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IF   integrate-and-fire. 
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Abstract 

Integrate-and-fire Time Encoding Machines (IF-TEMs) map an input signal onto a strictly increasing 

sequence of time instants. Time encoding and decoding theory holds promise for reducing the amount of 

data generated and transmitted and the energy costs in data transmission, improved robustness to noise 

and low communication latency as well as providing a basis for implementing novel signal processing, 

communication and control approaches that use time encoded signals. However, there are a number of 

challenges to address including: real time decoding of spike-time sequences, development of novel 

control architectures that operate on spike-trains and methodologies to map conventional signal 

processing operations. This thesis addresses three major problems in the field of real-time decoding of 

spikes and spiking signal operations: 1. Designing of real-time decoding algorithms for time encoded 

signals; 2. Designing of closed-loop spike-based control systems; 3. Designing of spiking filters. 

This thesis introduces real-time decoding algorithms for signals encoded using IF-TEM. The decoding 

algorithm provides a piecewise-constant approximation of the original signal over the spike time 

intervals. Analytical bounds are derived for the approximation error at the mid-point of the spike-time 

interval. The analytical error bound show explicitly the dependence of the error on the key parameters of 

IF-TEM i.e., the neuron threshold and the additive bias. 

The fast decoding algorithm, facilitates the utilization of time encoding within a real-time control 

framework. To that end, this thesis introduces a spike-based network control system, a key component 

of which is a spike-based PID control law. The spike-based PID controller proposed in this thesis 

responds to spiking signals and the closed-loop system is able to track reference signals with high 

responding speed and accuracy. The output of a spike-based control system is significantly close to that 

of a conventional continuous control system. 

In an ideal scenario, time encoding should replace conventional amplitude-sampling used not just in 

control but for general signal processing. To that end, this thesis introduces a system identification 

approach for developing Encoded-Input-Encoded-Output (EIEO) models of dynamical systems, which 

can be used to implement basic filtering operations by directly processing spike time sequences. This 

methodology enables the creation of spike-based linear and nonlinear operators as well as filters. 
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Introduction 
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1.1. Background 

In the field of systems and control engineering, signal processing underpins all modern technologies 

[1]. However, in some practical application scenarios, reducing energy consumption, the amount of data 

transmitted and increasing computational efficiency and robustness to noise are more important than ever 

given the huge increase in the volume of sensor data that is being generated and processed [2]. 

Time Encoding Machines (TEMs) are computational models inspired by the behaviour of neurons in 

the brain. They are designed to efficiently encode and process continuous data using spike trains. These 

spike trains represent information in the form of precisely timed events, akin to the way neurons 

communicate in biological systems. The block diagram of a TEM is shown in Fig. 1.1. 

 

Fig. 1.1. Block diagram of a TEM. The TEM maps a continuous signal into a spike train. 

Time Decoding Machines (TDMs) reconstruct the continuous original signal from the encoded spikes 

and recover the information carried by this signal. 

Time encoding and decoding processes enable the data transmission in the format of time sequencies, 

such as spikes [3]. The information of the original signal is carried using the arriving time of the spikes. 

Therefore, through the time encoding process, the information is transmitted using spikes. The 

information can also be recovered by employing some time decoding methodologies under the 

assumption that the average sampling frequency is larger than the Nyquist frequency. 

Time encoding, a technique used to represent and process information through spike trains, offers 

several advantages in this regard: 

 Energy Efficiency: Spike-based transmission of control and feedback systems is highly energy-

efficient. Instead of continuously transmitting signals, information is transmitted only when there 

is a relevant event or change in the data. This leads to significant energy savings, making this 

approach suitable for low-power applications [4]. 

  

 

 

TEM
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 Simpler devices used for receiving and sending spiking signals [4]: For spiking data transmission, 

these only need to respond to the changing of potential and send binary signals. 

 Sparse Data Representation: Time encoding of signals represents data in a sparse manner. Most 

of the time, no spikes are transmitted, and only relevant spikes are sent. This sparse data 

representation simplifies data processing and reduce the amount of data that needs to be 

transmitted or stored. 

 Robustness to noise: The spiking signals are robust to noise Spike-based communication systems 

are inherently robust to noise and interference [5]. The information is encoded in the timing and 

pattern of spikes, and this temporal coding can withstand various types of noise without 

significant degradation in performance. [5]. 

 Event-Driven Processing: Spike-based communication promotes event-driven processing, where 

computations occur only when necessary. This leads to efficient utilization of computational 

resources and can reduce power consumption in electronic systems. 

Considering the advantages of spiking data transmission, one might intend to employ time encoding 

and decoding methodologies in a real-time control system. In order to establish a spike-based control 

system, some spiking signal operations can be applied [6~8]. Alternatively, one can employ time 

encoding methodologies to transmit the spiking data, and decode the spiking data to recover the 

information so that the system can respond to the decoded signal. Through the application of spiking data 

transmission, a spike-based control system can be established. 

Besides spike-based control system, one can also design spike-based components using spiking signals. 

One can construct components that respond to spikes and have also spiking outputs. By designing spike-

based components, one can significantly reduce the cost of the construction of a spike-based system. 

1.2. Motivation 

This thesis addresses several problems in the field of time decoding and spike data transmission as 

well as spike-based systems. 

While time encoding and decoding theory holds promise for reducing energy costs in data transmission, 

there are still challenges to address. The primary issues include achieving flawless time decoding, 

ensuring the recovery of the original signal without any loss of information when dealing with discrete 
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signals. Additionally, there is a need to enable real-time decoding to achieve real-time control of a 

dynamical system. 

A proposed solution by Lazar [3] involves the utilization of integral-and-fire neurons for time encoding 

and information-loss-free reconstruction. Lazar's algorithm is capable of accurately recovering the 

original signal without any loss of information. However, it is important to note that this algorithm does 

not currently support real-time time encoding and decoding, presenting a significant area for 

improvement. 

Therefore, this thesis proposes a fast decoding algorithm that can recover the original signal in real-

time and has bounded reconstruction error. Through this algorithm, it no longer requires the entire spike 

train to be fully transmitted before decoding. The waiting times of decoding are restricted by the spike 

intervals, which is much smaller compared with the entire spike train. The fast decoding algorithm is 

based on the estimation of the original signal at spike mid-points. The estimation error at the mid-points 

is proven to be bounded and smaller than Lazar’s reconstruction algorithm. One can employ a Zero-

Order hold or other signal extrapolation methodologies to reconstruct a continuous signal from the 

discrete mid-point estimation. 

This thesis also presents the methodology of constructing a real-time closed-loop control system which 

is based on spiking data transmission. Spike-based control system has been discussed by some papers 

[6~8]. Most of the papers focused on some simple operations of spikes. This thesis emphasises the 

operation of data based on time encoding and decoding. A spike-based PID controller is proposed in this 

thesis in order to establish a spike-based control law that can be employed by a system. The proposed 

spike-based PID controller outputs control signal by responding to the encoded input spikes. All the 

proportional, integral and derivative terms of the PID controller are calculated by the controller using the 

encoded spiking input. Through the designing of the spike-based PID controller, one is able to establish 

a remote control system that uses spiking signals to transmit data between different components. 

Spike-based components have been developed in paper [6]. The paper focused mainly on spike 

operations such as Spike Integrate & Generate (SI&G), Spike Temporal Derivative (STD) and Spike 

Hold & Fire (SH&F). These are simple components that can only execute simple spike operations. This 

thesis proposes a designing methodology for spike-based components such as spiking filters and 

linear/nonlinear spiking systems. This designing methodology is based on System Identification. 

Through the identification of encoded input and output signals, one can design components that respond 
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to spikes and output spiking signals. 

1.3. Overview of the thesis 

Chapter 2 reviews approaches of time encoding and decoding. Crossing time encoding machines are 

reviewed in Chapter 2 and relative decoding algorithms are presented. Chapter 2 focuses on the theory 

of integrate-and-fire time encoding machines (IF-TEMs). The encoding algorithms of different IF-TEMs 

are presented, including ideal IF-TEMs, IF-TEMs with refractory periods and Leaky IF-TEMs. Different 

reconstruction algorithms are reviewed in Chapter 2. The chapter also reviews a stitching reconstruction 

algorithm which intends to realize a real-time recovery of signal. The encoding and decoding algorithms 

for multi-channel IF-TEMs are also reviewed in Chapter 2. 

Chapter 3 presents a novel fast real-time reconstruction algorithm to decode the signal sampled by 

integrate-and-fire TEMs. This algorithm estimates the original input signal at the midpoint of two spikes. 

The methodology is to calculate the derivative of the integral of an IF-TEM or the postsynaptic potential 

of an IF neuron, and use this derivative to estimate the original signal. This algorithm is able to make the 

estimation using only two consecutive spikes. Through numerical study and some simulation examples, 

it is illustrated that the estimation error is bounded and can be restricted by adjusting TEM parameters. 

Notice that the estimation of the original signal is discrete and therefore a filter is applied in order to 

reach a continuous reconstruction. 

Chapter 4 presents the designing of a spike-based PID control system. The system is designed to realize 

the remote control that transmit data using spiking signals. In order to employ spiking data transmission, 

a spike-based PID controller is required. Therefore, Chapter 4 proposes the designing of a spike-based 

PID controller. The spike-based controller calculates proportional, integral and derivative terms using 

the spiking input, which is encoded from a continuous original signal by an IF-TEM. The calculation is 

proposed in the chapter and it has been proved that the calculation error is bounded. Through numerical 

study, it is shown that the spike-based PID control system has very similar performance with a 

conventional continuous-time control system, which indicates that this spike-based control system can 

model a conventional system, and one can construct a spike-based PID control system using the proposed 

methodology. It has also been shown that the spike-based PID controller can use the same PID gains as 

a standard PID controller. One can also retune the spike-based controller slightly in order to have a better 
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tracking performance. 

Chapter 5 proposes a designing methodology of spike-based components. Besides PID controllers, it 

also requires other types of components in practical industrial applications. If one intends to construct a 

spike-based control system, an approach is applying TEMs and TDMs to each component in the system, 

which is significantly costly. Therefore, Chapter 5 proposes a designing methodology of spike-based 

components based on System Identification. The chapter illustrates the filtering of time-encoded signals. 

The encoded-input-encoded-output model is presented in Chapter 5. The chapter also summarizes 

different types of System Identification approaches. Numerical study has been carried out in Chapter 5 

to present the designing of spike-based linear/nonlinear models. The chapter addresses the causality 

problem introduced by the encoded-input-encoded-output model, and proposes a solution to this problem. 

Chapter 6 presents the conclusion and future work.
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Chapter 2 

Time encoding and decoding approaches 
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2.1. Introduction 

Sampling is a methodology designed to transmit data with minimized data loss using limited resources 

[9]. Conventional uniform sampling where amplitude samples are measured or recorded at fixed and 

evenly spaced time intervals controlled by a clock that are consume power, especially at high sampling 

rates and are subject to electromagnetic interference [10]. As an alternative, Time Encoding Machines 

(TEM) offer an alternative representation of analogue signals [11]. Unlike conventional analogue-to-

digital converters, TEMs operate asynchronously, eliminating the need for a global clock. This results in 

lower power consumption and reduced electromagnetic interference [4]. In this sampling approach, an 

analogue signal is represented by a collection of time instants at which the input signal or its function 

crosses a specific threshold.  

Time encoding is a real-time sampling of a signal, where the amplitude information is mapped into a 

time sequence [3]. Time encoding and decoding methodologies are reviewed in this chapter. This chapter 

focuses on time encoding and decoding based on integrate and fire neurons [3], which involves mapping 

the original signal 𝑢(𝑡) into a spike train {𝑡𝑘}, where the information from the signal is carried by spike 

arrival times 𝑡𝑘. As an inverse process, time decoding reconstructs the original signal 𝑢(𝑡) using the 

encoded spike train {𝑡𝑘}. In summary, spiking time encoding is a process of representing the signal using 

spikes, while time decoding aims to recover the original continuous signal from the spike train. 

This chapter is organized as follows: Section 2.2 reviews existing time encoding methodologies with 

a focus on Crossing TEMs (C-TEMs). The reconstruction algorithm for C-TEMs is also reviewed. 

Section 2.3 reviews the literatures of integrate-and-fire TEMs. Different types of IF-TEMs are illustrated 

in this section. Section 2.4 reviews perfect reconstruction algorithms for IF-TEMs. Section 2.5 presents 

multi-channel time encoding and decoding algorithms. Section 2.6 draws the conclusion and discusses 

the limitation of existing reconstruction algorithms. 

2.2. Time encoding methodologies 

Crossing TEM [12] as well as Integrate-and-fire TEM [3] are two main types of time encoding 

machines. 

A C-TEM uses a continuous test function 𝛷(𝑡) and a comparator to sample the input signal 𝑓(𝑡). A 
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Input1
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𝑓(𝑡)

𝛷(𝑡)

Input1 = Input2 ?

C-TEM generates an increasing tome sequence (spike times) indicating the times the input signal crosses 

the test function, {𝑡𝑛: 𝑓(𝑡𝑛) = 𝛷(𝑡𝑛)} . C-TEMs can be constructed either without feedback or with 

feedback. 

When implementing a C-TEM, the test function 𝛷(𝑡)  can be defined as an independent periodic 

function (Fig. 2.1). 

 

 

 

Fig. 2.1. Block diagram of a C-TEM. 𝛷(𝑡) is independent to input and output. Therefore, this C-TEM is 

constructed without feedback. 

 

 

 

 

 

 

 

 

 

a) Sampling the input signal 𝑓(𝑡) using independent 

test function 𝛷(𝑡). 

b) Output spike train 

 

Fig. 2.2. Time encoding methodology of a C-TEM without feedback and the encoded signal. 

 

Fig. 2.2.a) and Fig. 2.2.b) illustrate the operation of a C-TEM without feedback using a triangular wave 

function 𝛷(𝑡) and the resulting output spike train. 

A C-TEM can also be constructed with a feedback signal. A feedback loop is introduced so that the 

test function 𝛷(𝑡) is updated when the TEM outputs a spike. The test function 𝛷𝑛(𝑡) is defined as:  

𝛷𝑛(𝑡) = {
𝑘𝛷(𝑡 − 𝑀 ∙ 𝑇) + 𝑏, 𝑀 ∙ 𝑇 ≤ 𝑡 < (𝑀 +

1

2
) ∙ 𝑇

−𝑘𝛷 (𝑡 − (𝑀 +
1

2
) ∙ 𝑇) + 𝑏, (𝑀 +

1

2
) ∙ 𝑇 ≤ 𝑡 < (𝑀 + 1) ∙ 𝑇

,    𝑀 = 0,1,2, …. 
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(2.1) 

Where 𝑘𝛷 is the slope of 𝛷𝑛(𝑡), 𝑏 is the lower limit of 𝛷𝑛(𝑡), 𝑇 is the period of the test function. 

 

Fig. 2.3. Block diagram of a C-TEM. 𝛷(𝑡) is updated when spikes are output. Therefore, this C-TEM is 

constructed with feedback. 

 

As shown in Fig. 2.3, 𝛷𝑛(𝑡)  is updated when the C-TEM outputs a spike. Therefore, 𝛷𝑛(𝑡)  is 

refreshed every time the amplitude of 𝑓(𝑡) exceeds 𝛷𝑛(𝑡). The test function 𝛷𝑛(𝑡) is defined as: 

𝛷𝑛(𝑡) = {
𝑘𝛷𝑡 + 𝑏, 0 ≤ 𝑡 ≤ 𝑡1

𝑘𝛷(𝑡 − 𝑡𝑛) − 𝑏, 𝑡𝑛 < 𝑡 ≤ 𝑡𝑛+1
,  = 1,2,3, ….            (2.2) 

An example showing the sampling method of a C-TEM with feedback is presented in Fig. 2.4.a) and 

Fig. 2.4.b). 

 

 

 

 

 

 

 

 

a). Sampling the input signal 𝑓(𝑡) using a refreshing 

test function 𝛷(𝑡). 

b). Output spike train. 

Fig. 2.4. Time encoding methodology of a C-TEM with feedback and the encoded signal. 

 

Fig. 2.4.a) and Fig. 2.4.b) illustrate the sampling process of a C-TEM employing a feedback loop. The 

difference with a C-TEM without feedback is that the test function 𝛷𝑛(𝑡) is updated during the sampling 

process. 

Compared with the C-TEMs with feedback, C-TEMs without feedback do not require feedback 

Input2

Input1

{𝑡 }

𝑓(𝑡)

𝛷(𝑡)

Input1 = Input2 ?
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components to encode input signals. However, for C-TEMs with feedback, the reconstruction will not be 

affected by time shifts between encoders and decoders [12]. 

The continuous original signal 𝑓(𝑡) is mapped into a time sequence {𝑡𝑛} by a C-TEM. Conversely, 

the original signal 𝑓(𝑡) can be reconstructed using the iterative algorithm provided by [12]: 

Define that 

𝐺𝜆(𝜔) = (∑ |�̂�(𝜔 + 2𝑘𝜋)|
2

𝑘∈𝐙 )

1

2
,                        (2.3) 

where �̂� is the classic Fourier transform of 𝜆, 

𝐻1(𝐑) = {𝑓 ∈ 𝐿2, ‖𝑓‖𝐻1 < ∞}      (2.4) 

with ‖𝑓‖𝐻1
2 = ‖𝑓‖𝐿2

2 + ‖𝑓′‖𝐿2
2 =

1

2𝜋
∫ (1 + 𝜔2)|𝑓(𝜔)|

2
𝑑𝜔,

∞

−∞
             (2.5) 

𝐸 = {𝜆 ∈ 𝐻1(𝐑), 0 < 𝐴 ≤ 𝐺𝜆(𝜔) ≤ 𝐵 < ∞ 𝑎 𝑑 𝐺𝜆′(𝜔) < ∞},            (2.6) 

𝑉 = 𝑉𝑓(𝑡) = ∑ 𝑓(𝑡𝑛) ∙ 𝟙[𝑠𝑛,𝑠𝑛+1)(𝑡),
∞
𝑛=1                      (2.7) 

where 𝑠𝑛 =
𝑡𝑛−1+𝑡𝑛

2
, 𝟙[𝑠𝑛,𝑠𝑛+1) is the Voronoï region of 𝑡𝑛. 

Then, let 𝜆 ∈ 𝐸 and 

𝜏 = 𝜋 ∙ lim
𝜔→∞

𝐺𝜆(𝜔)

𝐺𝜆′(𝜔)
> 0,                            (2.8) 

for all 𝑇 < 𝜏, if 𝑡𝑛+1 − 𝑡𝑛 ≤ 𝑇 ∀ , the C-TEM encoding process is invertible. If {𝑡𝑛} is the resulting 

encoded time sequency of 𝑓(𝑡) using the C-TEM, then the reconstruction of 𝑓(𝑡) is given iteratively 

by: 

𝑓1 = 𝑃𝑉𝑓0 

𝑓𝑘+1 = 𝑓1 + (𝐼𝑑 − 𝑃𝑉)𝑓𝑘,                       (2.9) 

where 𝑃 is the orthogonal projector on 𝑉2(𝜆) and ‖𝐼𝑑 − 𝑉‖ < 1. 

2.3. Time encoding machines 

An alternative implementation of a Time Encoding Machine is the integrate-and-fire TEM (IF-TEM) 

that mimics the operation of biological neurons [3]. A spike is generated by an IF-TEM each time the 

integration of the input signal reaches (crosses) a specific threshold. In essence the IF-TEM is a crossing 

TEM with feedback where the test function, which is a constant function, is compared with the integral 

of the input signal. 

The following sections summaries different types of IF-TEMs. 

2.3.1. Ideal IF-TEMs 

 

Fig. 2.5. The block diagram of an ideal integrate-and-fire TEM 

 

1

 
 𝑑𝜏
𝑡 

𝑡 −1

Input2   Input1
Input2

Input1

 

𝑏
Spike trigger reset

{𝑡𝑘}
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As shown in Fig. 2.5, 𝑢(𝑡) is integrated. When the integral of 𝑢(𝑡) reaches the threshold  , the 

TEM fires a spike and the integral of 𝑢(𝑡) is reset to zero. 

An Ideal Integrate-and-Fire TEM (IIF-TEM) is defined as: 

For an input u satisfying |𝑢| ≤ 𝑐 < 𝑏, an IIF-TEM generates a spike train {𝑡𝑛}𝑛∈𝑍 when 

∫ 𝑢(𝜏)𝑑𝜏
𝑡𝑛+1
𝑡𝑛

=   − 𝑏(𝑡𝑛+1 − 𝑡𝑛), ∀ ∈ 𝑍,                   (2.10) 

where   is the constant of integrate, 𝑏 is the bias which is larger than the bound of 𝑢(𝑡). 

The information of the original input signal 𝑢(𝑡) is mapped into the spike arriving times during the 

time encoding process. It has been proven in [13] that the intervals of spike arriving times are bounded: 

For an input 𝑢 that |𝑢| ≤ 𝑐 < 𝑏, the upper and lower bound of the spiking time interval 𝑡𝑛+1 − 𝑡𝑛 

is given by 

𝐶𝛿

𝑏+𝑐
≤ 𝑡𝑛+1 − 𝑡𝑛 ≤

𝐶𝛿

𝑏−𝑐
, ∀ ∈ 𝑍.                        (2.11) 

According to [3], the input 𝑢(𝑡)  can be perfectly recovered without loss of information if it is 

bandlimited. 

2.3.2. IF-TEMs with absolute refractory period 

According to Section 2.3.1, the integral of the input signal 𝑢(𝑡)  is reset to zero when a spike is 

generated. If the IF-TEM or the IF neuron is ideal, the reset takes no time. Here it is assumed that the 

reset of the integral takes a time period 𝛥 which is small. An ideal IF-TEM with refractory period is 

defined as: 

Consider that the original signal 𝑢 satisfies |𝑢| ≤ 𝑐 < 𝑏, a spike is generated by an ideal IF-TEM 

with refractory period when 

∫ 𝑢(𝜏)𝑑𝜏
𝑡𝑛+1
𝑡𝑛+𝛥

=   − 𝑏(𝑡𝑛+1 − 𝑡𝑛 − 𝛥), ∀ ∈ 𝑍,                  (2.12) 

where   is the constant of integrate, 𝑏 is the bias which is larger than the bound of 𝑢(𝑡). 

The spiking time intervals are also proven to be bounded as: 

For an input 𝑢 that |𝑢| ≤ 𝑐 < 𝑏, the upper and lower bound of the spiking time interval 𝑡𝑛+1 − 𝑡𝑛 

is given by 

𝐶𝛿

𝑏+𝑐
+ 𝛥 ≤ 𝑡𝑛+1 − 𝑡𝑛 ≤

𝐶𝛿

𝑏−𝑐
+ 𝛥, ∀ ∈ 𝑍.                      (2.13) 

2.3.3. Leaky IF-TEMs 

A shortcoming of the IF neuron model is that it does not account for current leakage. If the model 

receives a below-threshold short current pulse at some time, it will retain that voltage boost forever - 

until another input later makes it fire. Leaky Integrate-and-Fire TEMs (LIF-TEMs) incorporate a term in 

the membrane potential equation which models the diffusion of ions through the membrane, to reflect 

the fact that the membrane is not a perfect insulator. The equations describing the LIF model are as 

follows 

For an input u satisfying |𝑢| ≤ 𝑐 < 𝑏, an LIF-TEM generates a spike train {𝑡𝑛}𝑛∈𝑍  when 

∫ 𝑢(𝜏)𝑒−
𝑡𝑛+1−𝜏

𝑅𝐶 𝑑𝜏
𝑡𝑛+1
𝑡𝑛

=  ( − 𝑏𝑅) +  (𝑏𝑅 − 𝑦(𝑡0))𝑒
−
𝑡𝑛+1−𝑡𝑛

𝑅𝐶 , ∀ ∈ 𝑍,         (2.14) 

where 𝑦(𝑡0) is the initial condition of the RC filter, and 𝑏 is the bias which is larger than the bound of 

𝑢(𝑡). 
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Fig. 2.6. The block diagram of a Leaky IF-TEM 

 

The LIF neuron is represented by an RC circuit with a threshold, which results a slightly different 

definition as shown in (2.14). 

2.4. Time decoding algorithms for IF-TEMs 

2.4.1. Perfect recovery for ideal IF-TEMs 

The reconstruction algorithm for ideal IF-TEMs is given by Lazar et al [3]. 

This section summarises the conditions for information-loss-free recovery of the original signal 𝑢(𝑡) 

from the sequence of trigger (spike) times produced by an IF-TEM with parameters. 

Firstly, an operator A is defined as 

𝐴 = 𝐴𝑢 =∑ 𝑢(𝜏)
𝑡 +1

𝑡 

𝑑𝜏 𝑔(𝑡 − 𝑠𝑘)

𝑘∈𝑍

 

                            = ∑[  − 𝑏(𝑡𝑘+1 − 𝑡𝑘)] 𝑔(𝑡 − 𝑠𝑘)

𝑘∈𝑍

, 

(2.15) 

 

where 𝑔(𝑡) =
𝑠𝑖𝑛(𝛺𝑡)

𝜋𝑡
  and 𝑠𝑘 =

𝑡 +1+𝑡 

2
. 

Define a sequence of bandlimited functions 𝑢𝑙 = 𝑢𝑙(𝑡) as 

𝑢𝑙+1 = 𝑢𝑙 + 𝐴(𝑢 − 𝑢𝑙)         (2.16) 

for all 𝑙, 𝑙 ∈ 𝑁, and 𝑢0 = 𝐴𝑢. 

Since 𝑡𝑘+1 − 𝑡𝑘 is bounded by 
𝐶𝛿

𝑏−𝑐
  according to (2.11), it follows that [14] 

‖𝐼 − 𝐴‖ ≤
2𝑘𝛿Ω

(𝑏−𝑐)𝜋
.                             (2.17) 

Theorem 1 

If the signal 𝑢(𝑡) is encoded by an IIF-TEM, then the signal can be reconstructed by 

𝑢𝑙(𝑡)  = 𝑢(𝑡).                              (2.18) 

Proof: It holds that 

𝑢𝑙 = ∑ (𝐼 − 𝐴)𝑘𝐴𝑢𝑙
𝑘=0 .                          (2.19) 

Since ‖𝐼 − 𝐴‖ ≤ 𝑟 < 1 where 𝑟 =
2𝐶𝛿𝛺

𝜋(𝑏−𝑐)
, 

𝑢𝑙  = ∑ (𝐼 − 𝐴)𝑘𝐴𝑢𝑘∈𝑁 = 𝐴−1𝐴𝑢 = 𝑢.                   (2.20) 

According to the mean value theorem, there exists a 𝜉𝑘 ∈ [𝑡𝑘 , 𝑡𝑘+1] such that 

1

 
 𝑑𝜏
𝑡 

𝑡 −1

Input2   Input1
Input2

Input1

 

𝑏
Spike trigger reset

{𝑡𝑘}

RC Filter
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𝑢(𝜉𝑘)(𝑡𝑘+1 − 𝑡𝑘) =   − 𝑏(𝑡𝑘+1 − 𝑡𝑘).                   (2.21) 

Therefore, 𝑢(𝑡) is firstly estimated by (2.15). There is an estimation error of 𝑢(𝑡) yet the error is 

reduced during the iteration. 

Let 𝒈 = [𝑔(𝑡 − 𝑠𝑘)], 𝒒 = [  − 𝑏(𝑡𝑘+1 − 𝑡𝑘)] and 𝑮 = 𝑮𝑙𝑘 = [∫ 𝑔(𝑢 − 𝑠𝑘)𝑑𝑢
𝑡𝑙+1
𝑡𝑙

], 𝑙, 𝑘 ∈ 𝒁. 

Therefore, 

𝑢𝑙(𝑡) = 𝒈
𝑇 ∑ (𝑰 − 𝑮)𝑘𝒒𝑙

𝑘=0                          (2.22) 

Under the assumption in Theorem1, the input signal 𝑢(𝑡) can be recovered by [13] 

𝑢(𝑡) = lim
𝑙→∞

𝑢𝑙(𝑡) =  lim
𝑙→∞

𝒈𝑇 ∑ (𝑰 − 𝑮)𝑘𝒒𝑙
𝑘=0 = 𝒈𝑇𝑮+𝒒 ,            (2.23) 

where 𝑮+ represents the Pseudo-inverse of 𝑮. 

■ 

2.4.2. Decoding algorithm for IF-TEMs with absolute refractory period 

The signal encoded by an IF neuron with refractory period can be perfectly reconstructed [15] if 

𝛿𝛺

𝜋(1−𝑐)
<

1−𝜀

1+𝜀
,                               (2.24) 

where 𝜀 = √𝛥/(
𝐶𝛿

𝑏+𝑐
+ 𝛥). 

The reconstruction algorithm for the TEM is given by [15]: 

𝑢 = 𝒈𝑮+𝒒,                                (2.25) 

where 𝒈 = [𝑔(𝑡 − 𝑠𝑛)]
𝑇 , 𝑮 = [∫ 𝑔(𝜏 − 𝑠𝑛)𝑑𝜏

𝑡𝑙+1
𝑡𝑙+𝛥

] , 𝒒 = [∫ 𝑢(𝜏)𝑑𝜏
𝑡𝑙+1
𝑡𝑙+𝛥

] and 𝑠𝑛 =
𝑡𝑛+1+𝑡𝑛

2
. 

2.4.3. Decoding algorithm for leaky IF-TEMs 

The signal encoded by a leaky IF neuron can be perfectly reconstructed if 

𝑅 ∙𝑙 (1 −
𝛿−𝑦(𝑡0)

𝛿−(𝑏−𝑐)𝑅
) 
𝛺

𝜋
<

1−𝜖′

1+𝜖′
,                      (2.26) 

where 𝜖′ =
𝛿−𝑦(𝑡0)

(𝑏−𝑐)𝑅−𝑦(𝑡0)
. 

The reconstruction can be realized by 

𝑢 = 𝒈𝑮+𝒒,                               (2.27) 

where 𝒈 = [𝑔(𝑡 − 𝑠𝑛)]
𝑇  , 𝑮 = [∫ 𝑔(𝜏 − 𝑠𝑛)𝑒

−
𝑡𝑛+1−𝜏

𝑅𝐶 𝑑𝜏
𝑡𝑙+1
𝑡𝑙+𝛥

],  and  𝒒 = [ ( − 𝑏𝑅) +  (𝑏𝑅 −

𝑦(𝑡0))𝑒
−
𝑡𝑛+1−𝑡𝑛

𝑅𝐶 ]. 

2.4.4. An alternative reconstruction framework 

An alternative reconstruction framework in which IF time encoding is reformulated as a uniform 

sampling [16]. 

Given a bandlimited signal u(t), let 𝑇𝑢 = {𝑡𝑘}𝑘∈𝑍 be the spike train encoded by an IF-TEM defined 

by { , 𝑏,  }. Notice that the threshold   of the TEM is fixed, the time encoding process is a uniform 

sampling of the inverse of the function 

𝑦(𝑡) = ∫ (𝑢(𝜏) + 𝑏)𝑑𝜏
𝑡

0
                          (2.28) 

with sampling points 𝐷 = {𝑘 ̅}
𝑘∈𝑍

, where  ̅ =    [16]. 

Since 𝑦(𝑡) = ∫ (𝑢(𝜏) + 𝑏)𝑑𝜏
𝑡

0
  is a strictly increasing function, it holds that 𝑦(𝑡)  has an inverse 
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function 𝜓 such that 

1. 𝐿𝑘
𝐷�̅�′ = �̅�𝑘 , ∀𝑘 ∈ 𝑍, 

where �̅�(𝑥) ≜ 𝜓(𝑥) −
𝑥

𝑏
, 𝐷 = {𝑘 ̅}

𝑘∈𝑍
 and �̅�𝑘 ≜ (𝑡𝑘+1 − 𝑡𝑘) −

�̅�

𝑏
. 

2. |�̅�′(𝑥)| ≤
𝑐

𝑏(𝑏−𝑐)
, ∀𝑥 ∈ 𝑅 and ‖�̅�′‖𝐿2

2 ≤
1

𝑏2(𝑏−𝑐)
‖𝑢‖𝐿2

2 , 

where ‖ ∙ ‖𝐿2  denotes the standard norm in 𝐿
2(𝑅). 

Since 𝜓 is the inverse of 𝑦, it follows that 𝜓′(𝑦(𝑡)) =
1

𝑦′(𝑡)
. Hence, 

�̅�′(𝑦(𝑡)) =
1

𝑦′(𝑡)
−
1

𝑏
= −

𝑢(𝑡)

𝑏(𝑢(𝑡)+𝑏)
.                      (2.29) 

By replacing 𝑡 with 𝜓(𝑥), it follows that 

𝑢(𝜓(𝑥)) = −
𝑏2�̅�′(𝑥)

𝑏�̅�′(𝑥)+1
.                          (2.20) 

In [16] it is shown that �̅�′(𝑥) can be approximated using a function �̅�𝑀
′  that satisfies 

𝑠𝑢𝑝𝑝(�̅�𝑀
′ ) ⊆ [−Ω, Ω],   Ω < ∞, 

where 𝑠𝑢𝑝𝑝(�̅�𝑀
′ ) is the support of �̅�𝑀

′ . 

Specifically, for any 𝑀 ∈ 𝐍, it holds that 

�̅�′ = �̅�𝑀
′ + 𝑒𝑀,                            (2.21) 

where  

𝑒𝑠𝑠𝐵𝑊�̅�𝑀
′ ≤

𝑀𝛺

𝑏−𝑐
, ‖𝑒𝑀‖𝐿2

2 ≤ (
𝑐

𝑏
)
2𝑀 𝑏+𝑐

𝑏−𝑐
‖�̅�′‖𝐿2

2 .             (2.22) 

Moreover,  �̅�′ ∈ 𝑃𝑊�̅�𝑀 and �̅�, where �̅�𝑀 =
𝑀𝛺

𝑏−𝑐
 and  ̅ <

𝜋

�̅�𝑀
, can be reconstructed with arbitrary 

precision: 

�̅�′ = �̅�1
∗�̅�+�̅�,                               (2.23) 

�̅� = �̅�2
∗�̅�+�̅�,                               (2.24) 

where [�̅�1]𝑚 = �̅�(∙ −�̅�𝑚+1 ) , �̅� ≜
𝑠𝑖𝑛 (�̅�𝑀∙)

𝜋∙
 , �̅�𝑚 ≜

2𝑚−1

2
 ̅ , [�̅�2]𝑚 = ∫ �̅�(𝜏 − �̅�𝑚+1 )𝑑𝜏

𝑥

0
 , ∀𝑥 ∈ 𝑅 , 

[�̅�]𝑚,𝑘 = 𝐿𝑚
𝐷 (�̅�(∙ −�̅�𝑘+1 )), and [�̅�]𝑘 = 𝐿𝑘

𝐷�̅�′, ∀𝑘,𝑚 ∈ 𝒁. 

The functions �̅�′ and �̅� are sampled on the uniform grid {𝑘𝜀}, where 𝜀 is the sampling period for 

reconstruction. Using linear interpolation, the reconstructed signal �̃� is given by 

�̃�(𝑡) = 𝑢(𝜓(𝑘𝜀)) +
𝑡−𝜓(𝑘𝜀)

𝜓((𝑘+1)𝜀)−𝜓(𝑘𝜀)
∙ [𝑢 (𝜓((𝑘 + 1)𝜀)) − 𝑢(𝜓(𝑘𝜀))].      (2.25) 

By employing this algorithm, the speed of reconstruction is significantly improved. 

2.4.5. Lazar’s real-time decoding algorithm 

Lazar, Simonyi, and Tóth proposed an algorithm for real-time decoding [17]. The algorithm divides 

the original input signal into short overlapping time intervals. Then the divided parts of the spike train 

are utilized to reconstruct the signal. The reconstructions approximate the original signal without loss of 

information at short time intervals. Then the approximations are stitched together as an overall 

approximation of the original signal. 

Let {𝑡𝑚, 𝑡𝑚+1, … , 𝑡𝑚+𝐿} be one of the short spike-time sequences and let the vector 𝒒𝑚,𝐿 and matrix 

𝑮𝑚,𝐿 be defined as 

[𝒒𝑚,𝐿]𝑘−𝑚+1 =   − 𝑏
(𝑡𝑘+1 − 𝑡𝑘)                       (2.26) 
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[𝑮𝑚,𝐿]𝑘−𝑚+1,𝑙−𝑚+1 = ∫ 𝑔(𝑡 − 𝑠𝑙)𝑑𝑡
𝑡 +1
𝑡 

,                    (2.27) 

 

for all 𝑘, 𝑙 = 𝑚,𝑚 + 1,… ,𝑚 + 𝐿 − 1. 

Then, the original signal 𝑢(𝑡) is approximated as 

𝑢𝑚.𝐿(𝑡) = ∑ [𝒄𝑚,𝐿]𝑙−𝑚+1𝑔
(𝑡 − 𝑠𝑙)

𝑚+𝐿−1
𝑙=𝑚 ,                   (2.28) 

where 𝒄𝑚,𝐿 is calculated by 

𝒄𝑚,𝐿 = 𝑮𝑚,𝐿
+ 𝒒𝑚,𝐿 ,                             (2.29) 

where 𝑮𝑚,𝐿
+  denotes the pseudo-inverse of 𝑮𝑚,𝐿. 

The reconstructed 𝑢𝑚.𝐿(𝑡)  can approximated 𝑢(𝑡)  at a short time interval [𝑡𝑚+𝑀 , 𝑡𝑚+𝐿−𝑀]  for 

some given 𝑀. Then define a window 𝑤 as 

𝑤 = 𝑤𝑛(𝑡, 𝐿,𝑀, 𝐾) =

{
 

 
0                            if   𝑡 ∉ (𝜏𝑛, 𝜎𝑛+1],

𝜃𝑛(𝑡)                         if   𝑡 ∈ (𝜏𝑛, 𝜎𝑛],

1                             if   𝑡 ∈ (𝜎𝑛, 𝜏𝑛+1],

1 − 𝜃𝑛+1(𝑡)     if   𝑡 ∈ (𝜏𝑛+1, 𝜎𝑛+1],

             (2.30) 

where 𝜃𝑛(𝑡) are chosen or arbitrary functions and 𝐾 specifies the number of trigger times over which 

consecutive windows overlap, 𝜏𝑛 = 𝑡𝑛,𝐽+𝑀, 𝜎𝑛 = 𝑡𝑛,𝐽+𝑀+𝐾, 𝐽 = 𝐿 − 2𝑀 − 𝐾. 

Finally, the overall reconstruction of the original signal 𝑢(𝑡) is 

𝑢𝐿.𝑀.𝐾(𝑡) = ∑ 𝑤𝑛(𝑡, 𝐿,𝑀, 𝐾)𝑥𝑛𝐽,𝐿(𝑡)𝑛∈𝐙 .                    (2.31) 

 
Fig. 2.7. [17] The stitching algorithm of reconstruction. 𝑡0 = 0, 𝐿 = 8, 𝑀 = 2, 𝐾 = 1. 

 

For the standard reconstruction algorithm proposed by Lazar et al [3], the reconstruction is carried out 

by 𝑙 iterations. The resulting reconstruction error is bounded by ‖𝑢 − 𝑢𝑙‖2 ≤ (
2𝐶𝛿

𝑏−𝑐

Ω

𝜋
)
𝑙+1
‖𝑢‖2, where 

𝑢𝑙 is the reconstruction of 𝑢 after 𝑙 iterations. 

For the alternative reconstruction algorithm proposed by Florescu et al [16], the estimation of the 

inverse function �̅�′ is given by (‖�̅�′ − �̅�𝑀
′ ‖

2
)
2

≤ (
𝑐

𝑏
)
2𝑀 𝑏+𝑐

𝑏−𝑐
(‖�̅�′‖

2
)
2

 ∀𝑀 ∈ 𝑵 and this can be used 

to quantify the reconstruction error. 

The stitching algorithm [17] has high accuracy in a reduced range [𝑡𝑚+𝑀 , 𝑡𝑚+𝐿−𝑀] for some given 

𝑀 . However, the reconstruction error is large outside this range. The error can be quantified via 

experiments. 
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In terms of decoding speed, Lazar’s algorithm [3] requires the calculation of 𝒈, 𝑮 and 𝒒 for all 

spiking times. Florescu’s algorithm [16], however, only needs to calculate �̅�+ and �̅�2 offline, and only 

a few additions and multiplications are required to reconstruct subsequent spikes. The stitching algorithm 

[17] requires more calculation than the standard algorithm proposed in [3] since it calculates also the 

overlapped windows of spiking times. However, the stitching algorithm reduces the waiting time for a 

system by selecting the reconstruction windows. 

2.5. Multi-channel time encoding and decoding 

Lazar and Pnevmatikakis presented a single-input-multi-output TEM model in 2008 [18]. The input 

signal is filtered by 𝑁 linearly independent linear filters and fed to 𝑁 different IF neurons. Finally, the 

multi-channel TEM outputs 𝑁 spike trains as shown in Fig. 2.8. 

 

Fig. 2.8. Multi-channel TEM. 

 

For the 𝑗th channel, the neuron fires a spike when 

1

𝐶𝑗
∫ ((ℎ𝑗 ∗ 𝑢) + 𝑏𝑗) (𝜏)𝑑𝜏
𝑡 +1
𝑗

𝑡 
𝑗 =  𝑗 ,                    (2.32) 

where ∗ denotes the convolution operator and 𝑗 = 1,2, …𝑁. 

The filters {ℎ𝑗} are linearly independent if there do not exist real numbers 𝑎𝑗 , 𝑗 = 1,2, …𝑁, not all 

equal to zero, and 𝛼𝑗, 𝑗 = 1,2, …𝑁 such that 

∑ 𝑎𝑗(ℎ
𝑗 ∗ 𝑔)𝑁

𝑗=1 (𝑡 − 𝛼𝑗) = 0.                      (2.33) 

Define Tuj = {𝑡𝑘
𝑗
}
𝑘∈𝐙

 , ℎ̃𝑗 = ℎ𝑗(− ∙) , and 𝜙𝑘,𝑗
Tuj = ℎ̃𝑗 ∗ 𝑔 ∗ 𝟏

[𝑡 
𝑗
,𝑡 +1
𝑗

)
 , then the input signal 𝑢  can be 

recovered as 

𝑢 = ∑ ∑ 𝑐𝑘
𝑗
𝜓𝑘
𝑗

𝑘∈𝐙
𝑁
𝑗=1 ,                          (2.34) 

with 𝒄 = [𝒄1, … , 𝒄𝑁]𝑇 = 𝑮+𝒒, 𝒒 = [𝒒1, … , 𝒒𝑁]𝑇, 𝑞𝑘
𝑗
= 〈𝑢, 𝜙𝑘,𝑗

Tuj 〉𝐿2, and 

1

 1
 𝑑𝜏
𝑡 
1

𝑡 −1
1

Input2   Input1
Input2

Input1

 1

𝑏1
Spike trigger reset

𝑢(𝑡) {𝑡𝑘
1}

1

 2
 𝑑𝜏
𝑡 
2

𝑡 −1
2

Input2   Input1
Input2

Input1

 2

𝑏2
Spike trigger reset

{𝑡𝑘
2}

1

 𝑁
 𝑑𝜏
𝑡 
 

𝑡 −1
 

Input2   Input1
Input2

Input1

 𝑁

𝑏𝑁
Spike trigger reset

{𝑡𝑘
𝑁}

… … …

ℎ1

ℎ2

ℎ𝑁
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𝑮 = [
𝑮11 … 𝑮1𝑁

… … …
𝑮𝑁1 … 𝑮𝑁𝑁

] , 𝑮𝑘,𝑙
𝑛𝑗
= ∫ (ℎ𝑛 ∗ ℎ̃𝑗 ∗ 𝑔)(𝜏 − 𝑠𝑙

𝑗
)𝑑𝜏

𝑡 +1
𝑛

𝑡 
𝑛 ,            (2.35) 

where 𝜓𝑘
𝑗
= (ℎ̃𝑗 ∗ 𝑔)(∙ −𝑠𝑘), and 𝑐𝑘

𝑗
 are suitable coefficients, provided that 

∑
1

𝐶𝑗𝛿𝑗
𝑁
𝑗=1 (𝑏𝑗 − 𝑐 ∫ |ℎ𝑗(𝑠)|𝑑𝑠

 

𝐑
) >

Ω

𝜋
, |𝑢(𝑡)| ≤ 𝑐.                (2.36) 

2.6. Conclusions 

This Chapter reviewed the theoretical foundations and practical algorithms for common time encoding 

(sampling) and decoding (reconstruction) methodologies using crossing and integrate-and-fire Time 

Encoding Machines. Specific conditions and algorithms for reconstruction of the original signal from 

spike-time sequences are given. 

Both C-TEMs and IF-TEMs are able to map a continuous input signal into a spiking signal. The time 

encoding processes can also be treated as sampling processes. However, the sampling carried out by IF-

TEMs are significantly different from that carried out by C-TEMs. C-TEMs sample the original signal 

while IF-TEMs sample the integral of the biased original signal. The sampling carried out by IF-TEMs 

can model the behaviour of spiking neurons in a brain [19]: the membrane potential of a spiking neuron 

is an integral, and the neuron fires an impulse signal when the potential reaches the neuron threshold. 

Therefore, the research on IF-TEMs can also benefit the field of biology. The reconstruction 

methodologies for C-TEMs and IF-TEMs are both based on iterative algorithms. It is proved that 

reconstruction algorithms for IF-TEMs have no information loss, which is not discussed in the case of 

C-TEMs. Therefore, considering the above advantages, this thesis focuses on the research of IF-TEMs. 

A limitation of existing reconstruction algorithms is that they involve processing batches of time 

encoded samples which makes it challenging to incorporate TEMs into real-time practical applications. 

This issue is addressed in Chapter 3 which introduces a real-time decoding (reconstruction) algorithm 

suitable for control system implementation.   
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Chapter 3  

Real-time algorithms for time decoding machines 
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3.1. Introduction 

Lazar [3] has presented the framework of the ideal IF-TEMs, which are non-uniform sampling devices 

that map the amplitude of an analogue signal to a strictly increasing time sequence. A number of decoding 

algorithms have been proposed to reconstruct the original continuous signal from the discrete spike time 

sequence [1, 2, 20]. 

 A major drawback of existing decoding algorithms is that these require the entire spike time sequence 

to perform the reconstruction.  

The alternative proposed in [21] is to decode the signal over short time intervals [tm, tm+N], based on 

the finite sequence of spike times {𝑡𝑚, 𝑡𝑚+1, … , 𝑡𝑚+𝑁 }generated such that 

𝑢(𝑡)  =  𝒈𝑸+𝒒, 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+𝑁],                        (3.1) 

where 𝒈 =  [𝑔(𝑡 − 𝑠𝑘+1)]
𝑇  and 𝑔(𝑡)  =  

𝑠𝑖𝑛(𝛺𝑡)

𝜋𝑡
, 𝑠𝑘+1  =  

𝑡 +1+𝑡 

2
, 𝑸+ is the pseudo-inverse of 𝑸, 

[𝑸]𝑘,𝑙  =  ∫ 𝑔(𝜏 − 𝑠𝑙)𝑑𝜏
𝑡 +1
𝑡 

, 𝑘, 𝑙 ∈ 𝒁+,  𝒒 =  [−𝑏(𝑡𝑘+1 − 𝑡𝑘) +   ]. 

Overall signal reconstruction involves stitching together the reconstructions over successive time 

intervals [21]. 

This approach however is still not ideal for implementation in real-time applications such as real-time 

control since from (2.11) it follows that  

(𝑁+1)𝐶𝛿

𝑏+𝑐
≤ 𝑡𝑚+𝑁 − 𝑡𝑚 ≤ ∆𝑡                          (3.2) 

In essence, the time window used in reconstruction will have to be less than the uniform sampling 

period ∆𝑡 used in the implementation of the real-time control system. This in turn will demand a higher 

firing rate (i.e. a smaller  ) for the IF-TEM that is at least ten times higher than the one dictated by the 

signal bandwidth in [21].  

This chapter introduces a fast decoding algorithms that recovers in real-time the signal from the single- 

and multi-channel spike time sequences generated by IF-TEMs. Error analysis is presented and an upper 

bound for the approximation error is derived, which is a function of the TEM parameters and the 

bandwidth of the signal.  

The chapter is organised as follows. Section 3.2 and 3.3 introduces the new fast reconstruction 

algorithms for single- and multi-channel IF-TEMs. Section 3.4 derives an upper bound for the 

reconstruction error introduced by the proposed algorithm. Numerical simulations demonstrating the 

performance of the algorithms are presented in Section 3.5. Final conclusions are provided in Section 

3.6. 

3.2. Real-time algorithms for single-channel Time Decoding 

Machines 

Let {𝑡𝑘} be the spike time sequence generated by an IF-TEM with parameters { , 𝑏,  }.  
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Fig. 3.1. Plot of 𝛷(𝑡) showing the relationship between spike times and threshold values. 

 

Define 𝛷(𝑡) as  

𝛷(𝑡) =
1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡

0
                                 (3.3) 

and therefore, 

𝑢(𝑡) =  𝛷′(𝑡) − 𝑏.                             (3.4) 

The idea is to reconstruct 𝑢(𝑡) at 𝑡 =  𝑠𝑘+1  =  
𝑡 +𝑡 +1

2
 by approximating the derivative of 𝛷(𝑡) at 

that point using centred differencing 

𝛷′(𝑠𝑘+1) ≈
𝛷(𝑡 +1)−𝛷(𝑡 )

𝑡 +1−𝑡 
,                          (3.5) 

The original signal 𝑢(𝑡) at 𝑡 =  𝑠𝑘+1 is approximated as 

𝑢(𝑠𝑘+1) =  𝛷′(𝑠𝑘+1) − 𝑏 ≈  
𝛷(𝑡 +1)−𝛷(𝑡 )

𝑡 +1−𝑡 
− 𝑏 =  �̃�(𝑠𝑘+1).           (3.6) 

According to (2.10),  

𝛷(𝑡𝑘) =
1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 
0

= 𝑘 ,     𝑘 ∈ 𝒁+,                   (3.7) 

such that 

�̃�(𝑠𝑘+1) =   
𝛷(𝑡𝑘+1) − 𝛷(𝑡𝑘)

𝑡𝑘+1 − 𝑡𝑘
− 𝑏 

=
𝐶𝛿

𝑡 +1−𝑡 
− 𝑏,                                  (3.8) 

The reconstructed signal �̃�(𝑡) is a piecewise constant function over the non-uniform partition defined 

by the spike time sequence {0, 𝑡1, … , 𝑡𝑘 ,  𝑡𝑘+1, … }  i.e., �̃�(𝑡) = �̃�(𝑠𝑘+1)  for 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1],  𝑘 =

 1, 2, …. 

Compared with Lazar’s original reconstruction algorithm [3], the proposed algorithm uses only two 

most recent spikes, and does not involve block-based ill-conditioned algebraic inversions. From (2.11) it 

follows that the maximum waiting time between two successive signal reconstructions is upper bounded 

by 
𝐶𝛿

𝑏−𝑐
 under the assumption that |𝑢(𝑡)| ≤ 𝑐 < 𝑏. 

 t

 

 

2 

3 

4 

5 

t1 t2 t3 t4 t5

 =
1

 
 ( (t)  ) t

t

0
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3.3. Reconstruction algorithm for multi-channel IF-TEMs 

The algorithm presented above can be extended to multi-channel TDMs.  

A multi-channel TEM [22] consists of 𝑀 identical integrate-and-fire neurons, i.e., same parameters 

 ,   and 𝑏, but have different initial integrator shifts 𝛥(𝑖), 𝑖 =  1, 2, … ,𝑀. Each channel ouputs a spike 

train {𝑡𝑘
(𝑖)
} , where 𝑘 ∈ 𝒁+  and 𝑖 =  1, 2, … ,𝑀 . Multi-channel time-encoding allows encoding, 

transmitting and decoding signals with bandwidths that are M times the theoretical maximum bandwidth 

corresponding to a single-channel TEM with the same parameters. The structure of the 𝑀-channel TEM 

is illustrated in Fig. 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Block diagram of a multi-channel TEM. The original signal 𝑢(𝑡) is input to each channel of the 

TEM. The bias of all the channels is 𝑏. 

 

It is assumed that the integrator shifts satisfy  > 𝛥(1) > 𝛥(2) > ⋯ > 𝛥(𝑀) ≥ 0 such that the positive 

“distance” between 𝑖th channel and (𝑖 + 1)th channel 𝐷𝑖,𝑖+1 is given by 

𝐷𝑖,𝑖+1  =  𝛥
(𝑖) − 𝛥(𝑖+1) > 0, 𝑖 =  1, … ,𝑀 − 1, 𝐷𝑀,1  =   + 𝛥

(𝑀) − 𝛥(1) > 0.      (3.9) 

The outputs of the integrators are given by 

𝑦𝑖(𝑡) =

{
 

 (𝛥(𝑖) +
1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡1
(𝑖)

0
)𝑀𝑂𝐷  ,     0 ≤ 𝑡 ≤ 𝑡1

(𝑖)

(
1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 +1
(𝑖)

𝑡 
(𝑖) )𝑀𝑂𝐷  ,   𝑡 > 𝑡1

(𝑖)
,   𝑘 = 1,2, …

             (3.10) 

and satisfy 

𝑦𝑖+1(𝑡) =  (𝑦𝑖(𝑡) + 𝛥
(𝑖+1) − 𝛥(𝑖))𝑀𝑂𝐷  ,   𝑖 =  1, … ,𝑀 − 1, 

𝑦1(𝑡) =  (𝑦𝑀(𝑡) +  + 𝛥
(𝑀) − 𝛥(1))𝑀𝑂𝐷  ,                        (3.11) 

where 𝑀𝑂𝐷 is the modulo operation. 

As a consequence of the non-zero shift, the M single-channel TEMs will spike in order such that 

0 < 𝑡𝑘
(1)
< 𝑡𝑘

(2)
< ⋯ < 𝑡𝑘

(𝑀)
, ∀𝑘, 

1

 
   

t

0
Input2   Input1

Input2

Input1

 

b
Spike trigger reset

u(t) { t
 
(1)

} (1)

1

 
   

t

0
Input2   Input1

Input2

Input1

 

b
Spike trigger reset

{t
 
(2)

} (2)

1

 
   

t

0
Input2   Input1

Input2

Input1

 

b
Spike trigger reset

{t
 
( )

} ( )

… … …

… … …
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𝑡𝑘−1
(𝑖+1)

< 𝑡𝑘
(𝑖)
< 𝑡𝑘

(𝑖+1)
, ∀𝑘, ∀𝑖 =  1, 2, … ,𝑀.                    (3.12) 

where 𝑡𝑘
(𝑖)
 is the 𝑘th spike arriving time of the 𝑖th neuron. After firing the first spike, the neurons 

reset and the shifts 𝛥(𝑖) are eliminated. 

Each neuron fires a first spike at 𝑡 =  𝑡1
(𝑖)
 such that 

𝛥(𝑖) +
1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡1
(𝑖)

0
=  .                          (3.13) 

After firing the first spike, the neurons reset and the shift 𝛥(𝑖) is hence eliminated, which leads to 

1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 +1
(𝑖)

𝑡 
(𝑖) =  , 𝑘 ∈ 𝒁+.                         (3.14) 

Evaluating the function 𝛷(𝑡) in (3.13) at 𝑡 =  𝑡𝑘
(𝑖)
 gives 

𝛷(𝑡𝑘
(𝑖)
) =

1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 
(𝑖)

0
= 𝑘 − 𝛥(𝑖), 𝑘 ∈ 𝒁+.                (3.15) 

As in the single-channel case, the original signal is reconstructed by estimating the derivative of 𝛷(𝑡) 

as 

𝑢(𝑠𝑘
(𝑖+1)) =  𝛷′(𝑠𝑘

(𝑖+1)) − 𝑏 

≈  
𝛷(𝑡𝑘

(𝑖+1)
) − 𝛷(𝑡𝑘

(𝑖)
)

𝑡𝑘
(𝑖+1)

− 𝑡𝑘
(𝑖)

− 𝑏 

=
𝐶(𝛥(𝑖)−𝛥(𝑖+1))

𝑡 
(𝑖+1)

−𝑡 
(𝑖) − 𝑏,                            (3.16)     

where 𝑠𝑘
(𝑖+1)

 =  
𝑡 
(𝑖)
+𝑡 
(𝑖+1)

2
.  

Notice that the spike arriving time 𝑡𝑘
(𝑖+1)

 and 𝑡𝑘
(𝑖)
 are from different channels. As in [22], the spike 

trains from different channels are combined into a single spike train ordered by arrival time. 

Consider two different spike arriving times 𝑡𝑘+1
(𝑖)

  and 𝑡𝑘
(𝑗)
 , where 𝑖, 𝑗 =  1, 2, … ,𝑀 . According to 

(3.15), 

𝛷(𝑡𝑘+1
(𝑖)
) =

1

 
 (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 +1
(𝑖)

0

= (𝑘 + 1) − 𝛥(𝑖), 

𝛷(𝑡𝑘
(𝑗)
) =

1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 
(𝑗)

0
= 𝑘 − 𝛥(𝑗).                      (3.17) 

Then 𝛷(𝑡𝑘+1
(𝑖)
) − 𝛷(𝑡𝑘

(𝑗)
) =  − 𝛥(𝑖) + 𝛥(𝑗). 

Under the assumption of  > 𝛥(1) > 𝛥(2) > ⋯ > 𝛥(𝑀) ≥ 0, it follows that 

 − 𝛥(𝑖) + 𝛥(𝑗) ≥  − 𝛥(1) + 𝛥(𝑀) > 0.                     (3.18) 

Therefore 𝛷(𝑡𝑘+1
(𝑖)
) − 𝛷(𝑡𝑘

(𝑗)
)  > 0 . Considering 𝛷(𝑡)  is monotonically increasing, it holds that 

𝑡𝑘+1
(𝑖)

> 𝑡𝑘
(𝑗)
 and thus these spikes in the new combined spike train are ordered in groups of 𝑀. The 

(𝑘𝑀 + 1) th, (𝑘𝑀 + 2) th, …, (𝑘𝑀 + 𝑖) 𝑡ℎ , …, (𝑘 + 1)𝑀 th spikes are ordered as 𝑡𝑘+1
(1)

 , 𝑡𝑘+1
(2)

 , …, 

𝑡𝑘+1
(𝑖)

, …, 𝑡𝑘+1
(𝑀)

, respectively. 

The spike times in the combined spike train {�̃�𝑘}, 𝑘 ∈ 𝒁
+, are ordered as 
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{ 𝑡1
(1)
, … , 𝑡1

(𝑀)
⏟      

𝑓𝑖𝑟𝑠𝑡 𝑠𝑝𝑖𝑘𝑒 𝑔𝑟𝑜𝑢𝑝

, 𝑡2
(1)
, … , 𝑡2

(𝑀)
⏟      

𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑝𝑖𝑘𝑒 𝑔𝑟𝑜𝑢𝑝

, … , 𝑡𝑘
(1)
, … , 𝑡𝑘

(𝑀)
⏟      
𝑘𝑡ℎ 𝑠𝑝𝑖𝑘𝑒 𝑔𝑟𝑜𝑢𝑝

, … }. 

Therefore, the  th spike of the combined spike train �̃�𝑛 is 𝑡⌊𝑛−1
𝑀
⌋+1

(𝑀𝑂𝐷(𝑛−1,𝑀)+1)

. 

From (3.15) it follows that 

1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 
(𝑖+1)

𝑡 
(𝑖) = 𝛥(𝑖) − 𝛥(𝑖+1).                     (3.19) 

In practice the integrator shifts are chosen such that 

𝛥(𝑀) =
 

2𝑀
 

𝛥(𝑖) − 𝛥(𝑖+1) =
𝛿

𝑀
, 𝑓𝑜𝑟 𝑖 = 1,… ,𝑀 − 1                    (3.20) 

 

The combined spike train is therefore used to reconstruct the original signal as in the single-channel 

case, using only the two most recent consecutive spikes. In particular, 

1) When 𝑀𝑂𝐷(𝑘,𝑀)  ≠  0, the two consecutive spikes are from the same group, i.e., ⌊
𝑘

𝑀
⌋ + 1 =

 ⌊
𝑘−1

𝑀
⌋ + 1. 

 𝑢(�̃�𝑘+1) ≈  
𝛷(�̃�𝑘+1) − 𝛷(�̃�𝑘)

�̃�𝑘+1 − �̃�𝑘
− 𝑏 

 =  

𝛷 (𝑡
⌊
𝑘

𝑀
⌋+1

(𝑀𝑂𝐷(𝑘,𝑀)+1)
) − 𝛷 (𝑡

⌊
𝑘−1

𝑀
⌋+1

(𝑀𝑂𝐷(𝑘−1,𝑀)+1)
)

�̃�𝑘+1 − �̃�𝑘
− 𝑏 

=
 (𝛥(𝑀𝑂𝐷(𝑘−1,𝑀)+1) − 𝛥(𝑀𝑂𝐷(𝑘,𝑀)+1))

�̃�𝑘+1 − �̃�𝑘
− 𝑏, 

= 
𝐶𝛿

𝑀(𝑡 +1−𝑡 )
− 𝑏,                                     (3.21) 

where �̃�𝑘+1  =  
𝑡 +𝑡 +1

2
. 

2) When 𝑀𝑂𝐷(𝑘,𝑀)  =  0, two consecutive spikes are from different groups. 

𝑢(�̃�𝑘+1) ≈  
𝛷(�̃�𝑘+1) − 𝛷(�̃�𝑘)

�̃�𝑘+1 − �̃�𝑘
− 𝑏 

=  
𝛷(𝑡𝑘

(1)) − 𝛷(𝑡𝑘−1
(𝑀))

�̃�𝑘+1 − �̃�𝑘
− 𝑏 

=  
(𝑘 − 𝛥(1)) − ((𝑘 − 1) − 𝛥(𝑀))

�̃�𝑘+1 − �̃�𝑘
− 𝑏 

 =  
𝛥(𝑀) − 𝛥(1) +  

�̃�𝑘+1 − �̃�𝑘
− 𝑏 

=  
𝛿

𝑀(𝑡 +1−𝑡 )
− 𝑏.                                    (3.22) 

 

As in the single-channel case, the reconstructed signal �̃�(𝑡) is a piecewise constant function over the 

non-uniform partition defined by the combined spike time sequence {0, �̃�1, … , �̃�𝑘, �̃�𝑘+1, … } i.e., �̃�(𝑡) =

�̃�(𝑠𝑘+1) for 𝑡(�̃�𝑘, �̃�𝑘+1]. 
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3.4. Reconstruction error analysis 

The reconstruction error at mid points is given by 

𝑒(𝑠𝑘+1) = 𝑢(𝑠𝑘+1) −  �̃�(𝑠𝑘+1).                       (3.23) 

Let 

ℎ(𝑡) =  𝛷(𝑡) − 𝑏𝑡.                           (3.24) 

From (3.13) it holds that 

 ℎ(𝑡) = ∫ 𝑢(𝑡)𝑑𝑡
𝑡

0
 and ℎ′(𝑡) = 𝑢(𝑡).                     (3.25) 

Since the algorithm approximates ℎ′(𝑡)  at 𝑡 =  𝑠𝑘+1  using a second-order centred differencing 

method [23] 

ℎ′(𝑠𝑘+1) ≈
ℎ(𝑡 +1)−ℎ(𝑡 )

𝑡 +1−𝑡 
.                          (3.25) 

Combining the second-order Taylor expansion around 𝑠𝑘+1 gives 

 𝑢(𝑠𝑘+1) = ℎ′(𝑠𝑘+1)  =  
ℎ(𝑡 +1)−ℎ(𝑡 )

𝑡 +1−𝑡 
− (𝑡𝑘+1 − 𝑡𝑘)

2 ℎ′′′(𝜁1)+ℎ′′′(𝜁2)

48
,         (3.26) 

where 𝜁1 ∈ [𝑡𝑘, 𝑠𝑘+1] and 𝜁2 ∈ [𝑠𝑘+1, 𝑡𝑘+1]. Hence  

 𝑒 = 𝑢(𝑠𝑘+1) − �̃�(𝑠𝑘+1) = −(𝑡𝑘+1 − 𝑡𝑘)
2 ℎ′′′(𝜁1)+ℎ′′′(𝜁2)

48
.             (3.27) 

Given that the bandwidth of 𝑢(𝑡) is 𝛺 and |𝑢(𝑡)| ≤  𝑐, it follows that 

  |ℎ′′′(𝜁)|  =  |𝑢′′(𝜁)|  ≤  4𝜋2𝛺2𝑐,                       (3.28) 

and combining this with 𝑡𝑘+1 − 𝑡𝑘  ≤  
𝐶𝛿

(𝑏−𝑐)
 leads to 

|𝑒|  ≤  
1

6
(
𝜋𝛺𝐶𝛿

𝑏−𝑐
)
2

𝑐.                             (3.29) 

The reconstruction error can be reduced by increasing spike density which can be achieved by 

decreasing   or increasing 𝑏. Alternatively, one can employ multiple TEMs and initialize the integral 

with different values. Combining the output spike trains of these TEMs leads to a denser spike train. 

3.5. Numerical Study 

Example 1. S ngle-channel enco  ng an   eco  ng 

The new decoding algorithm is demonstrated using a synthetic signal 𝑢(𝑡) generated as the sum of 

25 sinusoidal functions with uniformly distributed random amplitudes and frequencies. The frequencies 

are chosen to be uniformly distributed in interval (0,80] and their amplitudes are uniformly distributed 

in interval [−0.5,0.5]. 𝑢(𝑡) is then given by 

𝑢(𝑡) = ∑ 𝐴𝑛sin (𝜔𝑛𝑡)
25
𝑛=1 .                         (3.30) 

The signal 𝑢(𝑡) was encoded using an integrate-and-fire, single-channel TEM. The parameters of the 

simulation are given in Table 3.1.    

The TEM-generated spike train consisting of 195 spikes was decoded using the proposed real-time 
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algorithm. For comparison, the generated spike train was also decoded using Lazar’s algorithm [3]. In 

practice, while the fast algorithm would reconstruct the algorithm in real-time as spikes are being 

generated, Lazar’s algorithm relies on the full spike train. 

 

Table 3.1. Simulation parameters. 

Parameter Explanation Value 

𝑻𝒔𝒊𝒎  Overall simulation time 0.4 seconds 

𝒅   Sampling period 1 × 10−7 seconds 

  𝜴  Signal bandwidth 80 rad/s 

𝒄  Signal magnitude bound 1.5 

𝜹  IF neuron threshold 0.01 

𝒃  IF neuron bias 5 

𝑪  IF integration constant 1 

 

The original signal 𝑢(𝑡) and the piece-wise signal �̃�(𝑡) decoded, using the real-time algorithm, are 

shown in Fig. 3.3. 

 

Fig. 3.3. Single-channel decoding using the real-time algorithm. Original signal (red) superimposed on the 

decoded (black) signals.  

 

The decoded signal is significantly close to the original signal. A Zero-Order hold is employed here 

which leads to the constant value between estimation points.  

The spike intervals in this case are approximately 0.002 seconds. Therefore, one only need to wait 

for about 0.002  seconds to carry out the next reconstruction step. Between estimation points, the 

decoded signal is still output with a constant value, which enables real-time signal processing. Notice 

that there is a delay of the decoded signal. This is introduced by the Zero-Order hold and the maximum 

delay is determined by the maximum spike interval. 
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Fig. 3.4. Decoding error 𝑒(𝑠𝑘+1), 𝑘 =  1,… , 194 for the proposed fast algorithm. Maximum error 

magnitude |𝑒(𝑠𝑘+1)|𝑚𝑎𝑥 = 7.4 × 10
−4 and the Mean Squared Error is 7.6 × 10−12. 

 

 The error is larger at the extreme points of the original signal. This is because the estimating the 

derivative of 𝛷(𝑡) using centered differencing has larger error at these points. 

 

 

Fig. 3.5. Decoding error 𝑒(𝑡)  =  �̃�(𝑡) − 𝑢(𝑡) for the proposed fast algorithm. Maximum error magnitude 

|𝑒(𝑡)|𝑚𝑎𝑥 = 1.27 × 10
−2 and the Mean Squared Error is 0.0012. 

 

The decoding error is small at the estimation points and increases when the TDM is waiting for the 

next spike. Therefore, in order to reduce the decoding error, one can minimize the spike intervals by 

increasing the bias 𝑏 or reducing the threshold  . 

 

The original and decoded signals, using Lazar’s algorithm are shown in Fig. 3.6. The 

reconstruction errors for the fast algorithm, evaluated at 𝑡 =  𝑠𝑘+1, are significantly smaller than the 

errors introduced by Lazar’s algorithm (see Figs. 3.4, 3.7, 3.8). 
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Fig. 3.6. Single-channel decoding using Lazar’s algorithm. Original signal (red) superimposed on the 

decoded (black) signals. 

 

Compared with the decoding using the proposed fast algorithm, Lazar’s algorithm has much smaller 

reconstruction error. However, this reconstruction is carried out when the spike train is fully transmitted. 

In this case, one must wait for 0.4 seconds to carry out the decoding. 

 

 

Fig. 3.7. Decoding error 𝑒2(𝑡) =  �̃�2(𝑡) − 𝑢(𝑡) for Lazar’s algorithm. Maximum error magnitude 

|𝑒2(𝑡)|𝑚𝑎𝑥 = 1.6 × 10
−3 and the Mean Squared Error is 5.4 × 10−7.  

 

Also, the error is larger at the extreme points of the original signal. 
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Fig. 3.8. Box plots of the 𝑙2  error norms |𝑒(𝑠𝑘+1)|2 for 100 replications of the synthetic signal for the real-

time and Lazar’s algorithms. 

 

Fig. 3.8 also indicates that the upper error bound derived for the fast algorithm is relatively small. 

However, when the error is evaluated at the original sampling points, Lazar’s algorithm outperforms the 

real-time decoding algorithm. This is a consequence of the fact that digital-to-analogue conversion is 

performed using a zero-order hold method that produces a piece-wise constant signal over the non-

uniform partition defined by the spike time sequence. Alternative, local interpolation or quasi-

interpolation approaches used to reconstruct non-uniformly sampled signals can achieve near perfect 

reconstruction on the uniform grid [24].      

Table 3.2 summarises the performance of the real-time algorithm for different values of the bias and 

threshold parameters, 𝑏 and  , of the TEM. All other simulation parameters are as given in Table 3.1. 

The maximum reconstruction error of Lazar’s algorithm |𝑒2(𝑡)|𝑚𝑎𝑥 and the theoretical upper bound 

derived in Section 3.3, are also listed in Table 3.2. 

 

Table 3.2. Maximum decoding errors and theoretical upper error bounds for different values of the bias and 

threshold parameters. 

    Maximum error of the fast 

algorithm |𝑒(𝑠𝑘+1)|𝑚𝑎𝑥 

Theoretical upper error 

bound of the fast algorithm 

Maximum error of Lazar’s 

algorithm |𝑒2(𝑡)|𝑚𝑎𝑥 

3 0.01 2.3 × 10−3 1.8 × 10−2 4.8 × 10−3 

4 0.01 1.2 × 10−3 6.4 × 10−3 2.5 × 10−3 

5 0.01 7.4 × 10−4 3.3 × 10−3 1.6 × 10−3 

5 0.02 2.8 × 10−3 1.3 × 10−2 7.0 × 10−3 

5 0.03 6.3 × 10−3 2.9 × 10−2 2.9 × 10−2 

 

As expected, by increasing the bias 𝑏 and decreasing the neuron threshold  , increases the spike rate 

which reduces decoding error. Overall, the real-time decoding algorithm consistently outperforms 

Lazar’s algorithm in terms of decoding accuracy at the mid-point of the spike interval.  

Example 2. M lt -channel enco  ng an   eco  ng 
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This example illustrates the performance of the decoding algorithm when the original signal 𝑢(𝑡) is 

encoded using a multi-channel TEM with 𝑀 = 10  channels. All 10 integrate-and-fire neurons have 

identical thresholds and bias parameters but have different initial membrane potentials i.e., integral shifts 

𝛥(𝑖) that are set according to (3.20).  

Here the neuron threshold is  = 0.1 that is 10 times of that in Example 1. The threshold is set larger 

in order to illustrate that the decoded signal from the output of multi-channel TEM with larger threshold 

is close to that from the output of single-channel TEM with smaller threshold. Therefore, one can 

construct TEMs and TDMs without the need of neurons or TEMs with small threshold, which simplifies 

the construction. All other simulation parameters are those in Table 3.1. Given these settings, the total 

number of spikes in the combined spike train (𝑁 = 194) is the same as for the single-channel case.  

 

Fig. 3.9. Multi-channel (𝑀 = 10) decoding using the proposed fast algorithm. Original signal (red) 

superimposed on the decoded signal (black). 

 

Compared with the single-channel case, this 10-channel decoding reaches similar results. The average 

spike interval is also 0.002 seconds, which indicates that the waiting time remains the same.  

 

Fig. 3.10. Multi-channel (𝑀 = 10) decoding error 𝑒(𝑠𝑘+1), 𝑘 =  1,… , 194 for the proposed fast 

algorithm. Maximum error magnitude |𝑒(𝑠𝑘+1)|𝑚𝑎𝑥 = 1.3 × 10
−3. The Mean Squared Error is 7.6 × 10−12. 
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The Mean Squared Error is the same as that of the single-channel case, which shows that the estimation 

error of the single- and multi-channel cases are at the same level. The estimation error is also larger at 

the extreme points of the original signal, which is similar with the single-channel case. 

 

 

Fig. 3.11. Multi-channel (𝑀 = 10) decoding error 𝑒(𝑡)  =  �̃�(𝑡) − 𝑢(𝑡) for the proposed fast algorithm. 

Maximum error magnitude |𝑒(𝑡)|𝑚𝑎𝑥 = 0.1261. The Mean Squared Error is 0.0012.  

 

The decoding error is almost the same as that of the single-channel case. However, the multi-channel 

time encoding does not require the neuron threshold to be small. The threshold of the multi-channel TEM 

is 10 times of the threshold in the single-channel case. 

 

 

Fig. 3.12. Box plots of the 𝑙2 error norms |𝑒(𝑠𝑘+1)|2 over 100 replications of the synthetic signal for the 

single- and multi-channel encoding/decoding. 

 

It is shown that the estimation error at mid points of spikes of the multi-channel decoding is slightly 

larger than the single-channel decoding. However, as shown in Fig. 3.11, the overall reconstruction error 
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is significantly close to that of the single-channel decoding. Therefore, one can utilize multi-channel 

TEMs and TDMs to replace single-channel TEMs and TDMs with simplified implementation that 

doesn’t require small thresholds. 

 

Here it is assumed that the 10th channel fails i.e. the corresponding integrate-and-fire neuron does not 

output any spikes. The decoded signal and decoding errors are shown in Fig. 3.13 and Fig. 3.14.  

 

Fig. 3.13. Multi-channel (𝑀 = 10) decoding using the proposed fast algorithm, assuming the 10th channel 

fails. Original signal (red) superimposed on the decoded signal (black).  

 

The figure shows that large gaps occur periodically. This is caused by the failure of the 10th channel. 

A failing channel does not output any spikes, therefore the reconstruction will not be carried out until the 

next working channel outputs a new spike. Nevertheless, the other estimation points remain unaffected 

since the estimation only requires two consecutive spikes. 

 

 

 

Fig. 3.14. Decoding error 𝑒(𝑡)  =  �̃�(𝑡) − 𝑢(𝑡). Maximum error magnitude |𝑒(𝑡)|𝑚𝑎𝑥 = 0.3122. The Mean 

Squared Error is 0.0038. 

 

Compared with the decoding error illustrated in Fig. 3.11, the decoding error here is large when it 
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comes to spikes that should have been output by the failing channel. However, the remaining decoding 

error is close to that in Fig. 3.11. Therefore, it can be concluded that the error caused by the failure of a 

channel is not accumulative and the multi-channel TEMs and TDMs are robust to the failure of channels. 

3.6. Conclusions 

This chapter introduced a new algorithm for decoding spike trains generated by integrate-and-fire 

neurons, in real-time and without the need to compute pseudo-inverse of matrices [25]. The algorithm 

used the two most recent spike times to recover the original bandlimited signal at the midpoint of the 

interval defined by the two spike times. Numerical simulations have shown that, for the proposed 

algorithm, the accuracy of signal reconstruction on the non-uniform grid was higher than that achieved 

by Lazar’s original reconstruction algorithm [3]. An upper bound for the error was derived and shown 

through numerical simulations to be relatively sharp. 

A multi-channel version of the algorithm was also introduced and demonstrated. It has been illustrated 

in this chapter that the decoded signal from the output of multi-channel TEM with larger threshold was 

close to that from the output of single-channel TEM with smaller threshold. This indicates that a multi-

channel TEM with larger threshold could model a single-channel TEM with smaller threshold. Therefore, 

one can employ a multi-channel TEM to encode a signal without the need to construct a single-channel 

TEM with small threshold, which is challenging in the aspect of hardware realization. 

The main benefit of this new algorithm is that it is fast, simple and can decode the spike train in real-

time without the need to compute pseudo-inverse of matrices [25]. Furthermore, the accuracy of signal 

reconstruction on the non-uniform grid is higher than that achieved by Lazar’s original reconstruction 

algorithm [3].  

A disadvantage of the proposed algorithm is that the original signal is reconstructed on a non-uniform 

grid defined by the spike-time sequence. An additional step is required to reconstruct the original signal 

on a uniform grid – in this chapter a simple zero-order hold method is employed but other more accurate 

interpolation/quasi-interpolation approaches developed for real-time processing can be used [16, 19]. 

Ultimately, it is shown that the decoding error can easily be controlled by adjusting the bias and/or 

threshold parameters of the TEM.
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Chapter 4 

 Spike-based PID control system design 
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4.1. Introduction 

In order to take advantage of time encoding, novel devices that directly use information encoded in 

the form of spike trains to perform their function will need to be developed. A number of spike-based 

devices and systems have been developed in recent years [6~8]. Jimenez-Fernandez, et al [6] introduced 

spike-based PID controller with the concepts of some simple spike operators. The paper implemented a 

spike-based PID controller using Spikes Integrate & Generate (SI&G), Spike Temporal Derivative (STD) 

and Spikes Hold & Fire (SH&F) components. These components operate on the number of spikes instead 

of spike arriving time, which requires a global counter. Mie, et al [7] utilized this spike-based PID 

controller to implement a spike-based control system where all the internal signals are in the format of 

spikes. Paper [8] presented the analysis of spike firing rate using Laplace transformation and enabled the 

application of spike processing strategy in the field of spike-based silicon sensors and robotic actuators. 

In general, there is a lack of a control architectures and design methodologies for spike-based 

controllers that directly use time-encoded signals to derive the control input signals and cancel the global 

counter [6].  

This chapter proposes a spike-based PID control architecture that can implement a continuous-time 

PID control law derived using a conventional design method, taking advantage of the real-time decoding 

algorithm proposed in Chapter 3. The spike-based PID controller generates directly the analogue control 

input so that there is no need for digital-to analogue conversion. 

The remainder of this chapter is organized as follows. Section 4.2 describes a closed-loop spike-based 

control system and introduces the data transmitting methodology in the system. Section 4.3 formulates 

the spike-based PID control law. Section 4.4 carries out an analysis of the approximation error associated 

with each of the PID control terms. Section 4.5 presents a numerical simulation study that demonstrates 

the performance of the spike-based PID control system in comparison with a standard continuous-time 

PID control implementation. Conclusions and Section 4.6 draws the conclusion. 

4.2. Closed-loop spike-based control system 

In this section, a remote closed-loop control system is presented. This system consists of two terminals: 

a command terminal which sends the error signal according to the reference, and an execute terminal 

which responds to the error signal and send the final system output signal back to the command terminal. 

Here, the remote communication between the command and execute terminals is in the format of spikes.  

A block diagram of the architecture of a networked control system, incorporating TEMs and TDMs 

such that control and feedback signals are exchanged in the form of time-encoded signals is shown in 

Fig. 4.1. 
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Fig. 4.1. Block diagram of a spike-based closed-loop control system. TEMs encode continuous signals such as 

𝑒(𝑡) and 𝑦(𝑡). The encoded signals are transmitted in the format of spike trains. TDMs decode the spiking signals 

back to continuous signals. Controller  (𝑠) and plant 𝐺(𝑠) respond to these continuous signals. 

 

The proposed networked control implementation has several advantages: 

 Energy Efficiency [4]. 

 Simpler devices used for receiving and sending spiking signals [4]. 

 Sparse Data Representation. 

 Robustness to noise [5]. 

 Event-Driven Processing. 

4.3. Spike-based PID controller 

Fig. 4.2. illustrates the block diagram of a spike-based network control system using a spike-based 

PID controller. The spike-based controller directly responds to the encoded error signal, i.e., the spike 

train {𝑡𝑘
𝑒}.  

 

Fig. 4.2. Block diagram of the spike-based network control system with a spike-based PID controller. 

 

The formulation of the proportional, integral and derivative terms of the spike-based PID controller is 

described below.  

Proportional term 

The proportional term uses the real-time error signal �̃�(𝑡) generated by the fast decoding algorithm 

introduced in Chapter 3 as follows 

𝑃𝑠(𝑡) = �̃�(𝑠𝑘+1) =
𝐶𝛿

𝑡 +1
𝑒 −𝑡 

𝑒 − 𝑏  for 𝑡 ∈ [𝑡𝑘
𝑒, 𝑡𝑘+1

𝑒 ), 𝑘 = 1,2,3, …            (4.1) 

For the integral and derivative terms, the spike-based PID controller responds to the encoded spike 

train {𝑡𝑘
𝑒}. 
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Integral term 

The IF-TEM encodes the error signal 𝑒(𝑡) by sampling the integral of 𝑢(𝑡) [3] at time instances 𝑡𝑘 

such that 

1

𝐶
∫ (𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡

0
= 𝑘 ∙  ,    𝑘 = 1,2,3, …                      (4.2) 

It follows that the integral of 𝑒(𝑡) at time 𝑡 = 𝑡𝑘
𝑒 is given by 

𝐼𝑠(𝑡𝑘
𝑒) = ∫ 𝑒(𝑡)𝑑𝑡

𝑡 
𝑒

0
= 𝑘 ∙   − 𝑏 ∙ 𝑡𝑘

𝑒.                       (4.3) 

The integral term is only updated when a new spike arrives and it is constant during the inter-spike 

interval that is 𝐼𝑠(𝑡) = 𝐼𝑠(𝑡𝑘
𝑒) for 𝑡𝑘

𝑒 ≤ 𝑡 < 𝑡𝑘+1
𝑒 . When the next spike arrives, the value of the integral 

is updated. 

Derivative term formulation 

The derivative of the error signal 𝑒(𝑡) at 𝑡 = 𝑠𝑘+1 =
𝑡 +1
𝑒 +𝑡 

𝑒

2
 is approximated as 

𝑒′(𝑠𝑘+1) ≈ 𝐷𝑠(𝑠𝑘+1) =
𝑒(𝑠 +1)−𝑒(𝑠 )

𝑠 +1−𝑠 
                                         

=
(

𝐶𝛿

𝑡 +1
𝑒 −𝑡 

𝑒−𝑏)−(
𝐶𝛿

𝑡 
𝑒−𝑡 −1

𝑒 −𝑏)

𝑡 +1
𝑒 +𝑡 

𝑒

2
−
𝑡 
𝑒+𝑡 −1

𝑒

2

                               

=
2𝐶𝛿∙(−𝑡 +1

𝑒 +2𝑡 
𝑒−𝑡 −1

𝑒 )

(𝑡 +1
𝑒 −𝑡 

𝑒)(𝑡 
𝑒−𝑡 −1

𝑒 )(𝑡 +1
𝑒 −𝑡 −1

𝑒 )
.                         (4.4) 

The estimation of the derivative is held as constant between spike mid points so that 𝐷𝑠(𝑡) =

𝐷𝑠(𝑠𝑘+1) for  𝑠𝑘 ≤ 𝑡 < 𝑠𝑘+1. The estimation is updated when the next spike arrives. 

The spike-based PID control law is therefore given by  

𝑢(𝑡) = 𝑘𝑝𝑠 ∙ 𝑃𝑠 + 𝑘𝑖𝑠 ∙ 𝐼𝑠 + 𝑘𝑑𝑠 ∙ 𝐷𝑠                                                    

= 𝑘𝑝𝑠 ∙ (
𝐶𝛿

𝑡 +1
𝑒 −𝑡 

𝑒 − 𝑏) + 𝑘𝑖𝑠 ∙ (𝑘 ∙   − 𝑏 ∙ 𝑡𝑘
𝑒) + 𝑘𝑑𝑠 ∙

2𝐶𝛿∙(−𝑡 +1
𝑒 +2𝑡 

𝑒−𝑡 −1
𝑒 )

(𝑡 +1
𝑒 −𝑡 

𝑒)(𝑡 
𝑒−𝑡 −1

𝑒 )(𝑡 +1
𝑒 −𝑡 −1

𝑒 )
,       (4.5) 

where 𝑘𝑝𝑠, 𝑘𝑖𝑠 and 𝑘𝑑𝑠 are proportional, integral and derivative gain of the spike-based PID controller, 

respectively. 𝑃𝑠, 𝐼𝑠 and 𝐷𝑠 are updated at 𝑡 = 𝑡𝑘
𝑒. 

4.4. Approximation error bound for PID terms 

Approximation error bound for the proportional term 

The approximation error of the proportional term 𝑃𝑠 is equivalent to the reconstruction error of signal 

𝑒(𝑡). As derived in Chapter 3 (3.29), the approximation error of the proportional term 𝜀𝑝 is bounded by 

𝜀𝑝  ≤  
1

6
(
𝜋𝛺𝐶𝛿

𝑏−𝑐
)
2

𝑐.                                (4.6) 

Approximation error bound for the integral term 

The integral term is calculated every time a spike arrives and is kept constant in between spikes. For  

𝑡𝑘
𝑒 ≤ 𝑡 < 𝑡𝑘+1

𝑒  it follows that 

𝐼(𝑡) = ∫ 𝑒(𝑠)𝑑𝑠
𝑡

0
= ∫ 𝑒(𝑡)𝑑𝑡

𝑡 
𝑒

0
+ ∫ 𝑒(𝑡)𝑑𝑡

𝑡 +1
𝑒

𝑡 
𝑒 = 𝐼𝑠 + ∫ 𝑒(𝑡)𝑑𝑡

𝑡 +1
𝑒

𝑡 
𝑒 .            (4.7) 
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Therefore, the approximation error 𝜀𝑖 is bounded by 

𝜀𝑖 = 𝐼 − 𝐼𝑠 = ∫ 𝑒(𝑡)𝑑𝑡
𝑡 +1
𝑒

𝑡 
𝑒 .                         (4.8) 

Assuming |𝑒(𝑡)| < 𝑐,  𝑐 > 0 then 𝜀𝑖 is bounded as 

|𝜀𝑖| = |∫ 𝑒(𝑡)𝑑𝑡
𝑡 +1
𝑒

𝑡 
𝑒 | ≤ ∫ |𝑒(𝑡)|𝑑𝑡 ≤

𝑡 +1
𝑒

𝑡 
𝑒 𝑐(𝑡𝑘+1

𝑒 − 𝑡𝑘
𝑒).              (4.9) 

 

Given that 𝑡𝑘+1
𝑒 − 𝑡𝑘

𝑒 ≤
𝐶𝛿

𝑏−𝑐
, it follows that  

|𝜀𝑖| ≤
𝑐∙𝐶𝛿

𝑏−𝑐
.                                 (4.10) 

Approximation error bound for the derivative term 

The derivative term at time 𝑠𝑘+1 is given by  

𝐷𝑠(𝑠𝑘+1) =
𝑒(𝑠 +1)−𝑒(𝑠 )

𝑠 +1−𝑠 
.                           (4.11) 

According to Lagrange Mean Value Theorem, there exists a point 𝜁 ∈ [𝑠𝑘 , 𝑠𝑘+1] that 

𝑒′(𝜁) =
𝑒(𝑠 +1)−𝑒(𝑠 )

𝑠 +1−𝑠 
.                            (4.12) 

Assuming |𝑒(𝑡)| ≤ 𝑐 and the bandwidth of 𝑒(𝑡) is Ω, it follows that 

|𝑒′(𝑡)| ≤ 2𝜋Ω𝑐                              (4.13) 

such that for every interval [𝑠𝑘 , 𝑠𝑘+1] 

|𝜀𝑑| = |𝑒
′(𝑡) − 𝐷𝑠(𝑠𝑘+1)| 

= |𝑒′(𝑡) − 𝑒′(𝜁)|≤ |𝑒′(𝑡)| + |𝑒′(𝜁)| ≤ 4𝜋Ω𝑐.       (4.14) 

 

which means that |𝜀𝑑| ≤ 4𝜋Ω𝑐 for any t>0. 

                                                   

4.5. Numerical simulation 

This section demonstrates the effectiveness of the spike-based network control system implemented 

using the proposed spike-based PID controller. As Fig. 4.2 shows, the error signal 𝑒(𝑡) and the feedback 

signal 𝑦(𝑡) are encoded and decoded. 

Consider a second-order system described by the following transfer function 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

3

𝑠2+3𝑠−2
.                            (4.15) 

The PID controller is given by 

 (𝑠) = 𝑘𝑝 ∙ 𝑒(𝑡) + 𝑘𝑖 ∙ ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝑘𝑑 ∙

𝑑𝑒(𝑡)

𝑑𝑡
.                  (4.16) 

The aim is to design a spike-based PID control system that achieves the following performance 

specifications: 

• Overshoot: 0%. 

• Settling time: 1.5 seconds. 

• Steady state error: 0. 

Here, the tuning approach for the PID controller is employed according to book [26]. 𝑘𝑝 is firstly set 
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low, with 𝑘𝑖 and 𝑘𝑑 set to zero. Then 𝑘𝑝 is increased until there is overshoot. 𝑘𝑖 and 𝑘𝑑 are tuned 

in order to reach desired performance. The tuning procedure is shown in Fig. 4.3. 

 

Fig. 4.3 (redrawn from [26]). Tuning approach for the PID controller. 

 

The simulation is carried using MATLAB. The closed-loop system is simulated for 100 seconds, with 

a simulation step length of 0.0001 second, i.e., there are 1,000,001 data points in the simulation. 

The gains of the standard PID controller are tuned according to the approach proposed in [26], with 

𝑘𝑝 = 7, 𝑘𝑖 = 1.7 and 𝑘𝑑 = 1.8. The spike-based PID controller employs the same controller gains as 

the standard controller. 

The simulation settings are shown in the following table. 

 

Table 4.1. Simulation parameters. 

Parameter Explanation Value 

𝑻𝒔𝒊𝒎  Overall simulation time 100 seconds 

𝒅   Sampling period 1×10-4 seconds 

𝜹  IF neuron threshold 0.1 

𝒃  IF neuron bias 2 

𝑪  IF integration constant 1 

 

The error signal 𝑒(𝑡)  and system output signal 𝑦(𝑡)  are encoded using single-channel IF-TEMs 

with same parameters. These encoded signals are decoded in real-time using the fast decoding algorithm 

proposed in Chapter 3. 

4.5.1. Step response 

Here is the simulation of the closed-loop system where the reference is a unit step signal with the step 

time of 𝑡 = 0𝑠. 

The reference signal and final closed-loop system outputs are shown in Fig. 4.4. 

𝑘𝑖 = 0, 𝑘𝑑 = 0
mall 𝑘𝑝

Apply test signal

Raise 𝑘𝑝 until 

overshoot is 10 
without ringing

Raise 𝑘𝑑 until 

overshoot is 

eliminated

Too noisy?

Raise 𝑘𝑖 until 

overshoot is 15 

Reduce 𝑘𝑑 or 𝑘𝑝

Finish
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Fig. 4.4. Standard closed-loop system output (red) and spike-based closed-loop system output (black). The settling 

time of the standard system is 1.07 seconds and the settling time of the spike-based system is 1.19 seconds.  

 

The figure shows that the spike-based system starts responding later than the standard system, since 

the TEM for error signal 𝑒(𝑡) has not output its second spike and the spike-based PID controller requires 

at least two spikes to propel. Also, the spike-based system has faster responding speed at the beginning, 

while the standard system’s output is smoother after 0.6 second. The settling times of two systems are 

close and both systems do not have steady-state error, which indicates that the spike-based system has 

the same tracking speed as the standard system. 

 

The outputs of the conventional and spike-based PID controllers are shown in Fig. 4.5.  

 

Fig. 4.5. The outputs of conventional (red) and spike-based (black) PID controllers.  

 

The spike-based PID controller has a more oscillatory control input. This is because the spike-based 

control input is held between estimation points and is not updated continuously, which leads to additional 

control error.  
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Fig. 4.6 shows output errors of the conventional and spike-based PID control systems. 

 

Fig. 4.6. Conventional closed-loop system output error (red) and spike-based closed-loop system output error 

(black). The normalized output error is given by 𝑒𝑟(𝑡) =
𝑟(𝑡)−𝑦(𝑡)

‖𝑟(𝑡)‖2
. 

 

The errors of both spike-based and standard system converge to zero and the two systems have close 

convergency speed. 

 

Here is the difference between the standard closed-loop system and the spike-based closed-loop system 

with same PID gains. The difference is shown in Fig. 4.7. 

 

Fig. 4.7. Difference between the outputs of the conventional system and the spike-based control system. 

 

These two systems have a larger difference from 0 to 1 second. The difference is small compared 

with the reference signal and decreases along the time. 

4.5.2. Reference tracking 

The spike-based network control was evaluated on a reference tracking control problem where the 

input reference 𝑟(𝑡)  is a bandlimited signal that is a superposition of 10 sinusoidal signals with 
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uniformly distributed amplitude and frequency in the range of [−0.1,0.1]  and (0, 2]  (rad/s) 

respectively. The same controllers defined in Section 4.5.1 are employed here. 

The reference tracking performance of the conventional and spike-based control systems are illustrated 

in Fig. 4.8. 

 

Fig. 4.8. Reference (blue), standard closed-loop system output (red) and spike-based closed-loop system output 

(black). 

 

It is shown that both systems can track the reference very well and they have high responding speeds. 

To this respect, a spike-based closed-loop system can be applied to replace a standard system. 

 

The standard PID control input and spike-based PID control inputs are shown in Fig. 4.9. 

 

Fig. 4.9. Standard closed-loop system PID control input (red) and spike-based closed-loop system PID control 

input (black). 

 

The control input of the spike-based PID controller is close to that of the standard controller. The 

spike-based control input has some jitter, yet it is still at the same level as the standard control input, 

which will not significantly increase the challenge of an actuator. 
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Fig. 4.10 shows the normalized output error of the conventional and spike-based PID control systems.  

 

Fig. 4.10. Standard closed-loop system output error (red) and spike-based closed-loop system output error (black). 

The Mean Squared Error of the standard closed-loop system is 3.55 × 10−8.  

 

The Mean Squared Error of the spike-based closed-loop system is 3.66 × 10−8, which is close to that 

of the standard system. This indicates that although the spike-based control input signal is slightly 

different from the standard control input signal, the spike-based process can track the reference well and 

model the standard system. 

 

The difference between the outputs of the conventional and the spike-based closed-loop system with 

identical PID gains is shown in Fig. 4.11. 

 

Fig. 4.11. Difference between the outputs of the conventional and the spike-based PID control systems. 

 

The difference is large at the beginning, since the spike-based controller requires at least two spikes to 

be propelled. The result indicates that the spike-based system can model the standard system at a high 

accuracy. 
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4.5.3. Noise rejection 

In order to assess the robustness of the spike-based PID control systems, simulations are conducted 

where both measurement noise affecting the output signal 𝑦(𝑡) and the spike times {𝑡𝑘} are taken into 

account. 

Meas rement no se a  e  to s stem o tp t 

The measured output is given by 

�̂�(𝑡) = 𝑦(𝑡) + 𝜉(𝑡)                            (4.17) 

where 𝜉 is a Gaussian white noise process with zero mean and standard deviation of 0.01. The Signal 

to Noise Ratio is approximately 20.4 dB. The resulting noisy output signal is shown in Fig. 4.12. 

 

Fig. 4.12. Noised feedback signal �̂�(𝑡). 

 

Fig. 4.13 provides a comparative illustration of the system outputs for both spike-based PID control 

systems, one with the presence of measurement noise and the other without it. 

 

Fig. 4.13. Spike-based control system output (black) without senser noise, and the system output (red) with noise. 

 

It is shown that the final output of the system with sensor noise is significantly close to that of the 

system without noise. Therefore, it can be concluded that the noise has very limited effect on the system’s 
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output. 

 

 

Fig. 4.14. Relative difference 𝑑𝑟(𝑡) between the outputs of the spike-based system and the system with sensor 

noise. The relative different 𝑑𝑟(𝑡) is defined as 𝑑𝑟(𝑡) =
�̂�(𝑡)−𝑦(𝑡)

‖𝑦(𝑡)‖2
, where �̂�(𝑡) is the output of the spike-based 

system with sensor noise, 𝑦(𝑡) is the output of the spike-based system without sensor noise. 

 

It is shown that the difference between the outputs of two systems is very small. This occurs because 

the integrate-and-fire time encoding acts as a low-pass filter, thereby endowing the encoding process 

with robustness against noise. 

Meas rement no se a  e  to sp  e-t me seq ence 

The transmitted sequence of spike-times is given by 

�̂�𝑘 = 𝑡𝑘 + 𝜁𝑘 ,   𝑘 = 1,2,3, …                        (4.18) 

where 𝜁𝑘 are Gaussian distributed with zero mean and standard deviation of 0.001. The Signal to Noise 

Ratio is approximately 46 dB. 

Fig. 4.15 provides a comparative illustration of the system outputs for both spike-based PID control 

systems, one with the presence of measurement noise and the other without it. 
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Fig. 4.15. Output of the spike-based PID in the case of noise-free (red) and noisy (black) spike timings. 

 

The result shows that the system is affected by the noise. The spike timing noise causes the decoding 

error of the signals, which leads to the tracking error of the system. Nevertheless, the PID process is able 

to correct the tracking error and the noisy system can still track the reference. 

 

 

Fig. 4.16. Relative difference 𝑑𝑟(𝑡) between the outputs of the spike-based control system and the system with 

 spike time jitter. 

 

The figure shows that the difference between the noise-free and noisy systems are close to each other. 

Therefore, it can be concluded that the effect of the spike time jitter is limited. 
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Fig. 4.17.a). System output error 𝑒(𝑡) and its 

decoding using the fast algorithm proposed 

in Chapter 2.

Fig. 4.17.b). Decoding error caused by the 

measurement noise of spike times. 

 

 

It is shown that the spike timing noise has effect on the system output, which is caused by the decoding 

process. The noise of spike arriving times leads to the error of decoding. For example, in Fig. 4.16.a) and 

b), the system output error signal 𝑒(𝑡) is encoded using a TEM and decoded using the fast algorithm. 

The decoding algorithm refers to the spike times, which is noisy due to the measurement noise. The 

resulting decoding error furtherly leads to the error of data transmission. Nevertheless, the system is 

robust to the spike timing noise. Here, the ratio between the relative difference norm and the relative 

decoding error norm is calculated as follows: 

The relative difference is defined as 

𝑑𝑟(𝑡) =
�̂�(𝑡)−𝑦(𝑡)

‖𝑦(𝑡)‖2
,                              (4.19) 

where �̂�(𝑡) is the output of the spike-based system with spike timing noise, 𝑦(𝑡) is the output of the 

spike-based system without spike timing noise. The relative difference 𝑑𝑟(𝑡) indicates the effect of the 

spike timing noise on the system output. 

The relative decoding error of is defined as 

𝑒𝑒 =
�̃�(𝑡)−𝑒(𝑡)

‖𝑒(𝑡)‖2
,   𝑘 = 1,2,3, …                        (4.20) 

The relative decoding error 𝑒𝑒 indicates the effect of the spike timing noise on the decoded error 

signal 𝑒(𝑡). 

The ratio between the relative difference norm and the relative decoding error norm is calculated as 

𝑟𝑎𝑡𝑖𝑜𝑑𝑟,𝑒𝑒 =
‖𝑑𝑟(𝑡)‖2

‖𝑒𝑒‖2
.                            (4.21) 

In this simulation, the ratio is 𝑟𝑎𝑡𝑖𝑜𝑑𝑟,𝑒𝑒 = 0.035, which shows that the effect of the spike timing 

noise on the system output is small compared with the effect of the spike timing noise on the decoded 

error signal 𝑒(𝑡). This indicates that although the spike timing noise leads to decoding error, the system 

is still robust to this noise. This because the PID control system tracks the reference and corrects the 

decoding error. 
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4.6. Conclusion 

This chapter introduced a spike-based networked control system that uses time encoding to transmit 

the control system output and the control error that is used by a spike-based PID to compute the control 

actions. The spike-based network control system has several advantages compared with a conventional 

system including energy efficiency, robustness to noise, sparse-representation of signals and simpler 

devices for encoding and decoding of signals. 

 A key element of the network control system is a novel spike-based PID control law that relies on 

real-time decoding algorithm introduced in Chapter 3. The PID control terms were formulated in terms 

of the spike times corresponding to the encoded error signal and uniform error bounds were derived for 

each control term. A methodology for tuning the gains of the PID controller was introduced and 

demonstrated through numerical simulations. It has shown that the spike-based control system met the 

performance specification and that the error between the control system outputs corresponding to the 

conventional and spike-based implementation was very small.  

The robustness of the spike-based control system to measurement errors, in respect to the system 

output and the timing of the transmitted spike code, was also investigated using numerical simulations. 

It has shown that the spike-based system exhibited very good measurement noise rejection properties 

due to the integrate-and-fire TEM acted as a low-pass filter and it minimized the effects of the system 

output measurement noise. Separately it has shown that the control system was also quite robust to spike 

time errors i.e., spike-time jitter.   
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Chapter 5 

 Spiking signal processing using identified models  
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5.1. Introduction 

Time encoding of continuous-time signals using Time Encoding Machines, offers an alternative 

sampling paradigm that eliminates the need for a global clock to synchronise sampling the continuous 

signals and processing the resulting discrete-time signals. When the sequence of non-uniform time 

instants obtained using an IF-TEM corresponds to a spike train, the natural way to process the spike train 

is using Spiking Neural Networks and neuromorphic computing architectures [27]. 

However, the discrete sequence of inter-spike intervals {𝑡𝑘+1 − 𝑡𝑘}𝑘∈𝐙+ can be treated as an ordinary, 

non-uniformly sampled time series, which offers the opportunity to implement asynchronous signal 

processing of the non-uniform time series. A major advantage is that asynchronous circuits do not need 

to wait for clock signals and being event-driven. They do not consume energy unless there is data to 

process.  Compared with conventional, non-uniform sampling, which generate both amplitude and 

timing information, time encoding using TEMs only generate time samples, with the inter-spike intervals 

carrying all the information needed to reconstruct the original signal.   

Implementing signal processing operations on the time encoded signals requires designing suitable 

‘filters’ that replicate the characteristics of conventional filters, that is the filtered time encoded signal 

after the reconstruction should approximate as closely as possible the continuous-time signal filtered 

using a conventional analogue filter. 

 

Fig. 5.1. Data transmission of the time-encode filter and the analogue filter. 

 

This chapter introduces a system identification framework for designing asynchronous filters for 

processing time encoded signals generated using IF-TEMs.  

The idea is to map the analog linear or nonlinear filter applied to a continuous-time signal onto 

equivalent time-encode filter that processes the discrete time series of spike-time intervals, generated by 

an IF-TEM, using system identification. Specifically, the time-code filters are identified based on input 

and output spike train intervals {𝑡𝑘
𝑢−𝑡𝑘−1

𝑢 }  and {𝑡𝑘
𝑦
−𝑡𝑘−1

𝑦
}  respectively, obtained by encoding a 

predefined input 𝑢(𝑡) and the response 𝑦(𝑡) of the analogue filter to this input, using an IF-TEM.  

The identified time-code filters can be used as building blocks, to implement signal processing 

operations of time encoded signals in the same way basic analog and digital signal processing blocks are 

used to process continuous- or uniformly-sampled discrete-time signals.  

This chapter is organized as follows. Section 5.2 introduces an alternative formulation of the non-

uniform time encoding of a signal 𝑢(𝑡)  using an IF-TEM as the uniform sampling operation of an 

auxiliary function. Section 5.3 introduces the proposed system identification framework. Section 5.4 

presents the case study of the identification and simulations of encoded-input-encoded-output models. 

Section 5.5 introduces the causality problem introduced by the model and provides the solution. Section 

TDMIF TEM
Time-encode 

Filter

Analogue Filter
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5.6 draws the conclusions. 

5.2. IF-TEM encoding as a uniform sampling operation 

According to Chapter 3, the time encoded signal can be recovered to a continuous signal in real-time 

using the fast algorithm. Therefore, the encoded signal {𝑡𝑘}𝑘∈𝐙+ can be utilized to transmit data in a 

real-time system. The data transmission method using original continuous signal measures a two-

dimensional signal: time 𝑡 and signal value 𝑢(𝑡). While the method using decoded signal {𝑡𝑘}𝑘∈𝐙+ 

measures a signal with only dimension: spike interval {𝑡𝑘+1 − 𝑡𝑘}𝑘∈𝐙+ . Also, the method using decoded 

signal has a lower energy cost, which has been proved in the previous chapter. 

The IF time encoding algorithm integrates the original signal 𝑢(𝑡) and outputs a spike each time the 

integral reaches the threshold [3]. This is a nonuniform sampling in time, since the TEM does not output 

spikes isochronally. However, according to [16], if the axis is reversed, the time encoding process can be 

treated as a uniform sampling of integral (see Fig. 5.2). Let a function 𝑦 = 𝑓(𝑡) be: 

𝑦 = 𝑓(𝑡) =
1

𝐶
∫ (𝑢(𝜏) + 𝑏)𝑑𝜏
𝑡

0
,                         (5.1) 

then 𝑦(𝑡)  is the integral of the signal 𝑢(𝑡) . The IF time encoding algorithm samples 𝑦(𝑡) 

nonuniformly when 𝑦(𝑡) = 𝑘 ∙   , 𝑘 = 1,2, … . However, if the axis is reversed as Fig. 5.2 shows, it 

follows that the sampling of the inverse function is uniform. 

The inverse function 𝑡 = 𝑓−1(𝑦) is sampled in value 𝑦, and the sampling step interval is threshold 

 . At each sampling step, the TEM outputs a spike and the sampling value is the spike interval, i.e., the 

difference between the two consecutive spike arriving times.  

 

Fig. 5.2. Inverse uniform sampling of the integral. 

 

According to Theorem 1 of [16]: 

Let 𝑦(𝑡) ≜ ∫ (𝑢(𝜏) + 𝑏)𝑑𝜏
𝑡

0
. It follows that 𝑦 has an inverse 𝜓 such that 

𝐿𝑘
𝐷�̅�′ = �̅�𝑘 , ∀𝑘 ∈ 𝑍,                              (5.2) 

where 𝐿𝑘
𝐷�̅�′ = ∫ (�̅�′(𝑦))𝑑𝑦

(𝑘+1)�̅�

𝑘�̅�
, �̅�(𝑦) ≜ 𝜓(𝑦) −

𝑦

𝑏
, 𝐷 = {𝑘 ̅}

𝑘∈𝑍
,  ̅ =  ∙    

and �̅�𝑘 ≜ (𝑡𝑘+1 − 𝑡𝑘) −
�̅�

𝑏
. 

Therefore, the encoded spike interval 𝑡𝑘+1 − 𝑡𝑘 can be expressed as 

𝑦

𝑡 𝑡 = 𝑓−1(𝑦)

𝑂

𝑡1

 2 3 4 5 6 7 8 

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6
𝑡7
𝑡8
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𝑡𝑘+1 − 𝑡𝑘 = 𝐿𝑘
𝐷�̅�′ +

  

𝑏
 

=  𝜓′(𝑦)𝑑𝑦
(𝑘+1)�̅�

𝑘�̅�

 

= 𝜓((𝑘 + 1) ̅) − 𝜓(𝑘 ̅), 𝑘 = 1,2,3… 

(5.3) 

By applying the fast reconstruction algorithm, the sampled signal, i.e., spike intervals {𝑡𝑘+1 − 𝑡𝑘}𝑘∈𝐙+  

can be recovered to continuous signal in real-time. Therefore, the encoded spike train {𝑡𝑘}𝑘∈𝐙+  can 

transmit data in the format of spike intervals {𝑡𝑘+1 − 𝑡𝑘}𝑘∈𝐙+. A real-time spike-based system can be 

realized if a filter which responds to the spike intervals and also has spiking outputs is designed. 

5.2.1. Time encoding of Linear Time Invariant dynamical systems 

 A linear time invariant (LTI) system is a system that is both linear and time-invariant [28] where the 

response 𝑦(𝑡) to an arbitrary input 𝑢(𝑡) can be given directly using convolution [29]. 

Define ℎ(𝑡) as the impulse response of this system. The impulse response of the system is the output 

of the system when respond to an impulse signal input  (𝑡). A unit impulse signal at 𝑡 = 𝑡0 is defined 

as 

 (𝑡 − 𝑡0) = {
+∞, 𝑡 = 𝑡0
0,              𝑡 ≠ 𝑡0

 

and ∫  (𝑡 − 𝑡0)𝑑𝑡
+∞

−∞
= 1.                           (5.4) 

Then the response 𝑦(𝑡) to an arbitrary input 𝑢(𝑡) of a LTI system is given by 

𝑦(𝑡) = (𝑢 ∗ ℎ)(𝑡),                              (5.5) 

where ∗ is the convolution operation and ℎ(𝑡) is the impulse response of this system. 

The response 𝑦(𝑡) to input 𝑢(𝑡) is given by 

𝑦(𝑡) = (𝑢 ∗ ℎ)(𝑡) = ∫ 𝑢(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
= ∫ 𝑢(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏

+∞

−∞
.         (5.6) 

Here, the input signal 𝑢(𝑡) and output signal 𝑦(𝑡) of this LTI system are encoded using an IF-TEM 

into time sequences {𝑡𝑘
𝑢}𝑘∈𝒁+ and {𝑡𝑘

𝑦
}
𝑘∈𝒁+

, respectively. 

The biased integrals of 𝑢(𝑡) and 𝑦(𝑡) are defined as 

𝑣(𝑡) ≜ ∫ (𝑢(𝜏) + 𝑏)𝑑𝜏
𝑡

0
,                            (5.7) 

𝑤(𝑡) ≜ ∫ (𝑦(𝜏) + 𝑏)𝑑𝜏
𝑡

0
.                            (5.8) 

According to (5.3), it follows that 

𝑡𝑘+1
𝑢 − 𝑡𝑘

𝑢 = 𝜓𝑢 ((𝑘 + 1) ̅) − 𝜓𝑢(𝑘 ̅),                      (5.9) 

𝑡𝑘+1
𝑦

− 𝑡𝑘
𝑦
= 𝜓𝑦 ((𝑘 + 1) ̅) − 𝜓𝑦(𝑘 ̅),                     (5.10) 

where 𝑘 = 1,2,3…, 𝜓𝑢(𝑣) is the inverse of 𝑣(𝑡) and 𝜓𝑦(𝑤) is the inverse of 𝑤(𝑡), which are the 

encoded input and output signal, respectively. 

Since 𝜓𝑦  is the inverse of 𝑤(𝑡), it gives that 

𝜓𝑦(𝑘 ̅) = 𝑡𝑘
𝑦
.                               (5.11) 

Therefore, the encoded output is given by 

𝜓𝑦(𝑘 ̅) = 𝑖 𝑣(𝑤)(𝑡𝑘
𝑦
) 

https://en.wikipedia.org/wiki/System
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= 𝑖 𝑣 ( (𝑦(𝑡) + 𝑏)𝑑𝑡
𝑡 
𝑦

0

) 

= 𝑖 𝑣 ( ((𝑥 ∗ ℎ)(𝑡) + 𝑏)𝑑𝑡
𝑡 
𝑦

0

) 

= 𝑖 𝑣 ( ( 𝑢(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 + 𝑏
+∞

−∞

)𝑑𝑡
𝑡 
𝑦

0

). 

(5.12) 

Also, notice that 𝜓𝑢 is the inverse of 𝑣(𝑡), it holds that 

(𝜓𝑢)′ =
1

𝑣′
=

1

𝑢(𝑡)+𝑏
.                            (5.13) 

Therefore 

𝑢(𝑡) =
1

(𝜓𝑢(𝑣(𝑡)))′
− 𝑏.                           (5.14) 

It follows that 

𝜓𝑦(𝑘 ̅) = 𝑖 𝑣 ( ( 𝑢(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 + 𝑏
+∞

−∞

)𝑑𝑡
𝑡 
𝑦

0

) 

=  𝑖 𝑣 ( ( (
1

(𝜓𝑢(𝑣(𝜏)))′
− 𝑏)ℎ(𝑡 − 𝜏)𝑑𝜏 + 𝑏

+∞

−∞

)𝑑𝑡
𝑡 
𝑦

0

), 

(5.15) 

where 𝑖 𝑣(𝑓) is the inverse function of 𝑓. It also holds that 

(𝜓𝑦)′ = 1/ (∫ (
1

(𝜓𝑢(𝑣(𝜏)))′
− 𝑏)ℎ(𝑡 − 𝜏)𝑑𝜏

+∞

−∞
+ 𝑏).              (5.16) 

These indicate the function of the encoded input 𝜓𝑢 and encoded output 𝜓𝑦 . 

5.2.2. Time encoding of Nonlinear Time Invariant systems 

Define a general nonlinear system: 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝑢),                              (5.17) 

where 𝑓(𝑦, 𝑢) is a nonlinear combination of 𝑦(𝑡) and 𝑢(𝑡).  

According to [51], the nonlinear system can be described using a Volterra Series: 

𝑦(𝑡) = 𝑵𝑢(𝑡) = ℎ0 + ∑ ∫⋯∫ℎ𝑛(𝜏1, … , 𝜏𝑛) ∙ 𝑢(𝑡 − 𝜏1)⋯𝑢(𝑡 − 𝜏𝑛)𝑑𝜏1⋯𝑑𝜏𝑛
∞
𝑛=1 , (5.18) 

where 

∫ ⋯∫ |ℎ𝑛(𝜏1, … , 𝜏𝑛)|𝑑𝜏1⋯𝑑𝜏𝑛
∞

0

∞

0
< ∞.                   (5.19) 

Here, the input signal 𝑢(𝑡) and output signal 𝑦(𝑡) of the nonlinear system are encoded using an IF-

TEM into time sequences {𝑡𝑘
𝑢}𝑘∈𝒁+  and {𝑡𝑘

𝑦
}
𝑘∈𝒁+

, respectively. 

The biased integrals 𝑣(𝑡) and 𝑤(𝑡), as well as the inverse functions 𝜓𝑢 and 𝜓𝑦  are defined as in 

Section 5.2.1. Then the encoded output 𝜓𝑦  is given by 

𝜓𝑦(𝑘 ̅) = 𝑖 𝑣(𝑤)(𝑡𝑘
𝑦
) 

= 𝑖 𝑣 ( (𝑦(𝑡) + 𝑏)𝑑𝑡
𝑡 
𝑦

0

) 
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= 𝑖 𝑣 ( (𝑵𝑢(𝑡) + 𝑏)𝑑𝑡
𝑡 
𝑦

0

) 

= 𝑖 𝑣 ( (𝑏 + ℎ0

𝑡 
𝑦

0

+∑ ⋯
+∞

0

  ℎ𝑛(𝜏1, … , 𝜏𝑛) ∙ 𝑢(𝑡 − 𝜏1)⋯𝑢(𝑡 − 𝜏𝑛)𝑑𝜏1⋯𝑑𝜏𝑛

+∞

0

∞

𝑛=1

)𝑑𝑡). 

(5.20) 

Considering that 𝑢(𝑡) =
1

(𝜓𝑢(𝑣(𝑡)))′
− 𝑏, 𝜓𝑦(𝑘 ̅) can be furtherly given by 

𝜓𝑦(𝑘 ̅) = 𝑖 𝑣 ( (𝑏 + ℎ0

𝑡 
𝑦

0

+∑ ⋯
+∞

0

  ℎ𝑛(𝜏1, … , 𝜏𝑛)
+∞

0

∞

𝑛=1

∙ (
1

(𝜓𝑢(𝑣(𝑡 − 𝜏1)))′
− 𝑏)⋯(

1

(𝜓𝑢(𝑣(𝑡 − 𝜏𝑛)))′
− 𝑏) 𝑑𝜏1⋯𝑑𝜏𝑛)𝑑𝑡) 

(5.21) 

and  

(𝜓𝑦)′ = 1/(𝑏 + ℎ0

+∑ ⋯
+∞

0

  ℎ𝑛(𝜏1, … , 𝜏𝑛)
+∞

0

∞

𝑛=1

∙ (
1

(𝜓𝑢(𝑣(𝑡 − 𝜏1)))′
− 𝑏)⋯ (

1

(𝜓𝑢(𝑣(𝑡 − 𝜏𝑛)))′
− 𝑏) 𝑑𝜏1⋯𝑑𝜏𝑛). 

(5.22) 

These indicate the function of the encoded input 𝜓𝑢 and encoded output 𝜓𝑦  of the nonlinear system. 

5.3. System identification methodology 

The aim is to derive a model for the time encoded output of the dynamical system as a function of the 

time encoded input using system identification. 

The general encoded-input-encoded-output (EIEO) model is given by 

𝑌(𝑘) = 𝐹[𝑌(𝑘 − 1), 𝑌(𝑘 − 2), … , 𝑌(𝑘 −  𝑦), 𝑈(𝑘 − 𝑑), 𝑈(𝑘 − 𝑑 − 1), … , 𝑈(𝑘 − 𝑑 −  𝑢),

𝑒(𝑘 − 1), 𝑒(𝑘 − 2), … , 𝑒(𝑘 −  𝑒)] + 𝑒(𝑘), 

(5.23) 

where 𝑌(𝑘) = 𝑡𝑘
𝑦
− 𝑡𝑘−1

𝑦
, 𝑈(𝑘) = 𝑡𝑘

𝑢 − 𝑡𝑘−1
𝑢  and 𝑒(𝑘) is the noise sequence [30]. 

The model is identified using encoded input and output spike times obtained by simulation of the 

dynamical system of interest. 

Let 𝑢(𝑡) and 𝑦(𝑡) be the input and output of a continuous real-time system 𝐺, respectively. 𝑢(𝑡) 

and 𝑦(𝑡)  are encoded using IF-TEMs (TEM settings for 𝑢(𝑡)  and 𝑦(𝑡)  are same), and the TEMs 
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output two spike trains {𝑡𝑘
𝑢}𝑘∈𝐙+  and {𝑡𝑘

𝑦
}
𝑘∈𝐙+

  in real-time. Let 𝑈(𝑘)𝑘∈𝐙+  and 𝑌(𝑘)𝑘∈𝐙+  be the 

sampled spike time intervals of {𝑡𝑘
𝑢}𝑘∈𝐙+ and {𝑡𝑘

𝑦
}
𝑘∈𝐙+

, respectively. 

Fig. 5.3 shows the identification architecture. 

 

Fig. 5.3. Block diagram of the identification architecture. 

 

As shown in Fig. 5.3, the encoded input and output 𝑈(𝑘) and 𝑌(𝑘) are utilized to identify the model 

of (5.23). 

The identified EIEO model can be used to implement filtering operations on the encoded signals. 

As shown in Fig. 5.4, the original input signal 𝑢(𝑡) is firstly encoded to a spike train {𝑡𝑘
𝑢}𝑘∈𝐙+ that 

is processed using the identified EIEO. The filter output �̃�(𝑘) is decoded to a continuous signal  �̃�(𝑡) 

using the fast reconstruction algorithm in real-time. The continuous signal �̃�(𝑡) should model the 

standard 𝑦(𝑡). Therefore, the encoded signal 𝑌(𝑘) is utilized for the identification as shown in Fig. 

5.3. 

 

Fig. 5.4. Block diagram of the filtering architecture. 

 

5.3.1. System identification using Hammerstein-Wiener models 

A Hammerstein model has a nonlinear block preceding a linear block [31], while a Wiener model has 

a nonlinear block following a linear block [32]. A Hammerstein-Wiener model is a combination of a 

Hammerstein model and a Wiener model, which has nonlinear blocks preceding and following a linear 

model [33]. The block diagram of a Hammerstein-Wiener model is shown below. 

 

Fig. 5.5. Structure of a Hammerstein-Wiener model. 

𝐺
𝑢(𝑡) 𝑦(𝑡)

TEM

Identification
𝑈(𝑘) 𝑌(𝑘)

TEM

𝐺

TEM TDM

EIEO filter

𝑢(𝑡)

𝑈(𝑘) �̃�(𝑘)

𝑦(𝑡)

�̃�(𝑡)

Input  

nonlinearity
Linear block

Output  

nonlinearity

Model input Model output
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The transfer function [31] of the discrete linear block is given by 

𝑁(𝑧)

𝐷(𝑧)
=

𝛼0+𝛼1𝑧
−1+⋯+𝛼𝑛−1𝑧

−(𝑛−1)

1+𝛽1𝑧
−1+⋯+𝛽𝑛𝑧

−𝑛 .                         (5.24) 

𝛼𝑖 and 𝛽𝑗 are parameters to be approximated.   is selected manually. 

 

The input and output nonlinear blocks can be estimated using one-dimensional polynomials [31]: 

𝑦(𝑡) = 𝛾1𝑥(𝑡) + 𝛾2𝑥
2(𝑡) + ⋯+ 𝛾𝑚𝑥

𝑚(𝑡),                   (5.25) 

where 𝑥(𝑡)  and 𝑦(𝑡)  are the input and output of the nonlinear block, respectively. The model is 

estimated by approximating the parameters 𝛾1, 𝛾2, … , 𝛾𝑚. The order of the nonlinearity 𝑚 is selected 

manually.  

Also, the input and output nonlinearities can be represented using piece-wise linear functions [34]. A 

piece-wise linear function has break points 𝑝1 , 𝑝2, … , 𝑝𝑛. The function is linear between break points, 

i.e., a piece-wise linear function is a connection of a series of linear functions. The model is estimated 

by approximating the locations of the break points [34]. 

5.3.2. Data generation and model estimation 

In this chapter, a random band-limited input signal 𝑢(𝑡)  is generated for the system. 𝑢(𝑡)  is 

generated using a uniformly distributed white noise signal, which is filtered using a 10-order band-pass 

filter. The random input signal 𝑢(𝑡) and the system output 𝑦(𝑡) are encoded using IF-TEMs with same 

parameters. The resulting encoded input and output signals 𝑈(𝑘)  and 𝑌(𝑘)  are utilized as the 

estimation data for identification. 

The linear block of the Hammerstein-Wiener model is structured as (5.24). The input and output 

nonlinearities are selected as either one-polynomials or piece-wise linear functions. 

The identification is carried out by approximating the parameters in the linear block (5.24) and the 

parameters of the nonlinearities. According to Section 5.3.1, the following parameters are to be 

approximated: 

 Parameters of the linear block: 𝛼0, 𝛼1, … , 𝛼𝑛−1 and 𝛽1, 𝛽2, … , 𝛽𝑛 of (5.24). 

 Parameters of the input and output nonlinear functions: 𝛾1, 𝛾2, … , 𝛾𝑚 of (5.25) or the location 

of break points of the piece-wise linear function(s) (𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎𝑝, 𝑏𝑝). 

The approximation methodology can be selected as Gauss-Newton method [24, 25] or Gradient Decent 

method [35]. 

Ga ss-Newton metho  

The Gauss-Newton method minimizes the squared sum of the residuals ∑ 𝑟𝑖
2𝑁

𝑖=1   by iteratively 

optimize the parameters [36]. The residual 𝒓 = [𝑟1, 𝑟2, … , 𝑟𝑁]
T is defined as 

𝑟𝑖(𝜽) = 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜽),                           (5.26) 

where 𝑁  is the number of data points, 𝜽 = [𝜃1, 𝜃2, … , 𝜃𝑚]
T  is the parameter vector, 𝑥𝑖  is the 𝑖 th 

system input signal, 𝑦𝑖  is the 𝑖th system output signal and 𝑓(∙) is the estimated model with parameters 

𝜽. 

Then Gauss-Newton method is given iteratively by  
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𝜽(𝑛+1) = 𝜽(𝑛) + (𝑷T𝑷)−1𝑷T𝒓(𝜽(𝑛)),                     (5.27) 

with an initial estimation 𝜽(0). 

𝑷 is given by 

(𝑷)𝑖𝑗 = −
𝜕𝑟𝑖(𝜽

(𝑛))

𝜕𝜃𝑗
                             (5.28) 

and (𝑷T𝑷)−1𝑷T denotes the pseudo-inverse of 𝑷. 

Gra  ent Decent metho  

Gradient Decent method minimizes an objective function which is in the form of a squared sum, by 

the approach of updating the parameters in the opposite direction of the gradient of the objective function 

[35]. The definition of the objective function 𝑱(𝜽) varies with the mode of the algorithm, where 𝜽 =

[𝜃1, 𝜃2, … , 𝜃𝑚]
T is the set of parameters. 

 For the Batch Gradient Decent method, the parameters 𝜽 are updated using the gradients of all 

the dataset [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)]. 

The objective function 𝑱(𝜽) is defined as 

𝑱(𝜽) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜽))
2𝑁

𝑖=1 ,                        (5.29) 

where 𝑓(∙) is the estimated model with parameters 𝜽. 

 For the Stochastic Gradient Descent method, the parameters 𝜽 are updated using the gradients 

of each training data (𝑥𝑖 , 𝑦𝑖). 

The objective function 𝑱(𝜽) is defined as 

𝑱(𝜽) = (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜽))
2
.                          (5.30) 

 For the Mini-Batch Gradient Descent method, the parameters 𝜽  are updated using the 

gradients of a range of the training data  [(𝑥𝑗+1, 𝑦𝑗+1), (𝑥𝑗+2, 𝑦𝑗+2), … , (𝑥𝑗+𝐾 , 𝑦𝑗+𝐾)]. 

The objective function 𝑱(𝜽) is defined as 

𝑱(𝜽) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜽))
2𝑗+𝐾

𝑖=𝑗 .                        (5.31) 

With an initial estimation 𝜽(0), the parameter set 𝜽 is iteratively given by 

𝜽(𝑛+1) = 𝜽(𝑛) − 𝜂
𝜕𝑱

𝜕𝜽(𝑛)
,                           (5.32) 

where 𝜂 is a constant step length of approximation. 

5.4. Numerical study 

In this section, the numerical study of different EIEO models of linear and nonlinear filters is carried 

out. The simulation is carried out using MATLAB. The outputs of the EIEO models are spiking signals 

𝑌(𝑘). For the validation of the identified models, the EIEO model outputs 𝑌(𝑘) are decoded using the 

fast algorithm and the decoded model outputs are compared with standard system outputs. This section 

also addresses a causality problem introduced by the EIEO model and presents a solution to this problem. 

Herer are the identification of four different linear systems: 

 A first-order system with one zero; 

 A second-order system without zero; 
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 A second-order system with one zero; 

 A second-order system with two zeroes. 

The identification is carried using the encoded input 𝑈(𝑘)  and encoded output 𝑌(𝑘) . The 

identification is to model the behaviour the EIEO model of the systems. Here, the validation of the EIEO 

model is presented, and the final real-time decoded output signals to show the performance of the 

identified model. 

The MATLAB simulation is carried out using 1000001 data points, with 100 seconds of total 

simulation time and 0.0001 second of step length of simulation. The sampling time of the system block 

is 0.001 second. 

The random input is generated using a uniformly distributed white noise signal, which is filtered using 

a 10-order band-pass filter. The passband frequency of the filter is 0.05~1.5 rad/s. The input and output 

signals of the systems are encoded using IF-TEMs with same parameters.  

Parameter settings of the IF-TEMs are shown in the following table. 

 

Table 5.1. IF-TEM parameters. 

Parameter Value Description 

   0.75 IF neuron threshold 

𝑏  2 IF neuron bias 

   1 IF integration constant 

 

The simulation results are shown below. 

Example 1. F rst or er L near S stem 

The transfer function of the system is 

𝐺(𝑧) =
�̂�(𝑧)

𝑢(𝑧)
=

6𝑧−5.994

𝑧−0.99
, 𝑇𝑠 = 0.001𝑠,                    (5.33) 

where �̂�(𝑧) and �̂�(𝑧) stand for the z-transform of the input signal 𝑢(𝑡) and output signal 𝑦(𝑡) of the 

system. 

The encoded input spike interval 𝑈(𝑘) is utilized as the model input, while the encoded output spike 

interval 𝑌(𝑘) is utilized as the model output. The data for estimation and validation are shown in Fig. 

5.6. 
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Fig. 5.6. Input signal 𝑈(𝑘) (blue) and output signal 𝑌(𝑘) (red). The estimation data and validation data are 

divided by the dashed line. 

 

The system is identified using Hammerstein-Wiener model. 

The linear block of the model is 

𝑥𝑜𝑢𝑡(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑥𝑖𝑛(𝑘) + 𝑒(𝑘),                        (5.34) 

where 

  𝐵(𝑧) = −1.161𝑧−4 + 𝑧−5 + 1.155𝑧−6 − 1.006𝑧−7 

  𝐹(𝑧) = 1 − 1.064𝑧−1 − 0.8479𝑧−2 + 1.083𝑧−3 − 0.1332𝑧−4,      (5.35) 

and  𝑏 = 7,  𝑓 = 4,  𝑘 = 1. 

The input nonlinearity is piecewise-linear with 8 break points and the output nonlinearity is piecewise-

linear with 7 break points: 

Break points of input nonlinearity Break points of output nonlinearity 

(0.0317,−0.0071) (−0.0120,0.0765) 

(0.0335,−0.0044) (−0.0008,0.0394) 

(0.0354,−0.0021) (0.0010,0.0356) 

(0.0380,0.0004) (0.0031,0.0322) 

(0.0404,0.0022) (0.0084,0.0262) 

(0.0426,0.0036) (0.0145,0.0284) 

(0.0447,0.0047) (0.0206,0.0354) 

(0.0479,0.006)   

 

The identified model of the system is a spike-based filter, which has spiking input and output. The 

input to the model is the encoded signal {𝑡𝑘
𝑢} and the output of the model is {𝑡𝑘

𝑦
}. 

The identification results are shown in Fig. 5.7. The relative error is the error divided by the 2-norm 
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of 𝑌(𝑘). 

 

Fig. 5.7.a). Measured 𝑌(𝑘) (red) and identified model output (black), where �̃�(𝑘) is the model output of 

the identified model. The estimation data and validation data are divided by the dashed line.  

b). Relative error (𝑒𝑟 =
�̃�(𝑘)−𝑌(𝑘)

‖𝑌(𝑘)‖2
). 

 

The identified model’s output fits the validation data very well with a small relative error. The error is 

small compared with the level of 𝑌(𝑘) and has a zero mean. Therefore, the identified model can be 

applied as an EIEO model. 

 

Fig. 5.8 shows the decoded signals and error. 

 

Fig. 5.8.a) Measured output 𝑦(𝑡) (red) and decoded system output (black).  

b). Relative error. The relative error is defined as 𝑒𝑟 =
�̃�(𝑡)−𝑦(𝑡)

‖𝑦(𝑡)‖2
, where �̃�(𝑡) is the decoded model output using 

the real-time fast algorithm proposed in Chapter 3. 

a) 

 

 

 

 

 

b) 

a) 

 

 

 

 

 

b) 
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Fig. 5.8 shows that the decoded signal is close to the measured signal. The error is small compared 

with the norm of the output. Therefore, the identification is effective and the identified model can be 

employed to replace the analogue filter. 

 

Example 2: Secon - r er S stem 

The transfer function of the system is 

𝐺(𝑧) =
�̂�(𝑧)

𝑢(𝑧)
=

0.00003

𝑧2−1.9405𝑧+0.9405
, 𝑇𝑠 = 0.001𝑠.                 (5.36) 

The encoded input spike interval 𝑈(𝑘) is utilized as the model input, while the encoded output spike 

interval 𝑌(𝑘) is utilized as the model output. The data for estimation and validation are shown below. 

 

Fig. 5.9. Input signal 𝑈(𝑘) (blue) and output signal 𝑌(𝑘) (red). The estimation data and validation data are 

divided by the dashed line. 

 

The system is identified using Hammerstein-Wiener model. 

The linear block of the model is 

𝑥𝑜𝑢𝑡(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑥𝑖𝑛(𝑘) + 𝑒(𝑘),                       (5.37) 

where 

  𝐵(𝑧) = 𝑧−2 

  𝐹(𝑧) = 1 − 𝑧−1,                             (5.38) 

and  𝑏 = 2,  𝑓 = 1,  𝑘 = 1. 

The input nonlinearity is one-dimensional polynomial of degree 1 and the output nonlinearity is 

piecewise-linear with 4 break points. 

Input nonlinearity: 

𝑥𝑜𝑢𝑡(𝑘) = 1.4878𝑥𝑖𝑛(𝑘) − 0.0559                     (5.39) 

Break points of output nonlinearity piecewise-linear: 
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Break points of output nonlinearity 

(−0.8742,0.0297) 
(−0.4746,0.0326) 
(−0.1612,0.0353) 
(0.2253,0.0406) 

 

The identified model of the system is a spike-based filter, which has spiking input and output. The 

input to the model is the encoded signal {𝑡𝑘
𝑢} and the output of the model is {𝑡𝑘

𝑦
}. 

The identification results are shown below. The relative error is the error divided by the 2-norm of 

𝑌(𝑘). 

 

Fig. 5.10.a). Measured 𝑌(𝑘) (red) and identified model output (black). The estimation data and validation data 

are divided by the dashed line. 

b). Relative error of the identified model.  

 

The identification has larger error than the previous first-order system case. The identified model fits 

the estimation data with a smaller error, but the error increases for validation. Notice that the overall error 

is still small compared with 𝑌(𝑘). 

 

Fig. 5.11 shows the decoded signals and error. 

a) 

 

 

 

 

 

b) 
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Fig. 5.11.a). Measured output 𝑦(𝑡) (red) and decoded system output (black). 

b). Relative error.  

 

It is shown in the figure that the decoded signal can model the measured system output. The error is 

large from 65 to 75 second. Despite this, the error is relatively small and has a zero mean. 

 

Example 3: Secon -or er s stem w th one zero 

The transfer function of the system is 

𝐺(𝑧) =
�̂�(𝑧)

𝑢(𝑧)
=

3600𝑧−3599.7

𝑧2−1.872𝑧+0.886
, 𝑇𝑠 = 0.001𝑠,                (5.40) 

The encoded input spike interval 𝑈(𝑘) is utilized as the model input, while the encoded output spike 

interval 𝑌(𝑘) is utilized as the model output. The data for estimation and validation are shown below. 

 

Fig. 5.12. Input signal 𝑈(𝑘) (blue) and output signal 𝑌(𝑘) (red). The estimation data and validation data are 

a) 

 

 

 

 

 

b) 
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divided by the dashed line. 

 

The system is identified using Hammerstein-Wiener model. 

The linear block of the model is 

𝑥𝑜𝑢𝑡(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑥𝑖𝑛(𝑘) + 𝑒(𝑘),                        (5.41) 

where 

  𝐵(𝑧) = 2.295𝑧−1 − 5.111𝑧−2 − 1.645𝑧−3 + 8.629𝑧−4 + 𝑧−5 − 7.17𝑧−6 − 2.285𝑧−7 + 5.158𝑧−8

+ 0.5144𝑧−9 − 1.706𝑧−10 + 0.3204𝑧−11 

  𝐹(𝑧) = 1 − 2.301𝑧−1 − 0.2371𝑧−2 + 3.411𝑧−3 − 0.4691𝑧−4 − 2.426𝑧−5 − 0.2363𝑧−6 + 1.95𝑧−7

− 0.2226𝑧−8 − 0.6838𝑧−9 + 0.04912𝑧−10 + 0.1456𝑧−11 + 0.1557𝑧−12

− 0.1792𝑧−13 + 0.04452𝑧−14, 

(5.42) 

and  𝑏 = 11,  𝑓 = 14,  𝑘 = 1. 

The input nonlinearity is piecewise-linear with 1 break point and the output nonlinearity is piecewise-

linear with 19 break points: 

Break points of input nonlinearity Break points of output nonlinearity 

(0.0396,0.0003) (−0.0163,−0.0830) 

 

 

(−0.0141,−0.0746) 

(−0.0118,−0.0636) 

(−0.0096,−0.0484) 

(−0.0073,−0.0271) 

(−0.0051,−0.0082) 

(−0.0028,0.0166) 

(−0.0002,0.0318) 

(0.0016,0.0833) 

(0.004,−1.5448) 

(0.0062,−2.3383) 

(0.0084,−2.5396) 

(0.0107,−2.3017) 

(0.0129,−1.7773) 

(0.0152,−1.119) 

(0.0174,−0.4797) 

(0.0196,−0.0121) 

(0.0219,0.1318) 

(0.0241,0.0490) 

 

The identified model of the system is a spike-based filter, which has spiking input and output. The 
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input to the model is the encoded signal {𝑡𝑘
𝑢} and the output of the model is {𝑡𝑘

𝑦
}. 

The identification results are shown below. The relative error is the error divided by the 2-norm of 

𝑌(𝑘). 

 

Fig. 5.13.a) Measured 𝑌(𝑘) (red) and identified model output (black). The estimation data and validation 

data are divided by the dashed line. 

b). Relative error of the identified model. 

 

The identified model is shown to be able to model the behaviour of an EIEO model. It is shown that 

the identified model output has some jitters. This is because the linear block is selected with a relatively 

high order. 

 

Fig. 5.14 shows the decoded signals and error. 

 

Fig. 5.14.a). Measured output 𝑦(𝑡) (red) and decoded system output (black). 

b). Relative error. 

a) 

 

 

 

 

 

b) 

a) 

 

 

 

 

 

b) 
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The figure shows that the decoded output can model the measured output, although there are some 

jitters. The decoded output has some error compared with the measured output, but the error is relatively 

small and has a zero mean. 

 

Example 4:  Secon -or er s stem w th two zeros 

The transfer function of the system is 

𝐺(𝑧) =
�̂�(𝑧)

𝑢(𝑧)
=

𝑧2−1.99999𝑧+0.99999

𝑧2−1.9997𝑧+0.9997
, 𝑇𝑠 = 0.001𝑠,              (5.43) 

The encoded input spike interval 𝑈(𝑘) is utilized as the model input, while the encoded output spike 

interval 𝑌(𝑘) is utilized as the model output. The data for estimation and validation are shown below. 

 

Fig. 5.15. Input signal 𝑈(𝑘) (blue) and output signal 𝑌(𝑘) (red). The estimation data and validation data are 

divided by the dashed line. 

 

The system is identified using Hammerstein-Wiener model. 

The linear block of the model is 

𝑥𝑜𝑢𝑡(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑥𝑖𝑛(𝑘) + 𝑒(𝑘),                       (5.44) 

where 

  𝐵(𝑧) = −0.5109 + 𝑧−1 − 0.995𝑧−2 + 0.9676𝑧−3 − 0.4619𝑧−4 

  𝐹(𝑧) = 1 − 1.714𝑧−1 + 1.671𝑧−2 − 1.847𝑧−3 + 0.831𝑧−4 − 0.1658𝑧−5 + 0.1461𝑧−6

+ 0.01988𝑧−7 − 0.01891𝑧−8 + 0.102𝑧−9 − 0.1155𝑧−10 + 0.2702𝑧−11

− 0.239𝑧−12 + 0.2453𝑧−13 − 0.1413𝑧−14 + 0.01616𝑧−15 − 0.03849𝑧−16

− 0.008281𝑧−17 + 0.1436𝑧−18 − 0.1072𝑧−19 + 0.2266𝑧−20 − 0.5897𝑧−21

+ 0.4329𝑧−22 − 0.458𝑧−23 + 0.3408𝑧−24, 

(5.45) 

and  𝑏 = 5,  𝑓 = 24,  𝑘 = 1. 
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The input nonlinearity is piecewise-linear with 26 break points and the output nonlinearity is one-

dimensional polynomial of degree 5. 

Break points of input nonlinearity piecewise-linear: 

Break points of output nonlinearity 

(0.0302,−0.0075) 
(0.0310,−0.0062) 
(0.0317,−0.0061) 
(0.0325,−0.0045) 
(0.0332,−0.0042) 
(0.0338,−0.0035) 
(0.0348,−0.0025) 
(0.0351,−0.002) 
(0.0361,−0.001) 
(0.0372,0.0001) 
(0.0377,0.0005) 
(0.0385,0.0015) 
(0.0393,0.0021) 
(0.0399,0.0026) 
(0.0430,0.0050) 
(0.0433,0.0052) 
(0.0434,0.0054) 
(0.0446,0.0063) 
(0.0471,0.0076) 
(0.0472,0.0076) 
(0.0472,0.0077) 
(0.0473,0.0077) 
(0.0490,0.0085) 
(0.0495,0.0084) 
(0.0510,0.0078) 
(0.0512,0.0075) 

 

Output nonlinearity: 

𝑥𝑜𝑢𝑡(𝑘) = 2.0016𝑒07𝑥𝑖𝑛
5 (𝑘) − 1.0681𝑒06𝑥𝑖𝑛

4 (𝑘) − 1.6375𝑒04𝑥𝑖𝑛
3 (𝑘) + 102.3508𝑥𝑖𝑛

2 (𝑘)

− 2.1180𝑥𝑖𝑛(𝑘) + 0.0372 

(5.46) 

The identified model of the system is a spike-based filter, which has spiking input and output. The 

input to the model is the encoded signal {𝑡𝑘
𝑢} and the output of the model is {𝑡𝑘

𝑦
}. 

The identification results are shown below. The relative error is the error divided by the 2-norm of 

𝑌(𝑘). 
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Fig. 5.16.a). Measured 𝑌(𝑘) (red) and identified model output (black). The estimation data and validation 

data are divided by the dashed line. 

b). Relative error of the identified model.  

 

The identified model fit the estimation data very well with a small error. For the validation, the model 

has also very small error compared with the measured output and there is no shift between the model 

output and the estimation/validation data. 

 

Fig. 5.17 shows the decoded signals and error. 

 

Fig. 5.18.a). Measured output 𝑦(𝑡) (red) and decoded system output (black). 

b). Relative error. 

 

It is shown that the decoded model output has very little difference between the measured continuous 

a) 

 

 

 

 

 

 

b) 

a) 

 

 

 

 

 

 

b) 
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output. This indicates that the identified model can be utilized to replace an analogue filter in a system. 

 

Example 5: I ent f cat on of a Low-pass F lter 

Here the identification results of EIEO models of a low-pass filter are presented. The low-pass filter 

is a Butterworth filter [37]. The frequency response of the filter is 

𝐺(𝜔) =
𝜔 
𝑛

√𝜔 
2𝑛+𝜔2𝑛

,                            (5.47) 

where 𝜔𝑁 is the pass band frequency,   is the order of the filter, or the number of reactive elements in 

the filter. 

The identification is carried using the encoded input 𝑈(𝑘) and encoded output 𝑌(𝑘). 

The MATLAB simulation is carried out using 200,001 data points, with 20 seconds of total simulation 

time and 0.0001 second of step length of simulation. 

The random input is generated using a uniformly distributed white noise. The noise is fed to a low 

pass filter with passband edge frequency of 200 rad/s. Therefore, the input signal is a random bandlimited 

signal. 

The original input signal 𝑢(𝑡) is fed to the designated filter and the order of the filter is 10. The output 

of the is 𝑦(𝑡). Parameter settings are shown in the following table. 

 

Table 5.2. Simulation parameters. 

Parameter Value Description 

   0.025  IF neuron threshold 

𝑏  0.5 IF neuron bias 

   1 IF integration constant 

Ω  200 Signal bandwidth 

𝜔𝑁  100 Passband edge frequency of the low-pass filter 

 

The input signal 𝑢(𝑡) and output signal 𝑦(𝑡) of a low-pass filter are encoded into spike trains {𝑡𝑘
𝑢} 

and {𝑡𝑘
𝑦
}, with corresponding spike intervals 𝑈(𝑘) and 𝑌(𝑘). 

The encoded input spike interval 𝑈(𝑘) is utilized as the model input, while the encoded output spike 

interval 𝑌(𝑘) is utilized as the model output. 

The input signal 𝑢(𝑡) and output signal 𝑦(𝑡) of the filter is shown below. 
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Fig. 5.19. Input signal (blue) and output signal (red) of the low-pass filter. 

 

The data for estimation and validation are shown in Fig. 5.20.  

 

Fig. 5.20. Input signal 𝑈(𝑘) (blue) and output signal 𝑌(𝑘) (red). The estimation data and validation data are 

divided by the dashed line. 

 

The model is identified using Hammerstein-Wiener model. 

The linear block of the model is 

𝑥𝑜𝑢𝑡(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑥𝑖𝑛(𝑘) + 𝑒(𝑘),                      (5.48) 

where 

  𝐵(𝑧) = 0.1064𝑧−7 − 0.5399𝑧−8 + 𝑧−9 − 0.6054𝑧−10 − 0.5078𝑧−11 + 1.021𝑧−12 − 0.6027𝑧−13  

+ 0.1282𝑧−14 

  𝐹(𝑧) = 1 − 3.587𝑧−1 + 3.262𝑧−2 + 2.31𝑧−3 − 4.79𝑧−4 + 0.7482𝑧−5 + 1.5𝑧−6 + 0.2178𝑧−7  

− 0.9704𝑧−8 + 0.3101𝑧−9, 

(5.49) 
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and  𝑏 = 14,  𝑓 = 9,  𝑘 = 1. 

The input nonlinearity is piecewise-linear with 2 break points and the output nonlinearity is piecewise-

linear with 2 break points: 

Break points of input nonlinearity Break points of output nonlinearity 

(0.0088,0.00158) (−0.0007,0.0033) 

(0.0144,0.0029) (0.0003,0.0059) 

 

The identification results are shown below. The relative error is the error divided by the 2-norm of 

𝑌(𝑘). 

 

Fig. 5.21.a). Measured 𝑌(𝑘) (red) and identified model output (black). The estimation data and validation data 

are divided by the dashed line. 

b). Relative error of the identified model.  

 

It is shown in the figure that the identified model fits the estimation data well and the error is not 

increasing for data validation. The error is relatively small compared with 𝑌(𝑘)  and does not 

accumulate over samples. 

 

Fig. 5.22 shows the decoded signal and error. 

a) 

 

 

 

 

 

b) 
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Fig. 5.22.a). Measured output 𝑦(𝑡) (red) and decoded system output (black) 

b). Relative error. 

 

It is shown in the figure that the decoded model output has a delay and a difference to the measured 

continuous output. However, the function of the filter is to filter the input frequencies. The identified 

model is suitable for this task since the frequency spectrum of 𝑦(𝑡) and the decoded model output is 

significantly close, which is shown below. 

 

Fig. 5.23 shows the single-sided spectrum of the filter output and the decoded model output. 

 

Fig. 5.23.a). Spectrum of the filter output. 

b). Spectrum of the decoded model output. 

 

The figure shows that the two spectrums are close to each other. The spectrum of the decoded model 

output has very similar extreme points as the filter output. The amplitude of both spectrums converge to 

a) 

 

 

 

 

 

b) 

a) 

 

 

 

 

 

b) 
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zero after 20 Hz. 

 

Example 6: I ent f cat on of a nonl near s stem: D ff ng eq at on 

Here the encoded input and output signals of a Duffing Equation is identified. The Duffing Equation 

is given by 

𝑦′′(𝑡) = 𝑢(𝑡) − 𝑘𝑦′(𝑡) − 𝑦3(𝑡)                     (5.50) 

where 𝑘 is set to 1. 

the standard input and output signal of the Duffing Equation are shown below. 

 

Fig. 5.24.a). Input signal of a standard Duffing Equation system. 

b). Output signal of a standard Duffing Equation system. 

 

The encoded input spike interval 𝑈(𝑘) is utilized as the model input, while the encoded output spike 

interval 𝑌(𝑘) is utilized as the model output. The data for estimation and validation are shown below. 

 

Fig. 5.25. Input signal 𝑈(𝑘) (blue) and output signal 𝑌(𝑘) (red). The estimation data and validation data are 

divided by the dashed line. 

a) 

 

 

 

 

 

b) 
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The system is identified using Hammerstein-Wiener model. 

The linear block of the model is 

𝑥𝑜𝑢𝑡(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑥𝑖𝑛(𝑘) + 𝑒(𝑘),                       (5.51) 

where 

  𝐵(𝑧) = 0.6711𝑧−1 − 0.9106𝑧−2 − 0.8204𝑧−3 + 0.9169𝑧−4 + 𝑧−5 − 0.4519𝑧−6 − 0.8554𝑧−7

+ 0.4507𝑧−8 

  𝐹(𝑧) = 1 − 1.158𝑧−1 − 1.336𝑧−2 + 1.081𝑧−3 + 1.404𝑧−4 − 0.4179𝑧−5 − 1.067𝑧−6 + 0.4942𝑧−7, 

(5.52) 

and  𝑏 = 8,  𝑓 = 7,  𝑘 = 1. 

The input nonlinearity is piecewise-linear with 5 break points and the output nonlinearity is piecewise-

linear with 8 break points: 

Break points of input nonlinearity Break points of output nonlinearity 

(0.3155,−0.0033) (−0.1914,−1.0059) 

(0.3808,0.0004) (−0.1380,−0.9903) 

(0.4101,0.0019) (−0.1342,−0.9349) 

(0.4181,0.0019) (−0.0774,−0.5198) 

(0.4402,0.0040) (−0.0425,−0.1406) 

 (−0.0016,0.3455) 

(0.0620,1.3520) 

(0.0674,1.4730) 

 

The identified model of the system is a spike-based filter, which has spiking input and output. The 

input to the model is the encoded signal {𝑡𝑘
𝑢} and the output of the model is {𝑡𝑘

𝑦
}. 

The identification results are shown below. The relative error is the error divided by the 2-norm of 

𝑌(𝑘). 

 

Fig. 5.26.a). Measured 𝑌(𝑘) (red) and identified model output (black). The estimation data and validation 

a) 

 

 

 

 

b) 
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data are divided by the dashed line. 

b). Relative error of the identified model. 

 

The figure shows that the error is relatively large at some peak points of 𝑌(𝑘). Nevertheless, the error 

is small and the identified model is able to mimic the behaviour of the EIEO model. 

 

In Fig. 5.27 and Fig. 5.28, the plot of input 𝑢(𝑡) and output 𝑦(𝑡) of both the standard system and 

identified model are presented. 

 

Fig. 5.27. Input 𝑢(𝑡) and output 𝑦(𝑡) of the standard Duffing Equation. 

 

 

Fig. 5.28. Input 𝑢(𝑡) and output 𝑦(𝑡) of the identified model. 

 

Fig. 5.23 and fig. 5.30 shows the output 𝑦(𝑡) and delayed output 𝑦(𝑡 − 1) of the standard system 
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and the identified model. Notice that the sampling time of the simulation is 0.0001 second, there are 

10000 steps delay of 𝑦(𝑡 − 1) to 𝑦(𝑡). 

 

Fig. 5.29. Output 𝑦(𝑡) and delayed output 𝑦(𝑡 − 1) of the standard Duffing Equation. 

 

 

Fig. 5.30. Output 𝑦(𝑡) and delayed output 𝑦(𝑡 − 1) of the identified model. 

 

From Fig. 5.27 and 5.29, it is shown that the Duffing Equation system has some chaos behaviours. Fig. 

5.28 and 5.30 show that the decoded model output can model the chaos behaviour to some extent. 

Therefore, one can utilize an identified model to model a Duffing Equation system. 
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5.5. Causality problem of the EIEO model 

5.5.1. Problem description 

For an EIEO model of a spike filter, the input and output signals are in the format of spikes. Let 

{𝑡𝑘
𝑢}𝑘∈𝐙+ and {𝑡𝑘

𝑦
}
𝑘∈𝐙+

 be the input and output spike train of a discrete spike filter, respectively. In a 

practice signal processing scenario, the spikes are input to the filter, and the filter outputs spikes in real-

time. Actually, the filter reacts to the input spike arriving time, and outputs another spike arriving time. 

It is possible that the output spike arrives before the input spike, i.e.,  𝑡𝑘
𝑦
< 𝑡𝑘

𝑢. Fig. 5.32 illustrates the 

scenario. 

 

 

 

 

 

 

 

Fig. 5.31. Possible input and output spike trains of the filter. 

 

 Here, 𝑡𝑘
𝑦
< 𝑡𝑘

𝑢 for 𝑘 = 1, 3, 6. It yields that the filter must output corresponding spikes before the 

1st, 3rd and 6th spikes arrive. It is an anti-causal process, which cannot be implemented in practice. 

 

5.5.2. Solution to the causality problem 

Step1.   tp t sp  e sh ft ng 

An approach to the solution to the causality problem is adding a shift  𝑇 to the output spikes. The 

shifted spikes are �̂�𝑘
𝑦
= 𝑡𝑘

𝑦
+  𝑇 . The shift  𝑇  is selected properly so that �̂�𝑘

𝑦
> 𝑡𝑘

𝑢, ∀𝑘 . The output 

spike shifting is shown in Fig. 5.31. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.32. Shift the output spikes. 
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As shown in the figure, the shifted output spikes {�̂�𝑘
𝑦
}
𝑘∈𝐙+

 always comes after the input spikes. This 

ensures the causality of the process. The spike shift  𝑇 is required to be larger than or equal to the 

maximum difference of 𝑡𝑘
𝑢 and 𝑡𝑘

𝑦
, i.e.,  𝑇 ≥ max(𝑡𝑘

𝑢 − 𝑡𝑘
𝑦
). 

Step 2. Deco  ng the sh fte  o tp t sp  e tra n 

According to the previous step, the model outputs a spike train which is shifted for  𝑇. Therefore, 

when the 𝑘th spike {𝑡𝑘
𝑦
} is output at time instant 𝑡, it actually transmits the information at 𝑡 −  𝑇. 

Here, the fast decoding algorithm is applied to reconstruct the output signal. 

The output signal �̃�(𝑡)  is firstly estimated at the mid points �̂�𝑘+1  of spikes. The mid points are 

shifted because the spikes are shifted, i.e., �̂�𝑘+1 = 𝑠𝑘+1 +  𝑇 , where 𝑠(𝑘) =
𝑡 +1
𝑦

+𝑡 
𝑦

2
  and �̂�(𝑘) =

�̂� +1
𝑦

+�̂� 
𝑦

2
. 

At 𝑡 = �̂�𝑘+1, the output signal is estimated as 

�̃�(�̂�𝑘+1) =
𝐶𝛿

𝑡 +1
𝑦

−𝑡 
𝑦 − 𝑏  

 =
𝐶𝛿

(�̂� +1
𝑦

−Δ𝑇)−(�̂� 
𝑦
−Δ𝑇)

− 𝑏 

=
𝐶𝛿

�̂� +1
𝑦

−�̂� 
𝑦 − 𝑏,                                  (5.53) 

where   is the integral constant,   is the neuron threshold and 𝑏 is the bias. 

Notice the mid points �̂�𝑘+1  are shifted, �̃�(�̂�𝑘+1)  actually estimates the output at 𝑡 = �̂�𝑘+1 −  𝑇 . 

Therefore, the estimation will have a delay of  𝑇. At time instant 𝑡 = 𝑡𝑘+1, the decoded signal indicates 

the amplitude of the original signal 𝑦(𝑡) at 𝑡 = �̂�𝑘+1 −  𝑇. The real-time system can be implemented 

by estimating 𝑦(𝑡) at 𝑡 = �̂�𝑘+1 using interpolation/extrapolation methodologies. 

There are two methodologies to reach a continuous signal from the estimation at 𝑡 = �̂�𝑘+1. 

Methodology 1. Zero-order hold: 

By simply adding a zero-order hold, a continuous signal is reached. However, there is a delay of  𝑇. 

Methodology 2. First-order hold: 

In order to eliminate the delay caused by spike shift, one can apply a first-order hold to predict the 

signal at 𝑡 = �̂�𝑘+1, using the estimation at 𝑡 = �̂�𝑘+1 −  𝑇. 

The estimation of the output signal has been given for time 𝑡 = �̂�𝑘+1 . However, this estimation 

actually gives the value of the output at time 𝑡 = �̂�𝑘+1 −  𝑇 = 𝑠𝑘+1. Here, a first-order hold is applied 

to predict the output signal at 𝑡 = �̂�𝑘+1. 

The output signal is given by 

�̃�(𝑡) = �̃�(𝑠𝑘+1) + 𝐾 ∙ (𝑡 − 𝑠𝑘+1)  

= �̃�(𝑠𝑘+1) + 𝐾 ∙ (𝑡 − (�̂�𝑘+1 −  𝑇))                            

=
𝐶𝛿

�̂� +1
𝑦

−�̂� 
𝑦 − 𝑏 + 𝐾 ∙ (𝑡 −

�̂� +1
𝑦

+�̂� 
𝑦

2
+  𝑇),                    (5.54) 

where 

𝐾 =
�̃�(𝑠𝑘+1) − �̃�(𝑠𝑘)

𝑠𝑘+1 − 𝑠𝑘
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=
�̃�(𝑠𝑘+1) − �̃�(𝑠𝑘)

�̂�𝑘+1 − �̂�𝑘
 

=

(
  

�̂�𝑘+1
𝑦

− �̂�𝑘
𝑦 − 𝑏) − (

  

�̂�𝑘
𝑦
− �̂�𝑘−1

𝑦 − 𝑏)

�̂�𝑘+1
𝑦

+ �̂�𝑘
𝑦

2
−
�̂�𝑘
𝑦
+ �̂�𝑘−1

𝑦

2

 

=

2  ∙ (
1

�̂�𝑘+1
𝑦

− �̂�𝑘
𝑦 −

1

�̂�𝑘
𝑦
− �̂�𝑘−1

𝑦 )

�̂�𝑘+1
𝑦

− �̂�𝑘−1
𝑦 , 

(5.55) 

for 𝑘 = 2,3,4, … 

Compared with methodology 1, this methodology using first-order hold eliminates the output delay, 

but may cause larger modelling error. 

5.5.3. Simulation results 

The simulation is carried out using the same settings as Section 5.4.1. The system models (a first order 

system and second order systems) are also the same. Compare the results with those in the file L near 

I ent f cat on. 

Here the reconstructed output signal using shifted spikes is shown, through two different 

methodologies. 

F rst or er s stem  

max(𝑡𝑘
𝑢 − 𝑡𝑘

𝑦
) = 0.1926,  𝑇 is select as 0.2𝑠. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.33.a). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using ZOH, 

 𝑇 = 0.2𝑠.  

Fig. 5.33.b). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using FOH, 

 𝑇 = 0.2𝑠. 
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Secon  or er s stem 

max(𝑡𝑘
𝑢 − 𝑡𝑘

𝑦
) = 1.1746,  𝑇 is select as 1.2𝑠. 

   

 

 

 

 

 

 

 

 

 

 

Fig. 5.34.a). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using ZOH, 

 𝑇 = 1.2𝑠.  

 

Fig. 5.34.b). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using FOH, 

 𝑇 = 1.2𝑠. 

 

Secon  or er s stem w th one zero 

max(𝑡𝑘
𝑢 − 𝑡𝑘

𝑦
) = 0.4258,  𝑇 is select as 0.5𝑠. 

   

 

 

 

 

 

 

 

 

 

 

Fig. 5.35.a). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using ZOH, 

 𝑇 = 0.5𝑠.  

 

Fig. 5.35.b). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using FOH, 

 𝑇 = 0.5𝑠. 
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Secon  or er s stem w th two zeroes 

max(𝑡𝑘
𝑢 − 𝑡𝑘

𝑦
) = 0.3259,  𝑇 is select as 0.5𝑠. 

   

  

 

 

 

 

 

 

 

 

 

Fig. 5.36.a). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using ZOH, 

 𝑇 = 0.5𝑠.  

 

Fig. 5.36.b). Measured 𝑦(𝑡) (red) and 

decoded model output (black) using FOH, 

 𝑇 = 0.5𝑠. 

 

From Fig. 5.33 to 5.36, it is shown that the models using ZOHs has much fewer jitters than that using 

FOHs. However, the models using ZOHs introduce a time delay. On the other hand, although the ZOH 

eliminates the delay, it leads to a much more jittering output, which is challenge to the hardware. It can 

also be concluded that both the delay and jitter are caused by the time shift  𝑇. A larger  𝑇 leads to a 

larger delay and more jitters. Therefore, one can reduce the delay and jitter by decreasing  𝑇, which can 

be realized by decreasing threshold  , increasing bias 𝑏 or employing multi-channel time encoding and 

decoding as discussed in Chapter 3. 

5.6. Conclusion 

In this chapter, a practical framework for identification of EIEO models of dynamical systems based 

on the encoded spiking input and output signals of a system was introduced. It has shown through 

numerical simulation using both linear and nonlinear systems that the identified EIEO models can 

approximate well the encoded outputs. The identified models fitted the estimation/validation data well. 

The decoded model outputs could also model the measured outputs at a high accuracy. This indicates 

that once an identified EIEO model starts responding to a spiking input signal, its spiking output can be 

immediately utilized in a system or decoded into a continuous signal. Therefore, the identified EIEO 

models can be used to process directly time encoded signals providing the basis for implementing signal 

processing operations directly on time encoded signals. The time encoded signal can be decoded after 

processing in real-time using the fast decoding algorithm introduced in Chapter 3. 

This chapter utilized Hammerstein-Wiener model to identify the model. The models were designed to 

fit the following systems: four linear systems, a low-pass filter and a nonlinear Duffing Equation system. 
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For the linear systems, it has shown that the identified model outputs fitted the measured spike intervals 

very well and the decoded outputs could model the measured continuous system output signals with 

relatively small error. For the low-pass filter, the decoded identified model output could also model the 

measured filtered signal with a significantly similar spectrum. For the nonlinear Duffing Equation system, 

the identified model could mimic the chaos behaviour of the Duffing Equation. Therefore, it can be 

concluded that the identified model can be utilized to respond to and transmit spiking signals and replace 

analogue linear/nonlinear filters in a real-time system. 

A causality problem was also discussed in this chapter. The problem was caused by the difference 

between the input and output spiking signals. As illustrated in this chapter, the EIEO models responded 

to input spike timings and output also spike timings. Under certain circumstances, the output spike 

timings are required to be generated before the input spike timings are given, which breaks the causality 

of the system. Therefore, a solution to this causality problem is required. To this end, this chapter 

proposed a solution that shifts the output spike train. Via simulation, it has shown that the shift of the 

output spike train solved the causality problem. However, one must select proper extrapolation 

methodologies: Zero-Order hold method has fewer jitters while First-Order hold method eliminates the 

delay. 

According to the simulation results, the order of the identified EIEO models were relatively high. This 

could be challenging because it increases the complexity of realization and the cost of hardware. One 

can utilize alternative models for identification such as NAMAX models. Also, under certain conditions, 

some high-order systems with dominant poles can be approximated as second-order systems, which 

simplifies the implementations at the cost of accuracy. 
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Chapter 6 

 Conclusion and future work 
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6.1. Conclusion 

In 2003, Lazar et al [13]. introduced the Integrate-and-Fire Time Encoding Machine (IF-TEMs) as an 

alternative sampling approach that mimic the behaviour of neurons in the brain and convert continuous 

signals into discrete spike timings. 

IF-TEMs are particularly valuable in scenarios where spike-based communication is advantageous. 

Specifically, time encoding allows representing and processing information efficiently which reduces 

energy consumption, making it suitable for low-power applications like sensor networks and mobile 

devices as well as for bio-inspired computing and communication systems. 

Lazar also proposed an information-loss-free reconstruction algorithm for retrieving the original signal 

post-transmission [3]. Nonetheless, the information-loss-free reconstruction algorithm necessitates 

transmitting the entire spike train, a process that can span a significant duration. This limitation of Lazar's 

information-loss-free reconstruction algorithm restricts its suitability for real-time control systems, 

hindering the application of spiking data transmission in such contexts. 

To enable the practical application of Integrate-and-Fire Time Encoding/Decoding Machines in real-

time systems, this thesis introduced a novel and efficient real-time decoding algorithm tailored for IF-

TEMs. 

The proposed real-time single-channel decoding algorithm provides a piece-wise constant 

approximation of the original signal over the spike time intervals, which is suitable in the implementation 

of real-time control systems. 

Analytical bounds are derived for the approximation error at the mid-point of the spike-time interval 

and it is shown though numerical simulations that proposed real-time decoding algorithm outperforms 

Lazar's algorithm at these points. The analytical error bound show explicitly the dependence of the error 

on the key parameters of IF-TEM i.e., the neuron threshold and the additive bias. 

The fast decoding algorithm, facilitates the utilization of time encoding within a real-time control 

framework. To that end, Chapter 4 introduces a spike-based network control system, a key component of 

which is a spike-based PID control law. Specifically, approximations for the proportional, integral, and 

derivative terms of the PID controller are formulated in terms of the spike times alongside analytical 

bounds for the errors introduced by the approximations. A methodology for tuning PID controller gains 

such that the performance of the spike-based PID controller closely matches that of the continuous time 

one is also introduced. Numerical simulation studies are used to demonstrate the performance of the 

spike-based PID control system's performance in noise-free as well as noisy conditions. 

Specifically, the robustness of the spike-based PID controller is demonstrated by considering both 

output measurement noise as well as spike time jitter (noise).  

Compared with a standard PID control system, a spike-based PID control system has the following 

advantages as described before: 

 Energy Efficiency on the aspect of the entire system. 

 Simpler devices used for receiving and sending spiking signals. 

 Sparse Data Representation.  

 Robustness to noise. 
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 Event-Driven Processing.  

In an ideal scenario, time encoding should replace conventional amplitude-sampling used not just in 

control but for general signal processing. To that end, Chapter 5 introduces a system identification 

approach for developing Encoded-Input-Encoded-Output models of linear and nonlinear dynamical 

systems, which can be used to implement basic linear and nonlinear filtering operations by directly 

processing spike time sequences. The proposed approach involves encoding both the simulated input and 

output of a dynamical system of interests and applying system identification methodology to derive the 

EIEO model based on the input and output spike time interval sequences. This methodology enables the 

creation of spike-based linear and nonlinear operators as well as filters. Given that spike-based models 

deal with inputs and outputs based on spike arrival times, there is a potential risk of introducing anti-

causal issues into a system. To address this concern, this thesis introduces a solution that guarantees 

causality. By designing spike-based components in this manner, it becomes possible to construct a system 

founded on spiking signal processing. 

6.2. Future work 

The research presented in this thesis can be extended further in a number of directions: 

1. The rapid real-time decoding algorithm for TEMs initially approximates the original signal at the 

midpoint of spikes, after which the continuous output signal is produced utilizing either a Zero-

Order Hold or a First-Order Hold. Alternative signal extrapolation techniques may also be 

devised or utilized to create the continuous output signal, potentially leading to a reduction in the 

overall decoding error associated with this algorithm. 

2. Through the simulation, it was shown that the true error bound at the spike mid-points are much 

smaller than the theoretical bound suggesting that the analytical error bound could be refined 

further. 

3. This thesis focuses mainly on Ideal Integrate-and-Fire-TEMs. The fast decoding algorithm could 

also be extended to other types of neurons, such as IF neurons with refectory periods and Leaky 

IF neurons. 

4. The spike-based PID controller developed in this thesis is tuned based on the gains derived for 

conventional continuous-time PID controller. A new methodology for the tunning directly the 

gains of the spike-based PID controllers could also be developed. 

5. This thesis proposes the designing of spike-based components that respond to spikes and output 

also spikes. It is possible to design other types of components using the same identification-based 

methodology. For example, one could design components that respond to spikes and output 

continuous signals. 

6. All the works and results in this thesis are developed in order to enable the real-time spiking data 

transmission. It is simple for the designer to employ the methodologies and algorithms to 

construct a real-time spike-based control system. Also, these results could be applied in the field 

of Spiking Neuron Networks, where the spiking neurons communicate with each other using 

spikes. The proposed fast real-time decoding algorithm could be employed to decode the neuron 
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outputs, while the spike-based components could be applied to model the behaviour of some 

neurons or an entire SNN.
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