
intelligent as the quality of predictions are). Environment was posed as a sequential source of 
symbols. An organism was needed for transforming a sequence of input symbols into a 
sequence of output symbols. This organism was represented mathematically and was 
considered as a "parent". The organism was a finite-state machine with an alphabet (finite) of 
input symbols, an alphabet (finite) of output symbols and a finite number of internal states. 

Evolutionary programming techniques consisted of two operators: selection and mutation. 
Mutation was considered to be the production of an offspring through a single modification of 
the parent; an average cost of the errors was calculated for both parent and offspring. 
Comparing the parent and offspring cost of the errors, if the offspring was superior (in terms 
of lower cost) the parent was discarded and the offspring served as a parent to produce a new 
offspring. If the parent was superior the offspring was discarded and the parent was used 
again to produce a new offspring. This was considered the selection operator. Evolutionary 
programming is still considered an area of active research (Mitchell, 1996). 

In Figure 2.3 a finite state machine is shown, considering the left of the slash as the input 
symbol (1,0) and the right of the slash as the output symbol (a, ß, y). The machine starts in 
state A (De Jong et al., 2000) (Fogel et al., 1966). 

The population is a set of finite-state machines so the parents and the offspring will be 

machines as well. Moreover, there are five possible modes of mutation: change an output 
symbol, change a state transition, add a state, delete a state or change the initial state (Porto, 
2000) (Fogel et al., 1966). The mutation operator is applied randomly, based on a probability 
distribution typically uniform. After mutation the machines that have the best ability to 
predict each next symbol become parents of the next generation of offspring. 

1-Lli 



Chapter 2. Evolutionary Computation 21 

1/ß 

Figure 2.3 Finite-state machine. 
Adapted from Fogel et al. (1966) 

Fogel (1991) retook evolutionary programming where the following sequence of operations 
was proposed: 

1. Generating the initial population P; setting a random vector V, a uniform distribution in n 
dimensions ranged from a to b inclusive U(a, b)", then: 

P; =V; U(ab)", b'i=l,..., k (2.11) 

where k is the number of parents. 

2. Assigning a fitness score Op; = G(F(p, ), vj), where v; represents random alteration in pi or 
random variation on the F(p; ) evaluation. Fitness function F maps p; to the real number 
setp; -R and G determines the fitness score to be assigned. 

3. Altering pi and generating p1+k: 

Pi+k, j = Pi,.; + N(0, Qj Op; + zj), Vj =1, ..., n (2.12) 

where N(u, o2) is a Gaussian random variable with variance o2 and mean P: 

p=0and o2=ßOp; +zj (2.13) 

where zj >0 represents a positive offset and ß>0 represents a positive constant of 
proportionality to Op;. This is considered the mutation operator. 

4. Assigning a fitness score to eachp; +k : 

OPi+k G(F(Pi+k)'Vi+k) 

5. Assigning a weight wt to each p;. 

(2.14) 

6. Ranking p; in descending order according to their ivi values. 
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EP has been applied successfully to problems in prediction, identification and automatic 
control. Other areas where EP has had success are optimisation of neural networks, optimal 
routing, drug design, game theory, control of heating, ventilation and air conditioning 
(Syswerda, 1991). Because EP can be used to solve NP-complete problems especially in 
commercial and military domains, it is expected that EP will be better developed in future 
research. 

2.2.3 Evolution Strategies 

Evolution strategies (ES) were developed in Germany in 1964 (Rechenberg, 1965) and, in the 
same way as genetic algorithms and evolutionary programming, they follow the principles of 
natural evolution. The aim of these strategies was to solve optimisation problems. Normally 
these strategies are algorithms completely based on recombination, selection and mutation 
operators even though the first evolution strategy ((1+1)-strategy) worked just with selection 
and mutation operators. This strategy is called "two membered evolution strategy" 
(Michalewicz, 1994) and the selection mechanism is represented by the term (1+1)-selection. 
The population is defined with one individual, which is considered the parent. The mutation 
operator is applied to the parent resulting in an offspring. If the offspring's fitness is better 
than the parent's, the offspring replaces its parent, otherwise the parent remains unchanged. 
The representation of the parent is made using a pair of float-valued (real-valued) vectors: 

v= (x, A) 

xER° 
X ER 

v: R°xR-> IV" (2.15) 

where vector x represents a point in the search space and % represents a vector of standard 
deviations. Mutations are applied by adding a normally distributed random vector Z~ N(0,1%) 
that is multiplied by a scalar 6> 0: 

x, +1 = Xi + 6, Z, (2.16) 

where N(0, A) is a vector with a mean of zero and standard deviations A. Defining f as the 
objective function to be maximised, the offspring replaces the parent only if f(xt+i) >J(xt). 

It is obvious that in the (1+1)-ES the concept of population is not used. For this reason a 
multi-membered evolution strategy (µ+l)-ES was created, where µ>1. In this ES µ parents 
are recombined to obtain the offspring to which the mutation operator is applied, the 
recombination operator is explained in detail in section 2.2.3.1. The resulting offspring of this 
procedure will substitute the worst parent only if it is better. The (µ+l)-ES was the foundation 
to the (µ+, %)-ES and (g,?, )-ES (Bäck, 1996). In particular, the (µ+, %)-ES or (t, 2)-ES implies 
that p. parents will produce ? offspring. 

2.2.3.1 The Recombination Mechanisms 

The recombination operator will be called r, and basically is the selection of two individuals 
from the population µ. The main difference between a sexual and a panmictic recombination 
operator according to Bäck (1996) lies in the way the parents are chosen. In other words, in 
the sexual recombination operator the two individuals (parents) are randomly chosen from the 
initial population; this includes the possibility of choosing the same parent twice in order to 
generate the new individual (offspring). In the panmictic recombination operator one parent is 
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chosen randomly and it maintains fixed then it is necessary to select randomly a second parent 
for each vector of the first. 
As regards the (1+1)-ES there is no recombination operator conversely (µ+l)-ES, (µ+X, )-ES, 
and (µ, 2)-ES will have the following operator (Bäck et al., 1991): 

r: I" -+ I recombination operator 
(2.17) 

Moreover there is another classification for evolution strategies (ES) recombination operators: 
discrete and intermediate. Both classifications can be mixed; for example it is possible to have 
a panmictic intermediate recombination or a sexual discrete recombination. 

On the one hand, to obtain the components of the offspring in the intermediate case it is 
necessary to calculate the arithmetical mean of the corresponding components of the two 
parents selected for recombination. Schwefel presented a generalised intermediate 
recombination operator that consists of setting arbitrary weights within an interval [0,1] 
instead of having the unique value of 0.5 as in the arithmetical mean (Bäck, 1996). The sexual 
intermediate recombination operator r is presented in the following definition, 

Definition 2.2 

The recombination operator r is: 

r(P') = a' = (x', o')E 1 

x'i =2(. xa, i + xb, i) I =1, ..., n 

(t7 66 i) 

(2.18) 

where the parents a_ (xa, 6a) and b= (xb, 6b) EI, P' is the population, and x'; and d; 
represent the offspring. 

On the other hand, Blick et al. (1991) proposed that in order to obtain the components of the 
offspring in the discrete recombination operator these are copied from one of the parents 
randomly selected. The sexual discrete recombination operator r is presented in the following 
definition: 

Definition 2.3 

The recombination operator r is (Definition 2.2) 

r(P') = a' = (x', d) EI where x'(=- R", a'(=- R" 

xa,; ý 

xn,; 

i= 
6a, i , 6i 
6b, i 9 

Vi E 11, 
""", n} 

Vi r= {l, """, n} 

X<x 

X>Y2 

X<_12 

X>Y2 

(2.19) 

where the parents a= (xa, o) and b= (xb, 6b) E I, Xis a uniform random variable within the 
interval [0,1]. The probability of mating for each element of the population is the same. 
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2.2.3.2 Selection Operators 

According to Bäck (1996) the selection mechanisms in ES are mainly deterministic. 
Considering (µ+l)-ES as the first multi-membered evolution strategy, the selection operator s 
is defined as the one that removes the individuals with the worst fitness value of the 
population. This operator is applied before the next offspring generation is produced (Bäck et 
al., 1991). 

s. I'`}' _)I/` (2.20) 

In Bäck (1996) the (µ+X,, )-selection operator selects µ individuals (the best) from the set that is 
constituted by the union between the parent set and the offspring set. The set resultant from 
the application of the selection operator is used as the new parent set for the next generation. 
The (µ+X,, )-selection operator is represented as follows: 

S(,, +2, ) . IF`+"-> 1'` (2.21) 

The (R, /%)-selection operator selects the µ best individuals from the offspring set to generate 
the new parent set for the next generation. The (t, 2 )-selection operator is represented as 
follows: 

ý s(µ, X) .I -3 1'` 

2.2.3.3 Mutation Operators 

(2.22) 

As mentioned above mutation in is an asexual operator. This operator is presented in the 
following definition (Back, 1996): 

Definition 2.4 

The mutation operator m is: 

1n(., 6, ä) =(3F, 6', &') 'di E {1, """, n}, `dj E {1, """, n"(n-1)/2}: 

6'i = 6i " exp(r'"N(0,1) + r" Ni (0,1)) 

a'; = aj+ ß" Nj(0,1) 

z' = x+ N(O, C(6', ä' )) 

where N(0,1) is a vector with a mean of zero and standard deviation 1, a and a are the 
standard deviation and rotation angles respectively, and x is the object variable vector. 

Evolutionary strategies have several applications one of which is developed in (Lohman, 
1991). This problem used a self-optimisation method to the structure of a local filter in Visual 
Systems. 

2.3 Comparison among Algorithms 

Hoffmeister and Bäck (1990) showed the similarities and differences between Genetic 
Algorithms (GAs) and Evolution Strategies (ESs). Table 2.2 shows a table adapted from 
(Hoffmeister and Bäck, 1990). Nevertheless, Bäck et al. (1991) concluded that the most 
significant difference between these two algorithms is the ttivo-level learning in ESs. 
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ES GA 

Real valued representation of individuals Binary coding for the representation of 
individuals 

Knowledge of the number of variables in the Knowledge of objective function's properties objective function 
(µ, ?, ), (µ+? ) selection Proportional, ranking, tournament selection 

Mutation is the main operator 
Recombination (crossover) is the main 
operator 

Recombination schemes as secondary role Mutation as secondary role 
Table 2.2 GA and ES differences. 

Fogel (1991) after running and comparing a GA to an EP concluded that in some cases the 
GA was unable to find solutions close to the optimal while the EP was more accurate. EP is 
robust to multiple optima and random noise because of the Gaussian relation between the 
parents and the children (offspring). This relation guarantees that every point in the space 
could be reached, allowing the algorithm to throw appropriate solutions. Additionally, EP has 
a very efficient parallel search mechanism. It is important to notice that even though EP is a 
very versatile tool computationally speaking in a serial computer the cost increases compared 
to that in a parallel-processing machine; understanding computational cost as the complexity 
of the overall system. 

EP can be used as a procedure to search in general non-linear functions. As in the case of ES 
and GA comparison, in EP the representation of the decision variables is a real-valued vector 
while in GA is a binary string or Gray-coded string. It is important not to forget that in the 
first approaches of EP the representation was through finite-state machines. 

In the ES and EP case one characteristic in common is that the evolutionary operators 
(mutation and crossover) are used variable by variable. Besides both methods use strategy 
parameters in order to provide more freedom to the search algorithm (variance and covariance 
along with other decision variables) and a Gaussian random variable is added to each parent 
involved in the genetic operator's procedures. 

Finally, it is important to mention that in GA it is possible to use direct real-valued vectors, 
and are called real-valued GA. For this kind of GA it is necessary to modify the genetic 
operators as is discussed in Chapter Three. 

2.4 Traveling Salesman Problem (TSP) 

The origins of TSP date from the 1920's when some mathematicians and economists 
(Applegate et al. ) proposed it. TSP became more known due to being a prototype of a hard 
problem in combinatorial optimisation. Because of this it has been studied in research 
operations, linear programming, and genetic algorithms as well. 

To specify the Traveling Salesman Problem the following graph theoretical definitions are 
necessary (Reinelt, 1994). An undirected graph (or graph) G= (VE) consists of a finite set of 
vertexes V and a finite set of edges E. Each edge e= {a, b} or e= ab has two endvertexes a, b. 
This graph is called undirected because there is no difference between the edges el = {a, b} 
and e2 = {b, a}. It is said that edge e is incident to a and to b if e= {a, b}. The number of edges 
incidents to a vertex a is defined as S(a). 

1 Nodes or points 
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A graph G' = (V', E') is a subgraph of G= (V, E) if V'cV and E'cE. A graph G(V, E) is 
complete if for all a, b eVIa : P, - b3e= (a, b) E E. The complete graph of n vertexes is 
denoted by Yn=(V,,, E�) and Vn={1,2,... n}. If a set of edges P={e j(ala2), e2(a2a3), ... , ek., (ak. 

lak)} is given this is called a walk or [al, ak]-walk. If a; # aj for all i:;, -, j then the set P is called 
path or [aj, ak]-path. A cycle is a set of edges C= ej(ala2), e2(a2a3), ... , ek. J(ak. Jak), ek(akai) 
where a; ; aj for i #j. ICI denotes the length of a cycle. 

The graph G= (V, E) is connected if it contains for every pair of vertexes (ab) a path that 
connect them. A Hamiltonian cycle (Hamiltonian tour) is a simple cycle of length ICI=n in 

a graph of n vertexes. For every edge e= {a, b} EEa weight function is defined as follows 
C: E -> Q (Q is the set of rational numbers) for the edge e= {a, b} its weight will be denoted 
by C(e) or Cab. A weight of a set of edges Z where ZcE is defined as follows: 

C(Z) := Y_C(e) 
eeZ 

(2.23) 

If the weight of a tour is considered as the length of the tour, the shortest tour will be the one 
with the shortest length. The TSP can be defined in a formal way: 

Defining Has the set of all the Hamiltonian cycles of a graph: 

it : TSP 
Parameters: G =(VE) with W: E R+ 

Answer: 
Precondition: G is complete and finite 

TSPA(G, i) -+ t 
Postcondition: 

tEHIVrEH, C(t)<_C(r) 
(2.24) 

The aim of the Symmetric Traveling Salesman Problem (STSP) is to find the shortest 
Hamiltonian cycle of a complete graph Y� with a weight C(e) in every edge e= {a, b} E Y. . The Euclidean TSP is a set of points in the plane where the graph contains a vertex for every 
point and the weights are defined as the Euclidean distance between every pair of vertexes. 

Describing the TSP in other words a salesman has to visit different cities in a certain tour; the 
constrains of this problem are: 

1. There is a starting point 
2. Each city is visited once. 
3. The cost of travel between the cities is given. 
4. The distance between city A and city B is the same distance between city B and city A. 

Considering the distance directly proportional to cost, travelling from A to B costs as 
much as travelling from B to A (symmetric). 

The problem is to find the tour with the minimum total cost. To solve the problem the integer 
vector representation is chosen instead of using the binary string representation; it will help 
with the application of crossover and mutation operators. A vector v= (i1i2... i�) represents a 
tour: from it to i2, etc. The tour is a Hamiltonian cycle that is, a cycle passing through all the 
vertices of the minimum total weight. 

In the TSP the search space is composed of permutations of the different cities to visit. This 
condition increases the complexity of the problem. The TSP is an NP-Hard problem, which 
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means that the algorithms to compute this problem will require a computational time 
exponential in n, where n is the number of cities. To solve the TSP different optimisation and 
search methods have been used in addition to GA, evolution strategies and other 
methodologies. The TSP problem solved using GA needs to develop different crossover and 
mutation operators. 

2.4.1 Traditional Optimisation and Search Methods for the TSP 

To solve the Traveling Salesman Problem different heuristic methods have been developed. 
Some of these methods are called construction procedures (Reinelt, 1994). It is necessary to 
consider the following: the complete undirected graph will be called K,,, the edge weight or 
length are Cab for every pair of vertexes a and b. The main objective is to find good 
Hamiltonian tours. 

The first procedure to study is nearest neighbour heuristics, in this is necessary to set an initial 
city. This city is the starting point of the tour, and the next city is the nearest city to it. Then 
the salesman visits the nearest city not visited yet, until he has visited all the cities and returns 
to the initial city. This procedure run in a time complexity O(n2). 

The second procedure is insertion heuristics, in this a subtour is chosen to start. This subtour 
has a size 1 where 1z1, then it is necessary to insert those cities that are not part of the 
subtour. This insertion of cities is based on different criteria, such as nearest insertion, farthest 
insertion, cheapest insertion, random insertion, largest sum insertion and smallest sum 
insertion. Comparing these procedures the better results were farthest insertion and random 
insertion (Reinelt, 1994). 

The third procedure is one based on a greedy algorithm given the set of edges E =lei, e2, ... , 
em} where in = n(n - 1)/2 and n is the number of cities. The paths are considered to have a 
length of zero and then the procedure checks if the shortest edge that has not been considered 
can join two paths. In other words, the procedure executes a sort of E from the shortest to the 
largest. Then it checks in times if adding the edge e; still has a Hamiltonian tour where i :! g in 
and it varies from 1 to in. If this is possible the edge ei will be added to the tour. 

These construction procedures are considered as algorithms with a moderate performance. 
This is the reason to improve some of them by means of doing alterations to the tours. It is 
necessary to consider a current tour to do the movements (alterations) on it. 

Turning to the node insertion procedure it is necessary to start from the basis that a node 
(vertex) from the current tour will be moved and will be reinserted in a new position that 
should be the best. This means that this insertion will result in a decrease in the tour total 
distance (tour length). This procedure has a time complexity of O(n2) because it is necessary 
to check every possible insertion in every node. A failure will appear when any improvement 
can be found. 

The edge insertion procedure is similar to the node insertion but instead of inserting a node an 
edge is inserted. This means an edge is removed from the current tour and it is reinserted in 
the best position to decrease the most the tour length. It is important to note that the edge can 
be inserted in two possible ways; one is inserting it conserving the vertex order and the other 
is switching the position of the vertexes in the edge. This procedure has a time complexity of 
O(n2). These procedures were applied after the construction methods described above 
(Reinelt, 1994). However, the results were very poor. In some cases the tour found was twice 
as long as the shortest tour found in the construction procedures. For this reason, other 
methods were developed; these methods are: 2-Opt Exchange; 3-Opt Heuristic; Lin- 
Kernighan; and are described below: 
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2-Opt Exchange 

This procedure is the elimination of two edges in a tour and the connection of the two 
resulting paths in a different way to form a new tour. A 2-Opt move involves the edges 
between the vertex that is analysed and the vertex that follows it in the current tour. Then it 
checks if it is possible to reduce the tour. This procedure is run for all the vertexes in the 
initial tour, choosing the best of all the new tours generated. Reinelt (1994) ran this procedure 
using the construction techniques to generate the initial tour and then compared the result 
obtained with the results of the insertion heuristics. The results of the 2-Opt were much better 
than the results with the other methodologies. The time complexity for this procedure is 
O(n2). 

3-Opt Heuristic 

This procedure is an improvement of the 2-Opt heuristic, the main functions is to separate the 
tour in three parts and combine the paths in the best way possible. Considering different types 
of 3-Opt moves, this implies a time complexity of O(n3), which makes this procedure very 
time consuming. The next procedure is applied to all the vertexes in the initial tour. This 
means to all the cities in the problem (n cities) but a new constraint must be defined. With a 
set of vertexes N(x) with a constant cardinality and independent of the number of cities n, the 
constraint is that once the three edges are eliminated they have at least one endvertex in N(x). 
After this the best tour of all the tours generated will be chosen. 

Lin-Kerniahan Heuristics 

Lin and Kernighan (1973) developed this heuristic method. They considered that if a great 
modification was applied to the tour but it was composed by simple moves, these were not 
always decreasing the tour length but they could increase the possibilities of improvement the 
results. Having an initial tour and running the procedure for every vertex in the tour; the main 
objective is to find a move that improves the tour. This move consists of 2-Opt and node 
insertion moves (called sub-moves). Comparing this method with 2-Opt, 3-Opt node insertion 
and edge insertion, the Lin-Kernighan methods had better results. 

2.4.2 Crossovers for the TSP 

Goldberg (1989) proposed a simple crossover that consisted in generating an integer number 
randomly between 1 and the string length less one. Considering two strings Pl and P2 with 7 
bits and the random selected integer a=3 the crossover yields: 

Pl =1010101 

P2 =11 l) 1010 

The new strings: 

p'1 =1011010 
p'z =111 0101 

Using this crossover in the TSP, two parents P, and P2 are assumed with 5 elements (cities) 
and an integer a=3 the crossover yields: 
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pi = 
(3 1 21 5 4) 

P2 = 
(2 5 41 3 l) 

The strings are illegal tours: 

p'1 = (3 123 1ý 

P12 = (2 545 4ý 

In conclusion, the simple crossover is not appropriate in 'the TSP solution. First of all it is 

necessary to determine the representation used in this problem as well as the genetic 
operators. 
In genetic algorithms as was mentioned before the typical way to represent chromosomes is 

using binary vectors. In some cases this representation is not enough and other representation 
methods have been used considering the syntax of the chromosomes as an important 

component of the genetic algorithm (Goldberg, 1989). 

2.4.2.1 Adjacency, Ordinal, Path Representation and their Crossovers 

In the GA community there is an agreement that binary representation is not valid in the TSP 
(Michalewicz, 1994). To solve this problem many vector representations have been 
developed; the three most known are adjacency, ordinal, and path representations 
(Michalewicz, 1994). Grefenstette et al. (1985) studied the adjacency and the ordinal 
representations. 

In adjacency representation it is necessary to use a repair algorithm, because it does not 
support the normal crossover. The tour is a list of cities and each tour has only one adjacency 
representation. Three crossover operators were defined (Michalewicz, 1994): 

1. Alternating edges. This crossover generates an offspring choosing an edge from the first 
parent then selects another edge from the second parent and alternating parents, taking 
care not to select an edge that introduces a premature cycle. 

2. Subtour-chunks. This crossover generates an offspring choosing a subtour with random 
length from one parent and choosing another subtour from another parent with random 
length as well. 

3. Heuristic crossover. This crossover generates an offspring choosing randomly a city and 
setting this city as the starting point. Then the two edges of this city are compared and the 
shorter is selected as the better. 

In ordinal representation the classical crossover works. In this representation there is a list A 
of n cities that serves as a reference point and a list R of references, for example: 

A=(2 13 4) 

The list of references: 

R=(1 32 1) 

" The first number on the list R is 1, it takes the first city on the list A that is 2, this city is 
removed from list A. The list A now is A= (1 34) 

" The next number on the list R is 3, it takes the third element on the list A that is 4, this city 
is removed from list A. The list A now is A= (1 3) 
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" The next number on the list R is 2, it takes the second element on the list A that is 3, this 
city is removed from list A. The list A now is A= (1 ) 

" The next number on the list R is 1, it takes the first element on the list A that is 1, 

The tour is: 

T=(2 43 1) 

Some experimental results show that this representation is not appropriate for the TSP 
(Michalewicz, 1994). 

In path representation three crossovers have been defined: PMX, OX, CX. 

PMX (partially-mapped). Goldberg and Lingle (1985) pay special attention to the crossover 
operation in evolutionary search. They defined this crossover with two crossing sites 
(randomly selected), as is shown in the next example (Goldberg, 1989): 

A=89 15 3 41 6172 

B= 94 16 7 11 2538 

PMX maps from A to string B and from string B to string A. The 5 and the 6, the 3 

and the 7, and the 4 and the 1, exchange places. The 6 an the 5, the 7 and the 3, the 1 

and the 4, exchange places, yielding the following offspring: 

A' =896715432 
ß' =915342678 

OX (order). The order crossover works in a similar way than to PMX (Goldberg, 1989). Two 
crossing points were defined as is shown in the next example: 

A=89 15 3 41 6172 

B=94 16 7 11 2538 

OX maps from A to B leaving holes in cities 6,7, and 1 (represented by H). Mapping 
from B to A will leave holes in cities 5,3, and 4 holes (represented by H): 

A= 89534HHH2 
B= 9H6712HH8 

The holes are filled with a sliding motion that starts from the second crossing site: 

A=534HHH289 
B= 671HHH289 

The Hs are filled in the case of A with cities from B and in the case of B with cities 
from A, these cities are between the two crossing sites. For A the cities are 6,7, and I 
for B cities are 5,3, and 4: 

A' =534671289 
B' =671534289 
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CX (cycle). Oliver et al. (1987) proposed this crossover. The main constraint of this crossover 
is that each city in the offspring comes from one of the parents. Assume two parents A 
and B (this example was taken from (Michalewicz, 1994): 

A= 123456789 
B= 412876935 

The first city from parent A is taken to begin the first offspring: 

A' =1 

The next city is city number 4, because it is the first city in parent B, city 4 appears in 
the fourth place in parentA: 

A' =14 

City 8 is the city that appears in fourth place in parent B and is in eighth place in 
parent A: 

A' =148 

Continuing this process, the next cities to place are 3 and 2. City number 2 requires 
the selection of city 1, this city is already placed in the offspring and the cycle is 
completed: 

A' =12348 

The next city to consider is the first city that appears in parent B and does not appear 
in the offspring (A'). This city is 7 and is placed in the fifth position of the offspring: 

A' =123478 

This city 7 appears in the fifth place of parent B and the city that appears in this place 
in parent A is 5. The city 5 is in ninth place of parent B and in this place in parent A 
appears city 9. This city is in seventh place in parent B as it is placed in the offspring 
as follows: 

A' =12347985 

City 9 is related to city 7 and this city is already part of the offspring. Then a second 
cycle is completed. The only city that has not been placed is city 6. The offspring is 
as follows: 

A' =123476985 

The second offspring is obtained following the same procedure: 

B' =412856739 

Oliver et al. (1987) analysed and compared the PMX, OX and CX crossovers solving the TSP 
with 30 cities. It is shown that the crossover with the best performance is the OX. 
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All the representations mentioned above are appropriate to GAs. In most of the cases it is 
necessary to use a repair algorithm to allow the proper function of crossover. 

2.4.2.2 The Edge Recombination Crossover (ER) 

Whitley et al. (1991) developed a crossover called the edge recombination crossover (ER). 
This crossover transfers more than 95% of the edges from the parents to a single offspring 
while the adjacency representation transfers just 30 % of the edges from the parents 
(Grefenstette et al., 1985). 
The process is to create a list of edges; this list has the edges of each city in both parents. This 
means that each city can have at least two cities and at most four cities. For example, for the 
two parents: 

P1= (2 341 5) 

P2 = (1 435 2) 

The edge list is: 

city 1: edges to other cities: 2,4,5 
city 2: edges to other cities: 1,3,5 
city 3: edges to other cities: 2,4,5 
city 4: edges to other cities: 1,3 
city 5: edges to other cities: 1,2,3 

To construct the offspring the number of edges of each city is analysed. The first step is to 
select the city with the least edges. In the example above this is city 4; this city has cities 1 
and 3 connected to it. Cities 1 and 3 have three edges, which means a random selection is 
needed between these two cities. Suppose that city 3 is chosen, then the offspring is as 
follows: 

0=(4 3 ... ... ... 
) 

Analysing city 3, it is connected to cities 2,4, and 5. City 4 having been selected then cities 2 
and 5 can be examined. Each city has three edges, then a random selection is made. Assuming 
city 2 has been selected it has edges 1,3, and 5. Since city 3 is already in the offspring, cities 
1 and 5 will be analysed. Both cities have 3 edges. A random selection is applied again, and 
city 5 is selected. City 5 has edges 1,2, and 3. Cities 2 and 3 are part of the offspring, then 
city 1 is selected. 

The offspring is: 

0=(4 325 1) 

Additionally the concept of failure has to be introduced. A failure occurs when a city has been 
chosen and it does not have any city remaining in its edge list. In this case the operator 
chooses another city and this is introduced in the offspring continuing with the procedure 
mentioned above. 

Whitley et al. (1991) presented the results for the 30 city problem comparing them with the 
results found by Oliver et al. (1987) obtaining a better performance for the edge 
recombination crossover. Additionally, they used this crossover to solve sequencing problems 
due to the good solutions found for the TSP. The results of this experiment are shown in 
subsection 2.5.1. 
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Starkweather et al. (1991) developed an improved version of the edge recombination 
crossover. In this version, an adjacency table is constructed in the same form as in the edge 
recombination crossover but with the difference that if a city is adjacent to another in both 

parents it will be represented in the adjacency table with a negative sign. For example, for the 
two parents used previously: 

p1= (2 341 5) 

P2 = (1 435 2) 

The edge list is: 

city 1: edges to other cities: 2, -4,5 
city 2: edges to other cities: 1,3, -5 
city 3: edges to other cities: 2, -4,5 
city 4: edges to other cities: -1, -3 
city 5: edges to other cities: 1, -2,3 

Selecting the first city of the offspring randomly and analysing the edge list of this city the 
next city of the offspring will be determined. When following a scheme of priorities, the first 
priority is to place the flagged cities in the offspring and the cities with a lower number of 
edges in their lists will have second priority. Once the cities are placed in the offspring they 
have to be removed from the edge lists. When none of the priorities mentioned above could 
be followed to determine the next city to place in the offspring it will be determined 
randomly. This edge recombination operator version was used in small TSPs. Mathias and 
Whitley (1992) called this improved version as Edge-2 recombination operator and they 
introduced a new version called Edge-3 recombination operator that was designed with a 
guarding failure mechanism. This version is based on the construction of partial tour or 
subtours. The city that is at the beginning or at the end of a partial tour is called terminal. A 
terminal can have two states, to live or die; a live terminal exists when its edge list still has 
edges; otherwise it is a dead terminal. The algorithm of the Edge-3 recombination operator, 
considering that the edge table has being done previously, is shown below: 

Edge-3 Algorithm 

Algorithm (int i, j, live) 

cl <- randomcity (parentA); 
live <- 0; 
i=2; 
while (live =0 && i< n+1) 
{ 

/* randomcity selects randomly a city from parent A */ 

c, <- buildtour (edgelist, cj_I); 

if (edges(edgelist, c; ) = 0) then 

live <- 1; 
i<-i+1; 

} 
if (i < n) then 
{ 

live E- 0; 
j4-i; 
while (live =0 &&j <n+ 1) 
{ 

/* n is the number of cities of the tour */ 

l* buildtour selects the edge from the edgelist of ci., 
following the priority conditions */ 

/* edges counts the number of city that are in the 
edgelist */ 
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} 

c'<- inverse (ci, ci); /* inverts the partial tour from c, to cl 
cj' <- buildtour (edgelist, cj. j); 
if (edges(edgelist, cj') = 0) then 
live <- 1; 
j<-j+1; 

} 

34 

When two failures occur, the Edge-3 algorithm continues adding cities to the tour in a random 
form. The Edge-4 recombination operator was proposed by Dzubera and Whitley (1994), and 
follows the same idea of Edge-3 recombination operator. The main difference is that once the 
first and the final cities have suffered a failure, instead of reversing all the tour in the 
offspring, it will reverse a part of it. Considering the following example: 

58 10 61432 

suppose that city 2 and city 5 are dead and the city 2 edge list is 4,6 and 8. Then Edge-4 
recombination operator takes the adjacent cities to city 2 edge list: 

58 10 61432 

These cities are city 10, city 1 and city 3, then the one with the least number of cities in its 
edge list will be chosen. Lets suppose this is city 6 then the subtour from city 6 to city 2 will 
be reversed: 

58 10 23416 

allowing the procedure to continue with city 6. 

Comparing the results using Edge-3 and Edge-4 recombination crossovers, it is found that 
Edge-4 consumes greater resources than Edge-3. However, Edge-4 has a better performance 
than Edge-3. 

Tang and Leng (1994) proposed a new variant of Edge-2 called edge recombination nearest- 
neighbour (EdgeNN). It is necessary to generate a matrix that contains the distances among 
the cities. Figure 2.4 shows the distance matrix: 

1 2 3 4 n 
1 

- 
C12 C13 C14 

""" 
C111 

2 C21 
- 

C23 C24 
... 

C211 

3 C31 C32 
- 

C34 
""" 

C3n 

4 C41 C42 C43 
- ... 

C4n 

11 Cnl Cn2 Cn3 CO ". - 

Figure 2.4 Distance matrix 

where C, is the distance between city i and city j. If the problem is symmetric Cr C;; . 

The algorithm of the EdgeNN recombination operator is shown below (the initialisation of the 
population P is generated randomly and Si, Sj EP, i #j): 
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EdgeNN recombination crossover algorithm 

Algorithm (int k, int t) 
t 0; 
parent] <- S;; 

parent2 <- Sj; 
length F- n/4; 
k <- n- length; 

point (-- randompoint(parentl, n, h); 

offspring <- segment (parent], point, length); 
newparent <- parent]- segment; 
map <- edgemap(parent2, newparent); 
c <- lastcity(offspring); 

while (t < k) 
{ 

map E- remove(c, map); 
elements E- edgelist(map, c); 
if (elements:;, - 0) then 
{ 

if (negative : p, - 0) then 
{ 

c F- selectcity(c, map); 
offspring - offspring add c; 

} 
else 

c <- nearesl(matrix, c); 
Offspring F- offspring add c; 

} 
else 
{ 

if(t < k) then 
c E- nearest(matrix, c); 

} 
tf- t+ l; 

} 

where: 
randompoint . tour -ý city 
segment tour -> segment 

edgemap tour, segment - edge list 

remove edge list -ý edge list 
Edgelist edge list -ý int 

selecicity edge list -* city 
nearest matrix -)ý city 
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randomly select a city 
copy a tour segment from 
parent 1 beginning from the 
city selected 

build the list of edges for 
each city 
remove all occurrences 
calculate the number of 
cities that c (current city) 
has in its edge list 

select a city randomly 
determine the nearest city 
to c in its edge list 
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Tang and Leng (1994) report very good results for the EdgeNN compared to Edge-2. 
However, the Edge-2 is a blind recombination operator, so it was decided to use Edge-3 with 
a 2-Repair procedure (variation of the 2-Opt) to have a more balanced comparison. The 
results of this comparison were better for the 2-Repair-Edge-3 hybrid operator. The authors of 
this method concluded that this is useful to generate the initial population using local hill- 
climbing procedures. All the methods explained above are known as the Edge recombination 
family. 

2.4.2.3 The Maximal Preservative Crossover 

Mühlenbein (1991) developed the maximal preservative crossover (MPX). The aim of this 
crossover is to preserve subtours contained in the parents. MPX uses two parents, one of them 
is called the donor and the other is called the receiver. Two points of crossover are defined 
randomly and they are applied to the donor parent. The string of edges between these two 
points is extracted; this string is called the crossover string. The crossover string is copied to 
the offspring and the next cities are added to the offspring in a consecutive form that follows 
certain rules. The procedure to follow is described as follows: 

1. The last city in the offspring is taken and this city is called X. 
2. It is verified if in the receiver there is another city that follows city X and it has not been 

placed in the offspring yet. If it exists it is placed in the offspring and goes back to step 1. 
3. If there is not another city in the receiver that follows city X, it is verified in the donor. If 

in the donor there is a city that follows city X it is placed in the offspring and goes back to 
step 1. 

4. If there is not another city in the donor that follows city X, the city that comes 
consecutively in the receiver parent is placed in the offspring and goes back to step 1. 

This procedure is followed until all the cities from the parents are placed in the offspring. The 
following example shows how this procedure works: 

A=143567892 donor 
B=827694135 receiver 

A and B are the parents, defining A as the donor parent and B as the receiver parent and 
choosing the crossover point in 2 and 6: 

A=14 13 56 71 892 

Copying the crossover string to the offspring: 

0= 3567 

Following the procedure, the last city in the offspring is city 7. City 7 in the receiver is 
followed by city 6 and if this city is already part of the offspring then it is necessary to check 
in the donor parent. In the donor the city that follows city 7 is city 8. City 8 is placed in the 
offspring and it goes back to step 1: 

O= 35678 

Now the last city in the offspring is city 8. City 8 in the receiver is followed by city 2. If city 2 
is not in the offspring then it is placed in it and it goes back to step 1: 
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0= 356782 

The last city in the offspring now is city 2. City 2 in the receiver is followed by city 7. If city 
7 is already placed in the offspring then it proceeds to verify in the donor. If in the donor 
parent city 2 does not have any city that follows it then it is necessary to apply step 4. The 
next city in the receiver is city 9 and this is placed in the offspring and goes back to step 1: 

0= 3567829 

The last city in the offspring is city 9. City 9 in the receiver is followed by city 4. City 4 is 
placed in the offspring and it goes back to step l: 

0= 35678294 

The last city in the offspring now is city 4. City 4 in the receiver is followed by city 1. City 1 
is placed in the offspring and the procedure is finished having completed the offspring: 

0= 356782941 

Mühlenbein defined that the length of the string crossover should be determined randomly 
while Ulder et al. (1990) proposed that this length should not be longer than 1/3 of the 
number of cities of the problem. 

2.4.2.4 The Complete Subtour Exchange Crossover 

Katayama et al. (1998) proposed the complete subtour exchange crossover (CSEX). This 
crossover is based on the enumeration of all common subtours. To enumerate the subtours 
they developed an algorithm which consumes O(n) time where n is the number of cities in the 
problem. The process consists in finding the common subtours from two parents considering 
that they must have the same direction or the opposite direction. For example, for the two 
parents: 

PA =(1 4235698 7) 

Pn =(3 2154678 9) 

The common subtours are 23 and 987 in parent A, and 32 and 789 in parent B because 
they have the opposite direction. Having located the common subtours the next step is to 
generate the offspring: 

PA = (1 4 [2 3] 56 [9 8 7D 
Pn = Q3 2] 1546 [7 8 9D 

01= (1 4 [3 2] 56 [9 8 7D 
02 = (1 4 [2 3] 56 [7 8 9D 
03 = (1 4 [3 2] 56 [7 8 9D 
Oa = Q3 2] 1546 [9 8 7D 
Os = Q2 3] 1546 [7 8 9D 
06=Q2 3] 1546 [9 8 7D 
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Katayama et al. (1998) defined the number of common subtours as k and the maximum 
number of offspring generated as 2x 2k -2. The algorithm to determine the number of 
common subtours satisfies the following statement: 

{ITA(1) IIELIA, rAI }={ITß(i) IiEUß, rß]} (2.25) 

Where 7rA and 7B are the permutations and [UA, rA] and [IB, rB] are the subtour sections. 
The procedure of interchanging the common subtours in the parents to generate the offspring 
is called "2-swap". The CSEX selects the best offspring among all those generated by the 2- 
swap procedure. To know the performance of CSEX Katayama et al. (1998) compare it with 
edge recombination crossover (IERX) and typical heuristics like nearest neighbor (NN), 2-opt 
(LS) and 2-Opt with nearest neighbor (NN +LS). It is necessary to define the concept of 
quality, which is the percentage excess from the optimal value: 

quality = 
Fitness - Optimal 

x 100(/) 
Optimal 

(2.26) 

In Table 2.3 the results of the comparison are shown; this table was adapted from Katayama 
et al. (1998). 

NN quality (%) 
min. 

quality (%) 
max. 

Quality (%) 
Avg. 

Cpu Time (sec) 
avg. 

6151 13.8 20.9 18.0 0.00 
kroA 100 20.5 26.7 25.0 0.01 
LS quality (%) 

min. 
quality (%) 

max. 
Quality (%) 

Avg. 
Cpu Time (sec) 

avg. 
6151 1.2 13.3 6.1 0.11 
kroA 100 5.8 14.1 10.3 0.61 
NN + LS quality (%) 

min. 
quality (%) 

max. 
Quality (%) 

Avg. 
Cpu Time (sec) 

avg. 
6151 2.1 8.0 5.1 0.10 
kroA 100 4.0 9.2 7.9 0.40 
GA (CSEX) quality (%) 

min. 
quality (%) 

max. 
Quality (%) 

Avg. 
Cpu Time (sec) 

avg. 
6151 2.1 5.4 3.8 5356 
kroA100 3.2 7.0 5.5 11838 
GA (IERX) quality (%) 

min. 
quality (%) 

max. 
Quality (%) 

Avg. 
Cpu Time (sec) 

avg. 
ei 151 4.5 7.5 6.2 5026 
kroA 100 8.5 44.7 21.9 16049 

Table 2.3 Comparison of crossover operator (GA) with heuristics. 

It is obvious that the CSEX had a better performance than the other operators did even though 
it consumes more computation time than all the others except for the IERX. It was considered 
as well to make a hybrid (HGA) using genetic algorithms and a local search method as 2-Opt. 
Table 2.4 shows the results of these HGA using MPX, IERX and CSEX. This table was 
adapted from Katayama et al. (1998); the TSP instance used is kroAl00. 
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Algorithms quality (%) 
min. 

quality (%) 
max. 

Quality (%) 
Avg. 

Cpu Time (sec) 
avg. 

MPX 0.0 0.287 0.066 2015 
IERX 0.0 0.301 0.033 1727 
CSEX 0.0 0.301 0.085 1091 

Table 2.4 Comparison of crossover operator in a HGA. 

2.4.2.5 The Inver-over Operator 

Tao and Michalewicz (1998) developed an evolutionary algorithm using the inver-over 
operator. This algorithm has two main features: it possesses a strong pressure in selection and 
uses an adaptive operator. The algorithm of the inver-over operator is shown below (the 
initialisation of the population P is generated randomly): 

Inver-over operator Algorithm 

Algorithm (int k, float p) 

k<-0; 
while (unchanged < k) 

{ 
V Si (=-P do 

offspring <- Si; 

c E- randoincity (offspring); 

end E- 0; 
repeat 
{ 

if (random()< p) then 
c' E-- randomcity (offspring- {c}); 
else 
{ 

S, E- randompop (P -{ Sj); 

c' E- nextcity (Si, c); 
} 
if (c' = nextcity (offspring, c) or c' = prevcity (offspring, c) 

end -O; 
else 
{ 

offspring F- inverse (nextcity (offspring, c), c', offspring); 
C -c'; 

} 
} until (end= 1) 
if (eval (offspring) <_ eval (Si)) 
{ 

Si E- offspring; 
kE-0; 

} 

where: 

} 
else 

k -k+1; 

randoincity tour --+ city randomly select a city 
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nextcity tour x city city select the next city 
prevcity tour x city - city select the previous city 
inverse city, city -. subtour place the elements of the subtour in 

reverse order 
eval tour -. fitness calculate the total distance of the 

tour 

To test the algorithm the following values were used: population size r =100, probability p= 
0.02 and the termination condition unchanged = 10 (the best solution did not change the last 
10 iterations). 

The optimal solutions of the test cases were known (TSPLIB, 1995); the test cases were 
EIL30, EIL51, EIL76, EIL101, ST70, KROA100, KROC100, KROD100, LIN105, CHN144, 
PCB442, PR2392 and RAN10000. Tao and Michalewicz (1998) presented the results after ten 
runs and gave an average value of the results on them comparing this value with the optimal 
solution, an average computational time in seconds, the total number of inversion and the total 
number of iterations. In the cases of EIL30, EIL51, EIL76, ST70, KROA100, KROC100, 
KROD100 and LIN105 the optimal was found in all the runs of the algorithm. In EIL101 the 
algorithm failed once in ten runs, the optimum value was 629 and the average value was 
629.2. In the case of 144 cities (CHN144) the average value was above the optimum 0.04%, 
with 442 cities (PCB442) the average was above the optimum 0.63%, and for the 2392 cities 
case the average was above the optimum 2.66% and the average computational time was 
5366.23 seconds (1.49 hrs). From the random case with 10000 cities the average was above 
the optimum 3.56% and the average computational time was 167501 seconds (46.52 hrs. ). 

It can be concluded that a good feature of this algorithm is that it combines mutation 
(inversion) and crossover operators in one and it has three parameters: population size, 
probability of random inversion and the number of iterations (the number of times the while 
loop is processed). 

2.4.3 Other Methodologies to Solve the Traveling Salesman Problem 

2.4.3.1 Genetic Local Search for the Traveling Salesman Problem 

Ulder et al. (1990) discussed how the speed of classical Local Search algorithms could be 
increased using genetic algorithms in their trials to solve the TSP. A Local Search technique 
consists of a certain kind of iterative heuristics. The 2-Opt, the Lin-Kernighan (1973) and the 
k-Opt algorithms are well known Local Search algorithms to solve the TSP. Having analysed 
all the solutions proposed by different authors developed to solve the problem, they 
summarised the procedure as follows: 1. Initialise. This is the construction of the initial 
population. 2. Improve. Replace each solution from the initial population with a better 
solution using a Local Search algorithm. The best method of Local Search is the one proposed 
by Lin and Kernighan (1973). 3. Recombine. This main objective is to recombine solutions to 
add new solutions extending the current population. 4. Improvement. The use of a Local 
Search technique to improve again the solutions. S. Selection. Following rules previously 
described select the best solutions. 6. Evolution. This consists of the repetition of steps from 3 
to 5. The repetition procedure will be practised until a termination condition is reached. The 
multi-start Local Search algorithm consists of a Local Search algorithm that is repeated 
several times and it retains the best local solution found. 

The performance of multi-start Local Search (Mult2-Opt and MultLK) is compared to the 
performance of the Genetic Local Search algorithms (Gent-Opt and GenLK). In the 
improvement stage Gen2-Opt used the Local Search 2-Opt and in GenLK the Local Search 
Lin-Kernighan is used. For the recombination stage two tours are selected randomly and a 
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subtour of one of them is chosen; this subtour contains at most one third of all the cities in the 
complete tour. 

The selection stage consists of collecting the best tours once the recombination stage is 
performed. The termination condition is achieved when all the tours in the population have 
the same fitness or when the fitness of the best tour stops having an improvement after five 
successive generations. For the experiments different instances of the TSP already known 
(GR048, TOM57, EUR100, GRO120, LIN318, GR0442, GR0532, GR0666) were used. 
Then the average of five times running each algorithm is compared to the optimum solution. 
In all the cases the GenLK algorithm had the best solutions having an average deviation from 
the optimum of 0.11%, Gen2-Opt had an average deviation of 1.84%, MultLK had an average 
deviation of 0.28% and Mult2-Opt had an average deviation of 5.39%. The algorithms that 
used the Lin-Kernighan method are more effective than the others are, but it is important to 
notice that even though they are good the best one is the Genetic Local Search algorithm 
(GenLK). 

2.4.3.2 Evolution Strategies for the Traveling Salesman Problem 

Herdy (1991) presented a method to solve the TSP using evolution strategies. As it has been 
mentioned above these strategies use two operators mutation and recombination. The 
mutation operators used are four: 1. Reciprocal exchange, 2. Inversion of a segment of the 
tour, 3. Insertion of a city at another point of the tour, 4. Displacement of a tour segment. 

1. Reciprocal exchange. This operator selects two cities randomly and they interchange their 
places with each other. Having the following parent A suppose that the cities 4 and 10 
were selected randomly: 

A= 2® 671938 10 5 

the final offspring 0 after apply the operator is: 

0= 2i6 7193 8® 5 

2. Inversion of a segment of a tour. This operator reverses the order of the cities in a subtour. 
Having parent A suppose that the subtour selected was from city 7 to city 3: 

A=246 7193 8 10 5 

the offspring 0 is: 

O=246 3917 8 10 5 

3. Insertion of a city at another point of the tour. This operator selects randomly a city to be 
inserted between two other cities that are placed consecutively. Having parent .4 suppose 
that the city selected is city 1 and it should be inserted between city 3 and 8: 

A=24671938 10 5 

the final offspring is: 

0=24679318 10 5 
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4. Displacement of a tour segment. In this operator a subtour is selected and this is displaced 
by a certain number of cities. Having parent A suppose that the subtour selected is from 
city 3 to city 10 and is displaced four places to the left: 

A= 246719 

the offspring is: 

0=24 38 10 

38 10 5 

67195 

However, in this evolution strategy to solve the TSP not only the mutation operation is 
applied but also a recombination operator. This operator only produces valid tours and to 
achieve this condition heuristic and deterministic components are used. 

2.4.3.3 Evolutionary Programming for the Traveling Salesman Problem 

In order to solve the TSP using evolutionary programming (EP) instead of evolving finite 
state machines it is necessary to evolve a population of tours (Fogel, 1991) and a technique 
called probabilistic survival is implemented. This technique consists of placing each tour of 
the population in a competition against the 10% of the remaining tours. Each individual of the 
population (tour) has a probability of winning defined as follows; having two competing 
parents A and B, where each parent has a tour length CA and CB respectively, the "win" 
probability ofA PA,,;,, is: 

PAU711 - 

and the "win" probability of B Pß,,.;,, is: 

rNi,, _ 

CD 

CA+CB 

CA 
CA+CB 

(2.27) 

(2.28) 

For each encounter it is necessary to calculate the probability of winning of each involved 
tour. Each tour has a counter associated; this counter is the number of winnings of that tour. 
The tours with the biggest number of winnings are part of the offspring and will be used as 
parents in the next generation. It is important to note that in EP the genetic operator used is 
only mutation. Fogel (1991) implemented this procedure in TSP of 25,50,75,100,125 and 
150 cities obtaining efficient and effective results. 

2.5 Applications of the TSP 

Reinelt (1994) explains some of the possible applications of the Traveling Salesman Problem. 
Some of these applications will be described below. 

The drilling problem for printed circuit boards (PCBs): This problem consists of drilling the 
holes that are needed to connect the pins of integrated circuits or conductors in a circuit board; 
these holes can have different diameters. If two consecutive holes have different diameters the 
head of the machine has to be moved, this process is pretty time consuming. Creating a set of 
all the holes with the same diameter and assuming that each hole can be a city this can be 
seeing as a symmetric TSP. Where the parameter to optimise is the time that it takes to move 
the head from one place or position to the others. This procedure can be applied to each 
different diameter creating a sequence of TSP, one for each set of holes with the same 
diameter. 
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The order-picking problem warehouse: In a warehouse a vehicle is used to collect materials. 
If a customer makes an order, that is a subset of all the stored materials. The objective is to 
optimise the tour this means to minimise the total distance of the tour or route that should be 
followed by the vehicle. Considering the location of each item as a vertex, this problem can 
be solved as a TSP. 

X-ray crystallography: To obtain information about the structure of a crystalline material an 
x-ray diffractometer is used. In order to measure the intensity of the reflections of the crystal 
the detector has to be placed in different positions. The number of different positions can be 
quite big (30,000 positions). In this problem the main objective is to optimise the time of 
positioning the detector and to achieve this it is necessary to determine the best sequence for 
the measurements. The problem is posed as a TSP. 

Finally the application of the TSP that will be studied the most is scheduling problems in sub- 
section 2.5.1 these applications are studied in more detail. 

2.5.1 Scheduling 

Cleveland and Smith (1989) used a GA to solve a scheduling problem. Job-sequencing 
problem can be studied as timing and a sequencing problem. If the problem is analysed as a 
sequencing problem it has common characteristics with the symmetric TSP. The job- 
sequencing problem consists of finding an order of jobs to release such that the processing 
cost of the jobs will be minimal. This problem has n! possible solutions and so is a NP- 
complete problem. The problem has an overall facility composed by sectors, once a job enters 
a sector it has to be moved from station to station automatically, each station processes the job 
in a first-come, first served manner. To formulate the sequence of the problem the PMX, 
subtour-swap operator and the subtour-chunk operator were applied (Cleveland et al., 1989). 
The features of the problem were a sector had five workstations and each workstation had 
three identical machines. The dispatch rules were: 

1. Earliest due date first. This means that the most pressing contract has to be finished 
before it is possible to move to the next contract. 

2. Shortest processing time first. This means that the selection of the jobs will be to process 
first the type that requires the least processing time. 

3. Least slack time first. This means the difference between the due date and the total 
processing time of a job. The jobs will be processed in order of their urgency. 

In the tests that were run, in the first case the subtour chunk operator had a slightly better 
result, so it was not possible to say that one operator was the best. In the second test the 
operator with the best result was the subtour chunk. It is possible to conclude that especially 
the flow shop problem can be treated as a TSP and some times it is possible to use the same 
crossover operator for both problems. 

Whitley et al. (1991) developed the edge recombination operator (as it was mentioned above) 
and used it in sequencing problems. This was a production line scheduling problem; above all 
it is necessary to describe the features and constraints of the problem. 

Firstly, it has six workcells in sequence and each one has two machines (identical) which 
operate in parallel and in an independent form. The workcells have an input that is used to 
receive work and an output to deliver work once it is completed. The machines have a cost 
associated to the kind of work they do. Lastly, there are twenty different kinds of products to 
be produced in a single schedule with certain set-up and processing fixed times. 
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Figure 2.5 shows the production line where L represents the input/output of the workcells and 
M represents the machines, as it is defined the workcells have two machines and A and B 
represent these machines respectively. Li represents the first job sequence. 

Figure 2.5 Production line layout 

Another important part is the encoding of the problem. The key is to visualise the scheduling 
problem as sequencing one to allow the treatment of it as a TSP using the edge recombination 
operator. Good results were obtained not only in this problem but also in a real world 
scheduling application. 

2.5.1.1 Solution of a Scheduling Problem using GA 

Syswerda (1991) solved a scheduling problem optimiser based on GA. The main objective 
was to optimise a schedule. The problem was the System Integration Test Station (SITS) of 
the U. S Navy, where the resources to be scheduled were F-14 airframes, the flight and radar 
simulation environment generators, and numerous pieces of support equipment such as 
computers, radios and recorders. A scheduling problem appears because the laboratory can be 
used simultaneously by different users. Four components of the GA were proposed: 
chromosome syntax, chromosome interpretation, evaluation, and the genetic operators. 

In the chromosome syntax a list of tasks is used, this list could be represented as the list of 
cities in the TSP. In order to interpret the chromosome a schedule builder is used, and as its 
name indicates it is used to produce legal schedules. The chromosome evaluation is made 
considering task priority and time preferences. In the design of a genetic algorithm the use of 
operators is one of the most important steps. Syswerda (1991) compares some of them in the 
solution of the scheduling problem. The first operator to analyse is the Random search, from 
the basis that the schedule builder generates good lists of tasks. 

The second operator is mutation considering that this operator has two functions. It can be 
used in the search and it also provides diversity to the population. Three different mutation 
operators were studied. Position-based mutation is where two tasks are selected randomly and 
the second task is placed before the first one. Order-based mutation is where in the same way 
two tasks are selected randomly and they interchange their positions in the list of tasks. 
Scramble mutation considers the adjacency of tasks; in this operator a sublist of tasks is 
selected and the order of tasks in the sublist is scrambled. Figure 2.6 shows the performance 
of these operators in 3000 evaluations. It is obvious that the order-based mutation operator 
was superior compared to the others this figure was adapted from Syswerda (1991)). 

The third operator is crossover, and three crossover operators were considered: order-based 
crossover, position-based crossover and edge recombination crossover. These were explained 
in subsections 2.4.2.1 and 2.4.2.2. Figure 2.7 shows the performance of the crossover 
operators in 3000 evaluations (this figure was adapted from (Syswerda, 1991). It is obvious 
that the edge recombination operator was inferior compared to the others even though good 
results were reported by Whitley et al. (1991). Syswerda concluded that adjacency is not so 
important to the SITS problem due to the characteristics of the schedule builder. 
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Figure 2.6 Comparison among the mutation operators and the random search 

Finally, the operators are combined. In this case the order-based mutation that was the most 
effective is used with the three different crossovers with the same probability to being applied 
(this was called fixed). If Figure 2.6 and Figure 2.7 are compared it is noticed that for the first 
1000 evaluations the crossover operators give better values than the mutation operators, but 
after this point the crossover tends to increase very slowly. 
At this moment the crossover could not do anything else. As mentioned above the mutation 
operator could give diversity to the population. Then order-based mutation is applied after 
crossover operation in every run (this was called variable). Figure 2.8 shows the results of 
these combinations (this figure was adapted from Syswerda, 1991). 
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Figure 2.8 Performance of the GA using variable and fixed combinations 

It can be concluded that using a GA to solve a scheduling problem will follow the steps 
presented by Syswerda that consist of: 

1. Chromosome Syntax. This will depend on the nature of each problem and is related to 
chromosome representation. 

2. Chromosome Interpretation. This is related to the conversion of the list of task to a 
schedule. 

3. Chromosome Evaluation. This is related to the objective function. 
4. Operators. This is one of the most important steps in the design of GA, the development 

of mutation and crossover operators to be used in the algorithm. 

The most important point to notice is that the edge recombination crossover had very poor 
results in the solution of the SITS problem while in other scheduling problems it was really 
efficient. It can be concluded that the use of operators and their performance depend directly 
on the kind of problem to be solved. This point makes GAs very flexible and powerful. 

2.6 Summary 

This chapter presents the basic concepts of evolutionary computation, where evolutionary 
algorithms are defined as instances of algorithms that work with evolutionary principles. 
Genetic algorithms (GA), evolutionary programming (EP) and evolution strategies (ES) are 
subsets of evolutionary algorithms. 

Generally, GAs are stochastic algorithms based on natural evolution principles, that perform a 
search starting from an initial population to which certain genetic operators are applied to find 
an optimal solution (Michalewicz, 1994). Some of the most popular selection operators, 
crossover operators and mutation operators of GAs have already been described. 

EP is based on a finite-state machine (organism) considered as a parent. Two operators 
described previously are applied to this organism: selection and mutation. It has been 
concluded that EP has been applied successfully to problems in prediction, identification and 
automatic control especially in the solution of NP-complete problems. 

ES are algorithms completely based on recombination, selection and mutation operators even 
though the first evolution strategy ((1+1)-strategy) worked just with selection and mutation 
operators. The representation of the parent is made using a pair of float-valued (real-valued) 
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vectors. Other strategies were also discussed such as (µ+2)-ES or (µ, X)-ES. Furthermore, the 
differences between the three different evolutionary algorithms were outlined. There were 
also outlined the bases for the understanding of GAs, which form the main search mechanism 
used throughout the development of this thesis. 

This chapter has investigated the application of evolutionary computation in real world 
optimisation problems, but not all these problems can be solved by the use of such methods. 
In general, many approaches have been developed to find the most suitable solution for the 
problems. 

The Traveling Salesman Problem is a combinatorial optimisation problem, which has been 
treated using genetic algorithms with several different crossover operators. This report has 
presented some of them but in recent years other crossovers have been developed 
(Michalewicz, 1994). It is important to notice that this problem is NP-complete and that 
almost all the scheduling problems are NP-complete as well. This means that the type of 
problem under consideration is the same. 

In this chapter some applications of scheduling problems have been explained, but it is 
important to bear in mind that the number of such problems could be unlimited. It is also 
important to see that in this kind of problem, the codification of the GA's chromosomes is 
integer. Therefore it is shown how a GA can be represented using a different codification than 
binary string. Also, it is a good example of optimisation, giving a better view of the 
optimisation of NP-complete problems. Moreover, this chapter outlines the bases for the 
understanding of evolutionary computation applied to optimisation that will be used in the 
treatment of the case studies and problems presented in Chapters Four, Five, and Six. 

In the next chapter the concepts of decision analysis, risk analysis, and multiple criteria 
decision-making methods are discussed. 



CHAPTER 3 

Multiple Criteria Decision Making 
3.1 Introduction 

Every day people try to solve personal, employment or social problems by making decisions; 
some decisions are simpler than others. The most common method of making decision is 
intuitive, particularly with simple decisions. Nowadays the complexity of decisions to be 
made especially in organisations has increased; for this reason in most cases it is impossible 
to make them intuitively. To solve this problem a new process emerges called analytic 
decision-making. 

Analytic decision-making is part of a wider area called decision theory or decision analysis. 
This area involves all the concepts related to making a decision by mathematical means. The 
aim of decision theory is related to the choices made when solving a problem and in a certain 
way the selection of a course of action to obtain a solution. Harrison (1975) considers three 
elements in the decision analysis: the decision-making process, the decision-maker, and the 
decision itself. These concepts are described in more detail in section 3.2 of this chapter. 

In real-world problems it is necessary to identify, quantify, evaluate and incorporate risks and 
uncertainties into the decision making process. These considerations will improve the process 
by itself but at the same time they will make it more and more complicated. To have the 
necessary tools to understand the incorporation of risk and uncertainty in a problem, section 
3.3 has been dedicated to risk analysis, emphasising the discussion of risk related to 
decisions. 

Moreover, one important objective of the decision-making problems is the search for an 
optimal solution (Pareto optimal solution). The area that involves this search is called 
multiple criteria decision-making (MCDM). The definitive boom in this area of research was 
in the late 1970's when several conferences and publications appeared (Zeleny, 1982). 
MCDM can be understood as the support system used to help the decision-maker to solve a 
decision problem and is explained in section 3.4. A decision problem normally includes 
attributes, objectives, goals and criteria (Hwang and Masud, 1979). These concepts are 
defined in subsection 3.2.2. 

This research is focused basically on the solution of MCDM problems. For this reason in 
section 3.4 the most popular methods for the solution of this kind of problems are discussed. 
Finally, it is important to bear in mind that one of the main objectives of this research is the 
implementation of the decision-making process using evolutionary computation and fuzzy 
logic and for this reason the most important operators of multiple objective evolutionary 
algorithms are discussed in section 3.5. 

It is very significant to remember that all the concepts and definitions presented throughout 
this chapter will be used in the development of this thesis. 

48 



Chapter 3. Multiple Criteria Decision Making 49 

3.2 Decision Theory 

The beginning of the decision theory or decision analysis dates from the Second World War 
essentially with the spread of operations research theory. After that, in order to formalise the 
theory some basic concepts were defined. These definitions will be presented in this section to 
have a better understanding of the concept of decision theory or decision analysis. 

Firstly, Tannenbaum (1950) defined the action to decide as "the coming to a conclusion". He 
also states that decision-making "involves a conscious choice or selection of one behaviour 
alternative from among a group of two or more behaviour alternatives". Saaty (1994) states 
that there are two kinds of decision: "analytical and intuitive"; if the decision to be made is 
very complex then an analytical solution method will be needed. 

Goodwin and Wright (1998), understanding the concept of analysis as the process of dividing 
something into its most elemental particles, define decision analysis as a formal mechanism 
that helps to integrate the results of each problem after dividing the decision problem into a 
set of smaller problems. 

Decision analysis can be very useful when a decision has to be made by a group of decision- 
makers (DMs) because it can give a better picture of each individual's position when facing 
the problem (Goodwin and Wright, 1998). However, it is not realistic to expect decision 
analysis to solve the problem or to give an optimal solution; it is better to consider that it will 
give the DM an idea of what should be done. Nevertheless, this idea could be the opposite of 
what the DM's intuitive feelings say. 

Clemen (1991) states that the decision analysis helps the DM to have a better understanding 
of the problem, giving the tools required for solving it analytically. According to Moore and 
Thomas (1988) the decision analysis concept could be considered not only as a set of 
techniques but also as an approach to the decision-making process under risk and uncertainty. 
To perform risk analysis and represent uncertainty, mathematical tools are required; these are 
discussed in section 3.3. 

Forgionne (1986) defines an area called "quantitative decision making", where he states that 
decision analysis is one part of it. He also presents some areas where quantitative decision- 
making has been applied, dividing them into "private institutions" and "public institutions". 
Particularly, the applications found in private institutions are in the following areas: finance 
(e. g. budgets, financial planning, management), marketing (e. g. advertising media selection, 
assessment of competitive marketing strategies, location of distribution facilities), and 
production (e. g. allocation of production resources, inventory control, production planning 
and scheduling). The applications in public institutions are in the following areas: health (e. g. 
evaluation of health care delivery systems, hospital staffing), military (e. g. missile allocation 
for national defence, war game simulation, weapon system analysis), social and 
environmental (e. g. courtroom scheduling, educational planning and scheduling, air traffic 
control, urban planning), and economical (e. g. forecasting economic conditions, economic 
development). In conclusion, it is possible to define general activities, such as allocation, 
planning, analysis, scheduling, control and forecast, where quantitative decision-making is 

applied. 

Summarising, Harrison (1975) states that decision theory has to be focused on three elements: 
the decision-making process, the DM, and the decision itself. 
1. The decision-making process is discussed in the following subsection (3.2.1). 
2. The DM is the individual that recognises the problem, sets the objectives and selects the 

decision to be made. The DM can be one individual or a group of individuals. 
3. The decision will be the process of selecting a course of action to follow. 
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3.2.1 Decision-Making Process 

It is said that the decision-making process involves an individual and a social phenomenon. 
This process includes the choice of one action to follow among different alternatives 
(Harrison, 1975). The choice is made by means of an evaluation process that considers the 
DM's expectations. In other words the objective is to find the alternative that better attains the 
DM's objectives. 

Gregory (1988) states that the decision-making process has two main aspects: objective and 
subjective. The objective aspect can be covered with decision-making quantitative methods. 
The subjective aspect can be classified as psychological. He recommends that the aspects 
should not be separated at the moment of making the decision although most of the methods 
presented in literature are basically mathematical. In this research the methods used are 
analytical and the main focus is on how the DM's preferences can be converted and 
represented in a mathematical way. Chapters Four and Five show how two different methods 
can be applied to solve MCDM, taking into account the DM. In Chapter Six the focus has to 
be put on the psychological way of understanding and representing the DM's desires and 
preferences, solving a real problem involving the optimisation of the allocation of lecturers' 
activities. 

Forgionne (1986) defines the decision-making process in a very accurate way because he 
considers both types of information to be qualitative and quantitative. The DM observes and 
recognises a problem to solve, identifies alternative courses of action and gathers the 
information (qualitative and quantitative) to evaluate the alternatives according to the defined 
criteria (Figure 3.1). Once the courses of action are evaluated the DM selects the alternative 
that he or she considers the best or most preferable and implements it. 
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Figure 3.1 Decision-making process 
Adapted from Forgionne (1986) 

Gore et al. (1992) define the decision process as all the activities carried out to make a 
decision, and not only the moment of decision. They proposed the decision process shown in 
Figure 3.2. 

In an ideal situation it is expected that the DM can choose freely from a set of alternatives but 
in reality this is not possible because of some factors that limit or restrict the selection. These 
factors are called constraints and can be classified. Tannenbaum (1950) presented five 
different types of constraints. It is important to bear in mind that his main objective was to 
describe the managerial decision-making process and in a certain way his classification is 
oriented in this sense. This constraint classification is presented as follows: 
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1. Authoritative constraints. This kind of constraint is of human type because it is 
defined by an individual and is imposed on another individual, normally following a 
hierarchy defined in an enterprise (manager- subordinate relation). 

2. Biological constraints. These constraints can be either permanent or temporary 
(changeable). They are directly related to the individual's behaviour. It is said that 
they are changeable when the individual does not have the knowledge of an activity 
but can learn it in a defined period of time. It is said that a biological constraint is 
permanent when it is not possible to change its nature ("human beings cannot fly") 
(Tannenbaum, 1950). 

3. Physical constraints. These constraints have to do with the physical environment 
(physical laws, climate, geography, etc) and they are present at every moment. 

4. Technological constraints. These constraints depend on the technological advances 
and resources available at the moment the decision is made. 

5. Economic constraints. These constraints are related to optimisation (maximisation) 
and depend on economic forces as well as economic resources. 
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Figure 3.2 Decision process 
Adapted from Gore (1992) 

After the concept of constraint is determined it is possible to understand that the alternative 
set will be narrowed due to the fact that the alternatives that do not meet the constraints will 
be discarded. Finally, Tannenbaum (1950) defined decision-making as "the judgement 
exercised within constraints". 

In the next subsection the terms: objectives, attributes, goals and criteria will be discussed, 
due to the fact that they are an essential part in the decision-making process. 

3.2.2 Objectives, Attributes, Goals and Criteria 

It is important to consider that a universal definition of objectives, attributes, goals and 
criteria terms does not exist, and therefore most of the authors define these in an informal 
manner. In this chapter, more suitable definitions of these terms, with respect to this research, 
are considered. 

Objectives. Keeney and Raiffa (1976) define an objective as the element that gives the 
direction to follow in order to achieve a better outcome. Ackoff (1978) presents a more 
simple definition where he states that an objective is a `desired outcome'. Hwang and Masud 
(1979) as Keeney and Raiffa, define an objective as the direction in which it is expected "to 
do better" but they also include the DM's perception. In other words, the definition of 
objective considered for purposes of this research will be the direction to follow to find a 
better outcome as perceived by the DM. 
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Attributes. Hwang and Masud (1979) define attributes as the "characteristics, qualities or 
performance parameters" used to describe alternatives. The alternatives normally represent a 
set of available actions to be followed or chosen by the DM. According to Keeney and Raiffa 
(1976) the attributes are those used to measure the objectives as well as the scalar quantities 
that are used to measure the attributes. French (1986) defines the attributes as the dimensions 
used to represent the alternatives and states that the way the DM perceives the problem is key 
for their representation. Triantaphyllou (2000) considered the set of alternatives to be finite. 

French (1986) states that an objective has basically two components, a dimension and an 
indication of the "good and bad". With this definition, and considering that an attribute is a 
dimension used to represent alternatives, it is possible to conclude that an objective and an 
attribute always go hand-in-hand. Moreover, in real world problems, it is necessary to deal 
with several objectives or attributes that are usually in conflict. These kinds of problem are 
called multiple objective decision-making (MODM) problems and multiple attribute decision- 
making (MADM) problems and they are studied in the next section. 

Goals. A goal is something desired by the DM that helps to clearly identify a level of 
achievement or a target. To determine this definition both Keeney and Raiffa (1976) and 
Hwang and Masud (1979) were considered. 

Criteria. Criteria indicate attributes and/or objectives (Hwang and Masud, 1979). 
Consequently, the term multiple criteria decision-making (MCDM) involves either multiple 
objectives or multiple attributes. 

For example, in the case of a plant manager an objective can be "to minimise cost of 
production", then the attribute will be determined in sterling pounds and can be "thousands of 
sterling pounds spend in a month". A goal for this case can be "to spend a maximum of 
20,000 sterling pounds in a month". 

As the main objective of decision theory is the solution of problems, it is essential to bear in 
mind that one of the most important aspects of problem solving is the complete understanding 
and definition of the objectives. Keeney and Raiffa (1976) suggested that in the solution of a 
problem it is necessary to specify the objectives and attributes following a generation and 
selection process respectively. 

In the objective generation process two different processes can be considered. The first one 
consists of specifying an overall objective that gives the DM a global panorama of the 
problem; this objective can be considered as a starting point to the further definition of more 
specific objectives (low-level objectives). The whole process consists mainly of three steps: 

1. Looking for similar problems in literature; it is possible that some of the objectives in 
problems already solved are close to those of the problem to solve. 

2. Building an analytical model of the problem based on the identification of input and 
output variables. 

3. Observing people to analyse the way they are making decisions related to the problem. 

The second objective generation process consists of generating low-level objectives and then 
using them to generate an overall objective or more general objectives. A technique suggested 
is the use of surveys asking people which objectives they consider should be included in the 
problem's model. For this process it is recommended to have a group of experts for the 
identification of objectives. 

Basically, in the attribute selection process the attributes are related to the information given 
to the DM. This information has to be useful to the decision-making process; for this reason 
an attribute has two main characteristics, which are comprehensiveness and measurability 
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(Keeney and Raiffa, 1976). An attribute is comprehensive if it gives the DM the information 
needed and it is measurable if it allows assessment of the objective. Consequently, if an 
attribute is going to be selected by the DM it must have both characteristics. In some cases the 
objectives cannot use a scalar quantity to be measured, therefore a subjective index has to be 
defined. 

It has been said that the aim of solving a problem is to choose one alternative from a set of 
alternatives. Now it is necessary to establish that in most of the problems the DM wants to 
optimise one or several objectives. To have a better understanding of the optimisation concept 
it is necessary to define an optimwn. Optimising is the process of identifying the best 
alternative. The best alternative will then be called the optimum or optimal choice (French, 
1986). 

Finally, in the real world most decisions are based to some extent on uncertain forecasts and 
the appearance of risk. In the next section the area of risk management related to decision- 
making is presented. 

3.3 Risk Management 

Baker et al. (1999) define risk management as "the procedure that consists of risk analysis, 
evaluation and control" although these steps are further divided into five: risk identification, 
analysis, evaluation, response and monitoring. Using this risk management classification, they 
propose a risk management life cycle, shown in Figure 3.3. 
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Figure 3.3 Risk Management Life Cycle 
Adapted from Baker et al. (1999) 

According to Haimes (1998), risk management is distinguished from risk assessment although 
some authors address the whole process of assessment and management as risk management. 
Considering both risk assessment and risk management, as independent processes different 
questions have to be asked. In the risk assessment process the following questions have to be 
answered: 
"What can go wrong? What is the likelihood that it would go wrong? What are the 
consequences? " (Haimes, 1998). Having posed these questions, the risk analyst can identify, 
measure, quantify and evaluate the risk. Risk management will be constructed from the risk 
assessment and some other kinds of questions will be asked: "What can be done? What options are available, and what are their associated trade-offs in 
terms of all costs, benefits, and risks? What are the impacts of current management decisions 
on future options? " (Haimes, 1998). 

Risk Monitoring 
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Finally, there are four sources of failures that have to be considered in the process: hardware, 
software, organisational, and human failures. 

First of all to discuss risk analysis it is necessary to understand the difference between the 
concepts of risk and uncertainty. The main distinction between risk and uncertainty consists 
in the nature of the problem outcomes. If the outcomes can be described using probability 
distributions then it is said to be a situation of risk, otherwise it is a situation of uncertainty. 

The main focus of this chapter is to describe all the tools that the DM can use to obtain the big 
picture of a problem including assessing uncertainty and the possible outcomes. 

Hertz and Thomas (1983) define a logical sequence of steps for handling risk: 

1. Risk identification. It is necessary to make a diagnosis of the problem and its structure. In 
this step the manager has to identify possible scenarios like the best, the most likely and 
the worst scenario. This will help to understand the impact of risk in future events. 

2. Risk measurement. This step has to do with the assessment of situations that involve risk. 
These risk situations have to be classified, including a judgement about how high the 
situation's risk is. 

3. Risk evaluation and re-evaluation. In this part of the process the manager can perform the 
sensitivity analysis and can estimate the correctness of the risk classification. The 
manager is expected to make a judgement about the decision selected, for example if a 
project will be adopted or not. 

Haimes (1998) defines risk assessment and risk management processes as a whole process 
with the following five steps: 

1. Risk identification. This step, considered the first and most important step in the risk 
assessment process, is understood as the identification of the nature of risk and the 
sources of failure. These sources could be related to elements such as environmental, 
technological, political, and economic aspects. 

2. Risk quantification and measurement. This step consists of assessing the failure factors 
using probabilities and determining the relationship between the sources of risk and their 
impacts. In this step the input-output relationships with the system variables and the 
objective functions are also quantified. 

3. Risk evaluation. In this step the link between the assessment and the management process 
is made by means of generating and measuring the trade-offs in terms of cost, benefits 
and risks. 

4. Risk acceptance and avoidance. In this step the DM plays a very important role due to the 
fact that he or she evaluates the impact of current decisions on future options. 

5. Risk management. This is the step where the decisions are executed or implemented. 

Haimes (1998) suggests that these five steps will form a loop or a cycle where they (steps) 
can be performed several times. 

When risk management is discussed it is necessary to speak about models. A mathematical 
model will be understood as a set of equations that explains and represents the real problem or 
system. Moreover, to generate mathematical models different types of variables will be used. 
These variables can be classified as follows: 

1. Decision variables. These are controlled by the DM and normally are represented by a 
vector of decision variables x= (xi, x2,..., x. ). 

2. Input variables. These are not necessarily controlled by the DM but by the individual 
parties involved in the system. 
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3. Exogenous variables. These are related to external factors that can affect the system and 
they are exclusive of decision and inputs variables. 

4. Random variables. Random events or processes that can be represented by probability 
distributions (risk) or are completely uncertain introduce these variables. 

5. State variables. These represent the quality and quantity levels of the system. 
6. Output variables. These are normally represented in terms of the decision variables, state 

variables, and sometimes the random variables. 

3.3.1 Sensitivity Analysis 

In this subsection the sensitivity analysis will be discussed. As mentioned in section 3.3 this 
analysis belongs to the risk evaluation stage (Hertz and Thomas, 1983). Frey and Patil (2002) 
state that the sensitivity analysis can be useful to verify and to validate a model, to identify 
critical control points, and to prioritise data. 

Frey and Patil (2002) classify the sensitivity analysis methods in three categories: 

1. Mathematical. These methods assess how sensitive the output of a model is to variations 
in the input values. 

2. Statistical. These methods involve running simulations where the inputs are described by 
probability distributions and the main objective is to assess the effect of the inputs 
(variance) on the output distribution. 

3. Graphical. These methods are characterised by the representation of sensitivity using 
graphs, charts, or surfaces. They can be used as a complement to statistical and 
mathematical methods. 

Frey and Patil (2002) compare 10 different sensitivity analysis methods, analysing their 
advantages and disadvantages: 

1. Nominal range sensitivity, also known as local sensitivity analysis or threshold 
analysis, is used to solve deterministic models. This method is most validly used with 
linear models. The sensitivity is represented by percentages that measure the positive 
or negative change to the nominal solutions. 

2. Difference in log-odds ratio (OLOR) is used in deterministic models where the output 
is a probability. Odds are the ratio of the probability that an event occurs P to the 
probability that the event does not occur (1 - P), odd ratio = P1(1- P). After the ratios 
are calculated a logarithm is applied to them as shown in equation 3.1: 

OLOR = log 
Pr(event) with changes in input) eve nt without changes) 

Pr(No eventwith changes in input) 
i-log1_P 

Pr(No event) without changes) 
1(3.1) 

The value of OLOR can be positive or negative. The greater the value of I OLOR I the 
greater the influence of the input over the output. 

3. Break-even analysis is considered a concept, whose main objective is "to evaluate the 
robustness of a decision to changes in inputs". 

4. The automatic differentiation technique (AD) is used for calculating local sensitivities 
when the models are very big, and, as its name indicates, is automated. The local 
sensitivity (one input, some inputs) analysis method is based on the evaluation of the 
partial derivatives of the output with respect to the inputs selected. 
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5. Regression analysis can be used as a probabilistic analysis method (Frey and Patil, 
2002). To use this method it is necessary to previously identify the relation between 
the inputs and the output. This technique is based on fitting the relationship between 
the inputs and the output using equations such as the one shown below: 

Y; =Qo+Q1 XV +QzXz, r+... 
+a1,1 X�ij+El (3.2) 

where, 4 are the regression coefficients for thejth input, Xj is the ith input data point 
for the jth input, Y; is the ith output data point for the ith input data point, and s; is the 
error for the ith data point. 

6. Analysis of variance (ANOVA). This method determines if there is a "statistical 
association between an output and one or more inputs" (Frey and Patil, 2002). In this 
method the inputs are called factors and the values of these inputs are called factor 
levels. The output is called response variable. There are two types of ANOVA: 
single factor that studies the effect of one factor on the response variable, and 
multifactor that studies the effect of interactions between factors. 

7. Response surface method (RSM). This method is used to represent the relation 
between one or more inputs and the output (response variable); it can be applied to 
any deterministic model but also can be used in probabilistic analysis. It is better to 
identify the most important inputs using a method like normal range sensitivity 
analysis and having them identify curvatures in the response surface to find higher- 
order effects. 

8. Fourier amplitude sensitivity test (FAST). This method can be also used for 
uncertainty analysis. FAST is used to calculate the expected values and variance of 
the output and how the inputs affect this variance. The output variance is evaluated by 

using Fourier coefficients, then the contributions of the inputs to the total variance is 

calculated using these coefficients, fundamental frequency and higher harmonics of 
the frequency. This method is better used in probabilistic models. 

9. Mutual information index (MII). Considering that each input can give information 
about the output, the aim of this method is to provide a measure of this information. 
After the measures are provided it is necessary to compare them to determine which 
inputs are giving useful information about the output. This method can be used in 
systems with continuous outputs and it is very complex to programme. 

10. Scatter plots. This is a graphical sensitivity analysis method and for this reason is 
used for visual assessment of the effects of each input on the output. This method can 
be also used as a guide to select the appropriate sensitivity analysis method to use in a 
certain model. It is mainly applied to probabilistic models. 

3.3.2 Risk Management Applications 

Baker et al. (1999) performed a comparative investigation to obtain the risk management 
practices conducted by the oil and gas industry and the construction industry in the United 
Kingdom. In the first stage of this research, 100 construction companies and 27 oil companies 
(Baker et al., 1999) were selected. These companies were asked to answer a questionnaire; 
only 52 replied. Once the questionnaire was applied, it was possible to analyse different 
aspects of the overall risk management practices. One of the most important aspects was what 
risk analysis techniques were used in both the oil and the construction industry. The risk 
analysis techniques were divided in two categories: qualitative and quantitative. 80 % of the 
companies use a combination of qualitative and quantitative methods while the remaining 
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20% concentrated only on qualitative methods. The qualitative techniques used were based on 
personal and corporate experience, and engineering judgement. The quantitative methods 
used in the construction industry were: expected monetary value (EMV), break-even analysis, 
and scenario analysis. These techniques belong to sensitivity analysis and are related to the 
evaluation of financial risk. On the other hand, the techniques used in the oil industry 

analysed financial and safety aspects and were: EMV, expected net present value, algorithms, 
decision matrix, decision tree, break-even analysis, scenario analysis, and simulation. Finally, 
Baker et al. (1999) presented an order of importance of six types of risk; these are presented 
in Table 3.1. 

Construction industry Oil industry 
Types of risk Position Position 
Financial 1 1 
Technical 2 2 
Operational 4 3 
Time 3 5 
Environmental 5 4 
Political 6 6 

Table 3.1 Order of importance of six types of risk 
Adapted from Baker et al. (1999) 

Evans and Olson (2002) outline as applications of risk analysis the following areas: 
operations management, finances, marketing, and engineering. They use simulation to 
perform risk analysis in specific problems such as emergency rooms, local area networks, job 
shops, and supply chain systems. 

Langford (2002) designed a survey to understand the way people perceived risk. It was stated 
that for discussing risk perception and communication in contemporary society it was 
necessary to consider the concept of trust. For example, if trust is lost it can modify people's 
worldview. In other words, it is important to consider trust because the act of trusting is a 
risky activity. On the one hand, making a study of human thinking, feeling and being can 
deliver some answers to the question of why people perceive environmental and health risk as 
they do. On the other hand, it can help the DMs to understand why they are looking for a 
particular solution that might be influenced by personal, social, cultural and political interests. 
This paper offers a perspective of a risk-oriented society and how people's perception of risk 
can affect the decision-making process. 

Oka et al. (2001) present the application of risk assessment on a case of land-use conversion 
in Japan. The land in question was used as rice-growing fields for hundreds of years; this area 
supported many species of aquatic plants, many species of fish, and insects. A gas company 
planned the construction of a liquefied natural gas plant and it was necessary to assess the 
environmental impact. The method used to measure if the probability of extinction increased 
was simulation using a time horizon of 1,10 and 100 years. The diversity of species was also 
measured using pairwise measurement and priorities setting. Finally, they performed a risk- 
benefit analysis, concluding that the method proposed allowed them to obtain an indicator of 
the diversity of the environment as a whole. 

Romerio (2002) presents a comparison between three different paradigms to manage the risk 
of ionising radiation. In this paper risk is understood as "the probability of developing a solid 
cancer or leukaemia" and a paradigm is defined as the concept that represents "the set of 
problems, hypotheses, laws, and methods of analysis accepted and used by members of a 
scientific community". The paradigms that are compared are that of the National Commission 
of Radiological Protection, one that affirms that the effect of low doses is relatively weak, and 
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one that affirms that the effect of low doses is relatively serious. Risk estimation was 
performed for each paradigm using a dose-effect model. The conclusion presented is that 
there are no reasons to prefer one model to another. In the risk management stage dose limit 
to the public is analysed; this differs in each model. Thus with the information presented in 
this paper, a DM would be capable of selecting a paradigm to use in a problem related to the 
use of radiation. This is a good example of how risk analysis can contribute to making 
decisions related to energy, environmental and health policies. 

Moreover, Deisler (2002) presents a survey where he analyses whether the application of risk 
analysis (risk assessment, risk management and risk communication) can help to lessen the 
impact of terrorist attacks. He emphasises three areas to reduce risk: 1) risk communication, 
this consists of improving the communication techniques of governmental leaders and 
spokespersons about risk, 2) chemical and biological risk analysis, this consists of dealing 

with the consequences of an attack, training and educating, doing research, detecting diseases, 
and having better emergency response capabilities, 3) technological risk analysis, this consists 
of detecting places or facilities that are vulnerable to attack and installing warning systems 
with the objective of reducing risk. 

In this subsection some applications of risk analysis, risk sensitivity, risk assessment and risk 
management have been presented, however, it is important to bear in mind that these are just 
a small portion of the whole range of possibilities for these areas of study. 

Having defined objectives, attributes, goals, criteria, constraints, variables, decision theory, 
and risk management now the analysis of the relations between these terms and the decision- 
making process is needed. In order to perform this analysis it is necessary to define an area of 
study called multiple criteria decision-making, this area is discussed in the next section. 

3.4 Multiple Criteria Decision-Making 

On the one hand, according to Zimmermann (1996) MCDM is divided into two classes of 
models: multiple objective decision-making (MODM) and multiple attribute decision-making 
(MADM). This division is based on the type of decision space they have. MODM primarily 
focuses on continuous decision spaces whilst MADM focuses on discrete decision spaces. 
Despite this classification some authors use the terms objectives or attributes indistinctly to 
refer to MCDM. MODM problems are defined as the maximisation of a vector, Z(x) = 
(zl(x),..., Zk(X)), where x r= X(solution space); x (=- 91k. It is evident that its decision space is 
continuous, whilst in MADM the decision space is defined as a finite set of alternatives X= 
{x, Ii=1,..., n} and in order to find the optimal alternative a finite set of goals, G= {g Ij= 
1,..., m}is used. Methods to solve both of these models are discussed below in this section. 
Yoon and Hwang (1995) presented the same classification of MCDM problems. 

On the other hand, according to Triantaphyllou (2000), there are three classes of methods to 
solve MCDM problems: deterministic, stochastic and fuzzy. These methods will be discussed 
in subsections 3.4.1,3.4.2 and 3.4.3. 

Another way of classifying MCDM methods is by the type of information provided by the 
decision-maker (DM). It is important to have in mind that this classification is mainly used 
for deterministic methods and was proposed by Chen and Hwang (1991) and then adapted by 
Yoon and Hwang (1995). It is important to notice that this classification or taxonomy not only 
focuses on the type of information managed but also on the fact that these methods are only 
used to solve MADM problems. This taxonomy is shown in Figure 3.4. 
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Figure 3.4 Taxonomy of MADM 
Adapted from Yoon and Hwang (1995) 

MCDM is also known as multiple criteria decision-aid (MCDA) or `analyse multicritere' in 
French. Vincke in his book "Multi-criteria decision-aid" first published in French in 1989 
("L'Aide Multicritere A La Decision") and then translated to English in 1992, states the main 
objective of MCDA is to provide the DM with the necessary tools to solve a multiple 
objective or attribute problem. He defines a set of actions, where these could be solutions or 
decisions. The set of actions denoted by A, according to Vincke (1992) can be stable (defined 
a priori and not changeable) or evolutive (modified during the solution process). The 
definition of A depends not only on the nature of the problem and the decision procedure but 

also on the criteria definition, the preferences model, and the decision-aid method to be 

applied. 

Vincke (1992) defined a criterion as a function g on A, where g takes certain values and 
represents the decision-maker's preferences. It is necessary to define a family F={gi, gz, ... , 
gj, ... , g�}; this includes several criteria where each g represents a single criterion. It is 
expected that the family of criteria F represents all the aspects of the problem to be solved. 

The need to define a structure for the preferences appears when the DM has to compare two 
actions. The possible reactions of the DM are as follows (Vincke, 1992): 

a) Preference for one of the actions. Having actions x and y, to say that action x is 
preferred to action y, it is written that xPy. 

b) Indifference between the actions. Having actions x and y, to represent indifference, it 
is written that xly. 

c) Inability to compare the actions. Having actions x and y, to represent 
incomparability, it is written that xJy. 

After the preferences are defined the next question can be posed: how can these preferences 
be represented in an analytical way? To answer this, a new area study has to be developed, 
which is called multiple attribute utility theory. 

The basis of this theory is that the DM commonly tries to optimise (maximise) a certain 
unknown function. This function U(Vincke, 1992) should include all the different criteria and 
aspects of the problem and is called "utility function". The decision-maker's preferences are 
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represented by an analytical function as additive, multiplicative or mixed. And as mentioned 
above, the basis to define a function U: 

11 

U(a) =E Ut (f i(a)) I=1 

(3.3) 

This function is the one used in the additive model, where f(a) is the ith criterion and a is an 
action that belongs to the space of possible action to be followed. The additive model is one 
of the most used because of its simple form. 

The multiplicative model is defined as follows: 

If 
jI [1+ k kiUr (ar)]-1 

U(a) i-1 
k 

where k and k; are scaling constants. 

(3.4) 

Having discussed the basic concepts and definitions of MCDM the next step to follow is the 
descriptions of the methods for solving this kind of problem. For the purposes of this research 
the classification used is that proposed by Triantaphyllou (2000) where three classes of 
method are considered: deterministic, stochastic and fuzzy. This classification will be used 
throughout this chapter. 

3.4.1 Deterministic MCDM Methods 

In this section some of the most used deterministic methods for solving MCDM problems are 
discussed. These methods are: weighted sum model, weighted product model, analytic 
hierarchy process, elimination and choice translating reality method and the method for the 
technique for order preference by similarity to ideal solution. 

In most of these methods the decision problem is defined using a decision matrix A that 
consists of a set of alternatives, a set of criteria, and performance values for each alternative. 
As mentioned in subsection 3.2.2, for this kind of method the set of alternatives is considered 
to be finite. Consequently these methods are for solving MADM problems. Yoon and Hwang 
(1995) define the basic steps to follow in the solution of a MADM, and as mentioned below 
these are followed in most of the methods. The steps will complete a procedure followed by 
the DM, defined as follows: 

1. Attribute Generation, 
2. Attribute Weighting, 
3. Quantification of Qualitative Ratings, 
4. Normalisation of Attribute Ratings. 

Each step will be defined in this section according to the method to be explained. 

Generally speaking the main part of a problem solution is to pose the problem. In the MADM 
case the problem will be posed using a decision matrix. 

Having a set of in alternatives A= {A1, A2, A3i ..., Am} and a set of is decision criteria, C= 
{Cl, C2, C3, ..., C�} the decision matrix A is represented as follows (Triantaphyllou 2000, 
Hwang and Yoon 1995), 
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Alternatives 
Al 
Az 

Am 

Criteria 
Cl C2 C3 Cn 

all a12 a13 
... 

aln 

a21 a22 a23 
... 

a2n 

aml am2 am3 amn 

where the ail values (for i=1,2,3, ..., in and j=1,2,3, ..., n) are the performance values of 
each alternative in terms of each criterion. For instance, a23 is the performance value of 
alternative A2 in terms of criterion C3, or am2 is the performance value of alternative A,,, in 
terms of criterion C2. 

Weighted sum model (WSM) 

The decision problem solved using the WSM method is defined as follows (Triantaphyllou, 
2000): 
Having a decision matrix A, where all the criteria have the same units, it is necessary to 
calculate the A; values (equation 3.5) to find the alternative that satisfies equation 3.6: 

if 
A; =Eajjw for i=1,2,3,..., m 

j=1 
score = max A, 

(3.5) 

(3.6) 

To show this method the following example is presented. Having the decision matrix A with 
4 alternatives and 5 criteria: 

Alternatives 
A, 
Az 
A3 
A4 

Criteria 
Cl C2 C3 C4 C5 
(NI N2 W3 NVq WO 

all a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

Using equation 3.5 to calculate the value of each alternative gives the following results: 

A1 = a11W1 + a12W2 + a13W3 + a14W4 + a15W5 
A2 = a21W1 + a22W2 + a23W3 + a241V4 + a25Xy5 
A3 = a31W1 + a32W2 + a33W3 + a34W4 + a35W5 
A4 = a41W1 + a42W2 + a43W3 + a44W4 + a45W5 

The following step is to identify which of these alternatives has the maximum value. This 
alternative will be considered to be the best. 

Weighted product model (WPM) 

Basically, this model uses multiplication instead of addition and is based on the comparison 
of each alternative with the others. In order to compare two alternatives it is necessary to 
calculate a ratio and raise it to the power of the weight related to that criterion (Yoon Hwang, 
1995), as shown in equation 3.7: 
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R(Ax1Ay)= rI laJasil vJ (3.7) 
J=1 

Then it is possible to conclude that one of the main characteristics of this method is that it is 
dimensionless. Therefore it allows the comparison between criteria with different units. 

For instance, having the following decision matrix: 

Alternatives 
A1 
A2 
A3 

Criteria 
Cl C2 C3 C4 

(WI W2 W3 W4) 

all a12 a13 a14 

a21 a22 a23 a24 
a3l a32 a33 a34 

The calculated ratios are as follows: 

R(A1I A2)_ (a11la21)lvj 
x (a12/a22)Iv= 

X (a13la23)}1'' X 1a14la241tii, 

R(A11A3) 

1- 

(al 
11a31)1tivl x (la12/a32)1lv2 

x (a13/a33)lv3 
x (a14I 

a34)Iv{ 

R(A21A3) = 
(a21/a31)tyl 

X 1a22/a321tv2 X (a23Ia33)iv3 X (a24/a34)lv4 

Finally, the ratio values are compared to rank the alternatives. For example, if the ratio values 
are the following: 

R(A1/A2)= 0.85 , because 0.85 <I then A2 is greater than AI 
R(A1/A3) =1.35 , because 1.35 >1 then AI is greater than A3 
R(A2/A3) =1.63 , because 1.63 >1 then A2 is greater than A3 

hence A2 > Al > A3 is the ranking found. 

Analytic Hierarchy Process (AHP) 

Saaty (1994) describes this method as a process to identify which objective weighs more than 
others. The main characteristic of the AHP method is the creation of a hierarchy through 
paired comparisons made by humans based on their ability to relate the data available and 
their experience. This method also assesses the benefits, the cost and the risk of the feasible 
solutions. AHP allows the DM to be a central element in the control of the outcome and can 
be also used to quantify some DM emotional factors. 

According to Goodwin and Wright (1998), this method is divided into 5 stages: 

Stage 1: Set up the hierarchy of the decision. This process starts stating the general objective 
of the decision then the general attributes. After the general attributes are determined, these 
are divided into more detailed attributes to conform to the next level of the hierarchy. Once all 
the attributes (criteria) are specified the possible alternatives (courses of action) are placed. 
Figure 3.5 shows the hierarchy resultant from this process. 

Stage 2: Make pairwise comparisons. In this process each attribute is compared in terms of its 
importance; the comparison is made in pairs. 
Since the pairwise comparison method is one of the most commonly used to solve MCDM 
problems, it is important to discuss some of its main characteristics and properties. Mainly, 
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the comparisons are used to determine the relative importance of each alternative in the 
problem, and to generate ratio scales (e. g. the Kelvin scale used to measure temperature). 
This method also helps to assign a weight to each DM's preferences and to translate them to a 
utility function. When pairwise comparisons are made, it is necessary to consider how the 
DM expresses his or her opinions (choices) linguistically and how to quantify them. 
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Attribute 2 
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Specific 
Attribute 
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specific 
Attribute 
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Figure 3.5 General hierarchy for a decision problem 

Having defined the hierarchy (stage 1, Figure 3.5), the first step is to make paired 
comparisons between the elements of each level. Saaty (1994) proposes to ask two questions 
when making the comparisons. The first question is related to dominance, in other words, 
which of the two elements better attains the criterion. The second question is related to 
intensity, in other words, by how much is it better? 

The method of pairwise comparisons is used in Chapter Five of this thesis to identify and 
represent the DM's preferences. 

Stage 3: Transform the comparisons into weights. After the pairwise comparisons are made 
these have to be transformed into weights. The weights have to be normalised, this means, 
that the sum of weights is equal to one. In other words, the weights for the objective and 
attributes of the hierarchy in Figure 3.6 are represented as follows: 

If wo is the weight assigned to the general objective then wo = 1.0. 
If w1 is the weight assigned to the general attribute 1, w2 is the weight assigned to the general 
attribute 2, and w3 is the weight assigned to the general attribute 3 then wl + w2 + w3 = 1.0. 
If w1.1 is the weight assigned to the specific attribute 1.1, w1.2 is the weight assigned to the 
specific attribute 1.2, and 1v1,3 is the weight assigned to the specific attribute 1.3 then 1v1.1 + 
W1.2+w1.3= I. 0. 
If w2.1 is the weight assigned to the specific attribute 2.1, and w2.2 is the weight assigned to the 
specific attribute 2.2 then w2.1 + iv2.2 = 1.0. 
If w3.1 is the weight assigned to the specific attribute 3.1, and w3.2 is the weight assigned to the 
specific attribute 3.2 then w3.1 + w3.2 = 1.0. 
If wl. lal is the weight assigned to the alternative I that follows the path of the specific attribute 
1.1, and w1.1.2 is the weight assigned to the alternative 2 that follows the path of the specific 
attribute 1.1 then W1.1a1 + lv1.1a2 = 1.0. 
If w1.2a1 is the weight assigned to the alternative 1 that follows the path of the specific attribute 
1.2, and tiv1.2a2 is the weight assigned to the alternative 2 that follows the path of the specific 
attribute 1.2 then W1.2a1 + lv11a2 = 1.0. 
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Figure 3.6 Weights of the hierarchy for a decision problem 

Specific 
Attribute 

1.2 

Specific 
Attribute 

13 
1913 

1V2 

Specific 
Attribute 

2.2 
1V2.2 

Then for each alternative 
follows: 
W1.3a1 + 1VI. 3a2 = 1.0, 
w2.1a1 + w2.1a2 = 1.0, 
ß'2.2a1 + W2.2a2 = 1.0, 
W3.1al + 3V3.1a2 = 1.0, 

w3.2a1 + W3.2a2 = IA 

in each path for each specific attribute the weights are described as 

The procedure to transform comparisons into weights was developed first by Saaty (1977), 
where he proposed to build a square matrix of pairwise comparisons to express the intensity 

of dominance. The matrix's size is nxn, where ii is the number of criteria in the second level 
of the hierarchy (General Attributes, Figure 3.5). This matrix is shown in Figure 3.7 and it is 
reciprocal, this means that the element aji =1/ay, where i=1,2,..., n and j=1,2,..., n. 

Criteria 
Criteria Cl C2 C3 Cn 

C1 I 1/a21 lla31 
... 

I Ian 1 
C2 a21 I 1Ia32 

... 
IIan2 

C3 a31 a32 I 
... 

1Ian3 

Cn anl an2 an3 I 

Figure 3.7 Matrix of pairwise comparisons 

After the comparisons matrix is built, a priorities column is added. These priorities are the 
components of the eigenvector of the matrix. To calculate the eigenvector the procedure 
shown below is followed: 

Having the matrix of pairwise comparisons A and the condition Aw = that can be also 
expressed as (A-ý,,,, I)w = 0, it is said that the determinant I A-Ä,,, a, jI 

I=0, can be expressed 
as the equation (characteristic equation) of a nth degree polynomial in X,,,,,, (it is the order of 
matrix A) equal to zero. Where 7,,, a� is a root of the characteristic equation. This root is known 
as the eigenvalue of the matrix A. 
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Saaty gives a more detailed explanation of this method in his book `Fundamentals of Decision 
Making and Priority Theory' (Saaty, 1994). 

Stage 4: Make a provisional decision. Once the weights are determined it is necessary to 
calculate scores for each of the specific alternatives. For example, in order to calculate the 
score of alternative 1, it is necessary to follow all the paths that lead to it (Figure 3.6), 
multiply the weights of each path and add these results. In particular, one path can be: general 
attribute 1 -* specific attribute 1.1 alternative 1. This procedure is shown below: 

Score for alternative 1 
: --IPI X 1V1,1 X lVl. lal 

+ 1t1 X 1112 X 1V1.2a1 

+ IM X 111,3 X 1V1.3a1 

+112X112.1X1V2.1a1 

-F-1V2X112.2X112.2a1 

+ 1V3 X 1V3.1 X 1V3 lal 

+ 11'3 X 1V3,2 X 113.2a1 

Score for alternative 2 
=}yt X Wl. l X W1.1a2 

+ Wl X W12 X W12a2 

+ }vl X W13 X 1V13a2 

+ }V2 X }V2.1 X }V2.1a2 

+ }V2 X }V2.2 X }V22a2 

+ 1V3 X 1V3.1 X W3.1a2 

+ }V3 X W32 X W32a2 

After the scores are calculated, they are compared and the alternative that has the highest 
value is considered the best. 

Stage 5: Perform sensitivity analysis. This procedure measures how sensitive to changes the 
alternative selected is. According to Haimes (1998), sensitivity is related to "changes in the 
system's output to possible variations in the decision variables (inputs)". The sensitivity 
analysis techniques are discussed in subsection 3.3.1. 

According to Saaty (1994), some of the areas of application of AHP are "planning, generating 
a set of alternatives, setting priorities, choosing a best policy after finding a set of alternatives, 
allocating resources, determining requirements, predicting outcomes, designing systems, 
measuring performance, insuring the stability of a system, optimising, and resolving conflict". 
It is also said that AHP is a very powerful method for decision-making because it gives a 
structure to the decision. 

Elimination and Choice Translating Reality method (ELECTRE) 

The ELECTRE ("Elimination et choix traduisant la realite" in French) method developed by 
Roy (1977) is based on outranking relations. These relations are obtained using pairwise 
comparisons of the alternatives. Therefore an outranking relation will be defined as: 
Having two alternatives Ar and Aq, then ApRAq read as Ap outranks (dominates) Aq and means 
that A,, is preferred to A, 1. 
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In the first place it is considered that the decision matrix is not dimensionless so it is 
necessary to normalise each of the alternatives by using equation 3.8: 

by =" 

b, i b12 b13 ... bi�7b21 
b22 b23 ''' bz» 

(3.8) 

where in is the number of alternatives, and au is the performance value of ith alternative in 
terms of the jth criterion. 

After normalising, a new normalised decision matrix B is built: 

B= 

au 
m2 

ak 
k=1 

Lbml bm2 bm3 ... b, 
nJ 

(3.9) 

where in is the number of alternatives, n is the number of criteria and by is the normalised ay 
value. 

In addition to the normalisation process it is necessary to weight matrix B. Weighting a 
matrix is the process of multiplying the normalised decision matrix B by the matrix of 
weights W. The matrix of weights is defined as follows: 

w= 
LO 00 """ tiy�ý 

in 00 """ 0 
0 tiv2 0 ".. 0 

(3.10) 

where n is the number of criteria and tit,; =1. Having defined W it is possible to define a 

weighted matrix E as follows: 

E=BW (3.11) 

E_ 

en e12 e13 "' et� w, bit w2 b12 w3 b13 "' tiv�bin 
e2t e22 e23 ... e2� in b2t w2 b22 w3 b23 ... 1 v� b2� 

-em 
em2 em3 Cn, 4 elm l- bu, t 1t'2 bm2 lt3 b, 

n3 """ 1vn bmn_ 

(3.12) 

As mentioned above, the ELECTRE method is based on the generation of outranking 
relationships. To formulate these relationships it is necessary to obtain a concordance set and 
a discordance set (Yoon and Hwang, 1995). Having two alternatives A,, and Aq, the set of 
criteria that meet that ApPAq (A,, is preferred to AR ) is called concordance set and is defined as: 

n Coq = {j, e pj z eqj}, for j =1,2,3,..., (3.13) 

where erg is the element of the weighted matrix E that corresponds to the alternative Ar and the 
jth criterion and eqj is the element that corresponds to the alternative Aq and the jth criterion. 
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Therefore the discordance set is the complement of the concordance set and is defined as: 

Dp, l _ U, erg < eti}, for j =1,2,3,..., n (3.14) 

In other words, the discordance set contains the criteria that do not meet the preference ApPAq. 

Once the concordance set is defined, it is possible to obtain the concordance index cpr using 
equation 3.15: 

II 

Cpq = 
J7- 

ºvj, 0<Cpq <_1 
, 

where wvj is the weight associated to thejth criterion contained in the concordance set. 

Having found the concordance indices, the concordance matrix C is: 

(3.15) 

- C12 C13 "' Clm 

C= 
C21 - C23 "' C2m (3.16) 

LCml Cm2 Cm3 

where the value Cpq is not defined when p=q. 

In a similar way as the concordance index was defined, the discordance index d,,,, is calculated 
using equation 3.17 and the discordance set: 

F! _ - 

maxIepj -e it JED/q 
(3.17) µ pq 

I11axICpj - Cgjl 
i 

Having found the discordance indices, the discordance matrix D is: 

- d12 d13 ... din, 

D= d21 - d23 ... d 2n, 

Ldm1 dm2 dm3 .. ' 

(3.18) 

where the value dpq is not defined when p=q. 

The next step is to obtain the concordance and discordance dominance matrices. 
Triantaphyllou (2000) states that the concordance dominance matrix is constructed using a 
threshold value related to the concordance index. Therefore having a threshold value c it is 
said that the alternative Ap dominates the alternative Aq if the concordance index cp,, z c. The 
value for c is calculated using equation 3.19: 

1 fit in 
c= eat, where p:;, - q (3.19) 

m(nt -1) p-lq-1 

Essentially, the threshold value is considered as the average of the concordance indices. The 
elements of the concordance matrix F are determined using the following function: 
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.f 
-'°' - pq 0, if cIN, 7<c 

(3.20) 

In the same way the discordance matrix G is constructed by using a threshold value d defined 
as follows (average of the discordance indices): 

1 In in d= EEd, 
q wherep; x-q 

m(nt -1) p_lq_l 

The discordance matrix G is determined using the following function: 

_ 
1, if dýzd 

ä, q 0, if dpl <d 

(3.21) 

(3.22) 

Once the concordance and discordance dominance matrices have been calculated, the 
aggregate dominance matrix H can be constructed using the following equation: 

1, if cr,, ý-. c 

hpq =fpq xgpq (3.23) 

Finally, the less favourable alternatives from the aggregate dominance matrix have to be 
eliminated. In other words, if I7, ß, = 1, this means that f�q =1 (cp�, z£ and gp,, =1 (dpq z ab 
meaning that alternative A7, is preferred to Aq. Therefore if any column in matrix H (aggregate 
dominance) has an element equal to 1, then it is said that the column is dominated by the row. 
Having stated this, it is possible to eliminate all the columns that have an element equal to 1. 

According to Yoon and Hwang (1995), one disadvantage of the ELECTRE method is that it 
relies on threshold values and these are, in general, arbitrary. 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

Yoon and Hwang developed this method in 1981 (Moon and Hwang, 1995). They established 
that if a MADM problem is defined by in alternatives and n attributes (criteria) it might be 
analysed as a geometric system. This system has in points in the n-dimensional space, and for 
that reason it is possible to speak about Euclidean distances. Furthermore, the TOPSIS 
method is based on the assumption that the alternative selected should have the longest 
distance from the negative-ideal solution and the shortest distance form the positive-ideal 
solution. 

What is an ideal solution? An ideal solution is "a collection of ideal ratings in all attributes 
considered" (Yoon and Hwang, 1995). Nevertheless, in most of the cases the ideal solution is 
not feasible. Thus the positive-ideal solution is defined as the set of the best values for the 
attributes among all the alternatives available. Additionally, the negative-ideal solution is 
defined as the set of the worst values for the attributes among all available alternatives. 
Mainly, finding an alternative that is the farthest to the negative-ideal solution and the closest 
to the positive-ideal solution is not an easy task. That is why an index called similarity is 
defined. 

Generally speaking, this method follows 6 steps presented below (Yoon and Hwang, 1995): 

Step 1: Calculate normalised ratings. (Using the same notation used in the ELECTRE 
method). 
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by = 
all (3.24) 
Eäý 
k-1 

where i=1,2, ..., in andj = 1,2, ..., n. 

Step 2: Calculate weighted normalised ratings. 

eq = wj by (3.25) 

where i=1,2, ..., m, j=1,2, ..., n and uvj is the weight of the jth attribute. 

Step 3: Identify the positive-ideal solution AA and the negative-ideal solution K. These 
solutions are defined in terms of the weighted normalised values e;;: 

+- e1 + +I-ýrmax ijI'E )(min 
I'EJ2)1 

1=1,..., nt} 
rr 

A ={el, e2.... iej-,... en}= j( mine#IjEJ, 
), 

I maxeUljEJ2)I 1=1,..., 1)1 

where Jl is a set of benefit attributes and J2 is a set of cost attributes. 

(3.26) 

(3.27) 

Step 4: Calculate separation measures. The separation between alternatives will be measured 
by means of the n-dimensional Euclidean distance. Hence the distance between the positive- 
ideal solution and each alternative is given by the following equation: 

SP Cy-Cj+y 

. 
%°1 

(3.28) 

where Sj' is the separation (distance) between the positive-ideal solution e+ and the ith 
alternative, i=1,2, ..., in, and e;; are the weighted normalised values . 

The distance (separation) between the negative-ideal solution and each alternative is given by 
the following equation: 

_n _ý SI - ý(Cý-Cjý j=1 

Step 5: Calculate similarities to positive-ideal solutions. 

Li = 
Si 

Si + Si 

where i= 1,2, ..., m and 0S Lý <_ 1. 

J-1 

(3.29) 

(3.30) 

Step 6: Rank preference order. This procedure consists of ranking alternatives in descending 
order with respect to L; L. 
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3.4.2 Stochastic MCDM Methods 

Probabilistic Trade-off Development method (PROTRADE) 

PROTRADE is a multiple objective stochastic method and was developed by Goicoechea et 
al. (1979) with the purpose of solving non-linear problems considering the DM's preferences. 
This method not only allows the DM's interaction but is also capable of handling risk. 
Basically, it consists of the formulation of a surrogate function that is modified by the DM 
every time the algorithm is performed. The surrogate function is defined using the following 
procedure: 

1. A vector of objective functions is defined using the coefficients' expected values: 

Z(X) _ [ZI (x), Z2 
(x), 

..., Zp (X)]) 

gq (X) SO tivJtere gEl [I, Q] 

x>0, (3.31) 

zr (x) =E cy x f, zr (x) = E[x] 

; =i 

where p is the number of objectives to optimise, q is the number of constraints, cy are the 
coefficients' expected values and n is the number of decision variables. 

2. Vectors U, and M are defined as having the maximum and minimum values of the 
objective functions respectively. This means that vector U, has the values of the maximisation 
of each objective separately (e. g. max z1(x), max z2(x), max z3(x), max z4(x), max zs(x)), 
subject to constraints gq(x) S 0. In addition vector M has the minimum values found following 
the same procedure, in other words, minimising each objective separately subject to the 
constraints. 

zj(xr) = max zj(X), iE l[1, Pý 

Ul= 

M= 

ZI'XI) 

Z2 (C2) 

Zp (xq) J 
(3.32) 

Zl min 

Z2min 

Z3minj 

It is important to bear in mind that M may not exist in practice. Therefore, in such cases some 
other techniques have to be applied. 

3. An initial surrogate function is formulated: 
P 

F(a) =E GA) 
, -1 

(3.33) 

where 
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Gil (x) 
- 

ZI (x) 
- Zlmin 

. 
Z! (\I) - Zimin 

(3.34) 

This surrogate function will be modified every time the algorithm is run. 
The method also includes the use of multiple attribute utility functions used to introduce 

DM's preferences, and in the same way as some of the methods discussed in subsection 3.4.1, 
it uses pairwise comparisons between the alternatives. It is important to mention that 
PROTRADE is not used to mathematically represent the function to optimise, but the DM's 
preferences. This method will be fully discussed in Chapter Five together with a case study of 
multiple use land allocation. 

Surrogate worth trade-off method (S\VT) 

Haimes (1998) defines the multi-objective function as follows: 

min 
{fI(x), f2(x), ".., f�(x)}subject to xEX (3.35) 

xCx 

where xis an n-dimensional vector of decision variables, and X is the set of feasible solutions. 
In other words, X consists of the vectors of decision variables x that meet the constraints 
defined as follows: 

X ={xjg, (x)So, i=1,2,..., n: 
} 

Therefore the trade-off function is defined: 

. ff(x)sej, l 

where E are maximum tolerable levels. Using the generalised Lagrangian, L is found: 

11 

L=fl (X) + EAl; [f j (a) - cj] l=z 

(3.36) 

(3.37) 

(3.38) 

where 2 are generalised Lagrange multipliers associated with the jth constraint, where the 
objective function is fi(x). Therefore A, represents the generalised Lagrange multiplier 
associated with the ith objective function and the jth constraint. Defining Q as the set of all 
A,, where j=2,3,..., n that satisfies the Kuhn-Tucker conditions: 

, züj[f j(x)-gj]=0, Zljz0; j=2,3,..., n (3.39) 

AIj 
aL 
aý, 

(3.40) 
I 

The value of 2ij indicates the marginal benefit of the objective function f (x). 

The surrogate worth function J VU as the interface between the DM and the mathematical 
model and it is defined below (Haimes, 1998): 
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ivU = 

>0 when 2y marginal units of f, (x) are preferred over one marginal unit of fj (x), 

given the satisfaction of all objectives at level Ek, k=1,2,..., 71 
=0 when 2,; marginal units of fj (x) are equivalent to one marginal unit of fj (x), 

given the satisfaction of all objectives at level Ek, k=1,2,..., It 
<0 when A; j marginal units of f; (x) are not preferred over one marginal unit of f; (x), 

given the satisfaction of all objectives at level 6k, k =1,2,..., 21 
(3.41) 

The JVU value is a DM assessment using an ordinal scale, where TVA =0 implies indifference. 
When a degree of difference but not the specific amount of difference measures something, it 
is said that an ordinal scale is used. In particular, an ordinal scale could be to ask the DM to 
classify solutions as excellent, very good, good, fair, or poor. 

The DM obtains the trade-off values through the trade-off function and these are associated 
with the Pareto optimal solutions also known as non-inferior solutions (Haimes, 1998). It is 
necessary to define the concept of the indifference band as a subset of the non-inferior set 
where to improve one objective function it is necessary to degrade another. Hence an 
optimum solution is understood as that non-inferior feasible solution that is an element of the 
indifference band. 

The band of indifference is determined as follows: 

Having two different values of Ay, the DM is asked to assess them using an ordinal scale and 
the rV (2y) values are obtained. Then a linear interpolation of the two TV U is made and Ay* is 
the value over the line that gives a TT'U = 0. The indifference band exists in the neighbourhood 
of AJ*, as shown in Figure 3.8. 

II ;p Si, 

u 

cl 
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O 

0 

ýýN 
Ajý* 

AJ 

Figure 3.8 Indifference band at 2jj* 
Adapted from Haimes (1998) 

Thus, the surrogate function is used to assign a scalar value to the non-inferior solutions. 

3.4.3 Fuzzy Sets and Decision Making 

Carlsson (1984) clarifies the term "fuzziness" as meaning "vagueness" rather than 
"uncertainty". Kickert (1978) studied fuzzy set theory applied to the decision-making field. 

Fuzzy theory, broadly speaking, is a mathematical theory and the term fuzziness is related in a 
certain way to uncertainty. In the past, probability theory was the only area of human 
knowledge that was involved with uncertainty; this is based on predictions of events, where to 
validate them the passage of time or testing is necessary (Terano et al. (1992)). For fuzzy 
theory the uncertainty must be understood as the ambiguity in the meaning of words, for 
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instance, "tall person" or "young person". This give everyone an involvement with 
uncertainty and consequently with fuzziness. 

3.4.3.1 Basic Definitions of Fuzzy Sets 

In the traditional set theory given a set A, a characteristic function fA and a universe of 
discourse X= {x}, the functionfA will be described as follows (Kickert , 1978): 

fA (x) =O if and only if xoA 
fA(x)=1 if and only if xEA 

These sets are called ordinary sets or sets (Zadeh, 1965). 

In the theory of fuzzy sets, the characteristic function is generalised, allowing it to take values 
within the interval [0,1]. This means that the number of values thatfA can assume is infinite. 
Then, to define a fuzzy set, it is necessary to consider a membership function µA (x), which 
associates to each xEXa real number in the interval [0,1]. The value offA (x) represents the 
grade of membership. This means that the closer the value of fA (x) is to one, the higher the 
grade of membership (Zadeh, 1965). In other words, a fuzzy set is a mapping from the 
universe of discourse into a closed interval ([0,1]). 

Zadeh (1965) established that the nature of a fuzzy set is non-statistical, although the fuzzy 
set membership function could be similar to a probability function. The differences can be 
seen in the basic properties and combination rules of membership functions. 
The following definitions were taken from the paper presented by Zadeh (1965): 

Definition 3.1 

A fuzzy set is empty if and only if its membership function is identically zero on X. 

Definition 3.2 

Two fuzzy sets A and B are equal: 

A=B if and only if fA(x)=fB(x), `dxEX (3.42) 

Definition 3.3 

Complement. The complement of a fuzzy set A, A', is defined by: 

A' (x) =1 -fa fix) 

Definition 3.4 

Containment. "A is a subset of B" is defined by: 

AcBgfa(x):! ý fß(x) 

Definition 3.5 

(3.43) 

(3.44) 

Union. The union of two fuzzy sets A and B is a fuzzy set C, written as C=A UB, and is 
defined by: 
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, 
fc (x) = Max [fa (x), fß (x)], xEX 

The associative property for the union is: 

A U(B UC)=(A UB) UC 

Definition 3.6 

(3.45) 

(3.46) 

Intersection. The intersection of two fuzzy sets ,4 and B is a fuzzy set C, written as c=AlB 
and is defined by: 

fc (x) = Min [fA (x), f (x)], x r= X (3.47) 

The intersection also has the associative property. 

Having defined the operations of complementation, union and intersection, it is possible to 
use some of the basic identities of ordinary sets in fuzzy sets such as De Morgan's and 
distributive laws (Zadeh, 1965). 
These laws in terms of membership function will be represented as follows (the identities 
were verified by Zadeh, 1965): 

De Morgan's laws: 

(A U B)'= A' n B' (3.48) 

1- Max [fA (x), fß (x)] = Min [1 - fA (x), 1 -fu (x)] (3.49) 

(A (IB)' =A' UB' (3.50) 

1- Min [fA (x), fa (x)] = Max [1 - fA (x), 1 -fa (x)] (3.51) 

Distributive laws: 

C n(A UB)=(C nA) U(C nB) (3.52) 

Min [fc (x), Max [A (x),. fß (x)]] = Max [Min [fc (x),. fA (x)J, Min [fc (x),. fß (x)]] (3.53) 

CU (A n B) = (C u. 4) n (C U B) (3.54) 

Max [fc (x), Min [/ (x), fB (x)]] = Min [Max [fc (x),. fA (x)], Max [fc (x), fß (x)]] (3.55) 

3.4.3.2 Fuzzy Rule-Based Systems 

For the purposes of this research it is necessary to define what a fuzzy rule-based system 
(FRBS) is and how it works. Mainly, the FRBS is applied to a fuzzy controller where desired 
states of the process are defined. The controller objective is to reach these desired states by 
adjusting the input values using a closed loop that goes from the system outputs to the system 
inputs. Generally speaking, fuzzy controllers are systems based on written rules (i. e. fuzzy 
rules) that relate the input variables with the control variables. To make this relation possible 
it is necessary to use linguistic variables. 

Zadeh (1973) defines a linguistic variable "as that whose values are sentences in a natural or 
artificial language". These sentences are formed by labels (small, tall, young, old, large), 
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connectives (and, but, or), negation (not), and hedges (very, more or less, quite). Therefore a 
linguistic variable defines a physical variable and a fuzzy rule is constructed following a 
condition-action structure. The type of fuzzy rule used in this work is "if <condition> then 
<action>". 

For example, if the variable to control is temperature, linguistically it can be expressed as "the 
temperature is too high" (condition) and the action to follow could be "decrease it by a bit". 
Thus, the rule is "if the temperature is too high then decrease it by a bit". 

The process of defining all the rules and the fuzzy sets will be called fuzzy classification. For 
the fuzzy classification a "how to measure acceptability" process is defined. The measure 
process usually uses a deviation or an error to specify the fuzzy sets. The fuzzy sets are also 
defined linguistically using predicates. For example, they can be written as "the deviation is 
tolerable" and the "deviation is too high". Once the fuzzy sets are established, the 
membership functions of each of them are determined. The fuzzy classification includes not 
only the fuzzification process but also the rule-based system construction. To perform the 
control actions a defuzzification process is needed. This process is basically the 
transformation from linguistic variables to crisp variables. 

To summarise, the fuzzy control has the following modules (Zimmermann, 1996): 

1. Fuzzification 
2. Rule base 
3. Defuzzification 

Figure 3.9 shows a fuzzy controller where the three modules mentioned above are 
represented. This fuzzy controller is known as "Mamdani" and it is explained in great depth 
in subsection 3.4.3.3. 
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Figure 3.9 Mamdani Fuzzy Controller 
Adapted from Zimmermann (1996) 

3.4.3.3 Fuzzy Controllers 

Mamdani controller 

noise 

Process 

process 
output 

The Mamdani controller is based on the description of process states using linguistic variables 
as inputs to control rules. It is understood that a linguistic variable is a fuzzy set with a certain 
shape. This shape can be linear, triangular, trapezoidal, etc. Each linguistic variable consists 
of different terms and each term will have a membership function associated with it 
(Zimmermann, 1996). As mentioned above, when the linguistic variable "temperature" is used 
different terms can describe it: "low" (1), "comfortable" (c) and "high" (h). Figure 3.10 shows 
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how these terms are represented using a triangular shape. The terms of each linguistic variable 
are described by membership functions. 

Membership 
tow 

Comfortable high 
1 

0 -º Temperature 

Figure 3.10 Graphical representation of a linguistic variable 

Having said this, considering n as the number of linguistic variables and in as the number of 
terms for each variable, the membership function will be: 

, u; ýxý (3.56) 

where i=1,2,..., ii indicates which linguistic variable is analysed and j=1,2,..., m which 
term of the linguistic variable i is used. 

The number of rules is in function of the linguistic variables and the number of terms each of 
these has. Mamdani and Assilian (1975) implemented a fuzzy controller in a plant; this 
process involved a steam engine and a boiler combination. This controller considered four 
input variables and two output variables. Each of the input variables (pressure, speed, change 
in pressure, and change in speed) was defined as an error that measures the difference 
between the present variable value and the set point or the difference between the present 
value and the last. The outputs were defined as actions to follow (heat change and throttle 
change) and seven fuzzy subsets were mapped to points in a universe of discourse (positive 
big, positive medium, positive small, nil, negative small, negative medium and negative big). 
The rules used in this problem utilised fuzzy conditional statements like "If the pressure error 
is negative small then the heat change is positive small" or "If the speed error is negative big 
then the throttle change is positive big". With this example it is possible to visualise that the 
rules connect the input variables with the output variables. In general the rule has the 
following form: 

if xi is A! ' and ... and x� is A- then it is A' (3.57) 

where the antecedents are fuzzy and the consequent is fuzzy. 

Sugeno controller 

The idea of this controller is based on that of Mamdani's even though some modifications are 
made. Sugeno defines the fuzzy control rules as antecedent-consequent where the consequent 
is a crisp function and the antecedent is fuzzy. For this reason with this kind of controller the 
procedure of defuzzification is avoided (Zimmermann, 1996). In order to determine the 
membership of each input the rule is defined as follows: 

if xl is Arl and ... and x� is A; ý then it is Jr (xi ,... x1 j) 
(3.58) 
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Using the temperature example, having two fuzzy antecedents like temperature and change of 
temperature and a consequent that is a linear function that will control the power in a heating 
system, then the rule can be built as follows: 
if the temperature is high and the change of temperature positive small then power = temp-25. 

3.4.3.4 Design of Fuzzy Controllers 

Zimmermann (1996) states that, in order to design a fuzzy controller it is necessary to 
consider three main aspects: 

1. Scaling factors. A scaling factor is defined for each rule and basically scales the base 
variables of the linguistic variables. Therefore the variable used in the rule is defined 
as x'= s"x, where s is the scaling factor. 

2. Fuzzy sets. First of all the shape of the fuzzy sets has to be determined, for example, 
this can have a trapezoidal shape. The peak value or modal value is where the 
membership function is equal to one. The cross point is the value of the variable 
where two membership functions have the same membership value (must be different 
to zero). The width is the value of the variable where the membership function of 
study has a value of zero on the left or right side of the modal value. Then a 
membership function is symmetric if the right and the left width are equal. The cross 
point level is the value of the membership function at the cross point. Therefore a 
cross point ratio can be defined as the number of cross points two membership 
functions have. Figure 3.11 illustrates all the values described above using three 
fuzzy sets with trapezoidal shapes. 

/ýX1X\ 
Cross points 

Figure 3.11 Fuzzy set parameters 
Adapted from Zimmermann (1996) 

3. Rules. Terano et al. (1992) state that the process of determining the control rules 
should be divided into two parts: determination of the antecedent and determination 
of the consequent. 

In Chapter Four of this thesis the FRBS will be used to represent the preferences of the DM to 
have an automated decision-making process in the solution of a multiple objective 
optimisation problem. 

3.4.3.5 Defuzzification Methods 

The main objective of the defuzzification process is to transform a fuzzy set into a crisp 
number. In fuzzy control this process is understood as the mapping from a domain set of 
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fuzzy control actions into a set of crisp control actions (Lee, 1990). Nevertheless there is not 
an established procedure to select a defuzzification method. For that reason the most 
widespread methods are presented below: 

Max-Membership method (MAX) 

The crisp number resultant wvw is the one that corresponds to the maximum membership 
function value as is shown in Figure 3.12. 

Figure 3.12 Max-membership defuzzification strategy 

ivy is selected such that V iv E U, PA(wc) >_ pA(w), where U is the universe of discourse, and 
I1A(wc) and PA(w) are the values of the membership function evaluated in ww and w 
respectively. 

Centre of Area method (COA) 

This method is also known as "Centre of Gravity" and its objective is to select the control 
action wvw that represents the centre of the shaded area shown in Figure 3.13. 

IV, Variable 

Figure 3.13 Centre of Gravity defuzzification strategy 

ww can be calculated in two ways (continuous case and discrete case): 
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Mean of Maximum method (MOM) 

79 

(3.59) 

This method generates the control action ºv, that represents the mean value of all variable 
values that reach the maximum of the membership function (Figure 3.14). 
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Figure 3.14 Mean of Maximum defuzzification strategy 

3.5 Multiple Objective Evolutionary Optimisation (MOEO) 

The following definitions are used to formally describe multiple objective optimisation 
problems (MOP): 

Definition 3.7 

Objectives are represented by mathematical functions and they could be to minimise cost or 
maximise profit. These functions could be linear or non-linear. Normally they are represented 
as follows: 

maximiseAx) 

minimise f(x) 

Definition 3.8 

(3.60) 

(3.61) 

A general multi-objective MOP is defined starting from the basis that the main purpose is to 
find the maximum/minimum solution for a certain problem, having a decision variable vector 
x of dimension n and k objectives the problem is represented as: 

max/min [fi(x), fi(x), ... , 
fk(x), ] (3.62) 
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subject to: 

g, {x)S0,1= 1,2, 
..., in 

where in is the number of constraints (Hwang and Masud, 1979). 

Definition 3.9 

(3.63) 

A non-dominated solution exists where it is not possible to improve one objective without 
decreasing the other objectives. In a formal way x is a non-dominated solution if and only if 
there is not any xeX (where X is the feasible set of variables that satisfies the constraints) 
such that f, (x*) <_ f{x) for all i, and fj(x) < f{x) for at least one j (Hwang and Masud, 1979). 

Definition 3.10 

The members of the population that are non-dominated constitute the Pareto optimal set. The 
applicability of these concepts in practice depends on how much information is needed from 
the DM during the computation of Pareto optimal solutions. 

As defined in section 3.4, one of the main characteristics of multiple objective optimisation 
problems is that the search space is continuous. Therefore binary-coded GAs (discussed in 
Chapter Two) not always are good for solving MOPS because the string length has to be 
defined in advance for precision purposes. For this reason there exists a number of real- 
parameter GAs (Deb, 2001), where there is no need of a string coding. This kind of GA is 
better known as real-valued GA, and there exist a number of crossovers and mutation 
operators specially defined for them. 

3.5.1 Real-Valued Genetic Algorithms 

In this section the Real-Valued Genetic Algorithms, or Real-Coded Genetic Algorithms 
(RCGA) as Herrera et al. (1998) called them, will be defined. The first approach to real- 
valued representation was developed for ES, as was discussed in Chapter Two of this thesis. 

Herrera et al. (1998) define the RCGA's chromosome as a vector of floating point numbers 
with the same size as the solution's vector. Each gene of the chromosome represents a 
variable of the problem and its value remains within the interval previously defined for each 
variable. 

One of the most important characteristics of RCGA is that the domain can be bigger and can 
have greater precision than that represented with binary-coding. Understanding the genotype 
as the coding and the phenotype as the search space, it is clear that in RCGA there is no 
difference between them. Another important characteristic of RCGA is that not having a 
coding-decoding process increases the speed of the GA. 

Broadly speaking, RCGA cannot use the same operators as binary-coded GAs. Therefore for 
a better understanding of RCGA it is important to define their correspondent genetic operators 
(crossover and mutation). 

3.5.1.1 Crossover Operators 

Linear crossover 

This crossover generates three solutions from two parents. Having parents P1 and P2, the 
solutions are as follows: 
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0.5(p, + P2) 
(1.5p, -0.5P2) 
(-0.5p, +1.5p2) 

Naive crossover 

(3.64) 

This crossover is very similar to the one used in binary-coded GA because a cross point is 
selected (single-point, two-point, or n-point) to produce the offspring. For instance, having 
two parents, n decision variables xy (where i=1,2,..., it and j=1,2), and a cross site at the 
fourth position produces the following offspring: 

PI: XII X21 X31 X41 X51 """ Xnl 

P2: X12 X22 X32 X42 X52 ... Xn2 

01: X11 X21 X31 X41 X52 ... Xn2 

02: X12 X22 X32 X42 X51 ... X111 

The search power of this crossover is not so good. 

Blend crossover 

(3.65) 

Having two parent solutions x(''') and x52. ') 
, where t represents the generation number, and 

having a range [x, (', ') - a(x(Z') - x(''')), x42'' + a(x(Z'') - x4'"'))] , then a solution is randomly 
selected within this range. In other words, having a randomly selected number it, E [0,1], the 
offspring is defined: 

x(1,1+1) = (1- y, ) x(I '`) + yr x(2, t) 

where y; _ (1 + 2a) u, - a. Deb (2001) suggests a value for a=0.5. 

Arithmetical crossover 

(3.66) 

Michalewicz (1994) defines this operator as "a linear combination of two vectors", having 
two parents x; and x; , to be crossed, where t is the generation number. The resultant 
offspring is defined by: 

x; +1 °a"x; v +(1-a)'xv 

x; ý1=a"x;, +(1-x', 
(3.67) 

where the parameter a can be either constant or variable. If a is constant the operator is called 
uniform arithmetical crossover, if not the operator is called non-uniform arithmetical 
crossover. 

Simulated binary crossover (SBX) 

This crossover was developed by Deb and some of his students in 1995 (Deb, 2001), and is 
defined as follows: 

Having two parent solutions xý'. ') and x, ('-'), where t represents the generation number, to 

compute the offspring x511+1) and x; Z, '+i) the following procedure is performed: 
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Step 1: Select a random number ui E [0,1) 

Step 2: Calculate ßqj using the following equation: 

flgi = 

(21ý; ), ýý+t+t , if u; <_ 0.5; 
I 

1 70+I 

2(l Z11) 2(1-: ý, ) 
, otherwise 

Step 3: Calculate the offspring using the following equations: 

xý1,1+1) = 0.5[(1 + ßgF) 
x; ý'') + (1- ßg; ) 

xI 2'')ý 

(3.68) 

(3.69) 

x(2, r+1) = 0.5[(1- ßqi) XP'`) + (1 + ßq, ) x52'')1 (3.70) 

Unfair Average Crossover 

This operator was developed by Nomura and Miyoshi (1995) and is defined as follows: 

Having two parent solutions x(, 1'`) and x, `) 
, where t represents the generation number, to 

compute the offspring x(', '+1) and x(2. t+1) the following equations are applied: 

xtý, ý+q = 
(. ') - 52, ý> (1+a)x, ax, , fori=l,..., j, 

-ax; ', ̀>+(1+a)xS2-`), fori= j+1,..., n 

x(z, r+>> __ 
(1- a) +a xSz `ý, for i =1,..., j, 

a xt', ')+(1- a) x(z, '), for i= j+ 1, ..., n 

(3.71) 

(3.72) 

where j is a integer parameter randomly selected between 1 and n, that indicates the cross site. 

Fuzzy Connectives Based (FCB) 

This crossover was developed in 1994 by Herrera et al. (1998) and consists of considering 
each bounded variable xi (gene) domain [xf , x°], dividing it into four regions: [xf , xi. r], 

!, 1 2,1 2,1 U121lr [x; x; ], [x; , xi ] , where the fourth region is an overlapping region (y, y) , where y, S x' 
and y; >_ x? " . After the regions have been identified, one solution has to be selected from 
each of them; user-defined fuzzy connective functions make the selection. Two normalised 
parents are defined: 

(_ xi'ý - xi Uý 

2, r 
- 

1, r 
x; xi 

2,! L 
x; x, 

2,1 l, r 
xi xi 

(3.73) 

(3.74) 

Four fuzzy connectives (T, G, P, and C) are defined: 
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X1 r+l = xL + (xi U_ 
xi )T(s, s') (3.75) 

?, r+1 _L U_ L xx+ (xi s s' (xi x, ) (ý ) (3.76) 

Xi _ xL + (XU - xL)P(s, s') (3.77) 
4,1+1 

_LUL xr xr + (xi - xi)C(s, s) (3.78) 

where T(s, s') = min(s, s'), G(s, s') = max(s, s'), P(s, s) = (1-X)s+X s', and Qs, s') = TI"XGx. 
After this procedure is performed, four solutions are generated, two of them directly replace 
the parents, and the other two replace two solutions randomly selected from the population 
waiting to be crossed. 

3.5.1.2 Mutation Operators 

Random mutation 

Michalewicz (1994) defines this operator as that applied to a floating point number and the 
result is a random value from the domain <LB, UB>, where LB, UB are the lower and upper 
bounds respectively. This operator can be considered as analogous to the one used in binary- 
coded GAs. 

Uniform mutation 

This operator is defined as follows (Michalewicz, 1994): 

Having a chromosome 5;, =(VI,... Iv�) where n is the number of variables, t is the generation 
number, and having selected the element vk for mutation (where each element of the 
chromosome has the same probability of being selected), then the new offspring is defined as: 

`+1 =I where 1 <_ k: 5 n (3.79) S1 
(VI 

ý """ ýVký """ ý Vn 

where v'k is a randomly generated value within the variable's domain. 

Non-Uniform mutation 

This operator was developed by Michalewicz (1994), and is defined as follows: 

Having the following chromosome Sty = (vj,..., v�) where n is the number of variables, t is the 
generation number, and having selected the element vk for mutation then the new offspring is 
defined as follows: 

r+l _ Sv _(VI2 ... )VIk2... Vn 

where V'k is defined as follows: 

v1k 
Vk + 0(t, UB - Vk) if a random digit is 0, 

vk - o(t, vk - LB) if a random digit is 1 

(3.80) 

(3.81) 

where LB and UB are lower and upper domain bounds of the variable vA. Michalewicz (1992) 
defines the function o(t, y) as: 
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(r° 
o(t, Y)=Y' (3.82) 

0(t, y) returns a value in the range [0, y] and r is a random number in [0,1], b is the degree of 
dependency on iteration number (b = 5, normally), and T is the maximal generation number. 

This operator is called non-uniform because it searches the space uniformly when t is small, 
and locally when t is increased. 

Normally distributed mutation 

This operator is based on the use of a zero-mean Gaussian probability distribution (Deb, 
2001), represented below: 

Yýl, 
r+1) 

= x(1, 
"1) + N(O, 6i) (3.83) 

where 6 is a fixed parameter defined by the user (DM). This operator is very similar to that 
discussed in Chapter Two for ES. 

Polynomial mutation 

In this operator the probability distribution used is polynomial (Deb, 2001): 

y(1,1+I) = xQ,, +1, + (x5u' - xl 
L)) 

81 (3.84) 

where the parameter g; is calculated from the polynomial probability distribution represented 
by equation 3.81 and 3.82: 

P(S) = 0.5(17,,, + 1) (3.85) 

__ 
(2y ý)ý/(ým+l) -1, if ri < 0.5, 

1-[2(1-rr)] 
, 

if rr-0.5 
(3.86) 

17,,, should have a fixed value. The parameterS, distribution is very similar to that of the non- 
uniform mutation operator. Moreover, another similarity between the polynomial mutation 
operator and the non-uniform mutation operator is that both are used for handling bounded 
decision variables. 

3.5.2 Developments of MOEO 

Schaffer (1985) proposed a vector evaluated genetic algorithm (VEGA) for the solution of 
multi-objective optimisation problems. This algorithm was based on the generation of a 
number of sub-populations at each generation. In order to generate the sub-populations the 
proportional selection operator was performed for each objective. Therefore, the number of 
sub-populations is equal to the number of objectives and the sub-populations size is the 
population size divided by the number of objectives. Additionally, all the elements of the sub- 
populations are set together and shuffled, generating a new population. This new population is 
used for the application of the crossover and mutation operators. 
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In 1987 one of the first attempts to solve multi-modal function optimisation problems using 
GAs was made by Goldberg and Richardson (1987). They developed the method of sharing 
functions. This method permits the formation of stable subpopulations of different strings. 
Through the use of sharing functions, niche-like and species-like (Goldberg, 1989) 
subdivisions of the environment and population are formed. Sharing allows the maintenance 
of a more diverse population and avoids a premature convergence. Goldberg and Richardson 
(1987) pointed out that the premature convergence of the simple GAs was a normal 
characteristic of these algorithms and usually drives to points that are not close enough to the 
optimal points. The results obtained with the GA using the sharing function were satisfactory. 

Fonseca and Fleming (1993) proposed a rank-based fitness assignment method for 
multiobjective optimisation GA (MOGAs) implementing the idea proposed by Goldberg 
(1989). Treating the problem as a MOP, the solution expected is a family of points (Pareto- 
optimal solution). The Pareto optimal was necessary to assign rank-based fitness in terms of 
non-dominated individuals giving a rank of 1 to the best and a rank n to the worst. 
Additionally, the average fitness of individuals with the same rank was calculated. Fonseca 
and Fleming (1993) introduced a new parameter in the GA called the "niche size" 
implementing fitness sharing in the objective value domain. This method was implemented 
for a Pegasus gas turbine engine application. 

Horn and Nafpliotis (1993) proposed an algorithm to find the Pareto optimal set called 
Niched Pareto GA. They worked at the same time as Fonseca and Fleming but independently. 
Horn and Nafpliotis (1993) proposed a Pareto domination tournament to give more 
domination pressure. A comparison set is selected randomly from the initial population, then 
two individuals are selected at random and each of these individuals is compared to every 
individual in the comparison set. This comparison leads the process to the following cases: 1. 
One of the two individuals is nominated by the comparison set, the other is non-dominated 
against the comparison set, and the non-dominated is selected; and 2. Neither of the two 
individuals is dominated by the comparison set, the use of sharing is needed. The sharing 
process defined is the degradation of an individual fitness having a niche count and a fitness 
function. Golberg (1992) proposed to sample the population to estimate the niche count - this 
was called niche count sampling. Both techniques were used in their Niched Pareto GA, 
showing the algorithm appropriate, for finding the Pareto set and maintaining a large number 
of subpopulations. 

Fonseca and Fleming presented an overview of EA in MO in 1995. In this review the 
multiobjective approaches using EAs developed at that time were discussed. The concept of 
Pareto optimal is the set of objective vectors that is non-dominated; this is considered the base 
of most of the approaches to solve multiobjective optimisation problems. Basically three 
techniques were used: 1. Pareto-based approaches, 2. Niche induction techniques, and 3. 
Pareto-based in conjunction with Niche induction techniques. On the other hand, Fonseca and 
Fleming (1995) concluded that one of the most important characteristics of the multiobjective 
evolutionary approach is the DM's intervention in the search and preferences setting. 

One of the areas that has been developed in GA is the optimisation of design problems. Gero 
and Louis (1995) used the Pareto optimality to solve different design problems with shape 
grammars. Shape grammars is a formal method of shape generation used in architecture and is 
usually a set of grammatical rules used for mapping one shape into a different shape. A GA 
was developed using crossover to generate new grammars and then recombination to allow 
the restructuring of the problem formulation. In this way, it was possible to have an evolving 
state space, which could drive the problem formulation to an automatic reformulation of the 
optimisation problem. 

Coello and Christiansen (1995) developed a technique that combines the global criterion 
method and GA. This technique places all the objectives at the same level of importance and 
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it is possible to solve either minimisation or maximisation problems. The approach used was 
the global criterion equation to generate the set of non-dominated solutions giving a certain 
weight to each objective. The GA used tournament selection and two-point crossover. 
Moreover, the algorithm was applied in the solution of the design of an I-beam and the design 
of a machine tool spindle obtaining good results in both cases. 

Shaw and Fleming (1996) solved a real-life scheduling problem for a manufacturer of chilled 
ready meals for sale in supermarkets. The problem identified was the allocation of the orders 
to the production lines. The manufacturer needed a flexible system, which allowed 
rescheduling and change of priorities during manufacturing. They used the MOGA proposed 
by Fonseca and Fleming. The number of objectives to minimise was three. The edge 
recombination operator and splice mutation operator were used. The weighted sum GA 
(standard single-objective) was programmed in order to compare with MOGA. The results 
found by MOGA were better in terms of effectiveness. 

Additionally, Camponogara and Talukdar (1997) developed a GA for constrained and 
multiobjective optimisation. A Pareto scheme was proposed. This scheme consisted of two 
roles: evolution selection and combination operator. The evolution selection consisted of 
keeping only non-dominated solutions from one generation to another. Whilst the 
combination operator consisted of creating offspring from the solutions in Pareto sets used to 
calculate improvement by searching the line defined by them. The main characteristic of the 
GA was to convert the constrained optimisation problem into an unconstrained multiobjective 
problem. Managing the constraints as objectives to minimise. In this way the problem was 
treated as a multiobjective problem minimising all the objectives. 

Lis and Eiben (1997) proposed a Multisexual Genetic Algorithm (MSGA) based on giving 
sex or gender to individuals. In the recombination process one individual of each sex is used. 
It is necessary to map from each optimisation criteria to one sex in order to assign the sexes. 
In such a way that it is expected to have as many sexes as criteria. One important 
characteristic of this algorithm is the use of multi-parent crossover that performs 
recombination with one parent of each sex. Each sex will be ranked separately. The results 
showed that MSGA has a high capacity for finding Pareto optimal solutions. 

Coello (1998) introduced a new multiobjective optimisation technique using a GA based on 
the min-max optimum concept. The main idea of this technique is to ensure all the individuals 
created are feasible solutions avoiding the violation of any constraint. A weight vector is 
provided in order that there are as many processes as weight combinations. Then the min-max 
approach is used with a weight combination for generating a single solution to formulate the 
Pareto set. This technique transforms the multiobjective problem into single objective 
problems. The problem solved with this multiobjective optimisation technique was the design 
of a Machine Tool Spindle. The technique showed better overall results and proved to be very 
robust. 

In 1999, Hiroyasu et al. (1999) presented a new model of MOGA using parallel processing. 
The model is called Divided Range GA (DRGA) where the individuals are separated into sub- 
populations based on their objective function values. This model is a distributed GA using the 
migration operation. This operation consists of the movement of individuals randomly 
selected into other islands. DRGA have three abilities: local search, global search, and 
efficient search. In the overall process, a crossover called gravity crossover is used with no 
mutation operator. A different terminal condition than the number of generations is needed. 
The result showed that DRGA is an effective model in finding the Pareto solutions. 

Zitzler and Thiele (1999) introduced a new evolutionary approach to multiple criteria 
optimisation called strength Pareto evolutionary algorithm (SPEA). This algorithm consists of 
storing the non-dominated solutions found externally, assigning scalar fitness values to 
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individuals, and performing clustering to reduce the number of stored non-dominated 
solutions. First, the non-dominated solutions in the external set are ranked, and then the 
fitness assignment procedure is applied. This procedure consists of two steps: each solution is 
assigned a real value, called strength, this value is proportional to the number of members 
plus one; the fitness of the individual is calculated by adding the strength values of the 
external non-dominated solutions. This algorithm is compared to other EAs achieving the best 
assessment. 

Srinivas and Deb (1994) proposed the non-dominated sorting GA (NSGA). They showed that 
the non-dominated sorting has a high computational complexity. Deb et al. (2000) suggested a 
non-dominated sorting based multiobjective GA (NSGA-II) to avoid this complexity. They 
proposed a fast non-dominated sorting approach that returns a list of the non-dominated 
fronts. The algorithm proposed reduces the complexity from O(mN3) to O(mN2). After the 
application of this sorting it is necessary to estimate the density of solutions surrounding a 
point with the crowding distance. Additionally, a crowded comparison operator is used. This 
operator guides the selection process. The results showed a very good performance for the 
algorithm. 

In 2000, Laumanns et al. (2000) presented a unified model of multiobjective evolutionary 
algorithms with elitism. The elitism term was defined as follows: individuals from the gene 
pool of population could not be discarded to allow worse individuals to participate. A unified 
model for multiobjective evolutionary algorithms was defined. This model consists of using 
probabilistic operators though in some cases the operators will be completely deterministic. 
Initially, an archive of elite individuals and a normal offspring population will be used to 
generate the current offspring population. The selection of the elite individuals is based on a 
probabilistic operator that determines whether an individual is chosen to function as a parent 
or not. In addition, the elitism strategy determines which individuals must be stored in order 
to update the archive of elite individuals. Recombination and mutation are applied in the 
generation of the new offspring population. The elitism technique was included in three 
MOEAs showing a regular behaviour. The authors concluded that this model is beneficial to 
speed up convergence to the Pareto set. 

Knowles and Come (2000) introduced a Pareto archived evolution strategy ((1+1)-PAES). 
This algorithm is divided into three parts: 1. A "candidate solution generator", that acts as 
simple random mutation hillclimbing; it maintains a "single current solution" and produces a 
new candidate using random mutation. 2. A "candidate solution acceptance", that consists of 
using a comparison set to select between the mutated and the current solution. 3. A non- 
dominated solution archive, which records all the non-dominated solutions previously found. 
They also proposed an "adaptive grid algorithm" to maintain diversity. 

Sarker et al. (2002) presented a new multi-objective evolutionary algorithm (MEA). This 
algorithm is called (fit + A) MEA and consists of discarding the dominated individuals in each 
generation. In other words, in order to calculate the number of offspring in each generation, 
the number of non-dominated solutions is multiplied by a fixed ratio. This means that the 
population size in each generation varies. The algorithm uses a real-valued codification, 
discrete recombination and Gaussian mutation. The performance of the MEA is compared 
with that of strength Pareto evolutionary algorithm (SPEA) in five benchmark problems, 
where MEA outperforms SPEA on all five occasions. 

It is important to mention that this survey is an attempt to show the recent developments in 
this area but it does not cover all the work that has been done until now. 
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3.6 Summary 

This chapter's main focus is on decisions, their nature and the way they are made. The 
decision analysis concept has been defined as a formal mechanism that helps to integrate the 
results of each problem after dividing it into a set of smaller problems. It helps the DM to 
have a better understanding of the problem and gives the tools for solving it analytically. It is 
also an approach to handling the decision-making process under risk and uncertainty. 

Decision analysis is focused on the decision-making process, the DM and the decision. The 
decision-making process can be summarised as the observation and recognition of a problem, 
identification of alternatives, establishment of evaluation criteria, alternatives evaluation, 
selection of an alternative and implementation. 

The risk analysis procedure is defined as risk identification, risk quantification and 
measurement, risk evaluation, risk acceptance or avoidance, and risk management. Some 
applications of risk management have been outlined, such as decision-making on energy, 
environmental and health policies, operations management, finances, marketing, engineering, 
and even risk analysis for terrorist attacks. 

MCDM is a branch of decision-making and it is divided into two classes of models: multiple 
objective decision-making and multiple attribute decision-making. This division is based on 
the type of decision spaces; these are continuous or discrete. The methods to solve MCDM 
problems can be classified in deterministic, stochastic and fuzzy. These methods have been 
described in subsections 3.4.1,3.4.2 and 3.4.3. 

Finally, the core of this research (multiple objective evolutionary optimisation) has been 
discussed, presenting different developments on evolutionary algorithms with different 
genetic operators, different representation (binary, real) and different applications. 

Once the basic concepts have been defined and studied, the next step is the solution of 
MODM and MADM problems. In Chapters Four, Five and Six three case studies and a 
practical problem are solved using multiple objective/attribute evolutionary optimisation. 



CHAPTER 4 

Sequential Multi-objective 
Problem Solving (SEMOPS) 
4.1 Introduction 

As discussed in the previous chapter, several methodologies for the optimisation of single- 
objective problems exist, although in practice, problems are often multi-objective. This 
implies that multiple objective problems (MOPs) have to be reformulated into single- 
objective problems or in the best case a method has to be used that allows the problems to be 
treated as multiple objective, without modifying them. One important characteristic of 
multiple objective optimisation problems is that a very large set of solutions is acceptable. 
These solutions are considered equivalent. Coello (2000) states that to solve MOPs, three 
stages are needed: measurement, search, and decision-making. Hwang and Masud (1979) 
defined the concept of decision-making as the selection process of an alternative to follow 
from all the alternatives available. 

This chapter focuses on two new approaches. The first approach principally consists of 
adding an evolutionary algorithm to a sequential multi-objective problem solving (SEMOPS) 
method developed by Monarchi et al. (1973). The main objective of this hybrid approach is to 
handle the DM's preferences in an interactive (progressive) way, using the strengths of both 
OR and evolutionary computation techniques. The second approach is an innovative model 
developed with the aim of automating the DM using a fuzzy rule-based system. This new 
model is called frizzy multiobjective genetic optimiser and is defined in section 4.5. In order to 
demonstrate the power of these two new approaches two decision-making optimisation 
problems both with a high level of difficulty have been solved. 

The first problem to be solved is the Bow River Valley case study; this is a multiple objective 
problem that consists of minimising the pollution in an artificial river basin, and is described 
in section 4.4. The main purpose of this experiment is to demonstrate that it is possible to 
combine a method proposed in OR with a GA, visualising the GA as a search algorithm. The 
GA uses the interactive SEMOPS method to describe the fitness function based on goal levels 
and aspiration levels. The aspiration levels are directly related to the decision-maker's 
preferences. 

An interesting question to posit is "what happens if the system has to be automated? " One 
answer to this question is to implement a fuzzy rule-based system. The fuzzy rule-based 
system is programmed with the classification given by the decision-maker. The optimiser is 
applied to the Bow River Valley case study. The results of this fuzzy genetic algorithm are 
compared with those found using a human decision-maker instead of the fuzzy rule-based 
system (section 4.4). 

The second problem to be solved is a very common problem in hospitals: the nurse- 
scheduling problem (NSP) also known as the nurse rostering system, as described in section 
4.6. There are many organisations that divide the work of their staff into different shifts such 
as hotels, hospitals and service centres. Normally, the staff members work around rosters. 
Cheng et al. (1996) define roster as the process of determining the staff shifts over a period of 
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time. Valouxis and Housos (2000) define a roster as a set of work and rest days assigned to a 
staff member. The NSP is defined as the generation of a schedule of working days and days 
off for each nurse in a hospital. In order to manage this process, it has been decided to use the 
SEMOPS-GA approach. 

Finally, the conclusions are presented in section 4.7. 

4.2 Handling Preferences 

Following the classification of information for preferences presented in Chapter One, the 
stage used in this chapter is an interactive method which follows a two-step algorithm. The 
first step is to identify a non-dominated solution. In the second step the DM will provide his 
or her preferences and trade-off information. This information is used to modify the problem. 
For this reason these methods are known as methods of Progressive Articulation of 
Preferences (Goicoechea et al., 1982). 

Fonseca and Fleming (1993) made a first attempt to deal with preferences of the DM in a GA 
for multiple objective optimisation. This multiobjective genetic optimiser consists of 
presenting to the DM a set of points to evaluate in each generation of a genetic algorithm. 
After the assessment is made, the DM communicates his/her preferences to the GA. The GA 
proceeds with the next generation (Figure 4.1). 

Objective function values 

Figure 4.1 General Multiobjective Genetic Optimiser 
Adapted from Fonseca and Fleming (1993) 

Once the MOP and the genetic optimiser have been defined, it is necessary to present the 
method (SEMOPS) that will be used throughout this chapter. 

4.3 SEMOPS: Method 

Sequential Multiobjective Problem Solving (SEMOPS) is an interactive method developed by 
Monarchi et al. (1973), which involves the DM in the search for a satisfactum (satisfactory 
alternative of action). This algorithm has two different levels: goal and aspiration. The goal 
levels are defined as "conditions imposed on the DM by external forces" and the aspiration 
levels are "attainment levels of the objectives which the DM personally desires to achieve" 
(Goicoechea et al., 1982). 

Simon (1959) concluded that aspiration levels specify the conditions for satisfaction. He 
considered satisfying models have a better performance than optimising models. The 
satisfying model offers the DM the possibility of searching for new alternatives of action. 
Finally, Simon (1959) stated that most entrepreneurs want to achieve a satisfactory alternative 
of action rather than the optimal. 

The decision problem has p goals, n decision variables, and a constraint set X. Each goal is 
connected to an objective function, so for p goals there will be p objective functions. These 
functions are represented in a set z= (zl, z2, zn) and will be used to evaluate how well the 
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goals have been accomplished. It is necessary that the set of constraints X be continuous, and 
the constraint and objective functions have to be at least first order differentiable (Monarchi et 
al., 1973). 

The goals are transformed into a function d(x) in the real positive set. If d<I the goal is 
satisfied. Each objective function will be compared to its correspondent aspiration level AL 
and will be transformed into ad function as follows: 

At most: 

At least: 

Equal: 

Within an interval: 

z; (X) -'! g AL; d; = z, (X) 
AL 

zr (x) ? ALi; di = 
AL 

zl(x) 

11 AL zi (x) 
zi (x) = AL; di =2 

zi (x) + 
AL; 

ALtL: g z; (X)SAL; u 

d; _ 
AL; u 

11 ALL + 
Z; (X) 

ALrL + AL; u z; (X) AL; u 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The main purpose of SEMOPS is to generate information in order to help the DM to make a 
decision. It is important to notice that the algorithm by itself does not solve the problem. 

Another important characteristic of this method is the use of a surrogate objective function. 
This surrogate objective function s is based on the goal and aspiration levels. Thus: 

P 

S=Edr 
1=1 

(4.5) 

SEMOPS is defined as a three-step algorithm, (1) set-up transforms the original problem into 
the surrogate objective function, (2) iteration is cycling until a satisfactum is obtained, and (3) 
termination is when a satisfactum is found or when the DM decides that there is no 
satisfactum. 
Then, for the first iteration the problem will be described as follows: 

Principal problem 

subject to 

auxiliary problems, l=1,2,..., P 

min st di (4.6) 
i=1 

XEX 

1' 

min 511= 
Idi 
i=1 
iml 

where P is the number of auxiliary problems 
subject to 

(4.7) 

(4.8) 
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ý 

(4.9) 

The solution of this iteration will be used in the assessment process for the DM to decide the 
changes for the next iteration. In this way the process is interactive to take into account the 
DM's preferences. Figure 4.2 shows an adaptation of the genetic optimiser proposed by 
Fonseca and Fleming (1993), considering the DM preferences and the SEMOPS method. 

Decision 
Problem 

Goal 
levels 

XEX 

zr 
(x) z AL 

DAI 
Aspiration 

levels 
(Preferences) 

l-ý 

ýA 

SEDMOPS 
Surrogate 
objective 
function 

Fitness 
function 

10 GA 

2 

Solutions 

Figure 4.2 Genetic optimiser using the SEMOPS method 

4.4 Bow River Valley Case Study 

The Bow River Valley is a hypothetical example of an artificial river basin and its pollution 
problems. As Figure 4.3 shows, there are three pollution sources, the Pierce-Hall Cannery, 
and the towns of Bowville and Plympton. The water quality will be measured by the 
concentration of dissolved oxygen (DO). The number of pounds of biochemical oxygen 
demanding material (BOD) will measure the waste. The BOD is divided into nitrogenous 
(BOD�) and carbonaceous (BODe) material. 

Bow Rivcr 

0 

DO level (4.75) 
Bowvillc 

population 
250,000 

10 

Pierce-Hall 
Cannery 

(Distance in driver miles) 

DO level (5.1) 
Plympton 
population 

200,000 

(DO levels in milligrams per liter) 

50 

70 

Robin 
State Park 

L00 
STATE LINE 

DO level (6.75) 

DO level (2.0) 

Figure 4.3 Bow River Valley Basin 
Adapted from Monarchi et al. (1973) 

The BOD is reduced by 30% of the total with primary treatment facilities installed in the 
Pierce-Hall cannery, and in the towns of Bowville and Plympton. 

The goals for this case study are: 

1. To raise the dissolved oxygen concentration (DO) to at least 6 mg/l at Bowville. 
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2. To raise the dissolved oxygen concentration (DO) to at least 6 mg/l at Plympton. 
3. To raise the dissolved oxygen concentration (DO) to at least 6 mg/I at Robin State Park. 
4. To maintain a percentage of return on investment above 6.5% at Pierce-Hall. 
5. To hold the tax rate below $1.5 per $1000 of assessed value at Bowville. 
6. To hold the tax rate below $1.5 per $1000 of assessed value at Plympton. 

The proportionate reduction in BOD,, (iv; ) is in terms of the BODC (xj), as follows: 

0.39 
iv; _ (1.39 - x? ) 

The DO level q is specified by: 

+qý qj =-E[d L`" (xi-0.3)+dLr'6v, -0.3)] 

where 

*d = carbonaceous transfer coefficient between points i and j; 

d= nitrogenous transfer coefficient between points i and j; 

*Lf = carbonaceous BOD load for source i; 

*Li' = nitrogenous BOD load for source i; 

xi = proportionate reduction in Li ; 

, vi = proportionate reduction in L, 7; 
qj = current DO level at point j; 

ij = points 

* The values of the transfer coefficients and the BOD waste levels are in Appendix A 

Furthermore, it is possible to define the decision variables for this problem: 

x1= proportionate reduction in carbonaceous BOD load at the Pierce-Hall Cannery. 
x2 = proportionate reduction in carbonaceous BOD load at Bowville. 
X3 = proportionate reduction in carbonaceous BOD load at Plympton. 

(4.10) 

(4.11) 

The only constraint on this problem is that the DO level at the state line has to be at least 3.5 
mg/l and is calculated using equation 4.11. The constraint is called q4 and is expressed as 
follows: 

g4z3.5mg/l (4.12) 

The next set of equations describes the incremental cost for reduction above 30% in BODE 
(additional waste treatment) where the units of C; are in thousand dollars/year: 

Pierce-Hall Cannery 

_ 
5(4.13) C, 

. 09 - xi) - 59 
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Bowville 

[53,3; 
Cz = 

. 09 - x2) - 532 

Plympton 

[4ý9450 
Cs 

-x3)]- 

94 

(4.14) 

(4.15) 

The percentage return on investment r will be determined in terms of the additional annual 
cost in the Pierce-Hall Cannery: 

r- 
100 (375,000 - 0.6 C) 5,000,000 

The town's tax rate will be affected by the additional waste treatment: 

Bowville 

ore = (2.4 x13 )(0.75 c2) 
Plympton 

(4.16) 

(4.17) 

At3 = (3.3 x 10 -3 )(0.75 C) (4.18) 

For the first iteration the goal levels and the aspiration levels are considered to be the same. 

Thus, the goals are calculated as follows: 

Goal I DO level at Bowville (z, zAL1) 

zi = qt 

Goal 2 DO level at Robin State Park (z2 zAL2) 

z2 q2 

Goal 3 DO level at Plympton (z3 z AL3) 

z3 q3 

where ql, q2 and q3 are calculated using equation 4.11. 

Goal 4 Percentage of return on investment at Pierce-Hall (z4 Z AL4) 

z4=r 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

where r is calculated using equation 4.16. 
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Goal 5 Tax rate at Bowville (z5 SAL5) 

z5 = Ott 

where Ott is calculated using equation 4.17. 

Goal 6 Tax rate at Plympton (z6: 5 AL6) 

Z6=0t3 

where ßt3 is calculated using equation 4.18. 

4.4.1 The Genetic Algorithm 

95 

(4.23) 

(4.24) 

For the Bow River Valley problem it is necessary to use real-valued coding and decoding for 
the GA. This real-valued representation will make the coding of genotypes easier. However, 
in this type of GA it is necessary to define different selection, crossover and mutation 
operators. 

Selection operator 

Tournament selection is used specially for maximisation and minimisation problems. It 
allows the algorithm to select the individual with the lowest fitness value within a group of y 
individuals randomly selected. The tournament size y used is 3 and represents the number of 
individuals chosen from the initial population to participate in the tournament (Chapter Two). 

The selection procedure is a very important part of the GA, not only because it allows the 
selection of the best solution after each iteration, but also because it reduces the size of the 
solution set. If the size of the solution set is reduced, the DM will have a better view of the 
possible solutions to make a decision. 

Crossover operators 

The recombination operators selected are (as defined in Chapter Three): 

Arithmetic crossover (Michalewicz, 1994). Having two parents p, and P2, and a number a 
within [0,1], the offspring ch is: 

chi =apu+(1-a)p21 (4.25) 

where i=1,..., n and n is the number of decision variables. 

Unfair average crossover (Nomura and Miyoshi, 1995). Having two parents p, and p2, and a 
number a within [0,0.5], the offspring chi and ch2 are: 

CjYli = 
(1+a)p11-aP21, fori=l,..., j, 

-ap11+(1+a)P21, fori= j+1,..., n 
(4.26) 

chzr = 
(1- a) p� +a Pzr l 

for i=1, ..., j, 
(4.27) 

aplr+(1-a)P2r, fori= j+1,..., n 
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where j is a number randomly generated between I and n (number of decision variables). 

Simulated binary crossover (Deb, 2001). Having two parents pj and p2i the offspring chi and 
ch2 are: 

chi; = 0.5[(1 + Nqi) Pi, + (1 - /3q) P2i1 

chz; = 0.5[(1- ßgr) Plr + (1 + ßg; ) P211 

(4.28) 

(4.29) 

where Nqi is calculated as shown in Chapter Three and n is the number of decision variables. 

Mutation operator 

The mutation operator selected is the one proposed by Michalewicz (1994) that is applied to a 
floating point number and the result is a random value from the domain <LB, UB>, where 
LB, UB are the lower and upper bound respectively. The probability of mutation is equal to 
15%. This operator was defined in Chapter Three. 

Goal and aspiration levels 

The goals are: 
Z=(Z1i Z2i Z32 Z4) ZS ZO 

zl 6.0, z2 6.0, 
z3 6.0, z4 6.5, 
Z5 1 

. 
5, z6 <_ 1 . 5, 

For the first iteration the DM's aspiration levels will have the goal's values: 

AL = (AL1i AL2, AL3, AL4, ALS, AL6) 

AL1= 6.0, AL2 = 6.0, 
AL3 = 6.0, AL4 = 6.5, 
AL5 = 1.5, AL6 = 1.5, 

For the following generations, the goals remain the same and the DM changes the aspiration 
levels depending on the solutions obtained in the previous iteration. 

4.4.2 Experimental Results 

The GA is implemented in C, the initial population is expressed in floating point vectors 
generating randomly x; vectors used to generate wv; vectors, d, vectors and the s solution. 

In this work, the algorithm was run for 50 cycles for each principal and auxiliary problem, 
and a=0.5 (crossover operator) finding the solutions showed in Table 4.1. These conditions 
for comparison purposes will be considered as the first iteration in the traditional method 
(Monarchi et al., 1973). 

The first row in Table 4.1 (grey) represents the solution of equation 4.6 (surrogate function) 
and the following rows represent the solution for the auxiliary problems. The aspiration levels 
are: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 
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Decision variables Goals Fitness 
XI X2 X3 Zl Z2 Z3 Z4 ZS Z6 S 

Aspiration 
Levels >6.0 >_6.0 >_6.0 >6.5 51.5 51.5 

Surrogate 0.806 0.653 0.849 5.899 3.729 5.664 6.602 0.486 1.914 6.269 
Auxiliary 1 0.786 0.668 0.843 5.854 3.764 5.677 6.709 0.530 1.844 5.203 
Auxiliary 2 0.638 0.389 0.847 5.518 2.552 5.279 7.170 0.063 1.892 4.433 
Auxiliary 3 0.819 0.644 0.849 5.929 3.711 5.657 6.519 0.461 1.934 5.222 
Auxiliary 4 0.983 0.601 0.857 6.300 3.955 5.709 2.530 0.358 2.035 5.115 
Auxiliary 5 0.743 0.942 0.853 5.756 5.431 6.207 6.891 3.764 1.971 5.371 
Auxiliary 6 0.816 0.669 0.917 5.922 3.813 5.691 6.538 0.533 3.408 4.991 

Table 4.1 Results using the goals values as aspiration levels 

The solution of the surrogate function yields to the following decision variable values: 

x, = 0.806,80.6 % Pierce-Hall Cannery 
x2 = 0.653,65.3 % Bowville 
x3 = 0.849,84.9 % Plympton 
where only goals 4 and 5 are met. 

It was decided to follow the same procedure as Monarchi et al. (1973) to make their results 
comparable with those obtained with the GA. For this reason goal 6 is managed as a 
constraint with an aspiration level z6 < 1.8 (tax rate at Plympton), obtaining the results 
presented in Table 4.2. The aspiration levels are: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 

Decision variables Goals *Const Fitness 
X1 X2 X3 Z1 Z2 Z3 Z4 ZS Z6 S 

Aspiration 
Levels >6.0 >_6.0 >_6.0 >6.5 <_1.5 51.8 

Surrogate 0.832 0.662 0.836 5.959 3.810 5.689 6.427 0.513 1.754 4.989 
Auxiliary 1 0.779 0.676 0.838 5.839 3.788 5.685 6.740 0.554 1.776 3.973 
Auxiliary 2 0.799 0.321 0.837 5.884 2.521 5.258 6.639 0.012 1.768 3.148 
Auxiliary 3 0.819 0.647 0.836 5.931 3.725 5.662 6.514 0.469 1.751 3.932 
Auxiliary 4 0.943 0.655 0.834 6.216 4.031 5.746 4.671 0.491 1.725 3.826 
Auxiliary 5 0.762 0.989 0.832 5.800 6.038 6.390 6.817 7.560 1.707 3.920 

Table 4.2 Resul ts considering 2oa16 as a constraint 
* goal 6 acts as a constraint 

It is possible to see that once goal 6 is considered as a constraint the number of auxiliary 
problems is reduced by one. In other words, the initial number of auxiliary problems is six 
and in the second generation five. For each generation, the number of auxiliary problems will 
be reduced by one. 

The solution of the surrogate function yields to the following decision variables values: 

x, = 0.832,83.2 % Pierce-Hall Cannery 
x2 = 0.662,66.2 % Bowville 
x3 = 0.836,83.6 % Plympton 

where aspiration levels 5 and 6 are met. 

Analysing the results, it is obvious that to attain the aspiration level of goal 2 (z2 > 6.0) the 
attainment level of goal 5 (tax rate at Bowville) is modified tremendously, for the last 
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auxiliary problem (more than 500%). Monarchi et al. (1973) suggested modifying the 
aspiration level of goal 2 to z2 > 5.0 mg/I. For flexibility reasons the GA was defined with a 
goal 2 aspiration level of z2 > 4.9 mg/I; the results found are shown in Table 4.3. The 
aspiration levels are: 

A= (6.0,4.9,6.0,6.5,1.5,1.8) 

Decision variables Goal *Const Goals *Const Fitness 
XI X2 X3 Zl Z2 Z3 Z4 Zs Z6 S 

Aspiration 
Levels >6.0 >4.9 >6.0 >6.5 <_1.5 1.8 

Surrogate 0.890 0.849 0.832 6.090 4.902 6.034 5.829 1.635 1.703 4.185 
Auxiliary 1 0.880 0.852 0.833 6.068 4.901 6.035 5.961 1.673 1.710 3.199 
Auxiliary 2 0.901 0.845 0.835 6.115 4.902 6.033 5.665 1.592 1.741 3.189 
Auxiliary 3 0.994 0.799 0.838 6.328 4.927 6.023 1.213 1.159 1.768 2.717 
Auxiliary 4 0.709 0.898 0.833 5.679 4.987 6.071 7.002 2.428 1.708 2.973 

Table 4.3 Resul ts considering coal 2 as a constraint 
* goal 2 and 6 act as constraints 

The solution of the surrogate function yields to the following decision variables values: 

x, = 0.890,89 % Pierce-Hall Cannery 
x2 = 0.849,84.9 % Bowville 
x3 = 0.832,83.2 % Plympton 

where aspiration levels 1,2,3 and 6 are met. 

Modifying the return on investment in the Pierce-Hall Cannery from 6.5 % to 6.0 % (z4 > 
6.0) will safeguard the future of the Cannery. In the solutions found by Monarchi et al. (1973) 
(who used a cutting-plane programming technique) there appeared an apparent inconsistent 
constraint set while using the GA the results are shown in Table 4.4. The aspiration levels are: 

A= (6.0,4.9,6.0,6.0,1.5,1.8) 

Decision variables Goal *Const Goal *Const Goal *Const fitness 
XI X2 X3 Zi Z2 Z3 Z4 ZS Z6 S 

Aspiration 
Levels >_6.0 >_4.9 X6.0 ? 6.0 51.5 51.8 

Surrogate 0.873 0.861 0.839 6.052 4.952 6.051 6.045 1.794 1.796 3.179 
Auxiliary 1 0.850 0.861 0.837 6.000 4.907 6.039 6.279 1.794 1.761 2.189 
Auxiliary 2 0.869 0.858 0.835 6.045 4.924 6.043 6.083 1.754 1.742 2.162 
Auxiliary 3 0.857 0.869 0.834 6.017 4.978 6.061 6.210 1.901 1.726 1.987 

Table 4.4 Resul ts considering goal 4 as a constraint 
* goal 2,4 and 6 act as constraints 

The solution of the surrogate function yields to the following decision variables values: 

x, = 0.873,87.3 % Pierce-Hall Cannery 
x2 = 0.861,86.1 % Bowville 
x3 = 0.839,83.9 % Plympton 

where aspiration levels 1,2,3,4 and 6 are met. 

Finally, the aspiration level of goal 5 is modified; in the GA the aspiration level will be z5 < 
1.8 while Monarchi et al. (1973) considered z5 < 1.9. After the fifth iteration the results for the 
cutting-plane programming technique are: 
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x1= 0.877,88 % Pierce-Hall Cannery 
x2 = 0.869,87 % Boxwille 
x3 = 0.818,82 % Plympton 

Considering z= (zi, z2, z3, z4, z5, z6) then the results are: 

z= (6.07,5.03,6.07,5.96,1.92,1.57) 

The results obtained by the GA are: 

x1 = 0.873,87 % Pierce-Hall Cannery 
xZ = 0.861,86 % Bowville 
x3 = 0.839,84 % Plympton 

z= (6.05,4.95,6.05,6.05,1.79,1.79) 

It is important to mention that in all the cases the constraint q4 is met. 

If the results of Monarchi et al. (1973) are compared to the results of the GA, it is possible to 
conclude that even though the results are not the same they are very close. It is important to 
note that to be able to compare the results the criteria followed by the DM in each method 
were the same. Table 4.5 shows the comparison between goal values, the cutting-plane 
programming technique and the GA final results. 

Initial Absolute Absolute 
Aspiration Cutting-plane difference Genetic difference ICPT-GAI 

Goal level (IAL) Technique T IIAL-CPTI Algorithm E IIAL-GAJ 
(goal's value) 

(CP ) 
(%) 

GA) 
(%) 

zI z 6.0 6.07 0.07 6.05 0.02 
/o) (+ . 17 (+0.83%) 

zz z 6.0 5.03 (-16.17%) 4.95 
05 

(-17 5%) 0.08 

Z3 6.0 6.07 (+117%) 6.05 (+0.83%) 
0.02 

zs 6 5 5.96 0.54 6.05 0.09 
. (-8 . 3%) (-6.9%) 

zs <- 1.5 1.92 0.42 
(-28%) 1.79 

0.29 
(-19.33%) 

0.13 

Z6 < 1 5 1 57 0.07 1 79 
0.29 0.22 

- . . (-4.6%) . (-19.33%) 
able 4.5 Comparison of the cutting-plane programming technique and GA final results. 

Considering the results from Table 4.5, goals achievements for both techniques are analysed 
as follows: 
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Difference between the initial aspiration levels (goal values) and final results. 

Cutting plane programming technique Genetic Algorithms 

- z> >_ 6.0 

+1.17% +0.83% 

where the "+" means that the final result is within the goal range. 

z2 z 6.0 

-16.17 % -17.5 % 

where the "-" means that the final result is outside the goal range, for instance a value equal or 
greater than 6 was expected and the values found are 5.03 and 4.95. 

z3 >_ 6.0 

+1.17% +0.83% 

where the "+" means that the final result is within the goal range. 

z4 >_ 6.5 

-8.3% -6.9% 

where the "-" means that the final result is outside the goal range, for instance a value equal or 
greater than 6.5 was expected and the values found are 5.96 and 6.05. 

Z5: 5 1.5 

-28% -19.33% 

where the "-" means that the final result is outside the goal range, for instance a value equal or 
less than 1.5 was expected and the values found are 1.92 and 1.79. 

z6<_ 1.5 

-4.6% -19.33% 

where the "-" means that the final result is outside the goal's range, for instance a value equal 
or less than 1.5 was expected and the values found are 1.57 and 1.79. 

Once it has been shown that the results found by the GA are very similar to those found by 
Monarchi et al. (1973), it is possible to conclude that the GA is working adequately and, 
therefore, it is an interesting exercise to run it with different crossover operators. 

In this research the programme was run with three different crossovers: arithmetic (AX), 
unfair (UX) and simulated binary (SBX). For reasons of space, it is not feasible to include all 
the results found, therefore, they are presented in Appendix A. In this chapter, only the final 
results are included along with charts for comparison purposes. 
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Table 4.6 presents the final values of the decision variable x, (proportionate reduction in 

carbonaceous BOD load at the Pierce Hall Cannery) for the three different crossovers (AX, 

UX and SBX) and the slope change in each generation. An increment on the decision variable 
is represented by a positive slope whilst a decrement is represented by a negative one. 
Additionally, Figure 4.4 is constructed using these values. 

Generation 
AX 
(x1) 

Slope 
Value 

Slope 
Sign 

UX 
(x1) 

Slope 
value 

Slope 
sign 

SBX 
(x) 

Slope 
value 

Slope 
sign 

1 0.782 ------ ------ 0.745 ------ 0.819 ------ ------ 
2 0.822 0.04 + 0.781 0.036 + 0.847 0.028 + 
3 0.87 0.048 + 0.921 0.14 + 0.93 0.083 + 

4 0.803 -0.067 - 0.821 -0.1 - 0.73 -0.2 - 
5 0.876 0.073 + 0.876 0.055 + 0.876 0.146 + 

Table 4.6 Final values of x, and slope values for the AX, Ux an 

(a) (b) 

Figure 4.4 Proportionate reduction in carbonaceous BOD at the Pierce-Hall Cannery 

From Figure 4.4(a), it can be seen that the proportionate reduction in carbonaceous BOD load 

at the Pierce-Hall Cannery after the fifth generation is 87.6% for the three crossovers (Table 

4.6). It is also possible to see that the behaviour of the contour line on each crossover is the 

same (Figure 4.4(b)), where in the third generation x, 's value increases considerably with 

respect to the second (5.84% for AX, 17.93% for UX and 9.8% for SBX) and in the fourth 

generation the value decreases considerably with respect to the third (7.7% for AX, 10.86% 

for UX, 21.51% for SBX). Finally, the contour line stabilises in the fifth generation finding an 

x, value between the third and fourth generations' values. 

Table 4.7 shows the final values of the decision variable x2 (proportionate reduction in 

carbonaceous BOD load in the town of Bowville) for the three different crossovers (AX, UX 

and SBX) and the slope change in each generation. Additionally, Figure 4.5 is constructed 

using these values. 

Generation 
AX 
(x) 

Slope 
Value 

Slope 
sign 

UX 
(x2) 

Slope 
value 

Slope 
sign 

SBX 
(x) 

Slope 
value 

Slope 
sign 

1 0.609 ------ ------ 0.548 ----- 0.67 ------ ------ 
2 0.676 0.067 + 0.672 0.124 + 0.623 -0.047 - 
3 0.859 0.183 + 0.838 0.166 + 0.838 0.215 + 
4 0.881 0.022 + 0.877 0.039 + 0.892 0.054 + 
5 0.86 -0.021 - 0.861 -0.016 - 0.861 -0.031 - 

Table 4.7 Final values of x2 and slope values for the AX, UX an 
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x2 values 
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Figure 4.5 Proportionate reduction in carbonaceous BOD in Bowville 

From Figure 4.5(a), it is possible to see that the proportionate reduction in carbonaceous BOD 

load in Bowville after the fifth generation using the UX and SBX is the same (86.1%). The 

results with the AX differ from those found with the UX and SBX (Table 4.7). AX produced 
86% BOD reduction in Bowville. It is obvious that the behaviour of the contour line on each 

crossover is almost the same (Figure 4.5(b)) with the exception of the second generation of 
SBX where the x2 value decreases instead of increasing as in the two other crossovers. 

Table 4.8 shows the final values of the decision variable x3 (proportionate reduction in 

carbonaceous BOD load at the town of Plympton) for the three different crossovers (AX, UX 

and SBX) and the slope change in each generation. Additionally, Figure 4.6 is constructed 

using these values. 

Generation 
AX 
(x) 

Slope 
Value 

Slope 
sign 

UX 
(x) 

Slope 
value 

Slope 
sign 

SBX 
(x) 

Slope 

value 

Slope 

sign 

1 0.841 ------ ------ 0.837 ------ 
I ----- 0.845 ------ ------ 

2 0.836 -0.005 - 0.836 -0.001 - 0.836 -0.009 - 
3 0.834 -0.002 - 0.837 0.001 + 0.832 -0.004 - 
4 0.833 -0.001 - 0.832 -0.005 - 0.84 0.008 + 

5 0.837 0.004 + 0.833 0.001 + 0.833 0.007 - 
Table 4.8 Final values of x3 and slope values tor the AN, uA an 
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Figure 4.6 Proportionate reduction in carbonaceous BOD at Plympton 

From Figure 4.6(a), it is possible to see that the proportionate reduction in carbonaceous BOD 

load at Plympton after the fifth generation using the UX and SBX is the same (83.3%). The 
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results with the AX differ from those found with the UX and SBX (Table 4.8), where the 
value of 83.3% is met in the fourth generation. AX produced 83.7% BOD reduction at 
Plympton in the fifth generation. It is obvious that the behaviour of the contour lines in Figure 
4.6(b) differ from those of Figure 4.4 (b) and 4.5(b), where the initial values of x3 for the three 
crossovers (AX, UX, SBX) are high and the slopes for the next generation are negative. In the 
SBX case the x3 values vary in a more abrupt and profound way. These variations can be 
interpreted as the way the search is responding in order to obtain the optimal or satisfactory x3 
value. 

Once each of the three crossover operators has been analysed and compared, the next step to 
follow is the analysis of the three decision variables values for each crossover (AX, UX and 
SBX). 

Table 4.9 presents the comparison between the x,, x-, and x; values for the AX. It also shows 
the slope values for each generation. Figure 4.7 is built using these values. 

Generation 
AX 
(x1) 

Slope 
Value 

Slope 
Sign 

AX 
(x2) 

Slope 
Value 

Slope 
sign 

AX 
(x3) 

Slope 
Value 

Slope 
sign 

1 0.782 ------ ------ 0.609 ------ ------ 0.841 ------ ------ 
2 0.822 0.04 + 0.676 0.067 + 0.836 -0.005 - 
3 0.87 0.048 + 0.859 0.183 + 0.834 -0.002 - 
4 0.803 -0.067 - 0.881 0.022 + 0.833 -0.001 - 
5 0.876 0.073 + 0.86 -0.021 - 0.837 0.004 + 

Table 4.9 Final values of xi, x, and x3 for the AX 
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Figure 4.7 Proportionate reduction in carbonaceous BOD in the Pierce-Hall Cannery, 
Bowville and Plympton 

Table 4.9 shows that the decision variable that starts with the lowest value is x;, for this 
reason the slopes in each generation are positive until the last generation where it stabilises 
with a negative one. In the opposite way, the decision variable x3 starts with a high value, 
therefore, in the following generations the slope is negative until the last one where it 

stabilises with a positive slope. However, the percentile difference in each decision variable 
differs considerably. For instance, the x, value increases 12.02% from the first to the last 

generation, the x, value increases 41.22% from the first to the last generation, whilst the x3 
value decreases 0.476% from the first to the last generation. Therefore the conclusion is that 
the changes in the x3 values are very smooth whilst in x2 values are bigger due to their 
dependence on goal 2 (Figure 4.7). The analysis of the goal values will be shown in Figures 
4.10,4.11 and 4.12. 

Table 4.10 presents the comparison between the x1, x2 and x; values for the UX. It also shows 
the slope values for each generation. Figure 4.8 is built using these values. 



Chapter 4. Sequential Multi-objective Problem Solving (SEMOPS) 104 

Generation 
UX 
(x) 

Slope 
value 

Slope 
Sin 

UX 
(x) 

Slope 
Value 

Slope 
sin 

UX 
(x) 

Slope 
value 

Slope 
si n 

1 0.745 ----- 0.548 0.837 

2 0.781 0.036 + 0.672 0.124 + 0.836 0.001 - 
3 0.921 0.14 + 0.838 0.166 + 0.837 0.001 + 

4 0.821 -0.1 - 0.877 0.039 + 0.832 -0.005 - 

5 0.876 0.055 + 0.861 -0.016 - 
r. i 

0.833 
r rv 

0.001 

Table 4.10 Final values of x,, x2 and x3 for 

Figure 4.8 Proportionate reduction in carbonaceous BOD in the Pierce-Hall Cannery, 

Bowville and Plympton 

From Table 4.10, it is possible to see that the decision variable that has the lowest value is x2 

and as in the AX case, the slopes in each generation are positive until the last generation 

where it is negative. Moreover, if the percentile difference in each decision variable 

(considering the first and the last values) is analysed, the following results are found: x, 

increases 17.58%, x2 increases 57.12% and x3 decreases 0.478%. By comparison, the curves 

for x,, x2 and x3 depicted in Figure 4.7 and Figure 4.8 have the same shape. 

Table 4.11 presents the comparison between the x,, x2 and x3 values for the SBX. It also 

shows the slope values for each generation. Figure 4.9 is built using these values. 

Generation 

1 
2 
3 
4 
5 

SBX 
(Xi) 

0.819 
0.847 
0.93 
0.73 
0.876 

Slope 
value 

0.028 
0.083 

-0.2 
0.146 

Slope 
sign 

+ 
+ 

+ 

SBX 
(x, )- 
0.67 
0.623 
0.838 
0.892 
0.861 

Slope 
Value 

-0.047 
0.215 
0.054 

-0.031 

Slope 
sign 

+ 
+ 

SBX 
(x3-) 

0.845 
0.836 
0.832 

0.84 
0.833 

Table 4.11 Final values of x,, x2 and x3 for the SBX 

Slope 
value 

Slope 
sign 

-0.009 

-0.004 
0.008 + 

-0.007 

Figure 4.9 Proportionate reduction in carbonaceous BOD in the Pierce-Hall Cannery, 

Bowville and Plympton 
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From Table 4.11, it can be seen that the decision variable that starts with the lowest value is 
x2. Nevertheless, in this case (SBX) the second generation has a negative slope making the 
second x2 value even smaller. In the two next generations the slopes are positive and finally in 
the last generation the slope is negative again, stabilising the solution. Furthermore, the 
percentile difference in each decision variable considering the first and the last values yields 
the following results: x, increases 6.96%, x2 increases 28.51% and x3 decreases 1.42%. After 
comparing Figure 4.7, Figure 4.8 and Figure 4.9, the conclusion can be that x, and x3 have 

very similar shapes and that x2 varies only in the SBX case. 

It could be also interesting to analyse the final results of each goal (z,, Z2, z3, Z4, zs and z6) for 

each of three crossovers. 

Table 4.12 shows the goal values using the AX and Figure 4.10 is built using those values. 

AX 
Generation zl Z2 Z3 Z4 z z 

1 5.845 3.513 5.595 6.729 0.375 1.809 
2 5.935 3.852 5.703 6.503 0.555 1.748 
3 6.046 4.927 6.044 6.077 1.757 1.727 

4 5.892 4.974 6.064 6.620 2.100 1.718 
5 6.059 4.948 6.050 6.012 1.775 1.761 

Table 4.12 Final values of z,, z2, z3, Z4, Z5 and z6 for the AX 
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Figure 4.10 (a) Maximisation of DO concentration for the AX (b) Maximisation of the 
percentage of return on investment for the AX and (c) Minimisation of the tax rate for the AX 
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From Figure 4.10(c), it is evident that Z6 maintains almost a constant value throughout the five 
generations, because it becomes a constraint in the second generation. In comparison with z2 
that becomes a constraint in the third generation (Figure 4.10(a)), it is more evident the 
change of values and how it stabilises. For z4 (Figure 4.10(b)) it would seem that the values 
are not stable at all, but the abrupt change of value from generation 4 to 5 is due to the change 
of value in the aspiration level from 6.5 to 6. The z, values remain almost constant throughout 
all generations. After this analysis has been done, it could be concluded that the charts reflect 
the changes in the aspiration levels. 

Table 4.13 shows the goal values using the UX and Figure 4.11 is built using those values. 

UX 
Generation z z Z3 z Z5 z 

1 5.761 3.228 5.502 6.884 0.256 1.767 
2 5.842 3.774 5.681 6.735 0.544 1.748 
3 6.161 4.903 6.031 5.282 1.508 1.761 
4 5.935 4.975 6.063 6.503 2.035 1.702 
5 6.059 4.953 6.052 6.012 1.785 1.718 

Table 4.13 Final values of z,, z2, z3, Z4, Z5 and zb for the UX 
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Figure 4.11 (a) Maximisation of DO concentration for the UX (b) Maximisation of the 
percentage of return on investment for the UX and (c) Minimisation of the tax rate for the UX 

If the contour lines in Figure 4.10 are compared from those in Figure 4.11, it is evident that 
they have almost the same shapes. 
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Table 4.14 shows the goal values using the SBX and Figure 4.12 is built using those values. 

SBX 
Generation Zl Z2 Zt Z4 ZZ 

1 5.928 3.823 5.694 6.521 0.537 1.860 
2 5.992 3.670 5.641 6.310 0.406 1.752 
3 6.181 4.928 6.037 5.063 1.508 1.702 
4 5.728 4.962 6.063 6.935 2.300 1.796 
5 6.059 4.953 6.052 6.012 1.785 1.718 

Table 4.14 Final values of z,, Z2, Z3, Z4, Z5 and Z6 for the SBX 
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Figure 4.12 (a) Maximisation of DO concentration for the SBX 
(b) Maximisation of the percentage of return on investment for the SBX and 

(c) Minimisation of the tax rate for the SBX 

If the contour lines in Figure 4.12 are compared from those in Figure 4.10 and 4.11, it is 
evident that they have almost the same shapes. Consequently, it is clear that the results for the 
three crossovers are very similar. Thus, the main conclusion is that the method is robust 
enough to generate feasible and valid solutions without mattering the kind of genetic operator 
used and moreover, SEMOPS can be used with different search methods yielding accurate 
results. 

The next issue to consider is what happens if the aspiration levels are modified. After 
analysing the result with the following final aspiration levels: 

ALF, = 6.0, ALF, = 4.9, 
ALF3 = 6.0, ALF4 = 6.0, 
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ALFS = 1.8, ALF6 = 1.8, 

The problem was solved using different aspiration levels. Once again the problem was solved 
using three different crossovers (AX, UX and SBX). The results are presented in Appendix A 
and in the following Tables and Figures just the final results are analysed. In this occasion 
the final aspiration levels are: 

ALFI = 5.9, ALFZ = 5.0, 
ALF3 = 6.0, ALF4 = 6.5, 
ALF5 = 2.3, ALF6 = 1.8, 

Table 4.15 presents the final values of the decision variable x, (proportionate reduction in 
carbonaceous BOD load at the Pierce Hall Cannery) for the three different crossovers (AX, 
UX and SBX) and the slope change in each generation, using the final aspiration levels 
defined above. Additionally, Figure 4.13 is constructed using these values. 

Generation AX 
(x) 

Slope 
Value 

Slope 
Sign 

UX 
(x) 

Slope 
value 

Slope 
sign 

SBX 
(x) 

Slope 
value 

Slope 
sign 

1 0.782 ------ ------ 0.745 ------ ------ 0.819 ------ ------ 2 0.822 0.04 + 0.781 0.036 + 0.847 0.028 + 
3 0.869 0.047 + 0.829 0.048 + 0.860 0.013 + 
4 0.819 -0.05 - 0.660 -0.169 - 0.738 -0.122 - 
5 0.821 0.002 + 0.821 0.161 + 0.820 0.082 + 

Table 4.15 Final values of x, and slope values for the AX, UX and SBX 
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Figure 4.13 Proportionate reduction in carbonaceous BOD at the Pierce-Hall Cannery 

From Figure 4.13(a), the results indicate that the proportionate reduction in carbonaceous 
BOD load in the Pierce-Hall Cannery after the fifth generation using the AX and UX is the 
same (82.1%), whilst the SBX is 82% (Table 4.15). The difference between these values is 
0.12%. If Figure 4.13 is compared with Figure 4.4, it can be seen that the shape of the contour 
lines for both figures are very similar, although the final x, value in Figure 4.4 differs 
approximately 6% from the value in Figure 4.13. 

Table 4.16 shows the final values of the decision variable x2 (proportionate reduction in 
carbonaceous BOD load in the town of Bowville) for the three different crossovers (AX, UX 
and SBX) and the slope change in each generation. Additionally, Figure 4.14 is built using 
these values. 
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Generation 
AX 
(x2) 

Slope 
Value 

Slope 
sign 

UX 
(x2) 

Slope 
value 

Slope 
sign 

SBX 
(x2) 

Slope 
value 

Slope 
sign 

1 0.609 ----- ------ 0.548 ------ ------ 0.670 ------ ------ 
2 0.676 0.067 + 0.672 0.124 + 0.623 -0.047 - 
3 0.874 0.198 + 0.894 0.222 + 0.874 0.251 + 
4 0.905 0.031 + 0.909 0.015 + 0.901 0.027 + 
5 0.891 -0.014 0.891 -0.018 - 0.889 -0.012 - 

Table 4.16 Final values of x2 and slope values for the AX, UX an 
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Figure 4.14 Proportionate reduction in carbonaceous BOD in Bowville 

From Figure 4.14(a), it can be seen that the proportionate reduction in carbonaceous BOD 

load in Bowville after the fifth generation using the AX and UX is the same (89.1%). The 

results with the SBX (88.9%) differ from those found with the AX and UBX (Table 4.16). It 

is obvious that the behaviour of the contour line of each crossover is almost the same (Figure 

4.14(b)) with the exception of the second generation of SBX where the x2 value decreases 

instead of increasing as in the two other crossovers. If Figure 4.14 is compared with Figure 

4.5, it can be seen that the contour lines for both figures are very similar, although the final x2 

value in Figure 4.5 differs approximately 3% from the value in Figure 4.14. 

Table 4.17 shows the final values of the decision variable x3 (proportionate reduction in 

carbonaceous BOD load at the town of Plympton) for the three different crossovers (AX, UX 

and SBX) and the slope change in each generation. Additionally, Figure 4.15 is constructed 

using these values. 

Generation 
AX 
(x3) 

Slope 
Value 

Slope 
sign 

UX 
(x; ) 

Slope 
value 

Slope 
sign 

SBX 
(XI) 

Slope 
value 

Slope 
sign 

1 0.841 ------ ------ 0.837 ------ ----- 0.845 ------ ------ 
2 0.836 -0.005 0.836 -0.001 - 0.836 -0.009 - 
3 0.834 -0.002 0.831 -0.005 - 0.835 -0.001 - 
4 0.837 0.003 + 0.835 0.004 + 0.838 0.003 + 
5 0.840 0.003 + 0.840 0.005 + 0.836 -0.002 - 

Table 4.17 Final values of x3 and slope values for the AX, UX an 
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Figure 4.15 Proportionate reduction in carbonaceous BOD in Plympton 

From Figure 4.15(a), it is possible to see that the proportionate reduction in carbonaceous 
BOD load at Plympton after the fifth generation using the AX and UX is the same (84%). The 
results with the SBX differ from those found with the UX and SBX (Table 4.17), where the 
value after the fifth generation is 83.6%. It is obvious, that the results represented in Figure 
4.15(b) differ from those in Figures 4.13(b) and 4.14(b), where the initial values of x3 for the 
three crossovers (AX, UX, SBX) are low and the slopes for the next generation are positive. 
Despite the results in Figure 4.15 appearing to be distinct from each other, the x3 values are 
very close in each generation, this is shown in Table 4.17 where the slopes' values are very 
small. These values indicate that the changes from one generation to the other are very 
smooth. If Figure 4.15 is compared with Figure 4.6, it can be seen that the shape of each 
contour line for both figures is not similar at all. Therefore it is possible to conclude that the 
decision variable where the changes on the aspiration levels are reflected, is x3. 

4.5 Fuzzy Rule-Based System 

In this section the multiobjective genetic optimiser proposed by Fonseca and Fleming has 
been modified with a fuzzy rule-based system (FRBS) taking the place of the DM in order to 
achieve an automated process to solve the Bow River case study presented in section 4.4. 
Duenas and Mort (2001) proposed this modified model, where the optimiser is divided into 
the GA and the FRBS as shown in Figure 4.16. 
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Figure 4.16 Fuzzy Multiobjective Genetic Optimiser 

Voget and Kolonko (1998) developed a fuzzy genetic algorithm using fuzzy rule-based 
control of the selection procedure and the fitness function as an adaptive selection 
mechanism. In this section the same procedure is followed, but using the FRBS to determine 

which goal will act as a constraint in the next generation. The classification system for the 
fuzzy rule-based system was defined following the DM's decision process. 

For the multiobjective genetic optimiser presented in Figure 4.16, the fuzzy rule-based system 
is responsible for simulating the decision making process assuming the DM's role. As argued 



Chapter 4. Sequential Multi-objective Problem Solving (SEMOPS) 111 

by Voget and Kolonko (1998) to create a fuzzy classification it is necessary to define how to 
measure the deviation for the goals to be able to specify the fuzzy sets. 

Consider that, for each generation, the GA will give a solution for each goal that consists of a 
principle problem and P auxiliary problems (see equations 4.6 to 4.9). It is possible to 
calculate the mean u; and the standard deviation Ai for each objective. The problem with this 
solution is that it is impossible to determine which goal is closest to its aspiration level 
because the measure in the standard deviation is calculated with respect to the mean. To 
define a deviation Ai that considers the aspiration level AL for each goal z the following 
equation is used: 

I' 
E (zl - AL)z 
i=0 

A' __ 
P+1 

(4.30) 

Having the deviation for each goal means it is now possible to define the fuzzy sets (Voget 
and Kolonko, 1998). There will be two fuzzy sets T, and R; for each goal where: 

Ti represents the predicate "deviation 0; is acceptable", 
R; represents the predicate "deviation Al is too high", and i=1,2, ..., n (n is the number of 
goals in each generation). 

It is necessary to determine the membership functions in for the fuzzy sets. If it is considered 
that the fuzzy sets T; and R; are complementary and that n1Ti(t) represents the degree of 
acceptance of a deviation t and can take a value within the interval [0,1]. This deviation must 
be normalised in order to have values between 0 and 1. In order to normalise the highest value 
of all the deviations will be considered. 

Having the deviation as the measure of acceptability it is possible to define a unique 
membership function for the six goals: 

n1Ti(t)=t and n1Ri 
(t)=1-t (4.31) 

where 0<_t51. 

The complete fuzzy classification with respect to the twelve predicates will be the sequences 
of their membership values. rn represents the result for the first generation 

M(I'�) _ (111T, 
)1nT2 2111T3/)n1T4, n1T5,111T6,111R,, 

111 R2,111R3,111R4,111R5, l)1R6)(rn) 

-(01i A2eA3ý04) O5rA621-O131-A251-03) 

1-QO 
-0551-A6) 

(4.32) 

It is necessary to consider that this fuzzy classification will be modified for each generation 
because in each generation one goal will become a constraint. 

The next step is to create the set of rules. The kind of rules used are "IF <condition> THEN 
<action>". Voget and Kolonko (1998) defined the conditions as AND-combinations of the 
predicates T; and R;. The actions to reduce deviation in this problem will be defined as the 
selection of a goal to act as a constraint in the next generation of the GA. Table 4.18 describes 
the rules used in this application. 
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IF RI R2 R3 R4 R5 R6 
* * * * * T, 

AND T2 R2 R2 T2 T2 T2 

AND * * T3 T3 T3 T3 
AND * T4 R4 R4 R4 T4 

AND R5 T5 Rs T5 R5 R5 

AND R6 T6 T6 T6 R6 T6 
THEN G6 G2 G2 G4 G4 G5 

Table 4.18 Set of Fuzzy Rules 

* means it could be either acceptable or too high. 
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This means that in rule 1 (RI), if the deviation is acceptable in ("TZ"), and if it is too high in 
("R5"), and if it is too high in ("R6"), the goal which will act as a constraint in the next 
generation is goal 6 "G6". 

4.5.1 Experimental Results 

The GA is implemented in C; the initial population is expressed in floating point vectors 
generating randomly x; vectors used to generate iv; vectors, d; vectors and the s solution. 
In this work, the algorithm was run for 50 cycles for each principal and auxiliary problem, 
finding the solutions shown in Table 4.19. The first row represents the solution of equation 
number 4.6 and the following rows represent the solution for the auxiliary problems. The 
aspiration levels are: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 

Generation I 

Decision variables Goals Fitness 
XI X2 X3 Z] Z2 Z3 Z4 Zs Z6 S 

Surrogate 0.806 0.653 0.849 5.899 3.729 5.664 6.602 0.486 1.914 6.269 
Auxiliary 1 0.786 0.668 0.843 5.854 3.764 5.677 6.709 0.530 1.844 5.203 
Auxiliary 2 0.638 0.389 0.847 5.518 2.552 5.279 7.170 0.063 1.892 4.433 
Auxiliary 3 0.819 0.644 0.849 5.929 3.711 5.657 6.519 0.461 1.934 5.222 
Auxiliary 4 0.983 0.601 0.857 6.300 3.955 5.709 2.530 0.358 2.035 5.115 
Auxiliary 5 0.743 0.942 0.853 5.756 5.431 6.207 6.891 3.764 1.971 5.371 
Auxiliary 6 0.816 0.669 0.917 5.922 3.813 5.691 6.538 0.533 3.408 4.991 

Deviation 0.246 2.286 0.392 1.515 1.336 0.831 
Normalised Deviation 0.107 1.00 0.17 0.659 0.581 0.361 

Fuzzy set Tl RZ T3 R4 R5 T6 
Table 4.19 Results after first generation 

Comparing Table 4.18 to Table 4.19, it is possible to conclude that the FRBS determines that 
goal 2 has to be managed as a constraint with an aspiration level z2 >_ 5 mg/l (DO level at 
Robin State Park), obtaining the results presented in Table 4.20 at the next generation. The 
aspiration levels are: 

A= (6.0,5.0,6.0,6.5,1.5,1.5) 
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Generation 2 

Decis ion variables Goals *Const Fitness 
xl x2 X3 ZI Z2 Zj Zq ZS Z6 S 

Surrogate 0.894 0.867 0.839 6.099 5.036 6.076 5.779 1.873 1.787 5.536 
Auxiliary 1 0.812 0.891 0.856 5.914 5.062 6.090 6.563 2.270 2.029 4.842 
Auxiliary 2 0.966 0.847 0.840 6.262 5.108 6.088 3.711 1.617 1.796 4.985 
Auxiliary 3 0.939 0.847 0.833 6.202 5.014 6.063 4.806 1.609 1.710 4.170 
Auxiliary 4 0.789 0.936 0.836 5.860 5.428 6.204 6.696 3.504 1.748 4.127 
Auxiliary 5 0.894 0.866 0.921 6.099 5.026 6.073 5.776 1.852 3.542 4.332 

Deviation 0.161 0.183 0.010 1.399 0.903 0.887 
Normalised 
Deviation 0.115 0.130 0.078 1.00 0.645 0.633 

Fuzzy set T1 T2 T3 R4 R5 R6 
Table 4.20 Results after the second generation 
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Now comparing Table 4.20 to Table 4.18 the FRBS determines that modifying the return on 
investment in the Pierce-Hall Cannery from 6.5 % to 6.0 % (z4 >_ 6.0) will safeguard the 
future of the Cannery. The results of this are shown in Table 4.21 (next generation). The 
aspiration levels are: 

A= (6.0,5.0,6.0,6.0,1.5,1.5) 

Generation 3 

Decision variables Goal *Const Goals *Const Fitness 

. Xj X2 X3 Z] Z2 Z3 Z4 Zs Z6 S 

Surrogate 0.824 0.886 0.856 5.940 5.042 6.084 6.488 2.180 2.018 4.795 
Auxiliary 1 0.607 0.922 0.851 5.447 5.086 6.103 7.227 3.021 1.955 4.301 
Auxiliary 2 0.664 0.907 0.861 5.577 5.010 6.079 7.117 2.623 2.104 4.228 
Auxiliary 3 0.782 0.951 0.834 5.844 5.581 6.251 6.730 4.202 1.727 3.137 
Auxiliary 4 0.845 0.894 0.926 5.987 5.139 6.112 6.328 2.328 3.729 3.536 

Deviation 0.320 0.270 0.141 0.852 1.550 1.082 
Normalised Deviation 0.207 0.175 0.091 0.550 1.00 0.698 

Fuzzy set Tl T2 T3 R4 RS R6 
Table 4.21 Results after the third generation 

Once again comparing Table 4.21 to Table 4.18 the FRBS identifies that goal 6 has to be 
managed as a constraint with an aspiration level z6 < 1.8 (tax rate at Plympton), obtaining the 
results presented in Table 4.22. The aspiration levels are: 

A= (6.0,5.0,6.0,6.0,1.5,1.8) 

Generation 4 

Decision variables Goal *Const Goal *Const Goal *Const Fitness 
x1 X2 X3 ZI Z2 Z3 Z4 Zs Z6 S 

Surrogate 0.846 0.885 0.834 5.991 5.075 6.092 6.316 2.168 1.727 3.431 
Auxiliary 1 0.773 0.902 0.837 5.825 5.098 6.103 6.769 2.510 1.762 2.656 
Auxiliary 2 0.778 0.899 0.837 5.836 5.075 6.096 6.747 2.430 1.758 2.648 
Auxiliary 3 0.824 0.982 0.830 5.941 6.040 6.389 6.483 6.722 1.677 1.949 

Deviation 0.124 0.525 0.212 0.609 2.720 0.233 
Normalised Deviation 0.045 0.193 0.078 0.224 1.00 0.086 

Fuzzy set Tl T2 T3 T4 R5 T6 

auie 4.22 Results after the fourth generation 
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Finally, the aspiration level of goal 5 is modified to z5 <_ 1.8. The results presented by the GA 
using the DM opinion after the fifth iteration are xl = 0.873,87 % Pierce-Hall Cannery, x2 = 
0.861,86 % Bowville, and x3 = 0.839 84 % Plympton. 

Considering z= (zl, z2, z3, z4, z5, z6) then the results for the GA are z= (6.05,4.95,6.05,6.05, 
1.79,1.79). These results were obtained following the DM's goal selection procedure: goal 6 
(z6) followed by goal 2 (z2) followed by goal 4 (z4), followed by goal 5 (z5). 

Z6 -> Z2 -> Zq --i Z5 

The results of the multiobjective optimiser are xl = 0.875 (88 % Pierce-Hall Cannery), x2 = 
0.882 (88 % Bowville), and x3 = 0.847 (85 % Plympton) and the results of the GA are z= 
(6.06,5.11,6.1,6.02,2.11,1.81). These results were obtained following the FRBS's goal 
selection procedure: goal 2 (z2) followed by goal 4 (z4) followed by goal 6 (z6), followed by 
goal 5(z5). 

Z2 -> Z4 -> Z6 -i Z5 

If the results of the GA are compared to the results of the multiobjective optimiser, it is 
possible to conclude that even though the results are not the same they are very close. It is 
important to notice that to be able to compare the results the criteria followed by the DM in 
each method were the same. 

Having solved the Bow River Valley case study (using GA and fuzzy logic) and having 
compared the results with those found by the Authors of the method (Monarchi et al., 1973), 
it was decided to solve another problem using the same method (SEMOPS) and GAs. This 
decision was made in order to prove the consistency of the method as well as using another 
kind of GA. The problem selected is the nurse-scheduling problem using binary coding and 
multiple-point crossovers. 

4.6 The Nurse-Scheduling Problem (NSP) 

The NSP is defined as the generation of a schedule of working days and days off for each 
nurse in a hospital, where a working day will be divided into three different shifts: day shift 
(8: 00-16: 00), evening shift (16: 00-24: 00), and night shift (00: 00-8: 00). Normally, this 
problem is solved by hand by head-nurses and it takes a long time and a great deal of effort. 

The NSP involves the optimisation of several objectives such as maximisation of nurse 
satisfaction, maximisation of fairness, and minimisation of hospital costs. In this section the 
NSP is solved using a hybrid approach of SEMOPS in conjunction with a GA. 

There are different approaches in the literature to solving the NSP problem. Berrada et al. 
(1996) solved the NSP with a multi-objective approach using tabu-search and objectives' 
prioritisation. Cheng et al. (1996) developed a redundant modelling approach that consists of 
generating a slot model, a shift model, and an aggregate model (the first two models are 
connected) generating constraints for each of the models. Dowsland (1998) used tabu-search 
and strategic oscillation focused on the nurses' working practices rather than the minimisation 
of costs. Jaumard et al. (1998) divided the NSP into two: a master and an auxiliary problem. 
The master problem minimises the salary cost and maximises the employee preferences, 
while the auxiliary problem considers as a feasible solution an acceptable schedule for a given 
nurse. Jan et al. (2000) used a co-operative genetic algorithm optimising the individual fitness 
of each nurse and also the fitness of the entire schedule. Finally, Valouxis and Housos (2000) 
developed hybrid optimisation techniques utilising the strengths of operations research and 
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artificial intelligence. Basically, their solution merges integer linear programming and local 
search techniques. 

It is possible to say that the approach presented in this report could be considered as a hybrid 
approach that uses the strengths of both operations research and evolutionary computation 
techniques. 

The NSP is a good example of considering the preferences of the nursing staff as much as 
those of the hospital. To measure the performance of the GA this problem was solved using a 
two-point crossover and a four-point crossover in such a way as to compare the results 
obtained. 

4.6.1 Problem Definition 

The NSP is a multiple objective optimisation problem (MOP). The main objective of the NSP 
is to find a schedule that meets all the constraints. 
Table 4.23 contains the symbols used to denote the different shifts throughout the solution of 
this problem. 

Shift Symbol 
day-shift d 
evening-shift e 
night-shift n 
day off o 

Table 4.23The symbols used to represent each shift. 

The decision variables are defined as follows (Jan et al., 2000): 

11 if nurse i works w shift on day j 
XYW 0 otherwise 

(4.33) 

where x;;,, represents the decision variable that expresses nurse i working a wth shift on a day 
J. 

Jan et al. (2000) proposed representing the NSP using a matrix MxN, having N number of 
nurse to be scheduled and Mnumber of days to be scheduled. Berrada et al. (1996) stated that 
to make the problem easier to solve, it is better to have a number of short-term horizons rather 
than a single long time horizon. They suggested a term horizon ranging from 2 to 4 weeks. 
However, in this approach, the number of nurses to be scheduled is 8 and the short-term 
horizon is 1 week (7 days). It is supposed there are two different categories of nurses 
according to their experience: junior and senior. 

4.6.1.1 Constraints Definition 

Generally, constraints are divided into two categories: hard and soft constraints Deb (2001). 
On the one hand, hard constraints are those that have to be satisfied in order to obtain a 
feasible solution. Soft constraints, on the other hand, are those that it is desirable to satisfy. In 
other words, if a soft constraint is not satisfied the solution is still feasible. 

Hard constraints 

1. Each nurse can work only one shift a day 
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3 
E xy. w =1 i =1,..., N; 
w=l 

j=1,..., M (4.34) 

2. For each day, there must be at least 1 nurse working the day shift, 1 nurse working the 
evening shift, and 1 nurse working the night shift. 

3. Each nurse must have one day off per week. 

3M 
Z Y-xjw=6 
w=1, j=l 

Soft constraints 

(4.35) 

Soft constraints are defined as preference rules (Cheng et al., 1996). In other words, these are 
the nurses' preferences and they will be satisfied as far as possible, although their violation 
does not affect the schedule's feasibility. 

1. After a night shift a nurse prefers not to have a day shift. 
2. At least one senior nurse is present on each shift. 

4.6.1.2 Objective Functions Definition 

The first objective to consider is the minimisation of hospital costs subject to the hard 
constraints: 

MN3 

min EEc; Exuw 
j=l r=1 w=1 

(4.36) 

where c; is a weight assigned to the ith nurse, where values are 2 for a senior nurse and 1 for a 
junior nurse. This weight represents the relationship between the different levels of nurses and 
their salaries. 
The second objective to consider is the minimisation of the entire schedule fitness T subject to 
the constraints. This objective is defined as follows: 

min T (4.37) 

where T is the addition of the individual schedule fitness I; for each nurse: 

T=E Ir (4.3 8) 

I; is the fitness of the ith nurse individual schedule, calculated using the values presented in 
Table 4.24 

Days pattern Assigned value 
nd 60 
ne 10 
ed 20 

Table 4.24 Assigned fitness values 
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The other possible combinations have an assigned value of 0. For instance, the assigned value 
to "o n" or "o d" is 0. 

The aspiration level of the entire schedule fitness T, subject to the constraints, is 180. In the 
first iteration the aspiration levels are equal to the goal levels. 

4.6.2 Genetic Algorithm Definition 

To solve the problem a GA is implemented; the initial population of 960 is expressed in 
binary code and is generated randomly. For this problem the algorithm is run for 100,200 and 
500 cycles. The selection method used is tournament selection (Back et al., 2000) where the 
tournament size is two (binary tournament). 

The initial crossover used is a two-point crossover, as defined by Eshelman et al. (1989). The 
two-point crossover consists of a chromosome considered as a ring and two numbers 
randomly selected which will segment the chromosome and will produce two offspring. The 
mutation operator's probability is 0.15. 

In an attempt to optimise the GA it has been decided to use a four-point crossover operator. 
De Jong (1975) proposed a generalised crossover model where a new variable was 
considered. This variable is the number of crossover points and is called CP. In the one-point 
crossover case CP is equal to 1; for the two-point crossover CP is equal to 2. The 
chromosome is still considered as a ring for an even CP; for an odd CP one of the crossing 
points is considered fixed in position 0. Both of these cases produce two new children. If CP 
is greater than 2 the crossover is known as multiple-point. 

4.6.3 Experimental Results 

Tables 4.25,4.26 and 4.27 show the best-obtained schedule using the two-point crossover 
with 100,200 and 500 cycles. It is also shown how all the hard constraints are met. This 
makes these preliminary schedules feasible solutions. 

100 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse I n n e o d n n 6 10 
nurse 2 e e d n e e o 6 30 
nurse 3 n n o n d d n 6 60 
nurse 4 o d d e e d n 6 20 
nurse 5 o n e e n d e 6 70 
nurse 6 d e e e e o d 6 0 
nurse 7 e o d d d d e 6 0 
nurse 8 o n n e n n n 6 10 

# nurses day-shift 1 1 3 1 3 4 1 Total T=200 # nurses evening-shift 2 2 3 4 3 1 2 fitness 
# nurses night-shift 2 4 1 2 2 2 4 
# nurses day off 3 1 1 1 0 1 1 
Total of nurses 8 8 8 8 8 8 8 

0 Represents a night shift followed by a day shift 

Table 4.25 Best solution for 100 cycles using two-point crossover 
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200 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse I d e e e n o d 6 0 
nurse 2 o e d e d d n 6 40 
nurse 3 d n e n n o n 6 to 
nurse 4 d e o d n n e 6 10 
nurse 5 d e n o d n n 6 0 
nurse 6 e n n c d d 6 20 
nurse 7 o d d n d e d 6 80 
nurse 8 n e e n e o d 6 20 

# nurses day-shift 4 I 2 I 3 2 4 Total T=180 # nurses evening-shift 1 5 3 2 2 1 1 fitness 
# nurses night-shift 1 2 2 3 3 2 3 
# nurses day off 2 0 1 2 0 3 0 
Total of nurses 8 8 8 8 8 8 8 

Q Represents a night shift followed by a day shift 

Table 4.26 Best solution for 200 cycles using two-point crossover 

500 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse I n o e n e d d 6 30 
nurse 2 n n e o d n n 6 10 
nurse 3 o d d d n e e 6 10 
nurse 4 e e d e e e o 6 20 
nurse 5 d d o d e n n 6 0 
nurse 6 d n 0 n e e d 6 30 
nurse 7 d e e d d d o 6 20 
nurse 8 o n n e n e n 6 20 

# nurses day-shift 3 2 2 3 2 2 2 Total 
# nurses evening-shift 1 2 3 2 4 4 1 fitness T=140 

# nurses night-shift 2 3 1 2 2 2 3 
# nurses day off 2 1 2 1 0 0 2 
Total of nurses 8 8 8 8 8 8 8 

Table 4.27 Best solution for 500 cycles using two-point crossover 

100 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse 1 n n 0 d d d d 6 0 
nurse 2 d d d 0 e e e 6 0 
nurse 3 e e o e d d d 6 20 
nurse 4 n n e 0 n n e 6 20 
nurse S e 0 n e e c e 6 10 
nurse 6 n e 0 n n n c 6 20 
nurse 7 n 0 e d e n d 6 80 
nurse 8 d d e n o n n 6 0 

# nurses day-shift 2 2 1 2 2 2 3 Total T=150 
# nurses evening-shift 2 2 3 2 3 2 4 fitness 
# nurses night-shift 4 2 1 2 2 4 1 
# nurses day off 0 2 3 2 1 0 0 
Total of nurses 8 8 8 8 8 8 8 

11 Represents a night shift followed by a day shift 

Table 4.28 Best solution for 100 cycles using four-point crossover 
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200 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse 1 e o d d e d e 6 20 
nurse 2 e n e o e d d 6 30 
nurse 3 n 0 n n n n n 6 0 
nurse 4 d e n n n o d 6 0 
nurse 5 d e d d n o e 6 20 
nurse 6 e d o e n e d 6 50 
nurse 7 d d e d o d n 6 20 
nurse 8 e e d o d e e 6 20 

# nurses day-shift 3 2 3 3 1 3 3 Total T=160 
# nurses evening-shift 4 3 2 1 2 2 3 fitness 
# nurses night-shift 1 1 2 2 4 1 2 
# nurses day off 0 2 1 2 1 2 0 
Total of nurses 8 8 8 8 8 8 8 

Table 4.29 Best solution for 200 cycles using four-point crossover 

500 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse 1 n n n e o d n 6 0 
nurse 2 d e d e e o e 6 20 
nurse 3 d d e e n o e 6 0 
nurse 4 n e o n e e e 6 20 
nurse 5 d d n e e o d 6 10 
nurse 6 n e d d d d 0 6 30 
nurse 7 d e n n n 0 d 6 0 
nurse 8 e d o d d n n 6 20 

# nurses day-shift 4 3 2 2 2 2 2 Total T=110 # nurses evening-shift 1 4 1 4 3 1 3 fitness 
# nurses night-shift 3 1 3 2 2 1 2 
# nurses day off 0 0 2 0 1 4 1 
Total of nurses 8 8 8 8 8 8 8 

Table 4.30 Best solution for 500 cycles using four-point crossover 

4.6.4 Results Analysis 
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It can be seen that in the GA using the two-point crossover (Table 4.25) and 100 cycles, the 
best solution meets all the hard constraints represented by equations 4.34 and 4.35. However, 
the soft constraint "after a night shift a nurse prefers not to have a day shift" is not satisfied in 
two cases (nurse 3 and nurse 5). The total fitness Tthat represents the entire schedule fitness 
is 200. When compared with the DM's aspiration level of 180 the difference is 11%. It is 
considered an ideal solution when the total fitness T is equal to 0, therefore the value of T can 
be considered as a measure of how far the solution found is from the ideal solution. In this 
case the solution's total fitness is 11% above the aspiration level. 

After 200 cycles, it is evident that the solution has been improved from fitness T=200 to 
T=180 (Table 4.26). In other words, the final fitness has been reduced 10%. Nonetheless, the 
DM's aspiration level has been met, it can be seen that the soft constraint "after a night shift a 
nurse prefers not to have a day shift" is not satisfied in one case (nurse 7). Therefore, it is 
necessary to run the algorithm with a greater number of cycles. 

The results reveal that when the algorithm has executed 500 cycles, it finds a feasible solution 
that not only meets the hard constraints, but also the soft constraints. Hence, when analysing 
Table 4.27 it can be seen that each nurse is working one shift a day and has one day off a 
week. The results clearly show that none of the nurses is working a day shift after having a 



Chapter 4. Sequential Multi-objective Problem Solving (SEMOPS) 120 

night shift. If the schedule's total fitness (140) is compared with the aspiration level (180), it 
shows an improvement of 22.22%. Consequently, it is clear that the schedule shown in Table 
4.27 is not only a feasible solution but also a desirable solution. 

Table 4.28 shows the solution using a four-point crossover and running the algorithm 100 

cycles. It is possible to conclude that the results are very similar to those found using a two- 
point crossover. Again, all the hard constraints are met making the solution feasible. 
However, the soft constraint "after a night shift a nurse prefers not to have a day shift" is not 
satisfied for nurse 7. Comparing these results with those found using the two-point crossover 
(Table 4.25), it can be seen that there is a great improvement from one crossover to the other. 
The total fitness Tin the two-point crossover is 200 while in the four-point crossover it is 150 

yielding 25% improvement. 

The results reveal that when the algorithm has completed 200 cycles (four-point crossover), it 
finds a feasible solution that not only meets the hard constraints, but also the soft constraints. 
Hence, in the analysis of Table 4.29 it can be seen that each nurse is working one shift a day 
and has one day off a week. Compared with the results found using the two-point crossover 
(T=180), the difference between the total fitness is more than 11%. The results clearly show 
that in the two-point crossover, one nurse (nurse 7) is working a day shift after having a night 
shift while in the four-point crossover none of them have to. Consequently, it is clear that the 
schedule shown in Table 4.29 is not only a feasible solution but also a desirable solution. 

After 500 cycles, it is evident that the solution has been improved from an aspiration level T= 
180 to aT= 110 (Table 4.30). In other words, the final fitness has been reduced almost 39%. 
When the two-point crossover results are compared to those of the four-point crossover, it is 
evident that both met the soft constraint "after a night shift a nurse prefers not to have a day 
shift". The main difference consists in the schedules' total fitness that in the two-point 
crossover it is 140 and in the four-point crossover it is 110. It can be concluded that in both 
cases the algorithm yields a desirable solution, although the performance of the four-point 
crossover is better. 

The most important conclusion is that the four-point crossover general performance is better 
than the two-point crossover, yielding desirable solutions in a shorter period of time. 

In order to improve the performance of the GA the penalty values (fitness values) assigned in 
Table 4.24 have been modified, resulting in the fitness values found in Table-4.31 as follows: 

Days pattern Assigned value 
nd 120 
ne 10 

ed 40 
Table 4.31 Assigned fitness values 

The aspiration level of the entire schedule fitness T, subject to the constraints, is 340. In the 
first iteration the aspiration levels are equal to the goal levels. 

Table 4.32 shows how the changes made in the penalty values affect the final solution. 
Although, the total fitness T increased (as was expected) the hard and soft constraints were 
satisfied. 
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500 cycles 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Days 
worked 

Fitness 

nurse 1 n o e n e d d 6 50 
nurse 2 n n e o d n n 6 10 
nurse 3 o d d d n e c 6 10 
nurse 4 e e d c e c o 6 40 
nurse 5 d d o d e n n 6 0 
nurse 6 d n o n e e d 6 50 
nurse 7 d e e d d d o 6 40 
nurse 8 o n n e n e n 6 20 

# nurses day-shift 3 2 2 3 2 2 2 Total T=220 
# nurses evening-shift 1 2 3 2 4 4 1 fitness 
# nurses night-shift 2 3 1 2 2 2 3 
# nurses day off 2 1 2 1 0 0 2 
Total of nurses 8 8 8 8 8 8 8 

Table 4.32 Best solution for 500 cycles using two-point crossover 

500 cycles 

day 
1 

day 
2 

day 
3 

day 
4 

day 
5 

day 
6 

day 
7 

Days 
worked 

Fitness 

nurse 1 n n n e o d n 6 10 
nurse 2 d e d e e o e 6 40 
nurse 3 d d e e n 0 e 6 0 
nurse 4 n e o n e e e 6 20 
nurse 5 d d n e e o d 6 10 
nurse 6 n e d d d d o 6 50 
nurse 7 d e n n n 0 d 6 0 
nurse 8 e d o d d n n 6 40 

# nurses day-shift 4 3 2 2 2 2 2 Total T=170 # nurses evening-shift 1 4 1 4 3 1 3 fitness 
# nurses night-shift 3 1 3 2 2 1 2 
# nurses day off 0 0 2 0 1 4 1 
Total of nurses 8 8 8 8 8 8 8 

Table 4.33 Best solution for 500 cycles using four-point crossover 
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From Tables 4.27 and 4.32, it is evident that the final schedules using the values in Table 4.24 
and the values in Table 4.31 are the same. Furthermore, from Tables 4.30 and 4.33, it is also 
evident that the final schedules using the values in Table 4.24 and the values in Table 4.31 are 
the same. To some extent, it would be fair to conclude that although the algorithm performs in 
the same way using different fitness assigned values, the results obtained using different 
crossover operators can differ considerably. 

4.7 Summary 

In this chapter the SEMOPS method has been presented as a tool used for the solution of 
multiple objective optimisation problems, considering the DM's preferences. 

The main characteristics of SEMOPS are: 

It allows the DM to set aspiration levels and be able to modify them sequentially. 
It works with a surrogate function and a set of auxiliary problems. 

In General, SEMOPS allows the direct programming of the GA due to the goal's 
transformation into the d(x) in the real positive set, using this as the fitness function. 
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Two problems were solved using SEMOPS and GAs: the Bow River Valley and the nurse- 
scheduling problem. 

The Bow River Valley is a case study solved by the authors of the SEMOPS method, and for 
comparison purposes was solved using a GA instead of the cutting-plane programming 
technique. The results found by the GA are very close to the solutions found by Monarchi et 
al. (1973). The main conclusion that can be made is that SEMOPS is a robust method that 
allows in a direct way the interaction between the algorithm and the DM's preferences, giving 
it a major flexibility. The use of other recombination operators for real-valued GA, such as 
geometrical crossover and simplex crossover, constitute areas for further study. 

Duenas and Mort (2001) proposed a modified multiobjective genetic optimiser using an 
FRBS instead of the DM. The results found by the GA are very close to the solutions found 
by the genetic optimiser. Nevertheless, using the FRBS will give the possibility of having 
self-sufficient systems. The application of this method for other Multiobjective Optimisation 
Problems constitutes an area for further study. Also, the use of other rules and the shape of the 
membership function could be changed. It is important to realise that in an MCDM problem 
the existence of the decision-maker necessarily introduces subjectivity that will be lost using 
FRBS. However, The FRBS does introduce flexibility, which is important in optimisation. 

The nurse-scheduling problem was selected because is a scheduling problem that can be 
codified using binary coding and because it also involves the DM's preferences. This problem 
was solved using a hybrid model that includes SEMOPS and a GA. It was therefore shown 
that the use of a hybrid model gives the DM better control of the model's and the algorithms' 
outcomes. Moreover, the use of a GA makes the problem's solution more flexible and 
accurate, giving the programmer control of the genetic operators. The drastic changes 
occurred when the parameters of the problem were changed (assigned fitness values), 
showing again that the control of the actions to follow is now in the DM's hands. For future 
work, an area to explore could be the use of a FRBS to determine which is the best crossover 
operator to use, selected from a set of different operators, according to the parameters of the 
problem. 

Finally, the most important conclusion is that the strongest point of SEMOPS is that it allows 
the programmer to manage goal levels and aspiration levels. 

In the next chapter another interactive method that handles the DM's preferences is analysed. 
The main characteristic of this method is that it also considers risk and uncertainty in the 
solution of the problem. 



CHAPTER 5 

Probabilistic Trade-off 
Development Method 
5.1 Introduction 

Decisions in business, government, economics, engineering, and social matters are made 
every day. To make the right decision it is necessary to account for all the possible scenarios 
and to use all the data available. In the 1970's a variety of mathematical tools in the 
operations research area were developed to solve problems that involve these kinds of 
decisions (i. e. decision-making) (Goicoechea et al., 1982). Most of these tools work with a 
deterministic approach; to change this approach to a realistic one it is necessary to consider 
the impact of risk and uncertainty in the problem's solution. When problems exhibit 
significant uncertainty, which is generally quite difficult to deal with analytically, simulation 
is particularly useful. Over the years several techniques to solve problems through simulation 
have been developed. 

Moreover most problems in practice consider the optimisation of several objectives 
simultaneously (Goicoechea et al., 1982), (Ignizio, 1982). As was presented in Chapter Three 
such problems are termed multiple objective optimisation problems (MOP) and one of their 
most important characteristics is that a large set of solutions is acceptable (these solutions are 
considered equivalent). Considering that, by definition MOPs are a subset of Multiple Criteria 
Decision-Making (MCDM) problems and that the solution methods for these problems were 
classified in three categories (deterministic, stochastic and fuzzy), it is interesting to analyse a 
method that involves a stochastic approach. 

One of the objectives of this research is the solution of MCDM problems where the DM's 
preferences are considered as a pillar to yield a Pareto optimal solution. In Chapter Four two 
MCDM problems were solved using a sequential method that involves the DM's preferences. 
These problems do not involve uncertainty or risk in their solutions because of the nature of 
the SEMOPS method. Then two questions arise: is it possible to find a method that 
incorporates both the DM's preferences and risk analysis? Is this method easy to implement 
using a GA? 

The answer to both questions is yes and the method is called Probabilistic Trade-off 
Development method (PROTRADE). This method is a multiple objective stochastic method 
and was developed by Goicoechea et al. in 1979. Most importantly the PROTRADE method 
not only incorporates uncertainty and risk analysis in the solution of a problem but it also 
allows the decision-maker (DM) to introduce his preferences. Hence this is basically 
considered, as an interactive method that gives the information required by the GA to handle 
the fitness function. The PROTRADE method is presented and explained in section 5.2. 

In this chapter a multiple use approach to land reclamation case study is solved using 
PROTRADE. The case study is described in section 5.3. The optimisation of this problem is 
carried out using a real-valued GA presented in section 5.5. Four models are developed to 

2 Satisfactory solution 

123 
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handle the decision variables: one that considers neither risk nor probability of achievement, 
one that does not consider risk but does consider probability of achievement, one that 
considers risk but does not consider probability of achievement and a final one that considers 
both risk and probability of achievement. Section 5.4 contains the risk analysis performed to 
be able to develop the models. The results of the models are compared and discussed in 
section 5.6. Finally, the conclusions are presented in section 5.7. 

5.2 Probabilistic Trade-off Development Method (PROTRADE) 

Goicoechea et al. (1979) developed a multiobjective stochastic method called Probabilistic 
Trade-off Development (PROTRADE). This method is used basically to solve non-linear 
problems considering the DM's preferences (progressive articulation of preferences) and is 
capable of handling risk. The PROTRADE method consists of the formulation of surrogate 
and multiple attribute utility functions. On the one hand, the construction of the utility 
functions allows the inclusion of the DM's preferences in the problem's solution. On the other 
hand, the use of surrogate functions leads directly to the application of this method in GAs, 
where the surrogate functions are translated to the fitness function of the GA. 

The DM is looking for the solution of a problem with several criteria although unconsciously 
visualises it as the optimisation of a unique function (Vincke, 1992). To represent this 
function there are some models and for the purposes of this research two models additive and 
multiplicative are discussed. 

The additive model is one of the most used because of its 'simple form. The only constraint 
that this model imposes is the preferential independence of the criteria (Vincke, 1992). 

11 

U(a) =EU; (. f; (a)) (5.1) 
;a 

wheref(a) is the ith criterion and a is an action that belongs to the space of possible actions to 
be followed. 

The multiplicative model is represented by: 
11 

jI[1+kkrU; (a; )]-1 
U(a) ='=1 

where k and k; are scaling constants. 

k 
(5.2) 

The method applied in the solution of the case study uses a multiplicative model to 
incorporate the DM's preferences in an interactive way. It is important to mention that this 
model is not used to mathematically represent the function to optimise, but the DM's 
preferences. PROTRADE is a 12-step method defined as follows: 

Step 1 
A vector of objective functions is defined using the coefficients' expected values: 

Z(x) _[Zl(x), Z2(x),..., Zp(x)], 

gq (X): 5 0 where qEI [1, Q] 

x>0, (5.3) 
)! 

z; (x) =E cy xi, zi (x) = ELz; (x)l 
i=ý 
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where p is the number of objectives to optimise, q is the number of constraints, cy are the 
coefficients' expected values and n is the number of decision variables. 

Step 2 
Vectors U1 and M are defined as having the maximum and minimum values of the objective 
functions respectively. This means that vector Ul has the values of the maximisation of each 
objective separately (e. g. max zj(x), max z2(x), max z3(x), max z4(x), max zs(x)), subject to 
constraints gq(x) < 0. In addition vector M has the minimum values found following the same 
procedure, in other words, minimising each objective separately subject to the constraints. 

zi(x; ) = max 

UI = 

z, W, iE I[1, P] 

zl(xi) 
Z2 (x2) 

LZp (Xq)J 

Zl min 

M= 
Z2 min 

Z3minj 

(5.4) 

It is important to bear in mind that M may no exist in practice. Therefore, in such cases some 
other techniques have to be applied. 

Step 3 
An initial surrogate function is formulated: 

where 

P 
F(x) =EG; (x) (5.5) 

i=1 

Gi (X) _ 
Zi (X) - Zi min 

. Zi (Xi) - Zimi. 
(5.6) 

where z; (x) is the value of objective function i (i = 1,2,.., n); z;,,,;,, is the minimum value 
obtained when objective i is subjected to the constraints; and z; (x) is the maximum value 
obtained when objective i is subjected to the constraints. Hitherto, each objective has been 

normalised using equation 5.6 and the surrogate function F(x) has been defined as the 
addition of the normalised objectives. What is more, each objective can be maximised or 
minimised. In F(x) there will be given a+ sign for maximisation and a- sign for 

minimisation. 

Step 4 
An initial solution x1 is obtained maximising F(x), subject to the constraints gq(x) <_ 0. This 
solution is used to generate a goal vector G1: 

Gi= 

Gl (xi) 
G2 (XI) 

Gq (xl) 

(5.7) 
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Step 5 
A multidimensional utility function is defined and in this case Goicoechea et al. (1979) 
proposed a multiplicative form (see equation 5.2): 

P II [1+kk1U, (GM-1 
U(G) =' -' 

k 
(5.8) 

this function is used to reflect the DM's goal utility assessment, where k and k; are constants 
which are determined by questions posed to the DM. 

Step 6 
A new surrogate objective function is defined: 

n 
S1 (X) =E wi Gi (X) 

i=l 

where 

G; (xi) a G; 
w: =1-f- 

Gi 

(5.9) 

(s. io) 

w; are the weights that result from considering the DM's preferences in the solution of the 
problem and r is a scaling factor. 

Step 7 
An alternative solution is generated maximising the surrogate objective function S. The 
solution found x2 is used to generate vectors G2 and U2: 

G2 = 

GAD ZI (X2) 

G2 (X2) Z2 (X2) 
U2 = 

Gp (x2) 
zp 

(x2) 

(5.11) 

where G2 is a new goal vector and U2 contains the values of the maximisation of the surrogate 
function S1. 

Step 8 
A vector V1 that expresses the trade-off between goal value and its probability of achievement 
is generated: 

V1= 

where 1- a; is such that, 

(Gi (x2), 1- ai)1 
(G2 (x2)) 1- a2) 

I 

L(GP (xA 1- an) 

prob[z; (x) ? zi (x2)1 z 1- a; 

r au(G) 

(5.12) 

(5.13) 

This step is very important because it allows the DM to define a probability of achievement 
for each goal. 
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Step9 
The DM has to answer the following question: "Are all the z; (x2) values satisfactory? " 
(Goicoechea et al., 1982). If the answer is affirmative the vector U2 is a solution and if not go 
to step 10. 

Step 10 
The zk(x) with the least satisfactory pair of (Gk(x2), 1-ak) is selected and the DM specifies a 
new probability for that pair: 
EkER+, 0<a0k <1 

prob[zk (x) Z Ek] z 1- ak (5.14) 

Step 11 
The solution space is redefined creating a new x-space: 

gq(x)<_0 gEI[l, Q] 

and a new constraint defined as follows: 
ii 1/2 
E E(ekj) xi + Kat [x/ Ax] ? sk 
. 
%=1 

X>O 

(s. is) 

where cki represent the coefficients' expected values and A is the variance-covariance matrix 
of the coefficients' expected values. 

Step 12 
A new surrogate objective function is generated and a sequential search for a satisfactory 
solution is performed going back to step 7 or step 6 as many times as necessary. 

S2 (X) 
- 

Y- lUi GI (X) 

ixk 
(5.16) 

The sequence is repeated until a satisfactory vector V2 is found: 

V2= 

(Cl, 1 a°) 
(E2ý 1-ai) 

(gp, 1-äp)j 

(5.17) 

5.3 Case Study 

The Black Mesa Region problem was presented by Goicoechea et al. (1979). In Northern 
Arizona on the Navajo Nation lands there is an area of 5,700 hectares (ha) that will be strip- 
mined for coal in a 30-year period. The area has been used as rangeland and this activity has 
caused heavy overgrazing. This resulted in the development of a programme for designing 
and implementation of multiple land uses. This development programme can then be given to 
a management agency. The 30-year period is the time horizon to solve this problem although 
it is necessary to divide the analysis in sub-periods due to the variability of the water 
constraint. In other words, because the water will not remain constant over the 30-year period, 
it will be divided into 15 sub-periods each one 2 years long. This means that in each sub- 
period the total area to be strip-mined is 380 ha. 
Five objectives are considered: 1. livestock production, 2. augmentation of water run-off, 3. 
farming of selected crops, 4. control of sedimentation rates, and 5. fish pond harvesting. 
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It is desired to maximise objectives 1,2,3 and 5 while objective 4 has to be minimised. The 
decision variables considered are twelve and are expressed in hectares of mined land: 

1. No reclamation program by current management (xi) 
2. Contour furrowing livestock production good range conditions (x2) 
3. Contour furrowing livestock production poor range conditions (x3) 
4. Run-off augmentation compacted earth treatment (x4) 
5. Run-off augmentation compacting and salt treatment (x5) 
6. Run-off augmentation plastic cover and gravel (x6) 
7. Wheat production (x7) 
8. Corn production (x8) 
9. Alfalfa production (x9) 
10. Barley production (xio) 
11. Sorghum production (x11) 
12. Fish production pond base (x12) 

The land allocation for a 2-year sub-period is represented in Figure 5.1. 

`ý 5 X} 
yXl 

X6 
12 

Xg 

X2 XI X10 80 ha divide 
X, X9 X4 for a 2-year 

sub-period 

Figure 5.1 Land allocation for a 2-year sub-period 
Adapted from Goicoechea et al. (1982) 

The objectives are defined as follows: 

Objective 1 Livestock production 
12 

f, (X) = El; x; i=1 
animal units (5.18) 

where 1; is the number of livestock heads in animal units month per hectare of land (AUM/ha), 
and i is the number of decision variable applied. 

Objective 2 Water run-off 
12 

f2 (X) 
_ 

Y- 
Yi xi m3 (5.19) 

=1 

where r, is the water run-off yield in cubic meters per hectare (m3/ha), and i is the number of 
the decision variable applied. 

Objective 3 Selected crops 
12 

f3(X) =ECiCi kg (5.20) 
W 
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where c; is the crop yield in kilograms per hectare (kg/ha), and i is the number of the decision 
variable applied. 

Objective 4 Sediment 
12 

Ja(X)=Y- Si Xi i=1 
m3 (5.21) 

where s; is the sediment yield in cubic meters per hectare (m3/ha), and i is the number of the 
decision variable applied. 

Objective 5 Fish yield 
12 

fs (X) =Ep; x, kg 
i=1 

(5.22) 

where p, is the fish yield in kilograms per hectare (kg/ha), and i is the number of the decision 
variable applied. 

There are three constraints to be considered: 

Constraint 1 Land 
12 

E xi = b; ha 
i=i 

(5.23) 

where b; is the area to be strip-mined in a 2-year sub-period . If the total area to be strip-mined 
5700 in a 30-year period is 5,700 ha, then b, = 15 =380 hectares every two years. 

Constraint 2 Capital 
12 

Eq; xr = bq $ 
i=l 

(5.24) 

where q; is the cost of implementing the ith decision variable, and bq is $200,000. This is an 
estimated value and was modified from the original problem ($35,000) (Goicoechea et al., 
1979). 

Constraint 3 Water 
12 

w; x; =b, ý i=1 
m3 (5.25) 

where wj is the water consumption of the ith decision variable, and bw is the water available 
for a 2-year subperiod through run-off practices and rainfall. Therefore, this value is a random 
variable since rainfall is unpredictable. The values of parameters 1;, r,, c,, Si, p;, q;, and ivj can be 
found in Appendix B of this thesis. 

5.4 Risk and Uncertainty Analysis and Decision-Maker's Preferences 

As explained in Chapter Three, it is understood that risk and uncertainty are different. The 
main distinction between them consists in that in the risk models the outcomes can be 
described using a probability distribution whereas in uncertainty analysis this is not possible. 
Therefore, the following subsections are divided into risk analysis and uncertainty analysis. 
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5.4.1 Risk Analysis 

In the no-risk model the parameter values for equation 5.18 to 5.22 are the expected values 
defined by Goicoechea et al. (1982) (Appendix B). 
To introduce risk on the decision variables it is necessary to define a normal distribution as 
follows: 

I x-, U NORMDIST =1e z( Qý (5.26) 
a- 2ýr 

where p is the mean, a is the standard deviation, and -oo <x< oo. 

The standard deviation values used to calculate the normal distribution are those found in 
Appendix B. The mean value u is equal to zero considering that the maximum value of the 
distribution is one, this normal distribution is multiplied by the expected values of each 
parameter. 

5.4.2 Uncertainty Analysis 

Understanding the water constraint as a random variable, since rainfall is unpredictable, in 
order to generate values for the water available for each 2-year sub-period, it is necessary to 
run a Monte Carlo simulation. This simulation is carried out for fifteen times and then these 
values are used as the values for b, y for the fifteen 2-year sub-periods. The Monte Carlo 
simulation was performed using @Risk setting the number of iterations to 1000. The values 
obtained are in Table 5.1: 

No. of 2-year 
sub-period 

b�, (m) 
(water for sub-period) 

1 2,702,473 
2 1,721,549 
3 1,047,110 
4 338,251 
5 475,079 
6 803,335 
7 2,512,024 
8 845,213 
9 1,944,114 
10 705,202 
11 1,425,694 
12 409,607 
13 2,175,253 
14 1,576,443 
15 1,300,811 

Table 5.1 Results of the Monte Carlo simulation run to obtain the water constraint values 

Since the nature of the water constraint is unpredictable, uncertainty will be present in the 
throughout the development of the problem and its solution. It is clear that the values for the 
water constraint can vary every time the Monte Carlo simulation is run. For the purposes of 
this research the values considered are those of Table 5.1. 

5.4.3 Decision-Maker's Preferences Model 

The model for the DM's preferences was taken from Goicoechea et al. (1982). It consists of a 
set of pair-wise comparisons made by the DM to determine the importance of each goal 
compared to the others. The result of this procedure is as follows: 
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G3, crops >- G1, livestock >- G4, sediment >- G2, run-off >- G5, fish 
This means that G3 is preferred to GI, Gl is preferred to G4, G4 is preferred to G2, and G2 is 
preferred to G5. 

Considering this goal hierarchy, the following step is to define the individual utility functions 

with a form u; (G; ) = 41 .0- e"') . The individual utility functions are as follows: 

ui (G) =1.788(1- e-0 . 82Gi) (5.27) 

u2 (G2) = 0.819(e . 805G2 -1) (5.28) 

U3 (G3) =1.199(1- e-1 . 8G3) (5.29) 

ua (Ga) = Ga (5.30) 

U5 (G5) = 0.431(e1.21cs -1) (5.31) 

Using equation 5.27 to 5.31 Goicoechea et al. (1982) solved for k and k; yielding the 
following values: 

k1= 0.260 
k2 = 0.201 
k3 = 0.519 
k4 = 0.223 
k5 = 0.081 
k= -0.534 

These values are used to integrate the DM's preferences with the GA. 

5.5 Real-Valued GA 

5.5.1 Real-Valued GA 

A general GA structure will be described in this section. This GA structure will be applied 
every time that a GA is needed or run. 
The initial population consists of i decision variables x;. These are randomly generated and are 
expressed in real-valued vectors. The decision variables are in terms of land (hectares) and 
they can take values between 0 and 380 (the reason for these values is explained in further 
sections). 
In the general GA model, the size of the population is 80 and the algorithm is run for 200 
cycles performing the crossover and mutation operators 80 times for each cycle. It is 
important to have in mind that the normal structure of a GA (presented in Chapter Two) 
considers basically three operators: selection, crossover, and mutation. 
The selection method used is tournament selection; initially the tournament size was two 
(binary tournament, Bäck et al. (2000)) but it was found that with a tournament size of three 
the results were more accurate. The crossover used is "arithmetic crossover" (Michalewicz, 
1994) defined as follows: having two parents pl and p2, the offspring ch, and a number a 
within [0,11 

ch, =apu+(1-a)pz; 

where i=1,..., n 

(5.32) 

The mutation operator selected is that proposed by Michalewicz (1994) where the new child 
is a random value generated from a domain, in this case [0,380]. 
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The crossover and mutation probabilities are 0.5 and 0.15 respectively. In other words, it is 
expected that 40 chromosomes out of 80 undergo crossover and the 15% of chromosomes 
undergo mutation. This mutation probability was selected in order to maintain diversity. 
Once the GA is defined, the next step to follow is the definition of the four models to solve. 
The description of these models is presented in section 5.6. 

5.6 PROTRADE Approach: Models Definition and Results 

The objective functions are calculated by using equations 5.18 to 5.22, and the expected value 
of the coefficients found in Appendix B of this thesis. To be consistent with the problem 
definition of PROTRADE (Step 1 of the method) a vector of objective functions is defined as: 

Z(X) - 
[ZI(X), Z1(X), z3(X), z4(X), ZS(X)l (5.33) 

where objective functions 1,2,3, and 5 are to be maximised and objective function 4 is to be 
minimised. Then the objective functions are defined as follows: 

Zl(X) Jl 
(X) 

Z2 //lX) 
-f2 

(X) 

Z3(/X)-f3 (X/) 

Z4 X) - -f 4 (X) 

Z5 /l lX) -f5 
(X) 

(5.34) 

Additionally the constraints are calculated by using equations 5.23 to 5.25, and using the 
coefficients' expected values found in Appendix B of this work. Therefore the three 
constraints are defined as follows: 

Land constraint 

X1+x2+""+x12<_380 ha 

Considering that 380 ha is the total area to be allocated in each 2-year sub-period. 

Capital constraint 

Water constraint 

* values in Table 5.1. 

(5.35) 

g1x1+g2x2+"'+g12x125200,000 $ (5.36) 

WtXI i" W2X2'+'"'+ W12X12 <bw* m3 (5.37) 

The next step (step 2) to follow is the optimisation of each objective separately in order to 
obtain vectors Ul and M. Five GAs were programmed with the fitness functions represented 
in equations 5.38 to 5.42: 

GA 1 F(x)=z1(x)=12x2+13x3 (5.38) 

GA2 F(x)=z2(x)=r1x1+r2x2+r3x3+r4x4+r5x5+r6x6 (5.39) 

GA 3 F(x)=z3 (X)= c7 x7 + C8 X8 + c9 x9 + clo x1o + CI I xu (5.40) 
GA 4 

F(X)=Z4 (X)=S1x1+S2x2+S3x3+S4x4+S5x5+S7x7 +SSxS+S9x9+S10x10+S11x11 (5.41) 
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GA 5 F(x) = Z5 (x) = P12 x12 (5.42) 

Once the fitness functions are defined, each GA will be run for two different optimisation 
cases, maximisation and minimisation subject to land, capital, and water constraints. The 
results found will be used for the goals definition of each surrogate objective function. Thus 
vector Ul contains the results of the maximisation and vector M contains the results of the 
minimisation: 

Ul= 

M= 

39.45 
720,558.21 

1,808,033.08 

-9.35 
70,552.44 

0.00 
118.9756 
72.106 

- 6050.7 
0.00 

(5.43) 

The values of vectors Ul and M are used to calculate the goals defined in equation 5.6. This 
equation is very important because the units of the objectives are of different dimensions, and 
therefore, they cannot be added directly. They have to be normalised to make them 
dimensionless quantities. For this reason each objective normalised will be called a goal. 
It is important to bear in mind that the GAs used are real-valued and followed the structure 
defined in section 5.5. 

Comparing this method with the SEMOPS method (Chapter Four) it is possible to see that 
both normalise their objectives. The main differences between them is that SEMOPS 
normalises the objectives using the aspiration levels defined by the DM while PROTRADE 
uses the values resultant from the optimisation of each objective individually. 

Four models to handle the decision variables are developed: one that considers neither risk 
nor probability of achievement, one that does not consider risk but does consider probability 
of achievement, one that considers risk but does not consider probability of achievement, and 
a final one that considers both risk and probability of achievement. These models are 
discussed in the following sub-sections. 

5.6.1 No-Risk No-Probability of Achievement Model 

Once steps 1 and 2 are performed it is possible to proceed with the no-risk no probability of 
achievement model definition. As mentioned before, the coefficients of the objective function 
are the expected values found in Appendix B. Because this is a model that does not consider 
risk these coefficients will not change their values in the whole model's solution. The model 
is performed 15 times because each time represents a 2-year sub-period. That will make the 
total horizon time of 30 years. 

The no-risk no-probability of achievement model proposed in this thesis is outlined in Figure 
5.2. This model is used to find the results presented in this sub-section. 
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First sub-period 

Figure 5.2 No-risk no-probability of achievement model 

For this sub-period the value of b,, is 2,702,473 m3. This means that the water constraint is 
defined as follows: 

141 XI + W2 x2 +"""+ 1v12 X12 <2,702,473 m3 (5.44) 

Following Step 3 of PROTRADE the initial surrogate function is: 

F(x)=Gi(x)+G2(x)+G3lx)+G4(x)+G5(x) (5.45) 

It is important to bear in mind that the surrogate function is dimensionless and that it will act 
as the GA's fitness function. The minus sign assigned to objective 4 is considered directly in 

the equation to calculate G4. 

Running the GA to maximise F(x) using equation 5.45 subject to land, capital, and water 
constraints (Step 4), yields vector x1 _ [x1, x25 x3, x4i x5, x6, x7, x8, x9, XIO, x11, X121 (ha): 

X1 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
194.11 2.67 0.47 3.93 3.23 51.20 1.95 1.69 89.22 10.27 2.59 18.16 

XI 
194.11 

Vector xl contains the attempt land allocation for each decision variable. 

Additionally, with the GA the values for the goal vector Gl are found: 

X2 
2.67 

G, G2 G3 G4 G5 

0.009632 0.268126 0.391161 0.360843 0.962670 

The goal values are dimensionless and are calculated using equation 5.6. 

At this point the step 5 of the method is performed considering the DM's preferences using 
the ranking proposed by Goicoechea et al. (1982) and presented in sub-section 5.4.3 together 
with the k and k; values. 

Next the surrogate function has to be redefined, as is shown in equations 5.9 and 5.10 of the 
PROTRADE method (Step 6), using the results from Step 4 and 5. 

X3 
0.47 

x4 
3.93 

X5 
3.23 

G1 
0.009632 

G2 
0.268126 

x6 
51.20 

0.391161 

X7 
1.95 

G3 

Xg 
1.69 

0.360843 

X9 
89.22 

G4 

X10 
10.27 

G5 
0.962670 

Xll 
2.59 

X12 
18.16 

a) Calculate u(Gi) 
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ui (G) = ul (0.009632) = 0.014066 

112(G2) = U2 (0.268126) = 0.197302 

113 (G3) = U3 (0.391161) = 0.606024 

ua (G4) = ua (0.360843) = 0.360843 

us (G5) = us (0.962670) = 0.950519 

u(G1) = 0.475801 

b) The DM decides on an incremental utility Eu(G) between 0 and 1. The value decided is 
Eu(G) = 0.20. 

u(Gi +r" Du(Gi)) = u(Gl) + Du(G) = 0.475801+ 0.20 = 0.675801 

Gi +r" O2{(Gl) = 

0.009632 
0.268126 
0.391161 
0.360843 
0.962670 

+r" 

0.282662 
0.125315 
0.49662 
0.173809 
0.10533 

Solving the equation r=0.6562. Then the weights ivl are calculated using equation 5.10: 

w1= 20.25692; w2 = 1.306691; w3 = 1.833115; iv4 = 1.316075; tivs = 1.071798 

Finally, the new surrogate function S1(x) is determined and the GA is run maximising it. The 
fitness function of the GA will be Si(x) and is defined as follows: 

max s, (x) =20.2569G, + 1.30669 Gz + 1.833115 G3 + 1.316075 G4 +1.071798G5 (5.46) 

The optimal solution after running the GA is vector x2 = [x1, x2i x3, x4, x5, x6, x7, xs, x9, x10, 
x11, x12] (ha): 

X2 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.14 234.36 2.78 2.65 1.06 4.75 1.62 1.23 110 3 1.41 16.16 
XI 

0.14 

Vector x2 contains the land allocation for each decision variable considering the DM's 
preferences. 

Additionally, with the GA the values for the goal vector G2 are found: 

Gz 

X2 

G1 G2 G3 G4 G5 
0.819518 0.051039 0.460758 0.994283 0.856954 0.819518 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the first 2-year sub-period. 

Second sub Period 

234.36 
X3 

2.78 

G1 

X4 
2.65 

X5 
1.06 

G2 
0.051039 

xb 
4.75 

0.460758 

X7 
1.62 

G3 

Xg 
1.23 

0.994283 

Xg 
110 

G4 

X10 
3 

G5 
0.856954 

Xl1 
1.41 

X12 
16.16 

The procedure followed in the first sub-period is applied again. For this sub-period the value 
of b,, is 1,721,549 m3. This means that the water constraint is defined as follows: 
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III x1+lY2x2+"""+11'I2x12<_1,721,549m3 (5.47) 

Following Step 3 of PROTRADE the initial surrogate function is: 

F(x)=G1(x)+G2(x)+G3(x)+G4(x)+G5(x) (5.48) 

It is important to bear in mind that the surrogate function is dimensionless and that it will act 
as the GA's fitness function. 

Running the GA to maximise F(x) using equation 5.45 subject to land, capital, and water 
constraints (Step 4), yields vector x1= [x1, x2, x3, x4, x5, xb, x7, x8, x9, x10, x11, x12] (ha): 

X1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
203.10 4.28 0.90 1.35 2.16 73.98 1.84 1.48_L68.60 1.65 1.98 18.62 

X1 

203.10 

Vector xl contains the attempt land allocation for each decision variable. 

Additionally, with the GA the values for the goal vector GI are found: 

X2 
4.28 

GI GZ G3 G4 G5 

0.015716 0.330685 0.290479 0.332118 0.987189 

The goal values are dimensionless and are calculated using equation 5.6. 

At this point the step 5 of the method is performed considering the DM's preferences using 
the ranking proposed by Goicoechea et al. (1982) and presented in sub-section 5.4.3 together 
with the k and k; values. 

Next the surrogate function has to be redefined, as is shown in equations 5.9 and 5.10 of the 
PROTRADE method (Step 6), using the results from Step 4 and 5. 

a) Calculate u(Gi) 

ui (GO = ul (0.0157) = 0.02287 

U2 (G2) = U2(0.33068) = 0.249789 

U3 
(G3) =113 (0.29047) 

= 0.488196 

U4 (G4) = U4 (0.332 1) = 0.3321 

u5 (G5) = U5 (1.06248) = 0.99212 

u(Gl) = 0.428674 

b) The DM decides on an incremental utility Au(G) between 0 and 1. The value decided is 
Au(G) = 0.20. 

X3 
0.90 

GI 
0.015716 

x4 
1.35 

XS 
2.16 

G2 
0.330685 

x6 
73.98 

0.290479 

X7 
1.84 

G3 

X8 
1.48 

G4 
0.332118 

X9 
68.60 

0.987189 

X10 
1.65 

G5 

Xl1 
1.98 

X12 
18.62 

u(Gl +r" Du(Gl)) = u(GO + Au(G) = 0.437518 + 0.20 = 0.628674 
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Gi +r" Du(Gl) _ 

0.0157 
0.33068 
0.29047 
0.3321 

0.987189 

+r" 

0.291102 
0.137023 
0.592139 
0.179033 
0.112374 

Solving the equation r=0.4994. Then the weights w1 are calculated: 

w1= 10.2502; w2 = 1.206931; 1v3 = 2.018023; iv4 = 1.269209; tiv5 = 1.056848 

Finally, the new surrogate function SI(x) is defined and the GA is run maximising it. The 
fitness function of the GA will be SI(x). 

maxs, (x) =10.2502 Gl + 1.20693 1G2 + 2.01802G3 +1.269209G4 +1.056848G5 (5.49) 

The optimal solution after running the GA is vector x2 = [x1, x2i x3, x4, x5, x6, x7, x8, x9, x10, 
x119 x121 (ha): 

X2 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.48 236.79 0.54 2.72 2.69 19.47 2.98 1.45 83.31 9.96 1.81 16.43 
XI 

0.48 

Vector x2 contains the attempt land allocation for each decision variable considering the 
DM's preferences. 

Additionally, with the GA the values for the goal vector G2 are found: 

Gz 

X3 
0.54 

G1 G2 G3 G4 G5 
0.825856 0.095065 0.366847 0.993298 0.871379 

G1 
0.825856 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the second 2-year sub-period. 

Third sub period 

The procedure followed in the first and second sub-periods is applied again. Obtaining the 
following results: 
The water constraint is defined as follows: 

W1 XI + tit'2 X2 +""+ W12 XI2 51,047,110 m3 (5.50) 

Vector x1 is found by running the GA to maximise F(x) subject to land, capital, and water 
constraints (Step 4) is: 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
216.54 0.27 0 2.44 6.03 76.34 2.75 0.91 51.82 2.42 1.08 18.89 

Additionally, with the GA the values for the goal vector G1 are found: 

G1 

X2 
236.79 

X1 
216.54 

XZ 
0.27 

X3 
0 

G3 G4 G5 G1 G2 1 

0.001014 0.353566 0.223019 0.288196 1.00 0.001014 

x4 
2.72 

X4 
2.44 

G1 

X5 
2.69 

G2 
0.095065 

X5 
6.03 

0.353566 
G2 

x6 
19.47 

0.366847 

x6 
76.34 

x7 
2.98 

G3 

X7 
2.75 

G3 
0.223019 

Xg 
1.45 

G4 
0.993298 

X8 
0.91 

0.288196 
G4 

X9 
83.31 

0.871379 

X9 
51.82 

X10 
2.42 

X10 
9.96 

G5 

X11 
1.08 

GS 
l. oo 

X11 

1. 81 

X12 
18.89 

X12 
16.43 

The values of wi are calculated to redefine the surrogate function Si(x) using u(Gj), and r: 
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u(GI) = 0.378438 
r=0.4013 

wi = 121.3013; w2 = 1.164284; w3 = 2.209341; w4 = 1.256571; w5 = 1.047441 

Finally, the new surrogate function Si(x) is defined and the GA is run maximising it: 

maxS1(x)=121.30G1+1.16428G2+2.2093403+1.25657074+1.047441G5 (5.51) 

The optimal solution after running the GA is vector x2: 

XZ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 XI1 X12 
0.1 269.73 26.01 0.19 0.67 4.35 1.08 0.81 51.57 7.62 0.58 17.27 
XI 
0.1 

Additionally, with the GA the values for the goal vector G2 are found: 

i 

X3 
26.01 

G1 G2 G3 G4 GS 
0.964259 0.053134 0.227507 0.994321 0.915582 

G2 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the third 2-year sub-period. 

Fourth sub period 

The water constraint is defined as follows: 

III XI +WV2X2+'""+w12x125338,251m3 (5.52) 

Vector x, is found by running the GA to maximise F(x) subject to land, capital, and water 
constraints (Step 4) is: 

X1 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 Xll X12 
0.2 155.87 4.11 8.34 34.81 134.83 2.51 0.84 13.77 6.99 0.73 16.73 
X1 
0.2 

The goal vector G1 is: 

G1 

X3 
4.11 

GI G2 G3 G4 G5 
0.547022 0.471849 0.074466 0.996016 0.887202 0.547022 

The values of w; are calculated to redefine the surrogate function Si(x) using u(Gi), and r: 

u(G1) = 0.547341 
r=0.4079 

w1= 1.14112; w2 = 1.123554; iv3 = 4.96274; w4 = 1.07333; w5 = 1.042265 

Finally, the new surrogate function S1(x) is defined and the GA is run maximising it: 

max Si(x) =1.14112 G1 + 1.123554 G2 + 4.96274 G3 + 1.07333 G4 + 1.042265 G5 (5.53) 

The optimal solution after running the GA is vector x2: 

X2 X1 X2 X3 X4 X5 X6 X7 X8 X9 XIO XI1 X12 
0 168.48 0.54 6.13 15.6 132.75 8.94 1.47 6.83 20.89 0.88 16.44 

XI 

0 

X2 
269.73 

X2 

155.87 

XZ 
168.48 

X3 
0.54 

0.964259 

Gt 

x4 
0.19 

G1 

X4 
8.34 

x4 
6.13 

X5 
0.67 

G2 
0.053134 

X5 
34.81 

G2 
0.471849 

X5 
15.6 

x6 
4.35 

x6 
134.83 

x6 
132.75 

X7 
1.08 

G3 
0.227507 

G3 
0.074466 

X7 
2.51 

X7 
8.94 

X8 
0.81 

G4 
0.994321 

Xg 
0.84 

G4 
0.996016 

XS 
1.47 

X9 
51.57 

G5 
0.915582 

X9 
13.77 

G5 
0.887202 

Xg 
6.83 

X10 
7.62 

X10 
6.99 

X10 
20.89 

XI1 
0.58 

X11 
0.73 

XII 
0.88 

X12 
17.27 

X12 
16.73 

X12 
16.44 
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Additionally, with the GA the values for the goal vector G2 are found: 

Gz G1 G2 G3 G4 G5 
0.587833 0.426707 0.081980 0.996473 0.871952 0.587833 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the fourth 2-year sub-period. 

Fifth sub-period 

The water constraint is defined as follows: 

141 x1+ W2x2+"""+11'12x12<_475,079 m3 (5.54) 

Vector x, is found by running the GA to maximise F(x) subject to land, capital, and water 
constraints (Step 4) is: 

Xý X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.11 197.92 5.59 5.3 43.15 82.61 1.62 0 23.22 1.68 0.45 17.24 
X1 

0.11 

The goal vector G1 is: 

G1 

X3 
5.59 

G1 GZ G3 G4 G5 
0.695057 0.346329 0.101192 0.995509 0.914268 0.695057 

The values of w, are calculated to redefine the surrogate function Si(x) using zi(G1), and r: 

u(GI) = 0.0.57852 
r=0.4688 

w, = 1.112637; w2 = 1.168589; w3 = 4.164026; w4 = 1.082332; w5 = 1.047785 

Finally, the new surrogate function Si(x) is defined and the GA is run maximising it: 

max S, (x) =1.112637 Gi + 1.168589 G2 + 4.164026 G3 + 1.08233 G4 + 1.04778 G5 (5.55) 

The optimal solution after running the GA is vector x2: 

XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.27 143.91 0.81 10.22 13.76 151.15 5.83 1 15.32 18.66 1.58 16.13 

Additionally, with the GA the values for the goal vector G2 are found: 

Gi G2 G3 G4 G5 
0.502408 0.476134 0.108184 0.995943 0.855520 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the fifth 2-year sub-period. 

Sixth sub period 

The water constraint is defined as follows: 

III XI + 1V2 x2 + '**+ 112 x12 < 803,335 m3 (5.56) 

XI 
0.27 

X2 
197.92 

X2 
143.91 

X3 
0.81 

G1 

x4 
5.3 

G1 

x4 
10.22 

Gi 
0.502408 

G2 
0.426707 

X5 
43.15 

G2 
0.346329 

X5 
13.76 

G2 
0.476134 

0.081980 

X6 
82.61 

x6 
151.15 

G3 

G3 
0.101192 

G3 
0.108184 

X7 
1.62 

X7 
5.83 

G4 
0.996473 

Xg 
0 

G4 
0.995509 

Xg 
1 

G4 
0.995943 

G5 
0.871952 

X9 
23.22 

G5 
0.914268 

X9 
15.32 

G5 
0.855520 

X10 
1.68 

x10 
18.66 

X11 
0.45 

x1 l 
1.58 

X12 
17.24 

X12 
16.13 
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Vector x1 is found by running the GA to maximise F(x) subject to land, capital, and water 
constraints (Step 4) is: 

X1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
162.13 2.98 0.3 3.25 10.42 138.81 0.27 0 39.15 2.73 1.51 18.07 162.13 

The goal vector G, is: 

GI 

X3 
0.3 

G1 G2 G3 G4 G5 
0.010646 0.503038 0.167411 0.467187 0.958021 0.010646 

The values of w; are calculated to redefine the surrogate function S1(x) using u(G1), and r: 

u(GI) = 0.394163 
r=0.3622 ' 

wt = 11.17244; w2 = 1.118125; w3 =2.549476; w4 = 1.144538; ivs = 1.041899 

Finally, the new surrogate function S1(x) is defined and the GA is run maximising it: 

max Sl (x) =11.1724 G1 + 1.118125 G2 + 2.54947 G3 + 1.14453 G4 + 1.041899 G5 (5.57) 

The optimal solution after running the GA is vector x2: 

X2 XI X2 X3 X4 X5 X6 X7 X8 X9 XIO XI1 X12 
0.36 269.46 9.51 1.81 3.27 24.08 5.92 1.27 36.38 9.58 0.74 17.27 
XI 

0.36 

Additionally, with the GA the values for the goal vector G2 are found: 

G2 

X3 
9.51 

GI G2 G3 G4 GS 
0.948035 0.112962 0.177553 0.993720 0.915898 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the sixth 2-year sub-period. 

Seventh sub period 

The water constraint is defined as follows: 

141x1 + w2 x2 + "' + 1112 x12 S 2,512,024 m3 

X12 
18.07 

X12 
17.27 

(5.58) 
Vector xt is found by running the GA to maximise F(x) subject to land, capital, and water 
constraints (Step 4) is: 

X1 X2 X3 X4 X5 X6 X7 Xg X9 X10 X11 X12 
186.45 2.88 0.64 2.74 6.32 57.76 3.24 0 97.47 1.88 2.55 18.07 

The goal vector Gt is: 

G1 

X2 
2.88 

1 G1 G2 G3 G4 G5 
0.0106464 0.286044 0.410809 0.3861505 0.958034 0.0106464 

The values of w, are calculated to redefine the surrogate function S1(x) using u(G1), and r: 

X1 X2 
2.98 

X2 
269.46 

X1 
186.45 

x4 
3.25 

G1 

x4 
1.81 

GI 
0.948035 

X3 
0.64 

G1 

X4 
2.74 

XS 
10.42 

G2 
0.503038 

X5 
3.27 

G2 
0.112962 

X5 
6.32 

G2 
0.286044 

138.81 

xb 
24.08 

x6 

G3 
0.167411 

G3 
0.177553 

X6 
57.76 

G3 
0.410809 

X7 
0.27 

X7 
5.92 

X7 
3.24 

0.993720 

Xg 
0 

G4 
0.467187 

Xg 
1.27 

G4 

X8 
0 

G4 
0.3861505 

Xg 
39.15 

Xg 
36.38 

0.915898 

X9 
97.47 

X10 
2.73 

G5 
0.958021 

GS 

X10 
1.88 

G5 
0.958034 

XIO 
9.58 

X1l 
2.55 

x1 l 
1.51 

XI1 
0.74 

X12 
18.07 

u(Gl) = 0.491798 
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r= 1.0886 

w1= 29.55342; w2 = 1.479077; w3 = 2.264393; W4 = 1.485906; w5 = 1.117612 

Finally, the new surrogate function S1(x) is defined and the GA is run maximising it: 

max Sl (x) = 29.5534 Gi + 1.479077 G2 + 2.26439 G3+1.485906 G4 + 1.11761 G5 (5.59) 

The optimal solution after running the GA is vector x2: 

I X2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.31 216 0.81 0.66 1.38 2.99 3.26 2.68 93.72 36.25 5.69 15.68 

Additionally, with the GA the values for the goal vector G2 are found: 

G2 

X2 X3 

0.81 

G1 Gz G3 G4 G5 
0.753612 0.041474 0.462565 0.992952 0.831172 0.753612 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the seventh 2-year sub-period. 

Eighth sub period 

The water constraint is defined as follows: 

InX +1V2x2+"""+1112x12:! ý 845,213 m3 (5.60) 

The values of vector x1 and the goal vector G, are: 

X1 Xi X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
217.24 2.15 0.49 2.6 4.8 92.57 1.89 0.27 31.86 5.52 1.16 19.18 

Xi 
217.24 

G, 

X3 
0.49 

GI G2 G3 G4 G5 
0.007858 0.396715 0.144952 0.286193 1.0 0.007858 

The values of u(G1), r and wv; are: 

u(GI) = 0.330463 
r=0.3174 

X5 

1.38 

Gz 
0.041474 

X5 
4.8 

G2 
0.396715 

w1 = 13.619; w2 = 1.124276; w3 = 2.684552; w4 = 1.210859; ws = 1.038727 

Finally, the new surrogate function Si(x) is defined and the GA is run maximising it: 

max Sl (x) =13.619 G1 + 1.124276 G2 + 2.68455 G3 + 1.210859 G4+1.03 8727 G5 (5.61) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 

are: 

X2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.31 269.44 8.1-T2.1 2.55 21.91 3.57 2.09 36.71 14.26 1.7 17.16 
XI 

0.31 

G2 

X1 
0.31 216 

XZ 
2.15 

X2 
269.44 

X3 
8.1 

G, G2 G3 G4 G5 
0.946515 0.105807 0.185234 0.993743 0.909985 0.946515 

G1 

G1 

xd 
0.66 

G1 

x4 
2.6 

x4 
2.1 

X5 
2.55 

Gz 
0.105807 

x6 
2.99 

0.462565 

xb 
92.57 

X6 
21.91 

X7 

3.26 

G3 

G3 
0.144952 

G3 
0.185234 

Xg 
2.68 

G4 
0.992952 

X7 
1.89 

0.286193 

X7 
3.57 

0.993743 

Xg 

93.72 

X8 
0.27 

G4 

Xg 
2.09 

G4 

xio 
36.25 

G5 
0.831172 

X9 
31.86 

G5 
1.0 

X9 
36.71 

G5 
0.909985 

X11 

5.69 

X10 
5.52 

X10 
14.26 

X12 

15.68 

X11 
1.16 

Xll 
1.7 

X12 
19.18 

X12 
17.16 
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In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the eighth 2-year sub-period. 

Ninth sub-period 

The water constraint is defined as follows: 

wi xl + 1V2 x2 +''' + W12 xi2 51,944,114 m3 (5.62) 

The values of vector x, and the goal vector Gt are: 

X1 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
207.58 6.07 0.72 1.62 1.89 47.25 2.44 1.6 86.71 3.73 1.47 18.55 207.58 

GI 

X3 
0.72 

G1 G2 G3 G4 G5 
0.021800 0.259967 0.368581 0.316928 0.983643 0.021800 

The values of u(G1), r and wr are: 

u(G1) = 0.461364 
r=0.6171 

w1= 9.023497; w2 = 1.298358; w3 = 1.867802; w4 = 1.340069; ws = 1.068589 

Finally, the new surrogate function S1(x) is defined and the GA is run maximising it: 

max Sl (x) = 9.0235 Gi + 1.29836G2 +1.8678G3 +1.34007G4 + 1.06859 Gs (5.63) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 
are: 

X2 XI X2 X3 X4 X5 X6 X7 Xg X9 X10 X11 X12 
0.55 218.7 1.89 3.42 4.65 25.45 4.2 2.59 97.41 2.86 1.76 16.19 
XI 

0.55 

FG-2 

X3 
1.89 

G, GZ G3 G4 G5 
0.764005 0.114005 0.415011 0.993157 0.858422 0.764005 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the ninth 2-year sub-period. 

Tenth sub Period 

The water constraint is defined as follows: 

In XI +tiw2x2+". "+w12x125705,202in 
3 (5.64) 

The values of vector xl and the goal vector G, are: 

Xl Xl X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
170.37 0.54 0 3.3 3.92 145.14 1.51 0.71 30.69 3.09 2.55 18.1 170.37 

i 

X1 

X1 

X2 
6.07 

X2 
218.7 

X2 
0.54 

G1 

X3 
0 

G, G2 G3 G4 G5 
0.001774 0.512317 0.137651 0.440325 0.959478 

X4 
1.62 

G1 

x4 
3.42 

G1 

G1 
0.001774 

x4 I Xs 
3.3 3.92 

X5 
1.89 

G2 
0.259967 

X5 
4.65 

Gz 
0.114005 

G2 
0.512317 

xb 
47.25 

x6 
25.45 

x6 
145.14 

G3 
0.368581 

G3 
0.415011 

G3 
0.137651 

X7 
2.44 

X7 
4.2 

X7 
1.51 

X8 
1.6 

G4 
0.316928 

Xg 
2.59 

G4 
0.993157 

Xg 
0.71 

G4 
0.440325 

Xg 
86.71 

Xg 
97.41 

Xg 
30.69 

X10 
3.73 

G5 
0.983643 

X10 
2.86 

G5 
0.858422 

G5 
0.959478 

X10 
3.09 

xi l 
1.47 

X11 
1.76 

x1i 
2.55 

X12 
18.55 

X12 
16.19 

X12 
18.1 
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The values of u(Gi), r and w; are: 

u(GI) = 0.366199 
r=0.3258 

w1= 57.25695; w2 = 1.10721; w3 = 2.795601; w4 = 1.140079; w5 = 1.038414 

Finally, the new surrogate function Si(x) is defined and the GA is run maximising it: 

max S1(x) = 57.25695 G1 + 1.10721 G2 + 2.7956 G3 + 1.140079 G4 + 1.03 8414 G5 (5.65) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 
are: 

X2 XI X2 X3 X4 X5 X6 X7 X8 X9 Xlo X11 X12 
0.35 269.73 27.85 1.54 2.05 13.77 3.3 1.93 32.04 8.09 0.85 17.54 
XI 

0.35 
X12 

17.54 

_-G2 

X3 
27.85 

Gl G2 G3 G4 GS 
0.965779 0.083912 0.153542 0.993531 0.930035 0.965779 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the tenth 2-year sub-period. 

Eleventh sub-period 

The water constraint is defined as follows: 

3 
wixl+W2x2+"""+W 12X12<_1,425,694m 

The values of vector xl and the goal vector G1 are: 

X1 

(5.66) 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
192.24 8.37 0 3.66 3.76 75.37 2.07 1.66 70.03 2.25 2.18 18.36 192.24 

G1 

X3 
0 

Gt GZ G3 G4 G5 
0.029151 0.334814 0.298235 0.367539 0.973370 

GI 
0.029151 

The values of u(G1), r and iv, are: 

u(G1) = 0.442454 
r=0.5201 

wt = 6.101531; w2 = 1.211605; w3 = 2.011809; w4 = 1.252037; w5 = 1.058423 

Finally, the new surrogate function S1(x) is defined and the GA is run maximising it: 

max Sl (x) = 6.101531 G1 + 1.211605 G2 + 2.011809 G3 +1.252037 G4 + 1.058423 G5 (5.67) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 
are: 

X2 1 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 Xil X12 
0.26 222.75 3.51 8.09 11.38 28.08 3.81 1.99 66.28 13.9 2.97 16.44 
XI 

0.26 

X1 

X2 
269.73 

X2 
8.37 

X2 
222.75 

X3 
3.51 

G1 

x4 
1.54 

x4 
3.66 

x4 
8.09 

X5 
2.05 

G2 
0.083912 

x5 
3.76 

Gz 
0.334814 

X5 
11.38 

x6 
13.77 

x6 
75.37 

X6 
28.08 

G3 
0.153542 

G3 
0.298235 

X7 
3.3 

X7 
2.07 

X7 
3.81 

Xg 
1.93 

G4 
0.993531 

Xg 
1.66 

G4 
0.367539 

X8 
1.99 

X9 
32.04 

X9 
70.03 

X9 
66.28 

Xio 
8.09 

G5 
0.930035 

G5 
0.973370 

X10 
2.25 

xio 
13.9 

X11 
0.85 

x1 l 
2.18 

att 
2.97 

X12 
18.36 

X12 
16.44 
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Gz G, G2 G3 G4 G5 
0.779721 0.141366 0.307659 0.993814 0.871757 0.779721 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the eleventh 2-year sub-period. 

Twelfth sub period 

The water constraint is defined as follows: 

wlxl+W2X2+"""+W12X12<_409,607m3 

The values of vector xl and the goal vector G1 are: 

Xý X2 
210.06 

GI 

X3 
2.16 

G, G2 G3 G4 G5 
, 0.734094 0.342292 0.083491 0.996079 0.901347 0.734094 

The values of u(G1), r and wi are: 

u(GI) = 0.571064 
r=0.4461 

w, = 1.099172; w2 = 1.16266; w3 = 4.752914; w4 = 1.078758; w5 = 1.045566 

Finally, the new surrogate function S, (x) is defined and the GA is run maximising it: 

max S, (x) =1.09917 G, + 1.16266 G2 + 4.752914 G3 + 1.078758 G4 + 1.045566 G5 (5.69) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 
are: 

X2 X2 
242.27 

G2 

X3 
4.25 

G1 G2 G3 G4 G5 
0.848416 0.221219 0.100915 0.994842 0.901945 0.848416 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the twelfth 2-year sub-period. 

Thirteenth sub-period 

The water constraint is defined as follows: 

III X1+1V2X2+"""+1112X1252,175,253m3 

The values of vector x1 and the goal vector Gl are: 

XI 

(5.68) 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0 210.06 2.16 4.82 22.65 95.54 1.83 1.5 15.96 5.81 2.6 17 

X1 

XI X2 X3 X4 X5 X6 X7 X8 X9 XIO X11 X12 
0.16 242.27 4.25 3.02 3.49 64.32 8.05 0.72 9.79 26.73 0 17.01 
XI 

0.16 

X12 
17 

X12 
17.01 

(5.70) 

XI XZ X3 X4 X5 X6 X7 X8 X9 Xip X1i X12 
192.51 0.27 0 2.18 4.38 54.52 2.19 0.89 90.48 12.51 2.05 18.03 

XI 
192.51 

XZ 
0.27 

G1 

G1 

G1 

X3 

0 

X4 
4.82 

x4 
3.02 

x4 
2.18 

G2 
0.141366 

X5 
22.65 

G2 
0.342292 

X5 
3.49 

G2 
0.221219 

X5 
4.38 

x6 
64.32 

G3 
0.307659 

x6 
95.54 

G3 
0.083491 

G3 
0.100915 

X6 
54.52 

x7 
1.83 

X7 
8.05 

X7 
2.19 

G4 
0.993814 

Xg 
1.5 

G4 
0.996079 

Xg 
0.72 

G4 
0.994842 

Xg 
0.89 

X9 
9.79 

G5 
0.871757 

Xg 
15.96 

G5 
0.901347 

G5 
0.901945 

Xg 
90.48 

X10 
5.81 

x1o 
26.73 

X10 
12.51 

XI1 
2.6 

Xi i 
0 

XU 
2.05 

X12 
18.03 
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G1 G2 G3 G4 G5 
0.001014 0.275757 0.399154 0.366157 0.956109 

The values of u(Gi), r and w; are: 

u(G1) = 0.478498 
r=0.6666 

wi = 187.451; w2 = 1.304417; w3 = 1.818255; w4 = 1.316023; 1v5 = 1.072679 

Finally, the new surrogate function Si(x) is defined and the GA is run maximising it: 

maxS1(x)=187.451G1+1.304417G2+1.8182563+1.31602G4+1.072679G5 (5.71) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 

are: 

X2 X2 

269.73 

Gz 

0.001014 

X3 
37.8 

Gi G2 G3 G4 G5 
0.975158 0.061277 0.143359 0.994145 0.922139 0.975158 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the thirteenth 2-year sub-period. 

Fourteenth sub-period 

The water constraint is defined as follows: 

In x1 + ßv2 x2 +"""+ W12 x12 <_ 1,576,443 m3 (5.72) 

The values of vector x1 and the goal vector Gt are: 

X1 XZ 
4.79 

Gý 

X3 
0.61 

G1 GZ G3 G4 G5 
0.017237 0.342153 0.333431 0.395984 0.958950 0.017237 

The values of u(Gi), r and iv, are: 

u(GI) = 0.463322 
r=0.5738 

w, = 10.44903; w2 = 1.226605; w3 = 1.936436; w4 = 1.255224; ws = 1.063286 

Finally, the new surrogate function Si(x) is defined and the GA is run maximising it: 

max Sl (x) = 10.449 Gi + 1.226605 G2 + 1.936436 G3 + 1.255224 G4 + 1.063286 G5 (5.73) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 
are: 

XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.09 269.73 37.8 0.74 1.03 6.32 7.09 4.97 30.21 1.52 0.73 17.39 
XI 

0.09 

XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
183.6 

11 

4.79 0.61 2.97 0.27 82.89 2.01 0.78 78.32 3.98 1.56 18.09 
XI 

183.6 

G1 

Gi 

G1 

X4 
0.74 

x4 
2.97 

G2 
0.275757 

X5 
1.03 

G2 
0.061277 

X5 
0.27 

G2 
0.342153 

X6 
6.32 

x6 
82.89 

CT3 

0.399154 

X7 
7.09 

G3 
0.143359 

G3 
0.333431 

X7 
2.01 

G4 
0.366157 

Xg 
4.97 

G4 
0.994145 

X8 
0.78 

G4 
0.395984 

X9 
30.21 

X9 
78.32 

G5 
0.956109 

X10 
1.52 

G5 
0.922139 

G5 
0.958950 

xto 
3.98 

X11 
0.73 

X11 
1.56 

x12 
17.39 

X12 
18.09 
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X2 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.27 243 2.43 2.8 4.67 17.01 5.69 2.62 75.65 5.29 2.78 16.53 
XI 

0.27 

G2 

X3 
2.43 

G1 G2 G3 G4 G5 
0.849176 0.093199 0.334276 0.993849 0.876341 0.849176 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the fourteenth 2-year sub-period. 

Fifteenth sub-period 

The water constraint is defined as follows: 

wlxI+tiw2x2+"""+IV12x12<_1,300,811m3 (5.74) 

The values of vector x1 and the goal vector G, are: 

X1 XI X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
158.89 2.97 1.29 3.12 7.6 121.41 2.01 1.17 58.62 3.78 0.27 17.82 158.89 

G1 

X3 
1.29 

G, GZ G3 G4 G5 
0.011660 0.447705 0.251035 0.477464 0.944895 0.011660 

The values of u(G1), r and iv; are: 

u(Gl) = 0.441971 
r=0.4655 

w, = 12.54348; w2 = 1.156928; w3 = 2.148699; w4 = 1.176113; w5 = 1.051948 

Finally, the new surrogate function S, (x) is defined and the GA is run maximising it: 

max S, (x) =12.54348 G, + 1.156928 G2 + 2.148699 G3 + 1.176113 G4 + 1.051948 G5 (5.75) 

The optimal solution after running the GA is vector x2 and the values for the goal vector G2 
are: 

X2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
0.91 262.71 3.05 2.23 6.33 11.13 5.07 3.12 61.12 4.04 3.34 16.53 
XI 

0.91 

G2 

X3 
3.05 

Gl G2 G3 G4 G5 
0.918378 0.082633 0.272873 0.991639 0.876578 0.918378 

In this model it is considered that the DM is satisfied with the results obtained and hence, x2 is 
the definitive or final land allocation for the fifteenth 2-year sub-period. 

5.6.1.1 Result Analysis 

Table 5.2 contains the decision variables values for the fifteen 2-year sub-periods. While xi 
represents the vector without considering the DM's preferences, x2 is the vector that results 
from considering them, and we is the value of the water constraint for each sub-period. 

X1 

X2 
243 

X2 
2.97 

XZ 
262.71 

G1 

x4 
2.8 

x4 
3.12 

GI 

xd 
2.23 

G1 

X5 
4.67 

G2 
0.093199 

X5 
7.6 

Gz 
0.447705 

X5 
6.33 

G2 
0.082633 

x6 
17.01 

121.41 

X7 
5.69 

G3 
0.334276 

x6 

G3 
0.251035 

x6 
11.13 

G3 
0.272873 

X7 
2.01 

X7 
5.07 

Xg 
2.62 

G4 
0.993849 

X8 
1.17 

G4 
0.477464 

Xg 
3.12 

CTq 

0.991639 

Xg 
75.65 

X9 
58.62 

Xg 
61.12 

X10 
5.29 

G5 
0.876341 

G5 
0.944895 

G5 
0.876578 

X10 
3.78 

X10 
4.04 

x1 l 
2.78 

X11 
0.27 

XIl 
3.34 

X12 
16.53 

x12 
17.82 

X12 

16.53 

In Table 5.2, the results clearly show that the model without considering the DM's 
preferences does not always have the same behaviour. For example, in the first case where the 
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water constraint has a value of 2,702,473 m3 (maximum value of wc) the xi value is 194 ha, 
whilst in the fourth case, where the water constraint has a value of 338,251 m3 (minimum 
value of we), the xl value is 0.2 ha. This represents a difference of more than 99%. If the 
cases where the water constraint tends to have a small value are analysed, it can be seen that 
the algorithm behaves in the same way. For instance, the xi value in the fifth sub-period (we = 
475,079) is 0.11 ha and the xl value in the twelfth sub-period (we = 409,607) is 0 ha. 
Consequently, it is evident that the uncertainty reflected in the water constraint can 
significantly affect the GA initial results. In other words, since the water constraint is a 
random variable because rainfall is unpredictable, the land allocated to each activity the first 
time the algorithm is run, would be completely different for a small amount of water and for a 
big amount of water. 

The decision variable xl was chosen for the comparison because it represents the no 
reclamation program by current management. This means that the practices without 
considering the DM's preferences are not expected to change considerably. In the case of a 
big amount of water, the first time the algorithm is run, it assigns more land to xl (no 

reclamation program by current management), x6 (run-off augmentation plastic cover and 
gravel) and x9 (Alfalfa production). 

Sub-period X1 X2 X3 X4 XS x6 x7 xe X9 xio xi1 X12 

First XI 194.1 2.67 0.47 3.93 3.23 51.2 1.95 1.69 89.22 10.27 2.59 18.16 

wc=2,702,473 x2 0.14 234.36 2.78 2.65 1.06 . is 1.62 1.23 110 3 1.41 16.16 
Second xi 203.1 4.28 0.9 1.35 2.16 73.98 1.84 1.48 68.6 1.65 1.98 18.62 

wc=1,721,549 x2 0.48 236.79 0.54 2.72 2.69 19.47 2.98 1.45 83.31 9.96 1.81 16.43 
Third x1 216.5 0.27 0 2.44 6.03 76.34 2.75 0.91 51.82 2.42 1.08 18.89 

wc=1,047,110 x2 0.1 269.73 26.01 0.19 0.67 4.35 1.08 0.81 51.57 7.62 0.58 17.27 
Fourth x1 0.2 155.87 4.11 8.34 34.81 134.83 2.51 0.84 13.77 6.99 0.73 16.73 

wc=338,251 X2 0 168.48 0.54 6.13 15.6 132.75 8.94 1.47 6.83 20.89 0.88 16.44 
Fifth xi 0.11 197.92 5.59 5.3 43.15 82.61 1.62 0 23.22 1.68 0.45 17.24 

wc=475,079 x2 0.27 143.91 0.81 10.2 13.76 151.15 5.83 1 15.32 18.66 1.58 16.13 
Sixth x1 162.1 2.98 0.3 3.25 10.42 138.81 0.27 0 39.15 2.73 1.51 18.07 

wc=803,335 x2 0.36 269.46 9.51 1.81 3.27 24.08 5.92 1.27 36.38 9.58 0.74 17.27 
Seventh XI 186.5 2.88 0.64 2.74 6.32 57.76 3.24 0 97.47 1.88 2.55 18.07 

wc=2,512,024 x2 0.31 216 0.81 0.66 1.38 2.99 3.26 2.68 93.72 36.25 5.69 15.68 
Eighth XI 217.2 2.15 0.49 2.6 4.8 92.57 1.89 0.27 31.86 5.52 1.16 19.18 

wc=845,213 x2 0.31 269.44 8.1 2.1 2.55 21.91 3.57 2.09 36.71 14.26 1.7 17.16 
Ninth x, 207.6 6.07 0.72 1.62 1.89 47.25 2.44 1.6 86.71 3.73 1.47 18.55 

wc=1,944,114 x2 0.55 218.7 1.89 3.42 4.65 25.45 4.2 2.59 97.41 2.86 1.76 16.19 
Tenth XI 170.4 0.54 0 3.3 IF 145.14 1.51 0.71 30.69 3.09 2.55 18.1 

wc=705,202 x2 0.35 269.73 27.85 1.54 2.05 13.77 3.3 1.93 32.04 8.09 0.85 17.54 
Eleventh XI 192.2 8.37 0 3.66 3.76 75.37 2.07 1.66 70.03 2.25 2.18 18.36 

wc=1,425,694 x2 0.26 222.75 3.51 8.09 11.38 28.08 IF 1.99 66.28 13.9 2.97 16.44 
Twelfth XI 0 210.06 2.16 4.82 22.65 95.54 1.83 1.5 15.96 5.81 2.6 17 

wc=409,607 x2 0.16 242.27 4.25 3.02 3.49 64.32 8.05 0.72 9.79 26.73 0 17.01 
Thirteenth xi 192.5 0.27 0 2.18 4.38 54.52 2.19 0.89 90.48 12.51 2.05 18.03 

wc=2,175,253 x2 0.09 269.73 37.8 0.74 1.03 6.32 7.09 4.97 30.21 1.52 0.73 17.39 
Fourteenth x1 183.6 4.79 0.61 2.97 0.27 82.89 2.01 0.78 78.32 3.98 1.56 18.09 

wc=1,576,443 x2 0.27 243 2.43 2.8 4.67 17.01 5.69 2.62 75.65 5.29 2.78 16.53 
Fifteenth x, 158.9 2.97 1.29 3.12 7.6 121.41 2.01 1.17 58.62 3.78 0.27 17.82 

wc=1,300,811 x2 0.91 262.71 3.05 2.23 6.33 11.13 5.07 3.12 61.12 4.04 3.34 16.53 

able 5.2 Final decision variables without considering and considering the DM's preferences 
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Sub-period G, G2 G3 G4 GS 
First G, 0.009632 0.268126 0.391161 0.360843 0.962670 

G2 0.819518 0.051039 0.460758 0.994283 0.856954 
Second G, 0.015716 0.330685 0.290479 0.332118 0.987189 

G2 0.825856 0.095065 0.366847 0.993298 0.871379 
Third G, 0.001014 0.353566 0.223019 0.288196 1.00 

G2 0.964259 0.053134 0.227507 0.994321 0.915582 
Fourth G, 0.547022 0.471849 0.074466 0.996016 0.887202 

G2 0.587833 0.426707 0.081980 0.996473 0.871952 
Fifth G, 0.695057 0.346329 0.101192 0.995509 0.914268 

G2 0.502408 0.476134 0.108184 0.995943 0.855520 
Sixth G, 0.010646 0.503038 0.167411 0.467187 0.958021 

G2 0.948035 0.112962 0.177553 0.993720 0.915898 
Seventh G, 0.0106464 0.286044 0.410809 0.3861505 0.958034 

G2 0.753612 0.041474 0.462565 0.992952 0.831172 
Eighth G, 0.007858 0.396715 0.144952 0.286193 1.0 

G2 0.946515 0.105807 0.185234 0.993743 0.909985 
Ninth G, 0.021800 0.259967 0.368581 0.316928 0.983643 

G2 0.764005 0.114005 0.415011 0.993157 0.858422 
Tenth G, 0.001774 0.512317 0.137651 0.440325 0.959478 

G2 0.965779 0.083912 0.153542 0.993531 0.930035 
Eleventh G, 0.029151 0.334814 0.298235 0.367539 0.973370 

G2 0.779721 0.141366 0.307659 0.993814 0.871757 
Twelfth G, 0.734094 0.342292 0.083491 0.996079 0.901347 

G2 0.848416 0.221219 0.100915 0.994842 0.901945 
Thirteenth G, 0.001014 0.275757 0.399154 0.366157 0.956109 

G2 0.975158 0.061277 0.143359 0.994145 0.922139 
Fourteenth G, 0.017237 0.342153 0.333431 0.395984 0.958950 

G2 0.849176 0.093199 0.334276 0.993849 0.876341 

Fifteenth G, 0.011660 0.447705 0.251035 0.477464 0.944895 
G2 0.918378 0.082633 0.272873 0.991639 0.876578 

Table 5.3 Final goal values without considering and considering the DM's preferences 

No-risk no-probability model (no DM's preferences) 
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Figure 5.3 Goals' values for the fifteen sub-periods without the DM's preferences 
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No-risk no probability model (DM's preferences) 
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Figure 5.4 Goals' values for the fifteen sub-periods considering the DM's preferences 

On the other hand, in the case of a small amount of water, the algorithm assigns more land to 
x2 (contour furrowing livestock production good range conditions), x5 (run-off augmentation 
compacting and salt treatment) and x6 (run-off augmentation plastic cover and gravel). It is 
clear that the decision variables x5 and x6 are related to the improvement of the water use, 
corresponding to the fact that water constraint has a small value. 

Table 5.3 presents the goals' values for the fifteen 2-year sub-periods. Where G, represents 
the vector without considering the DM's preferences and G2 is the vector that results from 
considering them. In this problem five objectives have been defined: livestock production, 
water run-off, selected crops, sediment and fish yield. These objectives were normalised using 
equation 5.6, transforming them into five goals. The values each goal can take are in the range 
of [0,1]. 

Figure 5.3 represents the goals' values for the 15 sub-periods without considering the DM's 

preferences. From this figure, it can be seen that the goal that has the biggest values is G5 (fish 
yield). 

From Table 5.3, the results reveal that the value of G5 in the fifteen sub-periods ranges from 
0.831172 (smallest) to 1.0 (biggest). Thus, it is possible to conclude that G5 is the goal that 
performs the best throughout the fifteen sub-periods. Analysing the remaining goals, G, 
(livestock production) has very small values in the cases where the water constraint has 

values bigger than 500,000 m3. On the contrary, in the sub-periods where the water constraint 
is smaller the G, values are 0.547022 for the fourth sub-period, 0.695057 for the fifth sub- 
period and 0.734094 for the twelfth sub-period. Hence, as was expected, the value of the 
water constraint and the uncertainty related to it directly affect the goals' values. 
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Figure 5.4 represents the goals' values for the 15 sub-periods considering the DM's 
preferences. From this figure, it is evident that the goal that has the biggest values is G4 
(sediment). According to Table 5.3, all G4 values are greater than 0.99, thus this goal is the 
one that performs best. Analysing the remaining goals, it can be seen that G5 and Gl also have 
a good performance, whilst G2 and G3 have values smaller than 0.5. 

It would be interesting to compare the goal values with and without considering the DM's 
preferences. Figure 5.5 and 5.6 show this comparison for each of the fifteen sub-periods. On 
the one hand, these figures show that the algorithm's behaviour is very similar in the cases of 
the first, second, third, sixth, seventh, eighth, ninth, tenth, eleventh, thirteenth, fourteenth and 
fifteenth sub-periods. On the other hand, in the fourth, fifth and twelfth sub-periods, where 
the water constraint is small, the algorithm follows the same pattern yielding similar results. 

The DM's preferences model defined in subsection 5.4.3, will be used in the results analysis 
as follows: 

G3, crops >- GI, livestock >- G4, sediment >- G2, run-off >- G5, fish 

where G3 is preferred to G1, G, is preferred to G4, G4 is preferred to G2, and G2 is preferred to 
G5. 

For instance, in the first sub-period, the analysis is made in the order the DM set the 
preferences: 

G3-> G1-aG4-> G2--> G5 

No-preferences: 

G3 = 0.391161 -> G1= 0.009632 -a G4 = 0.360843 -> G2 = 0.268126 -> G5 = 0.96267 

Preferences: 

G3 = 0.460758 -> G1= 0.819518 -> G4 = 0.994283 -> G2 = 0.051039 -> G5 = 0.856954 

In conclusion, once the DM's preference model is introduced into the algorithm, it is expected 
that the goals' values will be affected. Although, according to the DM, G3 is preferred to G1, 
the increment in G1 is much bigger than that of G3. This also occurs in G4, whilst in G2 a 
decrement is reflected. Essentially, this happens since it is not possible to affect one goal 
without affecting the others. In other words, the problem objectives are in conflict. 

These results can also give the level of achievement for each goal. For example, the level of 
achievement in the no-preferences model for G3 is 39.11%, Gl is 0.96%, G4 is 36.08%, G2 is 
26.81% and G5 is 96.26%. In the preferences model, the level of achievement for G3 is 
46.07%, G1 is 81.95%, G4 is 99.42%, G2 is 5.10% and G5 is 85.69%. This comparison makes 
the difference between the no-preferences model and the preferences model clearer. 
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Figure 5.5 Comparison between the five goals with no-preferences and preferences 



Chapter 5. Probabilistic Trade-off Development Method 

Eleventh sub-period we=1,425,694 

0.19 
ý 0.8 

0.7 
0.6 ý0 

.5 0.4 
0.3 
0.2 

0 0.1 
0 

G1 G2 G3 G4 G5 
goals 

ý 
N 
N 

E I. - 
0 
C 

1 
0.9 
0.8 
0.7 
0.6 

2 0.5 ý 0.4 
0.3 
0.2 
0.1 

0 

no- 
preferences 

  preferences 

Thirteenth sub-period 
wc=2,175,253 

G1 G2 G3 G4 G5 
goals 

M no- 
preferences 

  preferences 

Twelfth sub-period we=409,607 
1 

0. s 
0.8 ; 0.7 0.6 ý0 

.5 0.4 
0.3 
0.2 

0 0.1 

W7 

E -R 
O 
C 

0 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 

G1 G2 G3 G4 G5 
goals 

  no- 
preferences 

  preferences 

Fourteenth sub-period 
wc=1,576,443 

G1 G2 G3 G4 G5 
goals 

Fifteenth sub-period wc=1,300,811 
1 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 
G1 G2 G3 G4 G5 

goals 

O no- 
preferences 

M preferences 

S no- 
preferences 

  preferences 

Figure 5.6 Comparison between the five goals with no-preferences and preferences 
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Analysing Figures 5.5 and 5.6, it can be seen that the changes in the five goals for the second, 
third, sixth, seventh, eighth, ninth, tenth, eleventh, thirteenth, fourteenth and fifteenth cases 
have the same tendency. 

In the fourth, fifth and twelfth sub-periods the goals' values remain almost the same. For 
instance, in the fourth sub-period, the analysis is made in the order the DM set the 
preferences: 

G3--> G, -ýG4-4 G2 --> GS 

No-preferences: 

G3 = 0.074466 ý GI = 0.547022 -+ G4 = 0.996016 ý G2 = 0.471849 ---> G5 = 0.887202 

Preferences: 

G3 = 0.081980 ý GI = 0.587833 -> G4 = 0.996473 ý G2 = 0.426707 -ý G5 = 0.871952 
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It is possible to see how the goals G3, G1 and G4 have been slightly incremented and the goals 
G2 and G5 have decreased slightly. The results clearly show that in this sub-period the DM's 
preferences model is completely followed by the algorithm. 

Hitherto, it has been demonstrated how the DM's preferences can be introduced into the GA 
through the use of a method that translates the preferences into mathematical functions. 

To validate the results obtained with the no-risk no-probability of achievement model, they 
are compared with those obtained using @Risk and RiskOptimiser in subsection 5.6.3. 

5.6.2 No-Risk Probability of Achievement Model 

Following the PROTRADE method definition, once the new goal vector G2 is obtained, the 
following step (step 8) is taken to generate a vector V, that expresses the trade-off between 
the goals' values and their probability of achievement. The no-risk probability of achievement 
model proposed in this thesis is outlined in Figure 5.7. 
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N-ý 
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Surrogate objective 
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DDT's required 
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Figure 5.7 No-risk probability of achievement model 

It has been decided that in order to analyse the impact of including the probability of 
achievement into the model only the first 2-year sub-period will be considered. 

Firstly the DM has to analyse the vector U2 (equation 5.11). This vector has the objectives' 
values [zi(X2), 22(X2), 23(X2), 24(X2), zs(X2)]: 

U2 = 

32.33 
36776.78 
833104.55 

-43.89 
60460.23 

If the DM is not satisfied with the results obtained in the no-risk no-probability of 
achievement model (sub-section 5.6.1), it is necessary to generate vector V1 using G2 goal 
values of the first 2-year sub-period. The DM defines an initial probability for each goal. 
Initially, it is supposed that the probability of achievement (1-a1) is equal to 0.5 and that it is 
the same for the five objectives, so the vector V1 is defined as follows: 



Chapter 5. Probabilistic Trade-off Development Method 154 

VI= 

(0.819518,0.5) 
(0.051039,0.5) 
(0.460758,0.5) 
(0.994283,0.5) 
(0.856954,0.5) 

From equation 5.13 the probability of achievement is read as follows: 

prob[Gi z 0.819518] z 0.5 

In addition, the DM selects the pair (G, (x2), 1-a, ) that is least satisfactory to him or her. 
According to the goal ranking proposed by the DM G3 > G, > G4 > G2 > G5, it is possible to 
see that G3 is more important than G, and so on. Although the goal that is least likely to be 
achieved is G2, the most important goal of all is G3. Thus the DM has to specify new values 
for the pair (G3(x2), 1-(X3). The DM wants an increment on G3 from 0.460758 to 0.5 and with 
a probability of achievement of at least 60%. In order to define the new probability, the value 
from optimising (maximising) the individual objective function for goal three is needed. This 
value is obtained from equation 5.43 and is 1,808,033.08 kg. Then the probability is defined 
as follows: 

prob[Z3 (x) 2: (0-5)(1,808,033.08)] >_ 0.6 

The no-risk probability of achievement model is defined again using the coefficients' 
expected values (Appendix B) in the five objectives to be optimised, and because it does not 
consider risk, these will not change their values in the whole model's solution. 

If the DM's requirements (defined above) are considered a new constraint has to be added, 
defining a new solution space D2 (Goicoechea et at., 1982): 

X1+x2+"""+, x125380 ha, Land 

q1 xt + q2 X2 +"""+ q12 X12 S 200,000 $, Capital 

I" X1 + W2 x2 +"""+ W12 X12: 5 2,702,473 m3, Water 

12 
iiz EE(cj)xj+ ka3 [x' Ax] z (0.5)(1,808,033.08) new constraint 

Ja1 

where cj represent the crop yield in kilograms/hectares with treatment j and A is the variance- 
covariance matrix given by: 

A= 

var(c) cov(cº, c2) ... cov(cº)cºº) cov(cº, c12) 
cov(c2) Cl) var(c2) """ cov(c2, cºº) cov(c2, cº2) 

cov(cll, cº) cov(cu, c2) ... var(cºº) cov(cºº, c12) 
Lcov(c, z)cI) cov(cl2 ic2) ... cov(ciDc11) var(clz) 

If it is assumed that ci are independent random variables, then cov(cj, ci) =0 for all i #j and 
the variance-covariance matrix is diagonal. 
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From Goicoechea et al. (1982), to find kk the standard normal distribution function 

(D,,,, m, 
(ka3) =1- 0.6 is used. From standard normal distribution tables, it is found that the 

value for k= -0.255. The values of c, and the variances are obtained from Table B. 4 in 
Appendix B. Thus, redefining the new constraint: 

12 ('12 1/2 

E E(cj) xj- 0.255 rE var(cj)x j1 >- (0.5)(1,808,033.08) 
l=1 i=1 J 

Then, S1(x) is maximised using xED2 to find the vector x3. Where S1(x) is defined as in 
equation 5.46: 

max s1(x) = 20.2569 G1 +1.30669G2+ 1.833115 G3 +1.316075G4 +1.071798G5 

In order to obtain vector x3, the GA is modified and run again using the new constraint: 

X3 - 

0 
220 
18 

2.65 
1.06 
4.75 
1.62 
1.23 
110 
3 

1.14 
16.16 

Once that G3 = 0.5 has been achieved and with a minimum probability of 0.6, it is necessary 
to know the rest of the goals' values and their probabilities of achievement. The first goal to 
be analysed is Gl (livestock) and the new constraint is defined as follows: 

12 12 
1/2 

E E(lj) xj + ka1 E var(lj)xj2 z 39.45 G1 

. i=1 �=1 

where lj represent the number of livestock heads (animal units per hectare) with treatment j. 
The values of lj and the variances are obtained from Table B. 1 in Appendix B, the values for 
x2 and x3 are taken from the vector x3, yielding the following equation: 

30.907 + 12.10 kýi z 39.45 Gi 

where Gl = 0.819518 is taken from the vector VI, solving the equation kal z 0.12 and from 
normal distribution tables c(0.12) = 0.54776 = a,, then 1- a, = 0.45224. 

The second goal to be analysed is G2 (run-off) and the new constraint is defined as follows: 
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12 12 
1/2 

E E(rj) xj+ ka2 IE var(ri)xý z 720,439.2344 G2 + 118.9756 
J=1 i=1 

where rj is the water run-off yield in cubic meters/hectare with treatment j. The values of rj 
and the variances are obtained from Table B. 3 in Appendix B, the values for xj are taken from 
the vector x3, yielding the following equation: 

36505 + 33501ka2 z 720,439.2344G2 + 118.9756 

where G2 = 0.051039 is taken from the vector VI, solving the equation ka2 z 0.01 and from 
normal distribution tables 1(0.01) = 0.50399 = a2, then 1- a2 = 0.49601. 

The third goal to be analysed is G4 (sediment) and the new constraint is defined as follows: 

12 
1/2 

-E E(sj) xj+ ka4 Evar(sj)xý >- 6041.35 G4 - 6050.7 
12 l -- 

. 
i=1 J=1 

where sj is the sediment yield in cubic meters/hectare with treatment j. The values of sj and 
the variances are obtained from Table B. 5 in Appendix B, the values for xj are taken from the 
vector x3i yielding the following equation: 

- 47.13 + 29.71 ka4 >6041.45 G4 - 6050.7 

where G4 = 0.994283 is taken from the vector VI, solving the equation ka4 z 0.13 and from 
normal distribution tables 1(0.13) = 0.55172 = a2, then 1- a2 = 0.448. 

The last goal to be analysed is G5 (fish) and the new constraint is defined as follows: 

12 112 1/2 

E E(. f j) xj+ k,, s E var( f j)x 
jz 70,552G5 

1=1 
. 
i=1 

where f is the fish yield in kilograms/hectare with treatment j. The values of f and the 
variances are obtained from Table B. 5 in Appendix B, the value for x12 are taken from the 
vector x3, yielding the following equation: 

4040.28 + 2160 ka5 z 70,552G5 

where G5 = 0.85 6954 is taken from the vector VI, solving the equation ka5 Z 0.000 1 and from 
normal distribution tables t(0.0001) = 0.5 = a2, then 1- a2 = 0.5. 

V2 = 

(0.819518,0.45Y 
(0.051039,0.49) 

(0.5,0.6) 
(0.994283,0.44) 
(0.856954,0.5) 

From these results, it can be seen that when the probability of achievement of goal three was 
modified, the other goals' probabilities of achievement were also modified. 
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5.6.3 Risk No-Probability of Achievement Model 

The Risk no-probability of achievement model consists of including risk in the coefficients of 
the objective function as well as in the decision variables. 

The risk no-probability of achievement model proposed in this thesis is shown in Figure 5.8. 
This model is used to find the results presented in this sub-section. 
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Figure 5.8 Risk no-probability of achievement model 

The risk no-probability of achievement model was solved using the same algorithm (GA and 
PROTRADE) used in subsection 5.6.1, but including a normal distribution. This distribution 
will be used to generate random values for the decision variables' parameters. The GA has 
been defined in section 5.5 of this chapter. This problem was also solved by Duenas et 
al. (2002) using @Risk 4.0 and RiskOptimiser, in such a way as to compare the results. 

@RISK is a decision and risk analysis programme based on the Monte Carlo technique. It 
allows DMs to explore the range of possible outcomes for any decision by using probability 
distributions. @RISK randomly samples from the probability distribution functions and 
records the resulting outcomes during a simulation. The result is a distribution of possible 
outcomes, and the probabilities of each outcome occurring. This not only demonstrates what 
could happen, but how likely it is to happen, and therefore assists the decision-maker in 
making his/her decision by helping them recognise that some outcomes are more likely to 
occur than others, and should therefore be given more weight in their evaluation. 

RISKOptimiser achieves the optimisation of @RISK models. This is a stochastic optimisation 
add-in for Microsoft Excel, that combines genetic algorithm technology with the Monte Carlo 
simulation engine of @RISK to optimise models that include uncertain "stochastic" factors. It 
performs optimisation under uncertainty, finding the best combination of parameters while 
accounting for random, uncontrolled factors. RISKOptimiser runs multiple simulations, each 
time using genetic algorithms to find a better set of parameters to optimise simulation results. 

As mentioned above the case study is solved using both a GA and RISKOptimiser. In both 
methods two models, each with variations, are constructed, one that does not take risk into 
account and another that does. This is done so that the outputs could be compared to see if the 
decision made based on the risk-free model would be the same as that made with the one that 
accounted for risk. 
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The water constraint used for both the GA and @Risk is 2,702,473 m3, which is that, which 
corresponds with the maximum value that was obtained when the Monte Carlo simulation 
was performed. 

Table 5.4 shows the results of the GA and PROTRADE algorithm considering risk and 
compares them with those found without risk (subsection 5.6.1). These results do not consider 
the DM's preferences and are rounded to the nearest integer. Figure 5.9 was built using these 
values. 

Practices 
No-risk 

(in Hectares) 
Risk 

(in Hectares) 

XI 194 69 

xZ 3 45 

x3 0 25 

X4 4 24 

x5 3 43 

x6 51 26 

x7 2 3 

X8 2 2 

x9 89 109 

xiu 10 9 

x1l 3 9 

x12 18 15 

Table 5.4 Results of the land allocation using the GA and PROTRADE algorithm 
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Figure 5.9 Land allocation comparison between no-risk and risk models no-preferences 

In the risk model, land allocation tends to be more distributed between all the decision 

variables than in the no-risk model. 

The maximum values for the objective function represented as the addition of the five 

objectives are 1.270746 (no risk) and 0.825715 (risk). In conclusion the results found 

considering uncertainty (risk) in the decision variables are significantly different to those 
found in the no risk model. 
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The values of the decision variables are used to generate the initial goal vector G1. 

G, 

G2 

G, = G3 
G4 

Lc5 
The goal vector is generated for both no-risk and risk models and the results are presented in 
Table 5.5. Figure 5.10 is constructed using these values and basically compares the results of 
the models. 

Goals No-risk Risk 

G, 0.009632 0.171863 
G2 0.268126 0.195684 
G3 0.391161 0.474402 
G4 0.360843 0.819701 
G5 0.962670 0.803467 

Table 5.5 Goal vector G1 for no-risk and risk models 

Figure 5.10 Comparison of the goal vector for no-risk and risk models (no-preferences) 

From the goal vector it is possible to observe that in the no risk model the level of 
achievement for G3 is 39.11%, G, is 0.96%, G4 is 36.08%, G2 is 26.81% and G5 is 96.26% 
(Table 5.5). By contrast, in the risk model the level of achievement for G3 is 47.44%, G, is 
17.19%, G4 is 81.97%, G2 is 19.57% and G5 is 80.34%. It is important to note that the goal 
vector G1 contains the goals' values without considering the DM's preferences. 

At this point it is necessary to consider the DM preferences model presented in sub-section 
5.4.3: 

G3, crops r G1, livestock r G4, sediment >- G2, run-off >- G5, fish 

Maximising S, (x) using equation 5.9 yields the results shown in Table 5.6. S1(x) is the new 
surrogate function obtained after considering the DM's preferences. 
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Practices 
No-risk 

(in Hectares) 
Risk 

(in Hectares) 

X1 0 8 
xZ 234 100 
X3 3 21 

X4 3 28 
x5 1 26 

xb 5 33 

x7 2 1 
X8 1 4 
x9 110 111 
x10 3 17 

xii 1 10 

X12 16 14 
Table 5.6 Results of the land allocation maximising S1(x) 
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Figure 5.11 Land allocation comparison between no-risk and risk models (preferences) 

The values of the decision variables are used to generate the goal vector G2. 

Gi 
G2 

G2 = G3 

G4 

Lc5 

160 

The goal vector is generated for both no-risk and risk models and the results are presented in 
Table 5.7. Figure 5.12 is constructed using these values and compares the results of the 
models. 
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Goals No-risk Risk 

G, 0.819518 0.364766 
G2 0.051039 0.194940 
G3 0.460758 0.494646 
G4 0.994283 0.971271 
G5 0.856954 0.737199 

Table 5.7 Goal vector G2 for no-risk and risk models 

Figure 5.12 Comparison of the goal vector for no-risk and risk models (preferences) 
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From the goal vector it can be seen that in the no risk model the level of achievement for G3 is 
46.07%, G, is 81.95%, G4 is 99.42%, G2 is 5.10% and G5 is 85.69% (Table 5.7). By contrast, 
in the risk model the level of achievement for G3 is 49.46%, G, is 36.47%, G4 is 97.12%, G2 
is 19.49% and G5 is 73.71%. 

After considering the DM's preferences the only goals that are increased are G3 and G2. 

It is apparent that in the no risk model (Table 5.4), x3 is the only practice that has no land 
allocated to it. The land allocated to x5, x,, x8 and x,, decision variables is 3,2,2 and 3 
hectares respectively. While x, (no reclamation programme) has the highest allocation, 194 
hectares. In the risk model all the practices have land allocated and x9 has the highest 
allocation of 109 hectares, and x5, x,, x8 and x� decision variables have 43,3,2 and 9 hectares 
respectively. This means for example that in the risk model the land allocation for practice x5 
(corn production) is increased more than 10 times. It is possible to conclude that when risk is 
considered, there is a drastic change in the allocations. 

Comparing the goals' values in both no-risk and risk models with and without considering the 
DM's preferences yields Figures 5.13 and 5.14. 

Figure 5.13 Comparison between G, and G2 without risk 
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Figure 5.14 Comparison between G, and G2 with risk 

From Figure 5.13, the results indicate that the difference in the goals' values after considering 
the DM's preferences is considerably bigger, affecting the DM's decisions in a more dramatic 
way. While in Figure 5.14, it can be seen that the difference between the values without 
considering the DM's preferences is smoother, but it also affects the DM's decisions. 

When the DM's preferences are considered, the levels of achievement also have a drastic 
change. For example, in the no risk model the level of achievement for goal two is 26.81% 
(Table 5.5), while, including the preferences, goal two's achievement level is 5.10% (Table 
5.7). In the risk model with no-preferences goal one's achievement level is 17.18%, while 
including the preferences goal one's achievement level is 36.47%. With these comparisons it 
is possible to conclude firstly, that in terms of numerical results the differences between the 
no risk and risk model is considerable because the maximum value found for F(x) in the no 
risk model is 1.270746 and in the risk model it is 0.825715. Secondly, in terms of level of 
achievement the PROTRADE method allows the DM to have a better control of the model 
and to know exactly what occurs in the algorithm. The inclusion of probabilities makes the 
model more dynamic in the sense that now it is possible to specify the probability of having a 
certain level of achievement in each goal according to the DM's requirements (preferences). 

As mentioned in sub-section 5.6.1, in order to validate the results obtained by the GA and 
PROTRADE algorithm, it was decided to use @Risk and RiskOptimiser to solve the same 
case study. 

The first set of optimisations is performed with the water constraint equal to 2,702,473 m3 and 
the values of 0.5 and 0.15 are used for the crossover and mutation rates respectively. The 
decision variables were assigned probability distributions because they represent the area 
allocated to the different practices, which can vary from zero to three hundred and eighty 
hectares (0,380 ha). These distributions were all Uniform Distributions (written as 
RiskUniform (min, max)), but with different ranges. 

The population size was set to 80, being the same as that used in the GA. The results obtained 
are as follows: 
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Table 

Practices 
No risk 

(in Hectares) 
Risk 

(in Hectares) 

XI 165 99 

x2 91 32 

x3 0 16 
X4 7 16 

x5 0 19 

x6 32 57 

x7 2 1 
X8 0 9 

xq 61 62 

x1o 5 0 

x/I 0 63 

X12 18 7 

Table 5.8 Results of the land allocation using RiskOptimiser 

GA-PROTRADE RiskOptimiser 

P i No-risk R isk No-risk Risk 
ract ces (ha) % ha % (ha) % ha % 

x 194 51.05 69 18.16 165 43.42 99 26.05 
X2 3 0.789 45 11.84 91 23.95 32 8.42 

X3 0 0 25 6.579 0 0 16 4.21 

X4 4 1.052 24 6.316 7 1.842 16 4.21 
X5 3 0.789 43 11.32 0 0 19 5 

X6 51 13.42 26 6.842 32 8.42 57 15 
X7 2 0.526 3 0.789 2 0.526 1 0.263 

X8 2 0.526 2 0.526 0 0 9 2.368 
x9 89 23.42 109 28.68 61 16.05 62 16.32 
X10 10 2.631 9 2.368 5 1.316 0 0 

x 3 0.789 9 2.368 0 0 63 16.58 
X12 18 4.737 15 3.947 18 4.737 7 1.842 

5.9 Results of the l and allocation using GA-PROTRADE and RiskOD imiser 
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Table 5.9 contains the results of the GA-PROTRADE approach and compares them with the 
RiskOptimiser results. It also presents the percentile of land allocated to each decision 

variable with respect to the total land of 380 hectares for both no-risk and risk models. 
Additionally, Figures 5.15 and 5.16 are constructed using this table. 

No-risk model 
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Figure 5.15 Land allocation comparison between GA-PROTRADE and RiskOptimiser 
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Figure 5.16 Land allocation comparison between GA-PROTRADE and RiskOptimiser 

Table 5.9 and Figures 5.15 and 5.16 demonstrate that in the GA, when risk was not 
considered, x3 is the only practice that has no land allocated to it for the first 2-year period. 
While in the @RISKOptimiser model, when risk was not considered, x3, x5, x8 and x� 
practices have no land allocated to them for the first 2-year period. The land allocated to x5, x8 
and x� practices in the GA is 3,2 and 3 hectares respectively; therefore it can be concluded 
that the GA-PROTRADE model allocates land along almost all decision variables. Moreover, 

x, (no reclamation programme) has the highest allocation in both models of 194 hectares in 
the GA and 165 hectares in the RISKOptimiser. In other words, the land allocated to x, in the 
no-risk model for the GA is 51% of the 380 hectares and for the RiskOptimiser there is 43.4% 

of the 380 hectares. 

In the risk model, the GA-PROTRADE approach decision variable x9 (Alfalfa production) has 
the highest allocation 28.68% of the 380 hectares, while in the RiskOptimiser the decision 

variable with the highest allocation is x, 26%. In the GA all the decision variables have land 

allocated and in the RiskOptimiser just the decision variable x, o has no land allocated. In the 
RiskOptimiser no-risk model, the variables that have no land allocated are four (x3, x5, x8 and 
x�) while in the risk model there is one (x, o), then a conclusion can be made about the 
involvement of normal distribution in the model yield to more uniform allocation results. 
With these comparisons it is possible to conclude firstly, that although in terms of numerical 
results the GA and RiskOptimiser are different their tendency is similar when risk was not 
included. Secondly, when risk is considered not only there is a drastic change in some of the 
allocations but also the land allocation seems to be more uniform. This conclusion can be 

applied to both models. Therefore, generally when risk is considered the decisions taken will 
necessary be different. 

In terms of allocation the results found with the GA-PROTRADE approach can be considered 
better from the point of view that all the decision variables are taken into account. 
Nevertheless, in terms of time performance RISKOptimiser is faster than the GA. Finally, the 
GA allows the programmer to have a better control of the model and to know exactly what 
occurs in the algorithm. 

It is necessary to bear in mind that this kind of problem would be very difficult to solve 
without the aid of a GA because of its combinatorial nature, continuous values and the 
number of decision variables involved. 
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5.6.4 Risk Probability of Achievement Model 

Following the PROTRADE method definition, once the new goal vector G2 is obtained, the 
following step (step 8) is taken to generate a vector V1 that expresses the trade-off between 
the goals' values and their probability of achievement. The risk probability of achievement 
model proposed in this thesis is outlined in Figure 5.17. 
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Figure 5.17 Risk probability of achievement model 

It has been decided that in order to analyse the impact of including the probability of 
achievement into the model only the first 2-year sub-period will be considered. 

Firstly the DM has to analyse the vector U2 (equation 5.11). This vector has the objectives' 
values [zl(X2), 22(X2), 23(X2), 24(X2), 25(X2)1: 

Uz = 

14.39 
140466.15 
894373.45 

-182.91 
52011.18 

If the DM is not satisfied with the results obtained in the risk no-probability of achievement 
model (sub-section 5.6.3), it is necessary to generate vector VI using G2 goal values of the 
first 2-year sub-period. The DM defines an initial probability for each goal. Initially, it is 
supposed that the probability of achievement (1-(x, ) is equal to 0.5 and that it is the same for 
the five objectives, so the vector V, is defined as follows: 

V1= 

(0.364766,0.5 
(0.194940,0.5) 
(0.494646,0.5) 
(0.971271,0.5 
(0.737199,0.5) 

From equation 5.13 the probability of achievement is read as follows: 

prob[Gi z 0.364766]; >- 0.5 
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In addition, the DM selects the pair (G, {x2), 1-(xj) that is least satisfactory to him or her. 
According to the goal ranking proposed by the DM G3 > G> > G4 > G2 > G5, it is possible to 
see that G3 is more important than GI and so on. Although the goal that is least likely to be 
achieved is G2, the most important goal of all is G3. Thus the DM has to specify new values 
for the pair (G3(x2), 1-a3). The DM wants an increment on G3 from 0.494646 to 0.53 and with 
a probability of achievement of at least 60%. In order to define the new probability, the value 
from optimising (maximising) the individual objective function for goal three is needed. This 
value is obtained from equation 5.43 and is 1,808,033.08 kg. Then the probability is defined 
as follows: 

prob[Z3 (x) z (0.53)(1,808,033.08)] z 0.60 

The risk probability of achievement model is defined again using the coefficients' expected 
values (Appendix B) in the five objectives to be optimised. 

If the DM's requirements (defined above) are considered, a new constraint has to be added, 
defining a new solution space D2 (Goicoechea et al., 1982): 

xl+x2+"""+x12<_380 ha, Land 

g1xt+q2 x2+"""+g12x125200,000 $, Capital 

III xt + Iv2 X2 +''' + 1112 xº2 <_ 2,702,473 m3, Water 

12 
E E(cj) xj+ ka3 [x' AXI /2 Z (0.53)(1,808,033.08) new constraint 
j=l 

where cj represent the crop yield in kilograms/hectares with treatment j and A is the variance- 
covariance matrix given by: 

A= 

var(cº) cov(cº, c2) ... cov(cº, cu) cov(cº2cº2) 

cov(c2, cº) var(c2) ... cov(c2, cu) cov(c2, c12) 

cov(cºº, cº) cov(cºº)c2) ... var(cn) cov(cºº)cº2) 
cov(cº2, cº) cov(cº2, c2) .. " COV(c12, CI1) Var(c12) 

If it is assumed that c; are independent random variables, then cov(c,, cj) =0 for all i #j and 
the variance-covariance matrix is diagonal. 

From Goicoechea et al. (1982), to find k, 3 the standard normal distribution function 
r'no, rar (ka3) =1- 0.60 is used. From standard normal distribution tables, it is found that k«3 = 

-0.255. The values of c; and the variances are obtained from Table B. 4 in Appendix B. Thus, 
redefining the new constraint: 

12 112 1/2 

ZE(cj) xj-0.255 Evar(cj)xj Z (0.53)(1,808,033.08) 
j=t j=1 

Then, S1(x) is maximised using xeD2 to find the vector x3. Where S1(x) is defined as in 
equation 5.46: 
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maxs1 (x) = 2.372432 G1 + 1.554639G2 +1.856112G3 +1.207764G4 + 1.098817 Gs 

In order to obtain vector x3i the GA is modified and run again using the new constraint: 

X3 - 

30 
100 
20 
13 
19 
50 
7 
10 
61 
0 
60 
10 

Once that G3 = 0.53 has been achieved and with a minimum probability of 0.60, it is 
necessary to know the rest of the goals' values and their probabilities of achievement. The 
first goal to be analysed is G1 (livestock) and the new constraint is defined as follows: 

12 12 
1/2 

EE(lj)xj+kal Evar(Ij)xj z39.45G1 
j=1 j=1 

where 1; represent the number of livestock heads (animal units per hectare) with treatment j. 
The values of 1; and the variances are obtained from Table B. 1 in Appendix B, the values for 
x2 and x3 are taken from the vector x3i yielding the following equation: 

13.75 + 5.506 kaIz 39.45 Gi 

where G, = 0.364766 is taken from the vector V,, solving the equation ka, z 0.11 and from 
normal distribution tables I(0.1 1) = 0.543 80 = a,, then 1- a, = 0.4562. 

The second goal to be analysed is G2 (run-off) and the new constraint is defined as follows: 

12 12 
1/2 

E E(rj) xj + ka2 E var(r j)xj2 z 720,439.2344 G2 + 118.9756 
j°1 j=I 

where rj is the water run-off yield in cubic meters/hectare with treatment j. The values of rj 
and the variances are obtained from Table B. 3 in Appendix B, the values for xj are taken from 
the vector x3i yielding the following equation: 

132880 + 20727 ka2 z 720,439.2344 G2 + 118.9756 

where G2 = 0.194940 is taken from the vector VI, solving the equation ka2 z 0.37 and from 
normal distribution tables cI1(0.37) = 0.64431 = a2i then 1- a2 = 0.3557. 

The third goal to be analysed is G4 (sediment) and the new constraint is defined as follows: 
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12 12 
1/2 

-E E(s; ) xj+ kQ4 IE var(sj)xf z 6041.35 G4 - 6050.7 
I=1 

. 
i=1 
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where sj is the sediment yield in cubic meters/hectare with treatment j. The values of sj and 
the variances are obtained from Table B. 5 in Appendix B, the values for xj are taken from the 
vector x3i yielding the following equation: 

- 650.63 + 619.71 ka4<6041.45 G4 - 6050.7 

where G4 = 0.971271 is taken from the vector Vi, solving the equation ka4 z 0.75 and from 
normal distribution tables 1(0.75) = 0.77337 = a2, then 1- a2 = 0.2266. 

The last goal to be analysed is G5 (fish) and the new constraint is defined as follows: 

12 r12 1/2 

EE(f j)xj+kas Evar(f f)xj2 70,552G5 
j=1 j=1 

where f is the fish yield in kilograms/hectare with treatment j. The values of f and the 
variances are obtained from Table B. 5 in Appendix B, the value for x12 are taken from the 
vector x3i yielding the following equation: 

37410 + 20000 kas ? 70,552 Gs 

where G5 = 0.737199 is taken from the vector VI, solving the equation k,, 5 ý 0.73 and from 
normal distribution tables c1(0.73) = 0.76730 = a2, then 1- a2 = 0.2327. 

Vz= 

(0.364766,0.45 
(0.194940,0.5) 

(0.53,0.6) 
(0.971271,0.23) 
(0.737199,0.23)_ 

From these results, it can be seen that when the probability of achievement of goal three was 
modified, the other goals' probabilities of achievement were also modified. 

5.7 Summary 

In this chapter the PROTRADE method has been presented as a tool used for the solution of 
multiple objective optimisation problems, considering the DM's preferences. 

The main characteristics of PROTRADE are: 

It is an interactive multi-objective stochastic method 
It involves the DM's preferences. 
It handles risk and uncertainty. 
It is based on the formulation of surrogate functions. 
It allows the DM to visualise the goals function trade-off. 
It allows the DM's to control the goals' probability of achievement. 

In General, PROTRADE allows the direct programming of the GA due to the goals' 
transformation into the F(x) and S(x) functions, using these as the fitness functions. 



Chapter 5. Probabilistic Trade-off Development Method 169 

In this chapter a GA-PROTRADE approach was proposed creating a hybrid model that uses 
the strengths of GA and decision analysis techniques. Four original models were also 
developed, the aim of these models is to consider the DM's preferences in the problem 
solution as well as the DM's requirements related to the probability of achievement of each 
objective once it has been transformed into a goal. The four models were presented as 
follows: 

1. No-risk no-probability of achievement. 
2. No-risk probability of achievement. 
3. Risk no-probability of achievement. 
4. Risk probability of achievement. 

Figure 5.18 shows the general model for the GA-PROTRADE approach. 
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Figure 5.18 GA-PROTRADE approach 
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In order to demonstrate the applicability of the GA-PROTRADE approach the Black Mesa 
Region problem was solved. This problem is a case study solved by the authors of the 
PROTRADE method (Goicoechea et al., 1979). In the Northern Arizona on the Navajo 
Nation lands there was an area of 5,700 hectares to be strip-mined for coal in a 30 year- 
period, resulting in the development of a programme for designing and implementation of 
multiple land uses. The 30-year period was divided into 15 sub-periods each one 2 years long. 
Five objectives and twelve decision variables were considered. The initial definition of the 
problem also considered three constraints: land, capital and water. The water constraint 
consisted of two variables, the water consumption and the water available for each 2-year 
sub-period. The water available was determined through run-off practices and rainfall. Since 
rainfall is unpredictable, this value is a random variable, introducing uncertainty into the 
problem. Risk was also introduced on the decision variables through the use of a normal 
distribution. If the definition of this problem is analysed, it can be concluded that this case 
study is a very complex problem with a very complex solution. 

This is a very interesting case study not only because it has 12 different decision variables but 

also because of the grade of uncertainty that is present and the risk analysis that can be 

performed. Two principal conclusions can be made; firstly that PROTRADE is a robust 
method that allows in a direct way the interaction between the algorithm and the DM 
preferences, giving it a major flexibility. Secondly, that without the GA the solution of this 
case study would have taken a very large amount of time. Due to the search capabilities of 

Fitness 
function 
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GAs the solution time was decreased considerably showing the strengths of the GA- 
PROTRADE approach. 

It was also shown that the use of a hybrid model gives the DM better control of the model's 
and the algorithms' outcomes. Moreover, the use of a GA makes the problem's solution more 
flexible and accurate, giving the programmer control of the genetic operators. The drastic 
changes occurred when the probability of achievement of the problem were changed, showing 
again that the control of the actions to follow is now in the DM's hands. Another conclusion 
that is evident is that the consideration of risk is very important to decision-making. The 
decisions made, based on models that did not include risk, were different to the decisions 
made when it was considered. It is also shown how the use of a real-valued GA can help in 
the direct implementation of the fitness function. 

Finally, the most important conclusion is that the strongest point of the GA-PROTRADE 
approach is that it allows the programmer to manage goal levels, the DM's preferences and 
probabilities of achievement. 

The application of this method for other Multiobjective Optimisation Problems constitutes an 
area for further study. An area to explore could be the use of a FRBS to automate the DM's 
preference model. 

In the next chapter a method that combines the strengths of the GA-SEMOPS (Chapter Four) 
and the GA-PROTRADE approaches is proposed. This method is used for the solution of a 
resource allocation problem present in the Automatic Control and Systems Engineering 
Department at the University of Sheffield. 



CHAPTER 6 

Interactive Procedure for Multiple 
Objective Optimisation Problems 
(IPMOOP) 
6.1 Introduction 

In Chapters Four and Five, different approaches for the solution of MCDM problems were 
presented. The main objective of these models was the introduction of the DM's preferences 
in an interactive way. Primarily, the approaches consisted of a GA using an OR method for 
the solution of multiple objective optimisation problems. Some case studies were also solved 
in order to validate the good performance of the different proposals. 

The objective of this chapter is to present a new model for the solution of MCDM problems 
which focuses on the decision-making procedure followed when a real life problem has to be 
solved rather than just the mathematical techniques used for the solution. The main objective 
of this model is to visualise the decision-making process as a continuous interaction between 
the DM and the analytic programmer (researcher). This model is named interactive procedure 
for multiple objective optimisation problems (IPMOOP) and is presented in section 6.2. 

In order to determine the effectiveness of this proposal it was decided to solve a real life 
problem. The problem selected is a resource allocation problem present in the Automatic 
Control and Systems Engineering (ACSE) department at the University of Sheffield. The 
ACSE department was established in 1968 in response to industry needs. Nowadays, this 
department divides the academic staff activities into three areas: lecturing, research and 
administrative work. The overall objective of this problem is the optimisation of these 
activities. For instances it would be desirable to maximise the number of research activities 
and minimise the administrative work. 

The solution of this problem is described in section 6.3. In subsections 6.3.1 and 6.3.2 
respectively the initial problem is formulated and solved. In subsection 6.3.3 the data 
collection stage is described, in subsection 6.3.4 the final problem is formulated whilst in 
subsection 6.3.5 the final problem is solved. 

The final problem's results are described in section 6.4. Finally, a chapter summary is 
presented in section 6.5. 

6.2 Method Description 

As stated by Churchman et al. (1957) there are two main actors in the solution of a decision 
problem: the DM and the researcher (analytic programmer). It is important to bear in mind 
that the DM could be one person or a group of people. The DM and the researcher have to be 
in continuous communication. Therefore, they will be considered as a unit called a decision- 
making process group (DMPG). The main purpose of this unit is to consider the DM and the 

171 
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researcher as one entity that will work together throughout the solution of the problem (Figure 
6.1). 

................ 

Decision 
Maker 

Researcher 

Figure 6.1 Decision-making process group (DMPG) 

Saaty (1994) states that to make a decision it is necessary to have "knowledge, information 
and technical data" such as details about the problem, the people involved, objectives and 
policies, constraints and time horizons. Consequently, Figure 6.2 represents the general 
diagram of the IPMOOP proposed in this chapter. This procedure includes all the elements 
defined by Saaty (1994). From Figure 6.2, it can be seen that the first step is the DM 
identification. This is a vital aspect of the process because the DM is one of the most 
important elements in the application of this method. As mentioned before, this process is 
completely focused on the introduction of the DM's preferences and also the DM is part of 
the DMPG unit definition. 

DM identification 

DAIPG definition 
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Data collection 

ý 

Initial Problem 
Formulation 

ý 

Initial Problem 
Solution 

D111PG ý 

Data collection 
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Final Problem 
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i 
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Figure 6.2 Interactive procedure for multiple objective optimisation problems (IPMOOP) 

It is almost impossible to determine the nature of a problem as well as the final problem 
formulation from the first attempt. For this reason, it is necessary to have as a starting point an 
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initial problem formulation. Figure 6.3 outlines the elements of the initial problem 
formulation. From this figure, it can be seen that the model focuses mainly on quantitative 
data. It can be also seen that the DMPG unit appears twice during the process. The first time 
the unit is considered the aim is to define the objectives, the decision variables and the 
constraints of the initial problem. The second time the DMPG unit is considered, the 
researcher interviews the DM or the DM has to answer a questionnaire developed by the 
researcher. The main purpose of this questionnaire or interview is to gather as much 
quantitative information as possible from the DM to be used in the goals definition. 

LJ 
I- 

DMPG 
1. Objectives definition 

T_ 
2. Decision variables definition 

4 
3. Constraint equations formulation 

a, "ý 
DMPG 

Questionnaire or interview 

Quantitative data 

4 

4. Goals definition 
" Goal equations formulation 
  Aspiration levels definition 

Qualitative data 

Figure 6.3 Initial Problem Formulation 

Once the initial problem has been formulated, it has to be solved. The problem solution 
involves the determination of which analytic, numerical or simulation (Churchman et al. 
1957) technique will be used. The selection of this technique depends on the problem's 
characteristics. It is desirable for this research purpose to use GA techniques for the solution 
of optimisation problems. Figure 6.4 is the general diagram for the problem solution. This 

process can be followed in both initial and final problem solutions. 

Solution Technique Selection 
(analytic, numerical or simulation) 

4 
Surrogate Function Formulation 

4 
Surrogate Function Optimisation 
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Possible solutions Analysis 

ý '... 
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Figure 6.4 Problem Solution 
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In this research work two OR methods (SEMOPS and PROTRADE) have been combined 
with GAs. The common characteristic of both methods is that they use a surrogate function. 
Therefore, this model includes the use of a surrogate function that can be directly understood 
as the objective function and mapped as the GA's fitness function. Although the formulation 
of this surrogate function is different for each method, it is considered as a general step, called 
the Surrogate Function Formulation (Figure 6.4). The formulation of the surrogate function 
will be divided into two alternatives: 

First alternative 

This alternative is selected when sequential decisions are to be used. It is important to bear in 
mind that the ability to make sequential decisions is one of the strongest characteristics of the 
SEMOPS method. The surrogate function s used will be defined as in Chapter Four equation 
4.5: 

1' 

s=Ed 
1=1 

(6.1) 

where d(x) function is defined after the goal levels z, {x) are compared to the aspiration levels 
AL; having the following alternatives: 

At most: 

zr (X) :g AL; d; = 
zt (x) 

AL 

At least: 

zi(X)ZALi; di= 
AL 

zi (x) 
Equal: 

zj(X) = ALr; 
11 AL 

+ zr(X) dr= 2 
zr(X) AL 

(6.2) 

(6.3) 

(6.4) 

Within an interval: 
ALu ! ýzi(X) : 5ALw 

ALiu jALL 
+ z; (X) 

d, _ AL; L + ALw z; (X) AL; u 

(6.5) 

These equations are taken from the SEMOPS method (Monarchi et at., 1973) and were 
initially defined in Chapter Four equations 4.1 to 4.5. 

Having defined the surrogate function, the next step is the surrogate function optimisation, in 
other words, its maximisation or minimisation. 

Second alternative 

The second alternative is selected when it is necessary to include risk in the solution of the 
problem. For this reason, it is necessary to calculate the objective coefficients' expected 
values. 

A vector of objective functions is defined using the coefficients' expected values: 
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Z(x) - 
[ZI (x)i Z2 (X), 

..., Zp (x)] e 
gq (x): 9 0 lvlterc ge l[1, Q] 

x>0, 

zr(X)= Ecy xJ, zr(x)=E[zj(x)] 
I=t 

(6.6) 

where p is the number of objectives to optimise, q is the number of constraints, c; are the 
coefficients' expected values and n is the number of decision variables. 

Then vectors Ul and M are defined as having the maximum and minimum values of the 
objective functions respectively. This means that vector U1 has the values of the maximisation 
of each objective separately (e. g. max zl(x), max z2(x), max z3(x), max z4(x), max zs(x)), 
subject to constraints gq(x) <_ 0. In addition vector M has the minimum values found following 
the same procedure, in other words, minimising each objective separately subject to the 
constraints. 

zi(xi) = max 

Finally, an initial surrogate function is formulated: 
P 

1' (x) 
_ Gi(a) 

1-1 

zr (X), iE I[1, Pý 
ZI'XI) 

Z2 
(X2) 

U1= 

ZP (Xq). J 
ZI min 

Z2 min M= 

LZ3minj 

where 

Ca (a) = 
Zl (a) - Zlmin 

Zl 
(xi*) 

- Zi min 

(6.7) 

(6.8) 

(6.9) 

where z; (x) is the value of objective function i (i = 1,2,.., n); z;,,,;,, is the minimum value 
obtained when objective i is subjected to the constraints; and z; (x') is the maximum value 
obtained when objective i is subjected to the constraints. Hitherto, each objective has been 
normalised using equation 6.9 and the surrogate function F(x) has been defined as the 
addition of the normalised objectives. What is more, each objective can be maximised or 
minimised. In F(x) there will be given a+ sign for maximisation and a- sign for 
minimisation. 

These equations are taken from the PROTRADE method (Goicoechea et at., 1979) and were 
initially defined in Chapter Five equations 5.3 to 5.6. 

As defined in the first alternative, once the surrogate function is defined, the next step is its 
optimisation (maximisation or minimisation). 
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6.3 ACSE Problem Formulation 

The ACSE department at the University of Sheffield was established in 1968 in response to 
industry needs. The ACSE department was graded 5* in the 2001 Research Assessment 
Exercise. Nowadays, this department provides a range of undergraduate and postgraduate 
degree courses, offering five separate courses, each of which can lead to either a Bachelor of 
Engineering (BEng) degree, or to a Master of Engineering (MEng) degree. The five courses 
are : 

1. Computer Systems Engineering. This course is intended for students who wish to gain the 
hardware and software skills and knowledge necessary to design and implement computer 
based engineering systems. These computer based systems range from simple domestic 
appliances to aero-engine controllers; from communications switching systems to process 
controllers on chemical plants; and from programmable logic controllers (PLCs) to 
transputer arrays. 

2. Systems and Control Engineering. This course is intended for students who wish to gain a 
deep understanding of feedback control systems and their applications. Feedback control 
systems are routinely used in a wide range of engineering systems - electrical, electronic, 
mechanical, chemical, biotechnological and civil as well as in economics and in financial 
services. 

3. Electronic, Control and Systems Engineering. This course is intended for students who 
wish to approach the analysis and design of sophisticated electronic systems from a 
systems philosophy rather than from an individual component level. This new strategy 
has lead to a growing demand for electronic, control and systems engineers from the 
telecommunications and electronics industry. 

4. Mechanical Systems Engineering. This course is intended for students who wish to gain a 
degree in mechanical engineering, but this course is different to the others courses offered 
by mechanical engineering departments. The subject of mechanical engineering now 
embraces concepts such as advanced manufacturing systems, active control of vibration 
and robotics. 

5. Medical Systems Engineering. The primary objective of the course is to provide students 
with the core skills of Systems Engineering and specialist skills in applications of 
engineering related to medical diagnostic and treatment procedures. The skills imparted to 
graduates from the course will give them the capability to take responsibility as Chartered 
Engineers for the creation, enhancement and maintenance of advanced modem 
engineering systems, and particularly those in medical applications. 

In this department every semester or every year a resource allocation problem is solved. This 
problem consists of allocating different activities to the academic staff. The main purpose is 
to achieve the objectives of the university and the department in the best way possible. In this 
section, this problem using the IPMOOP is solved. It can be considered as an overall 
objective "to improve the activities allocation of the academic staff in the ACSE department". 

Following the IPMOOP presented in Figure 6.2, the first step is the DM identification. For 
this problem the DM identified is the Assistant Head of Department of the ACSE. The second 
step of the procedure is the data collection. For this reason as much information as possible 
has been gathered about the ACSE department and its academic activities. 

Taken from the University of Sheffield Weh page 
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The department counts with five professors, three readers, six senior lecturers and three 
lecturers. This makes a total of 17 members of the academic staff to be considered in the 
allocation. Each member of the academic staff has to work 37 hours a week. 

The academic staff activities are divided into three areas: 

(1) Research 
(2) Lectures 
(3) Administrative work 

Lectures are divided into two areas: undergraduate and graduate. The graduate programmes 
are the MSc in Control Systems and the PhD research and taught programmes. It is important 
to bear in mind that the academic year is divided into two semesters: spring and autumn. 

The next step to follow is the initial problem formulation (Figure 6.2), this will be described 
in the following subsection. 

6.3.1 Initial Problem Formulation 

In this subsection the process followed is the one outlined in Figure 6.3. 

Objectives definition 

The first objective is to maximise the overall number of research papers of the department. 
The second objective is to minimise the number of hours of administrative work for the 
department. It is important to bear in mind that this is just a first attempt for the problem 
formulation and it may appear to be very simplistic, but it will give both the DM and the 
researcher the information needed to define the final objectives. 

Decision variables definition 

Considering that there are three basic activities in the academic role (research, lecturing and 
administrative work), it is expected that each member of the academic staff will have a 
different activities allocation according to his or her skills and preferences. It is important to 
bear in mind that when the term lecturing is applied it refers to preparing the lecture, giving 
the lecture and assignments and exam marking. Although there are many ways of measuring 
the three different activities one direct way is as follows: 

lrt+lti+lot=Th hours/week (6.10) 

where i=1,..., it and it is the number of members of academic staff, try is the total of 
hours/week allocated to research activities to the i academic staff member, l is the total of 
hours/week allocated to lecturing activities to the i academic staff member, tu) is the total of 
hours/week allocated to administrative activities to the i academic staff member and Tt, is the 
total of hours/week that each academic staff has to work. 

It has been decided to solve the problem considering the time that will take each academic 
staff to perform the task assigned on weekly basis. 

Constraints equation formulation 

The constraints are defined as follows: 

1. Each academic staff member has to work a minimum of tn,,,, hours lecturing. 
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2. Each academic staff member has to work a minimum of tr,,,;,, hours doing research. 
3. Each academic staff member has to work a minimum of hours of administrative 

work. 

Interview applied to the DM: 

1. How long does it take a member of the academic staff to write a paper? 
2. How long does it take a member of the academic staff to prepare a lecture? 
3. How long does it take a member of academic staff to mark assignments and exam 

papers? 
4. How many administrative activities does a member of staff have? 

Goals definition 

Two kinds of goals are to be defined. Firstly, there are goals for each academic staff member, 
defined below: 

1. To raise the number of hours/week doing research to at least 10. 
2. To maintain the number of hours/week lecturing above 15. 
3. To hold the number of hours/week doing administrative work below 2. 

Secondly, there are goals for the total allocation, defined as follows: 

1. To raise the number of hours/week doing research to at least 170. 
2. To maintain the number of hours/week lecturing above 255. 
3. To hold the number of hours/week doing administrative work below 34. 

Goal equations formulation 

Goal I Hours of research (z, z 170) 

u 
ZI =E trl 

i=1 

Goal 2 Hours of lecturing (z2 Z 255) 

zz=ýtJJ 
J=1 

Goal 3 Hours of administrative work (z3 <_ 34) 

Z3 
! =1 

- Aspiration levels definition 

(6.11) 

(6.12) 

(6.13) 

Two kinds of aspiration levels are to be used. Firstly, there are aspiration levels for each 
academic staff member. They are defined below: 

ALi = 20 lirs/week (research) 
AL2 = 25 hrs/week (lecturing) 
AL3 =2 hrshveek (administrative work) 
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It can be seen that if the aspiration levels are added the total hours/week that an academic 
staff member can have allocated is 47. This is because the aspiration levels will be changed 
every time the algorithm is performed and their values will try to converge in 37 hours/week. 

Secondly, there are aspiration levels for the total allocation. They are defined as follows: 

ALT1 = 340 lirs/week (research) 
ALTZ = 425 lirs/week (lecturing) 
ALTS = 34 hrs/week (administrative work) 

The following matrix will represent the results: 

Academic staff 
member 

Research Lecturing Administrative Total 

1 tr! tll ta! Th 

2 tr2 t! 2 tat Th 

!! tr� till ta� Ti, 
Total T, -1, Till Tau 

Table 6.1 Weekly activities allocation 

Try, is the total number of hours/week allocated to research activities for the total number of 
academic staff, T11, is the total number of hours/week allocated to lecturing activities for the 
total number of academic staff and Tom, is the total number of hours/week allocated to research 
activities for the total number of academic staff. 

The next stage following the IPMOOP (Figure 6.2) is the initial problem solution. This will 
be described in subsection 6.3.2. 

6.3.2 Initial Problem Solution 

Solution Technique Selection 

It has been decided to programme a binary GA with tournament selection and single-point 
crossover. The initial population size is 80 and the probabilities of crossover and mutation are 
0.50 and 0.15 respectively. 

Surrogate Function Formulation 

To formulate the surrogate function two alternatives have been presented (section 6.2). For 
this problem solution, the alternative that handles sequential decisions has been selected. 
Following the formulations defined in equations 6.2 to 6.5, the function d is calculated as 
follows: 

Goal I Hours of research (z, z ALTS) 

di = 
ALri (6.14) 

ZI 
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Goal 2 Hours of lecturing (z2 zALT2) 

d2 = 
ALT2 

Z2 

Goal 3 Hours of administrative work (z3 : 5,4L. 0) 

d3 = 
Z3 

ALT3 

The surrogate function is defined as follows: 

(6.15) 

(6.16) 

s=di +d2 +d3 (6.17) 

Surrogate Function Optimisation 

After the surrogate function has been formulated, the GA will be performed minimising the 
surrogate function defined as follows: 

mins=dl+dz+ds 

Possible Solutions Analysis 

The solutions found are presented from Table 6.2 to Table 6.5: 

(G. 1 s) 

Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
Hours 

1 20 15 2 37 
2 19 17 1 37 
3 18 17 2 37 
4 10 26 1 37 
5 15 20 2 37 
6 15 20 2 37 
7 15 21 1 37 
8 15 21 1 37 
9 16 19 2 37 
10 21 15 1 37 
11 20 16 1 37 
12 11 25 1 37 
13 20 16 1 37 
14 17 19 1 37 
15 16 20 1 37 
16 16 20 1 37 
17 10 26 1 37 

Z, Z2 Z3 
Total hours 274 333 22 Surrogate function 

d, (12 113 S 
1.240876 1.276276 0.647059 3.164211 

Table 6.2 Results with a surrogate function of 3.1 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 19 16 2 37 
2 19 17 1 37 
3 13 22 2 37 
4 13 22 2 37 
5 17 18 2 37 
6 20 16 1 37 
7 15 21 1 37 
8 12 24 1 37 
9 17 19 1 37 
10 13 23 1 37 
11 17 18 2 37 
12 18 18 1 37 
13 14 22 1 37 
14 20 16 1 37 
15 15 21 1 37 
16 19 16 2 37 
17 17 19 1 37 

Zt Z2 Z3 
Total hours 278 328 23 Surrogate function 

d, (12 d3 S 

1.223022 1.295732 0.676471 3.195224 

Table 6.3 Results with a surrogate function of 3.195224 

Academic staff 
member 

I 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Research 
(hours) 

21 
19 
19 
20 
21 
18 
13 
12 
13 
14 
12 
13 
12 
13 
14 
13 
13 
z, 

Lecturing 
(hours) 

15 
17 
17 
16 
15 
18 
22 
23 
23 
21 
24 
23 
23 
22 

22 
23 
22 

Z2 

Administrative 
work (hours) 

I 
I 
I 

I 
I 
I 
2 
2 
I 
2 
I 
I 
2 

2 
I 
I 
2 

Z3 

Total 
hours 

37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 

37 
37 

Total hours 260 346 23 Surrogate function 
d, (12 dj S 

1.307692 1.228324 0.676471 113.212487 

Table 6.4 Results with a surrogate function of 3.212487 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 20 16 1 37 
2 14 21 2 37 
3 19 16 2 37 
4 19 17 1 37 
5 14 21 2 37 
6 17 19 1 37 
7 12 24 1 37 
8 16 20 1 37 
9 13 22 2 37 
10 15 20 2 37 
11 17 19 1 37 
12 15 21 1 37 
13 14 22 1 37 
14 12 24 1 37 
15 12 23 2 37 
16 13 23 1 37 
17 12 24 1 37 

ZI Z2 Z3 
Total hours 254 352 23 Surrogate function 

di (12 (13 s 
1.338583 1.207386 0.676471 3.222440 

Table 6.5 Resu lts with a surrogate func tion of 3.222440 
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From Tables 6.2 to 6.5, that the smallest surrogate function value found is 3.164211 (Table 
6.2). This value corresponds to an allocation of 274 hourshveek for research activities, 333 
hours/week for lecturing activities and 22 hours/week for administrative work. This could be 
a good result if the DM decides that it is more important to allocate more hours to research 
than to lecturing. If the DM decides that the most important area is lecturing then the result 
that has a surrogate function value of 3.22244 (Table 6.5) is more appropriate, because the 
hours/week allocated to lecturing activities are 352 and the hours/week allocated to research 
activities are 254. Although the surrogate function value is the greater of the allocations 
presented. This is the point where the DM has to decide which solution satisfies his or her 
preferences. 

It could be interesting to compare the results obtained with the goal values and the DM's 
aspiration levels. The results of this comparison are shown in Table 6.6. 

The goal levels are: 

The aspiration levels are: 

zlz 170 hrshveek (research) 
z2 z 255 hrs/week (lecturing) 
z3: =-, _ 34 hrs/week (administrative work) 

ALT1= 340 lirs/week (research) 
ALTZ = 425 lirs/week (lecturing) 
ALTS = 34 hrs/week (administrative work) 

It is expedient not to consider the third goal (administrative work) because the objective is to 
minimise the number of hours/week allocated to administrative work activities and in all 
cases the objective is achieved. 
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Surrogate function 
value 

Research 
zI 

Lecturing 
z2 

ALTI - z, 
% from 
ALTI ALT2 - z2 

% from 
ALn 

s=3.164211 274 333 66 19.41 92 21.65 
s=3.195224 278 328 62 18.24 97 22.82 
s=3.212487 260 346 80 23.53 79 18.59 
s=3.222440 254 352 86 25.29 73 17.18 

Table 6.6 Comparison between results found and aspiration levels 

In Table 6.6 the percentage represents how far the value found is from the aspiration level. 
Consequently, it can be seen that the solution that maintains the research and lecturing 
allocation in a more uniform way is the one that has the minimum surrogate function value. It 
can be concluded that the objectives of the allocation are definitively in conflict because 
every time the hours/week allocated to research activities is modified it affects the hours/week 
allocated to lecturing activities. 

As previously mentioned the decision-making process used for the solution of this problem is 
sequential, for this reason, the DMPG unit has to interact again. This unit will yield new 
aspiration levels defined by the DM and controlled by the researcher as follows: 

Firstly, the aspiration levels for each academic staff member are: 

ALI = 18 hrs/week (research) 
AL2 = 25 hrshveek (lecturing) 
AL3 =2 hrshveek (administrative work) 

Secondly, the aspiration levels for the total allocation are: 

ALTI = 306 lirs/week (research) 
ALTZ = 425 lirs/week (lecturing) 
ALTS = 34 hrslweek (administrative work) 

It can be seen that only one activity (research) has been modified. It is necessary to modify 
the GA and run it again. The solutions found are presented in Tables 6.7 to 6.10. 

Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 20 16 1 37 
2 11 25 1 37 
3 10 26 1 37 
4 16 20 1 37 
5 16 20 1 37 
6 12 24 1 37 
7 11 25 I 37 
8 12 23 2 37 
9 16 19 2 37 
10 12 24 1 37 
11 16 20 1 37 
12 11 25 1 37 
13 20 16 1 37 
14 13 23 1 37 
15 13 23 1 37 
16 20 15 2 37 
17 14 21 2 37 

Z1 Z2 Z3 
Total hours 243 365 21 Surrogate function 

dt (12 (13 s 
1.259259 1.164384 0.617647 3.041290 

Table 6.7 Resu lts with a surroeate func tion of 3.041290 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 11 25 1 37 
2 16 20 1 37 
3 20 16 1 37 
4 18 18 1 37 
5 14 21 2 37 
6 14 21 2 37 
7 15 21 1 37 
8 20 16 1 37 
9 11 25 1 37 
10 12 24 1 37 
11 15 20 2 37 
12 13 22 2 37 
13 14 22 1 37 
14 17 19 1 37 
15 19 17 1 37 
16 20 16 1 37 
17 17 18 2 37 

Zt Z2 Z3 
Total hours 266 341 22 Surrogate function 

dt (12 (13 S 

1.150376 1.246334 0.647059 3.043769 

Table 6.8 Resu lts with a surroa_ate func tion of 3.043769 

From Tables 6.7 and 6.8, it can be concluded that even though the surrogate function values 
are very close (3.041290 and 3.043769), the hours/week allocated to research and to lecturing 
vary considerably. In Table 6.7, the hours/week allocated to research and lecturing are 243 
and 365 respectively while in Table 6.8 the hours/week allocated to research and lecturing are 
266 and 341 respectively. 

Academic staff 
member 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Total hours 

Research 
(hours) 

11 
12 
15 
15 
20 
20 
12 
17 
15 

10 
11 
13 
14 
II 
17 
11 
12 

ZI 
236 

d, 1 (12 1 (13 

Lecturing 
(hours) 

24 
24 

20 
20 
16 
16 
24 
18 

21 
26 
25 
23 
22 
25 
19 
25 
24 

Z2 
372 

Administrative 
work (hours) 

2 
I 
2 
2 
I 
I 
I 
2 
I 
I 
I 
I 
I 
I 
I 
I 
1 

Z3 

21 

Total 
hours 

37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 

Surrogatc function 
s 

1.296610 1.142473 0.617647 1 3.056730 

Table 6.9 Results with a surrogate function of 3.056730 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 18 18 1 37 
2 14 22 1 37 
3 20 15 2 37 
4 16 20 1 37 
5 16 20 I 37 
6 16 20 1 37 
7 20 16 I 37 
8 19 16 2 37 
9 15 20 2 37 
10 15 21 1 37 
11 12 24 1 37 
12 18 18 1 37 
13 17 18 2 37 
14 12 23 2 37 
15 16 19 2 37 
16 20 16 1 37 
17 20 16 1 37 

Zt Z2 Z3 
Total hours 284 322 23 Surrogate function 

[11 d2 (13 S 
1.077465 1319876 0.676471 3.073811 

Table 6.10 Results with a surrogate function of 3.073811 
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From the results presented in Tables 6.7 to 6.10, it can be seen that the values of d3 function 
are smaller than 1 (0.617647,0.647059,0.617647 and 0.676471). In other words, the 
aspiration level for administrative work activities (AL3) has a value much higher than those 
found for goal three (z3). Consequently, the DMPG unit decided to change that aspiration 
level and run the programme once again. 

Table 6.11 shows the comparison between the results found with an ALT1= 306 hrshveek. 

Surrogate function 
value 

Research 
zI 

Lecturing 
Zi 

ALT1-Zi % from 
ALT1 ALn - z: 

% from 
ALA 

s=3.041290 243 365 63 20.59 60 14.12 
s=3.043769 266 341 40 13.07 84 19.76 
s=3.056730 236 372 70 22.88 53 12.47 
s=3.073811 284 322 22 7.19 103 24.23 

Table 6.11 Comparison between results found and aspiration levels 

As it was expected, the solution (s = 3.073811) that is closer to the research aspiration level 
(7.19%) is the one that is farthest to the lecturing aspiration level (24.23%). This occurs 
because it is not possible to allocate more than 37 hours a week. 

The DMPG unit has decided to change the aspiration level for administrative work (AL13) 
from 34 to 25 hours/week. Therefore, the aspiration levels are set as follows: 

ALT, = 306 hrs/week (research) 
ALTZ = 425 hrshveek (lecturing) 
ALTS = 25 hrshveek (administrative work) 

The solutions found are presented in Tables 6.12 to 6.15. 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 20 16 1 37 
2 11 25 1 37 
3 10 26 1 37 
4 16 20 1 37 
5 16 20 1 37 
6 12 24 1 37 
7 11 25 1 37 
8 12 23 2 37 
9 16 19 2 37 
10 12 24 1 37 
11 16 20 1 37 
12 11 25 1 37 
13 20 16 1 37 
14 13 23 1 37 
15 13 23 1 37 
16 20 15 2 37 
17 14 21 2 37 

Zº Z2 Z3 
Total hours 243 365 21 Surrogate function 

(11 r12 (13 S 
1.259259 1.164384 0.840000 3.263643 

Table 6.12 Results with a surrogate function of 3.263643 

The allocation found (Table 6.12) is the same allocation that was presented in Table 6.7 
although the values of the surrogate function are different s=3.263643 (Table 6.12) and s= 
3.041290 (Table 6.7). The variation in the surrogate function values is due to the change of 
the aspiration level AL-B from 34 to 25 hours a week. 

Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 12 24 1 37 
2 11 25 1 37 
3 14 22 1 37 
4 18 18 1 37 
5 12 24 1 37 
6 20 16 1 37 
7 17 19 I 37 
8 11 24 2 37 
9 11 25 1 37 
10 12 23 2 37 
11 13 22 2 37 
12 11 24 2 37 
13 l8 17 2 37 
14 16 20 1 37 
15 11 25 1 37 
16 15 21 1 37 
17 20 16 1 37 

ZI Z2 Z3 
Total hours 242 365 22 Surrogate function 

dt (12 (3 s 
1.264463 1.164384 0.880000 3.308846 

Table 6.13 Results with a surrogate function of 3. 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 11 24 2 37 
2 20 16 1 37 
3 18 18 1 37 
4 16 20 1 37 
5 16 20 1 37 
6 10 26 1 37 
7 12 24 1 37 
8 20 16 1 37 
9 14 22 1 37 
10 11 24 2 37 
11 20 16 1 37 
12 16 20 1 37 
13 16 20 1 37 
14 10 26 1 37 
15 10 26 1 37 
16 20 16 1 37 
17 11 25 1 37 

Zi Z2 Z3 
Total hours 251 359 19 Surrogate function 

dt dZ d3 S 
1.219124 1.183844 0.760000 3.162968 

Table 6.14 Results with a surrogate function of 3.162968 

Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

'T'otal 
hours 

1 11 24 2 37 
2 12 24 1 37 
3 15 20 2 37 
4 15 20 2 37 
5 20 16 1 37 
6 20 16 1 37 
7 12 24 1 37 
8 17 18 2 37 
9 15 21 1 37 
10 10 26 1 37 
11 11 25 1 37 
12 13 23 1 37 
13 14 22 1 37 
14 11 25 1 37 
15 17 19 1 37 
16 11 25 1 37 
17 12 24 1 37 

Z1 Z2 Z3 
Total hours 236 372 21 Surrogate function 

(11 (/2 (13 S 
1.296610 1.142473 0.840000 3.279083 

Table 6.15 Results with a surrogate function of 3. 



Chapter 6. Interactive Procedure for Multiple Objective Optimisation Problems 188 

The allocation found (Table 6.15) is the same allocation that was presented in Table 6.9 
although the values of the surrogate function are different s=3.279083 (Table 6.15) and s= 
3.056730 (Table 6.9). 

From these results, it can be concluded that the impact that goal three has in the overall 
allocation is very small due to the fact that the value allocated by the GA are 1 or 2 hours a 
week. Hence, the DMPG unit has decided to change the aspiration levels for research (ALT, ) 
and for lecturing (ALTZ). Therefore, the new aspiration levels are set as follows: 

Firstly, the aspiration levels for each academic staff member are: 

ALI = 15 hrshweek (research) 
AL2 = 20 hrs/week (lecturing) 

Secondly, the aspiration levels for the total allocation are: 

ALTI = 255 hrshveek (research) 
ALTZ = 340 lirs/week (lecturing) 

The aspiration level for administrative work will remain the same ALT3 = 25 lirs/week. 

The solutions found are shown in Tables 6.16 to 6.19. 

Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 11 24 2 37 
2 20 16 1 37 
3 18 18 1 37 
4 16 20 1 37 
5 16 20 I 37 
6 10 26 1 37 
7 12 24 1 37 
8 20 16 1 37 
9 14 22 1 37 
10 11 24 2 37 
11 20 16 1 37 
12 16 20 1 37 
13 16 20 1 37 
14 10 26 1 37 
15 10 26 1 37 
16 20 16 1 37 
17 11 25 1 37 

Zi Z2 Z3 
Total hours 251 359 19 Surrogate function 

dt d2 d3 S 
1.015936 0.947075 0.760000 2.723011 

Table 6.16 Results with a surrogate function of 2.72 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 11 25 1 37 
2 16 20 1 37 
3 20 16 1 37 
4 18 18 1 37 
5 14 21 2 37 
6 14 21 2 37 
7 15 21 1 37 
8 20 16 1 37 
9 11 25 1 37 
10 12 24 1 37 
11 15 20 2 37 
12 13 22 2 37 
13 14 22 1 37 
14 17 19 1 37 
15 19 17 1 37 
16 20 16 1 37 
17 17 18 2 37 

Zt Z2 Z3 
Total hours 266 341 22 Surrogate function 

di d2 [l3 S 

0.958647 0.997067 0.880000 2.835714 

Table 6.17 Results with a surrogate function of 2.835714 

Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 16 20 1 37 
2 17 18 2 37 
3 17 18 2 37 
4 14 21 2 37 
5 11 24 2 37 
6 13 23 1 37 
7 18 18 1 37 
8 13 22 2 37 
9 14 21 2 37 
10 17 19 1 37 
11 20 16 1 37 
12 16 20 1 37 
13 16 20 1 37 
14 20 16 1 37 
15 18 18 1 37 
16 12 24 1 37 
17 10 26 1 37 

Z1 Z2 Z3 
Total hours 262 344 23 Surrogate function 

di d2 (13 S 
--0.973-28211 0.988372 0.920000 2.881655 

Table 6.18 Results with a surrogate function of 2. 
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Academic staff 
member 

Research 
(hours) 

Lecturing 
(hours) 

Administrative 
work (hours) 

Total 
hours 

1 18 17 2 37 
2 15 20 2 37 
3 14 21 2 37 
4 12 24 1 37 
5 15 21 1 37 
6 13 22 2 37 
7 12 23 2 37 
8 20 16 1 37 
9 14 21 2 37 
10 17 19 1 37 
11 15 20 2 37 
12 13 23 1 37 
13 13 23 1 37 
14 17 19 1 37 
15 17 19 1 37 
16 15 21 1 37 
17 15 20 2 37 

Zt Z2 Z3 
Total hours 255 349 25 Surrogate function 

dt (12 (13 S 
1.000000 0.974212 1.000000 2.974212 

Table 6.19 Results with a surrogate function of 2.974212 
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From Tables 6.16 to 6.19, it can be seen that the allocation with the minimum surrogate 
function value (s = 2.723011) is the one presented in Table 6.16. However, this allocation 
does not meet all the aspiration levels, for instance, the number of hours/week allocated to 
research is 251 whilst the research aspiration level is 255 hrs/week. In the administrative work 
case, the allocated hours/week are 19 whilst the administrative work aspiration level is 25 
hrs/week. Nevertheless, since the administrative work goal level is defined as z3 S 34 hours a 
week, it can be seen that the allocation achieves the goal. 

Table 6.20 shows the comparison between the allocation results found and the aspiration 
levels. It also outlines whether the aspiration levels are achieved or not. 

Surrogate % % % function Research Lecturing Administrative work from from from 
value zI zz z, ALTI ALA ALA 

S 
2.723011 251 359 19 1.57 -5.59 24 
2.835714 266 341 22 -4.31 -0.29 12 
2.881655 262 344 23 -2.75 -1.18 8 
2.974212 255 349 25 0 -2.65 0 

Table 6.20 Comparison between results found and aspiration levels 

In Table 6.20 the percentage represents how far the value found is from the aspiration level, a 
+ percentage signifies that the aspiration level was not achieved, a 0% signifies that it was 
achieved and a- percentage signifies that the aspiration level was achieved and moreover it 
was surpassed. From Table 6.20, it can be seen that the allocation that achieves the three 
aspiration levels (research, lecturing and administrative work) is the one that has a surrogate 
function value of 2.974212 (Table 6.19). Nevertheless, the solution when the surrogate 
function value is 2.835714 can be considered as satisfactory because its three d function 
values are less than one. This means that for the three activities the goals are achieved. 
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Finally, the DM has to decide which of the solutions found satisfies most of his or her 
preferences. 

It can be concluded, that the IMOOP allows the DM to specify his or her preferences and 
have an assurance that they are considered for the solution of the problem. It also allows a 
complete interaction between the DM and the analytic programmer making possible to find 
high standard solutions. 

As shown in Figure 6.2, once the initial problem has been solved the next steps to follow are 
data collection, final problem formulation and final problem solution. These are described in 
subsections 6.3.3,6.3.4 and 6.3.5. 

6.3.3 Data Collection 

As previously stated, each academic staff member has to be considered as an individual with 
different preferences and skills. For this reason, it is necessary to formulate a final problem 
that considers other aspects of the problem outlined by the DM. The next step is data 
collection (Figure 6.2), where the objective is to gather as much information as possible. This 
information will be used to formulate the final problem. 

The number of modules offered by the ACSE department a year is 30 for undergraduates and 
16 for graduates, this makes a total of 46 modules. It is important to bear in mind that more 
than one lecturer gives some of these modules. Additionally, it is also important to take into 

consideration that the modules that involve the development of a project are not considered in 
the total number of modules because they require another kind of supervision rather than 
giving a lecture. 

Table 6.21 presents the number of modules taught by each academic staff member. The 
modules are measured in terms of credits and one aspect to be aware of is that some modules 
do not have integer numbers. This occurs because some modules are given by more than one 
member of the academic staff and therefore the module's number of credits is divided by the 
number of academic staff members that are involved in it. 

An interesting aspect to consider is the arithmetical mean of the total of credits because it can 
yield information about the average of credits taught in the ACSE department by each 
member of academic staff. The arithmetic mean in this case is 32. 

In order to make the problem more understandable and easier to handle, the DMPG unit has 
decided to assign values from 1 to 3 to each member of academic staff to classify them in 
terms of the number of credits they taught. 

The values assigned are as follows: 

from 0 to 29 credits a value of I is assigned 
from 30 to 39 credits a value of 2 is assigned 
from 40 to 60 credits a value of 3 is assigned 

In other words, an academic staff member who has been assigned a value of three is someone 
that dedicates most of his or her time on lecturing activities. 

The total number of credits in the ACSE department is 545. This total number of credits can 
be used as a constraint in the final problem formulation 
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Academic staff 
member 

Credits 
Semester 1 

Credits 
Semester 2 TOTAL Assigned 

values 

1 Professor and Head 
of Department 5 5 10 1 

2 Professor 24 15 39 2 
3 Professor 24.17 8.75 32.92 2 
4 Professor 30.83 20 50.83 3 
5 Professor 0 0 0 1 
6 Reader 22.5 10 32.5 2 
7 Reader 3.33 50 53.33 3 
8 Reader 14 23.75 37.75 2 
9 Senior Lecturer 10 35 45 3 
10 Senior Lecturer 32.5 0 32.5 2 
11 Senior Lecturer 3.33 35.42 38.75 2 
12 Senior Lecturer 24 25 49 3 
13 Senior Lecturer 10.67 36.67 47.34 3 
14 Senior Lecturer 20.67 13.75 34.42 2 
15 Lecturer 0 20 20 1 
16 Lecturer 5 6.67 11.67 1 
17 Lecturer 10 0 10 1 

Total credits 545 
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Table 6.21 Credits taught by each academic staff member 

Once the information about the lecturing activities has been gathered, it is necessary to 
analyse the research activities. The term research activities will be understood as any activity 
related to research such as writing papers, attending conferences, research student 
supervision, and research projects. 

The DM wants to allocate as many hours as possible to the research activities. For this reason, 
it has been decided to assign a value of 3 for the research activities of each academic staff 
member. This means, that each academic staff member is expected to have high levels in the 
research activity allocation in order to maintain high standards in the ACSE department 
research activities. The research activities will be measured in hours a week. 

Table 6.22 presents the administrative roles of the ACSE department. From this table, it can 
be seen that the number of administrative work activities in the department is 38. The DM has 
been asked to evaluate each activity using a scale from 1 to 5, where 1 represents activities 
that require low performance time and 5 represent activities that the require high performance 
time. Consequently, the administrative work activities will be measure in points. The total of 
points assigned to the 38 different activities is 80. 

Table 6.23 shows the total of points of administrative work activities assigned to each 
academic staff member. As in the research activities, the DM has been asked to assign a value 
from 1 to 3 to each academic staff member. The DMPG unit has decided to assign the values 
using the following rules: 
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from 0 to 3 points a value of 1 is assigned 
from 4 to 6 points a value of 2 is assigned 
from 7 to 15 points a value of 3 is assigned 

T 

Administrative roles Evaluation 

Chair, Health and Safety Committee 1 

Chair, Research Committee 1 

Demonstrator Co-ordinator 1 

RTP Co-ordinator I 

Chair, Strategy Committee 1 
Subject Review Co-ordinator I 
Chair, Student Affairs Committee 1 

ERASMUS/SOCRATES Co-ordinator 1 

Careers Co-ordinator 1 

Assistant Chair, Teaching and Learning Committee 1 

Library Co-ordinator 1 

Deputy UUG Admissions Tutor 1 
Schools Liaison Officer 1 
Seminar Co-ordinator I 
Schools Liaison Officer 1 

Chair, Executive Committee 2 

PG(Taught) Admissions Tutor 2 

Head of Web Team 2 
Quality Assurance Co-ordinator 2 
Chair, Publicity Committee 2 
BEng Programme Leader 2 
Chair, Teaching and Learning Committee 2 
PGR Admissions Tutor 2 

Industrial Liaison Co-ordinator 2 

Assistant Examinations Officer 2 

Chair, Policy Committee 3 
Timetable Co-ordinator 3 
Chair, Computing Committee 3 
MTP/DLP Director 3 
MSc Programme Leader 3 

Project Co-ordinator (MSc & UG) 3 

Examinations Officer 3 
Aerospace Tutor/Admissions 3 
PACT Director 3 
MEng Programme Leader 4 
UG Admissions Tutor 4 
Assistant Head of Department 5 
Head of Department 5 
Total of points 80 

able 6.22 DM's evaluation of administrative work activil ies 
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Academic staff 
member 

Total 
points 

Assigned 
values 

1 Professor and Head of Department 11 3 

2 Professor 5 2 
3 Professor 4 2 
4 Professor 5 2 

5 Professor 0 1 
6 Reader 3 1 

7 Reader 5 2 

8 Reader 6 2 
9 Senior Lecturer 4 2 
10 Senior Lecturer 5 2 
11 Senior Lecturer 5 2 
12 Senior Lecturer 4 2 
13 Senior Lecturer 9 3 

14 Senior Lecturer 4 2 

15 Lecturer 3 1 
16 Lecturer 4 2 
17 Lecturer 3 1 
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Table 6.23 Total of points assigned to each academic staff member (administrative work) 

It is important to state that not all the information that has been gathered will be used for the 
formulation or solution of the problem. 

6.3.4 Final Problem Formulation 

In this subsection the process followed is the one outlined in Figure 6.3. 

Objectives definition 

The first objective is to maximise the overall number of research activities in the department. 
The second objective is to minimise the number of points of administrative work in the 
department. The third objective is to maximise the number of credits that each academic staff 
member gives. The overall objective of this problem is to maintain a high level of fairness in 
the allocation results for each academic staff member. 

Decision variables definition 

As in the initial problem formulation, three decision variables will be considered, each of 
them represent one of the three main activities (research, lecturing and administrative work) 
of the academic staff. The research activities are represented by the decision variable xrj, 
measured in hours/week, where i=1,2,3,..., n and n is the total number of academic staff 
members. The lecturing activities are represented by the decision variable x1j, measured in 
credits/year, where i=1,2,3,..., ii and ii is the total number of academic staff members. The 
administrative work activities are represented by the decision variable xaj, measured in 
hours/week, where i=1,2,3,..., n and ii is the total number of academic staff members. 

It is expected that each member of the academic staff will have a different activities allocation 
according to his or her skills and preferences. 

Constraints equation formulation 

The constraints are defined as follows: 
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1. Each academic staff member has to work a minimum of 10 hours a week doing 
research. 

2. The total number of credits that the academic staff members have to teach is a 
minimum of 545. 

3. The total number of points of administrative work for the academic staff members is 
a minimum of 80. 

Goals definition 

The goals defined are: 

1. To raise the number of hours/week doing research to at least 170. This means at least 
10 hours/week for each academic staff member. 

2. To maintain the number of credits lecturing above 545. 
3. To hold the number of points doing administrative work below 90. 

Goal equations formulation 

Goal I Hours of research (z1 Z 170) 

ZIXj'j 
i=I 

Goal 2 Credits of lecturing (z2 Z 545) 

ii 

z2=Exlr 
ý=t 

Goal 3 Points of administrative work (z35 90) 

Z3 xat 
r=i 

- Aspiration levels definition 

The aspiration levels for each academic staff are defined as follows: 

ALA = 20 hrs/week (research) 

(6.19) 

(6.20) 

(6.21) 

In the lecturing case three aspiration levels have been assigned, each level correspond to the 
value assigned by the DMPG unit. 

value = 1, AL2 519 credits (lecturing) 
value = 2,20: 9,4L2 --5,39 credits (lecturing) 
value = 3, AL2 z 40 credits (lecturing) 

In the administrative work case three aspiration levels have been assigned, each level 
corresponds to the value assigned by the DMPG unit. 

value =1,, 4L3: 5 3 points (administrative work) 
value = 2,4 SAL3 56 points (administrative work) 
value = 3, AL3 Z7 points (administrative work) 



Chapter 6. Interactive Procedure for Multiple Objective Optimisation Problems 

6.3.5 Final Problem Solution 
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Table 6.24 presents the activity allocation in the ACSE department and the new activity 
allocation proposed by the DMPG unit in terms of assigned values form 1 to 3. The new 
activity allocation will be used as the programme's input data. 

Academic staff 
Assigned values 

(research) 
Assigned values 

(lecturing) 
Assigned values 

(administrative work) Member Current DMPG Current DMPG Current DMPG 
1 3 3 1 1 3 3 
2 3 3 2 2 2 2 
3 3 3 2 2 2 2 
4 3 3 3 3 2 1 
5 3 3 1 2 1 1 
6 3 3 2 2 1 1 
7 3 3 3 3 2 1 
8 3 3 2 2 2 2 
9 3 3 3 3 2 1 
10 3 3 2 2 2 2 
11 3 3 2 2 2 2 
12 3 3 3 3 2 1 
13 3 3 3 2 3 3 
14 3 3 2 2 2 2 
15 3 3 1 3 1 1 
16 3 3 1 1 2 2 
17 3 3 1 2 1 2 

Table 6.24 Activity allocation proposed by the DMPG unit 

Solution Technique Selection 

It has been decided to programme a binary GA with tournament selection and single-point 
crossover. The initial population size is 80 and the probabilities of crossover and mutation are 
0.50 and 0.15 respectively. 

Surrogate Function Formulation 

To formulate the surrogate function two alternatives have been presented (section 6.2). For 
this problem solution, the alternative that handles sequential decisions has been selected. A 
surrogate function is defined for each academic staff member. Following the formulations 
defined in equations 6.2 to 6.5, the function d is calculated as follows: 

Goal I Hours of research a week (z1 z ALI) 

dt = 
ALt 

= 
20 (6.22) 

zt zi 
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Goal 2 Credits of lecturing 

value =1 (z2:! ýAL2); d 2= 
z2 = z2 

AL2 19 

value=2 (ALL2:! ýz2: ýALU2); d2 = 
ALUZ ALL2 

+ Z2 39 20 
+ 

ALLZ+AL Z2 ALU2 C20 + 39 Z2 U2 

value=3 (z22AL2); d2 = 
AL2 

= 
40 
- 

Z2 Z2 

Goal 3 Points of administrative work (z3 <_ ALTS) 

value= l (Z3<_AL3)i d3 = Z3 = Z3 
AL3 3 

Z2 

39 
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(6.23) 

value=2 (ALL3: ýz3:! ýALu3); d3= ALUS 1[ALLS+ Z3 64+ 

ALL3+ALU3 Z3 
7U31=[4 +6][Z3 

ALS 40 
value=3 (z3zAL3); d3 ==- 

Z3 Z3 

The surrogate function for each academic staff member is defined as follows: 

(6.24) 

s=di +d2+ d3 (6.25) 

Surrogate Function Optimisation 

After the surrogate function has been formulated, the GA will be performed minimising the 
surrogate function defined as follows: 

mins=di +d2+ds (6.26) 

6.4 Experimental Results 

In order to find the final problem's possible solutions, the GA has to be run minimising the 
surrogate function of each academic staff member. This is performed in such way to be able 
to handle each academic staff member individually. It is important to bear in mind that the 
goals are achieved if the values of the d functions are positive. 

The solutions found after running the GA are presented in Table 6.25. From this table, it is 
possible to see that only in academic staff member number 1 the research aspiration level is 
not achieved. The rest of the allocation results are appropriate and achieve their correspondent 
aspiration levels. It can also be seen that the constraints such as "each academic staff member 
has to work a minimum of 10 hours/week doing research", " the total number of credits that 
the academic staff members have to teach is a minimum of 545" and "the total number of 
points of administrative work for the academic staff members is a minimum of 80" have been 
met. In other words, each academic staff member has been allocated with more than 10 
hours/week for research activities, the total number of credits to teach is greater than 545 
(598) and the number of points of administrative work are greater than 80 (82). Therefore, it 
could have been concluded that the allocation results are appropriate, however the fact that for 
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one of the academic staff members the research aspiration level is not achieved, makes the 
DMPG unit generate a new activity allocation. 

Academic staff member 
Research 

(hrs/week) 
Lecturing 

(credits/year) 
Administrative 
work (points) d. d2 (13 S 

1 19 7 15 1.052632 0.368421 0.466667 1.887719 
2 20 29 5 1.000000 0.945942 0.980000 2.925942 
3 20 36 4 1.000000 0.975897 1.000000 2.975897 
4 20 49 2 1.000000 0.816327 0.666667 2.482993 
5 22 27 1 0.909091 0.945812 0.333333 2.188236 
6 22 30 2 0.909091 0.947692 0.666667 2.523450 
7 20 59 2 1.000000 0.677966 0.666667 2.344633 
8 23 27 4 0.869565 0.945812 1.000000 2.815377 
9 20 57 1 1.000000 0.701754 0.333333 2.035088 
10 24 37 6 0.833333 0.982911 1.000000 2.816244 
11 20 28 6 1.000000 0.945275 1.000000 2.945275 
12 24 57 3 0.833333 0.701754 1.000000 2.535088 
13 24 37 14 0.833333 0.982911 0.500000 2.316244 
14 22 27 4 0.909091 0.945812 1.000000 2.854903 
15 26 52 3 0.769231 0.769231 1.000000 2.538462 
16 23 8 4 0.869565 0.421053 1.000000 2.290618 
17 27 31 6 0.740741 0.950422 1.000000 2.691163 

Total 376 598 82 

able 6.25 First allocation results 

The DMPG unit has decided not to modify the whole allocation results; instead the allocation for member 1 has been calculated again, obtaining the following results: 

Research activities 20 hrs/week 
Lecturing activities 9 credits a year 
Administrative work activities 13 points 

It can be seen that in these allocation results all the individual aspiration levels are achieved. Therefore, the DMPG unit has decided to include it in the complete activity allocation. The 
results are presented in Table 6.26 and from them it can be seen that the constraints are met. 

Academic staff member 
Research 

(hrs/week) 
Lecturing 

(credits/year) 
Administrative 
work (points) d, rl2 rl2 s 

1 20 9 13 1.052632 0.368421 0.466667 1.887719 
2 20 29 5 1.000000 0.945942 0.980000 2.925942 
3 20 36 4 1.000000 0.975897 1.000000 2.975897 
4 20 49 2 1.000000 0.816327 0.666667 2.482993 
5 22 27 1 0.909091 0.945812 0.333333 2.188236 
6 22 30 2 0.909091 0.947692 0.666667 2.523450 
7 20 59 2 1.000000 0.677966 0.666667 2.344633 
8 23 27 4 0.869565 0.945812 1.000000 2.815377- 
9 20 57 1 1.000000 0.701754 0.333333 2.035088 
10 24 37 6 0.833333 0.982911 1.000000 2.816244 
11 20 88 6 1.000000 0.945275 1.000000 2.945275 
12 24 57 3 0.833333 0.701754 1.000000 2.535088 
13 24 37 14 0.833333 0.982911 0.500000 2.316244 
14 22 27 4 0.909091 0.945812 1.000000 2.854903 
15 26 52 3 0.769231 0.769231 1.000000 2.538462 
16 23 8 4 0.869565 0.421053 1.000000 2.290618 
17 27 31 6 0.740741 0.950422 1.000000 2.691163 

Total 377 600 80 

able 6.26 Second allocation results 

The DMPG unit decided to run the GA once more to see if it is possible to find an allocation 
that does not have to be modified. Table 6.27 presents the new allocation results. 
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Academic staff member 
Research 

(hrs/week) 
Lecturing 

(credits/year) 
Administrative 
work (points) (l1 d2 (13 s 

1 23 8 11 0.869565 0.421053 0.636364 1.926981 
2 27 30 5 0.740741 0.947692 0.980000 2.668433 
3 23 27 5 0.869565 0.945812 0.980000 2.795377 
4 23 47 3 0.869565 0.851064 1.000000 2.720629 
5 20 29 2 1.000000 0.945942 0.666667 2.612608 
6 23 27 2 0.869565 0.945812 0.666667 2.482044 
7 23 47 2 0.869565 0.851064 0.666667 2.387296 
8 20 33 5 1.000000 0.958462 0.980000 2.938462 
9 22 47 1 0.909091 0.851064 0.333333 2.093488 
10 20 33 5 1.000000 0.958462 0.980000 2.938462 
11 26 31 6 0.769231 0.950422 1.000000 2.719653 
12 24 57 3 0.833333 0.701754 1.000000 2.535088 
13 26 31 13 0.769231 0.950422 0.538462 2.258114 
14 20 38 5 1.000000 0.990445 0.980000 2.970445 
15 26 52 3 0.769231 0.769231 1.000000 2.538462 
16 27 12 6 0.740741 0.631579 1.000000 2.372320 
17 22 30 5 0.909091 0.947692 0.980000 2.836783 

Total 395 579 82 

Table 6.27 Third allocation results 

From Table 6.27, it can be seen that all the allocation results are appropriate and achieve their 
correspondent aspiration level. It can also be concluded that the constraints such as "each 
academic staff member has to work a minimum of 10 hours/week doing research", " the total 
number of credits that the academic staff members have to teach is a minimum of 545" and 
"the total number of points of administrative work for the academic staff members is a 
minimum of 80" have been met. In other words, each academic staff member has been 
allocated with more than 10 hours/week for research activities, the total number of credits to 
teach is greater than 545 (579) and the number of points of administrative work are greater 
than 80 (82). Consequently, it can be concluded that the allocation results are appropriate. 

Finally, the DM has to decide which of the solutions found satisfies most of his or her 
preferences. 

The main conclusion, after applying the IMOOP for the solution of this activity allocation 
problem, is that this procedure is very effective in the solution of these kinds of optimisation 
problems and that the use of GAs allows the DMPG unit to find satisfactory solutions. It has 
been demonstrated that the IMOOP is capable of handling the interaction between the DM 
and the analytic programmer in a very smooth way. Finally, the use of hybrid approaches 
provides the necessary tools for the solution of multiple objective optimisation problems. 

6.5 Summary 

In this chapter the IPMOOP has been presented as a tool used for the solution of multiple 
objective optimisation problems. The main characteristics of this procedure are: 

- The definition of a decision-making process group (DMPG) unit, where the DM and the 
analytic programmer actively interact throughout the solution of the problem. 

- The formulation and solution of an initial problem that gives the (DMPG) information 
about the problem's nature and features. 

- The use of surrogate objective functions to represent the different objectives. 
- The DMPG unit is able to determine whether the decisions to be made are sequential or it 

is necessary to include risk analysis in the problem model. 
- The use of different optimisation techniques in the solution of the problem. 
- The formulation and solution of a final problem. 

In General, IMOOP allows the direct programming of the GA due to the goals' 
transformation into the surrogate functions mapping them as the fitness functions. 
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In order to demonstrate the applicability of the IMOOP approach an activity allocation 
problem was solved. This problem is a resource allocation problem present in the Automatic 
Control and Systems Engineering (ACSE) department at the University of Sheffield. This 
problem consists of the allocation of academic staff members activities into three different 
areas: research, lecturing and administrative work. 

An initial problem was formulated and solved. This problem consisted of the hours/week 
allocation for the three departmental activities for the 17 academic staff members of the 
ACSE department. The decisions were made sequentially, and the final solution was 
satisfactory to DM because it achieved all the goal and aspirations levels. It is important to 
state that all the constraints were met. The surrogate function optimisation was carried out 
using a binary GA with tournament selection and a single-point crossover. The GA's initial 
population was 80 and the probabilities of crossover and mutation were 0.50 and 0.15 
respectively. As previously stated, the initial problem will give the DMPG unit information to 
pose a more general problem called final problem. 

Once the initial problem has been solved, the next step is data collection to be used in the 
formulation and solution of the final problem. In this step, it is expected to gather as much 
information as possible. 

The final problem formulation consisted of the definition of more general objectives. The 
allocation was divided into three areas: research, lecturing and administrative work activities. 
The units used to measure the goals were defined as follows: 

Research (hours/week) 
Lecturing (credits/year) 
Administrative work (points) 

Once again a surrogate function was defined in order to carry out the optimisation. This 
surrogate function allowed the GA to handle the different measure units. The solutions found 
were satisfactory from the DM's point of view and because they achieved all the goal and 
aspiration levels and met all the constraints. 

After the solution of the ACSE resource allocation problem, it can be concluded that the 
IMOOP is effective in the solution of multiple objective optimisation problems. It was also 
demonstrated that this procedure (IMOOP) is capable of handling the interaction between the 
DM and the analytic programmer and that it allows the use of evolutionary computation 
techniques. 



CHAPTER 7 

Conclusions 
7.1 Thesis Summary and Conclusions 

The aim of this project was to modernise two interactive methods proposed in the 1970's and 
then refine them through contemporary areas of research such as genetic algorithms and fuzzy 
logic. These methods were selected because not only can they handle the DM's preferences in 
an interactive way but they also offer a direct way for the development of a hybrid approach 
using OR and evolutionary techniques. Furthermore, the introduction of risk in the problems' 
solution led to the development of an approach that can be applied in problems that involve 
uncertainty. 

The initial chapters of this thesis gave an introduction to operations research (OR) as a 
process rather than a set of techniques to solve problems, and also presented the basic 
concepts of evolutionary computation. Moreover, the three areas of study of evolutionary 
computation: genetic algorithms, evolutionary programming and evolution strategies and their 
genetic operators were defined. As an example of the application of evolutionary computation 
to solve complex problems, the traveling salesman problem and the most important genetic 
operators to solve it were described. Additionally, decision theory was discussed as the basis 
for the solution of decision problems. Furthermore, in order to understand real life problems, 
where it is necessary to incorporate risk and uncertainty into the decision process, the risk 
analysis area was presented as well as some applications. It was also shown that several 
different methods for solving multiple criteria decision-making problems can be found in 
literature and that they differ by the type of problem they are designed to solve. Finally, the 
basic definitions of fuzzy sets, fuzzy rule-based systems, fuzzy controllers and 
defuzzyfication methods were discussed. 

One of the objectives of this research was to demonstrate the use of GAs integrated with OR 
techniques. In order to achieve this goal, two methods with different features were selected. 
The first method is called sequential multi-objective problem solving (SEMOPS) and its main 
characteristics are that it allows the DM to set aspiration levels and be able to modify them 
sequentially. It also works with a surrogate function and a set of auxiliary problems. The 
second method is called probabilistic trade-off development (PROTRADE), its basic features 
are that it models the DM's preferences using mathematical functions such as multiple 
attribute utility functions, it is capable of handling risk and it is based on the formulation of 
surrogate functions. Although, these methods were proposed in 1973 and 1979 respectively, 
they were chosen because of the characteristics outlined above, but most importantly because 
both use progressive articulation of preferences information. 

In Chapter Four two approaches were proposed, the first one (GA-SEMOPS) consisted of 
adding an evolutionary algorithm to the SEMOPS method. The principal objective of this 
approach was to handle the DM's preferences in an interactive way. The steps followed were: 
Firstly, the decision problem was defined and analysed, this step included the goals definition. 
Secondly, the DM defined the aspiration levels; these can change according to the DM. 
Thirdly, the surrogate objective function was formulated. Finally, the GA is applied. It is 
important to bear in mind that this process is performed (n - 1) times, where n is the number 
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of goals. It was interesting to work with this model because it is based on a surrogate 
objective function where different weights were assigned to each objective. The second 
approach was a fuzzy multiobjective genetic optimiser. This model is based on a fuzzy rule- 
based system (FRBS) in order to achieve an automated process emulating the DM. The kind 
of rules used were "IF <condition> THEN <action>" and the membership function had a 
linear shape within the interval [0,1]. 

The proposed GA-SEMOPS algorithm was applied in two case studies, namely Bow River 
Valley and nurse-scheduling problem. 

From the results found in the Bow River Valley problem, it can be seen that this approach 
allows in a direct way the interaction between the algorithm and the DM's preferences. This 
problem had six goals, three decision variables and one constraint for the first iteration. 
Every time the algorithm was run the number of constraints was changed due to the DM's 
aspiration levels. This produced a reduction in the solution space making easier to find a 
satisfactory solution. It was decided to programme three real-valued GAs for solving this 
problem with the following features: 

1. Tournament selection, arithmetic crossovers and a real-valued mutation operator. 
2. Tournament selection, unfair crossover and a real-valued mutation operator. 
3. Tournament selection, simulated binary crossover and a real-valued mutation operator. 

The tournament size used was three. The results found by the three algorithms were compared 
and it was concluded that for the decision variables the values were almost the same. In other 
words, the algorithm was robust enough to yield the same results no matter which crossover 
operators were applied. Moreover, it was shown how the algorithm responds to the change of 
the DM's aspiration levels. 

Additionally, the results were compared to those found by the authors of SEMOPS and it was 
concluded that they are very similar. Therefore, it was demonstrated that the SEMOPS by 
itself is good enough to work with any search technique. 

As mentioned above, there were two approaches proposed in Chapter Four, the GA-SEMOPS 
and the fuzzy multiobjective genetic optimiser. In order to validate the second of these 
methods, it was decided to solve the Bow River Valley problem translating the DM's 
preferences as fuzzy rules. For each goal, two fuzzy sets were defined in terms of a deviation 
similar to the standard deviation but considering instead of the mean its aspiration level. The 
deviation was normalised in order to have a value between zero and one. Finally, the 
membership function was defined as linear for the six goals. Once the fuzzy sets and the 
membership functions were defined, it was possible to create the set of rules to be applied in 
the automated algorithm. The results from the fuzzy multiobjective genetic optimiser were 
2% better than those found by the GA-SEMOPS approach. 

In spite of these results, it was necessary to solve another case study to demonstrate that the 
GA-SEMOPS model can work with a different kind of optimisation problem. Hence, the 
multiple objective nurse-scheduling problem was considered. The objectives to optimise were 
the minimisation of hospital costs and the minimisation of the entire schedule fitness. The 
case study considered four hard and two soft constraints. The codification needed for the GA 
was binary and for this reason binary tournament selection was applied. For comparison 
reasons two crossovers were used: two-point and four-point. It was decided to run the 
programme for 100,200 and 500 cycles in order to visualise the algorithm's convergence. 

When considering the results found using the two-point crossover, in the 100 cycles instance 
all the hard constraints were met but the soft constraint "after a night shift a nurse prefers not 
to have a day shift" was not met for two nurses. In the 200 cycles instance, the hard 
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constraints were met again but the soft constraint " after a night shift a nurse prefers not to 
have a day shift" was not met for one nurse. Finally, in the 500 cycles instance, the hard and 
the soft constraints were met. Therefore, if the fitness values for the three cases are compared, 
it is possible to see that the performance of the algorithm depends on the number of cycles the 
programme has completed. Comparing the results found using the four-point crossover to 
those found using the two-point crossover, it was shown that in the 100 cycles instance the 
fitness value was considerably smaller to that found using the two-point crossover. It was also 
found that the soft constraint "after a night shift a nurse prefers not to have a day shift" was 
not met for one nurse while in the two-point crossover it was not met for two nurses. For the 
200 cycles instance, the fitness value was smaller than that of the two-point crossover and all 
the constraints were met while in the two-point crossover the constraint was not met for one 
nurse. Finally, in the 500 cycles instance, all the constraints were met for both crossovers and 
the fitness value found using the four-point crossover was much smaller than the value found 
using the two-point crossover. Once again the results were very interesting, showing that 
although both algorithms had a good performance, the one that used the four-point crossover 
gave better results and performed faster. 

Consequently, it has been demonstrated the effectiveness of combining the strengths of GA 
and OR techniques as they result in robust hybrid models for the solution of complex 
optimisation problems. 

As discussed in Chapter Three, it is necessary to consider risk and uncertainty in the solution 
of most of optimisation problems. For this reason, it was decided to use the PROTRADE 
method to develop a new model for solving multiple criteria decision problems where risk 
and uncertainty are present. In Chapter Five, four models were developed that resulted in a 
general model called GA-PROTRADE. The principal objectives of this approach, besides 
handling the DM's preferences, including risk and uncertainty, were to model these 
preferences using a mathematic utility function and to set a probability of achievement for 
each goal. 

In the first model (no-risk no-probability of achievement) the steps followed were: 

1. Uncertainty analysis. 
2. Goal levels and fitness function definition. 
3. GA application. 
4. DM's preference model definition. 
5. GA application. 
6. Solutions analysis. 

For the second model (no-risk probability of achievement), it was necessary to have a 
possible solution where the probability of achievement for each goal is initially set with a 
value of 0.5. The steps followed were: 

1. DM's required probabilities of achievement definition. 
2. New solution space definition. 
3. GA application. 
4. Goals and probabilities of achievement evaluation. 

The third model (risk no-probability of achievement) had the following steps: 

1. Uncertainty analysis. 
2. Goal levels and fitness function definition. 
3. Risk model definition. 
4. GA application. 
5. DM's preference model definition. 
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6. Risk model definition. 
7. GA application. 
8. Solutions analysis. 

For the fourth model (risk probability of achievement model) it was necessary to have a 
possible solution taken from the risk no probability of achievement model where the 
probability of achievement for each goal was initially set with a value of 0.5. The steps 
followed were: 

1. DM's required probability of achievement definition. 
2. New solution space definition. 
3. GA application. 
4. Goal and probabilities of achievement evaluation. 

Hitherto, each model was described as an individual process although as mentioned above the 
objective was to generate a general model. This model (GA-PROTRADE) was defined 
making an integration of all four models, resulting on the following steps: 

1. Uncertainty analysis. 
2. Goal levels and fitness function definition. 
3. Risk model definition. 
4. GA application. 
5. DM's preference model definition. 
6. Risk model definition. 
7. GA application. 
8. Solution analysis. 
9. DM's required probabilities of achievement definition. 
10. New solution space definition. 
11. GA application. 
12. Goals and probabilities of achievement evaluation. 

It is important to mention that the way the GA was programmed is modular in order to make 
it flexible to change each time it is applied. Every time the solution analysis step was applied 
it was expected that the DM and the programmer work together to determine whether the 
solution was acceptable or not. 

The process proposed for the general model can be applied as many times as needed until the 
DM is satisfied with a solution. Once the model was defined, a case study was solved in order 
to validate it. The case study considered was a multiple use approach to land reclamation and 
management of the Black Mesa region in Arizona. This problem had twelve decision 
variables, five objectives and three constraints, showing the robustness of the GA- 
PROTRADE approach. It had a 30-year period divided into fifteen sub-periods each two 
years long. A real-valued GA was developed using tournament selection, with a tournament 
size of three, arithmetic crossover and real-valued mutation operators. It is important to bear 
in mind that many simulations were carried out to investigate the performance of the 
algorithm. 

One of the most important conclusions was that the results vary in terms of uncertainty. In 
other words, as the water constraint depended on the amount of rain, an uncontrollable 
variable, the solutions would differ when the amount of water was less from those found 
when the amount of water was greater. It was also desirable to introduce risk in the solution 
of the case study; this was achieved introducing a normal probability distribution in the 
objective function coefficients as well as in the decision variables. From the results, it was 
concluded that when the normal distribution was considered the land allocation was more 
uniform. It was also concluded that the decisions made based on models that did not include 
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risk were different to the decisions made when risk was considered. Another aspect to discuss 
is that the probability of achievement can be modified for each goal, giving the DM even 
more control over the solution. This resulted in a new way of attacking a multiple objective 
optimisation problem because this approach (GA-PROTRADE) allows the researcher to 
handle goal levels, the DM' preferences and probabilities of achievement. 

After analysing all the models proposed, it was decided to generate a new approach that 
combined the best characteristics of all of them. This model was called interactive procedure 
for multiple objective optimisation problems (IMOOP) and was focused on the solution of 
real life multiple objective optimisation problems and is presented in Chapter Six. The 
IMOOP's main characteristics are the definition of a unit called decision-making process 
group (DMPG), where the DM and the researcher continuously interact during the solution of 
the problem, the formulation and solution of an initial problem, the use of surrogate functions, 
the use of evolutionary computation in the solution of the problem and the formulation and 
solution of a final problem. 

A real life problem was solved using the IMOOOP. This problem consisted of finding the 
best activity allocation for the academic staff members in the Automatic Control and Systems 
Engineering (ACSE) department at the University of Sheffield. The activities were divided 
into three areas: research, lecturing and administrative work. For the initial problem 
formulation, it was decided to measure the activities on weekly basis. Therefore, the results 
were presented in hours/week for each of the three departmental activities. A surrogate 
function was formulated with the features of a sequential decision process. A binary GA, 
validating once more the strengths and good performance of hybrid models, performed the 

. optimisation. From the results, it can be concluded that although they were satisfactory for 
the DM, the problem was solved in a simplistic way and for this reason important information 
was left behind. Hence, the DMPG unit decided to gather as much information as possible 
related to the ACSE departmental activities. Using this information, it was possible to 
formulate and solve a final problem. 

The final problem formulation consisted of the definition of more general objectives and the 
activities were measured as follows: 

Research (hours/week) 
Lecturing (credits/year) 
Administrative work (points) 

The surrogate function used a sequential decision process, allowing the DMPG unit to change 
the aspiration levels every time the algorithm was performed. The solutions found were 
satisfactory from the DM's point of view. It can be concluded that the formulation and 
solution of a final problem is one of the strongest characteristics of IMOOP, because in the 
ACSE department problem it gave more flexibility on the way the problem was treated. The 
allocation results found in the final problem allow the DM to visualise each academic staff 
member as an individual with different preferences and skills. 

Finally, it is concluded that the IMOOP is effective in the solution of multiple objective 
optimisation problems because it is capable of handling the interaction between the DM and 
the researcher (DMPG unit). It considers that it is not always the first problem formulation 
that takes into account all the problem's characteristics, objectives and constraints. For this 
reason the use of a final problem makes the IMOOP a desirable tool for the solution of 
MCDM problems. 

It was also noted that multiple criteria methods differ in the following ways: the timing of the 
decision-makers information, for example, prior versus progressive; the type of problem they 
are designed to solve, that is, whether multiple attribute or multiple objective; the type of 
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information required from the decision maker, for example, pairwise comparisons of 
alternatives; and the availability of supporting software. 

7.2 Future work 

In the GA-SEMOPS approach it would be interesting to analyse the behaviour of the GA 
using different real-valued crossovers such as geometrical crossover and simplex crossover. 

In the case of the fuzzy multiobjective optimiser different membership functions could be 
implemented to develop the rules that represent the DM's preferences, although this may 
change the complexity of the FRBS. It would also be interesting to apply this model for the 
solution of other MCDM problems with progressive articulation of the DM's preferences, to 
confirm if the automation of the DM's preferences model is valid for other applications. 

Another area of further study for the GA-PROTRADE approach is the development of a 
FRBS to implement the DM's preferences when the probability of achievement is considered, 
in other words, the creation of new rules that contain the DM's preferences related to the 
desired probability of achievement for each goal. The main purpose of this FRBS would be 
the automation of the goals' probabilities of achievement required by the DM. 

Further research needs to be undertaken to find out whether the IPMOOP proposed could be 
used to solve different kinds of problems such as operations scheduling (e. g. energy 
conservation, fuel consumption in the delivering of electrical and thermal energy), water 
resource systems, planning and scheduling, robotics, engineering design, automotive and 
process control and automated highway systems. Another factor that can be considered is the 
inclusion of qualitative data into the problem formulation. 

Finally, it is important to bear in mind that there are neither perfect methods nor perfect DMs. 
Therefore the solution of these kinds of problems involves the understanding of 
psychological, behavioural and cognitive aspects involved in real life decisions. Further 
research should be conducted to determine the influence of these aspects on the decision- 
making process. 



APPENDIX A 

Bow River Valley Case Study 
Results 
A. 1 Transfer coefficients and waste levels 

Bowville Robin State Park Plympton State Line 
C N C N C N C N 

Pierce-Hall 
Cannery -5.86 - -1.31 -3.15 -0.442 -0.771 -0.083 -0.073 
Bowville 0 0 -2.18 -5.53 -0.764 -1.60 -0.0145 -0.162 
Plympton - - - - 0 0 -3.49 -7.33 

Table A. I. Carbonaceous (C) and nitrogenous (N) transfer coefficients 
Adapted from Goicoechea (1982) 

* All C and N values are time 10"5 (mg/1)(lb/day) 

Pierce-Hall 
Cannery 
Bowville 
Plympton 

A. 2 Arithmetic crossover 

BOD, 

40,000 

128,000 
95,700 

Table A. 2 BOD waste levels in pounds per day 
Adapted from Goicoechea (1982) 

Gross 
BOD. 

28,000 

48,000 
35,700 

After Preliminary Treatment 
BOD, 

28,000 

89,600 
67,000 

19,000 
BOD� 

33,600 
25,000 

A. 2.1 Arithmetic crossover with final aspiration levels z1 = 6, z2 = 4.9, z3 = 6, 
z4=6, z5=1.8, andz6=1.8. 

First generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 

Decision variables Goals const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >_6.0 >_6.0 >6.5 <_1.5 _<1.5 

Surrogate 0.782 0.609 0.841 5.845 3.513 5.595 6.729 0.375 1.809 3.547 6.229 
Auxiliary 1 0.554 0.686 0.841 5.327 3.595 5.631 7.304 0.590 1.814 3.544 5.227 
Auxiliary 2 0.739 0.581 0.853 5.748 3.346 5.542 6.905 0.316 1.977 3.631 4.597 
Auxiliary 3 0.826 0.598 0.853 5.944 3.535 5.598 6.474 0.350 1.972 3.634 5.259 
Auxiliary 4 0.734 0.569 0.851 5.736 3.291 5.524 6.924 0.292 1.947 3.615 5.448 
Auxiliary 5 0.651 0.887 0.853 5.547 4.835 6.025 7.146 2.206 1.972 3.652 5.543 
Auxiliary 6 0.835 0.632 0.883 5.965 3.689 5.649 6.407 0.430 2.500 3.872 14.996 

Tab le A. 3 Results using the goal values as asniration Ievels 
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Second generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 

208 

Decision variables Goals *const const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >_6.0 >_6.0 >6.5 <1.5 <1.8 

Surrogate 0.822 0.676 0.836 5.935 3.852 5.703 6.503 0.555 1.748 3.519 4.990 
Auxiliary 1 0.755 0.683 0.838 5.785 3.787 5.687 6.845 0.578 1.770 3.528 3.974 
Auxiliary 2 0.758 0.362 0.838 5.791 2.597 5.288 6.834 0.041 1.778 3.519 3.149 
Auxiliary 3 0.800 0.674 0.836 5.887 3.813 5.692 6.632 0.550 1.748 3.518 3.940 
Auxiliary 4 0.958 0.584 0.836 6.246 3.794 5.663 4.081 0.321 1.748 3.524 3.816 
Auxiliary 5 0.610 0.984 0.839 5.455 5.802 6.321 7.221 6.895 1.783 3.574 3.983 

Table A. 4 Results considering coal 6 as a constraint 
* goal 6 acts as a constraint 

Third generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.5,1.5,1.8) 

Decision variables Goal *const Goals *const const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 z4.9 ? 6.0 ? 6.5 51.5 <_1.8 

Surrogate 0.870 0.859 0.834 6.046 4.927 6.044 6.077 1.757 1.727 3.528 4.226 
Auxiliary 1 0.931 0.838 0.831 6.183 4.935 6.039 5.044 1.515 1.693 3.510 3.292 
Auxiliary 2 0.879 0.856 0.834 6.064 4.926 6.043 5.983 1.725 1.722 3.525 3.226 
Auxiliary 3 0.970 0.813 0.831 6.272 4.908 6.023 3.466 1.275 1.685 3.506 2.803 
Auxiliary 4 0.736 0.982 0.832 5.741 5.905 6.351 6.916 6.638 1.702 3.533 2.930 

Table A 
.5 

Results considering goal 2 as a constraint 
* goals 2 and 6 act as constraints 

Fourth generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.0,1.5,1.8) 

Decision variables Goal *const Goal *const Goal *const const Fitness 
XI X2 X3 Z1 Z2 Z3 Z4 ZS Z6 q4 S 

Aspiration 
Levels >6.0 >4.9 >6.0 >_6.0 51.5 <_1.8 

Surrogate 0.803 0.881 0.833 5.892 4.974 6.064 6.620 2.100 1.718 3.522 3.408 
Auxiliary 1 0.849 0.864 0.831 5.998 4.926 6.045 6.286 1.833 1.685 3.503 2.214 
Auxiliary 2 0.861 0.861 0.833 6.024 4.922 6.043 6.180 1.785 1.718 3.523 2.186 
Auxiliary 3 0.835 0.965 0.834 5.967 5.829 6.324 6.402 5.074 1.727 3.547 1.954 

Table A .6 Results considering goal 4 as a constraint 
* goals 2,4 and 6 act as constraints 

Fifth generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.0,1.8,1.8) 
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Decision variables Goal *const Goal *const *const *const const Fitness 
XI X2 X3 Zi Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 ? 4.9 ? 6.0 ? 6.0 <1.8 <1.8 

Surrogate 0.876 0.860 0.837 6.059 4.948 6.050 6.012 1.775 1.761 3.548 1.982 
Auxiliary 1 0.876 0.861 0.835 6.059 4.958 6.053 6.012 1.794 1.744 3.538 0.991 
Auxiliary 2 0.875 0.859 0.833 6.057 4.937 6.047 6.021 1.757 1.710 3.518 0.991 

Table A .7 Results considering coal 5 as a constraint 
* goals 2,4,5 and 6 act as constraints 

A. 2.2 Arithmetic crossover with final aspiration levels z, = 5.9, z2 = 5, z3 = 6, 
z4 = 6.5, z5 = 2.3, and z6 = 1.8. 

First generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 

Decision variables Goals const Fitness 

Xi X2 X3 Zi Z2 Z3 Z4 Zs Z6 Q4 S 

Aspiration 
Levels >6.0 >_6.0 >_6.0 ? 6.5 <_1.5 51.5 

Surrogate 0.782 0.609 0.841 5.845 3.513 5.595 6.729 0.375 1.809 3.547 6.229 
Auxiliary 1 0.554 0.686 0.841 5.327 3.595 5.631 7.304 0.590 1.814 3.544 5.227 
Auxiliary 2 0.739 0.581 0.853 5.748 3.346 5.542 6.905 0.316 1.977 3.631 4.597 

Auxiliary 3 0.826 0.598 0.853 5.944 3.535 5.598 6.474 0.350 1.972 3.634 5.259 
Auxiliary 4 0.734 0.569 0.851 5.736 3.291 5.524 6.924 0.292 1.947 3.615 5.448 
Auxiliary 5 0.651 0.887 0.853 5.547 4.835 6.025 7.146 2.206 1.972 3.652 5.543 
Auxiliary 6 0.835 0.632 0.883 5.965 3.689 5.649 6.407 0.430 2.500 3.872 4.996 

Tab le A. 8 Results using the goal values as aspiration levels 

Second generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 

Decision variables Goals *const const Fitness 
XI X2 X3 Zi Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels ? 6.0 >_6.0 >_6.0 -26.5 <_ 1.5 1.8 

Surrogate 0.822 0.676 0.836 5.935 3.852 5.703 6.503 0.555 1.748 3.519 4.990 
Auxiliary 1 0.755 0.683 0.838 5.785 3.787 5.687 6.845 0.578 1.770 3.528 3.974 
Auxiliary 2 0.758 0.362 0.838 5.791 2.597 5.288 6.834 0.041 1.778 3.519 3.149 
Auxiliary 3 0.800 0.674 0.836 5.887 3.813 5.692 6.632 0.550 1.748 3.518 3.940 
Auxiliary 4 0.958 0.584 0.836 6.246 3.794 5.663 4.081 0.321 1.748 3.524 3.816 
Auxiliary 5 0.610 0.984 0.839 5.455 5.802 6.321 7.221 6.895 1.783 3.574 3.983 

Table A. 9 Results considering goa l6 as a constraint 
* goal 6 acts as a constraint 

Third generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,1.5,1.8) 
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Decision variables Goal *const Goals *const const Fitness 
XI X2 X3 Z1 Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 ? 5.0 >_6.0 ? 6.5 51.5 51.8 

Surrogate 0.869 0.874 0.834 6.044 5.032 6.077 6.089 1.973 1.727 3.530 4.363 
Auxiliary 1 0.903 0.863 0.832 6.119 5.029 6.073 5.635 1.818 1.702 3.516 3.354 
Auxiliary 2 0.854 0.884 0.832 6.009 5.085 6.095 6.245 2.155 1.697 3.514 3.476 
Auxiliary 3 0.919 0.882 0.834 6.156 5.212 6.128 5.328 2.118 1.727 3.535 3.366 
Auxiliary 4 0.712 0.984 0.836 5.685 5.906 6.352 6.995 6.895 1.752 3.561 2.929 

Table A. 10 Results considering goal 2 as a constraint 
* goals 2 and 6 act as constraints 

Fourth generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,1.5,1.8) 

Decision variables Goal *const Goal *const Goal *const const Fitness 
XI X2 X3 Zi Z2 Z3 Z4 ZS Z6 Q4 S 

Aspiration 
Levels z6.0 >_5.0 ? 6.0 >_6.5 <1.5 <_1.8 

Surrogate 0.819 0.905 0.837 5.930 5.189 6.130 6.517 2.572 1.761 3.551 3.705 
Auxiliary 1 0.798 0.892 0.833 5.881 5.052 6.088 6.647 2.300 1.718 3.524 2.519 
Auxiliary 2 0.808 0.886 0.835 5.905 5.018 6.077 6.587 2.180 1.744 3.538 2.470 
Auxiliary 3 0.803 0.982 0.833 5.893 5.997 6.377 6.616 6.638 1.718 3.546 1.959 

Table A. 11 Results considering goal 4 as a constraint 
* goals 2,4 and 6 act as constraints 

Fifth generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,2.3,1.8) 

Decision variables Goal *const Goal *const *const *const const Fitness 
X1 X2 X3 ZI Z2 Z3 Z4 zs z6 q4 S 

Aspiration 
Levels >6.0 >5.0 >6.0 >6.5 <_2.3 <1.8 

Surrogate 0.821 0.891 0.840 5.935 5.077 6.095 6.503 2.272 1.796 3.568 1.995 
Auxiliary 1 0.814 0.891 0.839 5.917 5.071 6.093 6.553 2.286 1.787 3.563 0.985 
Auxiliary 2 0.821 0.882 0.835 5.935 5.006 6.073 6.503 2.106 1.744 3.538 1.011 

Table A. 12 Results considering goal 5 as a constraint 
* goals 2,4,5 and 6 act as constraints 

A. 3 Unfair crossover 

A. 3.1 Unfair crossover with final aspiration levels z1 = 6, z2 = 4.9, z3 = 6, z4 = 6, 
z5=1.8, andz6=1.8. 

First generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 
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Decision variables Goals const Fitness 
XI X2 X3 Zi Z2 Z3 Z4 Z5 Z6 q4 s 

Aspiration 
Levels >6.0 >_6.0 >6.0 >6.5 _<1.5 51.5 

Surrogate 0.745 0.548 0.837 5.761 3.228 5.502 6.884 0.256 1.767 3.515 6.279 
Auxiliary 1 0.711 0.716 0.855 5.684 3.886 5.722 6.997 0.703 2.008 3.654 5.329 
Auxiliary 2 0.716 0.471 0.861 5.695 2.912 5.398 6.982 0.145 2.106 3.688 4.597 
Auxiliary 3 0.802 0.649 0.878 5.890 3.703 5.656 6.626 0.473 2.402 3.831 5.537 
Auxiliary 4 0.999 0.719 0.853 6.337 4.534 5.895 0.579 0.712 1.977 6.659 5.081 
Auxiliary 5 0.957 0.787 0.838 6.242 4.709 5.963 4.160 1.076 1.778 3.555 5.990 
Auxiliary 6 0.814 0.667 0.886 5.918 3.800 5.687 6.551 0.526 2.566 3.899 4.991 

Table A. 13 Results using the goal values as aspiration levels 

Second generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 

Decision variables Goals *const const Fitness 
X1 X2 X3 Zl Z2 Z3 Z4 Z5 Z6 q4 s 

Aspiration 
Levels >6.0 >6.0 >6.0 >6.5 51.5 1.8 

Surrogate 0.781 0.672 0.836 5.842 3.774 5.681 6.735 0.544 1.748 3.517 5.000 
Auxiliary 1 0.716 0.660 0.838 5.695 3.639 5.640 6.982 0.506 1.778 3.530 3.981 

Auxiliary 2 0.768 0.331 0.840 5.814 2.509 5.257 6.791 0.019 1.796 3.528 3.143 
Auxiliary 3 0.868 0.621 0.837 6.041 3.702 5.649 6.104 0.401 1.761 3.526 3.946 
Auxiliary 4 0.999 0.674 0.840 6.339 4.336 5.830 0.462 0.550 1.796 3.561 3.726 
Auxiliary 5 0.615 0.961 0.832 5.466 5.510 6.233 7.213 4.804 1.702 3.521 4.050 

Table A. 14 Results considering goal 6 as a constraint 
* goal 6 acts as a constraint 

Third generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.5,1.5,1.8) 

Decision variables Goal *const Goals *const const Fitness 
X1 X2 X3 Z1 Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 z4.9 >_6.0 ? 6.5 51.5 51.8 

Surrogate 0.921 0.838 0.837 6.161 4.903 6.031 5.282 1.508 1.761 3.548 4.205 
Auxiliary 1 0.846 0.865 0.831 5.991 4.924 6.045 6.316 1.843 1.693 3.508 3.250 
Auxiliary 2 0.907 0.866 0.833 6.128 5.059 6.082 5.568 1.858 1.710 3.522 3.385 
Auxiliary 3 0.988 0.823 0.832 6.313 5.045 6.062 1.979 1.365 1.706 3.522 2.850 
Auxiliary 4 0.753 0.976 0.838 5.779 5.850 6.334 6.855 6.030 1.770 3.570 2.934 

Table A. 15 Results considering goal 2 as a constraint 
* goals 2 and 6 act as constraint 

Fourth generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.0,1.5,1.8) 
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Decision variables Goal *const Goal *const Goal *const const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 >_4.9 >_6.0 >_6.0 : 0.5 <1.8 

Surrogate 0.821 0.877 0.832 5.935 4.975 6.063 6.503 2.035 1.702 3.513 3.357 
Auxiliary 1 0.851 0.868 0.834 6.002 4.956 6.055 6.270 1.888 1.727 3.528 2.250 
Auxiliary 2 0.853 0.883 0.835 6.006 5.072 6.091 6.254 2.130 1.735 3.535 2.419 
Auxiliary 3 0.863 0.980 0.833 6.029 6.080 6.399 6.159 6.476 1.718 3.549 1.933 

Table A. 16 Results considering goal 4 as a constraint 
* goals 2,4 and 6 act as constraint 

Fifth generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.0,1.8,1.8) 

Decision variables Goal *const Goal *const *const *const const Fitness 
X1 X2 X3 Zi Z2 Z3 Z4 ZS Z6 q4 S 

Aspiration 
Levels ? 6.0 ? 4.9 ? 6.0 >_6.0 ! A. 8 <1.8 

Surrogate 0.876 0.861 0.833 6.059 4.953 6.052 6.012 1.785 1.718 3.524 1.982 
Auxiliary 1 0.876 0.861 0.831 6.059 4.953 6.052 6.012 1.785 1.685 3.504 0.991 
Auxiliary 2 0.877 0.856 0.832 6.060 4.925 6.043 6.004 1.729 1.706 3.516 0.990 

Table A. 17 Results considering goal 5 as a constraint 
* goals 2,4,5 and 6 act as constraint 

A. 3.2 Unfair crossover with final aspiration levels z, = 5.9, Z2 = 5, z3 = 6, z4 = 6.5, 
z5=2.3, andz6=1.8. 

First generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 

Decision variables Goals const Fitness 
XI X2 X3 Z1 Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 >_6.0 ? 6.0 ? 6.5 <1.5 <_1.5 

Surrogate 0.745 0.548 0.837 5.761 3.228 5.502 6.884 0.256 1.761 3.515 6.279 
Auxiliary 1 0.711 0.716 0.855 5.684 3.886 5.722 6.997 0.703 2.008 3.654 5.329 
Auxiliary 2 0.716 0.471 0.861 5.695 2.912 5.398 6.982 0.145 2.106 3.688 4.597 
Auxiliary 3 0.802 0.649 0.8 88 5.890 3.703 5.656 6.626 0.473 2.402 3.831 5.537 
Auxiliary 4 0.999 0.719 0.853 6.337 4.534 5.895 0.579 0.712 1.977 3.659 5.081 
Auxiliary 5 0.957 0.787 0.838 6.242 4.709 5.963 4.160 1.076 1.778 3.555 5.990 
Auxiliary 6 0.814 0.667 0.886 5.918 3.800 5.687 6.551 0.526 2.566 3.899 4.991 

able A. 18 Results using the goal values as aspiration levels 

Second generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 
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Decision variables Goals *const const Fitness 
XI X2 X3 Zl Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >6.0 >6.0 >6.5 <_1.5 <_1.8 

Surrogate 0.781 0.672 0.836 5.842 3.774 5.681 6.735 0.544 1.748 3.517 5.000 
Auxiliary 1 0.716 0.660 0.838 5.695 3.639 5.640 6.982 0.506 1.778 3.530 3.981 
Auxiliary 2 0.768 0.331 0.840 5.814 2.509 5.257 6.791 0.019 1.796 3.528 3.143 

Auxiliary 3 0.868 0.621 0.837 6.041 3.702 5.649 6.104 0.401 1.761 3.526 3.946 
Auxiliary 4 0.999 0.674 0.840 6.339 4.336 5.830 0.462 0.550 1.796 3.561 3.726 
Auxiliary 5 0.615 0.961 0.832 5.466 5.510 6.233 7.213 4.804 1.702 3.521 4.050 

Table A. 19 Results considering goal 6 as a constraint 
* goal 6 acts as a constraint 

Third generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,1.5,1.8) 

Decision variables Goal *const Goals *const const Fitness 
X1 X2 X3 Zt Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >5.0 >_6.0 >_6.5 <_1.5 <_1.8 

Surrogate 0.829 0.894 0.831 5.952 5.115 6.106 6.451 2.335 1.685 3.507 4.555 
Auxiliary 1 0.844 0.886 0.835 5.987 5.080 6.094 6.331 2.187 1.744 3.540 3.469 
Auxiliary 2 0.857 0.889 0.832 6.016 5.124 6.107 6.215 2.232 1.702 3.517 3.531 
Auxiliary 3 0.974 0.858 0.831 6.282 5.216 6.120 3.167 1.752 1.685 3.513 3.104 
Auxiliary 4 0.736 0.982 0.832 5.741 5.905 6.351 6.916 6.638 1.702 3.533 2.930 

Table A. 20 Results considering goal 2 as a constraint 
* goals 2 and 6 act as constraints 

Fourth generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,1.5,1.8) 

Decision variables Goal *const Goal *const Goal *const const Fitness 

XI X2 X3 Zi Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >5.0 >6.0 >6.5 <_1.5 51.8 

Surrogate 0.660 0.909 0.835 5.569 5.021 6.083 7.125 2.665 1.744 3.534 3.840 
Auxiliary 1 0.715 0.912 0.834 5.693 5.115 6.110 6.984 2.763 1.727 3.528 2.824 
Auxiliary 2 0.764 0.895 0.833 5.804 5.027 6.082 6.809 2.356 1.714 3.520 2.604 
Auxiliary 3 0.770 0.994 0.835 5.817 6.135 6.419 6.785 8.508 1.735 3.558 1.966 

Table A. 21 Results considering goal 4 as a constraint 
* goals 2,4 and 6 act as constraints 

Fifth generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,2.3,1.8) 
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Decision variables Goal *const Goal *const *const *const const Fitness 
XI X2 X3 Z1 Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >5.0 >_6.0 >_6.5 <_2.3 <1.8 

Surrogate 0.821 0.891 0.840 5.935 5.077 6.095 6.503 2.272 1.796 3.568 1.995 
Auxiliary 1 0.814 0.891 0.839 5.917 5.071 6.093 6.553 2.286 1.787 3.563 0.985 

Auxiliary 2 0.821 0.886 0.831 5.935 5.039 6.083 6.503 2.180 1.685 3.505 1.011 
Table A. 22 Results considering goal 5 as a constraint 

* goals 2,4,5 and 6 act as constraints 

A. 4 Simulated binary crossover 

A. 4.1 Simulated binary crossover with final aspiration levels z1 = 6, z2 = 4.9, 

z3= 6, z4=6, z5=1.8, andz6=1.8. 

First generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 

Decision variables Goals const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >6.0 >6.0 z6.5 <_1.5 <_1.5 

Surrogate 0.819 0.670 0.845 5.928 3.823 5.694 6.521 0.537 1.860 3.580 6.230 
Auxiliary 1 0.677 0.628 0.848 5.606 3.462 5.584 7.088 0.420 1.908 3.595 5.276 

Auxiliary 2 0.848 0.390 0.855 5.995 2.828 5.358 6.298 0.064 2.008 3.645 4.534 
Auxiliary 3 0.724 0.776 0.853 5.714 4.201 5.823 6.956 1.005 1.977 3.644 5.401 
Auxiliary 4 0.800 0.709 0.836 5.887 3.967 5.743 6.632 0.672 1.752 3.523 5.192 
Auxiliary 5 0.910 0.974 0.833 6.137 6.100 6.401 5.497 5.828 1.710 3.545 5.221 
Auxiliary 6 0.822 0.704 0.996 5.936 3.979 5.745 6.498 0.653 10.464 5.152 4.999 

Table A. 23 Results using the goal values as aspiration levels 

Second generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 

Decision variables Goals *const const Fitness 
x1 x2 x3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 >_6.0 >_6.0 z6.5 <_1.5 51.8 

Surrogate 0.847 0.623 0.836 5.992 3.670 5.641 6.310 0.406 1.752 3.520 5.001 
Auxiliary 1 0.748 0.663 0.838 5.768 3.688 5.655 6.873 0.513 1.770 3.527 3.976 
Auxiliary 2 0.638 0.362 0.837 5.518 2.462 5.249 7.171 0.041 1.761 3.503 3.164 
Auxiliary 3 0.787 0.656 0.834 5.857 3.711 5.660 6.703 0.493 1.727 3.504 3.939 
Auxiliary 4 0.999 0.489 0.838 6.339 3.611 5.589 0.462 0.168 1.778 3.542 3.794 

Auxiliary 5 0.745 0.989 0.835 5.761 6.017 6.385 6.884 7.571 1.735 3.555 3.923 
Table A. 24 Results considering goal 6 as a constraint 

* goal 6 acts as a constraint 

Third generation, having the following aspiration levels: 
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Decision variables Goal *const Goals *const const Fitness 
X1 X2 X3 Zi Z2 Z3 Z4 Z5 Z6 Q4 S 

Aspiration 
Levels >_6.0 ? 4.9 ? 6.0 >_6.5 <_1.5 ! 0.8 

Surrogate 0.930 0.838 0.832 6.181 4.928 6.037 5.063 1.508 1.702 3.515 4.254 
Auxiliary 1 0.897 0.852 0.833 6.107 4.936 6.044 5.726 1.668 1.718 3.524 3.240 

Auxiliary 2 0.934 0.832 0.832 6.191 4.904 6.029 4.949 1.450 1.702 3.515 3.249 

Auxiliary 3 0.974 0.840 0.838 6.282 5.094 6.081 3.191 1.538 1.778 3.563 2.967 
Auxiliary 4 0.756 0.996 0.838 5.785 6.138 6.420 6.844 8.776 1.778 3.582 2.921 

Table A. 25 Results considering goal 2 as a constraint 
* goal 2 and 6 acts as a constraint 

Fourth generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.0,1.5,1.8) 

Decision variables Goal *const Goal *const Goal *const const Fitness 
X1 XZ X3 Zi ZZ Z3 Z4 Z5 Z6 Q4 S 

Aspiration 
Levels >6.0 >_4.9 >_6.0 >_6.0 <_1.5 <_1.8 

Surrogate 0.730 0.892 0.840 5.728 4.962 6.063 6.935 2.300 1.796 3.564 3.570 

Auxiliary 1 0.770 0.898 0.837 5.817 5.063 6.093 6.785 2.430 1.761 3.547 2.605 

Auxiliary 2 0.866 0.871 0.836 6.037 5.008 6.070 6.123 1.935 1.752 3.544 2.284 

Auxiliary 3 0.875 0.994 0.831 6.057 6.299 6.464 6.021 8.379 1.685 3.535 1.919 
Table A. 26 Results considering goal 4 as a constraint 

* goal 2,4 and 6 acts as a constraint 

Fifth generation, having the following aspiration levels: 

A= (6.0,4.9,6.0,6.0,1.8,1.8) 

Decision variables Goal *const Goal *const *const *const const Fitness 
XI X2 X3 Zl Z2 Z3 Z4 Zs Z6 q4 S 

Aspiration 
Levels >6.0 >_4.9 >_6.0 >6.0 <_1.8 <_1.8 

Surrogate 0.876 0.861 0.833 6.059 4.953 6.052 6.012 1.785 1.718 3.524 1.982 
Auxiliary 1 0.876 0.861 0.831 6.059 4.953 6.052 6.012 1.785 1.685 3.504 0.991 

Auxiliary 2 0.877 0.854 0.831 6.060 4.911 6.038 6.004 1.702 1.685 3.504 0.990 

Table A. 27 Results considering goal 5 as a constraint 
* goal 2,4,5 and 6 acts as a constraint 

A. 4.1 Simulated binary crossover with final aspiration levels z, = 6, z2 = 5, 

z3= 6, z4=6.5, z5=2.3, andz6=1.8. 

First generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.5) 
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Decision variables Goals const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 ? 6.0 >_6.0 >_6.5 <1.5 <_1.5 

Surrogate 0.819 0.670 0.845 5.928 3.823 5.694 6.521 0.537 1.860 3.580 6.230 
Auxiliary 1 0.677 0.628 0.848 5.606 3.462 5.584 7.088 0.420 1.908 3.595 5.276 
Auxiliary 2 0.848 0.390 0.855 5.995 2.828 5.358 6.298 0.064 2.008 3.645 4.534 
Auxiliary 3 0.724 0.776 0.853 5.714 4.201 5.823 6.956 1.005 1.977 3.644 5.401 
Auxiliary 4 0.800 0.709 0.836 5.887 3.967 5.743 6.632 0.672 1.752 3.523 5.192 
Auxiliary 5 0.910 0.974 0.833 6.137 6.100 6.401 5.497 5.828 1.710 3.545 5.221 
Auxiliary 6 0.822 0.704 0.996 5.936 3.979 5.745 6.498 0.653 10.464 5.152 4.999 

Table A. 28 Results using the goal values as aspiration levels 

Second generation, having the following aspiration levels: 

A= (6.0,6.0,6.0,6.5,1.5,1.8) 

Decision variables Goals *const const Fitness 
XI X2 X3 Zl Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >6.0 >_6.0 >_6.0 >_6.5 <_1.5 : 51.8 

Surrogate 0.847 0.623 0.836 5.992 3.670 5.641 6.310 0.406 1.752 3.520 5.001 
Auxiliary 1 0.748 0.663 0.838 5.768 3.688 5.655 6.873 0.513 1.770 3.527 3.976 
Auxiliary 2 0.638 0.362 0.837 5.518 2.462 5.249 7.171 0.041 1.761 3.503 3.164 
Auxiliary 3 0.787 0.656 0.834 5.857 3.711 5.660 6.703 0.493 1.727 3.504 3.939 
Auxiliary 4 0.999 0.489 0.838 6.339 3.611 5.589 0.462 0.168 1.778 3.542 3.794 
Auxiliary 5 0.745 0.989 0.835 5.761 6.017 6.385 6.884 7.571 1.735 3.555 3.923 

Table A. 29 Results considering goal 6 as a constraint 
* goal 6 acts as a constraint 

Third generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,1.5,1.8) 

Decision variables Goal *const Goals *const const Fitness 
X1 X2 X3 Zl Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 >_5.0 >_6.0 >_6.5 <1.5 <_1.8 

Surrogate 0.860 0.874 0.835 6.022 5.016 6.073 6.187 1.979 1.744 3.539 4.354 
Auxiliary 1 0.919 0.869 0.839 6.156 5.113 6.097 5.328 1.904 1.787 3.567 3.473 
Auxiliary 2 0.943 0.847 0.832 6.212 5.032 6.068 4.671 1.617 1.702 3.518 3.436 
Auxiliary 3 0.974 0.839 0.830 6.282 5.085 6.079 3.191 1.523 1.677 3.505 2.957 
Auxiliary 4 0.632 0.994 0.834 5.504 5.978 6.374 7.183 8.508 1.727 3.547 2.936 

'Fable A. 30 Results considering goal 2 as a constraint 
* goal 2 and 6 acts as a constraint 

Fourth generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.5,1.5,1.8) 
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Decision variables Goal *const Goal *const Goal *const const Fitness 
X1 X2 X3 Zl Z2 Z3 Z4 Z5 Z6 Q4 S 

Aspiration 
Levels >6.0 >_5.0 >6.0 >_6.0 

_<1.5 <_1.8 

Surrogate 0.738 0.901 0.838 5.746 5.040 6.087 6.909 2.476 1.770 3.551 3.680 
Auxiliary 1 0.734 0.901 0.838 5.736 5.035 6.085 6.924 2.476 1.770 3.551 2.636 
Auxiliary 2 0.791 0.896 0.832 5.866 5.076 6.096 6.681 2.385 1.702 3.514 2.613 
Auxiliary 3 0.813 0.973 0.836 5.916 5.898 6.346 6.557 5.763 1.752 3.563 1.960 

Table A. 31 Results considering goal 4 as a constraint 
* goal 2,4 and 6 acts as a constraint 

Fifth generation, having the following aspiration levels: 

A= (6.0,5.0,6.0,6.0,2.3,1.8) 

Decision variables Goal *const Goal *const *const *const const Fitness 
XI X2 X3 ZI Z2 Z3 Z4 Z5 Z6 q4 S 

Aspiration 
Levels >_6.0 >_5.0 >_6.0 ? 6.0 <_2.3 <_1.8 

Surrogate 0.820 0.889 0.836 5.932 5.059 6.089 6.512 2.232 1.752 3.544 1.997 
Auxiliary 1 0.820 0.892 0.840 5.932 5.086 6.098 6.512 2.300 1.796 3.569 0.984 
Auxiliary 2 0.821 0.886 0.831 5.935 5.039 6.083 6.503 2.180 1.685 3.505 1.011 

Table A. 32 Results considering goal 5 as a constraint 
* goal 2,4,5 and 6 acts as a constraint 
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Parameter Expected Standard Units 
Value Deviation 

12 0.1375 0.0550 AU/ha 
13 0.0365 0.0130 AU/ha 

1;, i; e2,3 00 AU/ha 
q2 
q3 
1N2 

1N3 

0.1000 x 10, NR* $/ha 
0.0750 x 10 NR* $/ha 
0.0019 x 10 NR* cu m/ha 
0.0005 x 10 NR* cu m/ha 

* NR = not required in the analysis 
Table B. 1 Livestock Production coefficients 

Catchment Methods Approximate Cost Efficiency Estimated Life 
per ha (in $) (in %) 

Compacted earth 50.60 30-60 indefinite 
Compacted earth sodium treated 85.20 40-70 indefinite 

Graveled plastic 191.60 60-80 20-25 years 
Table B. 2 Soil Treatments for Water Runoff coefficients 

Parameter Expected Standard Units 
Value Deviation 

r, 0.428 x 10 0.223 x 103* cu m/ha 
r2 0.098 x 10 0.152 x 10 cu m/ha 
r3 0.079 x 10 0.089 x 10 cu m/ha 
r., 0.990 x 10 0.223 x 10"* cu m/ha 
r5 1.410 x 10 0.223 x 103 cu m/ha 
r6 1.980 x 10 0.223 x 10'* cu m/ha 

r;, i, 4 [1,6] 00 cu m/ha 
q, 00 $/ha 
q2 0.100 x 10 NR* * $/ha 
q3 0.075 x 10 NR** $/ha 
qd 0.056 x 10 NR** $/ha 
q5 0.085 x 10 NR** $/ha 
q6 0.191 x 10 NR** $/ha 

* Assumed value 
** NR = not required in the analysis 

Table B. 3 Water Runoff coefficients 
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Parameter Expected 
Value 

C7 

C8 

C9 

C10 

C11 

q7 

q8 

q9 

qlo 

qll 

W7 

W8 

W9 

tiv10 

tivll 

3.024x3.024x10 
1.568 x 10T 
7.392 x 10' 
3.169 x 10, 
2.576 x 10' 
0.232 
0.323 
0.262 x 103 
0.24 
0.278 x 10' 
5.830 
5.010 
18.850 x 10.3 
6.390 x 10' 
13.700 x 103 

Standard Units 
Deviation 

0.505 x 10 kg/ha 
0.249 x 10 kg/ha 
1.037 x 10 kg/ha 
0.102 x 10 kg/ha 
0.249 x 10 kg/ha 

NR* $/ha 
NR* $/ha 
NR* $/ha 
NR* $/ha 
NR* $/ha 
NR* cu m/ha 
NR* cu m/ha 
NR* cu m/ha 
NR* cu m/ha 
NR* cu m/ha 

* NR = not required in the analysis 
Table B. 4 Crop Model coefficients 

Treatment i K* C** p* ** 

1 0.40 1.00 1.00 
2 0.40 0.10 0.50 
3 0.40 0.15 0.50 
4 0.30 0.25 0.70 
5 0.25 0.20 0.70 
6000 
7 0.40 0.20 0.60 
8 0.40 0.30 0.60 
9 0.40 0.10 0.60 
10 0.40 0.20 0.60 
11 0.40 0.30 0.60 
12 --- 

LS**** E(s; ) [var(s; )] 
(cu m/ha) (cu m/ha) 

4.50 19.86 20.63 
0.50 0.11 0.12 
0.40 0.15 0.17 
0.40 0.24 0.36 
0.40 0.16 0.37 

000 
0.40 0.24 0.40 
0.40 0.33 0.33 
0.40 0.11 0.12 
0.40 0.21 0.29 
0.40 0.35 0.44 

*K= soil-erodibility factor 
** C= cropping-management factor 
*** P= erosion-control factor 
**** LS = slope length and gradient factor 

Table B. 5 Sediment coefficients 
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Cages 
(30 cages/ha) ($50/cage) 
Food pellets 
(30 cages/ha) (250 units/cage) (2.0 kg/unit) ($0.374/kg) 
Initial cost of stock 
(30 cages/ha) (500 units/cage) ($0.05/unit) 
Digging of pond (reclamation program) 
Transportation to and from power plant, 
($10.15/man-hour) (100 man-hour/ha) 
E(q12) Total 
E(f12), expected yield 
(30 cages/ha) (250 units/cage) (0.5 kg/unit) 
var(f12), yield variance, (assumed) 

Table B. 6 Fish-Harvesting coefficients 

$1500/ha 

$5610/ha 

$750/ha 

$1015/ha 

$8875/ha 
3741 kg/ha 

(2000 kg/ha)2 
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