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Abstract

Abstract. Over fields of characteristic 2, Specht modules may decompose
and there is no upper bound for the dimension of their endomorphism algebra.
A classification of the (in)decomposable Specht modules and a closed formula
for the dimension of their endomorphism algebra remain two important open
problems in the area. More generally, the space of homomorphisms between two
Specht modules is of interest in its own right. In this thesis, we develop a novel
description for the homomorphism space between two Specht modules, which we
then utilise to deduce new results. Most notably, we provide infinite families of
Specht modules with one-dimensional endomorphism algebra in characteristic 2.
We conclude by providing a dimension formula for the space of homomorphisms
between hook Specht modules in characteristic 2, thereby generalising a result
of Murphy who provided an analogous formula covering the endomorphism
case [Mur].
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1 Introduction

For r a positive integer, denote by Sr the symmetric group on r letters, with kSr its
group algebra over an algebraically closed field k of characteristic p ≥ 0. When p = 0, the
irreducible kSr-modules are parametrised by the partitions of r, where for each such par-
tition λ, the corresponding irreducible kSr-module is given by the Specht module Spk(λ).
In positive characteristic however, Specht modules are not necessarily irreducible. That
said until relatively recently, despite significant effort over an extended period of time,
a classification describing the irreducible Specht modules for the symmetric groups re-
mained open. In a 1977 paper, James stated a conjecture — which he credits to Carter —
that would provide a criterion to determine the (ir)reducibility of a Specht module corre-
sponding to a p-regular partition λ [J2]. James stated the so-called Carter conjecture in
terms of a certain combinatorial condition on the partition λ. In the same paper, James
proved that the Carter conjecture is necessary in general [J2, Theorem 2.10], which is to
say, if a partition λ does not satisfy this combinatorial condition, then the corresponding
Specht module is reducible. Furthermore, James went on to provide a sufficiency result
in general characteristic in terms of a certain arithmetical condition on λ [J2, Theorem
2.13]. When p = 2, this arithmetical condition had already previously been observed
by James to be equivalent to the condition in the Carter conjecture [J3, Lemma 3.14],
thereby showing that the Carter conjecture holds for p = 2 [J2, Corollary 2.14]. Shortly
thereafter, in a 1979 paper, James and Murphy examined the determinant of the Gram
matrix of a certain bilinear form on Specht modules, and ultimately resolved the re-
mainder of the proof of Carter’s conjecture in odd characteristic [JMur]. Later, in 1999,
James and Mathas analysed the arithmetical condition in the case that p = 2, and
showed that with the exception of λ = (2, 2), the Specht module Spk(λ) is irreducible in
characteristic 2 if and only if either λ is 2-regular — that is to say, has distinct terms
— and satisfies Carter’s condition, or λ′ is 2-regular and satisfies Carter’s condition.
At the same time, Mathas stated a conjecture with James for the odd characteristic
case [Mat, Conjecture 5.47]. In a 2004 paper, Fayers, building on the work of Lyle [L],
showed that the condition stated in the James-Mathas conjecture was necessary [F1].
Following on shortly after this, Fayers showed that this condition was sufficient in the
more general context of the Iwahori-Hecke algebra Hk,q(Sr) of the symmetric group Sr

so long as q ̸= −1. In particular, this applies in the case that q = 1, where we have that
Hk,q(Sr) is isomorphic to the group algebra kSr [F2].

Meanwhile, in a series of lectures delivered in 1977 – and then later published in
1978 – James showed that so long as p ̸= 2, Specht modules have one-dimensional endo-
morphism algebras [J1, 13.17], and are hence indecomposable [J1, 13.18]. On the other
hand, in the same set of lectures, James showed that Spk(5, 12) decomposes over fields k
of characteristic 2 [J1, 23.10(iii)]. In the intervening years, this phenomenon of decom-
posable Specht modules has received extensive investigation. In 1980, Murphy examined
Specht modules labelled by hook partitions, resulting in a complete classification of all
such decomposable Specht modules in terms of a parity condition on the parameters a, b
determining the hook partition (a, 1b) [Mur]. At the time, this result subsumed all known
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examples of decomposable Specht modules, and this remained the case for many years
thereafter. Then, in 2012, Dodge and Fayers examined partitions of the form (a, 3, 1b),
and produced novel examples of decomposable Specht modules [DF]. More recently,
Donkin and Geranios [DG2] examined partitions of the form λ = (a,m − 1, . . . , 2, 1b)
for parameters a ≥ m, b ≥ 1, and found precise decompositions when a − m is even
and b is odd. An interesting feature arising in these decompositions is that there is no
upper bound for the number of indecomposable summands of the Spk(λ), and so in turn
for the dimension of its endomorphism algebra. The results of Donkin and Geranios
apply equally well in the more general context of the Hecke algebras. Other results
in this general context can be found in [BBS], [Spe]. Despite this extensive study, a
classification of the (in)decomposable Specht modules remains to be found. Much of
the research into indecomposable Specht modules shares a common approach, that is
through studying the endomorphism algebra of a Specht module. More generally, the
vector space of linear homomorphisms between a pair of Specht modules is of interest
in its own right, in characteristic 2 and beyond. It is the initial purpose of this thesis
to present a new general characterisation of the space of homomorphisms between two
Specht modules in terms of certain composition relations. As a proof of concept, we use
our new description to provide infinite families of Specht modules with one-dimensional
endomorphism algebra.

In Chapter 2, we begin by covering some of the prerequisite background for many
of the concepts present in this thesis. We start by reviewing some of the terminology
from combinatorics and multilinear algebra. Then, we cover the basics of the polynomial
representation theory of the general linear groups, along the lines of [G, §2]. In particular,
we review some constructions of induced and Weyl modules due to Akin, Buchsbaum,
and Weyman [ABW, §II], and James [J1, §26], using results from [G, §4.8], [D1, §2.7(5)]
to tie them together. Then, following [G, §2], [D3] closely, we provide some details on
the structure of the Schur algebra and its connection to the general liner groups. Then,
we move on and establish some background relating to the representation theory of the
symmetric groups, where we follow the guide of [J1]. Finally, we present the background
on the Schur functor, which will be critical when establishing the connection between
the representation theories of the general linear groups and symmetric groups. In doing
so, we follow the presentation in [G, §6.1-§6.2], which we supplement with [D3].

In Chapter 3, we apply the Schur functor to the constructions of the induced modules
provided by James and by Akin, Buchsbaum, and Weyman. The first of these recovers a
description of a Specht module known as James’ kernel intersection theorem [J1, Corol-
lary 17.18]. On the other hand, the second of these produces a cokernel description of
a Specht module dual to James’ kernel intersection theorem §3.1.1. Next, in Proposi-
tion 3.1.3, we provide some new results on the g-functor, that is, the right-inverse of the
Schur functor. Using these results, in Lemma 3.2.2, we produce the desired description
for the space of homomorphisms between two Specht modules as a subspace of the ho-
momorphism space between a signed permutation module and a permutation module, or
between two permutations modules in the case of even characteristic. In order to make
use of this description, we produce a description of a basis for the space of homomor-
phisms between two permutation modules in characteristic 2, and then we interpret this
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description in terms of this basis. For the remainder of the chapter, we aim to examine
the same family of partitions studied by Donkin and Geranios [DG2], that is to say,
partitions of the form (a,m− 1, . . . , 2, 1b), but now in the parity case where a−m ≡ b.
In order to do so, we once again return to the context of the polynomial representa-
tion theory of the general linear groups in order to produce a reduction technique. We
proceed by developing certain combinatorial techniques and terminology. The chapter
concludes by utilising this technology to show that the corresponding Specht modules
have one-dimensional endomorphism algebra Theorem 3.4.25, thereby providing a novel
large family of indecomposable Specht modules in characteristic 2.

Finally, in Chapter 4, we finish by analysing the special case of hook Specht mod-
ules in characteristic 2. First, in Proposition 4.2.1, we recover Murphy’s result on the
dimension of the endomorphism algebra of a hook Specht module [Mur]. Then, in
Proposition 4.3.1, we generalise this approach to produce a new dimension formula for
the space of homomorphisms between any two hook Specht modules in characteristic 2.



11 Background

2 Background

2.1. Conventions, Terminology, and Notation
We denote by N the set of non-negative integers, and by Z>0 the set of positive

integers. Throughout, we fix k to be an algebraically closed field of characteristic p ≥ 0.
2.1.1. Algebraic Notation. Let R be a ring. We denote by R–mod (resp. mod–R) the
category of finite-dimensional left R-modules (resp. right R-modules). If U, V ∈ R–mod,
then we say that a function U

h−→ V is R-linear if h is a homomorphism of R-modules.
If S is a set, then by the R-module defined on S, we shall mean the free R-module
RS :=

À

s∈S Rs whose elements are given by all formal linear combinations ∑
s∈S rss

for subsets of the form {rs | s ∈ S} ⊆ R where only finitely many of the rs are non-zero.
If G is a group, then RG is the group ring of G (over R). When the ring R is implicit,
we refer to RG-modules simply as G-modules, and accordingly, we say that a function
U

h−→ V on G-modules is G-linear, or is a G-homomorphism, to mean that h is RG-linear.
By a k-space, we shall mean a vector space over k. Accordingly, we refer to kS as the
k-space defined on S.

Given a k-algebra A, then an N-grading on A is a k-decomposition A =
À

r∈NA
(r)

into k-subspaces {A(r) | r ∈ N} of A such that A(r) · A(s) ⊆ A(r+s) for r, s ∈ N. For
each r ∈ N, we refer to the k-subspace A(r) of A as the component of A in degree r.
Throughout this thesis, we impose the additional condition that A(0) = k.
2.1.2. Integers, Sequences, and Matrices. For a, b ∈ Z, we write a ≡ b to mean
that a and b are congruent modulo 2. Given d ∈ Z>0, we identify the set Nd as the set
of sequences of d elements of N. Then, given n ∈ N, we denote by (nd) := (n, . . . , n) the
sequence formed from d consecutive copies of n, and accordingly, if nd appears as a term
in a sequence, it is taken to mean d consecutive copies of the term n. Given d, d′ ∈ Z>0

with i ∈ Nd, i′ ∈ Nd′ , we denote by i++i′ ∈ Nd+d′ the concatenation of i and i′,
that is to say, the sequence i++i′ := (i1, . . . , id, i

′
1, . . . , i

′
d′). For n ∈ Z>0, we write

[n] := {1, . . . , n}, with [0] := ∅. Given a, b ∈ Z>0 and a set S, we write Ma×b(S) for the
set of (a× b)-matrices with entries in S. If A ∈ Ma×b(S), then for i, j ∈ [n], we denote
by aij ∈ S the (i, j)th-entry of A. Given A ∈ Ma×b(S), we denote by A′ ∈ Mb×a(S) the
transpose matrix of A.
2.1.3. Symmetric Groups. For a set S, we denote by Sym(S) the symmetric group on
the elements of S. We take the convention that the natural action of Sym(S) on the set
S is from the left. Explicitly, for s ∈ S, σ ∈ Sym(S), we denote by σ(s) ∈ S the image
of s under σ. Accordingly, composition in Sym(S) is performed from right to left. For
r ∈ Z>0, we write Sr := Sym([r]) for the the symmetric group on r letters. Recall that
Sr is generated by the transpositions {σk | 1 ≤ k < r}, where for such k, σk denotes the
transposition k ↔ k+1. For r ∈ Z>0, we denote by trivr := k ·1triv the kSr-module that
affords the trivial character of Sr, and by sgnr := k · 1sgn the kSr-module that affords
the sign character of Sr. Finally, for S ⊆ Sr, we define the elements:

[S] :=
∑
σ∈S

σ ∈ ZSr, {S} :=
∑
σ∈S

sgn(σ)σ ∈ ZSr. (2.1.1)

where sgn(σ) ∈ Z denotes the sign (parity) of σ ∈ Sr.
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2.2. Combinatorics
2.2.1. Compositions and Partitions. By a composition, we mean a sequence α in
the set Λ(n) := Nn for some n ∈ Z>0. For such a composition α, we refer to the
terms of a composition α ∈ Λ(n) as the parts of α. Now, for α ∈ Λ(n), we denote
by deg(α) := ∑n

v=1 αv the degree of α, and by len(α) the length of α, that is to say
len(α) := max{v ∈ [n] | αv ̸= 0} if α ̸= (0n), and len(0n) := 0. Then, we say that
α ∈ Λ(n) is a composition of r if deg(α) = r, and we denote by Λ(n, r) ⊆ Λ(n) the
subset of Λ(n) consisting of the compositions of r with at most n non-zero parts. For
α, β ∈ Λ(n, r), we write:

Tab(α, β) :=

A ∈ Mn×n(N)
∣∣∣∣∣ ∑

j

aij = αi,
∑

i

aij = βj

 . (2.2.1)

Now, we say that a composition α is a partition if its parts are weakly decreasing,
and we denote by Λ+(n) ⊆ Λ(n) the set of partitions with at most n non-zero parts.
Then, for r ∈ N, as with compositions, we say that a partition λ is a partition of r if
deg(λ) = r. Given a partition λ, we denote by λ′ the transpose (conjugate) partition
of λ. We denote by Λ+(n, r) := Λ+(n) ∩ Λ(n, r) the set of partitions of r into at most
n non-zero parts. Note that if n ≥ r, then Λ+(n, r) contains all partitions of r up to
trailing zeros. In particular, if n ≥ r with λ ∈ Λ+(n, r), then we have that λ′ ∈ Λ+(n, r).

Finally, the following notation will be of particular use for this thesis. Given some
α ∈ Λ(n, r) with 1 ≤ i < j ≤ n with αj ̸= 0 and 1 ≤ s ≤ αj , we write α(i,j,s) for the
element of Λ(n, r) with terms defined by α(i,j,s)

k := αk + s(δi,k − δj,k), which is to say the
sequence obtained from α by raising its ith-part αi by k, and lowering its jth-part by k.

Example 2.2.2. Let α := (5, 4, 0, 1). Then α(2,4,1) = (5, 5, 0, 0), and α(1,2,3) = (8, 1, 0, 1).

2.2.2. Multi-indices. Fix n ∈ N and r ∈ Z>0. We write I(n, r) := [n]r for the set of
multi-indices i = (i1, . . . , ir) with terms in [n]. Note that the left-action of Sr on [r]
induces a right-action of Sr on I(n, r) by place-permutation on indices. For the sake
of clarity, for i ∈ I(n, r), σ ∈ Sr, the sequence iσ is determined by (iσ)j = iσ(j) for
j ∈ [r].

Example 2.2.3. Let a, b, c ∈ [n] and write i := (a, b, c) ∈ I(n, 3). Then, we have that
i(1 2 3) = (b, c, a) and i(1 3 2) = (c, a, b).

Given i,j ∈ I(n, r), we write i ∼ j to say that i,j share a Sr-orbit in I(n, r).
Now, for i = (i1, . . . , ir) ∈ I(n, r), by the content of i, we shall mean the sequence
c(i) := (c1(i), . . . , cn(i)) ∈ Nn whose terms are given by ck(i) := |{j ∈ [r] | ij = k}|.
Clearly, given i,j ∈ I(n, r), we have that i ∼ j if and only if c(i) = c(j). Viewing
c as a function I(n, r) c−→ Nn, we have that the image of c is precisely the set Λ(n, r).
Thus, we may view the set Λ(n, r) as a parametrisation of the Sr-orbits in I(n, r), and
accordingly, for i ∈ I(n, r), α ∈ Λ(n, r), we write i ∈ α to mean that c(i) = α.

Finally, we denote by Î(n, r) ⊆ I(n, r) the set consisting of those i ∈ I(n, r) with
distinct terms, and by Î+(n, r) ⊆ Î(n, r) the set consisting of those i ∈ Î(n, r) whose
terms are strictly increasing.
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2.3. Multilinear Algebra
Unless otherwise stated, all tensor products are taken over the field k.

Fix n ∈ Z>0. We write E := k⊕n for the n-dimensional k-space defined on the
standard basis {eu | u ∈ [n]} of column-vectors.

2.3.1. Tensor Algebra. For r ∈ Z>0, we write E⊗r for the r-fold tensor product of E,
where E⊗0 := k. We observe that E⊗r has a k-basis given by:

{
ei := ei1 ⊗ · · · ⊗ eir ∈ E⊗r

∣∣ i ∈ I(n, r)
}
.

Note that the right-action I(n, r) ↶ Sr endows the k-space E⊗r with the structure of a
right kSr-module. Explicitly, we have ei ·σ := eiσ = ⊗r

k=1 eiσ(k) for i ∈ I(n, r), σ ∈ Sr.
Now, by the tensor algebra of E, we mean the k-space T (E) :=

À

r∈NE
⊗r. The

tensor algebra T (E) has the structure of an N-graded k-algebra under the concatenation
product Π⊗. Explicitly, for r, s ∈ N, the component Π(r,s)

⊗ : E⊗r ⊗ E⊗s −→ E⊗(r+s)

of Π⊗ is given by ei ⊗ ej 7−→ ei++j for i ∈ I(n, r), j ∈ I(n, s). In addition to its
k-algebra structure, the tensor algebra T (E) carries the structure of a k-coalgebra. For
r, s ∈ N, we denote by ∆(r,s)

⊗ : E⊗(r+s) −→ E⊗r ⊗ E⊗s the appropriate component of the
comultiplication ∆⊗ of T (E). Explicitly, we have ∆(r,s)

⊗ : ei 7−→ ei ·
[
Sh(r,s)

]
for i ∈ I(n, r),

where Sh(r,s) ≤ Sr+s denotes the set of (r, s)-shuffles within Sr+s, that is:

Sh(r,s) := {σ ∈ Sr+s | σ(i) < σ(j) for i < j with j ≤ r or i ≥ r + 1} . (2.3.1)

2.3.2. Symmetric Algebra. We denote by I the two-sided ideal of T (E) generated
by elements of the form x ⊗ y − y ⊗ x ∈ E⊗2 for x, y ∈ E. Note that I is an ideal in
the graded sense. Moreover, for r ∈ N, the component I(r) = I ∩ E⊗r of I in degree
r is k-spanned by elements of the form ei · (1 − σk) for i ∈ I(n, r) and 1 ≤ k < r.
Then, by the symmetric algebra of E, we mean the quotient S(E) := T (E)/I. Note
that E ↪−→ S(E), where for u ∈ [n], we have eu 7−→ ēu := eu + I ∈ S(E). Now, since I is
graded, S(E) inherits an N-grading from T (E). For r ∈ N, we denote by SrE := S(E)(r)

the component of S(E) in degree r, and we refer to SrE as the rth-symmetric power of
E. Accordingly, we denote by Π(1r)

S : E⊗r −→→ SrE the appropriate component of the
quotient map T (E) −→→ S(E).

Now, the symmetric algebra S(E) has the structure of an N-graded commutative
k-algebra whose product ΠS is inherited from the concatenation product Π⊗ of T (E).
For r, s ∈ N, we write Π(r,s)

S : SrE ⊗ SsE −→ Sr+sE for the appropriate component of
ΠS . Accordingly, we write x · y := Π(r,s)

S (x⊗ y) for x ∈ SrE, y ∈ SsE. Additionally, for
i ∈ I(n, r), we write ēi := ∏r

u=1 ēiu ∈ SrE. Now, for i,j ∈ I(n, r), note that ēi = ēj

if and only if i ∼ j. Hence, for α ∈ Λ(n, r), we may write ēα := ēi ∈ SrE for any
choice of i ∈ α. Clearly, for each r ∈ N, we have that the set {ēα | α ∈ Λ(n, r)} forms a
k-basis for SrE. Then, for r, s ∈ N, we have ēα · ēβ = ēα+β for α ∈ Λ(n, r), β ∈ Λ(n, s).
Alongside the product ΠS , the symmetric algebra S(E) inherits a comultiplication ∆S

descended from the comultiplication ∆⊗ of T (E). Note that, for r, s ∈ N, the component
∆(r,s)

S : Sr+sE −→ SrE ⊗ SsE of ∆S is given by ∆(r,s)
S : ēγ 7−→

∑
α,β

(α+β
α

)
ēα ⊗ ēβ, where

the sum is over α ∈ Λ(n, r), β ∈ Λ(n, s) with α + β = γ, and for such α, β, we denote
by
(α+β

α

)
the product of binomial coefficients given by

(α+β
α

)
:= ∏

k∈[n]
(αk+βk

αk

)
.
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2.3.3. Exterior Algebra. Now, we denote by J the two-sided ideal of T (E) generated
by elements of the form x⊗x ∈ E⊗2 for x ∈ E, and, once again, we observe that J is an
ideal in the graded sense. Note that, for r ∈ N, in this case we have that the component
J (r) = J ∩ E⊗r of J in degree r contains all elements of the form ei · (1 − sgn(σ)σ)
for i ∈ I(n, r) and σ ∈ Sr. Then, by the exterior algebra of E, we mean the quotient
Λ(E) := T (E)/J . Once again, we have that E ↪−→ Λ(E), where now, for u ∈ [n], we
have that eu 7−→ êu := eu + J ∈ Λ(E). In this case, we write Λ(E) =

À

r∈N ΛrE for the
N-grading on Λ(E) inherited from that of T (E), and for r ∈ N, we refer to the component
ΛrE as the rth-exterior power of E. Accordingly, we denote by Π(1r)

Λ : E⊗r −→→ ΛrE the
appropriate component of the quotient map T (E) −→→ Λ(E).

Now, in this case, the product ΠΛ on Λ(E) that is inherited from that of T (E)
gives Λ(E) the structure of an N-graded anti-commutative k-algebra. For r, s ∈ N, we
write Π(r,s)

Λ : ΛrE ⊗ ΛsE −→ Λr+sE for the appropriate component of ΠΛ, and here, we
write x ∧ y := Π(r,s)

Λ (x ⊗ y) for x ∈ ΛrE, y ∈ ΛsE. Then, for i ∈ I(n, r), we write
êi := ∧r

u=1 êiu ∈ ΛrE. Note that if i,j ∈ I(n, r) with i ∼ j, then êj = ±êi, and
in particular, we see that êi = 0 if i has a repeated term. Then, for r ∈ N, we see
that ΛrE has a k-basis given by {êi | i ∈ Î+(n, r)}. Note that, for r, s ∈ N with
i ∈ Î(n, r), j ∈ Î(n, s), then êi ∧ êj = êi++j. In particular, if i,j share a term,
then êi ∧ êj = 0. Meanwhile, the comultiplication ∆Λ on Λ(E), inherited from ∆⊗ of
T (E), is given component-wise by ∆(r,s)

Λ : Λr+sE −→ ΛrE ⊗ ΛsE for r, s ∈ N, where
for i ∈ Î+(n, r + s), we have ∆(r,s)

Λ : êi −→ (êj ⊗ êk) · {Sh(r,s)}, where j ∈ Î+(n, r),
k ∈ Î+(n, s) are uniquely determined by i = j++k.
2.3.4. Divided Power Algebra. Here, we introduce the divided power algebra D(E) of
E. In doing so, there are a multitude of approaches that one may choose to take. For the
sake of expediency, we choose to define (as a k-space) the divided power algebra D(E)
as the k-linear dual S(E∗)∗ = Homk(S(E∗), k) of the symmetric algebra of the k-linear
dual E∗ of E. We have the N-grading D(E) =

À

r∈ND
rE where DrE ∼= (Sr(E∗))∗. We

identify the rth-divided power DrE of E by the k-basis {e(α) = ∏n
k=1 e

(αk)
k | α ∈ Λ(n, r)}.

We denote by ΠD : D(E) −→ D(E) the product on D(E). For r, s ∈ N, the component
Π(r,s)

D : DrE⊗DsE −→ Dr+sE is given by Π(r,s)
D : e(α)⊗e(β) 7−→

(α+β
α

)
e(α+β) for α ∈ Λ(n, r),

β ∈ Λ(n, s). For x ∈ D(E) and t ∈ Z>0, we denote by x(t) ∈ D(E) the image of x under
the t-fold product D(E)⊗t −→ D(E), with x(0) := 1 ∈ k = D0E.

Remark 2.3.2. For convenience, we list the following properties of ΠD:

• For x ∈ D(E), we have x(0) = 1 and x(1) = x.

• For x, y ∈ D(E), t ∈ N, we have (x+ y)(t) = ∑
r+s=t x

(r) · y(s).

• For r, s ∈ N, i ∈ [n], we have e(r)
i · e(s)

i =
(r+s

r

)
e

(r+s)
i ,

• For r, s ∈ N, i, j ∈ [n] with i ̸= j, we have e(r)
i · e(s)

j = e
(s)
j · e(r)

i .

• For r, s ∈ N, α ∈ Λ(n, r), β ∈ Λ(n, s), we have e(α) · e(β) =
(α+β

α

)
e(α+β).

Meanwhile, we denote by ∆D : D(E) −→ D(E) ⊗ D(E) the comultiplication on
D(E). For r, s ∈ N, the component ∆(r,s)

D : Dr+sE −→ DrE ⊗ DsE of ∆D is given by
∆(r,s)

D : e(γ) 7−→
∑

α,β e
(α) ⊗ e(β) for γ ∈ Λ(n, r + s), where the sum is over all α ∈ Λ(n, r),

β ∈ Λ(n, s) with α+ β = γ.
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2.4. Polynomial Representations of the General Linear Groups
Here, we review the prerequisite background related to the polynomial representation

theory of the general linear groups. See [G], [D3], [Mar] for more details.
We fix an integer n ≥ 1 withG := GLn(k) the group of invertible (n×n)-matrices with

entries in k. We identify G as an affine variety embedded within the affine space An2 .
Accordingly, we identify the coordinate algebra of G as k[G] = k[c11, . . . , cnn, det−1].
Recall that the group multiplication G × G

m−→ G induces the comultiplication map
k[G] ∆G−−→ k[G] ⊗k[G] determined by ∆G(h)(g, g′) = h(gg′) for g, g′ ∈ G, h ∈ k[G]. Here,
we have applied the standard identification k[G×G] ∼= k[G] ⊗ k[G].

Remark 2.4.1. Note that k[G] has the structure of a (G,G)-bimodule. Indeed, for
h ∈ k[G], g ∈ G, x ∈ G, we have that (g · h)(x) := h(xg) = ∆G(h)(x, g). On the other
hand, in a similar fashion, we have that (h · g)(x) = ∆G(h)(g, x) for such h, g, x.

2.4.1. Rational, Polynomial, and Homogenous Modules. Given a finite dimen-
sional G-module V and some k-basis V, the coefficient functions of V (with respect to
V) are the functions fvv′ : G −→ k determined by g ·v′ = ∑

v∈V fvv′(g)v for g ∈ G, v′ ∈ V.
We write cf(V ) for the coefficient space of V , that is, the k-space defined on the set
{fvv′ | v, v′ ∈ V} of coefficient functions. The coefficient space cf(V ) is independent of
the choice of k-basis V. We say that V is rational if cf(V ) ⊆ k[G], and polynomial if
cf(V ) ⊆ Ak(n) := k[c11, . . . , cnn]. The polynomial G-modules form an Abelian category,
which we denote by Mk(n). Note that Mk(n) is closed under tensor products.

Example 2.4.2. Let V = k · v be the 1-dimensional G-representation determined by
g ·v = det(g)−1v. Then V := {v} is a k-basis for V and we have fvv : g 7−→ det(g)−1. Since
det−1 ∈ k[G], we see that V is rational. However, V is not polynomial since fvv ̸∈ Ak(n).

Now, the polynomial algebra Ak(n) = k[c11, . . . , cnn] has an N-grading of the form
Ak(n) =

À

r∈NAk(n, r), where for r ∈ N, the k-space Ak(n, r) is the k-span of the
homogenous degree r monomials

{
cij := ∏

k cikjk

∣∣ i,j ∈ I(n, r)
}

in the cij . Then, for
r ∈ N, we say that a non-zero polynomial G-module V is homogenous of degree r if
cf(V ) ⊆ Ak(n, r). The homogenous degree r polynomial G-modules form a subcategory
of Mk(n), which we denote by Mk(n, r).

Examples 2.4.3.

(i) Recall that we identify E = k⊕n as the k-space defined by the standard basis
{ei | i ∈ [n]}. Then, for g ∈ G, we have g · ej = ∑

i∈[n] gijei for j ∈ [n]. Hence,
cf(E) = Ak(n, 1), and so E ∈ Mk(n, 1).

(ii) More generally, for r ∈ N, we have g · ej = ∑
i∈I(n,r) gijei for g ∈ G, j ∈ I(n, r),

where gij := cij(g). Hence cf(E⊗r) = Ak(n, r), and so E⊗r ∈ Mk(n, r).

(iii) Denote by det = k · 1det the 1-dimensional G-module afforded by the determinant
function: g·1det = det(g)1det for g ∈ G. Then, as functions, we identify det with the
polynomial ∑

σ∈Sn
sgn(σ)cnnσ ∈ Ak(n, n), where here n = (1, 2, . . . , n) ∈ I(n, n),

and so det ∈ Mk(n, n).
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Note that given V ∈ Mk(n), the N-grading on Ak(n) induces a G-module decom-
position of V of the form V =

À

r∈N V
(r) where each V (r) ∈ Mk(n, r) [G, Theorem

(2.2c)]. Hence, in particular, indecomposable polynomial G-modules are necessarily ho-
mogenous. Since polynomial G-modules are by definition finite-dimensional, for a given
non-zero V ∈ Mk(n), we have that V (r) ̸= 0 for only finitely many r ∈ N. For r ∈ N,
we refer to the submodule V (r) as the component of V in degree r. Note that, given
V,W ∈ Mk(n) and a G-homomorphism V

h−→ W , then for r ∈ N, the restriction of h
to V (r) gives a G-homomorphism V (r) h(r)

−−→ W (r), which we call the component of h in
degree r. Observe that if r, s ∈ N with V ∈ Mk(n, r), W ∈ Mk(n, s), then the tensor
product V ⊗W satisfies V ⊗W ∈ Mk(n, r + s).

Remark 2.4.4. Fix r ∈ N. Then, recall from Examples 2.4.3(ii) that the r-fold tensor
power E⊗r is homogenous of degree r with g · ej = ∑

ij gijei for g ∈ G, j ∈ I(n, r).
Now, for σ ∈ Sr, g ∈ G, j ∈ I(n, r), note that:

(g · ej) · σ =
∑

i∈I(n,r)
(gijei) · σ =

∑
i∈I(n,r)

gijeiσ

=
∑

i∈I(n,r)
g(iσ−1)jei =

∑
i∈I(n,r)

gijσei = g · (ejσ)
(2.4.5)

From (2.4.5), we deduce that actions of G and Sr on E⊗r commute.

2.4.2. Symmetric and Exterior Powers. Firstly, recall that the k-space SrE is the
quotient of E⊗r by the subspace I(r), where I(r) is k-spanned by elements of the form
ei · (1 − σ) for i ∈ I(n, r) and σ ∈ Sr. Now, I(r) is a G-submodule of E⊗r since
the G-action and Sr-action on E⊗r commute, and so the G-module structure on E⊗r

descends to a G-module structure on SrE. Moreover, for r, s ∈ N, it is clear to see
that the components Π(r,s)

S : SrE ⊗ SsE −→ Sr+sE and ∆(r,s)
S : Sr+sE −→ SrE ⊗ SsE

are G-module homomorphisms, where the tensor product SrE ⊗ SsE is endowed with
a G-module structure in the standard way. Note that, for r ∈ N the symmetric power
SrE is homogenous of degree r under this G-module structure.

Now, fix r = (r1, . . . ,rk) ∈ Nk with k > 1 and write r′ = (r1, . . . ,rk−1) ∈ Nk−1 with
r := deg(r) ∈ N and r′ := deg(r′) ∈ N. We endow the k-space SrE := ⊗k

i=1 S
riE with

a G-module structure through the diagonal action. Then, we write Πr
S : SrE −→ SrE

for the r-fold product, which we define recursively as the composition:

SrE = Sr′
E ⊗ SrkE

Πr′
S ⊗1

−−−−→ Sr′
E ⊗ Srk

Π(r′,rk)
S−−−−−→ SrE. (2.4.6)

On the other hand, we write ∆r
SE : SrE −→ SrE for the r-fold coproduct, which we once

again define recursively as the composition:

SrE
∆(r′,rk)

S−−−−−→ Sr′
E ⊗ Srk

∆r′
S ⊗1

−−−−→ Sr′
E ⊗ SrkE = SrE. (2.4.7)

Then, the G-module SrE is homogenous of degree r, and the r-fold product Πr
S and

r-fold coproduct ∆r
S are G-module homomorphisms.

Finally, we note that the constructions of this section performed for the symmetric
powers transfer analogously to the exterior powers. In this case, however, note that
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ΛrE = 0 whenever r > n. So here, we restrict attention to sequences r ∈ Nk of degree
at most n. Then, for such r with r := deg(r), we write ΛrE := ⊗k

i=1 ΛriE with the
r-fold product Πr

Λ : ΛrE −→ ΛrE and r-fold coproduct ∆r
Λ : ΛrE −→ ΛrE defined

similarly. Then ΛrE is homogenous of degree r, and the maps Πr
Λ, ∆r

Λ are G-module
homomorphisms.

2.4.3. Contravariant Duality. Recall that if V is a G-module, then the k-linear dual
V ∗ = Homk(V,k) has the structure of a G-module via (g · h)(v) = h(g−1 · v) for g ∈ G,
h ∈ H, and v ∈ V .

Remark 2.4.8. Recall that in Examples 2.4.3(iii), we saw that the 1-dimensionalG-mod-
ule det = k ·1det afforded by the determinant function is homogenous of degree n. Then,
the k-linear dual det∗ of det is a one-dimensional G-module with g · 1∗

det = det(g)−11∗
det

for g ∈ G. The reader may observe that det∗ is precisely the module that was observed
not to be polynomial in Example 2.4.2.

Now, following the discussion in Remark 2.4.8, we see that the polynomial category
Mk(n) is not closed under the (standard) duality. Instead, the polynomial category
carries an alternate notion of duality called contravariant duality.

Given g ∈ G, we denote by gt ∈ G the transpose element of g. Then for V ∈ Mk(n),
by the contravariant dual V ◦ of V , we shall mean the k-space V ∗ := Homk(V,k) endowed
with a G-module structure via (g · h)(v) := h(gt · v) for g ∈ G, h ∈ Homk(V,k), and
v ∈ V . Now, since cij(gt) = cji(g) for g ∈ G, i, j ∈ [n], it is clear that V ◦ ∈ Mk(n).
Moreover, if V ∈ Mk(n, r), then we also have that V ◦ ∈ Mk(n, r). If V h−→ W is a
G-module homomorphism for V,W ∈ Mk(n, r), then the dual map h◦ := h∗ provides a
G-module homomorphism W ◦ h◦

−→ V ◦.

Remark 2.4.9. Let us consider the contravariant dual E◦ of the natural module E.
Here, E◦ has a k-basis {e∗

i | i ∈ [n]} dual to the standard basis of E. Then, for g ∈ G,
j, k ∈ [n], we have that (g · e∗

k)(ej) = e∗
k(gt · ej) = e∗

k

Ä∑
i g

t
ijei

ä
= gt

kj = gjk, and so
g · e∗

k = ∑
j gjke

∗
j for g ∈ G, k ∈ [n]. Hence, we deduce that the k-linear map E◦ −→ E

with e∗
k 7−→ ek is a G-module isomorphism.

For an alternate perspective on contravariant duality, and in particular Remark 2.4.9,
the reader may wish to consult [G, §2.7].

Remark 2.4.10. Let r ∈ N. Recall that, as a k-space, the rth-divided power DrE

is given by the dual of Sr(E∗)∗ of the rth-symmetric power Sr(E∗) of the dual E∗ of
E. Accordingly, we endow the rth-divided power DrE with a G-module structure by
identifying it with Sr(E◦)◦. Note that since E is self-dual under the contravariant dual,
we have that DrE ∼= Sr(E◦)◦ ∼= (SrE)◦. Note that DrE is homogenous of degree r.
Once again, for r ∈ Nk with r := deg(r) ∈ N, we write DrE := ⊗k

i=1D
riE with the

r-fold product Πr
D : DrE −→ DrE and r-fold coproduct ∆r

D : DrE −→ DrE defined as
in §2.4.2. Finally, after endowing the tensor product DrE with a G-module structure in
the standard way, we see that DrE is homogeneous of degree r and the maps Πr

D, ∆r
D

are G-module homomorphisms.



Adam Higgins 18

2.4.4. Weight Spaces. Now, we denote by T ≤ G the maximal torus of G consisting
of the diagonal matrices in G. Recall that the character group X(T ) := Hom(T, k×)
of T is identified with Zn, where a sequence α = (α1, . . . , αn) ∈ Zn is identified with
diag(t1, . . . , tn) α7−→

∏n
k=1 t

αk
k . Now, let V be a rational G-module. Then, for α ∈ Zn,

we write V α for the α-weight space of V , that is to say, the k-subspace of V given
by V α = {v ∈ V | t · v = α(t)v for t ∈ T}. Note that if V is polynomial, then the
weight-space V α may only be non-zero if α ∈ Λ(n) = Nn, whilst if V is homogenous of
degree r, then V α may only be non-zero if α ∈ Λ(n, r). Recall that for V ∈ Mk(n, r), we
have the k-linear weight-space decomposition V =

À

α∈Λ(n,r) V
α [Spr, Theorem 3.2.3].

2.4.5. Induced Modules. Now, we denote by B ≤ G the subgroup consisting of the
the lower-triangular matrices in G, with U ≤ B the subgroup of lower-uni-triangular
matrices. Recall that U is a unipotent group and that we have the semi-direct product
decomposition B = T ⋉ U . Then, for α ∈ Λ(n), we denote by kα the one-dimensional
rational T -module on which t ∈ T acts by multiplication by α(t). Note that since
B = T ⋉ U , we may endow kα with the structure of a rational B-module by letting
U act trivially. Then, for λ ∈ Λ+(n, r), by the induced module (associated to λ), we
mean the G-module ∇k(λ) := indG

B kλ [Jan, §II.2.1] (note that here, the author writes
H0(λ) in place of ∇k(λ)). For details on the induction functor indG

B, the reader may
consult [Jan, §I.3.3].

Note that in characteristic zero, the induced modules labelled by Λ+(n, r) are pre-
cisely the irreducible modules in Mk(n, r):

Theorem 2.4.11 ([G, (4.7b)]). Suppose that the field k is of characteristic zero. Then,
the induced modules labelled by Λ+(n, r) form a complete set of representatives of the
isomorphism classes of irreducible homogenous degree r polynomial G-modules.

Remark 2.4.12. Note that in [G, §4], Green constructs the module Dλ,k which is
isomorphic to our induced module ∇k(λ). See [G, §4.8], [J1, §27] for details.

Now, we review a construction of ∇k(λ) by Akin, Buchsbaum, and Weyman, which
we refer to as the ABW-construction of ∇k(λ). In [ABW, §II.1], the authors associate
to a partition λ with λ1 ≤ n a G-module denoted Lλ(E), which they call the Schur
functor of E, and sometimes is referred to as the Schur module associated to λ. Further,
in [ABW, §II.2], the authors provide a description of Lλ(E) by generators and relations.
More precisely, in [ABW, Theorem II.2.16], the authors identify Lλ(E) with the cokernel
of a G-homomorphism between a pair of (direct sums of) tensor products of exterior
powers of E. By [D1, §2.7(5)], we have that Lλ(E) is isomorphic to an induced module,
namely Lλ(E) ∼= ∇k(λ′) for partitions λ with λ1 ≤ n (note that Y (λ) is used in place
of ∇k(λ) in [D1]). The cokernel construction by Akin, Buchsbaum, and Weyman is as
follows. Fix a partition λ with λ1 ≤ n, and write ℓ := len(λ). Then, for 1 ≤ i < j ≤ ℓ,
1 ≤ s ≤ λj , we denote by ϕ(i,j,s)

λ : Λλ(i,j,s)
E −→ ΛλE the G-homomorphism given by the

composition:

Λλ(i,j,s)
E

1⊗···⊗∆(λi,s)
Λ ⊗···⊗1

−−−−−−−−−−−−→ Λλ1E ⊗ · · · ⊗ ΛλiE ⊗ ΛsE ⊗ · · · ⊗ Λλj−sE ⊗ · · · ⊗ ΛλℓE

σΛ−→ Λλ1E ⊗ · · · ⊗ ΛλiE ⊗ · · · ⊗ ΛsE ⊗ Λλj−sE ⊗ · · · ⊗ ΛλℓE
1⊗···⊗Π

(s,λj −s)
Λ ⊗···⊗1

−−−−−−−−−−−−−−→ ΛλE,

(2.4.13)
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where σΛ denotes the isomorphism that permutes the appropriate tensor factors, and
each 1 denotes the identity map on the appropriate tensor factor. Now, set:

ϕ(i,i+1)
λ :=

λi+1∑
s=1

ϕ(i,i+1,s)
λ :

λi+1∑
s=1

Λλ(i,i+1,s)
E −→ ΛλE,

ϕλ :=
ℓ−1∑
i=1

ϕ(i,i+1)
λ :

ℓ−1∑
i=1

λi+1∑
s=1

Λλ(i,i+1,s)
E −→ ΛλE.

(2.4.14)

Then, for λ ∈ Λ+(n), we have that cokerϕλ′ ∼= Lλ′(E) [ABW, Theorem II.2.16], and
hence cokerϕλ′ ∼= ∇k(λ) [D1, §2.7(5)].

Now, we review an alternative description of ∇k(λ) due to James [J1, §26], which
we refer to as the James-construction of ∇k(λ). James’ construction is as follows. Once
again, let λ ∈ Λ+(n) with ℓ := len(λ). Then, for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj , we construct
the G-homomorphism ψ(i,j,t)

λ : SλE −→ Sλ(i,j,t)
E as the composition:

SλE
1⊗···⊗∆

(t,λj −t)
S ⊗···⊗1

−−−−−−−−−−−−−−→ Sλ1E ⊗ · · · ⊗ SλiE ⊗ · · · ⊗ StE ⊗ Sλj−tE ⊗ · · · ⊗ SλℓE
σS−→

Sλ1E ⊗ · · · ⊗ SλiE ⊗ StE ⊗ · · · ⊗ Sλj−tE ⊗ · · · ⊗ SλℓE
1⊗···⊗Π(λi,t)

S ⊗···⊗1
−−−−−−−−−−−−→ Sλ(i,j,t)

E,

(2.4.15)

where σS denotes the isomorphism that permutes the appropriate tensor factors, and
each 1 refers to the identity map on the appropriate tensor factor. Now, set:

ψ(i,i+1)
λ :=

λi+1∑
t=1

ψ(i,i+1,t)
λ : SλE −→

λi+1∑
t=1

Sλ(i,i+1,t)
E,

ψλ :=
ℓ−1∑
i=1

ψ(i,i+1)
λ : SλE −→

ℓ−1∑
i=1

λi+1∑
t=1

Sλ(i,i+1,t)
E.

(2.4.16)

Then, for λ ∈ Λ+(n), we have that ∇k(λ) ∼= kerψλ [J1, Theorem 26.5].

Remark 2.4.17. Although James refers to the module kerψλ as the Weyl module, it is
not to be confused with the usual Weyl module ∆k(λ) that we introduce in the following
section. See [G, §4.8] for details, and in particular [G, Theorem (4.8f)].

Examples 2.4.18. Fix r ∈ Z>0. Then:

(i) Let λ = (1r). Then, λ′ = (r) and so ϕλ′ = 0 since len(λ′) = 1. Hence, according
to (2.4.14), we have ∇k(1r) ∼= codomϕλ′ = ΛrE.

(ii) On the other hand, let λ = (r). Then, we have that ψλ = 0 since len(λ) = 1.
Hence, according to (2.4.16), we have ∇k(r) ∼= domψλ = SrE.

Remark 2.4.19. The proceeding Example shows the necessity of the condition that k
has characteristic zero in Theorem 2.4.11.

Example 2.4.20. Suppose that k has characteristic 2, and let r = 2 with λ = (2). Then,
as in Examples 2.4.18(ii), we have that ∇k(2) = S2E. Then, consider the k-subspace U
of S2E spanned by elements of the form ē2

k for k ∈ [n]. Then, for g ∈ G, k ∈ [n], we
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have that:

g · ē2
k =
Ç∑

i

gikēi

å2

=
∑

i

g2
ikē

2
i + 2

∑
i<j

gikgjk(ēi · ēj) =
∑

i

g2
ikē

2
i ∈ U,

and so U is a proper submodule of ∇k(2). Hence, ∇k(2) is reducible in characteristic 2.

2.4.6. Weyl Modules. For λ ∈ Λ+(n), we denote by ∆k(λ) the Weyl module (associated
to λ). Note that for our purposes, we may identity the Weyl module ∆k(λ) as the
contravariant dual ∇k(λ)◦ of the induced module ∇k(λ) [G, §5.1], [Jan, §II.8.17]. For a
definition of the Weyl module ∆k(λ) in a more general setting, consult [Jan, §II.2.13(1)].

Firstly, in light of the examples given in Examples 2.4.18 and the isomorphism
∆k(λ) ∼= ∇k(λ)◦, we have the following:

Examples 2.4.21. Let r ∈ Z>0. Then:

(i) Let λ = (1r). Then, ∇k(1r) ∼= ΛrE by Examples 2.4.18(i), and so it follows that
∆k(1r) ∼= ∇k(1r)◦ ∼= (ΛrE)◦ ∼= ΛrE since the rth-exterior power ΛrE is self-dual
under contravariant duality.

(ii) On the other hand, let λ = (r). Then, ∇k(r) ∼= SrE by Examples 2.4.18(ii), and
so ∆k(r) ∼= ∇k(r)◦ ∼= (SrE)◦ ∼= DrE since the rth-divided power DrE is dual to
the rth-symmetric power SrE under contravariant duality.

Next, we have the analogue of Theorem 2.4.11 for Weyl modules:

Theorem 2.4.22. Suppose that the field k is of characteristic zero. Then, the Weyl
modules labelled by Λ+(n, r) form a complete set of representatives of the isomorphism
classes of irreducible homogenous degree r polynomial G-modules.

Remark 2.4.23. Once again, the condition that k has characteristic zero in Theo-
rem 2.4.22 is necessary, as the proceeding Example shows.

Example 2.4.24. Suppose that k has characteristic 2 and let λ = (2). Then, according
to Examples 2.4.21(ii), we have that ∆k(2) ∼= D2E. Now, let g ∈ G, j, l ∈ [n] with j ̸= l.
Then:

g · (e(1)
j · e(1)

l ) =
Ç∑

i

gije
(1)
i

å
·
Ç∑

k

gkle
(1)
k

å
=

∑
i<k

(gijgkl + gilgkj)
Ä
e

(1)
i · e(1)

k

ä
+

∑
i

gijgil

Ä
e

(1)
i · e(1)

i

ä
=

∑
i<k

(gijgkl + gilgkj)
Ä
e

(1)
i · e(1)

k

ä
+ 2

∑
i

gijgile
(2)
i ∈ D2E.

(2.4.25)

Hence, by (2.4.25), we have that the k-span W of elements of the form e
(1)
j · e(1)

l ∈ D2E

for j, l ∈ [n] with k ̸= l forms a proper G-submodule of D2E. Hence, in characteristic 2,
the Weyl module ∆k(2) is reducible.

Remark 2.4.26. Here, we observe that Example 2.4.24 may be obtained from Exam-
ple 2.4.20 via contravariant duality. Indeed, suppose that k has characteristic 2. Then,
recall the (proper) G-module inclusion U ↪−→ S2E ∼= ∇k(2) given in Example 2.4.20. By
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taking contravariant duals of the quotient map S2E
π−→→ S2E/U :=Ū ̸= 0, we receive

a (proper) G-module embedding π◦ : Ū◦ ↪−→ (S2E)◦ ∼= D2E. It is clear to see that the
image of Ū◦ in D2E is precisely the (proper) G-submodule W ≤ D2E ∼= ∆k(2) described
in Example 2.4.24.

In the remainder of this section, we review a construction of the Weyl module ∆k(λ)
by Akin, Buchsbaum, and Weyman [ABW, §II.3]. Let λ ∈ Λ+(n) and write ℓ := len(λ).
Then, in a similar manner to that of (2.4.14), for 1 ≤ i < j ≤ ℓ and 1 ≤ t ≤ λj , denote
by θ(i,j,t)

λ : Dλ(i,j,t) −→ DλE the G-module homomorphism given by the composition:

Dλ(i,j,t)
E

1⊗···⊗∆(λi,t)
D ⊗···⊗1

−−−−−−−−−−−−→ Dλ1E ⊗ · · · ⊗DλiE ⊗DtE ⊗ · · · ⊗Dλj−tE ⊗ · · · ⊗DλℓE

σD−−→ Dλ1E ⊗ · · · ⊗DλiE ⊗ · · · ⊗DtE ⊗Dλj−tE ⊗ · · · ⊗DλℓE
1⊗···⊗Π

(t,λj −t)
D ⊗···⊗1

−−−−−−−−−−−−−−→ DλE,

(2.4.27)

where σD denotes the isomorphism that permutes the appropriate tensor factors, and
each 1 denotes the identity map on the appropriate tensor factor. Then, similarly to
(2.4.14), we set:

θ(i,i+1)
λ :=

λi+1∑
t=1

θ(i,i+1,t)
λ :

λi+1∑
t=1

Dλ(i,i+1,t)
E −→ DλE,

θλ :=
ℓ−1∑
i=1

θ(i,i+1)
λ :

ℓ−1∑
i=1

λi+1∑
t=1

Dλ(i,i+1,t)
E −→ DλE.

(2.4.28)

For λ ∈ Λ+(n), we have that ∆k(λ) ∼= coker θλ [ABW, Theorem II.3.16]. Now, recall that
∆k(λ)◦ ∼= ∇k(λ) and that (DαE)◦ ∼= SαE for α ∈ Λ(n). By taking contravariant duals,
it follows that ∇k(λ) ∼= ker θλ

◦ and it is easy to check that we have the identifications
θλ

◦ = ψλ and θ(i,j,t)◦
λ = ψ(i,j,t)

λ for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj .

Remark 2.4.29. Note that one may now recover Examples 2.4.21(ii) without use of
contravariant duality. Indeed, when λ = (r), we have θλ = 0 since len(λ) = 1. Hence,
according to (2.4.28), we have that ∆k(r) ∼= codom θλ = DrE.

2.5. The Schur Algebra
2.5.1. The Schur Coalgebra. Now, recall that the polynomial algebra Ak(n) has a
N-grading of the form Ak(n) =

À

r∈NAk(n, r), where Ak(n, r) is spanned by the mono-
mials cij for i,j ∈ I(n, r). Note that the restriction ∆ of ∆G to Ak(n, r) endows
Ak(n, r) with the structure of a k-coalgebra, which we call the Schur coalgebra (of degree
r). Explicitly, for i,k ∈ I(n, r), we have that ∆ : cik 7−→

∑
j∈I(n,r) cij ⊗ cjk.

Remark 2.5.1. It follows from Remark 2.4.1 that the (G,G)-bimodule structure on k[G]
is determined by the comultiplication ∆G : k[G] −→ k[G] ⊗ k[G]. Now, since Ak(n, r) is
closed under the restriction ∆ of ∆G, it follows that Ak(n, r) is a (G,G)-submodule of
k[G]. In particular, for i,k ∈ I(n, r), we have that g ∈ G acts on cik from the left by
g · cik = ∑

j∈I(n,r) cjk(g)cij, and from the right by cik · g = ∑
j∈I(n,r) cij(g)cjk.

Now, note that cij = ckl if and only if (i,j) ∼ (k,l) where the equivalence relation
on I(n, r) × I(n, r) is determined by the diagonal action of Sr. Accordingly, Ak(n, r)
has a k-basis parametrised by the Sr-orbits in I(n, r) × I(n, r).
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2.5.2. The Schur Algebra. Now, by the Schur algebra (of degree r) for G, we shall
mean the k-linear dual Sk(n, r) := Homk(Ak(n, r), k) of the Schur coalgebra. Recall that
Ak(n, r) has a k-basis parametrised by Sr-orbits in I(n, r) × I(n, r). For i,j ∈ I(n, r),
we write ξij ∈ Sk(n, r) for the element dual to the basis element of Ak(n, r) labelled by
the Sr-orbit of (i,j) in I(n, r) × I(n, r). Explicitly, we have:

ξij(cst) =
{

1, if (s, t) ∼ (i,j),
0, if (s, t) ̸∼ (i,j),

, (2.5.2)

for s, t ∈ I(n, r). Clearly, for i,j,k,l ∈ I(n, r), we have that ξij = ξkl if and only if
(i,j) ∼ (k,l).

Now, recall that if A is a k-coalgebra with comultiplication ∆A, then the dual map ∆∗
A

endows the dual space A∗ = Homk(A,k) with the structure of k-algebra [K, Proposition
III.1.2]. Accordingly, the Schur algebra Sk(n, r) is endowed with the structure of a
k-algebra whose product Π is given by the k-linear dual of ∆. Explicitly, the product
Π : Sk(n, r) ⊗ Sk(n, r) −→ Sk(n, r) is given by Π(ξ ⊗ ξ′)(crt) = ∑

s∈I(n,r) ξ(crs) ⊗ ξ′(cst)
for r, t ∈ I(n, r). Henceforth, for ξ, ξ′ ∈ Sk(n, r), we write ξ · ξ′ := Π(ξ ⊗ ξ′).

For details on the product Π of the Schur algebra, consult [G, §2.3]. For our purposes,
it will suffice to observe the following:

Lemma 2.5.3 ([G, (2.3c)]). Let n, r ∈ N. Then, the product in Sk(n, r) satisfies:

(i) For i,j,k,l ∈ I(n, r), we have that ξij · ξk,l = 0 unless j ∼ k.

(ii) For i,j ∈ I(n, r), we have that ξii · ξij = ξij = ξij · ξjj.

In particular, it follows from Lemma 2.5.3(ii) that we have that the elements of
the form ξii ∈ Sk(n, r) for i ∈ I(n, r) are idempotents of Sk(n, r). Henceforth, for
α ∈ Λ(n, r), we denote by ξα ∈ Sk(n, r) the idempotent ξii where i is arbitrary with
i ∈ α. Then, it follows from Lemma 2.5.3 that ∑

α∈Λ(n,r) ξα = 1S [G, (2.3d)], where 1S

denotes the multiplicative identity in Sk(n, r).
2.5.3. Connection with the General Linear Groups. In this section, we review the
connection between the Schur algebra Sk(n, r) and the category Mk(n, r) of degree r
homogenous G-modules. Firstly, for g ∈ G, we write Ak(n, r) evg−−→ k for the element of
Sk(n, r) with h

evg7−−→ h(g). Then, the k-algebra homomorphism kG ev−→ Sk(n, r) deter-
mined by g ev7−→ evg is surjective [G, Proposition (2.4b)(i)]. Now, let V ∈ Sk(n, r)–mod.
Then, we endow V with the structure of a left-G-module via g · v := evg · v for g ∈ G,
v ∈ V . Under this identification, we have that V ∈ Mk(n, r). Moreover, this association
establishes an equivalence of categories between Mk(n, r) and Sk(n, r)–mod [G, §2.4].
In particular, recall that E⊗r has a G-module structure via g · ej = ∑

i∈I(n,r) cij(g)ei
for g ∈ G, j ∈ I(n, r). Thus, the corresponding Sk(n, r)-module structure on E⊗r is
determined via ξ · ej = ∑

i∈I(n,r) ξ(cij)ei for ξ ∈ Sk(n, r), j ∈ I(n, r).
For V ∈ Mk(n, r) and α ∈ Λ(n, r), we have the following characterisation of the

weight-space V α in terms of the Sk(n, r)-module structure on V .

Lemma 2.5.4 ([G, §3.2]). Let V ∈ Mk(n, r) and α ∈ Λ(n, r). Then, the k-space ξα · V
is precisely the α weight-space V α of V .
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Finally, we shall need the following alternate description of the weight-space V α.

Lemma 2.5.5 ([D3, 2.1(8)]). Let α ∈ Λ(n, r). Then for V ∈ Mk(n, r), we have a
k-linear isomorphism HomG(V, SαE) ∼= V α.

Remark 2.5.6. Note that in [D3], Donkin is working in the more general context of the
q-Schur algebra, where the k-space V α is given by ξα · V by definition. Thus, in order
to apply Lemma 2.5.5 to our purposes, we must make use of Lemma 2.5.4.

2.6. Representations of the Symmetric Groups
In this section, we introduce the prerequisite notation relating to the representation

theory of the symmetric groups. For the most part, we follow the conventions established
within [J1]. Note that in [J1], James works with the opposite algebra (kSr)op to our
symmetric group algebra. Accordingly, James constructs his modules as right-modules
for (kSr)op, whereas we construct the equivalent left-modules for kSr.

2.6.1. Tableaux and Tabloids. For a partition λ, by the Young diagram of λ, we mean
the set [λ] := {(i, j) | i ∈ [len(λ)], j ∈ [λi]}. We refer to the elements of [λ] as its nodes.
We identify the Young diagram [λ] with the diagram formed by placing a unit square
centred at each node in [λ]. When we do so, we shall follow the English convention
whereby each node x = (i, j) is placed i units southward and j units eastward. For
example, if λ = (3, 1), then the Young diagram [λ] of λ is identified with the diagram:

[(3, 1)] = {(1, 1), (1, 2), (1, 3), (2, 1)} ↔
(1, 1) (1, 2) (1, 3)

(2, 1)
, (2.6.1)

where here, for the sake of clarity, we have decorated each box in the diagram and
each corresponding node in [λ] with matching colours, along with superimposing the
coordinate of each box.

Now, let S be a non-empty set, with λ ∈ Nn. Then, by an S-valued λ-tableau (plural
λ-tableaux), we mean a function [λ] t−→ S. We refer to the sequence λ as the shape of t.
We typically represent the data of t by superimposing the diagram [λ] with the values
of t. For instance, the following is an example of a [5]-valued (3, 2)-tableau:

t = 1 2 4
3 5

. (2.6.2)

For λ a partition of r, we denote by Tλ the set of all bijective [r]-valued λ-tableaux. By
the row-canonical (resp. column-canonical) λ-tableau, denoted tλ (resp. tλ), we mean
the λ-tableau obtained by filling [λ] with the numbers from [r] in sequence, left to right
(resp. top to bottom) and top to bottom (resp. left to right). For instance, we have:

t(2,2,1) =
1 2
3 4
5

, t(2,2,1) =
1 4
2 5
3

. (2.6.3)

The left-action of Sr on [r] induces a left-action of Sr on Tλ that is regular, which is to
say that it is equivalent (in the sense of group-actions) to the left-regular group-action
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of Sr on itself by left-multiplication. Then, for t ∈ Tλ, by the row-stabiliser (resp. col-
umn-stabiliser) of T , denoted R(t) (resp. C(t)), we mean the subgroup of Sr consisting
of all elements that preserve, in the set-wise sense, each row (resp. column) of t. For
instance, for the example tableau t given in (2.6.2), we have:

R(t) = Sym({1, 2, 4}) × Sym({3, 5}), C(t) = Sym({1, 3}) × Sym({2, 5}).

Now, given s, t ∈ Tλ, write s ∼R t (resp. s ∼C t) if s = σ · t for some σ ∈ R(t) (resp.
σ ∈ C(t)). The relations ∼R and ∼C both define equivalence relations on Tλ, and for
t ∈ Tλ, we denote by t (resp. t ) the equivalence class of t under ∼R (resp. ∼C). By
a λ-row-tabloid (resp. λ-column-tabloid), we mean a subset of Tλ of the form t (resp.
t ) for some t ∈ Tλ. Just as with λ-tableaux, we refer to the partition λ as the shape
of a given λ-(row/column)-tabloid. When it is clear from context, we will omit the λ
prefix. We can represent a row-tabloid (resp. column-tabloid) by omitting the vertical
(resp. horizontal) lines from the diagram of any representative of the equivalence class.
For example, given t as in (2.6.2), we have:

t = 1 2 4
3 5

, t = 42
5

1
3

.

For our purposes, we will only require row-tabloids. Thus, we refer to λ-row-tabloids
simply as λ-tabloids. We denote the set of all such λ-tabloids by Tλ.

2.6.2. Permutation Modules. Now, fix a partition λ of r. Then, the left-action of Sr

on Tλ induces a left-action of Sr on Tλ. By the permutation module (associated to λ),
denoted Mk(λ), we mean the left kSr-module kTλ defined by the left-action Sr ↷ Tλ.
Since the action of Sr on Tλ is transitive, Mk(λ) is a cyclic kSr-module generated by
any single tabloid t ∈ Tλ. Note that there is a kSr-linear surjection kTλ −→→ kTλ

defined by t 7−→ t ∈ Mk(λ) for t ∈ Tλ.

Note that for t ∈ Tλ, the stabiliser St := StabSr (t) is precisely the row-stabiliser
R(t) of t, and when t is the row-canonical λ-tableau tλ, the subgroup Sλ := Stλ

≤ Sr

is the (standard) Young subgroup (associated to λ). Observe that we have the (internal)
direct product decomposition:

Sλ =
len(λ)∏
j=1

Sym

k ∈ [r]
∣∣∣∣∣ ∑

i<j

λi < k ≤
∑
i≤j

λi

 ≤ Sr. (2.6.4)

Now, let α be a composition of r. Then, taking inspiration from (2.6.4), we define the
Young subgroup associated to α by:

Sα =
len(α)∏
j=1

Sym

k ∈ [r]
∣∣∣∣∣ ∑

i<j

αi < k ≤
∑
i≤j

αi

 ≤ Sr. (2.6.5)

Here, we observe that if α is a partition, then the definition (2.6.5) agrees with the
observation (2.6.4). Now, note that if β is a composition of r, then β may be obtained
from α by reordering terms, if and only if the Young subgroup Sβ is conjugate to Sα in
Sr. In particular, every Young subgroup of Sr is conjugate to a unique standard Young
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subgroup. Explicitly, if µ is the unique partition of r that may be obtained from α by
reordering terms, then Sα is conjugate to the standard Young subgroup Sµ.

Now, by the Orbit-Stabiliser theorem, we have a set-bijection between the set Tλ and
the set of left-cosets of Sλ in Sr. Accordingly, Mk(λ) is isomorphic to the left kSr-mod-
ule k Sr/Sλ defined by the left-action Sr ↷ (Sr/Sλ) given by left-multiplication. Note
that there is an isomorphism Mk(λ) ∼= k Sr/Sλ

∼= indSr
Sλ

trivr as representations for Sr.
Then, if α is a composition of r, we define the permutation module Mk(α) associated
to α to be the induced module indSr

Sα
trivr. If β is a composition of r that may be

obtained from α by reordering terms, then the Young subgroups Sα and Sβ are conju-
gate, and so the permutation modules Mk(α) and Mk(β) are isomorphic. In particular,
if µ is the unique partition of r that may be obtained from α by reordering terms,
then Mk(α) ∼= Mk(µ). Note that, since duality commutes with induction, permutation
modules are self-dual.

Example 2.6.6. When λ = (r), we have S(r) = Sr, and so the permutation module
Mk(r) is the trivial module. On the other hand, when λ = (1r), the Young subgroup
S(1r) is the trivial group, and so Mk(1r) is the left-regular module for kSr.

Let α be a composition of r, and write ℓ := len(α). Here, we introduce an al-
ternate identification of the permutation module Mk(α) that shall prove useful to the
constructions within this thesis. Firstly, denote by Sα the set of ordered sequences
x = (x1| . . . |xℓ) whose terms xi = (xi1, . . . , xiαi) are unordered sequences with terms in
[r] with the property that for each k ∈ [r], there exists a unique pair (i, j) in the range
1 ≤ i ≤ len(α), 1 ≤ j ≤ αi with the property that xij = k. Here, xi denotes the empty
sequence whenever αi = 0. Note that there is a left-action of Sr on Sα determined by:

σ · x := (σ(x11), . . . , σ(x1α1)| · · · |σ(xℓ1), . . . , σ(xℓαℓ
)) ,

for x ∈ Sα and σ ∈ Sr. If λ is a partition of r, there is a well-defined set-bijection
Sλ

ν−→ Tλ such that the ith-row of the λ-tabloid ν(x) is given by xi for each i in the
range 1 ≤ i ≤ ℓ. Moreover, since ν commutes with the left-action of Sr on each of Sλ and
Tλ, it follows that ν induces a kSr-linear isomorphism of the form kSλ

∼= kTλ = Mk(λ).
Accordingly, one may identify the permutation module Mk(λ) as the k-space defined on
the k-basis Sλ. Further, let α be a composition of r, and denote by µ the unique partition
of r that may be obtained from α by reordering its terms. Then, the corresponding
conjugation automorphism Sr

∼=−→ Sr mapping the Young subgroup Sµ to Sα induces a
kSr-module isomorphism Mk(µ) ∼= k Sr/Sµ −→ k Sr/Sα

∼= Mk(α), and it is clear that
this isomorphism maps the set Sµ onto the set Sα. Hence, once again, one may identify
the permutation module Mk(α) as the k-space defined on the k-basis Sα.

Finally, for α a composition of r, we denote by Mk,sgn(α) the signed permutation
module (associated to α), that is Mk,sgn(α) := Mk(α) ⊗ sgnr. Note that in characteristic
2, the signed permutation module coincides with the standard permutation module.

2.6.3. Polytabloids and Specht Modules. Now, let r ∈ N with λ a partition of r.
Then, for t ∈ Tλ, by the polytabloid associated to t, we mean the element of Mk(λ) given
by {t} := {C(t)} · t = ∑

σ∈C(t) sgn(σ)(σ · t) ∈ Mk(λ).



Adam Higgins 26

Remark 2.6.7. Note that a polytabloid {t} depends not only on the equivalence class
t , but actually on the tableau t itself, as the following example demonstrates:{

1 2
3

}
= 1 2

3
− 2 3

1
̸= 1 3

2
− 2 3

1
=

{
1 3
2

}
. (2.6.8)

Remark 2.6.9. Let r ∈ Z>0, with λ a partition of r. Then, for t ∈ Tλ, it is clear
to see that we have that σ · {t} = {σ · t} for σ ∈ Sr. In particular, if σ ∈ C(t), then
{σ · t} = ± {t}.

It follows from Remark 2.6.9 that the k-space Spk(λ) spanned by the polytabloids
{t} for t ∈ Tλ is actually a submodule of Mk(λ), which we refer to as the Specht module
(associated to λ). Once again, since the action of Sr on Tλ is transitive, it follows that
the Specht module Spk(λ) is cyclic, generated by any single λ-polytabloid.

Example 2.6.10. When λ = (r), since Mk(r) is already the trivial module, the same
is true for Spk(λ). On the other hand, when λ = (1r), we see that there is a single
∼C-equivalence class in Tλ, and so it follows that Sp(1r) ∼= sgnr.

2.6.4. Standard Results. In this section, we list some standard results from the litera-
ture relating to the representation theory of the symmetric groups. Here, we fix r ∈ Z>0

with λ a partition of r.
Firstly, we have the standard basis theorem, which describes a k-basis for a Specht

module Spk(λ) parametrised by the standard λ-tableaux. Recall that we say that a
λ-tableau t ∈ Tλ is standard if the entries of t increase along rows and columns.

Theorem 2.6.11 ([J1, Theorem 8.4]). The set of λ-polytabloids {t} ∈ Spk(λ) corre-
sponding to standard λ-tableaux t ∈ Tλ forms a k-basis for the Specht module Spk(λ).

Theorem 2.6.12 ([J1, Theorem 4.12]). Suppose that the field k is of characteristic zero.
Then, the Specht modules labelled by partitions of r form a complete set of representatives
of the isomorphism classes of irreducible kSr-modules.

Remark 2.6.13. The Example proceeding this remark shows that the condition that k
has characteristic zero in Theorem 2.6.12 is certainly necessary.

Example 2.6.14. Suppose that the field k has characteristic p = 3, and write λ := (2, 1).
Then, by a result of James [J1, §24.4], we have that the Specht module Spk(2, 1) contains
a submodule isomorphic to the trivial module. Since the Specht module Spk(2, 1) is
clearly not itself the trivial module, we may immediately conclude that this Specht
module is in fact reducible. Nevertheless, let us verify this fact directly. Note that
according to Theorem 2.6.11, the Specht module Spk(2, 1) has a k-basis given by the
two polytabloids stated in (2.6.8):{

1 2
3

}
= 1 2

3
− 2 3

1
,

{
1 3
2

}
= 1 3

2
− 2 3

1
.

Then, since −2 = 1 ∈ k, it follows that we have that:

v :=
{

1 2
3

}
+

{
1 3
2

}
= 1 2

3
+ 1 3

2
+ 2 3

1
=
î
T (2,1)

ó
∈ Spk(2, 1),
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and so v spans a 1-dimensional submodule of Spk(2, 1) isomorphic to the trivial module.
Meanwhile, notice that:

w :=
{

1 2
3

}
−

{
1 3
2

}
= 1 2

3
− 1 3

2
∈ Spk(2, 1),

and so (1 2) ·w = −w−v, whilst (2 3) ·w = −w. It follows that the quotient of Spk(2, 1)
by the submodule k · v is isomorphic to the sign module sgn3 for kS3.

Now, we shall make use of the following result that characterises the dual of a Specht
module:

Theorem 2.6.15 ([J1, Theorem 8.15]). Let λ be a partition of r. Then, we have a
kSr-linear isomorphism of the form Spk(λ)∗ ∼= Spk(λ′) ⊗ sgnr.

The following result of James is fundamental for addressing (in)decomposability of
Specht modules. Recall that, for e ∈ N with e > 1, we say that a partition λ is e-regular
if no term of λ is repeated e or more times. In particular, a partition λ is 2-regular if
and only if it has distinct terms.

Theorem 2.6.16 ([J1, Corollary 13.17]). Suppose that either k is not of characteristic 2,
or that k has characteristic 2 and λ is 2-regular. Then, the k-space HomkSr (Sp(λ),M(λ))
is one-dimensional.

In particular, it follows from Theorem 2.6.16 that EndkSr (Spk(λ)) ∼= k for all such
λ as in the statement of the Theorem. Thus, we arrive at:

Theorem 2.6.17 ([J1, Corollary 13.18]). Suppose that either k is not of characteristic
2, or that k has characteristic 2 and λ is 2-regular. Then, the Specht module Spk(λ) is
indecomposable.

Remark 2.6.18. Now, as remarked in the introduction to this thesis, in [J1, 23.10(iii)],
James showed that Spk(5, 12) decomposes over fields of characteristic 2, thereby provid-
ing the first known example of a decomposable Specht module.

2.7. The Schur Functor
In this section we review the construction of the Schur functor f for the general

linear group, along with some of its properties à la [G, §6]. We note that the functor f
is a special case of a more general construction, that is to say, of a functor associated
to an idempotent. With this in mind, we will proceed at this level of generality before
specialising to our purposes.
2.7.1. Schur Functor Associated to an Idempotent. In the following, we fix a finite
dimensional associative unital k-algebra S with ξ ∈ S a non-zero idempotent. Note that
the k-subspace ξSξ ⊆ S of S has the structure of a k-algebra whose product is inherited
from that of S. However, it is important to note that ξSξ is not a subalgebra of S
(unless ξ = 1S) since they have different multiplicative identities.

Let V,W ∈ S–mod with some S-linear map V ϕ−→ W . Then, the k-subspaces ξV ⊆ V ,
ξW ⊆ W each have the structure of a left ξSξ-module, and the restriction ϕ|ξV gives
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a ξSξ-linear map ϕ|ξV : ξV −→ ξW . Accordingly, we may associate to ξ a functor

S–mod fξ−→ ξSξ–mod, which we call the Schur functor (associated to ξ).
Meanwhile, note that the left S-module Sξ has the structure of a right ξSξ-module.

Moreover, for W ∈ Sξ–mod, the k-space Sξ ⊗ξSξ W inherits the structure of a left
S-module from that of S. Accordingly, we also associate to ξ a functor of the form
ξSξ–mod gξ−→ S–mod that is given on objects by gξW = Sξ ⊗ξSξ W , which we call
the g-functor (associated to ξ). Note that this g-functor gξ is a right-inverse of fξ [G,
Theorem (6.2d)].

Lemma 2.7.1. The g-functor gξ is left-adjoint to the Schur functor fξ.

Proof. Firstly, for V, V ′ ∈ S–mod, v ∈ V , write evV,V ′
v : HomS(V,W ) −→ V ′ for the

k-linear map with (V ϕ−→ V ′) 7−→ ϕ(v) ∈ V ′. Note that, for V ∈ S–mod, the k-linear map
evV

ξ := evSξ,V
ξ is an embedding with image ξV ⊆ V . Moreover, for such V , it is clear

that the aforementioned k-linear isomorphism ξV ∼= HomS(Sξ, V ) is an isomorphism of
ξSξ-modules. Thus, for W ∈ ξSξ–mod, V ∈ S–mod, we have a k-linear isomorphism of
the form HomξSξ(W, fξV ) ∼= HomξSξ(W,HomS(Sξ, V )) . On the other hand, for such V ,
W , we have a k-linear isomorphism HomξSξ(W,HomS(Sξ, V )) ∼= HomS(Sξ ⊗ξSξ W,V )
given by the Hom-tensor adjunction, and so we are done since gξW := Sξ ⊗ξSξ W .

Lemma 2.7.2. Let S be a finite dimensional k-algebra with ξ ∈ S a non-zero idempotent.
Then:

(i) The Schur functor fξ : S–mod −→ ξSξ–mod is exact [G, (6.2a)]

(ii) The g-functor gξ : ξSξ–mod −→ S–mod is right-exact.

Finally, we have the main result describing how the Schur functor relates the cate-
gories S–mod and ξSξ–mod.

Theorem 2.7.3 ([G, Theorem (6.2g)]). Suppose that {Vλ | λ ∈ Λ} is a complete set
of representatives of the isomorphism classes of irreducible modules in S–mod, where
Λ denotes some parametrising set. Write Λξ := {λ ∈ Λ | ξVλ ̸= {0}}. Then, the
set {fξVλ | λ ∈ Λξ} is a complete set of representatives of the isomorphism classes of
irreducible modules in ξSξ–mod.

2.7.2. Connections to the Symmetric Groups. Fix n, r ∈ N with n ≥ r and write
r := (1, . . . , r) ∈ I(n, r) with ω := c(r) = (1r) ∈ Λ(n, r). Here, we specialise the results
of this section to the case that S = Sk(n, r) is the Schur algebra, with the idempotent ξ
given by ξω = ξrr.

Firstly, recall that Sk(ω) := ξωSk(n, r)ξω is k-spanned by elements of the form ξij

with i,j ∈ I(n, r). Moreover, since StabSr (r) = {1}, it follows that the Sr-orbits
in ω × ω ⊆ I(n, r) × I(n, r) are parametrised by the set {(rσ,r) | σ ∈ Sr}. Thus,
Sk(ω) has a k-basis given by ξ(rσ)r for σ ∈ Sr. Moreover, for σ, τ ∈ Sr, we have that
(ξ(rσ)r · ξ(rτ)r)(cik) = δc(k),ωδ(rσ),(iτ−1) for i,k ∈ I(n, r), and so it follows that we
have ξ(rσ)r · ξ(rτ)r = ∑

i∈I(n,r) δ(rσ),(iτ−1)ξir = ξ(rστ)r. Thus, the k-linear isomorphism
kSr −→ Sk(ω) determined by σ 7−→ ξ(rσ)r is an isomorphism of k-algebras [G, (6.1d)].
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Remark 2.7.4. It is worth explicitly stating the significance behind the requirement
that n ≥ r. Note that when n ≥ r, the action of Sr on I(n, r) is freely transitive, that
is to say, no permutation in Sr fixes I(n, r) point-wise. In particular, no element of Sr

fixes r. This fails spectacularly when n < r since then, any σ ∈ Sym({n + 1, . . . , r})
fixes I(n, r) point-wise. Thus, when n < r, it is not possible to recover an element of Sr

from its action on I(n, r).

Now, after applying the identification kSr
∼= Sk(ω), we have that the Schur functor

f is given by f := fξω : Sk(n, r)–mod −→ kSr–mod, whilst the g-functor g is given by
g := gξω : kSr–mod −→ Sk(n, r)–mod.

Remark 2.7.5. Firstly, note that since StabSr (r) = {1}, we have that the k-linear
map E⊗r −→ Sk(n, r) with ej 7−→ ξjr is an embedding with image Sk(n, r)ξω. Moreover,
by comparing the left Sk(n, r)-module structures of E⊗r and Sk(n, r)ξω, we see that
this embedding provides a Sk(n, r)-linear isomorphism E⊗r ∼= Sk(n, r)ξω. Now, let
V ∈ Sk(n, r)–mod. Then, recall that in the proof of Lemma 2.7.1, we saw that we
have a kSr-module isomorphism fV = ξωV ∼= HomkSr (E⊗r, V ), where here, we have
applied the identifications Sk(ω) ∼= kSr (k–alg) and Sk(n, r)ξω

∼= E⊗r (Sk(n, r)–mod).
Moreover, this isomorphism is functorial, and so in this case, one may identify the Schur
functor f with the Hom-functor HomSk(n,r)(E⊗r, –).

Remark 2.7.6. Note that in characteristic zero, the algebras Sk(n, r) and kSr are both
semisimple, and so the same applies to the categories Sk(n, r)–mod, kSr–mod.

Note that due to Remark 2.7.6, the functors f and g have a stronger relationship in
characteristic zero:

Lemma 2.7.7. Suppose that k has characteristic zero. Then:

(i) The g-functor is exact.

(ii) The functors f and g are inverse equivalence of categories [D3, §2.1 Remarks(iii)].

We conclude by collecting results from the literature describing how these functors
acts on the particular modules pertinent to this thesis.

Lemma 2.7.8. Let n, r ∈ N with n ≥ r. Then, for λ ∈ Λ+(n, r), α ∈ Λ(n, r), we have:

(i) fSαE ∼= Mk(α) [D2, Lemma (3.5)(i)].

(ii) fΛαE ∼= Mk(α) ⊗ sgnr = Mk,sgn(α) [D2, Lemma (3.5)(ii)].

(iii) gMk(α) ∼= SαE [DG1, Appendix A].

(iv) f∇k(λ) ∼= Spk(λ) [G, (6.3c)].
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3 Homomorphisms

For the remainder of this thesis, we drop the dependence on the field k in the notation
for induced modules, Weyl modules, (signed) permutation modules, and Specht modules.

Now, we move on to the crux of this thesis. In this chapter, for λ, µ ∈ Λ+(n, r), we
construct, in general characteristic, an identification of the k-space of kSr-linear homo-
morphisms Sp(λ) −→ Sp(µ) in terms of a certain subspace of HomkSr (Msgn(λ′),M(µ)).
Then, we conclude by examining, in characteristic 2, this identification in the case that
λ = µ = (a,m− 1, . . . , 2, 1b) for parameters a, b,m satisfying a−m ≡ b (mod 2).

3.1. General Constructions
3.1.1. Constructions of the Specht Module. We set ℓ := len(λ). By applying the
Schur functor f to the maps ϕλ and ψλ from (2.4.14) and (2.4.16) respectively, we obtain
the kSr-homomorphisms:

ϕ̄λ := f(ϕλ) :
ℓ−1
à

i=1

λi+1
à

s=1
Msgn(λ(i,i+1,s)) −→ Msgn(λ), (3.1.1)

ψ̄λ := f(ψλ) : M(λ) −→
ℓ−1
à

i=1

λi+1
à

t=1
M(λ(i,i+1,t)). (3.1.2)

As a consequence of the exactness of the Schur functor f , it follows that Sp(λ) ∼= coker ϕ̄λ′

and Sp(λ) ∼= ker ψ̄λ. This second isomorphism is an alternative realisation of James’
Kernel Intersection Theorem [J1, Corollary 17.18]. These two descriptions of the Specht
module Sp(λ) will be crucial for the considerations in this thesis.
3.1.2. The g-Functor. First, in Proposition 3.1.3(i), we point out a new property of
the g-functor, which we immediately apply in Proposition 3.1.3(ii) to obtain a new short
proof of the fact that g Sp(λ) ∼= ∇(λ) when p ̸= 2 [D4, Proposition 10.6(i)], [McD,
Theorem 1.1].

Proposition 3.1.3. Assume that p ̸= 2. Then:

(i) For α ∈ Λ(n, r), we have gMsgn(α) ∼= ΛαE.

(ii) For λ ∈ Λ+(n, r), we have g Sp(λ) ∼= ∇(λ).

Proof. (i) Recall that for β ∈ Λ(n, r) and V ∈ Mk(n, r), we have a k-isomorphism
HomG(V, SβE) ∼= V β, and so in particular dimV β = dim HomG(V, SβE). Moreover,
fSαE ∼= M(α) and so it follows that:

HomG(gMsgn(α), SβE) ∼= HomkSr (Msgn(α), fSβE) ∼= HomkSr (Msgn(α),M(β)).

Now, since p ̸= 2, the dimension of HomkSr (Msgn(α),M(β)) does not depend on the
value of p [DJ, Theorem 3.3(ii)], and so in order to calculate the dimension of gMsgn(α)β,
we may assume that p = 0. However, in characteristic 0, the functors f and g are inverse
equivalences of categories and so gMsgn(α) ∼= ΛαE. Therefore, for p ̸= 2, we deduce that
dim gMsgn(α)β = dim ΛαEβ for all β ∈ Λ(n, r). Now, recall that for V ∈ Mk(n, r), we
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have the weight space decomposition V =
À

β∈Λ(n,r) V
β as in §2.4.4, and so it follows

that, for p ̸= 2, we have dim gMsgn(α) = dim ΛαE.
Now, we have that M(1r) ∼= eSe and so gM(1r) ∼= Se ⊗eSe eSe ∼= Se ∼= E⊗r

[G, (6.4f)]. For α ∈ Λ(n, r) we have a surjective G-homomorphism E⊗r −→ ΛαE and
so via the Schur functor, we get a surjective kSr-homomorphism M(1r) −→ Msgn(α).
The functor g, being right-exact, preserves surjections, and so the G-homomorphism
gM(1r) −→ gMsgn(α) is surjective. We consider the commutative diagram:

gM(1r) E⊗r

gMsgn(α) ΛαE

∼=

, (3.1.4)

where the horizontal maps in (3.1.4) are induced from the kSr-linear embeddings:
M(1r) ∼= fE⊗r ↪−→ E⊗r and Msgn(α) ∼= fΛαE ↪−→ ΛαE. The top horizontal map is
an isomorphism and the right-hand vertical map is surjective, and so the bottom hori-
zontal map is hence surjective. Since dim gMsgn(α) = dim ΛαE away from characteristic
2, we obtain the isomorphism gMsgn(α) ∼= ΛαE for p ̸= 2.

(ii) Recall that ∇(λ) ∼= cokerϕλ′ , where ϕλ′ : K(λ′) −→ Λλ′
E and K(λ′) is the

direct sum of tensor products of exterior powers given in (2.4.14), where here we re-
place the partition λ with λ′. By applying the Schur functor f to ϕλ′ , we obtain the
kSr-homomorphism ϕ̄λ′ : K̄(λ′) −→ Msgn(λ′), where K̄(λ′) is the direct sum of signed
permutation modules given in (2.4.16), again substituting λ with λ′. Also, recall that
Sp(λ) ∼= coker ϕ̄λ′ . By part (i), we have that gMsgn(λ′) ∼= Λλ′

E and so gK̄(λ′) ∼= K(λ′).
Hence, we obtain the commutative diagram:

gK̄(λ′) gMsgn(λ′)

K(λ′) Λλ′
E

g(ϕ̄λ′ )

∼= ∼=
ϕλ′

. (3.1.5)

The image of g(ϕ̄λ′) is mapped isomorphically onto the image of ϕλ′ , and so in particular
cokerϕλ′ ∼= coker g(ϕ̄λ′). Finally, g preserves cokernels since it is right-exact, and so we
deduce that ∇(λ) ∼= cokerϕλ′ ∼= coker g(ϕ̄λ′) ∼= g coker ϕ̄λ′ ∼= g Sp(λ).

3.2. Homomorphisms
Here, we fix n, r ∈ N with n ≥ r ≥ 1.

Lemma 3.2.1. Let α, β ∈ Λ(n, r). Then:

(i) HomkSr (M(α),M(β)) ∼= HomG(SαE,SβE) ∼= (SαE)β.

(ii) For p ̸= 2, we have HomkSr (Msgn(α),M(β)) ∼= HomG(ΛαE,SβE) ∼= (ΛαE)β.

Proof. Recall from Lemma 2.7.1, that for V ∈ Mk(n, r) and W ∈ kSr–mod, we have a
k-isomorphism of the form HomG(gW, V ) ∼= HomkSr (W, fV ). Parts (i)-(ii) then both
follow from our comments in §3.1.1, and Proposition 3.1.3(i).



Adam Higgins 32

3.2.1. Homomorphisms Between Specht Modules. Now, we move on to our gen-
eral description of the k-space of kSr-linear homomorphisms Sp(λ) −→ Sp(µ) for par-
titions λ, µ ∈ Λ+(n, r). Unless otherwise stated, k denotes an algebraically closed field
of characteristic p ≥ 0. Note that the condition that the field k is algebraically closed
is imposed to ensure certain nicety properties of the connection between the categories
Mk(n, r) and kSr–mod, and may not be necessary for some of the results contained
within this thesis.

Lemma 3.2.2. Let λ, µ ∈ Λ+(n, r). Then:

(i) There is a k-linear isomorphism:

HomkSr (Sp(λ),Sp(µ)) ∼=
{
h ∈ HomkSr (Msgn(λ′),M(µ))

∣∣∣∣∣ h ◦ ϕλ′ = 0,
ψµ ◦ h= 0.

}
.

(ii) In particular, when p = 2, there is a k-linear isomorphism:

HomkSr (Sp(λ), Sp(µ)) ∼=
{
h ∈ HomkSr (M(λ′),M(µ))

∣∣∣∣∣ h ◦ ϕλ′ = 0,
ψµ ◦ h= 0.

}
.

Proof. Part (i) follows immediately from the two descriptions of the Specht module:
Sp(λ) ∼= coker ϕ̄λ′ and Sp(µ) ∼= ker ψ̄µ from §3.1.1. Part (ii) then follows from part (i)
and the fact that the permutation module and the signed permutation module coincide
in characteristic 2.

Now, for the remainder of this thesis, we shall assume that the underlying field k has
characteristic 2. Also, we fix n, r ∈ N with n ≥ r ≥ 1. Recall the G-homomorphisms
ϕ(i,j,s)

λ and ψ(i,j,t)
λ from (2.4.13) and (2.4.15) respectively.

Lemma 3.2.3. Let λ ∈ Λ+(n) with ℓ := len(λ). Then:

(i) imϕ(i,j,s)
λ ⊆ imϕλ for 1 ≤ i < j ≤ ℓ, 1 ≤ s ≤ λj.

(ii) kerψλ ⊆ kerψ(i,j,t)
λ for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj.

Proof. For part (i), from [ABW, Theorem II.2.16], we have that imϕλ = ker dλ, where
the map ΛλE

dλ−→ Sλ′
E is a G-homomorphism that arises as a composition of (tensor

products of) comultiplications between exterior powers and (tensor products of) multipli-
cations between symmetric powers [ABW, Definition II.1.3]. Now, from [ABW, Lemma
II.2.3], we have that for each 1 ≤ i < ℓ, the map dλ may be factored through the
G-homomorphism:

ΛλE
1⊗···⊗d(λi,λi+1)⊗···⊗1
−−−−−−−−−−−−−−→ Λλ1E ⊗ · · · ⊗ Λλi−1E ⊗ (S2E)⊗λi+1 ⊗ E⊗(λi−λi+1) ⊗ Λλi+2E ⊗ · · · ⊗ ΛλℓE,

where d(λi,λi+1) is the corresponding map associated to the partition (λi, λi+1), and each
1 refers to the identity map on the corresponding tensor factor. Now, it is clear that
one may replace i+ 1 with any j > i in the statement of [ABW, Lemma II.2.3] without
any harm. Then, part (i) follows by applying [ABW, Theorem II.2.16] for the partition
(λi, λj).
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For part (ii), we use the ABW-construction of the Weyl module ∆(λ) (2.4.28). Simi-
larly to part (i), from [ABW, Theorem II.3.16] and the comment before [ABW, Definition
II.3.4], we deduce that im θ(i,j,t)

λ ⊆ im θλ for 1 ≤ i < j ≤ ℓ and 1 ≤ t ≤ λj . Taking con-
travariant duals, we have that ker θλ

◦ ⊆ ker θ(i,j,t)◦
λ for all such i, j, t. The result follows

by recalling the identifications θλ
◦ = ψλ and θ(i,j,t)◦

λ = ψ(i,j,t)
λ from the end of §2.4.6.

Let λ ∈ Λ+(n, r). By applying the Schur functor f to the maps ϕ(i,j,s)
λ and ψ(i,j,t)

λ of
(2.4.13) and (2.4.15) respectively, we obtain the kSr-homomorphisms:

ϕ̄(i,j,s)
λ : Msgn(λ(i,j,s)) −→ Msgn(λ), ψ̄(i,j,t)

λ : M(λ) −→ M(λ(i,j,t)).

Remark 3.2.4. We may view any partition λ ∈ Λ+(n, r) as an n-tuple by appending an
appropriate number of zeros to λ. Accordingly, we may relax the dependence on len(λ)
of the maps ϕ̄λ and ψ̄λ. We do so by setting ϕ̄(i,j,s)

λ := 0 and ψ̄(i,j,t)
λ := 0 if len(λ) < j ≤ n.

By Lemma 3.2.2(ii) and Lemma 3.2.3, we obtain the following Corollary:

Corollary 3.2.5. Assume that the characteristic of the underlying field k is 2. Then, for
λ, µ ∈ Λ+(n, r), the k-space of kSr-linear homomorphisms HomkSr (Sp(λ),Sp(µ)) may
be identified with the k-subspace of HomkSr (M(λ′),M(µ)) consisting of those elements
h that satisfy:

(i) h ◦ ϕ̄(i,j,s)
λ′ = 0 for 1 ≤ i < j ≤ n and 1 ≤ s ≤ λ′

j,

(ii) ψ̄(i,j,t)
µ ◦ h = 0 for 1 ≤ i < j ≤ n and 1 ≤ t ≤ µj.

In light of Corollary 3.2.5, we introduce the following definition.

Definition 3.2.6. Let λ, µ ∈ Λ+(n, r). Then, we say that a kSr-linear homomorphism
M(λ′) h−→ M(µ) is essential if h satisfies the composition relations of Corollary 3.2.5. Ac-
cordingly, we denote by ERelkSr (M(λ′),M(µ)) the k-subspace of HomkSr (M(λ′),M(µ))
consisting of the essential homomorphisms M(λ′) h−→ M(µ).

3.2.2. Homomorphisms Between Permutation Modules. In this section, we as-
sume that the underlying field k has characteristic 2. Here, we provide a matrix descrip-
tion of a k-basis of HomkSr (M(α),M(β)) for α, β ∈ Λ(n, r).

Now, let α, β ∈ Λ(n, r). Then, according to Lemma 3.2.1, we have a k-linear iso-
morphism of the form HomkSr (M(α),M(β)) ∼= (SαE)β. Now, recall that the tensor
product SαE has a k-basis of the form {

⊗n
i=1

∏n
j=1 e

aij

i |
∑

j aij = αi}, where the
ith-tensor factor is defined to be 1 if αi = 0 for some 1 ≤ i ≤ n. We may parametrise this
k-basis by the set of all elements of Mn×n(N) whose sequence of row-sums is equal to
α. Accordingly, for β ∈ Λ(n, r), the β-weight space (SαE)β has a k-basis parametrised
by the set of all matrices in Mn×n(N) whose sequence of row-sums is equal to α, and
whose sequence of column-sums is equal to β. But this description is precisely the set
Tab(α, β). In sum, we deduce that the dimension of the k-space HomkSr (M(α),M(β))
is equal to dim(SαE)β = |Tab(α, β)|. For further reading regarding the dimension of
HomkSr (M(α),M(β)), the reader may wish to refer to [J1, §13].

Now, we associate to each A ∈ Tab(α, β), the kSr-homomorphism M(α) ρ[A]−−→ M(β)
defined as follows. Given a basis element x := (x1| . . . |xn) ∈ Sα ⊆ Mk(α) as in §2.6.2,
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we set ρ[A](x) to be the sum of all basis elements of M(β) that may be obtained from x

by moving, in concert, aij entries from its ith-position xi to its jth-position xj for every
1 ≤ i, j ≤ n. The set {ρ[A] | A ∈ Tab(α, β)} is linearly independent. Indeed, take any
linear combination of the ρ[A]s, say h = ∑

A h[A]ρ[A] (h[A] ∈ k), along with any basis
element x of M(α), and then consider the coefficients of the basis elements of M(β)
in h(x). Thus, the subspace of HomkSr (M(α),M(β)) spanned by the homomorphisms
{ρ[A] | A ∈ Tab(α, β)} has dimension |Tab(α, β)|, and so we indeed see that the set
{ρ[A] | A ∈ Tab(α, β)} forms a k-basis of HomkSr (M(α),M(β)). Accordingly, given
h ∈ HomkSr (M(α),M(β)) and A ∈ Tab(α, β), we shall denote by h[A] ∈ k the coefficient
of ρ[A] in h so that h = ∑

A∈Tab(α,β) h[A]ρ[A].

Remark 3.2.7. Here, we highlight a link with the maps Θt defined within [J1, §13]
(note that here, the author uses T in place of t). Firstly, given λ ∈ Λ+(n, r) and
a (not necessarily injective) [r]-valued λ-tableau t, James defines the type of t, which
we denote by type(t) = (typek(t))k, to be the sequence whose entries are defined by
typek(t) := |{(i, j) ∈ [λ] | t(i, j) = k}| for each k, and for λ, µ ∈ Λ+(n, r), we denote by
T (λ, µ) the set of all such λ-tableaux of type µ. In [J1, §13], James associates to each
such t ∈ T (λ, µ) a homomorphism Θt ∈ HomkSr (M(λ),M(µ)), and in [J1, Theorem
13.19], James showed that the set of Θt parametrised by those t within the set:

{t ∈ T (λ, µ) | t has weakly increasing rows} (3.2.8)

forms an alternate k-basis for HomkSr (M(λ),M(µ)). The link between James’ basis
and the basis {ρ[A] | A ∈ Tab(α, β)} is as follows. Given λ ∈ Λ+(n, r) with a [r]-valued
λ-tableau t, we define the content c(t) = (cij(t))i,j to be the (n×n)-matrix with entries:

cij(t) := |{1 ≤ u ≤ λi | t(i, u) = j}| =
∣∣t−1(j)

∣∣ .
Then, clearly, we have that:

∑
j

cij(t) = |{1 ≤ u ≤ λi}| = λi,

∑
i

cij(t) = |{(u, v) ∈ [λ] | t(u, v) = j}| = typej(t),

and so c defines a mapping T (λ, µ) c−→ Tab(λ, µ) for λ, µ ∈ Λ+(n, r). Moreover, it is
clear that the restriction of c to those t ∈ T (λ, µ) as in (3.2.8) defines a bijection onto
Tab(λ, µ). Finally, it is clear to see that for such t, James’ Θt is precisely ρ[c(t)].

Examples 3.2.9. Let λ ∈ Λ+(n, r). For 1 ≤ i, j ≤ n, denote by Eij ∈ Mn×n(N) the
matrix with a 1 in its (i, j)th-position and 0s elsewhere. Notice that:

(i) ϕ̄(i,j,s)
λ = ρ[A], where A := diag(λ1, . . . , λi, . . . , λj − s, . . . , λn) + sEij .

(ii) ψ̄(i,j,t)
λ = ρ[B], where B := diag(λ1, . . . , λi, . . . , λj − t, . . . , λn) + tEji.

Remark 3.2.10. Consider the k-basis {ρ[A] | A ∈ Tab(α, β)} of HomkSr (M(α),M(β)).
If A ∈ Tab(α, β), then it is clear that A′ ∈ Tab(β, α). Moreover, it is also clear that the
set {ρ[A′] | A ∈ Tab(α, β)} forms a k-basis of HomkSr (M(β),M(α)).
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Now, for α ∈ Λ(n, r), recall that the permutation module M(α) is self-dual. We
write M(α) δα−→ M(α)∗ for the kSr-isomorphism that sends each basis element x ∈ Sα

of M(α) to the corresponding basis element of M(α)∗ dual to x. We shall denote by
HomkSr (M(α),M(β)) ζα,β−−→ HomkSr (M(β)∗,M(α)∗) the natural k-isomorphism, and
by HomkSr (M(α),M(β)) ηα,β−−→ HomkSr (M(β),M(α)) the k-linear isomorphism given
by ηα,β(h) = δ−1

α ◦ ζα,β(h) ◦ δβ for h ∈ HomkSr (M(α),M(β)).

Lemma 3.2.11. Let α, β ∈ Λ(n, r). Then ηα,β(ρ[A]) = ρ[A′] for all A ∈ Tab(α, β).

Proof. This is a simple calculation which we leave to the reader.

Definition 3.2.12. For h ∈ HomkSr (M(α),M(β)), by the transpose homomorphism h′

of h, we mean h′ := ηα,β(h) ∈ HomkSr (M(β),M(α)).

Notice that if h = ∑
A∈Tab(α,β) h[A]ρ[A], then h′ = ∑

A∈Tab(α,β) h[A]ρ[A′] by Lemma 3.2.11.

Lemma 3.2.13. Let α, β, γ ∈ Λ(n, r). Then we have the identity (h2 ◦ h1)′ = h′
1 ◦ h′

2
for all h1 ∈ HomkSr (M(α),M(β)) and h2 ∈ HomkSr (M(β),M(γ)).

Proof. Since ζα,γ(h2 ◦ h1) = ζα,β(h1) ◦ ζβ,γ(h2), we have:

(h2 ◦ h1)′ = δ−1
α ◦ ζα,β(h1) ◦ ζβ,γ(h2) ◦ δγ

= (δ−1
α ◦ ζα,β(h1) ◦ δβ) ◦ (δ−1

β ◦ ζβ,γ(h2) ◦ δγ) = h′
1 ◦ h′

2.

3.2.3. Relevant Homomorphisms. Here, we introduce the notion of a relevant ho-
momorphism M(λ′) −→ M(µ) for partitions λ, µ ∈ Λ+(n, r). Then, we investigate
the connection between relevant homomorphisms M(λ′) −→ M(µ) and homomorphisms
Sp(λ) −→ Sp(µ).

Lemma 3.2.14. Let λ, µ ∈ Λ+(n, r) and h ∈ HomkSr (M(λ′),M(µ)). Then:

(i) (h ◦ ϕ̄(i,j,s)
λ′ )′ = ψ̄(i,j,s)

λ′ ◦ h′ for 1 ≤ i < j ≤ n, 1 ≤ s ≤ λ′
j.

(ii) (ψ̄(i,j,t)
µ ◦ h)′ = h′ ◦ ϕ̄(i,j,t)

µ for 1 ≤ i < j ≤ n, 1 ≤ t ≤ µj.

(iii) The map ηλ′,µ induces a k-isomorphism:

η̄λ,µ : HomkSr (Sp(λ), Sp(µ)) −→ HomkSr (Sp(µ′),Sp(λ′)).

Proof. By Lemma 3.2.11 and the examples in Examples 3.2.9, it follows that we have the
equality (ϕ̄(i,j,t)

λ )′ = ψ̄(i,j,t)
λ . Now, parts (i)-(ii) follow directly from Lemma 3.2.13. Now,

for part (iii), according to Corollary 3.2.19, we identify each h̄ ∈ HomkSr (Sp(λ), Sp(µ)),
with an essential homomorphism h ∈ HomkSr (M(λ′),M(µ)). Then, for each such h,
recall that we have the transpose homomorphism h′ = ηλ′,µ(h). Then, by applying
parts (i)-(ii), along with the symmetric results obtained by swapping the roles of λ and
µ in the statement of the Lemma, we see that h′ is essential. Hence, once again according
to Corollary 3.2.19, each such h′ induces a homomorphism h̄′ ∈ HomkSr (Sp(µ′),Sp(λ′)).
Similarly to Lemma 3.2.14(iii), it follows that ηλ′,µ induces a k-linear homomorphism
η̄λ,µ : HomkSr (Sp(λ),Sp(µ)) −→ HomkSr (Sp(µ′), Sp(λ′)) sending h̄ 7−→ h̄′. By applying
the same procedure to the map ηµ′,λ, we see that η̄λ,µ is a k-isomorphism with inverse
η̄µ,λ as required.
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For A = (aij)i,j ∈ Mn×n(Z) and 1 ≤ k, l ≤ n, we denote by A(k,l) (resp. A(k,l))
the matrix whose entries a(k,l)

ij (resp. a(k,l)ij) are given by a(k,l)
ij := aij + δ(i,j),(k,l), (resp.

a(k,l)ij := aij − δ(i,j),(k,l)). Let α, β ∈ Λ(n, r) with A ∈ Tab(α, β), and let 1 ≤ i < j ≤ n,
1 ≤ k, l ≤ n. Note that A(i,l)

(j,l) ∈ Tab(α(i,j,1), β) if ajl ̸= 0, whilst A(k,i)
(k,j) ∈ Tab(α, β(i,j,1)) if

akj ̸= 0.
Henceforth, for λ, µ ∈ Λ+(n, r), we write T λ,µ := Tab(λ′, µ).

Lemma 3.2.15. Let λ, µ ∈ Λ+(n, r) and 1 ≤ i < j ≤ n. For A ∈ T λ,µ we have:

(i) ρ[A] ◦ ϕ̄(i,j,1)
λ′ = ∑

l
(ail + 1)ρ

î
A(i,l)

(j,l)

ó
, where the sum is over all l such that ajl ̸= 0.

(ii) ψ̄(i,j,1)
µ ◦ ρ[A] = ∑

k
(aki + 1)ρ

î
A(k,i)

(k,j)

ó
, where the sum is over all k such that akj ̸= 0.

Proof. We prove part (i), and then part (ii) is similar. We may assume that j ≤ len(λ′).
Fix 1 ≤ i < j ≤ len(λ′), and we denote by x := (x1| . . . |xi| . . . |xj | . . . |xn) a basis element
of M(λ′(i,j,1)), where xi = (xi1, . . . , xi(λ′

i+1)) say. Then ϕ̄(i,j,1)
λ′ (x) = ∑λ′

i+1
k=1 xk, where xk

denotes the basis element of M(λ′) that is obtained from x by omitting the entry xik

from the sequence xi and placing it in the (unordered) sequence xj . For 1 ≤ k ≤ λ′
i + 1,

we have ρ[A](xk) = ∑
t cktz[t], where the z[t] are the basis elements of M(µ) and the ckt

are constants with ckt ∈ {0, 1}. Then ρ[A] ◦ ϕ̄(i,j,1)
λ′ (x) = ∑

t ctz[t] where ct := ∑λ′
i+1

k=1 ckt.
Now, fix 1 ≤ k ≤ λ′

i + 1 and some s with cks = 1. Then, suppose that the entry xik

appears in the lth-position z[s]l of z[s] and hence ajl ̸= 0. Note that the sequence z[s]l
contains ail entries from {xi1, . . . , xi(k−1), xi(k+1), . . . , xi(λ′

i+1)}. If xiv is such an entry
with v ̸= k, then cvs = 1. On the other hand, given 1 ≤ q ≤ λ′

i + 1, if xiq does not
appear as an entry in z[s]l, then cqs = 0. It follows that cs = ail + 1. Meanwhile, given
1 ≤ l′ ≤ n, z[s] appears in ρ

î
A(i,l′)

(j,l′)

ó
(x) if and only if l′ = l, in which case it appears with

a coefficient of 1. The result follows.

Lemma 3.2.16. Let λ, µ ∈ Λ+(n, r) and denote by M(λ′) h−→ M(µ) a kSr-linear homo-
morphism with h = ∑

A∈T λ,µ
h[A]ρ[A] say. Then for 1 ≤ i < j ≤ n, we have:

(i) h ◦ ϕ̄(i,j,1)
λ′ = 0 if and only if

∑
l bilh

î
B(j,l)

(i,l)

ó
= 0 for all B ∈ Tab(λ′(i,j,1), µ).

(ii) ψ̄(i,j,1)
µ ◦ h = 0 if and only if

∑
k dkih

î
D(k,j)

(k,i)

ó
= 0 for all D ∈ Tab(λ′, µ(i,j,1)).

Proof. We shall only prove part (i) since part (ii) is similar. By Lemma 3.2.15 we have:

h ◦ ϕ̄(i,j,1)
λ′ =

∑
A∈T λ,µ

h[A](ρ[A] ◦ ϕ̄(i,j,1)
λ′ ) =

∑
A∈T λ,µ

h[A]
Ç∑

l

(ail + 1)ρ
î
A(i,l)

(j,l)

óå
=

∑
A∈T λ,µ

∑
l

(ail + 1)h[A]ρ
î
A(i,l)

(j,l)

ó
=

∑
B∈Tab(λ′(i,j,1),λ)

Ç∑
l

bilh
î
B(j,l)

(i,l)

óå
ρ[B].

The result now follows from the linear independence of {ρ[B] | B ∈ Tab(λ′(i,j,1), λ)}.

Now, we introduce the following weakening of Definition 3.2.6.

Definition 3.2.17. Let λ, µ ∈ Λ+(n, r). Then, we say that a kSr-linear homomorphism
M(λ′) h−→ M(µ) is relevant if h ◦ ϕ̄(i,j,1)

λ′ = 0 and ψ̄(i,j,1)
µ ◦ h = 0 for all 1 ≤ i < j ≤ n. Ac-

cordingly, we denote by RelkSr (M(λ′),M(µ)) the k-subspace of HomkSr (M(λ′),M(µ))
consisting of the relevant homomorphisms M(λ′) −→ M(µ).
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With Corollary 3.2.5 in mind, the following Remark is clear:

Remark 3.2.18. Let λ, µ ∈ Λ+(n, r). Then:

(i) There is a k-isomorphism HomkSr (Sp(λ),Sp(µ)) ∼= ERelkSr (M(λ′),M(µ)).

(ii) There is a k-embedding HomkSr (Sp(λ),Sp(µ)) ↪−→ RelkSr (M(λ′),M(µ)).

Now, by Lemma 3.2.16, we deduce the following Corollary:

Corollary 3.2.19. Let λ, µ ∈ Λ+(n, r) and h ∈ HomkSr (M(λ′),M(µ)). Then we have
that h ∈ RelkSr (M(λ′),M(µ)) if and only if the coefficients h[A] of the ρ[A] in h satisfy:

(i) For all 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, and all A ∈ T λ,µ with ajk ̸= 0, we have:

(aik + 1)h[A] =
∑
l ̸=k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
, (Rk

i,j(A))

(ii) For all 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, and all A ∈ T λ,µ with akj ̸= 0, we have:

(aki + 1)h[A] =
∑
l ̸=k

alih
î
A(k,i)(l,j)

(k,j)(l,i)

ó
. (Ck

i,j(A))

3.3. A Reduction Trick
3.3.1. Flattening the Partition. Now, we fix integers a, b,m with a ≥ m ≥ 2, and we
write ã := b+m−1, b̃ := a−m+1. We denote by λ the partition (a,m−1, . . . , 2, 1b), and
we fix r := deg(λ). Note that λ′ = (ã,m − 1, . . . , 2, 1b̃). We write νm := (m − 1, . . . , 2)
for m > 2, and with ν2 the empty sequence.

Recall that through the ABW-construction of the induced module, we see that ∇(λ)
is isomorphic to a G-quotient of Λλ′

E = ΛãE ⊗ ΛνmE ⊗E⊗b̃, namely by the submodule
imϕλ′ (2.4.14). We claim that we can replace the factor E⊗b̃ with the symmetric power
S b̃E. This process is in fact independent of the characteristic of the field k. To this end,
we construct from E⊗b̃ Π−→ S b̃E, the G-surjection Λλ′

E
1⊗Π−−−→→ ΛãE ⊗ ΛνmE ⊗ S b̃E.

Lemma 3.3.1. For m ≥ 2 and λ = (a,m− 1,m− 2, . . . , 2, 1b), we have:

(i) ker(1 ⊗ Π) = ∑b̃−1
k=1 imϕ(m+k−1,m+k,1)

λ′ ⊆ imϕλ′.

(ii) ∇(λ) ∼= coker((1 ⊗ Π) ◦ ϕλ′) as G-modules.

Proof. (i) Firstly, that imϕ(m+k−1,m+k,1)
λ′ ⊆ imϕλ′ for 1 ≤ k < b̃ follows from the definition

of ϕλ′ . Then, note that by the definition of the symmetric power S b̃E, the k-space ker Π
is generated by elements of the form e

[k]
i = ei · (1 − σk) for 1 ≤ k < b̃ and i ∈ I(n, b̃).

Then, it follows that the k-space ker(1⊗ Π) is generated by elements of the form x⊗ e
[k]
i

for x ∈ ΛãE ⊗ ΛνmE, and such k and i. But given such x, k and i, the image of the
element x⊗ ei1 ⊗ · · · ⊗ (eik

∧ eik+1) ⊗ · · · ⊗ eib̃
under ϕ(m+k−1,m+k,1)

λ′ is precisely x⊗ e
[k]
i ,

and so x ⊗ e
[k]
i ∈ imϕ(m+k−1,m+k,1)

λ′ . On the other hand, it is clear that the elements of
the form x⊗ e

[k]
i generate the k-space imϕ(m+k−1,m+k,1)

λ′ , from which part (i) follows.
(ii) Now, the map 1 ⊗ Π : Λλ′

E −→→ ΛãE ⊗ ΛνmE ⊗ S b̃E induces a G-surjection:

π : Λλ′
E

ker(1 ⊗ Π) −→→ ΛãE ⊗ ΛνmE ⊗ S b̃E

im((1 ⊗ Π) ◦ ϕλ′) .
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Moreover, it follows from part (i) that kerπ = imϕλ′/ker(1⊗ Π), and so we deduce that
∇(λ) ∼= coker((1 ⊗ Π) ◦ ϕλ′).

On the other hand, recall that through the James-construction of the induced module,
we see that that ∇(λ) is isomorphic to a submodule of SλE, namely as the kernel of
the G-homomorphism ψλ (2.4.16). We claim that we may replace the factor E⊗b with
the exterior power ΛbE. Once again, this process is independent of the characteristic
of k. For this, we construct from the comultiplication ∆ : ΛbE ↪−→ E⊗b, the injective
G-homomorphism 1 ⊗ ∆ : SaE ⊗ SνmE ⊗ ΛbE ↪−→ SλE.

Lemma 3.3.2. For m ≥ 2 and λ = (a,m− 1,m− 2, . . . , 2, 1b), we have:

(i) kerψλ ⊆
⋂b−1

k=1 kerψ(m+k−1,m+k,1)
λ = im(1 ⊗ ∆).

(ii) ∇(λ) ∼= ker(ψλ ◦ (1 ⊗ ∆)) as G-modules.

Proof. (i) Firstly, it follows from the definition of ψλ that kerψλ ⊆ kerψ(m+k−1,m+k,1)
λ for

1 ≤ k < b. Then, the k-space kerψ(m+k−1,m+k,1)
λ is generated by elements of the form

x ⊗ e
[k]
i for x ∈ SaE ⊗ SνmE, 1 ≤ k < b, and i ∈ I(n, b), where e[k]

i := ei · (1 − σk). It
follows that the k-space ⋂b−1

k=1 kerψ(m+k−1,m+k,1)
λ is generated by elements of the form:

∑
σ∈Sb

sgn(σ)
Ä
x⊗ eiσ(1) ⊗ · · · ⊗ eiσ(b)

ä
= x⊗ ∆(ei1 ∧ · · · ∧ eib

) ∈ im(1 ⊗ ∆).

Moreover, it is clear that elements of the form x⊗ ∆(ei1 ∧ · · · ∧ eib
) generate the k-space

im(1 ⊗ ∆), from which part (i) follows.
(ii) Now, the map 1 ⊗ ∆ : SaE ⊗ SνmE ⊗ ΛbE ↪−→ SλE induces a G-embedding

ν : ker(ψλ ◦ (1 ⊗ ∆)) ↪−→ kerψλ. Moreover, it follows from part (i) that ν is surjective,
and so we have a G-isomorphism ker(ψλ ◦ (1 ⊗ ∆)) ∼= kerψλ

∼= ∇(λ).

Now, we shall return to the situation where the underlying field k has characteristic
2. We fix the sequences α := (ã,m− 1, . . . , 2, b̃) and β := (a,m− 1, . . . , 2, b).

Remark 3.3.3. We shall consider the constructions of this section from the perspective
of the Specht module Sp(λ).

(i) By Lemma 3.3.1(ii) we have that ∇(λ) ∼= coker((1 ⊗ Π) ◦ ϕλ′). By applying the
Schur functor f , we obtain that Sp(λ) ∼= coker(f(1⊗ Π) ◦ ϕ̄λ′). Now, since we are
in characteristic 2, we identify f(ΛãE⊗ ΛνmE⊗S b̃E) with f(SãE⊗SνmE⊗S b̃E)
which in turn is isomorphic to M(α). Then, we denote by M(λ′) πα−→→ M(α) the
kSr-surjection that is obtained from f(1⊗ Π) under these identifications. Finally,
we deduce that Sp(λ) ∼= coker ϕ̄α, where ϕ̄α := πα ◦ ϕ̄λ′ .

(ii) On the other hand, by Lemma 3.3.2(ii) we have that ∇(λ) ∼= ker(ψλ ◦ (1 ⊗ ∆)).
By applying the Schur functor f , we deduce that Sp(λ) ∼= ker(ψ̄λ ◦ f(1⊗ ∆)). But
once again, since we are in characteristic 2, f(SaE ⊗ SνmE ⊗ ΛbE) is identified
with f(SaE ⊗ SνmE ⊗ SbE) which in turn is isomorphic to M(β). We denote by
M(β)

ιβ
↪−→ M(λ) the kSr-embedding that is obtained from f(1 ⊗ ∆) under these

identifications. Once again, we deduce that Sp(λ) ∼= ker ψ̄β where ψ̄β := ψ̄λ ◦ ιβ.



39 Homomorphisms

We summarise the content of Remark 3.3.3 in the following Lemma:

Lemma 3.3.4. Let m ≥ 2 and λ = (a,m− 1,m− 2, . . . , 2, 1b). Then, we have:

(i) Sp(λ) ∼= coker ϕ̄α as kSr-modules.

(ii) Sp(λ) ∼= ker ψ̄β as kSr-modules.

We define the following kSr-homomorphisms:

ϕ̄(i,j,s)
α := πα ◦ ϕ̄(i,j,s)

λ′ : M(λ′(i,j,s)) −→ M(α), ψ̄(i,j,t)
β := ψ̄(i,j,t)

λ ◦ ιβ : M(β) −→ M(λ(i,j,t)),

where πα and ιβ are as defined in Remark 3.3.3.

Lemma 3.3.5. For m ≥ 2 and λ = (a,m− 1,m− 2, . . . , 2, 1b), we have:

(i) ϕ̄(i,j,1)
α = 0 for m ≤ i < j ≤ n.

(ii) ψ̄(i,j,1)
β = 0 for m ≤ i < j ≤ n.

(iii) ϕ̄α = ∑m−1
i=1

∑λ′
i+1

s=1 ϕ̄
(i,i+1,s)
α .

(iv) ψ̄β = ∑m−1
i=1

∑λi+1
t=1 ψ̄(i,i+1,t)

β .

Proof. Parts (i)-(ii) follow from Lemma 3.3.1(i) and Lemma 3.3.2(i) respectively. Then,
parts (iii)-(iv) follow immediately from parts (i)-(ii).

Now, the following Lemma provides an analogue of Lemma 3.2.3:

Lemma 3.3.6. For m ≥ 2 and λ = (a,m− 1,m− 2, . . . , 2, 1b), we have:

(i) im ϕ̄(i,j,s)
α ⊆ im ϕ̄α for 1 ≤ i < j ≤ m, 1 ≤ s ≤ λ′

j.

(ii) ker ψ̄β ⊆ ker ψ̄(i,j,t)
β for 1 ≤ i < j ≤ m, 1 ≤ t ≤ λj.

Proof. Firstly, recall the kSr-homomorphisms πα and ιβ defined within Remark 3.3.3.
Then, part (i) follows from Lemma 3.2.3(i) by applying the Schur functor and post-com-
posing by πα. Similarly, we see that part (ii) follows from Lemma 3.2.3(ii) by applying
the Schur functor and pre-composing by ιβ.

Then, by combining the results of Lemma 3.3.4, Lemma 3.3.5, and Lemma 3.3.6, we
obtain the following description of the endomorphism algebra of Sp(λ):

Corollary 3.3.7. The endomorphism algebra of Sp(λ) may be identified with the
k-subspace of HomkSr (M(α),M(β)) consisting of those elements h that satisfy:

(i) h ◦ ϕ̄(i,j,s)
α = 0 for 1 ≤ i < j ≤ m and 1 ≤ s ≤ λ′

j,

(ii) ψ̄(i,j,t)
β ◦ h = 0 for 1 ≤ i < j ≤ m and 1 ≤ t ≤ λj.

Definition 3.3.8. Let m ≥ 2, λ = (a,m − 1,m − 2, . . . , 2, 1b), α = (ã,m − 1, . . . , 2, b̃),
and β = (a,m− 1, . . . , 2, b). Then:

(i) We say that an element h ∈ HomkSr (M(λ′),M(λ)) is semirelevant if h◦ ϕ̄(i,j,1)
λ′ = 0

and ψ̄
(i,j,1)
λ ◦ h = 0 for all m ≤ i < j ≤ n.
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(ii) We say that an element h ∈ HomkSr (M(α),M(β)) is relevant if h ◦ ϕ̄(i,j,1)
α = 0 and

ψ̄(i,j,1)
β ◦ h = 0 for all 1 ≤ i < j ≤ m.

(iii) We say that an element h ∈ HomkSr (M(α),M(β)) is essential if h satisfies the
composition relations of Corollary 3.3.7.

Accordingly, we introduce the following notation:

Definition 3.3.9.

• Denote by SRelkSr (M(λ′),M(λ)) the k-subspace of HomkSr (M(λ′),M(λ)) con-
sisting of the semirelevant homomorphisms M(λ′) −→ M(λ).

• Denote by RelkSr (M(α),M(β)) the k-subspace of HomkSr (M(α),M(β)) consist-
ing of the relevant homomorphisms M(α) −→ M(β).

• Denote by ERelkSr (M(α),M(β)) the k-subspace of HomkSr (M(α),M(β)) consist-
ing of the essential homomorphisms M(α) −→ M(β).

Lemma 3.3.10. Denote by ω : HomkSr (M(α),M(β)) −→ HomkSr (M(λ′),M(λ)) the
k-linear homomorphism with ω(h) := ιβ ◦ h ◦ πα. Then ω induces the following k-linear
isomorphisms:

(i) ω̂ : HomkSr (M(α),M(β)) −→ SRelkSr (M(λ′),M(λ)).

(ii) ω̄ : RelkSr (M(α),M(β)) −→ RelkSr (M(λ′),M(λ)).

(iii) ω̌ : ERelkSr (M(α),M(β)) −→ ERelkSr (M(λ′),M(λ)).

Proof. Firstly, notice that the stated domains of the maps ω̂, ω̄, and ω̌ follow from
Lemma 3.3.5. Meanwhile, it is clear that the maps ω̂, ω̄, ω̌ are injective, whilst the
surjectivity of each of the three maps follows from Lemma 3.3.1(i) and Lemma 3.3.2(i),
along with the particular forms of λ and λ′.

Remark 3.3.11. Let γ ∈ Λ(n, r) with ℓ := len(γ). Then:

(i) Fix B ∈ Tab(α, γ). Then ρ[B] ◦ πα ∈ HomkSr (M(λ′),M(γ)) and one can easily
check that ρ[B] ◦πα = ∑

A ρ[A], where the sum is over those A ∈ Tab(λ′, γ) whose
first (m − 1) rows agree with those of B, and also ∑a

i=m aij = bmj for 1 ≤ j ≤ ℓ.
Informally, these A are obtained from B by distributing, along columns, each
non-zero entry within the mth-row of B into rows m through a of A such that
these rows of A contain exactly one non-zero, and hence equal to 1, entry.

(ii) Now, let B ∈ Tab(γ, β). Then ιβ ◦ρ[B] ∈ HomkSr (M(γ),M(λ)) and one can easily
check that ιβ ◦ ρ[B] = ∑

A ρ[A], where the sum is over those A ∈ Tab(γ, λ) whose
first (m−1) columns agree with those of B, and also ∑ã

j=m aij = bim for 1 ≤ i ≤ ℓ.
Informally, these A are obtained from B by distributing, along rows, each non-zero
entry within the mth-column of B into columns m through ã of A such that these
columns of A contain exactly one non-zero, and hence equal to 1, entry.

The following Example details the forms of the compositions of maps discussed in
Remark 3.3.11.
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Example 3.3.12. Let λ = (3, 13). Then, we have:

ρ
[ 2 2

1 1
]

◦ π(4,2) = ρ

ñ 2 2
1 0
0 1

ô
+ ρ

ñ 2 2
0 1
1 0

ô
,

ι(3,3) ◦ ρ
[ 2 2

1 1
]

= ρ
[ 2 1 1 0

1 0 0 1
]

+ ρ
[ 2 1 0 1

1 0 1 0
]

+ ρ
[ 2 0 1 1

1 1 0 0
]
,

ι(3,3) ◦ ρ
[ 2 2

1 1
]

◦ π(4,2) = ρ

ñ 2 1 1 0
1 0 0 0
0 0 0 1

ô
+ ρ

ñ 2 1 0 1
1 0 0 0
0 0 1 0

ô
+ ρ

ñ 2 0 1 1
1 0 0 0
0 1 0 0

ô
+ ρ

ñ 2 1 1 0
0 0 0 1
1 0 0 0

ô
+ ρ

ñ 2 1 0 1
0 0 1 0
1 0 0 0

ô
+ ρ

ñ 2 0 1 1
0 1 0 0
1 0 0 0

ô
.

The following Lemma provides an analogue of Corollary 3.2.19:

Lemma 3.3.13. Let h ∈ HomkSr (M(α),M(β)). Then h ∈ RelkSr (M(α),M(β)) if and
only if the coefficients h[B] of the ρ[B] in h satisfy:

(i) For all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and all B ∈ Tab(α, β) with bjk ̸= 0, we have:

(bik + 1)h[B] =
∑
l ̸=k

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
, (Rk

i,j(B))

(ii) For all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and all B ∈ Tab(α, β) with bkj ̸= 0, we have:

(bki + 1)h[B] =
∑
l ̸=k

blih
î
B(k,i)(l,j)

(k,j)(l,i)

ó
. (Ck

i,j(B))

Proof. For B ∈ Tab(α, β), we denote by Ω(B) the subset of matrices in Tab(λ′, λ) with:

ω(ρ[B]) = ιβ ◦ ρ[B] ◦ πα =
∑

A∈Ω(B)
ρ[A]. (3.3.14)

Clearly, given B ̸= B′ ∈ Tab(α, β), we have that Ω(B) ∩ Ω(B′) = ∅. Now, we fix
h ∈ HomkSr (M(α),M(β)) with h = ∑

B∈Tab(α,β) h[B]ρ[B], and we shall also fix the
notation h̃ := ω(h) = ιβ ◦h◦πα. Then, it follows from Remark 3.3.11 that the coefficients
h̃[A] of the ρ[A] in h̃ satisfy:

h̃[A] =

h[B], if A ∈ Ω(B) for some B ∈ Tab(α, β),

0, otherwise.
(3.3.15)

Now, suppose that h is relevant and we shall show that the coefficients h[B] of the
ρ[B] in h satisfy the relations stated in (i), and it may be shown in a similar manner
that they also satisfy the relations stated in (ii). Firstly, note that h̃ is relevant by
Lemma 3.3.10(ii). We fix 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and B ∈ Tab(α, β) with bjk ̸= 0.
Then, there exists A ∈ Ω(B) with ajk ̸= 0. For such an A, since h̃ is relevant, the
relation Rk

i,j(A) of Corollary 3.2.19(ii) gives that:

(aik + 1)h̃[A] =
∑
l ̸=k

ailh̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
. (3.3.16)

Now, take any 1 ≤ l ≤ n with l ̸= k such that ail ̸= 0. If l < m, then ail = bil and
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A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B(i,k)(j,l)

(j,k)(i,l)), so that h̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,k)(j,l)

(j,k)(i,l)

ó
. On the other hand, if l ≥ m,

then ail = 1 with A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B(i,k)(j,m)

(j,k)(i,m)) so that h̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,k)(j,m)

(j,k)(i,m)

ó
. Therefore,

we may rewrite (3.3.16) as:

(aik + 1)h[B] =
∑
l<m
l ̸=k

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
+

Ö∑
l≥m
l ̸=k

ail

è
h
î
B(i,k)(j,m)

(j,k)(i,m)

ó
. (3.3.17)

Now, if k < m, then aik = bik and ∑
l≥m ail = bim. Thus, (3.3.17) becomes:

(bik + 1)h[B] =
∑
l<m
l ̸=k

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
+ bim

î
B(i,k)(j,m)

(j,k)(i,m)

ó
=

∑
l ̸=k

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
,

which is precisely the relation Rk
i,j(B).

On the other hand, if k = m, then aim = 0, since ajm ̸= 0, and so ∑
l>m ail = bim.

Moreover, B(i,k)(j,m)
(j,k)(i,m) = B, and so (3.3.17) becomes:

h[B] =
∑
l<m

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
+ bimh[B],

which in turn gives the relation Rm
i,j(B):

(bim + 1)h[B] =
∑
l ̸=m

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
.

Conversely, suppose that the coefficients h[B] of the ρ[B] in h satisfy the relations
stated in the Lemma. Note that by Lemma 3.3.10(ii), in order to show that h is relevant,
it suffices to show that h̃ is relevant. To this end, we shall show that h̃ ◦ ϕ̄(i,j,1)

λ′ = 0 for
1 ≤ i < j ≤ n, and it shall follow similarly that ψ̄(i,j,1)

λ ◦ h̃ = 0 for such i, j. Note that h̃
is semirelevant by Lemma 3.3.10(i) and so h̃ ◦ ϕ̄(i,j,1)

λ′ = 0 for i ≥ m. Therefore, we may
assume that i < m. Accordingly, fix some 1 ≤ i < j ≤ n with i < m. Then, as in the
proof of Lemma 3.2.16, we have:

h̃ ◦ ϕ̄(i,j,1)
λ′ =

∑
C∈Tab(λ′(i,j,1),λ)

( ∑
1≤l≤n

cilh̃
î
C(j,l)

(i,l)

ó)
ρ[C]. (3.3.18)

Let C ∈ Tab(λ′(i,j,1), λ), and we wish to show that the coefficient of ρ[C] in h̃ ◦ ϕ̄(i,j,1)
λ′ is

equal to 0. According to (3.3.15) and (3.3.18), we may assume that there exists some
1 ≤ k ≤ n with cik ̸= 0 such that A := C(j,k)

(i,k) ∈ Ω(B) for some B ∈ Tab(α, β), where Ω(B)
is as in (3.3.14), since otherwise, each summand cilh̃

î
C(j,l)

(i,l)

ó
appearing in the coefficient

of ρ[C] in (3.3.18) is equal to zero. Then, it follows from (3.3.18) that the coefficient of
ρ[C] in h̃ ◦ ϕ̄(i,j,1)

λ′ is:
cikh[B] +

∑
1≤l≤n

l ̸=k

cilh̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
. (3.3.19)

We split our consideration into the following cases:

(i) (j < m; k < m): We have cik = aik+1 = bik+1. Now, if 1 ≤ l < m with l ̸= k, then
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cil = ail = bil with A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B(i,k)(j,l)

(j,k)(i,l)) so that h̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,k)(j,l)

(j,k)(i,l)

ó
. On

the other hand, if l ≥ m with cil ̸= 0, then cil = ail = 1 with A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B(i,k)(j,m)

(j,k)(i,m))
so that h̃

î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,k)(j,m)

(j,k)(i,m)

ó
. Note that there are precisely bim such values

of l. Hence, we may rewrite (3.3.19) as:

(bik + 1)h[B] +
∑

1≤l<m
l ̸=k

bilh
î
B(i,k)(j,l)

(j,k)(i,l)

ó
+ bimh

î
B(i,k)(j,m)

(j,k)(i,m)

ó
= 0,

since the coefficient h[B] satisfies the relation Rk
i,j(B).

(ii) (j < m; k ≥ m): Here, we have cik = 1 and also bjm ̸= 0 since A ∈ Ω(B).
Now, if 1 ≤ l < m, then cil = ail = bil with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,m)(j,l)
(j,m)(i,l)) so that

h̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,m)(j,l)

(j,m)(i,l)

ó
. On the other hand, if l ≥ m with l ̸= k and cil ̸= 0,

then cil = ail = 1 with A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B) so that h̃

î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h[B]. Note that

there are precisely bim such values of l. Hence, we may rewrite (3.3.19) as:

h[B] +
∑

1≤l<m

bilh
î
B(i,m)(j,l)

(j,m)(i,l)

ó
+ bimh[B] = 0,

since the coefficient h[B] satisfies the relation Rm
i,j(B).

(iii) (j ≥ m; k < m): Now, we have cik = aik + 1 = bik + 1 and also bmk ̸= 0
since A ∈ Ω(B). Now, if 1 ≤ l < m with l ̸= k, then cil = ail = bil with
A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(m,l)
(m,k)(i,l)) so that h̃

î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,k)(m,l)

(m,k)(i,l)

ó
. On the other hand,

if l ≥ m with cil ̸= 0, then cil = ail = 1 with A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B(i,k)(m,m)

(m,k)(i,m)) so that
h̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,k)(m,m)

(m,k)(i,m)

ó
. Note that there are precisely bim such values of l.

Hence, we may rewrite (3.3.19) as:

(bik + 1)h[B] +
∑

1≤l<m
l ̸=k

bilh
î
B(i,k)(m,l)

(m,k)(i,l)

ó
+ bimh

î
B(i,k)(m,m)

(m,k)(i,m)

ó
= 0,

since the coefficient h[B] satisfies the relation Rk
i,m(B).

(iv) (j ≥ m; k ≥ m): Finally, in this case, we have cik = 1 and also bmm ̸= 0 since
A ∈ Ω(B). Now, if 1 ≤ l < m, then cil = ail = bil with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,m)(m,l)
(m,m)(i,l))

so that h̃
î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h
î
B(i,m)(m,l)

(m,m)(i,l)

ó
. On the other hand, if l ≥ m with l ̸= k and

cil ̸= 0, then cil = ail = 1 with A(i,k)(j,l)
(j,k)(i,l) ∈ Ω(B) so that h̃

î
A(i,k)(j,l)

(j,k)(i,l)

ó
= h[B]. Note

that there are precisely bim such values of l. Hence, we may rewrite (3.3.19) as:

h[B] +
∑

1≤l<m

bilh
î
B(i,m)(m,l)

(m,m)(i,l)

ó
+ bimh[B] = 0,

since the coefficient h[B] satisfies the relation Rm
i,m(B).

Thus, we have shown that the coefficient of ρ[C] in h̃ ◦ ϕ̄(i,j,1)
λ′ is zero in all possible cases,

and so we are done.

Now, since α and β both have length m, we may ignore the final (n−m) rows and
columns of each matrix in Tab(α, β) and Tab(β, α). Accordingly, we identify each of
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Tab(α, β) and Tab(β, α) with the sets T and T ′ respectively, where:

T :=
{
A ∈ Mm×m(N)

∣∣∣∣∣
∑

j aij = αi,∑
i aij = βj .

}
, T ′ :=

{
A ∈ Mm×m(N)

∣∣∣∣∣
∑

j aij = βi,∑
i aij = αj .

}
.

Remark 3.3.20. Note that λ and its transpose λ′ are of the same form. That is to
say, the swap λ ↔ λ′ is equivalent to the swap (a, b) ↔ (ã, b̃), where ã = b + m − 1,
b̃ = a − m + 1 respectively, which in turn is equivalent to the swap α ↔ β. Therefore,
after defining the notion of relevance for elements h ∈ HomkSr (M(β),M(α)), similarly
to Definition 3.3.8(ii), and also swapping T with T ′, we obtain the following analogue
of Lemma 3.3.13:

Corollary 3.3.21. Let h ∈ HomkSr (M(β),M(α)). Then h ∈ RelkSr (M(β),M(α)) if
and only if the coefficients h[B] of the ρ[B] in h satisfy:

(i) Rk
i,j(B) for all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and B ∈ T ′ with bjk ̸= 0,

(ii) Ck
i,j(B) for all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and B ∈ T ′ with bkj ̸= 0.

The following Remark is clear:

Remark 3.3.22. Let m ≥ 2 and λ = (a,m− 1,m− 2, . . . , 2, 1b). Then:

(i) We have a k-linear embedding of the endomorphism algebra of Sp(λ) into the
k-space RelkSr (M(α),M(β)).

(ii) We have a k-linear embedding of the endomorphism algebra of Sp(λ′) into the
k-space RelkSr (M(β),M(α)).

Remark 3.3.23. Let h ∈ HomkSr (M(α),M(β)) and consider the transpose homomor-
phism h′ ∈ HomkSr (M(β),M(α)). We have:

(i) For 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and A ∈ T with ajk ̸= 0, the relation Rk
i,j(A) con-

cerning the coefficient of ρ[A] in h coincides with the relation Ck
i,j(A′) concerning

the coefficient of ρ[A′] in h′.

(ii) For 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and A ∈ T with akj ̸= 0, the relation Ck
i,j(A) con-

cerning the coefficient of ρ[A] in h coincides with the relation Rk
i,j(A′) concerning

the coefficient of ρ[A′] in h′.

(iii) The transpose homomorphism h′ is relevant if and only if h is relevant.

3.3.2. A Critical Relation. Here, we shall highlight a new relation that occurs as
a combination of the relations Rk

i,j(A) and Ck
i,j(A) of Lemma 3.3.13 that will play an

important role in our considerations below.

Lemma 3.3.24. Suppose that h ∈ HomkSr (M(α),M(β)) is a relevant homomorphism.
Then the coefficients h[A] of the ρ[A] in h satisfy the relations:

zj,k(A)h[A] =
∑
i<j
l>k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
+

∑
i>j
l<k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
, (Zj,k(A))

for all 1 ≤ j, k ≤ m and A ∈ T with ajk ̸= 0, where zj,k(A) := ∑
i<j

aik + ∑
l<k

ajl +j+k ∈ k.
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Proof. Since h is relevant, the coefficients h[A] of the ρ[A] in h satisfy the relations of
Lemma 3.3.13, and so in particular, given 1 ≤ j, k ≤ m, the coefficients satisfy the
relation ∑

i<j R
k
i,j(A) + ∑

l<k C
j
l,k(A) for all A ∈ T with ajk ̸= 0. But, the left-hand side

of this relation is given by:

∑
i<j

(aik + 1)h[A] +
∑
l<k

(ajl + 1)h[A] = zj,k(A)h[A], (3.3.25)

by definition of zj,k(A). On the other hand, the right-hand side of this relation is:

∑
i<j
l ̸=k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
+

∑
l<k
i ̸=j

ailh
î
A(j,l)(i,k)

(j,k)(i,l)

ó
. (3.3.26)

Now, notice that for i < j, l < k we have A(j,l)(i,k)
(j,k)(i,l) = A(i,k)(j,l)

(j,k)(i,l) and so after cancelling
those terms that appear twice, we may rewrite (3.3.26) as:

∑
i<j
l ̸=k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
+

∑
l<k
i ̸=j

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
=

∑
i<j
l>k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
+

∑
i>j
l<k

ailh
î
A(i,k)(j,l)

(j,k)(i,l)

ó
,

which, along with (3.3.25), gives the required expression.

3.4. One-Dimensional Endomorphism Algebra
From here, we shall assume that the parameters a, b, and m satisfy the parity

condition: a − m ≡ b (mod 2). Note that this condition is preserved by the swap
(a, b) ↔ (ã, b̃), where ã := b+m− 1, b̃ := a−m+ 1.

Firstly, we highlight some basic properties of the coefficients zj,k(A) of Lemma 3.3.24.

Lemma 3.4.1. Let A ∈ T . Then:

(i) zj,k(A) = ∑
i>j aik + ∑

l>k ajl + αj + βk + j + k for 1 ≤ j, k ≤ m.

(ii) zj,k(A) = ∑
i>j aik + ∑

l>k ajl for 1 < j, k < m.

(iii) zj,m(A) = b+ 1 + ∑
i>j aim and zm,k(A) = a+m+ ∑

i>k ami for 1 < j, k < m.

(iv) zm,m(A) = 1.

(v) z1,m(A) = ∑
i>1 aim and zm,1(A) = ∑

i>1 ami.

Proof. Part (i) follows from substituting the two expressions: ∑
i<j aik = βk −

∑
i≥j aik

and ∑
l<k ajl = αj −

∑
l≥k aji into the definition of zi,j(A). Parts (ii)-(v) then follow

immediately from part (i) along with the forms of α and β.

Definition 3.4.2. Let A,B ∈ T . Then:

(i) We write A <R B to mean that B follows A under the induced lexicographical
order on rows, reading left to right and bottom to top. This is a total order and
we call it the row-order.

(ii) We write A <C B to mean that B follows A under the induced lexicographical
order on columns, reading top to bottom and right to left. This is a total order
and we call it the column-order.
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Remark 3.4.3. Let 1 ≤ j, k ≤ m and let A ∈ T with ajk ̸= 0. Then any B = A(i,k)(j,l)
(j,k)(i,l)

that appears in the relation Zj,k(A) of Lemma 3.3.24 satisfies both B <R A and B <C A.

From now on, we fix a relevant homomorphism h ∈ HomkSr (M(α),M(β)).

Lemma 3.4.4. Let A ∈ T and suppose that amm ̸= 0. Then h[A] = 0.

Proof. Firstly, zm,m(A) = 1 by Lemma 3.4.1(iv), and the result follows by Zm,m(A).

Remark 3.4.5. Assume that m = 2, where then α = (b + 1, a − 1) and β = (a, b).
Suppose that h ∈ HomkSr (M(α),M(β)) is a non-zero relevant homomorphism, and
suppose that A ∈ T is such that h[A] ̸= 0. We may assume that a22 = 0 by Lemma 3.4.4.
Now, since a12 + a22 = b and a21 + a22 = a− 1, we deduce that a12 = b and a21 = a− 1.
Moreover, since a11 +a12 = b+ 1, we have that a11 = 1. Hence, there is a unique matrix
A for which h[A] ̸= 0, namely:

A = 1 b

a− 1 0
.

Hence for λ = (a, 1b) with a ≡ b (mod 2), we deduce that EndkSr (Sp(λ)) ∼= k, and in
this way we recover Murphy’s result [Mur, Theorem 4.1].

Lemma 3.4.6. Let A ∈ T and suppose that there exist some 1 < j, k < m such that
ajm ̸= 0 and amk ̸= 0. Then h[A] = 0.

Proof. Suppose for contradiction that the claim is false and let A ∈ T be a counterexam-
ple that is minimal with respect to the column-order <C . We choose 1 < j, k < m to be
maximal such that ajm, amk ̸= 0. We may assume that amm = 0 by Lemma 3.4.4. Now,
by Lemma 3.4.1(iii) we have zj,m(A)+zm,k(A) = 1 and so the relation Zj,m(A)+Zm,k(A)
gives:

h[A] =
∑
i>j
l<m

ailh[B[i,l]] +
∑
i<m
l>k

ailh[D[i,l]],

where B[i,l] := A(i,m)(j,l)
(j,m)(i,l) for i > j, l < m with ail ̸≡ 0, and D[i,l] := A(i,k)(m,l)

(m,k)(i,l) for i < m,
l > k with ail ̸≡ 0.

Suppose that i > j, l < m are such that ail ̸≡ 0, and consider the matrix B[i,l]. If
i = m, then b[m,l]

mm ̸= 0 and so h[B[m,l]] = 0 by Lemma 3.4.4. On the other hand, if i < m

then b[i,l]
im , b

[i,l]
mk ̸= 0, and notice also that B[i,l] <C A by Remark 3.4.3. Therefore, by

minimality of A, we have that h[B[i,l]] = 0. Similarly, one may show that h[D[i,l]] = 0 for
i < m, l > k with ail ̸≡ 0, and so we deduce that h[A] = 0.

Definition 3.4.7. We define the sets:

(i) T R := {A ∈ T | ai1 = 1 for 1 ≤ i < m, and amk = 0 for 1 < k ≤ m}.

(ii) T C := {A ∈ T | a1k = 1 for 1 ≤ k < m, and aim = 0 for 1 < i ≤ m}.

Lemma 3.4.8. Let A ∈ T and suppose that A ̸∈ T R ∪ T C. Then h[A] = 0.

Proof. By Lemma 3.4.4 we may assume that amm = 0. Suppose that amk ̸= 0 for
some k with 1 < k < m. Then, by Lemma 3.4.6, we may assume that ajm = 0 for
1 < j < m. But then a1m = b and so ∑

l<m a1l = m − 1. Since A ̸∈ T C we deduce
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that there exists some 1 ≤ l < m with a1l = 0. Now, the relation C1
l,m(A) gives that

h[A] = ∑
j>1 ajlh[B[j]] where B[j] := A(1,l)(j,m)

(1,m)(j,l) for j > 1 with ajl ̸≡ 0. Suppose that
j > 1 is such that ajl ̸≡ 0. If j = m then b[m]

mm ̸= 0 and so h[B[m]] = 0 by Lemma 3.4.4.
Moreover, for 1 < j < m we have that b[j]

mk, b
[j]
jm ̸= 0 and so h[B[j]] = 0 by Lemma 3.4.6.

Therefore, we deduce that h[A] = 0.
Hence, we may assume that amk = 0 for all 1 < k ≤ m and so it follows that

am1 = a − m + 1 and that ∑
j<m aj1 = m − 1. However, since A ̸∈ T R we must

have that aj1 = 0 for some j with 1 ≤ j < m. Now, the relation R1
j,m(A) gives

h[A] = ∑
l>1 ajlh[D[l]] where D[l] := A(j,1)(m,l)

(m,1)(j,l) for l > 1 with ajl ̸≡ 0. Suppose that l > 1
is such that ajl ̸≡ 0. If l = m, then d[m]

mm ̸= 0 and so h[D[m]] = 0 by Lemma 3.4.4. On
the other hand, if 1 < l < m then d[l]

ml ̸= 0. Now, if d[l]
um ̸= 0 for some 1 < u < m, then

h[D[l]] = 0 by Lemma 3.4.6. Hence, we may assume that d[l]
um = 0 for all 1 < u < m

and so we deduce that d[l]
1m = a1m = b. Since A ̸∈ T C we have that there exists some

1 ≤ k < m with a1k = 0 and hence d[l]
1k = 0. Then, the relation C1

k,m(D[l]) expresses
h[D[l]] as a linear combination of h[F ]s where either fmm ̸= 0, or fml ̸= 0 and fvm ̸= 0 for
some v with 1 < v < m. Once again, Lemma 3.4.4 and Lemma 3.4.6 give that h[F ] = 0
for all such F and so h[D[l]] = 0. Hence h[A] = 0.

Definition 3.4.9. We shall require some additional notation that we shall introduce
here:

(i) In order to assist with counting in reverse, set τ(i) := m− (i− 1) for 1 ≤ i ≤ m.

(ii) For 1 < i < m, we define:

T Ri := {A ∈ T R | the τ(j)th-row of A contains j odd entries for 1 < j ≤ i}.

(iii) For 1 < i < m, we define T Ri := T Ri \ T Ri+1, where we set T Rm := ∅.

Remark 3.4.10. Let A ∈ T . Recall that ∑
l aτ(i)l = i for 1 < i < m. Therefore, if

A ∈ T Ri for some 1 < i < m, then the τ(j)th-row of A consists entirely of ones and
zeros for all 1 < j ≤ i.

Definition 3.4.11. Let 1 < i < m and A ∈ T Ri. Then:

(i) We set KA := {2 ≤ k ≤ i | auk = 1 for τ(i) ≤ u ≤ τ(k)}.

(ii) We set kA := min{2 ≤ k ≤ i+ 1 | k ̸∈ KA}.

(iii) If kA ≤ i, we set jA := min{kA ≤ j ≤ i | aτ(j)kA
= 0}.

(iv) If kA ≤ i and kA ≤ j ≤ i, we denote by wj(A) := (wj
1(A), wj

2(A), . . .) the decreas-
ing sequence of column-indices within the final τ(kA) columns of A that satisfy
a

τ(j)wj
s(A) = 1 for s ≥ 1.

Notice that the sequence wj(A) has j − kA + 1 terms.
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Example 3.4.12. We have kA = 4, jA = 4, and w5(A) = (7, 5), where:

A :=

1 · · · · · · · ·
...

...
...

...
...

...
...

...
...

1 1 1 1 1 2 0 0 0
1 1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0

a−m+ 1 0 0 0 0 0 0 0 0

∈ T R5.

Lemma 3.4.13. Let 2 < i < m and let A ∈ T Ri with kA ≤ i. Suppose that there exists
some index k with kA < k ≤ i such that wj

t (A) = wj−1
t−1 (A) for all kA < j ≤ k and all

even t. Then for l ≥ kA, kA ≤ j ≤ k, we have
∑

u≥τ(j) aul ≡ 1 if and only if l = wj
s(A)

for some odd s.

Proof. We proceed by induction on j. The case j = kA is clear and so we may assume
that j > kA and that the claim holds for all smaller values of j in the given range. Let
l ≥ kA and suppose that ∑

u≥τ(j) aul ≡ 1. Suppose, for the moment, that aτ(j)l = 0.
Then ∑

u≥τ(j) aul = ∑
u≥τ(j−1) aul, and so l = wj−1

s (A) for some odd s by the inductive
hypothesis. However, wj

s+1(A) = wj−1
s (A) = l and so aτ(j)l = 1, contradicting that

aτ(j)l = 0. Hence, aτ(j)l = 1 and so l = wj
s(A) for some s. Moreover, ∑

u≥τ(j) aul ≡ 1 if
and only if ∑

u≥τ(j−1) aul ≡ 0 and so by Lemma 3.4.13 we deduce that l ̸= wj−1
s′ (A) for

any odd s′. Now, if s is even then wj
s(A) = wj−1

s−1(A), leading to a contradiction. Hence,
s must be odd. Conversely, suppose that l = wj

s(A) for some odd s, and suppose, for
the sake of contradiction, that ∑

u≥τ(j) aul ≡ 0. Then, there exists some kA ≤ j′ < j

such that aτ(j′)l = 1, and we choose j′ to be maximal with this property. Therefore,
aul = 0 for τ(j) < u < τ(j′) and ∑

u≥τ(j′) aul ≡ 1. Then, by the inductive hypothesis,
l = wj′

s′ (A) for some odd s′. But then wj′+1
s′+1(A) = wj′

s′ (A) = l, by our assumption,
and so aτ(j′+1)l = 1. Now, by the maximality of j′, we must have j′ + 1 = j. Thus,
l = wj′+1

s′+1(A) = wj
s′+1(A) = wj

s(A) and so s′ + 1 = s, which is impossible since s′ and s

are both odd. Hence ∑
u≥τ(j) aul ≡ 1, and so we are done.

Lemma 3.4.14. Let 2 < i < m and let A ∈ T Ri with kA ≤ i. Suppose that zτ(j),l(A) = 0
for all kA ≤ j ≤ i, kA ≤ l < m with aτ(j)l = 1. Then wj

s(A) = wj−1
s−1(A) for kA < j ≤ i

and even s with s ≤ j − kA + 1.

Proof. We fix i and we proceed by induction on j, increasing from j = kA + 1. Here
wj(A) = (wj

1(A), wj
2(A)) and for w := wj

2(A) we have zτ(j),w(A) = 0. Now, by applying
Lemma 3.4.1(ii), we have that zτ(j),w(A) = ∑

u>τ(j) auw + ∑
v>w aτ(j)v = aτ(j−1)w + 1.

Therefore, the entry aτ(j−1)w is odd and so w = wkA1 (A) as required. Suppose now that
kA + 1 < j ≤ i and that the claim holds for smaller values of j in the given range. Note
that this implies that the hypotheses of Lemma 3.4.13 are met for k = j − 1.

Suppose that s is even and set l := wj
s(A). Then ∑

u>τ(j) aul + s − 1 ≡ 0 by
Lemma 3.4.1(ii) since zτ(j),l(A) = 0. Therefore, ∑

u≥τ(j−1) aul ≡ 1 and so by the in-
ductive hypothesis, Lemma 3.4.13 applies and gives that l = wj−1

s′ (A) for some odd s′

with s′ ≤ j − kA. Now, the sequence wj(A) has exactly one extra term compared to
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wj−1(A) and so the number of even indices in wj(A) equals the number of odd indices
in wj−1(A). It follows that s′ = s− 1 and so we are done.

Lemma 3.4.15. Let 1 < i < m and let A ∈ T Ri with kA ≤ i. Suppose that A satisfies
the inequality wj

1(A) > wj−1
1 (A) for all jA < j ≤ i. Then we may express h[A] as a

linear combination of h[B]s for some B ∈ T where either:

(i) B ∈ T Ri′ for some i′ < i,

(ii) B ∈ T Ri with kB > kA,

(iii) B ∈ T Ri with kB = kA and B <C A, which is witnessed within the final τ(wjA

1 (A))
columns of A and B.

Moreover, if A ̸∈ T C then B ̸∈ T C for all such B listed above.

Proof. To ease notation we set u := τ(jA) > 1, k := kA, and w := wjA
1 (A). Notice that

w > k, and that auk = 0 and auw = 1. The relation Cu
k,w(A) gives h[A] = ∑

l ̸=u alkh[B[l]]
where B[l] := A(u,k)(l,w)

(u,w)(l,k) for l ̸= u with alk ̸≡ 0. Let l ̸= u be such that alk ̸≡ 0, and
let k[l] := kB[l], j[l] := jB[l], and w[l] := w

j[l]

1 (B[l]). We shall proceed by induction on jA,
decreasing from jA = i.

Firstly, suppose that jA = i. If l > u and alw ̸= 0, then B[l] ∈ T Ri′ for some i′ < i,
and so B[l] is as described in case (i). Now, if l > u with alw = 0, then k[l] = k, B[l] <C A,
and the final column in which B[l] and A differ is the wth-column. Hence, here B[l] is as
described in case (iii). On the other hand, if l < u, then k[l] > k and B[l] is as described
in case (ii).

Now, suppose that jA < i and that the claim holds for all D ∈ T Ri with jA < jD ≤ i.
We split our consideration into steps:

Step 1: If l > u and alw ̸= 0, then B[l] ∈ T Ri′ for some i′ < i, and so B[l] is as
described in case (i). On the other hand, if l > u and alw = 0, then B[l] ∈ T Ri with
k[l] = k and B[l] <C A. Moreover, the final column in which B[l] and A differ in this case
is the wth-column and so B[l] is as described in case (iii).

Step 2: Now, if τ(i) ≤ l < u with alw ̸= 0. Then B[l] ∈ T Rm−l with m− l < i since
l ≥ τ(i) = m− i+ 1, and so B[l] is as described as in case (i).

Step 3: On the other hand, if τ(i) ≤ l < u and alw = 0, then B[l] ∈ T Ri with k[l] = k

and j[l] > jA. Moreover, the final column in which A and B differ is the wth-column, and
so wj

1(B[l]) = wj
1(A) for all jA < j ≤ i since wj

1(A) > wj−1
1 (A) for all jA < j ≤ i, and so in

particular wj
1(B[l]) > wj−1

1 (B[l]) for each j[l] < j ≤ i. Hence, by the inductive hypothesis,
B[l] must satisfy the claim, and so h[B[l]] may be written as a linear combination of h[D]s
for some D ∈ T where either:

(iv) D ∈ T Ri′ for some i′ < i,

(v) D ∈ T Ri with kD > k[l],

(vi) D ∈ T Ri with kD = k[l] and D <C B[l], which is witnessed within the final τ(w[l])
columns of B[l] and D.
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Any such D as in (iv) is as described in case (i), whereas any such D as in (v) is as
described in case (ii) since k[l] = kA. Now, notice that the final τ(w[l]) columns of A and
B[l] match since w[l] > w, and so any such D as in (vi) also satisfies D <C A (witnessed
within the final τ(w) columns of A and D), and so is as described in case (iii).

Step 4: Finally, if l < τ(i), then B[l] ∈ T Ri. Moreover, if atk = 1 for all t in the
range τ(i) ≤ t < τ(jA), then k[l] > k and so B[l] is as described in case (ii). On the other
hand, if atk = 0 for some t in this range, then k[l] = k with j[l] > jA and then one may
proceed as in Step 3 above.

Now, suppose that A ̸∈ T C but B[l] ∈ T C for some l ̸= u with alk ̸≡ 0. Notice that
this forces l = 1 and alk = 2, which contradicts that alk ̸≡ 0. Hence if A ̸∈ T C, then
B[l] ̸∈ T C for all l ̸= u with alk ̸≡ 0. By applying this argument recursively, it follows
that if A ̸∈ T C, then all such B produced by this procedure satisfy B ̸∈ T C as well.

Lemma 3.4.16. Let 1 < i < m − 1 and let A ∈ T Ri with kA = i + 1. Then we may
express h[A] as a linear combination of h[B]s for some B ∈ T where either:

(i) B ∈ T Ri′ for some i′ < i,

(ii) B ̸∈ T R.

Moreover, if A ̸∈ T C then B ̸∈ T C for all such B listed above.

Proof. Firstly, recall that the sum of the entries in the τ(i+ 1)th-row of A is i+ 1. Now,
since A ̸∈ T Ri+1, we deduce that the τ(i+1)th-row of A contains at most i−1 odd entries.
Hence, there exists some 1 < s ≤ i such that aτ(i+1)s is even and we choose s be minimal
with this property. To ease notation, we set q := τ(i + 1) and u := τ(s). Note that
aus = 1. The relation Rs

q,u(A) gives that h[A] = ∑
l ̸=s aqlh[B[l]] where B[l] := A(q,s)(u,l)

(u,s)(q,l) for
l ̸= s with aql ̸≡ 0.

If l = 1, then B[1] ̸∈ T R, and so B[1] is as described in case (ii). Now, if 1 < l < s,
then B[l] ∈ T Rs−1 with s − 1 < i, and so B[l] is as described in case (i). Meanwhile, if
l > s, then B[l] ∈ T Ri and, as in the previous paragraph, we may find some s < t ≤ i

(depending on l) such that b[l]
qt is even, and we take t to be minimal with this property.

The relation Rt
q,τ(t)(B[l]) expresses h[B[l]] as a linear combination of h[D]s for some

D ∈ T that must either fit into one of the cases described in the statement of the claim,
or otherwise once again D ∈ T Ri and there exists some t < v ≤ i such that dqv is even,
and we take v to be minimal with this property. Noting that v > t > s, it is clear that
this process must terminate, hence providing the desired expression for h[A].

Now, suppose that A ̸∈ T C but B[l] ∈ T C for some l ̸= s with aql ̸≡ 0. Then, notice
that B[l] agrees with A outside the τ(i + 1)th-row and τ(s)th-row, and so in particular
they agree in the first row since i < m − 1. Hence a1v = b

[l]
1v = 1 for 1 ≤ v < m since

B[l] ∈ T C. Now, by considering the first row-sum and the last column-sum of A, we
deduce that a1m = b and avm = 0 for 1 < v ≤ m. However, this implies that A ∈ T C,
which is a contradiction. Once again, by applying this argument recursively, it follows
that if A ̸∈ T C, then all such B produced by this procedure satisfy B ̸∈ T C as well.

Lemma 3.4.17. Let 1 < i < m − 1 and let A ∈ T Ri. Then we may express h[A] as a
linear combination of h[B]s for some B ∈ T \ T R. Moreover, if A ̸∈ T C then all such
B satisfy B ̸∈ T R ∪ T C.
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Proof. We proceed by induction on i ≥ 2. Firstly, suppose that i = 2. Since A ̸∈ T R3

with ∑
l a(m−2)l = 3, the (m−2)th-row of A must contain a single odd entry, which must

then be equal to 1, and be located in the first column of A. On the other hand, since
A ∈ T R2, there exists a unique l > 1 with a(m−1)l = 1. The relation Rl

m−2,m−1(A) gives
h[A] = h[B] for B := A(m−2,l)(m−1,1)

(m−1,l)(m−2,1). Evidently, B ̸∈ T R, and so the claim holds for
i = 2.

Now, we suppose that i > 2 and that the claim holds for all B ∈ T such that
B ∈ T Ri′ for some 2 ≤ i′ < i. Suppose, for the sake of contradiction, that the claim
fails for this particular value of i and consider the set of counterexamples A ∈ T Ri

whose value of kA is maximal amongst all counterexamples. Now, we choose A to be
the element of this set that is minimal with respect to the column-ordering. In other
words, if D ∈ T Ri is a counterexample to the claim, then either kD < kA, or kD = kA

and D ≥C A.
Now if kA = i + 1, then Lemma 3.4.16 states that we may express h[A] as a linear

combination of some h[B]s for some B ∈ T where either B ∈ T Ri′ with i′ < i, or
B ̸∈ T R. In the first case the inductive hypothesis states that h[B] can be expressed
as a linear combination of some h[D]s with D ̸∈ T R, whilst in the second case we have
B ∈ T \ T R. Thus, h[A] satisfies the statement of the claim which contradicts that A
was chosen to be a counterexample.

Hence, we may assume that kA ≤ i. Suppose, for the sake of contradiction, that
there exists kA ≤ j ≤ i, kA ≤ k < m such that aτ(j)k = 1 and zτ(j),k(A) = 1. The
relation Zτ(j),k(A) gives the expression:

h[A] =
∑

u<τ(j)
l>k

aulh[B[u,l]] +
∑

u>τ(j)
l<k

aulh[B[u,l]], (3.4.18)

where B[u,l] := A(u,k)(τ(j),l)
(τ(j),k)(u,l) for all such (u, l) satisfying aul ̸≡ 0.

Now, set B := B[u,l] where (u, l) is as in (3.4.18) with aul ̸≡ 0. We claim that B fits
into one of the following cases: B ̸∈ T R, B ∈ T Ri′ for some i′ < i, or B ∈ T Ri with
kB = kA and B <C A. We provide full details for the case where u > τ(j), l < k with
the other case, that is u < τ(j), l > k, being similar.

If l = 1 then B ̸∈ T R and so B is of the desired form. Now, if 1 < l < kA, then
either u ≥ τ(kA) or τ(j) < u < τ(kA). In the first case, we have B ∈ T Rj−1, whilst in
the second case we have B ∈ T Rτ(u)−1 if auk = 1 and B ∈ T Rj−1 if auk = 0. Hence,
in either case, we deduce that B ∈ T Ri′ for some i′ < i. Suppose now that kA ≤ l < k,
then we must have τ(j) < u ≤ τ(kA) since aul ̸≡ 0. Now, if auk = 1 then B ∈ T Rτ(u)−1,
whilst if auk = 0 and aτ(j)l = 1, then B ∈ T Rj−1. Finally, if auk = 0 and aτ(j)l = 0,
then B ∈ T Ri with kB = kA and B <C A. But then, either by the inductive hypothesis
on i, or by the minimality of A, all such B produced in this procedure must satisfy the
statement of the claim, and hence so must A, which contradicts that A was chosen to
be a counterexample.

Therefore, we may assume that that zτ(j),k(A) = 0 for all kA ≤ j ≤ i, kA ≤ k < m

such that aτ(j)k = 1. Then, by Lemma 3.4.14 and Lemma 3.4.15, we may express h[A]
as a linear combination of h[B]s for some B ∈ T where either: B ∈ T Ri′ for some i′ < i,
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B ∈ T Ri with kB > kA, or B ∈ T Ri with kB = kA and B <C A. But then, either
by the inductive hypothesis on i, maximality of kA, or minimality of A, each such B

must satisfy the statement of the claim, and hence so must A, which contradicts that A
was chosen to be a counterexample. Thus, no such counterexample may exist. Finally,
once again, it is clear to see from the steps taken above that if A ̸∈ T C, then all such B
produced by this procedure satisfy B ̸∈ T C as well.

Corollary 3.4.19. Let 1 < i < m− 1 and let A ∈ T Ri with A ̸∈ T C. Then h[A] = 0.

Proof. By Lemma 3.4.17, we may express h[A] as a linear combination of h[B]s for some
B ∈ T with B ̸∈ T R ∪ T C. But h[B] = 0 for all such B by Lemma 3.4.8, and so the
result follows.

Lemma 3.4.20. Let A ∈ T R \ T C. Then h[A] = 0.

Proof. Suppose, for the sake of contradiction, that the claim is false, and let A ∈ T be
a counterexample that is minimal with respect to the column-ordering <C defined in
Definition 3.4.2(ii). By Corollary 3.4.19, we may assume that A ̸∈ T Ri for any i < m−1,
and so we must have that A ∈ T Rm−1 \ T C since A ∈ T R. Hence, for each 1 < u < m,
either aum = 0 or aum = 1, and we claim that there exists at least one u in this range
with aum = 1. Indeed, suppose otherwise, then there exists some 1 < v < m with a1v

even since A ̸∈ T C. But then the relation C1
vm(A) expresses h[A] as a linear combination

of h[B]s for some B ∈ T with B <C A and B ∈ T R \ T C. But h[B] = 0 for all such B

by minimality of A, which contradicts that A was chosen to be a counterexample. We
hence write (u1, . . . , us) for the increasing sequence whose terms are given by all u in
the range 1 < u < m with aum = 1. Firstly, suppose that s > 1 and set u := us−1 and
u′ := us. By Lemma 3.4.1(iii), we have that zu,m(A) + zu′,m(A) = 1 and so the relation
Zu,m(A) + Zu′,m(A) is given by:

h[A] =
∑
v>u
l<m

avlh[B[v,l]] +
∑
v>u′
l<m

avlh[D[v,l]], (3.4.21)

where B[v,l] := A(v,m)(u,l)
(u,m)(v,l) and D[v,l] := A(v,m)(u′,l)

(u′,m)(v,l) for all such (v, l) with avl ̸≡ 0. Now, let
(v, l) be as in (3.4.21) with avl ̸≡ 0.

If l = 1, then B[v,1], D[v,1] ̸∈ T R∪ T C and so h[B[v,1]] = h[D[v,1]] = 0 by Lemma 3.4.8.
On the other hand, if l > 1, then B[v,l], D[v,l] ∈ T R\T C and A <C B[v,l], D[v,l]. Hence, by
the minimality of A, once again we deduce that h[B[v,l]] = h[D[v,l]] = 0. Thus h[A] = 0,
which contradicts that A was chosen to be a counterexample.

Hence we may assume that s = 1, or in other words that there exists a unique u in
the range 1 < u < m such that aum = 1, and so then z1,m(A) = 1 by Lemma 3.4.1(v).
By applying similar considerations to the above to the relation Z1,m(A), we once again
reach a contradiction, and so no such counterexample may exist.

Definition 3.4.22. For 1 < i < m, similarly to T Ri of Definition 3.4.9(ii), we define:

T Ci := {A ∈ T C | the τ(j)th-column of A contains j odd entries for 1 < j ≤ i}.
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Remark 3.4.23. Firstly, note that by Remark 3.3.23, we see that the transpose homo-
morphism h′ ∈ HomkSr (M(β),M(α)) of h is relevant. Now, the results proven above
are independent of the values of a and b, provided that they satisfy the parity condi-
tion a − m ≡ b. In particular, note that this condition is preserved under the swap
(a, b) ↔ (ã, b̃), where ã := b + m − 1, b̃ := a − m + 1. But, as in Remark 3.3.20, this
swap is equivalent to the swap λ ↔ λ′ and accordingly α ↔ β and T ↔ T ′. Therefore,
by defining the subsets T R′, T C′ ⊆ T ′ analogously to T R, T C ⊆ T , we obtain results
analogous to those shown in this section for the coefficients h′[A′] of the ρ[A′] in h′.

Proposition 3.4.24. Let A ∈ T and suppose that A ̸∈ T Rm−1∩T Cm−1. Then h[A] = 0.

Proof. Suppose that D ∈ T is such that h[D] ̸= 0. Then, we may assume that we
have D ∈ T R ∪ T C since otherwise h[D] = 0 by Lemma 3.4.8. Moreover, we may
assume that D ̸∈ T R \ T C since otherwise h[D] = 0 by Lemma 3.4.20. On the other
hand, if D ∈ T C \ T R, then D′ ∈ T R′ \ T C′, where T R′, T C′ ⊆ T ′ are as defined
in Remark 3.4.23. But then we have h[D] = h′[D′] = 0 á la Lemma 3.4.20, which
contradicts our choice of D, and so we may assume that D ̸∈ T C \ T R. In sum, we
have shown that h[D] = 0 for all D ∈ T with D ̸∈ T R∩ T C. In particular, to prove the
Proposition, we may assume that A ∈ T R∩ T C. Now, if A ̸∈ T Rm−1, then there exists
some i with 1 < i < m − 1 such that A ∈ T Ri. But then Lemma 3.4.17 allows one to
express h[A] as a linear combination of h[B]s for some B ∈ T with B ̸∈ T R. But then
every such B satisfies B ̸∈ T R ∩ T C and hence that h[B] = 0 as shown above, and so
h[A] = 0. On the other hand, if A ̸∈ T Cm−1, then A′ ̸∈ T R′

m−1 where T R′
m−1 ⊆ T ′

is defined analogously to T Rm−1 ⊆ T . But then h[A] = h′[A′] = 0 by the ′-decorated
analogue to the argument outlined above, and so we are done.

Theorem 3.4.25. Let λ = (a,m − 1, . . . , 2, 1b) and a ≥ m ≥ 2, b ≥ 1, such that
a−m ≡ b (mod 2), and write r := deg(λ). Then EndkSr (Sp(λ)) ∼= k.

Proof. Let h̄ be a non-zero endomorphism of Sp(λ), which we identify with a relevant
homomorphism h ∈ HomkSr (M(α),M(β)) as in Remark 3.3.22. If A ∈ T with h[A] ̸= 0,
then A ∈ T Rm−1 ∩T Cm−1 by Proposition 3.4.24. But since ∑

v aτ(i)v = i, ∑
u auτ(j) = j

for 1 < i, j < m, this set consists solely of the matrix:

A0 :=

1 1 1 . . . 1 1 b

1 1 1 . . . 1 1 0
1 1 1 . . . 1 0 0
...

...
... . . . ...

...
...

1 1 1 . . . 0 0 0
1 1 0 . . . 0 0 0
b̃ 0 0 . . . 0 0 0

,

where b̃ := τ(a) = a−m+1. Therefore, we have h = h[A0]ρ[A0], and so we are done.
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4 Hook Specht Modules

In the following, we assume that the characteristic of the field k is 2.

4.1. Reduction for Homomorphisms
Here, we shall consider the k-space of kSr-linear homomorphisms Sp(λ) −→ Sp(µ)

where λ, µ ∈ Λ(n, r) are both hook partitions of r, say λ = (a, 1b) and µ = (a′, 1b′) for
some integers a, b, a′, b′ ≥ 1 with a+ b = r = a′ + b′.

Remark 4.1.1. At first glance, it may appear to the reader that we have neglected to
consider the cases that b = 0 or b′ = 0. However, if b = 0 say, then since we are in
characteristic 2, we have that Sp(a, 1b) = Sp(r) ∼= Sp(1r) = Sp(1, 1r−1), and so we may
swap (a, b) = (r, 0) with (a, b) = (1, r− 1) and proceed accordingly. Similar adjustments
may be made in the case that b′ = 0.

Remark 4.1.2. It is clear to see that we may generalise the reduction process described
in §3.3.1 to the case that λ = (a, 1b), µ = (a′, 1b′) with a + b = a′ + b′. Firstly, note
that λ′ = (b + 1, 1a−1), and so we fix α := (b + 1, a − 1) with β := (a′, b′). Then, ac-
cording to our reduction process, we identify HomkSr (Sp(λ),Sp(µ)) with the k-subspace
ERelkSr (M(α),M(β)) of HomkSr (M(α),M(β)) consisting of the essential relevant ho-
momorphisms. That is to say, those kSr-linear homomorphisms M(α) h−→ M(β) that
satisfy h ◦ ϕ̄α = 0 = ψ̄β ◦ h. Now, notice ϕ̄α = ϕ̄(1,2,1)

α and ψ̄β = ψ̄(1,2,1)
β . Thus, by appro-

priate analogues of Lemma 3.3.10 and Remark 3.2.18, we have the k-linear isomorphism
HomkSr (Sp(a, 1b),Sp(a′, 1b′)) ∼= RelkSr (M(α),M(β)) as k-spaces, which is precisely:h ∈ Homk(M(b+ 1, a− 1),M(a′, b′))

∣∣∣∣∣ h ◦ ϕ̄(1,2,1)
(b+1,a−1) = 0,

ψ̄(1,2,1)
(a′,b′) ◦ h = 0.

 . (4.1.3)

4.2. Endomorphisms
Recall that in Remark 3.4.5, we (partially) recovered Murphy’s result; that is to

say that EndkSr (Sp(1, ab)) is one-dimensional when a ≡ b (mod 2) [Mur, Theorem 4.1].
However, in fact, Murphy goes further than this by providing the dimension of this endo-
morphism algebra in the alternate parity cases, thereby providing an explicit dimension
formula of the endomorphism algebra of any Specht module labelled by hooks. In the
following result, we shall do the same by explicitly finding a basis for the k-space of
relevant homomorphisms M(b+ 1, a− 1) −→ M(a, b) given in (4.1.3).

Proposition 4.2.1. Let a, b ≥ 1 with a ̸≡ b (mod 2), and r := a+ b. Then:

dim EndkSr (Sp(a, 1b)) =
{ 1

2 min(a+ 1, b+ 2), if b ≡ 0 (mod 2),
1
2 min(a, b+ 1), if b ≡ 1 (mod 2).

(4.2.2)

Proof. Firstly, if a = 1, then Sp(a, 1b) = sgnr, and so clearly we have, in accordance with
(4.2.2), that dim EndkSr (Sp(a, 1b)) = 1. Henceforth, we assume that a ≥ 2, and then fix
α := (b+ 1, a− 1) and β := (a, b), with c := min (a− 1, b), and note that c ≡ b ≡ a− 1
since a ̸≡ b. Then, we have T := Tab(α, β) = {ρ[A[t]] | 0 ≤ t ≤ c}, where for 0 ≤ t ≤ c,
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we write:
A[t] := t+ 1 b− t

a− 1 − t t
∈ T .

Now, fix some kSr-linear homomorphism M(α) h−→ M(β) given by h = ∑c
t=0 h[A[t]]ρ[A[t]]

say. Then h is relevant if and only if the coefficients h[A[t]] satisfy the relations:

(⋆)


⋆

(t ̸= a− 1) (t+ 2)h[A[t]] = (b− t)h[A[t+1]], (R1
1,2(A[t]))

(t ̸= 0) (b+ 1 − t)h[A[t]] = (t+ 1)h[A[t−1]], (R2
1,2(A[t]))

(t ̸= b) (t+ 2)h[A[t]] = (a− 1 − t)h[A[t+1]], (C1
1,2(A[t]))

(t ̸= 0) (a− t)h[A[t]] = (t+ 1)h[A[t−1]]. (C2
1,2(A[t]))

Now, since c ≡ b ≡ a − 1, after reducing coefficients modulo 2, we see that the system
of equations (⋆) reduces to:Ä

⋆̄
ä

⋆̄

(0 ≤ t < c) th[A[t]] = (t+ c)h[A[t+1]], (Xt)

a ̸= b− 1 (t = c) ch[A[c]] ≡ 0. (Xc)

Then, we split into the following cases:

• (c ≡ 0): Here, if t is even with 0 ≤ t ≤ c, then the relation (Xt) is superfluous,
and so the relations (⋆̄) are satisfied if and only if h[A[t]] = h[A[t+1]] for odd t with
0 < t < c. It follows that the element ρ[A[0]], along with the elements of the form
ρ[A[2s+1]] +ρ[A[2s+2]] for 0 ≤ s ≤ 1

2(c− 2), form a k-basis for the k-space of relevant
homomorphisms M(α) −→ M(β). Hence:

dim EndkSr (Sp(a, 1b)) = 2 + 1
2(c− 2) = 1

2 min(a+ 1, b+ 2).

• (c ≡ 1): Now, in this case, note that the relation (Xc−1) gives h[A[c]] = 0, which
is precisely the relation (Xc). Hence, whether or not a = b − 1, we see that
the relations (⋆̄) are satisfied if and only if the relations (Xt) are satisfied for all
0 ≤ t < c. But this is equivalent to h[A[t]] = 0 for odd 0 ≤ t ≤ c. It follows that
the elements ρ[A[2s]] for 0 ≤ s ≤ 1

2(c− 1) form a k-basis for the k-space of relevant
homomorphisms M(α) −→ M(β). Hence:

dim EndkSr (Sp(a, 1b)) = 1 + 1
2(c− 1) = 1

2 min(a, b+ 1).

4.3. Homomorphisms
Now, we shall generalise the calculation of §4.2 in order to calculate the dimension

of the k-space of the kSr-linear homomorphisms Sp(a, 1b) −→ Sp(a′, 1b′). Once again,
as discussed in Remark 4.1.2, we do so by calculating the dimension of the k-space of
relevant homomorphisms M(α) −→ M(β), where α = (b+ 1, a− 1) and β = (a′, b′) given
in (4.1.3).

Proposition 4.3.1. Let a, a′, b, b′ ≥ 1 with the property that r := a + b = a′ + b′, and
write d := a′ − a = b − b′. Then, the dimension, denoted δ(a, b′, d), of the k-space of
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kSr-linear homomorphisms Sp(a, 1b) −→ Sp(a′, 1b′) is given by:

δ(a, b′, d) =



0, if a ≡ b′, d < −1,
0, if a ≡ b′, d ≥ −1, d ≡ 1,
1, if a ≡ b′, d ≥ −1, d ≡ 0,
1
2 min(a, b′ + 1), if a ̸≡ b′, d ≥ −1, (a, b′, d) ≡ (0, 1, 1), (0, 1, 0),
1
2 min(a+ 1, b′ + 2), if a ̸≡ b′, d ≥ −1, (a, b′, d) ≡ (1, 0, 0),
1
2 min(a− 1, b′), if a ̸≡ b′, d ≥ −1, (a, b′, d) ≡ (1, 0, 1),
1
2 min(a′ + 1, b+ 2), if a ̸≡ b′, d < −1, (a, b′, d) ≡ (0, 1, 1), (1, 0, 0),
1
2 min(a′, b+ 1), if a ̸≡ b′, d < −1, (a, b′, d) ≡ (0, 1, 0), (1, 0, 1).

(4.3.2)

Proof. Firstly, suppose that a = 1. Then, by [J1, Theorem 24.4] (see also [DG1, Propo-
sition 3.5]), we have that:

HomkSr (Sp(1r), Sp(a′, 1b′)) ∼= HomkSr (Sp(r), Sp(a′, 1b′)) ∼=
{

k, if a′ ≡ 1,
0, if a′ ≡ 0,

,

and so, in accordance with (4.3.2), we δ(1, b′, d) = 1 if d ≡ 0, and δ(1, b′, d) = 0 if d ≡ 1.
Now, suppose that a ≥ 2 and a′ = 1. Then, once again by [J1, Theorem 24.4], we have
that:

HomkSr (Sp(a, 1b),Sp(1r)) ∼= HomkSr (Sp(r),Sp(b+ 1, 1a−1)) ∼=
{

k, if b ≡ 0,
0, if b ≡ 1,

,

and so, once again in accordance with (4.3.2), we indeed see that δ(a, b′, d) = 1 if d ≡ b′

and δ(a, b′, d) = 0 if d ̸≡ b′.
Now, we suppose that a, a′ ≥ 2 and we fix α := (b+ 1, a− 1) and β := (a′, b′). Then,

note that we have that T := Tab(α, β) = {ρ[A[t]] | c′ ≤ t ≤ c}, where c := min(a− 1, b′),
c′ := max(0,−d− 1), and:

A[t] := t+ 1 + d b′ − t

a− 1 − t t
∈ T .

Now, fix some kSr-linear homomorphismM(α) h−→ M(β) given by h = ∑c
t=c′ h[A[t]]ρ[A[t]]

say. Note that h is relevant if and only if the coefficients h[A[t]] satisfy the relations:

(⋆)


⋆

(t ̸= a− 1) (t+ 2 + d)h[A[t]] = (b′ − t)h[A[t+1]], (R1
1,2(A[t]))

(t ̸= 0) (b′ + 1 − t)h[A[t]] = (t+ 1 + d)h[A[t−1]], (R2
1,2(A[t]))

(t ̸= b′) (t+ 2 + d)h[A[t]] = (a− 1 − t)h[A[t+1]], (C1
1,2(A[t]))

(t ̸= 0) (a− t)h[A[t]] = (t+ 1 + d)h[A[t−1]]. (C2
1,2(A[t]))

We split into cases:

• (a ̸≡ b′): In this case, since a ≡ b′ − 1, we see that after reducing coefficients
modulo 2, the system of equations (⋆) reduces to:Ä

⋆̄
ä

⋆̄

(c′ ≤ t < c) (t+ d)h[A[t]] = (t+ c)h[A[t+1]], (Xt)

a ̸= b′ − 1 (t = c) (c+ d)h[A[c]] ≡ 0. (Xc)
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Then, we split this case into the following subcases:

– (a ̸≡ b′; c ≡ d): Here, if t ≡ d with c′ ≤ t ≤ c, then the relation (Xt)
is superfluous, and so the relations (⋆̄) are satisfied if and only if we have
that h[A[t]] = h[A[t+1]] for c′ ≤ t < c with t ̸≡ d. It follows that the elements
ρ[A[s]]+ρ[A[s+1]] for c′ ≤ s < c with s ̸≡ d, along with the element ρ[A[0]] when
d ≥ −1 with d ≡ 0, form a k-basis for the k-space of relevant homomorphisms
M(α) −→ M(β).

– (a ̸≡ b′; c ̸≡ d): Now, here, the relation (Xc−1) gives h[A[c]] = 0, which is
precisely the relation (Xc). Hence, whether or not a = b′ − 1, we see that the
relations (⋆̄) are satisfied if and only if the relations (Xt) are satisfied for all
c′ ≤ t < c. But this is equivalent to h[A[t]] = 0 for c′ ≤ t ≤ c with t ̸≡ d. It
follows that the elements ρ[A[s]] for c′ ≤ s ≤ c with s ≡ d form a k-basis for
the k-space of relevant homomorphisms M(α) −→ M(β).

The case a ̸≡ b′ follows by counting, in each parity case, the size of the correspond-
ing basis provided by the above analysis. See Remark 4.3.7 for details.

• (a ≡ b′): Now, if h is relevant, then the relation: Z2,2(A[t]) = R2
1,2(A[t]) +C2

1,2(A[t])
gives that h[A[t]] = 0 unless t = 0. It follows that δ(a, b′, d) ≤ 1, and δ(a, b′, d) = 1
if and only if A[0] ∈ T and ρ[A[0]] is relevant. Finally, we note that A[0] ∈ T if and
only if d ≥ −1, whilst for d ≥ −1, we see that h := ρ[A[0]] satisfies the relations
R1

1,2(A[0]), C1
1,2(A[0]) of (⋆) only when d ≡ 0, and conversely, when d ≡ 0, we see

that h satisfy all of the relations of (⋆), and so is hence relevant.

We finish this section by collecting a series of remarks relating to Proposition 4.3.1.

Remark 4.3.3. We begin by observing that one may tackle each of the cases a = 1 or
a′ = 1 in the proof of Proposition 4.3.1 using methods in the spirit of the thesis, and in
particular without relying on James’ result [J1, Theorem 24.4]. To do so, we first note
that throughout this thesis, during the investigation of the case λ = (a,m− 1, . . . , 2, 1b),
for the sake of notation, we set a ≥ m ≥ 2. In particular, when m = 2, this excludes
the case where a = 1, that it to say, the sign module Sp(1r) ∼= sgnr for kSr. That said,
one may tackle such cases by applying a minor modification to the reduction process
detailed in §3.3.1. Indeed, consider the following:

• Firstly, suppose that a = 1 with a′ > 1, and b, b′ ≥ 1, and write r := 1+ b = a′ + b′,
and also d := a′ − 1 = b− b′ ≥ 1. Then, we have a k-linear isomorphism:

HomkSr (Sp(1r), Sp(a′, 1b′)) ∼= RelkSr (M(r),M(a′, b′)),

with Tab((r), (a′, b′)) = {A := a′ b′ }. But, since b′ ̸= 0, we see that ρ[A] is relevant
if and only if a′ is odd, and so indeed, δ(1, b′, d) = 1 if d ≡ 0, whilst δ(1, b′, d) = 0
if d ≡ 1.

• On the other hand, suppose that a′ = 1 with a > 1, and b, b′ ≥ 1, and write
r := a + b = 1 + b′, and also d := −(a − 1) = b − b′ ≤ −1. Then, once again, we
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have a k-linear isomorphism:

HomkSr (Sp(a, 1b),Sp(1r)) ∼= RelkSr (M(b+ 1, a− 1),M(r)),

with Tab((b+ 1, a− 1), (r)) =
{
A := b+ 1

a− 1

}
. But, since a− 1 ̸= 0, ρ[A] is relevant

if and only if b is even, and so indeed, δ(1 − d, b′, d) = 1 if d ≡ b′, whilst on the
other hand, we have that δ(1 − d, b′, d) = 0 if d ̸≡ b′.

• Finally, if a = a′ = 1 with b, b′ ≥ 1, then Sp(a, 1b) = Sp(a′, 1b′) = Sp(1r) ∼= sgnr,
and here, the result is clearly in accordance with (4.3.2).

Remark 4.3.4. Recall that for λ, µ ∈ Λ+(n, r), we have a k-linear isomorphism induced
by duality of the form:

HomkSr (Sp(λ), Sp(µ)) ∼= HomkSr (Sp(µ′),Sp(λ)). (4.3.5)

Now, let a, a′, b, b′ ≥ 1 such that r := a+b = a′+b′. Then, applying (4.3.5) to λ := (a, 1b),
µ := (a′, 1b′), we see that we have a k-linear isomorphism:

HomkSr (Sp(a, 1b),Sp(a′, 1b′)) ∼= HomkSr (Sp(b′ + 1, 1a′−1),Sp(b+ 1, 1a−1)). (4.3.6)

Accordingly, we deduce that δ(a, b′, d) = δ(b′ + 1, a − 1, d), where δ is as in (4.3.2). It
is worth observing that in each case described in the statement of Proposition 4.3.1,
we see that the corresponding conditions are indeed preserved by the swap
(a, b′, d) ↔ (b′ + 1, a− 1, d), provided that a, a′ ̸= 1.

Remark 4.3.7. Now, by applying the analysis of Proposition 4.3.1 for each case where
δ(a, b′, d) ̸= 0, along with Remark 4.3.3 in the appropriate cases, we arrive at the follow-
ing explicit k-basis for the k-space of relevant homomorphisms M(α) −→ M(β) for the
appropriate choice of α, β.
• a = 1, d ≡ 0:

• d = 0: {ρ[ r ]},
• d > 0: {ρ[ a′ b′ ]}.

• a ̸= 1, a′ = 1:
• d ≡ b′:

{
ρ
î

b+1
a−1

ó}
.

• a, a′ ̸= 1, a ≡ b′, d ≥ −1:
• d ≡ 0: {ρ[A[0]]}.

• a, a′ ̸= 1, a ̸≡ b′, d ≥ −1:
• (a, b′, d) ≡ (0, 1, 1): {ρ[A[2s]] + ρ[A[2s+1]] | 0 ≤ s ≤ 1

2 min(a− 2, b′ − 1)},
• (a, b′, d) ≡ (0, 1, 0): {ρ[A[0]], ρ[A[2s]] | 0 < s ≤ 1

2 min(a− 2, b′ − 1)},
• (a, b′, d) ≡ (1, 0, 0): {ρ[A[2s+1]] + ρ[A[2s+2]], ρ[A[0]] | 0 ≤ s ≤ 1

2 min(a− 3, b′ − 2)},
• (a, b′, d) ≡ (1, 0, 1): {ρ[A[2s+1]] | 0 ≤ s ≤ 1

2 min(a− 3, b′ − 2)}.
• a, a′ ̸= 1, a ̸≡ b′, d < −1:

• (a, b′, d) ≡ (0, 1, 1): {ρ[A[2s]] + ρ[A[2s+1]] | −1
2(d+ 1) ≤ s ≤ 1

2 min(a− 2, b′ − 1)},
• (a, b′, d) ≡ (0, 1, 0): {ρ[A[2s]] | −1

2d ≤ s ≤ 1
2 min(a− 2, b′ − 1)},

• (a, b′, d) ≡ (1, 0, 0): {ρ[A[2s+1]] + ρ[A[2s+2]] | −1
2(d+ 2) ≤ s ≤ 1

2 min(a− 3, b′ − 2)},
• (a, b′, d) ≡ (1, 0, 1): {ρ[A[2s+1]] | −1

2(d+ 1) ≤ s ≤ 1
2 min(a− 3, b′ − 2)}.
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