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Abstract

At its core, this dissertation not only contributes to a deeper understanding of wave

propagation in particulate materials but also opens new avenues for innovative en-

gineering solutions in fields such as acoustic and electromagnetic material sensing

and design. For instance, it contributes to the development of materials for specific

wave-manipulation applications such as selectively blocking or absorbing specific wave

frequencies. It challenges the standard approach that on average, a wave propagates

through random particulate materials with a single effective wavenumber, demonstrat-

ing instead the presence of multiple effective wavenumbers due to strong multiple

scattering phenomena. This finding is surprising, considering the homogeneous and

isotropic nature of the medium and our focus on scalar waves. To confirm these

predictions, we conduct high-fidelity Monte-Carlo simulations, avoiding any statistical

assumptions and providing the first clear evidence that there is indeed more than one

effective wavenumber. However, when performing simulations we came across another

unresolved gap in the theory concerning the incident wave that encounters a material

with random microstructure. It is well known that any incident wave will eventually be

completely replaced by some sort of effective transmitted wave. This is often referred

to as the extinction of the incident wave. What was not clear is how far does the incid-

ent wave travel before being replaced by an effective wave? In disordered particulate

materials we prove that the incident wave does not propagate within the material

more than the correlation length between particles. In more detail, the extinction

length is exactly equal to the maximum distance at which two particles are still correl-

ated. This result not only helps perform numerical simulations, but is important to

know in any experimental measurement, or even when designing materials to control

wave propagation. A further challenge we encountered when comparing Monte-Carlo

simulations, of thousands of particles, with theoretical predictions, is that the typically

used pair-correlations g(r) - where r is the distance between the particles - did not

match exactly the pair-correlations from our Monte-Carlo simulations. This naturally

led us to investigate the discrepancy between theoretical pair-correlation functions
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and those derived from our Monte-Carlo simulations. This motivated our research on

the realizability problem – whether a specific particle configuration can be calculated

to match a given pair-correlation. Recognising the significant role of pair-correlations

in fields like chemistry and materials science, we demonstrate a way to formulate the

realizability problem as a smooth optimisation problem, where the gradients can be

easily calculated. This approach, relying on gradient-based methods, promises more

efficient solutions compared to traditional brute-force, non-gradient-based techniques.
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Chapter 1

Introduction

In the field of materials science and engineering, there is a fundamental truth that

applies across all length scales: most materials are composed of a complex and

seemingly chaotic arrangement of smaller particles. We will refer to these as particulate

materials. This universal characteristic extends from the subatomic world of particle

physics to the more tangible and practical world of everyday materials. In particle

physics, scientists delve into the subatomic landscape, unravelling the mysterious

behaviour of particles on a scale so small that it challenges the limits of human

comprehension. Yet, a parallel truth emerges when we zoom out to macroscopic

levels: in the domain of everyday materials, we encounter a world where matter is

not uniform but consists of an ensemble of smaller constituents, which we refer to

as particles, each with its unique properties and interactions. Because particulate

materials are so common, designing and characterising them has a wide range of

applications across many industries.

Particulate nature of matter. In the world around us, particulate materials are

everywhere. From composite materials, such as fibre composites, to suspensions,

emulsions and powders (Figure 1.1). Such materials are valuable products across

many industries and have empowered advancements in many research areas [70]. For

example, pharmaceutical powders play a vital role in the formulation of medicines

since the effectiveness of a drug can be strongly influenced by the exact size, shape,

and distribution of its constituent particles [57, 70]. In the field of food science and

industrial processes, emulsions/dispersions of one immiscible liquid within another,

rely on the stable distribution of thousands of oil droplets. In this case, the performance

of emulsions in food products, cosmetics, and pharmaceuticals is linked to the control

of particle size and uniformity [1, 13]. Furthermore, within the field of advanced

materials and composites, understanding the aggregation and dispersion of particles
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within a matrix is vital for tailoring mechanical, electrical, and thermal properties[32,

34, 60]. Composite materials in aerospace, automotive, and construction industries are

prime examples of where engineered particle arrangements hold the key to enhanced

performance [58].

Figure 1.1: On the left, metal powders and their microstructure. On the right, an emulsion
made of oil particles suspended in water. Together, these images provide information into the
composition and internal structures of different materials.

Given the wide range and significance of particulate materials, it is important

to develop robust methodologies to measure, analyse, and ultimately design these

materials [1, 10]. Waves, either mechanical (like sound) or electromagnetic (like light),

are ideal for sensing and probing particulates because they can be energy-efficient,

non-invasive, and quick. These waves also have well-established governing equations

that can provide valuable insights into materials if we have detailed knowledge of the

material’s microstructure.

The challenge, however, arises when we encounter materials with disordered or

random microstructures. In most cases, it is impossible to have a complete knowledge

of the microstructure of these materials. To deal with this lack of knowledge, we

need to use probability distributions to describe the microstructure or distribution of

particles. We then rely on a range of statistical tools such as ensemble averaging and

statistical closure assumptions to make these complex systems solvable [33, 45, 46,

71].

The interaction of classical waves - such as electromagnetic and acoustic waves

- with particulate materials has been well-studied within certain limits. Specifically,

when considering long wavelengths [2, 6, 41, 52, 53], where the particles appear small

compared to the wavelength of the incoming wave, there is a solid understanding of

how to calculate the effective properties of these materials.

In scenarios where multiple scattering is weak, a branch of theory known as Mie

theory, has played a central role [8, 40, 44, 56]. Mie theory allows us to characterise

particulate materials in the dilute limit, where the re-scattering between the particles

can be ignored. That is, the total scattered field is approximately equal to the incident
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wave scattered from every particle once. This theory has led to several successful

characterisation methods, including Dynamic Light Scattering and techniques based

on laser diffraction patterns that have revolutionised how we assess and understand

particulate materials [30, 38]. They provide valuable information about particle size,

size distribution, and sometimes even shape, allowing researchers and industries to

make informed decisions, optimise processes, and develop innovative products across

a spectrum of applications [57].

Yet, there are many settings in which these techniques do not work. When there

is strong multiple scattering between the particles, these techniques break down, or

require many steps such as filtering and diluting the material to reduce the effects

of multiple scattering. These extra steps are done in a laboratory setting, making it

difficult to use these techniques in production. One clear application is to measure

powders and emulsions in process, which are often too dense for single scattering

theories, but still need to be measured to optimise the process [77].

1.1 Background

One of the fundamental theories used in the study of waves in materials with random

microstructure is the Multiple Scattering Theory [33, 40, 45, 46, 71]. Multiple

scattering occurs when waves re-scatter from particles, and other obstacles, many

times. It introduces complexity in describing the behaviour of the average wave due to

complex interference patterns. It is an unavoidable feature when using waves to probe

dense particulates, and it is still not completely resolved how waves travel in these

materials, or how to measure these materials with waves. The scenario that is least

understood is for intermediate wavelengths, which are neither very long compared

to the particles, or extremely short [23, 25, 26, 28]. This is the regime that this

dissertation focuses on.

In this section, we give a very brief summary of multiple scattering between

particles to help aid the discussion. More detail is provided in Chapter 2 and [25, 26,

39, 40].

We consider a circular cylinder with radius a and describe its geometry using two

coordinate systems: The Cartesian (x,y) - where the centre of the cylinder is denoted

by O = (0, 0), and the plane polar coordinates (r, θ), where x = rcosθ and y = rsinθ.

Incident wave. Imagine a scenario where a plane-wave with wavenumber k is

impinging on the cylinder. This incident wave, denoted as uinc is characterised by the



4 1.1. BACKGROUND

equation:

uinc = eik(x cos θin+y sin θin) = eikr cos(θ−θin). (1.1)

In this equation, θin represents the angle of incidence. To further explain this wave

and simplify the problem, we employ the Jacobi-Anger expansion [76]:

eiw cos(θ−θin) =
+∞∑

n=−∞

inJn(w)e
in(θ−θin), (1.2)

where Jn(w) is the Bessel function of the first kind of order n. Substituting (1.2) into

(1.1), we express the incident plane-wave as a superposition of cylindrical waves. In

other words, when uinc hits the cylinder, the wave scatters in all directions, generating

a set of n cylindrical waves. Each of these cylindrical waves represents a different way

the original wave has been affected by the cylinder. Consequently, the incident wave

can be expressed as:

uinc =
∞∑

n=−∞

gnJn(kr)e
inθ, for all r, (1.3)

where gn = ine−inθin indicates the coefficients of the incident wave.

Scattered waves. When we work in plane polar coordinates, the Helmholtz

equation gives rise to two linearly independent solutions that are represented as:

Jn(kr)e
inθ and Yn(kr)e

inθ, n = 0,±1,±2, . . . . (1.4)

Here, the first term corresponds to the Bessel function of the first kind, while the

second term represents the Bessel function of the second kind. Combining these two

components of Bessel functions and complex exponentials:

[
Jn(kr) + iYn(kr)

]
einθ ≡ H(1)

n (kr)einθ, n = 0,±1,±2, . . . , (1.5)

we generate the Hankel function of the first kind H
(1)
n , which represents a cylindrical

wave that is radiated away from the origin. This function satisfies the Sommerfeld

radiation condition [40, 55, 62], which states that, in two dimensions, the wave

behaves as an outgoing wave at infinity with its amplitude decaying according to the

condition: √
r

(
∂usc

∂r
− ikusc

)
→ 0, as r → ∞. (1.6)
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This property ensures that the Hankel function of the first kind accurately describes

wave propagation in scenarios where the wave extends to infinity without reflection.

To be consistent with the symmetries of the incident wave, we introduce the

scattered wave usc as the response of the cylinder to the incident wave. Thus:

usc =
∞∑

n=−∞

fnHn(kr)e
in(θ−θin), for r ≥ a, (1.7)

where the coefficients fn carry information about how the cylinder interacts with the

incident wave and how it scatters energy. For our convenience, we also express H(1)
n as

Hn.

Total wave. To fully address the problem, it is essential to establish a boundary

condition at the surface of the cylinder. This boundary condition determines how

the waves interact with the surface of the cylinder and how they propagate in the

vicinity of the cylinder. Essentially, it provides the necessary link between the incident

coefficients gn and the scattered coefficients fn.

To aid our discussion, we introduce two types of boundary conditions that will be

the focus of this dissertation:

• Dirichlet boundary condition (sound-soft):

utot = 0 or usc = −uinc on the cylinder boundary.

• Neumann boundary condition (sound-hard):

∂utot

∂r
= 0 or

∂usc

∂r
= −∂uinc

∂r
on the cylinder boundary.

where utot = uinc + usc represents the total field and ∂
∂r

denotes normal differentiation

on the boundary of the cylinder.

Applying, for example, Neumann’s boundary conditions on the cylinder, we take

the derivatives of equations (1.1) and (1.7) and set r = a. This leads to:

∞∑
n=−∞

k
[
gnJ

′

n(ka) + fnH
′

n(ka)
]
ein(θ−θin) = 0, for 0 ≤ θ − θin < 2π. (1.8)

Then, using the orthogonality property of the complex exponentials, it is clear that the

expression within the braces
[ ]

must be equal to zero for every n. Therefore, we can



6 1.1. BACKGROUND

determine the coefficients fn as:

fn = − J
′
n(ka)

H′
n(ka)

gn. (1.9)

With these coefficients established, we can then express the scattered field at all points

where r ≥ a using (1.7).

T-Matrix method. Imagine now the circular cylinder as a particle. The T -matrix

method, first introduced by Waterman [43, 75], is an operation existing only when

scattering is linear and essentially accounts for the boundary conditions of the particle.

It also relates the known incident coefficients gn with the scattering coefficients fn as

follows:

fm =
∞∑

n=−∞

Tmngn. (1.10)

In other words, (1.9) can be expressed in terms of the T -matrix:

Tmn = −
[
J

′
n(ka)

H′
n(ka)

]
δmn. (1.11)

As shown in (1.11), the T -matrix remains unaffected by the incident field and

governs the scattering of waves by the particle. This implies that the T -matrix relies

on the particle’s inner properties, including its shape, size, density, and other internal

properties [20, 21]. When we modify these properties, we have to redo the calculations

for the boundary conditions to find the new T -matrix. It is also important to remember

that (1.7) will be affected by the changes we make to the particle, yet, (1.10) remains

the same.

In this dissertation, we are interested in the case of homogeneous cylinders/-

particles. Assume u corresponds to the acoustic pressure, ρ and c the density of the

background material and the speed of the wave, respectively. The shape of the particle

is circular with density ρ0, speed of sound c0 and radius r0. In the case where the

continuity of pressure and displacement across the particle’s boundary is applied [37,

Section IV A], we obtain that:

Tmn = δmnTn, with Tn = − q0J
′
n(kr0)Jn(k0r0)− Jn(kr0)J

′
n(k0r0)

q0H
′
n(kr0)Jn(k0r0)− Hn(kr0)J

′
n(k0r0)

, (1.12)

where q0 =
ρ0c0
ρc

, k0 = ω
c0

and ω is the frequency of the incident wave.

In the next section, we will focus on the multiple scattering of waves from one con-

figuration of particles. We will employ the T -matrix method as it is a very powerful tool



1.1. BACKGROUND 7

for multiple scattering problems [27, 47] and we will exploit the multiple scattering of

waves to reach to the governing equation for one configuration of particles.

Scattering from J cylinders. Assume a region R filled with J particles as shown

in Figure 1.2. For our convenience and to formulate a mathematical description, we

1

ko
ko

ko
ko

ko

ko

ko ko

ko

ko

k

R

∇2u(r) + k2u(r) = 0, for background material

∇2u(r) + k2ou(r) = 0, for particles

Figure 1.2: In the absence of particles from the material, the total wave will satisfy the scalar
wave equation, where k = ω

c represents the wavenumber of the background material and c is
the speed of sound in the background material. Likewise, when particles are present inside
the material the total wave will satisfy the scalar wave equation, but this time k0 =

ω
c0

is the
wavenumber of the material inside the particle with c0 being the speed of sound inside the
particle.

assume that all particles considered are similar, besides their position. The total field

can be expressed as a superposition of the incident wave and all the scattered waves

generated from each different particle. Thus:

utot = uinc +
N∑
i=1

ui
sc, (1.13)

where uinc is the incident field and ui
sc the scattered field by the i-th particle.

The next step is to introduce the incident field uinc and the scattered field usc in

two dimensions. To do that, we employ once again the two separate solutions of the

Helmholtz equation, namely the cylindrical Bessel and Hankel functions of the first

kind. This leads to:

Vn(kr) = Jn(kr)e
inθ, (1.14)

Un(krj) = Hn(krj)e
inθj , (1.15)
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where rj = (rj, θj) stands for the position vector of the j-th particle expressed in polar

coordinates.

Now, substituting (1.14) in (1.3) and (1.15) in (1.7), equation (1.13) can be

rewritten in the form:

utot =
∞∑

n=−∞

gnVn(kr) +
N∑
j=1

∞∑
n=−∞

f j
n Un(kr − krj). (1.16)

Notice that the expression for the incident wave will remain the same as (1.3) since

the incident wave does not depend on the positions of the particles of the material

inside the region.

Before applying the T-matrix method we need to express (1.16) with respect to

only one coordinate system. One way to do that is by combining multi-pole expansions

with addition theorems. A multi-pole expansion corresponds to a mathematical

series representing a function of angles and is widely used in problems involving the

propagation of electromagnetic waves [40]. Addition theorems are a powerful tool

that has the ability to transform an expansion around a point in space to an expansion

around another point [40]. A representation can be found in Figure 1.3.

1

Oj

r − rj

rj

r

P

O

Figure 1.3: This figure illustrates the geometry of a group of J particles centred around a
common origin, referred to as O. For each particle, there are local origins Oj , located at
positions rj .

Now, let us return to our problem. We will use Graf’s addition theorem to re-

expand the cylindrical waves with respect to the centre of a given particle i [40]. To

accomplish this, we re-expand the incident wave in the following manner:

gnVn(kr) = gn
∑
n′

Vn−n′(kri)Vn′(kr − kri). (1.17)
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Similarly, we expand the scattered waves while considering all particles except for the

i-th particle (j ̸= i):

f j
n Un(kr − krj) = f j

n

∑
n′

Un−n′(kri − krj)Vn′(kr − kri). (1.18)

By doing this we can express our total field as the combination of the wave scattered

by the i-th particle and an additional Bessel wave expansion:

utot(r − ri) =
∑
n

f i
nUn(kr − kri) +

∑
n′

d i
n′Vn′(kr − kri), (1.19)

such that (1.20)

d i
n′ =

∑
n

[∑
j ̸=i

f j
n Un−n′(kri − krj) + gnVn−n′(kri)

]
. (1.21)

Then, we can employ the T-matrix method and derive the expression for the coefficients

f i
n as follows:

f i
n =

∞∑
m=−∞

Tnmd
i
m for n,m = −∞, . . . ,∞ and j = 1, 2, . . . , J. (1.22)

with J being the number of particles. Ultimately, by iterating through this process for

all particles (i = 1, 2, . . . , J) we arrive at a self-consistent linear system of equations

[20, 21]:

f i
n = Tn

∑
n′

Vn′−n(kri)gn′ + Tn

∑
j ̸=i

∑
n′

Un′−n(kri − krj)f
j
n′ . (1.23)

The expression (1.23) corresponds to the formula [49, Equation 2.4] and characterises

the scattering coefficients f i
n .

Ensemble-averaged multiple scattering. The computation of f i
n allows us to

solve the scattering problem for a given configuration of particles but there are still

two challenges that we need to address:

• In most cases, we do not know the exact position of the particles.

• It is common to encounter a huge number of particles in the majority of industrial

applications and nowadays there is no quantitative method to monitor the

particulates.

Instead, we aim to describe the average properties, or statistical properties of the

particles. To achieve this we use a standard technique from statistical physics called
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ensemble averaging [19]. To do this we introduce the probability density of the particles

occupying a specific position:

p(r1, . . . , rJ), (1.24)

where the variables ri describe the positions of the i-th particle. The probability density

function reflects the probability of finding the particles in a configuration where the

first particle exists in the element of volume dr1 about the point r1, the second particle

exists in the element of volume dr2 about the point r2 etc..

Then, we are able to attain the ensemble average of the total field u(r) over all

possible particle positions. In order to do this, we multiply the probability density

function with the value for the configuration r1, r2, . . . , rJ , and finally we integrate

over all positions ri accessible to the particles. Thus, we obtain the expression:

⟨u(r)⟩ =
ˆ

. . .

ˆ
u(r1, . . . , rJ)p(r1, . . . , rJ)dr1, . . . , drJ . (1.25)

The total ensemble-averaged wave u(x) is defined as:

⟨u(r)⟩ = ⟨uinc(r)⟩+ ⟨usc(r)⟩ , (1.26)

0.0

0.3

0.6
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1.8
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2.4

2.7

0.00

0.24

0.48

0.72

0.96

1.20

1.44

Figure 1.4: The picture on the left demonstrates the wave scattering of one specific configur-
ation of particles due to an incident plane-wave. The picture on the right demonstrates the
ensemble-averaged scattered wave of many different configurations of particles [25]. While
the picture on the left displays the scattered field at a single moment in time, the picture on
the right displays the average measurements of many sensors over time or space.

where ⟨uinc(r)⟩ = uinc(r) and that is because there is no dependence of the incident

field with particle configuration. Consequently, the main challenge is to solve the

ensemble average of the scattering coefficient, ⟨usc(r)⟩ , which basically identifies how

all the particles scatter the incident wave on average. The interesting part about

the ensemble-averaged picture of various configurations of particles illustrated in

Figure 1.4, is that it looks like a wave that travels consistently without scattering but

in an attenuating manner from the incident wave.
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1.2 Research gaps & Key contributions

Traditional methods to modelling wave-particle interactions in materials with random

microstructure often rely on the simplification of multiple scattering phenomena. This

leads to assumptions that may not fully capture the complexity of how waves interact

with particles.

Two main areas of interest in this dissertation are the exotic pair-correlations and

the resonant particles. Exotic pair-correlations lead to unconventional relationships

between pairs of particles within a material. These unique interactions can arise from

factors such as particle shapes resulting in unexpected material behaviours such as

enhanced or suppressed electrical, thermal, or mechanical properties. In parallel,

for resonant particles, when the incident wave matches the resonant frequency, very

strong multiple scattering occurs, and most mathematical models used break down

[82]. These non-standard behaviours demand an extension of existing theoretical

frameworks to accommodate such complexities.

Hence, this dissertation focuses on significant advancements in the field of wave

propagation and how classical waves interact with materials with random micro-

structure. It includes novel findings that introduce the existence of multiple effective

wavenumbers in homogeneous and isotropic materials. It proves the Ewald-Oseen

extinction theorem for any geometry, frequency and incident wave and extends its

applicability in the field of random particulates. It introduces the Cookie-cutter method

which is a new method to derive particle pair-correlations from random configurations.

It proposes a novel gradient-based optimisation method to tackle the realizability

problem which examines if it is possible to achieve a specific particle configuration

that matches a given pair-correlation.

These findings challenge existing views and open new paths for more accurate

modelling and prediction of wave interactions in random materials. This will have

a significant impact on how we design and characterise materials in various applica-

tions. The following paragraphs aim to provide a clear explanation of the main ideas

discussed in this dissertation.

Multiple effective wavenumbers. In acoustics, the study of scattering from

random particulate materials has been of great interest due to its relevance in various

real-world applications such as sonar systems, underwater acoustics, and biomedical

imaging, among others [57]. One motivation of the seminal work of Foldy [19], was

to understand how underwater bubbles affect sonar. In this scenario, the simplest way

to measure wave transmission or scattering is to take an average over time or space. In
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mathematical terms this corresponds to an ensemble average over all possible particle

configurations, and it replaces the unknown particles positions with a pair-correlation

[35]. Further, if the particles are distributed uniformly, according to a uniform random

distribution, then the average transmitted field is by consequence also uniform [25].

In the literature, it is commonly assumed that the ensemble average of a wave

propagating in a particulate that has an isotropic distribution of particles, can be

described with only one effective wavenumber:

k⋆ =
ω

c⋆
+ iα, (1.27)

where c⋆ represents the effective wavespeed and α the rate of attenuation [11, 17, 37,

40, 64, 67, 72]. Note that (1.27) is for a wave propagating in the bulk medium with

no waveguide. A case in point is depicted in Figure 1.5.
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R

∇2u(r) + k2u(r) = 0, for background material
∇2u(r) + k2ou(r) = 0, for particles

Before Averaging.

k⋆

R

∇2u(r) + k2⋆u(r) = 0

After Averaging.
Figure 1.5: Assume a region R filled with J particles. Before averaging, the total wave satisfies
different scalar wave equations as explained in Figure 1.2. After averaging, the total wave
satisfies the scalar wave equation, where k⋆ given by (1.27), represents the complex effective
wavenumber.

Of course, classical scalar waves in homogeneous and isotropic media only have

one wavenumber. However, it does not follow directly from the mathematical model-

ling that a wave propagating in an ensemble-averaged medium has only one effective

wavenumber k⋆: two different recent theoretical models [25, 26, 61, 78] challenge this

assumption and have shown that there exist at least two complex effective wavenum-

bers for one fixed frequency within such materials. This is a highly unusual result, as

it does not occur for classical waves, so these predictions require some validation.

A key contribution of this research is the provision of the first clear numerical evid-

ence that confirms the presence of multiple effective wavenumbers triggered by factors

such as particle correlations and specific frequencies that induce strong scattering. Our
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findings underscore the importance of clarifying the theoretical framework to bridge

the gap between theoretical expectations and numerical simulations, particularly when

applying the governing equation (1.23) in practical scenarios.

Ewald-Oseen extinction theorem. To compare numerical simulations with the

theoretically predicted transmitted field we had to first fill in a gap in the theory. It

was not entirely clear from the theory where inside the material the incident wave

is completely gone and replaced by an average effective transmitted wave. Despite

extensive research in the field of scattering by particulates, exemplified by the works

of Allegra and Hawley [3], the precise point of this wave transition within the material

has not been covered.

The lack of clarity stems from the following quote:

"When a wave is incident on a homogeneous medium, it is extinguished inside the medium
in the process of interaction and is replaced by a wave propagated in the medium with a
velocity different from that of the incident wave."

This statement introduced by Born and Wolf [54, 79] refers to the so-called Ewald-
Oseen extinction theorem [4, 7]. This theorem is a fundamental assumption in wave

physics stating that incident waves entering a material do not propagate or significantly

contribute to the total transmitted field within the material [4, 22, 74]. While this

assumption has been derived and employed extensively in the context of disordered

particulate materials, including situations involving low-frequency waves and low

particle volume fractions, disagreements persist in the scientific literature regarding

the exact extinction length — the distance into the medium that incident waves travel

before extinction.

This theorem finds application beyond the field of disordered materials and across

a spectrum of scientific and engineering disciplines. For instance, it plays a crucial

role in crystallography, aiding in the understanding of X-ray diffraction patterns in

crystalline solids [18]. In the field of electromagnetic wave propagation, it helps

analyse wave behaviour in various media, from dielectrics to conductors [22, 51].

In photonics and optics, it guides the design of optical devices like lenses and fibre

optics. In electron microscopy, it assists in understanding electron-sample interactions.

Additionally, acousticians apply the theorem to analyse sound wave propagation in

diverse media, contributing to the design of acoustic systems and environmental noise

predictions.

A major accomplishment of this work is that we are able to prove that for any

particulate material geometry, frequency, and incident wave, the Ewald-Oseen extinc-

tion theorem is a result of more fundamental assumptions. With this proof, we can
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clearly demonstrate that the extinction length is equal to the inter-particle correlation

length L. These theoretical results enabled us to compare theory with high fidelity

Monte-Carlo simulations, and confirm that multiple effective waves are indeed needed

for densely packed particulates.

Cookie-cutter method. When we compared our Monte-Carlo simulations, which

involve thousands of particles, to theoretical predictions, we faced another challenge:

the typically used pair-correlations g(r) - where r is the distance between the particles

- did not exactly match the pair-correlations from our Monte-Carlo simulations. The

Cookie-cutter method offers a solution to this problem. This novel computational

method significantly improves Monte-Carlo simulations by avoiding boundary artefacts

that usually appear when placing particles within a finite region.

To delve deeper, when particles are placed in a finite region, they can sometimes

end up too close to the boundaries, causing unrealistic interactions that would not

occur in a real-world scenario. The Cookie-cutter method essentially cuts out smaller

regions that contain the particle’s centres, from the larger simulation region, avoiding

the artefacts from the boundaries. By focusing on these smaller regions and averaging

the results over several iterations, the method allows us to match the simulated

particle interaction with the theoretical predictions leading to more accurate and

reliable results.

Inter-particle correlations. The radial distribution function, also known as the

pair-correlation function g(r) is a fundamental concept in various scientific fields [9,

35, 67, 68]. It plays a crucial role in understanding wave propagation and scattering in

complex particulate materials. The pair-correlation effectively characterises the spatial

distribution of particles, providing insight into their arrangement within the medium.

A crucial application of the pair-correlation function arises when ensemble averaging

the governing equations in particulate materials, as exemplified in (1.23). In this

context, the function serves as the only term that captures the particle distribution

information [35, 65, 66]. Essentially, g(r) describes how particle density varies as a

function of distance from a reference particle in a configuration of particles. In other

words, g(r) measures the probability of finding another particle at a distance r from a

given reference particle. For instance, see Figure 1.6.

In statistical physics, the pair-correlation function is often used to deduce thermal

conductivity and fluid properties [5, 48, 68]. For instance, in studying heat transfer in

a disordered medium, the pair-correlation function helps determine how particles are

arranged relative to one another. This arrangement affects the way heat is conducted

through the material. By employing statistical methods and ensemble averaging,
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O

r

dr

Figure 1.6: The standard method involves calculating the number of particles located within a
specific distance of r + dr away from a reference particle O. The concept is visually depicted,
where one of the light orange particles serves as the point of reference, and the dark orange
particles are those whose centres are contained within the dashed circular regions.

researchers can calculate the pair-correlations for different particle configurations.

These correlations then can be used in developing accurate models for predicting the

thermal properties and fluid behaviour in complex, disordered systems [48].

While theoretical methods are commonly used to understand and predict materials

behaviour, it is less common but highly valuable to employ these methods for optim-

ising material behaviour. For example, a notable part of this research focuses on the

realizability problem, which is the challenge of determining whether a configuration

of particles that matches a given pair-correlation function, exists [14, 15, 36, 66,

69, 81]. An important achievement of this work is that we demonstrate a way to

formulate the realizability problem from first principles. This formulation transforms

it into a smooth optimisation problem, where the gradients can be easily calculated,

and therefore enables us to use gradient-based methods instead of the traditional

brute-force, non-gradient-based methods. Solving the realizability problem is still an

open challenge and impacts the mechanical, electrical, thermal and other properties

of the material, ultimately leading to a modified and optimised behaviour.

The following research questions are designed to address the core challenges and

opportunities highlighted in the preceding discussion.

1.3 Research questions

To push the limits on where the theoretical methods for waves in particulates can be

used, we first need to carefully evaluate where the methods can and can not currently
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be used. The main objective of this thesis is to address two common assumptions that

are currently used and lack clear answers:

• Does the average transmitted field satisfy the wave equation with one, unique,

complex effective wavenumber?

• What precisely happens to the incident wave as it enters the particulate material?

More specifically, how far does it propagate before becoming extinct?

We also realise that the answer to these questions is intimately related to the

properties of the pair-correlation, such as the correlation distance between particles.

Also, as part of the numerical validation study, we needed to calculate particle config-

urations that exactly matched different inter-particle pair-correlations. This led us to

address two more questions:

• How do inter-particle correlations influence the overall behaviour of the wave in

the disordered materials?

• Given a pair-correlation, how do we calculate a configuration of particles that

best matches this pair-correlation?

These research goals will enhance our understanding of wave interactions with

particulate materials under challenging conditions and will open new research avenues,

not only for more precise and effective material sensing techniques but also for the

design of materials with specific properties.

1.4 Relevance & Importance

Understanding how acoustic or electromagnetic waves behave in materials with ran-

dom microstructure, that is, explaining how waves interact with these complex materi-

als, is a crucial step in characterising the properties of these materials and designing

novel materials with specific behaviours. The behaviour of these materials often

depends on the physical properties of their constituent particles, such as their size

and density. These factors are carried out across a wide range of industries and have

a direct influence on various material properties such as the dissolution rate of a

tablet or the flow and mix properties of the powder particles [57, 70]. Advancements

in mechanical engineering can be made by designing the next generation of sound

absorbing materials to control wave propagation. Additionally, since all materials

scatter light and sound and by extension, waves, either acoustic or electromagnetic,

can be used for non-invasive and energy-efficient sensing of particulate materials.

Measuring particle size and density and understanding how they affect many

products and processes, could optimise the efficiency of the manufacturing processes
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and enhance the quality of the product [10, 24, 31]. Nowadays, laser diffraction is

the state of the art technique for characterising the properties of a particulate material

[12, 50, 73, 80]. Many organisations around the world, such as Malvern Panalytical

[38], Horiba [30], and Microtrac [42] use this technique. It involves projecting a laser

through a dispersed particulate material and measuring the angle and intensity of the

light scattering, which reveals particle size. However, this method assumes that the

incident light interacts with only one particle before it is detected. In high-density

materials, the incident light may interact with multiple particles before reaching the

detector. This interaction can alter the properties (angle, intensity) of the detected

light. This may lead to misinterpretation of the light’s properties by the instrument.

That is one reason why the material is diluted before the process of laser diffraction

begins.

Let us now consider a scenario where we run a pharmaceutical company that

processes powders, typically transported through pipes. Despite laser diffraction being

the leading method for analysis, there are limitations, particularly in understanding

the microstructure of the powder in its natural state. Here we ask: What if we

could implement a method that does not require diluting the powder or using laser

diffraction? What if we could exploit the multiple scattering of waves and design a

sensor that can determine the statistical properties of the powder particles in real

time? This device would operate by emitting and receiving waves - mechanical, sound

or electromagnetic - tailored on the powder’s nature. As these waves interact with

the powder, they generate multiple scattering patterns. By analysing these scattering

patterns, we could reveal detailed insights into the particle size and density. This

innovative approach has the potential to provide real-time monitoring of the powder,

offering a significant advantage over traditional methods.

As an analogy, we solve the multiple scattering problem and compute the total

scattered wave through the use of the Julia packages MultipleScattering.jl [27] and

EffectiveWaves.jl [29]. These tools allow us to generate large and reliable datasets

from different scattering simulations. The scattering coefficients from the particulate

material can be obtained and numerical methods - such as Supervised Machine

Learning techniques - can be applied to extract information on the particulate (e.g.

particle size and density) [16, 24, 59, 63]. This approach can start with basic methods

such as linear regression and move on with more sophisticated models that are able to

capture more complicated relationships between the scattering coefficients, and the

average and standard deviation of the different species of particles. Thus, this large

amount of data is essential to understand how to sense and design materials in order
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to control waves.

1.5 Overview of the dissertation

In Chapter 2, we demonstrate that the average transmitted wave is a sum of effective

waves when propagating beyond one inter-particle correlation length away from the

boundary. This finding is critical, as our goal is to verify the existence of these waves

and conduct Monte-Carlo simulations.

Chapter 3 enhances our understanding of the main concepts presented in Chapter 2

but also paves the way for the advanced methods discussed in Chapter 4. To elaborate,

Section 3.1 focuses on the effects of multiple effective wavenumbers on reflection

coefficients. Section 3.2 introduces an asymptotic method for determining effect-

ive wavenumbers in three dimensions, particularly in scenarios involving monopole

scatterers. Section 3.3 focuses on the challenges in Monte-Carlo simulation when

simulating particle configurations in finite regions and sets the stage for Chapter 4.

Chapter 4 demonstrates how to calculate particle configurations from a given pair-

correlation. This is not only useful when comparing theoretical results to Monte-Carlo

simulations, but also in material design: changing the pair-correlation affects many of

the average properties (thermal, chemical, fluid flow) of a material. To either make the

material, or determine if it is feasible, we need to calculate a configuration of particles

from the pair-correlation. Consequently, our primary goal is to tackle both of these

objectives by focusing on the study of techniques for deriving particle configurations

from pair-correlations and vice-versa. We also aim to introduce advanced techniques

in smooth nonlinear optimisation, demonstrating how these can be applied to rapidly

deduce particle configurations from known pair-correlations.

In Chapter 5 we give a brief summary of the key findings from our research and

explore potential future directions for further work.



REFERENCES 19

References

[1] BS ISO 20998-3:2017. London: British Standards Institution. 2017. URL: https:

//www.iso.org/obp/ui/en/#iso:std:iso:20998:-3:ed-1:v1:en.

[2] Ian D. Abrahams et al. ‘The effective material properties of a composite elastic

half-space’. In: Journal of the Acoustical Society of America 139 (Apr. 2016),

2151–2151. URL: http://dx.doi.org/10.1121/1.4950359.

[3] J. R. Allegra et al. ‘Attenuation of Sound in Suspensions and Emulsions: Theory

and Experiments’. In: The Journal of the Acoustical Society of America 51.5B

(May 1972), 1545–1564. URL: http://dx.doi.org/10.1121/1.1912999.

[4] Vincent C. Ballenegger et al. ‘The Ewald-Oseen extinction theorem and extinc-

tion lengths’. In: American Journal of Physics 67.7 (July 1999), pp. 599–605.

URL: https://doi.org/10.1119/1.19330.

[5] J.A. Barker et al. ‘Monte Carlo values for the radial distribution function of a

system of fluid hard spheres’. In: Molecular Physics 21.1 (Jan. 1971), 187–191.

URL: http://dx.doi.org/10.1080/00268977100101331.

[6] James G. Berryman. ‘Long-wavelength propagation in composite elastic media

I. Spherical inclusions’. In: The Journal of the Acoustical Society of America 68.6

(Dec. 1980), 1809–1819. URL: http://dx.doi.org/10.1121/1.385171.

[7] Max Born et al. Principles of Optics: 60th Anniversary Edition. Cambridge Uni-

versity Press, Dec. 2019. URL: http://dx.doi.org/10.1017/9781108769914.

[8] J. J. Bowman et al. Electromagnetic and acoustic scattering by simple shapes
(Revised edition). 1987.

[9] V.V. Bringi et al. ‘The effects on pair correlation function of coherent wave

attenuation in discrete random media’. In: IEEE Transactions on Antennas and
Propagation 30.4 (July 1982), pp. 805–808. URL: https://doi.org/10.1109/

tap.1982.1142852.

[10] R E Challis et al. ‘Ultrasound techniques for characterizing colloidal dispersions’.

In: Reports on Progress in Physics 68.7 (June 2005), pp. 1541–1637. URL: https:

//doi.org/10.1088/0034-4885/68/7/r01.

[11] Mathieu Chekroun et al. ‘Time-domain numerical simulations of multiple scat-

tering to extract elastic effective wavenumbers’. In: Waves in Random and
Complex Media 22.3 (Aug. 2012), 398–422. URL: http://dx.doi.org/10.

1080/17455030.2012.704432.

https://www.iso.org/obp/ui/en/#iso:std:iso:20998:-3:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso:20998:-3:ed-1:v1:en
http://dx.doi.org/10.1121/1.4950359
http://dx.doi.org/10.1121/1.1912999
https://doi.org/10.1119/1.19330
http://dx.doi.org/10.1080/00268977100101331
http://dx.doi.org/10.1121/1.385171
http://dx.doi.org/10.1017/9781108769914
https://doi.org/10.1109/tap.1982.1142852
https://doi.org/10.1109/tap.1982.1142852
https://doi.org/10.1088/0034-4885/68/7/r01
https://doi.org/10.1088/0034-4885/68/7/r01
http://dx.doi.org/10.1080/17455030.2012.704432
http://dx.doi.org/10.1080/17455030.2012.704432


20 REFERENCES

[12] Dong Chen et al. ‘A New Angular Light Scattering Measurement of Particulate

Matter Mass Concentration for Homogeneous Spherical Particles’. In: Sensors
19.10 (May 2019), p. 2243. URL: http://dx.doi.org/10.3390/s19102243.

[13] Cilas. Particle Size and Shape Analysis in Paint, Ink and Pigment Industry. 2022.

URL: http://www.bruben.com.ar/pdf/Aplicaciones/020- pigmentos%

20paint%20industry.pdf.

[14] O. Costin et al. ‘On the Construction of Particle Distributions with Specified

Single and Pair Densities’. In: The Journal of Physical Chemistry B 108.51 (Oct.

2004), pp. 19614–19618. URL: https://doi.org/10.1021/jp047793m.

[15] Jenness Crawford et al. ‘Aspects of correlation function realizability’. In: The
Journal of Chemical Physics 119.14 (Sept. 2003), pp. 7065–7074. URL: https:

//doi.org/10.1063/1.1606678.

[16] Antonio Di Noia et al. Neural Networks and Support Vector Machines and Their
Application to Aerosol and Cloud Remote Sensing: A Review. Springer International

Publishing, 2018, 279–329. URL: http://dx.doi.org/10.1007/978-3-319-

70796-9_4.

[17] J Dubois et al. ‘Coherent acoustic response of a screen containing a random

distribution of scatterers: Comparison between different approaches’. In: Journal
of Physics: Conference Series 269 (Jan. 2011), p. 012004. URL: https://doi.

org/10.1088/1742-6596/269/1/012004.

[18] P. P. Ewald. ‘Zur Begründung der Kristalloptik’. In: Annalen der Physik 354.1

(1916), pp. 1–38. URL: https://doi.org/10.1002/andp.19163540102.

[19] Leslie L. Foldy. ‘The Multiple Scattering of Waves. I. General Theory of Isotropic

Scattering by Randomly Distributed Scatterers’. In: Physical Review 67.3-4 (Feb.

1945), pp. 107–119. URL: https://doi.org/10.1103/physrev.67.107.

[20] M. Ganesh et al. ‘A far-field based T-matrix method for two dimensional obstacle

scattering’. en. In: ANZIAM Journal 51.0 (May 2010), pp. 215–230. URL: https:

//journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2581

(visited on 23/03/2018).

[21] M. Ganesh et al. ‘Algorithm 975: TMATROM—A T-Matrix Reduced Order Model

Software’. In: ACM Trans. Math. Softw. 44.1 (July 2017), 9:1–9:18. URL: http:

//doi.acm.org/10.1145/3054945 (visited on 23/03/2018).

http://dx.doi.org/10.3390/s19102243
http://www.bruben.com.ar/pdf/Aplicaciones/020-pigmentos%20paint%20industry.pdf
http://www.bruben.com.ar/pdf/Aplicaciones/020-pigmentos%20paint%20industry.pdf
https://doi.org/10.1021/jp047793m
https://doi.org/10.1063/1.1606678
https://doi.org/10.1063/1.1606678
http://dx.doi.org/10.1007/978-3-319-70796-9_4
http://dx.doi.org/10.1007/978-3-319-70796-9_4
https://doi.org/10.1088/1742-6596/269/1/012004
https://doi.org/10.1088/1742-6596/269/1/012004
https://doi.org/10.1002/andp.19163540102
https://doi.org/10.1103/physrev.67.107
https://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2581
https://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2581
http://doi.acm.org/10.1145/3054945
http://doi.acm.org/10.1145/3054945


REFERENCES 21

[22] J de Goede et al. ‘On the extinction theorem in electrodynamics’. In: Physica
58.4 (Apr. 1972), pp. 568–584. URL: https://doi.org/10.1016/0031-

8914(72)90212-1.

[23] Artur L. Gower et al. ‘A proof that multiple waves propagate in ensemble-

averaged particulate materials’. In: Proceedings of the Royal Society A: Mathem-
atical, Physical and Engineering Sciences 475.2229 (Sept. 2019), p. 20190344.

URL: http://dx.doi.org/10.1098/rspa.2019.0344.

[24] Artur L. Gower et al. ‘Characterising particulate random media from near-

surface backscattering: A machine learning approach to predict particle size

and concentration’. In: EPL (Europhysics Letters) 122.5 (July 2018), p. 54001.

URL: http://dx.doi.org/10.1209/0295-5075/122/54001.

[25] Artur L Gower et al. ‘Effective waves for random three-dimensional particulate

materials’. In: New Journal of Physics 23.6 (June 2021), p. 063083. URL: http:

//dx.doi.org/10.1088/1367-2630/abdfee.

[26] Artur L. Gower et al. ‘Multiple Waves Propagate in Random Particulate Mater-

ials’. In: SIAM Journal on Applied Mathematics 79.6 (Jan. 2019), 2569–2592.

URL: http://dx.doi.org/10.1137/18M122306X.

[27] Artur L Gower et al. ‘MultipleScatering.jl: A Julia library for simu-

lating, processing, and plotting multiple scattering of waves.’ In: git-
hub.com/JuliaWaveScattering/MultipleScattering.jl (2020).

[28] Artur L. Gower et al. ‘Reflection from a multi-species material and its trans-

mitted effective wavenumber’. en. In: Proc. R. Soc. A 474.2212 (Apr. 2018),

p. 20170864. URL: http://rspa.royalsocietypublishing.org/content/

474/2212/20170864 (visited on 22/04/2018).

[29] Artur Lewis Gower. ‘EffectiveWaves.jl: A Julia package to calculate en-

semble averaged waves in heterogeneous materials’. Version 0.3.4. In: git-
hub.com/JuliaWaveScattering/EffectiveWaves.jl (Dec. 2018).

[30] Horiba Scientific - Dynamics Light Scattering. URL: https://www.horiba.com/

int/scientific/technologies/dynamic-light-scattering-dls-particle-

size-distribution-analysis/.

[31] Turner JA Hu P. ‘Contribution of double scattering in diffuse ultrasonic backs-

catter measurements’. In: J Acoust Soc Am. 137(1) (2015). URL: http://dx.

doi.org/10.1103/PhysRevLett.108.058301.

https://doi.org/10.1016/0031-8914(72)90212-1
https://doi.org/10.1016/0031-8914(72)90212-1
http://dx.doi.org/10.1098/rspa.2019.0344
http://dx.doi.org/10.1209/0295-5075/122/54001
http://dx.doi.org/10.1088/1367-2630/abdfee
http://dx.doi.org/10.1088/1367-2630/abdfee
http://dx.doi.org/10.1137/18M122306X
https://github.com/JuliaWaveScattering/MultipleScattering.jl
https://github.com/JuliaWaveScattering/MultipleScattering.jl
http://rspa.royalsocietypublishing.org/content/474/2212/20170864
http://rspa.royalsocietypublishing.org/content/474/2212/20170864
https://github.com/JuliaWaveScattering/EffectiveWaves.jl
https://github.com/JuliaWaveScattering/EffectiveWaves.jl
https://www.horiba.com/int/scientific/technologies/dynamic-light-scattering-dls-particle-size-distribution-analysis/
https://www.horiba.com/int/scientific/technologies/dynamic-light-scattering-dls-particle-size-distribution-analysis/
https://www.horiba.com/int/scientific/technologies/dynamic-light-scattering-dls-particle-size-distribution-analysis/
http://dx.doi.org/10.1103/PhysRevLett.108.058301
http://dx.doi.org/10.1103/PhysRevLett.108.058301


22 REFERENCES

[32] Yao Huang et al. ‘Tailoring the electrical and thermal conductivity of multi-

component and multi-phase polymer composites’. In: International Materials
Reviews 65.3 (Mar. 2019), pp. 129–163. URL: https://doi.org/10.1080/

09506608.2019.1582180.

[33] Akira Ishimaru. Wave propagation and scattering in random media: Single scat-
tering and transport theory v. 1. San Diego, CA: Academic Press, Feb. 1978.

[34] Jaison Jeevanandam et al. ‘Review on nanoparticles and nanostructured ma-

terials: history, sources, toxicity and regulations’. In: Beilstein Journal of Nan-
otechnology 9 (Apr. 2018), pp. 1050–1074. URL: https://doi.org/10.3762/

bjnano.9.98.

[35] Gerhard Kristensson et al. Multiple scattering by a collection of randomly located
obstacles Part IV: The effect of the pair correlation function. English. Vol. TEAT-

7272. Technical Report LUTEDX/(TEAT-7272)/1-23/(2021). 2021. URL: https:

//portal.research.lu.se/en/publications/multiple-scattering-by-a-

collection-of-randomly-located-obstacles-8.

[36] T. Kuna et al. ‘Realizability of Point Processes’. In: Journal of Statistical Physics
129.3 (Sept. 2007), pp. 417–439. URL: https://doi.org/10.1007/s10955-

007-9393-y.

[37] C. M. Linton et al. ‘Multiple scattering by random configurations of circular cyl-

inders: Second-order corrections for the effective wavenumber’. en. In: J. Acoust.
Soc. Am. 117.6 (2005), p. 3413. URL: http://scitation.aip.org/content/

asa/journal/jasa/117/6/10.1121/1.1904270 (visited on 04/09/2016).

[38] Malvern Panalytical - Laser Diffraction. URL: https://www.malvernpanalytical.

com/en/products/technology/light-scattering/laser-diffraction.

[39] P. A. Martin. ‘Multiple Scattering: an Invitation’. In: Third International Con-
ference on Mathematical and Numerical Aspects of Wave Propagation. Ed. by G.

Cohen. Philadelphia: SIAM, 1995, pp. 3–16.

[40] P. A. Martin. Multiple Scattering: Interaction of Time-Harmonic Waves with N
Obstacles. Cambridge University Press, Aug. 2006. URL: http://dx.doi.org/

10.1017/CBO9780511735110.

[41] P. A. Martin et al. ‘Estimating the dynamic effective mass density of random

composites’. In: The Journal of the Acoustical Society of America 128.2 (Aug.

2010), pp. 571–577. URL: https://doi.org/10.1121/1.3458849.

[42] Microtrac MRB - Particle Characterisation. URL: https://www.microtrac.com.

https://doi.org/10.1080/09506608.2019.1582180
https://doi.org/10.1080/09506608.2019.1582180
https://doi.org/10.3762/bjnano.9.98
https://doi.org/10.3762/bjnano.9.98
https://portal.research.lu.se/en/publications/multiple-scattering-by-a-collection-of-randomly-located-obstacles-8
https://portal.research.lu.se/en/publications/multiple-scattering-by-a-collection-of-randomly-located-obstacles-8
https://portal.research.lu.se/en/publications/multiple-scattering-by-a-collection-of-randomly-located-obstacles-8
https://doi.org/10.1007/s10955-007-9393-y
https://doi.org/10.1007/s10955-007-9393-y
http://scitation.aip.org/content/asa/journal/jasa/117/6/10.1121/1.1904270
http://scitation.aip.org/content/asa/journal/jasa/117/6/10.1121/1.1904270
https://www.malvernpanalytical.com/en/products/technology/light-scattering/laser-diffraction
https://www.malvernpanalytical.com/en/products/technology/light-scattering/laser-diffraction
http://dx.doi.org/10.1017/CBO9780511735110
http://dx.doi.org/10.1017/CBO9780511735110
https://doi.org/10.1121/1.3458849
https://www.microtrac.com


REFERENCES 23

[43] M.I. Mishchenko et al. ‘Peter Waterman and T-matrix methods’. In: Journal of
Quantitative Spectroscopy and Radiative Transfer 123 (July 2013), pp. 2–7. URL:

https://doi.org/10.1016/j.jqsrt.2012.10.025.

[44] Michael I. Mishchenko. ‘Coherent backscattering by two-sphere clusters’. In:

Optics Letters 21.9 (May 1996), p. 623. URL: http://dx.doi.org/10.1364/OL.

21.000623.

[45] Michael I. Mishchenko. Electromagnetic Scattering by Particles and Particle
Groups: An Introduction. Cambridge University Press, Apr. 2014. URL: http:

//dx.doi.org/10.1017/CBO9781139019064.

[46] Michael I. Mishchenko et al. Multiple Scattering of Light by Particles: Radiative
Transfer and Coherent Backscattering. Cambridge University Press, 2006. 518 pp.

[47] Michael I. Mishchenko et al. ‘T-matrix computations of light scattering by

nonspherical particles: A review’. In: J. Quant. Spectrosc. Radiat. Transfer. Light

Scattering by Non-Spherical Particles 55.5 (May 1996), pp. 535–575. URL:

http://www.sciencedirect.com/science/article/pii/0022407396000027.

[48] Rana Nandi et al. ‘Transport Properties of the Nuclear Pasta Phase with Quantum

Molecular Dynamics’. In: The Astrophysical Journal 852.2 (Jan. 2018), p. 135.

URL: https://doi.org/10.3847/1538-4357/aa9f12.

[49] K. K. Napal et al. ‘Effective T-matrix of a cylinder filled with a random 2

dimensional particulate’. In: (2023). URL: https://arxiv.org/abs/2308.

13338.

[50] Robert T. Nishida et al. ‘A Simple Method for Measuring Fine-to-Ultrafine

Aerosols Using Bipolar Charge Equilibrium’. In: ACS Sensors 5.2 (Jan. 2020),

447–453. URL: http://dx.doi.org/10.1021/acssensors.9b02143.

[51] C. W. Oseen. ‘Über die Wechselwirkung zwischen zwei elektrischen Dipolen

und üer die Drehung der Polarisationsebene in Kristallen und Flüssigkeiten’. In:

Annalen der Physik 353.17 (1915), pp. 1–56. URL: https://doi.org/10.1002/

andp.19153531702.

[52] W. J. Parnell et al. ‘Effective Properties of a Composite Half-Space: Exploring the

Relationship Between Homogenization and Multiple-Scattering Theories’. In:

The Quarterly Journal of Mechanics and Applied Mathematics 63.2 (Apr. 2010),

145–175. URL: http://dx.doi.org/10.1093/qjmam/hbq002.

https://doi.org/10.1016/j.jqsrt.2012.10.025
http://dx.doi.org/10.1364/OL.21.000623
http://dx.doi.org/10.1364/OL.21.000623
http://dx.doi.org/10.1017/CBO9781139019064
http://dx.doi.org/10.1017/CBO9781139019064
http://www.sciencedirect.com/science/article/pii/0022407396000027
https://doi.org/10.3847/1538-4357/aa9f12
https://arxiv.org/abs/2308.13338
https://arxiv.org/abs/2308.13338
http://dx.doi.org/10.1021/acssensors.9b02143
https://doi.org/10.1002/andp.19153531702
https://doi.org/10.1002/andp.19153531702
http://dx.doi.org/10.1093/qjmam/hbq002


24 REFERENCES

[53] William J. Parnell et al. ‘Multiple point scattering to determine the effective

wavenumber and effective material properties of an inhomogeneous slab’. In:

Waves in Random and Complex Media 20.4 (Nov. 2010), pp. 678–701. URL:

https://doi.org/10.1080/17455030.2010.510858.

[54] D.N. Pattanayak et al. ‘General form and a new interpretation of the Ewald-

Oseen extinction theorem’. In: Optics Communications 6.3 (Nov. 1972), pp. 217–

220. URL: https://doi.org/10.1016/0030-4018(72)90178-2.

[55] Allan D. Pierce. Acoustics: An Introduction to Its Physical Principles and Applica-
tions. Springer International Publishing, 2019. URL: http://dx.doi.org/10.

1007/978-3-030-11214-1.

[56] Roy Pike. ‘Particle Sizing by Laser Light Scattering’. In: (2002), 895–919. URL:

http://dx.doi.org/10.1016/b978-012613760-6/50048-6.

[57] ‘Powder Technology: Fundamentals of Particles, Powder Beds, and Particle Gen-

eration’. In: (Nov. 2006). URL: http://dx.doi.org/10.1201/9781420044119.

[58] Wohlers Report. ‘3D Printing and Additive Manufacturing State of the Industry’.

In: Annual Worldwide Progress Report, ASTM International: Denver, CO, USA
(2020).

[59] Matthias Rupp et al. ‘Fast and Accurate Modeling of Molecular Atomization

Energies with Machine Learning’. In: Physical Review Letters 108.5 (Jan. 2012).

URL: http://dx.doi.org/10.1103/PhysRevLett.108.058301.

[60] Kunio Shinohara. ‘Fundamental and Rheological Properties of Powders’. In:

(1997), pp. 96–145. URL: https://doi.org/10.1007/978-1-4615-6373-0_4.

[61] Alverède Simon et al. ‘Propagation of coherent shear waves in scattering elastic

media’. In: Physical Review E 103.5 (May 2021). URL: https://doi.org/10.

1103/physreve.103.l051001.

[62] J. J. Stoker. ‘On radiation conditions’. In: Communications on Pure and Applied
Mathematics 9 (1956), pp. 577–595. URL: https://api.semanticscholar.

org/CorpusID:119513891.

[63] Peter D. Thorne et al. ‘An overview on the use of backscattered sound for

measuring suspended particle size and concentration profiles in non-cohesive

inorganic sediment transport studies’. In: Continental Shelf Research 73 (Feb.

2014), pp. 97–118. URL: https://doi.org/10.1016/j.csr.2013.10.017.

https://doi.org/10.1080/17455030.2010.510858
https://doi.org/10.1016/0030-4018(72)90178-2
http://dx.doi.org/10.1007/978-3-030-11214-1
http://dx.doi.org/10.1007/978-3-030-11214-1
http://dx.doi.org/10.1016/b978-012613760-6/50048-6
http://dx.doi.org/10.1201/9781420044119
http://dx.doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1007/978-1-4615-6373-0_4
https://doi.org/10.1103/physreve.103.l051001
https://doi.org/10.1103/physreve.103.l051001
https://api.semanticscholar.org/CorpusID:119513891
https://api.semanticscholar.org/CorpusID:119513891
https://doi.org/10.1016/j.csr.2013.10.017


REFERENCES 25

[64] Victor P. Tishkovets et al. ‘Scattering of electromagnetic waves by ensembles of

particles and discrete random media’. In: Journal of Quantitative Spectroscopy
and Radiative Transfer 112.13 (Sept. 2011), pp. 2095–2127. URL: https://doi.

org/10.1016/j.jqsrt.2011.04.010.

[65] S. Torquato et al. ‘Controlling the Short-Range Order and Packing Densities of

Many-Particle Systems’. In: The Journal of Physical Chemistry B 106.33 (July

2002), pp. 8354–8359. URL: https://doi.org/10.1021/jp0208687.

[66] S Torquato et al. ‘Random Heterogeneous Materials: Microstructure and Mac-

roscopic Properties’. In: Applied Mechanics Reviews 55.4 (July 2002), B62–B63.

URL: https://doi.org/10.1115/1.1483342.

[67] L. Tsang et al. ‘Multiple scattering of acoustic waves by random distribution

of discrete spherical scatterers with the quasicrystalline and Percus–Yevick

approximation’. In: The Journal of the Acoustical Society of America 71.3 (Mar.

1982), 552–558. URL: http://dx.doi.org/10.1121/1.387524.

[68] Leung Tsang et al. Scattering of Electromagnetic Waves: Numerical Simulations.
Wiley, May 2001. URL: http://dx.doi.org/10.1002/0471224308.

[69] O.U. Uche et al. ‘On the realizability of pair correlation functions’. In: Physica
A: Statistical Mechanics and its Applications 360.1 (Jan. 2006), pp. 21–36. URL:

https://doi.org/10.1016/j.physa.2005.03.058.

[70] Ugur Ulusoy. ‘A Review of Particle Shape Effects on Material Properties for

Various Engineering Applications: From Macro to Nanoscale’. In: Minerals 13.1

(Jan. 2023), p. 91. URL: https://doi.org/10.3390/min13010091.

[71] B J Uscinski. Elements of wave propagation in random media. en. New York, NY:

McGraw-Hill, Nov. 1977.

[72] V. K. Varadan et al. ‘Multiple scattering theory for waves in discrete random

media and comparison with experiments’. In: Radio Science 18.3 (May 1983),

pp. 321–327. URL: https://doi.org/10.1029/rs018i003p00321.

[73] Konstantina Vasilatou et al. ‘Calibration of optical particle size spectrometers

against a primary standard: Counting efficiency profile of the TSI Model 3330

OPS and Grimm 11-D monitor in the particle size range from 300nm to 10µm’.

In: Journal of Aerosol Science 157 (2021), p. 105818. URL: https://www.

sciencedirect.com/science/article/pii/S0021850221005498.

https://doi.org/10.1016/j.jqsrt.2011.04.010
https://doi.org/10.1016/j.jqsrt.2011.04.010
https://doi.org/10.1021/jp0208687
https://doi.org/10.1115/1.1483342
http://dx.doi.org/10.1121/1.387524
http://dx.doi.org/10.1002/0471224308
https://doi.org/10.1016/j.physa.2005.03.058
https://doi.org/10.3390/min13010091
https://doi.org/10.1029/rs018i003p00321
https://www.sciencedirect.com/science/article/pii/S0021850221005498
https://www.sciencedirect.com/science/article/pii/S0021850221005498


26 REFERENCES

[74] P. C. Waterman et al. ‘Multiple Scattering of Waves’. In: Journal of Mathematical
Physics 2.4 (July 1961), pp. 512–537. URL: https://doi.org/10.1063/1.

1703737.

[75] P.C. Waterman. ‘Matrix formulation of electromagnetic scattering’. In: Proceed-
ings of the IEEE 53.8 (1965), pp. 805–812. URL: https://doi.org/10.1109/

proc.1965.4058.

[76] G. N. Watson. A Treatise on the Theory of Bessel Functions. University Press,

Cambridge, 1944.

[77] Robert Weser et al. ‘Particle characterisation in highly concentrated disper-

sions using ultrasonic backscattering method’. In: Ultrasonics 53.3 (Mar. 2013),

706–716. URL: http://dx.doi.org/10.1016/j.ultras.2012.10.013.

[78] J. R. Willis. ‘Transmission and reflection of energy at the boundary of a random

two-component composite’. In: Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 479.2271 (Mar. 2023). URL: http://dx.doi.

org/10.1098/rspa.2022.0730.

[79] Emil Wolf. ‘A generalized extinction theorem and its role in scattering theory’.

In: Coherence and Quantum Optics: Proceedings of the Third Rochester Conference
on Coherence and Quantum Optics held at the University of Rochester, June 21–23,
1972. Springer. 1973, pp. 339–357.

[80] Renliang Xu. ‘Light scattering: A review of particle characterization applications’.

In: Particuology 18 (Feb. 2015), 11–21. URL: http://dx.doi.org/10.1016/j.

partic.2014.05.002.

[81] Ge Zhang et al. ‘Realizable hyperuniform and nonhyperuniform particle con-

figurations with targeted spectral functions via effective pair interactions’. In:

Physical Review E 101.3 (Mar. 2020). URL: https : / / doi . org / 10 . 1103 /

physreve.101.032124.

[82] Maciej Zworski. ‘Mathematical study of scattering resonances’. In: Bulletin of
Mathematical Sciences 7.1 (Mar. 2017), pp. 1–85. URL: https://doi.org/10.

1007/s13373-017-0099-4.

https://doi.org/10.1063/1.1703737
https://doi.org/10.1063/1.1703737
https://doi.org/10.1109/proc.1965.4058
https://doi.org/10.1109/proc.1965.4058
http://dx.doi.org/10.1016/j.ultras.2012.10.013
http://dx.doi.org/10.1098/rspa.2022.0730
http://dx.doi.org/10.1098/rspa.2022.0730
http://dx.doi.org/10.1016/j.partic.2014.05.002
http://dx.doi.org/10.1016/j.partic.2014.05.002
https://doi.org/10.1103/physreve.101.032124
https://doi.org/10.1103/physreve.101.032124
https://doi.org/10.1007/s13373-017-0099-4
https://doi.org/10.1007/s13373-017-0099-4


Chapter 2

The average transmitted wave in
random particulate materials

ARISTEIDIS KARNEZIS, PAULO S. PIVA, ART L. GOWER

Abstract

Microwave remote sensing is significantly altered when passing through clouds or

dense ice. This phenomenon is not unique to microwaves; for instance, ultrasound

is also disrupted when traversing through heterogeneous tissues. Understanding

the average transmission in particle-filled environments is central to improve data

extraction or even to create materials that can selectively block or absorb certain wave

frequencies. Most methods that calculate the average transmitted field assume that

it satisfies a wave equation with a complex effective wavenumber. However, recent

theoretical work has predicted more than one effective wave propagating even for

scalar waves propagating in statistically isotropic media. In this work we provide the

first clear evidence of these predicted multiple effective waves by using high-fidelity

Monte-Carlo simulations that do not make any statistical assumptions. To achieve this,

it was necessary to fill in a missing link in the theory for particulate materials. To this

end, we prove that the incident wave does not propagate throughout the material,

which is usually taken as an assumption called the Ewald-Oseen extinction theorem.

By proving this we conclude that the extinction length - the distance it takes for the

incident wave to be extinct - is equal to the correlation length between the particles.

27
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2.1 Introduction

Most materials, at some length scale, are formed of a random configuration of smaller

particles. Consider particles in powder for pharmaceuticals, grains of sand, oil droplets

in emulsions, and aggregates in solid composites. The wide number of these partic-

ulate materials, and their associated engineering applications, make it worthwhile

developing methods to characterise these materials and design them intelligently.

Background. When it comes to measurement and characterisation of particulate

materials, the main tools are classical waves such as electromagnetic and ultrasonic or

acoustic. The governing equations for these classical waves would be well-understood

if the material itself was known in all its details. Unfortunately, in most cases it is

impossible to know in detail the microstructure of the material because it is disordered.

In these scenarios, ensemble averaging and statistical assumptions need to be employed

to obtain solvable systems [20, 33, 34, 47].

The interaction of classical waves with particulate materials (on average) is well-

understood within certain limits. In the long-wavelength limit, where the particles

appear small compared to the wavelength of the incident wave, it is well-understood

how to calculate effective properties [42]. In the dilute limit, where there is no

multiple scattering, Mie theory has led to characterisation methods such as Dynamic

Light Scattering and laser diffraction resulted in a range of widely used tools*†.

Pushing the limits. In the cases where multiple scattering is significant, and the

incident wavelength is not long (compared to the microstructure), the average wave

is not as simple to describe [7, 15, 29]. This is especially true when using exotic

pair-correlations [41, 43] and resonant particles [28, 37]. To push the theory to these

new limits, we need to clearly understand the validity of all the assumptions made.

Within this context, we aim to address two significant assumptions that currently

remain unanswered.

Multiple effective wavenumbers. Most of the literature assumes there is only

one effective wavenumber [9, 10, 27, 31, 40, 44, 48]. As the medium is isotropic and

homogeneous (after ensemble averaging) it seems reasonable to assume that there

is only one effective wavenumber k⋆ for waves travelling in a bulk material (i.e. no

waveguide). However, two different theoretical methods [15, 50] have predicted that

there exist at least two (complex) effective wavenumbers for one fixed frequency. Here

we give the first clear numerical evidence of these multiple effective wavenumbers

*Malvern Panalytical: www.malvernpanalytical.com/laser-diffraction
†Horiba Scientific: www.horiba.com/dynamic-light-scattering

https://www.malvernpanalytical.com/en/products/technology/light-scattering/laser-diffraction
https://www.horiba.com/int/scientific/technologies/dynamic-light-scattering-dls-particle-size-distribution-analysis/
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as well as demonstrate that multiple wavenumbers are triggered by particles, and

frequencies, that lead to strong scattering. To clearly relate the transmitted field from

numerical simulations with the transmitted wave from theoretical results, we have

to first be clear on what the most general theoretical framework predicts about the

transmitted field.

Incident wave extinction. It is often assumed that the incident wave does not

propagate, or contribute to, the total transmitted field inside a material. This assump-

tion is called the Ewald-Oseen extinction theorem [7, 11], and is applied more broadly

than on just averaged disordered or random materials. For disordered particulate

material, this assumption has been derived in many different limits, including low-

frequency and low particle volume fraction [4], but there are still disagreements in the

literature on the exact extinction length [4], that is, the distance into the medium that

the incident waves travels before vanishing. Knowledge of the exact extinction length

is required, for example, in experiments where the source and transmitted wave can

be mixed. This situation arises when measuring light from objects at astronomical

distances [4].

In this work we are able to prove that for any particulate material geometry,

frequency, and incident wave, the Ewald-Oseen extinction theorem is a result of more

fundamental assumptions. With the proof, we can clearly demonstrate that the incident

wave does not propagate further than the correlation length between the particles.

That is, the extinction length is equal to the inter-particle correlation length.

Microscopic extinction. The theoretical methods we use consider the scattering

from all particles and take an ensemble average. This has been called the micro-

scopic approach [25, 33, 40, 44, 46]. The microscopic approach solves the boundary

conditions around every particle, and the resulting equations involve terms which

satisfy the background wave equation, just like the incident wave. Cancelling these

terms is often called the Ewald-Oseen extinction theorem [5], but it is not the same as

concluding that the incident wave itself is extinct, see for example [30, 32]. Further,

this cancellation does not lead to the extinction length. We are able to connect the two

approaches by showing that the boundary conditions around each particle, used in the

microscopic approach, do lead to the incident wave itself being extinct, and provide

an extinction length.

Monte-Carlo. There have been several studies that use Monte-Carlo methods

to validate effective wave theory. Examples include comparing Monte-Carlo with:

the average scattering from a sphere filled with particles [36, 53], and one effective

wavenumber from the theory [8, 9]. To our knowledge, there has been no Monte-Carlo
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validation or evidence that more than one multiple effective wavenumber exists. Here,

by using precise Monte-Carlo simulations, we provide the first clear evidence that at

least two effective wavenumbers, and therefore two effective waves, are present in

the transmitted field. The theoretical methods that predict these multiple effective

wavenumbers make several statistical assumptions, whereas our numerical simulations

make no such assumptions. They, therefore, provide a clear validation of the theoretical

predictions.

Summary of the paper. In Section 2.1.1 we provide an overview of the theory

and the results of this paper. In Section 2.2 we discuss what the theory predicts for the

average wave in a plate filled with random particles and how to easily identify when

multiple wavenumbers should appear. In Section 2.3 we discuss our Monte-Carlo

simulations, which involve simulating waves scattered from tens of thousands of

particle configurations, how we verify convergence, and how we clearly demonstrate

that there are scenarios where at least two effective wavenumbers appear in the

transmitted field. In Section 2.4 we provide rigorous derivations that: the incident

wave does not propagate in the particulate material, and the average transmitted wave

is a sum of waves which satisfy effective wave equations. Our derivations are more

general than just for a plate, they hold for a finite region, and in fact for any spatial

dimension. So the proof we provide is also valid for three-dimensional materials.

2.1.1 Overview of the theory

Consider a harmonic incident plane-wave uinc(x) = eikx, satisfying the Helmholtz

equation with wavenumber k, so that uinc(x)e
−iωt satisfies a scalar wave equation,

where x is the distance of propagation. When this incident wave propagates through a

random particulate medium, the general assumption has been that it will be replaced

by one effective wave of the form:

⟨u(x)⟩ = A⋆e
ik⋆x, (2.1)

where k⋆ is a complex effective wavenumber, for the fixed frequency ω, A⋆ is the

average transmission coefficient, and ⟨u(x)⟩ is the ensemble average of u(x) over all

possible particle configurations [10, 27, 31, 40, 44, 48].

In the low-frequency limit, when the particles are small relative to the incident

wave- length, there is substantial evidence to justify (2.1). But beyond the low-

frequency limit, and when using more exotic pair-correlations and distributions for

the particles, there is no clear consensus. Two different methods [16, 50] suggest a
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different form for (2.1) given by:

⟨u(x)⟩ = Aince
ikx +

∞∑
p=1

Ape
ikpx, (2.2)

where Ainc is the amplitude of the incident wave, Ap are the average transmission

coefficients and kp are complex effective wavenumbers. In the next two paragraphs

we further explain the form (2.37).

Incident wave extinction. When Ainc is not zero, a part of the incident wave re-

mains even when propagating through a random particulate. The work by Martin [30]

suggests that this is the case. Assuming Ainc = 0 is called the Ewald-Oseen extinction

theorem [11, 25, 40], and it is due to the scattering and absorption of energy by the

random distribution of particles. Much of the literature [4] assumes this extinction

happens after the incident wave has propagated a certain distance in the material. In

this paper we prove that for any: frequency, material geometry, particle distribution,

and for two and three spatial dimensions, the incident wave is extinct (Ainc = 0 for

plane-waves) at a distance equal to particle correlation length.

Multiple effective wavenumbers. Each term in the sum of (2.2) represents an

effective wave with a different wavenumber kp. This is highly unusual for scalar

waves at a fixed angular frequency ω. Yet, two different theoretical methods have

predicted the existence of at least two (p > 1) complex effective wavenumbers [16,

38, 50]. The evidence for this unusual prediction, beyond just theoretical, is lacking.

In this work we use highly accurate simulations and Monte-Carlo method for circular

cylindrical particles to demonstrate that these extra wavenumbers are present for

specific frequencies. To our knowledge, this is the first clear evidence of the existence

of these multiple effective wavenumbers.

Average reflected field. Beyond just curiosity, these extra effective wavenumbers

can have a significant effect on the average reflected, transmitted, or scattered wave

from a particulate material [14, 16]. It is also far simpler to calculate the cases where

there is only one dominant wavenumber [10, 15].

To understand when these multiple wavenumbers are needed, we have produced

a series of phase diagrams. A phase diagram in the field of acoustics is a graphical rep-

resentation that shows how the acoustic properties of a material change. By mapping

these properties against frequency and volume fraction, we can optimise materials

for specific acoustic applications, such as soundproofing or ultrasonic imaging, by

identifying the conditions under which the material’s acoustic response is most favour-

able for the intended application. An example is shown in Figure 2.1 for sound-soft



32 2.2. A PLATE FILLED WITH PARTICLES

particles. The regions with a light colour, corresponding to values below 0.5 shown in

the colour bar, require more than one effective wavenumber to accurately describe

the transmitted field. For example, we can see that only one wavenumber is needed

for low particle volume fraction ϕ < 0.1, with only one exception around ka = 0.6.

The green curve in the figure shows the scattering strength of just one particle by

itself. Surprisingly, we see that the frequencies at which the single particle scatters

the strongest (the peaks in the green curve) are also the frequencies at which two

(or more) effective wavenumbers are required, and therefore needed to accurately

describe wave transmission. In other words, strong scattering leads to multiple effect-

ive wavenumbers. These results, and other phase diagrams, are further discussed in

Section 2.3.1.
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Figure 2.1: The phase diagram for sound-soft (ρo, co = 0.30) particles showing when more
than one effective wavenumber is needed. The x–axis shows ka, with a being the particle
radius, and k being the incident wavenumber. The y–axis is the particle volume fraction ϕ.
The regions with a light colour in the background, anything less than approximately 0.5 shown
in the colour bar, require more than one effective wavenumber. The height of the green curve
is the scattering strength of just one particle (given by (2.18)).

2.2 A plate filled with particles

For a medium that is isotropic and homogeneous, it seems reasonable to assume that

there is only one effective wavenumber for one fixed angular frequency ω. However,

recently two different theoretical models have predicted that there exist at least two

(complex) effective wavenumbers [16, 50].
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Here we design a computational experiment to give clear evidence of at least two

of these effective wavenumbers. We do this by using a robust numerical method based

on high-fidelity Monte-Carlo simulations for two-dimensional disks.

To describe the material, let Pj be the disk occupied by the j-th particle, as

represented by the circles in Figure 2.2 and shown in more detail in Figure 2.10. Let

P = ∪jPj be the union of all particles. For simplicity we consider circular particles of

equal size. In other words, using standard set-builder notation:

Pj = {r ∈ R2 : |r − rj| < a}, (2.3)

where a is the radius of the particle, centred at rj, and |x| is the length of the vector x.

The particles are restricted inside the plate geometry R, given by:

R =

{
(x, y) ∈ R2 : 0 ≤ x ≤ W, −H

2
≤ y ≤ H

2

}
, (2.4)

where W is the width and H is the height of the plate as shown in Figure 2.2.

Figure 2.2: Scattering of an incident plane-wave approaching from the left, onto one specific
configuration of randomly distributed circular cylinders (or particles) Λ. The particles with
radius a = 1.2 are considered strong scatterers with density ρ0 = 0.30 kg ·m−3 and wavespeed
c0 = 0.30 m · s−1. The density and wavespeed of the background medium is ρ = 1.0 kg ·m−3

and c = 1.0 m · s−1 respectively. To perform this simulation we choose a frequency ω = 0.8
and a particle volume fraction ϕ = 8%. The solid black line depicts the plate boundary while
the green line shows where the field is measured. The simulation directly solves the governing
equations [31].
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The total field u(r) satisfies a Helmholtz equation which depends on whether r is

inside a particle or not:

∇2u(r) + k2u(r) = 0, for r ∈ R \ P , (2.5)

∇2u(r) + k2
0u(r) = 0, for r ∈ P , (2.6)

where k = ω
c

and k0 =
ω
c0

are the real wavenumbers of the background and particles

respectively. The scalars c and c0 are, respectively, the wavespeeds in the background

and particles.

The simplest scenario to numerically check for effective waves is for planar sym-

metry. As in this case each frequency has only one mode: the plane-wave. To achieve

this, we fill a plate region with a configuration of identical, randomly distributed

cylindrical particles whose positions are unknown, as shown in Figure 2.2.

2.2.1 Effective waves for planar symmetry

In this section we summarise the results of the theory for plane-wave symmetry. The

results here will be compared with a Monte-Carlo method detailed in Section 2.3.

We consider an incident plane-wave of the form:

uinc(x) = eikx, (2.7)

and consider particles in a plate region R with an infinite height (unlike Figure 2.2

which shows a truncated plate with a finite height).

The theoretical methods consider an ensemble average of the total field u. To

achieve this, we describe one configuration of identical particles with:

Λ = (r1, r2, . . . , rJ), (2.8)

where rj is the centre position of the particle Pj. Naturally, the field u depends on the

particle positions. To make this explicit we use u(x; Λ).

Next, to calculate the ensemble average, we need to define the probability of all

possible particle configurations. To do this, we introduce the joint probability density

given by p(Λ). For a brief overview on the probability density function p, see [15, 18,

27]. The theoretical methods then calculate and predict the ensemble average defined

by:

⟨u(x)⟩ :=
ˆ

u(x; Λ)p(Λ)dΛ, (2.9)
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where the integral is over all possible particle positions, and the fields depend only on

the spatial position x as we are considering planar symmetry.

It is widely assumed that the average ⟨u(x)⟩ satisfies a Helmholtz equation with a

unique effective complex wavenumber k∗ [10, 27, 31, 40, 44, 48]. In Section 2.4.1 we

prove that ⟨u(x)⟩ is a sum of several effective waves, but only when x is deep enough

within the material. To define what “deep enough” means we need to introduce the

particle pair-correlation.

Pair-correlations. We assume that particles are distributed both homogeneously

and isotropically, which leads to:

g(|r1 − r2|) =
p(r1, r2)

p(r1)p(r2)
, (2.10)

for an infinite number of particles. For details on pair-correlations see [45].

For a disordered or random configuration of particles we have that:

g(|r1 − r2|) =

 0, if |r1 − r2| ≤ a12,

1, if |r1 − r2| ≥ b12,
(2.11)

where b12 ≥ a12 > 2a. The distance a12 is the minimum allowed distance between the

particles while b12 is called the correlation length. For the region a12 ≤ |r1 − r2| ≤ b12

the pair-correlation can take any values for our calculation below, though we expect

g(r) to be continuous in r. In this work we use two different pair-correlations. The

first, and the simplest, is called Hole-Correction, which assumes that b12 = a12. The

second is called the Percus-Yevick approximation, which more accurately approximates

the pair-correlation for particles that are distributed according to a uniform random

probability, except no two particles can overlap [6, 24, 44, 45]. We use the results from

[3] to obtain Percus-Yevick for disks. Figure 2.3 shows the Percus-Yevick distributions

for several different particle volume fractions ϕ.

For disordered media we have that g(r) → 1 as r → ∞. That is, particles become

uncorrelated as they are further apart. To prove that ⟨u(x)⟩ is a sum of effective

waves we need a slightly stronger assumption: that there is a distance b12 at which

particles are completely uncorrelated as used in (2.11). Essentially, this means that

the interactions between particles diminish or disappear, allowing us to consider their

effects independently in mathematical models or numerical simulations.

Effective plane-waves. By having a length b12 at which particles become uncor-

related, we demonstrate in Section 2.4.1 that for an infinite plate geometry (H → ∞
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Figure 2.3: The Percus-Yevick approximation is a pair-correlation that represents particles that
are uniformly randomly placed, except particles do not overlap. That is, particles do not attract
or repel each other. The particle radius a = 1.2 and ϕ is the particle volume fraction.

in (2.4)) filled with particles:

⟨u(x)⟩ =
P∑

p=1

(
A+

p e
ikpx + A−

p e
−ikpx

)
for

∣∣∣∣x− W

2

∣∣∣∣ < W

2
− b12 − a, (2.12)

where we used planar symmetry as shown in [15]. The A±
p are complex amplitudes,

the kp are the complex effective wavenumbers, and P is the number of effective

wavenumbers. There is an infinite number of wavenumbers P , but according to

theoretical calculations only a few are needed for accurate results. For a detailed

discussion on these multiple effective wavenumbers see [14, 16].

The dispersion equation. To calculate the wavenumbers kp we use the dispersion

equation appearing in [14, 16, 27]. The assumptions needed to arrive at this dispersion

equation are shown in Section 2.4. To summarise, the kp are determined by solving:

detM(k⋆) = 0, with Mnn′(k⋆) = δnn′ + 2πnTn[Nn′−n − Gn′−n], (2.13)

where

Nℓ =
1

k2
⋆ − k2

(ka12H
′
ℓ(ka12)Jℓ(k⋆a12)− k⋆a12Hℓ(ka12)J

′
ℓ(k⋆a12)), (2.14)

Gℓ =

ˆ b12

a12

Jℓ(k⋆r)Hℓ(kr)(g(r)− 1)rdr, (2.15)

and the term n is the average number of particles per area, r = |r|, δnn′ is the Kronecker

delta, and Hℓ is the Hankel function of the first kind, while Jℓ is the Bessel function.

The term Nℓ acts as a coupling term relating to the scattered field at one particle
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expressed in coordinates centred at another particle. The term Tn is the T-matrix

which determines how one particle scatters waves by itself. For circular homogeneous

particles in acoustics we have that:

Tn = − γJ′n(ka)Jn(koa)− Jn(ka)J
′
n(koa)

γH′
n(kao)Jn(koa)− Hn(ka)J′n(koa)

, (2.16)

where γ = ρoco
ρc

and ko = ω
co

, with ρo being the mass density of the particles and co

being the wavespeed within the particles.

There are infinitely many k⋆ which solve detM (k⋆) = 0. We denote these solutions

as k1, k2, . . .. The main objective of our Monte-Carlo simulations is to check if the

theoretical predictions of the wavenumbers kp are accurate, and to clearly demonstrate

that there is more than one effective wavenumber appearing in the Monte-Carlo results.

Before doing this, let us first explore the effective wavenumbers predicted by solving

the dispersion equation (2.13).

Effective wavenumbers. We want to identify when the dispersion equation

(2.13) predicts that there is more than one effective wavenumber that has a significant

contribution to the average transmitted wave. It is important to understand when

this occurs, as it is far simpler to calculate the average field when there is only one

effective wavenumber [15, 16].

Most of the scientific community at present is also not aware that more than one

effective wavenumber can be excited [7, 31, 33], for just one scalar wave. So we will

identify for which parameters we can run a heavy Monte-Carlo simulation, as detailed

in Section 2.3, to find clear numerical evidence of multiple effective wavenumbers.

Density Wavespeed
Background material ρo = 1.0 kg/m3 co = 1.0 m/s
Sound-soft particles ρo = 0.30 kg/m3 co = 0.30 m/s
Sound-hard particles ρo = 10.0 kg/m3 co = 10.0 m/s

Table 2.1: Shows the properties of the background medium and the two main particle
properties used for the numerical results. Note that sound-soft (sound-hard) particles are
strong (weak) scatterers.

According to theoretical results, only one effective wavenumber k1 is needed when

Im k1 ≪ Im kp for p = 2, 3, . . . . In any other case, more than one effective wavenumber

can be excited and contribute to the average transmission [14, 16]. Though we note

that the form of the incident wave and the geometry of the material also affects how

the wavenumbers are excited [15].

The first step is to sweep the parameter space by varying the frequency ω and
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Figure 2.4: The phase diagrams showing when more than one effective wavenumber is needed.
The top two diagrams are for sound-soft particles and the bottom diagram is for sound-hard
particles with properties shown in Table 2.1. The colour is given by (2.17) where the lighter
colours (those above 0.5 shown in the colour bar) indicate that more than one effective
wavenumber can be excited. The green curve shows the scattering strength of just one particle
and is given by (2.18).

particle volume fraction ϕ, and for each value calculate the effective wavenumbers kp
by solving (2.13). We do this for both sound-hard and sound-soft particles by changing

ρo and co in (2.16). The two main particle properties used are shown in Table 2.1.

Next, based on the results shown in [14, 16], we can estimate where more than one

effective wavenumber is excited by plotting a heatmap where the colour is given by:

colour =
∣∣∣∣Im k2
Im k1

− 1

∣∣∣∣. (2.17)

After many failed attempts to establish a connection between the phenomena

observed in Figure 2.4 and known physical models, we find that the measure (2.17) is
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closely related to the scattering strength of a single particle, given by:

Scattering strength =

√∑
n

|Tn|2, (2.18)

where Tn is the T-matrix given by (2.16) for acoustics.

The results of sweeping over frequency and particle volume fraction are shown

in Figure 2.4. We call these figures phase diagrams, as we see sudden shifts from

only one effective wavenumber to two or more wavenumbers. The regions with

lighter shading correspond to cases where the value of (2.17) is low, so more than

one effective wavenumber is excited. Conversely, the regions with dark shading are

where only one effective wavenumber is excited. The green curves shown on top of

the phase diagrams are the scattering strength for just one particle. Clearly we see

that a large scattering strength leads to more than one effective wavenumber, which

is an important observation, as calculating (2.18) is far simpler than calculating the

wavenumbers kp.

The phase diagrams in Figure 2.4 show a large region of the parameter space, but

to see in more detail when two or more effective wavenumbers are needed it helps

to plot the imaginary parts of the wavenumbers kp against frequency, which we do in

Figure 2.5 for a particle volume fraction of 25%. For sound-soft particles (Figure 2.5a),

there are many frequencies ka where two or even three effective wavenumbers have a

similar imaginary part, meaning that these wavenumbers can be excited. In contrast,

for sound-hard particles (Figure 2.5b), there is only one effective wavenumber that

can be easily excited, as there is one curve, representing k1, that has a significantly

lower imaginary part than all the others. The only way to clearly separate the effective

wavenumbers would be to use continuity and smoothness to try and follow one curve

as ka increases. Due to many jumps and curves crossing each other, it was not possible

to identify them separately. Some people might argue that this bears a resemblance

to a form of image segmentation. Nonetheless, such a detailed separation is not

necessary for our argument, which emphasises that there are lots of different effective

wavenumbers close by. Seeing as it is not needed, and the fact that it is not essential

for our purposes, we decided not to pursue this approach. In Section 2.3, we use the

results presented in Figure 2.5 to identify specific scenarios suitable for Monte-Carlo

simulations. This will allow us to verify whether the predictions of more than one

effective wavenumber are indeed accurate.
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Figure 2.5: Depicts the imaginary part of the wavenumbers kp with respect to the non-
dimensional frequency ka. We only show the three wavenumbers with the smallest imaginary
parts as these are the only ones which make a significant contribution to the average wave.
The lowest curve represents k1, which is the easiest to excite. The particles occupy 25% of the
material in each case and their properties for sound-soft and sound-hard particles are shown
in Table 2.1.

2.3 The Monte-Carlo simulation

A simple way to approximate the average field (2.9) is to perform a simulation for

each particle configuration and then take an average over all configurations. As we are

focusing on uniformly distributed particles, the probability density p(Λ) is a constant

if particles do not overlap, and p(Λ) = 0 if any two particles do overlap. This allows us

to numerically approximate the ensemble average:

⟨u(r; Λ)⟩ = 1

S

S∑
s=1

u(r; Λs), (2.19)

where each Λs is one randomly sampled configuration of particles within the plate

that depends on the parameter s. That is, we first create a configuration of particles

Λs, then simulate the scattered waves u(r; Λs), and then we repeat this process for

S configurations of particles, until the average in (2.19) converges. As mentioned

in previous sections, ⟨u(r; Λ)⟩ should converge to a sum of plane-waves as shown by

(2.12).

The setup for our Monte-Carlo simulations is shown in Figure 2.2 (note the x-axis is

the vertical axis in the figure), and we used an incident wave of the form uinc(x) = eikx.

To calculate the field u(r; Λs) for each configuration we use a multipole expansion for

each particle, together with translation matrices, to solve the boundary conditions [31].

Specifically, we solve [16, Equation (2.9)] for each s, calculate (2.19) and evaluate the
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field at ⟨u(x, 0; Λs)⟩ with the x values satisfying the condition at (2.12). This method

accurately approximates the exact solution when increasing the truncation order of

the multipole expansion until reaching convergence.

An initial numerical investigation revealed that it was computationally feasible to

simulate a finite number of particles within the region 0 ≤ x ≤ 20, so the width of

plate W = 20 and height H = 400. For details on the methodology of our Monte-Carlo

simulations, see Appendix A.

2.3.1 The Monte-Carlo results

Based on the results presented in Section 2.2.1, we choose several cases to simulate

the average field with a Monte-Carlo method. We want to identify cases where two or

even three wavenumbers can be excited for frequencies as low as possible, because

increasing the frequencies lead to a significantly larger computational cost for the

Monte-Carlo simulations. This is why we only performed Monte-Carlo simulations for

two different frequencies, beyond the low-frequency limit. See Appendix A for details,

and descriptions on computational cost.

(a) ϕ = 5%, ka = 0.04 (b) ϕ = 25%, ka = 0.36

Figure 2.6: The figure on the left shows the behaviour of sound-soft particles in the low-
frequency and low volume fraction regime, whereas the figure on the right demonstrates the
properties of sound-hard particles. The specific characteristics of these particles are detailed
in Table 2.1. The radius of each particle is a = 1.2. Both figures depict scenarios where the
dispersion equation (2.13) predicts only one effective wavenumber kp with a lower imaginary
part, and therefore this is the only wavenumber that can be excited. The green and red
triangles represent effective wavenumbers predicted by the (2.13) when using either the
Hole-Correction or Percus-Yevick pair-correlation. The purple dotted points represent the
effective wavenumber which best fits the Monte-Carlo simulations when using the formula
(2.12).
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One effective wavenumber. From Figure 2.5b we see that for sound-hard

particles there is a broad range of frequencies where there is only one effective

wavenumber with an imaginary part which is far smaller than all others. This means

that it is easy to excite this wavenumber, but very difficult to excite the others. This

message is also confirmed by the phase diagram shown in Figure 2.4. To verify there

is only one effective wavenumber, we perform Monte-Carlo simulations for ka = 0.36

for sound-hard particles, and fit the formula (2.12). The results shown in Figure 2.6b

confirm that there is only one wavenumber present in the Monte-Carlo simulations.

There is a small discrepancy between the effective wavenumbers from the dispersion

equation (2.13) and the fitted effective wavenumbers, which could be due to errors

introduced in the Monte-Carlo simulations due to truncating an infinite region.

On the other hand, for sound-soft particles we see from Figure 2.5a that only

for lower frequencies 0 ≤ ka ≤ 0.2, only one effective wavenumber with a smaller

imaginary part exists. Monte-Carlo simulations, shown in Figure 2.6a, confirm that

there is only one effective wavenumber as predicted by the theory.

Fitting for several effective wavenumbers. Increasing the frequency for sound-

soft particles leads to many frequencies where two, or more, effective wavenumbers

have a lower imaginary part. For example, for 0.25 < ka < 0.63 there are two

wavenumbers with a smaller imaginary part, which means it is possible to excite two

effective wavenumbers in this frequency range. To exemplify, we choose two different

frequencies to perform Monte-Carlo simulations:

• ka = 0.36, where we aim to excite two effective wavenumbers.

• ka = 0.62 where we aim to excite three effective wavenumbers.

Given that we run the Monte-Carlo simulations 40,000 times, we get high fidelity

datasets which leads to very small standard error of the mean of the Monte-Carlo

simulations. Should the standard error of the mean have been larger, the shaded

region in Figures 2.7, 2.9a and 2.9c would have been more visible, introducing some

uncertainty in the data. See Appendix A for details on computational cost.

The results of these simulations are presented in Figure 2.7, comparing the average

field from the simulation with three types of wave interpretations: the Dominant Wave
and the Fitted Wave alongside its extension, the Extended Wave. The dominant wave is

derived by fitting the formula (2.12) with P = 1, based on the traditional approach

where only a single effective wavenumber is considered. This approach, though widely

used, proves inadequate as it fails to account for the presence of multiple effective

wavenumbers. We demonstrate this in Figures (2.7a) and (2.7c) for ka = 0.36 and

ka = 0.62 respectively. In contrast, the fitted wave shows the outcome of applying
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(2.12) with the parameter P set to match the number of effective wavenumbers we

aim to excite based on the frequency. To further explain, for ka = 0.36, P = 2 is used

to fit the formula to the Monte-Carlo data, while for ka = 0.62, P = 3 is used to excite

the three wavenumbers. Now, extending the fitted wave beyond the region where

(2.12) was fitted to the Monte-Carlo data, describes the extended wave. While the

extended wave can still closely follow the Monte-Carlo results, the match with the

Monte-Carlo field is expected to get worse as the extended field gets closer to x = 0.

This is due to a boundary layer where many effective wavenumbers become significant

[14, 16].

(a) sound-soft: ϕ = 25%, ka = 0.36 (b) sound-soft: ϕ = 25%, ka = 0.36

(c) sound-soft: ϕ = 25%, ka = 0.62 (d) sound-soft: ϕ = 25%, ka = 0.62

Figure 2.7: The graphs compare the average field from a Monte-Carlo simulation for sound-soft
particles in a plate, as shown in Figure 2.2, with two types of fitted waves. The Dominant Wave
is the result of fitting for just one effective wavenumber when using the formula (2.12) with
P = 1, and is currently believed to be accurate by most working in the field. We see here
that it is not possible to fit for just one wavenumber. The Fitted Wave is a result of fitting the
formula (2.12) with P = 2 for the top two graphs and P = 3 for the bottom two, whereas
the Extended Wave shows what the formula (2.12) predicts outside of the fitted region. The
shaded region represents the standard error of the mean of the Monte-Carlo simulations. The
non-dimensional frequency ka and volume fraction ϕ used are shown below each figure, the
particle radius is a = 1.2 and the properties for the background medium and the sound-soft
particles can be found in Table 2.1. The key parameters for simulating the scattering of waves
in a plate filled with particles are discussed in Appendix A.

Figures (2.7b) and (2.7d) show how the formula (2.12) fitted to the Monte-Carlo data

clearly matches the Monte-Carlo data and how the same formula predicts the field
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outside of the fitted region. The presence of the boundary layer, and our theoretical

results in Section 2.4, have all guided how best to perform, and fit to, the Monte-Carlo

results as discussed in Appendix A.

Avoid overfitting. Having an accurate fit does not necessarily give strong evidence

that the formula (2.12) is correct. This is especially true for higher frequencies where

the Monte-Carlo simulation has a higher standard error of the mean, shown by the

shaded yellow region. A larger standard error means that there is a range of effective

wavenumbers which can fit this data, and still be closer to the Monte-Carlo results than

the standard error. Further, fitting a sum of plane-waves, such as shown by (2.12), can

lead to overfitting when using too many wavenumbers, and even become ill-posed.

We explain more details on this in the Monte-Carlo methodology in Appendix A.

Projection Method. To ensure that our model is robust against overfitting, and

to check if small changes in the field lead to large changes in the fitted wavenumbers,

we develop a method, called the Projection Method. This method is designed to fit

the formula (2.12) for all possible combinations of the effective wavenumbers in a

specified region. Given the instability of nonlinear optimisation for scenarios involving

multiple effective wavenumbers [35], the Projection Method serves a dual purpose. It

not only fits the formula (2.60) but also estimates the sensitivity of the parameters kp
to the dataset.

To fit Monte-Carlo data for the cases with more than one effective wavenumbers,

we design an algorithm that sweeps over all possible values of the wavenumbers kp
and for each case performs a linear fit, by using least-squares, to predict the amplitudes

A+
p in (2.60). For that, we consider a mesh in the complex plane C ⊂ C from which

we sample values of kp.

A sketch of the algorithm for the case P = 3 is given in Algorithm 1.

The algorithm calculates the minimum error ε(k1) for every possible k1, and it is

this error which is shown in Figures 2.8, 2.9b and 2.9d. We perform further analysis

to establish if the optimal wavenumbers are located at the local minima shown, and

whether the fitted curves when using (2.60) are within the standard error of the mean

of the Monte-Carlo simulation. The blue region in Figure 2.8 is derived by using

the smoothing algorithm presented in Appendix A and contains all wavenumbers for

which the fitted curves are within the standard error of the mean. There are clearly

two distinct disconnected regions for possible values of kp, which shows that the

transmitted wave is composed of a sum of two effective waves.

At least two effective wavenumbers. The result of fitting two effective wavenum-

bers for ka = 0.36 is shown in Figure 2.8. The main conclusion is that this is the first
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Algorithm 1: Algorithm for the Projection Method
Data: ⟨u(x, 0; Λ)⟩
for all values of k1 ∈ C do

for all values of k2, k3 ∈ C do
if k1 ̸= k2 ̸= k3 then

Determine the values of A+
p that best fit ⟨u(x, 0; Λ)⟩ using

least-squares;
Using (2.60), compute the error ε(k1, k2, k3) = ∥h(x)− ⟨u(x, 0; Λ)⟩∥ ;
Store ε(k1, k2, k3);

end
end
Store ε(k1) = mink2,k3 ε(k1, k2, k3)

end
Result: ε(k1)

clear evidence that there are two complex effective wavenumbers by using Monte-Carlo

simulations which are highly accurate. In more detail: the figure shows that there are

two separate effective wavenumbers: one within the blue dashed curve on the left and

the other, necessarily, within the blue dashed curve on the right. Wavenumbers within

these dashed regions lead to fitting errors which are less than the error committed by

the Monte-Carlo simulation.

Figure 2.8: Shows how two wavenumbers are needed to fit the formula (2.12) to the Monte-
Carlo results. The properties for the background medium and the sound-soft particles can be
located in Table 2.1. The particles occupy 25% of the material and the simulation runs for
the non-dimensional frequency ka = 0.36 where the particle radius is a = 1.2. When using
the two best fits, shown by the Projection Method, we obtain the fitting shown in Figure 2.7b.
The density plot shows what regions of complex wavenumbers that best fit the Monte-Carlo
results. When using one wavenumber k1 in the dashed blue curve on the left, there exists
another wavenumber k2 within the dashed blue region on the right that together to a fitting
error which is smaller than the standard error of the mean of the Monte-Carlo simulation.
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We also see the dispersion equation (2.13), together with the Percus-Yevick pair-

correlation, predicts at least one wavenumber within the blue dashed curve. The pre-

dicted wavenumbers when using the Hole-Correction pair-correlation are also shown.

The dispersion equation (2.13) predicts an infinite number of effective wavenumbers,

so we present only the two wavenumbers with the smallest imaginary part.

Three effective wavenumbers. Figure 2.9 shows in steps our attempt to identify

three effective wavenumbers for ka = 0.62. The summary is that the amplitude A3 for

the third wavenumber in (2.12) is too small, |A3| ≈ 0.004, and as a result, we can not

reliably say whether the Monte-Carlo simulations show that there are indeed three

effective wavenumbers. This is because the expected errors from the Monte-Carlo

simulation are on the order of around 0.003. However, we do conclude again that one

effective wavenumber is not enough, at least two are needed.

(a) (b)

(c) (d)
Figure 2.9: The top two graphs show the result of using two effective wavenumbers in the
formula (2.12) to fit to the Monte-Carlo results for sound-soft particles (properties given
in Table 2.1), volume fraction ϕ = 25% and non-dimensional frequency ka = 0.62 where
a = 1.2. Figure 2.9b shows a density plot over the effective wavenumbers, with light regions
indicating that those wavenumbers better fit the data. However, all possible choices of two
wavenumbers lead to fitting errors which are greater than the standard error of the mean
of the Monte-Carlo simulations. The two wavenumbers with the best fit are denoted by the
Projection Method, and lead to the field shown in Figure 2.9a. The bottom two graphs use
three effective wavenumbers in the formula (2.12) to fit to the Monte-Carlo results. In this
case, we find 4 sets of wavenumbers, all close to each other, that have a fitting error less than
the standard error of the mean. The result of using the three wavenumbers with the best fit is
shown in Figure 2.9c. However, in Figure 2.9d there are many choices for the wavenumbers
which lead to small fitting errors. In particular, the Projection method wavenumber with the
smaller imaginary part is sensitive to small changes in the Monte-Carlo results.
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In more detail, the top two graphs of Figure 2.9 show the result of fitting the

formula (2.12) with P = 2 to the Monte-Carlo results. Although there are clearly

choices of two wavenumbers which fit the data well, there are no possible choices

which lead to fitting errors that are less than the standard error of the mean, as

shown by Figure 2.9a which uses the two wavenumbers with the best fit. The bottom

two graphs Figure 2.9 show how the fitting errors decrease when adding a third

wavenumber, i.e. using P = 3 in the formula (2.12). By using P = 3, instead of

P = 2, the fitting error decreased from 6% to 3.8%. Although the fitting error does

decrease to below the standard error of the mean, it is only a small decrease, and

close to the errors inherent in the Monte-Carlo data. We note that the two Projection

Method wavenumbers shown in Figure 2.9b are equal to two of the Projection Method

wavenumbers shown in Figure 2.8.

2.4 Deducing the average transmitted wave

In [14, 15, 16] the authors demonstrated that there exist several effective wavenum-

bers, however, it was not clear how these appear in the average transmitted field.

Taking inspiration from [30], the average transmitted field should be a sum of waves,

each with a different effective wavenumber. In this section we demonstrate this for

any incident field and material geometry.

We use the same notation given in [15] and combine the methods shown in [15]

and [30] to show that the average transmitted field is a sum of the incident field plus

several effective fields.

We note that although the paper [15] is written for three-dimensional particles,

the results that lead up to [15, Section 5] are valid for any dimension as long as we

appropriately define the spherical waves un and vn and the translation matrices Vnn′

and Unn′. In the case of two dimensions and scalar waves these terms are:

vn(kr) = Jn(kr)e
imθ, un(kr) = Hn(kr)e

imθ, (2.20)

Vnn′(r) = vn−n′(r), and Unn′(r) = un−n′(r), (2.21)

where Jn and Hn are the Bessel function and Hankel function of the first kind, and (r, θ)

are the polar coordinates of r. In our calculations, we will use the general notation

rather than substitute the specific form for the two dimensions as shown in (2.21).

This way, the proofs we present are valid for any dimension.

For just one configuration of particles, the way we represent the total field u(r)



48 2.4. DEDUCING THE AVERAGE TRANSMITTED WAVE

depends on whether r is inside a particle or not. We choose to write the field in the

form [22, 23, 30]:

u(r) =

{
uinc(r) + usc(r), for r ∈ R \ P ,

uj
in(r), for r ∈ Pj,

(2.22)

where uinc(r) is the incident wave, usc(r) is a sum of all the scattered waves, and uj
in(r)

is the field inside particle j. We use Pj to denote the region occupied by particle j,

whereas P = ∪jPj is the union of all particles. See Figure 2.10 for an illustration.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

R \ PR
R1

Figure 2.10: A two-dimensional region R filled with equal-sized disks Pj , which represent
the particles. The region P = ∪jPj depicts the region inside the particles while the shaded
region (R \ P) depicts the region outside the particles. The region R completely contains all
the particles, while the region R1 contains only the particle centres. As the particles are at
least one radius a away from the boundary of R, we have that R1 is smaller than R. Note that
as the particles do not overlap, we have that R \ P = R \ Pℓ −

∑
j ̸=ℓ Pj for every ℓ.

The sum of the scattered waves usc(r), shown in (2.22), is given by:

usc(r) =
J∑

j=1

uj
sc(r), where uj

sc(r) =
∑
n

f j
nun(kr − krj). (2.23)

The field inside the j-th particle can be written in terms of a regular radial waves

expansion:

uj
in(r) =

∑
n

bnf
j
nvn(kor − korj), (2.24)

where

bn =
TnHn(ka) + Jn(ka)

TnJn(koa)
, (2.25)
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and, as a reminder, ko = ω
co

and Tn is given by (2.16). The coefficients in (2.25)

describe how the internal structure of the particles affects the wave. For a light

introduction on the T-matrix and multiple scattering see [12] and [13].

The ensemble average of any field f, and the conditional ensemble average, are

defined as follows:

⟨f⟩ =
ˆ
RJ

1

f p(r1, . . . , rJ)dr1 · · · drJ , (2.26)

⟨f⟩(r1) =
ˆ
RJ−1

1

f p(r2, . . . , rJ |r1)dr2 · · · drJ . (2.27)

Here RJ
1 denotes that the integration domain of all J integrals is R1, which corresponds

to the region containing only the particle centres. The probability density function

p(r1, r2, . . . , rJ) represents the likelihood of having particles centred at r1, r2, · · · , rJ ,

while p(r2, . . . , rJ |r1) is the conditional probability density and can be defined as:

p(r2, . . . , rJ |r1) :=
p(r1, . . . , rJ)

p(r1)
. (2.28)

To calculate the ensemble average of the transmitted field, it is helpful to write the

field in the following form:

u(r) = [uinc(r) + usc(r)]χR\P(r) +
∑
j

uj
in(r)χPj

(r), (2.29)

where χA(r) is defined as the characteristic function:

χA(r) =

 1, if r ∈ A,

0, if r ̸∈ A.
(2.30)

By taking the ensemble average of (2.29) we obtain:

⟨u(r)⟩ = ⟨uinc(r)χR\P(r)⟩+ ⟨usc(r)χR\P(r)⟩+ J⟨u1
in(r)χP1(r)⟩, (2.31)

where each term of the sum in (2.29) is the same after ensemble averaging because

they are all integrated over the same domain, which means that all particles are indis-

tinguishable from each other. To calculate (2.31) we need to make a few assumptions.

Isotropy and homogeneity assumption. We assume isotropy and homogeneity,

which means that p(r1), the probability density of one particle being at r1, is a constant.
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Then, because the integral of p(r1) over R1 has to equal 1, we conclude that:

p(r1) =
1

|R1|
=

n

J
, (2.32)

where |R1| is the volume of R1, J is the total number of particles and n is the number

density of particles defined by:

n :=
J

|R1|
=

ϕ

|P1|
, (2.33)

with ϕ being the particle volume fraction, and |P1| being the volume of a particle.

Isotropy and homogeneity also imply that the pair-correlation g had the form (2.11)

[42]. For convenience, we now use the form:

p(r2|r1) =
n

J − 1
g(|r1 − r2|). (2.34)

The term (J − 1) appears now, rather than J , due to there being a finite number of

particles, and it ensures that g(|r1 − r2|) → 1 when particles become uncorrelated, as

confirmed by [45, Equation (8.1.2)]. For more details on the pair-correlation see [45,

Chapter 8 and 9].

Correlation distance assumption. We can only resolve the integrals appearing

in (2.31) when r satisfies:

min
r1∈∂R1

|r − r1| ≥ b12 + a, (2.35)

that is, when the distance of r to the boundary ∂R1 is greater than b12 + a. As defined

in (2.11), the distance b12 denotes the correlation length. Our analysis shows that

when (2.35) is true, the transmitted field (2.31) is a sum of effective waves, and the

incident wave is no more.

Quasi-crystalline assumption. To calculate (2.31) we assume the closure as-

sumption known as the Quasi-Crystalline Approximation (QCA) which neglects re-

peated back and forth scattering between a fixed pair of particles. Details are given

in [15, 18, 29].

The calculations needed to simplify the ensemble averages in (2.31) are shown in
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Appendix B.1-B.3. To summarise, with all given assumptions, (2.31) leads to:

⟨u(r)⟩ = (1− ϕ)uinc(r) + J⟨u1
sc(r)χR\P1(r)⟩ − J(J − 1)⟨u1

sc(r)χP2(r)⟩
+ J⟨u1

in(r)χP1(r)⟩, (2.36)

where the terms in (2.36) are given by (2.62), (2.70), and (2.75). In Section 2.4.1 we

show that (2.36) is a sum of waves.

2.4.1 Transmitted effective waves

In this section, we use the effective wave assumption to demonstrate that (2.36) is

composed of functions which satisfy effective wave equations. We show that:

⟨u(r)⟩ = winc(r) +
∞∑
p=1

wp(r), (2.37)

where

∇2winc(r) + k2winc(r) = 0 and ∇2wp(r) + k2
pwp(r) = 0. (2.38)

We also show that winc(r) = 0 when (2.35) holds, and when using the effective

boundary condition which is deduced from first principles in [15]. That is, the incident

wave is not present inside the material‡.

For what follows, to keep the notation concise, we define the ball region using

standard set-builder notation:

B(x;R) =
{
y ∈ R2 : |x− y| ≤ R

}
. (2.39)

The first term in (2.36) is given by (1− ϕ)uinc(r), which clearly contributes to the

term winc(r) in (2.37), because the incident wave satisfies the Helmholtz equation

(2.38)1.

The second term J⟨u1
sc(r)χR\P1(r)⟩ is more involved. In Appendix B.3 we prove

this term has the reduced form (2.70). To calculate this term, first we use (2.23)

together with (2.27) to obtain:

⟨u1
sc(r)⟩(r1) =

∑
n

⟨fn⟩(r1)un(kr − kr1). (2.40)

Following the method shown in [15], we re-expand the scattering coefficients of

‡We note that k can not equal kp [18].
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each particle in terms of a series of waves of the form:

⟨fn⟩(r1) =
∑
p

fp,n(r1), (2.41)

where each fp,n satisfies a Helmholtz equation: ∇2fp,n(r1) + k2
pfp,n(r1) = 0, and the kp

and fp,n are determined from the governing equation of ⟨fn⟩(r1). In [15] it is shown

how such a series solution can be used for any material region, where [14] proves that

(2.41) applies to plane-waves.

Using the effective wave series expansion (2.41) in (2.70) leads to:

J⟨u1
sc(r)χR\P1(r)⟩ = n

∑
np

ˆ
R1\B(r;a)

fp,n(r1)un(kr − kr1)dr1. (2.42)

As shown in [15, Section 4], we can use Green’s second identity to transform the

integral in (2.42) into a more trackable form, which describes the interaction of the

wave with the boundaries of R1 and the particles:

ˆ
R1\B(r;a)

fp,n(r1)un(kr − kr1)dr1 =
Ip,n(r)− Jp,n(r)

k2 − k2
p

, (2.43)

where

Ip,n(r) =

ˆ
∂R1

∂fp,n(r1)

∂ν1

un(kr − kr1)− fp,n(r1)
∂un(kr − kr1)

∂ν1

dA1, (2.44)

Jp,n(r) =

ˆ
∂B(0,a)

∂fp,n(r − x1)

∂ν1

un(kx1)− fp,n(r − x1)
∂un(kx1)

∂ν1

dA1, (2.45)

from which we can see that:

∇2Ip,n(r) + k2Ip,n(r) = 0 and ∇2Jp,n(r) + k2
pJp,n(r) = 0.

So, clearly, Ip,n(r) contributes to winc(r), while Jp,n(r) contributes to wp(r) in (2.37).

The third term in (2.36) is given by (2.77) in Appendix B.4, which after using

(2.41) and (2.40) becomes:

J(J − 1)⟨u1
sc(r)χP2(r)⟩ = ϕn

∑
np

ˆ
R1\B(r;b12−a)

fnp(r1)un(kr − kr1)dr1

− n2
∑
np

ˆ
B(0;b12+a)\B(0;a12−a)

fp,n(r − x1)un(kx1)G(x1)dx1, (2.46)
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where G(x1) is defined in (2.78), although it is not required for our goals here.

The first integral in (2.46) is analogous to (2.43), so leads to terms of the

form (2.37). The second of these integrals only has r dependence in fp,n(r − x1), and

therefore contributes to wp(r) in (2.37).

The fourth term in (2.36) is given by (2.62), which after using (2.24), (2.41) and

the change of variables from r1 to x1 = r − r1 becomes:

J⟨u1
in(r)χP1(r)⟩ = n

∑
pn

bn

ˆ
B(0;a)

fp,n(r − x1)vn(kox1)dr1, (2.47)

which can only contribute to terms of the form wp(r) in (2.37).

2.4.2 The average of the incident field

In Section 2.4.1 we demonstrated that (2.31) is a sum of terms which satisfy the

background and effective wave equations as shown in (2.37). The term winc, that

satisfies the background wave equation, can be seen as what remains of the incident

field. In much of the literature [7, 11, 25, 40, 45] it is simply assumed that winc := 0.

This is often called the “extinction theorem”, despite it being an assumption. In papers

such as [30] that calculate the average field from first principles, it is not clear that

winc = 0. Here we remove any doubt by proving that when sufficiently inside the

material, given by condition (2.35), we have that winc := 0 for any incident field, any

material region R, any frequency, and all types of particles.

Using the results from Section 2.4.1, we collect the terms in (2.36) that satisfy the

background wave equation to obtain:

winc(r) = (1− ϕ)uinc(r) +
∑
pn

n(1− ϕ)

k2 − k2
p

Ip,n(r). (2.48)

Here we show that the right side of (2.48) is zero by using the ensemble boundary

condition given by [15, Equation (4.8)]:

∑
n′

Vn′n(kr1)gn′ + n
∑
nn′p

Ip,n′n(r1)

k2 − k2
p

= 0, (2.49)

where

Ip,n′n(r1) =

ˆ
∂R1

Un′n(kr1 − kr2)
∂fp,n′(r2)

∂ν2

− ∂Un′n(kr1 − kr2)

∂ν2

fp,n′(r2)dA2, (2.50)



54 2.4. DEDUCING THE AVERAGE TRANSMITTED WAVE

with r2 being the variable of integration and ν2 the normal to the boundary ∂R1, and

the gn are the coefficients of the incident wave:

uinc(r) =
∑
n

gnvn(kr). (2.51)

Equation (2.51) assumes the source of the incident wave is outside of the region where

the particles are [15]. The other assumptions needed to deduce the ensemble boundary

conditions (2.49) are the same assumptions we have used for the calculations in this

paper, except the boundary condition is only valid when:

min
r2∈∂R1

|r1 − r2| ≥ a12. (2.52)

To start the demonstration, we multiply both sides of (2.49) by vn(kr − kr1) and

sum over n to obtain:∑
nn′

Vn′n(kr1)gn′vn(kr − kr1) + n
∑
nn′p

Ip,n′n(r1)

k2 − k2
p

vn(kr − kr1) = 0. (2.53)

Now, (2.53) can be simplified by using the fundamental property of translation matrices

that 
vn(kr + kd) =

∑
n′

Vnn′(kd)vn′(kr), for all d,

un(kr + kd) =
∑
n′

Unn′(kd)vn′(kr), |r| < |d|.
(2.54)

Using the property of the translation matrices (2.54) together with (2.51), we see

that: ∑
nn′

Vn′n(kr1)gn′vn(kr − kr1) =
∑
n

gnvn(kr) = uinc(r), (2.55)

in accordance with [15, Equation (2.3)].

Next, by choosing r such that (2.35) is satisfied, it is then possible to choose r1 so

that the condition (2.52) is true and such that:

|r − r1| < |r1 − r2|, for every r2 ∈ ∂R1.
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This enables us to use the translation property (2.54) in (2.50) to obtain:

∑
n

Ip,n′n(r1)vn(kr − kr1) =

ˆ
∂R1

∑
n

vn(kr−kr1)Un′n(kr1−kr2)
∂fp,n′(r2)

∂ν2

−
∑
n

vn(kr−kr1)
∂Un′n(kr1 − kr2)

∂ν2

fp,n′(r2)dA2

=

ˆ
∂R1

un′(kr − kr2)
∂fp,n′(r2)

∂ν2

− ∂un′(kr − kr2)

∂ν2

fp,n′(r2)dA2 = Ip,n′(r). (2.56)

Substituting (2.55) and (2.56) into (2.53) leads to:

uinc(r) + n
∑
n′p

Ip,n′(r)

k2 − k2
p

= 0. (2.57)

Finally, substituting (2.57) into (2.48), we conclude the extinction theorem winc(r) = 0

for r that satisfies (2.35). That is, there is no term in the average transmitted wave

that satisfies the background wave equation.

2.5 Conclusions

The initial goal of this work was to find clear evidence that there exist at least two

effective wavenumbers in an averaged particulate material. It is highly unusual to

have two different wavenumbers for an isotropic homogeneous media supporting only

scalar waves. However theoretical works [14, 15, 16, 50, 51, 52] have predicted

the existence of at least two effective wavenumbers, and their presence changes the

overall transmitted and reflected waves.

Monte-Carlo results. To verify the existence of multiple effective wavenumbers

we used very precise simulations that calculated scattered waves from different particle

configurations and then took an average over the different particle configurations. This

turned out to be far more computationally expensive than we expected, and required

extensive and careful analysis. To summarise, Figure 2.8 clearly shows that there are

two separate wavenumbers that contribute to the field, and that the wavenumbers

predicted by the Monte-Carlo method are similar to the wavenumbers predicted by

the theory.

When it matters. A natural question that appeared during this work was how

to find the parameters that led to multiple effective wavenumbers. That is, for what

scenarios will the classical theory that uses only one effective wavenumber [7, 26,

27, 30, 33, 48] be inaccurate? Previous work [15, 16] demonstrated that there is a
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dispersion equation (2.13) which provides the effective wavenumbers kp, and that if

there is only one wavenumber k1 with an imaginary part much small than all others

Im k1 ≪ Im kp for p = 2, . . ., then the classical theory will be accurate.

However, solving the dispersion equation (2.13) can be time-consuming, especially

for higher frequencies and a wide range of parameters. When plotting the regions

where multiple wavenumbers appear we saw a clear pattern shown in Figure 2.1:

particles which are strong scatterers lead to multiple effective wavenumbers. In

Figure 2.1 the green curves show the scattering strength of just one particle (2.18).

Finding the parameters that lead one particle to be a strong scatterer is far more

practical than solving the dispersion equation (2.13), and proved to be a surprisingly

good measure. To summarise: strong multiple scattering triggers multiple effective

wavenumbers.

Resonators. In the field of metamaterials, strong scatterers such as resonators

are often used to tailor the overall behaviour of the material [2]. Using this strategy

for disordered, or random, particulates will lead to multiple effective wavenumbers,

and will complicate how to predict the overall properties of the material. To truly

understand the effect of these resonators it is first necessary to plot their dispersion

diagrams by solving the dispersion equation (2.13) with the T-matrix Tn depending on

the type of particle used. An example of such a diagram is given in Figure 2.5.

The theoretical results. When deciding how best to sample the transmitted

field, we realised that within the theoretical formulation for ensemble averaging

particulates, it was not clear that the transmitted wave is a sum of waves with effective

wavenumbers. This led us to derive the missing results and provide a general proof

about the incident and transmitted waves.

Proof of extinction. It is often assumed that the average field inside a random

material does not contain any remnant of the incident wave. This is called the Ewald-

Oseen extinction theorem, but as far as the authors are aware, there is no proof of

this conjecture for particulate materials. In this work, we were able to prove this

extinction theorem for any particulate (for scalar isotropic waves), any frequency, and

material geometry. The proof is given in Section 2.4, with the final equation that proves

extinction being (2.57). The proof also provides the extinction length: the distance

required for the incident wave to travel with the material until it is extinct. We proved

that the extinction length is equal to the correlation length plus the particle radius

b12 + a, see equation (2.11) where these quantities are relative to the pair-correlation.

Proof of transmitted effective waves. The same proof for extinction also served

to prove that the average transmitted field is a sum of effective waves, when the
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distance from the material boundary is greater than the extinction length. The proof is

shown in Section 2.4. We note that particularly in the field of continuously varying

random media [7, 49], it is assumed that the average transmitted field satisfies an

effective wave equation. By proving this for particulates, from a microscopic approach,

we provide a link between the two approaches.

Future avenues. This work shows that using Monte-Carlo simulations to approx-

imate a semi-infinite media, such as a plate, filled with particles, is still computationally

challenging. We feel that future work focused on validating effective theories for partic-

ulates should focus on finite materials (in the computational sense), such as a cylinder

filled with cylindrical particles and a sphere filled with spherical particles. There is a

theoretical framework to validate against [15]. In terms of theoretical developments,

our work has shown a connection between the particulate microscopic approach to

effective waves [15, 33, 34, 40, 46] and approaches for continuously varying random

media [7, 49]. That is, we demonstrate the effective wave series used in the macro-

scopic approach given by (2.41) does lead to the average transmitted wave being a

sum of effective waves, as illustrated by (2.37). We believe the calculations we provide

now pave the way to answer the following open question: are the two approaches

equivalent?
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A The Monte-Carlo methodology

Here we present more details on how we performed the Monte-Carlo simulations, and

analysed the results. For a reference on Monte-Carlo methods we refer to the book

[45].

To compute the ensemble average wave (2.9) with Monte-Carlo simulations, the

waves scattered by particles within a plate geometry (as shown in Figure 2.2) have

to be simulated tens of thousands of times, with each simulation having hundreds of

particles, before the standard error of the mean converges [31]. For each simulation

we calculate exactly how the incident wave uinc(x) = eikx scatters from all the particles.

For these reasons, careful considerations are needed to determine how to perform the

Monte-Carlo simulations.

In order, we explain how we created each particle configuration, how we determ-

ined the plate width and height, including consideration of convergence, and finally,

how we analysed the data.

Sequential addition. To place the particles we use the strategy of sequential

addition as described in [45, Chapter 8, Section 2]. In essence, we place one particle

at a time according to a random uniform distribution. If the particle overlaps with

another particle it is rejected. The process is repeated until we obtain a desired particle

volume fraction ϕ.

The plate width. Choosing an appropriate width W for the plate R was based on

two factors:

• The result from the theory shown by (2.12) predicts the plate needs to have a

width W > 2a+ 2b12 for ⟨u(x)⟩ to be exactly equal to a sum of effective waves.

The minimum value for b12 is a12, which we found to be accurate enough for our

tolerances. Using b12 = a12 > 2a implies that we need a plate with W > 6a = 7.2,

as we used a = 1.2 for all numerical experiments.

• The plate width W can not be too wide, otherwise the average wave ⟨u(x)⟩ will

be completely attenuated, which is a computational waste. Also, in the region

where the wave is completely attenuated it is impossible to estimate the kp by

fitting the formula (2.12). Materials, and frequencies, that lead to (2.12) needing

more than one effective wavenumber k1 to accurately approximate ⟨u(x)⟩ are

highly attenuating materials. See Figure 2.7 for an illustration of the region

where we fit the formula (2.12).

The plate height. If the plate filled with particles, as shown in Figure 2.2, was

infinite in height, and the particles were excited by a plane-wave, then the average
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wave ⟨u(x)⟩ would be exactly a sum of plane-waves given by (2.12). See [15] for

details. In practice, it is not of course possible to exactly simulate the wave scattered

from an infinite plate filled with one specific arrangement of particles. The approxima-

tion often used is to have a cell filled with a random set of particles, and then to use

periodic tiling of this cell [8]. To avoid the artefacts produced by periodic tiling we

perform a convergence study to determine at what height a plate filled with particles

behaves approximately like a plate of infinite size.

Let H be the height of the plate, which is illustrated in Figure 2.2. To determine

the size needed for H, we first choose a large value H = 600, with the plate width

W = 20, and then fill this plate with one configuration of particles Λ, according to the

sequential addition method. We then calculate the total wave at:

u (x, 0) for the values 2a ≤ x ≤ W − 2a, (2.58)

to create a function U600(x). To determine the influence of H, we then reduce the

height. For example, we use H = 590 and remove from Λ any particles that are now

outside of the box with the reduced height. We then take the updated configuration of

particles Λ and recalculate the total wave in the same region to create the function

U590(x).

For a range of heights we compute the relative error:

Error % = 100
∥UH(x)−U600(x)∥

∥U600(x)∥
. (2.59)

By calculating these errors for a range of heights we can plot the error against the

height as shown in Figure 2.11.

For sound-soft particles, see Table 2.1 for details, and frequency ka = 0.3, we see

that the errors have converged. This means that U600(x) is approximately the same

as U∞(x), and we can estimate that the height of the plate has to be approximately

H = 400 for the scattered waves to have an error of less than 1% in comparison to

U∞(x).

For sound-hard particles, see Table 2.1 for details, and ka = 0.3, the errors have

not converged as can be seen from Figure 2.11, even for very large heights. This

means it is unclear what is the error relative to an infinite plate U∞. For this reason,

we do not focus on this case, and only perform one simulation with H = 400. Our

hypothesis is that the plane-wave when scattered from the corner of the plate leads to

a transmitted wave that travels down inside the plate relatively unobstructed, as these
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types of particles are weak scatterers.

(a) Sound-soft particles (b) Sound-hard particles
Figure 2.11: Shows the rate of convergence which can be described with the normalised
difference between the scattered waves (2.59) with respect to the height of the plate H.

When fitting for the effective wavenumbers, we need to consider how the errors

due to truncating the height of the plate may affect the fitting and the acceptable fit

errors.

Analysing the data. We generate Monte-Carlo simulations for the different cases

presented in Section 2.3.1 with a plate of width W = 20 and height H = 400. The

data from Monte-Carlo results for the transmitted wave (2.12) is of the form:

⟨u(x, 0; Λ)⟩ =
P∑

p=1

(
A+

p e
ikpx + A−

p e
−ikpx

)
+ ϵ(x), for 2a ≤ x ≤ W − 2a,

where ϵ(x) is a small error that falls inside the standard error of the mean. For the cases

where only one effective wavenumber was predicted, the average wave ⟨u(x, 0; Λ)⟩ is

fitted well by (2.1), using nonlinear optimisation libraries in Julia [35].

For every wavenumber kp there are potentially two waves: one travelling towards

the positive x - direction and another travelling in the negative x - direction. For the

cases where the average wave is completely attenuated when it reaches the edge of the

plate, x = 20, we should have A−
p = 0, suppressing the wave travelling in the negative

x-direction.

From the Monte-Carlo data for cases with more than one effective wavenumber,

we find that ⟨u(x, 0; Λ)⟩ is below the standard error of the mean for x ≥ 15. For

this reason, we can take A−
p = 0 and fit it only for A+

p and kp. That is we fit to the

Monte-Carlo data functions of the form:

h(x) =
P∑

p=1

A+
p e

ikpx, for 4 ≤ x ≤ 15, (2.60)
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with Im[kp] > 0. In the case presented in Figure 2.7a the transmitted wave attenuates

quicker, therefore we focus the fitting on a narrower range, 4 ≤ x ≤ 10.

Another reason to use (2.60), is that fitting for A+
p , A−

p , and kp in the case of

multiple effective wavenumbers can become ill-posed. This is related to how inverting

a Laplace transform is ill-posed, see [21, Section 2.1]. That is, the more terms included

in the sum shown in (2.12) the more ill-posed is the problem of recovering the kp, A+
p ,

and A−
p from data of the average wave ⟨u(x, 0; Λ)⟩.

Smoothing Process. The smoothing process involves applying a moving average

filter to our data indicating whether certain wavenumbers go out of the likelihood or

not. Here is how the smoothing works in detail [1, 39]:

Algorithm 2: Data Smoothing Algorithm
Data: InputMatrix of size M ×N , WindowSize: Integer
Result: SmoothedMatrix of size M ×N
Function SmoothData(InputMatrix, WindowSize):

Initialise SmoothedMatrix of size M ×N
for i = 1 to N do

for j = 1 to M do
si = max(1, i−WindowSize)
ei = min(N, i+WindowSize)
sj = max(1, j −WindowSize)
ej = min(M, j +WindowSize)

SmoothedMatrix[i, j] =
sum(InputMatrix[si : ei, sj : ej])
(ei − si + 1)× (ej − sj + 1)

end
end
return SmoothedMatrix

• A new matrix of the same size and type as the input data is initialised to store

the smoothed values.

• The function iterates over each element in the input matrix. For each element at

position (i, j), it calculates a rectangular window centred around this element.

The bounds of the window are calculated such that it stays within the limits of

the matrix. This step ensures that the window does not try to access data outside

the matrix boundaries.

• Inside the determined window, the function computes the average value of the

elements. This is achieved by summing all the elements within the window and

then dividing by the total number of elements in that window. The division

operation is an integer division which means that the result is the integer part of
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the quotient, effectively disregarding any remainder.

• The computed average value is then assigned to the corresponding element in the

matrix. This process is repeated for every element in the input matrix, resulting

in a smoothed output matrix.

• The parameter responsible for the size of the window controls the extent of

smoothing. A larger window size results in more aggressive smoothing because

it averages over a larger area, thereby reducing the impact of outliers or noise

on a larger scale. Conversely, a smaller window size results in less aggressive

smoothing, preserving more of the original detail in the data.

Computational time. Our study utilises high-fidelity Monte-Carlo simulations,

whose computational cost was significant. This limits the number of cases we could

investigate with Monte-Carlo. For example, we needed to execute 40,000 simulations

for scenarios depicted in Figures 2.7, 2.8 and 2.9. Each simulation involves hundreds of

particles, and is computationally demanding especially at higher frequencies denoted

by ka. To manage this, we employed parallel processing across multiple processors.

For instance, simulating sound-soft particles at a frequency of ka = 0.36 requires

about 72 hours for completion on an 11th Gen. Intel Core i7 with 8 cores. So without

parallel processing, the runtime would increase by at least eight-fold.

B The ensemble average transmission

Here we reduce the terms in (2.31) to reach equation (2.36). For this section we use

the notation and assumptions introduced in Section 2.4.

In many calculations throughout this section, for any function f which depends on

particle configuration, we use that:

J⟨f⟩ = J

ˆ
RJ

1

f p(r1, . . . , rJ)dr1 · · · drJ

= n

ˆ
RJ

1

f p(r2, . . . , rJ |r1)dr1 · · · drJ = n

ˆ
R1

⟨f⟩(r1)dr1, (2.61)

where we used, in order, the definitions (2.26) and (2.28) and (2.32). If the f only

depends on r1, then we further have that ⟨f⟩(r1) = f because:

ˆ
RJ−1

1

p(r2, . . . , rJ |r1)dr2 · · · drJ = 1,

which is true for any joint probability density.
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B.1 The transmitted internal field

We start by calculating the simplest term. Using (2.24), the definitions of the ensemble

average (2.27) and (2.26), then (2.61) leads to:

J⟨u1
in(r)χP1(r)⟩ = n

ˆ
B(r;a)

⟨u1
in(r)⟩(r1)dr1, (2.62)

where the ball B(r; a) is defined by (2.39), and we use the assumption (2.35).

B.2 The transmitted incident field

The next simplest computation is the ensemble average of the incident wave term

in (2.31). To do this we will demonstrate the following equalities:

⟨uinc(r)χR\P(r)⟩ = uinc(r)⟨χR\P(r)⟩ = uinc(r)⟨1− χP(r)⟩ = uinc(r)(1− ϕ), (2.63)

where ϕ is the particle volume fraction defined by (2.33).

First, we use the ensemble average (2.26), then take uinc(r) outside of the integrals,

as it does not depend on the particle positions, to reach:

⟨uinc(r)χR\P(r)⟩ = uinc(r)⟨χR\P(r)⟩. (2.64)

To calculate the ensemble average on the right we use:

χR\P(r) = 1− χP(r), (2.65)

leading to:

⟨χR\P(r)⟩ = ⟨1⟩ − ⟨χP(r)⟩ = 1−
∑
j

⟨χPj
(r)⟩, (2.66)

where we used the definition that integrating a probability density function p over all

its variables gives 1, and:

χP(r)p(r1, r2, . . . , rJ) =
J∑

j=1

χPj
(r)p(r1, r2, . . . , rJ), (2.67)

which holds because if any two particles overlap, we have that p(r1, r2, . . . , rJ) = 0.

Therefore, if χPj
(r) = 1, then χPℓ

(r) = 0 for ℓ ̸= j.

Next, we use that particles are indistinguishable, except for their positions, so after
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ensemble averaging ⟨χPj
(r)⟩ = ⟨χP1(r)⟩ for every j, which together with (2.61) leads

to:

⟨χP(r)⟩ =
J∑

j=1

⟨χPj
(r)⟩ = J⟨χP1(r)⟩ = n

ˆ
R1

χP1(r)dr1 = n

ˆ
B(r,a)

dr1 = ϕ, (2.68)

where we used (2.39) and (2.35).

B.3 The transmitted scattered field

The most involved term to calculate in (2.31) is ⟨usc(r)χR\P(r)⟩, which will require

that we demonstrate the following steps:

⟨usc(r)χR\P(r)⟩ =
∑
j

⟨uj
sc(r)χR\P(r)⟩ = J⟨u1

sc(r)χR\P(r)⟩ = J⟨u1
sc(r)

J∏
j=1

χR\Pj
(r)⟩

= J⟨u1
sc(r)χR\P1(r)⟩ − J

J∑
j=2

⟨u1
sc(r)χPj

(r)⟩

= J⟨u1
sc(r)χR\P1(r)⟩ − J(J − 1)⟨u1

sc(r)χP2(r)⟩. (2.69)

The first three equalities in (2.69) are a result of using, in order, (2.23), that particles

are indistinguishable, and:

χR\P(r)p(r1, r2, . . . , rJ) =
J∏

j=1

χR\Pj
(r)p(r1, r2, . . . , rJ),

which is a result of p(r1, r2, . . . , rJ) = 0 when any two particles overlap.

The non-overlapping of particles also leads to:

χR\P1(r)
J∏

j=2

χR\Pj
(r)p(r1, r2, . . . , rJ) =

[
χR\P1(r)−

J∑
j=2

χPj
(r)

]
p(r1, r2, . . . , rJ),

which we use to conclude the second line in (2.69), and the third line is just a result

of particles being indistinguishable again.

We proceed by simplifying the last two terms in (2.69). Using (2.61) we can reach:

J⟨u1
sc(r)χR\P1(r)⟩ = n

ˆ
R1

⟨u1
sc(r)⟩(r1)χR\P1(r)dr1 = n

ˆ
R1\B(r;a)

⟨u1
sc(r)⟩(r1)dr1,

(2.70)

where ⟨u1
sc(r)⟩(r1) is given by (2.40).
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For the last term in (2.69), we further use:

p(r2, . . . , rJ |r1) = p(r2|r1)p(r3, . . . , rJ |r1, r2),

(2.23), (2.27), and the definition of ⟨fn⟩(r1, r2) given by [15, Equation (3.10) and

(3.11)], followed by analogous steps shown in (2.40), to obtain:

J⟨u1
sc(r)χP2(r)⟩ = n

∑
n

ˆ
R2

1

⟨fn⟩(r1, r2)un(kr − kr1)p(r2|r1)χP2(r)dr1dr2. (2.71)

To simplify (2.71) we first use the Quasi-Crystalline Approximation (QCA):

⟨fn⟩(r1, r2) ≈ ⟨fn⟩(r1), (2.72)

which is needed to deduce effective wavenumbers [15, 27, 29].

Before we show how to simplify (2.71) for a general pair-correlation g, we first

deduce the results for the simplest pair-correlation called Hole-Correction. It is far

easier to understand this case first. The Hole-Correction approximation is the result of

taking b12 = a12 in the general pair-correlation (2.11).

Using (2.72) and (2.34) in the integral (2.71), and swapping the order of integra-

tion leads to:

J(J − 1)⟨u1
sc(r)χP2(r)⟩ = n2

ˆ
R1

⟨u1
sc(r)⟩(r1)

ˆ
R1

χP2(r)g(|r1 − r2|)dr2dr1. (2.73)

Next we use b12 = a12 and (2.11) which implies that:

g(|r1 − r2|) = χR1\B(r1;a12)(r2),

which we substitute into (2.73) to reach:

J(J − 1)⟨u1
sc(r)χP2(r)⟩ = n2

ˆ
R1

⟨u1
sc(r)⟩(r1)

ˆ
B(r;a)\B(r1;a12)

dr2dr1, (2.74)

where we used that B(r; a) is completely contained in R1 for every r2 due to (2.35).

There are values for r1 for which the integral in (2.74) is zero. To see this we note

r2 ∈ B(r; a) =⇒ |r2 − r| ≤ a and r2 ̸∈ B(r1; a12) =⇒ |r2 − r1| > a12.
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Then, from the triangular inequality we have:

|r1 − r| ≥ |r1 − r2| − |r2 − r| > a12 − a.

The above implies that the region of integration for r1 is just R1 \ B(r; a12 − a).

We now further split this region of integration into two disjoint regions: the first is

R1 \ B(r; a12 + a) and the second is B(r; a12 + a) \ B(r; a12 − a).

For the first region r1 ∈ R1 \ B(r; a12 + a) implies that |r1 − r| ≥ a12 + a, which

together with r2 ∈ B(r; a) leads to:

|r1 − r2| ≥ |r1 − r| − |r − r2| > a12,

due to the triangle inequality. In other words, the region of integration for r2 becomes

r2 ∈ B(r; a) \ B(r1; a12) = B(r; a).
For the second region r1 ∈ B(r; a12 + a) \ B(r; a12 − a), which implies that:

a < a12 − a ≤ |r1 − r| ≤ a12 + a.

The above guarantees that the two spheres B(r; a) and B(r1; a12) will intersect. Let V
be this region of intersection, then the region of integration of r2 becomes B(r; a) \
B(r1; a12) = B(r; a) \ V. This is useful as V is formed of two spherical caps whose

volume is easy to calculate §.

Using the split of these two regions for r1 we obtain:

J(J − 1)⟨u1
sc(r)χP2(r)⟩ = n2

ˆ
R1\B(r;a12+a)

⟨u1
sc(r)⟩(r1)

ˆ
B(r;a)

dr2dr1

+ n2
ˆ
B(r;a12+a)\B(r;a12−a)

⟨u1
sc(r)⟩(r1)

[
4

3
πa3 − Vcap(|r − r1|)

]
dr1

= ϕn

ˆ
R1\B(r;a12−a)

⟨u1
sc(r)⟩(r1)dr1

− n2
ˆ
B(r;a12+a)\B(r;a12−a)

⟨u1
sc(r)⟩(r1)Vcap(|r − r1|)dr1.

(2.75)

where Vcap(d) is the volume of V and d = |r − r1|. By using the formulas for spherical

§For details, see the website: https://mathworld.wolfram.com/Sphere-SphereIntersection.
html.

https://mathworld.wolfram.com/Sphere-SphereIntersection.html
https://mathworld.wolfram.com/Sphere-SphereIntersection.html
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caps § we can calculate that:

Vcap(d) =
π

12d
(a+ a12 − d)2(d2 + 2(a+ a12)d− 3(a− a12)

2).

B.4 An isotropic pair-correlation

In Appendix B.3 we chose a simple pair-correlation to simplify the integral (2.73).

Here we show how to reduce this integral when assuming a more general form for the

isotropic pair-correlation given by (2.11).

In the pair-correlation (2.11) we assume there is a value b12 for which g(r) = 1

when r ≥ b12. This is an approximation, but it is essential for the results discussed

here. The distance b12, which is also called the correlation length, dictates at what

distance inside the material the incident wave will be extinct.

Following closely the steps that led to (2.75), we now split the integral over r1

into two regions R1 \ B(r; b12 + a) and B(r; b12 + a) \ B(r; a12 − a), which leads to:

J(J − 1)⟨u1
sc(r)χP2(r)⟩ = n2

ˆ
R1\B(r;b12+a)

⟨u1
sc(r)⟩(r1)

ˆ
B(r;a)

dr2dr1

+ n2
ˆ
B(r;b12+a)\B(r;a12−a)

⟨u1
sc(r)⟩(r1)

ˆ
B(r;a)

g(|r1 − r2|)dr2dr1, (2.76)

where we use (2.35) to guarantee that the ball B(r; b12 + a) is completely contained

within the region R1. Without the condition (2.35) it does not seem possible to show

that the incident wave becomes extinct, so we hypothesise that this is a necessary

condition, as well as sufficient.

The integral on the right of the first line of (2.76) was already resolved in the

previous section, except now we replace a12 with b12. For the integrals on the second

line of (2.76), we use the change of variables from r2 to r21 = r2 − r1 and r1 to

x1 = r − r1 to obtain:

J(J − 1)⟨u1
sc(r)χP2(r)⟩ = nϕ

ˆ
R1\B(r;b12+a)

⟨u1
sc(r)⟩(r1)dr1

+ n2
ˆ
B(0;b12+a)\B(0;a12−a)

⟨u1
sc(r)⟩(r − x1)G(x1)dx1, (2.77)

where

G(x1) =

ˆ
B(x1;a)

g(r21)dr21. (2.78)

and r21 = |r21|. This concludes the calculations in this section.
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Chapter 3

From wave propagation to particle
correlations in random particulate
materials

ARISTEIDIS KARNEZIS

Abstract

In this chapter, Section 3.1 shows how including more than one effective wavenumber

can significantly change reflection coefficients. This aspect is crucial, considering

that many measurement techniques rely on the reflection coefficients. In Section 3.2

we delve into the mathematical and computational aspect of determining multiple

effective wavenumbers in three dimensions, by solving an implicit determinant equa-

tion. Recognising a gap in the existing literature, we have developed an asymptotic

method to locate these complex effective wavenumbers, particularly in the context

of monopole scatterers. Something which was previously missing in the literature.

Section 3.3 addresses challenges that arose when performing Monte-Carlo simulations,

where each simulation places one configuration of particles in a finite region. The key

finding is that confining particles in a finite region can affect their pair-correlation and

even their volume fraction. We demonstrate these effects and show how to avoid them

with what we call the Cookie-cutter method. The sections are distinct yet collectively

enrich our findings.
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3.1 Comparing the Reflection Coefficients

In this section, we explore the significance of reflection coefficients in various measure-

ment techniques [4, 15]. The emphasis is on contrasting the coefficients derived from

different methods to understand the average behaviour of waves in various scenarios.

In other words, rather than comparing the resulting fields of average waves, we can

compare their resulting reflection coefficients [6, 10, 14, 17, 18, 23, 24].

In our analysis depicted in Figure 3.1, we examine how reflection coefficients

vary with changes in volume fraction (ϕ) for both sound-soft and sound-hard particles

(particle properties are detailed in Table 2.1). We keep the particle radius fixed at

a = 1.2 and vary the non-dimensional frequency over the range 0.24 ≤ ka ≤ 2.16.

Figure 3.1: Material A contains sound-soft particles with density ρ0 = 0.30 kg · m−3 and
wavespeed c0 = 0.30 m · s−1. Material B on the other hand considers sound-hard particles with
density ρ0 = 10.0 kg ·m−3 and wavespeed c0 = 10.0 m · s−1. The density and wavespeed of
the host material is ρ = 1.0 kg ·m−3 and c = 1.0 m · s−1 respectively. The orange solid line
represents the reflection coefficients generated using the Dominant-wavenumber of the average
transmitted wave with respect to the non-dimensional ka. The purple dashed line takes into
account all the effective waves (All-wavenumbers method) of the average transmitted wave.

Two distinct methods, the Dominant-wavenumber and the All-wavenumbers meth-

ods, are employed to calculate the reflection coefficients, offering insights into their

variations across different scenarios [7, 10]. The Dominant-wavenumber method
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uses one effective wavenumber k1, that is equation (2.12) for p = 1. Conversely,

the All-wavenumbers approach includes multiple wavenumbers and numerically tries

to discretise the space to create a mesh. For more details on the All-wavenumbers

method, see [7, Section 5]. It is important to take this factor into consideration since

the mesh will try to match the discrete solution with a sum of these effective waves. At

the same time, it is necessary not to push the matched layer towards the boundaries,

because the closer to the boundaries, the more effective waves there are. Then we can

calculate the reflection coefficients.

Both methods are applicable for all types of scatterers. For sound-hard particles, it

is clear that the Dominant-wavenumber overlaps with the All-wavenumbers method,

while for sound-soft particles the two methods do not match. For instance, consider

the two scenarios depicted in the top left and bottom left plots of Figure 3.1. In

both scenarios, a single effective wavenumber - the dominant wavenumber - can be

extracted, giving matching results. Yet, when we increase the volume fraction to 25%,

as shown in the top right and bottom right plots of Figure 3.1, we were able to detect

multiple wavenumbers. In these scenarios, the results do not overlap, meaning that the

existence of more than one wavenumber leads to changes in the reflection coefficients.

3.2 Asymptotic Location of Effective Wavenumbers in

3D

The focus in this section shifts to a three-dimensional perspective on the effective

wavenumbers kp. This expansion builds upon the foundational work of Gower et
al., who analytically derived these wavenumbers for two-dimensional scenarios in [5,

Section 5]. This study not only assumes large values for |kp|, with an increasing trend

as p grows, but also presupposes a positive imaginary part, Imkp > 0. Such assumptions

are critical for satisfying a dispersion equation that relates each wavenumber kp with a

frequency, paving the way for a deeper understanding of how waves propagate through

different media. The dispersion equation for effective plane-waves [6, Equation (5.15)]

takes the matrix form:

Mnn′(kp) = δnn′ +
∑
ℓ

√
4πcn′n(ℓ,0)

k2
p − k2

i−ℓ
√
2ℓ+ 1Tnn̄a12Nℓ = 0, (3.1)

where a12 is the minimum allowed distance between particle centres, Tn are the

coefficients for the particle’s T-matrix defined in [6, Equation 2.8], cn′n(ℓ,0) are the

Clebsch-Gordan coefficients with l being non-negative integers ([6, equation B.5]),
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n̄ = n
J − 1

J
where n is the number density of particles defined as n =

3ϕ

4πa312
, and:

Nℓ = ka12h
(1)′

ℓ (ka12)jℓ(kpa12)− kpa12h
(1)
ℓ (ka12)j

′

ℓ(kpa12), (3.2)

which is a coupling term relating to the scattered field at one particle expressed

in coordinates centred at another particle. An integral part of this work involves

approximating the formulas established in (3.2) using the asymptotic properties of

spherical Bessel and Hankel functions of the first kind. Since we are only interested in

monopole scatterers that scatter waves uniformly in all directions, it is easy to make

this approximation. The simplest case for monopole scatterers is when ℓ = m = n = 0,

meaning that we are only keen for the zeroth order. Thus, the zeroth spherical Bessel

function j0(kp) and spherical Hankel function h0(kp) for large |kp| can be written

respectively as follows [2, Section 11.7]:

j0(kp) =
sin kp
kp

and h
(1)
0 (kp) = −i

eikp

kp
. (3.3)

Solving the dispersion equation (3.1) and the determinant of the Mnn′(kp) matrix, we

can extract the effective wavenumbers kp [13]. Thus, the kp must satisfy:

det(M(ℓ,0),(ℓ′,0)(kp)) = 0. (3.4)

For monopole scatterers, (3.1) takes the form:

a212(k
2
p − k2) detM = (kpa12)

2 − (ka12)
2 + 4πna312T0N0 ∼ k2

p − ce−ikpa12 , (3.5)

where

c = 2πna212T0h
(1)
0 (ka12). (3.6)

To confirm the presence of these wavenumbers, and determine their behaviour as

|p| → ∞, we make use of (3.2) and (3.3) and ignore all terms that are algebraically

smaller than k, or similarly we investigate the regime where kp ≫ k. Keep in mind that

we need to apply this approximation throughout the computations to obtain (3.5). We

also note that the effective wavenumbers kp are independent of the angle of incidence

θinc [12], even though there are effective wavenumbers that are not excited for specific

angles of incidence [5, 7].
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To find the locations of the effective wavenumbers we substitute:

kp = x+ i log y, (3.7)

where x and y are real, and |x| and y are large with y > 1. That gives:

x2 − ce−ixy = 0. (3.8)

For the logarithm, we apply the standard branch cut along the interval (−∞, 0) and

consider positive function values for positive arguments. We are interested only in the

leading order, so, x2 ∼ y, which reduces (3.8) to:

x2 ∼ rce
i(θc−x) y, or similarly x2 ∼ rc

[
cos(θc − x) + i sin(θc − x)

]
y, (3.9)

where we substituted c = rce
iθc, for real scalars rc and θc. Next, we take the real and

imaginary parts of (3.9) to be equal and discard the negative solution because of the

quadratic nature of x. This leads to:

x ∼ θc + 2πp and y ∼ 1

rc
(θc + 2πp)2 ∀p ∈ Z. (3.10)

Thus, for the case of monopole scatterers, the effective wavenumbers kp at the leading

order take the form:

kp = σp + i log

(
σ2
p

rc

)
, (3.11)

where σp = θc + 2πp, ∀θc ∈
[−π

2
,
π

2

]
, ∀p ∈ Z,

rce
iθc = 2πna212T0h

(1)
0 (ka12), rc > 0.

(3.12a)

(3.12b)

The real part indicates how rapidly the wave oscillates in space, while the imaginary

part represents how the wave attenuates. The growth of the wavenumber is not linear

but has a slower, logarithmic scale of increase which can model situations (attenuation)

where the decay rate changes more gradually at larger scales.

3.2.1 Numerical results of the theoretical predictions

The next step involves comparing the analytical expression of the effective wavenum-

bers with numerical results generated using [11]. To be more specific, we consider
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spherical particles with penetrable boundary conditions, and the following parameters:

Table 3.1: Parameter Values
Parameter Value
Volume fraction (ϕ) 30%
Particle radius (a0) 0.867
Non-dimensional exclusion distance (ξ) 2a0
Non-dimensional particle radius (ka0) 0.7516
Non-dimensional inter-particle distance (ka12) 1.510
Ratio of solid to void particle properties (sound-soft) 0.30
Ratio of solid to void particle properties (sound-hard) 5.0

(a) sound-soft particles (b) sound-hard particles
Figure 3.2: Comparison between the analytical formula (3.11) predicting an infinite series of
complex effective wavenumbers and the numerical solutions for these effective wavenumbers
deduced from the dispersion equation using the EffectiveWaves.jl library [11]. The parameters
used are given by Table 3.1. The analytic formula generally demonstrates a high level of
accuracy, with the exception of the two smallest attenuating wavenumbers.

As shown in Figure 3.2, the effective wavenumbers for sound-soft and sound-

hard particles derived asymptotically from (3.11) closely agree with the numerically

calculated wavenumbers even when integer p becomes large. However, we cannot help

but notice that the wavenumbers with the most contribution to the total average wave

are not in agreement. Since these wavenumbers have a small imaginary part (high

attenuation), they cannot be analytically calculated, even though they are important

to accurately calculate the transmission.

3.3 Enhancing precision in Monte-Carlo simulations

This section acts as a crucial bridge between Chapter 2 and Chapter 4. Here, we

address the numerical challenges that arose when performing Monte-Carlo simula-

tions, with a specific focus on the pair-correlation function. We define two key regions,
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namely RR containing all particles and RR−a centred on particle centres, and intro-

duce fundamental measures like particle number density (n) and particle volume

fraction (ϕ) to describe particle distributions. However, when using these measures

for finite regions, they do not match because of the region’s boundaries. In light of

this limitation, we have come up with innovative methods to better measure these

factors. In Section 3.3.2, we explore two particle placement methods in Monte-Carlo

simulations: the Bounded-sphere method and the Cookie-cutter method, with the

latter offering better approximation to infinite medium conditions.

However, we encounter a discrepancy when applying the Percus-Yevick (PY )

method to characterise pair-correlations, as it fails to match results from the Cookie-

cutter method at the same number density. Instead, we find that a reduced number

density (nPY ) is required to align Percus-Yevick with the pair-correlation results ob-

served in the Cookie-cutter method. This finding underscores the importance of

fitting Monte-Carlo experiments with theoretical models like the Percus Yevick. To do

this effectively, it is crucial to connect these results with the formulas introduced in

Chapter 4. These techniques, particularly those related to the efficient calculation of

pair-correlations from small particle configurations and the recovery of particle con-

figurations from pair-correlations, are foundational to the theoretical and numerical

approaches discussed in Chapter 2.

3.3.1 A numerical pair-correlation

In this section we let:

RR be a sphere that contains all the particles (3.13)

RR−a be a sphere that contains the centre all the particles (3.14)

where a is the particle radius. The region RR is the green circle in Figure 3.3, whereas

RR−a is the dashed circle. Let p be a particle. We will consider only one type of particle

for simplicity.

To specify the density of particles, we use the term particle number density n to

mean the average number of particles per volume, and particle volume fraction ϕ to

mean the average volume occupied by the particles divided by the volume of the

region containing those particles.

Typically the number density n∞ and volume fraction ϕ∞ are used interchangeably

through the formula:

ϕ∞ = |p|n∞, (3.15)
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Figure 3.3: The region within the green circle is RR and has a radius R = 20 with each particle
having a 20% volume fraction and a radius of a = 1. The region within the dashed circle is
RR−a and all particle centres are within this region.

where |p| is the volume of the particle p. However, this is only exact for an infinite

sized region, and so will not be used here. One clear reason why (3.15) does not hold

for a finite region is that the region containing the particle centres RR−a is different

from the volume containing the particles RR.

To aid this discussion, for a finite region, we define:

NR := the number of particles completely contained within RR, (3.16)

nR :=
NR

|RR−a|
the true number density, (3.17)

ϕR :=
NR|p|
|RR|

the particle volume fraction in RR, (3.18)

ϕ∞ :=
total volume of intersection of particles with RR−a

|RR−a|
. (3.19)

Note that NR is also equal to the number of particle centres within RR−a.

See Figure 3.3 for an illustration, noting that the centres of all particles are

contained within Rr−a. In the next paragraphs, we discuss how n is the same as n∞,

assuming particles are homogeneously distributed, while the volume fraction is more

complicated.

To begin, note that within RR−a some particles are cut by the border of RR−a. The

definition of ϕ∞ takes into account only the parts of particles within RR−a. Because

of this, ϕR is less than ϕ∞, whereas |p|nR is more than ϕ∞. These differences can be

significant for a finite region. In Figure 3.4, the radius of the region RR is equal to



3.3. ENHANCING PRECISION IN MONTE-CARLO SIMULATIONS 81

R = 20, and the radius of each particle equals to a = 1, in which case, for a 3D sphere:

|RR|
|RR−a| − 1

=
203

193 − 1
≈ 0.166. (3.20)

This implies that:
nR|p|
ϕR − 1

≈ 0.166, (3.21)

which is more than a 10% difference.

Instead, it is simpler to consider the number density of a finite region, which is

also the variable considered in most theoretical methods of ensemble averaging. For

example, let us convince you that nR = n∞ by considering the following thought

exercise. Assume the particles are equally likely to be in any position*. Now, pick a

smaller region R1 ⊂ RR−a, and count the average number of particle centres N1 (over

many ensembles) within R1. Then, we figure out the number density in R1 by dividing

N1 by the size of R1, which we write as n1 =
N1

|R1|
. Because the particles are equally

likely to be everywhere, we find that n1 = n∞.

3.3.2 Monte-Carlo simulations

Now that we understand the particle number density in a finite region, we turn to how

to generate a random uniformly distributed set of particles. Again, in a finite region,

there are important subtleties.

We begin by describing two different methods to place particles within a region R.

First, a naive method called the Bounded-sphere method that describes the distributions

of particles within a bounded sphere of radius R, then a method that does accurately

approximate how particles would be distributed in an infinite region, the Cookie-cutter
method.

Bounded sphere method. The particles of each configuration are generated one

at a time, and rejected if they either do not fit within the region RR (green circle) or

overlap with any other particles. In this case, particles are more likely to be near the

border, as shown in Figure 3.4 meaning that particles are not uniformly distributed. We

then evaluate the probability density function for the generated particle configurations

and calculate the average. We repeat this process to improve the accuracy of the

integral estimate.

*This assumption is not true for the bounded-sphere method discussed in Section 3.3.2.
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Figure 3.4: Both figures show the result of placing particles randomly within a region R with
a radius of R = 20. Each particle has a volume fraction ϕ = 20% and a radius of a = 1. The
colour shows the average density of particles after 100,000 simulations, with darker being a
larger particle density. Here the darkest colour indicates that particles are 40% more likely to
appear than the very lightest colour. The circles illustrate just one configuration. The image on
the left (right) used the Bounded-sphere (Cookie-cutter) method.

If the system has radial symmetry, meaning that the probability density function is

the same at all angles for a given radial distance, then we can average over all angles

to obtain the radial probability density function. In other words, for radial symmetry

we have that p(r) = p(r), so that:

p(r) =
1

4π

ˆ
p(r) sin θ dθ dϕ. (3.22)

One way to approximate (3.22) is to represent p(r) in some polynomial series, such as:

p(r) =
∑
ℓ

2ℓ+ 2

2
pℓPℓ(r̄), (3.23)

where r̄ =
2r

R̄− 1
, Pℓ are the Legendre polynomials and pℓ are the coefficients of the

Legendre polynomials. To calculate the coefficients pℓ we simply multiply (3.22) by

Pℓ(r̄), use (3.23), and integrate over dr to arrive at:

pℓ =
1

4π

ˆ ˆ
Pℓ(r̄)

p(r)

r2
r2 sin θdθdϕdr̄ =

1

2πR̄

ˆ
R
Pℓ(r̄)

p(r)

r2
dr, (3.24)

where R is the set of all possible particle centres, dr is a volume element of the variable

r, and we used: ˆ 1

−1

Pℓ1(x)Pℓ2(x)dx =
2δℓ1ℓ2
2ℓ1 + 1

,

for any ℓ1 and ℓ2.



3.3. ENHANCING PRECISION IN MONTE-CARLO SIMULATIONS 83

The probability density function can also be expressed as follows:

p(r) =
1

4πr2

ˆ
p(r)r2 sin θdθdϕ ≈ 1

4πr2

∑
|vi|=r

p(vi)|V (vi)|

≈ 1

4πr2S

S∑
s

∑
|vi|=r

#(X s ∩ V (vi))

#X s
=

1

4πr2S

S∑
s

1

#X s
#
[
X s ∩ ∪|vi|=rV (vi)

]
. (3.25)

where vi is the centre of the volume element |V (vi)| and #X is the number of elements

in the set X . An alternative approach to approximate (3.25) is to first substitute (4.1),

discretise the integral, and create the histogram:

p(vi) ≈
1

4π

1

v2i dri

∑
|vj |=vi

p(vj)|V (vj)| =
1

4πS

1

v2i dri

S∑
s

∑
|vj |=vi

# [X s ∩ V (vj)]

#X s
, (3.26)

where dri is the radial length of V (vi). Note this approximation fails for vi = 0, which

we address in the next section. In terms of computational efficiency, as most volume

elements will have no particles in each ensemble X s, it is more efficient to iterate over

each x ∈ X s.

Figure 3.5 shows how we fit the probability density p(r) to the data from our

Monte-Carlo simulations by using equations (3.24) and (3.26). This figure is key in

showing us that particles tend to gather closer to the boundaries of the region than

we might expect. By comparing different estimation methods to model this boundary

effect, we underscore the importance of accurately considering boundaries in our

simulations.

Cookie-cutter method. The particles are generated one at a time within a large

region RRL
with radius RL > R, and rejected if they either do not fit within RRL

(larger

green circle) or overlap with any other particles. To sample the particle distribution,

we then cut out a smaller region, away from the boundaries, and consider only the

particles within the smaller region. The cutouts are like cutting out cookie dough.

This smaller cutout can be repeated many times, in different locations within RRL
,

and then the average particle distribution can be calculated across these cutouts. In

Figure 3.4, we just cut out one small circle RR from RRL
. In this case the particle

centres are equally likely to be anywhere in RR−a.

Producing particles that are homogeneously distributed means we can use these

particle positions to numerically calculate pair-correlation functions which closely

approximate an infinite medium. One final detail to account for, due to the finite

geometry, is that the number density produced by this method is difficult to predict
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p
(r
)

r
Figure 3.5: Shows our different estimations of p(r). Due to there being less particles near r = 0
we get a more noisy estimate. To explain the legend: Legendre used (3.24), Bins used (3.26),
Leg. LstSqrs employs the same Legendre method but makes use of the Least Squares to calculate
the pℓ, and Leg. LstSqrs cons. uses Least Squares but with the constraint p′(0) = 0.

from the onset. Say we aim to generate a set of particles with the number density nRL
,

so we need to place NR ≈ nRL
|RRL−a| within RRL

. Doing this, the number nR will be

slightly less than nRL
. This is due to particles still being more likely to appear near the

boundary of RRL
, and therefore reduce the number of particles within the region nR.
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Figure 3.6: Both graphs show how the number density nR produced by the Cookie-cutter
method varies when changing the larger region RL. In both cases,the radius of the region is
R = 20, and the radius of each particle is a = 1. On the left, the volume fraction ϕRL

is fixed,
and we see how increasing RL leads to a steady decrease in nR. On the right, nRL

is fixed,

then, although ϕRL
= nRL

|RRL−a|
|RRL

| increases with RL, the number density nRL
changes little.

Figure 3.6 shows that if we fix the number density nRL
, instead of fixing ϕRL

, we

get only very small changes to the resulting number density nR when increasing RL.

In essence, we can just choose any RL large enough, and then calculate nR. Figure 3.7

shows the result of the changing nR, when increasing RL, and echoes the same results

of Figure 3.6. Figure 3.8 shows that the boundary effect is more pronounced as the
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Figure 3.7: The pair-correlation, calculated using the Monte-Carlo method for each of the RL

values, is presented on the left (right) side corresponding to the cases depicted on the left
(right) side of Figure 3.6. That is, on the left the value of ϕRL

is fixed, whereas on the right
side, the value of nRL

is fixed.

particle volume fraction increases.

ϕRL

Pa
rt

ic
le

de
ns

it
y

Figure 3.8: For the Cookie-cutter method, the particles are slightly more likely to appear near
the boundary of the larger region, which is why nR < nRL

. This boundary effect becomes more
pronounced as the volume fraction increases and limits the possible positions that particles
can occupy.

The Monte-Carlo issue. The Cookie-cutter method, that uses Monte-Carlo (MC),

should lead to the same pair-correlation of an infinite medium, which is well ap-

proximated by the Percus-Yevick (PY ) method. When checking the literature, our

Percus-Yevick results match those found by others, for example [1, 3, 19, 20, 21, 22].

However, we find that PY does not match the Cookie-cutter method when using the

same number density. Let nPY be the number density used for PY . We find that

nPY needs to be less than the number density of the Cookie-cutter method nR for the

pair-correlations to be very similar. The main reason for that is the finite geometry

of the region. The number density in the smaller region will be slightly less than the

one of the larger region. This is due to particles still being more likely to appear near
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the boundary of the large region, and as a result they reduce the number of particles

within the smaller region.

See, for example Figure 3.9. The aimed volume fraction was ϕaim = 25%. Each

particle has a radius of a = 1.0 and there is no separation gap between the particles.

The true number density n∞ = 0.0635 is estimated numerically, whereas the number

density of the larger cookie region is naim = 0.0678. Note that n∞|p| = 26.6% and

naim|p| = 28.4%. The graph on the left side of Figure 3.9 shows the Cookie-cutter

pair-correlation and PY with the same number density n∞, revealing that PY over-

estimates the pair-correlation. On the right, we lower the number density for PY

and use nPY = n∞
|RR+d−a|
|RR+d|

, where R + d is the radius of the larger region of the

Cookie-cutter method.
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Figure 3.9: Comparison of pair-correlation functions with an aimed volume fraction at ϕaim =
25%. All particles are identical with a radius of a = 1 and no separation gap between them.
On the left, we compare the Cookie-cutter method with the Percus-Yevick approximation, both
using the same number density n∞. The right side illustrates the PY model after adjusting its
number density to nPY to match Cookie-cutter spatial constraints.

3.4 Conclusions

In Section 3.1 we discussed the impact of including more than one effective wavenum-

ber on reflection coefficients, an aspect critical for many measurement techniques. In

Section 3.2, we addressed the mathematical and computational aspects of determining

multiple effective wavenumbers in three dimensions identifying a gap in the existing

literature with the development of an asymptotic method for locating these complex

effective wavenumbers, particularly in the context of monopole scatterers. Further,

Section 3.3, particularly Section 3.3.2, served as an essential bridge between the

analytical and numerical aspects of this thesis. It tackled the challenges encountered in

Monte-Carlo simulations when particles are confined within a finite region, and paved

the way on how to place these particles in such a finite region to achieve a desired



3.4. CONCLUSIONS 87

pair-correlation. The results of this study indicate that if the particles are evenly

distributed meaning they are similar to one another with little deviation from the

mean, the Bounded-sphere method may be preferable. In contrast, for particles that

are not evenly distributed, the Cookie-cutter method appears to be an effective method

to avoid artefacts in pair-correlation and volume fraction caused by the boundary of

the particulate.

Future avenues. The findings from this chapter provide a strong basis for further

research in several key areas. Firstly, there is a need to further refine and validate

the asymptotic method introduced here, especially to see how well it works with

different types of scatterers other than monopoles. This can lead to more precise

control over acoustic wave behaviour in materials, which is crucial for industries like

medical imaging, and noise reduction. Secondly, we should explore how these findings

can help in designing and understanding new materials that are designed to control

how waves propagate through them. Lastly, by extending the Cookie-cutter method

to address simulation artefacts, we can improve the accuracy of simulations used in

material design and testing, thereby speeding up the development of new technologies

and materials with optimised properties.
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Chapter 4

Calculating pair-correlations from
random particle configurations

ARISTEIDIS KARNEZIS, ART L. GOWER

Abstract

Particle pair-correlations are broadly used to describe particle distributions in chemistry,

physics, and material science. Many theoretical methods require the pair-correlation to

predict material properties such as fluid flow, thermal properties, or wave propagation.

In all these applications it is either important to calculate a pair-correlation from

specific particle configurations, or vice-versa: determine the likely particle config-

urations from a pair-correlation which is needed to fabricate a particulate material.

Most available methods to calculate the pair-correlation from a particle configuration

require that the configuration be very large to avoid effects from the boundary. Here

we show how to avoid boundary effects even for small particle configurations. Having

small particle configurations leads to far more efficient numerical methods. We also

demonstrate how to use techniques from smooth nonlinear optimisation to quickly

recover a particle configuration from a pair-correlation.

91
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4.1 Introduction

Background. In the field of material science, the investigation of structural

properties has witnessed significant progress. Molecular dynamics simulations, coupled

with neutron and X-ray scattering experiments, have provided valuable insights into

the structural characteristics of materials. For disordered materials, most techniques

to probe and analyse these structures focus on the pair-correlation function and

the structure factor [29, 30, 41, 42, 48]. The pair-correlation appears naturally in

theoretical methods that use ensemble averaging [6, 8, 37, 51], whereas the structure

factor appears naturally from scattering experiments [8, 11], including small-angle

neutron scattering [7, 47].

The pair-correlation function, denoted by g(r), represents the probability of finding

a pair of particles separated by a certain distance r [6, 8, 37, 51]. The structure factor,

denoted by S(k), corresponds to the Fourier transform of g(r), and it is essential for

characterising the structure of the material from the scattering intensity [8, 11, 12,

39].

Beyond material science, pair-correlations and structure factors extend to calculat-

ing shear viscosity, electrical conductivity, and thermal conductivity from a molecular

perspective [35]. They also play a significant role in exploring complex phenomena

such as the nuclear pasta observed in the extreme conditions of neutron star crusts [19,

20, 39]. This phenomenon, characterised by non-uniform arrangements of subatomic

particles under extreme gravitational fields, is investigated through neutron and X-ray

scattering to understand the internal structure of neutron stars [19, 20, 39].

Knowledge of the pair-correlation function and the structure factor is very useful

when designing materials with specific behaviour. Indeed, they can be set in order

to achieve specific properties such as hyperuniform structures, materials with exotic

band gap profiles and negative refractive index [26, 32, 44, 46, 52]. By adjusting pair-

correlations, we aim to create materials with specific properties and unique structural

characteristics.

From the authors background, the pair-correlation appears when taking an en-

semble average of waves in disordered materials [6, 15, 16, 54]. Essentially, the

pair-correlation function captures the spatial distribution and arrangement of particles

within a material, directly influencing how waves interact with and propagate through

the material. That is, the pair-correlation is the only way the material structure affects

wave propagation. This suggests a route to design materials to control waves:
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1. To determine pair-correlations that lead to band-gaps, frequency filters, or en-

hanced transmission.

2. To determine configurations of particles that match the desired pair-correlation.

Step 2) is known as the realizability problem [10, 11, 24, 55, 59], and there are open

questions about when it is possible to solve [9, 13, 14, 22, 30, 40].

Realizability problem. Determining a likely configuration of particles from a

specific pair-correlation is called the realizability problem. To make the problem easier

to understand, here is an example: Think about solving a jigsaw puzzle. Each puzzle

piece is like a particle in a material. The goal is to fit all these pieces together within

the puzzle board to create a picture. This picture represents our target arrangement

of particles. However, just like puzzle pieces must fit together in a certain way and

cannot be forced into the wrong place or overlap, the particles in our material must

also be arranged in a physically feasible way. This means we can not just place them

in any random configuration; they need to fit together according to physical laws, just

like puzzle pieces. So, realizability is about making sure that the arrangement we

come up with can actually exist in the real world.

The realizability problem appears in the study of many-body systems, such as

liquids, and disordered materials [10, 11, 24, 25, 48, 49, 55, 57, 59]. One of the

challenges is that the problem often lacks a unique solution. Multiple configurations of

particles can result in the same pair-correlation, especially in disordered media where

the properties and behaviour of particulates can be influenced by factors like particle

size, shape and density [11, 50].

Several necessary conditions for potential pair-correlation functions have been

identified, including the requirement of non-negativity to ensure realistic repres-

entation of properties such as density or probability distributions in materials, and

restrictions on their associated structure factors, which measure variations in particle

density within a material [48]. However, establishing a set of sufficient conditions for

these functions remains an open challenge [48, 51]. We note that the problem is not

completely resolved even in just one spatial dimension.

Reverse Monte-Carlo. Reverse Monte-Carlo structural modelling is one technique

that has been used to calculate particle configurations that match a measured structure

factors or pair-correlations [9, 13, 14, 22, 30, 40, 53]. Typically these Monte-Carlo

simulations are guided by a Genetic Algorithm, or similar random searches, which are

computationally intensive [28, 29, 30, 43, 53]. These methods are brute-force, and

typically use non-gradient-based methods. While effective to some extent, they struggle

when dealing with pair-correlation functions that lack smoothness. In response to
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this limitation, we propose a novel approach based on smooth optimisation. Given

the straightforward computations of gradients, it stands to reason that gradient-based

optimisation methods [45] hold significant potential for superior performance over

traditional non-gradient-based approaches. This advantage comes from their ability

to efficiently move through the search space by using directional information, thus

offering a more targeted and faster convergence to optimal particle arrangements.

Paper summary. In Section 4.2, we start by deducing in a simple self-contained

way how to describe probability distributions and the pair-correlation in terms of a

set of particles. In Section 4.3 we show how to avoid the effects of boundaries when

calculating pair-correlations. The effects of boundaries are usually undesirable, and

the details we present seem to be missing from most references. In Section 4.4 we

show the same calculations again, but without the use of Dirac deltas for didactic

purposes. In Section 4.5 we deduce the structure factor for isotropic distributions both

from any given pair-correlation and a set of particles. These results are needed in

Section 4.6, where we present a method to calculate a configuration of particles that

matches a given structure factor. Developing more efficient methods to reconstruct

particle configurations from pair-correlations remains an ongoing challenge in material

science and computational chemistry [36]. The method we propose uses techniques

from smooth nonlinear optimisation to improve the efficiency, which we are able to

do because the structure factor is a smooth function of the particle positions. We also

present some preliminary numerical results. Finally, in Section 4.7 we summarise what

the paper achieved and possible future directions.

4.2 Particle distributions

Consider there are J particles placed within some region R. That is, the centre of every

particle rj ∈ R. We represent one possible configuration of particles, or ensemble, by

the set X s, where every r ∈ X s is the centre of a particle in the ensemble.

The function p(r) is the probability density of finding a particle centred at r. We

can approximate p(r) by defining a mesh of volume elements V (vi), where the vector

vi is the centre of the volume element, and then counting the number of particles in

each V (vi) divided by the total number of particles. This allows us to introduce pV (vi)

as an approximation to p(vi), expressed as p(vi) ≈ pV (vi), to estimate the probability:

pV (vi) =
1

S

S∑
s

# [X s ∩ V (vi)]

#X s

1

|V (vi)|
, (4.1)
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where |V (vi)| is the volume of V (vi), #X is the number of elements in the set X , and

S is the number of ensembles considered. The use of a finite number of ensembles

introduces a degree of statistical uncertainty. While increasing S can improve the

accuracy of the approximation, it also increases computational demands. There is

a trade-off between computational efficiency and statistical robustness. The chosen

value of S should provide a reliable representation of particle distributions while

remaining computationally manageable.

We require that the mesh:

V (vi) ∩ V (vj) = ∅, for j ̸= i,

ensuring that each volume element is distinct and non-overlapping. This is crucial

for the independence of the measurements. It prevents double-counting of particles

and ensures that each volume element contributes uniquely to the probability density

calculation.

In a similar way, we can approximate p(x1,x2), which is the joint probability

density of finding one particle centred at x1 and another centred at x2, while averaging

over all over particle positions. If we assume that both x1 and x2 are distributed within

R, then we can approximate the function p(x1,x2) with the formula:

pV (vi,vj) =
1

S

S∑
s

# [X s ∩ V (vi)]

#X s

# [X s ∩ V (vj)]

# [X s\V (vi)]

1

|V (vi)||V (vj)|
, for i ̸= j, (4.2)

where pV (vi,vi) = 0 for every i, and X s\V (vi) is defined as the set X s without V (vi).

Note that:

p(vi,vj) ≈ pV (vi,vj),

for every vi and vj. In simple terms, it allows us to estimate the probability of finding

pairs of particles at specific positions within a material by statistically approximating

the probability.

As expected, using this approximation, the integral of p(x1,x2) for x1,x2 ∈ R
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gives one:

ˆ
p(x1,x2)dx1dx2 ≈

∑
i,j

pV (vi,vj)|V (vi)||V (vj)|

=
1

S

S∑
s

∑
i

∑
j ̸=i

# [X s ∩ V (vi)]

#X s

# [X s ∩ V (vj)]

# [X s\V (vi)]

=
1

S

S∑
s

∑
i

# [X s ∩ V (vi)]

#X s

# [X s ∩ ∪j ̸=iV (vj)]

# [X s\V (vi)]

=
1

S

S∑
s

# [X s ∩ ∪iV (vi)]

#X s
= 1, (4.3)

where we used that ∪iV (vi) = R, dx1 ≈ |V (vi)|,dx2 ≈ |V (vj)|, and R∩ ∪j ̸=iV (vj) =

R\V (vi) which implies that X s ∩ ∪j ̸=iV (vj) = X s\V (vi).

The term that often appears in methods that use ensemble averaging of particulates

[4, 51, 54] is the particle pair-correlation, which is defined as:

g(x1,x2) :=
J − 1

J

p(x1,x2)

p(x1)p(x2)
, (4.4)

where J = #Xs is the total number of particle, where we have assumed that every

configuration #Xs has the same number of particles. The factor
J − 1

J
is correction

for a finite number of particles in a region when calculating the pair-correlation

function g(x1,x2). In an infinite region, as particles become uncorrelated due to

distance or lack of interaction, the pair-correlation approaches 1, indicating a random

distribution without any correlation between particle positions. However, in a finite

region, the presence of a limited number of particles introduces a bias because each

particle is slightly more likely to be closer to another particle than it would be in an

infinite region. The correction factor
J − 1

J
adjusts for this bias by scaling down the

correlation as the number of particles increases, ensuring that g(x1,x2) → 1 for large

distances between particles or when particles become uncorrelated as confirmed by

[54, Equation (8.1.2)]. We demonstrate this in the next section.

4.2.1 Particles as Dirac delta

For a finite, but very large number, of particles we can rewrite the pair-correlation

in terms of Dirac deltas. For example, turning to (4.1) we assume there is a finite

number of ensembles S, each with a finite number of particles J . Then we can make
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the volume elements V (vi) small enough so that there is at most one particle in each

volume element, which implies that #X s = J and:

# [X s ∩ V (vi)] =

 1, if there is a particle in V (vi),

0, if there is no particle in V (vi).
(4.5)

For notational convenience, we choose the mesh of volume elements such that each

element is centred at a particle ri ∈ X s, if it contains a particle. Equation (4.5) allows

us to rewrite (4.1) in the form:

pV (ri) =
1

S

S∑
s

1

|V (ri)|
1

J
, (4.6)

for every ri ∈ X s.

As we are taking the limit of all the volume elements going to zero, |V (ri)| → 0,

we can approximate:

p(x) =

 pV (ri), if x ∈ V (ri),

0, else,

where p(x) = 0 if x is in a volume element that does not contain a particle. With this

definition, and taking the limit |V (vi)| → 0 for every i, we can rewrite (4.1) in the

form:

p(x) =
1

JS

S∑
s

∑
ri∈X s

δ(x− ri), (4.7)

where δ(x − ri) is the Dirac delta function. This allows each volume element to

represent an infinitesimally small point in space, effectively turning each particle into

a point particle. For details on the Dirac delta see [2].

Repeating analogous steps for the joint probability density (4.2) we obtain:

p(x1,x2) =
1

S

1

J(J − 1)

S∑
s

∑
ri∈X s

∑
rj ̸=ri,rj∈X s

δ(x1 − ri)δ(x2 − rj). (4.8)

In (4.8), the outer summation over all ensembles S accounts for the randomness and is

essential for capturing the statistical variation across different possible configurations

of particles within the material. The inner summation considers all pairs of particles

ri and rj within each ensemble, excluding cases where ri = rj because a particle
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cannot pair with itself. This guarantees that the model accurately represents the joint

probability of finding two distinct particles at two specific points.

This method provides a robust and flexible framework for statistical analysis

across a wide range of densities, especially in disordered systems. However, it can be

computationally intensive due to the high level of detail and precision it requires. As

each particle is represented as a point in space, the computations involve handling

potentially large numbers of Dirac delta functions.

4.2.2 Isotropic distributions

For most of this paper we focus on homogeneous and isotropic distributions. The

homogeneous assumption dictates that the particles are equally likely to be placed

anywhere in space, which leads to p(r) being a constant. If we choose all volume

elements to have the same volume |V (vi)| = |V |, then using that pV (vi) is a constant

together with (4.1) leads to:

pV (vj) =
1

SI

∑
i

S∑
s

# [X s ∩ V (vi)]

#X s

1

|V | =
1

SI

1

|V |
S∑
s

# [X s ∩ ∪iV (vi)]

#X s
=

1

I|V | =
1

|R| ,

(4.9)

where I is the total number of volume elements V (vi), |R| is the volume of R, and we

used ∪iV (vi) = R and similarity I|V | = |R|.
For an isotropic distribution we have that only the inter-particle distance is needed

for their joint probability [37, 38]. That is p(x1,x2) = p(|x1 − x2|), where |r| is

the magnitude of the vector r. To use this property to simplify the formula for the

pair-correlation (4.4), we start by writing:

g(|x1 − x2|) = g(x1,x2), (4.10)

then integrate both sides over all values such that |x1 − x2| = z for fixed z relative to

the variables of integration. To make this clearer we introduce the ball region using

standard set-builder notation:

B(x; r) = {y ∈ R3 : |x− y| ≤ r}. (4.11)

The ball region is introduced to simplify the process of integrating over distances.

It defines a spherical region of radius r around a point x, which is essential for

transforming the pair-correlation function into a function of distance alone.

Using this notation, we will integrate both sides of (4.10) over every x2 ∈
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∂B(x1; z) ∩R, followed by over all x1 ∈ R, which results in:

ˆ
R

ˆ
∂B(x1;z)∩R

g(|x1 − x2|)dS2dx1 =

ˆ
R

ˆ
∂B(x1;z)∩R

g(x1,x2)dS2dx1. (4.12)

Here, x1 represents the position of a particle within the region R, x2 is the position

of another particle, and ∂B(x1; z) is the surface of a sphere with radius z centred at

x1. Physically, this means we are looking at all possible positions a second particle

could occupy that are exactly a distance z away from the first particle, and we are

integrating the pair-correlation function over the spherical surface that lies within the

region R, to understand how particle density varies at this specific separation distance.

The left side of (4.12) can move out of the integral, resulting in:

ˆ
R

ˆ
∂B(x1;z)∩R

g(z)dS2dx1 = L(z)g(z), with L(z) =

ˆ
R

ˆ
∂B(x1;z)∩R

dS2dx1. (4.13)

For the right side of (4.12) we use the definition (4.4), and then rearrange (4.12) to

reach:

g(z) =
J − 1

J

1

L(z)

ˆ
R

ˆ
∂B(x1;z)∩R

p(x1,x2)

p(x1)p(x2)
dx1dS2. (4.14)

To reach a simple formula to calculate g(z), we need to calculate the integral L(z). In

general, calculating L(z) can be awkward and we show how to avoid this in the next

section.

To simplify the radial pair-correlation (4.14) we combine (4.8) and (4.9) to write

the pair-correlation (4.4) in terms of Dirac delta functions, which we then substituted

into (4.14), and integrate over x1 to obtain:

g(z) =
1

S

1

n2

S∑
s

∑
ri∈X s

∑
rj ̸=ri,rj∈X s

1

L(z)

ˆ
∂B(ri;z)∩R

δ(x2 − rj)dS2. (4.15)

where n := J/|R| is the particle number density. To simplify (4.15), note that because

rj ∈ R we have that:

ˆ
∂B(ri;z)∩R

δ(x2 − rj)dS2 =

ˆ
∂B(ri;z)

δ(x2 − rj)dS2.

At greater length, this is a result of the integral over x2 ̸∈ R having an integrand which
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is zero, δ(x2 − rj) = 0, because rj ∈ R, allowing us to rewrite (4.15) in the form:

g(z) =
1

S

1

n2

S∑
s

∑
ri∈X s

∑
rj ̸=ri,rj∈X s

1

L(z)

ˆ
∂B(0;z)

δ(ri − rj + x)dSx, (4.16)

where we used the change of variables x = x2 − ri. The change of variables to

x = x2 − ri essentially shifts the centre of the sphere to the origin. We can now show

how the Dirac delta function can be used to isolate the contribution of particle pairs at

exactly distance z apart:

ˆ
∂B(0;z)

δ(r + x)dSx = δ(|r| − z), (4.17)

by noting that for any z1 < z2 we have that:

ˆ z2

z1

ˆ
∂B(0;z)

δ(r + x)dSxdz =

ˆ
B(0;z2)\B(0;z1)

δ(r + x)dVx =

 1, if z1 < |r| < z2,

0, else,
(4.18)

where we note that dSxdz = dVx is a volume element. Considering the properties of

the Dirac delta [2], equation (4.18) can be used to deduce (4.17).

Substituting these results into (4.16) leads to:

g(z) =
1

S

1

n2L(z)

S∑
s

∑
ri∈X s

∑
rj ̸=ri,rj∈X s

δ(|ri − rj| − z). (4.19)

The only change in (4.19) when changing from three spatial dimensions to two spatial

dimensions is that L(z) is given by (4.13) but with R being two dimensional and the

integral over S2 being a line integral.

4.3 Particles in two regions

To avoid the influence of the boundary that encloses the particles, and avoid calculating

L(z) appearing in (4.33), we consider two different regions where particles can be

placed R1 and R2 as shown in Figure 4.1. We consider that x1 and x2 are two different

random variables with x1 ∈ R1 and x2 ∈ R2. Note that R1 ⊂ R2, so, the particles J1
of R1 are a subset of particles J2 of R2. This setup allows for a focus on the internal

interactions within R1 while minimising the boundary effects from R2.

To calculate the joint probability distribution p(x1,x2), let X s be such that every
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R1

R2

R1

R2

Figure 4.1: The left image shows a finite set of particles in a region R1 taken from a larger
set of disordered particles in the region R2. Note that R1 is contained within R2. On the
right a unit cell of random particles in a region R1 that is periodically tilled. On the right, the
region R2 is a cut out from the periodic tilling of the particles in R1. We use ℓ to indicate the
minimum length of periodicity, which is the height of the unit cell shown in the image on the
right.

x2 ∈ X s is also in x2 ∈ R2, then considering that x1 ∈ R1 and x2 ∈ R2 we have that:

pV (vi,vj) =
1

S

S∑
s

# [X s ∩ V (vi)]

#[X s ∩R1]

# [X s ∩ V (vj)]

#[X s\V (vi)]

1

|V (vi)||V (vj)|
for i ̸= j, (4.20)

such that vi ∈ R1, vj ∈ R2, and V (vi) ∩ V (vj) = ∅ for every i, j, and:

∪J1
i=1V (vi) = R1 and ∪J2

j=1 V (vj) = R2.

As a check of the formula (4.20), performing an integral of pV (vi,vj) for vi ∈ R1 and

vj ∈ R2 gives 1 as expected by following similar steps as shown in (4.3).

For the two different regions, the definition of the particle pair-correlation (4.4)

now becomes:

g(x1,x2) :=
J2 − 1

J2

p(x1,x2)

p(x1)p(x2)
, (4.21)

where J2 = #X s.

4.3.1 Isotropic distributions

The probability density for the two regions, and an isotropic distribution of particles,

is similar to before with:

p(x1) =
1

|R1|
and p(x2) =

1

|R2|
. (4.22)
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Using analogous steps shown in Section 4.2.2 to reach (4.19) we can reach:

g(z) =
1

n2L(z)

1

S

S∑
s

∑
ri∈X s∩R1

∑
rj ̸=ri,rj∈X s

δ(|ri − rj| − z). (4.23)

Equation (4.23) "selects" only those particle pairs whose separation distance is exactly

z. It does this by being zero everywhere except where its argument is zero. In this

case, it becomes non-zero only when |ri − rj| = z.

However, now we can explicitly calculate L(z) given by:

L(z) =

ˆ
R1

ˆ
∂B(x1;z)∩R2

dS2dx1. (4.24)

Assume we want to calculate g(z) for 0 ≤ z ≤ Z. To do this we can require that: the

distance between the boundaries ∂R2 and ∂R1 be greater than or equal to Z. This

condition ensures that for any z ≤ Z, any point x2 on the surface of the sphere B(x1; z)

is also within R2. This is crucial for the validity of the pair-correlation calculation, as

it guarantees that the integration domain over S2 becomes the entire surface of the

sphere, simplifying the computation of L(z). In other words, the domain of integration

over S2 becomes ∂B(x1; z) ∩ R2 = ∂B(x1; z), which used in (4.24) for three spatial

dimensions leads to:

L(z) = 4πz2|R1|. (4.25)

As a quick check, if R2 was a sphere with radius R2 centred at the origin, then,´ R2

0
L(z)dz = |R1||R2| as it should. Substituting (4.24) into (4.23) leads to:

g3(z) =
1

4πnz2J1

1

S

S∑
s

∑
ri∈X s∩R1

∑
rj ̸=ri,rj∈X s

δ(|ri − rj| − z), (3D spatial), (4.26)

where J1 = #[X s ∩ R1], and we use g3 instead of g to indicate that (4.26) is for 3

spatial dimensions.

For two spatial dimensions we have L(z) = 2πz|R1| which substituted into (4.23)

leads to:

g2(z) =
1

2πnzJ1

1

S

S∑
s

∑
ri∈X s∩R1

∑
rj ̸=ri,rj∈X s

δ(|ri − rj| − z), (2D spatial). (4.27)

Next, we re-deduce (4.26) and (4.27) without using Dirac delta functions.
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4.4 The discrete form for isotropic pair-correlations

In this section we redo the calculations that lead to (4.26) and (4.27) but without the

use of the Dirac delta function. That is, without taking the limit of volume elements

tending to zero as used to reach (4.7). Doing this serves two purposes:

• It can be simpler to understand these discrete formulas, and implement them as

a numerical method.

• It helps to verify the formulas by reaching formulas we can compare with

literature and having two avenues to deduce the same formulas.

4.4.1 Particles in one region

Here we consider that all particles are within one region, ri, rj ∈ X s, and re-deduce

the results that led to the formula (4.19) but without Dirac deltas.

To reach a simple formula for g(z) with the discrete approximation (4.2), we

discretise the integral in (4.14), substitute (4.2), and use the discrete approximation

for the differentials:

dx1 = |V (vi)|, dzdS2 = |V (vj)|, (4.28)

to obtain:

g(z) =
J − 1

J

|R|2
L(z)dzS

S∑
s

∑
i

∑
|vi−vj |≈z

# [X s ∩ V (vi)]

#X s

# [X s ∩ V (vj)]

# [X s\V (vi)]
, (4.29)

where we used (4.9) to substitute p(x1) = p(x2) = 1/|R|, and the sum over j is for

every vj such that z − dz/2 < |vi − vj| < z + dz/2. As the minimum value for z = 2a,

we just set g(z) = 0 for z ≤ 2a, where a denotes the radius of the particle.

At this point, due to the choice (4.28), the volumes |V (vi)| and |V (vj)| do not

appear explicitly in (4.29). This allows us to simplify the formula by choosing V (vi)

and V (vj) to be sufficiently small so that they each contain no more than one particle.

For the indices i and j where there is no particle in V (vi) and V (vj) respectively, we

have # [X s ∩ V (vi)] = 0 and # [X s ∩ V (vj)] = 0. This makes it convenient now to

only sum over the i, and j where:

# [X s ∩ V (vi)] = # [X s ∩ V (vj)] = 1, (4.30)

# [X s\V (vi)] = #X s − 1 = J − 1, (4.31)
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which used in (4.29) leads to:

g(z) =
1

n2
1

L(z)dzS

S∑
s

∑
i

∑
|vi−vj |≈z

1, (4.32)

where we used the particle number density n := J/|R|. Now, when the volume

elements V (vi) and V (vj) are significantly small, approaching zero there is only one

particle centre in V (vi) and one other particle centre in V (vj). In this limit, vi and vj

approximate the actual positions ri and rj in X s, which means we can sum over the

actual positions ri and rj instead of the volume elements vi and vj. This leads us to

rewrite (4.32) in the reduced form:

g(z) =
1

n2L(z)dzS

S∑
s

∑
ri∈X s

#X s
i (z), (discrete pair-correlation), (4.33)

where X s
i (z) are all the particles rj such that are |ri − rj| ≈ z, or, more precisely with

set builder notation:

X s
i (z) := {rj ∈ X s : z − dz/2 ≤ |ri − rj| < z + dz/2}, (4.34)

and #X s
i (z) is the number of elements in X s

i (z).

The only change in the formula (4.32) when changing from three spatial dimen-

sions to two spatial dimensions is that L(z) is given by (4.13) but with R being two

dimensional and the integral over S2 being a line integral.

Now, to show that the discrete pair-correlation function (4.33) is equivalent to

(4.19) involving the Dirac delta, we need to show that:

lim
dz→0

#X s
i (z)

dz
=

∑
rj ̸=ri,rj∈X s

δ(|ri − rj| − z). (4.35)

To verify (4.35), let us define:

f(x) =

 1, if z − dz/2 ≤ x ≤ z + dz/2,

0, otherwise.

Then, #X s
i (z) =

∑
rj ̸=ri,rj∈X s f(|ri − rj|). To complete the demonstration of (4.35) we
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note that for any x we have that:

lim
dz→0

f(x)

dz
= δ(x− z). (4.36)

Equation (4.36) becomes infinitely high and narrow while integrating to 1, precisely

picking out values at x = z.

4.4.2 Particles in two regions

Using (4.22) and the steps shown in Section 4.3, we can reach a formula which is

analogous to (4.33) but for ri ∈ R1 and rj ∈ R2 as illustrated in Figure 4.1 given by

g3(z) =
1

S

1

4πz2dz

S∑
s

1

nJ1

∑
ri∈X s∩R1

#X s
i (z), (3D isotropic), (4.37)

where we substituted (4.25) and used J1 = #[X s ∩R1]. Equation (4.37) is the same

as the formula [3, Equation (2)], and [54, Equation (8.3.8)] when specialising their

formula for particles with the same radius, and when taking R1 = R2.

For two spatial dimensions the pair-correlation becomes

g2(z) =
1

S

1

2πzdz

S∑
s

1

nJ1

∑
ri∈X s∩R1

#X s
i (z), (2D isotropic). (4.38)

As a final check, note that if particle positions were uncorrelated then #X s
i (z) ≈

4πnz2dz, for three spatial dimensions, because the number of particles would then be

proportional to the volume times the number density. Substituting this approximation

into (4.37) leads to g3(z) = 1, which is what is expected from uncorrelated particles.

4.5 The Structure Factor

The structure factor, known as S(k), plays a crucial role in material science and

condensed matter physics [29, 30, 41, 42, 48]. Many experimental techniques, such

as X-ray diffraction, neutron scattering and electron microscopy, inherently measure

the structure factor, providing a deep understanding of the arrangement and density

fluctuations of particles within a material [5, 31, 49]. Unlike the pair-correlation

function g(r) which gives the probability of finding particle pairs at a certain distance,

the structure factor captures the intensity of scattered waves from materials, revealing

both local and long-range order through its relationship as the Fourier transform of
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g(r) [10, 24, 55]. This makes the structure factor, S(k), an integral part of interpreting

experimental data, providing information for both characterising new materials and

designing them with specific properties.

The expressions for the structure factor in two and three dimensions are well-

established in the field of material science [39, 51, 55]. In this section we re-derive

the structure factor from first principles using (4.26) and (4.27).

Mathematically, the pair-correlation g(z) in the form (4.26) shows how g(z) is

a discontinuous function when calculated from a finite number of particles. It is

discontinuous in the variables z and the position of the particles ri. As g(z) is not

a smooth function, we can not use techniques from local nonlinear optimisation to

calculate a particle configuration to match a specific pair-correlation. To avoid this, we

can take a transform of the pair-correlation such as the structure factor:

S(k) = 1 + n

ˆ
(g(r)− 1)e−ik·rdr, (The Structure factor), (4.39)

where r = |r| and k = |k| is the magnitude of the wave vector. Equation (4.39)

matches the typical definition of the structure factor [51, 54, 56], noting that the

notation h(r) = g(r)− 1 is commonly used.

For some of the following calculations, we will perform the integral over g(r) and

−1 separately. To do this we note that:

δ(k) =
1

(2π)n

ˆ
e−ik·rdr, (4.40)

where n is the spatial dimension, which in this paper is either n = 3 or n = 2.

For any given isotropic pair-correlation g(r) the structure factor (4.39) can be

simplified to a 1D integral. To do this, we assume that particles become uncorrelated

at a distance of R so that g(r) = 1 for 0 ≤ r ≤ R. Then from (4.39) we can calculate

that for three spatial dimensions:

S3(k) = 1 +
4π

k
n

ˆ R

0

(g3(r)− 1) sin(kr)rdr, (4.41)

and for two spatial dimensions:

S2(k) = 1 + 2πn

ˆ R

0

(g2(r)− 1)J0(kr)rdr. (4.42)

We will use (4.42) to calculate the structure factor from a target pair-correlation in
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the next section.

We can further simplify the structure factor when calculating it from a configuration

of particles. For three spatial dimensions, we can substitute (4.26) into the structure

factor (4.41), but with R = ∞, and using the property of the Dirac delta, to obtain:

S3(k) = 1 +
1

S

S∑
s

1

J1

∑
ri∈X s∩R1

∑
rj∈X s

rj ̸=ri

sin(k|ri − rj|)
k|ri − rj|

, (3D Structure factor), (4.43)

for k > 0. When calculating (4.43), a term of the form −(2π)3nδ(k) appears, according

to (4.40), however, as we consider only k > 0 it has no contribution to the above.

Following analogous steps, the two dimensional structure factor calculated from

(4.27) becomes:

S2(k) = 1 +
1

SJ1

S∑
s

∑
ri∈X s∩R1

∑
rj∈X s

rj ̸=ri

J0(|k||ri − rj|), (2D Structure factor), (4.44)

for k > 0, where J0 is the Bessel function of the first kind.

4.6 Particle configurations from the structure factor

In theory, the pair-correlation is calculated by taking into account an infinite number

of different particle configurations. Yet, many exotic material properties can be

achieved by choosing specific pair-correlations, with one example being hyperuniform

disordered materials [51, 52, 59]. So being able to calculate one configuration of

particles which closely represents any given pair-correlation would provide a route to

fabricate particulate materials which exhibit exotic properties.

To recover a specific configuration of particles from a pair-correlation, we show a

method to find a configuration of particles which is the mean particle configuration.

Suppose we are given some pair-correlation g⋆(z), then we want one configuration of

particles that when substituted into (4.37) will be close to g⋆(z), when removing the

sum over the ensembles by setting S = 1.

4.6.1 Restrictions

For any given pair-correlation g and S structure factor there are certain restrictions

[10, 55, 57] that need to be satisfied. These need to be considered when choosing a
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target pair-correlation g⋆ or structure factor S⋆. We will only consider a few of these

restrictions, and note that there may be an infinite number of necessary, though more

complicated, conditions on the pair-correlation [10].

The simplest restrictions are that:

g⋆(r) ≥ 0 and S⋆(k) ≥ 0, (4.45)

where the first is due to the definition (4.21) together with the basic rule that probab-

ility functions must be positive. The second needs to be non-negative because of the

relation of the structure factor S(k) with the variance of the particle density. This is

discussed in [10, 48, 55, 57].

As we focus on disordered particulates we require that particles become uncorrel-

ated at some distance R. This requirement implies that:

g⋆(r) = 1, for every r ≥ R. (4.46)

Further, from the definition (4.21), together with (4.22), we have that:

ˆ
R2

ˆ
R1

g(x1,x2)dx1dx2 =
J2 − 1

J2
|R1||R2|

ˆ
R1

ˆ
R2

p(x1,x2)dx1dx2

=
J2 − 1

J2
|R1||R2|. (4.47)

Alternatively, using isotropy so that g depends on only |x1 − x2|, the condition (4.46),

and specialising to three spatial dimensions, we make use of (4.26) to obtain:

ˆ
R2

ˆ
R1

(g3(|x1 − x2|)− 1)dx1dx2 =

ˆ ˆ R

0

ˆ
R1

(g3(z)− 1)dx1z
2dzdΩ

= 4π|R1|
ˆ R

0

(g3(z)− 1)z2dz. (4.48)

In (4.48), the integral over the regions R1 and R2 are simplified to a radial integral

over distance z with an angular component represented by Ω, the solid angle. The

solid angle Ω is crucial for integrating over all directions in three-dimensional space,

accounting for the isotropy condition (4.46). By changing variables to z = x2 − x1,

we further simplify the expression, resulting in the integral over z and Ω that accounts

for the entire spherical symmetry around a point. Combining (4.47) and (4.48) leads

to the restriction: ˆ R

0

g3(z)z
2dz =

R3

3
− 1

4πn
, (4.49)



4.6. PARTICLE CONFIGURATIONS FROM THE STRUCTURE FACTOR 109

where we used n = J2/|R2|. For two spatial dimensions, following analogous steps

and using (4.27), we obtain the restriction:

ˆ R

0

g2(z)zdz =
R2

2
− 1

2πn
. (4.50)

We can also translate the pair-correlation to satisfy (4.50). Let:

g2(r) = g02(r) + a dp(r), (4.51)

where dp(r) → 0 when r → R. In simple terms, (4.51) modifies an initial pair-

correlation function g02(r) to include a perturbation, aiming to adjust the particle

distribution within a specific range. The perturbation dp(r) is designed to become

negligible as the distance r reaches a specific point R. Then, given a number density n

we can obtain dp from (4.50):

a =
[R2

2
− 1

2πn
−
ˆ R

0

g2(z)zdz
][ ˆ R

0

dp(z)zdz
]−1

. (4.52)

The selection of dp(r) = e−6r/R guarantees this vanishing effect, exponentially decreas-

ing as r increases. The equation for a calculates the necessary scaling factor to achieve

the desired distribution pattern, factoring in the number density of particles and the

integral of the pair-correlation function up to R.

4.6.2 Gradient optimisation

For some inner product:

⟨G,H⟩k =
ˆ

G(k)H(k)w(k)dk,

where w(k) is some known weight. The objective is to find a particle configuration X
that minimises:

min
ri∈X

f(X ), where f(X ) := ⟨S− S⋆, S− S⋆⟩k. (4.53)

Equation (4.53) uses an integral to assess the similarity between the actual and target

structure factors, S and S⋆ respectively, over a range of spatial frequencies k. This

method helps to quantify how much the particle configuration X deviates from the

desired configuration.
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Most methods in the literature [28, 43] achieve this by using non-gradient-based

methods such as Genetic Algorithms, Nelder-Mead, and Simulated Annealing. How-

ever, f , as written above, is a smooth function of the position of the particles in X .

Further, it is straightforward to analytically calculate the gradient of f in terms of the

particle positions rj. This implies the gradient based methods [45] hold significant

potential for superior performance over traditional non-gradient-based approaches. In

specific, the objective function f , and its gradient, can be computational expensive

to calculate so we opt to use the Limited memory BFGS (L-BFGS) methods [27, 33],

as it stores information on the Hessian (the gradient of the gradient) and uses this to

accelerate convergence. This often implies that L-BFGS requires less evaluations of the

objective function and its gradient [27].

Specifically, we develop a method to minimise (4.53) in two steps, one global,

and one local. Separating the two steps allows us to search over a large area of the

parameter space with the global step, while still obtaining high precision with the local

step. Another clear reason, based on recovering a configuration of particles, is that if

we had the constraint of particles not overlapping, then it can lead to particles being

locked in configurations which can be far from the global minimum. For this reason

we only enforce no particle overlapping in the local step. In more detail the two steps

are:

• The global step. A global optimisation that completely rearranges all particles

to minimise (4.53). For this step, we will allow particles to overlap, helping us

explore a broad range of particle configurations and avoid locking the particles in

a configuration and we will use a limited range for the wavenumbers k1 ≤ k ≤ k2

when minimising (4.53). That is, in this step we do not want to resolve spatial

details smaller than the length scale 2a, since it might not significantly influence

the properties of the material. So the shortest wavelength λ we consider for the

structure factor is λ = 2a which corresponds to wavenumbers k ≤ k2 = π/a. The

smallest wavenumber k1 is determined by the dimensions of the material: let

D1 be the smallest dimension of R1, then the longest wavelength we consider is

λ = D1 which implies that k ≥ k1 = 2π/D1.

• The local step. This step improves the particle configurations obtained from the

global step. This involves making small adjustments to the particle positions to

achieve a more accurate and realistic distribution of particles. We also enforce

a penaliser W , shown in (4.60), to prevent overlaps between particles. The

penaliser has the form of an exponential that increases very rapidly as the

distance decreases. This means that as particles get closer to each other, the
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penalty for their overlap increases exponentially. For this step we also want

to resolve spatial details. Suppose we want to resolve details up to a/4, then

k2 = 8π and k1 ≤ k ≤ k2 for this step.

To use techniques from nonlinear optimisation [33, 45] to minimise calculate

(4.53) we need to calculate the gradient:

∂f(X )

∂rj
=

∂

∂rj
⟨S− S⋆, S− S⋆⟩k = 2

∑
i

⟨ ∂S

∂Rij

, S− S⋆⟩k
∂Rji

∂rj
(4.54)

= 2⟨
∑
i

∂S

∂Rji

Rji

Rji

, S− S⋆⟩k, (4.55)

where 
Rji = rj − ri, the vector from ri to rj,

Rji = |rj − ri|, the magnitude of Rji,
∂Rji

∂rj
=

Rji

Rji

, the gradient of Rji with respect to rj.

(4.56)

In particular, for (4.44) we have:

∂S2

∂Rji

=
k

J1

 J′0(|k|Rji), if rj ̸∈ R1,

2J′0(|k|Rji), if rj ∈ R1,
(4.57)

where there are two cases because: if rj ∈ R1 then J0(kRji) gets summed twice in

(4.44), but if rj ̸∈ R1 then J0(kRij) only appears once in the summation. Likewise

for (4.43) we have:

∂S3

∂Rji

=
k

J1

1

(kRij)2

 kRij cos(kRij)− sin(kRij), if rj ̸∈ R1,

2kRij cos(kRij)− 2 sin(kRij), if rj ∈ R1.
(4.58)

For most optimisation methods, we choose to use Optim.jl [33], we need to supply the

total gradient:

∇f =

[
∂f(X )

∂r1
,
∂f(X )

∂r2
, . . . ,

∂f(X )

∂rj

]
,

where the block vector on the right is typically flattened to be just one large vector.

For the local step, after the global step is complete, we add a restriction that penalises

particles that are overlapping. That is instead of minimising (4.53), we minimise:

min
ri∈X

f(X ) + AW (X ), (4.59)
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where A is some large positive constant that is problem dependant and:

W =
∑
i,j ̸=i

χ{Rji<2a}e
−4R2

ji/(2a)
2

. (4.60)

The specific formula for the penaliser (4.60) has the form of a Gaussian distribution

[21] and was chosen to effectively prevent particle overlaps during the local optim-

isation step. This function is smooth and differentiable, and it rapidly increases the

penalty as the distance between particles becomes less than twice their radius. Having

said that, the gradient of the penaliser (4.60) with respect to the position of the j-th

particle has the following form:

∂W

∂rj
= − 4

a2

∑
i ̸=j

χ{Rji<2a}e
−4R2

ji/(2a)
2

Rji. (4.61)

For ease of implementation we use a discrete form:

⟨G,H⟩k =
∑
q

GqHqwq,

where wq are some Gaussian quadrature weights. For example we can write:

∂f(X )

∂rj
= 2

∑
iq

∂Sq

∂Rji

Rji

Rji

(Sq − S⋆
q)wq. (4.62)

The discrete form (4.62) simplifies the calculation of gradients in computational

simulations. This technique allows for efficient numerical approximation of gradients

necessary for optimising particle positions based on the difference between observed

and desired structural properties.

4.6.3 Preliminary numerical results

In this section we share our preliminary results and discuss potential future develop-

ments with our method.

Selection of pair-correlation. The first step is to have a systematic way to choose

candidate pair-correlations, with one motivation being to control wave propagation

[15]. Our work begins with the selection of appropriate pair-correlations that satisfy

the restrictions given in Section 4.6.1. Our choice is the Percus-Yevick model, a

well-studied pair-correlation [1, 23, 51, 54] which represents disordered particles

with very short range correlation. This model effectively catches the behaviour of
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uniformly distributed particles that exhibit correlations only because they can not

overlap. Figure 4.2 illustrates this concept, displaying the pair-correlation for hard

discs in a two-dimensional setup, where these discs account for a 15% volume fraction

and each particle has a radius of a = 1. This figure also includes the corresponding

structure factor, highlighting how the spatial arrangement of particles influences wave

propagation through the material.
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Figure 4.2: On the left, the Percus-Yevick pair-correlation for hard discs [1], in two spatial
dimensions, where the discs occupy 15% of the volume fraction. On the right the corresponding
structure factor when using (4.42).

Initial configuration. The next step is to generate an initial configuration of

particles with the correct sizes, and within a given volume fraction [54], as shown

in Figure 4.3a. The simplest way to do this is to place particles on a grid. This

also facilitates defining the regions R1 and R2 which are needed to calculate the

pair-correlation without introducing artefacts from the boundary, as discussed in

Section 4.3. However, placing particles exactly in a periodic grid would lead to a

set of problems, especially when it comes to finding the optimal arrangement using

gradient-based optimisation techniques. The symmetrical nature of the periodic grid

tends to position the configuration at a local maximum which may not be an ideal

starting position for gradient-based methods. In other words, this symmetry can trick

our optimisation methods into thinking they have found the best arrangement when

there might be better choices they have not explored yet. To avoid this, we introduce

a simple yet effective strategy: we slightly move each particle by a small distance

in a random direction to break the symmetry, creating a more favourable setting for

optimisation.
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Initial particle configuration

(a) Initial particle configuration.

Predicted particle configuration

(b) Predicted particle configuration.
Figure 4.3: Figure 4.3a presents the initial position of all the particles, while Figure 4.3b
demonstrates the optimised particle configuration that closely aligns with the structure factor
depicted in Figure 4.2, achieved through our optimisation method.

Optimisation method and results. Our optimisation method is executed in two

steps: The first step of our method, the global step, minimises the objective function

(4.53) and is able to exactly match the specified structure factor, as demonstrated in

Figure 4.2. Following this global step, we employ a local optimisation step to refine

the particle configuration further. The result of the structure factor of the optimised

particle configuration, after the local step, is displayed in Figure 4.4. Despite the

slight noise introduced by the finite number of particles (600 particles of radius a = 1

occupying a 15% volume fraction in two spatial dimensions), the predicted structure

factor matches the target structure factor. Moreover, the predicted pair-correlation,

shown in Figure 4.4, offers further insight. Although there is some noise due to the

small number of particles, we see a good match with the desired pair-correlation.
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Figure 4.4: The optimised particle configuration consisting of 600 particles of radius a = 1
occupying 15% of the particulate, depicted in Figure 4.3b, closely aligns with the desired
structure factor and pair-correlation, despite noise introduced by the limited number of
particles.
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4.7 Conclusions

In this paper, we deduced from first principles how to calculate both the pair-correlation

and structure factor of a finite disordered particulate. We demonstrated how to do this

without getting artefacts from the boundary of the particulate, something which seems

to be ignored in the literature. Thus, it was possible to calculate the pair-correlation

of an infinite particulate from a finite sample. This is generally desired, as most

theoretical methods use the pair-correlations from an infinite medium, including the

very important translation invariance which greatly simplifies the pair-correlation.

Being able to calculate the pair-correlation from a particulate was rather straight-

forward in comparison to the inverse: calculating a particulate from a pair-correlation.

We presented a method to calculate one configuration of particles that best fitted a

given pair-correlation or structure factor.

Most methods in the literature [20, 45, 55] that calculate particle configurations

from the pair-correlation of structure factor use non-gradient-based methods such as

Genetic Algorithms, Nelder-Mead, and Simulated Annealing. Several works in fact

focus on trying to approximate the pair-correlation with a particulate, which is an

inherently discontinuous function as the joint probability function (4.8) involves Dirac

deltas. Instead, we suggested that it is best to seek a configuration of particles to

approximate the structure factor, as it is a smooth function of the particle positions, as

shown by (4.43) and (4.44). This enabled us to analytically calculate the gradient of

the structure factor, in terms of the particle positions, leading to faster convergence

to optimal configurations. The efficacy of our method was evidenced through visual

representations in Figure 4.3, which showed the transformation from the initial to

the optimised particle configurations, matching the theoretical model. Furthermore,

the comparison of the structure factors before and after optimisation, as depicted in

Figure 4.4, underscored the precision of our approach, achieving an almost identical

match to the targeted structure factor.

Optimising particle configurations holds significant implications for a wide range

of engineering applications. By precisely controlling particle configurations, engineers

can tailor material properties for diverse applications in aerospace, automotive, and

structural engineering, ensuring optimal performance and reliability.

Future avenues. We presented a two step method to calculate the structure

factor from a configuration of particles, one step for global optimisation that avoids

particle locking, and one step for local optimisation. To have clear evidence about

the performance advantage of our method, it is essential to further validate and



116 4.7. CONCLUSIONS

compare our method against traditional brute-force, non-gradient-based optimisation

techniques, such as Genetic Algorithms and Simulated Annealing. This method can

be further developed to easily add priors about the particle configuration and treat

this as a statistical inverse problem [21]. There is a significant amount of prior

information that could be used [36, 58]. For example, when using more than one

type of particle, some particles may repel or attract each other. Or there can be

specific knowledge on chains or sub-components of particles. This information can be

added as a prior, or regulariser. This seems to be an unexplored approach that could

greatly increase the performance of this inverse problem. Moreover, the preliminary

results presented in Section 4.6.3, not only validate our novel approach to determining

particle configurations from structure factors, but also open up new possibilities for

future research. By fine-tuning the particle configurations, we could explore a wider

range of pair-correlations and structure factors, potentially uncovering new ways to

manipulate wave propagation in disordered particulate materials.
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Chapter 5

Conclusions

Multiple Effective Wavenumbers. In Chapter 2, our primary goal was to es-

tablish solid proof for the existence of multiple effective wavenumbers within an

averaged particulate material - a phenomenon considered unconventional in the con-

text of isotropic homogeneous media supporting only scalar waves. This finding holds

substantial significance as it challenges conventional expectations and aligns with

theoretical predictions [5, 6, 7, 16, 17, 18] highlighting the direct impact of multiple

wavenumbers on the behaviour of transmitted and reflected waves in particulate

materials with random microstructure.

Our rigorous Monte-Carlo simulations, undertaken to validate the presence of

multiple effective wavenumbers, confirmed the existence of two distinct wavenumbers

contributing to the total field as shown in Figure 2.8 and closely aligns with our

theoretical predictions. As far as we are aware, this is the first clear validation on

predictions of more than one effective wavenumber.

In a practical sense, a reasonable question that arose during this research was how

to identify the factors leading to the appearance of multiple effective wavenumbers.

Specifically, we wanted to understand when the classical theory, which relies on just

one effective wavenumber [2, 8, 9, 11, 12, 15], might not give accurate results.

Existing literature [6, 7, 10] has revealed a dispersion equation (2.13) as the source

of effective wavenumbers kp. Dealing with the dispersion equation (2.13) can be quite

time-consuming but there is a clear takeaway from our findings: strong scattering

gives rise to multiple wavenumbers.

Ewald-Oseen extinction theorem. One achievement we did not expect was to

prove the Ewald-Oseen extinction theorem [1, 4, 13], and determine exactly how far

the incident wave travels before becoming extinct in a disordered particulate material.

The proof of extinction in particulate materials also demonstrates that the average
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transmitted field behaves as a sum of effective waves, provided the distance from the

material boundary exceeds the extinction length. Additionally, our work has provided

a precise determination of the extinction length, shedding light on the distance an

incident wave must travel before becoming extinct. These theoretical achievements

enhance our comprehension of wave transmission in complex particulate media.

Wave reflection. In Chapter 3, we refined our understanding of wave reflec-

tions by employing two different methods to calculate the reflection coefficients: the

Dominant-wavenumber and the All-wavenumbers methods. The former considers a

single effective wavenumber k1, whereas the latter includes multiple wavenumbers.

Our analysis showed that for sound-hard particles, both methods produced matching

results. However, in the case of sound-soft particles where multiple wavenumbers

can get excited, the results do not agree. This indicates that the existence of multiple

wavenumbers leads to changes in the reflection coefficients.

Asymptotic location of wavenumbers. An important finding was the determin-

ation of multiple effective wavenumbers in three dimensions, by solving an implicit

dispersion equation. We developed an asymptotic method to identify complex effect-

ive wavenumbers in three dimensions, particularly for monopole scatterers. When

comparing the analytical findings derived asymptotically with the numerical results,

we showed that both approaches closely match.

Cookie-cutter method. Perhaps the most significant finding in our computational

analysis of particulate materials was the Cookie-cutter method. This innovative ap-

proach, detailed in Section 3.3.2, was a decisive factor to tackle the challenges that

arose when performing Monte-Carlo simulations. Typically, each simulation involves

placing a set of particles within a finite region, a process that can introduce arte-

facts from the boundaries of the particulate. The Cookie-cutter method effectively

eliminated these boundary artefacts, allowing us to accurately simulate the desired

pair-correlations.

Structural determination. In our research, detailed in Chapter 4, we tackled the

challenge of identifying particle configurations based on their pair-correlations. We

deduced from first principles the calculations necessary for both the pair-correlation

function g(r) and the structure factor S(k), for finite random particulate materials. To

accomplish that, we showed how to avoid the effects of boundaries when calculating

pair-correlations. This allowed us to accurately determine particle configurations from

their pair-correlations or structure factors, marking a significant advancement in our

ability to understand and manipulate particulate material properties.
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Gradient-based Optimisation. Developing more efficient methods for recon-

structing particle configurations from pair-correlations remains an open question in

the fields of material science and computational chemistry [14]. Our proposed method

employed techniques from smooth nonlinear optimisation to enhance efficiency. Since

the structure factor is a smooth function of the particle positions, we developed a two

step gradient-based method as a more efficient alternative to traditional non-gradient

techniques. The process involves a global optimisation step to avoid particle locking,

and a subsequent local optimisation step for fine-tuning.

Future Avenues. Most sensing methods, for particulate materials [3], attempt

to link the wavespeed and attenuation to the microstructure. This link only works

when there is a single effective wavenumber. By establishing that there are at least two

effective wavenumbers, in some parameter regimes, we now can foresee that current

sensing methods are unlikely to work in these regimes. To address this, there are two

possible avenues:

• Verify for which materials and parameter regimes there is approximately only

one effective wavenumber.

• Accept that there are two wavenumbers, try to measure both, and extract from

both of them more information about the microstructure (i. e. average particle

size and concentration) than would be possible when just measuring one effective

wavenumber.

These are both promising directions for further research. In terms of the first bullet

point, we note that there is a lot of current work on adding resonators to materials, and

that our work indicates that resonators would trigger several effective wavenumbers.

In this thesis, we developed a robust theoretical and numerical framework to

understand wave materials influence wave transmission. We demonstrated that the

average transmitted wave consists only of effective waves and our Cookie-cutter

method effectively eliminates artefacts from the boundary of the particulate. Having

said that, an important question arises: How can we tune the material to alter those

transmitted fields? For instance, can we design materials that can block certain waves

by using specific patterns of particle configurations? This question has been unresolved,

however, our innovative gradient-based approach to reconstruct particle configurations

from pair-correlations offers a promising way to understand it better. So, the next

natural step is to:

• Compare our method with brute-force methods such as Genetic Algorithms, and

Simulated Annealing, in terms of efficiency and accuracy.

• Create a method to generate families of pair-correlations that meet the restric-
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tions presented in Section 4.6.1.

• Test that our method is able to recover a wide range of pair-correlations.

• Extend to materials with different types of particles, often called multi-species.

• Develop a systematic way to include prior information about how different sub-

components tend to form in the material. That is, to use prior information from

chemistry and physics in the optimisation method.

This seems to be an unexplored approach that could increase the performance of this

inverse problem and extend our understanding of material properties at a fundamental

level.

In conclusion, my work has raised more questions than answers. At the very least,

I have shown how there are many opportunities in studying waves in disordered

materials.
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