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Abstract 

The thesis explores the feasibility of using solar energy and battery energy storage systems 

(BESS) for electric vehicle (EV) fleet charging at commercial depots. It analyses the techno-

economic impact of using such a system. Additionally, it evaluates the environmental impact 

of the emissions released from electricity production to charge the fleets, also known as Well-

to-Tank (WTT) emissions. 

The thesis adopts a modelling-based approach to developing a solar model and an energy 

management algorithm (EMA). These models have been used to investigate the environmental 

and techno-economic impact of charging an electric refuse collection vehicle (eRCV) fleet 

based at a waste management depot.  

Results show a maximum cost reduction achieved with a BESS of 0.5MWh when the eRCV 

fleet is split and charged at 11:00h and 23:00h, and the power capacity connection on site is 

not constrained. It provides approximately £1M in savings over the system lifetime of 15 years. 

The maximum cost reduction for overnight charging is £530,000 with a BESS of 1MWh. 

Greenhouse gas (GHG) emissions are reduced by 41 tons CO₂ eq. per year with a BESS of 0.05 

MWh. When the power capacity connection is constrained, and the fleet is charged overnight, 

a BESS of 10 MWh reduces the excess capacity charge incurred by the site from approximately 

£0.8M to zero. However, it is still not economically feasible due to the high cost of installing 

a BESS. 

These findings contribute to establishing a body of literature that explores the use of solar 

energy and energy storage systems to reduce electricity costs and GHG emissions for 

electrifying road freight vehicle fleets. It explored the trade-offs between different PV energy 

systems, the building’s energy demand, different fleet charging strategies and the installation 

of BESS.  

The thesis also provides insights for transport fleet operators regarding EV charging 

management for maximising local solar energy generation and charging at a commercial depot. 

It supports operator and business decision making process regarding the installation of PV 

panels and BESS to charge an EV fleet, considering the system costs and benefits. 
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1 Introduction 

The Nationally Determined Contributions (NDCs), which are a set of actions taken by each 

country under the Paris Agreement to reduce national emissions, have been proven inadequate. 

In fact, the current NDCs would lead to an increase on global average temperature around 3°C 

by 2100 if compared to pre-industrial levels [1]. This is 1.5°C above the temperature set, in the 

2015 Paris Agreement treaty, to avoid more severe climate change impacts [2]. 

The urgency to minimise the negative effects of climate change is motivating a global demand 

towards decarbonisation policies. The UK has pledged by law (Climate Change Act 2008) “to 

ensure the net UK carbon account for the year 2050 is at least 100% lower than the 1990 

baseline”[3]. For that to happen, decarbonisation of the transport sector is required. Now more 

than ever, the transport sector plays a crucial role in the UK's commitment to climate targets, 

overtaking the energy sector as the sector with the highest GHG emissions in the UK [4]. 

Despite the estimated impact that the coronavirus (COVID-19) pandemic has had on the 

reduction of GHG emissions, the transport sector continues to be the highest GHG emitter in 

the United Kingdom [4]. According to the latest available data, the transport sector emitted 

109.5 MtCO2e in 2021, 91% of which came from road transportation [5]. In this particular 

framework, the significance of road freight transportation is noteworthy, not solely owing to 

its greenhouse gas (GHG) emissions but also due to its adverse influence on air quality. 

Approximately 46% of total road transport nitrogen oxide (NOx) emissions stem from heavy 

goods vehicles (HGVs) and light goods vehicles (LGVs) combined [6], despite these vehicle 

types accounting for merely 6% and 18% of total vehicle miles, respectively [7]. Freight 

transportation is an essential activity in our daily routine and a major contributor to the UK 

economy. This might be the reason why future predictions point out a further increase in freight 

transport demand linked to an increase in population and GDP [8]. More precisely, freight 

transport demand is expected to increase by 7% and 28% in 2030 and 2050 respectively, in 

relation to values from 2018 [8]. This would lead to an increase in GHG emissions if 

appropriate measures are not taken into consideration. 

Efficiency measures have been adopted to reduce Tank-to-wheel (TTW) GHG emissions from 

the freight transport sector. According to Ballantyne and Heron [9], many of these efficiency 

measures (e.g., improve the fuel efficiency and driving and route optimisation) have been 
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implemented as a result of membership accreditation to a transport compliance scheme. 

Amongst others are the improvement of fuel efficiency [10], modal shift from road to rail 

[11,12] and logistics supply chain optimisation [13].  

On one hand, fuel efficiency can be improved by reducing fuel consumption when the vehicle 

is at a standstill through “stop-start” technology, especially when applied to cars and LGVs. 

On the other hand, improving the engine efficiency can be achieved by means of smaller 

engines [10]. Ultimately, improvements on the vehicle aerodynamics have a positive effect on 

fuel efficiency [14]. According to the findings of The King Review[15], Leach et al.[10] and 

Madhusudhanan et al.[14], these measures could potentially reduce CO2 emissions and fuel 

consumption by 30%. However, for the case of HGVs, the increase in freight transport demand 

has eclipsed the benefits achieved on fuel efficiency improvements and logistics [16].  

Modal shift from road to rail has been explored as a measure to reduce TTW GHG emissions 

from road freight transport. In fact, freight mode shift has for a long time been the primary 

measure considered for decarbonisation of freight transport [17]. According to the report 

released by the Rail Partners [18], one single rail freight service could remove up to 129 HGVs 

from the road, reducing CO2 emissions by 76%. However the shift from road to rail presents 

some challenges [17,19]. Geographically, rail networks have lower connectivity than road 

networks; and the movement of goods by rail is generally slower than by road. Moreover, rail 

infrastructure, and logistics and supply chain operations have to be adapted [19]. The Just in 

Time (JIT) model of supplying goods, characterised by moving small volumes at more frequent 

intervals, does not help with this transition [11]. Further investment would be needed on 

increasing and improving track gauge [18] to solve one of the main issues that restricts the rail 

freight movements in the UK [19]. Moreover, to maximise the shift from road to rail, railway 

decarbonisation would be required.  

Optimisation of logistic supply chains is a complementary alternative to reduce GHG emissions 

and from freight transport too. Pan et al.[13] concluded that pooling supply chains reduces CO2 

emissions by 14%. On the other hand, a huge effort has been focused on data availability for 

logistics operations to enable an optimal use of vehicle capacity, which in turn reduces GHG 

emissions [17]. Despite the benefits obtained through reductions in GHG emissions, a 

combination of all these efficiency measures discussed would only reduce TTW GHG 

emissions by 29% and 20% in 2030 and 2050, respectively [8]. 
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Due to this limited reduction in GHG emissions, it is imperative to find ways to fully 

decarbonise the freight transport sector to achieve the net zero target by 2050. In this regard, 

local authorities are taking leadership by introducing policies to establish Clean Air Zones 

(CAZ) and Low Emission Zones (LEZ) in major UK towns and cities [20]. CAZ and LEZ 

policies are designed to promote the adoption of vehicles with reduced emissions (i.e., 

alternatives to petroleum-based conventional fuels, electric or hybrid vehicles), and road freight 

transport fleets are the main target under those policies. Many of these policies impose a fee 

on those vehicles entering the CAZ that do not meet emission standards [21]. 

In the short term, alternatives to petroleum-based conventional fuels (i.e., diesel/petrol) have 

been extensively explored as a measure to reduce further TTW GHG emissions on road freight 

transport. However, it is difficult for these to compete against conventional fuels, due to the 

high energy density and availability of conventional fuels [17]. In fact, petroleum-based 

conventional fuel consumption increased for road transport between 2020 and 2021 [22], and 

they are still the main source of energy to power freight road vehicles [10]. Kollamthodi et 

al.[23] calculated Well to Wheel (WTW) GHG emissions by fuel type (i.e., petrol/diesel, 

biomethane and natural gas) for different road freight transport vehicles. The data from [23] is 

illustrated in Figure 1.1. 

 

Figure 1.1. Well to Wheel (WTW) emissions by fuel type for road freight vehicles (own creation with data from 

Kollamthodi et al. [23]). 

Compressed and liquid natural gas (CNG and LNG) is one of the “transitional fuel” towards 
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quantities of nitrogen oxide (NOx) and particulate matter (PM) per unit of energy. However, 

despite the benefits associated with air pollution in the short term, it would never achieve the 

level of decarbonisation needed in the long term [23]. A recent study from Langshaw et al.[24] 

estimates a 13% reduction on GHG emissions only if the LNG powered vehicles are as efficient 

as their equivalents powered by diesel. Moreover, the leakage of methane in the stages of gas 

supply and vehicle refuelling reduces considerably the benefits of using CNG and LNG to 

power road freight transport fleets [25]. 

However, the use of biofuels (i.e., biomethane) in road freight transport present a potential 

alternative to fossil fuels with a performance comparable to conventional vehicles, although 

there are still methane leakages associated with the vehicle use. The main disadvantage when 

discussing its capability is the availability of suitable feedstock and their sustainability, 

especially concerning indirect land use changes [17,23,26].  

Road freight transport decarbonisation is not easy and presents significant challenges. 

Moreover, the alternatives explored at this point ease GHG emissions reduction in the short 

term [26], especially if driving range or storage density is of primary concern [27]. They alone 

cannot achieve the significant decarbonisation required in the long run [28]. One of the most 

promising solutions to decarbonise transport is electrification. 

1.1 Road freight transport electrification 

Electrified powertrains are a promising solution because they not only help to reduce air 

pollution as they are zero emission at the tailpipe, but also they minimise the noise associated 

with transportation, which is particularly attractive in the context of city logistics [29]. Further, 

road freight transport fleets can be electrified using different energy vectors, for example 

hydrogen or electricity. 

Hydrogen is a chemical energy carrier and thus its potential role in energy systems shares some 

similarities with that of electricity. It is in fact a promising alternative in the long term to the 

path of net zero. Proof of that is the rise in demand around the world [30] and the increase in 

new policies adopted by many countries to promote the investment in hydrogen [30,31], some 

of them relying on the potential of carbon capture and storage (CCS) and green hydrogen. 

However, there is a controversial debate about its suitability as a clean fuel. The majority of 

hydrogen is currently produced from natural gas by means of steam reformation of methane, 

or from coal gasification [17,30]. These forms of hydrogen are known as grey and black 
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hydrogen respectively, and, as a consequence of being produced from fossil fuels, emit huge 

quantities of GHGs during their production. In order to make it a cleaner fuel, both grey and 

black hydrogen production relies on CCS technology to sequestrate the carbon released to the 

atmosphere. However, a cleaner version of hydrogen can be achieved if it is produced by 

electrolysis. Electrolysis only requires the use of water and electrical energy to produce 

hydrogen, however only 0.1% of total hydrogen produced around the world is done through 

electrolysis [30]. This way of producing hydrogen is not exempt from controversy around its 

suitability as a clean fuel, mainly due to its efficiency [32,33]. According to Bossel [32], only 

between 20% and 25% of the energy used for the electrolysis is converted into vehicle motion. 

Moreover, if the hydrogen is liquefied, the energy loss is further reduced by up to 81% [17]. 

However, hydrogen is seen as a promising alternative to conventional diesel fuel to be used in 

heavy, long-haul trucks due to its high energy density if compared to battery electric vehicles 

(BEV), and hence ease of storage for mobile applications. 

BEVs are a potential solution not only for the long term but also in the short term to reduce 

GHG emissions from road freight transport. Furthermore, if compared with hydrogen fuel cells, 

batteries are a relatively mature technology. The infrastructure required for delivering 

electricity is currently well-established although it needs to be upgraded to handle the required 

increase in power demand to electrify road transport. According to the Office for National 

Statistics [34], the uptake of BEVs has increased by approximately 80% between 2020 and 

2021 and is gaining importance amongst businesses as an action to reduce business carbon 

emissions. 

A combination of a transport model and an energy model, developed by Rosenberg et al.[28] 

was used to simulate the interaction between the energy system and road freight transport, and 

it was found that for small trucks (i.e., up to 50 tonnes) and large trucks operating in a route 

smaller than 300 km/day, BEVs will be the dominant technology due to their efficiency, 

maturity and lower costs when compared to hydrogen powered vehicles. 

BEVs have zero tailpipe emissions, that means no GHG emissions, particulates, NOx, or 

ground level ozone are released. However, BEVs can still emit important quantities of GHG 

emissions if the electrical energy used to charge them comes from fossil fuels such as coal, oil, 

or natural gas. The total GHG emissions per kWh for an HGV powered by diesel, electricity, 

green hydrogen (H2 electrolysis), grey hydrogen (H2 Steam Methane Reformation), 

compressed natural gas (CNG) and biomethane can be seen in Figure 1.2. The graph has been 
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adapted from Gustafsson et al.[35]. The GHG emissions in Figure 1.2 are itemised by 

emissions produced as a result of direct fuel combustion (TTW-Combustion) and upstream 

emissions released for the production of energy (WTT-electricity) or fuel (WTT -other), also 

known as Well-to-Tank (WTT) emissions. Considering the use of an electricity grid mix with 

a carbon intensity similar to the average in the EU (i.e., 269 g CO2eq. per kWh), the WTT 

impact is so high as to almost negate the advantage of replacing fossil fuels entirely. Simply 

transitioning to hydrogen powered vehicles or BEVs alone won’t be sufficient to diminish the 

environmental impact of the road freight transport unless the carbon intensity of the electricity 

grid mix is reduced to zero [17]. In this regard, it has been demonstrated that the most efficient 

pathway for the use of renewable energies when it comes to transport electrification is through 

battery electric vehicles [36]. 

 

Figure 1.2. Total GHG emissions per kWh based on each energy carrier introduced. (graph adapted from 

Gustafsson et al. [35]) 

The European Commission’s new strategy involves increasing the target for reducing GHG 

emissions from 40% to 55% by 2030 (if compared to 1990 levels), aimed at making Europe 

the world’s first climate-neutral continent by 2050 [37]. To accomplish the mentioned goal, a 

hastened electrification in sectors that rely on fossil fuels is needed at the same time as the 

deployment of renewable energy generation increases. In the UK specifically, the aim is to 

reduce emissions by up to 76% and 85% from the power sector by 2030 and 2035 respectively, 

compared to 2019 levels [38]. 
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The power and transport sector therefore go hand in hand on the path towards a net zero future. 

However, as the power sector continues to decarbonise, the use of renewable energies in 

transportation becomes a priority to maximise the environmental benefits of transport 

electrification. 

1.2 Research Aims & Objectives 

This study is focused on identifying whether the barriers associated with the WTT emissions 

from electric vehicle fleets associated with the grid mix could be addressed in a way that 

ensures the benefits of road freight transport electrification are maximised. The approach is 

therefore to perform a systematic analysis of how on-site solar energy generation and energy 

storage could be used to unlock additional reductions in GHG emissions. 

The adoption of on-site solar energy generation supported by battery energy storage systems is 

explored for two different premises, a retail store, and a waste management site, considering 

the energy consumption and logistic operations carried out at each site. A fleet of electric refuse 

collection vehicles (eRCV) is explored as a representative example of fleet energy consumption 

and the impact this has on the power connection capacity. 

Overall, the thesis aims to explore the feasibility of using on-site solar generated energy and 

battery energy storage for EV fleet charging, considering operational and technical constraints. 

The operational constraints reflect realistic vehicle operating and charging times. On the other 

hand, technical constraints refer to challenges associated with the power connection capacity 

issues when a fleet is electrified in a depot, as well as the balance between energy consumption 

and on-site generation. The analysis is performed considering the impact on grid dependency, 

GHG emissions and system lifetime costs. 

Broadly, the research aims and objectives of the thesis are: 

1)  Research Aim 1 – To understand the scientific context and the current status and identify 

current research gaps in freight transportation. In particular, its environmental impact and, 

more in depth, the challenges associated with its electrification, not only from a logistic 

point of view but also from a more technical perspective that combines the transport and 

energy systems. 
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a) Objective 1a – To conduct a literature review on road freight transport focused on 

its environmental impact and the emissions associated with each type of road freight 

vehicle (i.e., heavy goods vehicle and light commercial vehicles). 

b) Objective 1b – To conduct a literature review on road freight transport 

electrification, particularly past and recent developments in charging infrastructure 

and strategies. 

c) Objective 1c – To conduct a literature review regarding the interaction between the 

energy and transport sectors when it comes to fleet electrification, including 

integrating renewable energy and energy storage systems with an electrified fleet. 

2) Research Aim 2 – To examine the energy potential that a PV solar installation would have 

in logistic and commercial sites, such as a warehouse or a store. 

a) Objective 2a – To develop a new empirical solar model capable of estimating the 

solar energy generation at different locations in the UK, using solar radiation 

datasets and information of the specific site (i.e., latitude/longitude, available area 

for the PV installation). 

b) Objective 2b – To validate and test the model appropriately by comparing the 

model output with real-life recorded values from different PV installations. 

3) Research Aim 3 – To assess the potential benefits of implementing a BESS on a logistic 

or commercial site connected to the grid considering that the site has a PV solar installation 

on-site. 

a) Objective 3a – To develop a tailored energy management algorithm that facilitates 

the integration of all the system components (i.e., PV solar installation, a BESS, 

and the system demand load) for the correct energy distribution. 

b) Objective 3b – To apply the energy management algorithm to different commercial 

buildings in regard to operations and energy consumption characteristics. 

c) Objective 3c – To examine the impact that a combination of solar energy and 

energy storage has on such commercial building in regard to total costs, grid 

dependency and GHG emissions, considering the following variables: 

✓ Battery capacity. 

✓ Power connection capacity. 

4) Research Aim 4 – To assess the feasibility of charging an electric fleet in a commercial 

depot by using localised solar energy and battery energy storage system (BESS) 

considering operational (i.e., operating and charging times) and technical constraints (i.e., 

power capacity connection). 
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a) Objective 4a – To update the energy management algorithm developed for the 

Research Aim 3 to add the electric fleet as an extra energy demand at specific hours 

in each day. 

b) Objective 4b – To apply the updated energy management algorithm in a 

commercial depot considering different charging scenarios. 

c) Objective 4c – To evaluate the output obtained regarding grid dependency, total 

costs and GHG emissions and compare the results with the output obtained for a 

base case scenario (BCS) in which the fleet is electrified but the energy demand 

from the depot and the fleet is entirely covered from the grid mix. 

d) Objective 4d – To develop a new algorithm that mitigates the need for potential 

power infrastructure upgrades that might arise from transitioning from a 

conventional fleet to an electric one. 

e) Objective 4e – To evaluate to what extent solar energy and BESS can ease the 

power capacity constraint when it comes to fleet electrification on a commercial 

depot. 

1.3 Research methodology 

This thesis adopts a pragmatic philosophical position to address the research aims of the thesis 

and the subsequent research objectives, based on the gaps found in literature that are presented 

in the following chapter. As highlighted by the works of various scholars [39–41] pragmatism 

evaluates the concept of truth through the lens of its impact, results, and applicability. This 

perspective allows researchers to embrace methodologies or suitable techniques for achieving 

pragmatic solutions and tangible outcomes. 

1.3.1 Modelling and simulation-based methodology 

In alignment with the research aims and the philosophical standpoint, the methodology 

followed in this thesis adopts a modelling and simulation based strategy, capable of providing 

valuable data when it comes to electrifying a fleet with the help of renewable energy generation 

and an energy storage system. The simulation tools and models are designed to calculate solar 

energy generation and to manage the energy flow of a system formed by a PV installation, 

battery energy storage system (BESS), an EV fleet and the grid network. Figure 1.3 illustrates 

an example overview of such system. 
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Figure 1.3. Overview of a depot with rooftop PV panels and a BESS for EV fleet charging (modified picture 

from [42]) 

A research methodology flowchart is presented in Figure 1.4 to show how the various 

modelling elements combine. 

Initially, the available solar energy generation at the specific location (e.g., depot or warehouse) 

is estimated by a solar model. A detailed explanation of the solar model development and 

validation can be found in Chapter 3. The input data used for the development of the solar 

model, in the form of ground-based measurements of horizontal solar irradiation, were obtained 

from the Centre for Environmental Data Analysis (CEDA) Archive. The CEDA Archive is a 

reliable source of climatological and atmospheric measurements based in the UK. 

The BESS is another aspect of the system (see Figure 1.3) that has been modelled. The output 

from the model refers to the State of Charge (SoC) of the BESS. The simulations were carried 

out with data on energy demand supplied by commercial partners interested in the project. The 

data utilised in this research project were provided by industrial partners under conditions of 

confidentiality, prohibiting their publication or sharing with any third parties following the 

terms stipulated by the sponsors. 

Knowing the available solar energy generated by the PV solar installation, how the BESS 

behaves and the demand from the depot or warehouse, the energy flow of the system is 

controlled by an energy management system. Chapter 4 contains a detailed methodology for 

developing the BESS model and the energy management algorithm. 

The output obtained from the energy management algorithm is evaluated in Chapter 4, in two 

commercial premises, a waste management depot and an M&S retail store. That initial 
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evaluation aimed to understand how commercial and logistics premises function with PV 

panels and BESS, and considered the technical and economic impact. The outcome of the 

evaluation allowed the selection of the case study based on the energy requirements of both 

premises. The waste management depot was selected as the commercial premises to evaluate 

the introduction of an EV fleet based on the potential benefits achieved when the PV panels 

and BESS are installed. 

 

Figure 1.4. Research methodology flowchart 

The second part of the research methodology focuses on evaluating the introduction of an EV 

fleet into the commercial waste depot. An energy management system is created with specific 
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algorithms considering technical and operational constraints such as power connection capacity 

and EV charging patterns. This part of the thesis is explained in detail in Chapter 5 and Chapter 

6. 

MATLAB software and Simulink, a MATLAB-based graphical programming environment, 

are used to develop the models and energy management algorithms. MATLAB software has 

been chosen for being a high-level industry-standard programming language capable of 

handling a significant amount of data. It is accessible and supported by the University of 

Sheffield. 

The study is focused on the UK, and the empirical solar correlations are developed for locations 

within the UK. Nevertheless, the methodology presented in the study could be considered a 

framework to assess the feasibility of using on-site solar-generated energy and energy storage 

for EV fleet charging in other countries. In other locations, alternative solar irradiation data, 

energy consumption and EV fleet charging demand could still be processed by the model and 

simulation tools presented in the study. 

1.4 Thesis structure 

Chapter 2 provides a literature review that contextualises the issue associated with road freight 

transport emissions and explores the issues and peculiarities of road freight transport 

electrification, such as charging infrastructure and charging patterns. The review shows that 

charging EV fleets from renewable energy sources is of paramount importance for achieving a 

sustainable transportation system. However, research into the technicalities of depot-based EV 

fleet charging using renewable energy generation and energy storage is still in need of 

exploration taking into consideration the operational and logistic requirements of road freight 

transport fleets. 

Considering that renewable energy is the centrepiece to maximise the benefits that 

electrification of transport has on GHG emissions, in Chapter 3 a new solar model is developed 

for the estimation of solar energy availability at specific sites within the UK. For that purpose 

and considering the scarcity of ground level data on diffuse solar irradiation in the UK, and the 

relevance that this data has when applied to different empirical solar models, site specific 

empirical solar correlations are developed. The accuracy and validity of the results obtained 

from the newly developed solar model were compared against measured data from two 

different PV installations, one located in a private household, and another placed at the Marks 
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and Spencer (M&S) York Vangarde Retail Park store rooftop. The newly developed solar 

model can be used as a tool for supporting commercial and logistics companies on their 

decision to improve sustainability by providing valuable and accurate information on local 

availability of solar energy. At the end of the chapter, the solar model is applied to a case study 

performed for a company in the industrial sector [43]. 

Chapter 4 explores the impact of introducing a BESS, from both a technical and economic 

standpoint, on the overall energy use of the system. The system considers the energy demand 

from the commercial or logistic site, the energy generation from the PV solar installation, the 

energy store by the BESS and the energy from the grid network. The final aim of the thesis is 

to explore the feasibility of using PV solar energy generated on site together with local energy 

storage for EV fleet charging. Understanding how different commercial premises respond to 

the introduction of a BESS regarding costs, grid dependency and GHG emissions, is essential 

to progress with the study. To that end, the approach has been demonstrated at two different 

example premises, a waste management depot (WMD) and a M&S retail store. The reason 

behind the selection of these two sites relies on their differences in the operational and technical 

characteristics (e.g., activity developed on the site or their site specific energy consumption) 

with the aim of providing a broader set of results. To perform the investigation, an energy 

management model is developed based on a rule-based energy management algorithm in the 

form of “if” / ”else” and “then” statements. The algorithm manages the energy flows between 

the premises, the PV solar installation, the BESS, and the grid. The results obtained from the 

model, were analysed and it was found that the introduction of the BESS together with the PV 

solar system reduces the grid dependency, the total costs and the GHG emissions if compared 

to the base case scenario for the WMD. On the contrary, the installation of a BESS in premises 

with similar characteristics to the M&S retail store, is only economically justified for a certain 

gap between off-peak and peak electricity prices. Moreover, in premises like M&S retail store, 

where the on-site solar energy generated proves inadequate even for fulfilling their internal 

energy requirements, justifying the use of solar energy for EV fleet charging seems 

challenging. 

In Chapter 5, the electrification of a fleet of refuse collection vehicles is examined, at the waste 

management depot (WMD) introduced in the previous chapter. The aim of the chapter is to 

explore the potential benefits, if any, of the integration of PV solar panels, a BESS and an 

eRCV fleet against a given base case scenario (BCS). The BCS refers to a hypothetical scenario 
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in which the WMD does not have PV solar panels installed nor a BESS but wishes to switch 

its refuse collection vehicles to an electrically powered eRCV fleet. In this BCS, the eRCV 

fleet and the depot’s demand are to be entirely covered from the grid mix. Additionally, in 

order to have a broader knowledge of how the use of PV panels and a BESS could impact on 

fleet electrification, three different charging patterns are assessed. Based on the results, it is 

found that the introduction of PV panels and a BESS reduces the grid dependency of the overall 

facility, system’s lifetime total cost for certain BESS capacities, and the overall GHG 

emissions. Depending on the charging pattern, the benefits of on-site PV panels and a BESS 

can be further maximised.  

Chapter 6 addresses the issue of the site network power connection capacity when it comes to 

fleet charging at depot based stations. For that purpose, a new ruled-based control strategy that 

avoids increasing the power connection capacity is developed for the energy management 

algorithm. For the analysis, different scenarios are compared assuming the eRCV fleet is 

charged overnight (i.e., from 21:00h). The objective of making such a comparison is to 

determine, in the case that there is the option, what is the most feasible way forward. Either to 

keep the network power connection capacity at the same level as it was prior to the adoption 

of the eRCV fleet or upgrade the network power connection to add more flexibility regarding 

the charging time and dependency from the grid at lower electricity and network connection 

costs. The findings indicate that greater cost reduction flexibility exists when the power 

connection upgrade is not constrained. If the upgrade of the network power connection is not 

an option, a 10 MWh BESS, in this case, effectively fulfils energy requirements without 

surpassing the contracted grid connection power capacity. However, other strategies, such as 

smart charging, must be implemented with the BESS to make it an economically viable option. 

Finally, the findings of the thesis are summarised in Chapter 7. Also, an extensive analysis 

regarding the research limitations and future research opportunities raised from the PhD thesis, 

are outlined. 
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2 Literature Review 

As discussed in the introduction chapter, the different energy carriers explored will be needed 

to ease the climate impact associated with road freight transport in the pathway towards net-

zero carbon in 2050. In the long-term scenario towards net-zero carbon, road freight transport 

electrification is seen as a promising solution. 

This chapter presents a comprehensive literature review on road freight transport 

electrification. In the beginning, the chapter aims to contextualise the topic by describing the 

past, current, and future predictions on emissions associated with road transport globally and, 

more in-depth, the emissions related to road freight transportation in the UK. Additionally, due 

to the relevance of the Well-to-Tank (WTT) emissions (i.e., upstream emissions released for 

the production of energy), and the impact associated with the carbon intensity of the electricity 

grid mix when electrifying a fleet, a review of the literature in this topic is performed as part 

of the contextualisation stage of this chapter. The following sections focus on reviewing the 

technicalities presented in literature published on electric freight fleet charging (i.e., 

infrastructure and strategies) and the synergy between energy and transportation in facilitating 

road freight transport electrification. In this regard, the literature shows that energy storage 

systems have been proven to be a potential technology towards integrating energy and transport 

systems when it comes to fleet electrification, particularly if the energy system is powered by 

renewable energies. 

Overall, throughout the literature, it is shown that charging EV freight fleets with renewable 

energy sources is paramount for achieving a sustainable transportation system. However, 

research into the feasibility of using renewable energy sources to charge EV fleets while 

considering the logistic and operational constraints that may arise is still needed. The outcomes 

of such a study will align the objectives of transportation and logistics companies with the 

sustainability needs of the local and national government agenda around the decarbonisation 

of transport. Moreover, it will contribute to knowledge on the feasibility of using renewable 

energy for freight fleet electrification and the potential future research on this topic. 

2.1 GHG emissions from transport 

The onset of the late 18th-century Industrial Revolution marked the commencement of 

amplified anthropogenic emissions. These emissions, encompassing greenhouse gases (GHGs) 

like carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), arising from fossil fuel 
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combustion and deforestation, have escalated over time owing to continued population and 

economic growth [44]. While global governments strive to curtail the repercussions of this 

surge in GHG emissions within the mid-term, it has been stated that the impact of 

anthropogenic emissions will spread and have consequences beyond 2100 [45]. 

Figure 2.1 shows global CO2 emissions by sector for the past half century. The global trend for 

those 50 years suggests that transport is the sector which experienced the most significant 

increase in CO2 emissions, second to electricity [46]. As shown in Figure 2.1, there have been 

a few episodes when global CO2 emissions from transport have decreased. However, the most 

significant reduction corresponds to the period between 2019 and 2020. This decrease in 

emissions was largely a result of the eruption of policy measures adopted and implemented 

during the Covid-19 pandemic. However, once those measures were lifted the year after, in 

2021, the global transport emissions increased again to almost pre-pandemic levels [47]. 

 

Figure 2.1. Global CO2 emissions by sector from 1970 to 2021 (own creation with data from Crippa et al. [46]) 

In 2021, worldwide total CO2 emissions accounted for almost 38 Gt, of which approximately 

21% came from the transport sector (Figure 2.1). 

The share of global CO2 emissions from the transport sector corresponding to 2021 can be seen 

in Figure 2.2, created with data from Statista [48]. According to Figure 2.2, Asia and Oceania 

were the biggest emitters of CO2 emissions from transportation (i.e., 2,490 million metric tons 
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of CO2), followed by North America, Europe, Central and South America and Africa. 

However, looking at CO2 emissions at the country level, The United States of America (USA) 

is the biggest emitter of CO2 emissions globally, surpassing all other countries [46]. In 2021, 

the United States emitted 1,647 million metric tons of CO2 [46]. On the other hand, China was 

responsible for almost a 40 % of total CO2 emissions from Asia and Oceania (i.e., 0.955 million 

metric tons of CO2) [46]. In Europe, Germany was the most significant contributor to CO2 

emissions from transport, followed by Czechia and the UK (i.e., 0.143, 0.114 and 0.107 million 

metric tons of CO2, respectively) [7,46]. 

 

Figure 2.2. Global transport emissions in million metric tons of CO2 and percentage corresponding to 2021 (own 

creation with data from Statista [48]). 

Road transportation has gradually gained importance and has become responsible for the most 

significant proportion of GHG emissions within the transport sector [49]. In Europe, road 

transport is attributable to approximately 77% of total GHG emissions from transportation [50]. 

Multiple factors underlie the surge in GHG emissions within the road transport domain. 

Notably, the rapid pace of industrialisation and urbanisation has substantially influenced 

passenger and freight transportation density, thereby amplifying mileage [51]. Consequently, 

this has led to a noticeable escalation in traffic congestion, emerging as a pivotal driver of GHG 

emissions in road transportation [52]. Rothengatter [53] affirmed that the upsurge in vehicle 

numbers, driven by income growth in developed nations, has significantly impacted emissions 

from passenger transport. For instance, the car fleet in the UK expanded from ten cars per one 

thousand citizens around 1960 to more than 400 over four decades [49]. Moreover, road 
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infrastructure improvements have facilitated road freight transport's growth due to its flexibility 

compared to trains or ships [49]. 

The escalation GHG emissions from road transport has produced severe consequences on air 

quality. According to the World Health Organisation, 90% of the global population is exposed 

to air pollution, and it is the cause of 7 million deaths every year [54]. In Europe, transport is 

the only sector where emissions remain higher than in 1990. As a response, European Union 

(EU) policies have strategically shifted toward addressing air quality concerns, predominantly 

through incentivising the adoption of low-carbon emission vehicles [55]. For instance, large 

European cities such as Paris, Madrid, Berlin, Brussels, and London have been introducing 

drastic policies to curtail emissions and enhance traffic flow and accessibility to urban areas by 

establishing Low Emission Zones (LEZ). 

In the UK, transport is the only sector where GHG emissions remain higher than in 1970, as 

can be seen in Figure 2.3 and it has only reduced its emissions by 4% since 1990 [4].  

 

Figure 2.3. UK’s GHG emissions by sector for the past 50 years (own creation with data from Crippa et al. [46]. 

The blue arrow represents the trend across the years.) 
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2.1.1 Road freight transport emissions in the UK 

The most recent data on GHG emission by transport mode, in the UK, corresponds to the year 

2020. As it is shown in Figure 2.4, in that year, the total GHG transport emissions in the UK 

were 99 MtCO2eq. In 2021, when the restrictions from Covid-19 were lifted, the GHG 

emissions increased to 105 MtCO2eq [34]. 

The majority of GHG emissions (i.e., 89.6%) came from road vehicles. The biggest 

contributors to this were cars and taxis, which made up 52% of the emissions from domestic 

transport (51.8 MtCO2eq.), Heavy Goods Vehicles (HGVs) (19% of domestic transport 

emissions, 18.6 MtCO2eq.) and Light Commercial Vehicles (LCV) (16% of emissions, 

16 MtCO2eq.) [7]. 

 

Figure 2.4. UK’s domestic GHG emissions by transport mode in 2020 (own creation with data from the UK 

Department for Transport [7]). Bordered sections highlight road transport modes.  

Road is the most popular mode of freight transport due to its flexibility and ease of access along 

the supply chain, door-to-door and last-mile delivery. In 2020, it accounted for 77% of all 

domestic freight moved in the UK [56]. However, freight transportation has a massive impact 

on air quality [7,8]. Whilst road freight transport is the main target under LEZ policies [57], it 

is also the sector that provides significant benefit to the country’s economy. It contributes £13.6 

billion to the UK economy and employs over 289,000 individuals [58]. 
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LCVs are the only road-type freight vehicle that has increased GHG emissions since 1990 [7]. 

Partly because the number of licensed LCVs has almost doubled [7]. The increase in GHG 

emissions and distance travelled by this mode of road freight transport can be seen in Figure 

2.5. The expansion of this mode of transportation can be attributed to the rise in online retail 

home deliveries and the flourishing sectors reliant on van utilisation[59], and this is expected 

to continue growing in the following years. Currently, vans are essential for many SMEs (Small 

and medium-sized enterprises) and are used daily. In fact, due to its impact on urban air quality, 

the van sector has been one of the main targets under LEZ policies to reduce emissions [9]. 

LEZs have already been imposed in many UK towns and cities, pushing the van sector towards 

electrification.  

On the other hand, emissions from HGVs present an almost flattened trend, although overall 

the emissions have been reduced from 21.2  MtCO2eq. to 18.6 MtCO2eq. since 1990. As it is 

shown in Figure 2.5 and contrary to LCVs, the distance travelled by HGVs has been constant 

over time. However, the relation between GHG emissions and distance travelled by both modes 

of road freight transportation is significant. In comparison, HGV emissions are 

disproportionally higher when compared with miles travelled. The main reason for this is that 

smaller vehicles tend to have better fuel efficiency and, HGVs usually transport heavier goods 

over longer distances [7]. 

 

Figure 2.5. Road freight transport emissions (dashed lines) compared to the annual distance travelled (block 

charts) from 1990 to 2020 (own creation with data from the UK Department for Transport [7,60]) 
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2.1.2 Impact of the carbon intensity of the electricity grid mix on the transport 

electrification. 

The uplift of Covid-19 pandemic restrictions entailed a significant increase in GHG emissions 

in 2021 compared with 2020 due to increased emissions from road transport, energy and 

residential sectors [4]. However, when compared to 1990’s levels, emissions have been reduced 

in the UK by 47.6%, according to the last statistical data released corresponding to 2021 [4]. 

The comprehensive decline can be ascribed to the diminished coal and gas electricity 

generation, accompanied by the heightened adoption of renewable energy sources within the 

power sector. Notably, the distribution of electricity generation across various fuel categories 

has undergone substantial shifts over the past decade. Renewables-based electricity generation 

has surged by 30%, aligning with a commensurate 28% reduction in coal, oil, and gas-based 

generation [61]. The UK aims to continue to decrease the emissions from the energy sector. 

Precisely, expectations based on the net zero target point to a reduction of emissions by up to 

76% by 2030 and 85% by 2035, compared to 2019 levels [38]. 

Whereas the power sector reduces the share of electricity supplied by fossil fuels, the uptake 

of electric vehicles has been snowballing in the past years. Amidst the Covid-19 pandemic, 

2021 saw a worldwide new EV registration record of 6.6 million [62]. Moreover, it is estimated 

that by 2030, the total number of EVs in circulation worldwide will soar to 145 million [62]. 

According to predictions, this number could represent around 30% of the total vehicles sold 

globally by 2030. However, it must still catch up to the 60% needed by 2030 to achieve net 

zero worldwide by 2050 [62]. From the road freight transport perspective, EV market 

penetration is progressing more slowly than expected [63]. In fact, the market for BEVs 

(battery electric vehicles) has shown a lack of growth in most established automotive markets 

[64] with some exceptions such as Norway and the Netherlands [65]. China and Europe are in 

the lead on sales of electric light commercial vehicles (LCV) that in 2021 increased by over 

70%. On the other hand, 4% of the global fleet of buses and only 0.1% of heavy goods vehicles 

(HGV) are electric [62]. 

In the UK, the number of battery electric HGVs (eHGV) and electric LCVs (eLCV) registered 

for the first time has increased noticeably between 2020 and 2021. Concretely, eHGVs new 

registrations have increased by 800%, from 16 registered in 2020 to 145 in 2021 [66]. 

Similarly, eLCVs new registrations increased from 2020 to 2021 although to a lesser extent by 

129%; from 5,707 new registrations in 2020 to 13,048 in 2021 [66]. Despite the remarkable 
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increased in eHGVs and eLCVs, these vehicles only account for 0.07% and 6% of all new road 

battery electric vehicles registered in 2021, respectively [66]. While it is true that the 

electrification of road freight transport is happening at a slower pace when compared to private 

cars, a substantial increase in EV adoption from road freight transport is expected in the coming 

years as a result of net zero policies. 

However, as it was discussed in the introduction chapter, simply transitioning to BEVs alone 

won’t be sufficient to diminish the environmental impact of the road freight transport unless 

the carbon intensity of the electricity grid mix is reduced to zero [17]. In this regard, different 

authors have been exploring the impact of charging the EVs from different energy sources. A 

study conducted by Saber et al. [67] demonstrated that utilising wind and solar energy instead 

of conventional power resulted in an 8 tonnes reduction in annual GHG emissions per electric 

vehicle (EV). A case study based on 15 food retailing companies in the city of Berlin showed 

that GHG emission would be reduced approximately 96% if EVs are charged completely with 

renewable energies, as opposed to from energy sourced from the grid network, where the 

reduction is around 26%, when compared to conventional vehicles [68]. Acha et al. [69] 

conducted a comparative analysis of various vehicle types, encompassing ICE (internal 

combustion engine), HEV (hybrid electric vehicle), PHEV (Plug-in hybrid), and BEV (battery 

electric vehicle). The study assessed the environmental impact of using petrol to power ICE 

and HEV vehicles versus employing coal to generate electricity to charge PHEVs and BEVs. 

The findings underscored that EVs, and PHEVs can exhibit adverse environmental effects 

when charged with non-renewable energy sources. The study further emphasised the necessity 

for the UK grid mix to curtail its carbon footprint and proactively promote renewable energy 

sources to substantiate the viability of EVs as a sustainable alternative for minimising CO2 

emissions. 

Figure 2.6 compares the impact on GHG emissions when an EV fleet is charged from the grid 

and when it is charged using only solar energy in the UK. For that purpose, the breakdown of 

electricity supplied by the grid network is presented for 2010, 2020 and 2050 at the bottom of 

Figure 2.6. The share of electricity supplied by the grid mix in 2010 and 2020 has been obtained 

from the Department for Business, Energy & Industrial Strategy (BEIS) [61]. Whereas the 

breakdown of electricity from the grid for the year 2050 has been calculated assuming complete 

decarbonisation of the power sector. In accordance, the UK carbon intensity from the grid mix 
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and solar energy in 2050 has been calculated considering the predictions on emissions from the 

power sector [38] and on electricity demand [70]. 

The GHG emissions associated with the charging of an EV fleet can be seen at the top of Figure 

2.6 in grey colour, when the fleet is charged from the grid at each specific year and, in yellow 

colour when it is charged from solar energy. The GHG conversion factors to estimate GHG 

emissions from the grid mix in 2010 and 2020 have been obtained from the UK Government 

[71]. The conversion factors to estimate GHG emissions from the solar energy generation has 

been obtained from Stamford et al.[72] for 2010 and, from GaBi LCA Database documentation 

[73] for emissions in 2020. The reduction in GHG emissions from charging an EV fleet with 

solar energy between 2010 and 2020 corresponds to a reduction in emissions associated with 

the energy consumed in PV panels manufacturing [74]. 

 

Figure 2.6. Top graph: GHG emissions released by an EV fleet when charged from the grid (grey bars) and from 

solar energy (yellow bars). Bottom graph: Breakdown of grid electricity supplied by the UK grid network in 

2010, 2020 and 2050 by energy source. 

The analysis assumes that the GHG impact in 2050 will be similar in both scenarios (i.e., grid 

mix and solar installation), assuming complete decarbonisation of the power sector. Until then, 
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the differences in GHG emissions when the EV fleet is charged from solar energy are 

remarkable. In 2010, when the grid mix distribution was governed by using fossil fuels to 

generate electricity, charging an EV fleet from the grid mix meant almost five hundred tons of 

CO2eq. per year released to the atmosphere, whereas charging the same fleet from solar energy 

emitted less than one hundred tons of CO2eq. per year. Despite the increased use of low-carbon 

sources in the grid mix in 2020, there is still a 70% reduction in GHG emissions when the EV 

fleet is charged with solar energy. The GHG emissions an EV fleet releases are highly 

dependent on the energy generation mix when charging [75].In light of this, it is essential to 

prioritise the use of renewable energies to maximise the benefits of transport electrification.  

Despite the increased number of policies in Europe and the UK encouraging the electrification 

of short-haul HGV fleets, insufficient research has been done to explore strategies for planning 

the electrification of HGVs, according to some authors such as Danese et al.[76] and Borlaug 

et al.[77]. However, despite the need for more research in this field, some authors have 

demonstrated the feasibility of HGVs fleet electrification [78]. Large logistic companies will 

be the early adopters in the short term due to their greater capacity to invest in innovative 

technologies. However, in the long term, small companies are expected to electrify their fleet 

to comply with net-zero policies. 

2.2 Electric freight fleet charging 

The proportion of EVs globally for freight transportation is relatively modest compared to 

private cars, and one reason for that is the availability of charging infrastructure [79]. Fleet 

operators have mentioned that the greatest challenges they face in fleet electrification are 

associated with grid capacity, connection upgrading, associated infrastructure costs, and 

planning permission issues on leasehold properties [80]. So consequently, it is necessary to 

perform an extensive review of the literature available on EV fleet charging, considering the 

environmental benefits of using renewable energies for charging and the current challenges 

that fleet and transport operators face regarding road freight electrification. 

2.2.1 Charging infrastructure 

For electric freight fleets to become competitive with other alternatives, it is crucial to consider 

their charging infrastructure [81]. However, provision of charging infrasture is a complicated 

task that involves various stakeholders [82]. These stakeholders include those in the energy 



 

Page 25 of 286 

supply sector, who are responsible for distribution infrastructure and selling electricity, as well 

as those who facilitate charging services for end-users [83].  

In their investigation, Skippon et al. [84] interviewed car and van fleet operators in the UK, 

specifically focusing on sectors like waste management and property refurbishment. The 

primary objective was to assess the likelihood of companies embracing electric vehicles (EVs) 

and their envisaged charging approach. The study findings revealed that, in the event of a fleet 

transition to EVs, a home-based charging infrastructure would be imperative. This observation 

highlights the interplay between business nature and the viability of depot-based charging. 

When the workplace is based on a distributed set of locations, it complicates depot-based 

charging opportunities [84]. 

Generally, the lack of available charging infrastructure is a disincentive for the uptake of EVs 

[64,85]. This was highlighted by Amazon's Director of Global Fleet and Products who 

emphasised the challenges associated with EV charging infrastructure in the company’s 

decarbonisation strategy [86] as it strives to achieve a 50% reduction in net carbon emissions 

for all shipments by 2030 [87]. Likewise, the capital investment required [65], mainly when 

the current power connections are inadequate to meet the EV fleet's charging needs during off-

peak hours at the depot, and companies are obligated to upgrade their utility grid connections 

themselves [88,89] further discourages EV adoption. In fact, the adoption of electric fleets 

implies an increase in demand [90] on the depot’s electricity supply [91], that in-turn requires 

in many cases an upgrade of the network connection to ensure this demand is met [92]. 

Pelletier et al. [93] discusses different options for EV fleet charging infrastructure, within the 

commercial sector. They evaluate the combination of charging at the depot, at the customer 

location or at a public charging station as feasible ways forward for EV fleet charging. Public 

charging stations are essential for deploying eLCV and eHGV fleets, especially for fleets that 

perform frequent long-distance trips [94]. According to a study performed by Topsector 

Logistiek [95], 17,000 charging points consisting of a combination of home charging, depot 

charging, public charging and customer location charging points would be needed to support 

the electrification of road freight transport in the city of Amsterdam alone. Along the same line, 

the European Automobile Manufacturers’ Association (ACEA) [96] estimated that 

approximately 300,000 charging points (i.e., private and public) would be required by 2030 to 

support the EU’s electric freight fleets market. 



 

Page 26 of 286 

Many authors have assessed the electrification potential of road freight fleets using public 

charging. The results obtained by Liimatainen et al.[97] confirmed the hypothesis related to 

the importance of having access to on-road fast-charging infrastructure to increase the potential 

electrification of road freight trucks. Regarding short-distance trips, most short-haul electric 

truck charging is expected to be carried out at depots. Nevertheless, a network of public 

charging stations is still required to support the adequate function of the road freight fleet. 

Powar et al.[98] focused the study on HGVs that perform short-distance routes (i.e., up to 200 

miles). The authors focused deeply on the benefits of using DC networks to accomplish the 

charging, using PV panels and battery energy storage systems (BESS), instead of traditional 

AC networks. The authors assumed the fleet would arrive at the charging station with a 30% 

state of charge (SoC) and leave with up to 80%. The HGVs were assumed to be charged using 

extra-fast chargers, assuming it would take 40-70 minutes to charge the battery fully. 

Whitehead et al.[79] found that a modest number of public charging stations would be enough 

to facilitate the operations of electric trucks in the South-East Queensland region of Australia. 

In addition, the availability of public and on-road charging stations reduces driver range anxiety 

by providing emergency charging opportunities. Thus, increased public charging stations could 

boost market confidence in road freight transport electrification.  

The routing issues have been investigated, especially for those EV fleets with limited autonomy 

that would benefit from recharging at public stations at different points along the route. Felipe 

et al. [99] proposed heuristic algorithms to analyse technologies and energy savings on en-

route charging. Schneider et al.[100] research study proposed an algorithm and also 

incorporated operational and logistic constraints into the routing problem, such as limited 

freight capacities and customer time windows. Along the same lines, Goeke et al.[101] 

considered technicalities such as speed, gradient and cargo distribution to create an energy 

consumption model to achieve accurate outputs on routing optimisation. Hiermann et al. [102] 

included the customer location as an en-route charging point and found that an optimised route 

could be achieved if a fleet mix of freight vehicles is considered. More recent studies on en 

route optimisation based on public charging include the work by Montoya et al.[103], Pelletier 

et al.[104], Schiffer et al.[78], Raeesi et al.[105], or Erdelić et al.[106], amongst others. 

The routing problem has received extensive attention over the past decade for the electrification 

of freight fleets. On the contrary, the issue of depot charging and its scheduling has received 

less attention [29]. Despite this, depot charging is still reported as the preferred location to 
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charge an EV freight fleet [107–109] due to operational barriers such as the risk of queuing 

and the possible cargo security concerns associated with public charging stations [29,65]. 

Depot charging serves as the prevailing charging approach for EV commercial fleets delivering 

in urban areas or electric trucks with short-range routes (<300 km/day), often overnight if it is 

compatible with freight operations, as it reduces electricity costs [62,93,108]. The results 

obtained from Betz et al.[108] show that depot charging is the preferred location for urban 

commercial fleets performing deliveries in and around the city mainly because the EVs battery 

capacity provides enough range for the fleet to return to the depot to be charged at the end of 

the shift due to the proximity between the area of operation and the company depot. In addition, 

charging EV fleets at the depot during designated times of the day could lead to reduced energy 

expenses by taking advantage of discounted commercial off-peak electricity rates. However, 

implementing charging points at commercial depot sites is still far behind expectations, even 

considering the positive opportunities associated with EVs for the commercial sector due to 

barriers such as power connection upgrade costs [110].  

Easy access to depot charging infrastructure is vital to prevent delivery disruptions associated 

with EVs, which can hinder electric freight fleet adoption and their sustained usage [111]. 

Despite the challenges associated with EV charging infrastructure for freight operations, such 

as initial high costs, deploying adequate charging infrastructure will be essential in achieving 

a sustainable and inclusive electrification of road freight transport [76].  

Rosenberg et al.[28] studied the integration of different electric road freight vehicles with the 

grid and its trend based on future scenarios (i.e., 2030 and 2050). The authors assumed that 

HGVs would be charged overnight, whereas small trucks were assumed to be charged in shorter 

periods using fast chargers. Furthermore, these events were assumed to occur in time windows 

of between 45-90 minutes due to alignment with mandatory breaks for HGV drivers [112].  

Borlaug et al. [77] explored the electrification for HGVs that perform routes shorter than 200 

miles assuming that vehicles would be charged at a depot. The authors found that, for the three 

freight fleets studied, electrification is feasible through depot charging alone and at power 

levels lower than 100 kW per vehicle. Moreover, Borlaug et al. [77] found that fleets 

characterised for having regular operating schedules and extended periods of downtime could 

benefit the most from structuring the charging pattern to reduce energy costs at the same time 

the impact on the grid is minimised. 
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However, according to Teoh [81], relying solely on pre-planned charging schedules, typically 

at depot locations, poses a significant risk. He suggests to also incorporate charging strategies 

based on last-minute charging decisions made by drivers, to avoid issues related to range 

anxiety or inadequate battery capacity in the presence of congestion or long queues at customer 

sites. However, logistic operations are typically defined by the existence of planned routes and 

schedules. While drivers may make spontaneous decisions, it is unlikely that they would need 

to charge the eHGV or eLCV during the route if the EV battery capacity is sufficient to allow 

for a round trip from the depot, even in the event of unexpected issues or delays along the way.  

2.2.2 Charging strategies 

Some advantages to planning HGVs electrification, particularly in short or mid-haul, are the 

well-established demand patterns that can be reliably forecast over an extended period 

[78,113]. However, planning HGVs electrification is sometimes a difficult task when customer 

demand doesn’t remain stable over a near-term planning horizon [78]. Furthermore, the time 

required to charge HGVs, assuming a battery size bigger than 300 kWh, is another major 

obstacle to their electrification [76] that could sometimes result in lost revenue [114]. Deciding 

between using a heavier battery to increase range freedom while decreasing cargo weight [77], 

or opting for a lighter battery presents a trade-off that must be carefully considered [114]. In 

this regard, the charging strategy plays a key role, and finding a reliable charging strategy is of 

paramount importance, and is one of the major concerns for transport operators when they 

decide to electrify their fleet [109]. Ideally, a good charging strategy would ensure that their 

daily operations are meet while also minimising costs [95]. 

The charging pattern needs to be tailored to meet the economic and operational needs of the 

transport operation. Specifically, in terms of operations, the charging strategy will impact the 

daily driving distance and the operational timetable [81]. Part of that strategy relies on the 

charging time that its dependant on the type of charger. The commercial classification of 

charger types are as follows Table 2.1: 
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Table 2.1. Commercial classification of charger types 

Type 
Connector 

type 
Power rating (kW) Average charging time  

Slow 

charging 

AC type 1 

& 2 

3 12 hours 

7 6-8 hours 

22 3 hours 

Rapid 

charging 

DC 

CHAdeMO 
50-100 40 mins 

Ultra-rapid 

charging 
CCS 50-350 20 mins 

In [81], the author divides the charging strategies into three categories: downtime charging also 

known as overnight charging, opportunity charging, and intrusive charging.  

Downtime charging is one of the most widespread charging strategies that take place outside 

of the fleet's operating hours and, compared to other strategies, is relatively simple to 

implement [81]. The ability to charge the fleet during periods of inactivity enables longer 

charging times, making it easier to reduce the power required to charge the fleet fully. In this 

case, slow charging modes are used with chargers rated at 22 kW. However, the timings and 

durations of the downtime charging are dependent on the logistic and operational requirements. 

In this regard, it is very common to charge the fleet overnight at the depot [115]. Moreover, 

overnight depot charging takes advantage of lower electricity prices from the grid compared to 

using public chargers, and simplifies the route planning [109]. Overall, as long as the daily 

operations of the company can be accomplished within the driving range of the EV battery, 

overnight charging has been proven to be the most economically efficient charging strategy 

[95]. 

On the other hand, opportunity charging entails the fundamental principle that the requirement 

to charge the vehicle does not alter the operational requirements. It is expected that the charging 

activity takes place while the driver is performing the required transportation tasks (i.e., 

loading, unloading or having a break) [81] and subsequently using high-capacity chargers (i.e., 

50 kW or higher) [109] that allows the vehicle to be charged en-route in a shorter time. One of 

the main disadvantages of opportunity charging is the higher electricity costs compared to the 

downtime charging strategy and the difficulties in integrating charging on daily routes without 

negatively impacting operational requirements [109]. However, opportunity charging might be 
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worthwhile to implement in routes that exceed the EV battery range (i.e., long-haul transport 

fleets) [63,109]. The study Taefi et al. [116] presented could serve as an example of opportunity 

charging. The author assumes the vehicle is charged simultaneously with goods being 

loaded/unloaded or during driver breaks. Implicit to such assumptions is the required 

availability of fast charging at customer locations or parking, and the consequences that fast 

charging has on EV battery degradation [117]. Moreover, there are some possibilities to have 

available spaces for fast charging in public charging stations specially for freight vehicles [65]. 

According to Nicolaides et al. [33], electric refuse collection vehicles (eRCV) could benefit 

from opportunity charging; in a period of 30 minutes, while unloading, the eRCV could be 

fully charged using a 50 kW charging station. Kin et al.[109] extensively explored opportunity 

charging and its feasibility as an alternative to facilitate freight transport electrification. For 

that purpose, the authors explored vehicle fleets with different operational profiles with an 

average daily distance between 107 km for large vans, 135 km for small trucks and 121 km for 

small vans. Some of the key insights from the study were that opportunity charging is easier to 

implement in companies with LCV fleets, as for this type of freight fleet, there is more 

availability of high-capacity charging stations than for HGV fleets. Fleets operating within 

rural areas also find it challenging to adhere to the opportunity charging strategy because of 

the difficulty of finding high-capacity charging stations. If high capacity charging stations are 

available, opportunity charging is a more profitable strategy for HGV fleets due to the 

remarkable difference in cost between smaller and bigger EV batteries. Authors conclude that 

opportunity charging has to be well integrated. It has to come with high-capacity charging 

stations and a reservation system at charging points to avoid queuing. 

As opposed to opportunity charging, intrusive charging interrupts transport operations to 

facilitate charging events [81]. One of the main disadvantages of intrusive charging is the 

queuing time on public charging stations that is worsened by the limited availability of charging 

stations and the extended time required to charge the vehicle [65]. So, whereas the range time 

can be increased using this charging strategy, the operational efficiency is reduced.  

There are different strategies for EV fleet charging, compatible with different operational and 

logistic requirements. Moreover, the charging strategy selected impacts on when and how 

much charging is required, and consequently, this has consequences on infrastructure 

availability [65,118] or grid infrastructure constraints [114]. In fact, the growing adoption of 

EVs and the resulting increase in demand for charging could potentially compromise the 
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stability and dependability of the power system. Smart charging or vehicle-to-grid (V2G) 

strategies have been used extensively to ease the penetration of EV fleets. Smart charging seeks 

to provide technical benefits (i.e., avoiding the saturations of transformers) and economic 

benefits (i.e., minimising electricity costs) by optimising charging [119]. Thus, smart charging 

becomes unavoidable when there is high penetration of EV fleets [75,118]. V2G on the other 

hand, has been extensively used to balance the grid demand or peak shaving due to the 

flexibility EVs have to offer [120]. However, one of its disadvantages is the degradation of 

batteries and the energy losses during their operation [119,121]. EVs have also been used as a 

mass energy storage system to mitigate intermittent renewable energy generation, allowing the 

EV fleets better integrate the transport and power systems. [121–123] 

Over the last decade, many of the smart charging algorithms proposed by the scientific 

community explore the economics of electrification and aim to maximise economic benefits of 

fleet electrification [75,113,119]. For example, by adapting the charging time to the lowest 

electricity prices [120] to reduce overall cost of charging a vehicle. An example of those 

algorithms can be found in [124] and [125]. CO2 emission reduction is another popular reason 

for using smart charging; Hoehne et al.[126] study provides an example. Their findings 

suggested that EV emissions associated with charging could be noteacebly reduced by 

adjusting user’s charging behaviour. For example, by charging the EVs at time when the grid’s 

carbon intensity is reduced (i.e., charging during day hours instead of at night time). However, 

in agreement with Tortós et al. [121], Hoehne et al.[126] stated that encouraging EV fleet 

transport operators or drivers to modify their charging behaviour would probably involve 

providing subsidies to energy generators or the users themselves. Smart charging is also used 

to mitigate grid power issues when it comes to EV fleet electrification [127,128]. In fact, EV 

fleets can be used to provide frequency response services [120]. According to Blatiak et al. 

[120] frequency response seems to preserve the battery life of an EV better than when 

compared to V2G services. Moreover, in one of their studies, Blatiak et al. [120] compared the 

outcomes of different charging strategies, using smart charging strategies (i.e., charge the 

commercial fleet at low electricity prices), and frequency response. The study demonstrated 

that fleets with adaptable routes that take part in frequency response services could potentially 

boost their profits by as much as 38% during the summer and 12% during the winter. The 

benefits in profits of introducing optimal charging in summer compared to winter is due to the 

increase of solar output. 
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Somehow, EVs could serve as a link to connect transport and energy sectors. In fact, the correct 

operation between both sectors is crucial to facilitate the adoption of EVs. 

2.3 Energy and transport systems integration to facilitate the adoption of EV fleets 

The energy and transport sectors share the same objective towards a net zero future, complete 

system decarbonisation, yet they are not well coordinated [129]. Considering the predictions 

from industry analysts on the increase in number of LCVs and consequently, their requirements 

for charging points, the power supply grid and the transport systems need to be well 

coordinated since EV charging connects them both. 

EVs have been researched extensively across various domains and viewpoints. In terms of their 

interface with the power grid, two established areas of study have emerged: power systems 

stability / availability, and transportation studies. However, as transport becomes increasingly 

electrified, it is essential to consider the synergies and conflicts between the power system and 

the transportation requirements. In fact, when exploring the use of V2G, the majority of studies 

focus on the power system perspective, and most lack consideration of operational and logistic 

constraints. Similarly, a different area of study exists that deals with the same concerns but 

excludes important aspects of power system, the vehicle routing problem. The vehicle routing 

problem is tailored to EVs and is concerned with EV usage efficiency based on different driving 

patterns, with the focus on finding the optimal route rather than determining the most effective 

charging strategy, which is observed on power system related studies. This means that EV 

charging electrification is either explored from the power system operation perspective (i.e., 

power system research field) or from the logistic and operations perspective as seen in the 

transport studies field. 

In their study to understand the interconnection between transport and power sectors, Quirós-

Tortós et al. [121] estimate that by 2030, approximately 10% of EVs will be available daily 

through V2G to help the grid to maintain the balance between demand and generation. The 

authors concluded that the extent to which EVs can potentially provide grid services would be 

directly linked to EV users’ benefits. In this regard, EV charging management is required to 

ensure effective and safe use of the power grid. However, certain practices to solve technical 

issues might cause rapid degradation of the EV battery. For example, in [121], the EVs are 

disconnected from the electricity source when the modelled system detects a thermal or voltage 

problem on the grid. Then, the EVs are connected again when it is technically safe. For that to 

happen, the management system first disconnects the EVs that have been connected for longer 
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times, assuming the more prolonged the connection time, the higher the SoC of the EV battery. 

On the other hand, the EVs that have been disconnected for longer times have the priority to 

be connected to the network once it is technically safe to do so. The experiment results showed 

that this approach effectively mitigated network issues; however, to avoid rapid degradation 

and thus preserve a good state of the EV's battery health, the EV should be connected to a 

minimum uninterrupted charging time of 15 minutes before disconnection occurs. 

The different charging patterns scenarios, considering when and how the fleets are charged, 

impact the power grid. In a pioneering study accomplished in the UK to understand the EV 

fleet’s impact on the grid, authors found that uncontrolled charging could lead to extra pressure 

on the power system [121]. Moreover, it was found that the transformer capacity would likely 

be exceeded with an EV penetration of 40%. In the event of a higher EV penetration (i.e., 90%), 

the low-voltage network might face voltage constraints, which in-turn would impact charging. 

Therefore, effective management of EV charging seems necessary to ensure the adequate 

integration of transport and power systems. However, further consideration is required 

regarding charging constraints by, for example, asking EV users to charge the EVs during off-

peak hours as it might affect EV adoption [98]. 

Rosenberg et al.[28] tried to connect both sectors (i.e., transport and power) through a 

combination of models for energy supply and road freight transport. The authors used the 

output from the combination of models to analyse road freight transport’s impacts on the power 

system on the path towards net zero. As a result, the authors concluded that the electrification 

of road freight transport is feasible in Norway and would not trigger a negative impact on the 

power system. 

Bradley et al.[114] explored the electrification of HGVs in southern California to determine 

optimum charging station placement and provide suggestions to policymakers to encourage the 

adoption of electric trucks amongst transport operators and fleet managers. The results indicate 

that charging overnight would be the most optimal solution because it meets the HGVs’ 

charging needs and prevents the fleet from wasting time in the middle of the operation. 

Moreover, authors concluded that the grid capacity is a constraint to replacing conventional 

with electric HGVs due to each vehicle’s energy requirements. 

Many authors have flagged the issue associated with the power connection capacity at the 

charging station. Schmidt et al.[63] addressed the feasibility of commercial fleet electrification 
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while taking into account the technical constraints of the vehicles themselves (such as driving 

range) and the charging infrastructure (including factors like charging capacity and station 

availability). The aim of the study [63] was to offer insights into the types of fleet mobility 

patterns that could derive advantages from different charging scheduling strategies to 

extrapolate these findings to a broader spectrum of commercial fleet applications. Results 

showed that commercial fleet electrification is technically feasible. For example, fleets with 

routes higher than 81 km successfully managed to keep the minimal power capacity connection 

required to provide continuous operation by first charging vehicles with the lowest SOC. 

However, this approach would require on-site personnel to allocate the vehicles to the charging 

stations unless the system is automated. On the other hand, results show that 73% of the studied 

fleets benefit from a predicted or planned charging event, compared to a first-come-first-served 

charging strategy, as it increases the number of successful trips. The results are in line with the 

conclusions presented by Kin et al.[109] if opportunity charging is the strategy selected by 

transport fleet operators; planned charging events that facilitates a slot reservation at charging 

points is essential. 

Despite the valuable outcomes, the study of Schmidt et al.[63] it does have certain limitations. 

Regarding power connection capacity, the authors’ approach involved utilising the minimum 

necessary power connection capacity to ensure uninterrupted operations. Consequently, the 

study’s findings apply to commercial or logistic companies involving light commercial 

vehicles. However, the applicability becomes constrained when considering heavy-duty 

vehicles with larger battery capacities (i.e., those used for waste management), as the power 

required would be higher, owing to the need for higher power chargers. 

Kin et al.[109] explored the techno-operational and financial feasibility for fleet electrification 

for a wider variety of commercial vehicles. Amongst others, the study investigated the 

feasibility of electrifying small trucks with a 200 kWh battery capacity. It is pertinent to note 

that detailed technical specifications concerning power connection were omitted, given the 

specific focus on case study insights. Nonetheless, the authors drew attention to the concern of 

power connection capacity within the local grid, particularly in charging heavy-duty vehicles 

(HGVs) at depot facilities. 

A more technically orientated research paper by Pelletier et al. [29] on EV fleet charging 

strategies aims at providing an optimisation tool for depot charge scheduling considering 

different constraints such as maximum power retrieved from the grid to charge the vehicles. 
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Two maximum powers are considered, 20 kW and 500 kW. The latter allows the fleet of 5, 10 

and 15 medium duty electric trucks to be charged. Although the authors of the study do not 

specify, the tonnage associated with medium duty electric trucks is between 4 to 12 tonnes. 

When the power connection capacity is reduced, the fleet size has to be limited to five vehicles 

otherwise, the charging power required would surpass the maximum allowable (i.e., 20 kW). 

Moreover, results indicate that introducing power grid limitations renders fleet charging 

unviable for one of the scenarios. The authors concluded that limiting the power grid 

connection capacity could lead to a substantial rise in energy costs under certain circumstances. 

The studies analysed are examples of research papers advising of the consequences or 

implications that a limitation on the grid power connection would have when it comes to 

electrify a fleet. Moreover, there are some uncertainties regarding HGV charging requiring 

more power and concentrated loads. Therefore, it is unclear what would be the costs and lead 

times associated with distribution system upgrades related to HGVs charging. Borlaug et 

al.[77] summarise available information from public and private reports on the cost incurred 

on power distribution system upgrades required for depot charging based in the United States. 

As a result of data gathering on costs, the authors found that as the charging demands rise, the 

probability of upgrades being needed at higher points in the distribution system (i.e., 

distribution feeders or substations) also increases. Moreover, as EV adoption continues to 

grow, fast charging demand is expected to increase, and it will become necessary to establish 

sub-transmission and transmission-level interconnections for specific stations. Hence, 

upgrades at both the transmission and distribution levels will likely be needed [98]. 

Numerous solutions investigated in existing literature have centred around two key areas: smart 

charging [90] and load/demand management [130]. These strategies have long been a subject 

of scholarly inquiry, complementing each approach. Within the realm of smart charging, the 

integration of load management algorithms smoothens the load profile by effectively 

coordinating vehicle charging processes [131]. It is worth noting that, in tandem, these 

approaches yield a reduction in charging costs [132,133]. These methodologies are collectively 

acknowledged as pivotal in curtailing costs associated with adopting electric fleets. In [77] 

authors found that freight fleets with consistent operating schedules and lengthy off-shift 

periods stand to gain the flexibility to arrange charging periods when energy prices are at their 

lowest (i.e., overnight). At the same time, the impacts on the grid network are reduced. 

Moreover, extending the charging time overnight allows for flattening the power required by 
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keeping a constant minimum power and reduces the peak demand by more than 80%. By doing 

so, the authors concluded that approximately 90% of the substations studied would be able to 

manage the penetration of 100 electric HGVs without the need for a distribution system 

upgrade. Therefore, managing charging scenarios efficiently is crucial. 

2.3.1 Energy storage systems. 

A complementary solution is energy storage. Energy storage has demonstrated its potential as 

a technology contributing towards integrating energy and transport systems when it comes to 

fleet electrification, particularly if renewable energies power the energy system [134]. The 

potential advantages of combining energy storage with renewable energy generation depend 

highly on the localised energy management approach. It gains importance when EV fleets are 

included in the system due to their operational schedules and the available charging 

infrastructure on their planned routes [135]. Researchers have extensively investigated energy 

management from various perspectives, aiming to attain improved efficiency across the 

distribution network, such as minimising losses in distribution systems [136,137], reducing 

costs by controlling the energy sources and controllable loads [135], or mitigating GHG 

emissions [138,139]. 

Betz and Lienkamp [107] developed an energy management system to evaluate the advantages 

of incorporating EV fleets within commercial premises. They aimed to seamlessly integrate 

three key technologies—PV solar energy, energy storage, and EV fleets—to curtail the total 

cost of ownership (TCO) and CO2 emissions. When running the simulations, authors assumed 

the EV is available at the commercial site and can be used as a battery to store PV surplus solar 

energy. This approach eliminates the need to sell excess PV solar energy to the grid, indirectly 

increasing its self-consumption and making it profitable. 

Compared to the overnight grid-based charging proposed by Borlaug et al.[77], Powar et 

al.[98] aimed at creating a grid-independent DC connection to charge an electric HGV fleet 

using solar energy and energy storage. The authors [98] were motivated to develop such electric 

architecture to alleviate the backlogs in clean energy approvals in the United States and avoid 

large curtailments within the traditional AC grid due to a poor transmission grid infrastructure. 

The charging stations were assumed to be located in urban areas with limited space for PV 

installations. Hence, the authors considered a remote PV installation that already exists at a 

distance of between 150 km and 400 km with respect to the charging station. The PV 
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installation was designed to balance solar generation and EV fleet demand, and the BESS was 

then used to supply energy at peak hours of demand during the night. The remote PV and BESS 

are connected to a high-voltage direct current (HVDC) transmission bus by a low-voltage direct 

current (LVDC) to HVDC converter station. The generated DC power is transmited with 

HVDC transmission and converted to medium-voltage direct current (MVDC). MVDC power 

is distributed to the charging stations and converted to LVDC. The results show a reduction in 

power loss at low, medium and high voltage levels when the proposed DC system is used, when 

compared to the traditional AC grid power system. The authors concluded that switching to 

DC networks could increase the efficiency of the power system in the event of increased 

demand for fast charging stations. 

Pietracho et al.[92] assess the integration of electric vehicles into the commercial sector 

considering economic and environmental factors compared to conventional fleets. The study’s 

findings indicated that, compared to conventional fleets, electric fleets report a higher Total 

Cost of Ownership (TCO), primarily attributed to the infrastructure investment required for 

charging stations. Energy storage technology can reduce costs by decreasing the consumption 

from the grid at peak prices. However, in some cases, this approach is not an option if the 

system requires a grid connection upgrade to provide energy at lower prices. In fact, when it 

comes to adopting EV fleets, the network upgrade is presented as a serious issue by many 

logistics companies [140]. Moreover, considering that the energy consumption and peak power 

loading from the introduction of EVs will increase significantly in commercial locations [141], 

it is worth exploring alternatives to reduce the costs over the system lifetime, to better suit the 

needs of logistics companies who are expected to charge multiple vehicles at any given time. 

In this regard, the electrification of transport requires a linkage between electricity and fleet 

operators to conduct research together to understand the practicalities of integrating fleet 

charging demands on the power grid, considering that both the power and transport sectors will 

be more interconnected as the electrification of transport increases [28,142]. 

Battery energy storage systems (BESS) play a vital role in the energy transition of transport 

and power systems. Moreover, improvements in technology and large-scale manufacturing 

have resulted in lithium-ion batteries becoming a worthwhile option for energy storage [98]. 

2.4 Solar energy and energy storage for EV fleet charging 

The current energy security issues together with the environmental concerns have motivated 

and opened up a new push for investment in electrification and renewable energies [143]. In 
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fact, governments and companies looking into reducing carbon impact and oil and gas 

dependency, are adopting policies and guidelines that prioritise the use of renewable energies, 

such as REPowerEU plan [143] or the British Energy Security Strategy [144]. For the transport 

sector to fully decarbonise is essential the use of renewable energies. However, there are still 

many questions that require an answer that concerns logistic and transport operators. 

Battery Energy Storage Systems (BESS) are a key technology in the transition towards 

sustainable energy systems. According to recent projections [145], battery energy storage in 

particular, is set to take centre stage as the fastest growing source to assist the power system 

on increasing its efficiency and resilience. In a scenario based on the use of renewable energies 

to charge EV fleets, the use of energy storage systems is a requirement. They not only provide 

reliable regulation of active and reactive power and frequency, but also overcome problems 

related to interruptions of transmission or distribution systems [146]. Additionally, BESS can 

enhance the self-sufficiency and self-consumption indicators, and increase the overall 

flexibility of the grid [147]. It has the potential to reduce the energy bills by purchasing power 

from the grid during the off-peak hours and selling it back to the network during the peak 

demand hours. Due to the volatile nature of renewable energies, energy storage systems 

enhance their integration by levelling their output fluctuations and balancing the power flow 

[146]. With its ability to store excess energy generated from renewable sources and discharge 

during peak demand, battery storage offers versatile and reliable solution not only to balancing 

the grid, but also increasing the potential to use renewable energies to charge EV fleets. 

Several researchers have evaluated the integration of EVs and PV systems, highlighting the 

potential advantages arising from a synchronized charging approach that harnesses the 

synergies between these technologies within the grid network [148–152]. From both technical 

and economic standpoints, it is evident that an uncoordinated EV/PV system could lead to 

elevated demand during peak periods, consequently imposing additional burdens on power 

grids due to congestion and potential over-voltage challenges. The "duck curve" can explain it; 

PV generation peaks during low demand while decreasing during high demand periods. 

Consequently, utility companies must increase production to fill this gap, often over-stressing 

the grid. To that extent, a significant penetration of EVs with uncoordinated charging (i.e., 

charging in the evening) would increase this effect [152,153]. Chaouachi et al. [149] proposed 

a more decentralized energy grid to mitigate these adverse techno-economic repercussions. 

Powar et al.[98] proposed a grid-independent DC connection for EV fleet fast charging using 
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solar energy and BESS to avoid large curtailments within the traditional AC grid due to a poor 

transmission grid infrastructure. The proposed infrastructure solved the issue by storing the 

curtailed surplus energy. 

Some authors have been examined the integration of localised solar energy and EV fleet 

charging for specific scenarios. For instance, Alvaro-Hermana et al. [154] presented a case 

wherein an EV shuttle fleet comprising four vehicles was employed to commute between an 

intermodal exchange station and a conference venue in Madrid. Notably, this operation 

strategically harnessed locally generated solar energy. The EV shuttle fleet exhibited specific 

driving patterns, covering approximately 3 km during the morning (from 08:00h to 09:00h) 

and traversing the reverse route in the evening (from 19:00h to 20:00h), with predetermined 

routes for both directions. The total number of trips performed was 20. All these operational 

requirements enabled the EV shuttle fleet to be fully charged while parked (from 09:00h until 

19:00h) considering that the total energy fleet demand (i.e., 19.08 kWh) is lower than the solar 

energy generated (i.e., 47.3 kWh). Tulpule [148] delved into the economic and environmental 

aspects of EV charging at the workplace using on-site PV solar energy. The study adopted a 

comprehensive charging timeframe for EVs (from 06:00h to 20:00h) and integrated parking 

fees from EV users into the model, thereby contributing to a reduction in the PV payback 

period. With this approach, it was demonstrated that an optimal PV installation capacity 

reduces payback time, so there is no need to increase the number of PV panels to achieve 

maximum benefits.  

Mouli et al, [155] developed a model for PV power installation tailored to EV charging in a 

workplace. The authors included energy storage systems to mitigate reliance on the grid during 

simultaneous EV charging instances. An evaluation of different storage capacities revealed that 

grid dependence ceased to decline at a specific capacity. It is noteworthy that this investigation 

was conducted in Norway, where substantial seasonal disparity exists between summer and 

winter sunlight, distinct from regions not located in the far northern latitudes. While previous 

studies predominantly focused on workplace EV charging during daylight hours, it is essential 

to recognise that commercial settings often entail overnight charging when the fleet is not 

operating. Consequently, when designing the PV model, charging schedule and EV range 

planning pertinent to commercial fleets should be considered. EV charging has been 

implemented at workstations, capitalising on daylight hours when the EV is parked and 

benefiting from sun exposure [156,157]. 
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Clairand et al. [158] proposes an EV charging strategy for isolated power systems with a high 

penetration of renewable generation. The strategy aims on one hand to reduce the impact on 

the power system when a fleet of EVs are being charged and, on the other hand, to maximise 

the use of renewable energy. The authors based the charging strategy on mechanisms to 

incentivise EV owners to charge the fleet during period of low demand and high renewable 

generation. The study assesses different charging scenarios considering power capacity 

constraints. Due to the fact that energy storage is not used in this study, excess renewable 

energy is not used by the EV fleets. Thus, authors concluded that the addition of energy storage 

is needed to facilitate the integration of renewable energies by levelling their output 

fluctuations and balancing the power flow. 

Domínguez-Navarro et al. [159] explore the integration of EV fleet charging with renewable 

energies (i.e., solar and wind) but consider adding energy storage. The authors highlight the 

potential benefit of integrating renewable energy and storage system in EV charging 

infrastructure to reduce the impact on the grid. However, the type of EVs studied were private 

cars and vans. Thus it is not easy to extrapolate these results to road freight fleets, which are 

characterised by specific operational requirements. 

In the current literature, there is a lack of publications addressing the implications of using 

renewable energy and energy storage for EV fleet charging based on freight transport fleets 

(i.e., eRCV). Part of the literature reviewed addressed the use of renewable energy and energy 

storage focused on the implications that it has on the power system [98] using public charging 

stations. Others, discussed the electrification of freight vehicles using renewable energy and 

energy storage for depot fleet charging with certain limitations regarding technical constraints 

(i.e., power capacity) [63]. 

2.4.1 Electric Refuse Collection Vehicle (eRCV) Fleets. 

In the United Kingdom, the Environmental Protection Act of 1990 mandates waste collection 

authorities (WCAs), typically comprising district, metropolitan, or city councils, to organize 

and oversee household waste collection within their respective jurisdictions [160,161]. Central 

to this responsibility is the establishment of collection schedules and routes, with a prevalent 

approach being alternate weekly collection (AWC) systems, wherein recyclable and residual 

waste are collected on alternating week [162,163]. Adopting such systems aims to optimize 
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operational efficiency while accommodating variations in external factors such as traffic flow 

and adverse weather conditions [162].  

Waste management encompasses various processes, including collection, transportation, 

processing, recycling, and disposal of waste materials [164]. Central to the effectiveness of 

waste management systems is the optimization of vehicle tours, which play a pivotal role in 

facilitating waste movement from collection points to processing or disposal facilities [165]. 

Precisely, the logistics of waste management involves the generation of fleet tours that 

originate from the depot, traverse designated pickup locations to collect waste materials, make 

deliveries at disposal sites such as landfills or recycling centres, and ultimately return to the 

depot [166]. Managing waste collection fleets, particularly in the context of electric refuse 

collection vehicles (eRCVs), constitutes a critical aspect of modern urban waste management 

systems. 

In recent years, there has been a notable shift towards integrating eRCVs into waste collection 

fleets, driven by imperatives for sustainability and environmental stewardship [167,168]. 

Despite the potential benefits of eRCVs in mitigating noise pollution and reducing carbon 

emissions, their widespread adoption poses logistical challenges, particularly concerning range 

limitations and charging infrastructure [168,169]. For instance, while eRCVs are equipped with 

oversized batteries to extend operational range and facilitate prolonged service hours, the 

consequent increase in energy consumption and procurement costs warrants careful 

consideration [169]. 

The operational dynamics of eRCVs differ substantially from their diesel-powered 

counterparts, necessitating nuanced approaches to route planning and scheduling [167,168]. In 

[167] authors explored the Waste Collection Vehicle Routing Problem with Time Windows 

(WCVRPTW) for a plug-in hybrid electric refuse collection fleet (compressed natural gas 

(CNG) + battery). Assumptions considered the start point of the route at the depot followed by 

the waste collection from customers until the vehicle is full. By then, the vehicle must go to a 

landfill or to a recycling point to empty its waste. After unloading, the refuse vehicle returns to 

its duty. In addressing this problem, authors found that plug-in hybrid electric waste collection 

vehicles introduce new logistical intricacies due to their limited battery or compressed natural 

gas (CNG) capacities, resulting in shorter driving ranges than traditional internal combustion 

engine (ICE) vehicles. Furthermore, the scarcity of irregular distribution of refuelling stations 

worsened the challenge of planning efficient routing solutions [168]. Waste management 
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companies must develop comprehensive strategies for route optimization and charging 

infrastructure deployment to ensure the viability and efficiency of eRCV operations [167,168]. 

Furthermore, empirical studies underscore the importance of contextual factors such as 

population density (e.g., city centres or rural settlements) and waste composition in shaping the 

operational parameters of eRCV fleets [168,169]. Variations in waste compacting cycles and 

energy consumption patterns highlight the need for tailored approaches to route planning 

[168,169]. Especially in diverse urban and rural settings, for example with high occupancy 

domestic flats, single-family houses distributed over a large area or clinical waste collections 

that require higher frequency collections. Consequently, effective waste collection 

management necessitates a holistic understanding of the interplay between technological 

capabilities, operational constraints, and environmental considerations. 

A study by Ewert et al. [166] employs a multi-agent-based simulation methodology to assess 

the technical feasibility and potential economic and environmental consequences of 

transitioning to fully electric refuse collection vehicle (eRCV) fleets. Despite advancements in 

electric vehicle (EV) technology, questions persist regarding the ability of eRCVs to withstand 

real-world working conditions and the optimal system design parameters, including battery 

capacity, type, and charging technology. Central to the discussion is the critical role of battery 

capacity in shaping eRCV performance and cost-effectiveness. Larger batteries offer extended 

ranges but come with increased costs and reduced payload capacity. The selection of electric 

municipal vehicles must carefully balance energy consumption considerations, accounting for 

driving consumption and auxiliary energy usage under specific working conditions. Findings 

of [166] underscore the technical feasibility of electrified waste collection in urban areas and 

highlight opportunities to optimize battery capacity and charging strategies to enhance cost-

effectiveness. By leveraging a combination of small and large battery-equipped vehicles 

supplemented with fast charging options, waste management operators can mitigate range 

limitations and maximize operational efficiency. On the other hand, the environmental benefits 

of eRCVs are substantial, with significant GHG emission reductions compared to internal 

combustion engine vehicles (ICEVs) [166]. 

Integrating on-site solar energy generation for EV charging remains underutilised in the waste 

management sector, primarily due to the obstacles impeding its development and 

implementation. A noteworthy challenge arises from the inherent unpredictability of renewable 

energy sources [170]. Specifically, solar energy, reliant on weather patterns, exhibits a 
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constrained timeframe of peak power production, often concentrated around midday [171,172]. 

Moreover, a fleet’s charging strategy and operational times have an economic impact 

interconnected to the solar energy generation on-site. According to Nunez Munoz et al.[173] 

splitting the charging of an eRCV fleet into two-time windows (i.e., 9 out of 19 eRCVs are 

charged at 11:00h and the other 10 eRCVs at 23:00h) reduces the grid dependency, the total 

cost and the GHG emissions, when compared to overnight charging, due to the increase in solar 

energy usage. However, charging the fleet across two time periods affects logistics operations 

and vehicle scheduling. The eRCVs that are charged at 11:00h operate between 06:00h and 

10:00h and then from 18:00h to 22:00h, whereas the other 10 operate within the expected 

pattern [162] (i.e., between 06:00h and 14:00h). It would require a change in vehicle 

availability, if compared to the current operations [162] where the RCVs operates continuously 

in the morning and are parked at the depot at night. On the other hand, modifying logistics 

operations due to the charging requirements might open the option for better optimization of 

fleet usage and route planning. 

In summary, integrating eRCVs into waste collection fleets represents a pivotal advancement 

in sustainable urban waste management. However, realizing the full potential of eRCVs 

requires proactive measures to address logistical challenges, optimize operational practices, 

and ensure alignment with broader sustainability objectives. 

2.5 Research gap 

Throughout the revision of the literature, it was shown that charging EV fleets with renewable 

energy sources is of paramount importance for achieving a sustainable transportation system. 

With the increasing adoption of EVs for road transportation and, in particular of eLCVs and 

eHGVs within the freight transport sector, there is a pressing need to shift away from traditional 

fossil fuel based charging systems towards cleaner and more efficient alternatives. By using 

renewable energy sources such as solar power to charge EV fleets, GHG and CO2 emissions 

can be significantly reduced over the short and long term.  

While electrification of road freight transport has been demonstrated as achievable, there 

remains a gap in the literature regarding the feasibility and potential benefits of using renewable 

energy sources to charge EV fleets, while considering the logistic and operational constraints 

that may arise. As such, further research is needed to explore the practicality of integrating 

renewable energy into the charging infrastructure of EV fleets, considering factors such as fleet 

schedule, charging time, energy demand and solar energy generation and network power 
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constraints. Addressing these issues and supporting decision making with technical knowledge 

to facilitate the adoption of EV fleets within fleet and transport operators, is essential for the 

transition towards more sustainable road freight transportation. 

Based on this review of the literature, the following research questions have been identified: 

I. What are the environmental and economic benefits of using solar energy and BESS to 

charge an electric freight fleet when logistic and operational constraints are considered? 

II. When using solar energy and BESS, what are the implications on the grid dependency 

and consequently GHG emissions, when different charging strategies are applied? 

III. To what extent, solar energy and BESS can ease the power capacity constraints when 

it comes to EV fleet electrification? 

The following chapters will address these questions. Chapters 3 and 4 will build the foundation 

to be able to answer research questions I and II in Chapter 5. In Chapter 6, research question 

III will be answered. To start to address these questions it is essential to be able to determine 

how much solar energy is available at a given location. To this end, chapter 3 addresses the 

modelling of solar PV generation such that the results may inform the investigations in the later 

chapters. 
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3 Solar irradiation modelling for photovoltaic solar energy generation in the UK 

3.1 Introduction 

Nowadays, it is almost impossible to imagine a transition to EV transportation without 

considering renewable energies. In Chapter 2 the environmental impact of transitioning to 

electric vehicles (EVs) has been discussed, assuming that those EVs were charged with 

electricity derived from fossil fuels. This thesis explores the feasibility of using localised solar 

energy generation and energy storage to charge an EV fleet at a depot. For that purpose, in this 

chapter a new empirical solar model is proposed for the estimation of solar energy generation 

at different locations in the UK. The model is developed using MATLAB. The development 

and results section, corresponding to the diffuse horizontal solar irradiation modelling, have 

been published in the journal Energy in 20221 [174]. The methodology developed in this 

chapter to convert horizontal solar radiation into solar energy generation has been previously 

published in the Energies journal in 20232 [175]. 

Typically, solar energy systems are installed on tilted surfaces, such as depot rooftops, where 

the solar irradiance received encompasses the direct (Gbβ), diffuse (Gdβ), and reflected (Gr) 

irradiation components on tilted surfaces. When estimating or forecasting solar energy 

availability, these three elements can be derived from the global horizontal solar irradiation 

(GH) and its components, the diffuse horizontal solar irradiation (Gd) and the direct horizontal 

irradiation (Gb).  

This chapter describes the solar model developed to determine the PV solar energy generated 

locally in different locations in the UK, as shown in Figure 3.1. The chapter first focuses on 

the global horizontal solar irradiation (GH) and its two components (i.e. Gd and Gb). A review 

of the literature on horizontal solar irradiation modelling is introduced followed by the 

methodology applied to calculate the estimated diffuse horizontal solar irradiation (Gd,est) and 

Gb. Results are presented and validated against real data on PV solar generation in two different 

 

1 Part of this chapter has been used for publication at the Energy journal as Nunez Munoz M, Ballantyne EEF, 
Stone DA. Development and evaluation of empirical models for the estimation of hourly horizontal diffuse 
solar irradiance in the United Kingdom. Energy 2022;241. https://doi.org/10.1016/j.energy.2021.122820 

2 Nunez Munoz M, Ballantyne EEF, Stone DA. Assessing the Economic Impact of Introducing Localised PV Solar 
Energy Generation and Energy Storage for Fleet Electrification. Energies 2023;16:3570. 
https://doi.org/10.3390/en16083570  

https://doi.org/10.1016/j.energy.2021.122820
https://doi.org/10.3390/en16083570
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installations; a private house located in Sheffield and at M&S York Vangarde Retail Park. 

Finally, one of the case studies where the solar model was applied is presented. The case study 

was developed for The Translational Energy Research Centre (TERC) and funded by the 

European Regional Development Fund [43]. 

 

Figure 3.1 Process flow applied for the calculation of localised PV solar energy (Figure obtained from [175]). 

3.2 Horizontal solar irradiation modelling 

Horizontal solar irradiance is the radiation incident on a horizontal surface, parallel to the 

ground. Global horizontal solar irradiation (GH) is the total horizontal irradiation received and 

is the sum of direct horizontal solar irradiation (Gb) and diffuse horizontal solar irradiation (Gd) 

as follows. 

GH = Gb + Gd 

Equation 3.1 

3.2.1 Global horizontal solar irradiation (𝐆𝐇) 

Global horizontal solar irradiation (GH) can be assessed through satellite technology or ground-

based pyranometer/pyrheliometer devices. While satellite measurements offer a more 

extensive dataset [176], ground-level measurements are deemed superior in precision, mainly 

attributed to their diminished occurrence of significant systematic errors [177]. Addressing and 
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mitigating these errors necessitate a crucial procedure involving a comparative analysis of 

satellite and ground-based data [178–180]. However, it is noteworthy that acquiring ground-

level measurements for diffuse and direct horizontal irradiation involves substantial costs 

[181,182] and is complicated to measure [183]. Consequently, ground-level solar radiation 

measurements are limited, particularly in developing countries [184,185]. 

In the United Kingdom, global horizontal solar irradiation records cover the period from 1947 

to 2018 and remain the country's most frequently collected solar irradiation data. Weather 

stations situated in Greater London have been monitoring horizontal global irradiation data 

from 1958 and 2018. Likewise, the documented records for horizontal global irradiation in 

West Sussex encompass the interval between 1992 and 2018. Additionally, data from Norfolk 

is available for the years 1981 to 2006. While several other locations across the UK have 

conducted measurements of horizontal global irradiation, these records are generally over a 

much shorter timeframe (for example, South Yorkshire from 1982 to 1995). Due to the 

reasonable amount of global horizontal solar irradiation data in the UK, for the development 

of the solar model, the GH data values are obtained through the open data archive of Met Office 

Integrated Data Archive System (MIDAS). More details about the dataset information is 

included in Section 3.2.2. 

3.2.2 Diffuse horizontal solar irradiation (𝐆𝐝) 

The diffuse horizontal solar irradiation is the portion of the global solar irradiation that reaches 

the Earth’s surface after being scattered by air molecules and particles in the atmosphere [186]. 

Conversely, ground horizontal diffuse irradiation values are very scarce. In fact, the latest 

available data on Gd was measured at the London weather station back in 2005. 

In the absence of horizontal diffuse solar irradiation data, different types of diffuse solar models 

have been developed to estimate horizontal diffuse solar irradiation. There is not a universal 

classification of the different types of solar models used to predict solar radiation values, they 

can be grouped differently depending on the parameters considered. De Simón-Martín et al. 

[187] classify the models in two main groups; models that require climate variables to predict 

solar radiation and models that use spatial interpolation to obtain solar radiation data. Noia et 

al. [188] refer to physical models as an approach that describe the physical process of scattering 

and absorption that occurs between the earth and the atmosphere in the solar radiation transfer. 

The authors identify the other type of solar models as statistical [189] where statistical 
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regressions between satellite and ground solar radiation measurements are made for a specific 

area. On the other hand, Hay [190] divides the solar models in two different types; theoretically 

based approaches (defined as physical models by Noia et al. [188]) and empirically based 

approaches [191]. For the purpose of this section, two different approaches have been identified 

to calculate solar radiation values: using machine learning techniques or empirical solar 

models. 

Machine learning techniques 

Machine learning techniques have many applications to predict values of solar radiation [185]. 

Essentially, the algorithms learn from input data and create a model that produces output data 

for pattern recognition or forecasting problems [192]. The use of machine learning techniques 

to model solar radiation has been shown in recent years to be a very promising method 

[193,194]. In fact, different authors have been evaluating and estimating solar radiation values 

using machine learning algorithms, especially models based on artificial neural networks 

(ANNs). 

Martín et al. [195] predicts values of solar irradiance in a time scale of 3 days ahead by using 

autoregressive models (AR) and neural networks in different cities in Spain. Lou et al. [196] 

determined diffuse horizontal irradiance using a machine learning algorithm (Boosted 

Regression Tree) in Hong-Kong. Amrouche and Le Pivert [197] obtained values of daily global 

horizontal irradiance in two locations in France using daily weather forecast as input data for 

the ANNs model. Alzahrani et al. [198] estimate hourly solar radiation data using neural 

networks with three, five and six inputs variables (hour, azimuth, zenith angle, temperature, 

wind speed and wind direction). In essence, the parameters used as input data together with 

relative humidity, sunshine hours or evaporation are more accessible [199].  

Overall, one of the advantages of using machine learning techniques is the ability to predict 

solar radiation values. Accuracy [200] is another advantage of using these techniques although, 

on the other hand, the machine learning techniques have high computational costs and are time 

consuming if compared to empirical models [185]. 

Empirical solar models 

Empirical solar models have seen widespread use in accurately forecasting diffuse irradiance 

in areas where solar radiation data is either unavailable or not measured [201]. These models 
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establish correlations between diffuse fraction (kd) or diffuse transmittance with other 

available variables. Li et al. [202] classified empirical models in two groups. The first group 

includes models that predict horizontal diffuse irradiance from global horizontal irradiation (H- 

based models). In contrast, the second group consists of models that rely on various weather 

variables (non H- based models) such as air temperature, relative humidity, or ratio of sunshine 

duration. Non H- based models have better accuracy than H- based models in places where 

there is limited information on solar radiation data [202]. Nonetheless, the prevailing method 

to acquire values for horizontal diffuse solar irradiance involves the utilisation of H- based 

models, specifically, by establishing a correlation between the diffuse fraction (kd) and the 

clearness index (kt) [196,202]. 

• Non H-based models 

Non H- based models are also classified as parametric models [203,204]. As mentioned 

previously, these models require more detailed information on weather and atmospheric 

conditions. The main characteristic of these models is that they are able to predict values of 

horizontal diffuse solar radiation (Gd) without having values of global horizontal solar radiation 

(GH).  

Iqbal [205] developed an empirical equation to estimate diffuse transmittance from the ratio of 

sunshine fraction (SF) using measured data from three different locations in Canada. Hussain 

[206] established a correlation to evaluate the horizontal diffuse radiation for locations of North 

and Central India with SF and water vapour (Wv) content in the atmosphere. Coppolino [207] 

recommended an equation for any place in Italy which correlates horizontal diffuse radiation 

with SF and solar altitude angle (γs). Bashahu [184] studied different correlations from 

previous authors (e.g. Iqbal [205], Coppolino [207]) to developed nine equations to obtain 

values of horizontal diffuse solar radiation in Dakar, Senegal. The author correlated diffuse 

fraction and diffuse transmittance with SF, Wv, and clearness index. Li et al. [208] developed 

two correlations. Firstly, values of diffuse transmittance were obtained using SF, the ambient 

temperature, and relative humidity and secondly, the values of diffuse radiation were obtained 

using the already mentioned weather variables and clearness index. The correlations were 

validated using measured data from Guangzhou station in China. 
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• H-based models 

Due to their simplicity and accuracy, these H- based empirical models are integrated into 

specialised software for solar energy applications and forecasting [209]. H- based models 

estimate horizontal diffuse solar radiation empirically using measured global horizontal solar 

radiation. The correlation of diffuse fraction (kd) and clearness index (kt) allows for the 

calculation of the diffuse solar radiation [182].  

Diffuse fraction (kd) is the ratio between horizontal diffuse solar irradiation (Gd) and the global 

horizontal solar irradiation (GH) [210]. 

kd =
Gd
GH
  

Equation 3.2 

Clearness index (kt) is defined as the ratio between GH and the extra-atmospheric irradiance 

(G) [210]. 

kt =
GH
G

 

Equation 3.3 

Liu and Jordan [211] pioneered the empirical model for predicting Gd from GH. Subsequently, 

numerous researchers have been investigating and refining this correlation to suit various 

geographical locations.  

Erbs et al. [212] formulated the diffuse fraction correlation by analysing ground solar radiation 

data for four cities in the United States between 1961 and 1976. The resulting correlation was 

validated using measured values from Highett, Australia between 1966 and 1969. Reindl et al. 

[213] established a correlation between the diffuse fraction and clearness index by examining 

solar irradiation measurements obtained from two U.S. cities from 1979 to 1982. Additionally, 

one year’s worth of data from each of three European cities were used. De Miguel et al. [214] 

established a correlation model utilising ground-based hourly measurements of global and 

diffuse solar irradiation on horizontal surfaces across Greece, Portugal, France, and Spain. The 

ground measurements took place in a different period of time for each location between 1978 

and 1996.  
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Muneer and Saluja [215] formulated a series of regression models tailored to various UK 

locations, including East Hampstead, Aberporth, Aldergrove, Eskdalemuir, and Lerwick. The 

models correlated the value of diffuse fraction with clearness index, and they were validated 

using measured values, at ground level, of hourly global and diffuse solar radiation from 1981, 

1982 and 1983. The authors found the clearness index the most relevant parameter for the 

estimation of horizontal diffuse solar irradiance. Ruiz-Arias et al.[181] devised a sigmoid 

function employing kt as a predictor for computing kd, drawing upon data from 21 distinct 

locations spanning Europe and the United States. 

While the previously discussed models centre on establishing a correlation between the diffuse 

fraction (kd) and the clearness index (kt), a concurrent avenue of research has explored the 

influence of additional predictors in diffuse solar irradiance computation. Reindl et al. [213] 

identified that various predictors, including kt, ambient temperature, relative humidity, and 

solar altitude, held greater significance in estimating diffuse solar radiation when compared to 

the remaining 24 predictors.  

Muneer and Munawwar [216] argued in favour of adding other predictors for estimating the 

diffuse solar radiation. The models developed were used to calculate values of hourly diffuse 

radiation. The data used to develop the correlations were based on nine worldwide locations. 

The study's findings indicated that the integration of additional parameters such as sunshine 

fraction (SF), cloud cover and air mass (m) leads to an improvement in the correlation between 

kd and kt. A parallel outcome was observed in Tamanrasset (Algeria) where Salhi et al. [201] 

assessed eighty empirical models and found that the most accurate model established a 

correlation between kd, kt and SF. 

Gopinathan and Soler [217] studied different correlations to better determine how many 

parameters had to be considered for a highly accurate estimation of diffuse radiation values. 

The study employed ground measurements of solar radiation values from 1980-1990 in four 

different locations around Spain. The results showed a higher accuracy when, in addition to kt, 

sunshine fraction (SF) and solar altitude angle (γs) are also considered. 

The correlation from the study of De Miguel et al. [214] was introduced previously in this 

section of the literature review. The authors only correlate the diffuse fraction with kt, but 

important findings were revealed from this research. The authors identified an increased error 

percentage in the correlation in summer periods for lower latitudes and they pointed out that 
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solar latitude should be considered to minimise the error. On the other hand, De Miguel et al. 

[214] also found the influence that the air mass has on the diffuse solar component due to the 

scattering effect of this parameter at lower solar latitudes. An extended explanation on the 

effect of the air mass as a function of solar latitude in diffuse solar radiation can be found in 

Vazquez et al. [218]. 

Irrespective of the count of predictors employed, many authors have underscored the empirical 

models’ reliance on the dataset’s location used to develop the correlation [212,214,216]. 

Consequently, due to the significant importance of estimating horizontal diffuse solar 

irradiance in solar energy projects, numerous researchers worldwide are formulating empirical 

correlations to obtained accurate values tailored to specific locations. 

Tapakis et al. [209] undertook a comparative analysis encompassing twenty-three pre-existing 

models established in various countries and novel correlations formulated based on Athalassa 

(Cyprus) datasets. The study unveiled that, among the assessed pre-existing models, those 

originated in cities sharing akin climatological conditions with Athalassa exhibited superior 

performance. Notwithstanding, the newly developed correlations achieved the utmost accuracy 

in estimating diffuse horizontal solar irradiance. 

Bailek et al. [219] formulated a suite of empirical correlations to predict the monthly average 

daily diffuse horizontal solar radiation within the Algerian Sahara. Notably, the authors 

demonstrated that one newly developed correlation yielded precise results when juxtaposed 

with established models created in different geographical contexts. 

In a recent study, Berrizbeitia et al. [176] found that employing a singular correlation for all 

19 global locations studied was unfeasible. Consequently, the authors arrange each site in an 

ascending order of latitude and developed three monthly-averaged hourly correlations. Among 

these correlations, one explicitly spans the entire UK. 

The literature review above has shown some of the most relevant correlations and models used 

to estimate diffuse solar radiation and what parameters should be considered when developing 

said models. Its accuracy characterises the machine learning techniques; however, the author 

of the thesis discards the learning techniques for their application on predicting diffuse 

horizontal solar irradiation due to their high computational costs and time-consuming. On the 

other hand, empirical models characterise by their accuracy and straightforward application. 

However, the literature review highlights the importance of using local datasets when 
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developing empirical correlations due to the location dependency of such models (i.e., latitude 

and weather conditions). In this regard, there is a gap in the literature concerning the availability 

of empirical models developed in the UK that could be accurately applied to this thesis. 

Amongst all the empirical models reviewed from the literature, only some have been selected 

based on the dataset location to be as near as possible to the UK. Table 3.1 shows a summary 

of such models. 

Therefore, considering the location dependency of empirical models and the scarcity of 

empirical models that predicts hourly values of diffuse horizontal solar irradiation in the UK, 

the objectives of section 3.2.2 are: 

1) To assess the performance of the empirical solar models outlined in Table 3.1 across 

diverse regions within the United Kingdom to ascertain the most suitable fit for 

estimating horizontal diffuse solar irradiation (Gd). 

2) To formulate distinct site-specific correlations for each UK region under investigation, 

tailored for the estimation of horizontal diffuse solar irradiation (Gd), followed by a 

rigorous evaluation of their accuracy compared to the existing models presented in 

Table 3.1. 
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Table 3.1. “Detailed information of the H-based models analysed and chosen for evaluation (Model 1 to Model 6)” (Table obtained from [174]) 

Model 
Location (see 

note below) 
Predictors Correlation 

Model 1 
Torre’s model 

[220] 
Spain (1) kt 

kt ≤ 0.225 kd = 0.9943 − 0.1165 ∙ kt 
0.225 < kt < 0.755 kd = 1.4101 − 2.9918kt + 6.4599kt2 − 10.329kt3 + 5.514kt4 

kt > 0.755 kd = 0.18 

Model 2 
De Miguel’s 

model [214] 

France (3), 

Portugal (4), 

and Spain (1) 

kt 
kt ≤ 0.21 kd = 0.995 − 0.081 ∙ kt 

0.21 < kt < 0.76 kd = 0.724 + 2.738kt − 8.32kt2 + 4.967kt3 
kt > 0.76 kd = 0.180 

Model 3 

Reindl’s 

model (1) 

[213] 

Denmark (1), 

Germany (1), 

Ireland (1) 

and U.S.A(2) 

kt 

kt ≤ 0.3 kd = 1.020 − 0.248 ∙ kt 
0.3 < kt < 0.78 kd = 1.45 − 1.67kt 

kt > 0.78 kd = 0.147 

Model 4 

Muneer’s 

model (1)  

[215] 

United 

Kingdom (5) 
kt kt > 0.2 kd = 0.687 + 2.932kt − 8.546kt2 + 5.227kt3 

Model 5 

Reindl’s 

model (2) 

[213] 

Denmark (1), 

Germany (1), 

Ireland (1) 

and United 

States (2) 

kt and 𝛾𝑆 

kt ≤ 0.3 kd = 1.020 − 0.254 ∙ kt + 0.0123 sin (γS) 
0.3 < kt < 0.78 kd = 1.4 − 1.749kt + 0.177 sin (γS) 

kt > 0.78 kd = 0.486kt − 0.182 sin (γS) 

Model 6 

Muneer’s 

model (2) 

[221] 

United 

Kingdom (2) 
kt, SF and m - 

kd = (0.899 − 0.683SF + 0.648SF2 + 0.028m − 0.002m2)
+ (0.880 − 0.666SF − 0.314SF2 − 0.158m
+ 0.003m2)kt + (−1.751 + 2.786SF − 1.924SF2

+ 0.044m + 0.012m2)kt2 

*The numeric value enclosed within parentheses in the "location" column indicates the number of cities scrutinized within each location to formulate the 

correlation. 
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3.2.2.1 Methodology for assessing and developing H- based models to estimate 

horizontal diffuse solar irradiation (𝐆𝐝). 

Information regarding the dataset and climatological conditions at the weather stations. 

The datasets used for the present study were obtained from The Centre for Environmental Data 

Analysis (CEDA) Archive. It serves as the UK's national data centre for atmospheric and earth 

observation research. The Archive provides access to horizontal solar irradiation data from the 

open data version of Met Office Integrated Data Archive System (MIDAS) [222,223]. 

The datasets comprise hourly recordings of horizontal global and diffuse solar irradiation 

measured in kJ/m2. These recordings indicate the solar irradiance received during the hour 

ending at a specific time. Following Gueymard [224], this study considers at least three years’ 

worth of data for each location to assess and validate solar radiation models. Table 3.2 shows 

detailed information regarding the weather station locations, the measurement period, and the 

number of recorded measurements for each location. 

Table 3.2. “Details on the hourly horizontal global and diffuse solar irradiation raw data values measured at each 

location under study” (Table obtained from [174]). 

Location Latitude [degrees] 
Period of 

measurements 

Number of values 

recorded 

Finningley (South-

Yorkshire) 
53.4845 1982-1995 113,154 

Hemsby (Norfolk) 52.6953 1982-1999 134,605 

Crawley (West Sussex) 51.1059 1982-1992 91,529 

As depicted in Figure 3.2, the weather stations of Finningley, Hemsby, and Crawley are 

situated in three distinct regional areas within the UK - the North East, the East of England, 

and the South, respectively [225]. 

The North East region, where the Finningley station is located [225], experiences cool 

temperatures throughout the year than other parts of England. During the chilliest month, which 

falls in January, temperatures range from -0.5°C to approximately 2°C. Conversely, in the peak 

warmth of July and August, temperatures range between 17°C and 21.5°C. As we move further 

south, the average temperatures for the coldest and warmest months progressively increase.  
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In the climate of the eastern region [225], the average temperatures range from 0°C to 2°C 

during winter and from 20°C -23°C during summer. Moreover, this area is among the driest in 

the country, with an average annual rainfall of 700 mm.  

Moving on to the southern England climate, temperatures vary from approximately 0.5°C to 

about 3°C in January and from 21°C -23.5°C in July [225]. The southern region boasts the 

sunniest locations in mainland UK, enjoying an average annual sunshine duration ranging from 

1,550 to 1,600 hours. 

 

Figure 3.2 “Location of Met Office weather stations used for the study” (Figure obtained from [174]) 

Data pre-processing 

Several pre-processing steps are undertaken to make the raw data usable. These steps are 

explained below and depicted in Figure 3.3. The raw datasets from Table 3.2 underwent a pre-

processing phase to eliminate extraneous data points, notably invalid values recorded at 23:59, 

corresponding to daily irradiation readings. Scrutiny of the raw data unveiled intervals of data 

absence resulting from equipment errors, operational issues, or errors in diffuse irradiation data 

processing [226]. These identified gaps were also excluded from the datasets.  

Following the raw data pre-processing, the next step corresponded to calculating the 

astronomical parameters in a time period of one minute. The computation of astronomical 

parameters plays a critical role in determining the hourly horizontal extra-atmospheric 
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irradiation (G), the unknown variable in Equation 3.3, and thus to progress with the comparative 

study and development of new correlations.  

 

Figure 3.3 “Complete process flow used for the evaluation of the existing empirical models using measured data 

from South Yorkshire, Norfolk, and West Sussex” (Figure obtained from [174]). 

The computation of the horizontal e-atmospheric irradiance (G0) is executed using Equation 

3.4 [227]: 

G0 = I0  ∙ (1 + 0.033 ∙ cos (
360 ∙ DOY

365
))  ∙sin  γs  [

W

m2
] 

Equation 3.4 

Which involves the following parameters: I0 is the solar constant with a fixed value of 1,367 

W/m2 [227]. The variable DOY denotes day-of-year, representing the nth day of the year (e.g. 

January 1st corresponds to DOY =1; February 1st to DOY =32, March 1st to DOY =60, etc. Note 

that leap years are excluded). γs denotes the solar altitude angle. 

With the aim of maintaining coherence in solar angle measurements, the Standardised ISO 

system has been used for this study. [228]. The ISO system adopts a north orientated reference 

frame, where angles are calculated clockwise (0°-360°). Following that system, γs is calculated 

as in Equation 3.5 [228]: 

γs = asin (sin φ ∙ sin δ − cos φ ∙ cos δ ∙ cos ω)    [degrees] 

Equation 3.5 
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where φ is the latitude, δ is the declination angle and ω is the hour angle. δ is defined by [227], 

following the approximate equation of Cooper (1969) [229], and it can be seen in Equation 3.6: 

δ = 23.45 ∙ sin [360 ∙
(DOY + 284)

365
]  [degrees] 

Equation 3.6 

The calculation of the hour angle ω, accounting for a north orientated system, is mathematically 

derived as presented in Equation 3.7 [228]: 

ω = t ∙ 15°  [degrees]    

Equation 3.7 

where t represents the local solar time. Consistent with Sunter’s findings [230], the UK 

observations employ Universal Time Coordinated (UTC) as the standard time, without 

incorporating daylight savings adjustments. Therefore, the estimation of t is determined 

following the methodology outlined in [231] as ; 

t = LMT +
λ − λR
15

+ EOT     [hours] 

Equation 3.8 

In the context of Equation 3.8, LMT denotes the local mean time or civil time. The variable 

"λ" represents the longitude of the standard time meridian, while "λR" is the longitude of the 

specific location. Additionally, EOT stands for the equation of time [227]. The calculation of 

EOT can be estimated using Equation 3.9: 

EOT =  229.2 ∙ (0.000075 + 0.001868 ∙cos  B − 0.032077 ∙sin  B − 0.014615 ∙cos  2B

− 0.04089 ∙ sin 2B)  [minutes] 

Equation 3.9 

where B is a coefficient calculated by [227] following Equation 3.10; 

B = (DOY − 1) ∙
360

365
   

Equation 3.10 
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After determining all astronomical parameters, the horizontal e- atmospheric irradiance (G0) 

was computed at one minute intervals. For consistency with hourly dataset measurements, G0 

values were subsequently averaged every 60 minutes, yielding an hourly value denoted as G 

[kW/m2]. Furthermore, the dataset’s hourly irradiation measurements in kJ/m2 were 

transformed into hourly irradiance measurements in kW/m2. This transformation enabled the 

calculation of the clearness index (kt) through Equation 3.3, and the estimation of the diffuse 

fraction (kd) using Equation 3.2 

In the context of Model 6 (as listed in Table 3.1), two additional parameters were derived to 

facilitate the calculation of the diffuse fraction (kd). 

• The sunshine fraction (SF) denotes the proportion of sunshine duration relative to the 

total day length [177]. The CEDA archive furnished daily sunshine duration data for 

each location from 1982 to 1999. The day length can be determined using Equation 

3.11 [231]: 

Day length =
2

15
∙ cos−1(−tanφ ∙ tanδ)   [hours] 

Equation 3.11 

• The calculation of air mass (m) followed the procedure outlined by [216], as detailed 

in Equation 3.12:  

m = [sinγs + 0.50572(γs + 6.07995)
1.6364]−1 

Equation 3.12 

Quality control 

Following the pre-processing of the raw data, a quality control procedure was executed to 

ensure data accuracy and reliability. The quality control process encompassed four distinct 

tests, with three of these tests established by Younes et al. [232] while the fourth test was 

introduced by Muneer and Fairooz [226]. 

The initial test involved the exclusion of solar altitude values (γs) below 7°. This step aimed to 

eliminate data influenced by the cosine effect, effectively addressing errors arising from the 

sensor's response to radiation angles during sunrise and sunset.  
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The second test implemented a logical evaluation to ensure that values for both kt and kd 

remained within the range of zero to one [181], maintaining data consistency and validity.  

0< kt <1 

0< kd <1 

The third test involved the computation of diffuse horizontal irradiance values for clear (Gd,c) 

and overcast (Gd,oc) sky conditions. The objective of this test was to ascertain that the observed 

horizontal diffuse irradiance (Gd) remained within the range defined by Gd,c and Gd,oc [232]. 

Gd,oc ≤ Gd ≤ Gd,c 

To determine Gd,c and Gd,oc, the approach employed by Younes et al. [232] leveraged the Page 

model, utilising Equation 3.13 for overcast sky conditions and Equation 3.14 for clear sky 

conditions. This ensured a comprehensive evaluation of the diffuse horizontal radiation under 

varying atmospheric scenarios. 

Gd,oc = 572 ∙ γs 

Equation 3.13 

Gd,c = kd ∙ Trd ∙ F(γs)  

Equation 3.14 

Where Trd is the theoretical diffuse irradiance on a horizontal surface when the sun is at the 

zenith [232]. Its computation adheres to Equation 3.15, as expressed below: 

Trd = −21.657 + 41.752 ∙ TL + 0.51905 ∙ TL
2 

Equation 3.15 

Here TL stands for the Linke turbidity factor, indicating aerosol concentration within the 

atmosphere and reflecting the interplay of atmospheric scattering and absorption [233]. A 

higher concentration of aerosols leads to increased atmospheric scattering.  

Remund et al. [234] compiled an extensive global TL database encompassing data from seven 

distinct cities in the United Kingdom. The turbidity factor values employed within this study 

were derived from monthly measurements conducted in Aughton, London, and Brooms Barn 

(United Kingdom) between 1981 and 1990. Notably, an average value between September and 
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November was utilised to address this gap since the TL value for October was missing in the 

database for all UK locations. 

F(γs) is the solar elevation function, calculated by Younes et al. [232] following Equation 3.16: 

F(γs) = 3.8175 ∙ 10
−2 + 1.5458 ∙sin  (γs)  − 0.59980 ∙sin  (γs) 

2 

Equation 3.16 

Furthermore, an additional assessment was incorporated to ensure the quality of the retained 

data. This evaluation, as outlined by Muneer et al. [226], introduces a boundary condition based 

on the ratio between the clearness index (kt) and the diffuse fraction (kd). A representation of 

these boundaries is depicted in Figure 3.4. 

 

Figure 3.4.”Boundaries for clearness index (𝑘𝑡) and diffuse fraction (𝑘𝑑) developed by Muneer and Fairooz 

[226], that have been applied in test 4 as described in Table 3.3” (Figure obtained from [174]) 

The number of values within the remaining datasets after each quality test are shown in Table 

3.3 for each of the study locations. Test 1, focused on rectifying equipment errors, notably 

exhibits the most significant influence on the quality control process. Specifically, Test 1 

resulted in an approximate reduction of 57% in the data points under consideration for each 

location. Conversely, the outcomes of Test 2, Test 3 and Test 4 indicate a comparatively lesser 

impact on the quality control of each dataset. These tests ensure coherence among various solar 

radiation values (e.g. Gd cannot surpass G) [235]. 
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Table 3.3. “Number of values within the remaining datasets after each quality test” (Table obtained from [174]). 

 South-Yorkshire Norfolk West-Sussex 

Test 
Condition 

applied 

Before 

test  
After test 

Before 

test  
After test 

Before 

test  

After 

test 

Pre-

processing 

Deletion of 

23:59 data and 

values of zero 

solar radiation 

113,154 108,016 134,605 130,145 91,529 91,519 

Test 1 
Solar 

altitude<7° 
108,324 46,053 130,145 54,419 91,519 39,664 

Test 2 
0< kd <1   

0< kt <1 
46,053 41,337 54,419 53,037 39,664 32,825 

Test 3 
Gd,oc≤Gd ≤

Gd,c 
41,337 40,316 53,037 52,174 32,825 32,108 

Test 4 
Boundaries kd 

and kt 
40,316 35,397 52,174 45,627 32,108 27,497 

Statistical error metrics for the evaluation of empirical H- based models 

Statistical error metrics have been used extensively in literature to evaluate the performance of 

empirical solar models. For instance, Tapakis et al. [209] examined empirical models aimed at 

estimating hourly diffuse fraction for the Nicosia region (Cyprus) through the utilisation of 

mean bias error (MBE), root mean square error (RMSE), and the coefficient of determination 

(r2). Similarly, in the evaluation of empirical models correlating diffuse solar radiation and 

clearness index for the Kerman region (Iran), Khorasanizadeh et al. [236] used mean absolute 

percentage error (MAPE), mean absolute bias error (MABE), RMSE, relative standard error 

(RSE), and correlation coefficient (r). The assessment of a solar model's capacity to compute 

diffuse solar radiation was conducted by Hofmann et al. [237], using the RMSE metric. 

Additionally, Yao et al. [238] appraised daily diffuse solar radiation models for various 

Chinese regions through statistical analysis, encompassing metrics such as MBE, RMSE and r. 

In estimating hourly diffuse solar irradiation under all sky conditions, Ruiz-Arias et al. [181] 

introduced a regressive model validated by metrics such as r2, MBE and RMSE. 

To evaluate the performance of the empirical models developed within this study, three widely 

used statistical error metrics [239,240] have been selected; MBE, RMSE and r2. Both the MBE 

and RMSE maintain the units of the variables (kW/m2). 

The MBE metric is a prevalent method employed for assessing the performance of solar models 

[241,242]. It quantifies the arithmetic mean of the discrepancies between estimated and 

measured values of hourly diffuse horizontal irradiance, and its formulation is provided in 

Equation 3.17 as:  
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MBE =
∑ (Gd,est,i − Gd,meas,i)
n
i

n
 

Equation 3.17 

Where  Gd,est,i represents the estimated hourly diffuse horizontal irradiance (kW/m2), Gd,meas,i 

denotes the measured hourly diffuse horizontal irradiance (kW/m2) and n is the total number 

of data points.  

Negative or positive MBE values indicate under-prediction or over-prediction by the model, 

respectively. For this study, MBE is chosen to offer a comprehensive assessment of model 

accuracy. A MBE nearest to zero is desired.  

The RMSE stands out as the most widely adopted statistical error metric when gauging the 

reliability and precision of a solar model [243,244]. Specifically, the RMSE metric facilitates a 

point-by-point evaluation of the differences between estimated and measured values [245]. The 

calculation of RMSE is outlined in Equation 3.18: 

RMSE = √
∑ (Gd,est,i − Gd,meas,i)

2n
i

n
 

Equation 3.18 

RMSE metric gives more weight to the largest errors [239] often stemming from the cosine 

effect [246]. However, this study effectively mitigates such errors through the initial quality 

control test. A lower absolute RMSE corresponds to enhanced model accuracy. 

Lastly, the coefficient of determination (r2) is chosen to evaluate the degree of linearity 

between the measured values and those acquired through the models’ correlations (as expressed 

in Equation 3.19).  

r2 =
[∑(Gd,est − Gd,est̅̅ ̅̅ ̅̅ ̅) ∙ (Gd,meas − Gd,meas̅̅ ̅̅ ̅̅ ̅̅ ̅)]

2

∑(Gd,est − Gd,est̅̅ ̅̅ ̅̅ ̅)
2
∙ ∑(Gd,meas − Gd,meas̅̅ ̅̅ ̅̅ ̅̅ ̅)2

 

Equation 3.19 

Where Gd,est̅̅ ̅̅ ̅̅ ̅ and Gd,meas̅̅ ̅̅ ̅̅ ̅̅ ̅ represent the mean estimated and measured hourly diffuse solar 

irradiance, respectively. The r2 values span between 0 and 1, with the latter indicating a perfect 

linear relationship. 
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3.2.2.2 Results 

Analysis and evaluation of existing empirical H- based models applied to the UK 

In this section, the six empirical correlations introduced at the beginning and presented in Table 

3.1 are chosen to estimate hourly horizontal diffuse solar irradiance. These correlations were 

selected based on the location of its datasets, ensuring similarity to the climatological 

conditions of the three regions studied (South Yorkshire, Norfolk, and West Sussex). The 

objective was to assess and identify the most appropriate model for estimating values of 

horizontal diffuse irradiance (Gd). The valuation process for the existing empirical models is 

shown in Figure 3.3. 

Following the quality control procedure, the obtained clearness index (kt) values were used to 

compute the diffuse fraction (kd) using the correlations detailed in Table 3.1 for each model. 

Next, using the measured global horizontal solar irradiance (GH) in conjunction with Equation 

3.2, the values of estimated horizontal diffuse solar irradiance (Gd,est) were obtained and 

compared against the actual Gd values. The comprehensive statistical outcomes for each model 

are provided Table 3.4. The outcomes presented in Table 3.4 corresponds to the three studied 

regions: South Yorkshire, Norfolk, and West Sussex. In general, the correlations employing 

multiple predictors (Model 5 and Model 6) did not yield better outcomes when contrasted with 

correlations relying solely on kt as the predictor across all studied locations. Nonetheless, a 

notable distinction in the statistical errors emerged between Model 5 and Model 6. The findings 

indicate that the inclusion of solar altitude (γs), in Model 5 influences the results more than a 

combination of solar altitude (γs), SF and m as used in Model 6. For the three locations, Model 

5 achieved higher values of r2 and lower values of MBE and RMSE than Model 6. The 

variations in MBE and RMSE values remain relatively modest compared to the differences 

highlighted by r2.  

The results obtained by using Model 1, Model 2 and Model 3 exhibit a consistent pattern of r2, 

MBE and RMSE across all investigated sites. None of the models outperforms the others in all 

three statistical indicators. Model 1 achieves the highest value of r2, while the lowest MBE and 

RMSE values are associated with Model 3 and Model 2. With Model 4, r2 value ranges from 

0.77-0.79, depending on location. This result aligns closely with the findings presented by 

[215]. It is worth noting that this correlation was designed to cover values of kt >0.2. However, 

when the correlation is applied across the complete kt range for each dataset, Model 4 emerges 
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as the top performer for all studied locations. Muneer’s model (Model 4) returns the highest r2 

values and the lowest MBE and RMSE values among the models considered. 

As previously indicated, the empirical models rely on distinct datasets associated with various 

geographical locations, rendering them non-universal correlations. Consequently, Muneer’s 

model correlation, developed explicitly for the United Kingdom through a regressed equation, 

would exhibit a better fit with the measured values compared to other models for the selected 

locations. Generally, for South Yorkshire, Norfolk, and West Sussex, each model’s MBE and 

RMSE values show minor fluctuations. However, the values of r2 exhibit a decline in each 

model as latitude decreases. 

Table 3.4. “Statistical performance evaluation of existing empirical models based on ground measured data for 

South-Yorkshire, Norfolk, and West-Sussex” (Table obtained from[174]). 

South-Yorkshire 

 r2 MBE RMSE 

Predictors: 𝐤𝐭 

Model 1 0.863 -0.022 0.045 

Model 2 0.856 -0.013 0.040 

Model 3 0.861 -0.015 0.041 

Model 4 0.770 -0.0016 0.048 

Predictors: 𝐤𝐭, 𝛄𝐬, SF and m 

Model 5 0.858 -0.0097 0.039 

Model 6 0.778 0.027 0.065 

 

Norfolk 
 r2 MBE RMSE 

Predictors: 𝐤𝐭 

Model 1 0.839 -0.023 0.048 

Model 2 0.836 -0.015 0.044 

Model 3 0.837 -0.017 0.044 

Model 4 0.789 -0.001 0.039 

Predictors: 𝐤𝐭, 𝛄𝐬, SF and m 

Model 5 0.826 -0.0098 0.043 

Model 6 0.732 0.031 0.071 

 

West-Sussex 
 r2 MBE RMSE 

Predictors: 𝐤𝐭 

Model 1 0.829 -0.026 0.051 

Model 2 0.823 -0.017 0.047 

Model 3 0.825 -0.018 0.047 

Model 4 0.771 -0.001 0.041 

Predictors: 𝐤𝐭, 𝛄𝐬, SF and m 

Model 5 0.819 -0.01 0.045 

Model 6 0.734 0.035 0.075 
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Development and evaluation of new empirical H- based models at different locations in the 

UK 

Following the comparative analysis of empirical models and their performance against 

measured data at the three designated locations, a new model has been formulated to enhance 

the accuracy of horizontal diffuse irradiance prediction. This section aims to establish specific 

correlations for each site that closely match the measured data. According to the findings 

presented in Table 3.4, it is evident that among the empirical models, those incorporating kt as 

a predictor exhibited the most significant influence on result accuracy. Consequently, the 

correlations developed in this study rely on a single predictor, the clearness index, (kt).  

As highlighted in the study by Vignola et al. [178], employing identical datasets for model 

development and validation is discouraged. Therefore, a certain portion of the datasets, used to 

develop the correlation, will be referred to as “training datasets” and, the portion of the datasets 

used to validate the model will be called “validation datasets” [181]. Detailed information 

regarding the years allocated for the training and validation datasets for each location is 

presented in Table 3.5. 

Table 3.5. “Dataset used to develop and validate the correlations at each location” (Table obtained from [174]) 

 Training dataset Validation dataset 

South-Yorkshire 1982-1989 1990-1995 

Norfolk 1982-1993 1994-1999 

West-Sussex 1982-1987 1988-1992 

The process employed to formulate a novel correlation is visually depicted in Figure 3.5 as a 

diagram and will be elaborated next.  
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Figure 3.5 “The complete process flow for the development of a new correlation” (Figure obtained from [174]) 

The quality control process was executed on both datasets for each respective region. Figure 

3.6 provides a visual representation of the hourly measurements of the clearness index (kt) and 

diffuse fraction (kd) before and after the quality procedures in the context of the South 

Yorkshire region. 

 

(a) (b) 

Figure 3.6. “Hourly values of clearness index (𝑘𝑡) and diffuse fraction (𝑘𝑑) (a) before and (b) after the quality 

process” (Figure obtained from [174]). 
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Figure 3.6 displays values of kd and kt from the “training dataset” to create a correlation for 

each location.  

The dataset was divided into segments to facilitate a more tailored fitting of correlations for 

each section. In the case of the initial kt values, the determination of interval lengths followed 

the methodology established by Muneer et al. [215]. Within the 0≤ kt ≤0.3 range, kd values 

were averaged in 0.05 increments and plotted. This section of data points exhibited a linear 

pattern for kt values ranging from 0 to 0.2, as depicted in Figure 3.7. Consequently, a linear 

regression was applied to values falling below 0.2 

 

Figure 3.7. “Approach to set intervals for 𝑘𝑡 <0.2” (Figure obtained from [174]) 

For kt values exceeding 0.2, the correlations that yielded better performance were a 4th order 

polynomial for South-Yorkshire and Norfolk and a cubic correlation for West-Sussex. 

Although higher-order polynomial equations and correlations with intervals between 0.2 and 

0.8 or 0.9 were explored for all locations, they did not demonstrate significant improvement in 

model accuracy, so they were discarded. 

Following the formulation of the correlations, the validation process involved incorporating 

clearness index (kt) values from the designated "validation dataset" into each correlation. 

Subsequently, the obtained diffuse fraction (kd) was combined with global horizontal solar 

irradiance (GH) to compute the hourly estimates of horizontal diffuse solar irradiance (Gd,est) 

using Equation 3.2. A comparative analysis was conducted between these values and Gd 

measurements from the “validation dataset” and the statistical evaluation was performed. The 

detailed equations and the statistical error metrics for South-Yorkshire, Norfolk and West-

Sussex are shown in Table 3.6. 

 



 

Page 69 of 286 

Table 3.6. “Correlations with best performance for data measured in each location” (Table obtained from [174]). 

Correlation for South-Yorkshire  

(Ground measurements 1990-1995) 
𝐫𝟐 𝐌𝐁𝐄 𝐑𝐌𝐒𝐄 

    

𝐤𝐭 <0.2        𝐤𝐝 =0.9982-0.0473𝐤𝐭 
0.872 0.0015 0.027 

𝐤𝐭 >0.2        𝐤𝐝 =0.7392+2.428𝐤𝐭 -6.739kt2+2.626 𝐤𝐭3+1.366 𝐤𝐭4 

    

Correlation for Norfolk 

(Ground measurements 1994-1999) 
   

    

𝐤𝐭 <0.2        𝐤𝐝 =0.9996-0.0497𝐤𝐭 
0.840 0.004 0.04 

𝐤𝐭 >0.2        𝐤𝐝 =0.6671+3.76𝐤𝐭 -8.078𝐤𝐭2+5.231𝐤𝐭3+0.05306𝐤𝐭4 

    

Correlation for West-Sussex 

(Ground measurements 1988-1992) 
   

    

𝐤𝐭 <0.2        𝐤𝐝 =1.0011-0.075𝐤𝐭 
0.830 0.003 0.03 

𝐤𝐭 >0.2        𝐤𝐝 =0.01898+7.117𝐤𝐭 -16.54𝐤𝐭2+10.07𝐤𝐭3 

    

In the context of South Yorkshire, a comparative analysis of the newly developed correlation 

with the empirical models examined in Table 3.4 reveals a distinct enhancement in terms of 

statistical errors. When compared to Model 4, which previously exhibited the most accurate 

predictions within the limits of the correlation, the new correlation exhibits significant 

improvements across various metrics. Specifically, there is a marked increase in r2, a slight 

enhancement in MBE, and a noteworthy reduction in RMSE.  

Similarly, for the Norfolk region, the novel correlation model showcases improvements over 

existing empirical models, particularly regarding MBE values. Although the gains in r2 and 

RMSE more modest, they improve predictive accuracy. While the magnitude of improvement 

is less pronounced than that observed in South Yorkshire, it is nevertheless noteworthy. 

Finally, the new correlation model created for the region of West-Sussex yields remarkable 

changes when contrasted with existing empirical models. The RMSE has experienced a 

significant reduction, ranging from an average of 0.051 to 0.03. Furthermore, the improvements 

in MBE relative to Model 3, Model 1 and Model 2 are evident. Most notably, the enhancement 

in r2 compared to Model 4, is substantial. 
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Though the advancement in Norfolk may not match that of South Yorkshire and West-Sussex, 

the novel correlation still contributes to enhanced outcomes when evaluated against existing 

models (as displayed in Table 3.4).  

3.2.2.3 Empirical H- based model validation 

Upon the establishment of the novel correlations, the model had to be validated. The accuracy 

of each new correlation was tested by error histograms and by comparison with different 

datasets. 

Error histograms 

Each data point of Gd,est calculated with the new correlation, was compared to the measured 

values of Gd. The errors were calculated keeping the same units as Gd,est and Gd (kWh/m2) as 

follows: 

Error = Gd,est − Gd 

Equation 3.20 

The error histograms for South-Yorkshire, Norfolk and West-Sussex are presented in Figure 

3.8, Figure 3.9, and Figure 3.10, respectively.  

An accurate correlation of horizontal diffuse solar irradiance is characterized by most estimates 

having minimal or no errors, with errors exhibiting a symmetrical distribution centred around 

0. The error distribution is entirely symmetrical for all three correlations, indicating high 

accuracy of the results and therefore validating the developed correlations. Moreover, the 

correlation for South Yorkshire shows that 53% of the estimates fall within the intervals of [-

0.01 0.01] kWh/m2, while the corresponding percentages for Norfolk and West Sussex are 51% 

and 41%, respectively. 
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Figure 3.8 “Error histogram for the South-Yorkshire correlation” (Figure obtained from [174]). 

 

Figure 3.9. “Error histogram for the Norfolk correlation” (Figure obtained from [174]). 

 

Figure 3.10. “Error histogram for the West-Sussex correlation” (Figure obtained from [174]). 

Comparison between different datasets 

A complementary test has been carried out to evaluate the accuracy of the new correlations 

developed for South-Yorkshire, Norfolk, and West-Sussex. Three distinct datasets were 

employed for each location to verify the robustness of the outcomes. The underlying 

expectation was that the statistical error metrics should exhibit negligible fluctuations across 

these datasets. This would imply that the correlations can be used to accurately predict the 
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horizontal diffuse solar irradiance at the specific location. To study the accuracy of the 

developed correlations, first, the existing empirical models have been evaluated with three 

different datasets. This makes it possible to compare the existing models and the new 

correlations. Table 3.7 provides information on the years used for complete, training and 

validation datasets for each location. 

Table 3.7. “Detailed information of the dataset used as complete, training and validation datasets” (Table 

obtained from [174]). 

 Complete dataset Training dataset Validation dataset 

South-Yorkshire 1982-1995 1982-1989 1990-1995 

Norfolk 1982-1999 1982-1993 1994-1999 

West-Sussex 1982-1992 1982-1987 1988-1992 

Table 3.8 presents the outcomes of the current empirical models for the three locations. The 

results obtained from these models showed minor variations between the datasets. 

Table 3.8. “Statistical error metrics obtained for the existing empirical models using different datasets” (Table 

obtained from [174]) 

South Yorkshire 

 Complete dataset Training dataset Validation dataset 

 r2 MBE RMSE r2 MBE RMSE r2 MBE RMSE 

Model 1 0.86 -0.022 0.045 0.862 -0.023 0.046 0.863 -0.0215 0.044 

Model 2 0.856 -0.013 0.040 0.857 -0.014 0.041 0.859 -0.0129 0.039 

Model 3 0.861 -0.015 0.041 0.859 -0.015 0.042 0.860 -0.0142 0.040 

Model 4 0.770 -0.0016 0.048 0.769 -0.002 0.040 0.77 -0.0018 0.040 

Norfolk 

 Complete dataset Training dataset Validation dataset 

 r2 MBE RMSE r2 MBE RMSE r2 MBE RMSE 

Model 1 0.839 -0.023 0.048 0.842 -0.024 0.049 0.836 -0.022 0.048 

Model 2 0.836 -0.015 0.044 0.838 -0.016 0.044 0.833 -0.014 0.044 

Model 3 0.837 -0.017 0.044 0.839 -0.017 0.045 0.833 -0.016 0.044 

Model 4 0.789 -0.001 0.039 0.797 -0.002 0.038 0.778 -0.0002 0.039 

West Sussex 

 Complete dataset Training dataset Validation dataset 

 r2 MBE RMSE r2 MBE RMSE r2 MBE RMSE 

Model 1 0.829 -0.026 0.051 0.826 -0.019 0.048 0.827 -0.0108 0.033 

Model 2 0.823 -0.017 0.047 0.823 -0.018 0.048 0.822 -0.0148 0.045 

Model 3 0.825 -0.018 0.047 0.826 -0.019 0.048 0.824 -0.0161 0.045 

Model 4 0.771 -0.001 0.041 0.783 -0.003 0.045 0.757 0.00146 0.045 
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Table 3.9 displays the differences between the training dataset and the validation dataset for 

the newly developed correlations. Overall, the performance indicators exhibit minimal 

variations between both datasets, indicating the accuracy of the correlations in determining 

values of horizontal diffuse solar irradiance for the studied locations. To conclude, the new 

correlations present an improvement if compared with existing models for the regions studied. 

Table 3.9. “Accuracy evaluation of developed correlation using different datasets” [174] 

 Training dataset Validation dataset 

 r2 MBE RMSE r2 MBE RMSE 

South-Yorkshire 0.877 0.001 0.025 0.872 0.0015 0.027 

Norfolk 0.85 0.002 0.033 0.840 0.004 0.04 

West-Sussex 0.844 0.002 0.04 0.830 0.003 0.03 

3.2.3 Direct horizontal solar irradiance (𝐆𝐛) 

Direct horizontal solar radiation, also called beam radiation, is the portion of the global 

radiation that arrives at the Earth’s surface directly from the sun [186]. And it can be accurately 

calculated using Equation 3.1 with the knowledge of global and diffuse horizontal solar 

radiation values. 

3.2.4 Results 

Values of horizontal global solar irradiation (GH), horizontal diffuse solar irradiation (Gd) and 

horizontal direct solar irradiation (Gb) are presented in Figure 3.11 modelled for the city of 

Sheffield. 

The value of GH corresponds to ground measurements obtained in a weather station closed to 

Watnall (Nottinghamshire) in 2018. Gd have been estimated by using the diffuse horizontal 

correlation based in South Yorkshire. Finally, Gb has been calculated using Equation 3.1. 

Figure 3.11 shows the hourly results on horizontal global, diffuse, and direct solar irradiation 

for a week in January (Figure 3.11a), and a week in July (Figure 3.11b). Horizontal solar 

irradiation values received in January are lower than those received in July. Mainly due to the 

amount of horizontal direct irradiation that arrives at the horizontal surface. In July, there is 

more hours of sun and the sky tend to be clear most of the time, so the majority of the solar 
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irradiation received is direct. On the contrary, in winter and autumn, the sky is covered by 

clouds and the radiation received is mostly diffuse. 

 

(a) (b) 

Figure 3.11. Hourly results on horizontal global (GH), diffuse (Gd), and direct (Gb) solar irradiation on a week in 

(a) January and (b) July. 

The results obtained on horizontal solar irradiation are used in the next section, following 

Figure 3.1, for the estimation of solar irradiation on inclined surfaces.  
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3.3 Solar modelling on inclined surfaces 

In section 3.2, the importance of knowing accurate values of horizontal solar irradiation was 

highlighted and values of horizontal global (GH), diffuse (Gd), and direct (Gb) solar irradiation 

were estimated. Those are essential parameters for the estimation of irradiation on 

inclined/tilted surfaces. PV solar systems are generally mounted on inclined surfaces and 

orientated to maximize the amount of available irradiation incident. Consequently, the solar 

irradiation incident on a tilted surface has to be determined by converting solar radiation from 

horizontal surface to the tilted surface of interest [247]. 

Inclined solar radiation (Gβ) is the irradiation incident on an inclined surface to the ground. 

The calculation of solar radiation on inclined surfaces, as described by Equation 3.21, is the 

addition of the beam component from direct inclined radiation (Gbβ), diffuse inclined radiation 

(Gdβ), and reflected radiation (Gr). 

Gβ = Gbβ + Gdβ + Gr 

Equation 3.21 

3.3.1 Direct beam solar radiation on inclined surfaces (𝐆𝐛𝛃) 

The direct irradiation on inclined surfaces (Gbβ) can be computed using geometrical 

relationships (i.e. angle of incidence, zenith angle) between the horizontal and inclined 

surfaces, according to the following equation: 

Gbβ = GbN ∙ cos(θ) =
Gb

cos(θz)
∙ cos(θ) =

Gb
sin(γs)

∙ cos(θ) = Gb ∙ rb 

Equation 3.22 

The zenith angle (θz) is the complement to the solar altitude γs. GbN is the beam component of 

the direct irradiation and Gb is the horizontal direct solar irradiation on a horizontal surface. rb 

is the ratio of hourly radiation received by a tilted surface to that of a horizontal surface outside 

the earth’s atmosphere. The solar incidence angle (θ) allows the prediction of the amount of 

radiation received on a solar panel at a specific time and location [248]. It is the angle between 

the sun rays and the normal on a surface. Together with zenith angle allows for the conversion 

of direct solar irradiance between horizontal and inclined surfaces. Following equation from 

Mcevoy et al. [248] θ is calculated as: 
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cosθ = (cos γs ∙ cos (αS − α) ∙ sin β) + (cos β ∙ sin γs) 

Equation 3.23 

where α is the angle at which the panel is orientated, in degrees from 0° to 360°, β is the 

inclination angle of the panel, and αS is the azimuth angle. 

Solar azimuth (αS) is the angle between the projection of sun’s centre onto the horizontal plane 

and due north considering a north orientated system. The azimuth angle calculation follows the 

equation below [228,249].For morning hours, t ≤ 12 

For ω ≤ 180,  cos αs = (
sin δ ∙ cos φ + sinφ ∙ cosδ ∙ cosω 

cos γS
) 

Equation 3.24 

The afternoon azimuth for t > 12 

For ω > 180,  cos αs = 360 − (
sin δ ∙ cos φ + sinφ ∙ cosδ ∙ cosω 

cos γS
) 

Equation 3.25 

where φ is the latitude, δ is the declination angle, ω is the hour angle and γs is the solar altitude 

angle, all of them introduced in Section 3.2.2.1. 

3.3.2 Reflected solar radiation (𝐆𝐫) 

The estimation of reflected irradiation (Gr) requires values of the global horizontal solar 

irradiation (GH) and the albedo. The conventional method for modelling reflected radiation 

assumes that the reflected rays are diffuse and the coefficients of reflection of the beam and 

diffuse rays are identical [247]. The reflected radiation is calculated as follows: 

Gr = GH ∙ ρ ∙ (
1 − cosβ

2
) 

Equation 3.26 

Where ρ is the albedo and and β is the inclination angle of the panel. 

The albedo represents the ground's reflectance of solar radiation. Liu and Jordan [250] 

determined a value of albedo equal to 0.2 -0.7(with snow). In a study by Gul et al. [251] various 
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surfaces and sky conditions were compared to determine their impact on the albedo. The 

authors concluded that the albedo value remained relatively constant for overcast skies. For 

this study, concrete was assumed as the surface material with an albedo value of 0.2. 

3.3.3 Diffuse solar radiation on inclined surfaces (𝐆𝐝𝛃) 

It is not possible, on the other hand, to calculate diffuse irradiation on inclined surfaces (Gdβ) 

by geometrical relationship because the diffuse component comes from all points of the sky 

[252,253].  

Many authors have been testing the most appropriate diffuse radiation model on inclined 

surfaces. In literature, those have been divided in isotropic and anisotropic models [204]. 

Isotropic models are simple models that assumes that the sky distribution of the diffuse 

irradiation is uniform over the sky dome. Thus, the diffuse component resulting from the solar 

radiation scattering and the horizon brightening component area assumed to be zero [252]. On 

the other hand, the anisotropic models are more complex. Those models assumed not only the 

isotropic diffuse component but also the anisotropic effect of the diffuse sky radiation [254]. 

According to Reindl et al. [255] isotropic models are not recommended for calculating diffuse 

solar radiation on tilted surfaces across various locations in the United States.  

Noorian et al. [254] investigated twelve distinct models for diffuse radiation to determine the 

model that best matched actual data from Iran. The authors found that depending on the 

orientation of the panel, some models adjusted better than other ones, but they concluded that 

anisotropic models, in both scenarios, were the best fits to real data. El-Sebaii et al. [256] 

compared isotropic and anisotropic models in Saudi Arabia. The findings revealed that the 

anisotropic model accurately estimated solar radiation on inclined surfaces. Demain et al. [252] 

made an extensive comparison between 14 different isotropic and anisotropic models. The 

authors evaluated the models with measured solar irradiation data from Belgium. The results 

from the statistical analysis showed that the performance of each model is clearly influenced 

by the sky conditions. Moreover, none of the models analysed performed well for all the sky 

conditions. To overcome this limitation, the author combined three anisotropic models that 

resulted to be better for the estimation of the global irradiation on inclined surfaces.  

Maleki et at., [204] conducted a comprehensive review of various studies that examined the 

most suitable models for calculating solar radiation on tilted surfaces across different locations. 
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The authors highlighted that both isotropic and anisotropic models can provide accurate results, 

depending on the location. However, for the present study, only the models highlighted by 

Maleki et at., [204] with highest accuracy for different locations around the world has been 

selected for the calculation of diffuse solar irradiation on inclined surfaces. The models selected 

corresponds to Hay’s (1979) [257], Willmott’s (1982)[258] and Reindl’s (1990) models [255]. 

• Hay’s model: 

Gdβ = Gd ∙ [FHay ∙ rb + (1 − FHay)(
1 + cos β

2
)] 

Equation 3.27 

Where Gd is the horizontal diffuse solar irradiance, rb is the ratio of hourly radiation received 

by a tilted surface to that of a horizontal surface outside the earth’s atmosphere, β is the 

inclination angle of the panel and FHay is an anisotropic index used by Hay and can be obtained 

following Equation 3.27. 

FHay =
Gb
G

 

Equation 3.28 

Where Gb is the horizontal direct solar irradiance and G is the hourly horizontal extra-

atmospheric irradiance. 

• Willmott’s model: 

Gdβ = Gd ∙ [
GbN ∙ rb
I0

+ Cβ(1 −
GbN
I0
)] 

Equation 3.29 

where I0 is the solar constant, Gd is the horizontal diffuse solar irradiance, rb is the ratio of 

hourly radiation received by a tilted surface to that of a horizontal surface outside the earth’s 

atmosphere, GbN is the beam component of the direct irradiation and Cβ can be calculated as 

followed: 

Cβ = 1.0115 − 0.20293β − 0.080823β
2 [β is in radians] 

Equation 3.30 
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• Reindl’s model: 

Gdβ = Gd ∙ [FHay ∙ rb + (1 − FHay)(
1 + cos β

2
)(1 + fRsin

3(
β

2
))] 

Equation 3.31 

All the parameters have been introduced in the previous model except the modulating function 

fR, that accounts for the impact of increasing overcast sky on diffuse radiation intensity, that 

can be calculated following Equation 3.32 

fR = √
Gb
GH

 

Equation 3.32 

The anisotropic models have been applied to estimate the diffuse solar irradiation on inclined 

surfaces and the hourly results can be seen in Figure 3.12a (Hay’s model), Figure 3.12b 

(Willmott’s model) and, Figure 3.12c (Reindl’s model). Additionally, Figure 3.12 shows 

hourly values of reflected and direct solar irradiation on inclined surfaces and the total solar 

irradiation received in an inclined surface (Equation 3.21). The reflected and direct solar 

irradiation on inclined surfaces have the same values for the three different graphs on Figure 

3.12, as its output does not depend on the anisotropic model used. The diffuse inclined solar 

irradiation changes with the anisotropic models applied.  

Both Willmott’s model and Reindl’s model were developed based on Hay’s model. When 

Hay’s model and Reindl’s model are used, inclined diffuse solar irradiation (Gdβ) is almost 

identical for both models. Reindl’s model is a modification on Hay’s model. It introduces an 

index that takes into consideration the horizon brightening diffuse radiation [255]. The values 

are slightly higher than those for Hay’s model because are considering the horizon brightening 

proportion of the diffuse irradiation. However, this portion of the diffuse irradiation does not 

seem to be relevant for the location studied [259].  
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(a) (b) 

 

 (c) 

Figure 3.12. Hourly values on inclined total (Gβ), diffuse (Gdβ), direct (Gbβ) and reflected (Gr) solar irradiation 

for a day in July using (a) Hay anisotropic model, (b) Willmott anisotropic model and (c) Reindl model. 

On the contrary, the results obtained for Gdβ when Willmott’s model is applied, differ from the 

other two. Willmott’s model introduces a new anisotropic index and modified Hay’s model. 

As it can be seen in Figure 3.12, the model under predicts values of diffuse solar irradiation on 

inclined surfaces on clear hours (i.e.at 11:00h, 12:00h, and 14:00h when there is higher amount 

of direct irradiation hitting the surface). This can be seen better in Figure 3.13. The results were 

calculated for a day in February. The sky is covered by clouds predominantly, and the inclined 

diffuse solar irradiation reported by both, Reindl’s anisotropic model (see Figure 3.13a) and 

Willmott’s anisotropic model (see Figure 3.13b) is the same. 
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(a) (b) 

Figure 3.13. Hourly results obtained when (a) Reindl anisotropic model and (b) Willmott anisotropic model are 

used to calculate inclined diffuse solar irradiation on a day in February. 

When the total amount (i.e. over a year) of irradiation received by a PV panel inclined 25° for 

the region of South-Yorkshire is calculated, the differences between the three models analysed 

is almost negligible as it can be seen in Table 3.10. However, for the purpose of the study, the 

model selected to calculate diffuse solar irradiation on an inclined surface and to progress with 

the estimation of PV solar energy generation is Hay’s model. The model has been selected 

because the one that better fits solar irradiation values received on a surface studied in 

Sheffield. 

Table 3.10. Total amount of solar irradiation per year in an inclined PV panel at 25 degrees 

Total amount of solar irradiation received per year (kWh/m2) 

Reindl’s model Hay’s model Willmott’s model 

1,066 1,064 1,038 

Details on how the solar model has been validated are included in Section 3.5. 
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3.4 From solar irradiation to energy generation 

The solar model predicts solar irradiation received on an inclined surface. However, the most 

interesting parameter for the implementation of solar system is the energy generation. Thus, 

the model developed in this study converts the computed solar irradiation into energy 

generation by considering inverter efficiency (ηi), panel efficiency (ηp) and panel dimensions 

and total number of panels following Equation 3.33. 

Energy generated (kWh) = Gβ (
kWh

m2
) ∙ ηi ∙ ηp ∙ panel dimenssions (m2) ∙ n°ofpanels 

Equation 3.33 

3.5 Solar model validation 

The solar model as been validated against a private household PV installation and a PV 

installation located in one of the M&S rooftop stores. 

3.5.1 Private household PV solar energy installation 

In order to validate the model, measured solar energy generation from a PV solar installation 

in Sheffield (South-Yorkshire) has been used. The system for the measured data collection is 

made for 16 solar panels which are south orientated with a tilt angle of 30 degrees. The data 

was measured as hourly energy generation (kWh) for the period of March 2018 to December 

2018.  

Inclined solar irradiation values (Gβ) were transformed into energy generation values by 

applying Equation 3.33. The values assumed to transform solar irradiation on inclined surfaces 

(kWh/m2) into PV solar energy generation (kWh) are introduced in Table 3.11. 

Table 3.11. Values assumed for the conversion between energy and solar irradiation on a PV installation 

inclined. 

Parameter Value 

Inverter efficiency (%) 0.8 

Panel efficiency (%) 0.14 

Panel dimensions (m2) 1.64 

Number of panels 16 
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It was discussed throughout the literature review, and it has been confirmed during the 

validation process that the location of solar radiation weather stations and the year of 

measurements used for the input data to the model, impact the hourly modelled output 

significantly. Figure 3.14 shows the measured hourly values of total PV solar energy generated 

in the installation studied in Sheffield for the month of April (orange). Whilst values of 

modelled PV solar energy using Hay’s anisotropic model can be seen for the month of April 

(blue). The input data to the model corresponds to averaged ground measurements of global 

horizontal solar irradiation (GH) from the region of South-Yorkshire. Precisely, ground 

measurements values were taken in the weather station of Finningley between 1982 and 1995. 

On the other hand, measured and modelled values of hourly PV solar energy generation has 

been compared in Figure 3.15 using different values of GH. The ground measurements of GH 

took place in a weather station located in Watnall (Nottinghamshire) in 2018. If both figures 

are compared (Figure 3.14 and Figure 3.15), it can be seen that the model adjusts better to 

measured values of PV solar energy generation when the ground measurements of GH are taken 

on the same year as the measured values of solar energy generation. 

 

Figure 3.14. Comparison of hourly PV solar energy in the month of April between measured data from Sheffield 

in 2018 (red line) and data modelled using averaged values of GH from Finningley between 1982 and 1995 (blue 

line). 
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Figure 3.15. Comparison of hourly PV solar energy in the month of April between measured data from Sheffield 

in 2018 (red line) and data modelled using values of GH from Watnall in 2018 (blue line). 

The total amount of PV solar energy generated has been obtained for both, the measured and 

the modelled values. The results can be seen in Table 3.12. The difference between measured 

and modelled values has been calculated following Equation 3.34. 

% error = |
model value − measured data

measured data
| ∙ 100 

Equation 3.34 

As it can be seen in Table 3.12, the percentage error between measured and modelled PV solar 

energy generation values are below 10%. Furthermore, when the input data used for the model 

(GH) corresponds to ground measurements from just 2018 (the year of the validation 

measurements), the model gives lower errors (7% error) than when input data of averaged 

values between 1982 and 1995 is used (9.5% error). 

Table 3.12. Comparison between measured values and modelled values of total solar irradiation received for one 

panel inclined 25° in the region of South-Yorkshire. 

 Total PV solar energy generation  

Measured values in Sheffield (kWh) 2,826 

Modelled values (kWh) 

Input data 

South- Yorkshire 

(Averaged 1982-1995) 

Input data 

Nottinghamshire 

(2018) 

2,558 3,041 

Error difference (%) 9.5 7 
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Monthly comparisons have also been carried out between measured and modelled values as it 

can be seen in Figure 3.16. For the purpose of this comparison, monthly values of solar 

irradiation (Gβ) have been calculated to be compared with measured monthly values of solar 

irradiation. The monthly values have been estimated by adding every hour of the month for the 

modelled values. In case of the measured values, daily measurements from the same installation 

in Sheffield in 2012 have been added for each month. The modelled data have been created 

using values of global horizontal solar irradiation from South-Yorkshire measured between 

1982-1995 (Figure 3.16a) and from North-Yorkshire measured in 2012 (Figure 3.16b). 

The model adjusts better when the input data (i.e., ground measurements of global horizontal 

solar irradiation) corresponds to values taken the same year as the measured values (Figure 

3.16b). The weather conditions change every year, and this impacts the solar irradiation 

received at a certain location and needs to be remembered when the model is being validated. 

When the model is being used to predict average possible generation from a location, averaged 

input data (GH) from across a number of years is a better input to the model  

Therefore, it can be concluded that the higher the precision on input data, the better the 

approach from the model to measured values. The percentage error has been calculated for all 

the input data measurements (i.e. South-Yorkshire, North-Yorkshire, and Nottinghamshire) 

being the percentage error below a 10% for all of them. 

 

(a) (b) 

Figure 3.16. Comparison between measured monthly values in Sheffield (2012) and modelled values using 

ground measurements from (a) South-Yorkshire from 1982 – 1995 and from (b)North-Yorkshire in 2012. 
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3.5.2 PV solar energy installation in a M&S store 

M&S has provided data of PV solar energy generation at the store located in Vangarde Retail 

Park in York. The store has 600 PV panels installed (see Figure 3.17). 

 

Figure 3.17. M&S York Vangarde Retail Park (image taken from Google maps) 

Part of the roof is inclined towards the south and part inclined towards north. The majority of 

the solar panels are installed over the roof inclined towards south. Panels installed in the north-

face part of the roof, are tilted towards the south as well (Figure 3.18). It has been estimated 

that the PV panels are tilted 10° to the horizontal. 

   

Figure 3.18. PV panel rooftop installation in M&S York Vangarde Retail Park (image taken from Google maps). 

The time period and the frequency of measurements provided for the PV installation are shown 

in detail in Table 3.13.  

Table 3.13. Data provided by M&S for the validation of the solar model 

Type Time period Frequency 

PV generation 
31/03/2018 - 31/03/2019 Half hourly energy values (kWh) 

01/01/2019 - 31/12/2019 Daily energy values (kWh) 
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For the validation of the solar model, the half hourly values provided by M&S have been added 

to get hourly and daily measurements of PV solar energy generation. Modelled values of PV 

solar energy generation has been estimated considering the assumptions included in Table 3.14. 

Table 3.14. Values assumed for the calculation of PV solar energy generation at York Vangarde Retail Park. 

Parameter Value 

Inverter efficiency (%) 0.8 

PV panel efficiency (%) 0.14 

PV panel dimensions (m2) 1.64 

Number of PV panels 600 

PV panel tilt angle (degrees) 10 

PV panel orientation (degrees) 180 

The total annual PV energy generation at York Vangarde Retail Park for 2019 was 138,276 

kWh whereas for the period from March 2018 to March 2019 the PV solar energy generation 

was 93,764 kWh. The difference between both datasets can be seen Figure 3.19 in detail. 

More precisely, Figure 3.19 shows daily PV solar energy output together with the modelled 

PV energy generation for measured values in 2019 (see Figure 3.19a) and, for measured values 

from March 2018 to March 2019 (see Figure 3.19b). 

 

(a) (b) 

Figure 3.19. Comparison between modelled daily PV energy generation (blue line) and measured daily PV 

energy generation (red line) at York Vangarde Retail Park (a) in 2019 and, (b) between March 2018 and March 

2019.  

The drop in PV solar energy generation at M&S York Vangarde in spring and summer when 

data was taken between March 2018 and March 2019 (Figure 3.19b) is related to a suspected 

error in measurements. For the modelled data (blue line) in Figure 3.19b, the PV energy 
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generation increases during spring-summer (April-July), when normally the skies are clear, and 

the weather achieves higher temperatures and decreases in autumn and winter months 

(February-September) when overcast skies prevail. On the contrary in Figure 3.19b, 

measurements from M&S York Vangarde store (orange line) report a higher PV energy output 

in autumn-winter season than in spring-summer season. 

Some of the error measurements from values taken between March 2018 and March 2019 can 

be seen in detail in Figure 3.20 when hourly measured and modelled hourly energy generation 

values are plotted for a month in September (Figure 3.20a) and, for a month in December 

(Figure 3.20b). Specifically, for certain hours on the 11th of September (see Figure 3.20a) or 

during the last days of December (Figure 3.20b). 

 
(a) 

 
(b) 

Figure 3.20. Modelled hourly PV energy generation (blue line) and measured hourly PV energy generation 

(orange line) at York Vangarde Retail Park in (a)September 20018 and (b) December 2018. 
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Due to the differences in PV energy output between the data provided and the error in 

measurements, the data used for the validation of the model corresponds to daily measurements 

of energy values from January 2019 to December 2019. The total energy generation for that 

period at York Vangarde Retail Park was 138,276 kWh. Whereas the total modelled PV solar 

generation obtained was 120,860 kWh. The error difference between both values can be seen 

in Table 3.15. 

Table 3.15. Comparison between measured values and modelled values of total solar generation at M&S York 

Vangarde Retail Park. 

 
Total PV solar energy 

generation  

Measured values at M&S York Vangarde (kWh) 138,276 

Modelled values (kWh) 120,860 

Error difference (%) 12.6 

 

3.6 Case study: Locally generated PV solar energy 

After its validation, the solar model was used to estimate PV solar generation at different 

locations within the UK for different companies. As an example, one of the case studies is 

presented in this section. The case study was developed for The Translational Energy Research 

Centre (TERC) and funded by the European Regional Development Fund [43]. 

The study aimed to support the company's decision to improve sustainability within its business 

by providing valuable information regarding a possible transition towards locally produced 

solar energy. For this purpose, the study evaluated the feasibility of a PV installation to offset 

some of the current energy use within the buildings with the help of the PV solar model 

developed and introduced in the previous sections. Additionally, the report explored relevant 

parameters per the main aim, such as estimated energy savings and electricity bill reduction, 

payback time and emission reductions. 

3.6.1 Input data used for the solar model 

The global horizontal solar irradiation (GH) values used as input data to the solar model were 

obtained from a weather station at Watnall (Nottinghamshire) as an average of measurements 

taken between 2009 and 2019. The values assumed to transform solar irradiation (kWh/m2) 

into solar energy generation (kWh), following Equation 3.33, are included in Table 3.16.  
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Table 3.16. Values assumed for the conversion between energy and solar radiation on an PV inclined panel 

Parameter Value 

Inverter efficiency (%) 0.80 

Panel efficiency (%) 0.20 

Panel dimensions (m2) 1.67 

Number of panels  

Scenario 1 596 

Scenario 2 596 

Scenario 3 1,136 

The assumptions regarding PV panel dimensions and PV panel and inverters efficiency are 

based on the PV panel and inverter datasheet included in Appendix 1 and Appendix 2, 

respectively. The maximum efficiency achievable by the inverter is around 98-99%; however, 

a more conservative assumption has been made, using an average inverter efficiency of 80% 

due to the operation of the inverter typically not being at the optimum operating point for most 

of the operational cycle. For example, when operating below its rated power, the inverter still 

has some fixed losses, which reduce its operating efficiency. As can be seen in Table 3.16, the 

number of PV panels is different for the three scenarios explored. Detailed information on each 

scenario under study is provided in the following section. 

3.6.2 Case study data 

The case study was performed for a company in the industry sector. When this study was 

performed, the company depended entirely on the grid to cover the energy demand. The energy 

consumption, provided by the company as an hourly average value, was equal to 47.6 kWh. 

The company in Sheffield comprises several buildings; however, only two have been 

considered for installing PV panels. Each roof has been assigned a different name (the main 

roof - highlighted in blue in Figure 3.21, and the attached roof - highlighted in red in Figure 

3.21).  

The characteristics of the roofs have been estimated using Google Maps and are summarise in 

Table 3.17. The main roof has an area of approximately 1,600 m². Part of the roof is orientated 

towards the southeast, and the other part faces the northwest. The angle of orientation towards 

the southeast is approximated at 125 °, and the other half of the roof is assumed to be oriented 

305 ° northwest. The elevation of the roof is assumed to be 20°. In this case, both halves of the 

main roof have the same roof elevation. The attached roof has an area of approximately 792 

m². The orientation of the attached roof is the same assumed for the main roof. The elevation 
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of the roof has been set as 5° from estimates provided by the company. Both sections of the 

attached roof have the same tilt angle.  

Table 3.17. Main and attached roof orientation and elevation angles. 

 Main roof Attached roof 

Roof elevation 20° 5° 

Roof orientation 
South east North west South east North west 

125° 305° 125° 305° 

Based on roof characteristics assumptions and the portion of the roof available for PV panel 

installation, the PV panels in the main roof and attached roof would likely be distributed as 

shown in Figure 3.21. The criteria considered for the installation of the PV panels was to keep 

the existing skylights unobstructed. 

 

 

Figure 3.21. Company plant from a bird’s eye view corresponding to the main roof (blue) and the attached roof 

(red) (image created from the author using Google maps view). 

Roof refurbishment project 

The company asked to explore a new scenario for the PV installation based on the 

refurbishment of both roofs. For the new roofs, the area available for panels was now taken as 

a fraction of the total area. Due to the configuration of the rooftops, with fewer physical hurdles, 

it was assumed that 80% of the total area would be available for PV installation [260]. Within 

the 20% off, it is assumed that 10% of the area is covered by skylights and an additional 10% 

is restricted as a maintenance area and area covered by electrical equipment. Taking 20% off 
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each roof area, the maximum available space for installing PV panels in the main roof would 

be 1,280 m². The available area for the attached roof would equal 634 m². 

The number of PV panels selected for each orientation of the rooftop, according to the actual 

and the refurbished roof, are summarised in Table 3.18. 

Table 3.18. Number of PV panels assumed to be installed using the actual roof configuration and the new roof 

configuration (with 10% skylights). 

Number of PV panels installed 

  Main roof Attached roof 

 Total South-east North-west South-east North-west 

Actual roof 596 216 212 102 66 

New roof 

(refurbished)  
1,136 380 380 263 113 

 

3.6.2.1 Scenarios studied 

This case study defines three scenarios for analysing and evaluating introducing PV solar 

panels into the company. The study estimates the hourly, monthly, and annual solar energy 

generation values for the three scenarios. Additionally, it gives detailed information on 

estimated energy and electricity bill savings, emission reductions and payback time. 

Scenario 1 

Scenario 1 is built upon the characteristics of the actual roofs. Detailed information on Scenario 

1 is included in Table 3.19. 

Table 3.19. Characteristics assumed for the roofs and PV panels installed for Scenario 1. 

 
Roof orientation Roof elevation 

Number of PV 

panels 

PV panel 

orientation 

PV panel 

elevation 

 South 

east 

North 

west 

South 

east 

North 

west 

South 

east 

North 

west 

South 

east 

North 

west 

South 

east 

North 

west 

Main roof 
125° 305° 

20° 216 212 
125° 305° 

20° 

Attached roof 5° 102 66 5° 

 

Scenario 2 

In Scenario 2,  PV panels are installed at the optimum PV panel tilt/elevation according to the 

roof orientation. The optimum PV panel elevation or tilt is the one that gives the highest annual 

energy generation on each roof. Thus, expectations are that the annual energy output will be 
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higher than in Scenario 1. However, the installation cost will also be higher, as frames will be 

required to hold the panels at the optimum angle, increasing the installation costs. 

The optimum panel tilt/elevation angle has been calculated using the PV solar model. Figure 

3.22 shows the annual energy output for different panel orientations and tilt/elevation angles. 

Yellow indicates the highest energy output values, and purple indicates the lower output 

achieved. Considering the orientation of the roofs of the company studied, the optimum panel 

tilt/elevation angle when the roof is orientated 125 ° southeast would be approximately 22°. 

For the roof section orientated at 305 ° northwest, the optimum panel tilt/elevation angle equals 

0°. 

 

Figure 3.22. Annual energy output (colour scale) achieved for each panel orientation and tilt/elevation angle. 

The specifications and assumptions made for the Scenario 2 are included in detail in Table 

3.20. 

Table 3.20: Characteristics assumed for the roofs and PV panels installed for Scenario 2. 

 Main roof Attached roof 

Roof elevation 20° 5° 

PV panel tilt 22° 0° 

Roof orientation 
South east North west South east North west 

125° 305° 125° 305° 

Number of PV panels 216 212 102 66 
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Scenario 3 

Scenario 3 is built upon the roof refurbishment project. Therefore, the number of PV panels in 

Scenario 3 is higher than in Scenario 1 and Scenario 2, so a higher energy annual output would 

be expected. Detailed information about the characteristics and assumptions for Scenario 3 is 

shown in Table 3.21. 

Table 3.21. Characteristics assumed for the roofs and PV panels installed for Scenario 3. 

 Main roof Attached roof 

Roof elevation 20° 5° 

PV panel tilt 20° 5° 

Roof orientation 
South east North west South east North west 

125° 305° 125° 305° 

Number of PV panels 380 380 263 113 

3.6.2.2 Parameters analysed 

The analysis of energy savings, emission reductions and payback time is supported by the 

assumption of prioritising the use of solar energy whenever available. If solar generation does 

not meet the demand at each hour, the plant will also draw energy from the grid. On the 

contrary, when solar generation exceeds the demand, the surplus is sold to the grid. 

Energy savings 

Energy savings are estimated considering values of energy consumption and solar energy 

generation. For the energy consumption, the hourly average value provided by the company, 

and equal to 47.6 kWh, was used. The solar energy generation values used were calculated 

hourly. The difference between the generation and consumption was calculated as well as the 

energy that would come from the grid, from solar energy and the surplus solar energy sold to 

the grid. 

To estimate the cost of the energy from the grid, the total amount of the energy consumption 

from the grid was split between two different unit rates. According to the information provided 

by the company regarding the forecast consumption and energy cost, approximately 92% of 

the total consumption will lie in the unit rate between 07:00-24:00 (12.528 pence per kWh) 

while the remaining 8% will correspond to the unit rate between 00:00-07:00 (10.896 pence 

per kWh). The total cost of the electricity corresponds to the cost of the energy consumed from 
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the grid minus the surplus sold to the grid (value assumed equal to 5 pence per kWh)3 

[261,262]. 

Total cost of electricity = Cost of energy from the grid − Surplus earnings 

Equation 3.35 

GHG emission reductions  

The GHG impact factors considered for the calculation of GHG emissions are the following: 

• 233 gCO2eq/kWh from the UK grid mix [263]. 

• 68.6 gCO2eq/kWh from photovoltaics obtained from Gabi Software model4. 

The estimated annual GHG emissions have been obtained following Equation 3.36 for the 

emissions associated with energy grid consumption and, Equation 3.37 for the emissions 

associated with the solar energy consumption, respectively.  

Grid impact = Energy from grid (kWh) ∗  233 
gCO2
kWh

 

Equation 3.36 

PV installation impact = Solar energy consumption (kWh) ∗  68.6 
gCO2
kWh

 

Equation 3.37 

The surplus energy is sold to the grid, where it displaces the need to generate electricity by 

higher-carbon sources, because of this it receives a credit equivalent to that of the grid mix 

impact (Equation 3.38). 

Surplus impact = Surplus(kWh) ∗ 68.6
gCO2
kWh

− Surplus(kWh) ∗ 233 
gCO2
kWh

 

Equation 3.38 

 

3 An approximate value corresponding to the Smart Export Guarantee (SEG) tariff offered by electricity 
suppliers (i.e. British gas: 3.2 pence per kWh, Bulb: 5.57 pence per kWh) in 2019. 

4 The photovoltaic model is based on the global average market mix of photovoltaic technologies installed: 
Mono-Silicon 42 %, Multi-Silicon 47 %, Cadmium-Telluride (CdTe) 7 % and Copper-Indium-Gallium-Diselenide 
4 %. 

https://www.britishgas.co.uk/business/help-and-support/billing-and-payments/smart-export-guarantee#Export-Guarantee
https://bulb.co.uk/export/
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Payback time 

The payback time for each scenario has been calculated following Equation 3.39. 

Payback time (years) =
Total capital cost

Annual savings − Annual maintenance
 

Equation 3.39 

The capital cost includes the PV panels, inverters, and installation costs. The assumptions 

considered for the calculation of the payback time are as follows: 

• The cost per panel is assumed to be £179 [264]. 

• The cost for a typical inverter of 150 kW is £9,100, for an inverter of 50 kW is £5,400 

and for an inverter of 30 kW, the cost would be approximately around £2,400 [264]. 

• The installation costs are assumed to be 20 pence per W [265]. 

• To ensure an optimum performance of the PV panels, it is recommended to make a 

basic cleaning maintenance at least one a year. The cost of the maintenance has been 

assumed to be £7 per panel [266]. The cost has been calculated considering that the 

cleaning cost of 20 PV panels is between £100-£150. 

Finally, the annual savings corresponds to the difference between electricity costs without solar 

and the electricity cost with solar, also considering the surplus energy sold to the grid.  

All the results for the three scenarios analysed in this study are explained in the next section. 

3.6.2.3 Results obtained for the case study 

Solar energy output 

In this section, the annual and monthly solar energy output will be displayed for the three 

different scenarios. 

Figure 3.23 displays the annual energy consumption at the studied company (grey column) and 

the annual solar energy generation for all the scenarios. The annual energy generation obtained 

for the scenarios analysed, does not exceed the annual consumption although it could reduce 

the dependency from the grid to a greater or lesser extent. A detailed discussion about this is 

introduced in the next section. 
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In Scenario 2, the optimum PV panel tilt/elevation angle is used to maximise the capture of 

direct solar radiation, especially in months when the overcast weather prevails over clear skies. 

However, in this particular study, elevating the panel to its optimum angle (Scenario 2) does 

not report a notable change when compared to the annual generation achieved if the panels are 

installed at the roof elevation (Scenario 1). The results of annual energy output obtained for 

Scenario 3 shows a large increase when compared to Scenario 1 and Scenario 2 due to the large 

increase in the amount of PV panels accommodated on the roofs.  

 

 

Figure 3.23. Comparison between annual solar energy generation and actual consumption at the studied 

company (grey) according to the different generation scenarios reflected in Table 3.19, Table 3.20 and Table 

3.21. 

When looking at the monthly breakdown shown in Figure 3.24, it can be observed that between 

Scenario 1 and Scenario 2, the higher differences in monthly energy output corresponds to the 

spring and autumn seasons. This is due to the increase in direct solar radiation achieved by 

elevating the PV panels to its optimum value. The peak production is achieved in summer 

season.  
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Figure 3.24. Monthly solar energy generation for each scenario. Scenario details can be found in Table 3.19, 

Table 3.20 and Table 3.21. 

Another important difference to be mentioned between the scenarios is the contribution of each 

roof (main and attached) to the annual solar energy output. The percentage contribution of the 

attached roof (29%) is significantly lower than the contribution attributed to the main roof 

(71%) for all the scenarios. This is due to the area of the attached roof being smaller than the 

area of the main roof and thus, a lower number of PV panels can be accommodated.  

Annual energy savings 

The annual energy consumption at the studied company is shown in Table 3.22 in addition to 

the energy consumed from the grid and from solar generation. As the annual solar energy 

generation increases, the dependency from the grid decreases. 

Scenario 1 would reduce the consumption of energy from the grid by approximately 30% (i.e., 

from 418,071 kWh to 291,130 kWh), while Scenario 2 would reduce consumption by 31% 

(i.e., from 418,071 kWh to 289,520 kWh). On the other hand, in Scenario 3 the annual energy 

savings account for 38%, due to the increase in the number of PV panels installed (i.e., from 

418,071 kWh to 258,259 kWh).  
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Table 3.22. Annual energy consumption in the studied company and the annual energy consumed from solar and 

from the grid for each scenario. 

Annual energy consumption (kWh) 418,071 

Annual energy supply (kWh) Scenario 1 Scenario 2 Scenario 3 

From solar 126,941 128,551 159,812 

From the grid 291,130 289,520 258,259 

These percentage differences are visualised in Figure 3.25. 

 

 
 

Figure 3.25. Energy consumption breakdown to show contribution from the grid and from solar for each 

scenario. 

Suppose the solar energy generation data from Figure 3.23 is compared with the annual energy 

supplied from solar, shown in Table 3.22. In that case, it can be observed that the company 

does not use part of the solar energy generated. Solar energy generation surpasses the energy 

demand at certain times of the year (i.e., summer). According to the results, there would be 

potential to reduce further the dependency on the grid if all the surplus solar energy is stored 

for later use when the PV installation is not generating by for example, using an energy storage 

system.  

Considering the fact that the difference in energy savings between Scenario 1 and Scenario 2 

is not large, only a difference of 1%, it is necessary to estimate what the electricity bill savings 

and the payback time are, to determine if the use of the optimum tilt/elevation PV panel is 

worth the cost. 
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Electricity bill savings 

The estimated annual electricity bill for the company analysed is shown in Figure 3.26 (i.e., no 

solar), together with the grid energy cost for each scenario. Detailed calculations to estimate 

the cost of electricity can be seen in Table 3.23.  

 

Figure 3.26. Comparison of the annual grid energy cost per year with (Scenario 1, 2 and 3) and without solar 

energy. 

The electricity cost in Scenario 1 and Scenario 2 is reduced by approximately 33% and 34%. 

However, for Scenario 3, the reduction achieves a 51% if compared to the cost of electricity 

without solar. The higher reduction in energy cost for Scenario 3 is a consequence of the higher 

amount of solar surplus energy sold to the grid than for Scenario 1 and Scenario 2, as seen in 

Table 3.23. 
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Table 3.23. Breakdown of electricity costs per scenario. 

Without solar installation 

 Energy consumption from grid (kWh) Energy cost (£) 

Unit rate 
07:00-24:00 384,625 48,394 

00:00-07:00 33,446 3,644 

 Total 418,071  

  Total cost 52,038 

    

Scenario 1 
  Energy consumption from grid (kWh) Energy cost (£) 

Unit rate 
07:00-24:00 267,839 33,700 

00:00-07:00 23,290 2,538 
 Total 291,130 36,237 
  Solar energy consumption (kWh)  

  126,941  

  Solar surplus (kWh) Surplus earnings (£) 
  27,626 1,381 

  Total cost 34,856 
    

Scenario 2 
  Energy consumption from grid (kWh) Energy cost (£) 

Unit rate 
07:00-24:00 266,358 33,513 

00:00-07:00 23,162 2,524 
 Total 289,520 36,037 
  Solar energy consumption (kWh)  

  128,551  

  Solar surplus (kWh) Surplus earnings (£) 
  33,168 1,658 

  Total cost 34,379 
    

Scenario 3 
  Energy consumption from grid (kWh) Energy cost (£) 

Unit rate 
07:00-24:00 237,598 29,895 

00:00-07:00 20,661 2,251 
 Total 258,259 32,146 
  Solar energy consumption (kWh)  

  159,812  

  Solar surplus (kWh) Surplus earnings (£) 
  135,543 6,777 

  Total cost 25,369 

Payback time 

In this section, the payback time for the three different scenarios is estimated. The result for 

each scenario can be seen in Table 3.24.  

Scenario 1 presents the lower payback time, 12.5 years. Scenario 2, on the other hand, increases 

the payback time by 4 years when compared to Scenario 1. The difference for the payback time 

between Scenario 1 and Scenario 2, considering both have the same number of PV panels, 
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relies on the extra cost associated to the installation needed to elevate the PV panels to the 

optimum collection angle (i.e., installation costs), which is approximately £50,0005 [267]. The 

total payback time for Scenario 2 is 16 years. In Scenario 3, the increase in the payback time, 

when compared to Scenario 1, is due to the increased size of the PV system, despite producing 

more energy. 

Table 3.24: Payback time breakdown based on 2021 prices  

 PV 

system 

size 

(kW) 

PV panel cost 
Inverter 

cost 
Installation cost 

Annual 

maintenance cost 

Annual 

savings 

Payback 

time (Years) 

Scenario 1 200 £106,684 £14,500 £40,000 £4,172 £17,182 12.5 

Scenario 2 200 £106,684 £14,500 

£90,000 (extra cost 

due to the frame 

installation) 

£4,172 £17,659 16 

Scenario 3 380 £203,344 £26,000 £76,000 £7,952 £26,669 16 

However, it is worth noting that prices change and vary over time and between the components 

chosen. Therefore, these figures are only indicative of potential cost savings. The results shown 

in Table 3.24 were calculated based on energy costs in 2021, and they did not reflect the 

economic impact of the Russian invasion of Ukraine on the UK’s energy and gas prices [268].  

With the aim of reflecting the changes in energy prices, a new payback time has been estimated. 

The assumptions for the calculations are as follows: 

• Increase of almost 200% in electricity prices between December 2021 and March 2023. 

A detailed explanation about the estimate can be found in chapter 4, section 4.3.3. 

• The cost per panel is assumed to be £220 [264]. 

• The cost for a typical inverter of 150 kW is £11,800, for an inverter of 50 kW is £6,680 

and for an inverter of 30 kW, the cost would be approximately around £2,925 [264]. 

• The installation costs are assumed to be 20 pence per W [265]. 

 

5 The price includes a cost per frame between £50-£115 and an extra cost to install the frames. The cost is 
illustrative, and it might not reflect actual installation costs for a specific installation. 
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• To ensure an optimum performance of the PV panels, it is recommended to make a 

basic cleaning maintenance at least one a year. The cost of the maintenance has been 

assumed to be £7 per panel [266]6. 

The results obtained for the new payback time are shown in Table 3.25. 

As shown in Table 3.25, the payback time has been reduced by 8 years for Scenario 1, 11 years 

for Scenario 2 and 10 years for Scenario 3, approximately, if compared to the estimations 

shown in Table 3.24. The rise in electricity prices incentivises the adoption of a PV system, as 

they yield substantial annual energy savings that counterbalance the initial investment in PV 

panels and inverters.   

Table 3.25 Payback time breakdown based on prices from 2023 

 PV 

system 

size 

(kW) 

PV panel 

cost 
Inverter cost Installation cost 

Annual 

maintenance cost 

Annual 

savings 

Payback 

time (Years) 

Scenario 1 200 £131,120 £18,480 £40,000 £4,172 £48,612 4.2 

Scenario 2 200 £131,120 £18,480 

£90,000 (extra cost 

due to the frame 

installation) 

£4,172 £49,488 5.3 

Scenario 3 380 £249,920 £33,205 £76,000 £7,952 £66,238 6 

Emission reductions 

This section analyses the emissions reductions for each scenario when compared to the actual 

consumption without solar energy. As it can be seen in Figure 3.27, almost 50% emission 

reductions are achievable when Scenario 3 is used. Scenario 1 and Scenario 2 reduce the actual 

emissions by 26% and 27%, respectively. The major difference in emission reductions between 

Scenario 3 compared with Scenario 1 and 2 is due to the reduction in the dependency from the 

grid and the surplus solar energy that contributes to a reduction of energy production in the 

grid. 

 

6 Approximate value calculated considering that the cleaning cost of 20 PV panels cost between £100-£150. 
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Figure 3.27. Global Warming Potential for each of the scenarios. 

Equivalent over system lifetime (20 years) to: 

• Lifetime emissions savings equivalent to 71-137 typical households in the UK7. 

• Lifetime emissions captured by 1000-1920 English oak trees8, approximately 10 km² of 

woodland in the Peak District. 

3.6.2.4 Conclusion & Recommendations 

The key points obtained from the results are as follows: 

1. Energy output: Scenario 1 reports the lowest solar energy output followed by Scenario 

2 and Scenario 3. The final output can be increased by elevating the PV panels to its 

optimum angle (Scenario 2) or by increasing the number of PV panels installed 

(Scenario 3). However, to decide what is the most appropriate PV installation, it is 

suggested to consider other parameters such as energy cost, emission reductions or 

payback time. 

 

7 Committee on Climate Change (assuming the average UK home’s carbon footprint is 7 tons CO₂) – The Fifth 
Carbon Budget 

8 Imperial College London (assuming an oak tree can absorb 500 kg CO₂) – Is planting trees the answer to 
climate change? 
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2. Dependency on the grid: The higher the solar energy generation, the lower the 

dependency on the grid. Scenario 1 reduces the energy consumption from the grid by 

30%, followed by Scenario 2 with 31%, and Scenario 3 achieving the highest energy 

consumption reduction of approximately 38%. 

3. Electricity bill: The electricity bill cost is reduced by 51% in Scenario 3 if compared to 

the cost of electricity without solar. This is driven by the increased number of PV 

panels. Although in terms of the reduction of energy dependency from the grid there is 

not a big difference between Scenario 3 and Scenario 1 and 2, the electricity bill cost 

results show a more significant difference due to the solar surplus energy sold to the 

grid. 

4. Payback time: Based on the initial 2021 results, payback time is the same for Scenario 

2 (optimum angle) and Scenario 3 (increased number of panels), 16 years. Scenario 1 

requires a lower payback time, 12.5 years. The installation cost required to elevate the 

PV panels to its optimum configuration increases the payback time. However, when the 

electricity costs are updated to 2023 prices, the benefits achieved from the increase on 

the energy annual savings minimise the incurred extra costs on installation reducing the 

payback time between 8 and 11 years. 

5. Emissions reduction: The scenario most favourable considering the reduction of 

emissions is Scenario 3, this scenario achieves a reduction of 50% in comparison to the 

actual plant. If the system lifetime is assumed to be 20 years, the emission reductions 

would be equivalent to the total amount of emissions captured by 1920 English oak 

trees, approximately and extension of 10 km² of woodland in the Peak District. 

Throughout the study, the implications, and opportunities of using solar energy at the company 

studied have been analysed. It has been demonstrated that the introduction of solar energy 

generation technology would report positive benefits in many aspects for the business. 

However, the adequacy of a specific PV panel installation has to be evaluated using different 

parameters (i.e. payback time, emission reductions or energy cost). If the limiting factor is the 

payback time, an installation similar to Scenario 1 would be recommended. However, if 

emission reductions or electricity bill savings are considered, a Scenario 3 type of installation 

would be the best choice.  

The estimates made in the report are based on standard approaches to PV generation modelling 

and may not reflect actual installation costs and savings for a specific installation.  
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3.7 Summary 

Throughout the review of existing literature, one can understand the importance of having 

accurate information on solar irradiation for horizontal surfaces. However, due to the scarcity 

of those measurements, different types of modelling have been adopted by researchers to 

estimate values of horizontal solar irradiation, specially, diffuse horizontal solar irradiation. In 

this study, the models have been divided between machine learning techniques and empirical 

solar models. The latter are extensively used in absence of horizontal solar radiation data, 

particularly horizontal diffuse solar radiation. In this chapter, three different solar empirical 

models have been developed to estimate values of horizontal diffuse solar radiation in the UK.  

A summary of different models to obtain solar irradiation on inclined surfaces from values of 

solar irradiation on horizontal surfaces have been introduced. In reality, PV solar systems are 

generally mounted on inclined surfaces and so it is important to develop a model that estimates 

values of irradiation on inclined surfaces. The estimation of the direct and reflected components 

of solar irradiation on inclined surfaces are relatively simple. The diffuse component of the 

solar irradiation on an inclined surface can be evaluated following isotropic or anisotropic 

models. In this chapter, results suggest Hay’s model as the one that better adjusts to real 

measurements for the estimation of diffuse solar radiation on inclined surfaces. 

The results obtained on energy generation from the developed solar model, have been validated 

against real values of PV solar energy generation in two different premises, a household, and a 

store. The percentage error was no higher than 10%. 

Finally, the solar model was applied in a case study to evaluate the feasibility of a PV 

installation to offset some of the current energy use within the buildings studied.  

Following the development and validation of the solar model, the next chapter focuses on 

developing an energy management model to evaluate a system formed by a PV installation and 

a battery energy storage system (BESS). Understanding how different commercial premises 

react to introducing a BESS is essential to explore the feasibility of using solar generated 

energy and energy storage for EV fleet charging. 
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4 Development of an energy management model for the evaluation of BESS 

4.1 Introduction 

There are numerous benefits to implementing a Battery Energy Storage System (BESS) and 

localised solar energy generation within a system. In Chapter 3, a model was developed and 

validated to estimate the available solar energy generation at different locations in the UK. The 

addition of a BESS can provide several benefits, it can help balance the system energy 

requirements from the grid and maximise utilisation of the energy available from renewable 

sources. These benefits were explored in Chapter 2 in the literature review covering energy 

storage systems. 

This chapter aims to evaluate the impact of introducing a BESS on the energy use of the system 

from both a technical and economic standpoint. The system considers the energy demand from 

the commercial or logistic site, the energy generation from the PV solar installation, the energy 

store by the BESS and the energy consumed from the grid. For that purpose, this chapter 

focuses on developing an energy management model capable of controlling the energy flows 

between the premises, the PV solar installation, the BESS, and the grid through an algorithm 

implemented in a MATLAB model. Different energy management approaches have been 

considered for the model and are discussed in section 4.2, giving special attention to the energy 

storage model. The outcome of an energy management model depends on the energy 

characteristics of the system under study, such as energy consumption and energy generation. 

In this regard, the model was developed and applied in two different commercial sites: a waste 

management depot (WMD) and a M&S retail store, to reflect the different outcomes obtained. 

Moreover, the selection of these two sites relies on their differences in the operational and 

technical characteristics (e.g., activity developed on the site or the energy consumption) to 

provide a broader set of results. The energy consumption data for both commercial sites was 

measured on an hourly basis over a year with data supplied by commercial partners interested 

in the project. The hourly PV solar energy generation was estimated through the solar model 

developed in Chapter 3. The results obtained from the energy management model are analysed 

at the end of this chapter, considering the technical and economic aspects, and the potential 

greenhouse gas (GHG) emissions released/saved by this approach. Part of the methodology 
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described in this chapter for the WMD has been previously published in the Energies journal 

in 20239 [175]. 

4.2  Literature review on energy management systems 

The potential benefits of integrating a BESS in a system powered by renewable generation 

depend highly on the energy management approach within the system [134]. 

Energy management has been the subject of comprehensive research by scholars for various 

objectives, including enhancing efficiency throughout the distribution network (e.g., 

minimising losses in distribution systems) [136,137], optimising cost savings by maximising 

utilisation of "green" energy sources and controllable loads, and reducing greenhouse gas 

(GHG) emissions [138,139,269–272]. 

Energy management is now more relevant than ever, as we face an energy crisis. Within this 

context, energy analyst experts suggest the best way to move forward is by accelerating the 

clean energy transition [145]. As was discussed in Chapter 2, the clean energy transition has to 

be supported by the introduction of other technologies able to manage energy 

consumption/generation without relying on the use of fossil fuel based power plants. Energy 

storage has emerged as a key technology to provide flexibility to the power systems, in 

particular battery energy storage [145].  

The use of energy management techniques for the integration of renewable energies and BESS 

has been also explored by some authors [273–275]. The management of these systems is a 

challenge due to the difficulties caused when all the components (i.e. demand load, renewable 

sources and BESS) need to be coordinated [276,277]. To optimise said systems, precise energy 

management is required to make use of the energy storage effectively and safely [278], thus 

the modelling of the BESS is one of the most important components of the energy management 

system [134].  

The energy storage models are classified and analysed differently by authors, depending on the 

application and the optimisation technique applied. Byrne et al. [278] categorised energy 

 

9 Nunez Munoz M, Ballantyne EEF, Stone DA. Assessing the Economic Impact of Introducing Localised PV Solar 
Energy Generation and Energy Storage for Fleet Electrification. Energies 2023;16:3570. 
https://doi.org/10.3390/en16083570  

https://doi.org/10.3390/en16083570
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storage models as dynamic models, energy flow models, physics-based models, and black box 

models. The energy storage is defined in the study as an asset to maintain stability in the grid 

network. Dynamic models reflect the dynamics of the battery and are used for time scales of 

milliseconds to minutes. Energy flow models are classed as the best choice when the aim is to 

perform a techno-economic assessment and operate within timeframes spanning minutes to 

hours. Such energy flow model also considers conversion efficiencies. Physics-based models 

are developed considering the physics associated with each energy storage technology (i.e., 

mechanical storage, electrochemical storage, etc.) and black box models only considers the 

inputs and outputs of the battery.  

Yang et al. [134] classify BESS models as either generic and dynamic models and identifies 

different timeframes for each. The dynamic model, as per Byrne et al. [278], considers the 

changes in the battery storage as a consequence of the dynamics of the battery, the current and 

voltage characteristics. These differences in the dynamics of the BESS are controlled by 

differential equations. On the other hand, the generic model, according to Yang et al. [134] is 

the most widely used out of the two models. Contrary to the dynamic model, it assumes that 

any voltage or current change is achievable with changes in the state of charge (SoC). The SoC 

is the level of charge of the battery relative to its capacity and it fluctuates according to the 

energy flowing in or out of the battery. This generic model is what Byrne et al. [278] 

categorised as an energy flow model and it is run in the range of minutes to hours. The process 

of charging/discharging the battery following the generic model is expressed mathematically 

as follows [134]: 

SoC(t+∆t)  = SoC(t) +
PBESS(t)

+ ∙ BESSceff ∙ ∆t

CBESS
, when charging 

Equation 4.1 

SoC(t+∆t)  = SoC(t) +
PBESS(t)

− ∙ ∆t

BESSdeff ∙ CBESS
, when discharging 

Equation 4.2 

Where CBESS is the capacity of the battery (kWh), BESSceff is the charging battery efficiency, 

BESSdeff is the discharging battery efficiency, and PBESS(t)
+ and PBESS(t)

- are the 

charging/discharging power of the BESS, respectively. Δt is the time increment. 
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The SoC is the most frequent parameter used to evaluate the energy status of the battery. 

Rosewater et al. [279] categorised battery models according to the units used to describe the 

SoC. Energy reservoir models define capacity in units of energy (kWh), charge reservoir 

models express it as unit of charge (Ah) and concentration-based models simulates the SoC 

with units of concentration (mol/L) of the active materials of the electrodes (i.e., lead-acid 

batteries). Rosewater et al. [279] defined the charging/discharging process of the battery for 

the energy reservoir model as: 

CBESS ∙
∂SoC

∂t
= BESSrteff ∙ PBESS(t)

+ + PBESS(t)
− 

Equation 4.3 

Where BESSrteff is the battery round trip efficiency and 
∂SoC

∂t
 is the rate of change of SoC. 

The energy flow model described by Byrne et al. [278], the generic model by Yang et al. [134] 

and the energy reservoir model of Rosewater et al. [279] all model the battery considering the 

charging/discharging processes as changes in the SoC, without considering the dynamics of 

the BESS. 

The same approach has been followed by authors focused on the techno-economic assessment 

of the hybrid system (combining a BESS and renewable energy generation). Moradi et al. [139] 

followed the same approach to represent the battery behaviour in a system formed by a PV 

solar installation, a wind turbine, a BESS, a diesel generator, fuel cells and a gas turbine. The 

aim of the study was to use the renewable energy (i.e. solar and wind) more efficiently and to 

reduce the energy costs and emissions. The energy storage system constraints (i.e. power output 

and SoC constraints) were set in place to ensure the correct use of the battery, and the SoC at 

time “t” was calculated following Equation 4.1 and Equation 4.2. The study showed an 

improvement in energy utilisation efficiency and cost savings when introducing a BESS in the 

system. 

Carli et al.[280] studied a system composed by a small port area, a PV installation and a BESS. 

The BESS was optimised to store energy from the PV installation and use it when needed. The 

BESS energy model considers the charging/discharging battery efficiencies in a discrete time 

model as follows: 
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𝑆𝑜𝑐(𝑡) = 𝑆𝑜𝐶(𝑡−1) + BESSceff ∙ EBESS(t)
+ −

EBESS(t)
+

BESSdeff
⁄  

Equation 4.4 

Where EBESS(t)
+ and EBESS(t)

− is the energy stored and released from the BESS, respectively. 

BESSceff is the charging battery efficiency and BESSdeff is the discharging battery efficiency. 

The authors [280] developed a model predictive control to achieve the optimum distribution 

between the demand loads from the port, the BESS, and the grid. The aim behind the algorithm 

was to maximise the use of PV solar energy and minimise the energy cost by optimally buying 

and selling the energy from/to the grid. The efficiency of this algorithm was measured based 

on the effects on total energy cost, self-supply, and energy independence. When compared with 

the output obtained when applying a naïve algorithm, results showed that the implementation 

of a model predictive control to optimise the energy flow would likely yield annual savings for 

the system to 8.2%. 

Babacan et al.[281] developed an algorithm to minimise the energy costs in four different 

scenarios, all of them including the use of energy storage. The energy storage system was 

modelled considering the fluctuation of the SoC based on the charge/discharge energy flow as 

follows: 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡=𝑡0) −∑PBESS(t) ∙

𝑠

𝑡=1

∆t 

Equation 4.5 

Where 𝑆𝑜𝐶(𝑡=𝑡0) is the initial SoC and PBESS(t) is the power. The algorithm was applied to 53 

residential premises and results successfully reported a reduction in peak net demand, power 

fluctuations and reliance on the grid.  

From a more technical point of view, Puranen et al. [282] examined the feasibility of an off-

grid residential building using PV solar energy with a BESS and hydrogen storage in Finland. 

The battery was modelled in this study considering a limited BESS capacity (i.e. CBESS) but 

unlimited charge/discharge power. The SoC is the parameter used to determine the energy flow 

in and out of the battery. The battery charging and discharging power are obtained by following 

Equation 4.6 and Equation 4.7,respectively. 
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PBESS(t) = −min {BESSceff ∙ PIN(t) ∙
(1 − SoC(t−1)) ∙ CBESS

∆t
⁄ } 

Equation 4.6 

PBESS(t) = −min {POUT(t) ∙
SoC(t−1) ∙ BESSdeff ∙ CBESS

∆t
⁄ } 

Equation 4.7 

Here, PIN(t) and POUT(t) is the power in and out of the battery, before considering the efficiency 

of the battery. The results showed the need of having a system capable of storing energy, both 

short term and seasonally due to the variations on renewable energy generation throughout the 

year. The hydrogen storage was used as a seasonal storage system and the BESS was used as 

a short-term energy storage. Based on the simulations, authors concluded that both forms of 

storage would be needed together to make the off-grid operation technically feasible in the 

residential building studied. The exclusive use of the battery would make the BESS capacity 

impractically large to meet the demand load in winter when there is limited solar energy 

generation. On the other hand, relying only on hydrogen storage would be wasteful due to its 

poor round trip efficiency and the volume required for the physical storage of hydrogen. 

The approach used by Moradi et al. [139], Carli et al. [280], Babacan et al.[281] and, Puranen 

et al. [282] to describe the behaviour of the energy storage system, has been proven to be an 

effective approach to assess the techno-economic aspects of a system formed by the energy 

storage, demand load and a renewable energy source. 

The integration of the energy storage and the distribution of the energy within the system has 

been accomplished by many authors with the help of an algorithm. Their chosen algorithm is 

a set of mathematical instructions or rules implemented in a computational programme for 

solving, in that particular case, energy management problems [273,283,284]. The diverse range 

of algorithms found in literature for the energy managament of a system is justified considering 

the different forms of energy storage used and the design criteria followed on each system 

studied [283]. 

There are technically oriented algortihms developed to serve as a tool to manage the energy 

flow of a system. The work done by Chakir et al. [274] serves as an example of this. On the 

cited study, Chakir et al. [274] developed an energy management algorithm to determine the 

energy used by each source in a grid connected PV-BESS system in a residential building. The 
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algorithm determines the energy flow according to a ranking of priorities. In the first instance, 

the priority is the consumption of instantaneous PV solar energy, secondly, the storage of PV 

energy at the BESS and finally the use of the energy from the grid (or sale of energy to the grid 

in case of excess energy). The algorithm dictates the power variations in time slots (i.e. hour 

slots), and as a result, the battery power is the average consumption per hour of charge. The 

authors highlighted the simplicity and low cost implementation of the algorithm that was 

developed and simulated using MATLAB/SIMULINK. The study by Chapaloglou et al. [285] 

could be used as another example of a more technically oriented algorithm. The authors created 

an algorithm capable of managing the energy flow to counteract the peak demand load values. 

The energy management algorithm created was a combination of a forecasting model (i.e. to 

forecast consumption values) and a power optimisation model able to provide real time control 

of the BESS. The results based on the algorithm proved the benefits an energy management 

system has on controlling BESS energy flow for peak demand shaving. 

On the other hand, authors have also developed algorithms more focused on the techno-

economic aspect of the energy system. Iliadis et al. [275] used Python and Modelica to simulate 

a system composed by diesel generators, PV solar panels and a wind turbine. The authors of 

the study accomplished a techno-economic analysis of a system where a BESS was used to 

level out the consumption from the fossil-based sources (i.e. diesel and heavy oil generators) 

thus enabling higher renewable energy penetration levels. To achieve this, the authors 

developed an algorithm designed to operate a BESS that applies a load levelling approach to 

the system. It predicts the operation of the BESS based on a daily forecast of hourly demand 

load consumption and PV-wind energy generation. Contrary to the algorithm developed by 

Chakir et al. [274] and Chapaloglou et al. [285], the algorithm proposed by Iliadis et al. [275] 

was run once a day without considering possible intra-day changes. 

Different algorithms try to optimise different qualities for the system. Flexibility and rapid 

response are the characteristics that better describe the algorithm developed by Moradi et al. 

[139]. As for the case of Iliadis et al. [275], the algorithm is developed by using day-ahead data 

although it incorporates the flexibility to better reflect intra-day and intra-hour changes. The 

algorithm is created from a set of constraints that aim to reflect the optimal distribution of 

energy in a microgrid, formed by renewable and non renewable sources, to reduce operation 

and maintenance costs, and emissions. Optimal load scheduling, efficiency energy 

consumption or emission and cost reductions were amongst others, the objectives that Wasif 
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Ali et al. [277] pursued to develop the energy management algorithm. The authors analysed 

the outcome from three different types of algorithms to determine which of them would be 

closer to the optimum solution. The algorithms where applied into a virtual power plant formed 

by a decentralised power system, power consumers and energy storage. 

Commercial buildings have extensively been used to validate the electricity cost savings from 

using energy management algorithms and optimising the consumption at the lowest electricity 

price [286]. The reduction in network costs by peak shaving were examined by Tiemann et al. 

[287] for more than 5,000 companies from diverse sectors when energy storage was used. The 

authors evaluated the payback time considering different energy storage technologies and 

different network fees. Sepúlveda-Mora et al. [288] studied the economic benefits of adopting 

energy storage based on different energy tarifs using an energy dispatch algorithm from 

HOMER. They compared three different commercial buildings to account for the differences 

in energy demand. The study concluded that when a Time of Use (TOU) tariff is in place, the 

economic benefits of introducing energy storage into the system are similar for the three 

commercial buildings analysed regardless of the energy demand. McLaren et al. [289] explored 

the economics of adopting PV solar and energy storage technology at commercial buildings 

using NREL’s Renewable Energy Optimisation modeling. They found a direct correlation 

between an increase in electricity price, an increase in PV solar energy generation on-site and 

the costs savings. The largest savings were related to the reduced energy costs, instead of 

demand costs (paid monthly based on the peak power required by the building). 

When evaluating the potential benefits that a BESS has in a commercial building, there are 

important factors that vary from site to site. The relation between the energy demand and on-

site renewable generation is important, as are the operational or technical constraints. These 

factors influence the outcome obtained when an energy management algorithm is applied at 

different sites. For the purpose of this chapter, a rule-based algorithm has been developed [290] 

to be integrated within the energy management system. Rule-based control strategy algorithms 

offer the advantage of straightforward integration [291]. Moreover, they have been successfully 

applied to systems formed by photovoltaic panels and battery energy storage systems by other 

authors [290,292,293]. 

In this chapter, two different premises are studied, a waste management depot and a M&S retail 

store to assess the potential benefits of implementing a BESS considering that these premises 

already have a PV installation on -site. 
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4.3 Methodology 

In this section, the two case studies are introduced: a waste management depot and a M&S 

retail store. The energy consumption from the buildings and the modelled PV solar energy 

generation are compared to identify the most appropriate use of a BESS. Then, for each system, 

a tailored energy management algorithm is developed. Finally, the techno-economic analysis 

is completed. 

4.3.1 Description of the buildings under study 

Waste management depot 

For the purpose of the study, a local authority waste management depot (WMD) in 

Nottinghamshire, UK, has been examined. The facility encompasses two different buildings, 

each with a floor area of 2,445 m² and 2,361 m² respectively. Currently, the company relies 

entirely on the grid to meet the energy demand of these buildings. No PV panels or a BESS are 

installed on the site, and the existing refuse collection vehicles at the depot are powered by 

conventional fuels (i.e., diesel or petrol). The local authority provided hourly energy 

consumption data for the depot from 1st of April 2021 to 31st of March 2022. The total energy 

consumption for the depot during this period was 234 MWh. 

The PV solar energy generation for both buildings has been determined using the solar model 

described in Chapter 3. The input data used as hourly solar irradiation data for this study was 

obtained through the CEDA archive. Hourly data was collected from a weather station situated 

in Walnatt (Nottinghamshire, UK) for the period between 2009 and 2019, measured in kJ/m2. 

The values of global solar irradiation were then averaged and transformed into kWh/m2 to be 

used as input to the solar model. The PV installation was assumed to consist of 946 PV panels 

on one building and 918 PV panels on the other, commensurate with the available roof size of 

the existing depot buildings. The PV panels are assumed to be tilted at the existing roof 

inclination angle, 30 degrees, and orientated towards the south-east (140 degrees) and the 

north-west (320 degrees), aligned with the existing buildings. Based on this configuration, the 

total modelled PV solar energy generation from April 2021 until end of March 2022 was 328 

MWh. Hourly modelled PV solar energy generation, and energy consumption corresponding 

to the local authority waste management buildings are plotted in Figure 4.1. 



 

Page 116 of 286 

  

Figure 4.1 Hourly energy demand (orange line) and modelled PV solar energy generation (yellow line) for the 

WMD. The positives values stand for energy consumption and the negatives indicate energy generation. 

The energy demand from the WMD increases as winter approaches and decreases during the 

summer months. The PV solar panels generate the most energy in May, June, and July. It is 

during these months when a higher portion of the solar radiation hits the surface in the UK. 

However, during the autumn and winter months the PV solar energy generation is minimal due 

to the reduced solar radiation received, as can be seen in Figure 4.2a. 

 

(a) (b) 

Figure 4.2. (a) Monthly energy consumption (orange blocks) and modelled PV solar energy generation (yellow 

blocks) for the WMD. (b) Energy balance for the WMD (The positives values stand for energy consumption and 

the negatives indicate generation). 

For the WMD, the modelled PV solar energy generation and the energy demand follow 

opposite trends throughout the year. This significantly impacts the self-consumption potential 

of the site. Self-consumption (Sc) is defined by Luthander et al. [294] as the percentage of the 

PV solar energy consumed directly (PVd) relative to the total PV solar energy generation (PVT) 

(Equation 4.8) 



 

Page 117 of 286 

Sc (%) =
PVd
PVT

 × 100 

Equation 4.8 

In the case of the WMD, the self-consumption value is 28% because most of the PV solar 

energy generated is not used instantaneously, as shown in Figure 4.2b. In order to increase the 

self-consumption of the site, a similar trend in energy consumption and solar energy generation 

would be beneficial (i.e., increase the energy consumption in summer and decrease it in winter). 

However, due to the operational characteristics of each commercial site, it is only sometimes 

an option. Alternatively, introducing a BESS could improve the site’s energy performance by 

storing a portion of the PV surplus solar energy for later use when the PV panels are not 

producing. In this regard, the benefits and impacts of introducing a BESS for the WMD are 

explored in detail in section 4.4.1 

M&S retail store 

The second case study corresponds to one of the many M&S retail stores that includes a food 

section, located in the UK. The chosen store has a floor area of approximately 12,000 m². 

Currently, the store is fully dependent on the grid to cover the energy demand with an annual 

consumption of around 1,700 MWh. M&S provided hourly energy consumption data from 1st 

of April 2021 to 31st of March 2022 for this study. 

As for the WMD introduced previously, the PV solar energy generation for the store has been 

modelled using the solar model described in Chapter 3. The input data used for the model was 

measured in kJ/m2 between 2012 and 2019 in a weather station located in London. The values 

of global solar irradiation were then averaged and transformed into kWh/m2 to be used as input 

to the solar model. 

It has been estimated that the PV installation could have 2,528 PV panels, half of them 

orientated towards the south-east (150 degrees) and the other half towards the north-west (330 

degrees), aligned to the existing building. Additionally, it is assumed that the PV panels are 

tilted to the existing roof elevation angle, 10 degrees. Based on this configuration, the total 

modelled PV solar energy generation from April 2021 until end of March 2022 was 484 MWh. 

The modelled PV solar energy generation, and the hourly energy consumption corresponding 

to the M&S retail store are plotted in Figure 4.3. 
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Figure 4.3 Hourly energy consumption and modelled PV solar energy generation for M&S retail store. The 

positives values stand for energy consumption and the negatives indicate generation. 

If comparing the energy consumption of the M&S retail store and that of the WMD, the energy 

consumption at the M&S retail store is between 6 and 10 times higher than the consumption of 

the depot. This is visible when comparing Figure 4.3 with Figure 4.1. Possible reasons for that 

could be the intensive use of refrigeration units across the shop floor, air conditioning use over 

summer season and lights within the building.  

In contrast to the depot, the energy consumption at the M&S retail store is relatively stable 

throughout the year. In most cases, the energy consumption is higher than the PV solar energy 

generated, as shown in Figure 4.4a. 

 

(a) (b) 

Figure 4.4 (a) Monthly consumption and modelled PV solar energy generation for the M&S retail store. (b) 

Energy balance for the M&S retail store. The positives values stand for energy consumption and the negatives 

indicate generation. 
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Only during a few hours from April to August, the PV solar energy generation surpasses the 

store consumption, as can be seen in Figure 4.4b and in detail in Figure 4.5 using May as 

example. 

Following Equation 4.8, the self-consumption value for the M&S retail store is 97%. In that 

case, most of the PV solar energy generated is instantly used by the store.  

 

Figure 4.5 Hourly consumption and modelled PV solar energy generation for M&S retail store in May. 

The optimum use of the BESS for the premises described above is dependent on the 

relationship between consumption and generation. For the WMD, there is significantly more 

PV solar energy available to be stored than for the M&S retail store. This enables the 

integration of the BESS at the WMD to maximise the use of PV solar energy and reduce the 

dependency on the grid and electricity cost. In contrast, the M&S retail store is more likely to 

use the PV solar energy instantaneously without the need of a BESS. The use of the BESS at 

this store to increase the PV solar energy consumption is only justified for a handful of days in 

the year. Considering these differences between both sites, the BESS would have to be used 

very differently at each location. In the next section, the BESS model and the energy 

management algorithms are explained. 
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4.3.2 Energy management algorithm 

Waste management depot 

The main objective when developing the energy management algorithm for this location was 

to prioritise the use of PV solar energy whenever possible. As has been introduced previously, 

each location studied shows differences in terms of consumption and PV solar energy 

generation that determine some aspects of the required energy management. 

The energy management algorithm developed for the WMD considers the connections between 

the system formed by the PV installation, the proposed BESS, the depot, and the grid. The goal 

is to maximise the use of the PV solar energy and reduce the depot dependency on the grid. 

This will, at the same time, contribute to reducing the electricity cost and the environmental 

impact. For this purpose, the proposed energy flow diagram for the WMD is presented in Figure 

4.6. The depot is assumed to be equipped with rooftop PV panels and a BESS (with a round-

trip efficiency of 90% [146]). The depot’s and the eRCV fleet energy demand are firstly 

supplied by solar energy followed by energy stored in the BESS, and lastly by the grid if 

needed. If, at any time, there is surplus solar energy after fulfilling the total energy demand, 

the excess is stored in the BESS for later use. 

 

Figure 4.6 Energy flow diagram proposed for the Waste Management Depot. 

For the development of the algorithm, some constraints have been considered.  

➢ The BESS is restricted to not being charged and discharged during the same hourly 

time step (t) and it will only operate within a pre-set state of charge (SoC(t)) range that 

is assumed to be 20% (SoCmin) and 90% (SoCmax) of the total battery capacity 



 

Page 121 of 286 

(Equation 4.9). These SoC limits were selected as reasonable values for typical battery 

system operations without being specific to any particular equipment [279]. 

SoCmin ≤ SoC(t) ≤ SoCmax 

Equation 4.9 

➢ The battery has a constraint for charging and discharging, limiting the maximum 

charging power to 2CBESS, where CBESS is the capacity of the battery (Equation 4.10). 

This limitation aligns with the recommendations provided in various Lithium-based 

cell datasheets to prevent rapid cell degradation. As such, it is only advisable to operate 

up to 2CBESS. Self-discharge of the battery is assumed to be negligible. 

BESS max. power[kW] = 2 ∙ CBESS  

Equation 4.10 

➢ The BESS is modelled using an energy flow model according to Byrne et al. [278]. The 

BESS is modelled assuming that any voltage or current change is achievable with 

changes in SoC [134,278,279] following Equation 4.11 [279]. 

CBESS ∙
∂SoC

∂t⁄ = BESSrteff ∙ PBESS(t)
+ + PBESS(t)

− 

Equation 4.11 

➢ The algorithm is run 8,784 times as this corresponds to the total number of hours per 

year. When the algorithm ends at time step 8784, the BESS energy balance must be 0. 

The energy balance is calculated following Equation 4.12. Where “Total energy in” 

and “Total energy out” is the sum of hourly values of energy coming in and out of the 

BESS for the whole year (i.e., from t=1 to t=8784), respectively. “Energy(t=0)” refers 

to the energy store at the BESS at t=0 (i.e., SoCmin) and “Energy(t=8784)” is the energy 

store at the BESS at t=8784. 

BESS energy balance (kWh)

= (Total energy in − Total energy out) − (Energy(t=0)

− Energy(t=8784)) 

Equation 4.12 
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➢ The amount of power available (Power(t)) from the grid is the maximum power 

connection capacity (Powermax.capacity) (Equation 4.13).  

Power(t) = Powermax.capacity 

Equation 4.13 

The algorithm used for charging and discharging the BESS is introduced in this section and is 

shown in Figure 4.7. 

The charging process only takes place when the PV generation (PVgen) is higher than the WMD 

energy demand (Depotdemand). The PV surplus solar energy (PVsurplus) stored at the BESS in 

any given time interval will depend on the available capacity in the battery to store energy 

(BESSavailable) in the previous interval. (Figure 4.8). 
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Figure 4.7. Proposed energy management algorithm for the BESS charging/discharging process at WMD. 
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Figure 4.8. Diagram of the BESS when is charged. 

When the algorithm is initialised at t=t0, the SoC of the bank of batteries is at its minimum 

(SoCmin) thus the portion of the BESS capacity (CBESS) that has been used (BESSused)t=t0 

corresponds to the 20% of the CBESS. At t=t1, the available capacity at the BESS 

(BESSavailable)(t=t1) corresponds to the difference between the maximum percentage of the 

BESS capacity that can be used (BESSmax.cap) (i.e. at SoCmax) and the portion of the BESS 

capacity that is used (BESSused) at t=t1 following Equation 4.14. 

(BESSavailable)t=t1 = BESSmax.cap − (BESSused)t=t1 

Equation 4.14 

At=t1, the BESS capacity that has been used ((BESSused)t=t0) can be calculated as in Equation 

4.15: 

(BESSused)t=t1 = (BESSused)t=t0 + ((BESSin)t=t1 ∙  BESSrteff) 

Equation 4.15 

Where BESSrteff is the round trip battery efficiency and (BESSin)(t=t1) is the amount of energy 

store at the corresponding time step (i.e., t=t1). The algorithm considers the SoC of the BESS 

for the previous time period (t=t0), i.e. (BESSused)t=t0, as a base for the energy that is stored 

at t=t1 (i.e. ((BESSin)t=t1). 

On the other hand, the battery is discharged when there is not enough PV solar energy to meet 

the energy demand of the depot, as it is shown in Figure 4.7. 
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The energy discharged from the battery (BESSout (t=t2)), will depend on the available energy 

stored at the battery from the previous time period, (BESSused) t=t1, as it can be seen in Figure 

4.9. 

 

Figure 4.9. Diagram of the BESS when is discharged. 

When the BESS is discharged up to the minimum SoC in t=t2, the BESS can’t be further 

discharged at t=t3 (Figure 4.10). So, at t=t3 if the energy demand has not been covered by the 

instantaneous PV solar energy, the grid is required to support the energy demand from the 

depot. 

 

Figure 4.10. Diagram of the BESS when is neither charged nor discharged. 

BESS is not used

BESSused(t = t3)

t = t2 t = t3

BESSavailable(t = t3)

SoC: 20%BESSused(t = t2)

BESSavailable(t = t2)

SoC: 20% BESSused(t = t2)
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M&S retail store 

As shown in the previous section (section 4.3.1), at the M&S retail store, the installation of a 

BESS won’t significantly increase the use of PV solar energy. According to data shown in 

Figure 4.4b, most of the PV solar energy generated would be used directly by the store. 

Taking this into consideration, the main objective of the energy management algorithm is to 

minimise the costs from the electricity bought from the grid, and this is achieved following an 

arbitrage strategy. The energy management algorithm developed for the M&S retail store 

connects the system formed by the PV solar installation, the BESS, and the store with the grid 

as shown in Figure 4.11. The only difference with the algorithm developed for the WMD is 

that the grid is also connected to the BESS. This allows the system to take advantage of 

electricity price differences throughout the day. 

 

Figure 4.11. Energy flow diagram proposed for the M&S retail store. 

For this purpose, a threshold price is used so the BESS is charged from the grid when electricity 

prices are below the threshold and discharged when the prices are above the threshold. 

According to Byrne et al. [278], the ratio between high prices (HPRICE) and low prices (LPRICE) 

for arbitrage to be profitable, would be related to the round trip efficiency as in Equation 4.16: 

HPRICE
LPRICE

≥
1

BESSrteff
 

Equation 4.16 

A further priority is to maximise the performance of the PV solar installation. Thus, the energy 

demand is first covered with PV solar energy, and surplus solar energy is stored in the BESS 

if available. 
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For the development of the algorithm, the BESS constraints used correspond to the same 

constraints introduced for the WMD (see Equation 4.9 to Equation 4.13). SoCmin and SoCmax 

are assumed to be 20% and 90% of the total battery capacity, respectively. BESSrteff is 90%.  

The algorithm used for the BESS charging/discharging process at the M&S retail store can be 

seen in Figure 4.12.  

When there is surplus solar energy, the BESS can be charged not only from the PV panels but 

also from the grid as long as the electricity price stays below the threshold price and the power 

constraint is not surpassed (Figure 4.12). When the energy demand can’t be entirely covered 

by the solar energy, the same rule applies. The BESS can be charged from the grid, once the 

energy demand has been met, if the electricity price is below the threshold price and the power 

constraint is not surpassed.  

As opposed to the algorithm created for the WMD, the BESS is not always discharged when 

the energy demand can’t be met by the solar energy. For the BESS to be discharged, the 

electricity price must be higher than the threshold price. Otherwise, the demand is covered with 

solar energy and with energy from the grid. 

In the following section, the electricity prices assumed for the WMD are introduced. In the case 

of the M&S store, the electricity price was provided by the company at the time of the study 

and is also discussed. 
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Figure 4.12. Proposed energy management algorithm for the BESS charging process at the M&S retail store. 
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4.3.3 Electricity price profile 

Waste management depot 

The electricity price paid at the WMD had to be assumed, considering the available data from 

the UK government. 

Since 2021, there has been a significant surge in electricity prices, and over the last year 

(2022/23), global gas and wholesale electricity prices have quadrupled. To estimate the cost of 

electricity for the WMD, the average electricity price in the non-domestic sector published by 

BEIS [295] has been considered. BEIS provides average quarterly and annual electricity prices 

based on surveys conducted for energy suppliers and non-domestic consumers. The depot 

under study falls into the small consumption band, according to BEIS classification. This 

band's electricity price escalated by 63% to 25p/kWh between Q3 2021 and Q3 2022. 

Forecasts indicate a persistent price escalation during the winter period. Unfortunately, the 

available data for the non-domestic sector has not been updated since Q3 2022, just before the 

implementation of the Ofgem price cap (1st October -31st December 2022). Since then, the 

Ofgem price cap has been updated twice. Thus, the change for electricity prices for non-

domestic consumers has been extrapolated from the percentage change corresponding to each 

Ofgem price cap. The latest report on domestic energy prices indicates an 80% escalation in 

the price cap from April 2022 to October 2022 [296] followed by a 20% uptick from October 

2022 to January 2023 [297]. 

Figure 4.13 displays the electricity pricing dynamics within the small consumption band of the 

non-domestic sector. The figure includes publicly disclosed prices (in purple) and projected 

estimates (in orange). For Q4 2022, the electricity rate of 37.80 p/kWh was considered to 

experience an 80% surge compared to Q2 2022 (21.04 p/kWh). In Q1 2023 a further 20% 

increase was applied to estimate the electricity price (i.e. 45.40 p/kWh). 
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Figure 4.13. “Assumed electricity price for small non-domestic sector from October 2022. The arrows represent 

the percentage increase between Q2 2022 and Q4 2022 (i.e., 80%) and between Q4 2022  and Q1 2023 (i.e., 

20%)” (Figure obtained from [175]). 

Considering the price volatility and continuous increases, the study has adopted the average 

price assumed for Q1 2023 which is 45.4 p/kWh. 

The WMD operates with a variable tariff contract, so the electricity price fluctuates hourly. In 

order to create a price profile throughout a typical day based on the average price assumed (i.e. 

45.4 p/kWh), the study has simulated the shape of the price profile, using wholesale electricity 

prices from the Nord Pool website for the UK [298]. Nord Pool is in the EU Regulation on 

Wholesale Energy Market Integrity and Transparency framework for power trading across 

Europe. 

As an example, Figure 4.14 shows the electricity prices assumed for the WMD for one day of 

the year. There are two peak times when the electricity cost is at its highest value (between 

6am and 10am, and 4pm-8pm). 

 

Figure 4.14. “Simulated electricity prices for one day of the year (from 00:00h to 23:00h) for WMD” (Figure 

obtained from [175]). 
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M&S retail store 

The electricity tariff at the M&S retail store was provided and it is based in two consumption 

bands (i.e., economy 7 tariff). These types of tariffs are characterised for offering lower 

electricity prices at off-peak times and higher prices at peak times. The electricity tariffs are as 

follows: 

• Day band: Corresponds to the band from 08:00h to 23:00h in which the electricity price 

is at 10.76 p/kWh. 

• Night band: It represents the time of the day when the electricity price is set at 

7.15p/kWh (i.e. between 00:00h and 07:00h). 

A representative price profile is shown in Figure 4.15. 

 

Figure 4.15. “Provided electricity prices for one day of the year (from 00:00h to 23:00h) for M&S retail store.” 

4.3.4 System cost analysis 

The economic analysis for the two different sites has been quantified considering the costs of 

energy from the grid (Ec), network costs (Nc), cost of the BESS (BESSc), cost of the PV 

installation (PVc) and the revenue obtained from the sale of surplus solar energy (Revc) 

following Equation 4.17. 

Total costs over system lifetime =  Ec + Nc + BESSc + PVc − Revc 

Equation 4.17 
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A detailed description of each cost from Equation 4.17, is introduced next. 

Cost of energy (Ec): 

The cost of energy refers to the cost of electricity purchased from the grid and is calculated 

following Equation 4.18. 

Cost of energy = Electricity price (
p

kWh
) ∙ Energy consumption (kWh) 

Equation 4.18 

Network charges (Nc): 

The network cost components include the contracted power connection capacity costs and the 

cost for utilising the network distribution system that is charged by the energy supplier. The 

total network cost (Nc) is the sum of the capacity cost (Cc), exceeded capacity cost (ExCc), 

fixed cost (Fc) and consumption band cost (Consmpc) (Equation 4.19) 

Nc = Cc + ExCc + Fc + Consmpc 

Equation 4.19 

Capacity cost (Cc) pertains to the contracted power connection capacity. If the power 

connection capacity is exceeded, additional costs will be incurred (i.e., exceeded capacity 

costs). Meanwhile, the consumption band cost (Consmpc) represents the fee for network 

utilisation during specific periods throughout the day, segmented into three distinct bands:  

• The amber band rate is charged between 07:00h-16:00h and 19:00h-21:00. 

• The red band rate spans from 16:00h to 19:00h. 

• The green band rate is from 00:00h to 07:00h and from 21:00h to 24:00h. 

For the Waste management depot (WMD), the network charges were selected based on the 

price from Western Power Distribution Network in the UK for a LV Site-Specific Band 1 

[299]. The network charges can be seen in Table 4.1. 
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Table 4.1. “Network charges for the WMD” (Table obtained from [175]). 

Network charges Price Unit of measure 

Capacity charge 2.91 p/kVA/day 

Exceeded capacity charge 5.73 p/kVA/day 

Fixed charge 297 p/day 

Consumption band:   

Amber charge 0.737 

p/kWh Red charge 4.301 

Green charge 0.054 

On the other hand, the network charges for the M&S retail store have been provided by the 

company and can be seen in Table 4.2. 

Table 4.2. M&S retail store network charges. 

Network charges Price Unit of measure 

Capacity charge 4.44 p/kVA/day 

Exceeded capacity charge 5.73 p/kVA/day 

Fixed charge 4,718 p/day 

Consumption band:   

Amber charge 0.202 

p/kWh Red charge 4.922 

Green charge 0.026 

The capacity cost is calculated in Equation 4.20. 

Cc(£/year) =

Powercapacity(kW)

PF (
kW
kVA

)
∙
Capacity charge

p
kVA

day
∙ 365 days

100 p/£
 

Equation 4.20 

PF is the power factor. Considering the active and reactive power of the electrical devices of 

both sites analysed, a PF of 0.9 has been selected. 

The total exceeded capacity cost (ExCc) is calculated as the sum of the excess power capacity 

multiplied by the exceeded capacity charge each day following Equation 4.21. 
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ExCc(£/year) =∑

(

 
 
 
 (
Excess powercapacity(kW)

PF (
kW
kVA

)
)

i

∙
Exceeded capacity charge

p
kVA

day

100
p
£

)

 
 
 
 

n

i=1

 

Equation 4.21 

The fixed costs (Fc) per year are obtained applying Equation 4.22. 

Fc (
£

year
) =

Fixed charge (
p
day

)

100
p
£

∙ 365 days 

Equation 4.22 

Ultimately, consumption band costs (Consmpc) are estimated by calculating the energy 

consumption at each band time multiplied by the corresponding band charge as expressed in 

Equation 4.23: 

Consmpc (
£

year
) =  

Energy consumption (kWh) ∙ consumption band charge (
p
kWh

)

100
p
£

 

Equation 4.23 

Cost of BESS (BESSc): 

For the cost of the BESS, a capital cost of £245/kWh [300] and £2.5/kWh-year in Operation 

and Maintenance (O&M) costs [301] have been used. The BESS capital costs are obtained 

using Equation 4.24 

BESSCc(£) =  CBESS (MWh) ∙
1,000 kWh

1 MWh
∙ 254

£

kWh
 

Equation 4.24 

The O&M cost of the BESS has been calculated in Equation 4.25. 

BESSOMc(£) =  CBESS (MWh) ∙
1,000 kWh

1 MWh
∙ 2.5

£

kWh per year
∙ BESS lifetime (years) 

Equation 4.25 
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BESS lifetime has been assumed to be 15 years [300,301]. In Table 4.3, the total cost of the 

BESS (BESSc) has been calculated for each BESS capacity (CBESS) as the addition of BESSCc 

and BESSOMc. 

Table 4.3. “Total cost of BESS for a lifetime of 15 years” (Table obtained from [175]). 

BESS capacity 

(MWh) 

Capital cost  

(£) 

O&M cost 

(£) 
Total cost (£) in 15 years 

0.05 12,700 1,875 14,575 

0.1 25,400 3,750 29,150 

0.5 127,000 18,750 145,750 

1 254,000 37,500 291,500 

5 1,270,000 187,500 1,457,500 

10 2,540,000 375,000 2,915,000 

Cost of PV panels (PVc): 

The capital cost assumed for the PV system is £1.25/WDC and the O&M cost is £17.92 / kWp-

year [302]. The capital and O&M costs consider the costs associated with the inverter [302]. 

The PV panel capital costs are obtained using Equation 4.26. 

PVCc(£) =  Number of PV panels ∙ PV panel power output (W) ∙ 1.25
£

WDC
 

Equation 4.26 

The O&M cost of the PV installation has been calculated in Equation 4.27. 

PVOMc(£) =  Number of PV panels ∙ PV panel power output (W) ∙
1kW

1,000 W

∙ 17.92
£

kWp per year
∙ PV lifetime (years) 

Equation 4.27 

Table 4.4 and Table 4.5 show the total cost for the PV installation with a lifetime of 15 years, 

as the addition of PVCc and PVOMc, for the WMD and for the M&S retail store, respectively. 
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Table 4.4. “Total cost of PV installation for a lifetime of 15 years for the WMD” (Table obtained from [175]). 

Number of PV panels 
installed in the depots 

PV panel power 
output, STC 

(W) 

PV system 
size (MW) 

Capital 
cost (£) 

O&M 
costs 
(£) 

Total cost 
(£) in 15 

years 

1,864 270 0.5 629,100 135,282 764,382 

 

Table 4.5. Total cost of PV installation for a lifetime of 15 years for the M&S retail store 

Number of PV panels 
installed in the depots 

PV panel power 
output, STC 

(W) 

PV system 
size (MW) 

Capital 
cost (£) 

O&M 
costs 
(£) 

Total cost 
(£) in 15 

years 

2,528 270 0.68 853,000 183,472 1,036,672 

Revenue from the sale of PV surplus solar energy (Revc):  

For both sites, it is assumed that the PV surplus solar energy is sold back to the grid, and it 

generates an annual revenue that is considered in the calculations of total costs (Equation 4.28). 

In the UK, the revenue from the sale of surplus solar energy is regulated by the Smart Export 

Guarantee scheme [261]. However, there is not a unique rate and rates vary amongst the 

different electricity suppliers and the type of tariffs. For a fixed tariff, a typical price is between 

3 to 7 pence per kWh [303,304]. Variable tariffs can offer prices up to 15 pence per kWh [305]. 

According to the differences in rates, a sale price of 5 pence per kWh has been used for this 

study. 

Revc(£/year) =
Sale price (

p
kWh

) ∙ surplus solar energy(kWh)

100 p/£
 

Equation 4.28 

4.3.5 Greenhouse gas (GHG) emissions analysis 

The estimated annual GHG emissions have been calculated to analyse the impact that 

introducing a PV installation and a BESS has on both sites. The GHG emissions have been 

calculated following this equation: 

GHG emissions (tons CO2eq. ) = Energy (kWh) ∙ ECF(
kg CO2eq.

kWh
) ∙ 10−6(

tons

kg
)  

Equation 4.29 
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Where ECF stands for Emission Conversion Factor. The emission conversion factors used in 

this study are shown in Table 4.6. The emission conversion factor for electricity generated from 

the grid have been obtained from the UK Government GHG Conversion Factors for Company 

Reporting [306]. The conversion factor for emissions resulting from the consumption of PV 

solar energy have been obtained from Gabi database [73]. The PV emission factor is based on 

the global average of photovoltaic technologies installed: Mono-Silicon 42 %, Multi-Silicon 

47 %, Cadmium-Telluride (CdTe) 7 % and Copper-Indium-Gallium-Diselenide 4 %. 

Table 4.6 Emission conversion factor for the energy consumed at the WMD. 

 Emission conversion factor 
(kg CO₂ eq. per kWh) 

Electricity generated from photovoltaic 0.0686 

Electricity generated from grid mix 0.19338 

The GHG emissions related to the surplus solar energy sold to the grid are calculated 

considering not only the impact generated from the PV solar energy but also the saved 

emissions that would be generated if that energy would come from the grid mix. The equation 

used to express the impact from the surplus solar energy is Equation 4.30. 

𝐺HG emissions (tons CO2eq. )

= (PV surplus energy(kWh) ∙ 0.0686 (
kg CO2eq.

kWh
) ∙ 10−6 (

tons

kg
))

− (PV surplus energy(kWh) ∙ 0.19338 (
kg CO2eq.

kWh
) ∙ 10−6 (

tons

kg
)) 

Equation 4.30 

4.4 Results: Evaluation of grid reliance, total cost and GHG emissions using BESS 

4.4.1 Waste management depot 

Section 4.3.1 introduced the hypothetical PV installation at the WMD and the self-consumption 

percentage. Figure 4.16 shows the hourly energy flow corresponding to the WMD, assuming 

that PV panels were installed but not a BESS. A week in February (Figure 4.16a) and a week 

in July (Figure 4.16b) have been plotted as an example. Each vertical line in Figure 4.16 marks 

the hour 24:00h, the beginning of a new day. 
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The WMD is reliant on the energy from the grid all year round. During winter, the dependency 

on the grid expands for longer hours than in summer, due to the lower solar energy generation. 

If a BESS were installed, the PV surplus solar energy could be used to reduce the dependency 

from the grid still further, predominantly at night. The impacts of adding a BESS to the system 

are explored next for the WMD. The energy management algorithm is applied assuming a range 

of batteries with different capacities. 

 

Figure 4.16. Simulation results for a week in (a) February and (b) July for the energy flow in the WMD 

assuming a BESS is not installed. 

Impact of the BESS capacity (CBESS) 

A simulation is carried out by applying the energy management algorithm to the WMD. The 

results can be seen in Figure 4.17 for a BESS with a capacity (i.e. CBESS) of 0.5 MWh. Figure 

4.17a shows how energy flows hourly within the system in a week in February  as a 

representation of the system’s energy flow during winter months (each vertical line of Figure 

4.17 marks the beginning of another day). Solar energy is used to cover the WMD’s energy 
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demand whenever possible. During winter, the system is dependent on the grid due to 

insufficient PV solar energy generation.  

On the other hand, Figure 4.17b shows a week during July as a representative example of how 

energy is distributed during summer. Figure 4.17b can be compared with  

b when no BESS was implemented. At this time of the year, the system is independent of the 

grid during the day when the BESS is in place. The energy demand is covered entirely by 

instantaneous PV solar energy during the day and stored PV solar energy being used at night. 

 
Figure 4.17. Simulation results when the energy management algorithm is applied in a week in (a) February and 

(b) July using a BESS with CBESS of 0.5 MWh for the WMD. It includes the State of Charge (SoC), modelled 

PV solar energy generation, energy demand from the WMD and energy purchased from the grid. 
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(a) 

 

 

(b) 

Figure 4.18. “Top graph (a): Hourly energy consumption from the grid assuming there is not a PV nor a BESS 

in place. Bottom graph (b): Hourly energy consumption from the grid assuming there PV panels and a BESS of 

0.5 MWh installed at the WMD” (Figure obtained from [175]). 

The impact of introducing a BESS can be seen for a day in February in Figure 4.18. Figure 

4.18a shows the hourly energy distribution assuming the BESS is not installed. On the other 

hand, Figure 4.18b, shows results for the same day with a BESS of 0.5 MWh. The shaded 

colour area represents the consumption time bands at which the energy is purchased from the 
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grid. During this day, the WMD energy demand is relatively lower, and a higher surplus solar 

energy can be stored at the BESS. The stored energy is discharged from the BESS when no 

solar energy is available to meet the WMD energy demand, allowing the system to be 

independent from the grid for a longer period of time if compared to the same day when the 

BESS is not in place. 

Figure 4.19 shows monthly results from the energy management algorithm at different battery 

capacities (i.e. CBESS). The positive values on each graph represent the energy consumption 

from the grid, from solar and from the BESS. The negative values indicate solar energy 

generation and charging of the BESS. The energy consumption at the WMD is covered from 

the grid (i.e. Purchased from grid), directly from the solar panels (i.e. Consumed from PV) or 

from the surplus solar energy stored at the BESS (i.e. From BESS). The fraction of solar energy 

that is not directly consumed,  is stored at the BESS (i.e. To BESS) or sold to the grid as surplus 

solar energy (i.e. PV solar surplus). When the BESS with capacities equal or higher than 0.5 

MWh is in place, the grid is not used for over 5 months to cover the energy demand. 

As shown in Figure 4.19, the larger the BESS capacity, the more surplus solar energy can be 

stored after the WMD energy demand has been met. It is important to consider that the energy 

in and out of the BESS is balanced yearly, and not monthly. For that reason, for capacities 

higher than 0.1 MWh, in March and April the monthly energy charged into the BESS is higher 

than the energy discharged from the BESS. In contrast, from September to November, the 

monthly energy charged into the BESS is lower than the energy discharged from the BESS. 

This can be explained because from March, the monthly solar energy generation is higher than 

the monthly WMD energy demand (see Figure 4.2a). Therefore, the BESS is used to store the 

surplus solar energy and the overall energy discharged from the BESS is lower than the energy 

stored over the month. When the solar energy generation starts to decrease in October (see 

Figure 4.2a), the surplus energy stored in the BESS is lower than the overall monthly 

requirements on the BESS. 
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Figure 4.19. Monthly energy distribution at the WMD at different CBESS. The positives values on each graph 

represent the energy consumption from the grid, from solar and from the BESS. The negative values indicate 

solar energy generation and charging of the BESS. 

The energy flow within the BESS can be seen for different battery capacities (CBESS) on Figure 

4.20. For a BESS with a relatively small capacity of 0.05 MWh and 0.1 MWh, the battery can 

be fully charged in the morning and discharged in the afternoon every day, from spring until 
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autumn. In the evening, the system relies on the energy from the grid. In winter, because there 

is less solar energy available to be stored, the BESS completes only a few cycles. 

 

Figure 4.20. A comparison of the hourly energy flow at the BESS at CBESS of 0.05MWh, 0.5 MWh and 

5MWh. It includes the State of Charge (SoC), modelled PV solar energy generation, energy demand from the 

WMD and energy purchased from the grid. 

This trend changes for BESS with capacities from 0.5 MWh and 1 MWh. The BESS can store 

more surplus solar energy such that (i.e., summer months) the energy stored at the BESS is 
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higher than the energy demand from the WMD. Thus, the BESS is only partly discharged 

during this time. 

The same tendency expands from spring to autumn for battery capacities equal to 5 MWh and 

10 MWh. During this period, the BESS is almost fully charged all the time. It never completes 

a full charge/discharge cycle. The number of cycles in the BESS impacts directly its 

degradation, and the performance of the BESS. The higher the number of cycles in a BESS, 

the lower the system’s lifetime. Battery degradation [307,308] has an important relevance to 

the total cost of the system and although it has not been considered as part of the economic 

analysis for this study, it should be considered as part of future research. 

The percentage of energy demand covered by the grid at different battery capacities can be 

seen in Figure 4.21 through a purple line. A detailed breakdown is also shown in a pie chart 

for two BESS analysed before, 0.05 MWh and 0.5 MWh. The dark purple section of the pie 

chart represents the portion of the energy demand covered by the grid. The yellow section refers 

to the portion of the energy demand covered by instantaneous solar energy. The green section 

refers to the fraction of the energy demand covered by the BESS. 

 

Figure 4.21. Breakdown of energy used at different CBESS for the WMD, either covered by PV solar energy, 

from the BESS or from the grid. 
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The bigger the BESS, the lower the percentage of energy purchased from the grid due to the 

use of PV surplus solar energy stored at the BESS. The highest percentage reduction of energy 

purchased from the grid is achieved by a BESS with a capacity of 10 MWh. 

The system has been tested to estimate the lifetime cost at different BESS capacities. The 

results are depicted in Figure 4.22. Additionally, for analysis purposes, Figure 4.22 includes 

the outcomes obtained when there is no BESS nor PV panels in place (i.e. NO BESS). 

According to the results, a larger BESS capacity leads to a reduced energy cost. Introducing a 

BESS and PV panels would be justifiable to achieve cost reduction and decrease dependency 

on the grid. 

However, when the cost of BESS, cost of PV panels, and network cost are included, some 

battery capacities cease being feasible for annual electricity cost reduction. As it can be seen 

in Figure 4.22, the potential reduction in electricity cost when using a BESS with capacities of 

5 MWh to 10MWh is eclipsed by the costs of the BESS.  

The BESS that achieved the highest reduction in total costs over the system lifetime 

corresponds to that of 0.5 MWh capacity. The total cost reduction when this BESS is used 

compared to the base case scenario (i.e. when BESS and PV panels are not installed) is 

£340,000.  

 

Figure 4.22. Total cost over system lifetime at different CBESS for WMD. 
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The system costs are itemised at different battery capacities (CBESS) and can be seen in detail 

in Table 4.7. 

Table 4.7. System cost at different battery capacities for the WMD. The values in £ are included in Appendix A. 

Power 
connection 

capacity 
(MW) 

BESS 
capacity 
(MWh) 

Cost of 
energy 

per 
year 
(k£) 

Surplus 
solar 

energy 
revenue 
per year 

(k£) 

BESS 
capital 

cost (k£) 

BESS 
O&M 
cost 
(k£) 

PV 
capital 

cost 
(k£) 

PV 
O&M 
cost 
(k£) 

Network 

cost per 

year (k£) 

Total 
cost 
over 

system 
lifetime 
(mil£) 

0.15 

NO 
BESS 

112.4 0 0 0 0 0 5.2 1.76 

0.05 59.3 11.1 12.7 1.9 

629.1 135.3 

3.9 1.56 

0.1 54.5 10.6 25.4 3.8 3.8 1.51 

0.5 38.5 8.4 127.0 18.8 3.7 1.42 

1 37.6 8.3 254.0 37.5 3.7 1.55 

5 36.2 8.1 1,270.0 187.5 3.7 2.70 

10 34.5 7.9 2,540.0 375.5 3.6 4.13 

For batteries with higher capacities (i.e. 5 MWh and 10 MWh), 54% and 70% of the total cost 

over system lifetime comes from the cost of the BESS. This includes the BESS capital cost and 

operating and maintenance (O&M) costs. The cost of the PV panels includes the PV panels 

capital costs and O&M cost, which especially for lower batteries represents between 48% and 

53% of total costs over the system lifetime. The cost of energy storage technology has been 

decreasing over the last decade [309,310] and according to Cole et al. [300] cost projections 

indicate a further potential reduction in capital cost by 2030. On the other hand, the UK 

Government [311] expects reductions in levelised cost of energy (LCOE) for PV solar systems 

between 2025 (£44/MWh) and 2040 (£33/MWh). The cost reduction in both technologies is 

associated with an improvement in energy efficiency and it would be essential to reduce further 

the total costs of the system. Present costs have been used for this study and further research 

should be undertaken to investigate future cost scenarios. This work is beyond the scope of this 

project and will be considered as future work. 

The network costs are presented in Table 4.7 as the addition of capacity charge, fixed charge, 

and consumption charge at each battery capacity. Network costs are reduced when the BESS 

is in place. As the BESS capacity increases, the network costs can be lowered. This reduction 

in network cost is linked to the consumption cost at different time bands and is presented in 

Table 4.8.  

There are different time bands: amber, red, and green. The costliest time band is red and 

encompasses the times between 16:00h to 19:00h. The amber band covers the times from 
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07:00h-16:00h and 19:00h-21:00. The green band is the cheapest and it spans from 00:00h to 

07:00h. 

Table 4.8 Network costs itemised at different battery capacities for the WMD. The values in £ are included in 

Appendix A. 

Power 

connection 

capacity 

(MW) 

BESS 

capacity 

(MWh) 

Capacity 

charge 

per year 

(k£) 

Excess 

capacity 

charge per 

year (£) 

Fixed 

charge per 

year (k£) 

Consumption charge per year 

(£) 

Total 

Network 

cost per 

year 

(k£) 
     Red Amber Green  

0.15 

NO 
BESS 

1.8 0 1.1 

1463 872 44 5.2 

0.05 803 265 40 3.9 

0.1 655 240 39 3.8 

0.5 579 211 20 3.7 

1 579 208 19 3.7 

5 574 202 18 3.6 

10 545 195 17 3.6 

As illustrated in Figure 4.23, introducing a BESS has the largest cost saving potential at higher 

BESS capacities, particularly for reducing the consumption costs during red and amber 

consumption bands. These two bands are in place between 07:00h and 21:00h. During these 

times, PV solar energy is generated. A fraction of the solar energy is instantaneously used, 

otherwise it is stored at the BESS for later use. Outside these times, when solar energy is not 

generated, the energy stored in the BESS reduces the energy required from the grid and 

therefore, the consumption costs. The larger the BESS, the greater the surplus solar energy 

stored and the lower the consumption from the grid at those hours. For smaller battery 

capacities (i.e. 0.05 MWh and 0.1 MWh) the BESS is discharging for a maximum of three 

hours whereas if the capacity is equal or higher than 0.5 MWh the BESS is discharging for a 

longer period of time. 

The consumption costs over the green band don’t change significantly when the BESS is in 

place. The green band takes place between 21:00h and 07:00h. The consumption costs can be 

reduced during these times if a BESS is used, with enough capacity to not be discharged before 

21:00h. This is the case for BESS with 0.5 MWh to 10 MWh capacity. 
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Figure 4.23. Network consumption cost for red, amber, and green bands at different CBESS. 

One of the advantages of introducing a BESS in a system is that the power connection capacity 

on the site could be lowered without incurring in extra costs due to the excess capacity charges. 

For the WMD, the peak energy demand takes places somewhere in January for an 

approximated value of 102 kWh, as was shown in Figure 4.1. During the winter months, solar 

energy generation is at its lowest and the use of the BESS is limited. At higher BESS capacities, 

the system is independent from the grid for months at a time (see Figure 4.19). 

Although the network costs represent only a fraction of the total costs over the system lifetime, 

it is one of the benefits of implementing a BESS system and worth exploring. The impact that 

lowering the power connection capacity would have in network costs is explored in the 

following section. 

Impact of the power connection capacity (Powercapacity) 

Different power connection capacities have been explored to evaluate their impact in the 

lifetime costs of the system. When the power connection capacity is changed, it has an impact 

on the network costs, precisely, in the capacity charge and the excess capacity charge. The 

installation of a BESS allows for the reduction of the power connection capacity and therefore 

a reduction in the costs. This is illustrated in Figure 4.24, where the power connection capacity 

is reduced in steps from 150 kW to 25 kW. When the power connection capacity (Powercapacity) 

is reduced, the excess capacity charge increases. However, the excess capacity charge is 

smaller when the system has a BESS (Figure 4.24b) compared to the base case scenario in 

which the BESS and the PV panels are not in place (Figure 4.24a). 
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Figure 4.24. Capacity charge and excess capacity charge at different power connection capacities for (a) the 

base case scenario (system without BESS and PV panels) and (b) for a BESS with a capacity of 10 MWh 

The total network costs in a year at different battery capacities can be seen in Figure 4.25. The 

power connection capacity used in Figure 4.25 corresponds to 25 kW. The most remarkable 

difference in total cost per year when the BESS is used if compared with the base case scenario 

corresponds to the power connection capacity of 25 kW. However, the declining trend in total 

network costs is similar for all the other power connection capacities. Between different BESS 

capacities, the network costs don’t change significantly. The annual network costs for all the 

different Powercapacity examined, at different battery capacities (CBESS) can be seen in Table 4.9. 
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Figure 4.25. Network costs (£) per year at different CBESS for a power connection capacity of 25 kW. 

According to the results shown in Table 4.9, network costs could be reduced from £5,234 (i.e. 

for the base case scenario) to £2,504 per year when the system has installed a BESS with a 

capacity of 10 MWh and the power connection capacity is set to 50 kW. Over the system 

lifetime the total network cost would be reduced by £40,950. 

Table 4.9. Annual network costs (£) for all the power connection capacities at different battery capacities  

  Power connection capacity (kW) 

  150 125 100 75 50 25 

CBESS (MWh) 

NO BESS 5,234 4,939 4,644 4,367 4,438 7,090 

0.05 3,963 3,668 3,372 3,081 2,855 3,870 

0.1 3,788 3,493 3,198 2,907 2,681 3,677 

0.5 3,665 3,370 3,075 2,784 2,558 3,442 

1 3,661 3,366 3,071 2,780 2,554 3,413 

5 3,649 3,354 3,059 2,768 2,542 3,373 

10 3,612 3,317 3,022 2,730 2,504 3,297 

Upon inclusion of all amortised expenses associated with each power connection capacity, a 

modest decrease in overall costs throughout the system’s lifespan is observed. The biggest 

reduction in total costs over the system lifetime if the power capacity connection is reduced 

from 150 kW to 50 kW, when all amortised costs are included, is £20,000, as it is shown in 

Figure 4.26. 
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Figure 4.26. A comparison of the total cost over system lifetime between a power connection capacity of 150 

kW (grey column) and 50 kW(orange column) at different battery capacities. 

Additionally, Table 4.10 shows in detail all the costs associated at each power capacity 

connection and BESS size. 

The impact on GHG emissions has been analysed and the results are shown in Figure 4.27. As 

was introduced in section 4.3.5, for the purpose of the study, the emissions associated with the 

WMD’s energy consumption are considered. The GHG emissions have been estimated 

considering the impact of the energy purchased from the grid (purple column), the PV solar 

energy consumed instantaneously (yellow column) or used from the BESS (brown column) 

and displacing of energy from the grid mix with the sale of the surplus solar energy (green 

column). According to the results, the introduction of a BESS and PV panels into the system 

provide significant GHG savings. Moreover, the benefit from selling the surplus solar energy 

to the grid balances out the impact created from the energy consumed at the WMD. As it can 

be seen in Figure 4.27, the higher the BESS capacity, the lower the surplus solar energy 

available to be sold to the grid. Therefore, the biggest GHG savings are seen introducing a 

BESS of 0.05 MWh which reduces the GHG emissions by 41 tons CO2  eq. per year. 
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Table 4.10. System cost at different power connection capacity for the WMD. The values in £ are included in 

Appendix A. 

Power 

connection 

capacity 

(MW) 

BESS 

capacity 

(MWh) 

Cost of 

energy 

per year 

(k£) 

Surplus 

solar 

energy 

revenue 

per year 

(k£) 

BESS 

capital 

cost (k£) 

BESS 

O&M 

cost 

(k£) 

PV 

capital 

cost 

(k£) 

PV 

O&M 

cost 

(k£) 

Network 

cost per 

year 

(k£) 

Total 

cost 

over 

system 

lifetime 

(mil£) 

0.075 

NO 
BESS 

112.4 0 0 0 0 0 4.4 1.75 

0.05 59.3 11.1 12.7 1.9 

629.1 135.3 

3.1 1.55 

0.1 54.5 10.6 25.4 3.8 2.9 1.50 

0.5 38.5 8.4 127.0 18.8 2.8 1.40 

1 37.6 8.3 254.0 37.5 2.8 1.54 

5 36.2 8.1 1,270.0 187.5 2.8 2.68 

10 34.5 7.9 2,540.0 375.0 2.7 4.12 

0.05 

NO 
BESS 

112.4 0 0 0 0 0 4.4 1.75 

0.05 59.3 11.1 12.7 1.9 

629.1 135.3 

2.9 1.54 

0.1 54.5 10.6 25.4 3.8 2.7 1.49 

0.5 38.5 8.4 127.0 18.8 2.6 1.40 

1 37.6 8.3 254.0 37.5 2.6 1.53 

5 36.2 8.1 1,270.0 187.5 2.6 2.68 

10 34.5 7.9 2,540.0 375.0 2.5 4.12 

0.025 

NO 
BESS 

112.4 0 0 0 0 0 7.1 1.79 

0.05 59.3 11.1 12.7 1.9 

629.1 135.3 

3.9 1.56 

0.1 54.5 10.6 25.4 3.8 3.7 1.51 

0.5 38.5 8.4 127.0 18.8 3.4 1.41 

1 37.6 8.3 254.0 37.5 3.4 1.55 

5 36.2 8.1 1,270.0 187.5 3.4 2.69 

10 34.5 7.9 2,540.0 375.5 3.3 4.13 

 

Figure 4.27. GHG emissions per year for the WMD at different CBESS. 
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4.4.2 M&S retail store 

As discussed in section 4.3.1, there are significant differences in the PV solar energy generation 

and energy consumption between the WMD and the M&S retail store. The latter presents a 

higher energy demand and more stable consumption throughout the year than the WMD. On 

the other hand, the PV solar panels installed in the M&S retail store would generate more PV 

solar energy than those proposed for the WMD due to the location and the number of panels. 

Additionally, if PV solar panels were installed at the M&S retail store, 97% of the solar energy 

generated on-site would be used directly (without a BESS). However, the solar energy 

generated at M&S only meets approximately a third of the existing demand of the store. 

Figure 4.28 shows the results corresponding to the hourly energy balance for the M&S retail 

store when the PV solar panels are in place but without a BESS. Each vertical line in Figure 

4.28 marks the start of a new day. A week in January (Figure 4.28a) and a week in July (Figure 

4.28b) have been plotted as an example. The M&S retail store relies on the energy supplied 

from the grid in the winter months. During a winter’s day, only a few hours of sunlight allow 

the M&S retail store to reduce its energy consumption from the grid. In the summer, the energy 

supplied from the grid is still 100% required at night, but during the day, the grid load is 

considerably reduced due to the on-site PV solar generated energy. 

The next section analyses the impact of adding a BESS to the M&S retail store. The energy 

management algorithm proposed is explored for batteries with varying capacities. 
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Figure 4.28. Simulation results for a week in (a) January and (b) July for the energy flow in the M&S retail store 

assuming the BESS is not installed. 

Impact of the BESS capacity (CBESS) 

The hourly energy results when a BESS of 0.5 MWh capacity is installed for a single day in 

January and July are shown in Figure 4.29. Over the winter months (Figure 4.29a), the 

modelled PV solar energy generation never surpasses the M&S retail store demand. Thus the 

impact of having a BESS cannot be justified to reduce the dependency on the grid. The PV 

solar energy generated is used instantaneously by the M&S retail store. However, the BESS 

can be used as a tool for the reduction in grid supply energy costs. The energy can then be 

purchased from the grid and stored in the BESS when the electricity price is below a certain 

threshold price (i.e., from 00:00h to 07:00h for a threshold price of 9 p/kWh) and used when 

the electricity price is above the threshold (i.e., from 08:00h to 23:00h). In this scenario the 

battery is fully charged quickly, in three hours, and fully discharged over two to three hours. 

In the summer months (Figure 4.29b), when the PV solar energy is higher than the energy 

demand, the BESS is not only used as a tool to reduce the energy cost but also to store the 

surplus solar energy when it is available, lowering grid supply costs still further. The BESS is 
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charged at night at the lower electricity price and during the daytime when there is surplus solar 

energy (i.e. day 3, day 5, day 6 and day 7). Moreover, the energy purchase from the grid in the 

afternoon, when the energy demand is higher than the solar energy available, occurs between 

two to three hours later due to surplus solar energy that has been stored earlier in the day and 

is being discharged from the BESS. For example, Figure 4.28b and Figure 4.29b can be 

compared during the fourth day to reflect the displacement on the purchase from the grid when 

the BESS is in place. On the other hand, during summer (Figure 4.29b), the time it takes to 

discharge the BESS is longer than in winter (Figure 4.29a) due to the increase in PV solar 

energy generation/surplus. 

 

Figure 4.29. Simulation results when the energy management algorithm is applied in a week in (a) January and 

(b) July using a BESS with a capacity of 0.5 MWh for the M&S retail store. 
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The monthly results obtained when the energy management algorithm is applied to the M&S 

retail store can be seen in Figure 4.30 at different battery capacities (CBESS). The positive values 

stand for energy consumption and BESS discharging mode, while the negatives indicate energy 

generation and charging of BESS. The energy purchased from the grid (i.e. purple coloured 

part of the bar) refers to the energy purchased from the grid to cover the demand directly. The 

energy “TO BESS” corresponds to the energy from the grid used to charge the BESS. The 

energy “FROM BESS” refers to the energy discharged from the BESS, which comes from the 

grid and the surplus solar energy. “Consumed from PV” refers to the solar energy that is used 

instantaneously to cover the demand. 

As the BESS capacity increases, the energy purchased from the grid to cover the demand at a 

higher price is reduced (i.e. purple coloured part of the bar). In contrast, the energy purchased 

from the grid to charge the BESS at lower prices (i.e., “To BESS”) increases. So, overall, the 

energy required from the grid is the same for all the BESS; however, a larger capacity allows 

for more energy to be drawn down from the grid and stored overnight when the prices are 

below the threshold. When the electricity price is above the threshold, energy stored at the 

BESS can be discharged, maximising the cost saving. This can be seen in detail in Figure 

4.29b), Figure 4.32b) and Figure 4.33b). 

From April to August, some surplus solar energy is not stored at the BESS (Figure 4.30). It 

happens some days because the BESS has already been fully charged from the grid by the time 

surplus solar energy is available. An example of this can be seen in Figure 4.29b during the 

fourth day of the week. This algorithm could be examined in future work to ensure capacity 

for excess solar in certain months. Moreover, it might reduce electricity costs, as less electricity 

would be bought from the grid. 
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Figure 4.30. Monthly energy distribution at the M&S retail store at different CBESS. The positives values stand 

for energy consumption and BESS discharging mode while the negatives indicate energy generation and 

charging of BESS. 

The energy flow for battery capacities (CBESS) equal to 0.05 MWh, 0.5MWh and 5MWh can 

be seen in detail in Figure 4.31 as an example. 
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Figure 4.31. A comparison of the hourly energy flow at the BESS at different CBESS for the M&S retail store. 

For smaller BESS with CBESS of 0.05 MWh (see Figure 4.31) and 0.1 MWh, the power required 

to charge the battery is smaller when compared to a larger BESS. Moreover, at no time does 

the overall BESS + Store system fully utilise the 400kW grid connection available at the M&S 

retail store to charge the BESS and cover the demand. The energy flow is detailed in Figure 

4.32 for a BESS with a CBESS of 0.05 MWh as an example. However, the case for the BESS 
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with CBESS of 0.1 MWh is very similar. Due to the deliberately limited capacity of the BESS, 

it takes up to three hours to fully charge it and just one hour to discharge in winter months (see 

Figure 4.32a) or up to two hours in summer months whilst supporting the store load. (See 

Figure 4.32b). 

 

Figure 4.32. Simulation results when the energy management algorithm is applied in a week in (a) January and 

(b) July using a BESS with a capacity of 0.05 MWh for the M&S retail store. 

When the BESS capacity is further increased to 5 MWh (see Figure 4.31) and 10 MWh, the 

BESS does not complete a cycle in the whole year. Between April and early August (from 

hours 2,100 to 5,200, approximately), when the PV solar energy generation is at its highest 

values, the grid is used most of the time to charge the BESS and the energy demand from the 

store is covered by the solar energy and the BESS. It can be seen in detail in Figure 4.33b for 

a BESS with a capacity of 5 MWh for a week in July. This is an advantage from the point of 

view of the grid network operator, as in times of peak demand, the M&S retail store is 
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completely independent of the grid and most of the energy drawn from the grid is done during 

lower demand periods. A trade-off is the time it takes to charge or discharge the battery, which 

has significantly increased compared to the smaller batteries analysed. However, this protects 

the battery and is an advantage regarding the BESS lifetime, as the battery completes 

significantly fewer full operation cycles, which contribute directly to the battery’s ageing. 

 

Figure 4.33. Simulation results when the energy management algorithm is applied in a week in (a) January and 

(b) July using a BESS with a capacity of 5 MWh for the M&S retail store. 
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The M&S retail store studied is currently 100% dependant on the grid, but if PV solar panels 

were installed, the dependency on the grid would be reduced by 28%.  

The percentage of energy from the grid at different battery capacities is shown in Figure 4.34 

through a purple line. A detailed breakdown is also shown in a pie chart for two BESS analysed 

before, 0.5 MWh and 5 MWh. The dark purple section of the pie chart represents the portion 

of the energy demand covered directly by the grid. The yellow section refers to the portion of 

the energy demand covered by instantaneous solar energy. The green section refers to the 

fraction of the energy demand covered by the BESS. Within the green section, the light purple 

fraction refers to the energy stored from the grid at a cheaper price, and the light yellow 

corresponds to the stored surplus solar energy. 

As it is shown in Figure 4.34 and it was discussed previously, the energy purchased from the 

grid is the same for all the BESS capacities studied (i.e., light, and dark purple section of the 

pie charts). However, the amount paid for the energy differs due to the ability to time-shift 

supply and demand. 

 

Figure 4.34. Percentage of energy used from the grid at different CBESS for the M&S retail store (purple solid 

line). At 0.05 MWh and 5 MWh, the pie charts show the breakdown of energy covered by the grid, solar 

installation, and BESS (further broken down into energy stored from excess solar energy or the grid). 
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The system lifetime costs have been studied at different battery capacities. The results obtained 

can be seen in Figure 4.35. For the analysis, the system energy cost for the M&S retail store 

without PV solar panels and BESS is also included (i.e., NO BESS).  

According to the results, system’s lifetime total cost increases when the PV solar panels and a 

BESS are installed at the M&S retail store. The bigger the battery capacity, the higher the total 

cost of the system's lifetime.  

The energy cost decreases as the BESS capacity increases, as this increases the ability to 

purchase energy at a cheaper rate. The total network costs (i.e., as introduced in section 4.3.4, 

these refer to the contracted power connection capacity costs and the use of the network 

distribution system that is charged by the energy supplier) follow a similar trend. However, the 

reduction in energy and network costs does not prevent the system from increasing the total 

cost when all the amortised costs are added (i.e. cost of BESS, cost of PV panels, and network 

cost). Therefore, under the assumptions considered, the decrease in energy and network costs 

wouldn't justify the adoption of BESS and PV solar panels. 

 

Figure 4.35. Total cost over system lifetime at different CBESS for M&S retail store. 

This increase in total cost over the system lifetime can be seen in detail in Table 4.11 where 

the system costs are itemised at different battery capacities (CBESS). For batteries with higher 

capacities (i.e. 5 MWh and 10 MWh), 33% and 50% of the total cost over system lifetime 

comes from the cost of the BESS (i.e. BESS capital cost and BESS O&M cost). On the 
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contrary, for smaller battery capacities, the percentage relative to the total cost is less than 8%. 

The cost of the PV panels (i.e. PV capital cost and PV O&M cost) has a stable contribution to 

the total costs and it decreases slightly as the BESS capacity increases. It decreases from 31% 

to 18% of the total costs for a BESS of 0.05 MWh and 10 MWh, respectively. 

As opposite to the WMD, the cost of energy for the M&S retail store, especially for smaller 

BESS, has the most significant influence in the total costs. Precisely, between 52% and 46% 

of the total costs. 

Table 4.11. System cost for M&S retail store. The values in £ are included in Appendix A. 

Power 

connection 

capacity 

(MW) 

BESS 

capacity 

(MWh) 

Cost 

of 

energy 

(k£) 

per 

year 

Surplus 

solar 

energy 

revenue 

(£) per 

year 

BESS 

capital 

cost (k£) 

BESS 

O&M 

cost 

(k£) 

PV 

capital 

cost 

(k£) 

PV 

O&M 

cost 

(k£) 

Network 

cost 

(k£) per 

year 

Total cost 

(mil£) 

over 

system 

lifetime 

0.4 

NO 
BESS 

164.5 0 0 0   41.4 3.09 

0.05 114.7 637 12.7 1.9 

853.2 183.5 

38.2 3.34 

0.1 114.3 588 25.4 3.8 38.2 3.34 

0.5 111.4 569 127.0 18.8 37.3 3.40 

1 107.8 569 254.0 37.5 35.7 3.47 

5 96.4 547 1,270.0 187.5 28.0 4.35 

10 96.3 527 2,540.0 375.0 28.0 5.81 

The benefits of including a BESS for the M&S store and commercial buildings alike will 

depend on the difference between the off-peak and peak electricity price. For the M&S retail 

store, these are 7.15 p/kWh and 10.76 p/kWh, respectively.  

Figure 4.36 shows the results obtained when the gap between off-peak and peak electricity 

price increases (e.g., from 10.76 p/kWh to 15.76 p/kWh). 
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Figure 4.36. Total cost over system lifetime at different battery capacities for M&S retail store when the peak 

electricity price is increased. 

As can be seen in Figure 4.36, system’s lifetime total cost is reduced for certain battery 

capacities. As for the WMD, if all amortised costs are added (i.e. cost of BESS, cost of PV 

panels, and network cost), a BESS with a capacity higher than 5 MWh ceases being a feasible 

solution for annual electricity cost reduction. Here, the potential reduction in energy and 

network costs is eclipsed by the cost of BESS. The BESS that achieved the highest reduction 

in total costs over the system lifetime corresponds to 1 MWh capacity. The total cost reduction 

compared to the base case scenario (i.e. BESS and PV panels are not installed) is £140,000. 

The network costs have a higher influence in the costs for the M&S retail store than for the 

WMD (Figure 4.22). The total network costs can be seen in Table 4.11 as the addition of 

capacity charge, fixed charge, and consumption charge at each battery capacity (CBESS). As the 

BESS capacity increases, the network costs are reduced. 

What influences the reduction of the total network costs at different BESS capacities is the 

consumption charge, shown in Table 4.12. As was previously explored, the BESS is charged 

at night when the electricity price is at its lowest value. This time coincides with the green 

consumption band. As the BESS capacity increases, and more energy is stored during this 

consumption band, the total charge per year for the green band increases. The consumption in 

the other bands, red and amber, is therefore reduced. 
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Table 4.12. Network costs for the M&S retail store 

Power 

connection 

capacity 

(MW) 

BESS 

capacity 

(MWh) 

Capacity 

charge per 

year (£) 

Excess 

capacity 

charge per 

year (£) 

Fixed 

charge 

per year 

(£) 

Consumption charge per 

year (£) 

Total 

Network 

cost per 

year (k£) 

     Red Amber Green  

0.4 

NO BESS 

7,203 0 17,220 

14,982 1,889 110 41.4 

0.05 12,664 1,036 109 38.2 

0.1 12,628 1,010 113 38.2 

0.5 11,924 832 143 37.3 

1 10,464 636 179 35.7 

5 2,976 358 266 28.0 

10 2,952 359 266 28.0 

The network consumption cost for red, amber, and green band at different battery capacities 

(CBESS) for M&S retail store is shown in Figure 4.37. The energy purchased between 16:00h 

and 19:00h (i.e. red consumption band) is directly consumed by the M&S retail store because 

at this period of time, the electricity price is at its highest, and the BESS is not charged from 

the grid. The reduction in the red consumption charges when a BESS of 0.05 MWh is installed 

is related to the use of PV solar energy rather than any surplus energy stored in the BESS. From 

the end of spring until the end of summer, the PV panels generate enough solar energy to be 

used directly, thus reducing the energy purchased from the grid. The consumption charges for 

the red band continue decreasing slowly for batteries with capacities between 0.1 MWh and 1 

MWh, as more surplus solar energy is stored, however limited. Regardless of the limited 

surplus solar energy, this has an impact on the cost of consumption charge, because the energy 

required from the grid is purchased closer to the evening and not in the middle of the day or 

early afternoon. When the BESS capacity reaches 5 MWh, the battery is large enough to store 

all the energy needed at night (i.e. 00:00h to 07:00h) and at the red consumption band the 

system does not use any energy from the grid in summer or just for a couple of hours in winter. 

The costs associated with the consumption in the amber band also decreases as the BESS 

capacity increases, although the reduction is not that significant as it is for the red consumption 

band. The reduction in the amber consumption band is related to the direct use of PV solar 

energy by the M&S retail store. For this reason, the largest reduction in cost happens between 

the baseline scenario and the scenario in which the PV panels are installed together with a 

BESS of 0.05 MWh. The increase of BESS capacity has a minimal impact because the surplus 

solar energy is limited. For larger BESS, the difference in consumption cost is associated with 
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the energy stored at night thus although there is no surplus solar energy available, there is 

enough energy in the BESS to avoid purchasing it from the grid. 

 

Figure 4.37. Network consumption cost for red, amber, and green band at different CBESS for M&S retail store. 

As was discussed previously for the WMD, the network costs can be further reduced if the 

power capacity connection is lowered. This will be explored next. 

Impact of the power connection capacity (Powercapacity) 

In Figure 4.38, the capacity charge, the excess capacity charge and the total cost are shown for 

different power connection capacities (Powercapacity). The power connection capacity has been 

reduced in steps of 100 kW, from 400 kW. The analysis compared a baseline scenario without 

BESS or PV solar panels and a scenario in which a BESS of 10 MWh and PV solar panels 

would be installed. 

When the power connection capacity is reduced, the excess capacity charge increases as the 

energy draw exceeds the purchased capacity, as can be seen in Figure 4.38. However, the 

excess capacity charge is smaller when the system has a BESS, and the total cost is also 

reduced. The introduction of a BESS, as happened for the WMD, allows for more flexibility 

when it comes to network costs associated with the Powercapacity (i.e. capacity charge and excess 

capacity charge).  
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Figure 4.38. Capacity charge and excess capacity charge at different power connection capacities for (a) the 

base case scenario (system without BESS and PV panels) and (b) for a BESS with a capacity of 10 MWh for 

M&S retail store. 

The power connection capacity has an impact on the consumption charge. When this is 

reduced, the available energy to be stored at the BESS at night is reduced as well. Figure 4.39, 

Figure 4.40, and Figure 4.41 show the results of consumption cost for the red, amber, and green 

bands, respectively, at different power connection capacities (Powercapacity) and battery capacity 

(CBESS). The results obtained for the red (see Figure 4.39) and amber (see Figure 4.40) 

consumption bands follow the same trend; the consumption cost decreases as CBESS and 

Powercapacity increases. The opposite is true for the green consumption band (see Figure 4.41), 

as CBESS and Powercapacity increases, more energy is stored at the BESS at night, increasing the 

consumption during this band. 
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Figure 4.39. Consumption cost per year for the red band at different CBESS and Powercapacity 

 

Figure 4.40. Consumption cost per year for the amber band at different CBESS and Powercapacity 

 

Figure 4.41. Consumption cost per year for the green band at different CBESS and Powercapacity 

The differences between the costs for the green consumption band (i.e. increased from £106 to 

£266) are smaller if compared to the differences corresponding to the amber band consumption 

(i.e. from £360 to £1,900) and red band (i.e. from £2,950 to £15,000). As a consequence, the 
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reduction in costs during the red band should be prioritised for reduction. The system cost at 

different Powercapacity and CBESS can be seen in Table 4.13. 

When all the amortised cost are included, the reduction in the network costs from reducing the 

power connection capacity is no longer relevant, considering the total cost of the M&S retail 

store, as it is nowadays without PV panels nor BESS installed would be approximately £3.09m 

(Figure 4.35). 

Table 4.13. System cost at different Powercapacity. The values in £ are included in Appendix A. 

Power 

connection 

capacity 

(MW) 

BESS 

capacity 

(MWh) 

Cost of 

energy 

per 

year 

(k£) 

Surplus 

solar 

energy 

revenue 

per 

year (£) 

BESS 

capital 

cost 

(k£) 

BESS 

O&M 

cost 

(k£) 

PV 

capital 

cost 

(k£) 

PV 

O&M 

cost £) 

Network 

cost per 

year 

(k£) 

Total 

cost 

over 

system 

lifetime 

(mil£) 

0.3 

NO 
BESS 

164.5 0 0 0 0 0 39.8 3.06 

0.05 114.7 637 12.7 1.9 

853 183.5 

36.4 3.31 

0.1 114.3 588 25.4 3.8 36.4 3.32 

0.5 111.4 569 127.0 18.8 35.5 3.38 

1 107.8 569 254.0 37.5 33.9 3.44 

5 101.2 177 1,270.0 187.5 30.8 4.47 

10 100.9 53 2,540.0 375.0 30.8 5.93 

0.2 

NO 
BESS 

164.5 0 0 0 0 0 50.7 3.23 

0.05 114.7 637 12.7 1.9 

853 183.5 

37.2 3.32 

0.1 114.3 588 25.4 3.8 37.2 3.33 

0.5 111.4 568 127.0 18.8 36.3 3.39 

1 109.2 508 254.0 37.5 35.0 3.48 

5 108.1 0 1,270.0 187.5 34.9 4.64 

10 108.1 0 2,540.0 375.0 34.9 6.10 

0.1 

NO 
BESS 

164.5 0 0 0 0 0 86.2 3.76 

0.05 115.0 634 12.7 1.9 

853 183.5 

58.6 3.65 

0.1 114.8 569 25.4 3.8 58.6 3.66 

0.5 114.0 170 127.0 18.8 58.2 3.76 

1 113.7 22 254.0 37.5 58.1 3.90 

5 113.7 0 1,270.0 187.5 58.1 5.07 

10 113.7 0 2,540.0 375.0 58.1 6.53 

The GHG emissions per year have also been estimated for the M&S retail store and are shown 

in Figure 4.42. The GHG emissions can be reduced from 321 tons CO2 eq. to 261 tons CO2 eq. 

per year. Over the system lifetime the reduction would be of 900 tons CO2 eq. if any of the 

BESS capacities studied were added together with the PV solar installation. The GHG 

emissions do not decrease as the BESS increases because the energy purchased from the grid 
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and the PV solar energy consumed is the same no matter the size of the BESS, as it has been 

discussed before. 

 
Figure 4.42. GHG emissions per year for the M&S retail store at different CBESS. 

Contrary to the WMD, the M&S retail store's introduction of PV panels and BESS is not 

economically feasible. Moreover, the on-site solar energy generated on M&S premises proves 

inadequate even for fulfilling their internal energy requirements. The economic benefit of 

installing a BESS under the M&S scenario depends on the gap between the off-peak and peak 

electricity price. The dependency on the grid under the M&S scenario is reduced thanks to the 

PV panels, as well as the GHG emissions. 

4.5  Discussion 

Based on the results shown in this chapter, the introduction of a BESS has a significant impact 

on overall costs, depending on the system under study and the use of the battery. The results 

obtained for the two different commercial sites are compared based on the three different 

variables studied: 

1. Grid dependency: The grid dependency has been analysed to determine to what extent 

the system under study could be independent from the grid when a PV solar installation 
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achieved. For the WMD, both the PV solar energy and the BESS play a key role in 

reducing grid dependency. On the other hand, for the M&S retail store, the potential 

grid dependency reduction with a BESS is not that significant if compared with the 

WMD. The maximum reduction achieved by the M&S retail store is equal to 29% 

regardless of the BESS capacity. In conclusion, in locations where PV solar energy is 

used to cover part of the energy demand, the dependency from the grid is reduced. In 

these locations, the use of BESS can maximise the potential reduction of grid 

dependency if there is a high amount of PV surplus solar energy to be stored.  

2. Total cost: The total cost over system lifetime has been estimated at different BESS 

capacities and power connection capacities for both the WMD and the M&S retail store. 

According to the results, the WMD achieved a reduction in total cost over the system 

lifetime when the PV panels and certain BESS are in place, however this is not true for 

the M&S retail store based on the electricity prices provided (i.e., 7.15 p/kWh and 10.76 

p/kWh). For the WMD, system’s lifetime total cost can be reduced by up to 20% using 

a BESS with 0.5 MWh capacity, if compared to the base case scenario (i.e. no PV panels 

or BESS installed). For the WMD, the PV panel costs, and the BESS costs have the 

higher impact on total costs. Whereas for the M&S retail store, the cost of energy is the 

factor that contributes the most to the total costs over the system lifetime.  

3. GHG emissions: The reduction in GHG emissions has also been explored for both 

premises. The WMD has the potential to reduce the GHG emissions by 91% when the 

PV solar system and BESS are in place. On the other hand, the M&S retail store only 

reduces the GHG emissions by 19%. The GHG emissions are not further reduced with 

larger BESS capacities at either site, so it can be concluded that the increase in BESS 

capacity does not further reduce the GHG emissions. 

Depending on how the BESS is used, the outcomes obtained from the energy management 

algorithm are different. The results from the WMD show important reductions in total costs, 

grid dependency and GHG emissions. The difference between consumption and generation is 

relatively low for the WMD in comparison to the M&S retail store and it maximises the use of 

PV panels and BESS. On the contrary, for the M&S retail store, the economic benefits of 

installing a BESS are directly related to the difference in electricity price between peak and 

off-peak hours. 
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The installation of a BESS onsite gives more flexibility when it comes to the power connection 

capacity.  

4.6 Summary 

The impact of introducing a BESS has been explored in this chapter, considering two different 

types of premises. The reason for the selection of those two premises was to have a broader 

knowledge of how different factors such as energy demand, PV solar energy generation or 

other technical constraints impact on the outcomes achieved when a BESS is in place. The final 

aim of the thesis is to explore the feasibility of using PV solar energy generated on site and 

energy storage for EV fleet charging. Understanding how different commercial premises react 

to the introduction of a BESS regarding costs, grid dependency and GHG emissions is essential 

to progress with the study.  

In order to achieve the aim of the chapter, an energy management model was developed. 

Throughout the review of existing literature, it was concluded that the modelling of the BESS 

is one of the most important components of the energy management system. Moreover, the 

approach used by many authors to describe the behaviour of the energy storage system as a  

function of the state of charge (SoC), has been proven to be an effective approach to assess the 

techno-economic aspects of a system formed by the energy storage, demand load and a 

renewable energy source. The same approach was followed in this study for the development 

of the energy management system. 

The systems under study were described, and the energy management algorithm for each site 

was developed. The results obtained from the model were analysed considering the grid 

dependency, total costs and GHG emissions. It was found that the introduction of the BESS 

together with the PV solar system reduces the grid dependency, the total costs and the GHG 

emissions if compared to the base case scenario for the WMD. However, installing a BESS in 

premises similar to the M&S retail store is only economically justified for a certain gap between 

off-peak and peak electricity prices. Moreover, in premises like M&S, where the on-site solar 

energy generated proves inadequate even for fulfilling their internal energy requirements, 

justifying the use of solar energy for EV fleet charging seems challenging. 

Following on from this study, the next chapter focuses on the impact of introducing an EV fleet 

into the WMD. The study explores the potential economic and environmental benefits of using 

PV panels and a BESS on site considering different fleet operational times and charging 
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patterns and it compares the outcome against a given base case scenario (i.e., the WMD does 

not have PV solar panels installed nor a BESS). 
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5 Electric fleet adoption 

5.1 Introduction 

The benefits of introducing a PV installation and a BESS into two different commercial 

premises, a waste management depot (WMD) and a M&S retail store, were studied in Chapter 

4. 

In this chapter, the impact of introducing a fleet of electric vehicles into the WMD, will be 

studied. A fleet of 19 electric refuse collection vehicles (eRCVs) will be introduced at the 

WMD. The WMD was chosen for this study, as opposed to the M&S retail store, due to the 

available data to perform the analysis, the energy requirements at both premises analysed in 

Chapter 4, and the inherently smaller requirement for a fleet of vehicles at a retail store. By the 

end of the chapter, the first three research question introduced in Chapter 2 will be answered:  

• What are the environmental and economic benefits of using solar energy and BESS to 

charge an electric freight fleet when logistic and operational constraints are 

considered?  

• When using solar energy and BESS, what are the implications on the grid dependency 

and consequently GHG emissions, when different charging strategies are applied?  

• Considering depot charging, would it be feasible to charge the EV fleet with solar 

energy assisted with energy storage systems, considering the operational and logistic 

constraints? 

For that purpose, the chapter explores the potential benefits, if any, of the integration of PV 

solar panels, a BESS and an eRCV fleet against a given base case scenario (BCS). The BCS 

refers to a hypothetical scenario in which the WMD does not have PV solar panels installed 

nor a BESS but wishes to switch its refuse collection vehicles to an electrically powered eRCV 

fleet. In this BCS, the eRCV fleet and the depot’s demand are to be entirely covered from the 

grid mix. The energy flow of this system is assessed with the algorithm developed in Chapter 

4 with additional modifications to add the eRCV fleet as an extra energy demand at specific 

hours in each day. The energy management algorithm described in this chapter has been 
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previously published in the Energies journal in 202310 [175]. The main function of the 

algorithm is the same, to prioritize the use of PV solar energy, with the support of the BESS, 

to cover as much of the energy demand as possible. Due to the scarcity of studies done with 

these 3 elements: PV solar energy, BESS and an eRCV fleet, the evaluation performed in this 

chapter considers different charging scenarios with the aim of providing a broader set of 

outcomes that could be applied considering different operational requirements and contributes 

to the novelty of the work through the inclusion of the fleet energy support. The results obtained 

from the algorithm are analysed at the end of the chapter considering not only the technical and 

economic aspects, but also the GHG emissions released. 

5.2 Methodology 

5.2.1 WMD fleet operational times and charging pattern. 

The actual WMD refuse collection vehicle (RCV) fleet comprises 19 diesel vehicles with a 

total distance travelled and fuel consumed of approximately 23,000 miles and 19,500 litres of 

diesel per month respectively. At the time of this study, the RCV fleet collects general 

household waste every other week alternating with fortnightly household recycling collections, 

and garden or green waste collected fortnightly between March and December. In addition, 

approximately eight vehicles are anticipated to be used for weekly food waste collections in 

the future, although these have not been considered in the modelling. 

For this study, it is considered that the whole RCV fleet is switched from diesel to electric. To 

estimate the total energy requirement of the fleet, the study uses the mileage data of the 

conventional RCV fleet and a conversion factor of 3.48 kWh/mile. The conversion factor was 

obtained by using the energy consumption model for eRCVs proposed by Zhao et al. [312] and 

is in line with the conversion factor published by other authors for similar eRCVs [313]. The 

assumed maximum battery capacity of each eRCV is 300 kWh, based on the average battery 

size of several eRCV manufacturer’s prototypes. The model also assumes that the fleet operates 

Monday to Friday with a constant daily consumption of 185 kWh, therefore the potential 

 

10 Nunez Munoz M, Ballantyne EEF, Stone DA. Assessing the Economic Impact of Introducing Localised PV Solar 
Energy Generation and Energy Storage for Fleet Electrification. Energies 2023;16:3570. 
https://doi.org/10.3390/en16083570  

https://doi.org/10.3390/en16083570
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disadvantages of short ranges applicable to other electric vehicle types or with other uses is not 

applicable in this case. 

From Pelletier et al. [29], a company would commonly decide to have fewer chargers than 

vehicles. However, such assumption implies that there is always someone at the depot to 

unplug and move the eRCV when is fully charged to free the charging space for the other 

eRCVs that were not yet charged. For this study, the proposed number of chargers at the depot 

is varied according to the operational requirements, and the charging patterns are as follows: 

Charging scenario 1: Charging starts at 16:00h, with 22 kW Level 2 chargers. Here, the 

eRCV fleet operates between 06:00h and 14:00h, and at this time the fleet returns to the depot 

to be charged. Assuming that each eRCV would arrive at slightly different times due to traffic, 

and slight route variations, this charging scenario provides a 2hr buffer for all vehicles to return 

to the depot prior to charging. The charging process therefore starts at 16:00h and lasts up to 

approximately 8.5 hours for the fleet to be fully charged. For this scenario, each eRCV will 

have its own charger (19 chargers in total), so the eRCVs are plugged into a charger on arrival 

and unplugged the next day just before leaving the depot for their collection route. 

Charging scenario 2: Charging starts at 21:00h with 22 kW Level 2 chargers. Charging 

the fleet at 21:00h instead of 16:00h, enables the vehicles to be charged at a lower electricity 

price (post 21:00h is considered off-peak hours). Therefore, for this scenario the eRCV fleet 

operates between 06:00h and 14:00h and returns to the depot to wait until charging is scheduled 

from 21:00h. It is assumed that the eRCV fleet is fully charged at the end of the charging period 

for a total of approximately 8.5 hours. On account of overnight charging, having fewer chargers 

than eRCVs would require someone to physically stay at the depot at night to redistribute the 

eRCV around the lower number of chargers to make sure all the eRCVs are fully charged 

before the shift starts. To avoid this, it is assumed that the depot would have 19 chargers 

installed, as with scenario 1. 

Charging scenario 3: Charging starts at 11:00h and 23:00h with 50 kW fast chargers. In 

this scenario, the charging process is split between two time windows. Here, 9 out of 19 eRCVs 

operate between 06:00h and 14:00h. On arrival back at the depot, the eRCVs are parked out of 

the charging slot because the charging process takes place from 23:00h. These 9 eRCVs require 

less than 4 hours to be fully charged due to the use of faster chargers. The other 10 eRCVs, 

operate between 06:00h and 10:00h, then return to the depot to be charged at 11:00h (the fleet 
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is fully charged in less than 4 hours) before returning on the road again from 18:00h until 

22:00h. For this scenario, the maximum amount of eRCVs charging at the same time is 10, so 

the number of chargers required are fewer than from the previous charging scenarios. Precisely, 

10 chargers are considered in this case. For the part of the fleet that is charged overnight, it 

wouldn’t be necessary to have an extra worker there to move the eRCVs. For this, it is assumed 

that each of the 10 eRCVs drivers that return to the depot at 22:00h, will be in charge of moving 

one of the eRCVs parked from the other shift to the charging slot, before moving their own 

eRCV to the parking slot that is now free. 

As a summary, the charging scenarios are shown in Table 5.1. 

Table 5.1. Detailed information of each charging scenario. 

Charging 

scenario 
Operational time Charging time Number of chargers 

1 06:00h – 14:00h 16:00 – 00:30h 19 Level 2 (22 kW) 

2 06:00h – 14:00h 21:00h – 05:30h 19 Level 2 (22 kW) 

3 

06:00h – 14:00h 23:00h – 03:00h 

10 Fast chargers (50 kW) 06:00h – 10:00h & 

18:00h – 22:00h 
11:00h – 15:00h 

Crozier et al. [90] discussed the impact of charging large electric fleets on the grid supply 

network in the UK. For the WMD, the increase in electrical energy demand from switching 

from the conventional fleet to an electric fleet it is not an exception. The total demand of the 

site increases from 234 MWh to 914 MWh, approximately. Figure 5.1 shows the WMD total 

energy demand for each month when the fleet is powered by diesel (grey column) and when 

the fleet is electric (green column). From this figure it can be seen that the depot energy 

requirements are dominated by the fleet operation. 

The monthly energy results depicted in Figure 5.1 assuming the fleet is electric, represent the 

combined energy consumption of the depot and the fleet of 19 eRCVs (green bars). However, 

when the WMD uses a diesel-powered fleet (grey bars), the energy consumption indicated by 

these grey bars corresponds solely to the energy demand of the depot. The energy demand 

represented by the grey bars follows a seasonal trend, with higher consumption during winter, 

and a decreased consumption during summer. This seasonal trend is not as apparent when the 

fleet is electrified, and there are a few peaks. Examining the months of January, April, June 

and October, the seasonal fluctuation in energy demand is still visible. However, some months, 
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such as March, May and August, peak against this pattern. These peaks are linked to the number 

of days that the fleet is operating. For instance, in February, the fleet operates for 20 days 

(Monday through Friday). In contrast, it increases to 23 operational days in March (due to there 

being more weekdays in March compared to the shorter month of February). The fleet’s energy 

demand increase masks any seasonal fluctuation in energy demand by the depot during those 

months. 

 

Figure 5.1. Total monthly energy consumption at the WMD with a diesel RCV fleet (grey column); and with an 

eRCV fleet (green column). 

5.2.2 Scenarios 

As discussed earlier, in order to assess the impact on grid dependency, total costs and GHG 

emissions when the fleet is electrified, two different energy supply scenarios have been 

selected, a base case scenario (BCS) and a scenario with local energy storage and generation 

(BESS scenario).  

Base case scenario (BCS) 

This refers to the WMD when there are no PV solar panels nor a BESS installed, but the fleet 

of RCVs has been already switched from conventional diesel to electric power. Therefore, the 

WMD is 100% dependent on the grid to cover the demand from both the building, and the 

eRCV fleet, as shown in Figure 5.2. 
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Figure 5.2. Energy flow diagram proposed for the BCS 

 

BESS scenario 

The BESS scenario assumes that the WMD has PV solar panels, a BESS, and the RCV fleet is 

electric. Six different BESS are considered, with capacities of 0.05 MWh, 0.1 MWh, 0.5 MWh, 

1 MWh, 5 MWh and 10 MWh. 

The results of this scenario are obtained using the energy management algorithm (EMA) 

developed for the WMD and introduced in chapter 4 (section 4.3.2) to which the eRCV fleet 

has been added. The proposed energy flow diagram is presented in Figure 5.3.  

 

Figure 5.3. Energy flow diagram proposed for the BESS scenario. 

The depot is assumed to be equipped with rooftop PV panels and a BESS (with a round-trip 

efficiency of 90% [146]). The depot’s and the eRCV fleet energy demand are firstly supplied 

by solar energy followed by energy stored in the BESS, and lastly by the grid if needed. If, at 

any time, there is surplus solar energy after fulfilling the total energy demand, the excess is 

stored in the BESS for later use. For a detailed representation of the algorithm developed for 

the BESS scenario, please refer to Figure 5.4. 
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Figure 5.4. “Flow chart of the energy management algorithm developed for scenario 2” (Figure obtained from 

[175]). 

In relation to the BESS, some constraints have been considered in the algorithm. Those 

constraints were introduced in Chapter 4 (section 4.3.2) and are summarised below. 

1 The BESS is restricted to not being charged and discharged during the same hourly 

time step (t). 

2 The BESS operates within a pre-set state of charge (SoC(t)) range that is assumed to be 

20% (SoCmin) and 90% (SoCmax) of the total battery capacity. These SoC limits were 

selected as reasonable values for typical battery system operations without being 

specific to any particular equipment [279]. 

3 The battery has a constraint for charging and discharging, limiting the maximum 

charging power to 2CBESS, where CBESS is the capacity of the battery. This limitation 

aligns with the recommendations provided in various Lithium-based cell datasheets to 

prevent rapid cell degradation. As such, it is only advisable to operate up to 2CBESS. 

4 The BESS is charged exclusively from the PV installation and is modelled assuming 

that any voltage or current change is achievable with changes in SoC [134]. As it was 
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previously discussed in Chapter 4, the SoC is the most frequent parameter used to 

evaluate the energy status of the battery [279]. According to Byrne et al. [278], this 

model is the most suitable for performing techno-economic analyses and operating 

within minutes to hours. Yang et al. [134], and Rosewater et al. [279], defined the 

charging/discharging process of the battery as in Equation 5.1: 

CBESS ∙
∂SoC

∂t⁄ = BESSrteff ∙ PBESS(t)
+ + PBESS(t)

− 

Equation 5.1 

Where BESSrteff is the battery round trip efficiency, ∂SoC ∂t⁄  is the rate of change of 

SoC and PBESS(t)
+ and PBESS(t)

− are the charging/discharging power of the BESS, 

respectively. 

5 The BESS is charged only when the PV solar energy generation surpasses the energy 

demands of both the WMD and eRCV fleet. The amount of surplus solar energy stored 

in the BESS is subject to the available capacity in the battery during the specific time 

step. 

6 The BESS is discharged when there is insufficient PV solar energy to fulfil the energy 

demand for both the WMD and the eRCV fleet charging. Once the BESS reaches the 

minimum state of charge (SoCmin), the BESS cannot be discharged any further. 

7 When the algorithm ends at time step 8784, the BESS energy balance must be 0. The 

energy balance is calculated following Equation 5.2. Total energy in and 

Total energy out is the sum of hourly values of energy coming in and out of the BESS 

for the whole year (i.e., from t=1 to t=8784), respectively. Energy(t=0) refers to the 

energy store at the BESS at t=0 (i.e., SoCmin) and Energy(t=8784) is the energy store at 

the BESS at t=8784. 

BESS energy balance (kWh)

= (Total energy in − Total energy out) − (Energy(t=0)

− Energy(t=8784)) 

Equation 5.2 

Considering the rise in peak energy demand due to switching to an electric RCV fleet, the 

energy management algorithm guarantees that the system never surpasses the peak power 

demand. However, it requires a network upgrade of the grid power connection capacity from 
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0.15 MW to 0.6 MW if the fleet is charged with 22kW chargers and, from 0.15 MW to 0.7 MW 

when the WMD uses fast chargers (i.e., 50 kW). 

For each charging pattern discussed previously, the BCS and the BESS scenarios are simulated.  

5.2.3 System cost analysis 

The electricity price assumed corresponds to that introduced in chapter 4 for the WMD with an 

average value of 45.4 p/kWh. The maximum price is achieved at peak times (i.e., between 6am 

and 10am, and 4pm-8pm) and the minimum at off-peak times (i.e., from 9pm to 5am). 

Similarly, the economic analysis has been performed considering the costs introduced in 

chapter 4. These include the network charges, cost of energy, cost of BESS, cost of PV panels 

and the revenue from the sale of surplus solar energy. The system cost analysis is performed 

for the system lifetime, 15 years. 

The capital cost associated with switching from a conventional fleet to electric fleet is not 

considered within the scope of this thesis. The objective here is to evaluate the impact of 

charging the fleet for the BCS and the BESS scenarios, assuming both would have an electric 

fleet, and not considering the costs of initially purchasing the electric vehicles.  

The difference in costs incurred if fast chargers (i.e., 50KW) are installed instead of 22kW 

chargers will be considered. The objective being to reflect the difference in costs for each 

charging pattern. An average price for the EV chargers has been obtained from Furnari et al. 

[115] and is shown in Table 5.2. 

Table 5.2. Initial costs associated with EV chargers. 

 Level 2 charger (22kW) Rapid charger (50KW) 

Number of chargers 19 10 

Cost per charger (£) 3,000 12,000 
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5.2.4 Greenhouse gas (GHG) emissions analysis 

Whilst eRCVs achieve zero emissions at the tailpipe, the GHG emissions associated with the 

electricity consumed to charge the fleet have to be considered. Additionally, the emissions 

associated with the electricity consumed by the depot are included in the analysis. The 

calculations to obtain the GHG emissions follow the same procedure introduced in chapter 4. 

5.3 Results 

5.3.1 Grid dependency considering different charging strategies 

The different charging scenarios have been analysed to evaluate grid dependency. Simulation 

results are plotted below for each charging scenario, for one example week in March and one 

in July. The results show two different BESS sizes, by way of example, highlighting BESS 

capacities of 0.5 MWh and 5MWh. The green line represents the SoC of the BESS, the blue 

line shows the eRCV fleet energy demand. The modelled PV generation, WMD energy demand 

and the energy purchased from the grid are displayed together at the bottom of each figure in 

yellow, orange, and purple colour, respectively. 

Charging scenario 1: 

The simulation results of the scenario where the eRCV fleet is charged at 16:00h can be seen 

in Figure 5.5 and Figure 5.6. As shown, the eRCV fleet (blue line) is charged from 16:00h to 

00:30h, when the fleet is fully charged. A smaller BESS of 0.5 MWh is fully charged during 

winter months (Figure 5.5a) and discharges in just one hour when the fleet load is applied at 

16.00. During summer months (Figure 5.5b), the BESS is not able to store all the solar energy 

generated and a significant amount must be sold to the grid as surplus solar energy. Due to the 

increase in sunlight hours and the availability of instantaneous solar energy, the BESS is 

discharged slowly during the first hours of the eRCV fleet charging period, starting at 16.00, 

as is seen in the graphs where the increased solar generation at the start of the fleet load 

application (16.00h) leads to it taking two time periods (hours) for the BESS to be fully 

discharged. 
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Figure 5.5. Simulation results when the eRCV fleet is charged at 16:00h for a day in (a) March and (b) July with 

a BESS of 0.5MWh. 

If a larger BESS is in place, with a capacity of 5MWh (Figure 5.6), more solar energy can be 

stored, particularly during summer months (Figure 5.6b). This further reduces the dependency 

with the grid. In the winter months (Figure 5.6a), increasing the capacity of the BESS does not 

reduce the grid dependency any further, as the limiting factor is not the capacity of the BESS, 

but the availability of generated solar energy. However, during the summer months, when there 

is more solar energy generation, the larger BESS has a significant impact on the need for the 
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grid supply, delaying the requirement to purchase energy from the grid from 16.00h until 

19.00h (Figure 5.5b). 

In conclusion, when the fleet is charged in the afternoon (i.e., 16:00h) during the winter, a 

smaller BESS capacity is sufficient. However, in summer, a larger BESS is able to maximise 

the use of the solar energy and further reduce the grid dependency of the facility for fleet 

charging. 

 

Figure 5.6. Simulation results when the eRCV fleet is charged at 16:00h for a day in (a) March and (b) July with 

a BESS of 5MWh. 
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Charging scenario 2: 

Here, the simulation results for the scenario where the eRCV fleet is charged at 21:00h are 

discussed and can be seen in Figure 5.7 for a BESS with 0.5 MWh capacity and in Figure 5.8 

for a BESS with 5 MWh capacity. The results are similar to those found in charging scenario 

1. Increasing the BESS capacity in winter does not reduce the facilities dependency from the 

grid, as it can be seen in Figure 5.7a and, Figure 5.8a, as once again the limiting factor is the 

availability of solar energy generation, not the capacity to store it. 

 

 

Figure 5.7. Simulation results when the eRCV fleet is charged overnight for a day in (a) March and (b) July with 

a BESS of 0.5MWh. 

During summer months, once again the smaller BESS (Figure 5.7b) cannot store excess solar 

generation, and therefore effectively forces the system to sell a larger amount of surplus solar 
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energy to the grid. However, when a larger BESS is in place (Figure 5.8b), the grid 

consumption is almost zero, and the eRCV fleet is almost entirely charged from the generated 

solar energy, thus significantly lowering the energy bought from the grid, and therefore the 

operating costs of the fleet. 

 

 

Figure 5.8. Simulation results when the eRCV fleet is charged overnight for a day in (a) March and (b) July with 

a BESS of 5MWh. 
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Charging scenario 3: 

Now the simulation results when 10 eRCVs are charged at 11:00h and 9 eRCVs are charged at 

23:00h are presented and can be seen in Figure 5.9 for a BESS with 0.5 MWh capacity and in 

Figure 5.10 for a BESS with 5MWh capacity. In this scenario, the use of solar energy is 

maximised with a smaller BESS (Figure 5.9). The eRCV demand coincides in time with the 

solar energy generation, and only surplus solar energy is required to be stored in the BESS (see 

Figure 5.9b compared with Figure 5.7b).  

 

 

Figure 5.9. Simulation results when the eRCV fleet is charged at 11:00h and 23:00h for a day in (a) March and 

(b) July with a BESS of 0.5MWh. 
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As in the previous scenarios, the size of the BESS does not impact the energy used from the 

grid in winter, as can be seen by comparing Figure 5.9a and Figure 5.10a. During summer, the 

trend is the same as in previous scenarios. The larger the BESS, the lower the dependency of 

the facility on the grid. 

 

 

Figure 5.10. Simulation results when the eRCV fleet is charged at 11:00h and 23:00h for a day in (a) March and 

(b) July with a BESS of 5MWh. 
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The annual energy demand covered by the grid can be seen in Figure 5.11 as a comparison 

between a) charging scenario 1, b) charging scenario 2 and, c) charging scenario 3. As 

expected, the base case scenario (BCS) is 100% dependent on the grid irrespective of what 

charging scenario is in place, as no PV panels nor BESS are installed. When a BESS and PV 

is in place, the dependency on the grid is reduced as the BESS capacity increases. The energy 

demand covered by the grid, solar energy or the BESS has been included in a pie chart for a 

BESS of 0.5 MWh and 5 MWh as examples. In the figures, the energy demand covered by the 

BESS is actually excess solar generation stored by the BESS for use later in the day. 

 

 

(a)  (b) 

 

 

 

 

 

 

 (c) 

Figure 5.11. Energy demand covered by the grid, solar energy or by the BESS for a capacity of 0.5 MWh and 

5MWh for (a) charging scenario 1, (b) charging scenario 2 and, (c) charging scenario 3. 
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For a smaller BESS capacity (i.e., 0.05 MWh), the grid dependency is reduced by 

approximately 17% when the eRCV is charged at 11:00h and 23:00h (Figure 5.11c, charging 

scenario 3), followed by charging the eRCV fleet at 16:00h (Figure 5.11a, charging scenario 

1) that reduces the grid dependency by 11%. From these results, it is apparent that for sites 

considering the installation of a small BESS, charging scenarios 3 and 1 maximise the benefits 

of having a BESS installed. As previously discussed, the eRCV demand coincides in time with 

the solar energy generation for these two charging scenarios. Thus in the summer months, more 

capacity is available in the BESS to store surplus solar energy. As the BESS capacity increases, 

the dependency on the grid decreases for all the scenarios explored. 

5.3.2 Total cost of ownership over the system lifetime 

The total cost of ownership over the system lifetime (i.e., 15 years) has been analysed for each 

charging scenario, considering the BCS (i.e., the WMD does not have PV panels nor a BESS) 

and the BESS scenarios. 

Charging scenario 1: 

The total costs over the system lifetime when the eRCV fleet is charged at 16:00h, can be seen 

in Figure 5.12. Surprisingly, for this scenario only a BESS with a capacity equal to 1MWh 

reduces the total cost when compared to the BCS. Charging the eRCV fleet in the afternoon 

reduces the total costs by up to £150,000. This is because the fleet is charged not only when 

the electricity price is at its highest, but also when the network consumption red band is in 

place (please, refer to the network consumption band on chapter 4, section 4.3.4).  

It is important to consider that when the PV solar installation and the BESS are in place, even 

for this charging scenario, the consumption from the grid is reduced and therefore the cost of 

energy is reduced. However, the benefits of having a BESS are minimised due to the high 

electricity and network prices making some of the BESS capacities uneconomic.  
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Figure 5.12. The total costs over the system lifetime for charging scenario 1. 

Charging scenario 2: 

The total costs over the system lifetime when the eRCV fleet is charged overnight, can be seen 

in Figure 5.13. From these results, it may be seen that the introduction of solar energy and 

BESS to support overnight charging reduces the total costs for BESS capacities smaller than 5 

MWh. The maximum cost reduction is achieved using a BESS with a 1 MWh capacity, 

achieving approximately £530,000 reduction in costs. 

 

Figure 5.13. The total costs over the system lifetime for charging scenario 2. 
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Charging scenario 3: 

The total costs over the lifetime for this scenario are shown in Figure 5.14. The trend in total 

costs is the same as the overnight charging trend (i.e., charging scenario 2). The introduction 

of PV panels and a BESS into the system reduces the total costs over the lifetime for a BESS 

smaller than 5 MWh, when compared with the base case scenario. However, for a larger BESS, 

the reduction in energy costs is overshadowed by the increase in BESS costs. The total costs 

can be reduced by up to £1M for a BESS with 0.5 MWh of capacity. This scenario provides 

the largest reduction in total costs of the 3 scenarios, compared to the base case. 

 

Figure 5.14. The total costs over the system lifetime for charging scenario 3. 
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Additionally, the results show that having PV panels and BESS installed onsite reduces the 

total costs over the system lifetime when the BESS has a capacity below 5MWh, when 

compared to the BCS in this case. Under all the charging scenarios explored, overnight 

charging (i.e., charging scenario 2) is still an attractive option although it is not the most 

economic one. The highest reduction in total costs is achieved when the fleet is charged in two 

separate time slots (i.e., charging scenario 3). This scenario reduces the total costs by £1M. 

This charging pattern, however, is only compatible with certain fleets that can adapt their 

operation and working schedules to suit the optimal charging patterns. It would require a 

transformation that not all the logistic companies are able to follow, due to the operational 

requirements of the fleets and customers. 

The least promising scenario is one in which the EV fleet is charged in the afternoon (i.e., 

charging scenario 1). As was discussed earlier, this period has the highest electricity and 

network charges, and therefore leads to the least impact in terms of cost savings. 

Figure 5.15 shows the differences in network consumption band costs for the different 

scenarios. The consumption band cost is the price paid for using the network at certain hours 

over the day. The consumption band costs are divided into red, amber, and green, and operate 

as follows: 

• The amber band rate is charged between 07:00h-16:00h and 19:00h-21:00. 

• The red band rate spans from 16:00h to 19:00h. 

• The green band rate is from 00:00h to 07:00h and from 21:00h to 24:00h. 

When the eRCV fleet is charged at 16:00h (Figure 5.15a), the red band network consumption 

cost rises significantly.  
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Figure 5.15. Consumption band cost per year when for (a) scenario 1, (b) scenario 2, (c) scenario 3 
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emissions per year are achieved for the BCS. When the WMD has PV panels and a BESS on 

site, regardless of the BESS capacity, the total GHG emissions are reduced compared to the 

base case scenario. The GHG emissions can be reduced by up to 41 tons CO₂ eq. per year with 

a BESS of 0.05 MWh. As the size of the BESS increases, more solar energy can be stored, and 

the amount of surplus solar energy available for sale is reduced. This reduces the GHG emission 

credit received by the system for selling energy back to the grid, and therefore increases the 

overall GHG emissions. 

 

Figure 5.16. Total GHG emissions for scenario 1. 
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Figure 5.17. eRCV fleet GHG emissions per year for the different charging scenarios. 

5.4 Discussion 

Based on the results presented in this chapter, charging the eRCV fleet with solar energy 
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charging the eRCV fleet overnight (scenario 2) seems to be the most reasonable solution 

if the depot does not have PV solar panels or BESS on site (i.e., the BCS). Having PV 

solar panels and BESS installed on site reduces the total costs when the fleet is charged 

overnight or at 11:00h and 23:00h (scenario 3) for BESS smaller than 5MWh. The 

maximum cost reduction is achieved with a BESS of 0.5MWh when the eRCV fleet is 

split and charged at 11:00h and 23:00h. This provides savings of approximately £1M. 

If due to operational constraints the eRCV fleet has to be charged overnight, the 

maximum cost reduction would be £530,000 for a BESS of 1MWh over the system 

lifetime of 15 years. 

 

3. GHG emissions: The different charging patterns impact the eRCV fleet GHG emissions 

when PV solar energy and BESS are installed on-site. For a smaller BESS, the GHG 

emissions are reduced the most when part of the fleet is charged at 11:00h and the rest 

of the eRCV fleet at 23:00h. Increasing the demand when the PV solar installation is 

generating energy maximises the instantaneous use of the solar energy. The scenario 

with the lowest GHG savings corresponds to overnight charging. For a larger BESS, 

the reduction in GHG emissions is similar for the three charging scenarios.  
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5.5 Summary 

This chapter aims to answer research questions I and II: 

• What are the environmental and economic benefits of using solar energy and BESS to 

charge an electric freight fleet when logistic and operational constraints are 

considered?  

• When using solar energy and BESS, what are the implications on the grid dependency 

and consequently GHG emissions, when different charging strategies are applied? 

In that regard, the electrification of a RCV fleet has been examined for a waste management 

depot (WMD). In order to have a broader knowledge of how the use of PV panels and a BESS 

could impact on fleet electrification, three different charging patterns were assessed. 

Understanding how feasible it would be to use renewable energy and a BESS to charge a fleet 

implies the necessity of considering the operational requirements of the fleet. Each logistics 

and commercial company has different constraints based on the operations required at the site, 

so it is important to reflect that into the charging utilisation. 

For that purpose, each charging scenario was described and simulated following the energy 

management model developed in chapter 4. The results obtained from the simulations were 

analysed and compared against the base case scenario. In this chapter, the BCS stands for the 

hypothetical situation in which the WMD does not have PV panels nor BESS installed on site, 

and the RCV fleet is electric. The grid dependency, total cost over the system lifetime and the 

GHG emissions were then evaluated. It was found that the introduction of PV panels and a 

BESS reduces the grid dependency of the overall facility, system’s lifetime total cost for certain 

BESS capacities and reduces the GHG emissions. Depending on the charging pattern, the 

benefits of having PV panels and a BESS on site can be further maximised. Overall, results 

conclude that it is economically feasible to use local solar energy generation and a BESS on 

site when a logistics or commercial company, similar to the characteristics of the WMD, decide 

to electrify their fleet.  

Following on from this study, the next chapter considers a further constraint when it comes to 

fleet electrification, the grid power connection capacity. This is one of the most common 

barriers that logistics and commercial companies find when they wish to electrify the fleet and 

can be expensive and time-consuming to upgrade to support the fleet [89].  
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6 Technical assessment of EV fleet mass charging considering power capacity 

constraints 

6.1 Introduction 

The feasibility of adopting EV fleets into commercial depots was explored in Chapter 5 using 

locally generated PV solar energy and a BESS. The results demonstrated a reduction in total 

costs over system lifetime when the depot has installed PV solar panels and BESS to support 

the eRCV fleet charging, especially if the charging takes place overnight or if it is divided in 

two time slots (i.e., 11:00h and 23:00h). 

Despite the encouraging results obtained in Chapter 5, it was assumed that the power 

connection to the depot could be upgraded due to increased energy demand. However, in 

reality, this assumption is only occasionally possible and often an issue that results in the delay 

of electric fleet adoption in logistic and commercial companies. Therefore, in this chapter, this 

potential power constraint is addressed, and a new algorithm is developed for that purpose. The 

chapter aims to evaluate a scenario of eRCV fleet charging in which the power connection 

capacity cannot be upgraded. In light of this issue, some solutions explored in the literature to 

date have focused on smart charging or load management. In Chapter 6, the author proposes 

energy storage as a complementary solution. By the end of the chapter, the final research 

question introduced in Chapter 2 will be answered: To what extent solar energy and BESS can 

ease the power capacity constraints when it comes to EV fleet electrification? 

For that purpose, the algorithm keeps the power connection at the maximum allowed with the 

help of a BESS that is charged not only with PV surplus solar energy but also with energy from 

the grid mix. This is achieved at the expense of increasing the demand from the grid when the 

electricity and network prices are at their highest values. The simulations are carried out 

assuming the eRCV fleet is charged overnight (i.e., from 21:00h). The results are compared 

against those obtained for the overnight scenario explored in Chapter 5. The objective of 

making such a comparison is to determine, in cases where there is the option, what is the most 

feasible way forward, either to keep the power connection capacity at the same level as it was 

before the adoption of the eRCV fleet or upgrade the power connection to add more flexibility 

regarding the charging time and dependency from the grid at lower electricity and network 
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costs. The results presented in this chapter are part of previously published work in the Energies 

journal in 202311 [175]. 

6.2 Methodology 

In this section, the scenarios studied are introduced and the energy management algorithm 

(EMA) developed is explained in detail. 

6.2.1 Scenarios 

For all the scenarios, it is assumed that the eRCV fleet operates between 06:00h and 14:00h 

and returns to the depot to wait until charging is scheduled from 21:00h. It is assumed that the 

eRCV fleet is fully charged at the end of the charging period for a total of approximately 8.5 

hours. Three different scenarios have been considered to evaluate the impact of having PV 

panels and a BESS installed on site, shown diagrammatically in Figure 6.1. 

Scenario 1 

Scenario 1 (Figure 6.1a) assumes that the company does not have PV panels, nor a BESS 

installed, and that the site is fully dependent on the grid connection to cover both the existing 

depot load, and the eRCV fleet energy demand. 

Scenario 2 

Scenario 2 (Figure 6.1b) incorporates PV panels and a BESS at the WMD. The depot and the 

eRCV fleets energy demands are met by the grid and by the PV solar installation. An algorithm 

manages the energy flow for scenario 2, prioritising avoidance of grid usage during peak price 

periods, which requires upgrading the grid power connection. Owing to the heightened energy 

requirements following the integration of the eRCV fleet, it is assumed that the grid power 

connection capacity will be expanded from 0.15 MW to 0.6 MW. This scenario corresponds to 

the overnight scenario described in the chapter 5 (i.e., scenario 2). 

 

 

11 Part of this chapter has been used for publication at the Energies journal as “Nunez Munoz M, Ballantyne 
EEF, Stone DA. Assessing the Economic Impact of Introducing Localised PV Solar Energy Generation and Energy 
Storage for Fleet Electrification. Energies 2023;16:3570. https://doi.org/10.3390/en16083570 .” 

https://doi.org/10.3390/en16083570
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Scenario 3 

In Scenario 3 (Figure 6.1c), as in Scenario 2, PV panels and a BESS are installed at the WMD. 

However, the BESS in this scenario is charged from the PV solar installation and the grid. The 

primary aim of the algorithm in this context is to avert any necessity for an upgrade in the grid 

power connection, despite the surge in energy demand following the integration of the eRCV 

fleet at the WMD, at the expense of using the grid supplied energy at peak prices. 

Consequently, the power capacity connection remains at the pre-existing level of 0.15 MW. 

 
 

(a) (b) 

 

      (c) 

Figure 6.1. “Energy flow diagram for (a) scenario 1, (b) scenario 2 and, (c) scenario3” (Figure obtained from 

[175]). 

To enable an economic comparison among the three scenarios, scenario 1 is performed 

considering both power connection capacities, 0.15 MW and 0.6 MW, as shown in Table 6.1. 
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Table 6.1. “Summary of the scenarios studied, and the approach used for the cost analysis” (Table obtained from 

[175]). 

 
Power connection capacity  

(0.15 MW) 
Power connection capacity (0.6 MW) 

Scenario 1   

Scenario 2   

Scenario 3   

6.2.2 Energy management algorithm 

Two different energy management algorithms (EMA) have been modelled for evaluating the 

cost implications of fleet electrification for a company incorporating an on-site PV installation 

alongside a BESS. 

Two priorities distinguish Scenario 2 and scenario 3. In Scenario 2, the algorithm focuses on 

decreasing reliance on the grid during peak price periods, even if it requires upgrading the 

power connection. On the other hand, in scenario 3 the algorithm avoids power connection 

upgrades, potentially resulting in excess capacity charges. Both algorithms were developed in 

Matlab Simulink. 

The EMA designed for scenario 2: Prioritises grid consumption during off-peak 

electricity prices and network charges. 

The primary goal of scenario 2 is to emphasise grid consumption during periods of lower 

network charges and electricity prices. To achieve this objective, the chosen energy 

management algorithm for scenario 2 aims to reduce the expense of purchasing electricity from 

the grid by prioritising the utilisation of PV solar energy whenever feasible, especially during 

peak network costs and high electricity price periods. Notably, two peak timeframes (between 

6 am and 10 am, and 4 pm-8 pm) experience the highest electricity costs. In this regard, scenario 

2 considers the overnight charging scenario that enables the vehicles to be charged at a lower 

electricity price (post 21:00h, is during off-peak hours). The EMA for scenario 2 was explained 

in detail in Chapter 5 (section 5.2.2) and assumes that the energy requirements of the depot and 

the eRCV fleet are met through a three-tier approach: primarily by solar energy, followed by 

energy sourced from the BESS, and as a final option, through the grid. During the day, when 
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the electricity and network costs are highest, the BESS is discharged when solar energy cannot 

meet the demand. 

In Scenario 2, for the system to avoid exceeding the maximum capacity of the grid power 

connection during peak periods, an enhancement of the grid power connection is implemented, 

increasing it from 0.15 MW to 0.6 MW. 

The EMA designed for scenario 3: Aims to prevent the need for a power connection 

capacity upgrade. 

The main objective in creating the EMA for scenario 3 was to prevent any need for any 

potential power connection capacity upgrades resulting from transitioning from a conventional 

fleet to an electric one. For that purpose, the algorithm utilises a BESS that is charged from PV 

solar energy and also from the grid. The EMA effectively connects the system formed by the 

PV installation, the BESS, the EV fleet, and the depot with the grid (as illustrated earlier in 

Figure 6.1c). 

As for the EMA developed for scenario 2, the BESS is assumed to have an efficiency of 90%. 

Due to the influence that different seasons have on solar energy generation, the energy flow for 

scenario 3 was managed differently in autumn/winter and spring/summer. Thus the EMA for 

scenario 3 is differentiated between the summer and winter seasons. In this regard, on 

weekends, the BESS is only charged from solar energy during summer, whereas in winter, 

energy from the grid is required as there is not enough solar energy to charge the BESS fully. 

A detailed diagram of the algorithm developed for scenario 3 can be seen in Figure 6.2. 
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Figure 6.2. “Flow chart of the energy management algorithm developed for scenario 3” (Figure obtained from [175]). 
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In this algorithm for scenario 3, some constraints have been also applied. The constraints 

number 1, 2 and 3, previously introduced for the EMA developed for scenario 2 (see Chapter 

5, section 5.2.2), are also applied here.  

➢ The BESS is charged from the PV installation and from the grid. The BESS is modelled 

assuming that any voltage or current change is achievable with changes in SoC [134] 

following Equation 6.1. 

CBESS ∙
∂SoC

∂t⁄ = BESSrteff ∙ PBESS(t)
+ + PBESS(t)

− 

Equation 6.1 

➢ When the BESS is charged from the grid, the power required from the grid (Power(t)) 

to charge the BESS can’t be higher than the power connection capacity (Powercapacity), 

as in Equation 6.2. 

Power(t) < Powercapacity 

Equation 6.2 

➢ In autumn and winter, due to the scarcity of solar energy generation, the BESS is 

charged over the weekend from both the PV installation and from the grid. On 

weekdays, the BESS is only charged when the EV fleet charging mode is off.  

➢ During spring and summer, the solar energy generation increases, and during the 

weekend, the BESS is only charged from the PV installation. On weekdays, the BESS 

is charged, when the EV fleet is not charging, from the PV installation and, if there is 

still available capacity, is charged from the grid. 

➢ The BESS is discharged only on weekdays when the EV fleet charging mode is on 

throughout the whole year. 

➢ As for the EMA developed for scenario 2, when the algorithm ends at time step 8784, 

the BESS energy balance must be 0. 

Assuming the site can’t upgrade the grid power connection network, the power connection 

capacity contracted at the site has to be the same as it was before switching the fleet to electric, 

0.15 MW. This is done at the expense of storing energy from the grid, even during higher price 

periods as required. 
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6.2.3 System cost analysis 

The system cost evaluation is performed for the three scenarios introduced in Table 6.1. 

namely, scenario 1, scenario 2, and scenario 3, for a system lifetime of 15 years. The total costs 

for Scenario 1 are estimated considering power connection capacities of 0.15 MW and 0.6 MW 

which facilitates its comparison with Scenario 2 (i.e., 0.6 MW) and Scenario 3 (i.e., 0.15 MW). 

The total costs for each scenario have been estimated following Equation 6.3 

Total costs over system lifetime =  Ec + Nc + BESSc + PVc − Revc 

Equation 6.3 

Where (Ec), is the energy from the grid, (Nc) are the network costs, (BESSc) is the cost of the 

BESS, (PVc) is the cost of the PV installation and (Revc) corresponds to the revenue obtained 

from the sale of surplus solar energy. 

The detailed equations to estimate each parameter of Equation 6.3 have been introduced on 

Chapter 4. 

The installation costs resulting from increasing the power connection capacity are also 

considered for the system cost analysis in this chapter for Scenario 1 and Scenario 2. The 

installation cost when the power connection capacity is upgraded from 0.15 MW to 0.6 MW 

(i.e., approximately 667 kVA considering a PF of 0.9) is assumed at £45,740. The value have 

been obtained according to the estimations from Energy UK [314], based on the approximate 

connection costs for an upgrade of between 200 kVA and 1,000 kVA which would be between 

£4,500 and £75,000. 

Conversely, this study does not consider the eRCV fleet's purchase cost or the charging 

infrastructure expenses. The scenarios examined assume that the fleet at the WMD is already 

electric, making these costs outside the study's scope. Any potential new investment would 

pertain solely to the acquisition and installation of the PV and BESS. For all the three scenarios, 

the number of chargers is the same as the operational requirements of the fleet are equal for the 

three scenarios analysed. 
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6.3 Results 

The section analyses the simulation results and then compares the outcomes of each scenario. 

This comparison aims to determine the relevance of installing PV panels and a BESS on-site. 

Ultimately, the section concludes by offering a comprehensive comparison and further 

discussion of all the studied scenarios. 

6.3.1 Economic implications of integrating PV panels and a BESS to mitigate grid 

consumption during peak electricity and network prices. 

The capacity of the BESS directly influences the extent to which the depot relies on the grid, 

thereby impacting energy and network expenses. This is shown in Figure 6.3, where two 

distinct BESS capacities are depicted: a 0.5 MWh BESS (Figure 6.3a) and a 5MWh BESS 

(Figure 6.3b). Figure 6.3 shows the monthly energy purchased from the grid, the monthly solar 

energy consumed directly from the PV panels (“consumed from PV”), the monthly solar energy 

stored at the BESS (stated as “to BESS” in the figure) for later use (“from BESS”) and the solar 

surplus energy sold to the grid (“PV solar surplus”). 

 

(a) (b) 

Figure 6.3. “Monthly energy simulation results for scenario 2 using a BESS with a capacity of: (a) 0.5 MWh and 

(b) 5MWh. The positives values on each graph represent the energy consumption from the grid, from solar, 

either directly or via the BESS. The negative values indicate solar energy generation and energy storage in the 

BESS” (Figure obtained from [175]). 

The use of a smaller BESS, such as the 0.5 MWh battery capacity, results in a lower portion of 

surplus solar energy being stored than in a larger BESS. In this case, the BESS can only store 

some of the generated excess solar energy, leading to a significant portion being sold back to 
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the grid, thereby failing to reduce grid dependency substantially. On the other hand, a larger 

BESS, like the battery with a capacity of 5 MWh, can store most of the surplus solar energy, 

reducing reliance on the grid. This is especially noticeable during the summer season when 

solar energy generation is at its peak, and the BESS capacity becomes the limiting factor. 

However, during winter months, when solar generation decreases, increasing the BESS size 

does not significantly reduce grid dependency. This is shown in more detail in Figure 6.5. 

Figure 6.4 presents the annual energy demand drawn from the grid at different battery 

capacities. The analysis includes results for scenario 1 (No PV or BESS) for comparison with 

Scenario 2. As the BESS capacity increases, the energy drawn from the grid diminishes, as it 

can be seen by the declining purple line in the graph. 

 

Figure 6.4. “Energy demand covered by the grid (purple line) for scenario 1 and scenario 2, and the breakdown 

of energy demand covered by the grid, by direct PV generation and by the solar via the BESS for CBESS of 0.5 

MWh and 5MWh as examples (pie charts)” (Figure obtained from [175]). 

A comprehensive breakdown is provided for the two previously examined BESS capacities, 

namely 0.5 MWh and 5 MWh. At 0.5 MWh, there is a 15% reduction in energy demand from 

the grid. Specifically, the energy demand is distributed as follows: 85% is supplied by the grid, 

8% is directly met through PV solar generation, and an additional 7% is fulfilled by the surplus 

solar energy stored within the BESS. In contrast, a 5 MWh BESS yields a more substantial 

26% reduction in grid energy demand, with the following distribution: 74% of demand is met 
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by the grid, 8% is sourced directly from PV generation and a significant 18% is drawn from 

solar energy stored in the BESS. For a BESS with 10 MWh of capacity, a 27% reduction in 

grid supply is achievable, as it is constrained by the amount of PV generation rather than the 

size of the energy storage. 

The hourly energy simulation outcomes for scenario 2 are depicted in Figure 6.5 illustrating a 

week in February (Figure 6.5a) and July (Figure 6.5b) with a BESS capacity of 5 MWh. 

The BESS State of Charge (SoC) is displayed at the top of Figure 6.5 (indicated by the green 

line). In the middle, the energy consumption from the eRCV fleet is shown as a blue line. The 

bottom part of Figure 6.5 shows the hourly values of the modelled solar energy generation (in 

yellow), WMD energy demand (in orange), and energy purchased from the grid (in purple). 

The hours are denoted from “0”, corresponding to the hour after 00:00h on Saturday morning, 

to “23”, representing the last hour of the following Friday night. As it can be seen, the eRCV 

fleet is charged from Monday to Friday, aligning with the discussed usage patterns. 

Taking Figure 6.5a as an illustration of a winter week, it becomes evident that the energy 

needed to fulfil the eRCV’s requirements is entirely sourced from the grid. The benefits of 

incorporating on-site PV generation and a BESS are diminished compared to other seasons (as 

shown in Figure 6.5b), primarily due to significantly reduced PV generation in winter. 

However, in summer (Figure 6.5b), grid consumption decreases notably for the WMD building 

and the eRCV fleet. During weekends, the WMD operates independently from the grid, and 

the BESS becomes fully charged by storing surplus solar energy. As a result, the BESS 

accumulates enough energy to charge the fleet at night partially. On Mondays, the fleet’s 

charging relies predominantly on the energy stored in the BESS from the PV generation over 

the weekend. 
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(a) 

 
(b) 

Figure 6.5. “Hourly energy distribution for scenario 2 with a BESS capacity of 5MWh in a week in (a); 

February and (b) July” (Figure obtained from [175]). 

The lifetime costs for scenario 1, and for scenario 2 at different BESS capacities, have been 

calculated and are presented in Figure 6.6. The total costs are broken down into network costs, 

cost of energy, cost of BESS, and cost of PV panels. Additionally, for scenario 2, any surplus 

solar energy revenue has been deducted from the energy costs. 

In Figure 6.6, the larger BESS capacities result in lower energy costs from the grid. Hence the 

introduction of a BESS and PV generation is justified to reduce the energy costs and grid 

dependency. However, when considering all amortized costs, including the BESS and PV panel 

costs, certain battery capacities are no longer economical for annual electricity cost reduction 

when compared to scenario 1. 
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Scenario 2 with a BESS of 1 MWh of capacity proves to be the most cost-effective, leading to 

a total cost reduction of £530,000 over the system's lifetime (i.e., 15 years) when compared to 

scenario 1. 

 
Figure 6.6. “Total cost over system lifetime for scenario 1 and scenario 2” (Figure obtained from [175]). 

The detailed system costs for scenarios 1 and 2 at various battery capacities are presented in 

Table 6.2.  

The energy cost, particularly for smaller BESS capacities, has the most significant impact on 

the total costs, ranging from 88% to 56%. For higher-capacity batteries (e.g., 5 MWh), the cost 

of the BESS (including capital cost and O&M cost) contributes between 20% and 33% to the 

total cost over the system's lifetime. 

Table 6.2 also includes the network cost over the system's lifetime, encompassing all associated 

costs such as capacity, fixed, network upgrade, and consumption band costs. Exceeded capacity 

costs are excluded since the capacity connection is not exceeded in Scenario 1 or Scenario 2 

for this specific case. 

As can be seen in Table 6.2, the network cost decreases with increasing BESS capacity, with 

scenario 1 having the highest costs and scenario 2 with a 10 MWh BESS having the lowest. 

This reduction in network cost is due to the decrease in network consumption costs, as depicted 

in Figure 6.7. 
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Table 6.2. System cost at different battery capacities (CBESS) for scenario 1 and scenario 2. The values in £ are 

included in Appendix B. 

Power 

connection 

capacity 

(MW)  

Scenarios 

Cost 

of 

energy 

per 

year 

(k£) 

Surplus 

solar 

energy 

revenue 

per 

year 

(k£) 

BESS 

capital 

cost 

(k£) 

BESS 

O&M 

cost 

(k£) 

PV 

capital 

cost 

(k£) 

PV 

O&M 

cost 

(k£) 

Network 

cost 

over the 

system 

lifetime 

(k£) 

Total 

cost 

over 

system 

lifetime 

(mil£) 

0.6 

 Scenario1 460.4 0 0 0 0 0 222.4 7.13 

Scenario 
2 

(MWh) 

0.05 407.2 11.1 12.7 1.9 

629.1 135.3 

203.4 6.92 

0.1 402.4 10.6 25.4 3.8 200.5 6.87 

0.5 379.5 7.3 127.0 18.8 194.2 6.69 

1 361.6 4.7 254.0 37.5 191.9 6.60 

5 330.0 0 1,270.0 187.5 191.2 7.36 

10 329.5 0 2,540.0 375.0 191.2 8.81 

Figure 6.7 illustrates the network consumption cost per year for each consumption band in 

scenarios 1 and 2, for different BESS capacities. The contrast in red consumption band costs 

between scenario 1 and scenario 2, with a 0.05 MWh BESS capacity, is significant as the costs 

decrease by 43%. However, for BESS capacities larger than 0.5 MWh, the cost reduction for 

the red band consumption remains constant at 57%. Most of the decrease in the red band occurs 

during summer, when there is sufficient stored solar energy in the BESS to be used by the 

system during the red band period, eliminating the need for grid energy in this period. In 

contrast, insufficient PV generation in winter hinders any reduction in red band consumption, 

regardless of the BESS size. 

The costs related to the amber band also decreased in scenario 2 compared to scenario 1. Larger 

BESS capacities exceeding 0.5 MWh can further reduce the costs associated with the amber 

band. This effect stems from the amber band occurring later in the day compared to the red 

band. Consequently, larger BESS capacities are particularly effective in prolonging the period 

during which excess solar energy is supplied to the system, resulting in a more significant 

reduction. The same holds for the costs linked to the green band, which only decrease with 

BESS capacities over 1 MWh, as these are capable of storing enough excess solar energy to 

meet the demand during the start of the evening period when the green band is active.  
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Figure 6.7. “Network consumption cost per year for scenario 1 and scenario 2” (Figure obtained from [175]). 

In summary, the analysis conducted for scenarios 1 and 2 indicates that introducing PV panels 

and a BESS can yield economic benefits for logistics or commercial company when a fleet is 

electrified and consequently, the energy demand on site proportionately increases. 

The algorithm applied in scenario 2 effectively fulfils its objective of reducing grid 

consumption during peak electricity and network price periods, leading to a total cost reduction 

of approximately £530,000 over the system’s lifetime when PV panels and a BESS of 1 MWh 

are implemented, when compared to scenario 1. 

Next, the study examines the outcomes for scenario 3 for comparison with scenario 1. Due to 

the constraint set on the algorithm developed for scenario 3 (the power capacity connection at 

the WMD cannot be upgraded upon electrification of the fleet, resulting in the grid connection 

remaining fixed at 0.15 MW), and in order to successfully compare this with scenario 1, the 

power connection for scenario 1 is also assumed to remain at 0.15 MW. 
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6.3.2 Economic implications of installing PV panels and BESS when there is a grid 

connection constraint. 

This section is dedicated to examining a significant hurdle logistics, and commercial companies 

face when transitioning to an electrified fleet, namely the considerable increase in on-site 

energy demand coupled with a constrained grid power connection. 

The hourly energy distribution for scenario 3, with a BESS capacity of 5 MWh, is depicted in 

Figure 6.8 for both a week in February (Figure 6.8a) and a week in July (Figure 6.8b). The 

figure illustrates the BESS State of Charge (SoC) at the top (green colour), the hourly energy 

consumption from the eRCV fleet below (blue line), and at the bottom, the hourly modelled 

PV generation, the WMD energy demand, and the energy purchased from the grid. As before, 

the first point in Figure 6.8 corresponds to a Saturday at 00:00h, and the last corresponds to a 

Friday at 23:00h. 

Upon initial examination, it becomes apparent that the BESS with 5 MWh cannot maintain the 

power capacity connection within the initial constraint (i.e., 0.15 MW). This is evidenced in 

Figure 6.8a through the hourly energy purchased from the grid (purple line).  

Throughout the winter months, the BESS gets fully charged from the grid on weekends (when 

the eRCV fleet does not operate) due to reduced PV generation at this time of the year. This 

ensures that the system avoids surpassing the power connection capacity during the initial days 

of the week (i.e., Monday to Wednesday). However, the BESS is not large enough to prevent 

exceeding the power connection capacity in order to successfully charge the eRCV fleet for the 

remaining days of the week. 

During summer (as shown in Figure 6.8b) the system relies less on the grid to charge the BESS, 

and more importantly, the BESS can prevent exceeding the contracted power connection 

capacity with the grid network. At this time of the year, the PV solar energy generation is at its 

highest, and it maximises the potential of having PV panels and a BESS installed. 
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(a) 

 
(b) 

Figure 6.8. “Hourly energy distribution for scenario 3 with a BESS capacity of 5 MWh in a week in (a) 

February and (b) July” (Figure obtained from [175]). 

Since the algorithm designed for scenario three did not meet the constraint set with a BESS of 

5 MWh, a larger BESS of 10 MWh was analysed in the simulation. The outcomes are depicted 

in Figure 6.9. With a 10 MWh BESS, the system successfully maintains the power connection 

capacity within the contracted rating during winter (Figure 6.9a) and summer (Figure 6.9b). 
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(a) 

 
(b) 

Figure 6.9. “Hourly energy distribution for scenario 3 with a BESS capacity of 10 MWh in a week in (a) 

February and (b) July” (Figure obtained from [175]). 

In winter (Figure 6.9a), the BESS is fully charged over the weekend, storing higher energy than 

the smaller BESS. This stored energy is enough to supply the eRCV fleet throughout the week, 

eliminating the need for power connection upgrades. The BESS reaches full charge on Monday 

and is discharged to around 20% of its state of charge (SoC) by Friday. It is important to note 

that the system requires an almost continuous grid supply to achieve the algorithm's objective. 

On Saturday morning, the BESS is nearly fully discharged when the eRCV fleet has been 

completely recharged the previous night. Conversely, in summer (Figure 6.9b), the BESS starts 

the week almost fully charged, and it is only discharged to approximately 60% of its capacity 

by the end of the week. 

 



 

Page 218 of 286 

Figure 6.9 illustrates certain limitations in the algorithm, which could be further improved and 

serve as potential future work. For example, the energy purchased from the grid in summer 

could be optimised considering the BESS is not discharged below 50% SoC. The algorithm is 

set to receive the energy from the grid at the maximum connection power capacity, but in 

summer, it can be reduced and by doing so, the cost of energy would also be reduced too. 

Furthermore, the simulation outcomes depicted in Figure 6.8b and Figure 6.9b highlight that 

some on-site solar energy generation remains untapped. Specifically, approximately 10% and 

13% of PV energy generated is sold back to the grid with a BESS capacity of 5 MWh and 10 

MWh, respectively. As can be seen in both figures, on Monday, when the PV installation starts 

to generate solar energy, the BESS is almost fully charged, and therefore the solar energy has 

to be sold to the grid.  

Table 6.3 presents the estimated total cost over the system lifetime for Scenario 1 and Scenario 

3. The results indicate that installing PV panels and a BESS reduces the energy cost compared 

to scenario 1. Additionally, network costs are significantly lower in scenario 3 compared to 

scenario 1. Specifically, with PV panels and a BESS of 5 MWh or 10 MWh on-site, network 

costs decrease by approximately 75% and 82%, respectively. This highlights one of the key 

benefits of using a BESS for fleet electrification: it enables increased energy demand without 

exceeding the grid connection power capacity and incurring additional associated costs. For 

this particular scenario, only a 10 MWh BESS can maintain the grid connection power capacity 

at its original value (i.e., 0.15 MW). However, it is essential to note that when considering all 

amortised costs, system’s lifetime total cost does increase significantly when the BESS and the 

PV panels are installed. 

Table 6.3. System cost for scenario 1 and scenario 3 (with a BESS of 10 MWh). The values in £ are included in 
Appendix B. 

Power 

connection 

capacity 

(MW)  

Scenarios 

Cost 

of 

energy 

per 

year 

(k£) 

Surplus 

solar 

energy 

revenue 

per 

year 

(k£) 

BESS 

capital 

cost 

(k£) 

BESS 

O&M 

cost 

(k£) 

PV 

capital 

cost 

(k£) 

PV 

O&M 

cost 

(k£) 

Network 

cost 

over the 

system 

lifetime 

(k£) 

Total 

cost 

over 

system 

lifetime 

(mil£) 

0.15 

 Scenario1 460.4 0 0 0 0 0 908.9 7.8 

Scenario 
3 

(MWh) 

5 421.8 2.1 1,270 187.5 

629.1 135.3 

231.9 8.8 

10 
427.5 1.8 2,540 375.0 167.9 10.2 
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6.3.3 Feasibility assessment of PV panels and BESS implementation for electrifying 

freight fleet. 

A comprehensive examination of the economic viability of integrating PV panels and a BESS 

into the freight fleet electrification process has been conducted between scenario 1, including 

power capacities of 0.15 MW and 0.6 MW, scenario 2 (i.e., 0.2 MW) and scenario 3 (i.e., 0.15 

MW). For scenario 2, a BESS with 1 MWh capacity yielded the most significant cost reduction 

over the system’s lifetime, so it has been the one considered for the analysis. Alternatively, a 

BESS of 10 MWh capacity has been chosen for the analysis to ensure compliance with the 

contracted grid connection power constraint. 

Figure 6.10a compares total costs over the system lifetime for each scenario. As can be seen, 

Scenario 2, which involves PV panels and a BESS installation on site, emerges as the most 

viable option in terms of cost-effectiveness. The aim of scenario 2 is to reduce grid 

consumption during peak price periods, considering that the introduction of the electric fleet 

increases the electricity demand of the site considerably. When analysing Figure 6.10a, it 

becomes evident that upgrading the power connection is more cost-effective than investing in 

a larger BESS if the connection capacity is not constrained at the site. 

However, if the upgrade of the power connection capacity is not an option for the logistics or 

commercial company (i.e., 0.15 MW), it would still be worth further exploring the potential 

benefits of introducing PV panels and a larger BESS. This ensures that the system can meet 

the increased energy demand without exceeding the power capacity of the grid connection. The 

comparison between scenario 1 and scenario 3 for the same power capacity (i.e., 0.15 MW) 

reveals the advantages of introducing a 10 MWh BESS in reducing the excess capacity charge 

incurred by the site from around £0.8M to zero (Figure 6.10b). Nonetheless, the economic 

feasibility of this option remains challenging due to the high cost of the large BESS as shown 

in Figure 6.10a (scenario 3). Despite the decreasing cost of energy storage technology in recent 

years [309,310] and with cost projections indicating a further potential reduction in capital cost 

by 2030 [300], BESS cost is still a major barrier to these systems.  

If the logistics or commercial company has no intention of installing PV panels and a BESS 

(i.e., scenario 1), upgrading the power capacity connection could result in a considerable cost 

reduction of around £680,000 over the system’s lifetime. 



 

Page 220 of 286 

 
(a) 

 
(b) 

Figure 6.10. Top graph (a): Comparison of system’s lifetime total cost between the three scenarios Bottom 

graph (b): Comparison of the network cost over system lifetime [175].  



 

Page 221 of 286 

6.4 Summary 

This chapter aims to answer the final research question: To what extent, can solar energy and 

BESS ease the power capacity constraints when it comes to EV fleet electrification? 

There are not many references in literature addressing this challenge, together with renewable 

energy generation and a BESS. Moreover, publications tend to address the issue through 

charging schedule adjustments. However, in real life, this would imply a change in operational 

requirements, and may not be feasible in practical settings. 

In that regard, the chapter aimed to assess cost impacts when a company electrifies its fleet, 

focusing on two priorities. The first is avoiding grid use during peak price periods necessitating 

power connection upgrading (Scenario 2). The second is avoiding power connection upgrades 

which may lead to excess capacity charges (Scenario 3). These priorities mirror real challenges 

logistics and commercial companies face during fleet electrification, influenced by operational 

needs or technical limitations. 

For that purpose, this chapter evaluates three different scenarios. For all scenarios, it is assumed 

that the fleet has been electrified. Scenario 1 is characterised by being 100% dependent from 

the grid. In contrast, scenario 2 and scenario 3 have PV panels and a BESS installed. However, 

in scenario 3 a technical constraint prevents power capacity connection upgrades. The energy 

distribution for scenarios 2 and 3 is controlled by two rule-based energy management 

algorithms. 

According to the findings, scenario 2 with a 1MWh BESS is the most cost-effective, resulting 

in a potential lifetime cost reduction of £530,000. It has been demonstrated that the presence 

of PV panels and a BESS on-site proves beneficial for all explored scenarios, regardless of 

whether the goal is to minimize grid dependency during peak times or avoid power connection 

upgrades.  

At times, the upgrade of the power connection is not an option for different reasons outside the 

company’s control (i.e., WMD in this case). Under these circumstances, if the grid connection 

power capacity is surpassed, the system incurs additional costs due to excess capacity charge. 

It has been demonstrated that under these circumstances, a 10 MWh BESS effectively fulfils 

energy requirements without surpassing the contracted grid connection power capacity. 

However, considering all amortized costs, using PV panels and the required 10 MWh BESS 
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becomes unfeasible, as the BESS cost outweighs the potential benefits. Further improvement 

is required for the algorithm developed under the grid connection power constraint, and forms 

part of future research. One area of improvement is optimising energy purchased from the grid 

during summer, where the BESS remains above 50% State of Charge (SoC). Adjusting the 

algorithm to reduce grid energy intake during summer can lower energy costs. Additionally, 

simulation results indicate that a portion of PV generation remains unused, with approximately 

10% to 13% of PV energy being sold to the grid when a 5 MWh and 10 MWh BESS are 

installed, respectively. Finally, future research will consider the battery degradation in the 

economic cost analysis. 

Having addressed all the research aims and research questions introduced previously in Chapter 

1 and Chapter 2 respectively, the following final chapter will focus on highlighting the main 

findings of the thesis, as well as discussing future research opportunities. 
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7 Conclusions and Future work 

The previous chapters of this thesis have developed and presented key insights on the feasibility 

of using locally generated solar energy, supported by a Battery Energy Storage System (BESS), 

for the adoption of EV fleets in commercial and logistics situations. This final chapter 

summarises the findings of the study and identifies potential limitations and areas for 

improvement, paving the way for future work and further research. By addressing the study's 

implications and outlining avenues for further explorations, this chapter sets the stage for 

continued progress and development in the subject of solar energy integration and BESS use, 

in both commercial and logistics operations, to support EV fleet adoption. 

7.1 Overview of findings and discussions 

To combat climate change, the UK aims for net-zero carbon emissions by 2050. In this context, 

the transport sector remains the primary source of GHG emissions in the UK, and hence its 

decarbonisation is required to achieve the UK’s legal pledge. Road freight transport has been 

proven to have negative environmental and air quality impacts. Furthermore, the efficiency 

measures adopted to date have shown limited impact on tackling GHG emission, and the 

sustainability of short-term alternatives to petroleum-based fuels is still being questioned. In 

the pursuit of decarbonising road freight transport, electrification emerges as a promising 

solution. In this regard, battery electric vehicles (BEVs) play an important role in eliminating 

tailpipe emissions and noise pollution and improving air quality. This is a mature technology 

that has been proven to be a feasible solution for the path towards a net-zero future. However, 

the benefits of road freight transport electrification can only be fully realised if the power grid 

successfully undergoes decarbonisation. Therefore, using renewable energies is crucial, and 

this was the subject of this thesis.  

Unfortunately, the UK's power grid will not achieve complete decarbonisation until 2050. To 

this end, the main research question in this study was to investigate the feasibility of using on-

site solar energy generation and energy storage for EV fleet charging at the depot, considering 

operational and technical constraints. This was achieved through an examination of the energy 

usage, and potential generation at two different commercial premises and a fleet of 19 electric 

refuse collection vehicles (eRCVs). Considering the pragmatic philosophical position adopted 

to overcome the main research question, the thesis proposed a methodology characterised by 

its practicality in real-life scenarios. 
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Initially, chapter 1 served as an introduction to contextualise the research problem and the 

motivation for undertaking the presented work. Above all the measures set to reduce the GHG 

emissions from road freight transport, electrification serves as a short-term solution and a 

potential alternative towards a net-zero emissions future. It was shown, however, that as long 

as the grid is not completely decarbonised, EVs have a significant impact on emissions 

resulting from charging with energy that is not generated from renewable sources. 

Chapter 2 was dedicated to the review of the existing literature. In the beginning, a review of 

the GHG emissions from transportation worldwide, and more specifically from road freight 

transport in the United Kingdom, was conducted. Next, the literature review focused on the 

electrification of road freight transport, comparing past, present and future GHG emissions 

when the fleet is charged from the grid mix and renewable sources. Additionally, in Chapter 2, 

the state of the art of electric freight fleet charging has been looked at, along with the most 

known charging patterns and charging infrastructure used by road freight fleets. Moreover, a 

critical review was performed, examining the most recent publications concerning power and 

transport system integration. Finally, the literature review revealed that specific questions 

concerning the depot-based charging of freight fleets using renewable energy had yet to be 

answered. These are the following: 

I. What are the environmental and economic benefits of using solar energy and BESS to 

charge an electric freight fleet when logistic and operational constraints are considered? 

II. When using solar energy and BESS, what are the impacts on the grid network and 

consequently, GHG emissions, when different charging strategies are applied? 

III. To what extent, solar energy and BESS can ease the power capacity constraints when 

it comes to EV fleet electrification? 

In Chapter 3, a new solar model was developed. Throughout the development stage of the 

empirical solar model, it was necessary to create new empirical solar correlations based on 

solar radiation data measured close to the place where the simulation would be carried out. 

Considering this, three solar correlations were created for different locations in England. The 

model presented in this chapter aimed at providing accurate estimations of solar energy 

availability at specific sites within the UK. This model is considered essential in pursuing 

answers to all the research questions. The efficacy of the proposed solar model is demonstrated 

throughout result validation. In fact, the solar model is successfully implemented in a case 

study performed for a company in the manufacturing industry [43]. 
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The other part of the proposed system to charge EV freight fleets with renewable energy 

corresponds to using a battery energy storage system (BESS). The use of a BESS supports on-

site solar energy generation and maximises its benefits when it comes to EV freight fleet 

charging. In this regard, chapter 4 focused on evaluating the impact of introducing a BESS on 

the system's energy use. This has been achieved via an algorithm implemented in the 

MATLAB/Simulink environment. To that end, the approach has been demonstrated in two 

commercial premises, a waste management depot (WMD) and a M&S retail store. The 

intentions of selecting these two premises relied on having a broader knowledge of how 

different factors such as energy demand, PV solar energy generation, or other technical 

constraints impact the outcomes achieved when the BESS is in place. Therefore, understanding 

how different commercial premises react to introducing a BESS regarding costs, grid 

dependency, and GHG emissions was essential to progress with the study, more precisely to 

better understand how the system reacts to the adoption of EV fleets. The results from the 

WMD showed important reductions in total costs, grid dependency and GHG emissions. 

Contrary to the WMD, the M&S retail store's introduction of PV panels and BESS is not 

economically feasible. Moreover, the on-site solar energy generated on M&S premises proved 

inadequate even for fulfilling their internal energy requirements, which make the use of solar 

energy unfeasible to support EV fleet charging. 

A fleet of 19 electric refuse collection vehicles (eRCVs) is explored for the WMD in Chapter 

5, in a system governed by an energy management algorithm that prioritises the use of solar 

generated energy, with the support of the BESS, to cover as much of the energy demand as 

possible. The findings and results presented in this chapter answer research questions I and II. 

The operational constraints and the logistic aspects are considered for the three simulated 

charging strategies. The outcomes from the algorithm show that specific charging strategies 

maximise the use of solar energy. Thus it directly impacts the reduction of grid dependency, 

total cost of ownership and GHG emissions. Overall, results conclude that using local solar 

energy generation and a BESS on site is economically feasible when a logistics or commercial 

company electrifies their fleet, with similar characteristics as the WMD. This conclusion is 

supported by comparing the system proposed, characterised by the use of on-site solar energy 

generation supported by a BESS, against a hypothetical scenario in which the premises studied 

does not have PV solar panels installed nor a BESS but wishes to switch it’s refuse collection 

vehicles to an electrically powered eRCV fleet. 
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Chapter 6 analyses the feasibility of adopting EV fleets into commercial depots considering 

the use of solar energy supported by a BESS but considering one of the logistics and 

commercial companies' most claimed technical constraints, the power capacity connection. 

Therefore, the findings and results obtained from this chapter are focused on answering 

research question III. In order to address the power constraint issue, a new energy algorithm is 

developed. The algorithm aims to keep the power connection at the maximum allowed with 

the help of the BESS, charged not only with surplus solar energy but also with energy from the 

grid. The most common charging pattern used amongst logistics and commercial companies is 

chosen for the analysis, overnight charging. The results show that if the upgrade of the network 

power connection is not an option, a 10 MWh BESS, in this case, effectively fulfils energy 

requirements without surpassing the contracted grid connection power capacity. However, 

other strategies, such as smart charging, must be implemented with the BESS to make it an 

economically viable option. Few references in the literature address this challenge, and those 

published tend to solve the issue by modifying the charging schedule. Nevertheless, 

implementing such adjustments in practical scenarios could necessitate a shift in operational 

requirements, often proving unfeasible or undesirable. 

7.2 Key findings and wider applicability  

Overall, the findings presented in this thesis suggest that from an economic point of view, it is 

feasible to use local solar energy generation and a BESS on-site in various logistics or 

commercial settings to support fleet vehicle electrification, for example, the local authority 

WMD. Moreover, the modelling methodologies developed, and the findings obtained offer 

valuable guidance with regards to required solar energy generation and BESS capacity that is 

applicable to various types of EV fleets deployed in urban and commercial settings operating 

daily planned routes. Similar benefits can also be anticipated by extrapolating the principles of 

on-site solar energy generation and energy storage for EV fleet charging, as explored in this 

thesis, to different commercial EV fleets, such as electric bus fleets or short-haul road freight 

fleets that are growing in popularity. 

The generation of on-site solar energy and the use of a BESS allows the system to reduce its 

dependency on the grid, to a greater or lesser extent depending on the charging strategy used, 

for all the scenarios analysed when the power connection capacity is not constrained. 

According to the results presented, using solar energy and BESS in a commercial or logistics 

company empowers businesses in multiple ways. It enables them to achieve energy 
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independence, reduce utility costs, and contribute to a greener future by minimizing their 

carbon footprint and promoting sustainable practices in their operations. 

Additionally, this integration alleviates the strain on the grid infrastructure. Businesses mitigate 

the system's pressure and promote grid stability by reducing their reliance on the grid during 

peak demand periods. Consequently, the GHG emissions associated with the overall facility 

are reduced. This dual benefit highlights the significant role that solar energy and BESS play 

in enhancing both economic and environmental sustainability for commercial and logistics 

operations. 

 

7.3 Future work 

While the results presented in this thesis enhance the feasibility of incorporating solar energy 

supported by a BESS in the electrification of commercial and logistics company fleets, and its 

relevance towards a more sustainable present and future, numerous prospects for further 

research remain open. Potential future work could concentrate on refining the solar model and 

energy management systems proposed and delving deeper into the investigations described. 

Additionally, new concepts, such as Vehicle to Grid (V2G), could be introduced based on the 

presented findings, and further analysis could be conducted by comparing different fleets with 

different operational requirements to introduce greater intricacy into the evaluations. This 

opens avenues for optimising the existing framework and exploring innovative approaches to 

broaden the understanding of solar energy adoption and BESS implementations in commercial 

and logistics fleets. 

7.3.1 Solar model 

The solar model is based on empirical correlations to estimate the components of solar 

irradiation on inclined surfaces. The same approach is used for the development of programmes 

available online to estimate solar energy production. However, the particularity of the 

presented solar model is that it uses ground measurement data measured in different locations 

in the UK to create the empirical correlation. Thus, it adds extra accuracy to the estimations 

based on the UK. However, the solar model has been initially developed for commercial and 

logistics premises and therefore has some limitations.  
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First, the depots are placed on the city's outskirts and are rarely surrounded by buildings or 

vegetation close enough to create shadows on the rooftop. Other sites, such as private homes 

or city centre commercial buildings, may be more compromised, for which the solar model 

would require further development. Moreover, the depots are characterised by inclined roofs 

in which the PV panels are typically installed at the rooftop tilt angle to reduce installation 

costs. Such an arrangement avoids the generation of shadows between PV panels. Considering 

all those facts, the solar model developed in this thesis did not provide accurate estimations on 

shadowing. Instead, it assumes that 20% of the measured rooftop area is not available due to 

possible shadows, skylights, or more considerable hurdles such as, for example, AC units. 

Secondly, the solar model estimates hourly values of solar energy generation according to the 

periodicity of the input data measurements. Future work aims to reduce the time steps of the 

simulations and provide the model with tools to accurately estimate shadows or area spaces 

where PV panels cannot be installed. 

7.3.2 Energy management algorithm 

The energy management systems developed in the thesis are based on algorithms built in the 

form of “if”/”else” statements. This approach for developing algorithms is also commonly 

known as the rule-based approach. It is characterised for being simple to integrate [291] and it 

has been proven a successful approach when applied to PV+BESS systems previously by other 

authors [290,292,293] as discussed in Chapter 4. Moreover, the results obtained from each 

energy management system created in this thesis have served as a primary source of data for 

analysing the parameters explored.  

Future work aims at implementing new strategies for more efficient energy distribution. The 

reason behind this is to reduce further the costs from the grid by maximising both the use of 

PV panels and BESS. For example, in Chapter 4, the algorithm developed for the M&S retail 

store connects the BESS with the PV installation and the grid. The store consumes significant 

amounts of energy, and most of the solar energy produced is directly consumed by the store. 

Since, in that scenario, the BESS would be empty most of the time because there is only a small 

quantity of solar surplus available, it is connected to the grid to benefit from lower energy 

prices. However, during certain months, particularly in summer, the small amount of solar 

surplus is not all stored because, by this time, the BESS has already been fully charged from 

the grid. The objective is to create a new strategy so that the BESS receives energy from the 
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grid only if no surplus solar is available. That way, the benefit of having solar energy produced 

on-site is maximised, and less electricity is bought from the grid. At the same time, the grid 

dependency can be further reduced. 

Similarly, potential improvements are envisaged for the algorithm developed in Chapter 6 

under the grid connection power constraint. In this case, the algorithm's main aim is to keep 

the power connection capacity below its maximum value, and that is achieved by the use of a 

BESS. However, future work aims at optimising the energy purchased from the grid in summer. 

During this time, the BESS is not discharged below 50% SoC. The algorithm is set to receive 

the energy from the grid at the maximum connection power capacity, but in summer, this could 

be reduced and by doing so, the cost of energy would also be reduced. 

On the other hand, when the BESS is not connected to the grid, simulation results show that 

the BESS in winter is never fully charged due to the limiting factor of solar energy generation. 

In this situation, the system will benefit from an algorithm that, in winter periods or on days 

when there is no solar surplus, would be able to connect the BESS with the grid at lower energy 

prices, thus maximising the benefits of using cheaper energy when the prices are above the 

threshold. 

This all requires certain modifications to the energy management algorithm that are worth 

exploring as future work, considering the benefits that could bring on the total cost of 

ownership, grid dependency and GHG emissions. 

7.3.3 Other considerations 

One of the constraints added to the algorithm when modelling the BESS accounts for the 

charging and discharging rate at maximum power. This limitation aligned with the 

recommendations provided in various Lithium-based cell datasheets to prevent rapid cell 

degradation. However, based on the calculation of the total cost of ownership, battery 

degradation was not considered in the economic analysis. Thus, future work aims at addressing 

the costs associated with battery degradation due to its relevance to the total cost of ownership.  

On the other hand, the issue associated with the power capacity connection has been explored 

by considering purely overnight charging strategies. Future work could explore the issue when 

the EV fleet is charged with a different charging pattern. Moreover, according to cost 
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projections on BESS, future research could benefit for looking at smaller connection upgrades 

and different BESS sizes to find the best compromise. By doing so, it will be possible to 

construct a broader set of conclusions regarding the power connection issue considering 

commercial or logistics companies with different operating schedules. 

Due to the characteristics of the eRCV fleet studied in the thesis, certain solutions have not 

been considered, such as V2G technology. This is incompatible with the operational 

requirements associated with the eRCV fleet, where all the eRCVs have to be charged 

simultaneously. Furthermore, due to technical constraints related to the size of their batteries, 

they require all of the available “off” time to recharge. Future work aims to consider V2G 

solutions in situations where the EV fleet may be available to support the grid during the high-

use period by expanding the study to EV fleets that operate non- simultaneously. 
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9 Appendix A 

This appendix includes the full cost analysis tables from Chapter 4. 

 

 

Table 9.1. System cost at different battery capacities for the WMD. 

Power connection 
capacity (MW) 

BESS 
capacity 
(MWh) 

Cost of 
energy per 

year (£) 

Surplus solar 
energy revenue 

per year (£) 

BESS capital 
cost (£) 

BESS O&M 
cost (£) 

PV capital 
cost (£) 

PV O&M 
cost (£) 

Network cost 

per year (£) 

Total cost 
over system 

lifetime 
(mil£) 

0.15 

NO BESS 112,389 0 0 0 0 0 5,234 1.76 

0.05 59,317 11,127 12,700 1,875 

629,100 135,282 

3,963 1.56 

0.1 54,496 10,574 25,400 3,750 3,788 1.51 

0.5 38,498 8,375 127,000 18,750 3,665 1.42 

1 37,568 8,270 254,000 37,500 3,661 1.55 

5 36,154 8,104 1,270,000 187,500 3,649 2.70 

10 34,487 7,909 2,540,000 375,000 3,612 4.13 
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Table 9.2 Network costs itemised at different battery capacities for the WMD. 

Power connection 

capacity 

(MW) 

BESS capacity 

(MWh) 

Capacity 

charge per year 

(£) 

Excess capacity 

charge per year 

(£) 

Fixed charge per 

year (£) 
Consumption charge per year (£) 

Total Network 

cost per year 

(£) 
     Red Amber Green  

0.15 

NO BESS 

1,770 0 1,084 

1463 872 44 5,234 

0.05 803 265 40 3,963 

0.1 655 240 39 3,788 

0.5 579 211 20 3,665 

1 579 208 19 3,661 

5 574 202 18 3,649 

10 545 195 17 3,612 
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Table 9.3. System cost at different power connection capacity for the WMD. 

Power 

connection 

capacity 

(MW) 

BESS capacity 

(MWh) 

Cost of energy 

per year (£) 

Surplus solar 

energy 

revenue per 

year (£) 

BESS capital 

cost (£) 

BESS O&M 

cost (£) 

PV capital 

cost (£) 

PV O&M 

cost (£) 

Network cost 

per year (£) 

Total cost 

over system 

lifetime 

(mil£) 

0.075 

NO BESS 112,389 0 0 0 0 0 4,367 1.75 

0.05 59,317 11,127 12,700 1,875 

629,100 135,282 

3,081 1.55 

0.1 54,496 10,574 25,400 3,750 2,907 1.50 

0.5 38,498 8,375 127,000 18,750 2,784 1.40 

1 37,568 8,270 254,000 37,500 2,780 1.54 

5 36,154 8,104 1,270,000 187,500 2,768 2.68 

10 34,487 7,909 2,540,000 375,000 2,730 4.12 

0.05 

NO BESS 112,389 0 0 0 0 0 4,438 1.75 

0.05 59,317 11,127 12,700 1,875 

629,100 135,282 

2,855 1.54 

0.1 54,496 10,574 25,400 3,750 2,681 1.49 

0.5 38,498 8,375 127,000 18,750 2,558 1.40 

1 37,568 8,270 254,000 37,500 2,554 1.53 

5 36,154 8,104 1,270,000 187,500 2,542 2.68 

10 34,487 7,909 2,540,000 375,000 2,504 4.12 

0.025 

NO BESS 112,389 0 0 0 0 0 7,090 1.79 

0.05 59,317 11,127 12,700 1,875 

629,100 135,282 

3,870 1.56 

0.1 54,496 10,574 25,400 3,750 3,677 1.51 

0.5 38,498 8,375 127,000 18,750 3,442 1.41 

1 37,568 8,270 254,000 37,500 3,413 1.55 

5 36,154 8,104 1,270,000 187,500 3,373 2.69 

10 34,487 7,909 2,540,000 375,000 3,297 4.13 
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Table 9.4. System cost for M&S retail store.  

Power 

connection 

capacity (MW) 

BESS 

capacity 

(MWh) 

Cost of 

energy (£) 

per year 

Surplus solar 

energy revenue 

(£) per year 

BESS capital 

cost (£) 

BESS O&M 

cost (£) 

PV capital 

cost (£) 

PV O&M 

cost (£) 

Network cost 

(£) per year 

Total cost (mil£) 

over system 

lifetime 

0.4 

NO BESS 164,519 0 0 0   41,404 3.09 

0.05 114,740 637 12,700 1,875 

853,200 183,472 

38,233 3.34 

0.1 114,285 588 25,400 3,750 38,174 3.34 

0.5 111,372 569 127,000 18,750 37,322 3.40 

1 107,777 569 254,000 37,500 35,702 3.47 

5 96,421 547 1,270,000 187,500 28,022 4.35 

10 96,295 527 2,540,000 375,000 28,000 5.81 
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Table 9.5. System cost at different Powercapacity. 

Power 

connection 

capacity 

(MW) 

BESS capacity 

(MWh) 

Cost of energy 

per year (£) 

Surplus solar 

energy 

revenue per 

year (£) 

BESS capital 

cost (£) 

BESS O&M 

cost (£) 

PV capital 

cost (£) 

PV O&M cost 

(£) 
Network 

cost per 

year (£) 

Total cost 

over 

system 

lifetime 

(mil£) 

0.3 

NO BESS 164,519 0 0 0 0 0 39,775 3.06 

0.05 114,740 637 12,700 1,875 

853,000 183,472 

36,437 3.31 

0.1 114,285 588 25,400 3,750 36,378 3.32 

0.5 111,372 569 127,000 18,750 35,525 3.38 

1 107,777 569 254,000 37,500 33,906 3.44 

5 101,243 177 1,270,000 187,500 30,831 4.47 

10 100,910 53 2,540,000 375,000 30,778 5.93 

0.2 

NO BESS 164,519 0 0 0 0 0 50,678 3.23 

0.05 114,740 637 12,700 1,875 

853,000 183,472 

37,230 3.32 

0.1 114,285 588 25,400 3,750 37,171 3.33 

0.5 111,404 568 127,000 18,750 36,267 3.39 

1 109,189 508 254,000 37,500 35,009 3.48 

5 108,132 0 1,270,000 187,500 34,864 4.64 

10 108,132 0 2,540,000 375,000 34,864 6.10 

0.1 

NO BESS 164,519 0 0 0 0 0 86,201 3.76 

0.05 115,005 634 12,700 1,875 

853,000 183,472 

58,588 3.65 

0.1 114,829 569 25,400 3,750 58,550 3.66 

0.5 114,020 170 127,000 18,750 58,168 3.76 

1 113,733 22 254,000 37,500 58,067 3.90 

5 113,691 0 1,270,000 187,500 58,054 5.07 

10 113,691 0 2,540,000 375,000 58,054 6.53 
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10 Appendix B 

This appendix includes the full cost analysis tables from Chapter 6. 

 

Table 10.1. “System cost at different battery capacities (CBESS) for scenario 1 and scenario 2” (Table obtained from [175]).. 

Power 

connection 

capacity (MW)  

Scenarios 

Cost of 

energy per 

year (£) 

Surplus 

solar 

energy 

revenue per 

year (£) 

BESS capital 

cost (£) 

BESS O&M 

cost (£) 

PV capital 

cost (£) 

PV O&M 

cost (£) 

Network 

cost over 

the system 

lifetime (£) 

Total cost 

over 

system 

lifetime 

(mil£) 

0.6 

 Scenario1 460,405 0 0 0 0 0 222,443 7.13 

Scenario 2 

(MWh) 

0.05 407,211 11,111 12,700 1,875 

629,100 135,282 

203,362 6.92 

0.1 402,385 10,558 25,400 3,750 200,510 6.87 

0.5 379,530 7,332 127,000 18,750 194,168 6.69 

1 361,592 4,719 254,000 37,500 191,882 6.60 

5 329,997 76 1,270,000 187,500 191,205 7.36 

10 329,479 0 2,540,000 375,000 191,194 8.81 

 

Table 10.2. “System cost for scenario 1 and scenario 3 (with a BESS of 10 MWh)” (Table obtained from [175]). 

Power 

connection 

capacity 

(MW)  

Scenarios 

Cost of 

energy per 

year (£) 

Surplus 

solar 

energy 

revenue per 

year (£) 

BESS capital 

cost (£) 

BESS 

O&M cost 

(£) 

PV capital 

cost (£) 

PV O&M 

cost (£) 

Network 

cost over 

the system 

lifetime (£) 

Total cost 

over system 

lifetime 

(mil£) 

0.15 

 Scenario1 460,405 0 0 0 0 0 908,840 7.81 

Scenario 3 

(MWh) 

5 421,791 2,098 1,270,000 187,500 
629,100 135,282 

231,878 8.75 

10 427,450 1,790 2,540,000 375,000 167,849 10.23 

 


