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Abstract

Plant pests and pathogens are responsible for a large proportion of crop losses. Particularly devastating are

generalist necrotrophic fungal pathogens like Botrytis cinerea and Sclerotinia sclerotiorum which affect many

economically crucial crops, including lettuce. Due to the environmental and economic implications of pesticide

use and the rise of fungicide-resistant strains, there’s an imperative need to develop disease-resistant crop

varieties.

In this work, several high-throughput transcriptomic datasets are utilised to identify candidate genes which

could be manipulated to develop disease-resistant lettuce cultivars. Firstly, I used data which assessed the

pathogen susceptibility and transcriptomes of 114 lettuce samples from 27 diverse accessions post-infection

with S. sclerotiorum or B. cinerea. This revealed over 5,000 lettuce genes whose expression correlated with

S. sclerotiorum resistance across the diversity panel.

In addition, two high-resolution time-series datasets of the transcriptomic response to B. cinerea and S.

sclerotiorum infection in lettuce leaves, identifying a core set of 4,362 genes which are differentially expressed

in the same direction in response to both pathogens.

Utilising all four transcriptomic datasets, I inferred a causal gene regulatory network (GRN), highlighting

“hub genes”, key transcription factors which are integral to transcriptional reprogramming upon infection. We

selected six of these hub genes to validate their in planta defence function. Four of these lettuce hubs altered

B. cinerea resistance when constitutively expressed in Arabidopsis or lettuce. Furthermore, the predicted GRN

targets genes regulated downstream of a hub gene in planta with higher accuracy than either random-guessing

or co-expression modules.

This work, therefore, demonstrates a significant advancement in our understanding of defence-induced

transcription reprogramming in a crop species. We have been able to successfully predict hub genes and

validate their role in the defence response. These results demonstrate that GRNs can be used to identify key

regulators of the response to plant stresses in non-model species.
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Chapter 1

Introduction

1.1 Plant pathogens pose a risk to global food security

The challenge of feeding a rapidly growing global population, expected to reach 9.7 billion by 2050, while

ensuring sustainable agricultural practices and reducing greenhouse gas emissions, is a pressing concern. The

effects of climate change, such as more frequent extreme weather events, including droughts, heatwaves, and

flooding, further compound the issue (Juroszek et al. 2020). Climate warming may also result in a latitudinal

shift of plant pathogens’ geographical ranges, which may result in plants being infected by novel pathogens

that they are unable to defend themselves against (Bebber 2015; Chaloner et al. 2021). Therefore, to achieve

global food security, it is crucial to reduce agricultural losses and increase yields simultaneously.

Plants have to overcome a large number of biotic stresses from viruses, bacteria, fungi, oomycetes, insects

and even parasitic plants. The Food and Agriculture Organization of the United Nations (FAO) reported that

plant pests and pathogens cause a loss of over 20% of crop yields, resulting in a global economic loss of US$220

billion annually (Food and Agriculture Organization 2021a). Savary et al. 2019 performed global estimations

for yield loss caused by pests and pathogens in five key crop species (wheat, rice, maize, potato and soybean)

which ranged between 17.2-30%. They reported that crop losses were higher in more food-insecure regions

such as West Asia, North Africa and Sub-Saharan Africa.

Several strategies can mitigate crop losses from plant diseases, including phyto-sanitation, crop rotation,

biological control, chemical pesticides, fungicides, and planting disease-resistant cultivars. Chemical options

have been effective, but they can negatively impact the environment and human health, and pathogens can

develop resistance (Rupp et al. 2016; Bass et al. 2015; Powles and Yu 2010; Hawkins et al. 2019). Therefore,

disease-resistant cultivars provide a sustainable and more enduring solution for reducing crop losses. However,

genetic sources of resistance may have been lost from elite cultivars during selection, or crop species may be
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grown in different regions from where they originated and may be exposed to pathogens that they do not

have evolved resistance against. Therefore, we must identify novel sources of genetic resistance which can be

introduced into elite breeding populations.
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1.2 Classifications of plant pathogens: lifestyle and host-range

Plant pathogens can generally be categorised into two pathogen lifestyles; biotrophs, those which extract

nutrients from living host tissue, and necrotrophs those which extract nutrients from decaying host tissue. As

a result, these classes of plant pathogens have differing infection strategies, similarly, the plant has opposing

defence mechanisms. However, the distinction between these two pathogens lifestyles is blurred as pathogens

are able to switch lifestyles during their infection. Hemibiotrophs start their infection as a biotroph and make a

necrotrophic switch during the later stages of the infection. But even pathogens such as Botrytis cinerea that

were considered ”true” necrotrophs, are now thought to possess an early biotrophic phase to their infection

(Van Kan et al. 2014).

Biotrophic pathogens tend to be highly specialised having evolved to infect a specific host, for example

Bremia lactucae, the lettuce downy mildew pathogen is only able to infect lettuce, while other downy mildews

evolved to infect other hosts such as Arabidopsis (Hyaloperonospora arabidopsidis). Biotrophic pathogens

often co-evolve with their host, developing an arsenal of secreted effector proteins that can manipulate host

cells to create a favourable environment for the pathogen (Rausher 2001). These effector proteins can suppress

host defence responses and alter host metabolism to facilitate nutrient acquisition (Mapuranga et al. 2022).

As biotrophs need to keep the host tissue alive they often have more subtle symptoms than necrotrophs,

but they will utilise the plants resources leading to stunted growth, and blemishes/lesions render the plant

unmarketable. Notable biotrophic pathogens of high economic importance include; wheat yellow stripe rust

(Puccinia striiformis) (Hovmøller et al. 2011), grape downy mildew (Plasmopara viticola) (Gessler et al. 2011)

and maize smut (Ustilago maydis) (Steinberg and Perez-Martin 2008). Numerous hemibiotrophic pathogens

are highly devastating for crop growth and food security such as rice blast (Magnaporthe oryzae) (Ou 1980),

Fusarium spp. wilt (Gordon 2017) and potato late-blight (Phythphthora infestans) (Grünwald and Flier 2005).

Necrotrophic pathogens can be categorized based on their host range into two groups: broad-host range

necrotrophs and host species-specific necrotrophs. One such example of a host species-specific necrotroph is

Cochliobolus carbonum, which causes northern leaf spot disease in maize (Panaccione et al. 1992). On the

other hand, many major necrotrophic pathogens of high economic importance are considered ”generalists”

with broad host ranges, including fungi (Botrytis cinerea, Sclerotinia. sclerotiorum, Rhizoctonia solani

and Alternaria brassicicola), bacteria (Pectobacterium carotovorum, Ralstonia solanacearum) and oomycetes

(Pythium irregulare, Pythium ultimum) (Laluk and Mengiste 2010). In contrast to biotrophs, necrotrophs

are highly destructive pathogens that cause tissue maceration, rotting, and necrosis. They secrete an array

of cell wall degrading enzymes (CWDEs) to gain entry into their host (Kubicek et al. 2014). Once inside,

necrotrophs release toxic secondary metabolites to aid in colonizing host tissues (Pusztahelyi et al. 2015).

These toxins can have a range of effects on the host, for example, alternariol 9-methyl ether produced by
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Alternaria spp. reduces electron transport chain efficiency and inhibits photosynthesis (Demuner et al. 2013),

whereas Botrydial toxin produced by B. cinerea induces necrosis and cell death (Lindner and Gross 1974;

Colmenares et al. 2002). Similar to biotrophs, necrotrophs also secrete protein effectors that can dampen the

host defence response or manipulate the plant into inducing cell death (Shao et al. 2021). However, unlike

biotrophs, the effectors of broad-host range necrotrophs must be able to manipulate many host species.
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1.3 Nutritional and economic significance of Lactuca sativa (lettuce)

Lactuca sativa (lettuce) is a member of the Asteracase family consisting of over 23,000 species (Gao et

al. 2010), including chicory (Cichorium intybus), sunflower (Helianthus annuus) and the anti-malarial plant

Artemisia annua. Lettuce is an economically valuable leafy vegetable crop, with the US lettuce market

worth 2.4 billion in 2019 (USDA-NASS, 2019). In FAO’s global agricultural statistics, lettuce and chicory

are grouped, estimating their 2020 total global ”Gross Production Value” at US$20 billion, with the largest

producer being; China ($12bn), USA ($2.9bn), Japan ($639 million), Netherlands ($ 613 million), Korea ($441

million), Germany ($440 million) and France ($296 million)(Food and Agriculture Organization 2021b). In

2021, the UK lettuce industry was valued at $187 million by DEFRA (Department for Environment Food and

Rural Affairs 2022).

Lettuce has many nutritional qualities, which can make up part of a well-balanced diet, having a high

content of many crucial vitamins, minerals and bioactive compounds (Shi et al. 2022; Mou 2009). Bioactive

secondary metabolites in lettuce such as flavonoids, sesquiterpene lactones, carotenoids and tocopherols have

been shown to have antioxidant, anti-inflammatory and anti-cancer properties (Yang et al. 2022b). Qin et

al. 2018 demonstrated that extracts from red-leaf lettuce inhibited the growth of multiple cancer cell lines.

1.3.1 Horticultural Types of lettuce

Many varieties of cultivated lettuce (Lactuca sativa) exist which have been selected for different qualities,

and have resulted in distinct morphologies (Rodenburg and Basse 1960). Many lettuce varieties form “heads”,

densely packed rosette leaves which form a compact structure.

Crisphead/Batavian lettuce form tight heads with crispy textured leaves, which is popular in sandwiches

and burgers. Butterhead lettuce (Lactuca sativa var. capitata) forms loose heads with soft-tender pale leaves

which have a pale yellow-green colour, making them a popular choice in salads. Cos/Romaine lettuce (Lactuca

sativa var. longifolia) forms tall, loose heads with crispy leaves which have a slight bitter taste and have a

darker green colour, popular in Mediterranean regions. Cutting lettuce (Lactuca sativa var. acephala) is a

non-heading type, with open rosette leaves. Latin lettuce forms loose-heads with thick leathery leaves. Oilseed

lettuce are primitive varieties which were used for the oil content of their seeds. Also a non-heading type,

these plants have a ”stalky” architecture that is morphologically similar to wild relatives such as L. serriola.

Leaves have a bitter taste and are not consumed. Stem lettuce (Lactuca sativa var. augustana) is a type of

non-heading lettuce, primarily cultivated in China. The pale-green leaves can be eaten in salads, but the stem

is the most widely consumed tissue which is stir-fried.
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1.3.2 Lettuce is susceptible to a wide range of pests and pathogens

Lettuce crops are susceptible to a large number of plant diseases which can lead to significant yield losses.

These include downy mildew (Bremia lactucae - oomycete), lettuce drop (S. sclerotiorum and Sclerotinia.

minor - fungi), grey mould (B. cinerea - fungi), root rot (R. solani - fungi), corky root (Rhizomonas

suberifaciens - bacteria), lettuce mosaic virus, and the currant-lettuce aphid (Nasonovia ribisnigri - insect).

Bremia lactucae is the causative agent of downy mildew in Lactuca sativa, a highly damaging disease that

can have significant economic consequences for lettuce growers (Patterson et al. 1986). This is especially true

in the Salinas Valley of California, which produces over 70% of the lettuce grown in the United States (Wu

et al. 2001). Symptoms of lettuce downy mildew include pale yellow blemishes on the upper surface of leaves

which renders the crop unmarketable.

S. sclerotiorum is a causative agent for lettuce drop disease which leads to a complete collapse of the lettuce

head, white mycelial growth is seen in the later stages of the infection. In field grown lettuce yield losses as

a result of S. sclerotiorum have been reported at 50% in the UK (Young et al. 2004). Average lettuce yield

losses to lettuce drop are approximated to be 15% (Subbarao 1998), which equate to $28 million and $360

million in the UK and USA respectively based on DEFRA and USDA statistics.

B. cinerea is the causative agent of grey mould disease in lettuce, which leads to water-soaked lesions

and the growth of dark brownish-grey mycelium on the leaf. In advanced stages of disease progression black

sclerotia form and the entire plant will eventually rot and wilt. Humidity pockets that occur within lettuce

heads greatly increase the chances of infection.

Significant efforts have been made to understand resistance against downy mildew caused by Bremia

lactucae, with many genes conferring resistance already discovered (Parra et al. 2016; Parra et al. 2021).

However, far fewer lettuce genes or even loci are known which contribute to necrotrophic resistance (Mamo

et al. 2019). As a result, this work will aim to identify genes and their underlying mechanisms which contribute

to B. cinerea and S. sclerotiorum resistance in lettuce.
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1.4 Generalist necrotrophic pathogens B. cinerea and S. sclerotiorum

1.4.1 Sclerotiniaceae plant pathogens

B. cinerea, first described by Christiaan Hendrik Persoon in 1794 (Persoon 1794) and S. sclerotiorum,

first described by Heinrich Anton de Bary (deBary 1886) are two closely related ascomycete fungi in the

Sclerotiniaceae family. Sclerotiniaceae spp are noted for their formation of sclerotia, long-term storage bodies

that remain in the soil for prolonged periods, Sclerotinina trifoliorum sclerotia have been shown to re-infect

after 5 years buried in the soil (Halkilahti 1962; Willetts 1971). This facilitates repeated infections in successive

years, particularly if infected material is not swiftly removed, making disease control challenging.

Species within Sclerotiniaceae show a very large diversity in pathogen lifestyle and host-species specificity.

B. cinerea and S. sclerotiorum are both broad-host range necrotrophs that can infect over 200 species, but

Sclerotinia glacialis shows host specificity to glacier buttercup (Ranunculus glacialis) (Graf and Schumacher

1995) while Myriosclerotinia spp and Ciborinia whetzelii are biotrophic species (Andrew et al. 2012). Even

within the Botrytis genus, B. deweyae exists mostly as an endophyte within daylilies Hemerocallis spp, but can

switch to a necrotrophic lifestyle causing ”spring sickness” (Grant-Downton et al. 2014). Botrytis elliptica is

a fungal necrotroph but shows host specificity to lily plants (Van Baarlen et al. 2004). Comparative genomic

and secretome analysis was carried out across nine Botrytis species (B. calthae, B. convoluta, B. elliptica, B.

galanthina, B. hyacinthi, B. narcissicola, B. paeoniae, B. porri and B. tulipae) (Valero-Jiménez et al. 2019).

However, this was unable to detect a ”silver bullet” which allows B. cinerea to infect such a wide number of

host species.

Despite the diversity across the Sclerotiniaceae family, both B. cinerea and S. sclerotiorum are both notorious

necrotrophic pathogens which employ highly similar virulence mechanisms in order to infect a large number

of host plants (Amselem et al. 2011; Mbengue et al. 2016). These virulence mechanisms will be discussed in

depth below.

1.4.2 Infection strategies of B. cinerea and S. sclerotiorum

B. cinerea and S. sclerotiorum employ a large arsenal of virulence factors and infection strategies to establish

infections, colonise host tissue and subvert the host defence response. These will be reviewed within this

section.
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1.4.2.1 S. sclerotiorum phytotoxin: Oxalic Acid (OA)

The production and secretion of phytotoxic metabolites are a major infection strategy for broad-host range

necrotrophic pathogens such as B. cinerea and S. sclerotiorum. Oxalic Acid (OA) is a key phytotoxin produced

by S. sclerotiorum.

Godoy et al. 1990 isolated UV-irradiated strains of S. sclerotiorum that were deficient for OA production and

showed dramatically reduced pathogenicity on bean (Phaseolus vulgaris) leaves, stems and pods. Mutants of an

OA biosynthetic enzyme, oxaloacetate acetylhydrolase ∆Ssoah1, have completely abolished OA accumulation

and reduced virulence in multiple hosts (Liang et al. 2015). Transgenic Arabidopsis thaliana (Arabidopsis)

expressing Ssoah1 -siRNA, which silences Ssoah1 transcripts during infection, exhibits increased resistance to

S. sclerotiorum infection (Rana et al. 2022). OA oxidase enzymes have been identified in wheat and barley

(Chiriboga 1966) which catalyse the breakdown of OA (Thompson et al. 1995). Transgenic expression of OA

oxidases increases resistance to S. sclerotiorum in several species including; peanut (Livingstone et al. 2005),

tomato (Walz et al. 2008), soybean (Yang et al. 2019) and brassica (Verma and Kaur 2021). Together, these

findings provide robust evidence for OA as a vital S. sclerotiorum virulence factor.

The mechanism by which OA promotes virulence in S. sclerotiorum is still debated, the proposed mechanisms

are summarised in Figure 1.1. One school of thought is that OA modulates pH during infection to provide

optimal conditions for CWDEs. By the 1960s, a link between the acidification of host tissues by OA and

increased polygalacturonase activity during Sclerotinia spp infection had been established (Bateman and Beer

1965; Hancock 1966). To support this idea, Marciano et al. 1983 showed that CWDEs secreted upon infection

of sunflower were pH sensitive, highly active at pH4.0, but severely inhibited at pH6.0, suggesting a role of

OA in providing optimal conditions for CWDEs.

More recent work has suggested that induction of programmed cell death (PCD) is the mechanism behind

OA pathogenicity. Treatment of tobacco leaf discs with exogenous OA was able to induce PCD and DNA

laddering, which could be replicated with potassium oxalate at pH7.0 but could be inhibited with the addition

of antioxidants - suggesting a role for reactive oxygen species (ROS). Manipulation of the hosts’ redox state

appears to be a critical mechanism of virulence for S. sclerotiorum, repressing the plants’ oxidative burst in

the early stages of infection and initiating a ROS burst in later stages of infection, with this ROS manipulation

abolished in OA-deficient non-pathogenic mutants (Williams et al. 2011; Cessna et al. 2000). Additional OA

virulence mechanisms have also been proposed such as deregulation of the guard cells (Guimaraes and Stotz

2004) and chelating calcium into calcium oxalate crystals (Heller and Witt-Geiges 2013).
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Figure 1.1: Summary of the proposed S. sclerotiorum oxalic acid virulence mechanisms. Figure from Kabbage
et al. 2013

1.4.2.2 B. cinerea phytotoxins: Botrydial and Botcinic Acid

The sesquiterpene botrydial (Lindner and Gross 1974; Colmenares et al. 2002) and polyketide botcinic acid

(Tani et al. 2006) are two key secondary metabolites from B. cinerea with phytotoxic effects on hosts. Over

90% of putative secondary metabolite genes in B. cinerea and S. sclerotiorum are located in biosynthetic

gene clusters. Over 30% of these clusters contain a Zn(II)2Cys6 transcription factor which may regulate

the expression of the co-located biosynthetic enzymes (Amselem et al. 2011). The botrydial biosynthetic

gene cluster contains 7 genes (BcBOT1-7): three P450 monooxygenases (BcBOT1/3/4), a sesquiterpene

synthase (BcBOT2), an acetyl-transferase (BcBOT5), a Zn(II)2Cys6 transcription factor (BcBOT6) and a

dehydrogenase (BcBOT7) (Pinedo et al. 2008; Porquier et al. 2016). The botcinic acid biosynthetic cluster

contains 13 genes (BcBOA1-13), BcBOA6/9 have been characterised as polyketide synthases (Dalmais et

al. 2011) and BcBOA13 is a Zn(II)2Cys6 transcription factor. Both transcription factors positively regulate

the expression of all other genes in their respective clusters and the accumulation of the respective metabolite

(Porquier et al. 2016; Porquier et al. 2019).

Unexpectedly, neither ∆BcBOT1 nor ∆BcBOT6 single mutants had any effect on virulence in B. cinerea

B.05 background, despite reduced botrydial accumulation in these mutants (Porquier et al. 2016; Siewers et

al. 2005). However, ∆BcBOT1 and ∆BcBOT2 mutants in B. cinerea T4 background had dramatically

reduced lesion size on multiple hosts, showing isolate-specificity in the virulence effect of botrydial. A

possible explanation for this is that the wild-type T4 isolate accumulates very low levels of botcinic acid, and
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therefore may have a higher reliance on botrydial for virulence, suggesting a possible functional redundancy

between the two toxins (Siewers et al. 2005; Pinedo et al. 2008). Dalmais et al. 2011 further explore this

redundancy, showing that ∆BcBOT1/BcBOA6 double mutants in B.05 background are completely deficient

for accumulation of both botrydial and botcinic acid, and have dramatically reduced virulence. All seven

BcBOT genes were identified in the 20 highest virulence-associated transcripts across 96 B. cinerea isolates

and 3 Arabidopsis genotypes (Zhang et al. 2019). This provides further evidence for the importance of these

phytotoxins in B. cinerea virulence.

The phytotoxic mechanisms underlying how botrydial and botcinic acid promote pathogen virulence are

poorly understood. However, exogenous application of botrydial has been shown to induce chlorosis and

collapse of host tissue via induction of the hypersensitive response in a salicylic acid (SA) dependent manner

(Colmenares et al. 2002; Rossi et al. 2011).

1.4.2.3 Cell Wall Degrading Enzymes (CWDEs)

Cell wall degrading enzymes (CWDEs) are a diverse class of enzymes capable of breaking down the plant

cell wall, which are utilised by both bitrophic and necrotrophic fungi for initial host penetration (Kubicek

et al. 2014). Plant cell walls are heterologous structures consisting of cellulose, xylan, pectin, lignins, cutin

and proteins. Hence pathogens require a large arsenal of CWDEs to hydrolyse the various cell wall polymers

to facilitate penetration, including; Glycoside Hydrolases (GH), Carbohydrate esterases (CEs), pectin lyases

(PLs), polygalacturonases (PGs), lignocellulases and lytic polysaccharide monooxygenases (LPMOs) (Zhao

et al. 2014).

The version 1 genomes of B. cinerea and S. sclerotiorum contained 346 and 367 genes encoding putative

carbohydrate-active enzymes (CAZymes) respectively, of which 118 and 106 had predicted CWDE-activity

(Amselem et al. 2011). However, new classes of CAZyme are being identified all the time, with 535 B. cinerea

and 438 S. sclerotiorum CAZymes now recognised by the CAZy database (Drula et al. 2022). As expected

these CAZymes are readily secreted upon pathogen infection with 20% and 21% of the B. cinerea and S.

sclerotiorum secretomes being made up of glycoside hydrolase families (Heard et al. 2015).

CWDEs are essential virulence factors for a successful necrotrophic infection, with many published examples

of single CWDE knock-out pathogen strains displaying reduced pathogenicity. Endo-1,4-β-xylanases are a GH

class, which mainly catalyse the hydrolysis of β-1,4-d-xylosidic linkage in xylan. BcXyn11a and SsXyl1 are

both endo-1,4-β-xylanases that are required for full virulence, with deletion mutants displaying reduced lesion

area (Brito et al. 2006; Yu et al. 2016). SsCut1, a S. sclerotiorum cutinase was shown to be upregulated
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Figure 1.2: Schematic for the structure of 4 pectin sub-types with varying degrees of complexity, from Harholt
et al. 2010

upon Arabidopsis infection, and ∆SsCut1-3 mutants show reduced virulence in Arabidopsis and oilseed rape

detached leaf assays (Gong et al. 2022)

B. cinerea and S. sclerotiorum had a high proportion of CWDEs with predicted activity against pectin, 37%

and 31% respectively, suggesting that the degradation of pectin has high importance for virulence (Amselem

et al. 2011). Pectin is a complex polysaccharide with a galacturonic acid main-chain, which can be methylated,

and variable side chains including arabinose Figure 1.2 (Harholt et al. 2010). PGs hydrolyse α-1,4 glycosidic

bonds between galacturonic acid residues of pectin (Zhao et al. 2014). Bcpg1 mutants show reduced virulence

on tomato leaves (Have et al. 1998). BcPG2 was sufficient to induce necrosis in infiltrated N. benthamiana

leaves (Joubert et al. 2007). Hydrolysis of pectin sub-units is also linked to virulence, as mutants of an

α-1,5-L-endo-arabinanase, ∆BcAra1 were shown to have reduced virulence on Arabidopsis, but not on N.

benthamiana (Nafisi et al. 2014). N-methyl-N′-nitroso-guanidine mutagenised strains of Sclerotinia trifoliorum

screened for deficient arabinofuranosidase activity showed reduced virulence on pea, but not alfalfa (Rehnstrom

et al. 1994). These data show that arabinose hydrolysis associated virulence may have a degree of host

specificity. Nafisi et al. 2014 additionally demonstrated that crude protein extracts in B. cinerea-inoculated

Arabidopsis contained greater arabinanase activity than N. benthamiana. Hence, suggesting that B. cinerea

can fine-tune the expression of its CWDEs upon the infection of different host species. Espino et al. 2010

additionally performed B. cinerea secretome analysis in the presence of glucose media, tomato extracts and

kiwi extracts and identified media-specific secretion of many CWDEs.

To minimise pectin degradation and maintain cell wall integrity, many host species contain PG-inhibiting

proteins (PGIPs), and PGIP overexpression leads to increased resistance against B. cinerea and S. sclerotiorum
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(Joubert et al. 2006; Bashi et al. 2013). To retain PG activity, pathogens contain PGIP-INactivating Effectors

(PINEs). SsPINE1 physically binds AtPGIP1, outcompetiting binding of SsPG1, both SsPINE1 and BcPINE1

promote increased virulence against Arabidopsis (Wei et al. 2022). Further still, to ensure fungal PGs are able

to degrade pectin, pathogens express pectin methyl-esterases (PMEs) which demethylate pectin, ensuring it

is accessible to CWDEs (Kan 2006). Bcpme1 mutants showed reduced growth on high pectin medium and

reduced virulence on apple fruits, grapevine, and Arabidopsis leaves (Valette-Collet et al. 2003). Host plants

again combat this by expressing PME inhibitors (PMEIs), AtPMEIs are rapidly upregulated after B. cinerea

inoculation (Windram et al. 2012) and PMEI overexpression reduces pathogen virulence (Lionetti et al. 2007;

Lionetti et al. 2017).

1.4.2.4 Protein Effectors

Plant pathogens secrete a multitude of proteins, collectively known as “effectors”, that modulate host plant

physiology to facilitate colonisation of host tissue (Lo Presti et al. 2015). Any fungal protein that is secreted

during infection and contributes to the colonisation of host tissue can be classified as an effector (Shao et

al. 2021). These effectors can evade host immune responses, affect host metabolism to acquire nutrients, or

directly contribute to virulence mechanisms. Bioinformatic identification of fungal effectors is challenging, as

they show little sequence conservation apart from an N-terminal signal peptide and the lack of a transmembrane

domain. Guyon et al. 2014 and Derbyshire et al. 2017 identified 78 and 70 candidate S. sclerotiorum effectors

respectively using distinct predictive methods, however only 9 effectors were identified by both studies. Guyon

et al. 2014 identified putative effectors using a combination of domain presence/absence, in planta microarray

expression data and secretomic, whereas Derbyshire et al. 2017 used a machine-learning approach to identify

effectors. The incorporation of artificial intelligence may be able to improve effector predictions, for example,

AlphaFold Multimer has been used to predict interaction between secreted fungal proteins and host proteins,

identifying four novel effectors (Homma et al. 2023).

The direct interaction between effectors and host proteins has been extensively studied in biotrophic

pathogens for their ability to facilitate the colonisation of a single host plant species. For instance, Pep1

secreted by Ustilago maydis directly interacts with a maize peroxidase (ZmPOX12), thereby preventing a

reactive oxygen species (ROS) burst and promoting fungal colonization (Doehlemann et al. 2009; Hemetsberger

et al. 2012). However, effectors from broad-host range necrotrophs such as B. cinerea and S. sclerotiorum need

to interact with and successfully modulate the activity of their target proteins in multiple hosts to promote

virulence. BcXyl1, a B. cinerea effector, encodes a xylanase CWDE that is required for full virulence and induces

cell death in multiple species such as tobacco, soybean, tomato, and cotton (Yang et al. 2018). Interestingly,

the cell death activity of BcXyl1 is independent of its xylanase activity but dependent on host immune receptors

NbBAK1 and NbSOBIR1 (discussed later in section 1.5.2), indicating that BcXyl1 may manipulate the host’s

12



biotrophic defence response to trigger cell death and promote virulence (Yang et al. 2018). BcSpl1 is another

effector thats highly abundant in the B. cinerea secretome, inducing cell death in a BAK1 dependent-manner

and ∆Bcspl1 mutants show reduced virulence (Frias et al. 2011). A S. sclerotiorum integrin-like secreted

effector (SsITL) is also required for full virulence, with SsITL-silenced strains exhibiting smaller lesions (Zhu

et al. 2013).

Necrosis and ethylene-inducible peptide 1 (NEP1)-like proteins (NLPs) are a conserved family of peptides

secreted by plant pathogenic fungi, bacteria and oomycetes, first identified in Fusarium oxysporum (Bailey

1995; Oome et al. 2014). NLP peptides have been identified in both B. cinerea and S. sclerotiorum, which are

capable of inducing cell death (Schouten et al. 2008; Dallal Bashi et al. 2010). Dallal Bashi et al. 2010 reported

that SsNEP2 was rapidly upregulated during Brassica napus infection but SsNEP1 was barely detectable

although SsNEP1 could induce cell death when transiently expressed in N. benthamiana. ∆Ssnep2 deletion

mutants show reduced virulence (Yang et al. 2022a), however, ∆Bcnep1 and ∆Bcnep2 single mutants had

no defects in virulence, which may suggest there is functional redundancy between the BcNEP paralogs.

Bccrh1 is a transglycosylase enzyme which is secreted into the host cytoplasm and induces cell death

independently of its enzymatic activity when transiently expressed in N. benthamiana. However, the virulence of

∆bccrh1 mutant strains was unaffected and p35S::Bccrh1 transgenic Arabidopsis lines had increased resistance

to B. cinerea and increased expression of defence genes, suggesting that the presence of the effector activates

a plant defence response (Bi et al. 2021). Effector-triggered immunity (ETI) is a well-established plant defence

response in which secreted biotrophic effectors are detected by intracellular host immune receptors and used

to mount a defence response (Cui et al. 2015a). The role of ETI in necrotrophic pathogen defence is unclear,

however Bccrh1 may be activating an ETI-like response in B. cinerea infection.

Together, these observations support that secreted effectors from fungal necrotrophs have important roles in

pathogen virulence, and host-recognition of the invader. However, knowledge of direct interaction between the

fungal effectors and host proteins is limited, particularly whether the effectors are able to manipulate protein

function in multiple hosts. Proteomic approaches have identified 89 secreted B. cinerea proteins during

plant infection (Shah et al. 2009), suggesting there could be many more effectors with currently unknown

functions/targets.

1.4.2.5 Small RNA effectors

In addition to the secretion of protein effectors, it is now well-established that extracellular vesicles containing

small RNAs (sRNAs) are secreted by plant pathogens during infection which can also act as effectors (Qiao

et al. 2021a; Dunker et al. 2020; He et al. 2023a). Weiberg et al. 2013 demonstrated the first example
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of cross-kingdom gene silencing, demonstrating that B. cinerea sRNAs were able to target the degradation

of host transcripts in Arabidopsis and tomato. Pathogen sRNAs are processed by host Argonaute (AGO)

proteins and hijack the plant RNA-induced silencing complex (RISC) in order to perform cross-kingdom RNA

interference (RNAi) (Weiberg et al. 2013; Dunker et al. 2020). The expression of several B. cinerea small

RNAs (Bc-siR3.1, Bc-siR3.2, Bc-siR5 and Bc-siR37) in transgenic Arabidopsis has been shown to increase

pathogen resistance, and demonstrated the silencing of host defence genes such as MPK1/2 and WRKY7

(Weiberg et al. 2013; Wang et al. 2017c).

It has also been shown that S. sclerotiorum expresses sRNAs during infection, which contain sequence

complementary to Arabidopsis defence regulators which are downregulated during infection (Derbyshire et

al. 2019). However, it remains to be elucidated whether these S. sclerotiorum sRNAs directly silence host

targets, and whether this requires host AGO.

A complex sRNA battleground takes place during plant-pathogen interactions with fungal sRNAs

manipulating the expression of host genes (Weiberg et al. 2013), host sRNAs are also able to manipulate

expression of pathogen genes (Cai et al. 2018), and hosts use sRNAs to manipulate expression of their

own genes during pathogen infection (Ronemus et al. 2006; Borges and Martienssen 2015). These complex

interactions are discussed in more detail in Section 1.5.6.1.
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1.5 Plant Defence Responses

Due to their sessile nature, plants are extremely vulnerable to biotic stresses, such as microbe infection and

insect attack. As a result, plants have developed a sophisticated immune system to rapidly detect an invading

pathogen and mount an appropriate defence response. Plants must also mount the “correct” immune response

as pathogens of different lifestyles have different virulence strategies, requiring a specialised immune response

for different classes of pathogens.

1.5.1 Classical models of biotrophic pathogen perception: gene-for-gene to zig-zag

Harold H. Flor conducted seminal research, investigating the disease resistance of Flax varieties to an obligate

biotroph rust fungus (Melampsora lini), discovering that F2 crosses of resistant x susceptible Flax varieties

and virulent x avirulent M. lini races segregated in a 3:1 mendelian ratio (Flor 1942). This was a key

observation which led him to propose the gene-for-gene model, hypothesising that a single dominant plant

resistance gene (R-gene) and a single pathogen avirulence gene (Avr) must be present together for the plant

to exhibit full resistance, thus preventing a successful infection by the pathogen (Flor 1955, 1971). Numerous

single dominant R-genes were subsequently identified in other plant species, conferring complete resistance to

biotrophic pathogens in a race-specific manner (Hammond-Kosack and Jones 1997). Many R-genes were found

to encode nucleotide-binding site (NBS)-leucine-rich repeat (LRR) receptors (NLRs) (Whitham et al. 1994;

Bent et al. 1994), which can activate a defence response via directly interacting with Avr proteins (Jia et

al. 2000) (Mackey et al. 2002; Kim et al. 2005). Many Avr genes are now known to encode secreted effectors

that are important for virulence in plant species without a corresponding R-gene (De Wit et al. 2009), thus

the immune response activated by NLRs is termed effector-triggered immunity (ETI).

NLRs are intracellular receptors lacking a transmembrane domain, therefore are only able to detect effectors

that have gained entry into the plant cell. However a number of extracellular molecular “patterns” exist which

signal the presence of an invading microbe; microbe associated molecular patterns (MAMPs) and damage

associated molecular patterns (DAMPs). MAMPs are directly associated with the pathogen itself, including;

bacterial flagellum, bacterial elongation factor Tu (EF-Tu) and chitin (Felix et al. 1999; Kunze et al. 2004;

Shibuya and Minami 2001). DAMPs are released from plant components following damage inflicted by the

pathogen, such as CWDE degraded oligogalacturonides (Zarattini et al. 2021; Bellincampi et al. 2000) and

endogenous plant signalling peptides, e.g. Pep1 (Huffaker et al. 2006). Treatment of lettuce with Cellobiose

(degraded cellulose) has been shown to activate defence responses, increasing resistance to B. cinerea (He

et al. 2023b).
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MAMPs/DAMPs are detected by transmembrane pathogen recognition receptors (PRRs), containing an

extra-cellular ligand-binding domain, typically an LRR, a transmembrane domain and an intracellular domain

which activates pattern triggered immunity (PTI), often a serine/threonine protein kinase. PRRs are broadly

classified as receptor-like kinases (RLKs) or receptor-like proteins (RLPs) based on the presence or absence of an

intracellular kinase domain. The defence response activated downstream of PRRs is termed pattern triggered

immunity (PTI) (DeFalco and Zipfel 2021). Flagellin-sensitive 2 (FLS2) is a well-characterised example of a

PRR, FLS2 is an LRR-RLK which directly binds flg22, a 22 amino-acid epitope of bacterial flagellin, activating

downstream kinases and promoting increased resistance to numerous bacterial species (Zipfel et al. 2004;

Chinchilla et al. 2006; Lu et al. 2010). Many PTI responses, such as FLS2-induced immunity, act as an

initial defence mechanism and provide partial resistance to many pathogens. However, several R-genes have

been identified which encode for PRRs that bind extracellular Avr, conferring full resistance in a race-specific

manner, such as; Xa21 a rice LRR-RLK (Song et al. 1995) and Cf-9 a tomato LRR-RLP (Jones et al. 1994).

Jones and Dangl 2006 proposed the zig-zag model, summarising the respective roles of PTI and ETI in

plant defence against biotrophic pathogens. MAMPs/DAMPs are initially detected by PRRs triggering a

PTI defence response, this is followed by the secretion of pathogen effectors to overcome the hosts’ PTI

response. Some of the effectors may then be recognised by cytoplasmic NLRs, triggering an amplified defence

response, ETI. Localised cell death, known as the Hypersensitive Response (HR) and an oxidative burst will

follow (Stakman 1915; Morel and Dangl 1997). Pathogen races that avoid R-gene detection via mutation or

complete loss of the detected effector can evade ETI and therefore successfully colonise the host tissue.

1.5.2 Pathogen perception of necrotrophic pathogens

While the zig-zag model provides an accurate summary of the defence response against biotrophic pathogens,

it is not sufficient to describe the complexities of the necrotrophic pathogen defence response. NLR-mediated

ETI is a core component of the zigzag model, however its role in necrotrophic pathogen defence remains

unclear. R-genes, often encoded by NLRs provide full resistance to biotrophic pathogens via the detection

of an Avr gene alerting the plant to the presence of an invading pathogen. HR (localised cell death) is

triggered which is sufficient to prevent colonisation of biotrophic pathogens that require living host cells. By

contrast, generalist necrotrophic pathogens promote cell death and tissue collapse in their hosts, therefore

activation of HR cannot prevent colonisation. Some pathogens even secrete effectors that promote HR, such

as hypersensitive response-inducing protein 1 (Hip1) in B. cinerea (Jeblick et al. 2023).

R-genes conferring full pathogen resistance have been identified against host-specific necrotrophic fungi,

however they do not encode NLRs and are not expected to be involved in ETI. For example, Cochliobolus

carbonum, the causal agent of northern leaf spot in maize requires HC toxin for virulence, and the R-gene
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providing full resistance, HM1, encodes a NADPH-dependent HC toxin reductase that inactivates the toxin

(Johal and Briggs 1992; Panaccione et al. 1992). Broad host range necrotrophs have an arsenal of virulence

mechanisms to induce tissue necrosis, hence the inactivation of a single toxin or induction HR does not provide

full resistance. As a result, resistance to broad host range necrotrophs is a polygenic trait, with many genes

contributing a small effect to the overall quantitative disease resistance (QDR) (Corwin and Kliebenstein

2017). Quantitative trait loci (QTL) studies which aim to map the genomic regions associated with variation

in a specific trait (discussed in detail in section 1.7.1) have often identified many loci with minor effects on

QDR (such as Denby et al. 2004).

While no single dominant R-genes have been identified that provide full resistance against B. cinerea or S.

sclerotiorum, Arabidopsis NLRs RLM3 and LAZ5 have been shown to be involved in defence against these

pathogens. RLM3, promotes partially increased resistance to B. cinerea infection (Staal et al. 2008), whereas

LAZ5 promotes increased susceptibility against S. sclerotiorum (Barbacci et al. 2020). However, it remains to

be elucidated whether RLM3 is involved in a B. cinerea ETI response, as currently no interactions with fungal

effectors have been reported. As mentioned above, Bccrh1 is a secreted B. cinerea effector with cytoplasmic

localisation that increases plant resistance when transgenically expressed in Arabidopsis (Bi et al. 2021),

suggesting it may be detected by an NLR but no host interactors have been identified.

PTI, however, is well-established as a critical component of the defence response against generalist

necrotrophic fungi such as B. cinerea and S. sclerotiorum. Chitin, a polysaccharide component of the fungal cell

wall is a key MAMP recognised during PTI, detected by chitin elicitor receptor kinase 1 (CERK1), a non-LRR

RLK, with chitin binding mediated via its extracellular Lysin Motif (LysM) domain (Miya et al. 2007). CERK1,

a pair of closely-related chitin-binding LysM-RLKs (LYK4/LYK5), an LRR-RLK that interacts with CERK1

(LIK1) and a Receptor-like cytoplasmic kinase (RLCK) which is phosphorylated by CERK1 (PBL27) are all

required for full resistance to generalist necrotrophic fungi, suggesting that recognition of chitin via PTI is

essential for defence (Liu et al. 2018; Cao et al. 2014; Le et al. 2014; Shinya et al. 2014).

Another PRR with a vital role in fungal necrotroph defence is Brassinosteriod(BR)-insensitive 1

(BRI1)-associated receptor kinase 1 (BAK1), an LRR-RLK which is required for full resistance to B. cinerea

and S. sclerotiorum, with T-DNA mutants showing hyper-susceptibility (Kemmerling et al. 2007; Zhang et

al. 2013). BAK1 is not thought to directly bind elicitor molecules but instead functions as a co-receptor.

BAK1 LRR domains have been shown to interact with other LRR-RLKs/LRR-RLPs in their ligand-bound

conformation (Sun et al. 2013). BAK1 forms a receptor complex with BRI1 once it has bound brassinolide,

activating BR growth signalling (Li et al. 2002), and is also able to form a co-receptor complex with FLS2

once bound to flg22, activating downstream PTI defence signalling (Chinchilla et al. 2007). BAK1 is also

able to form tripartite complexes with SOBIR1 (an LRR-RLK) and RLPs. RLP23 constitutively interacts
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with SOBIR1, RLP23 then directly binds NLP peptides, promoting formation of an RLP23-SOBIR1-BAK1

complex, which activates ethylene production (Albert et al. 2015; Albert et al. 2019). In addition, a purified

S. sclerotiorum elicitor of unknown sequence, SCLEROTINIA CULTURE FILTRATE ELICITOR1 (SCFE1),

induces ethylene and ROS accumulation in a manner dependent on RLP30, BAK1 and SOBIR1 (Zhang et

al. 2013). However, it remains to be elucidated whether an RLP-SOBIR1-BAK1 tripartite complex forms after

SCFE1 recognition. In addition to bak1, Arabidopsis mutants of sobir1-12 and rlp30-2 are hypersusceptible

to both B. cinerea and S. sclerotiorum (Zhang et al. 2013) and rlp23-1 mutants are hypersusceptible to B.

cinerea (Ono et al. 2020), suggesting that PTI-activation by RLP23/30-SOBIR1-BAK1 complexes is vital for

generalist-necrotroph defence.

In addition to pathogen-derived MAMPs, molecular “patterns” of damage to the host cell caused by the

pathogen (DAMPs) can also be detected by PRRs to activate a PTI response. Cello-oligosaccharides (COS)

which have been oxidised by LPMOs during cell wall degradation act as DAMPs, as Arabidopsis treated with

LPMO-oxidised COS showed increased resistance to B. cinerea, triggering a MAP kinase cascade, upregulating

defence genes such as WRKY33 and increasing camalexin secretion (Zarattini et al. 2021). This PTI response

was abolished in several single LRR-RLK mutants; bak1-3, sif2, sif4 and the1, suggesting all 4 PRRs are

required for LPMO COS-induced immunity. Given the known co-receptor function of BAK1, these results

suggest some of these RLKs could interact in a complex to detect COS.
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1.5.3 Signal Transduction

Following the perception of an invading pathogen via either a PRR or an NLR, the host plant must activate a

complex signalling network to coordinate an appropriate defence response, including mitogen-activated protein

kinases (MAPK) cascades and a calcium burst to trigger a rapid response.

1.5.3.1 MAPK cascade

MAPK phosphorylation cascades are conserved signalling modules, present across all eukaryotes, which

transduce an extracellular signal detected by a transmembrane receptor-kinase and trigger an intracellular

response to the stimulus (Widmann et al. 1999). MAPK cascades typically involve three kinases: a

MAP kinase kinase kinase (MAPKKK) which when activated phosphorylates Ser/Thr residues in the

Ser/Thr-X3−5-Ser/Thr activation loop of a MAP kinase kinase (MAPKK), which is then in-turn able to

phosphorylate Thr/Tyr residues in the Thr-X-Tyr MAPK activation loop. In plants, MAPK nomenclature

differs slightly, with, MAPKs being referred to as MPKs, and MAPKKs/MAPKKKs named MKKs and MKKKs

respectively (Ichimura et al. 2002).

The activation of MAPK cascades is a critical component of the initial rapid PTI response (Meng and Zhang

2013), with full chitin-induced MAPK cascade activation occurring within 5 minutes after chitin treatment

(Wan et al. 2004; Cao et al. 2014). Following the perception of chitin by CERK1, a cytoplasmic kinase

PBL27 is activated via phosphorylation (Shinya et al. 2014). PBL27 directly activates MKKK5, triggering a

chitin-induced MKKK5-MKK4/5-MPK3/6 cascade (Yamada et al. 2016; Asai et al. 2002). Activated MPK3/6

then directly phosphorylates defence transcription factor, WRKY33, which is required for a full B. cinerea PTI

response. Arabidopsis expressing WRKY33 with mutated MPK3/6 phosphosites (wrky33-2/WRKY33Ser→Ala)

showed reduced B. cinerea-included camalexin production (Mao et al. 2011). Further demonstrating the

importance of this signalling module, mutants of pbl27-1, mkkk5-1, mpk3-1 and wrky33-1 all display increased

susceptibility to fungal necrotrophic pathogens (Shinya et al. 2014; Yamada et al. 2016; Ren et al. 2008; Zheng

et al. 2006).

1.5.3.2 Calcium burst

Calcium ions (Ca2+) are secondary messenger signalling molecules across all eukaryotes (Clapham 2007),

forming an integral component of the signal transduction in response to almost all environmental stresses

and developmental stimuli, including pathogen infection (Kudla et al. 2010). Ca2+ is maintained at very low

cytosolic levels (∼ 10−8 M), generating huge Ca2+ gradients across plasma and organellar membranes (Pirayesh

et al. 2021). Ca2+-permeable channels are then able to facilitate rapid Ca2+-influxes into the cytoplasm, known
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as “calcium burst”. Cyclic nucleotide-gated channel 2 (CNGC2) and CNGC4 form a Ca2+-permeable channel

which is activated by Botrytis-induced kinase 1 (BIK1), an RLCK, facilitating a PTI-activated Ca2+-influx

(Tian et al. 2019).

Following Ca2+-influx, calcium-sensing proteins such as calmodulin (CaM), calreticulin B and

calcium-dependent protein kinases (CDPKs) are activated (Ikura 1996; Köster et al. 2022). Arabidopsis

triple CDPK mutants cdpk5/6/11 show hyper-susceptibility and reduced ethylene response to B. cinerea.

cdpk5/6/11 plants also have completely abolished flg22 and oligogalacturonide-induced immunity against

B. cinerea, suggesting these CDPKs are redundant regulators of the PTI response which is triggered by

MAMPs/DAMPs (Gravino et al. 2015). CDPK5/6 were demonstrated to phosphorylate WRKY33, increasing

its DNA-binding activity, and activating camalexin biosynthesis (Zhou et al. 2020).

Pathogen effectors may also target the Ca2+-influx to dampen the hosts’ PTI response. SsITL,

which promotes increased S. sclerotiorum virulence, directly interacts with a chloroplast-localised Ca2+

sensing-receptor (CAS). Although CAS does not have any Ca2+ binding domains, it has been reported to

regulate Ca2+ flux in guard cells and cas-1 mutants are hyper-susceptible to S. sclerotiorum, suggesting it

acts as a positive defence regulator (Weinl et al. 2008; Tang et al. 2020).

CAMTA3, also known as signal responsive 1 (SR1), is a calmodulin-binding transcription factor which directs

transcriptional reprogramming downstream of Ca2+ signalling (Yuan et al. 2022). CAMTA3 has been shown

to repress SA accumulation, rendering plants more tolerant to drought but more susceptible to pathogens

(Zeng et al. 2022; Du et al. 2009). camta3-1 mutants show increased SA accumulation and quantitatively

increased resistance to B. cinerea, S. sclerotiorum and Pseudomonas syringae pv. tomato (Pst) DC3000,

showing that CAMTA3 negatively regulates defence against both biotrophic and necrotrophic pathogens (Du

et al. 2009; Galon et al. 2008; Rahman et al. 2016). Furthermore, Ca2+-signalling appears to be required

for CAMTA3-induced immune suppression, as plants expressing a mutated isoform unable to bind calmodulin

(camta3-1/p35S::CAMTA3K907E) were also Pst DC3000 resistant (Du et al. 2009). However, to limit the

effects of its immune suppression, CAMTA3 is degraded and exported from the nucleus upon flg22 treatment

MPK3/6 phosphorylation and degraded by a ubiquitin E3 ligase SR1-interacting protein 1 (SR1IP1) after Pst

DC3000 avrRps4 infection (Jiang et al. 2020; Zhang et al. 2014a). It has not yet been demonstrated whether

CAMTA3 is degraded upon B. cinerea infection.

These results show that Ca2+-signalling is a crucial component of the PTI defence response, with

CDPK5/6/11 and CAS providing increased disease resistance to necrotrophs. However, Ca2+ is a universal

signal used to respond to multiple stresses (e.g. drought stress), therefore, not all downstream Ca2+ signalling
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events will be applicable to all stresses, requiring fine-tuning for the specific stress, such as degradation and

nuclear export of CAMTA3 upon pathogen infection.

1.5.4 Defence Phytohormones

Phytohoromes control almost every aspect of plant physiology, including the defence response to pathogens.

Key defence hormones including jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) coordinate the

response to pathogen infection. In this section, I will summarise the discovery, biosynthesis, perception,

signalling and role in necrotrophic pathogen defence for each of these defence hormones.

1.5.4.1 Jasmonic Acid

Jasmonic acid (JA) is an oxylipin plant hormone, which was first isolated from jasmine oil (Jasminum

grandiflorum) (Demole et al. 1962), which functions in various physiological processes such as; inhibition

of root growth (Dathe et al. 1981), degradation of Rubisco (Weidhase et al. 1987), pollen development

(McConn and Browse 1996), wounding (Creelman et al. 1992) and necrotrophic pathogen defence (Thomma

et al. 1998).

JA biosynthesis via the octadecanoid pathway has been well characterised, starting with an 18-carbon

poly-unsaturated fatty acid, α-linolenic acid (αLA) (Vick and Zimmerman 1984; Wasternack 2007). αLA is

released from chloroplast membranes by phospholipase A1 (PLA1) and is then oxidised by lipoxygenases (LOXs)

to 13S-hydroperoxyoctadecatrienoic acid (13-HPOT) (Ishiguro et al. 2001; Liavonchanka and Feussner 2006).

Plastid-localised allene oxide synthases (AOS) and allene oxide cyclases (AOC), catalyse the conversion of

13-HPOT to 12- oxophytodienoic acid (OPDA) via an unstable 12,13-epoxyoctadecatrienoic acid (12,13-EOT)

intermediate (Song et al. 1993; Stumpe et al. 2006; Ziegler et al. 2000; Stenzel et al. 2012). An

unknown transporter then shuttles OPDA from the chloroplast to the peroxisome, where it is reduced to

3-oxo-2-(2’-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8:0) by 12-oxophytodienoate reductase 3 (OPR3)

(Schaller et al. 2000; Scalschi et al. 2015). OPC-8:0 undergoes coA ligated by OPC-8:0 CoA Ligase1 (OPCL1)

(Koo et al. 2006) and three rounds of β oxidation to form JA, which is carried out by enzymes such as acyl-CoA

oxidase (ACX) and L-3-ketoacyl CoA thiolase (KAT) are required to produce JA (Koo et al. 2006; Li et al. 2005;

Schilmiller et al. 2007; Castillo et al. 2004).

Following biosynthesis, JA can be further metabolised into a number of derivative compounds, which

modulate its activity (Wasternack and Song 2017). JA can be conjugated to amino acids such as isoleucine

or valine by GH3 family amino acid conjugate synthases GH3.10 and GH3.11 (also known as JASMONATE

RESISTANT1; JAR1) (Staswick and Tiryaki 2004; Delfin et al. 2022). Wounding-induced transcriptional
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activation of JA-responsive genes JAZ1 and OPR3 was dramatically reduced in gh3.10-1/jar1-11 double

mutants, demonstrating the importance of amino acid conjugation in JA signalling (Delfin et al. 2022). JA

can also be methylated by jasmonic acid carboxyl methyltransferase (JMT), which when over-expressed in

Arabidopsis increased accumulation of methyl-jasmonate (MeJA) and increased resistance to B. cinerea (Seo

et al. 2001).

Coronatine insensitive 1 (COI1) is the jasmonate receptor, with coi1-1 mutants insensitive to MeJA induced

root inhibition (Feys et al. 1994) and displaying hyper-susceptibility to B. cinerea (Thomma et al. 1998). COI1

encodes an F-box protein (Xie et al. 1998) which forms a Skp/Cullin/F-box (SCF) E3 ubiquitin ligase complex

with CUL1 (Cullin 1) and ASK1 (Arabidopsis Skp1 homologue) called SCFCOI1 (Xu et al. 2002). In the

presence of JA-Ile, but not MeJA, COI1 could bind jasmonate-zim domain (JAZ) proteins targeting them for

proteosome degradation (Thines et al. 2007). JAZs act as transcriptional co-repressors preventing expression

of defence genes in normal growth conditions, hence JA-Ile mediated degradation by SCFCOI1 activates

the expression of these genes. A decuple mutant, jazD, defective in 10 out of 13 Arabidopsis JAZs shows

constitutive activation of JA-responsive defence genes, and increased B. cinerea resistance (Guo et al. 2018).

Many core components of the JA biosynthesis pathway including, LOX3, LOX4, AOC1, AOC3, ACX1,

KAT2 and JMT, were all identified as being transcriptionally upregulated in response to B. cinerea infection

(Windram et al. 2012). In the same study, genes assigned to GO-term ”response to jasmonic acid” significantly

enriched in genes upregulated at 16 hours post B. cinerea infection, demonstrating that the JA signalling is

a critical component of the response to necrotrophic infection. Further many JA biosynthesis and signalling

mutants have been demonstrated to show increased B. cinerea susceptibility including coi1-1 (Thomma et

al. 1998), jar1-1 (Ferrari et al. 2003), aos (Rowe et al. 2010) and tomato acx1 (AbuQamar et al. 2008)

1.5.4.2 Ethylene

Ethylene (ET) gas (C2H4) was first identified as a plant hormone through observations that leaking illumination

gas (fuel for gas lamps which contains ET) affected plant physiology, such as horizontal epicotyl growth

(Neljubow 1901). ET was also observed to promote abscission (Doubt 1917) and fruit ripening (Denny

1924; Kidd and West 1933). Later, a role for ET in pathogen defence was proposed, with ET being rapidly

synthesised upon pathogen infection (Paradies et al. 1979; Mauch et al. 1984), driving the expression of

defence genes (Ecker and Davis 1987).

ET has a relatively simple biosynthetic pathway consisting of just two enzymatic steps (Kende

1993). S-adenosyl-l-methionine (SAM) is converted to 1-aminocyclopropane-1-carboxylic acid (ACC) and

5′-methylthioadenosine (MTA) by an ACC synthase (ACS) (Boller et al. 1979). An ACC oxidase (ACO)
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then converts ACC to ET, CO2 and cyanide (Hamilton et al. 1991). Cyanide is then rapidly detoxified by

conversion to β-cyanoalanine (Yip and Yang 1988). The MTA by-product of the ACS reaction is recycled back

to methionine via the Yang Cycle (Murr and Yang 1975), this is needed to maintain SAM levels required to

rapidly synthesise ET. Rice plants overexpressing Acireductone dioxygenase (OsARD1), a key component of

the Yang cycle, had higher levels of ET accumulation and improved submergence tolerance (Liang et al. 2019).

Arabidopsis has five known ET receptors localised to the ER membrane; ETR (ethylene response)1, ETR2,

ERS (ethylene response sensor)1, ERS2 and EIN4 (ethylene insensitive 4) (Bleecker et al. 1988; Chang et

al. 1993; Hua et al. 1998; Hua et al. 1995; Sakai et al. 1998). Unexpectedly all five ET receptors function to

repress ET signalling; upon binding with ET the receptor function is inhibited, which results in the activation

of downstream ET signalling (Binder 2020). Constitutive triple response 1 (CTR1) is an ER-localised Ser/Thr

kinase that directly interacts with ET receptors and also negatively regulates ET signalling (Kieber et al. 1993;

Ju et al. 2012). In the absence of ET CTR1 phosphorylates EIN2, promoting proteasomal degradation of

EIN2 (Alonso et al. 1999; Ju et al. 2012; Qiao et al. 2009). EIN2 encodes a membrane-localised protein

with homology to metal transporters but shows no transporter activity. In the presence of ET, proteolytic

cleavage releases the EIN2 C-terminus (EIN2-C) which is translocated to the nucleus (Thomine et al. 2000;

Ju et al. 2012). EIN2-C interacts with EIN2 nuclear-associated protein (ENAP1) in the nucleus, promoting

histone acetylation and increasing chromatin accessibility at EIN3 targets (Zhang et al. 2017a). EIN3 and

ethylene insensitive3-like (EIL)1/2 encode transcription factors which act downstream of EIN2-C. EIN3 binds

the promotor of ethylene response factor 1 (ERF1) which in turn activates the expression of ET-responsive

genes such as PDF1.2 (Chao et al. 1997; Solano et al. 1998).

Upon infection by the necrotrophic fungus B. cinerea, ET biosynthesis is rapidly activated, with elevated

ET accumulation detectable as early as 6 hours post infection (hpi) and peaking at 36 hpi (Han et al. 2010).

A MAPK cascade results in the rapid activation of ACS proteins via phosphorylation, with mpk3/mpk6

double mutants and ACS6AAA phospho-mutants both showing dramatically reduced B. cinerea-induced ET

biosynthesis (Han et al. 2010). Treatment with a S. sclerotiorum elicitor (SCFE1) also induces ethylene

biosynthesis, and rlp30-2 mutants which show no SCFE1 response show increased susceptibility to S.

sclerotiorum (Zhang et al. 2013). Further emphasising the critical role of ET biosynthesis in defence, an

octuple Arabidopsis ACS mutant (acs2-1/ acs4-1/ acs5-2/ acs6-1/ acs7-1/ acs9-1/ amiR-acs8/ amiR-acs11)

displays extreme susceptibility to B. cinerea (Tsuchisaka et al. 2009). These results demonstrate that the

ability to synthesise ET in response to necrotrophic pathogen infection is vital for defence. EIN2, EIN3,

EIL1 and ERF1 all having been identified as positive regulators of B. cinerea resistance, demonstrating that

downstream ET signalling components are also critical in Arabidopsis’ defence against necrotrophic fungi

(Thomma et al. 1999; Alonso et al. 2003b; Berrocal-Lobo et al. 2002).
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1.5.4.3 Salicylic Acid

In 1763, an Oxfordshire clergyman Rev Edward Stone reported that extracts from the bark of willow trees

(Salix spp.) could relieve symptoms of fever and shivering in patients (Stone 1763). By the early 1800s salicylic

acid (SA) was identified as the active component of willow bark (Leroux 1830; Desborough and Keeling 2017),

with early clinical trials showing an anti-inflammatory effect (Maclagan 1879). Chemists at Bayer synthesised

an acetylated version of SA (acetylsalicylic acid) which had fewer side effects and was subsequently marketed

as Aspirin (Dreser 1899).

For many years the physiological role of SA was unknown, until the discovery that Aspirin treatment induces

Tobacco Mosaic Virus resistance in Nicotiana tabacum (White 1979), identifying a now well-established role

for SA in the plant defence response particularly against biotrophic pathogens (Peng et al. 2021).

SA biosynthesis can occur in plants via the isochorismate synthase (ICS) or Phenylalanine Ammonia Lyases

(PAL) pathway, with ICS being the predominant pathway in Arabidopsis. A chloroplast-localised ICS catalyses

the conversion of chorismate to isochorismate (IC) (Wildermuth et al. 2001), IC is then exported to the

cytosol by enhanced disease susceptibility 5 (EDS5), which encodes a MATE transporter (Serrano et al. 2013;

Rekhter et al. 2019). AvrPphB Susceptible 3 (PBS3), also known as GH3.12 (the same family as JAR1

which converts JA to JA-Ile), then catalyses the conjugation of glutamate to IC in the cytosol forming

isochorismate-9-glutamate (IC-9-Glu) (Rekhter et al. 2019). IC-9-Glu can spontaneously decay into SA and

N-pyruvoyl-L-glutamate, but may also be catalysed by an BAHD acyltransferase, enhanced pseudomonas

susceptibility 1 (EPS1) (Zheng et al. 2009; Torrens-Spence et al. 2019).

In Arabidopsis, ICS is the predominant pathway of SA biosynthesis, as ics1/ics2 double mutants have

dramatically reduced SA levels (Garcion et al. 2008). However, plants contain a second SA biosynthetic

pathway which occurs via PALs with quadruple PAL mutants also showing reduced pathogen-induced SA

accumulation, although PAL mutants still had far higher SA levels than ICS mutants (Huang et al. 2010). The

relative importance of the two SA biosynthetic pathways is not consistent across species, as SA accumulation in

rice and soybean is heavily dependent on the PAL pathway (Shine et al. 2016; Xu et al. 2017; He et al. 2020a).

A rapid accumulation of SA in has been observed upon infection with biotrophic pathogens, providing

systemic acquired resistance to repeat infections (Métraux et al. 1990; Malamy et al. 1990; Rasmussen et

al. 1991). However, ICS1 and EPS1 were both downregulated in response to B. cinerea infection in Arabidopsis,

suggesting SA biosynthesis is not activated under necrotrophic infection. Despite this exogenous treatment

with SA or its analogue benzothiadiazole (BTH) increases Arabidopsis resistance to both B. cinerea and S.

sclerotiorum (Ferrari et al. 2003; Guo and Stotz 2007).
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NONEXPRESSER OF PR GENES 1 (NPR1) is a central regulator of SA-induced gene expression, such

as pathogenesis-related 1 (PR1) (Cao et al. 1994; Cao et al. 1997). However, NPR1 does not contain a

DNA-binding domain, instead interacting with TGACG-binding transcription factors (TGAs) in the presence

of SA to induce its transcriptional response (Zhang et al. 2003; Jin et al. 2018). TGAs then activate the

expression of further transcription factors, such as SAR-DEFICIENT 1 (SARD1) and CALMODULIN-BINDING

PROTEIN 60-LIKE g (CBP60g) which target SA biosynthetic genes such as ICS1 and PBS3 in a positive

feedback loop (Sun et al. 2020).

A classical model of phytohormone-induced defence suggests that two mutually-exclusive signalling networks

exist which exert reciprocal repression on each other, JA/ET promoting resistance against necrotrophs, and SA

promoting resistance against biotrophs (Spoel et al. 2007; Pieterse et al. 2012; Aerts et al. 2021). Although

this model is now considered an oversimplification with complex JA-SA cross-talk known (Caarls et al. 2015),

however the effect of SA signalling in necrotroph defence is inconsistent and dependent on the mutant. For

example, expressing a bacterial enzyme which degrades SA (nahG) renders Arabidopsis more susceptible to B.

cinerea, but sid2-1 (SALICYLIC ACID INDUCTION DEFICIENT 2, which encodes ICS1) and npr1-1 mutants

had no changes in susceptibility to B. cinerea (Ferrari et al. 2003), while npr1-1 showed increased susceptibility

to S. sclerotiorum (Guo and Stotz 2007). Mutants of TGA3 (a NPR1-interacting transcription factor) were

more susceptible to B. cinerea (Windram et al. 2012). Adding even further complexity, NPR1 is a negative

regulator of B. cinerea resistance in tomato (Rahman et al. 2012; Li et al. 2020) and a positive regulator

of S. sclerotiorum resistance in Brassica napus (Wang et al. 2020b), demonstrating that the role of SA in

necrotroph defence differs between host species.
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1.5.5 Transcriptional control of the defence response

Transcriptional reprogramming is mediated by transcription factors (TFs), proteins able to bind DNA in

a sequence-specific manner via a DNA binding domain (DBD) to positively or negatively modulate the rate

of transcription. TFs bind DNA elements, often in a 1-2Kb promotor region upstream of a gene, recruiting

proteins to modify chromatin accessibility or influence the assembly of a transcription initiation complex

(Strader et al. 2022). A single TF may co-regulate several target genes involved in a single biological process

or function with a common cis-regulatory element, allowing an entire genetic program to be turned on or off

simultaneously. For example PAX6/eyeless is a conserved TF which controls eye development, and ectopically

expressing the TF in Drosophila wings or legs is sufficient to induce the formation of eye-like structures in

those tissues (Halder et al. 1995). Similarly, expression of Arabidopsis PLT2 in the shoot meristem can induce

the formation of ectopic roots and constitutive expression of ERF1 in Arabidopsis is sufficient to activate an

ethylene response in the absence of hormone or pathogen treatment (Galinha et al. 2007; Solano et al. 1998).

Once an invading pathogen has been successfully detected, and a PTI response has been activated via MAPK

cascades and Ca2+ bursts, phytohormones play pivotal roles in fine-tuning and amplifying the transcriptional

response required to coordinate a larger defence against the pathogen. In the complex phytohormone signalling

network, TFs act as “nodes of convergence”, able to integrate many input signals generating a specific response

for a specific pathogen. For example, JA is involved in the defence against both necrotrophic pathogens and

insects. JA signalling is fine-tuned via cross-talk with other phytohormones, including its integration with ET

by the ERF1 transcription factor, which enhances defence against necrotrophic pathogens (Lorenzo et al. 2003;

Cheng et al. 2013). Whereas the integration of JA and abscisic acid (ABA) signals, largely by the MYC2

transcription factor, increases insect defence (Verhage et al. 2011; Kazan and Manners 2013).

WRKY33 is a key example of an Arabidopsis TF that integrates signals of pathogen detection, initiates

transcriptional reprogramming events which amplify the defence response. WRKY33 was first identified as a

gene upregulated during B. cinerea infection (AbuQamar et al. 2006). Further studies revealed that wrky33-1

mutants were hypersusceptible to B. cinerea, establishing its crucial role in plant defence (Zheng et al. 2006).

WRKY33 is activated by phosphorylation through distinct kinases: MPK3/6 and CDPK5/6. These

phosphorylations occur at specific sites and have different consequences for WRKY33’s function. For example,

CDPK5 phosphorylation enhances WRKY33 binding at the PAD3 promoter, while MPK phosphorylation

increases the transcriptional activation activity of WRKY33 (Li et al. 2012; Zhou et al. 2020).

CDPK5/6 and MPK3 have an additive effect on B. cinerea defence, suggesting the integration of MAPK

and Ca22+ signalling is required for full WRKY33 activation. When activated, WRKY33 orchestrates various

26



transcriptional reprogramming events, including camalexin biosynthesis activation, ethylene biosynthesis

activation, and ABA biosynthesis repression (Liu et al. 2015). The simultaneous activation of ET, and

repression of ABA will activate the JA-ET signalling network driven by ERF1 (Lorenzo et al. 2003; Cheng

et al. 2013).

Key TF families participating in plant defence response include WRKY, Ethylene Response Factor (ERFs),

MYBs, basic helix-loop-helix (bHLH), basic-leucine zipper (bZIP), NAM-ATAF1-CUC2 (NAC), ethylene

insensitive 3-like (EIL), and calmodulin-binding transcription activator (CAMTA). Many of these TFs (e.g.,

WRKY33, CAMTA3, EIN3, ERF1) have been identified as key regulators of necrotroph defence, demonstrating

the importance of these transcriptional reprogramming events to the defence response.

This section will further elaborate on the roles and mechanisms of these various TF families in the

necrotrophic defence response.

1.5.5.1 WRKYs

WRKYs are a super-family of plant TFs, first identified in sweet potato (Ishiguro and Nakamura

1994), characterised by the presence of a 60 amino acid N-terminal DBD with a conserved

Trp(W)-Arg(R)-Lys(K)-Tyr(Y) motif and a C-terminal zinc-finger (Chen et al. 2019). WRKYs bind a

conserved W-box (T)TGAC(C/T), with binding specificity within the family determined by the sequences

flanking this consensus (Ciolkowski et al. 2008). WRKYs are specific to plants and algae with 2 present in

Klebsormidium flaccidum (a multi-cellular filamentous algae which produces several plant hormones; Hori

et al. 2014), 14 in Marchantia polymorpha, 72 in Arabidopsis, 76 in Lettuce, 81 in Solanum lycopersicum

(tomato), 130 in Zea mays (maize) (Zheng et al. 2016).

WRKYs can be classified into three groups based on their domain structure (Eulgem et al. 2000). Group I

WRKYs have two WRKY DBDs and a C2H2 zinc finger domain, Group II WRKYs have one WRKY DBD and

a C2H2 zinc finger, whereas Group III have one WRKY DBD and C2HC zinc finger. X-ray crystallography has

revealed that a group II WRKY DBD (from AtWRKY18) is able to deform the W-box double helix structure,

widening the major-groove to facilitate binding (Grzechowiak et al. 2022).

WRKYs have been identified as regulators of many biotic and abiotic stress responses including pathogen

defence in numerous plant species, which has been widely reviewed (Banerjee and Roychoudhury 2015; Phukan

et al. 2016; Wani et al. 2021). As previously discussed, AtWRKY33 (group I) is a well-characterised positive

regulator of B. cinerea defence activated by MAPK cascade, and regulates genes involved JA/ET signalling
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(Zheng et al. 2006; Mao et al. 2011; Li et al. 2012; Birkenbihl et al. 2012; Liu et al. 2015).

AtWRKY54/70 are two closely-related, and functionally redundant group III WRKYs which regulate SA

biosynthesis through SARD1/CBP60g, and are required for the auto-immunity phenotype of Arabidopsis

expressing a constitutively active NLR, snc2-1D (Chen et al. 2021). wrky54/wrky70 double mutants show

increased susceptibility to Pst DC3000 and increased resistance to B. cinerea (Li et al. 2017). Pst DC3000

susceptibility was further increased in SA biosynthetic mutant background (wrky54/wrky70/sid2), beyond the

level of either sid2 or wrky54/wrky70, suggesting SA biosynthesis independent functions. However, increased

B. cinerea resistance was dependent on SA biosynthesis, as (wrky54/wrky70/sid2) has comparable lesion sizes

to wild-type and sid2 (Li et al. 2017).

A Gossypium hirsutum (Cotton) orthologue of AtWRKY70, GhWRKY70D13 (also a group III WRKY),

has been demonstrated as a negative regulator of defence against necrotrophic fungal pathogen, Verticillium

dahliae, as RNAi-GhWRKY70D13 lines show increased resistance and upregulation of JA/ET genes such

as GhERF1 and GhAOS2 (Xiong et al. 2020). A group I WRKY from Fragaria X ananassa (strawberry),

FaWRKY25 has been identified as a negative regulator of JA biosynthesis with RNAi-FaWRKY25 promoting

increased B. cinerea resistance (Jia et al. 2020). An Amur grape (Vitis amurensis) WRKY (VaWRKY10,

group I) was also demonstrated to increase resistance to B. cinerea when overexpressed in Arabidopsis or Vitis

vinifera (Wan et al. 2021).

These results demonstrate that WRKY TFs act as both positive and negative regulators of necrotrophic

pathogen resistance in plant species, even within a single group.

1.5.5.2 AP2/ERFs

APETALA 2 (AP2)/Ethylene Response Factor (ERF) also known as Ethylene Response Element Binding

Proteins (EREBPs) are a super-family of plant-specific transcription factors, with well charachterised roles in

plant defence (Nakano et al. 2006). The first AP2/ERF domain identified was in Arabidopsis AP2 (Jofuku

et al. 1994). Shortly afterwards, 4 closely related tobacco AP2/ERF domain TFs were identified and shown

to bind GCC-box elements (TAAGAGCCGCC) in ethylene-inducible promotors (Ohme-Takagi and Shinshi

1995). AP2/ERF domains are 60-70 amino acids, containing three anti-parallel β-strands and a single α-helix

(Nakano et al. 2006; Allen et al. 1998), with β-strands directly interacting with GCC-box nucleotides (Chen

et al. 2020a). Three sub-families of AP2/ERFs exists, AP2-type, RAV-type and ERF-type EREBPs (ERFs,

hereafter), ERFs are by far the largest sub-family and are involved in pathogen defence (Nakano et al. 2006).

Lettuce has an expanded ERF family containing 190 predicted ERFs, compared to 4 ERFs in K. flaccidum, 26

in M. polymorpha, 128 in Arabidopsis, 140 in tomato and 194 in maize.
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Numerous ERFs have been identified as regulators of the necrotroph defence response, such as ERF1

(Berrocal-Lobo et al. 2002) which has been previously discussed. OCTADECANOID-RESPONSIVE

ARABIDOPSIS AP2/ERF 59 (ORA59) has been demonstrated as a positive regulator of B. cinerea defence,

upregulating JA/ET downstream genes such as PDF1.2 (Penninckx et al. 1996; Pré et al. 2008). Tomato

(Solanum lycopersicum) ERFs have also been shown to promote B. cinerea resistance, with silencing of

SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3 increasing susceptibility (Ouyang et al. 2016).

1.5.5.3 NACs

NACs are another large TF family in plants, named after three early TFs that were identified a

conserved domain; NAM (NO APICAL MERISTEM)-ATAF1(Arabidopsis thaliana Activation Factor 1)-CUC2

(CUP-SHAPED COTYLEDON2) (Olsen et al. 2005). Lettuce has 101 NACs, compared to 2, 9, 96, 112 and

135 found in K. flaccidum, M. polymorpha, tomato, Arabidopsis and maize respectively (Zheng et al. 2016).

NACs have been shown to regulate a number of plant physiological process such as development (Souer

et al. 1996), senescence (Kim et al. 2016), abiotic stress including drought (Nakashima et al. 2012; Mao

et al. 2016) and pathogen defence response (Yuan et al. 2019). X-ray crystallography of DNA-bound NAC19

revealed that the NAC-DBD utilises 7 β-strands for DNA binding flanked by α-helices, with the β-strands

directly binding the DNA major groove without DNA helix disruption (Welner et al. 2012). Some NACs show

additional regulation via a C-terminal transmembrane domain which prevents nuclear localisation, in response

to a stimulus, proteolytic cleavage allows translocation of the N-terminal NAC DBD to the nucleus facilitating

transcriptional regulation (Kim et al. 2007a).

Many NACs have shown to act as both positive and negative regulators of defence against necrotrophic

pathogens. Arabidopsis NAC19/55 show redundant negative regulation of B. cinerea defence, with roles in

fine-tuning JA signalling downstream of MYC2 (a bHLH-family TF which regulates JA-ABA signalling and

will be discussed below) (Bu et al. 2008). ATAF1 has been demonstrated as a conserved negative regulator

of defence response, with overexpression of AtATAF1 promoting increased susceptibility to B. cinerea, A.

brassicicola and Pst DC3000 (Wang et al. 2009a). Similarly, overexpression of cotton ATAF1 orthologue

(GhATAF1) in cotton plants suppressed JA signalling, increased susceptibility to B. cinerea and V. dahliae

(He et al. 2016). However, SlSRN1, a tomato transmembrane-domain containing NAC which positively

regulates defence, as B. cinerea resistance is increased when transiently overexpressed, and decreased when

silenced (Liu et al. 2014).
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1.5.5.4 MYBs

Unlike the TF families introduced thus far, myeloblastosis-related (MYB) TFs are not plant-specific, with

their name originating from an avian myeloblastosis virus TF which promotes myeloid leukemia in chickens

(Klempnauer et al. 1984). COLORED1 was the first MYB identified in plants, which regulates anthocyanin

biosynthesis in maize (Paz-Ares et al. 1987). Human c-myc contains three adjacent helix-turn-helix (HTH)

repeats (R1, R2 and R3), and plant MYBs are classified by the presence of these repeats. R2R3-MYBs,

containing two adjacent HTH repeats with similarity to c-myc R2 and R3 respectively are the most abundant

sub-class of plant MYB with 126 in Arabidopsis, 3R-MYBs (R1-R2-R3) and 4R-MYBs (R1-R2-R3-R1/2) also

exist in plants (Dubos et al. 2010). This HTH architecture shows a clear difference between animal and plant

MYB TFs. The lettuce genome contains 155 R2R3 MYBs (MYBs hereafter) and 68 additional non-R2R3

MYBs (MYB-related).

Many plant MYBs have been characterised as regulators of secondary metabolite biosynthesis, as well as

maize colored, MdMYBA in apple Malus x domestica directly activates anthocyanin biosynthesis resulting in red

pigmentation (Ban et al. 2007). MYBs have also been well-characterised as regulators of flavonoid biosynthesis,

a diverse class of compounds which have anti-microbial properties and give desirable flavour-profiles in many

fruits (Czemmel et al. 2012; Xu et al. 2015).

MYBs have also been identified as regulators of the pathogen defence response. SlMYB1 has recently been

shown to promote B. cinerea resistance in tomato fruits by increasing flavonoid and carotenoid content (Yin

et al. 2023). AtMYB108 was originally suggested to be a positive regulator of defence against B. cinerea, as

T-DNA insertion mutants were hypersusceptible to B. cinerea, hence was named Botrytis Susceptible 1 (BOS1)

(Mengiste et al. 2003). However, re-analysis of the original mutants by Cui et al. 2022 recently demonstrated

that bos1-1 was a gain-of-function mutation, and the AtMYB108 is a negative regulator of B. cinerea defence.

Supporting its role as a negative defence regulator, Hickman et al. 2013 showed that AtMYB108 activates the

expression of negative defence regulators, NAC19/55 (Bu et al. 2008), during B. cinerea infection. However,

a highly similar orthologue in cotton, GhMYB108 promotes increased resistance to V. dahliae in cotton plants

and increased resistance to both V. dahliae and B. cinerea in transgenic Arabidopsis, showing species-specific

differences in MYB108 function. It remains unclear how the highly similar AtMYB108 and GhMYB108 are

able to have opposite effects on the defence response to fungal necrotrophs.

1.5.5.5 bHLHs and bZIPs

Basic helix-loop-helix (bHLH) and basic leucine zipper (bZIP) are two non-plant specific TF super-families

with 137, 72 and 158, 91 members in Arabidopsis and Lettuce respectively (Toledo-Ortiz et al. 2003; Jakoby

30



et al. 2002). While neither family are considered to have major roles in stress response, members of both

families have been identified as key defence regulators.

bHLH transcription factors MYC2, MYC3 and MYC4 function redundantly to integrate JA-Abscisic Acid

(ABA) signalling for herbivore defence, a contrasting branch of JA response to JA/ET integration via ERF1

and ORA59 which promotes necrotrophic pathogen defence (Kazan and Manners 2013). As a result, MYC2

represses the ERF1/ORA59-branch (PDF1.2 expression) promoting susceptibility to B. cinerea (Lorenzo et

al. 2004; Zhang et al. 2014b) and increased insect resistance (Verhage et al. 2011).

TGACG SEQUENCE-SPECIFIC BINDING PROTEINs (TGAs) are a subgroup of bZIPs, which interact

with NPR1 to promote SA-induced gene expression (Zhang et al. 2003; Jin et al. 2018). However TGA

mutants tga3-2 and tga2/5/6 display increased susceptibility, suggesting they promote increased resistance

against necrorophic pathogens (Windram et al. 2012; Zander et al. 2014). Other bZIPs not classified within

the TGA subgroup have also been demonstrated as defence regulators, overexpression of soybean GmbZIP15

promotes resistance to S. sclerotiorum (Zhang et al. 2021). Furthermore, bZIP17, bZIP28 and bZIP60 are well

characterised regulators of the unfolded protein response (UPR), a stress response conserved across eukaryotes

which is triggered by the accumulation of misfolded and aggregated proteins in the ER (Bao and Howell 2017).

Silencing of bZIP60 in Nicotiana attenuata lead to increased susceptibility to a fungal necrotroph (Alternaria

alternata) and downregulation of protein folding chaperones calnexin (CNX), BiP and protein disulphide

isomerase (PDI) (Xu et al. 2019).

1.5.5.6 Identifying TF targets

Once a potential TF of interest has been identified, determining its downstream target genes can shed light

on the molecular processes underlying the TF phenotype. Many of the DNA binding motifs described (such as

the WRKY W-box and the ERF GCC-box) are core consensus motifs for an entire TF super-family. However,

such motifs are highly abundant within genomes, with 12,200 W-box motifs being identified in the promoters

of 7670 Arabidopsis genes, and many of the 72 Arabidopsis WRKYs could bind each of them (Dhatterwal

et al. 2019).

Direct TF-DNA interactions can be identified via DNA Affinity Purification sequencing (DAP-seq, in vitro)

or chromatin-immunoprecipitation sequencing (ChIP-seq, in vivo). These methods may be able to reveal

subtle differences in DNA-binding specificities between members of expanded TF families. DAP-seq has been

performed on 529 Arabidopsis TFs in vitro, identifying > 2.7 million TF binding sites (O’Malley et al. 2016a).

However, DNA-binding may not be sufficient as the recruitment of additional proteins may be required for

transcriptional activators such as Mediator complex sub-units that induce looping between cis-regulatory
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elements, contributing to the formation of the transcriptional pre-inititaion complex under JA signalling (Kidd

et al. 2009; Wang et al. 2019a). In addition transient TF-DNA interactions may be challenging to detect with

existing assays (Swift and Coruzzi 2017).

In the case of WRKY33, DAP-seq identified 4472 putative targets, but a coupled ChIP-seq and

RNA-seq experiment after B. cinerea infection in wrky33-1/PW RKY 33 :WRKY33-HA plants identified 1576

ChIP-targets, only 318 of which were DEGs (Liu et al. 2015). Only 169 of the high-confidence direct WRKY33

regulated B. cinerea targets were identified as a DAP-seq target of WRKY33. This data suggests that DAP-seq

may struggle to identify context-specific DNA-binding events, such as those which only occur in response to

pathogen infection.

Alvarez et al. 2020 used an innovative approach to identify the direct targets of a nitrogen-responsive

Arabidopsis transcription factor, NIN-LIKE PROTEIN 7 (NLP7). They expressed an NLP7-GR (glucocorticoid

receptor) fusion protein, which allowed conditional nuclear import of NLP7 after DEX treatment. To ensure

observed changes in gene expression were direct effects of NLP7 and not due to downstream TFs, cells were

pre-treated with cycloheximide (CHX), a translation inhibitor. Following DEX treatment (and nuclear import

of NLP7-GR), time series ChIP-seq experiments were performed, and RNA-seq was conducted 180 minutes

after +DEX or -DEX treatment. Of the 492 differentially expressed genes (+DEX +CHX vs -DEX +CHX)

identified, only 12% (n=61) were stable NLP7 targets in ChIP-seq, and 33% (n=161) were transient. 55%

(n= 270) of DEGs weren’t NLP7-bound in any ChIP time-point. DamID, a technique that uses a DNA

adenine methyltransferase fused to a TF, was utilised to mark regions of the genome where NLP7 interacts

with DNA (Gutierrez-Triana et al. 2016; Aughey and Southall 2016). This identified 191 targets that were

directly differentially expressed by NLP7, including 92 not detected by ChIP. TFs within these 92 targets

with highly-transient NLP7-binding only delectable using DamID were demonstrated to drive a significant

proportion of the indirect NLP7-induced transcriptional reprogramming. This work highlights that many

biologically relevant TF-DNA interactions are highly-transient and are difficult to detect with ChIP, even in a

time series with 5 minute resolution.

This demonstrates why it may be challenging to experimentally or bioinformatically identify direct TF

targets (also reviewed in depth by Alvarez et al. 2021). Therefore, many efforts to computationally predict

transcriptional regulation don’t discriminate between direct and indirect downstream target genes, and instead

ask which TF gene expression is best able to explain gene expression of a given target (Geng et al. 2021).

This will be discussed in more detail in section 1.6.
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1.5.6 Post-transcriptional control of the defence response

In the previous section, “gene expression” is analysed using mRNA abundance as a proxy for protein

activity, largely due to the emergence of microarrays and RNA sequencing as revolutionary cost-effective

and high-throughput tools for gene discovery (Wang et al. 2009b). However, it is well established that gene

expression changes in response to pathogen infection aren’t fully encapsulated by total mRNA abundance,

due to differing rates of degradation and active translation amongst mRNA populations (Maldonado-Bonilla

2014). One mechanism of translation inhibition of degradation of specific mRNAs, is the sequence-specific

binding of small RNAs (sRNA) (Ronemus et al. 2006).

Actively translated mRNAs can be isolated via the pull-down of a tagged ribosomal sub-unit and sequenced

using RNA sequencing, giving a “translatome” (Zanetti et al. 2005). This methodology has been utilised to

demonstrate large differences between defence-induced reprogramming transcriptome and translatome; with

many transcriptome DEGs showing no difference in the translatome and vice-versa (Meteignier et al. 2017;

Tabassum et al. 2020).

1.5.6.1 Small RNAs: a battle for post-transcriptional control

In the 1990s a novel form of gene regulation was discovered in Caenorhabditis elegans (nematode worm),

whereby short 20-24nt fragments of RNA can post-transcriptionally silence a gene in a sequence-specific

manner, termed RNA interference (RNAi) (Fire et al. 1991; Fire et al. 1998). Subsequently, RNAi was

recognised as an evolutionarily conserved mechanism for gene regulation with discoveries of short RNA based

gene silencing quickly following in: fungi (Romano and Macino 1992), insects (Pal-Bhadra et al. 1997),

protozoa (Ruiz et al. 1998), plants (Hamilton and Baulcombe 1999; Baulcombe 2004) and mammals (Elbashir

et al. 2001).

Plants encode numerous classes of small RNAs (sRNAs). These are produced through distinct, yet

overlapping, processing steps which are involved in both epigenetic and post-transcriptional silencing (reviewed

in Axtell 2013; Borges and Martienssen 2015). Dicer-like (DCL) proteins are specialised endoribonucleases

which cleave double-stranded RNA (dsRNA) or stem-loop RNA into short-fragments are common to all sRNA

biogenesis pathways (Fukudome and Fukuhara 2017). Once processed, sRNAs bind to ARGONAUTE (AGO)

proteins, forming the RNA-induced silencing complex (RISC) that can induce mRNA cleavage, translation

inhibition or epigenetic modification (Zhang et al. 2015a).

Micro RNAs (miRNAs) are transcribed from their own loci, precursor transcripts contain stem-loops that

are cleaved by DCL1 to produce 20–22 nt mature miRNAs. Small interfering RNAs (siRNAs) processed from
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dsRNA transcripts that are processed by DCLs, sub-classifications of siRNA exist depending on how the dsRNA

transcript is generated. Natural antisense siRNAs (natsiRNAs) are produced from RNA transcripts with regions

of perfect complementarity forming dsRNA, such as overlapping sense and anti-sense transcription (Borsani

et al. 2005). Heterochromatic siRNAs (hetsiRNAs) are 24nt that direct epigenetic silencing of transposable

elements via RNA-dependent DNA Methylation (RdRM). Processing of hetsiRNAs requires dsRNA synthesis

by an RNA-dependent RNA polymerase (RDR) and subsequent cleavage by DCL3 (Matzke and Mosher 2014a).

Secondary siRNAs can be produced from the fragments of an mRNA that has been cleaved by RISC. RDR6

produces a dsRNA copy of the cleaved fragment, which is subsequently cleaved by DCL4 at ”phased” 21nt

intervals producing phased siRNAs (phasiRNAs) (Fei et al. 2013; Xie et al. 2005). Suppressor of gene silencing

3 (SGS3) is required for phasiRNA biosynthesis, and has been suggested to stabilise the 3’ end of RISC cleaved

fragment, preventing degradation and allowing RDR6 to synthesise a dsRNA(Peragine et al. 2004; Yoshikawa

et al. 2013). Protein-coding mRNA transcripts are a major source of phasiRNAs, such as those which encode

pentatricopeptide repeats (PPRs) (Howell et al. 2007). A subset of phased siRNAs that are produced from

non-coding (TAS) transcripts which have been demonstrated to be trans-acting, hence trans-acting siRNAs

(tasiRNAs) (Allen et al. 2005).

Small RNAs perform critical plant-pathogen interactions, determining infection outcomes in a ”battle for

post-transcriptional control” (Qiao et al. 2021a). As previously discussed in Section 1.4.2.5, B. cinerea

produces sRNAs using their own endogenous DCLs, secrete sRNAs in vesicles which enter plant cells, hijack

host AGO to degrade host targets and promote pathogen virulence(Weiberg et al. 2013; He et al. 2023a;

Wang et al. 2017c). Additionally Weiberg et al. 2013 demonstrated that Arabidopsis dcl1-7 mutants showed

increased B. cinerea susceptibility, while AGO1 directly bound Bc-siRNAs and ago1-27 showed increased

resistance. Thereby suggesting that DCL1-dependent miRNA biogenesis positively regulates B. cinerea defence

but AGO1 negatively regulates defence as it is hijacked by fungal small RNAs.

However, AGO positively regulates S. sclerotiorum defence, with ago1-27, ago1-32, ago2-1 and ago9-1

showing increased susceptibility (Cao et al. 2016b; Cao et al. 2016a), suggesting that in a S. sclerotiorum

infection host AGO is positively regulating defence. This is despite S. sclerotiorum producing sRNAs during

infection, that have sequence complementary to Arabidopsis defence regulators which are downregulated during

infection (Derbyshire et al. 2019). It remains to be elucidated whether these S. sclerotiorum sRNAs directly

silence host targets, and whether this requires host AGO.

Plant miRNAs are able to fine-tune their own gene expression in response to pathogen infection, enhancing

resistance. Arabidopsis miR156 targets and silences the mRNA of a TF, SPL7, which itself is a negative

regulator of JA signalling, hence miR156 activates JA signalling and is a positive regulator of B. cinerea

resistance (Sun et al. 2022; Mao et al. 2017). Capsicum annuum (chilli pepper) miRn37a is a positive regulator
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of Colletotrichum truncatum defence, silencing three ERF TFs, leading to the upregulation of CaPDF1.2

(Mishra et al. 2018).

Arabidopsis mutants that are deficient in phasiRNA and tasiRNA biosynthesis (dcl2/3/4, dcl4-2, rdr6 and

sgs3-1) all show increased susceptibility to necrotrophic fungal pathogens (either B. cinerea, S. sclerotiorum or

V. dahliae) (Cai et al. 2018; Cao et al. 2016a; Ellendorff et al. 2009). Arabidopsis secretes vesicles that contain

tasiRNAs during B. cinerea infection, which are taken up by fungal cells and silence virulence genes (Cai et

al. 2018). The effector Phytophthora suppressor of RNAi 2 (PSR2) has been shown to repress biosynthesis

of phasiRNAs, specifically those generated from PPR transcripts (PPR-siRNAs), and promoting Arabidopsis

susceptibility to Phytophthora capsici (Hou et al. 2019).

Together, these findings clearly demonstrate that post-transcriptional control of gene expression is vital in

determining the outcome of plant-pathogen interactions. Both the host and attacker utilise small RNAs to

facilitate a “successful outcome”.
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1.5.7 Downstream anti-fungal responses

As outlined above, after the detection of an invading necrotrophic fungus via PRRs, a downstream PTI response

is activated, triggering biosynthesis of defence phytohormones (JA/ET) and transcriptional reprogramming.

After all these signal transduction events, a number of “anti-fungal” responses must finally be activated to

restrict colonisation of the pathogen. These include strengthening of the cell wall to limit degradation by fungal

CWDEs, synthesis of secondary metabolites which are toxic to the invading pathogen, and the accumulation

of pathogenesis-related (PR) proteins.

1.5.7.1 Cell wall reinforcement

The plant cell wall is the primary barrier to microbe infection. Fungal necrotrophs actively destroy the cell

wall through CWDE degradation to induce tissue maceration (section 1.4.2.3). Hence plants must respond

and activate defence responses to maintain cell wall integrity. One approach is to activate the expression of

pectin methylesterase inhibitors (PMEIs), protecting pectin from CWDE degradation (Lionetti et al. 2017).

Overexpression of AtPMEI1 and AtPMEI2 increases B. cinerea resistance in Arabidopsis (Lionetti et al. 2007).

Papillae, which contain callose, a β-1,3-glucan polymer, are deposited at the cell wall at the site of microbe

infection (Aist 1976; Voigt 2014). Callose deposition is activated by the chitin PTI response (Yamada et

al. 2016). Mutants of powdery mildew resistant 4 (pmr4-1) also known as glucan synthase like 5, do not

deposit callose upon infection and show increased susceptibility to the fungal necrotroph A. brassicicola.

However, there may be some callose-independent functions of PMR4/GSL5, as double SA-callose biosynthetic

mutants (sid2-1/pmr4-1) also lack callose deposition, but have similar A. brassicicola resistance to sid2-1

(Flors et al. 2008). Callose deposition in tomato also appears to be dependent on OPDA (JA precursor),

as RNAi silencing of SlOPR3 leads to B. cinerea susceptibility and reduced callose deposition, however both

phenotypes could be rescued with OPDA treatment, but not JA treatment (Scalschi et al. 2015). It is unclear

how OPDA may regulate callose independently of JA.

1.5.7.2 Anti-fungal metabolites

Plants produce vast numbers of complex secondary metabolites, with >10,000 compounds detected within

a single species and estimates of up to 1 million specialised metabolites being produced across the plant

kingdom (Fang et al. 2019). Many secondary metabolites have been utilised for their medicinal properties,

such as a sesquiterpene lactone (STL) isolated from Artemisia annua with anti-malarial activity artemisinin,

and morphine which is derived from opium poppy (Papaver somniferum) (Rai et al. 2017).
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A major in planta function for many secondary metabolites is thought to be defence against pathogens,

with many classes having been reported with anti-fungal activity (Kliebenstein 2004). A Brassicaceae specific

indole-alkaloid, camalexin has been demonstrated as an essential component of B. cinerea resistance in

Arabidopsis. Phytoalexin deficient 3 (PAD3) encodes a cytochrome P450 that catalyses the final stage of

camalexin biosynthesis (Zhou et al. 1999), with pad3-1 and camalexin secretion mutants (pen3-3/pdr12-2)

exhibiting hypersusceptibility to B. cinerea (Ferrari et al. 2003; He et al. 2019). Sensitivity to metabolites

can vary between closely-related fungal species, for example pad3-1 only shows minor susceptibility to S.

sclerotiorum due to its ability to detoxify camalexin (Stotz et al. 2011; Pedras and Ahiahonu 2002). Sensitivity

to host defence metabolites can differ even among isolates of the same species. For instance, the B. cinerea

DKUS-1 exhibits strong resistance to the toxic effects of camalexin, and as a result its virulence is unaffected

by the pad3-1 mutation (Kliebenstein et al. 2005).

Unlike the signalling phytohormone and signalling mechanisms discussed above, it is not expected that

secondary metabolites produced in response to pathogen infection will be conserved between Arabidopsis and

lettuce. For example, camalexin has only been detected in the Brassicaceae family. STLs are notable secondary

metabolites which are abundant and diverse in Asteraceae species such as lettuce (Sessa et al. 2000). Several

STLs have in vitro anti-fungal activity (Pickman 1984; Nawrot et al. 2021). Takasugi et al. 1985 identified

an STL in lettuce, lettucenin A which was later shown to be produced in response to pathogen infection and

had anti-microbial effects against Bremia lactucae, B. cinerea and P. syringae in vitro (Bennett et al. 1994).

In strawberry, expression of terpene synthases (FaTPS) and terpene accumulation was upregulated after

MeJA treatment. Overexpression of FaTPS1 increases B. cinerea resistance, over-accumulating sesquiterpene

Germacrene D and monoterpenoid α-terpineol (Zhang et al. 2022).

1.5.7.3 Pathogenesis-related proteins

Pathogenesis-related (PR) proteins describe 17 gene families (named PR-1 to PR-17 respectively) which

have been identified in several plant species, are upregulated upon pathogen infection, many of which show

anti-microbial activity (Loon 1985; Van Loon et al. 1994; Sels et al. 2008). Some PR families have already

been discussed. PR-1 mRNA is upregulated by NPR1, and acts as a “marker” of the SA-induced defence

response, although the function of PR-1 remains elusive (Loon et al. 2006).

The PR-12 family encodes plant defensins (PDFs) which are marker genes of JA/ET gene expression in

Arabidopsis (Penninckx et al. 1996; Manners et al. 1998; Brown et al. 2003). PDFs are ∼5kDa cysteine-rich

peptides containing three β-sheets and an α-helix strengthened by 3-5 disulphide bonds, conferring resistance

to extreme temperature and pH (Lay and Anderson 2005). Numerous PDFs demonstrate anti-fungal activities

both in vitro (Lacerda et al. 2014) and in planta promoting increased resistance to necrotrophic fungi such as
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B. cinerea and V. dahliae (Gao et al. 2000; Khan et al. 2006; Aerts et al. 2007). PDFs form pores within the

fungal cell membrane, facilitating ion leakage and fungal cell death (Thevissen et al. 1996).

The PR-15 family encode oxalate oxidases (OA-Ox), involved in the detoxification of oxalic acid, an

important virulence factor in S. sclerotiorum (Chiriboga 1966). B. cinerea also produces oxalic acid, but

it is not as important for virulence as in S. sclerotiorum. OA-Oxs have been identified in some grasses such

as barley and sorghum, and when transgenically expressed in other species increases S. sclerotiorum resistance

(Verma and Kaur 2021; Livingstone et al. 2005; Yang et al. 2019). Arabidopsis does not contain an OA-Ox,

but AtAAE3 has oxalyl-CoA synthase activity and is able to detoxify oxalic acid, promoting S. sclerotiorum

resistance (Foster et al. 2012).

Multiple PR families encode enzymes which degrade fungal cell wall polymers, such as β-1,3-glucanases

(PR-2) and chitinases (PR-3, PR-4, PR-8, PR-11) (Loon et al. 2006). Neither of these polymers are abundant

in the plant cell wall, but are major components of the fungal cell wall, hence both enzyme classes can be

utilised to damage fungal cell wall integrity (Mohammadi and Karr 2002; Roberts and Selitrennikoff 1988).

Transgenic strawberry expressing ch5B, a Phaseolus vulgaris (bean) chitinase show increased resistance to B.

cinerea (Vellicce et al. 2006; Boller et al. 1983). Transgenic carrot plants expressing a wheat chitinase, a wheat

β-1,3-glucanase and a rice cationic peroxidase (PR-9 family) show increased resistance to both B. cinerea and

S. sclerotiorum (compared to wild-type plants), however carrot lines expressing just the β-1,3-glucanase only

displayed increased resistance to B. cinerea (Wally et al. 2009). Yang et al. 2020 generated soybean plants

which transgenically express the chitinase gene from Coniothyrium minitans (CmCH1), a mycoparasite that

specifically infects Sclerotinia spp, resulting in increased S. sclerotiorum resistance. However, no comparisons

between the activity of CmCH1 and plant chitinase activity were made.

The PR-6 family encodes a class of proteinase inhibitors (PI) first identified to accumulate in potato leaves

after insect damage (Green and Ryan 1972), hence they are also known as potato inhibitor I. Hence PR-6 refers

to a specific subclass of PI, however, other classes such as potato inhibitor II, Kunitz-type and Bowman-Birk

PIs have also been demonstrated to show anti-fungal activity (Kunitz and Northrop 1936; Bowman 1944;

Grosse-Holz and Hoorn 2016). PIs from Isoglossa woodii (buckweed) inhibit Subtilisin-like proteases from B.

cinerea in vitro (Dunaevskii et al. 2005), and exogenous application of potato PIs inhibited B. cinerea growth

in culture and repressed pathogenicity (Hermosa et al. 2006). SAP16, a trypsin-inhibitor from Helianthus

annuus (sunflower) demonstrates potent inhibition of S. sclerotiorum spore germination (Giudici et al. 2000).

Overexpression of PIs in vivo has been demonstrated to provide increased resistance to both insects and

fungi. Overexpression of rice Bowan-Birk Inhibitor 2 (RBB2) promotes resistance to rice blast (Pyricularia

oryzae) (Qu et al. 2003), and overexpression of unusual serine-protease inhibitor (UPI) promotes B. cinerea

and cabbage looper (Trichoplusia ni) resistance (Laluk and Mengiste 2011).
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Together, these examples summarise some of the anti-fungal strategies employed by plants to defend

themselves against necrotrophic fungal pathogens.
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1.6 Gene Regulatory Networks

Network theory is a branch of mathematics which describes the interactions (“edges”) between connected

individuals (“nodes”). “Degrees” describe the connectivity of a given node within the network, defined as the

number of edges between the given node and other nodes. Highly connected nodes are described as “Hubs”

(Albert and Barabási 2002). Network theory has been utilised to understand social networks, and optimise

transportation networks. However, the principles of network-theory can also be used to understand complex

interactions between biological molecules. Biological networks have a specific architecture known as “scale-free

topology”, meaning that they have nodes with very different scales (degrees), hence some nodes act as highly

connected hubs, and some nodes have low connectivity (Barabási and Albert 1999; Jeong et al. 2000).

Biological networks can aid our ability to understand highly complex interactions that occur within a

biological system, such as; metabolic interactions, protein-protein interactions (PPI) and transcriptional

regulation (Jeong et al. 2000; Matija Dreze et al. 2011; Gerstein et al. 2012). A Saccharomyces cerevisiae PPI

network revealed that highly connected hubs were more likely to cause a lethal phenotype in loss-of-function

mutants (Jeong et al. 2001). This work provided an early demonstration that highly connected hubs in

networks may also have high biological importance, with highly connected nodes more likely to be required

for the survival of the organism. The application of network theory to biological networks has been reviewed

in depth by Barabasi and Oltvai 2004.

High-throughput methods, such as microarrays and RNA-sequencing, have allowed detailed

transcriptome-wide characterisation of the defence response (Windram et al. 2012; Hickman et al. 2017;

Bjornson et al. 2021). Large datasets generated during these studies can be utilised to make predictions

about the underlying networks of the transcriptional responses. In a relatively simplistic approach, edges

are drawn between any two transcripts whose expression is highly correlated (often R > 0.9), hence termed

co-expression networks (Langfelder and Horvath 2008). Co-expression networks are undirected and don’t

make any inferences about transcriptional regulation, but instead assign putative functions to uncharacterised

genes based on the function of co-expressed genes. Zhang et al. 2017c constructed Arabidopsis co-expression

networks after infection with 96 different B. cinerea isolates, identifying 5 core co-expression modules. Dong

et al. 2015 constructed an integrated PTI-ETI network which was built on co-expression data as well as using

available PPI and ChIP data to filter out false positives. Szymański et al. 2020 constructed a “co-abundance”

network of mRNA transcripts and metabolites in 580 tomato lines after B. cinerea infection, candidate defence

regulators were selected from mRNA/metabolite clusters that were abundant in B. cinerea resistant lines,

such as pantothenic acid which displayed in vitro antifungal activity against B. cinerea.
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Gene Regulatory Networks (GRNs) are a specific class of biological network, the edges of which represent

transcriptional (or post-transcriptional) regulation events, nodes usually represent gene products (either RNA

transcripts or proteins) (Thompson et al. 2015). A subset of GRN nodes are identified as possible regulators,

these will be TFs in a transcriptional regulation network, but may include sRNAs in a GRN that incorporates

post-transcriptional regulation. Unlike co-expression networks GRNs have directed edges originating only from

regulator nodes. The use of a dense time series which captures the temporal dynamics of transcriptional

reprogramming will aid the inference of regulatory edges (time series-GRN-annrev). GRNs may also differ

depending on whether their edges represent direct or indirect regulation.

A GRN based on direct regulation may incorporate TF-DNA binding data such as DAP-Seq, ChIP-seq or

chromatin accessibility data such as ATAC-seq (assay for transposase-accessible chromatin with sequencing),

or the presence of the TF binding motifs within the promotors of putative targets. However, such models

are challenging to construct on a transcriptome-wide scale due to the need for TF-DNA binding data in the

specific biological conditions of interest. This level of information is only available in model species. Although,

as discussed in Section 1.5.5.6, it is challenging to determine which TF-DNA binding events will result in

differential regulation.

As part of the ENCODE (Encyclopedia of DNA Elements) project, a human direct-regulation GRN was

constructed, integrating RNA-seq after siRNA gene silencing, ChIP-seq, TF-TF interaction, miRNA-seq and

phospho-proteomics data (Gerstein et al. 2012). One of their key findings was a “combinatorial effect”, such

that the DNA-binding sites of an individual TF could be substantially modified when present in different

TF-TF pairs, demonstrating another level of complexity in attempting to identify direct TF targets.

Alternatively, a GRN can be constructed which does not attempt to discriminate between direct and indirect

regulatory events. In this case, an edge does not represent a DNA-binding event, but instead demonstrates that

a change in expression of the regulator/TF will likely result in an expression change of the target. While such

a GRN lacks a mechanistic understanding of the underlying transcriptional regulation, it maintains the ability

to identify biologically relevant hub genes and only requires expression data to construct. Geng et al. 2021

constructed an EXPLICIT (Expression Prediction via Log-linear Combination of Transcription Factors) model

based on 24,500 publicly available Arabidopsis RNA-seq samples, which is able to predict expression of non-TF

genes with high accuracy (real vs predict correlation > 0.98) using TF-only expression. EXPLICT identified

over > 980, 000 TF-Target interactions whose coefficients were significantly different from zero (∼2% of all

possible pairwise interactions).

41



EXPLICT treats all RNA-seq samples as independent, however its training data will contain many samples

that are part of a time series and are therefore not independent observations. time series expression is invaluable

for GRN modelling, as it captures the chronology of dynamic gene expression changes, particularly in response

to a stimulus (time series-GRN-annrev).

1.6.1 Methods for GRN inference

The task of GRN inference is to utilise high-throughput gene expression datasets and predict causal regulatory

edges, i.e. identify the likely regulators of all nodes in the network. This will be done by identifying a group

of targets that has a highly similar expression profile (either time series or single time-point) to a putative

regulator. However, this is a computationally challenging task given the high dimensionality (often thousands

of targets and hundreds of regulators) and regulator co-linearity (many TFs with very similar expression profiles)

that exist within gene expression datasets.

Both Bayesian and random forest based algorithms are commonly used to infer gene regulatory networks

(Perrin et al. 2003; Mercatelli et al. 2020). Bayesian inference is well suited for GRN construction, as prior

information can easily be incorporated, and it deals well with messy data. Random forests (RFs) are an

ensemble machine learning method in which n decision trees are trained on a random sub-section of the data

using a random subsection of the available features (TF expression in our case), then results from each tree

are averaged to obtain the result for the entire “forest” (Breiman 2001). This approach allows RFs to be more

resistant to overfitting and enables them to ignore low importance features. When training RFs, “feature

importance” is easily calculated, which is a measure of the relative error decrease when splitting a decision

tree on a specific feature, across all trees in the forest. In an RF which is predicting expression of a target gene

using TF expression, feature importances will represent the most important TFs in determining expression of

the target. Additionally, the use of machine learning approaches, such as RFs, allows multiple gene expression

datasets to be used in combination to infer a single GRN.

GENIE3 (GEne Network Inference with Ensemble of trees) is an RF-based GRN construction algorithm which

utilises feature importance to rank regulatory interactions and performs well on steady-state data (Huynh-Thu

et al. 2010). dynGENIE3 is a dynamic extension of GENIE3 which models the expression of a gene over

time series as an ordinary differential equation (ODE) with a decay rate parameter (Huynh-Thu and Geurts

2018). dynGENIE3 significantly improved time series performance, however it was still outperformed on a

synthetic dataset of 100 genes by Causal Structural Inference (CSI), a Bayesian method (Penfold and Wild

2011). CSI learns gaussian processes for all possible regulators of all genes, meaning it is very computationally

intensive and has limitations on the number of genes included within a network. Windram et al. 2012 used

CSI to generate a network for the response to B. cinerea infection Arabidopsis, identifying TGA3 as a defence
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regulator. However, due to gene number restrictions of CSI, their network modelled 44 co-expression modules

as opposed to individual genes.

OutPredict is another RF-based method which handles multiple time series and prior information (Cirrone

et al. 2020). Two model types are supported by OutPredict; an ODE-log model similar to the ODE model in

dynGENIE3 and a time-step model where expression of a TF at a given time-point is used to predict target

expression at the subsequent time-point. OutPredict determines which model type is optimal for the inputted

dataset by omitting the final time-point for each time series and evaluating performance on this unseen data

point. Prior information can be easily incorporated into the OutPredict model, by increasing the probability

that a specific TF will be included in the subset of features used by an individual decision tree (usually a random

subset of features). Predicted TF-Target interaction confidence is reported using the RF feature importance.

With these improvements, OutPredict has been demonstrated to outperform dynGENIE3 on several time series

datasets (Cirrone et al. 2020), with the top 2% of predicted interactions on an Arabidopsis nitrogen-response

time series being significantly enriched in experimentally validated interactions (Varala et al. 2018).

Algorithms such as OutPredict or dynGENIE3 could be utilised to infer GRNs from time series datasets

detailing the transcriptomic response to pathogen infection or defence elicitors (such as Windram et al. 2012;

Lewis et al. 2015; Hickman et al. 2017; Bjornson et al. 2021). Additional relevant steady-state mutant or

overexpressor expression datasets could also be utilised to infer the GRN. Such a network could be used to

identify “hub genes” that are key regulators of the defence response.
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1.7 Sources of genetic disease resistance

Given that we have now developed a good understanding of how plants defend themselves against pathogens

(Section 1.5), at least in the model plant Arabidopsis, we must now utilise this knowledge to develop

disease-resistant cultivars. Classical breeding attempts rely on the identification of a desirable allele (e.g.

R gene variant) that occurs naturally and introgressing it into elite cultivars via traditional crossing (Zhang et

al. 2016a). This method allows alleles present in wild-relatives which may have been lost during domestication

to be re-introduced. Methods such as Quantitative Trait Loci (QTL) mapping and Genome Wide Association

Studies (GWAS) are used to identify markers associated with desirable traits to can be utilised for introgression

in a process called marker assisted selection (MAS) (Collard and Mackill 2008).

These traditional breeding methods have been responsible for massive crop improvement, however, they

rely on the presence of an allele in a population that is able to cross with a crop species and generate viable

offspring. Many generations of backcrossing are often then required to remove undesirable alleles that are in

linkage disequilibrium (LD) with an allele of interest. Several methods are available to introduce novel genetic

variation which have varying levels of precision and public acceptability such as induced mutagenesis (Stein

1922), genetic modification (GM) (Herrera-Estrella et al. 1983) and genome editing (GE) (Jinek et al. 2012).

The latter two methods allow for a reverse-genetics approach, utilising knowledge of gene function to target

specific genetic changes such as the mutation or overexpression of a GRN hub. Whereas induced mutagenesis

relies on chance events and subsequent screening for a desired phenotype, known as forward-genetics.

1.7.1 Detection of natural resistance: QTL and GWAS

QTL mapping and GWAS are two commonly used methods to identify genetic loci linked to a trait in

plant breeding. Typically, QTL mapping is performed on a bi-parental mapping population of recombinant

inbred lines (RILs). Two parent individuals which differ phenotypically for a trait of interest are selected as

population founders and are crossed, the resulting F1 and F2 progeny will then be inter-crossed, generating F3

progeny which contain different combinations of the parental alleles. F3 progeny are then selfed by single-seed

descent to generate a homozygous RIL population (around F6 to F8). Markers of genetic variation between

the two parents such as single nucleotide polymorphisms (SNPs) or restriction fragment length polymorphisms

(RFLPs) should segregate through the RIL population (Jiang 2013). Interval mapping can then be used to

identify QTL, loci that are associated with quantitative phenotypic variation in the trait (Haley and Knott

1992). QTL mapping approaches and the R/qtl R package are discussed in detail by Broman and Sen 2009.

Although QTL mapping has been instrumental in identify major disease resistance loci against many

pathogens including B. cinerea and S. sclerotiorum (Young 1996; Denby et al. 2004; Mamo et al. 2019), the
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methodology has limitations. Generation of the RIL population is time-consuming and expensive, requiring up

to eight generations of crossing and > 200 individuals. It may be difficult to detect minor effect QTLs due to

insufficient statistical power, especially when number of genetic markers or RILs are low (Hu and Xu 2008).

Also the precision of QTL detection is limited by recombination frequency, as recombination is required to

break LD between two loci. As RILs have typically only gone through a few generations of crosses, QTLs exist

in large haplotype blocks linked by LD making it challenging to identify the causative mutations underlying

the phenotype.

GWAS is typically performed using a population of more distantly related individuals that are separated by

many more generations of recombination, hence haplotype LD blocks are much smaller. As a result GWAS

has much greater precision, with markers being tightly linked to the underlying causative mutation. However,

the detection threshold of loci within GWAS is much lower than QTL mapping. Rare alleles (such as an

R-gene present in a specific wild crop relative) would be present in approximately 50% of RILs in a bi-parental

population but may be present in only 1 individual of a GWAS panel, which diminishes the statistical power to

determine any phenotypic affects of the allele. Furthermore, some GWAS loci may be missed due to not having

a marker present in the same haplotype block, hence a very high marker density is required for GWAS studies.

The use of GWAS in plant breeding has been reviewed extensively (Korte and Farlow 2013; Tibbs Cortes

et al. 2021; Demirjian et al. 2022).

1.7.2 Generating novel sources of genetic disease resistance

Despite the usefulness of marker-assisted selection of alleles identified through QTL mapping and GWAS,

these approaches still have their limitations. Both require further generations of backcrossing into an elite

cultivar which is very time-consuming. Also there is a finite amount of genetic diversity that is possible to

introduce due to the reliance on mutations arising naturally in a closely-related species that’s able to form

viable offspring with the crop species of interest. Breeders have used mutagenesis approaches to produce

random novel genetic variation since the 1920s, but GM and GE technologies enable a targeted approach to

produce novel genetic variation.

1.7.2.1 Induced mutagenesis

Induced mutagenesis either by physical or chemical methods (such as gamma-irradiation or EMS respectively)

has been heavily utilised in plant breeding, with over 2250 mutagenised cultivars having been released

(Ahloowalia et al. 2004). These methods can induce 1000s of random mutations which have unknown

consequences, plants can then be selected for a phenotype of interest. However, several generations of

either backcrossing or introgression will be required to remove deleterious mutations that have arisen from the
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mutagenesis.

“Diamant”, a gamma-irradiated barley cultivar released in 1965 had 12% yield increase and 15 cm reduced

height compared to its parent line. Over 150 elite barley cultivars have since been released that are descendants

of “Diamant” (Bouma and Ohnoutka 1991). “CM-72”, a radiation mutagenised chickpea cultivar which

displayed increased resistance to Ascochyta blight was released in the early 1980s in Pakistan (Ahsanul, Sadiq,

et al. 1983; Islam et al. 2017).

1.7.2.2 Genetic Modification (GM)

The ability to generate GM plants using Agrobacterium tumefaciens was revolutionary for our ability to study

gene function and offered great potential for crop improvement. In the late 1970s it was demonstrated

that Agrobacterium could stably incorporate a section of its Ti-plasmid DNA into a plant’s chromosome,

with the incorporated DNA referred to as transfer DNA (T-DNA) (Chilton et al. 1977). The Ti-plasmid

could then be engineered to facilitate the expression of “foreign genes” in transgenic plants (Herrera-Estrella

et al. 1983). The Cauliflower Mosiac Virus (CaMV) 35S promotor (p35S) was then widely adopted for its

ability to drive constitutive high-level expression in many plant tissues (Odell et al. 1985). Bar, a gene

from Streptomyces hygroscopicus which is able to detoxify the BASTA herbicide has been incorportated in

many engineered Ti-plasmids as a convenient selectable marker for transgenic plants (Thompson et al. 1987).

Clough and Bent 1998 developed an Arabidopsis floral-dip transformation procedure, making it very simple

to generate transgenic plants in the model species. Arabidopsis T-DNA mutant collections were released

shortly afterwards, requiring the generation of > 200, 000 transgenic lines which would have likely not been

possible without floral-dip (Alonso et al. 2003a; McElver et al. 2001). The vast majority of all functional

characterisation that was reviewed in Section 1.5 was carried out on T-DNA lines, either T-DNA mutants or

p35S overexpression lines.

Countries which have allowed the cultivation of GM crops have reaped benefits of introducing novel traits

that could never have been achieved through traditional breeding approaches. Using non-GM approaches,

alleles which can be introduced into a crop species are limited to those present within a population that can

be crossed with a crop species-of-interest (including naturally occurring alleles or radiation-induced alleles).

However GM technology allows gene transfer between more distantly related species, such as the transgenic

expression of oxalate oxidase enzymes (naturally occurring within grasses) within tomato and brassica to

detoxify a S. sclerotiorum metabolite, oxalic acid (previously discussed in Section 1.4.2.1). Genes can also be

introduced from non-plant species such as gram-positive bacterium Bacillus thuringiensis (Bt) which contains

several genes encoding insecticidal toxins. Transgenic expression of Bt toxins in plants reduces insect damage

and reduces the need for chemical insecticide sprays (Vaeck et al. 1987). Multi-site field trials in the US showed
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that Bt-maize not sprayed with insecticide had less insect damage than non-GM varieties that had upto 8

insecticide sprays (Shelton et al. 2013). Over 100 million hectares of Bt crops were grown from 1996-2015

(Brookes and Barfoot 2017). While not every genetically modified (GM) crop innovation achieves significant

success, “Golden rice” serves as a notable example. Created by incorporating two genes into the -carotene

(Vitamin A) synthesis pathway in rice, through the use of p35S and an endosperm-specific promoter (Ye

et al. 2000b). Golden rice was intended to alleviate blindness caused by vitamin A deficiency. However, due

to opposition to GM crops, it wasn’t approved until 2021 and has only been cultivated in limited pilot studies

(Wu et al. 2021a; De Steur et al. 2022).

Many GM innovations have also been developed to enhance disease-resistance in crop species, however due

to GM opposition very of these few have made it to the field. Rpi-Vnt1 is a wild potato (Solanum venturii)

NLR that provides full resistance to potato blight (Phytophthora infestans) that has been approved for use

in GM commercial potato varieties (Foster et al. 2009). NLRs (or other disease resistance alleles) from wild

relatives can be introduced via Agrobacterium transformation instead of crossing if the target gene is known,

as potentially deleterious alleles in LD with the trait of interest will not be introduced, therefore backcrossing

generations are not required to remove them. Other disease resistance alleles can only be introduced via

Agrobacterium transformation such as, alleles present in more distant species that cannot be crossed with the

species of interest (Walz et al. 2008; Horvath et al. 2012), or modified NLRs that have been engineered to

identify novel effectors (Kourelis et al. 2023).

1.7.2.3 Genome editing (GE)

Genome editing refers to highly-precise molecular tools which can be used to generate double-stranded breaks

(DSBs) at specific genomic loci. Induced DSBs are often repaired via non-homologous end joining (NHEJ),

an error-prone process which often introduces frame-shift mutation. The Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPR)-Cas9 system is highly popular for genome editing, as the site of DSB

cleavage can easily be reprogrammed using a single guide RNA (sgRNA) (Jinek et al. 2012). The potential

applications of CRISPR to plant breeding has been reviewed by Scheben et al. 2017; Zaidi et al. 2020. TALENs

(transcription activator-like effector nucleases) can also be used for GE, but use protein DNA binding domain,

which are more challenging to re-program.

GE crops are generated using CRISPR-Cas9 to introduce mutations that could occur naturally, but in a

targeted manner, and may be considered non-GM and as a result their use may not be restricted by GM

legislation. The introduction of an assembled Cas9-sgRNA ribonucleoprotein (RNP) complex into protoplasts

allows the generation of GE plants without the introduction of any foreign DNA . Although this methodology

requires extensive tissue culture and often has low editing rate (Metje-Sprink et al. 2019). Recently, Yang
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et al. 2023 developed an innovative protocol, were a wild-type scion (shoot) can be grafted onto a transgenic

rootstock expressing mobile Cas9 mRNA and mobile gRNA transcripts, that can be transported to the scion.

Seeds that are produced by the scion may contain CRISPR edits, but will be transgene-free.

Alternatively, Agrobacterium-mediated transformation could be used to generate a GM-plant that expresses

Cas9 and a sgRNA from a T-DNA loci. However, the site of the T-DNA insertion will likely not be in linkage

with the site of the edit. Therefore it is possible to backcross to a wild-type and isolate individuals which

contain an edited allele, but have lost the T-DNA insert (i.e. no longer express Cas9 or the T-DNA). Such

individuals would be considered non-GM and as such may be regulated independently from GM crops. The

UK does not allow GM crops, but has recently passed the Precision Breeding Act (2023) in England which

permits the development and marketing of GE crops (Coe and Ares 2023; Caccamo 2023). It is hoped that

with effective science communication they will be accepted by the consumer (Kato-Nitta et al. 2019).

Using this methodology, a targeted mutation can be introduced directly into an elite cultivar, it is not

necessary to search natural populations for a trait-linked allele (e.g. a QTL). Several GE crop varieties are now

being grown for commercial use, in 2019 Calyxt released the first GE crop, Calyno, a TALEN-edited soybean

variety with high oleic and low saturated fat oil content (Calyxt 2019). The next year, a CRISPR-edited

high-GABA tomato with human health benefits such as reduced hypertension was released by Sanatech seeds

in Japan (Ezura 2022; Waltz 2022).

As of yet, no gene edited crops with improved disease resistance have been released, but CRISPR-knockouts

of plant susceptibility genes in several crop species have been generated which show enchanced disease

resistance. Downy Mildew Resistant 6 (DMR6), encodes a Salicylic Acid 5-Hydroxylase which promotes

susceptibility to several biotrophic pathogens (Van Damme et al. 2008; Zhang et al. 2017d). As a result,

CRISPR knockout of DMR6 orthologues in crop species such as, banana and tomato, have been utilised to

generate varieties resistant to biotrophic pathogens (Thomazella et al. 2021; Tripathi et al. 2021). Tomato

pectin lyase and Brassica napus WRKY70 CRISPR knockout mutants have also been generated that display

increased quantitative resistance to B. cinerea and S. sclerotiorum respectively (Silva et al. 2021; Sun et

al. 2018).

A CRISPR-Cas9 induced DSB targeted to the coding regions of a gene will likely be repaired incorrectly

by NHEJ causing a frameshift mutation, however, in some cases we may wish to activate the expression of a

gene without introducing “foreign DNA” such as 35S promotor. One reason for this may be that many crop

species have large polyploid genomes with highly duplicated gene families which display functional redundancy

meaning that mutating a single gene may not be display a phenotype (Uauy et al. 2017). Lin et al. 2021
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induced in-frame 3 or 6bp deletions within miR396 recognition sites on OsGRF (rice growth regulating factor)

transcripts, causing a 5-fold increase in expression, and increased grain size. Both activating and repressive

cis-regulatory elements (CREs) within promotors can be targeted for deletion by CRISPR to fine-tune expression

in specific conditions (Tang and Zhang 2023), however this requires an in-depth knowledge of CRE function.

Lu et al. 2021 induced 911Kb inversion in rice by generating two CRISPR DSBs, swapping the promotor

regions of protoporphyrinogen IX oxidase (PPO), a gene involved in herbicide resistance and CP12 (a

functionally redundant, but highly expressed Calvin cycle gene). Non-GMO rice plants generated using this

method displayed upregualted PPO expression and herbicide resistance. This demonstrates that is possible to

induce gain-of-function mutations with CRISPR.

Additionally, it is possible to mutate the catalytic domain of Cas9 so it can no longer produced DSBs

(nuclease-dead CAS9, dCAS), but is still able to be targeted to a specific loci using sgRNAs. Transcriptional

activators can then be recruited to the dCAS via gRNA scaffolds or peptide binding sites resulting in

upregulation of a specific target, termed CRISPR activation (CRISPRa) (Selma et al. 2019; Gilbert et al. 2014).

Multiplexed CRISPRa targeting multiple genes can induce phenotypes such as early flowering (Pan et al. 2021).

However, under current regulation the use of CRISPRa would likely be treated as GM, as the dCAS T-DNA

insert is required for the transcriptional activation.

As we increase our understanding of the plant defence response within crop species, through diverse methods

of gene discovery including the inference of gene regulatory networks, CRISPR offers a tool for directly

translating knowledge into the generation of improved crop varieties. Disease resistance can be enhanced by

either inducing mutations which knockout ”susceptibility genes” such as DMR6 or BnWRKY70 or attempting

to fine-tune gene expression via the mutation of miRNA binding sites or promotor CREs.
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1.8 Project Aims

The overarching aims of this research is to identify candidate genes to target which can be utilised to

generate L. sativa cultivars with enhanced resistance to necrotrophic fungal pathogens B. cinerea and S.

sclerotiorum. Numerous high-throughput transcriptomic datasets of pathogen infection in lettuce are analysed

in order to identify these candidates such as high-density time series transcriptomics in response to infection,

transcriptomic profiling of a lettuce diversity panel and bi-parental mapping population parents after infection.

Network inference will be performed combining multiple transcriptomic datasets to predict key regulators of

the lettuce defence response. Candidate genes will be then be validated for their role in plant defence using

stable transgenic Arabidopsis or transiently infiltrated N. benthamiana leaves.

• Define L. sativa genes whose expression is associated with varying levels of susceptibility to necrotrophic

pathogens in lettuce (Chapter 2)

• Identify genetic loci associated with B. cinerea and S. sclerotiorum resistance in a biparental wild lettuce

mapping population, and predict underlying causative genes using transcriptomic approaches (Chapter

2)

• Construct a gene regulatory network integrating multiple lettuce-necrotroph transcriptomic datasets and

predict high-influence hub transcription factors, regulating the response to infection (Chapter 3)

• Validate the in planta defence functions of some predicted lettuce defence regulators (Chapter 3 and

4)
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Chapter 2

Identification of genetic loci in lettuce

mediating quantitative resistance to fungal

pathogens

2.1 Introduction

Lactuca sativa L. (lettuce) is an economically valuable leafy vegetable with production worth more than

$200 million in the UK (Department for Environment Food and Rural Affairs 2022) and $2.4 billion in the

USA (USDA-NASS, 2019). Lettuce is susceptible to a wide range of plant pathogens including the fungal

necrotrophs Botrytis cinerea Pers. and Sclerotinia sclerotiorum (Lib.) de Bary, the causal agents of grey mould

and lettuce drop, respectively. B. cinerea was ranked second for fungal pathogens of scientific and economic

importance (Dean et al. 2012) while up to 50% of lettuce yields may be lost due to S. sclerotiorum (Young

et al. 2004). Chemical control is routinely used but there is an urgent need to identify sources of host genetic

resistance given the costs of preventative pesticide sprays, the prevalence of fungicide-resistant isolates of both

pathogens in the field (Zhou et al. 2014; Rupp et al. 2016; Hou et al. 2018) and the increasing withdrawal of

approved fungicides though legislation.

Pathogens with a biotrophic lifestyle parasitize and extract nutrients from living plant tissue, whereas

necrotrophic pathogens rapidly kill their host, extracting nutrients from the dead tissue. A plant’s response

to infection varies depending on the pathogen lifestyle (Mengiste 2012). Complete disease resistance against

specific isolates of biotrophic pathogens is often seen, conferred by a single dominant host gene. Many of

these genes encode nucleotide binding leucine rich-repeat (NLR) proteins, which directly or indirectly detect

the presence of pathogen effectors (virulence factors delivered into host cells to aid infection) (Lo Presti et
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al. 2015). Similarly, resistance to host-specific necrotrophic pathogens, such as Cochliobolus carbonum, the

causal agent of northern leaf spot in maize, is controlled by single gene traits conferring toxin sensitivity on

susceptible host plants (Panaccione et al. 1992). In contrast, resistance to broad-host range necrotrophic

pathogens (of which B. cinerea and S. sclerotiorum are prime examples) is usually a quantitative trait, with a

continuum of phenotypes rather than two distinct classes of resistant and susceptible (Corwin and Kliebenstein

2017). This quantitative resistance is controlled by multiple genes with small to moderate effects (Roux et

al. 2014).

Molecular analyses, mostly in the model plant Arabidopsis, have identified numerous components of the

plant response to infection by B. cinerea (AbuQamar et al. 2017) and S. sclerotiorum (Wang et al. 2019b)

incorporating pathogen detection, signal transduction and activation of host defences. For many of these

individual components, mutants (knock-outs or overexpressors) have been used to assess their impact on

disease outcome. However, these single-gene transgenic studies are much more difficult in non-model plants

and do not help us understand the genetic variation in natural or managed populations, nor the relative

contribution different genes/loci make to overall plant resistance. Genetic loci contributing to quantitative

disease resistance (QDR) against B. cinerea have been mapped in a number of different plant species including

Arabidopsis (Denby et al. 2004; Rowe and Kliebenstein 2008; Coolen et al. 2019), tomato (Finkers et al. 2007;

Szymański et al. 2020), Brassica rapa (Zhang et al. 2016b) and Gerbera hybrida (Fu et al. 2017). Multiple

studies investigating QDR against S. sclerotiorum in B. napus, sunflower and soybean using quantitative

trait loci (QTL) mapping and genome-wide association studies (GWAS) (reviewed in Wang et al. 2019b)

have identified many loci, each with a minor effect on QDR. However, what is lacking is knowledge of

the molecular mechanisms underlying these loci. Recombination frequency within mapping populations and

linkage disequilibrium in association panels typically limit resolution of the loci. Co-localisation of genetic loci

for different traits (such as those mediating the accumulation of specific metabolites with QTL controlling

QDR against B. cinerea) can be informative in predicting causal genes or mechanisms. For example, camalexin

accumulation QTL co-localised with QTL influencing lesion size after B. cinerea infection in Arabidopsis (Rowe

and Kliebenstein 2008) and QTL in B. rapa controlling the accumulation of glucosinolates were co-localised

with B. cinerea resistance QTL (Zhang et al. 2016b). Szymański et al. 2020 combined metabolic QTL

and expression QTL with QTL mediating tomato fruit resistance to B. cinerea to predict specific flavonoids

important for host resistance.

In lettuce, QTL mapping has been used extensively to characterise dominant resistance phenotypes against

the oomycete pathogen Bremia lactucae, which causes downy mildew. More than 30 downy mildew resistance

genes have been identified (Parra et al. 2016; Parra et al. 2021). However, mapping of genetic determinants

of QDR in lettuce against B. cinerea or S. sclerotiorum is in its infancy. Recently, two QTL were reported for

field resistance to lettuce drop in the Reine des Glaces x Eruption mapping population (Mamo et al. 2019).

52



However, lettuce drop can be caused by both S. sclerotiorum and Sclerotinia minor and in this case the fields

were inoculated with S. minor, which has a different infection strategy (infection via mycelia in the soil) than

S. sclerotiorum (infection via germinating ascospores). To our knowledge no lettuce QTL have been reported

for QDR against B. cinerea or S. sclerotiorum.

Here, we demonstrate genetic variation in resistance to B. cinerea and S. sclerotiorum in a lettuce diversity

set (Walley et al. 2017) including L. sativa cultivars and wild relatives and exploit a bi-parental mapping

population to identify QTL mediating resistance to both pathogens. Transcriptome profiling of a selection

of the diversity set lines identified genes with expression correlated with disease resistance and highlighted

post-transcriptional gene regulation (in particular, gene silencing) and pathogen recognition as determinants

of resistance. Moreover, we integrated the diversity set and mapping population parent line transcriptome

data to predict causal genes underlying the QTL.

2.2 Methods

2.2.1 Lettuce lines and plant growth

The Diversity Fixed Foundation Set (DFFS) comprises 96 lettuce accessions selected from the lettuce

collection at the UK Vegetable Genebank, Wellesbourne, UK and the international Lactuca collection at the

Centre for Genetic Resources, Netherlands. The set includes 17 wild species accessions as well as a range

of cultivated varieties (Walley et al. 2017). For detached leaf inoculation assays, two lettuce seeds for each

line were sown into 90 mm x 90 mm x 100 mm plastic pots filled with well-packed Levington’s M2 growing

media (Harper Adams University) or into 56 mm x 56 mm x 50 mm plug plant cells filled with well-packed

Levington’s F2S growing media (Universities of Warwick and York). The seeds were covered with a thin layer

of vermiculite and watered frequently to ensure the growing media remained damp. Following germination,

seedlings were thinned to one per pot. Plants were grown in a glasshouse with supplemental lighting provided

for 16 h and heating set to 18◦C. Experiments were carried out at Harper Adams University (52◦46’46.02”N,

2◦25’37.68”W), University of Warwick (52◦12’37.31”N, 1◦36’0.42”W) and University of York (53◦56’44.16”N,

-1◦03’28.44”W) between 2015 and 2017. (Table 2.1).

2.2.2 Detached Leaf Infection Assays

The S. sclerotiorum isolate L6 was used in all experiments (Taylor et al. 2018a). Sclerotia and apothecia were

produced and ascospores captured onto filter paper as described by Clarkson et al. 2014. Spore suspensions

were prepared by agitating a section of filter paper in 5 mL distilled water until the water appeared cloudy.
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Inoculum Year Populations Location

Botrytis
cinerea

2015 Full diversity set and mapping population parents Harper
Adams

2016 Armenian L. serriola x L. sativa PI251246 mapping population York

2018 Selected accessions from diversity set matched to transcriptome
profiling

York

Sclerotinia
sclerotiorum

2015 Full diversity set and mapping population parents Warwick

2016 Armenian L. serriola x L. sativa PI251246 mapping population Harper
Adams

2018 Selected accessions from diversity set matched to transcriptome
profiling

York

Table 2.1: Location of detached leaf inoculation experiments

The suspension was filtered through two layers of miracloth and diluted to 5 x 105 spores per mL following

counts using a haemocytometer. B. cinerea inoculum (pepper isolate) (Denby et al. 2004) was prepared by

inoculating sterile tinned apricot halves. The inoculated apricot halves were sealed in Petri dishes and left

in the dark at 25◦C for 14 days to facilitate sporulation. Spore suspensions of B. cinerea were prepared by

washing off conidiospores in 3 mL distilled water and filtering through two layers of miracloth. The suspension

was again diluted to 5 x 105 spores per mL.

The third leaf from four-week-old lettuce plants (BBCH Stage 13 or 14 depending on the accession) was

removed and placed on 0.8% (w/v) agar in sealable propagator trays. Leaves that were damaged were

discarded. Each leaf was inoculated with a 5µL drop of either S. sclerotiorum or B. cinerea spore suspension

on either side of the mid-vein. The trays of leaves were covered to maintain humidity and placed in a controlled

environment cabinet at 22 ◦C, 80% humidity and a cycle of 12 h light: 12 h dark. Overhead photographs were

taken of each tray between 48 and 72 h post-inoculation (hpi) including a scale bar to enable measurement

of lesion area using ImageJ2 v1.51 (Rueden et al. 2017). Overlapping lesions, lesions that had spread to the

leaf edge or lesions that had failed to initiate were not measured. For assessment of the complete diversity

set one leaf (two inoculation sites) of each lettuce line was included in a single experiment, and experiments

were repeated for ten consecutive weeks. To compensate for differences between experimental replicates and

missing lesions, a Restricted Maximum Likelihood (REML) analysis was used to identify sources of variation

between square root lesion size. Means were predicted using the least-squares method.

For the assessment of lesion size coupled to gene expression, sixteen lines were used in experiments with

both pathogens, with a further 10 lines inoculated with a single pathogen (five with B. cinerea; five with S.

sclerotiorum). These lines were chosen to capture a range of susceptibility to each pathogen whilst maximising

the overlap between accessions used for each pathogen. Only L. sativa lines were selected to help ensure a
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similar level of read mapping to the reference genome across the lines. Detached leaf infection assays were

carried out using three replicate leaves of each accession for each pathogen (apart from eight varieties with

two replicates for S. sclerotiorum infection and four varieties with two replicates for B. cinerea infection) giving

114 leaves in total. Lesion size was measured at 42 hpi for S. sclerotiorum and 46 hpi for B. cinerea with

leaves harvested at 43 hpi (S. sclerotiorum) and 48 hpi (B. cinerea) for transcriptome profiling.

For assessment of lesion size in the mapping population in each replicate 120 lines (i.e. approximately half

the population) were grown to four weeks old before leaf 3 was detached and placed on agar prior to droplet

inoculation. This was repeated in a randomised design to a total of eight experiments. Mean lesion size per

line was estimated using a least squares method.

2.2.3 Polytunnel Assay

Whole-head lettuce disease assays for both B. cinerea and S. sclerotiorum were performed in duplicate at the

University of Warwick and Harper Adams University. Eighteen plants per accession (per pathogen inoculation)

were grown to 4 weeks old in the glasshouse (as above) before being transplanted to 24 cm diameter pots

in Levington’s F2S soil. Plants were placed in a blocked randomisation design within a sealed polytunnel.

Spores were collected as above in 500 mL sterile distilled water and diluted to 1 x 105 spores/mL before being

sprayed directly onto each plant using a hand-sprayer. Plants were sprayed with inoculum until saturation

and inoculum run off, and irrigated via spray irrigation from 1.5 m tall irrigators every 2 h from 6 am until

2 am the next day, for 10 min at each interval. Plants were assessed twice weekly, with the following scale:

0—no symptoms, 1—visible lesions on lower leaves, 2—visible lesions on majority of leaves, 3—severe disease

symptoms over entire plant, 4—total plant collapse. Plants were monitored to 6 weeks post-transplanting for

disease symptoms. Area under the disease progression curve (AUDPC) was calculated using the trapezoid rule

with the Agricolae R package (de Mendiburu 2021). ANOVA was used to determine significant differences in

variation followed by a Tukey HSD test to determine significant differences between varieties (p < 0.05).

2.2.4 Quantitative Trait Loci (QTL) Analysis

The RIL population of 234 F6 lines generated from crossing the Armenian L. serriola 999 and L. sativa

PI251246, including genotyping of the population and generation of a genetic map using 2677 markers,

was previously described (Han et al. 2021). QTL analysis was performed in the R/qtl package (Broman

et al. 2003). Recombination fraction was estimated using the est.rf function. The least-squares predicted

mean of square-root lesion size (mm2) was used as the phenotyping score for each RIL. calc.genoprob was

used (with an error probability of 0.001 and a step-limit of 2 cM), which utilises hidden Markov models to

estimate true underlying genotype between markers. A single QTL scan was performed, using scanone as a
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preliminary measure using Haley-Knott regression (Haley and Knott 1992), for which the significance threshold

was calculated by a permutation test of 1,000 imputations with an alpha value of 0.05. A search for epistatic

interactions between loci was conducted using scantwo with significance calculated based on a permutation

test (750 imputations). QTL above the permutation threshold for either algorithm were then fitted to the

multi-QTL model selection pipeline using makeqtl and fitqtl. Percentage variance explained statistics were

calculated by fitqtl. Once fitted, addqtl was used to search for additional QTL missed by the preliminary

scan. Peak QTL positioning was further adjusted using refineqtl. Finally, a forward/backwards selection

model was applied with stepwiseqtl to give the final QTL, with model penalties calculated at an alpha level

of 0.05 (Manichaikul et al. 2009). Haley-Knott regression (Haley and Knott 1992) was used for the model

selection stages.

Epistatic interactions between the QTL loci were passed to the stepwiseqtl algorithm, but none passed

the significance threshold. To identify confidence regions surrounding each QTL, lodint was used, a size of

1.5 Logarithm of the odds score (LOD) around each QTL peak was selected and expanded to the next marker.

Flanking markers of the 1.5 LOD confidence interval were mapped back to the L. sativa cv. Salinas v8 genome

(Reyes-Chin-Wo et al. 2017) to identify genes located within the QTL. Another R package, LinkageMapView

was used to visualise the genetic map (Ouellette et al. 2018).

2.2.5 Gene expression profiling

Leaves were infected with S. sclerotiorum (Taylor et al. 2018b) or B. cinerea as per the detached leaf assays

outlined above, and samples were harvested using a size 6 cork borer centred on the lesion. All expression

profiling experiments used B. cinerea pepper isolate (Windram et al. 2012). For S. sclerotiorum the L6 isolate

was used for the diversity set and mapping population parent expression analysis, with the P7 isolate used

for response to infection expression (mock vs. inoculated). Infected tissue was snap frozen in liquid nitrogen

before RNA extraction using Trizol (Thermo Fisher Scientific) with a lithium chloride purification. Sequencing

libraries from mRNA were prepared using the Illumina TruSeq RNA V2 kit and sequenced using a HiSeq 2500

generating 100 bp paired-end reads or HiSeq 4000 with 75 bp paired-end reads. Read quality was checked with

FastQC (Andrews et al. 2010). Sequencing reads were aligned to a combined lettuce–pathogen transcriptome

using Kallisto (Bray et al. 2016). The reference transcriptomes were obtained from Derbyshire et al. 2017;

Van Kan et al. 2017; and Reyes-Chin-Wo et al. 2017. Counts were summarised at the gene level and differential

expression analysis was performed using the Limma-Voom pipeline (Law et al. 2014) with a threshold of ≥

1.2 log2 fold change and an adjusted p < 0.05 (Benjamini and Hochberg 1995). Principal component analysis

was performed on gene counts using the prcomp function in R and Euclidean distance between samples was

used for hierarchical clustering.
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2.2.6 Lesion size-gene expression correlation

Diversity set reads aligned to lettuce genes were normalised using the trimmed mean of M-values from edgeR

(Robinson et al. 2010). Genes with low expression (under 50 counts) and transcripts with low variance (≤ 1.2

logFC between samples) were removed. Spearman correlations were calculated for the relationship between

trimmed mean of M expression values and square-root lesion size for each gene (23,111 in S. sclerotiorum

and 23,164 in B. cinerea). Correlation p-values were calculated using cor.test in R and corrected using the

Benjamini–Hochberg method (Benjamini and Hochberg 1995).

2.2.7 Gene Ontology (GO)-enrichment analysis

GO enrichment analysis was performed for genes whose expression significantly correlated with increased

pathogen resistance or susceptibility using the org.At.tair.db and clusterprofiler R packages (Wu et

al. 2021b). Arabidopsis orthologs are taken from (Reyes-Chin-Wo et al. 2017).
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2.3 Results

2.3.1 Lettuce accessions vary in lesion development after inoculation with S. sclerotiorum

or B. cinerea

A detached leaf assay was previously developed for infection of Arabidopsis by B. cinerea and shown to

be effective in quantitative assessment of lesion development and correlated with fungal growth within the

leaf (Windram et al. 2012). We had also used a similar assay to evaluate susceptibility to S. sclerotiorum

in multiple Brassica lines (Taylor et al. 2018b). We adapted these assays to measure lesion development

in lettuce after inoculation with the two closely related necrotrophic fungal pathogens (B. cinerea and S.

sclerotiorum) to assess susceptibility to disease. Using these quantitative assays, we measured lesion size in 97

lettuce accessions (96 lines comprising a Diversity Fixed Foundation set (Walley et al. 2017) plus the cultivar

Lolla Rossa) after inoculation with B. cinerea or S. sclerotiorum spores. Crucially, although these assays use

detached leaves, they use spores (ascospores of S. sclerotiorum and conidiospores of B. cinerea) to mimic

the type of infection occurring naturally. This contrasts with the commonly used S. sclerotiorum inoculation

method of mycelial plugs (Joshi et al. 2016; Barbacci et al. 2020; Chittem et al. 2020). With occasional lack

of plant growth and/or lack of infection from the droplet, the average number of lesions (and leaves) per

lettuce line inoculated with B. cinerea was 16 (eight leaves) and for S. sclerotiorum 17 (seven leaves). REML

least-squares predicted mean lesion size was calculated for each lettuce accession to account for variation

between replicate experiments.
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Figure 2.2: Variation in lesion size after inoculation with B. cinerea or S. sclerotiorum between lettuce
types. Square root lesion size in response to S. sclerotiorum (top) or B. cinerea (bottom) on detached
lettuce leaves of the Lettuce Diversity Fixed Foundation Set. Grey points show individual measured lesions,
violins show the distribution. Black points show REML predicted (accounting for random variation between
experimental replicates). Error bars indicate REML predicted standard error. Letters shown represent Tukey
HSD significance groupings (p < 0.05). n = the number of lesions measured from each type in response to
each pathogen.

60



Figure 2.3: Variation in lesion size after inoculation with Botrytis cinerea or Sclerotinia sclerotiorum in
different lettuce species. Square root lesion size 64 h after Sclerotinia sclerotiorum (left) or Botrytis cinerea
(right) inoculation of detached lettuce leaves is shown. Grey circles represent individual measured lesions,
with areas within the lines showing the distribution of data points. Black circles are the REML predicted
mean lesion size per species (correcting for random variation between experimental replicates) with error bars
showing REML predicted standard error. Letters represent Tukey post-hoc significance groupings (p < 0.05)
performed on the REML model. n is the number of lesions measured from each species.

The lettuce diversity set clearly contains genetic variation for susceptibility to B. cinerea and S. sclerotiorum,

as judged by lesion development on detached leaves (Figure 2.1). Lettuce lines exhibited significant variation

in lesion size (p < 0.001 for both pathogens), which likely reflects the ability of the pathogens to grow,

and hence the effectiveness of the plant defence response to combat infection. Lesion size varied by lettuce

type; for example, Iceberg lettuces were significantly more resistant to B. cinerea and S. sclerotiorum than

Butterhead and Cutting types (Figure 2.2). Different lettuce types have large architectural differences (Walley

et al. 2017) which alters the ability of pathogens to infect the plant in the field; for example, a more open

structure reduces moist environments for spore collection and germination. A benefit of the detached leaf

assay is that it identifies architecture-independent sources of resistance that could be deployed across multiple

lettuce types. Wild relatives of lettuce (L. virosa, L. saligna, and L. serriola) were significantly more resistant

to both S. sclerotiorum and B. cinerea than the cultivated L. sativa (Tukey HSD p < 0.05) (Figure 2.3),

suggesting that alleles conferring quantitative resistance against these fungal pathogens may have been lost

during the domestication of lettuce.

61



Figure 2.4: Correlation between lesion size 64 hours post inoculation with S. sclerotiorum and B. cinerea.
Least-squares predicted mean square root lesion size of B. cinerea (x-axis) vs. S. sclerotiorum (y-axis) on
detached lettuce leaves, where n ranges from two to 20 for each accession/pathogen combination. Linear
regression line is shown in black, with 95% confidence intervals shaded in grey.

B. cinerea and S. sclerotiorum are closely related necrotrophic fungal pathogens sharing many genes and

virulence strategies Amselem et al. 2011, although B. cinerea contains a higher number and diversity of genes

involved in secondary metabolism (e.g. the production of plant toxins). Consistent with their similarity, we

found a correlation (r= 0.47, p = 1.1E-6) across the diversity set between lesion size after inoculation with

each of the two pathogens (Figure 2.4), raising the prospect of identifying lettuce alleles conferring quantitative

resistance against both pathogens.

We performed a whole-head lettuce inoculation experiment to determine whether such an assay could be

used in a quantitative manner and if the detached leaf assay data were relevant to whole plants. Four-week-old

plants of seven lettuce accessions were sprayed with spore suspensions of S. sclerotiorum or B. cinerea and

humidity was kept high through regular mist irrigation. A disease score was captured for each plant from 14

to 49 days post inoculation, and the AUDPC was calculated to quantify disease symptoms over time. Plots

of disease score progression for each accession are shown in Figure 2.5.
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Figure 2.6: Correlation of REML predicted detached leaf assay square root lesion size (mm) with AUDPC in
whole plant inoculations of B. cinerea (left) and S. sclerotiorum (right) for seven lettuce accessions. Pearson’s
correlation coefficient (R) values and p-values are shown. All accessions are L. sativa unless otherwise indicated.

The relationship between AUDPC from the whole-head assay and lesion size in the detached leaf assay

for the seven selected lettuce accessions is shown in Figure 2.6. There is a positive trend between the two

measurements: accessions with a higher whole plant disease score (AUDPC) also had a higher detached leaf

assay lesion size in response to B. cinerea (r = 0.64, p = 0.14) and S. sclerotiorum (r = 0.61, p = 0.17).

However, neither correlation showed statistical significance. Notably, the accession with the smallest lesion

size in the detached leaf assay (L. virosa, line 96) and the accessions with the largest lesion size (Okayama

Salad, Ambassador) showed a clear difference in the whole plant assay suggesting that the detached leaf assay

phenotypes do have relevance to whole head disease progression. However, the whole plant assay appears

unable to distinguish varieties with intermediate levels of resistance. Hence, we proceeded with the detached

leaf assay as it provides quantitative measurements over a wider range of values and is carried out under more

controlled conditions.
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2.3.2 Diversity set transcriptome profiling identifies gene expression correlated to disease

progression

We selected accessions from the lettuce diversity set that exhibited a wide range of lesion size after infection

with both pathogens whilst focusing on L. sativa varieties to ease transcriptome analysis. The Armenian L.

serriola line was also included as it is a parent of a key mapping population. Despite a lower number of

replicates than in the full diversity set experiment, capturing the lesion size from the exact leaves used for

transcriptome analysis enables us to directly link gene expression and lesion size in the same leaf.

A disc of tissue around each developing lesion was sampled for RNAseq transcriptome profiling with

three biological replicates for each accession/pathogen combination. Reads were mapped to a combined

S. sclerotiorum- or B. cinerea-lettuce (L. sativa var. Salinas) transcriptome (Derbyshire et al. 2017; Van Kan

et al. 2017; Reyes-Chin-Wo et al. 2017). Approximately 25,000 lettuce genes were present in at least one

sample. As lesion size reflects pathogen growth in planta, the percentage of reads mapping to the fungal

transcriptome in each sample significantly correlated with measured lesion size (S. sclerotiorum: r = 0.69,

p = 6.3E-9; B. cinerea: r = 0.4, p = 0.0018) (Figure 2.7). Correlation is not absolute most likely due

to the fact that lesion size is a two-dimensional measurement, whereas pathogen growth will take place in

three dimensions; accordingly, correlation is weaker in B. cinerea-inoculated leaves with larger lesion sizes.

Hierarchical clustering of the normalised expression data demonstrates high similarity between the biological

replicates of each accession, with B. cinerea and S. sclerotiorum inoculated samples of an accession often also

clustering together (Figure 2.8). There is no clear grouping of the expression data by lettuce type.

Figure 2.7: Pearson’s correlation of RNAseq reads in each sample that map to fungal transcripts versus lesion
size in (A) S. sclerotiorum and (B) B. cinerea inoculated samples.
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Spearman correlations were calculated between lesion size and lettuce gene expression after both B. cinerea

and S. sclerotiorum infection for each gene detected in our transcriptome profiling. After false discovery rate

correction, 1605 and 9936 lettuce genes exhibited expression levels significantly correlated with B. cinerea and

S. sclerotiorum lesion size, respectively (p < 0.05). The difference in the number of genes showing correlation

between expression and lesion size for each pathogen infection is likely due to the timing of sampling. Disease

symptoms appear much faster following B. cinerea inoculation compared to S. sclerotiorum; hence, these

samples are at a later stage of infection and the profiling has perhaps missed the critical dynamic period of

transcriptome reprogramming.

These genes with expression correlated to lesion size are likely to include many genes where the difference in

expression between accessions is simply due to the dynamics of infection progression, rather than differences

in gene expression being a potential driver of varying lesion size. For example, a gene upregulated during

pathogen infection would likely have higher expression in a more susceptible accession simply because

the infection has progressed faster and more tissue is responding to the pathogen. In contrast, genes

downregulated during pathogen infection could have higher expression in a more resistant accession (compared

to a susceptible accession) simply because infection has progressed more slowly and less plant tissue has

responded. We therefore removed these categories of genes (upregulated genes correlated with susceptibility

and downregulated genes correlated with resistance).

To determine whether genes were up or downregulated during pathogen infection of lettuce, we used an

RNAseq dataset comparing lettuce gene expression in leaves after B. cinerea or S. sclerotiorum inoculation to

mock inoculation. Three biological replicates were harvested from leaves of the lettuce variety Saladin at 24

hpi with B. cinerea (and mock) and 42 hpi with S. sclerotiorum (and mock). A total of 8130 (4165 up/3965

down) and 5466 (3329 up/2137 down) genes were significantly differentially expressed in response to B.

cinerea and S. sclerotiorum, respectively (absolute log2 fold change ≥ 1.2 and adjusted p < 0.05). Integrating

this data with the diversity set RNAseq data and removing upregulated genes correlated with susceptibility

and downregulated genes correlated with resistance resulted in 305 and 3724 lettuce genes correlated with

resistance to B. cinerea and S. sclerotiorum, respectively, as well as 326 and 1580 correlated with susceptibility

across the different accessions. Of these, 174 genes correlated with resistance to both pathogens and 211 with

susceptibility to both pathogens.

Figure 2.9a illustrates the expression profiles for the 50 lettuce genes with the highest correlation with

resistance against S. sclerotiorum, and Figure 2.9b shows the 50 genes with the highest correlation with

susceptibility to S. sclerotiorum. The filtered lists of genes with expression significantly correlated with

resistance or susceptibility contain several genes whose Arabidopsis orthologs have a known role in defence

against B. cinerea and S. sclerotiorum, providing an initial validation of the data and indicating the ability of
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our approach to identify genes acting both positively and negatively on host immunity against these pathogens.

For example, expression of two lettuce orthologs (Lsat 1 v5 gn 2 122000 and Lsat 1 v5 gn 9 61461) of

coronatine insensitive 1 (COI1), the jasmonic acid receptor that is required for defence against B. cinerea (Feys

et al. 1994; Rowe et al. 2010), are significantly inversely correlated with S. sclerotiorum lesion size (rs = −0.67,

p = 3.8E-6; rs = −0.61, p = 2.9E-5). Two orthologs of TOPLESS (TPL) (Lsat 1 v5 gn 1 31280

and Lsat 1 v5 gn 5 63700) are significantly correlated with S. sclerotiorum resistance (rs = −0.59, p

= 8.1E-5; rs = −0.57, p = 1.01E-4, respectively). Arabidopsis triple mutants of TPL and the highly

similar TOPLESS-related proteins (TPRs) 1 and 4, tpl/tpr1/tpr4, show increased susceptibility to B. cinerea

(Harvey et al. 2020). In addition, an ortholog of MAP kinase substrate 1 (MKS1), Lsat 1 v5 gn 1 8801, has

expression correlated with S. sclerotiorum susceptibility (rs = 0.65, p = 7.3E-6) and in Arabidopsis, MSK1

is known to directly bind the key defence regulator WRKY33 with overexpression of MKS1 resulting in B.

cinerea susceptibility (Petersen et al. 2010). These examples demonstrate our ability to identify defence genes

from this dataset and increase our confidence in identifying novel lettuce defence components.
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2.3.3 GO-term analysis reveals enrichment of lettuce RNA binding proteins amongst genes

with expression correlated with S. sclerotiorum resistance

We examined the biological processes represented by genes correlated with the defence response across the

diverse lettuce accessions using GO-term enrichment. Lettuce genes have poor GO annotation; therefore, we

performed GO-term enrichment analysis using the Arabidopsis orthologs of the lettuce genes correlated with

resistance and susceptibility to S. sclerotiorum (2985 and 1254 genes respectively) (Figure 2.10. Strikingly,

amongst the GO-terms enriched in genes correlated with S. sclerotiorum resistance were multiple terms

associated with post-transcriptional RNA processing and regulation including gene silencing (GO:0016458),

RNA interference (GO:0016246), dsRNA processing (GO:0031050), RNA modification (GO:0009451),

exosome RNase complex (GO:0000178), and RNA splicing (GO: GO:0008380). Genes correlated with increased

susceptibility to S. sclerotiorum were enriched for vesicle transport and cell growth related GO-terms.

As shown above, S. sclerotiorum resistance correlated genes show a remarkable enrichment for GO-terms

involved in RNA production, processing and RNA-mediated regulation. Post-transcriptional gene regulation

via small RNAs is known to be a critical component of the host immune response and to contribute to

reciprocal host–pathogen manipulation during infection by different types of plant pathogens (Huang et

al. 2019). Seventy-two lettuce genes significantly correlated with resistance to S. sclerotiorum (p < 0.05) were

identified as orthologs of Arabidopsis genes involved in gene silencing (GO:0016458). These 72 genes include

several core components of the RNAi-mediated gene silencing pathway (Borges and Martienssen 2015) such

as Dicer-like (DCL)2, DCL3, DCL4, Argonaute 1 (AGO1) and RNA-dependent RNA polymerase 2 (RDR2).

In Arabidopsis, the gene silencing mutants dcl4-2, ago9-1, rdr1-1, rdr6-11 and rdr6-15 have been shown to

increase susceptibility to S. sclerotiorum (Cao et al. 2016a) while dcl1 increased susceptibility to B. cinerea

(Weiberg et al. 2013). Our data suggest a similar role for gene silencing in the defence response of lettuce

against these broad host range pathogens.

Pentatricopeptide Repeat (PPRs) proteins are a family of RNA-binding proteins expanded in plants and

involved in base editing and processing of organellar RNAs (Barkan and Small 2014), and their transcripts

are a major source of secondary small interfering RNAs (siRNAs) in plants (Howell et al. 2007). The lettuce

genome contains 513 putative PPRs (Reyes-Chin-Wo et al. 2017), 184 of which show correlation of expression

with lesion size in our data. Expression of 178 lettuce PPRs is correlated with increased resistance to S.

sclerotiorum (and six with increased susceptibility) suggesting a potential key role for PPRs in the lettuce

immune response. Figure 2.11 shows the expression profile of the top 20 resistance correlated PPRs.
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Figure 2.11: Expression of the top 20 pentatricopeptide repeat (PPR) genes whose expression is correlated
with resistance against S. sclerotiorum (i.e. reduced lesion size) and all 20 nucleotide binding leucine-rich
repeat (NLR) genes with expression correlated with S. sclerotiorum lesion size (12 correlated with resistance
and eight with susceptibility). The NLRs are classified as Coiled-coil (CC)-NLRs (CNLs) or Toll-interleukin-1
receptor (TIR)-NLRs (TNLs). The individual lettuce samples are ordered left to right on the basis of lesion
size after inoculation with S. sclerotiorum, with the most susceptible (largest lesion size) on the left and most
resistant (smallest lesion size) on the right. Log2 expression is indicated by the red/blue scale
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2.3.4 Multiple pathogen recognition genes have expression correlated with S. sclerotiorum

lesion size across diverse lettuce accessions

Pathogen recognition by the host plant is mediated by both cell-surface (receptor-like kinases, RLKs and

receptor-like proteins, RLPs) and intracellular (nucleotide binding site leucine-rich repeat proteins, NLRs)

proteins. Our analysis suggests both groups of receptors impact lettuce resistance to S. sclerotiorum.

Twenty-six RLKs and 14 RLPs had expression correlated with S. sclerotiorum lesion size; 12 RLKs and three

RLPs with resistance and 14 RLKs and 11 RLPs with susceptibility (Figure 2.12). Notably RLKs whose

Arabidopsis orthologs have well-established and interacting roles in necrotrophic pathogen recognition were

identified in this analysis. For example, mutants of BAK1 (BRI1-associated receptor kinase 1) show increased

susceptibility to B. cinerea (Kemmerling et al. 2007) and expression of LsBAK1 (Lsat 1 v5 gn 9 117621)

correlates with increased S. sclerotiorum resistance (rs = −0.38, p = 0.01). BAK1 directly interacts with

the flagellin-sensitive receptor FLS2 (following flg22 perception) initiating downstream defence responses (Sun

et al. 2013) and a lettuce ortholog of FLS2, Lsat 1 v5 gn 7 32940, also had expression correlated with S.

sclerotiorum resistance (rs = −0.47, p = 0.002). In contrast, BIR1 (BAK1-interacting receptor-like kinase 1),

directly interacts with BAK1 (Ma et al. 2017) and negatively regulates defence (Gao et al. 2009). Consistent

with this function, the expression of Lsat 1 v5 gn 0 1380, an ortholog of BIR1, was found to correlate with

lettuce susceptibility to S. sclerotiorum (rs = 0.69, p = 1.6E-6). Our detection of this group of interacting

known immune regulators provides confidence in our approach and suggests other RLKs identified could have

genuine impacts on S. sclerotiorum and/or B. cinerea resistance. Similarly, there is a precedent for the

involvement of RLPs in plant response to necrotrophic fungal infection with Arabidopsis RLP23 required for

proper defence against B. cinerea (Ono et al. 2020).
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Figure 2.12: Expression of the top 50 lettuce genes whose expression is correlated with S. sclerotiorum
lesion size, and which were classified as non-NLR pathogen recognition receptors (Christopoulou et
al. 2015) classification indicated in the column gene.class). This classification was based on the presence
of any combination of the following domains; leucine-rich repeats (LRR), nucleotide-binding (NB), NB
Coiled-coil type (Nc), transmembrane (TM), kinase, non-arginine-aspartate kinase (non-RD kinase) and
TOLL/interleukin-1 receptor (TIR). Additional gene nomenclature includes NcL: NC plus L domains; PkinL:
kinase plus L; RLK: receptor-like kinase; RLP receptor-like protein. The individual lettuce samples are ordered
left to right on the basis of lesion size after inoculation with S. sclerotiorum, with the most susceptible (largest
lesion size) on the left and most resistant (smallest lesion size) on the right. Log2 expression is indicated by
the red/blue scale

In total, 236 genes in the lettuce genome encode intracellular NLRs, with 47 encoding coiled-coil NLRs

(CNLs) and 187 encoding Toll/Interleukin-1 type NLRs (TNLs) (annottaions from Christopoulou et al. 2015).

Of these NLRs, 20 showed significant (p < 0.05) correlation of expression with lesion size after S. sclerotiorum

infection with expression of 12 correlating with increased resistance and eight with increased susceptibility

(Figure 2.11). As for the majority of the genes with expression correlated with lesion size, all 20 do not change

in expression in response to pathogen infection (at least from our single time point dataset), suggesting that it

is basal expression levels of these NLR genes that is impacting quantitative disease resistance to S. sclerotiorum

in lettuce.
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2.3.5 Parents of existing lettuce mapping populations show quantitative variation in

susceptibility to necrotrophic fungal pathogens

Figure 2.13: Parent lines of lettuce mapping populations differ in lesion size after inoculation with B. cinerea or
S. sclerotiorum. REML predicted square root mean lesion size of B. cinerea (top) or S. sclerotiorum (bottom)
on detached lettuce leaves of mapping population parents available from UC Davis. Lines are shown grouped
as parents of mapping populations. Multiple cases of the same line represent one set of data that is repeated
to allow comparison within a different parental pair. Error bars are REML predicted standard error, where
n is between 15 and 29. Tukey HSD p-values are shown where there is a significant difference (p < 0.05),
otherwise “ns” indicates not significant.

We screened the parents of existing lettuce mapping populations to test whether these populations would

be suitable for dissecting the mechanistic basis of quantitative variation in resistance to B. cinerea and S.

sclerotiorum. Seventeen lettuce accessions, the parents of 11 different mapping populations, were phenotyped

using the detached leaf inoculation assay with both B. cinerea and S. sclerotiorum. Of the 11 parental

combinations, two exhibited significantly different lesion size after B. cinerea inoculation, and five exhibited

significantly different lesion size after S. sclerotiorum inoculation (p < 0.05) (Figure 2.13). The parents of

two mapping populations exhibited significantly different lesion sizes in response to both pathogens. Notably,
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in the Greenlake x Diana cross, S. sclerotiorum lesions on lettuce variety Greenlake were significantly larger

than lesions on variety Diana, while B. cinerea lesions were significantly smaller, indicating that Greenlake

and Diana exhibit contrasting susceptibility to the two pathogens. The second set of parental lines, L. sativa

PI251246 and an Armenian L. serriola (Mamo et al. 2021), showed consistent responses to B. cinerea and

S. sclerotiorum with lesions caused by both pathogens larger on PI251246 than on leaves of the Armenian

L. serriola line. This mapping population was investigated further to identify genomic regions mediating this

difference in lesion development.

2.3.6 Five genomic loci mediating lettuce resistance to fungal pathogens in a detached

leaf assay

A total of 234 F6 recombinant inbred lines (RILs) resulting from the cross between the Armenian L. serriola

and PI251246 (L. sativa) were phenotyped in a replicated incomplete experimental design using both B.

cinerea and S. sclerotiorum detached leaf assays. QTL mapping identified five loci impacting lesion size

following inoculation with B. cinerea or S. sclerotiorum (Figure 2.14, Figure 2.15). Three QTL impacted the

size of S. sclerotiorum lesions and two impacted the size of B. cinerea lesions. Despite correlation between

resistance to these two pathogens across the lettuce diversity set (r= 0.47, p=1.1E-6) and the parental lines

demonstrating significant differences in response to both pathogens (p < 0.05) (Figure 2.13), QTL mediating

quantitative resistance to the two pathogens did not co-locate. This suggests five QTL exist between these two

parent lines independently contributing to disease resistance. No evidence for epistatic interactions between

the QTL loci was detected.
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Figure 2.14: Quantitative trait loci associated with reduced lesion size of B. cinerea or S.
sclerotiorum. LOD scores from ‘stepwiseqtl‘ multi-QTL selection models using the Haley-Knott algorithm,
genotyping-by-sequencing markers and predicted mean lesion size from the detached leaf assay data for
each pathogen are shown. Data relating to B. cinerea inoculation are shown in red, whereas those from
S. sclerotiorum inoculation are shown in blue. Five significant QTL (qSs5,qSs8, qSs9, qBc7 and qBc9) were
maintained in the final model after backwards elimination of insignificant loci. Boxes represent the 1.5 LOD
confidence intervals around the peak LOD of each QTL. The nine lettuce chromosomes are shown along the
x-axis.

Figure 2.15: Location of resistance QTL on the Armenian L. serriola x PI251246 marker density map.
Horizontal bars show the 1.5 LOD confidence interval of the QTL loci and the vertical bar shows the location
of the peak QTL marker

Each QTL explains between 7 and 11% of the lesion size variation (Table 2). For four of the five QTL,

the alleles conferring reduced lesion size were derived from the Armenian L. serriola parent, which showed

increased resistance to B. cinerea and S. sclerotiorum compared to the other parental line, PI251246. However,

at qSs9 (S. sclerotiorum QTL on Chromosome 9), the resistance allele originates from the susceptible parent,
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PI251246. This suggests the presence of alleles with both positive and negative effects on disease resistance,

which can be separated by recombination. RILs that contain the resistance alleles at both B. cinerea QTL or

all three S. sclerotiorum QTL have significantly reduced lesion size compared to RILs with susceptibility alleles

at the same loci (p < 0.05) (Fig 2.16).

QTL Pathogen Chr Pos (cM) pLOD Variance
exp (%)

Genetic
size (cM)

Physical
size (Mb)

#Genes #Genes
Expressed

qBc7 B. cinerea 7 148 4.1 7.29 36.5 34.9 639 313

qBc9 B. cinerea 9 6.4 6.1 10.75 15 26.7 776 415

qSs5 S.
sclerotiorum

5 101 3.4 7.02 72.7 118.4 1353 565

qSs8 S.
sclerotiorum

8 184.5 4.7 8.14 25.1 40.1 292 142

qSs9 S.
sclerotiorum

9 125.6 4.1 8.54 22.8 18.8 204 83

Table 2.2: Summary statistics for resistance quantitative trait loci (QTL) identified in the Armenian L. serriola
× PI251246 mapping population

Figure 2.16: Sqrt Restricted Maximum Likelihood (REML) lesion size of Armenian L. serriola (Arm) x PI251246
(PI) recombinant inbred lines (RILs) grouped by their genotype at identified QTL markers. B. cinerea lesion
sizes are shown in red, S. sclerotiorum are shown in blue. Letters show statistical significance groupings (Tukey
HSD p < 0.05) and the number of RILs tested is indicated for each genotype.

To define boundary markers for each QTL, confidence intervals of 1.5 LOD surrounding each QTL peak

were calculated using ‘lodint‘, which were expanded to the next marker. QTL boundary markers were mapped

onto the L. sativa cv Salinas v8 genome (Reyes-Chin-Wo et al. 2017). Predicted genes positioned between

the QTL boundary markers in the Salinas cultivar could then be identified (Table 2.2). A large variation in

QTL size (and gene number) was observed, with qSs5 the largest at 72.7 Mb and containing 1353 genes. The

smallest QTL (by gene number) is qSs9, at 22.8 Mb with the region containing 204 genes.
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2.3.7 Identification of candidate causal genes in the QTL through transcriptome profiling

We attempted to predict causal genes within the identified QTL regions using transcriptome and genome

data. Both parent lines, the Armenian L. serriola and PI251246, were included in the lettuce diversity set

whose transcriptomes were profiled 48 hpi and 43 hpi with B. cinerea and S. sclerotiorum, respectively. We

carried out a second inoculation of these parental lines and generated an additional four biological replicates

of transcriptome profiles (48 hpi after B. cinerea and 64 hpi after S. sclerotiorum inoculation). Principal

component analysis of the 28 samples (three/four replicates x two experiments x two pathogens x two lettuce

lines) demonstrates clear differences between the parental lines and similarity of the replicates within and across

experiments (Fig 2.17). Prior to any differential expression analysis, numbers of potential QTL candidate genes

could be reduced by 46–59%, by removing genes which failed to pass the low-expression filter, i.e. they had

no detectable expression after either B. cinerea or S. sclerotiorum infection (Table 2.2).

Figure 2.17: Principal Component Analysis (PCA) of PI251246 (blue) and Armenian L. serriola (pink) RNAseq
data after pathogen infection with (A) B. cinerea and (B) S. sclerotiorum. The PCA plot shows two
independent experiments: Diversity Set RNAseq (circles) and the mapping population parent repeat (triangles).
In S. sclerotiorum infected samples, there is a clear separation across PC1 between the parental lines that is
consistent across experiments. In B. cinerea infected samples, the largest separation across PC1 appears to
reflect different experiments, but each parent line clearly separates within experiment across PC2.

Differential expression analysis was carried out on each experiment/pathogen combination separately with

threshold of absolute log2 fold change ≥ 1.2 and adjusted p < 0.05 used to determine significantly differentially

expressed genes (DEGs) between the parental lines. PI251246, the more susceptible parent, was used as the

“control” in the differential expression analysis, hence upregulated genes have higher expression in the Armenian

L. serriola line (and vice versa for downregulated genes). After S. sclerotiorum inoculation, there were 1,198

DEGs (425 up/773 down) across both sets of data with 96 (24 up/72 down) of these DEGs located within
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identified resistance QTL. One hundred forty-five DEGs (58 up/87 down) were common to both B. cinerea

inoculation datasets with 10 (5 up/5 down) of these located within QTL. Ninety genes (36 up/54 down) were

differentially expressed (in the same direction) between the parent lines in both B. cinerea and S. sclerotiorum

inoculated samples, of which seven (three up/four down) are in QTL.

For the lettuce genes located within the QTL regions, we integrated the parental line transcriptome data

above with information on whether expression of the gene in the lettuce diversity set was correlated with lesion

size in response to pathogen infection to predict candidate causal genes underlying the identified resistance QTL

(Fig 2.18). This analysis highlighted a number of genes with expression patterns consistent with a potential role

in mediating fungal pathogen resistance within this mapping population; for example, Lsat 1 v5 gn 5 91640

(LsPDR12) is an ortholog of the Arabidopsis gene Pleiotropic Drug Resistance 12 (AtPDR12), known to

mediate camalexin secretion in response to B. cinerea infection (He et al. 2019). LsPDR12 is significantly

correlated with S. sclerotiorum resistance in the diversity set (rs = −0.37, p = 0.01), is upregulated in

Armenian L. serriola compared to PI251246 in both experiments and is located within the QTL qSs5 (for

which the resistance allele comes from the Armenian L. serriola parent).
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Figure 2.18: Integration of gene expression data with QTL to predict potential causal genes. The expression
of genes diferentially expressed between the mapping population parents (Armenian L. serriola, PI251246)
after S. sclerotiorum infection in two datasets (as part of the diversity set and a specifc repeat of the two
lines) and located within a QTL are shown. For all QTL, except for qSs9, the resistance allele originates in
the Armenian L. serriola line. The two columns on the left indicate genes whose expression is signifcantly
correlated with pathogen resistance or susceptibility in the lettuce diversity set (p < 0.05) (ns=no significant
correlation). Log2 expression is indicated by the red/blue scale
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Another potential candidate, Lsat 1 v5 gn 9 1180, encodes an ortholog of calmodulin-like 38 (CML38), is

located within the qBc9 QTL and is upregulated in PI251246 compared to the Armenian L. serriola, i.e. higher

expression in the susceptible parent. However, consistent with this, Arabidopsis CML38 promotes degradation

of suppressor of gene silencing 3 (SGS3) (Field et al. 2021), a lettuce ortholog of which is correlated with

resistance against S. sclerotiorum (rs = −0.65, p = 6.4E-6).

2.4 Discussion

We demonstrated that genetic variation for resistance to the fungal pathogens S. sclerotiorum and B. cinerea

exists within a lettuce diversity set comprised of both L. sativa varieties and wildtype relatives (Fig 2.1 ).

Quantitative resistance within this diversity set was assessed using a detached leaf assay. Although this does

not necessarily correlate with field resistance, it has the advantage of reliable and consistent inoculation, and

of measuring immunity in a manner that is not dependent on the overall plant architecture. In this way, we

anticipate identifying traits that could be exploited in a range of lettuce morphotypes. Crucially, we used

inocula of spore suspensions for both pathogens, which mimics the natural infection route, whereas most

publications investigating variation in resistance against S. sclerotiorum use mycelial plugs (e.g. Chittem et

al. 2020) due to the difficulties, and time taken, to produce ascospores.

We identified parents of existing lettuce mapping populations that differed in susceptibility to the two

fungal pathogens (Figure 2.13) and five QTL that impacted quantitative resistance differences between L.

sativa PI251246 and an Armenian L. serriola (Fig 2.14). For four of these QTL the resistance allele originated

in the Armenian L. serriola line. Although PI251246 was the more susceptible parent in this work, this

accession was previously shown to have lower S. sclerotiorum disease incidence, but similar disease severity to

a standard lettuce Butterhead variety, Rachel, in an inoculated glasshouse trial (Whipps et al. 2002). This

suggests that PI251246 is able to escape S. sclerotiorum (due to architecture and/or rapid bolting) but lacks

tissue resistance once infection becomes established. This is consistent with our results from detached leaf

assays and a field trial where observed resistance of PI251246 to Sclerotinia minor was attributed to rapid

bolting characteristics (Hayes et al. 2010). These architectural and rapid bolting attributes would not be

beneficial in cultivated lettuce. In contrast, the Armenian L. serriola had significantly higher resistance than

PI251246 to both S. sclerotiorum and B. cinerea in the detached leaf assay, suggesting this accession may have

beneficial traits which could be exploited in lettuce varieties with varying architectures. L. serriola is a wild

lettuce believed to be the progenitor of domesticated L. sativa (Uwimana et al. 2012). Wild relatives of crop

plants are often sources of disease resistance and in previous work with this mapping population, four QTL

conferring quantitative resistance to Verticillium dahliae race 2 have been identified (Sandoya et al. 2021)

with all four beneficial alleles from the Armenian L. serriola parent. Three of these V. dahliae QTL are on
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different chromosomes to the QTL identified here, and the fourth (on chromosome 8) is located in the middle

of the chromosome far from the qSs8 locus impacting resistance to S. sclerotiorum.

Although QTL have been identified for field resistance to S. minor (Mamo et al. 2019), to our knowledge

these are the first lettuce QTL reported for resistance against S. sclerotiorum and B. cinerea. Of the two S.

minor resistance QTL identified in repeat field experiments one slightly overlaps with qSs5 (with the other

located on chromosome 1). Multiple S. sclerotiorum resistance QTL mapping studies exist in sunflower and

Brassica napus (for example,Behla et al. 2017), as well as a small number of GWAS in soybean and B. napus,

all excellently reviewed in Wang et al. 2019b. As in our study, where the QTL explained between 5 and 10%

of the variation, published QTL have minor effects on disease resistance (less than 10%). A similar polygenic

basis for resistance has been seen against B. cinerea with QTL studies in Arabidopsis, Solanum species and

Brassica rapa and GWAS in Arabidopsis (Corwin and Kliebenstein 2017).

Although the S. sclerotiniorum isolate used here was initially obtained from field grown lettuce, our analysis

was restricted to single isolates of both pathogens. Previous studies using B. cinerea have indicated that there

is a high level of isolate-specificity to quantitative resistance loci (Zhang et al. 2016b) and data on disease

outcome using 98 B. cinerea isolates and 90 genotypes of eight plant hosts (including lettuce) demonstrated

a much greater impact on lesion size from the B. cinerea isolate (40–71%) than the host genotype (3–8%)

(Caseys et al. 2021). Similarly, in B. napus both pathotype-specific and pathotype-independent resistance

against S. sclerotiorum has been identified (Neik et al. 2017). Hence, determining whether the QTL identified

here can mediate resistance to a broad range of pathogen isolates will be critical to their value in crop

improvement.

Despite multiple QTL/GWAS analyses, relatively little is known about the molecular mechanisms driving

resistance, and the small effect of each QTL increases the complexity of the fine-mapping process. Hence, we

used transcriptome data to predict potential causal genes. We go beyond just simply comparing differential

expression of genes located within QTL in two contrasting parental lines (e.g. Qasim et al. 2020). The power

of our approach is identifying genes whose expression is correlated with resistance or susceptibility (as judged

by lesion size) across 21 different lettuce accessions (Fig 2.9). The use of multiple accessions (rather than

the commonly seen comparison of one resistant and one susceptible line, for example Zhao et al. 2009) gives

us better ability to identify expression differences genuinely contributing to disease resistance. Our analysis

identified genes where an increase in expression is correlated with smaller lesion size (resistance) or larger lesion

size (susceptibility). Although this correlation analysis (unlike expression QTL analysis) does not pinpoint the

genetic region responsible for the variation in expression, it does enable us to identify genes that impact

infection outcome (positively or negatively) but are not necessarily differentially expressed during infection and

not necessarily directly involved in the defence response (for example, genes influencing cell wall composition
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or metabolite content of leaves).

One key group of genes that we identified as highly correlated with disease resistance were those involved

in RNA-mediated post transcriptional regulation, in particular gene silencing. In well-studied plants, such

as Arabidopsis and tomato, gene silencing (via microRNAs, miRNAs, or small interfering RNAs, siRNAs) is

known to play a crucial role in the host immune response—both in regulating expression of plant genes, as

well as silencing of genes in the pathogen (Qiao et al. 2021b). Our data suggest a similar role for gene

silencing in lettuce, and the prominence of orthologs of genes known to increase susceptibility in Arabidopsis

to both S. sclerotiorum and B. cinerea provides confidence in this approach to highlight key mechanisms of

quantitative resistance. One such potential mechanism is PPR-driven silencing of pathogen virulence genes.

Increased expression of many lettuce PPR genes was correlated with decreased lesion size after pathogen

inoculation (Fig 2.11). Intriguingly PPR transcripts are a major source of secondary siRNAs in plants, whose

generation is triggered by both direct miRNA binding to specific PPR transcripts and via miRNA-mediated

generation of trans-acting siRNAs (tasiRNAs) (Howell et al. 2007). Furthermore, siRNAs derived from PRR

transcripts accumulate after Phytophthora capsici infection, can potentially target known pathogen virulence

genes, and an effector from the pathogen can suppress accumulation of these siRNAs to promote infection

(Hou et al. 2019). Arabidopsis RNA-dependent RNA polymerase 6 (RDR6) is required for generation of

siRNAs from endogenous transcripts, and rdr6 mutants show enhanced susceptibility to B. cinerea (Cai et

al. 2018). Furthermore, mutation of the Pentatricopeptide repeat protein for germination on NaCl (PGN) in

Arabidopsis led to increased susceptibility to B. cinerea (Laluk et al. 2011). Clearly, further research is needed

to determine the importance and mechanism of PPR siRNA production in lettuce, especially given that in a

comparative study across nine plant species, several new and potentially species-specific miRNAs were shown

to drive production of these siRNAs (Xia et al. 2013).

Small RNAs are also thought to play a key role in regulating expression of NLR genes, helping regulate their

expression (and hence inadvertent triggering of the defence response) in the absence of infection. NLRs are

mostly known as an integral part of effector-triggered immunity (ETI), whereby pathogen effectors are directly

or indirectly (as guards or decoys of effector targets) recognised by NLRs (Cui et al. 2015b). As such, they

have typically been associated with qualitative (all or nothing) disease resistance. Due to the lack of complete

resistance phenotypes against broad host range necrotrophic fungal pathogens and very limited number of

NLR genes shown to impact resistance, it was thought that NLR proteins and ETI are not important in

defence against these pathogens (Mengiste 2012). However, in our data expression of multiple lettuce NLRs

was shown to be correlated with resistance suggesting that, in addition to their well-known role in lettuce

resistance against biotrophic pathogens (Simko et al. 2013; Parra et al. 2016; Parra et al. 2021), NLR genes

in lettuce may play a role in quantitative resistance against B. cinerea and S. sclerotiorum. NLRs show huge

diversity both within a single genome and in populations, and a multitude of incomplete NLRs (lacking one or
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more of the canonical domains but thought to still be able to function as adapters or helpers for other NLRs)

are also found in all plants (Baggs et al. 2017). Several lettuce incomplete NLRs had expression correlated

with S. sclerotiorum lesion size (Fig 2.12) and there is a precedent for incomplete NLRs impacting resistance to

broad host range necrotrophic pathogens, with mutations in the Arabidopsis gene RLM3 (containing TIR and

nucleotide binding domains) causing increased susceptibility to these pathogens, including B. cinerea (Staal

et al. 2008). We also noted in our analysis that there were several NLRs whose increased expression was

correlated to increased susceptibility to S. sclerotiorum (Fig 2.11) suggesting that NLRs may have both a

positive and negative effect on resistance to this pathogen. Indeed, a Toll interleukin-1 receptor (TIR) type

NLR in Arabidopsis, LAZ5, has been shown to increase susceptibility to S. sclerotiorum infection, with laz5-1

mutants showing increased resistance (Barbacci et al. 2020).

Although the lettuce diversity set we used here is small compared to a collection that has been recently

genome sequenced (Wei et al. 2021), our analysis demonstrated useful genetic variation for quantitative

disease resistance, indicated crosses that could be useful in mapping this trait and identified multiple potential

mechanisms for experimental testing. It is likely that different lettuce lines harbour different quantitative

resistance mechanisms, and our gene expression correlation analysis has identified strong candidates for

experimental testing that are not obviously segregating in the Armenian L. serriola x PI251246 population.

However, combining transcriptome data from the parents and diversity set with QTL analysis has also identified

a small number of potential causal genes for the resistance QTL in this population, with the strongest candidate

being the lettuce ortholog of Arabidopsis Pleiotropic Drug Resistance 12 (AtPDR12) within the QTL qSs5 (Fig

2.18. Obviously, the molecular mechanism underlying the resistance QTL may not necessarily be regulatory

variation of a gene within the QTL itself (and hence identifiable in our analysis approach) but could be driven

by sequence variation driving changes in post-transcriptional gene regulation or protein function.

In summary, we have identified multiple potential architecture-independent resistance mechanisms that

may be successful for enhancing disease resistance in lettuce. Future work will aim to validate candidate

genes, for example via fine-mapping of QTL and/or the generation of lettuce lines with gain or loss of function

mutations/transgenes. The resistance traits could be incorporated into cultivated varieties (via marker-assisted

selection) with genome editing of validated candidate genes offering an exciting route to exploit the genetic

variation from these lettuce accessions without losing the beneficial traits stacked up in elite breeding lines.
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Chapter 3

Identification of Lactuca sativa

transcription factors impacting resistance

to Botrytis cinerea through predictive

network inference

3.1 Introduction

Botrytis cinerea is a devastating plant pathogen able to infect over 200 plant species including numerous

important crop species, costing over $10 billion per year in control attempts and crop losses. B. cinerea

can infect pre or post-harvest, and isolates have been identified which show resistance to fungicides (Rupp

et al. 2016). B. cinerea is a generalist necrotrophic pathogen, secreting a vast arsenal of phytotoxins and

cell wall degrading enzymes to induce cell death in its host (Williamson et al. 2007). Sclerotinia sclerotiorum

is another necrotrophic fungal pathogen which is closely related to B. cinerea and employs similar infection

strategies (Amselem et al. 2011). Lactuca sativa (lettuce) is a nutritionally and economically important crop

species with a global value of $US2.4 billion. Lettuce is highly susceptible to a number of plant pathogens

including the fungal pathogens, B. cinerea and S. sclerotiorum.

Arabidopsis thaliana-B. cinerea is one of the most extensively studied pathosystems in plant pathology,

providing a high-level understanding of the complex plant-pathogen interactions. Upon B. cinerea infection,

microbe-associated molecular patterns (MAMPs) or damaged associated molecular patterns (DAMPs) are

recognised by pathogen recognition receptors (PRRs), which trigger downstream signalling to activate a

defence response. For example, fungal cell wall component chitin acts as a MAMP, which is recognised
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by CERK1 (Chitin Elicitor Receptor Kinase 1) (Miya et al. 2007). Chitin-activated CERK1 phosphorylates

PBL27, which in turn initiates a MAP kinase cascade via MAPKKK5 (Shinya et al. 2014). This

recognition pathway is required for defence against multiple necrotrophic fungi including B. cinerea and

Alternaria brassicicola (Yamada et al. 2016; Liu et al. 2018). Such signalling cascades trigger large-scale

transcriptional reprogrammingchanges to combat pathogen infection. In response to B. cinerea, Arabidopsis

undergoes massive transcriptional reprogramming, differentially expressing over 9000 genes (Windram et

al. 2012). Pathogen-induced transcriptional reprogramming is significantly impacted by plant hormone

signalling networks, which themselves exhibit multiple levels of crosstalk. Two key defence hormones, jasmonic

acid (JA) and salicylic acid (SA), induce differential expression of thousands of genes in Arabidopsis (Hickman

et al. 2017; Hickman et al. 2019; Zander et al. 2020).

Generally, JA and ethylene (ET) promote defence against necrotrophic pathogens, and SA against biotrophic

pathogens, However, exogenous application of SA increases B. cinerea resistance (Ferrari et al. 2003) indicating

that effective defence requires complex interaction between hormone networks to fine-tune gene expression in

response to different pathogens based on their lifestyle. Transcription factors (TFs) are central to integrating

multiple hormone signals and fine-tuning the defence in specific scenarios (Nomoto et al. 2021; Aerts et

al. 2021; Caarls et al. 2017; Ndamukong et al. 2007; Zhang et al. 2014b; Tsuda and Somssich 2015). There

are several major TF families which coordinate these defence responses such as ERFs (Ethylene Responsive

Factors), WRKYs, MYBs, NACs (NAM-ATAF1-CUC2 family) and bHLHs (basic helix-loop-helix) (Tsuda and

Somssich 2015). Many TFs within these families, such as ERF1 (Berrocal-Lobo et al. 2002),ORA59 (ERF)(Pré

et al. 2008), WRKY33 (Birkenbihl et al. 2012; Liu et al. 2015), WRKY70/WRKY54 (Li et al. 2017), BOS1

(MYB) (Mengiste et al. 2003), MYC2 (bHLH) (Lorenzo et al. 2004) and NAC019/NAC055 (Bu et al. 2008)

have been identified as key regulators of the defence response to B. cinerea, either promoting resistance or

susceptibility to the fungus. What is not clear is how these individual TFs operate within gene regulatory

networks (GRNs) to shape the defence response against a particular pathogen, or whether orthologues of

these TFs (and/or different TFs) are important in lettuce defence against B. cinerea.

With recent advances in high-throughput sequencing and the availability of whole-transcriptome expression

data, it is possible to take a systems biology approach to identify regulators and understand the complex

GRNs in which these regulators interact. Inference of GRNs can be performed to predict key regulators,

or “hub genes”, which regulate other genes within a network. In causal network inference, nodes (genes)

are linked by directional edges and expression of the upstream gene is predicted to impact expression of the

downstream gene. This contrasts with co-expression networks where nodes are linked by an edge if they share

a similar expression profile across the input data sets, with no prediction of upstream regulation. For causal

network inference, high-resolution temporal transcriptome data is critical. We previously constructed a GRN

based on an Arabidopsis time series gene expression data set (B. cinerea- and mock-inoculated samples, 24
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time points) which identified TGA3 as a network ‘hub’ positively regulating B. cinerea resistance (Windram

et al. 2012). However, incorporating multiple complementary datasets into network inference is likely to

increase the accuracy of the resulting network model. Here, we present a high-resolution B. cinerea infection

(and mock) time-series from a lettuce cultivar (L. sativa cv. Saladin). We construct a GRN integrating

our B. cinerea-infection time-series data with three additional transcriptomic datasets from lettuce infected

with B. cinerea and S. sclerotiorum (Pink et al. 2022; Ransom et al. 2023). Together, these data provide an

unprecedented level of detail about the transcriptional defence response for a crop species, identify a core set of

genes that respond to B. cinerea and S. sclerotiorum, and generates a high-confidence GRN model underlying

the lettuce defence response. This GRN accurately predicts LsBOS1 and LsNAC53 as key regulators of defence

against B. cinerea, as well as validated downstream target genes of LsNAC53.

3.2 Methods

3.2.1 Pathogen inoculation time series experiment

Lettuce cv. Saladin was grown for 4 weeks in Levington’s M2 soil in the greenhouse at approx. 18◦C with day

length supplemented to 16 hours. The third leaf from each plant was removed and placed on 0.8% agar in 35

x 23 cm propagator trays. Leaves were inoculated with four 10µL droplets of 5× 105 mL B. cinerea ‘pepper’

isolate (Windram et al. 2012) spore suspension in 50% (w/v) potato dextrose broth (PDB), 1% (w/v) guar, or

mock inoculated with four 10µL droplets of 50% PDB, 1% guar. B. cinerea spore suspensions were prepared

as in (Pink et al. 2022). Inoculations were carried out halfway through the 16-hour light period. Lidded trays

were placed in a controlled environment chamber under 16-hour light: 8-hour dark, 22◦C at 95% humidity. A

1 cm cork borer was used to harvest a leaf disc surrounding each inoculation droplet, with the four discs from

one leaf pooled and flash-frozen in liquid nitrogen. Three leaves (each from separate plants) were harvested

for mock and B. cinerea-inoculations at each of the 14 time points: 3-hour intervals from 9 to 48 hours post

inoculation (84 samples in total).

3.2.2 Gene expression profiling

RNA was extracted using Trizol (Thermo Fisher Scientific) with a lithium chloride purification step. Sequencing

libraries were prepared using the Illumina TruSeq RNA V2 kit and sequenced on a HiSeq 3000 generating 75

bp paired-end reads at the Wellcome Trust Human Genetics Centre. Read quality was checked with FastQC

(Andrews et al. 2010). Raw reads were trimmed with trimmomatic (Bolger et al. 2014) and aligned to a

combined L. sativa cv. Saladin – B. cinerea transcriptome using STAR (Dobin et al. 2013), achieving a

median alignment of 90%. Transcript abundances were calculated with RSEM (Li and Dewey 2011). We

applied a low expression filter, keeping genes > 1 count per million in at least 3 samples. Principal component
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analysis was performed using ‘prcomp‘ R function.

3.2.3 Differential expression analysis

Pairwise differential expression analysis between mock and B. cinerea inoculated samples at each time point

was performed using the Limma-voom pipeline (Ritchie et al. 2015; Law et al. 2014). P-values for each

time point were combined using the Simes method (Simes 1986; Sarkar and Chang 1997) obtaining a single

combined p-value per gene for the time series, these were subsequently adjusted using Bonferroni-Hochberg

(BH) (Benjamini and Hochberg 1995) to account for multiple testing. Genes with a final adjusted p-value

< 0.01 were considered differentially expressed. The Time of First Differential Expression (TOFDE) was

determined by examining the pairwise time point comparisons. Genes with BH adjusted p-values < 0.01

were considered differentially expressed at a specific time point. TOFDE was determined for each gene that

exhibited differential expression across the entire time-series, by the earliest time point at which they were

identified as differentially expressed.

3.2.3.1 Re-analysis of publicly available datasets

Publicly available lettuce-defence transcriptomic datasets were downloaded from short-read archives; Fletcher

et al. 2019 (www.ncbi.nlm.nih.gov/sra/?term=PRJNA523226) and Verwaaijen et al. 2019 (ebi.ac.

uk/biostudies/arrayexpress/studies/E-MTAB-4762). Reads were trimmed with fastp (Chen et

al. 2018) and mapped to combined pathogen- L. sativa V8 transcriptomes (Reyes-Chin-Wo et al. 2017).

GCA 004359215.2 (ncbi.nlm.nih.gov/datasets/genome/GCA_004359215.2/) was used as the reference

transcriptome Bremia lactucae data and GCF 016906535.1 (ncbi.nlm.nih.gov/datasets/genome/GCF_

016906535.1/) was used for Rhizoctonia solani. Biological samples were filtered to have at least 2 million

reads mapping to the lettuce transcriptome.

3.2.4 Wigwams Modules

The Wigwams algorithm (Polanski et al. 2014) (github.com/cyversewarwick/wigwams) was used to

identify co-expressed modules within the set of DEGs common to both B. cinerea and S. sclerotiorum

infection. The following parameters were used: SizeThresholds = 30, Merging Overlap =0.82,

Merging CorrelationFilter = 0.89, Mining CorrelationNet =0.5, Merging MeanCorrelation =0.93.
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3.2.5 Functional Enrichment

Gene-ontology GO term enrichment analysis was performed using enrichGO function within the

clusterProfiler R package (Wu et al. 2021b), performed with a significance threshold of p¡0.05; p-values

were corrected for multiple testing using Bonferroni-Hochberg. Arabidopsis GO term annotation was used and

enrichment performed using the closest Arabidopsis orthologue (Reyes-Chin-Wo et al. 2017) of lettuce genes

in the test set, against a background of all Arabidopsis genes with an identified lettuce orthologue expressed

in the B. cinerea time-series.

Protein domain enrichment was performed using previously published InterProScan annotations

(Reyes-Chin-Wo et al. 2017). A hypergeometric test was performed with the phyper R function using

all genes expressed in the lettuce B. cinerea time series as the background. P-values were corrected for

multiple testing using Bonferroni-Hochberg.

3.2.6 Transcription factor binding motif enrichment

Lettuce promoter sequences 1000 bp upstream from the predicted transcription start site (TSS) were extracted

from the L. sativa cv. Saladin V8 genome (Reyes-Chin-Wo et al. 2017). The enrichment of Arabidopsis

DAP-seq transcription factor binding sites (O’Malley et al. 2016b) was tested within these lettuce promoter

sequences using SEA (Simple Enrichment Analysis) within MEME-suite (Bailey et al. 2009; Bailey and Grant

2021). Shuffled input sequences (1000 bp lettuce promoters) were used as background.

3.2.7 Gene Regulatory Network

A gene regulatory network was constructed with OutPredict (Cirrone et al. 2020) with genes differentially

expressed in both B. cinerea and S. sclerotiorum time series in the same direction used as input. 251 of

these DEGs, identified as TFs using the PlantTFDB predictor (Jin et al. 2016), were identified as potential

regulators. The GRN was trained on expression of these genes in two pathogen infection time series (B.

cinerea – this study, S. sclerotiorum – Ransom et al. 2023 and two previously published lettuce diversity panel

data sets (Pink et al. 2022). All expression data was scaled to ensure comparability between experiments.

The OutPredict random-forest model was trained with 300 estimators and a test-train split ratio of 0.15.

The model was trained on both the time series and single time point data, with the leave-out test set from

the time-series. OutPredict calculates an Importance score for the influence of each of the 251 TFs on every

non-self-target gene. The top 1% highest confidence edges were included in the final network, comprising 3,382

nodes (including 226 TFs) and 10,947 edges. Pairwise Jaccard-index (TF1-TF2 target intersection/TF1-TF2

target union) was calculated to quantify predicted target overlap of TFs.
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3.2.8 Transgenic Arabidopsis lines

The nac53-1 (SALK 009578C) Arabidopsis mutant line was obtained from NASC. Lettuce BOS1

(Lsat 1 v5 gn 6 70301) and NAC53 (Lsat 1 v5 gn 2 103381) sequences were amplified from L. sativa

cv. Saladin cDNA generated from mRNA extraction of B. cinerea infected leaf material. Primers with attB1

and attB2 extensions were used to amplify the full-length coding sequence of LsBOS1 and a truncated version

of LsNAC53 which lacked the C terminal transmembrane domain. Sequences were cloned and verified in the

pDONR-Zeo vector, before cloning into the destination vector, pB2GW7 (Karimi et al. 2002) containing a 35S

promoter. Stable Arabidopsis transformants were generated using the floral-dip method (Clough and Bent

1998). Multiple independent homozygous transformed lines were selected, and expression of the transgene

determined via qPCR of T3 homozygous plants. T3 lines were subsequently used for pathogen infection assays

and analysis of downstream target genes.

3.2.9 Arabidopsis-B. cinerea susceptibility assay

Arabidopsis-B. cinerea infection assays were performed as previously described (Windram et al. 2012). In

summary, Arabidopsis plants were grown in P24 trays on Levington’s F2+Sand soil in controlled environment

growth chambers (16 hour day length, 22◦C day and night, 60% relative humidity) for 4 weeks. A single

leaf was detached from a plant and placed in propagator trays containing a layer of 0.8% agar. Detached

leaves were inoculated with 10 µL of B. cinerea spore suspension (pepper isolate) at a concentration of 1×105

spores/mL, diluted in 50% filter-sterilised grape juice. Trays are sealed and placed back in the growth chamber

at a relative humidity of 90%. Photographs are taken of the developing lesions at 72 hpi and lesion size is

measured using ImageJ software. Statistical differences between genotypes was determined using Tukey HSD

test p < 0.05 (Tukey 1949).

3.2.10 qPCR expression analysis

Arabidopsis seedlings were grown on 1/2 strength Murashige and Skoog (MS) media agar plates for 10 days

under a 16 hour photoperiod. RNA extractions were performed from whole seedlings using Qiagen RNeasy

Plant columns, with an on-column DNase digestion step. cDNA synthesis was performed using SuperScript

III (Invitrogen), qPCRs with SYBR green. All qPCRs are performed with three technical replicates of three

biological replicates (separate seedling pools). PUX1 (At3g27310) or PP2AA3 (At1g13320) was used as an

internal control to normalise expression. Delta Ct (2−∆Ct) was used to analyse transgene expression level

relative to an endogenous gene and delta-delta Ct (2−∆∆Ct) to calculate relative expression of an endogenous

Arabidopsis gene.
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3.2.11 Data Analysis and Visualisation

Statistical analysis, data analysis and data visualisation were performed using R, unless stated otherwise.

The “Tidyverse” collection of R packages was used for all data analysis and data manipulation (Wickham

et al. 2019). Heatmap figures were visualised with ComplexHeatmap R package (Gu et al. 2016). Phylogenetic

trees were generated using MEGA X (Kumar et al. 2018) and visualised with treeio (Wang et al. 2020a) and

ggtree R packages (Yu et al. 2017).

3.3 Results

3.3.1 Shared transcriptional reprogramming in lettuce during Botrytis cinerea and

Sclerotinia sclerotiorum infection

Figure 3.1: Time series of Botrytis cinerea infection on lettuce leaves. A) 10µL droplets of a suspension of
B. cinerea spores (5 × 104 spores mL) were placed on detached leaves from 4 week old lettuce cv. Saladin
plants. Images show the same leaf every 3 hours from 9 hours post inoculation (hpi) to 48 hpi. B) A mock
inoculated leaf at 9 hpi and 48 hpi. The dashed line indicates the size of the 1 cm diameter disc used for
sampling.

We profiled the transcriptome of lettuce leaves (cv. Saladin) following inoculation with spores of Botrytis

cinerea pepper isolate (Windram et al. 2012). The third leaf from 4-week old plants was inoculated with

four droplets of 5 × 105 mL spore suspension or mock control. One cm diameter leaf discs around each

inoculation site were harvested every 3 hours between 9 and 48 hours post-inoculation (hpi) with the four

discs from one leaf pooled as one sample Figure 3.1. Three leaves were sampled at each of the 14 time

points, for both inoculated and mock, as biological replicates. Total RNA was extracted from each sample

and mRNA profiled using Illumina short read sequencing and reads mapped to a combined lettuce-B. cinerea

transcriptome. As expected, the proportion of reads mapping to the B. cinerea genome increased over time

(Figure 3.5a) although even at the later time points the vast majority of reads were mapping to lettuce

transcripts. After quantification of reads, principal component analysis of lettuce gene expression highlighted

the similarity between biological replicates and showed clear differences in lettuce gene expression as infection
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progressed (Figure 3.2). As expected, we observe diel oscillation in expression of some genes across the time

series demonstrating the need for a mock-inoculated time series as opposed to a single time point control

(Fig 3.3). Differential expression analysis was performed using limma-voom (Ritchie et al. 2015) revealing

6713 differentially expressed genes (DEGs) over the time series, 3524 up- and 3189 down-regulated ( Fig

3.4). Hence, in the hours leading up to and during initial visible lesion development, there is large-scale

transcriptional reprogramming in lettuce leaves in response to B. cinerea inoculation.

Figure 3.2: Principal component analysis of the lettuce gene expression data (TPM) demonstrates variability
between samples is reflected by time point after inoculation. Mock inoculated samples (red), early infection
time points (9 18 hpi, green), mid infection time points (21 33 hpi, blue) and late infection time points (36 48
hpi, purple) are indicated. The proportion of variance explained by the first and second principal components
is 32% and 8.5% respectively. Ellipses representing 90% confidence intervals around each group’s data points.
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Figure 3.3: Circadian Oscillation observed in Lettuce time-series. (A) Principal Component Analysis of mock
inoculated gene expression, PC1 is plotted on the x axis, PC2 is plotted on the y axis accounting for 15.6% and
10.1 % of variation respectively. Samples between 9 and 15 hours post inoculation (hpi) are coloured in red,
18 to 27 hpi samples are green, 30 to 39 hpi in blue and 42 to 48 hpi. (B) Expression of circadian regulators
in lettuce time-series, mock expression shown by circles and solid lines B. cinerea infected expression shown by
triangles and dotted lines. LsRVE8 (Lsat 1 v5 gn 2 109801), LsLHY (Lsat 1 v5 gn 3 140720), LsPRR5
(Lsat 1 v5 gn 8 4341), LsPRR7 (Lsat 1 v5 gn 2 115441), LsTOC1 (Lsat 1 v5 gn 1 14320) and LsELF3
(Lsat 1 v5 gn 6 7561).
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Figure 3.4: Volcano plots of B. cinerea vs mock inoculated at each individual time point highlighting the
scale of differential gene expression. Log2 fold change is displayed on the x axis, and -log10 transformation
of Bonferroni-Hochberg adjusted p-values (for the single time point) are shown on the y axis. Significantly
upregulated genes (B. cinerea inoculated versus mock inoculated samples) are highlighted in green, and
significantly downregulated genes in red.

Previously, we conducted an independent RNAseq time-series, capturing the transcriptome response in

lettuce to inoculation with S. sclerotiorum, a fungal pathogen closely related to B. cinerea (Ransom et

al. 2023). This analysis identified a similar number of DEGs compared to mock-inoculated controls (6446; 4346

up-regulated, 2100 down-regulated). There is a striking similarity between the transcriptional reprogramming

occurring in lettuce in response to B. cinerea and S. sclerotiorum, with 4390 DEGs common to both.

Furthermore, the changes in gene expression are overwhelmingly in the same direction (3040 DEGs upregulated

and 1322 DEGs downregulated in response to both B. cinerea and S. sclerotiorum, with only 28 genes showing

an opposite change in expression). This reveals a core set of 4362 DEGs which have the same direction of

differential expression in response to both pathogens (Figure 3.5B).
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Figure 3.5: B. cinerea infection leads to large-scale transcriptional reprogramming in lettuce. (A) The
percentage of RNAseq reads mapping to the B. cinerea transcriptome compared to the total number of
mapped reads in each times series sample. Individual data points are shown along with a smoothed regression
line and 95% confidence interval, in grey. As expected, there are no or extremely low numbers of reads
mapping to B. cinerea in the mock-inoculated samples. The proportion of reads in each sample mapping to
the B. cinerea transcriptome increased over time after inoculation, an indication of pathogen growth during
the infection. Red indicates infected samples and blue, mock. (B) Up- and down-regulated lettuce genes
following inoculation with B. cinerea (this study) and S. sclerotiorum (Ransom et al. 2023). 4362 genes are
differentially expressed after inoculation with both pathogens with the same direction of expression change.
(C) Timing of First Differential expression (TOFDE) of lettuce DEGs during B. cinerea infection, separated
into upregulated (left panel) or downregulated (right) genes. The number of DEGs with a TOFDE at each time
point is indicated. Colouring indicates whether the DEGs are upregulated, downregulated or not differentially
expressed (not DEG) in response to S. sclerotiorum infection (Ransom et al. 2023).

To determine critical periods for transcriptional reprogramming in response to these generalist necrotrophic

pathogens, we identified the time of first differential expression (TOFDE) for all lettuce DEGs during B. cinerea

infection. The early phase of transcriptional reprogramming (9-18 hpi) is dominated by upregulation of DEGs

(Figure 3.5C) with 99.6% (982/986) of these early DEGs are also upregulated in response to S. sclerotiorum,

indicating an early conserved defence response. The vast proportion of DEGs after B. cinerea inoculation
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are first differentially expressed at 21 and 24 hpi (60%: 4055/6713). The late phase of transcriptional

reprogramming (27-48 hpi) consists of more down-regulated DEGs than upregulated and has the least overlap

with genes differentially expressed during S. sclerotiorum infection (Figure 3.5C). At least part of the reduced

overlap for DEGs with later TOFDE is likely due to the slower progress of infection by S. sclerotiorum compared

to B. cinerea, with the lettuce-B. cinerea downregulated genes typically having later TOFDE and the lettuce-S.

sclerotiorum time series capturing less of the later response.

3.3.2 Conserved and species-specific defence responses in lettuce and Arabidopsis

The Arabidopsis-B. cinerea pathosystem has been extensively characterised over the last 20 years and is now

well-understood. Although lettuce (Asterid) and Arabidopsis (Rosid) are distant species (diverging approx.

125 million years ago, Zeng et al. 2017), we expect there to be similarities in defence strategies against both

B. cinerea and S. sclerotiorum, given the broad host range of these pathogens. Time-series transcriptome

profiling of the Arabidopsis defence response against B. cinerea was previously carried out using microarrays

capturing gene expression from 2 to 48 hpi Windram et al. 2012. There is overlap between the DEGs in lettuce

and Arabidopsis after B. cinerea inoculation (Fig 3.6) with approx. 30% and 43% respectively of up- and

down-regulated lettuce DEGs with their Arabidopsis orthologue differentially expressed in the same direction.

However, a significant proportion of DEGs in lettuce are orthologous to Arabidopsis DEGs with an opposite

direction of expression change, or which do not change in expression during B. cinerea infection of Arabidopsis.

This suggests that there are both conserved and species-specific aspects to the defence response.
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Figure 3.6: Species specificity of transcriptional reprogramming during B. cinerea infection. Bar chart showing
the number of lettuce genes up and downregulated after inoculation with B. cinerea. Bars are coloured by the
direction of differential expression following B. cinerea inoculation of the single closest Arabidopsis orthologue
for each lettuce DEG (Windram et al. 2012). Orthologues were as described in Reyes-Chin-Wo et al. 2017.

Many lettuce orthologues of well-characterised Arabidopsis regulators with a known role in defence against

B. cinerea were identified as DEGs in both time-series data sets (Fig 3.7), including genes involved in JA

and ET signalling (LsERF1, LsMYC2, LsWRKY33), JA and ET biosynthesis (Allene oxide synthase, LsAOS;

lipoxygenase 1, LsLOX1), SA signalling (LsWRKY54, LsWRKY70, Enhanced disease susceptibility 1, LsEDS1)

and SA biosynthesis (LsICS2). WRKY54, a known SA regulator, has two lettuce orthologues differentially

expressed, one of which is upregulated, the other downregulated. The expression profiles of these genes

also illustrate the slower progression of infection by S. sclerotiorum with changes in gene expression delayed

compared to the B. cinerea time series.

A striking species difference is expression of plant defensins (PDFs), some of which are key marker genes of

the JA-activated defence pathway in Arabidopsis Brown et al. 2003; Manners et al. 1998. AtPDF1.2 shows
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Figure 3.7: Lettuce orthologues of known Arabidopsis defence regulators are differentially expressed during
both B. cinerea and S. sclerotiorum infection. Individual data points (log2 expression) are shown along with
the mean and 95% confidence interval. Red indicates pathogen inoculated samples, blue are mock inoculated.
Lsat 1 v5 gn 3 121961 (LsERF1), Lsat 1 v5 gn 8 103681 (LsWRKY33), Lsat 1 v5 gn 6 65141
(LsMYC2), Lsat 1 v5 gn 3 26481 (LsAOS), Lsat 1 v5 gn 9 123300 (LsLOX1), Lsat 1 v5 gn 9 38680
(LsWRKY70), Lsat 1 v5 gn 2 126880 (LsWRKY54A), Lsat 1 v5 gn 0 17841 (LsDMR6)
Lsat 1 v5 gn 5 18140 (LsEDS1), Lsat 1 v5 gn 2 126920 (LsWRKY54B), Lsat 1 v5 gn 6 70301
(LsBOS1) andLsat 1 v5 gn 1 28600 (LsSOBIR1)
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dramatic upregulation in response to B. cinerea and Alternaria brassicicola infection, which is abolished in both

coi1-1 mutants and ORA59 RNAi lines Pré et al. 2008. AtPDF1.1 and AtPDF1.3 also show upregulation in

response to B. cinerea Ingle et al. 2015. We identified 13 putative PDFs in lettuce (LsPDFs), which contain

the gamma-thionin domain (Pfam PF00304) and were shorter than 150 amino acids in length. Phylogenetic

analysis of these with Arabidopsis defensins (AtPDFs), and characterised plant defensins with anti-fungal

activity from other species Lacerda et al. 2014 (Fig 3.8a) indicated the similarity of the putative lettuce

defensins to these proteins, particularly to AtPDF families 1 and 2. However, only 8 LsPDF genes had

detectable expression in leaves and none were upregulated after B. cinerea infection (Fig 3.8b). Five predicted

LsPDFs have very low levels of expression in our samples, two show constitutively high levels of expression,

and Lsat 1 v5 gn 5 70941 is downregulated after B. cinerea infection. It is possible that there is sufficient

anti-fungal activity from the defensin genes with high levels of expression or that the pathogen may be

preventing the upregulation of LsPDFs, or potentially driving reduction of Lsat 1 v5 gn 5 70941 mRNA

through effector molecules introduced into the plant.

Figure 3.8: Phylogeny and expression profile during B. cinerea infection of lettuce defensins. A) A 750
bootstrap maximum likelihood phylogenetic tree of 13 putative lettuce defensins, Arabidopsis Plant Defensins
(AtPDFs) and characterised anti fungal defensins from other species (Lacerda et al. 2014). B) B. cinerea and
mock inoculated time series expression profiles of putative LsPDFs. Only 8 of the 13 LsPDFs were detected in
at least 1 sample, only 4 of which were consistently detected across the time series. Only 1 was differentially
expressed, Lsat 1 v5 gn 5 70941, which was downregulated.

100



3.3.3 Co-expression modules highlight specific biological functions and processes during

infection

We used the Wigwams (Polanski et al. 2014) algorithm to identify non-redundant modules of lettuce genes

which are co-expressed following B. cinerea and S. sclerotiorum infection. Wigwams does not force every

gene into a module, unlike typical clustering algorithms, and evaluates each putative module for statistical

significance in an attempt to identify co-expression due to true co-regulation, rather than simply because of

the frequency of a particular expression profile. 3129 (72%) of the common 4362 DEGs were grouped into 20

co-expressed modules, with a median size of 90 genes (Fig 3.9). Two of the modules are very large (module

1 and 3), containing 942 and 527 genes respectively.

Figure 3.9: Modules of lettuce DEGs co-expressed following both B. cinerea (red) and S. sclerotiorum (blue)
infection. 3129 of the 4362 lettuce genes were differentially expressed in both the lettuce-B. cinerea and
lettuce-S. sclerotiorum time-series are included in a module, with the mean scaled log2 expression profile
(solid line) and 95% confidence interval (grey area) of the genes in each module shown. N represents the
number of genes within a module. Modules 1 – 7 contain upregulated DEGs, and modules 8 to 20 contain
downregulated DEGs (compared to mock–inoculated control in each time series).

It is clear from the expression profiles of these modules, particularly modules 1 to 7, that the lettuce response

to B. cinerea infection is faster than that to S. sclerotiorum, with a significant transcriptional shift by 21 hpi for

B. cinerea and only happening by the end of the time series (42 hpi) for S. sclerotiorum. In the B. cinerea time

series, several modules show transient upregulation of mRNA levels (e.g. modules 2 and 6) while others (e.g.

modules 1 and 7) have increased expression levels that last throughout the time series. However, expression
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of all the downregulated modules during B. cinerea infection starts to recover either immediately after 21 hpi

(e.g. modules 12 and 14) or from 39 hpi (e.g. modules 9, 15 and 19). Many of these modules show expression

profiles still decreasing in the S. sclerotiorum time series.

We tested whether these modules were enriched for specific biological functions using gene ontology (GO),

this enrichment was performed using annotations of the Arabidopsis orthologues of lettuce genes within each

module. Arabidopsis orthologues of all the lettuce genes detected in the mock or B. cinerea-inoculated time

series were used as the background set. 13 modules were significantly enriched for genes with a particular

GO term. Additionally, we performed protein domain enrichment, using Pfam and Panther annotations, again

comparing against a background set of all genes with detectable expression in either time-series.

General defence-related GO terms were enriched across multiple modules, with “response to fungus”,

“secondary metabolic processes” and “response to bacterium” being significantly over-represented in 3 modules

each (Figure 3.10). This was expected, as general responses like these are unlikely to be limited to a single

group of genes. However, we also identified GO terms enriched in a single module, suggesting that these

modules contain distinct biologically relevant groups of genes. Module-specific functions include response to

ethylene (module 1), cell death (module 3), unfolded protein binding (module 6), response to UV (module

10), pigment biosynthetic process (module 13) and chloroplast relocation (module 16).
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Figure 3.10: Modules of co-expressed lettuce genes are enriched for genes involved in different biological
processes. Selected gene ontology (GO) terms significantly enriched in modules of lettuce genes co-expressed
in response to B. cinerea and S. sclerotiorum are indicated, with colour indicating the statistical significance of
the enrichment, and the size of the circle indicating the scale of enrichment for that term. Enrichment analysis
was carried out using annotations of the Arabidopsis orthologue of each lettuce gene (where available) against
a background of Arabidopsis orthologues of all lettuce genes detected in the mock- or B. cinerea-inoculated
time series.

Module 1 is a large group of 942 genes, accounting for 21.6% of all common B. cinerea /S. sclerotiorum

DEGs and 30.0% of all DEGs assigned to a module, demonstrating that despite the integration of two

high-density time series datasets, large proportions of the transcriptome appear to change within a very short

time-frame. Enrichment for biological functions associated with JA and ET signalling (known regulators

of defence against B. cinerea in Arabidopsis) was evident. The GO terms “response to jasmonic acid”,

“jasmonic acid biosynthetic process”, “response to ethylene” and “ethylene-activated signalling pathway” as

well as AP2/ERF protein domains all show their highest levels of overrepresentation in module 1 (Fig 3.10).

Lettuce orthologues of many key Arabidopsis JA/ET biosynthetic and/or response genes are identified in

this module: 17 ERF domain TFs (including ERF1, three ERF13 orthologues and three ERF-1 orthologues),
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WRKY33, MYC2, LOX2 and EFE (ethylene forming enzyme). Downstream genes responding to JA/ET

signalling have not yet been characterised in lettuce, however the large group of genes that are co-expressed

with known JA/ET regulators and biosynthetic enzymes in module 1 may represent such genes in lettuce.

The biosynthesis of key Arabidopsis phytoalexins such as camalexin and glucosinolates is JA/ET regulated

(Hickman et al. 2017; Zhou et al. 2022) and promotes resistance to B. cinerea (Ferrari et al. 2003; Denby et

al. 2004; Kliebenstein et al. 2005) and S. sclerotiorum (Stotz et al. 2011; Zhang et al. 2015c). Module 1 shows

enrichment of cytochrome P450 protein domains as well as “glucosinolate biosynthetic process”, “isoprenoid

metabolic process” and “secondary metabolic process” GO terms. Module 1 also contains three orthologues

of PDR12, a transporter responsible for secreting camalexin in Arabidopsis (He et al. 2019). While camalexin

is a phytoalexin specific to Arabidopsis, these transporters may be secreting other anti-fungal compounds in

lettuce.

Lettuce is known to synthesise a diverse range of sesquiterpene lactones (STLs), including sulfate, oxalate

and amino acid conjugates (Yang et al., 2022) with one compound, lettucenin A, shown to have anti-fungal

activity against B. cinerea in vitro (Bennett et al. 1994; Sessa et al. 2000). Germacrene A synthase (Bennett

et al. 2002; Kwon et al. 2022), germacrene A oxidase (Nguyen et al. 2010) and costunolide synthase (Ikezawa

et al. 2011) catalyse the production of costunolide, a key precursor of STLs. Genes encoding all three of

these enzymes are in module 1 along with 37 additional cytochrome P450 encoding genes. Downstream of

costunolide, there is significant diversity in STL structures, with the biosynthetic pathways unknown. Hence

these uncharacterised P450s, co-expressed with known STL biosynthetic genes, are good candidates for roles

in the synthesis of STLs in lettuce. The presence of STL biosynthetic genes in module 1, may further suggest

STL biosynthesis in lettuce is JA/ET regulated.

In addition to the production of anti-microbial compounds, defence against B. cinerea is likely to require

detoxification of pathogen toxins, including botrydial and botcinic acid (Zhang et al. 2019). The GO terms

“Toxin catabolic process” along with Glutathione S-transferase (GST) and Aflatoxin B1 aldehyde reductase

(AFAR) protein domains are overrepresented in module 1 genes. Aflatoxin B1 a mycotoxin produced by the

saprophytic fungus Aspergillus flavus during infection of maize and peanut, is detoxified by AFAR enzymes

(Judah et al. 1993; Klich 2007). Although B. cinerea and S. sclerotiorum do not produce aflatoxin, the lettuce

AFAR-like enzymes may have roles in detoxification of other pathogen-derived metabolites, with their presence

in module 1 suggesting potential JA/ET regulation.

Module 3 (527 genes) is enriched for genes involved in pathogen perception, annotated with GO term “cell

surface receptor signalling pathway”, as well as being the only module enriched for “cell death”. Orthologues

of chitin-binding pathogen recognition receptors (PRRs) are present in module 3 such as lettuce orthologues

of chitin-elicited receptor kinase 1 (CERK1) and lysin motif (LysM) receptor kinase 4 (LYK4), both of which
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have been shown to play a role in resistance to B. cinerea in Arabidopsis (Liu et al. 2018; Cao et al. 2014). A

lettuce orthologue of SOBIR1 is also present in this module, along with orthologues of a receptor-like protein

(RLP) and SERK4/BKK1 (BAK1-LIKE 1). SOBIR1 is a PRR known to promote B. cinerea and S. sclerotiorum

resistance via recognition of elicitor peptides in coreceptor complexes with BAK1 and RLPs (Zhang et al. 2013;

Albert et al. 2015; Albert et al. 2019; Ono et al. 2020), with SERK4/BKK1 (BAK1-LIKE 1) having functional

redundancy with BAK1 (He et al. 2007; Schoonbeek et al. 2022). The presence of lettuce orthologues for these

known pathogen recognition complexes in a single module suggests co-regulation of these genes in response

to initial pathogen perception. Interestingly, a lettuce orthologue of BIR1 is also present in module 3. BIR1

negatively regulates the SOBIR1-BAK1 interaction (Liu et al. 2016; Ma et al. 2017) indicating coordinated

regulation of mechanisms to dampen plant defence responses, potentially balancing effective defence with

the physiological impact on the host plant. In the same co-expression module, we see overrepresentation of

EF-hand protein domain and the presence of 5 genes encoding calcium-dependent protein kinases (CPKs),

suggesting an important role for calcium signalling. Arabidopsis CPK mutants, cpk1-1 and cpk5/6/11, show

hyper-susceptibility to B. cinerea, with cpk5/6/11 also showing a reduced response to oligogalacturonide

DAMPs (Coca and San Segundo 2010; Gravino et al. 2015).

Module 6 is enriched for the GO term “unfolded protein response” (UPR), a response triggered by the

accumulation of misfolded proteins in the endoplasmic reticulum, inducing chaperone expression to maintain

correct protein folding (Bao and Howell 2017). UPR has been shown to promote resistance to Alternaria

alternata, a necrotrophic fungus, in Nicotiana attenuata (Xu et al. 2019). Lettuce orthologues of key chaperone

proteins including ERdj3B, CNX1 and HSP89.1 (Liu et al. 2017) are present in module 6.

Amongst the downregulated clusters, multiple photosynthesis and growth-related GO terms are significantly

enriched, indicating a switch from growth to defence during necrotrophic pathogen infection. This has been

seen in many plant defence responses to pathogens including during B. cinerea infection of Arabidopsis

(Windram et al. 2012) and includes genes involved in chlorophyll synthesis (module 13), chloroplast localization

(module 16) and photosynthesis reactions (module 20). Module 10 was significantly enriched for the GO term

“brassinosteroid (BR) mediated signalling pathway”, containing orthologues of the BR receptor, BR insensitive

1 (BRI1) and a downstream signalling kinase, BR signalling kinase 2 (BSK2) (Tang et al. 2008). BRI1 is also

a co-receptor of BAK1, and BR signalling inhibits BAK1-mediated immune signalling (Albrecht et al. 2012;

Belkhadir et al. 2012), however, several BSKs have now been shown to interact with PRRs and promote B.

cinerea resistance (Majhi et al. 2019; Majhi et al. 2021).
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Figure 3.11: Enrichment of Arabidopsis DAP-seq DNA binding motifs in 1 Kb promoters of lettuce DEGs.
Columns indicate individual motifs, which are named according to the binding TF and grouped by their
respective TF family. This heatmap shows 109/265 enriched motifs. We selected motifs which were either in
the top 6 enriched motifs in a module, the top 4 enriched motifs which are unique to a single module or in the
top 3 enriched motifs for an individual TF family. Rows represent the time series modules. Colour indicates the
significance of the enrichment (log10 transformation of the adjusted p-value) for a specific motif in a specific
module, with white = non-significant (ns) enrichment. Significant enrichment is defined as p adjust < 0.05
and enrichment ratio > 2. “Motif Specificity” is indicated in four classes, corresponding to the number of
modules a motif is enriched in.

3.3.4 Conserved transcription factor DNA-binding motifs in gene modules

We would expect genes within a module with statistically significant co-expression to be coregulated. We

therefore, tested for enrichment of known DNA-binding motifs in the promoters of the lettuce DEGs in each

module. DNA sequence 1 Kb upstream from the transcriptional start site of all module genes was used as the

putative promoter regions, and Arabidopsis DNA affinity purification sequencing (DAP-seq) data (O’Malley

et al. 2016b) used as the set of DNA binding motifs. Although this dataset characterises DNA binding motifs

in Arabidopsis, not lettuce, we expect DNA-binding motifs to be conserved across species, and there is limited

research on lettuce-specific DNA binding motifs.

265 unique DAP-seq motifs were significantly enriched in the promoters of at least 1 module, using shuffled

promoter sequences as the comparator (adjusted p < 0.05 and enrichment ratio > 2). Every module had

DAP-seq DNA binding motifs significantly enriched in its gene promoters. Fig 3.11 shows a subset of the

enriched motifs: the 6 most significantly enriched motifs for each module, the top 4 significantly enriched

motifs which are unique to a module and the top 3 enriched motifs corresponding to an individual TF family.

This includes 109 of the 265 significantly enriched DAP-seq motifs. Fig 3.11 clearly shows that the ERF TFs

are a dominant TF family, with many ERF DNA-binding motifs significantly enriched across both upregulated
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and downregulated modules. 17/20 modules were enriched for at least 1 ERF binding motif. In contrast,

WRKY DNA-binding motifs showed enrichment in either a single or two modules (mostly in modules 1 and

2). As seen in Fig 3.10, module 1 is enriched for DEGs involved in phytohormone responses (JA, SA and ET)

and here we see that it is also enriched in DNA-binding motifs of TFs known to mediate these responses. The

DNA-binding motif of ERF1, a key regulator of the ET/JA response, is enriched in module 1 (271 input/94

shuffled). The DNA binding motif of WRKY33, another key JA regulator, is specifically enriched in module

1 (215 input/95 shuffled) as is the WRKY50 motif (140 input/ 53 shuffled). WRKY50 is known to bind

the PR1 promoter, activating SA-responsive gene expression in an NPR1-independent manner (Hussain et

al. 2018; Johnson et al. 2003). Lettuce orthologues of ERF1 and WRKY33 were also identified within module

1. This data indicates that we are able to identify DNA-binding motif elements which are highly conserved

from Arabidopsis to lettuce and are likely facilitating differential gene expression in response to necrotrophic

fungal infection.

3.3.5 A causal gene regulatory network predicts key transcriptional regulators of the lettuce

response to B. cinerea and S. sclerotiorum infection

Co-expressed modules and promoter analysis above can predict regulatory interactions for experimental

testing, however, the accuracy and confidence of regulatory predictions can be strengthened by the inclusion

of additional data sets, and using network inference rather than single module approaches. To this end, we

constructed a gene regulatory network (GRN) using four independent datasets: the time series data from

lettuce inoculated with B. cinerea, the time series data from lettuce inoculated with S. sclerotiorum (Ransom

et al. 2023) and single time point expression data from 21 diverse lettuce accessions following B. cinerea

and S. sclerotiorum inoculation (Pink et al. 2022). We used the random forest OutPredict algorithm (Cirrone

et al. 2020) to construct the GRN with the 4362 DEGs common to the B. cinerea and S. sclerotiorum infection

time series as the input genes. This includes 251 genes which were designated as TFs and hence are potential

regulators of all other input genes. OutPredict tests potential regulator (in this case TF) expression profiles

as predictors of the expression of all other input genes and outputs the likelihood of each TF influencing

expression of each gene across all datasets.
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Figure 3.12: Inferred Lettuce-necrotroph gene regulatory network constructed from top 1% of high confidence
TF-gene regulatory interactions. The network contains 3382 nodes (genes), 10947 regulatory edges and
including 226 regulator nodes which have outdegrees (transcription factors). The size of nodes are scaled
based on the number of outdegrees, providing a visual representation of the extent of regulatory influence
each transcription factor possesses within the network.

The final GRN was constructed using the top 1% highest confidence TF-gene interactions and consisted of

3,382 genes (including 226 TFs) and 10,947 regulatory edges. Figure 3.12 shows the inferred lettuce-necrotroph

GRN has a scale-free topology, which is common in biological networks, showing a small number of nodes

”Hub genes” with a large influence on the network. The majority of TFs in the final network have a small

influence on the expression of other genes in the network with 99 TFs (44%) having < 10 predicted targets

and 159 TFs (70%) < 40 predicted targets. However, about a third of the TFs (hub genes) are predicted

to have a very large influence on transcriptional reprogramming in response to necrotrophic fungal infection;

33 TFs (15%) have between 40 and 100 predicted targets and 34 TFs (15%) have ≥ 100 predicted targets

(Figure 3.13, Table 3.1).
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Table 3.1: List of hub genes (≥ 40 Outdegrees) in the lettuce-necrotroph

gene regulatory network.

Hub Outdegrees Arabidopsis Ortholog Symbol

Lsat 1 v5 gn 9 111840 840 salt tolerance zinc finger STZ

Lsat 1 v5 gn 4 63220 475 SCARECROW-like 13 SCL13

Lsat 1 v5 gn 3 120520 378 myb domain protein 15 MYB15

Lsat 1 v5 gn 8 103681 348 WRKY DNA-binding protein 33 WRKY33

Lsat 1 v5 gn 3 99620 276 myb domain protein 16 MYB16

Lsat 1 v5 gn 3 90920 268 heat shock factor 4 HSF4

Lsat 1 v5 gn 7 6501 264 B-box type zinc finger protein with CCT domain BBX15

Lsat 1 v5 gn 4 164440 257 WRKY DNA-binding protein 7 WRKY7

Lsat 1 v5 gn 3 121961 256 ethylene response factor 1 ERF1

Lsat 1 v5 gn 4 46601 250 ethylene-responsive element binding factor 13 ERF13

Lsat 1 v5 gn 4 61461 217 WRKY family transcription factor WRKY6

Lsat 1 v5 gn 8 16081 211 C2H2-type zinc finger family protein AT2G28710

Lsat 1 v5 gn 2 126380 208 WRKY DNA-binding protein 55 WRKY55

Lsat 1 v5 gn 6 92840 208 ethylene responsive element binding factor 1 ERF-1

Lsat 1 v5 gn 3 78100 198 GRAS family transcription factor AT5G66770

Lsat 1 v5 gn 5 182281 197 ethylene response factor 98 ERF98

Lsat 1 v5 gn 7 85360 197 salt tolerance zinc finger STZ

Lsat 1 v5 gn 2 103381 185 NAC domain containing protein 53 NAC053

Lsat 1 v5 gn 5 44521 183 homeobox protein 6 HB6

Lsat 1 v5 gn 4 1201 175 WRKY DNA-binding protein 75 WRKY75

Lsat 1 v5 gn 7 36701 163 bHLH DNA-binding family protein AT5G56960

Lsat 1 v5 gn 5 48440 162 CAM binding transcription factor CAMTA3

Lsat 1 v5 gn 5 164460 153 homeobox from Arabidopsis thaliana HAT14

Lsat 1 v5 gn 9 14580 145 WRKY DNA-binding protein 33 WRKY33

Lsat 1 v5 gn 5 157880 131 bZIP transcription factor family protein BZIP17

Lsat 1 v5 gn 4 176860 129 NAC domain transcriptional regulator superfamily protein ATAF1

Lsat 1 v5 gn 4 64660 124 TCP family transcription factor AT5G23280

Lsat 1 v5 gn 6 58420 121 bHLH DNA-binding superfamily protein AT5G48560

Lsat 1 v5 gn 5 134441 120 Homeobox-leucine zipper family protein ATHB-15

Lsat 1 v5 gn 9 28700 118 zinc finger (C2H2 type, AN1-like) family protein AT2G41835

Lsat 1 v5 gn 3 31320 108 WRKY DNA-binding protein 75 WRKY75

Lsat 1 v5 gn 7 15520 107 WRKY DNA-binding protein 31 WRKY31

Lsat 1 v5 gn 2 69481 106 GRAS family transcription factor family protein GAI

Lsat 1 v5 gn 9 8501 105 myb domain protein 14 MYB14

Lsat 1 v5 gn 3 31741 99 NAC domain containing protein 83 NAC083

Lsat 1 v5 gn 6 65141 98 bHLH DNA-binding family protein MYC2

Lsat 1 v5 gn 6 92940 90 ethylene responsive element binding factor 1 ERF-1

Lsat 1 v5 gn 4 65921 86 GBF’s pro-rich region-interacting factor 1 GPRI1

Lsat 1 v5 gn 9 19740 86 zinc finger (CCCH-type) family protein AT5G58620

Lsat 1 v5 gn 2 3181 82 basic region/leucine zipper motif 60 BZIP60

Continued on next page
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Table 3.1 – continued from previous page

Hub Outdegrees Arabidopsis Ortholog Symbol

Lsat 1 v5 gn 4 51301 78 ethylene responsive element binding factor 2 ERF2

Lsat 1 v5 gn 4 165921 74 heat shock factor 4 HSF4

Lsat 1 v5 gn 7 35740 70 ethylene-responsive element binding factor 13 ERF13

Lsat 1 v5 gn 1 5340 65 ethylene response factor 110 ERF110

Lsat 1 v5 gn 6 56420 63 NAC domain transcriptional superfamily protein ATAF2

Lsat 1 v5 gn 2 126880 62 WRKY DNA-binding protein 54 WRKY54

Lsat 1 v5 gn 8 147781 60 WRKY DNA-binding protein 75 WRKY75

Lsat 1 v5 gn 2 117620 59 C2H2-type zinc finger family protein AT2G28710

Lsat 1 v5 gn 9 38680 59 WRKY DNA-binding protein 70 WRKY70

Lsat 1 v5 gn 3 51140 58 Duplicated homeodomain-like superfamily protein FLP

Lsat 1 v5 gn 3 139241 57 WRKY DNA-binding protein 46 WRKY46

Lsat 1 v5 gn 6 107660 57 beta HLH protein 93 bHLH093

Lsat 1 v5 gn 1 46781 56 Integrase-type DNA-binding superfamily protein TINY2

Lsat 1 v5 gn 9 41960 56 ethylene response factor 110 ERF110

Lsat 1 v5 gn 5 61301 54 Homeodomain-like superfamily protein AT2G38250

Lsat 1 v5 gn 3 44100 53 GATA transcription factor 5 GATA5

Lsat 1 v5 gn 3 73641 50 nucleic acid binding;zinc ion binding;DNA binding NERD

Lsat 1 v5 gn 4 65140 50 myb-like HTH transcriptional regulator family protein AT2G01060

Lsat 1 v5 gn 6 70301 47 myb domain protein 108 MYB108

Lsat 1 v5 gn 7 60801 47 WRKY DNA-binding protein 50 WRKY50

Lsat 1 v5 gn 4 176301 46 BEL1-like homeodomain 2 BLH2

Lsat 1 v5 gn 5 175300 46 LOB domain-containing protein 15 LBD15

Lsat 1 v5 gn 8 48640 44 WRKY DNA-binding protein 3 WRKY3

Lsat 1 v5 gn 6 62960 42 GATA transcription factor 1 GATA1

Lsat 1 v5 gn 1 22221 41 WRKY DNA-binding protein 15 WRKY15

Lsat 1 v5 gn 1 27140 40 myb domain protein 98 MYB98

Lsat 1 v5 gn 3 59241 40 B-box type zinc finger protein with CCT domain BBX15
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Figure 3.13: Characteristics of the gene regulatory network predicted to mediate the lettuce transcriptional
response to B. cinerea and S. sclerotiorum infection. A) The distribution of transcription factor outdegree (i.e.
number of downstream target genes); B) Empirical Cumulative Distribution Function (ECDF) of transcription
factors outdegree, showing the proportion of transcription factors with > X outdegrees. Known regulators
mentioned in the text are highlighted; C) The distribution of indegrees for each target gene in the network
(i.e. the number of transcription factors predicted to regulate a gene); D) ECDF of node indegree, showing
the proportion of genes in the network with > X indegrees.

The lettuce TFs predicted to have large numbers of downstream target genes include genes orthologous to

Arabidopsis TFs known to impact defence against B. cinerea, such as WRKY33 (348 predicted targets)(Zheng

et al. 2006), ERF1 (256 predicted targets)(Berrocal-Lobo et al. 2002), CAMTA3/SR1 (162 predicted

targets)(Galon et al. 2008), MYC2 (98 predicted targets)(Lorenzo et al. 2004) and MYB108/BOS1 (48

predicted targets)(Mengiste et al. 2003; Cui et al. 2022)(Figure 3.13B). The prediction by the GRN of

these known defence regulators having a significant impact on transcriptional reprogramming during pathogen

infection, increases our confidence in the GRN to predict other (as yet unknown) regulators of the lettuce

defence response against these two pathogens.

Analysis of the network node indegree distribution reveals that over a quarter of the genes in the network

are predicted to be regulated by a single TF, however 2492 (74%) of the network genes are predicted to

have multiple regulators (Figure 3.13C, D). Given this, we examined the extent to which TFs have shared
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downstream target genes by calculating the pairwise Jaccard Index (a measure of overlap) between predicted

targets of the 67 hub TFs (≥ 40 outdegrees). This highlights five groups (A-E) of hub TFs which share

predicted target genes (Figure 3.14). Each group contains TFs that are differentially expressed in the same

direction during infection, with the exception of a single TF in group B and four TFs in group C. Group A

contains only four TFs, all WRKY TFs, three of which are in module 2, and with a large overlap in predicted

target genes with each other and almost no overlap in target genes with other hub TFs. LsWRKY54 and

LsWRKY70 have a pairwise Jaccard index of 0.55, the highest overlap of any hub pair. Both these TFs are

orthologues of key SA regulators, WRKY70 and WRKY54 (Zhang et al. 2010; Li et al. 2004), suggesting the

presence of a distinct network for SA signalling.

Figure 3.14: Pairwise similarity of predicted target genes of lettuce GRN TF hubs. The heatmap shows the
pairwise Jaccard Index (proportion of overlap) of the predicted targets of all lettuce hub TFs (40 predicted
targets). Rows and columns are clustered on Euclidian distance. Row and column annotations indicate the
TF family and time-series module of each hub gene, as well as the direction of differential expression of the
hub gene following infection by B. cinerea or S. sclerotiorum.

Apart from this group of WRKY TFs, the other groups of TFs with shared predicted target genes in the

network contain TFs from different families. Group C is the largest but there is very little overlap between

the target genes of each hub. Group D is dominated by TFs from module 1, with 6 ERF family TFs including

orthologues of ERF1, ERF-1 and ERF13. This group also contains three WRKY TFs and two MYBs. Group

E contains three additional WRKY TFs along with a NAC TF. This analysis therefore highlights the ability of

the GRN to make distinct predictions for different members of the same TF family.
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To assess the biological relevance of the specific predictions of target genes for a TF hub, we tested for GO

term enrichment (using the Arabidopsis orthologues) in the genes uniquely predicted to be regulated by a TF

hub, against a background of the genes expressed in the lettuce B. cinerea time series. 255 GO terms were

significantly enriched in the unique targets of at least 1 hub, and 48 (out of all 226) lettuce TFs had at least

1 enriched GO term in their unique GRN predicted targets. “Defence response to fungus” was significantly

enriched in the targets of 26 TFs. Enrichment of selected GO terms and the corresponding 39 lettuce hubs is

shown in Figure 3.15.

Figure 3.15: GO-term enrichment in GRN-predicted targets of Lettuce TFs. We perform GO-term enrichement
using Arabidopsis orthologs of the GRN-predicted target genes for each lettuce hub-gene. We have selected 29
key GO-terms for the heatmap, and shown all 39 lettuce hubs whose targets are significantly enriched (p-adjust
< 0.01) for at least 1 of the selected GO-terms. Colour of the point represents the statistical significance
of the enriched (−log10 transformed adjusted p-value), with red dots showing higher significance. Size of
the point represents the “GeneRatio”, number of predicted targets whose closest Arabidopsis orthologue is
attributed with the GO-term as a proportion of the total number of predicted targets.

We also see lettuce GRN hub targets being functionally enriched for GO terms that match the known

function of Arabidopsis orthologues. For example, ERF1 is well-established as a key regulator of ethylene and

jasmonate signalling in response to necrotrophic fungi (Berrocal-Lobo et al. 2002). The lettuce orthologue

of ERF1, Lsat 1 v5 gn 3 121961 is a large network hub, and its target genes are significantly enriched for

“response to jasmonic acid” and “response to ethylene” GO terms. WRKY70 is a key activator of the SA
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defence response (Zhang et al. 2010; Li et al. 2004). Its lettuce orthologue, Lsat 1 v5 gn 9 38680, has

unique target genes (with an Arabidopsis orthologue) enriched for “response to salicylic acid” and “response

to oomycetes”.

Lsat 1 v5 gn 2 103381 (LsNAC53) is a large GRN hub with unique target genes enriched for ”cell death”

and “ubiquitin-protein transferase activity”, the only hub enriched for this term. LsNAC53 is a putative

orthologue of AtNAC53 (also known as AtNTL4, NAC with transmembrane motif 1-like 4). AtNAC53 has

been shown to regulate proteasome stress redundantly with its close homolog, NAC078 (Gladman et al. 2016).

In addition, AtNAC53 is known to promote cell death and reactive oxygen species (ROS) production during

drought stress, through directly activating expression of reactive burst oxidase homolog (RBOH)-encoding

genes (Lee et al. 2012). In the GRN, a lettuce orthologue of RBOHD (Lsat 1 v5 gn 5 9460) is a predicted

target gene of LsNAC53. LsNAC53 and LsRBOHD show very similar expression patterns in both the B. cinerea

and S. sclerotiorum inoculation time series (Figure 3.16) as well as correlation of expression with LsNAC53

in the lettuce diversity panel transcriptome data, particularly after S. sclerotiorum infection (R = 0.94).

Orthologues of two other genes associated with cell death in Arabidopsis (Necrotic spotted lesions 1 and 2,

NSL1 and NSL2)(Noutoshi et al. 2006; Morita-Yamamuro et al. 2005) are also predicted targets of LsNAC53

in the GRN and show a similar tight co-expression pattern with LsNAC53.
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Figure 3.16: Expression profiles of the transcription factors LsNAC53 and LsBHLH and their predicted
downstream targets in the gene regulatory network. The expression of LsNAC53 and its predicted targets
LsRBOHD, LsNSL1 and LsNSL2 in lettuce following inoculation with B. cinerea (this study) and S. sclerotiorum
(Ransom et al. 2023)(A) and the expression of the target genes compared to LsNAC53 expression across 21
different lettuce accessions after pathogen inoculation (Pink et al. 2022) (B). C) and D) show the expression
profiles of LsBHLH and its predicted target genes (LsFPS1, LsGAS1, LsGAS2, LsGAO, LsCOS1) in the same
data sets. R indicates the Pearson coefficient of correlation between expression of each target gene and its
respective predicted regulator.

As mentioned above, lettuce synthesises a diverse range of sesquiterpene lactones (STLs), at least one of

which has anti-fungal activity against B. cinerea in vitro (Bennett et al. 1994; Sessa et al. 2000). In the
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Figure 3.17: Distribution of TF-target co-expression in unseen datasets (Verwaaijen et al. 2019; Fletcher
et al. 2019) grouped by the Importance percentile in our lettuce-necrotroph gene regulatory network. These
interactions were then categorised into six percentile groups: 0-25%, 25-50%, 50-75%, 75-95%, 95-99%, and
99-100%. Violin plots illustrate the spread and density of the co-expression correlations within each group,
with the top 1% of edges displaying the highest co-expression correlation, indicating a stronger regulatory
association in the unseen datasets. Letters represent Tukey HSD statistical significance groupings (p < 0.05).

GRN, multiple STL biosynthetic enzyme-encoding genes are predicted to be regulated by a single lettuce

β-helix-loop-helix TF (LsBHLH). These include genes encoding: a Farnesyl diphosphate synthase (LsFPS1),

Germacrene A synthase (LsGAS), Germacrene A oxidase (LsGAO) and costunolide synthase (LsCOS). The

expression profiles of LsBHLH and these predicted downstream targets are shown in Fig 3.16. This network

prediction may not only identify a key transcriptional regulator of these specialised biosynthetic genes but also

identify additional enzymes involved in the synthesis of this diverse family of compounds.

These examples highlight the ability of the lettuce GRN to not only predict TF hubs that impact disease

resistance and associate these hubs with functional defence processes, but also to predict specific TF-target

gene regulation that appears biologically relevant.
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3.3.6 Validation of GRN edges on unseen lettuce-defence datasets

In addition, we tested the ability of our lettuce B. cinerea/S. sclerotiorum GRN to predict regulatory interactions

in additional lettuce defence-related transcriptome datasets that were not used to build our GRN. We chose

two publicly available data sets: i) lettuce leaves inoculated with the soil-borne fungus Rhizoctonia solani

(Verwaaijen et al. 2019) and ii) oomycete Bremia lactucae (Fletcher et al. 2019). The raw reads were

downloaded from relevant short-read archives and re-analysed and mapped to the lettuce v8 transcriptome and

the pairwise co-expression correlation in these datasets of each TF-target gene edge in the initial OutPredict

GRN (i.e. no threshold on edge importance) was calculated (1,094,611 edges). This analysis demonstrated

that the top 1% of edges in our GRN had the highest correlation of TF-target gene expression in the new data

sets with the median R value at 0.75 (compared to -0.04 for the 25% lowest confidence edges), Fig 3.17. This

demonstrates that the highest confidence edges of our GRN perform well in predicting expression of targets

in unseen defence-related datasets.

3.3.7 Opposing functions of BOS1 in lettuce and Arabidopsis

We selected two hub TF genes from the network for functional testing: Lsat 1 v5 gn 6 70301 (LsBOS1)

with is orthologous to Arabidopsis BOS1, and LsNAC53 highlighted above. The Arabidopsis BOS1 gene

encodes a MYB transcription factor (MYB108) that is upregulated during infection of Arabidopsis by B.

cinerea (Windram et al. 2012; Mengiste et al. 2003). Despite the upregulation of this gene during infection,

in Arabidopsis BOS1 has been shown to promote susceptibility to B. cinerea (Cui et al. 2022). Although a

cotton orthologue of BOS1 (GhMYB108) has been demonstrated to increase resistance to both B. cinerea

and Verticillium dahliae (Cheng et al. 2016). The two putative lettuce orthologues of Arabidopsis BOS1

(Lsat 1 v5 gn 6 70301 and Lsat 1 v5 gn 6 117600) were significantly upregulated in response to both B.

cinerea and S. sclerotiorum infection in lettuce (Figure 3.18). Furthermore, both were hub genes in the

GRN predicted to regulate 48 (Lsat 1 v5 gn 6 70301) and 39 (Lsat 1 v5 gn 6 70301) downstream target

genes. To test whether the function of BOS1 is conserved between Arabidopsis and lettuce, we generated

transgenic Arabidopsis lines constitutively expressing Lsat 1 v5 gn 6 70301 (named LsBOS1 and selected

due to the greater number of downstream target genes) under control of the 35S promoter. Two independent

p35S::LsBOS1 homozygous lines were selected from T2 lines showing Mendelian inheritance of the T-DNA

selectable marker and were shown to express LsBOS1 (Figure 3.18). Both lines show increased resistance to B.

cinerea with statistically significant reduced lesion size compared to wildtype Arabidopsis (Figure 3.19). This

suggests that this LsBOS1 is acting as a positive regulator of plant defence against B. cinerea, in contrast

to the Arabidopsis BOS1 which promotes susceptibility to this pathogen, although consistent with cotton

GhMYB108. Despite these opposing functions in defence, the altered disease resistance in these transgenic

Arabidopsis lines demonstrates successful prediction of defence regulators by the OutPredict GRN.
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Figure 3.18: (A) A 3000 bootstrap maximum likelihood phylogenetic tree of Arabidopsis MYB subgroup 20
(MYB2, MYB62, MYB78, MYB108 (BOS1), MYB112 and MYB116), their predicted lettuce orthologues
(Reyes-Chin-Wo et al. 2017), a cotton orthologue GhMYB108 ( Genbank : ALL53614.1) and MYB124 (FLP)
as an outgroup. (B) B. cinerea (top panels) and S. sclerotiorum (bottom time series log2 expression (TPM)
profiles of lettuce BOS1 orthologues (Lsat 1 v5 gn 6 70301 and Lsat 1 v5 gn 6 117600), with pathogen
inoculated expression profiles shown in red, and mock inoculated expression shown in blue. Shaded region
shows 95% confidence intervals.(C) Expression of the LsBOS1 gene ( Lsat 1 v5 gn 6 70301 ) normalised to
the AtPUX1 housekeeping gene in Col-0 wildtype Arabidopsis and two independent lines of Col-0 expressing
LsBOS1 under control of the 35s promoter. Tissue was collected from pooled samples of 10 day old Arabidopsis
seedlings with 3 technical replicates.
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Figure 3.19: LsBOS1 acts as a positive regulator of B. cinerea resistance. (A) Representative images of Col-0
and two independent p35S::LsBOS1 transgenic lines (1-7-9 and 2-8-8) 72 hours post inoculation with B.
cinerea “pepper” spores. Both transgenic lines exhibit stunted growth. (B) Quantification of (A) showing the
square-root area of necrotrophic lesion, individual data points as well median (in box plot) and distributions.
Letters represent statistical significance groupings – Tukey HSD p < 0.05. N represents the number of lesions
measured per genotype.

3.3.8 LsNAC53: GRN-identification of a novel defence regulator

As outlined above, LsNAC53 is a putative orthologue of AtNAC53 (also known as AtNTL4). AtNAC53

regulates proteasome stress (redundantly with NAC078 (Gladman et al. 2016)) and ROS production/cell

death during drought stress, via RBOH gene expression (Lee et al. 2012). In addition to the conserved DNA

binding domain both AtNAC53 and LsNAC53 have a C-terminal transmembrane domain, which in Arabidopsis

has been shown to tether the TF to the plasma membrane (Kim et al. 2010). This prevents nuclear localisation

and activity of AtNAC53 until the DNA binding domain is cleaved in response to drought, enabling it to move

to the nucleus and activate gene expression.

Given the ROS/cell death promoting function of AtNAC53, we hypothesised that this TF would negatively

impact plant resistance to necrotrophic fungal pathogens, despite expression of both AtNAC53 and LsNAC53
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being upregulated following infection with B. cinerea (Windram et al. 2012, Fig 3.16A) and, for LsNAC53, S.

sclerotiorum (Ransom et al. 2023). We obtained seed of the previously characterised AtNAC53 T-DNA mutant,

nac53-1/ntl4-1 (Lee et al. 2012), and tested the susceptibility of this mutant line to B. cinerea using our

detached leaf assay. Compared to wildtype Col-0 Arabidopsis, the nac53-1 mutant showed increased resistance

(smaller lesion size) (Figure 3.20A), suggesting AtNAC53 does indeed function as a negative regulator of B.

cinerea defence.

Figure 3.20: LsNAC53∆C functionally complements nac53-1 as a negative regulator of B. cinerea defence. (A)
Lesion size after B. cinerea inoculation of detached leaves, 72 hours post inoculation. Arabidopsis genotypes are
wildtype Col-0, nac53-1 mutants, and constitutively expressed LsNAC53 (lacking the transmembrane domain)
p35S::LsNAC53∆C in both Col-0 and nac53-1 backgrounds. Individual lesion sizes as well as the median
and distribution of data points are shown. N = number of lesions measured, and letters indicate statistically
significant groupings (Tukey HSD p < 0.05). B) Expression of Arabidopsis genes RBOHA, RBOHD and NSL1
in wildtype Col-0, nac53-1 mutant and transgenic Arabidopsis nac53-1 mutants expressing truncated LsNAC53
under control of the 35s promoter (nac53-1/p35S::LsNAC53∆C). Tissue was collected from non-stressed
10-day seedlings grown on 1/2 strength Murashige and Skoog (MS) media agar plates. Three technical
replicates of three biological replicates are shown with expression normalised to that of AtPUX1 and shown
relative to expression in nac53-1. letters indicate statistically significant groupings (Tukey HSD p < 0.05).

To determine whether LsNAC53 is also a negative regulator of defence against B. cinerea, we

generated transgenic Arabidopsis lines constitutively expressing LsNAC53 without the transmembrane domain

(p35S::LsNAC53∆C) in both wildtype Col-0 and nac53-1 mutant backgrounds. Two independent homozygous
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lines were selected in each genetic background which show similar levels of LsNAC53 expression (Fig 3.21).

Figure 3.21: A) Expression of the LsNAC53 gene (normalised to the AtPUX1 housekeeping gene) in Col-0
wildtype Arabidopsis and two independent lines of Col-0 expressing LsNAC53∆C under control of the 35s
promoter. Both lines show a similar level of LsNAC53 expression. B) Expression of the LsNAC53 gene
and endogenous AtNAC53 (normalised to the AtPP2AA3 housekeeping gene) in Col-0 wildtype Arabidopsis,
one line of Col 0 expressing LsNAC53∆C under control of the 35s promoter, the nac53-1 mutant and two
independent lines expressing p35s::LsNAC53∆C in the mutant background. Endogenous AtNAC53 expression
is as expected in the wildtype and mutant lines and does not change in the presence of LsNAC53. All transgenic
lines expressing LsNAC53 have a similar level of expression. Samples are pooled 10 day old Arabidopsis
seedlings. C) The domain structure of NAC53, showing the N-terminal NAC DNA binding domain and the
C-terminal transmembrane domain, which prevents nuclear localisation. The truncation of LsNAC53∆C is
shown compared to the Arabidopsis truncated version used in Lee et al. 2012

Col-0/p35S::LsNAC53∆C lines show no gain-of-function phenotype, with B. cinerea lesion size very similar

to that of the wildtype Col-0. However, both independent nac53-1/p35S::LsNAC53∆C lines have significantly

larger B. cinerea lesions than nac53-1 (Fig 3.20A), demonstrating that constitutive expression of LsNAC53∆C

can functionally complement the lack of AtNAC53. This suggests that LsNAC53 is a functional orthologue of

AtNAC53, and also acts as a negative regulator of B. cinerea defence.

As outlined above, AtNAC53 activates expression of the RBOH genes A, C and E (Lee et al. 2012) and

in the GRN, LsNAC53 is predicted to regulate LsRBOHD, NSL1 and NSL2 (Fig 3.16A). Analysis of gene

expression in these transgenic Arabidopsis lines under non-stressed conditions demonstrated that constitutive

LsNAC53 expression activates expression of two Arabidopsis RBOH genes (A and D) as well as Arabidopsis

NSL1 expression (Figure 3.20B). However, LsNAC53∆C did not impact the expression of RBOH B, C, E or

F in non-stressed conditions (Fig 3.22). As seen before, the nac53-1 mutant did not reduce expression of

these genes under non-stressed conditions, but clear induction of expression was seen in the presence of the
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truncated LsNAC53, validating these GRN predictions.

Figure 3.22: Relative expression of Arabidopsis genes RBOHB, RBOHC, RBOHE, RBOHF in wildtype Col-0,
nac53-1 mutant and transgenic Arabidopsis nac53-1 mutants expressing truncated LsNAC53 under control
of the 35S promoter (nac53-1/ p35S::LsNAC53∆C). Three technical replicates of three biological replicates
are shown with expression normalised to that of AtPUX1 and shown relative to expression in nac53-1. No
statistical difference was observed based on the threshold of Tukey’s HSD p < 0.05 and fold change > 1.5 or
fold change < 0.667 ( equivalent downregulated fc).

3.4 Discussion

Here we present a high-density time series transcriptome dataset capturing gene expression after B. cinerea

and mock inoculation of lettuce leaves. Comparing the response to a similar time series dataset following

S. sclerotiorum infection, revealed a core set of 4362 lettuce genes that change in expression (in the same

direction) in response to infection by both pathogens. An earlier lettuce -B. cinerea RNAseq dataset was

published with just three time points (12, 24 and 48 hours post inoculation), identifying 1, 139 and 4598

DEGs at each respective time point (De Cremer et al. 2013). In contrast, the time series presented in this

paper has 14 time points, one every 3 hours, and has captured significant gene expression changes from 9
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hpi. As seen during B. cinerea infection of Arabidopsis (Windram et al. 2012) the majority of gene expression

changes occur before significant growth of the pathogen (Fig 3.5) or lesion development (Fig 3.1). A significant

proportion of the lettuce genes differentially expressed in response to B. cinerea are orthologous to DEGs in

Arabidopsis (Fig 3.6) although there are some clear differences. Plant defensins play a major role in Arabidopsis

defence against B. cinerea with several dramatically upregulated during infection (Windram et al. 2012; Ingle

et al. 2015), but in lettuce these genes are generally not changing in expression with one member of the family

downregulated (Fig 3.8). In addition, the Arabidopsis BOS1 TF is a negative regulator of defence against B.

cinerea (Cui et al. 2022) whereas the lettuce gene (when expressed in Arabidopsis) appears to be a positive

regulator (Fig 3.19). Interestingly the cotton orthologue of BOS1 (GhMYB108) is a positive regulator of

resistance to Verticillium dahlia and B. cinerea (Cheng et al. 2016). These examples show the importance

and value of analysing defence responses (even to the same pathogen) in different species.

The high resolution of our time series data provides insight into the timing and sequence of pathogen-induced

transcriptional reprogramming. We used Wigwams (Polanski et al. 2014) to identify modules of genes that are

co-expressed in response to B. cinerea and S. sclerotiorum to reduce the complexity of the data and identify

groups of genes with a shared function that are similarly regulated. This did highlight known defence responses

(such as JA and ET signalling, receptor signalling) as well as lettuce-specific processes such as the synthesis of

sesquiterpene lactones. However, some of these modules are very large. We still observe the majority of DEGs

changing in expression during a short window (21-24 hpi) and finer time points in this region could help in

separating gene expression profiles (and biological processes) further. However, unlike application of hormones

or defence elicitors (Hickman et al. 2017; Bjornson et al. 2021) where responses occur within minutes, the

requirement for spore germination and growth of the pathogen, and the impact of the environment on this,

means the first transcriptional responses can only be detected hours after inoculation and timing can vary

between experiments making it hard to accurately predict the critical window for analysing more time points.

However, the availability of high-resolution time series data enables the inference of a causal GRN model of

the regulatory events underlying transcriptional reprogramming during infection. The power of such network

inference is increased with the availability of two such time series (lettuce inoculated with B. cinerea and S.

sclerotiorum). Furthermore, the ability of the OutPredict algorithm to combine time series and static (single

time point) data meant that we could also incorporate transcriptome data from 21 different lettuce accessions

after infection with B. cinerea and S. sclerotiorum (Pink et al. 2022). Time series data provides information

on the relative timing of a TF and target gene, whereas the diversity set data provides an independent set of

data highlighting correlation in expression between the TF and target genes. Combining these different types

of data has likely increased the power of OutPredict and the accuracy of the resulting GRN.
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The GRN we have generated (using the top 1% high confidence edges) not only predicts key regulators but is

also able to predict downstream target genes of these regulators. Our confidence in the network model comes

from i) the identification as hubs of orthologues of known Arabidopsis TFs that impact B. cinerea disease

resistance (Fig 3.13B); ii) the demonstration that LsBOS1 and LsNAC3 impact resistance to B. cinerea when

expressed in Arabidopsis (Fig 3.19, 3.20); and iii) LsNAC53 is able to upregulate orthologues of its predicted

target genes when expressed in Arabidopsis (Fig 3.16, 3.20). This GRN will advance our understanding of

the transcriptional defence response in lettuce by identifying key regulators for experimental testing (with the

resulting data able to be used to improve the model), and highlighting the network topology, network motifs

and cross-talk between different signalling pathways that is driving the ultimate defence response. Future

work will aim at validating the GRN in lettuce and developing GRN models with the ability to simulate the

impacts of network perturbation not just on expression of GRN genes, but on disease resistance against these

important pathogens.
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Chapter 4

Functional in planta validation of predicted

Lactuca sativa necrotroph defence

regulators

4.1 Introduction

Botrytis cinerea, a devastating necrotrophic plant pathogen is able to infect over 200 species including

crop species such as strawberry, grape, tomato and lettuce which causes up to $10 billion per year in crop

losses and control strategies (Williamson et al. 2007; Dean et al. 2012). Rupp et al. 2016 identified B. cinerea

strains with resistance alleles to multiple fungicides which are used to control infection, suggesting that genetic

sources of resistance may be required for sustainable crop protection. Whilst no alleles which provide complete

resistance to B. cinerea have been identified, many small-medium effect quantitative trait loci (QTL) have

been identified in Arabidopsis (Denby et al. 2004) and a range of crop species (Finkers et al. 2007; Zhang

et al. 2016b; Fu et al. 2017; Szymański et al. 2020; Pink et al. 2022). For most of these loci, the underlying

causative genes are unknown, hence time-consuming introgression is required to introduce the resistance allele

into an elite cultivar. In addition, undesirable traits encoded by neighbouring genes may also be introduced

(linkage drag).

Instead, targeted activation or mutation of a single gene of interest offers a more precise method to introduce

a disease resistance allele. Resistant germplasm can be generated faster, as backcrossing is not required as

there is no linkage drag. However, this methodology requires the ability to; i) identify candidate defence

regulators ii) characterise the in planta defence function of candidates - ideally in a high-throughput manner

and iii) introduce targeted loss-of-function and/or gain-of-function mutation within the species of interest.
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This work will focus on i) and ii).

Selecting orthologues of known Arabidopsis defence genes is a common approach for identifying candidate

genes (Tripathi et al. 2021; Cao et al. 2019). However, there is no guarantee that gene function will be

conserved. In Pink et al. 2023, we demonstrated only two family 1 plant defensins were detectable after

B. cinerea infection in lettuce and none were upregulated despite being key components of the Arabidopsis

JA-response (Thomma et al. 2002). Transcriptomic analysis can be used to highlight genes responding to

pathogen infection, however due to the sheer number of genes, it is often still orthologues of known regulators

which are selected as candidates (Sun et al. 2018; Wang et al. 2017b). Network modelling approaches can be

used for candidate prioritisation (Thompson et al. 2015; Mercatelli et al. 2020). Wan et al. 2021 generated

a co-expression network from B. cinerea-infected time-course RNA-seq of Vitus vinifera (grape) and Vitus

amurensis (wild grape), from which VaWRKY10 was identified as a defence regulator. While co-expression

networks are useful tools to identify modules with highly-correlated expression profiles, they do not infer causal

or directed regulatory edges.

In Pink et al. 2023 we use a machine learning approach to model transcriptional regulation across multiple

temporal and steady-state lettuce necrotrophic infection RNAseq datasets. A causal gene regulatory network

(GRN) with directed edges was then constructed from the top 1% of high-confidence interactions, identifying

hub genes that are predicted to have a large effect on necrotroph-induced transcriptional reprogramming in

lettuce. Additionally in Pink et al. 2022, we perform transcriptomic analysis and S. sclerotiorum disease

susceptibility assessment of 21 diverse lettuce accessions. This enabled the identification of genes whose

expression did not change in response to infection, but increased expression is correlated with increased or

decreased S. sclerotiorum resistance, termed “resistance correlated” or “susceptibility correlated” respectively.

Both GRN hubs and S. sclerotiorum resistance/susceptibility correlated genes represent candidate lettuce genes

that could be used for functional testing.

Ideally, functional testing would be performed in stable lettuce overexpression or knockout lines. However,

the generation of such lines requires labour-intensive and time-consuming tissue culture, reducing the number

of genes that we’re able to functionally validate. Arabidopsis transformation can be performed without the

need for tissue culture (Clough and Bent 1998), allowing homozygous plants expressing a lettuce candidate

gene to be generated within 9 months. The speed of gene testing can be further increased by using transient

Agrobacterium tumefaciens infiltration (as previously demonstrated for P. syringae phenotyping by Buscaill

et al. 2021), eliminating the need to generate homozygous lines. All these approaches use a gain-of-function

approach to study gene function. In some cases, it may be desirable to investigate loss-of-function, particularly

if the introduction of gene-edited plants is the end goal (Zaidi et al. 2020). Although loss-of-function testing

can be more challenging, as it must be performed in species of interest and functional redundancies may

126



mask the phenotype (Uauy et al. 2017). Virus-induced gene silencing (VIGS) offers a transient solution to

loss-of-function gene testing, but requires efficient Agrobacterium transformation in the crop species of interest

(Robertson 2004; Liu et al. 2020).

In previous work we have characterised two lettuce GRN hubs (LsBOS1 and LsNAC53), demonstrating

that both regulate B. cinerea defence in transgenic Arabidopsis lines (Pink et al. 2023). In this work we

will use stable lettuce overexpressor lines, stable transgenic Arabidopsis and transiently infiltrated Nicotiana

benthamiana to characterise the B. cinerea defence function of 6 predicted GRN hubs (identified in Pink

et al. 2023) and 4 S. sclerotiorum resistance correlated genes (identified in Pink et al. 2022).

4.2 Methods

4.2.1 Transgenic Plant Lines and Cloning

LsERF1 (Lsat 1 v5 gn 3 121961) was cloned into p35S expression vector pGWB611 (Nakamura et

al. 2010) by Dr Elspeth Ransom. Stable PI251246/p35s::LsERF1 lettuce transgenic lines were previously

generated by the UC Davis Genome Centre (Ransom et al. 2023). Arabidopsis mutant lines wrky7-1

(GK 356A10) and drb2-1 (GK 348A09) were obtained from NASC (Alonso et al. 2003a; Rosso et al. 2003). Prof

Nicole Clay (Yale) kindly sent us myb15-1 (SALK 151976) and myb15-1/p35S::AtMYB15 #1 lines (Chezem

et al. 2017).

LsMYB15 (Lsat 1 v5 gn 3 120520), LsWRKY7A (Lsat 1 v5 gn 4 164440) and LsWRKY7B

(Lsat 1 v5 gn 4 127960) open reading frames (ORFs) were amplified from L. sativa cv. Saladin cDNA.

Gene-specific primers with attB1 and attB2 extensions were used to generate PCR fragments that could be

cloned into pDONR-zeo (Table 4.1). pDONR entry clones were verified by sequencing. In addition LsBZIP60

(Lsat 1 v5 gn 2 3181), LsBZIP17 (Lsat 1 v5 gn 5 157880), LsDRB2 (Lsat 1 v5 gn 9 69201), LsDRB4

(Lsat 1 v5 gn 1 56161), LsRDM1 (Lsat 1 v5 gn 8 21341) and LsSGS3 (Lsat 1 v5 gn 5 78841) ORFs

were synthesised and cloned in pDONR221 by Invitrogen GeneArt. LsBZIP60 was synthesised as its predicted

IRE1 spliced isoform (LsBZIP60s), with a 23nt deletion at positions 605-627 (Fig 4.14). LsBZIP17 was

synthesised in a truncated form, position 1 - 1092, removing the C-terminal transmembrane domain hence

LsBZIP17∆C. LsDRB2, LsDRB4, LsRDM1 and LsSGS3 were all synthesised with the addition of a HA-tag

at the C-terminus.
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pDONR vectors were then recombined with pB2GW7, a p35S expression vector with a BASTA selectable

marker (Karimi et al. 2002; Odell et al. 1985). Floral dip transformation was carried out with LsMYB15,

LsWRKY7A, LsWRKY7B, LsBZIP17∆C and LsBZIP60s in both Col-0 WT and T-DNA mutant backgrounds

(Clough and Bent 1998). T1 transgenic plants were grown on BASTA-treated soil. T2 plants were tested

for 3:1 Mendelian segregation on 1/2 strength Murashige and Skoog (MS) plates supplemented with BASTA

(Murashige and Skoog 1962). Multiple independent transgenic lines were tested for transgene expression at

T2 or T3. Homozygous transgenic T3 lines were selected for high transgene expression, and used to perform

B. cinerea susceptibility assays.

Primer GeneID Forward Reverse
LsMYB15
attB

Lsat 1 v5 gn 3 120520 GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCATGGGGAGAGCACCTT
GTTG

GGGGACCACTTTGTACAAGAAAGC
TGGGTCCTAAAACTCAGGTAACTC
GGGTAAT

LsWRKY7a
attB

Lsat 1 v5 gn 4 164440 GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCATGGCCGCCGTAGATC
TAAT

GGGGACCACTTTGTACAAGAAAGC
TGGGTCTTAAGATGATTCTAAGA
TCAACCCAGAAG

LsWRKY7b
attB

Lsat 1 v5 gn 4 127960 GGGGACAAGTTTGTACAAAAAAG
CAGGCTTCATGGCGGTGGATTTG
ATGAATG

GGGGACCACTTTGTACAAGAAAGC
TGGGTCTCAAGATGACTCAAGAAC
TATGGCT

AtPUX1
qPCR

AT3G27310 TTTTTACCGCCTTTTGGCTA ATGTTGCCTCCAATGTGTGA

LsMYB15
qPCR

Lsat 1 v5 gn 3 120520 TACCTGGCCGAACTGACAAC GTCTTTTTGGGGCATGGCTG

LsWRKY7a
qPCR

Lsat 1 v5 gn 4 164440 ACGGAAAACAACTCTCCGCC GTAGAACCACCGCTGCACTT

LsWRKY7b
qPCR

Lsat 1 v5 gn 4 127960 CGACGTTGACAGGAGACACA ATTCGGCTGACAACCAGAGG

NbL23
qPCR

Niben101Scf00684g01002.1 AAGGATGCCGTGAAGAAGATGT GCATCGTAGTCAGGAGTCAACC

NbBZIP60
qPCR

Niben101Scf24096g00018.1 ATTGACTCTAAGGACGGCTCT ATACAACTTCTTCCGCTCTCG

NbBLP4
qPCR

Niben101Scf08590g00005.1 TCGTTTTCGCAATCGTCCT ATGTCCGTTCTTGTAGACACC

NbPDI
qPCR

Niben101Scf00332g04004.1
TTATTGCCAATCTTGACGCTGA TTGCCCTTTCGAATCACGGCTA

Niben101Scf00466g04033.1
NbERDj3B
qPCR

Niben101Scf03390g09001.1
GAAGGGATGCCACTGCATTT GATGTGGGGAAAAGAACCTCA

Niben101Scf01704g00002.1
Niben101Scf03349g00008.1

Table 4.1: Primer sequences used within Chapter 4 including those used to clone lettuce hubs (LsWRKY7A,
LsWRKY7B and LsMYB15) and qPCR primers
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4.2.2 B. cinerea susceptibility assay

4.2.2.1 Arabidopsis detached leaf assay

B. cinerea detached leaf infection assays were performed as previously described (Denby et al. 2004).

Arabidopsis seeds were sown on P24 trays on Levington’s F2+Sand soil in a complete randomised block

design and stratified at 4◦C for 3 days. Complete randomised block design layouts were computed using

blocksdesign R package (Edmondson 2021). Plants were then grown for 4 weeks in a controlled environment

chamber with a 16hr photoperiod, 60% relative humidity and 22◦C constant temperature (day and night). A

single leaf was detached from 4-week old plants and placed on 0.8% agar trays in another complete randomised

block design. Detached leaves were inoculated with 10µL×105 spores/mL B. cinerea “pepper” spores diluted

in 50% filter-sterilised grape juice. Trays were sealed and placed in the growth chamber and 90% humidity

(otherwise same conditions), photos of lesions were taken at 72hpi. Lesion area (mm2) is measured using

ImageJ (Abràmoff et al. 2004). The sqaure-root of the lesion area is calculated to normalise the distribution of

the data (mm2 will have a positive skew). Linear mixed-effects models (LMMs) were used to analyse the data

across experimental repeats using the lmerTest R package (Kuznetsova et al. 2017). The model formula was

as followed; √
lesion area (mm2) ∼ genotype + (1|exp) + (1|exp:tray) (4.1)

“genotype” is a fixed-effect, whereas the experimental repeat (“exp”) and the individual infection tray

within each experiment (“exp:tray”) were modelled as random effects. Modelling random effects using LMMs

allows for experimental variation not associated with the genotype, such as differences in fungal growth

between experimental repeats, to be removed. The predictmeans R package was subsequently used to

perform least-squares estimation of the lesion size for each genotype, removing random effects (Luo et

al. 2022). Post-hoc Tukey HSD is performed on the model to calculate statistical significance groupings

between genotypes (p < 0.05).

4.2.2.2 Lettuce detached leaf assay

.

Minor modifications were made to the Arabidopsis B. cinerea detached leaf assay for lettuce, as previously

described in Pink et al. 2022. Seeds were sown in P15 trays using a complete randomised block design. Trays

were stratified at 4◦C for 3 days, and then moved to a controlled growth chamber at 20◦C, 60% relative

humidity and 16 hour photoperiod for 4-weeks. The third-leaf of 4-week old lettuce plants were detached and

placed on 0.8% agar trays. Leaves were then inoculated with a 5µL of 3 × 104 B. cinerea “pepper” spores
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on either side of the mid-vein. Spores were diluted in 50% potato dextrose broth (PDB) supplemented with

1% guar gum. Agar trays were sealed, and placed back in the growth chamber at 80% humidity for 64 hours.

Lesions were measured using imageJ and analysed using a linear mixed effects model, as described above.

4.2.2.3 N. benthamiana transient detached leaf assay

We modified the Agromonas assay (Buscaill et al. 2021) to perform transient testing of B. cinerea

susceptibility. Wild type Nicotiana benthamiana seeds were sown in P15 trays on Levington’s F2 + sand soil,

stratified for 3 days at 4◦C. After stratification, trays were moved to a controlled growth cabinet for 4-5 weeks

which was set to 22◦C, 60% relative humidity and 16 hour photoperiod. After 2 weeks, P15 inserts were cut

into individual pots, and spaced out to 7 pots/tray to allow additional room for plant growth. Agrobacterium

tumefaciens GV3101 (Agro hereafter) strains harbouring p35S::p19, p35S::GFP (kindly gifted by Dr Fabian

Vaistij) and other genes of interest were used. Starter Agro cultures were grown for 48 hours at 28◦C in

10mL LB medium supplemented with gentamicin and construct selectable marker antibiotics (kanamycin or

spectinomycin). 15mL 1:50 dilutions of the starter culture were made and grown overnight until they reached

stationary phase (≥ 2.0 OD600). Cells were spun down for 20 minutes 2500 x g, and resuspended in 15ml

infiltration media (10 mM MgCl2, 10 mM MES, pH 5.7). Cells were spun down again (20 minutes 2500 x

g) and resuspended in infiltration media supplemented with 150µM acetosyringone to a final concentration of

0.5 OD600. Cells resuspended in the acetosyringone media were incubated in darkness on a shaking platform

for 3 hours. Finally, cells were mixed in a 1:1 ratio of p19:GFP or a 1:1:1 ratio of p19:GFP:gene of interest

with a final total concentration of 0.5 OD600. The mixed cells were infiltrated into N. benthamina leaves

using a 1mL needleless syringe, after which plants were placed back into the growth chamber for 72 hours.

Leaves were detached, and examined under UV lamp using GFP flouresence as a proxy of infiltration efficacy.

Well-infiltrated leaves were placed on a 0.8% (w/v) agar tray and inoculated with 4×15µL droplets of 2×105

spores/mL. B. cinerea “pepper” spores diluted in filter-sterilised grape juice. Infection trays were sealed and

placed back in the growth chamber at 90% relative humidity for 72-84 hours. Photographs were taken of

lesions, and measured using ImageJ. Statistical significance in square root lesion area was calculated using

Tukey HSD (p < 0.05). GFP infiltrated leaves were used as a control. Genes of interest were co-infiltrated

with GFP and p19 unless stated otherwise.

4.2.3 RNA Sequencing

Lettuce transgenic lines and a wild-type sibling, 107-6 (wt-sib), 107-7 (LsERF1-OE #1) and 148-9

(LsERF1-OE #2), were inoculated using the protocol described above. Leaves were inoculated with 4× 5µL

droplets of either mock (50% PDB + guar) or 5 × 105 B. cinerea spores/mL. At 24hpi, a 1cm cork borer

was used to collect tissue around the inoculation site. Tissue from the 4 inoculation sites on a single leaf
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was pooled into a single sample. Tissue was immediately flash-frozen in liquid nitrogen. RNA extraction was

performed using NucleoSpin RNA Plus columns (Macherey-Nagel), including a gDNA removal column step.

Total RNA was sent to Novogene for stranded mRNA library preparation and was sequenced using NovaSeq

6000 generating 150bp paired-end reads. Read quality was assessed with FastQC, adaptor sequences were

then subsequently trimmed using fastp (Chen et al. 2018) using default arguments. Trimmed reads were

then aligned to a combined L. sativa cv. Saladin RTD v1-B. cinerea transcriptome using Salmon (Patro

et al. 2017), achieving a median mapping rate of 92.8%. Reference transcriptomes were obtained from Kara

Mehmet et al. 2023 and Van Kan et al. 2017 respectively. Differential expression analysis was performed using

limma-voom within the 3D RNA-seq app (Law et al. 2014; Guo et al. 2021). Thresholds for considering a

gene differentially expressed were adjusted p-value < 0.05 and absolute log2FC ≥ 0.5. Principal component

analysis was performed using gene-level log2 counts-per-million with prcomp in R.

4.2.4 Gene ontology enrichment analysis

As previously described in Pink et al. 2022, gene ontology (GO) term enrichment analysis used the annotations

of the closest Arabidopsis orthologue for each lettuce gene. Single closest Arabidopsis orthologues were

identified by performing a BLASTP for lettuce RTDv1 predicted protein sequences against Araport 11

(performed by Fatih Mehmet Kara). Arabidopsis GO-annotations were retrieved using org.At.tair.db

and biomartr R packages (Carlson 2022; Hajk-Georg and Jerzy 2017). GO enrichment was performed using

clusterProfiler R package on gene sets of Arabidopsis orthologues of differentially expressed genes, with

Arabidopsis orthologues of all expressed lettuce genes as background (Wu et al. 2021b). GO-terms with

adjusted p-value < 0.05 were considered significantly enriched. GO-enrichment network plots were generated

using emapplot function within enrichplot (Yu 2022).

4.2.5 GRN Model Evaluation

We evaluate the gene regulatory networks (GRN) predictive ability to correctly identify LsERF1-OE DEGs as

LsERF1 GRN targets. To do this, we calculated true positives (TP), false positives (FP), true negatives (TN)

and false negatives (FN). We used four metrics to assess predictive performance; precision ( T P
T P +F P ), recall

( T P
T P +F N ), F1-score (2 × Precision×Recall

Precision+Recall) (Raschka 2014) and F0.25-score ( (1+0.252)·precision·recall
(0.252·precision)+recall ). Precision

represents the proportion of predicted targets which were identified as LsERF1-OE DEGs, whereas recall

represents the proportion of actual DEGs that were predicted as LsERF1 targets. F1-score is a harmonic mean

of the precision and recall. F0.25 is a variant of the F0.1 score which considers precision to be four times more

important than recall.
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Predictive performance was assessed at a range of edge confidence thresholds (top 0.2% - 10%) on direct

(first-order targets) and extended GRN targets (first and second-order targets). In addition, we randomly

shuffle targets assessing the GRNs improvement in predictive performance vs random guessing. Finally, for a

more stringent comparison of predictive performance, we use all genes identified within the same time-series

co-expression module as LsERF1 to predict DEGs.

4.2.6 Quantitative Polymerase Chain Reaction (qPCR)

qPCR was performed to assess transgene expression in transgenic Arabidopsis lines. Arabidopsis seedlings

were sown on 1/2 strength Murashige and Skoog (MS) agar plates supplemented with BASTA (Murashige

and Skoog 1962). Col-0 wild-type or T-DNA mutant seedlings were sown in parallel on 1/2 MS plates

without BASTA. Plates were stratified for 3 days at 4◦C, and then grown in ambient conditions for 10

days. Tissue was harvested from pooled 10-day whole-seedlings, flash-frozen in liquid nitrogen and RNA

was subsequently extracted with RNeasy Plant columns (Qiagen) as per the manufacturer’s instructions. An

on-column RNase-Free DNase digestion was included to digest genomic DNA. cDNA synthesis was performed

using SuperScript III (Invitrogen). qPCRs were performed using a SYBR master mix with three technical

replicates of three biological replicates. 2−∆Ct is used to calculate the expression ratio of transgene to

AtPUX1 (AT3G27310), an endogenous control gene (Ingle et al. 2015). NCBI Primer-BLAST was used to

design qPCR primers targeting lettuce transcripts, ensuring primers had at least 3 mismatches in the last 5bp

at 3’ end to unintended Arabidopsis transcripts (Ye et al. 2012).

qPCR was also used to perform differential expression in N. benthamiana post-infiltration. Leaves were

infiltrated as described above. At 72 hours post infiltration, a 1cm cork borer was used to collect infiltrated

tissue. Three independent biological replicate samples were collected each consisting of pooled tissue from

3 infiltrated leaves from different plants. RNA extractions, cDNA synthesis and qPCRs were performed as

above. Relative expression was calculated with 2−∆∆Ct, using NbL23 (Niben101Scf00684g01002.1) as the

endogenous reference gene and GFP-infiltrated leaves as the control group (Livak and Schmittgen 2001; Liu

et al. 2012). NbBLP4, NbBZIP60 and NbPDI primers were taken from Li et al. 2022. NbERDj3b primers were

designed by performing a BLASTP, identifying the closest hits to AtERDj3b (AT3G62600) in N. benthamiana

(Bombarely et al. 2012). Sol Genomics Network in-silico PCR tool was used to test for off-target effects in

all N. benthamiana primers.

Sequences of all qPCR primers are shown in Table 4.1.
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4.3 Results

4.3.1 LsERF1 promotes increased B. cinerea resistance in transgenic lettuce

Lsat 1 v5 gn 3 121961 (LsERF1) was selected for in planta testing, as it was identified as a large gene

regulatory network (GRN) hub with 256 predicted targets (Pink et al. 2023). LsERF1 has also been identified as

a putative orthologue of Arabidopsis Ethylene Response Factor 1 (AtERF1) which positively regulates ethylene

signalling and resistance to B. cinerea (Berrocal-Lobo et al. 2002). Both lettuce and Arabidopsis ERF1

orthologues exhibit rapid transcriptional upregulation following necrotrophic pathogen infection (Windram

et al. 2012; Pink et al. 2023). Two independent homozygous p35S::LsERF1 overexpression lines (107-7

and 148-9, OE1 and OE2 respectively) were previously generated in PI 251246, an ancestral L. sativa

accession. A wild-type sibling (107-6) was also isolated by segregating out the transgene from heterozygous

individuals. Unlike AtERF1 overexpressor lines, which show stunted growth (Solano et al. 1998), lettuce

PI252246/p35S::LsERF1 exhibits no detectable growth defects.

Figure 4.1: Detached leaf phenotyping assay of B. cinerea susceptibility on lettuce leaves across three
independent experiments (#1,#3,#18). (A) Representative images of WT-sib, OE1 and OE2 leaves 64
hours post inoculation in Experiment #3. (B) Quantitative representation of (A), i.e., the square-root area
of necrotrophic lesions. Raw data values from Experiments 1, 3 and 18 are represented by red, green, and
blue points respectively. Black points represent the predicted least-squares mean sqrt lesion area derived from
a linear-mixed effect model, with error bars indicating the REML standard error. Letters represent statistical
significance groups (p < 0.05) determined by a post-hoc Tukey HSD test performed using lmerTest and
predictmeans R packages. ’n’ represents the total number of individual lesions measured across all three
experiments.

Consistent with the well characterised role of Arabidopsis ERF1, we demonstrate that both independent

PI252246/p35S::LsERF1 lines show increased B. cinerea resistance compared to a wild-type sibling across three
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independent experiments (Figure 4.1). A linear mixed effects model was utilised to estimate the least-squares

lesion area for each genotype, accounting for random variation between experimental repeats (Kuznetsova

et al. 2017).

4.3.2 LsERF1 transcriptomics highlights a small candidate gene set which may be

responsible for defence priming

Figure 4.2: (A) Principal Component Analysis (PCA) plot of log2 counts per million (log2 CPM) expression
at a gene-level. Circles represent mock samples, triangles represent B. cinerea infected samples. Point colour
denotes the genotype of the sample; red = wt-sib (107-6), green = OE1 (107-7) and blue = OE2(148-9).
(B) Log2 CPM expression of LSATv11 C03 021665 (LsERF1).

Next, in order to gain deeper insights into LsERF1’s regulatory network, we carried out transcriptome

profiling of both LsERF1 lettuce overexpressor lines and their wild-type sibling in mock and B. cinerea

inoculated conditions. The third-leaf from 4-week old lettuce plants was detached and inoculated with 4

× 5 µL droplets of either mock or 5 × 105 spore/mL B. cinerea suspension. At 24 hours post inoculation

(hpi), a 1cm cork-borer was used to collect tissue around each inoculation site. Total RNA was extracted,

mRNA was profiled using short-read Illumina sequencing and reads were aligned to a combined L. sativa cv.

Saladin-B. cinerea transcriptome. Principal component analysis (PCA) was conducted, demonstrating a strong

separation across PC1 between mock and infected B. cinerea samples. To a lesser extent, genotype separation

was observed, with OE2 samples distinct from wild-type across both mock and infected (Figure 4.2A).

Figure 4.2B illustrates the expression of LsERF1 (LSATv11 C03 021665) across the RNAseq samples.

Consistent with previous findings in the Saladin cultivar (Pink et al. 2023), the wild-type sibling (PI251246

background) exhibits low expression of LsERF1 under mock conditions but is upregulated upon B. cinerea

infection. OE1 shows LsERF1 expression levels similar to that observed in infected WT under mock conditions,

without any further increase upon infection. However, OE2 mock LsERF1 expression was approximately

134



two-fold higher than OE1 in mock conditions surpassing the level in infected wild-type plants, also without

any notable change upon infection.

Figure 4.3: Heatmap showing normalised expression of all LsERF1 DEGs. Colour represents expression z-score,
with blue showing relative low expression, and red showing relative high expression. Each row in the heatmap
corresponds to an individual DEG, and each column corresponds to an individual RNAseq sample. Left-hand
side row annotations denote which comparison(s) the gene is considered differentially expressed; green =
upregulated, red = down-regulated, grey = not a DEG. A) All genes identified as differentially expressed in
at least 1 comparison between WT and either LsERF1 overexpressor, in either mock or B. cinerea inoculated
conditions (n=2700) B) Mock only expression of 24 DEGs overlap OE1-OE2 mock DEGs as well 27 reduced
stringency overlap genes.

Differential expression analysis was performed using limma-voom within the 3D RNA-seq pipeline (Guo

et al. 2021; Law et al. 2014). This analysis identified 33 differentially expressed genes (DEGs) for OE1-mock

vs WT-mock, 2684 DEGs for OE2-mock vs WT-mock, 0 DEGs for OE1-botrytis vs WT-botrytis, and 13 DEGs

for OE2-botrytis vs WT-botrytis. The expression profiles for all DEGs are shown in Figure 4.3A.

These results illustrate that the overexpression of LsERF1 in OE1, which reaches near-infection WT

levels in mock conditions, is only sufficient to induce a small transcriptional response. Conversely, the

increased overexpression of LsERF1 in OE2, which is approximately two-fold higher than OE1, elicits a

larger transcriptional response. However, crucially both overexpressors have the same B. cinerea phenotype,

suggesting the OE1 DEGs are sufficient to promote increased resistance. The limited number of DEGs identified

in B. cinerea inoculated samples suggests that expression changes which result in increased resistance likely

occur prior to infection.
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Among the 33 DEGs identified between, OE1-mock and WT-mock, 24 were also identified as DEGs in

the OE2-mock vs WT-mock comparison. These 24 genes form a high-confidence set which may be key in

enhancing B. cinerea resistance in LsERF1 transgenic lines. This gene set includes LsERF1 itself, along with

orthologues of ERF6, the chitin receptor LYK4, glyceraldehyde 3-phosphate dehydrogenase (GAPC1) and 15

non-coding RNA genes. ERF6 and LYK4 have both been demonstrated as positive regulators of B. cinerea

resistance, while GAPC1 has known roles in redox homeostasis (Moffat et al. 2012; Ai et al. 2023; Moreno

et al. 2021). Only 1 DEG was identified as downregulated in both OE1 and OE2, a PHYTOCYSTATIN family

cysteine protease inhibitor (Labudda et al. 2016).

In addition to this high-confidence gene set, we identified 27 additional genes which met a reduced stringency

criteria for differential expression in OE1 and were OE2 DEGs. These were all OE2-mock vs WT-mock DEGs

but narrowly exceeded the OE1 p-value significance threshold (OE1 p-adjust 0.05-0.2). Despite this, they

all had an absolute log2 fold change ≥ 1.5 in OE1 and exhibited the same differential expression direction

as observed in OE2. This reduced stringency gene set contained orthologues of ethylene forming enzyme

(EFE/ACO4), ERF4, a TIR-NBS-LRR receptor and several receptor-like kinases; receptor kinase 3 (RK3),

cysteine-rich receptor-like kinase 8 (CRK8) and FERONIA (FER). Figure 4.3B shows the expression profiles

of all overlapping OE1/OE2 mock DEGs and the reduced stringency gene set.

4.3.3 Higher over-expression of LsERF1 in OE2 induces up-regulation of jasmonic acid

signalling and glucosinolate biosynthesis

We anticipate that the OE1 DEGs represent a minimal gene set sufficient to drive LsERF1-induced B. cinerea

resistance. However, the additional DEGs identified in OE2 will offer further insights into genes which LsERF1

is able to directly or indirectly regulate at high expression levels. To understand whether these DEGs were

enriched for specific biological functions, gene-ontology (GO) term analysis was performed using annotations

of the Arabidopsis orthologues of each lettuce gene.
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Figure 4.4: LsERF1 OE2-mock vs WT-mock GO-enrichment network plot. Network edges represent GO-terms
containing ≥ 33% overlapping Arabidopsis orthologues of DEGs. The size of the node represents the number
of unique Arabidopsis orthologues of DEGs. Colour represents the statistical significance, of the enrichment,
with red nodes showing higher significance. A) GO-enrich network for upregulated DEGs, B) GO-enrich
network for downregulated DEGs

GO enrichment was performed separately on the unique Arabidopsis orthologues of up-regulated and

down-regulated OE2-mock vs WT mock DEGs, with all Arabidopsis genes that had at least one expressed

lettuce orthologue as the background. A GO-enrichment network plot for the top 50 OE2-mock up-regulated

terms and top 20 OE2-mock down-regulated terms is shown in Figure 4.4A and Figure 4.4B respectively.

Network edges are drawn between enriched GO-terms that share over 33% of annotated genes.

Figure 4.4A shows that OE2.mock-vs-WT.mock up-regulated DEGs are enriched for GO-terms such as

”cellular response to ethylene stimulus” and ”response to jasmonic acid”. DEGs annotated with these

GO-terms include orthologues of ACC synthase 6 (ACS6), ethylene insensitive 3 (EIN3), lipoxygenase 1

and (LOX1/3), jasmonate-zim domain 2 (JAZ2), WRKY33 and 21 ERF family transcription factors. These

findings are consistent with the well-established role of AtERF1 in integrating jasmonic acid and ethylene

(JA/ET) signalling (Lorenzo et al. 2003).

We also observed enrichment of ”secondary metabolite biosynthetic process”, ”indole-containing compound

metabolic process” and ”toxin metabolic process” GO-terms in OE2.mock-vs-WT.mock up-regulated DEGs.

These results suggest that LsERF1 may regulate the production of defence metabolites. These DEGs include 61

putative Cytochrome P450s, 3 orthologues pleiotropic drug resistance 12, and a camalexin secretion transporter

(He et al. 2019). Orthologues of High Indolic Glucosinolate 1 (HIG1/MYB54) and Superroot 1 (SUR1), both
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of which are involved in glucosinolate biosynthesis, were also upregulated in OE2 (Gigolashvili et al. 2007;

Mikkelsen et al. 2004).

Interestingly ”cellular response to salicylic acid stimulus” was also found to be an enriched term among

the LsERF1-OE2 upregulated DEGs. This was unexpected due to the well-characterised reciprocal inhibition

between JA/ET and SA signalling (Thaler et al. 2012; Caarls et al. 2015). Notably, five lettuce orthologues of

WRKY70, a“convergence node” activating SA and repressing JA signalling (Li et al. 2004; Li et al. 2017), were

up-regulated. Orthologues of other key SA regulators such as Nonexpressor of PR1 (NPR1), CaM-binding

protein 60-like g (CBP60g), SAR Deficient 1 (SARD1) and Enhanced Disease susceptibility 1 (EDS1) were

also up-regulated (Peng et al. 2021). However, neither SA marker gene PR1 nor SA biosynthetic genes

isochorismate synthase 1/2 (ICS1/2) were not identified as DEGs, this may be due to an ET/JA-SA cross-talk

mechanism. In Arabidopsis EIN3 has been shown to repress expression of PR1 and ICS2 (Chen et al. 2009).

Figure 4.4B identifies two clear groups of LsERF1-OE2 down-regulated enriched GO-terms; ion transporters

and cell wall polysaacharide biosynthesis. Arabidopsis nitrate transporter mutants (nrt1.5-5) show upregulation

of JA signalling genes (e.g. PDF1.2b, TPS4, VSP2, LOX2) (Drechsler et al. 2015), suggesting negative

feedback of nitrate accumulation of JA signalling. Lettuce orthologues of NRT1.5 and NRT1.1 were identified

as downregulated in OE2.

In (Pink et al. 2023) we reported that five sesquiterpene lactone biosynthetic enzymes (LsFPS1, LsGAS1,

LsGAS2, LsGAO and LsCOS1) (Sessa et al. 2000; Nguyen et al. 2010; Ikezawa et al. 2011; Kwon et al. 2022))

were all identified in a single co-expression module (Module 1). LsERF1 and 39 additional cytochrome p450s

were also identified in Module 1. Here we identify that all five STL biosynthetic enzymes and 27 out of the 39

uncharacterised cytochrome P450s from Module 1 were upregulated in OE2 mock, none were downregulated,

none were differentially expressed in either OE1 or OE2 after B. cinerea infection (Fig 4.5). Though, despite all

STL genes biosynthetic being upregulated in OE2, they were all further upregulated upon B. cinerea infection,

demonstrating LsERF1-independent regulation is required to reach full activation. Interestingly, a GRN-hub

that was also predicted to regulate all five Module 1 STL biosynthetic genes (LsbHLH) was not differentially

expressed by LsERF1 overexpression and therefore may be the additional LsERF1-independent component

required for full STL biosynthetic enzyme activation.
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Figure 4.5: LsERF1-OE expression of lettuce sesquiterpene lactone (STL) biosynthetic enzymes (A-E) and
the top 10 most significantly upregulated uncharacterised cytochrome p450s from Wigwam Module 1 (Pink
et al. 2023) (F-O)

4.3.4 Lettuce necrotroph gene regulatory network performs well as a predictor of LsERF1

DEGs

Previously we constructed a GRN, modelling transcriptomic regulation in response to B. cinerea and S.

sclerotiorum infection in lettuce (Pink et al. 2023). Having used a random-forest based modelling approach,

we obtained importance scores quantifying the relative confidence in all pairwise TF-Target gene interactions.

A stringent threshold of just the top 1% of high-confidence edges was used to construct the final GRN.

The GRN was modelled on the expression of 4362 lettuce genes, of these 4010 (out of 23811) had detectable

expression in the LsERF1-OE RNAseq dataset, and 842 of these were identified as an LsERF1 DEG. We,

therefore, assessed the model’s ability to distinguish the 842 DEGs from the other 3168 genes that were

present in the network with detectable expression in the LsERF1 RNAseq, but not differentially expressed.

Firstly, we utilised a binomial generalised linear model (GLM), modelling the probability of a gene being a

DEG using solely the Importance percentile of the genes’ predicted regulatory by LsERF1 (Figure 4.6). The

importance percentile was shown to be a highly significant term (p = 7.5× 10−15).
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Figure 4.6: Model-predicted probability of a given gene being identified as a differentially expressed gene
(DEG) in p35S::LsERF1 transgenic lines based on GRN importance score of its interaction with LsERF1.
X-axis represents the importance score percentile of the predicted regulation by LsERF1. Y-axis shows the
GLM predicted probability of a gene being differentially expressed. Points show GLM predictions made at
specific percentile values.

Three key metrics are used to evaluate GRN predictions; precision (proportion of predicted targets that were

DEGs), recall (proportion of DEGs that were predicted targets) and F1 score (harmonic mean of precision and

recall).

Unlike a DNA-binding experiment such as yeast-1-hybrid or chromatin-immunoprecipitation (ChIP) which

identify direct TF-targets, we expect that many of the expression changes observed in our RNA-seq experiment

are not caused by LsERF1 directly. Instead, they may be driven by other transcription factors that are

themselves regulated by LsERF1. For this reason, we considered two categories of GRN-predicted targets for

LsERF1; “direct only” (first-order) and “including indirect” (first and second-order). The latter group includes

targets of other transcription factors that are predicted to be under the direct regulation of LsERF1 as well as

direct targets.

In Pink et al. 2023, an outdegree threshold of the top 1% highest confidence edges was used to construct

the final GRN. To determine if this threshold is optimal, we evaluate predictive performance of the GRN when

applying outdegree thresholds from the top 0.2-10% of highest confidence edges. Figure 4.7A shows the

number of predicted GRN targets of LsERF1 (direct only or including indirect) at each outdegree threshold.

As the threshold becomes more stringent, the number of direct-only targets decreases steadily, but targets

including indirect edges remain high until the top 6% threshold, after which they decrease rapidly.
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Next we, analyse the precision of our GRN’s DEG prediction compared to random prediction (Figure 4.7B).

Direct-only target predictions consistently out-performed random predictions across all outdegree thresholds.

By contrast, targets including indirect edges are indistinguishable from random guessing at outdegree thresholds

over 6%, but precision improves significantly at thresholds under 6% and competes with direct-only precision

at under 2%.

Figure 4.7: (A-D)Top panel evaluates the network using solely direct LsERF1 targets. The bottom panel
evaluates network performance considering both direct targets and second-order indirect targets (targets of
a predicted LsERF1-regulated TF) as LsERF1 targets. These are designated as ”Direct and Indirect targets”
A) Number of predicted LsERF1 GRN targets. X-axis shows the Outdegree threshold, reflecting the upper
percentage limit for an edge to be considered an Outdegree. B) Evaluation of GRN Precision (proportion of
predicted targets that were identified as DEGs). The Outdegree threshold is shown on the X-axis, and Precision
score is shown on the Y-axis. Actual predictions are shown in red, while randomly shuffled predictions are
displayed in blue. C) Evaluation of GRN recall (proportion of DEGs which were predicted as GRN targets),
Outdegree threshold on X-axis, recall value on Y-axis (actual predictions = red, random = blue). D) Evaluation
of F1 score (harmonic mean combining precision and recall). Outdegree threshold on X-axis, F1 on Y-axis
(actual predictions = red, random = blue). E) Evaluation of F0.25 score, an F1 variant that considers precision
four times more important as recall F-I) Confusion matrices visualising DEG predictive performance - showing
the number of true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN). X-axis
shows whether a gene was identified as DEG or not, Y-axis whether a gene was a predicted target or not.
E) Confusion matrix showing prediction of DEGs from top 1% of LsERF1 direct GRN targets. F) Confusion
matrix showing prediction of DEGs from top 0.8% of including indirect targets (optimal F0.25-score. G)
Confusion matrix showing prediction of DEGs from top 3.2% of including indirect GRN targets (optimal F1
score). H) Prediction of DEGs using genes identified in the same co-expression module as LsERF1.

As expected, recall declines as threshold stringency increases. However, both direct-only and

including-indirect edges have better recall than random guessing even at stringent thresholds. The top 2% of

including-indirect edges are able to recall 54% of all DEGs, whereas random guessing at a 2% threshold only
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identifies 36% of DEGs (Figure 4.7C).

To identify the optimal threshold which reduces both false positives (FP - predicted targets not DEG in

LsERF1 RNAseq) and false negatives (FN - not predicted as a target, but was DEG in RNAseq), we use the

F1-score. F1-score provides a trade-off between precision and recall, penalising both FPs and FNs (Figure

4.7D). The direct-only targets F1-score is penalised by lower recall values, as the precision gains at more

stringent thresholds do not out-weight the increased FN’s. That being said, direct-only F1 at all thresholds

outperforms random guessing. Interestingly, including indirect F1 is highest using the top 3% edges - this

offers an optimal balance where both precision and recall are maximised.

In addition to F1, we compute the F0.25 score, a variant of the F1 score that considers precision four-times

as important as recall. This is because we wish to place a higher emphasis on reducing FPs (genes that

we call a target, but were not identified as a DEG). We do not expect our current model to be capable of

identifying all DEGs, therefore, we place less importance on FN’s (DEGs that we didn’t identify as a target).

Again, our GRN consistently outperforms random guessing for this metric, but at high-confidence thresholds,

including-indirect targets performs very well (Figure 4.7E).

Confusion matrices provide a breakdown of the number of true positives (TPs), false positives (FPs),

true negatives (TNs) and false negatives (FNs) respectively. Figure 4.7F-I shows confusion matrices for the

prediction of LsERF1 DEGs using the top 1% direct edges, top 0.8% including indirect edges (optimal F0.25),

top 3.2% including-indirect edges (optimal F1) and Wigwam Module 1 genes. “Wigwam Module 1” refers

to a co-expression module of 942 genes with highly similar co-expression profiles across both B. cinerea and

S. sclerotiorum infection and includes LsERF1 (Pink et al. 2023). Genes within this co-expression module

predict LsERF1-OE DEGs with a precision of 0.367, an F1 score of 0.388 and an F0.25 of 0.369, backed by

316 TPs. The top 0.8% of include-indirect targets outperform Module 1 for both precision and F0.25. These

results demonstrate that our GRN outperforms both random guessing and co-expression modules at precisely

inferring in vivo transcriptomic regulatory events.

4.3.5 WRKY7: GRN mediated selection functional orthologues

Given that our GRN has now been validated as a reliable resource for the identification of lettuce defence

regulators, such as LsERF1, in addition to robust prediction of in vivo targets. We then used the network to

identify further defence regulators.
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Closely related lettuce group II-d WRKY transcription factors, Lsat 1 v5 gn 4 164440, Lsat 1 v5 gn 4 127960,

Lsat 1 v5 gn 1 22221 (LsWRKY7A, LsWRKY7B and LsWRKY15 respectively) were all identified as

differentially expressed in response both B. cinerea and S. sclerotiorum (Pink et al. 2023). They exhibit

a strikingly similar time-series expression profile, and demonstrate moderate co-expression across a diverse

lettuce panel, albeit not as tight as the time-series (Fig 4.8a-b),

A maximum likelihood phylogenetic tree of all Arabidopsis and Lettuce group II-d WRKYs (Fig 4.8c) revealed

low bootstrap values on branches which split AtWRKY7, AtWRKY15 and their lettuce orthologues. Therefore,

we’re unable to confidently assign a single lettuce orthologue of AtWRKY7 or AtWRKY15 using phylogenetics

alone.

Figure 4.8: A) Lettuce time-series expression profiles of Lsat 1 v5 gn 4 164440 (LsWRKY7A; red),
Lsat 1 v5 gn 4 127960 (LsWRKY7B; blue) and Lsat 1 v5 gn 1 22221 (LsWRKY15; green) in response to
B. cinerea (left-panel) and S. sclerotiorum (right panel) hours post inoculation (HPI) shown on the X-axis and
log2 counts per million expression shown on the y-axis. B) Co-expression of LsWRKYs across diverse lettuce
accessions after infection with B. cinerea (left-panel) or S. sclerotiorum (right-panel) (Pink et al. 2022). log2
LsWRKY7A expression shown on the x-axis, log2 expression of either LsWRKY7B (blue points) or LsWRKY15
(red points) are shown on the Y-axis. Pearson’s correlation coefficient (R) for gene-coexpression is displayed,
similarly colour coded as the points. C) A 2000-bootstrap maximum likelihood phylogenetic tree of Arabidopsis
group IId WRKYs and their putative lettuce orthologues (Eulgem et al. 2000; Reyes-Chin-Wo et al. 2017),
using AtWRKY33 (group I) as an outgroup. Bootstrap values are shown. D) Bar graph displaying the number
of predicted GRN targets for each LsWRKY7/15 orthologues. E-F) Time-series expression of AtWRKY7 and
AtWRKY15 in response to mock (red) or B. cinerea inoculation (Windram et al. 2012). Hours post inoculation
(HPI) shown on the X-axis and scaled expression is shown on the y-axis. Individual biological replicates are
shown with a loess-smoothed regression line.

However, these lettuce WRKYs exhibit large differences in predicted GRN targets (Fig 4.8d). Notably,

LsWRKY7A emerged as a large hub with 257 putative targets compared to 41 and 9 targets in LsWRKY15
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and LsWRKY7B respectively. These results suggest that LsWRKY7A may function as the primary defence

regulator within this clade during lettuce necrotrophic fungal infection.

In Arabidopsis, AtWRKY7 and AtWRKY15 are both implicated in plant-pathogen interactions with B.

cinerea. AtWRKY7 transcripts are targeted by a fungal small RNA causing increased susceptibility, whereas

plants overexpressing AtWRKY7 show increased B. cinerea resistance (Wang et al. 2017c). AtWRKY15 is

transcriptionally up-regulated after B. cinerea infection (Fig 4.8e-f; data from Windram et al. 2012). These

results along with our lettuce GRN predictions, suggest that the WRKY7/15 clade TFs activate the expression

of unknown defence genes to enhance resistance, and LsWRKY7A may act as the main regulator of these

genes in lettuce.

Figure 4.9: delta Ct transgene expression ratio compared to an endogenous reference (AtPUX1) in
LsWRKY7 transgenic lines. Y-axis is on a log10 scale. A) Col-0/p35S::LsWRKY7A homozygous T3’s,
B) wrky7-1/p35s::LsWRKY7A homozygous T3’s, C) Col-0/p35s::LsWRKY7B BASTA-selected T2 lines and
D) wrky7-1/p35s::LsWRKY7B homozygous T3’s
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To test this hypothesis, we generated transgenic Arabidopsis lines constitutively expressing LsWRKY7A

or LsWRKY7B under the p35s promoter in both Col-0 and the wrky7-1 mutant background. Independent

transgenic lines were selected for Mendelian segregation of herbicide resistance in the T2 generation were

profiled for transgene expression (Fig 4.9).

Figure 4.10: B. cinerea detached leaf assay susceptibility testing of LsWRKY7 expressing transgenic
Arabidopsis lines. Raw data values are shown by coloured points, with colour denoting the experimental
replicate. Black points represent the predicted least-squares mean sqrt lesion area derived from a linear-mixed
effect model (REML), with error bars indicating the REML standard error. Letters represent statistical
significance groups (p¡0.05) determined by a post-hoc Tukey HSD test performed on the REML model using
lmerTest and predictmeans R packages. ’n’ represents the total number of individual lesions measured across
all experiments. A) Col-0 and wrky7-1 mutant only, B) LsWRKY7A transgenic lines and C) LsWRKY7B
transgenic lines

Detached leaf assays were used to quantitatively measure B. cinerea susceptibility of different Arabidopsis

lines. We were unable to identify any differences in B. cinerea susceptibility between Col-0 and wrky7-1

mutants across many independent experiments (Fig 4.10a). These results are contradictory to previous work

which reported increased susceptibility in wrky7-1 (Wang et al. 2017c). However, the two highest LsWRKY7A

expressing transgenic lines, LsWRKY7A 1-5-3 and wrky7-1/LsWRKY7A 1-4-4, both display enhanced B.
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cinerea resistance compared to their respective backgrounds across multiple experimental repeats (Fig 4.10b).

No LsWRKY7B expressing lines displayed significantly different lesion sizes from either Col-0 or wrky7-1 (Fig

4.10c). These findings suggest that our GRN was able to identify LsWRKY7A as the functional orthologue,

which phenocopies AtWRKY7 overexpression lines, demonstrating enhanced B. cinerea resistance (Wang et

al. 2017c). However, LsWRKY7B which was not predicted as a GRN does not show this phenotype.

As we were unable to isolate a second Col-0/LsWRKY7A transgenic line which showed altered B. cinerea

resistance, we used a modified detached leaf assay in N. benthamiana leaves to further probe the defence

function of LsWRKY7A. 5-week N. benthamiana were infiltrated with Agrobacterium tumefaciens harbouring

p35S::GFP, p35S::LsERF1 or p35S::LsWRKY7A constructs. Leaves were detached 3 days post-infiltration and

inoculated with B. cinerea. Both LsERF1 and LsWRKY7A infiltrated leaves show dramatically reduced lesion

size compared to GFP (Fig 4.11), providing further evidence that high expression of LsWRKY7A increases B.

cinerea resistance.
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Figure 4.11: Transient B. cinerea susceptibility assay in N. benthamiana leaves. 5-week N. benthamiana
leaves are infiltrated with 0.5OD600total Agrobacterium using a needless syringe (0.25OD600each p19/GFP
or 0.167 OD600each p19/GFP/gene of interest). 3 days post infiltration, GFP is inspected under UV light,

well-infiltrated leaves are detached, and infected with 2× 15µL droplets of 2× 105 spores/mL of B. cinerea
inoculum diluted in 50% grape juice. 4 days post B. cinerea infection, lesions area is measured using ImageJ.
Representative photos shown in (A). (B) Quantification of (A), infiltrated construct on X-axis, Square-root

B. cinerea lesion size on Y-axis. Individual measurements are shown as points, as well as the distribution
curve. N represents the number of individual lesions measured. Letters represent statistical significance

grouping (Tukey HSD p < 0.05).

4.3.6 LsMYB15: a putative lignin regulator does not impact B. cinerea resistance in

Arabidopsis

Lsat_1_v5_gn_3_120520 (LsMYB15) was identified as a large network hub with 378 predicted targets,

and is a putative ortholog of AtMYB15 (Reyes-Chin-Wo et al. 2017, Fig 4.12a). AtMYB15 is required

for of flg22-induced lignification and enhances resistance to Pseudomonas syringae DC3000 (Chezem et

al. 2017). MYB15 orthologues in an Asteracae hybrid flower, Chrysanthemum x morifolium, CmMYB15

and CmMYB15-like have both been shown to positively regulate lignin biosynthesis and aphid resistance (An

et al. 2019; Li et al. 2023a). Predicted GRN targets of LsMYB15 include cinnamyl-alcohol dehydrogenase

orthologues (LsCAD4, LsCAD8) and basic peroxidase 52 (LsPRX52) all of which are involved in lignin

biosynthesis in Arabidopsis (Kim et al. 2004; Kim et al. 2007b; Fernández-Pérez et al. 2015). LsMYB15

shows tight co-expression with these lignin biosynthetic enzymes across the time-series, but less so across
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diversity set panels (Fig 4.12b). Therefore, we hypothesise that LsMYB15 may be driving lignification in

response to necrotroph infection in lettuce, which may act as a barrier for pathogen infection.

Figure 4.12: A) 2000-bootstrap maximum likelihood phylogenetic tree containing Arabidopsis R2-R3 MYB
subgroups 1-3, their putative lettuce orthologues, Chrysanthemum MYB15 orthologues and AtMYB124 as an
outgroup. B) Expression of Lsat 1 v5 gn 3 120520 (LsMYB15 - red), Lsat 1 v5 gn 9 111281 (LsCAD4
- purple), Lsat 1 v5 gn 2 69560 (LsCAD8 - blue) and Lsat 1 v5 gn 5 175321 (LsPRX52 - green) after
B. cinerea (left panel) and S. sclerotiorum (right panel) infection, mock-expression not shown. Hours
post inoculation on X-axis, log2 expression on Y-axis. Points show individual biological replicates, line is
drawn through time-point mean, shaded area shows the 95% confidence interval. C) Lettuce diversity-panel
co-expression (data from Pink et al. 2022), LsMYB15 log2 expression is shown on X-axis, log2 expression of
putative target genes is shown on Y-axis (same genes and colours as Panel B). Expression after B. cinerea
infection on left panel, and expression after S. sclerotiorum infection on right panel. Pearson’s correlation
coefficient for gene expression shown, with colour denoting which target gene the co-expression refers to.
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Figure 4.13: A) B. cinerea detached leaf assay of Col-0, myb15-1 and myb15-1/AtMYB15 #1 (generated
by Chezem et al. 2017). Photos were taken of developing lesions at 72hpi, and measured with ImageJ.
Raw data points, boxplots, and distribution of individual measured lesions are shown. Letters represent
statistical significance groupings (p < 0.05) B) delta Ct transgene expression ratio compared to an endogenous
reference (AtPUX1) in Col-0/p35S::LsMYB15 and myb15-1/p35s::LsMYB15. Tissue was collected from
pooled samples of 10-day T2 seedlings grown on 1/2 MS + BASTA plates. Col-0 seedlings were grown
in parallel on 1/2 MS plates without BASTA. C) B. cinerea detached leaf assay susceptibility testing of
LsMYB15 expressing transgenic Arabidopsis lines. Raw data values are shown by coloured points, with colour
denoting the experimental replicate. Black points represent the predicted least-squares mean sqrt lesion area
derived from a linear-mixed effect model (REML), with error bars indicating the REML standard error. Letters
represent statistical significance groups (p < 0.05) determined by a post-hoc Tukey HSD test performed on
the REML model using lmerTest and predictmeans R packages. ’n’ represents the total number of individual
lesions measured across all experiments.

To test whether MYB15-dependent PTI-induced lignification impacts necrotrophic defence, we

carried out B. cinerea detached leaf assays on myb15-1 mutants and Arabidopsis complement lines

(myb15-1/p35S::AtMYB15#1) (Chezem et al. 2017). No significant differences in B. cinerea defence were

observed between Col-0, myb15-1 mutants, or the complement lines (Fig 4.13a). These results suggest that

either AtMYB15-induced lignification does not occur in response to B. cinerea or it does not affect pathogen

growth.

Next, we generated p35S::LsMYB15 transgenic Arabidopsis lines in Col-0 and myb15-1 mutant background.

Independent transgenic lines showing 3:1 Mendelian segregation in the T2 generation were profiled for transgene

expression (Fig 4.13b). B. cinerea susceptibility assays were conducted on homozygous T3 plants, which

showed no differences in lesion area between Col-0, myb15-1 and any of the LsMYB15-expressing lines (Fig

4.13c).
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These results indicate that neither orthologue of MYB15 impacts B. cinerea defence in Arabidopsis. Despite

this, LsMYB15 may still act as a functional orthologue of AtMYB15 or CmMYB15-like (Fig 4.12a). Both

AtMYB15 and CmMYB15-like positively regulate defence against P. syringae DC3000 and aphid attack

respectively by inducing lignification (Chezem et al. 2017; Li et al. 2023a).

4.3.7 Putative lettuce unfolded protein response regulators are network hubs

Lsat 1 v5 gn 5 157880 (LsBZIP17) and Lsat 1 v5 gn 2 3181 (LsBZIP60) have been identified as

putative orthologues of unfolded protein response (UPR) regulators AtBZIP17 and AtBZIP60 (Nawkar et

al. 2018). Both lettuce orthologues were identified as large GRN hubs with 131 and 82 predicted targets

respectively. The UPR is activated by environmental stresses such as heat shock or pathogen infection,

leading to an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR then results in the

activation of protein-folding chaperones.

A group of conserved BZIP transcription factors with inactivating C-terminal transmembrane regions control

UPR activation. Upon accumulation of misfolded proteins BZIP17/BZIP28 (orthologous to human ATF6)

undergo proteolytic cleavage, releasing the N-terminal DNA-binding domain, allowing translocation to the

nucleus (Ye et al. 2000a; Iwata et al. 2017). BZIP60 (orthologous to human XBP1 and yeast HAC1) undergoes

cytoplasmic splicing of a stem-loop 23bp intron. This splicing event induces a frameshift mutation in the spliced

variant, resulting in the loss of the transmembrane domain (Yoshida et al. 2001; Nagashima et al. 2011).

BZIP60 is highly conserved across distant species, such that AtBZIP60 expression in hac1 mutant yeast

strains rescues the UPR-deficiency phenotype (Zhang et al. 2015b), suggesting that BZIP60 function will

likely be conserved between Arabidopsis and lettuce.
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Figure 4.14: A) RNA secondary structure predictions of XBP1/BZIP60 splices introns and flanking sequences,
structure prediction by RNAfold (Mathews et al. 2004), visualised using VARNA (Darty et al. 2009). Red
nucleotide denote the conserved residues within the CNGNNG consensus sequence. Blue arrows denote the
IRE1 cut-site. B) Multiple sequence alignment of Human XBP1, Arabidopsis BZIP60 and lettuce BZIP60
unspliced (-u) and spliced (-s) variants. Conserved residues of the CNGNNG sequence are coloured in red. C)
TMHMM (transmembrane hidden markov model; Krogh et al. 2001) predicted transmembrane probability of
residues along AtBZIP60 and LsBZIP60 (spliced and unspliced).

Inositol-requiring enzyme 1 (IRE1) performs BZIP60 splicing, recognising a specific stem-loop structure

and cutting at CNGNNG consensus sites. These consensus sites are conserved in LsBZIP60 suggesting it

may also be spliced by IRE1 (Fig 4.14a-b). The unspliced LsBZIP60 variant (LsBZIP60u) contains predicted

transmembrane domains towards the C-terminus, which is absent in the spliced variant (LsBZIP60s) (Fig

4.14c). These results suggest that IRE1 splicing will facilitate nuclear translocation of LsBZIP60.

To evaluate the role of LsBZIP17 and LsBZIP60 in plant defence, we attempted to generate transgenic

Arabidopsis constitutively expressing active variants (LsBZIP17∆C and LsBZIP60s) under the p35S promoter.

Although we were able to isolate transgenic lines which segregated for the BASTA selectable marker in a

Mendelian ratio, none of these lines show detectable transgene expression (data not shown). This suggests

that constitutive expression of either UPR regulator active variant, LsBZIP17∆C or LsBZIP60s, is lethal.
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Figure 4.15: Functional characterisation of lettuce unfolded protein response (UPR) regulators
Lsat 1 v5 gn 5 157880 (LsBZIP17∆C) and Lsat 1 v5 gn 2 3181 (LsBZIP60s). (A) Representative leaves
from transient B. cinerea susceptibility assay. 5-week N. benthamiana leaves are infiltrated with 0.5OD600
total Agrobacterium using a needless syringe (0.25OD600each p19/GFP or 0.167OD600each p19/GFP/gene of
interest). 3 days post infiltration, leaves are detached, and infected with 4×15µL droplets of 2×105 spores/mL
of B. cinerea inoculum diluted in 50% grape juice. 4 days post B. cinerea infection, lesions area is measured
using ImageJ. B Quantification of (A). Square-root lesion area(mm) shown on the y-axis, individual lesion
sizes, boxplots and distribution are shown. N represents the number of individual lesions measured. Letters
represent statistical significance groups (Tukey HSD p < 0.05). (C) Expression of N. benthamiana UPR
genes, NbBZIP60, NbBLP4, NbERDj3b and NbPDI after GFP or LsBZIP60s. Tissue is collected 4 days
post infiltration (not infected with B. cinerea). Three biological replicate samples were collected from
independent leaves from different plants. Three technical replicate qPCRs were performed for each biological
replicate. 2−∆∆Ct fold change shown on the y-axis with NbL23 used as the endogenous reference, and 35S
infiltrated leaves as the control group. Wilcoxon rank-sum test p-values corrected for multiple testing are
shown (Wilcoxon 1945). Gene IDs and primer sequences are listed in Table 4.1. (D) GFP fluorescence
under UV-light of representative leaves 4-days post infiltrated with p19+GFP, p19+GFP+LsWRKY7A,
p19+GFP+LsBZIP17∆C, p19+GFP+LsBZIP60s and non-infiltrated leaves are shown. Infiltration procedure
was performed the same as (A), with 0.5OD600 total used, having each construct mixed in a 1:1 or 1:1:1 ratio.

We therefore used N. benthamiana to conduct functional characterisation of LsBZIP17∆C and LsBZIP60s

in transient assays. Unexpectedly, N. benthamiana leaves infiltrated with LsBZIP17∆C or LsBZIP60s showed

increased B. cinerea susceptibility compared to GFP-infiltrated leaves (Fig 4.15a-b). Although, BZIP60
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silencing in Nicotiana attenuata has been previously reported to also promote susceptibility to Alternaria

alternata, a necrotrophic fungal pathogen (Xu et al. 2019). This is contradictory as both endogenous silencing

and transient overexpression is producing the same phenotype.

Endogenous N. benthamiana UPR chaperones (Li et al. 2022) such as BiP-like protein 4 (NbBLP4),

endoplasmic reticulum DNAj-homolog 3B (NbERDj3B), protein disulphide isomerase (NbPDI), and

endogenous NbBZIP60 were all upregulated in LsBZIP60s infiltrated leaves, compared to those infiltrated

with GFP (Fig 4.15c). These results demonstrate that LsBZIP60s functions as an activator of the UPR.

When co-infiltrated with GFP, both LsBZIP17∆C and LsBZIP60s demonstrated a marked reduction in GFP

fluorescence compared to leaves infiltrated with either GFP alone or co-infiltrated with LsWRKY7A and GFP

(Fig 4.15d). This suggests that these lettuce UPR regulators are somehow inhibiting GFP accumulation. One

possible explanation is that LsBZIP17∆C and LsBZIP60s are triggering ER-associated degradation (ERAD),

(Meusser et al. 2005; Chen et al. 2020b). UPR is part of a larger ER quality control (ERQC) network. Under

mild ER stress, UPR is activated to refold proteins, if misfolded proteins persist in the ER, ERAD is activated

to clear them. In case of severe or prolonged ER stress, programmed cell death (PCD) is induced (Strasser

2018; Simoni et al. 2022).

From these results, we hypothesise that different ERQC pathways have different effects on necrotrophic

pathogen defence. N. attenuata BZIP60 silencing data suggests that normal BZIP60 function, likely UPR

activation, promotes increased necrotroph resistance. However, the very high expression levels of LsBZIP17∆C

or LsBZIP60s during transient infiltration may signal to the cell that severe ER stress is present, activating

ERAD, illustrated by reduced GFP accumulation, promoting susceptibility against necrotroph pathogens.

4.3.8 Characterisation of post-transcriptional gene silencing in lettuce necrotrophic

pathogen defence response

In addition to our GRN hubs, we have previously identified 3724 lettuce genes whose expression was

significantly correlated with S. sclerotiorum lesion size across a diversity panel (Pink et al. 2022). These

genes, most of which were not differentially expressed in response to infection (hence not present in our

GRN), represent a fresh pool of candidate defence genes. Notably, an enrichment of post-transcriptional gene

silencing (PTGS) gene ontology (GO) terms was observed among the 1580 ’resistance-correlated genes’, i.e.,

genes with higher expression in resistant accessions.
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Plant small RNAs (sRNAs) are involved in PTGS, an sRNA is processed by dicer-like (DCL) proteins,

and loaded onto agonaute (AGO) complexes to target mRNAs for degradation or translation inhibition

(Borges and Martienssen 2015). Several classes of plant sRNA exist which are generated through different

biogenesis pathways, microRNAs (miRNAs) are transcribed from their own genetic loci by RNA polymerase

II. Secondary short-interfering RNAs (siRNAs), also known as phasiRNAs, are produced by RNA-dependent

RNA polymerases (RDRs) from RNA templates (Yoshikawa et al. 2005). siRNAs can also direct epigenetic

silencing through the action of RNA-directed DNA methylation (Matzke and Mosher 2014b).

Several lettuce orthologues of notable genes involved in sRNA-mediated gene silencing were identified as

highly correlated with S. sclerotiorum resistance (Fig 4.16a). These included orthologues of dsRNA-binding

protein 2 (DRB2) and dsRNA-binding protein 4 (DRB4), RNA-directed DNA methylation 1 (RDM1) and

Suppressor of gene silencing 3 (SGS3). SGS3 is known to participate in phasiRNA biosynthesis by interacting

with RNA-dependent RNA polymerase 6 (RDR6) (Yoshikawa et al. 2005; Kumakura et al. 2009). DRBs are

able to bind dsRNA and to specific DCL homologues (Hiraguri et al. 2005), with DRB4-DCL4 interactions

required for the processing of tasiRNAs (Nakazawa et al. 2007). DRB2 is involved in a non-canonical miRNA

biogenesis pathway, regulating the levels of a specific subset of miRNAs (Eamens et al. 2012).

Previously it has been demonstrated that Arabidopsis PTGS mutants such as dcl4-2, rdr6-11, rdr2-4

ago9-1 and sgs3-1 have increased susceptibility to necrotrophic pathogens such as S. sclerotiorum and V.

dahliae (Ellendorff et al. 2009; Cao et al. 2016a). Suggesting that PTGS genes promote necrotrophic disease

resistance, which is consistent with our findings where lettuce accessions with higher expression of PTGS

genes demonstrated greater resistance to S. sclerotiorum. However, there are no previous reports of DRBs

having a role in necrotroph resistance. Although both DRB2 and DRB4 and been shown to positively regulate

resistance against P. syringae avrRPM1 (Lim et al. 2019).
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Figure 4.16: A) Lettuce diversity panel gene expression - S. sclerotiorum lesion size correlation for
Lsat 1 v5 gn 9 69201 (LsDRB2 - red), Lsat 1 v5 gn 1 56161 (LsDRB4 - green), Lsat 1 v5 gn 8 21341
(LsRDM1 - blue) and Lsat 1 v5 gn 5 78841 (LsSGS3 - purple). S. sclerotiorum square-root lesion size on
X-axis, and log2 expression on Y-axis. Pearson’s correlation coefficients (R) are shown, with colour denoting
the gene. B) B. cinerea detached leaf assay on Col-0 wild-type Arabidopsis and drb2-1 T-DNA mutant. Square
root lesion size at 72hpi shown on Y-axis, individual data points shown as well as boxplot and distribution
curve. Letters represent statistical significance groupings (Tukey HSD p < 0.05), n represents the number of
lesions measured. C) B. cinerea detached leaf infection assay on Agrobacterium-infiltrated N. benthamiana
leaves. The infiltrated construct is shown on X-axis, square-root B. cinerea lesion size is shown on Y-axis. Red
points denote lesion sizes from p35S::p19 + construct x co-infiltration’s, blue points denote just construct x
infiltration’s. Total infiltration= 0.4 OD600 ( 0.4 OD600 construct x or 0.2 OD600 construct x + 0.2 OD600
p19). Letters represent statistical significance groupings (Tukey HSD p < 0.05)

Firstly, we examined necrotroph defence in Arabidopsis DRB2 mutant, drb2-1, which displayed increased

susceptibility to B. cinerea (Fig 4.16b), providing further evidence that PTGS promotes increased necrotroph

resistance.

To investigate the in planta functions of lettuce PTGS orthologues, we utilised the transient N. benthamiana

assay. In this experiment, leaves were infiltrated with a gene of interest either in the presence or absence of

p19 silencing suppressor and subsequently infected with B. cinerea two days post infiltration (Fig 4.16c).

p19 increases transgene expression by binding and sequestering 21-nt siRNA, leading to inhibiting transgene

silencing in an RDR6-dependent manner (Jay et al. 2023). As observed previously, p35S::LsERF1 infiltrated

leaves show increased B. cinerea resistance. Unexpectedly all tested lettuce PTGS genes; p35S::LsDRB2-HA,

p35S::LsDRB4-HA, p35S::LsRDM1-HA and p35S::LsSGS3-HA all promote increased B. cinerea susceptibility

compare to GFP-infiltrated leaves. Furthermore, p19 co-infiltration had no effect on the susceptibility of

PTGS-genes, but further increased the resistance of LsERF1-infiltrated leaves.

These experiments provide contradictory results. The increased susceptibility displayed in mutants such

as drb2-1 (this work) and sgs3-1 (Ellendorff et al. 2009) suggests that PTGS genes promote resistance
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to necrotrophic pathogens. However, transient overexpression of lettuce PTGS orthologues also results in

increased necrotroph susceptibility. This may be due to an over-saturation of the PTGS machinery, disrupting

a finely controlled process, leading to uncontrolled RNA degradation. We note that these lettuce PTGS

genes function in an p19-independent manner, although the extent to which p19 suppresses the silencing of

endogenous transcripts remains largely unknown.

4.4 Discussion

GeneID Name B. cinerea phenotype Ref

Lettuce Arabidopsis N. benthamiana

Lsat 1 v5 gn 6 70301 LsBOS1 R NS*1 Fig 3.19

Lsat 1 v5 gn 2 103381 LsNAC53 S Fig 3.20A

Lsat 1 v5 gn 3 121961 LsERF1 R R*2 R Fig 4.1,4.11, Fatih Kara

Lsat 1 v5 gn 4 164440 LsWRKY7A R R Fig 4.10B,4.11

Lsat 1 v5 gn 4 127960 LsWRKY7B NS Fig 4.10C

Lsat 1 v5 gn 3 120520 LsMYB15 NS Fig 4.13C

Lsat 1 v5 gn 5 157880 LsBZIP17∆C S Fig 4.15B

Lsat 1 v5 gn 2 3181 LsBZIP60-s S Fig 4.15B

Lsat 1 v5 gn 9 69201 LsDRB2 S Fig 4.16C

Lsat 1 v5 gn 1 56161 LsDRB4 S Fig 4.16C

Lsat 1 v5 gn 5 78841 LsSGS3 S Fig 4.16C

Lsat 1 v5 gn 8 21341 LsRDM1 S Fig 4.16C

Table 4.2: Summary of characterisation of putative lettuce defence regulators against B. cinerea. R
= Increased resistance against Botrytis cinerea, S = Increased susceptibility to Botrytis cinerea, NS =
Non-significant effect on Botrytis cinerea infection, blank = Not tested against Botrytis cinerea in that host
species.

*1 N. benthamiana leaves transiently infiltrated with LsBOS1 induced necrosis-like symptoms, and no
significant differences in B. cinerea lesion sizes were detected between GFP and LsBOS1 infiltrated leaves.
Data not shown, as were not included in Pink et al. 2023.
*2 Arabidopsis LsERF1 B. cinerea phenotyping performed by Fatih Mehment Kara

In Pink et al. 2023, we inferred a lettuce-necrotroph gene regulatory network (GRN) which identified

candidate hub genes, including LsBOS1 and LsNAC53. We were then able to validate that LsBOS1 positively

regulates B. cinerea defence in Arabidopsis, and that LsNAC53 complements AtNAC53 in negatively regulating

B. cinerea resistance. LsNAC53 not only complemented the defence phenotype of AtNAC53, but was

also shown to positively regulate Respiratory Burst Oxidase Homolog (RBOH) genes, which AtNAC53 had

previously been shown to regulate (Lee et al. 2012).
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In this work, we characterise the B. cinerea defence function of a further six GRN hubs and four S.

sclerotiorum-resistance correlated genes (identified in Pink et al. 2022). B. cinerea defence characterisation was

carried out using quantitative detached leaf assay on transgenic Arabidopsis, transgenic Lettuce or transiently

infiltrated N. benthamiana leaves. The results from which are summarised in Table 4.2.

Across Pink et al. 2023 (Chapter 3) and this work, we have tested the in vivo defence response of six lettuce

TFs in stable transgenic plant lines (either lettuce or Arabidopsis), of which three showed increased resistance,

one showed increased susceptibility and two showed no significant differences in B. cinerea susceptibility

(compared to transformation background, WT or T-DNA mutant). One TF that showed no significant

difference, LsWRKY7B, is not considered a hub due to only having 9 predicted GRN targets, therefore 4 out

of 5 (80%) of GRN hubs tested in stable transgenic lines showed altered resistance to B. cinerea. In addition,

we tested the defence function of an additional 6 genes using transiently infiltrated N. benthamiana leaves,

two of which were GRN hubs, the other 4 were selected from genes whose expression correlated with increased

resistance in lettuce diversity panel from Pink et al. 2022. All 6 genes showed increased susceptibility to B.

cinerea (compared to GFP infiltrated leaves). So, out of all 12 candidate lettuce defence regulators that we

tested, 10 (83%) show an altered B. cinerea resistance phenotype. These results clearly demonstrate that

both GRN hubs and diversity panel lesion-size correlated genes can be used as high-confidence candidates to

identify lettuce defence regulators.

However in order to perform a high-throughput assessment of many candidate defence regulators, only 1

hub gene, LsERF1, has been tested in lettuce. Therefore, it is possible that we miss species-specific regulators

which alter B. cinerea defence in lettuce, but not in Arabidopsis or N. benthamiana (false negative). Of

course the opposite may also be true, where we identify false positives, TFs that act as defence regulators in

Arabidopsis but not lettuce. Therefore, the next steps would be to the defence function of additional candidate

genes in lettuce, such as LsWRKY7A and LsNAC53.

LsERF1 was identified as a large network hub, and was subsequently shown to positively regulate B. cinerea

defence in both lettuce (Fig 4.1 ) and N. benthamiana (Fig 4.11). Transcriptomic analysis of two independent

LsERF1 lettuce transgenic lines suggested that only small set of 33-60 (dependent on stringency criteria)

genes were required for LsERF1-induced B. cinerea resistance. Although higher levels of LsERF1 expression

induced large-scale transcriptional reprogramming, including the differential expression of genes associated

with ”response to ethylene stimulus” and STL biosynthetic enzymes. Our GRN outperforms random guessing

in the prediction of LsERF1 using precision, recall, F1 or F0.25. Additionally, combined first and second-order

LsERF1 GRN targets (at top 0.8% or top 1% edges threshold) outperform co-expression modules at predicting

LsERF1-OE DEGs (using precision or F0.25). Therefore our GRN is able to more precisely predict genes that

are regulated by LsERF1 in vivo than conventional co-expression modelling. Together with the initial network
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validation performed in Pink et al. 2023, these results establish high confidence in the GRN’s ability to identify

defence regulators and their in vivo targets.

Given this established confidence, we use the GRN to identify additional defence regulators. Two putative

lettuce orthologues of AtWRKY7, LsWRKY7A and LsWRKY7B are present in the GRN with 257 and 9

predicted targets respectively. Therefore LsWRKY7A is identified as a ”large hub”, whereas LsWRKY7B

is not considered a network hub. LsWRKY7A conferred increased B. cinerea resistance in both transgenic

Arabidopsis and infiltrated N. benthamiana (Fig 4.10B, 4.11B). We did not observe any significant differences

in transgenic Arabidopsis lines expressing LsWRKY7B. These results suggest that our GRN has been able

to identify the functional lettuce orthologue of AtWRKY7 also which confers B. cinerea resistance (Wang

et al. 2017c). Although, we do note that only high-expressing LsWRKY7A transgenic lines showed B. cinerea

resistance, and LsWRKY7B transgene expression levels were lower than that observed in the LsWRKY7A lines.

LsMYB15 was also identified as a major hub gene with 378 predicted targets and is a putative orthologue of

known lignin biosynthesis regulators AtMYB15 and CmMYB15-like (Chezem et al. 2017; Li et al. 2023a) (Fig

4.12A). Overexpressors of both AtMYB15 and CmMYB15-like show increased resistance to biotic stresses;

P. syringae DC3000 and Macrosiphoniella sanborni (aphid) feeding respectively (Chezem et al. 2017; Li et

al. 2023a). Despite this, neither AtMYB15 mutants, AtMYB15 overexpressors, nor LsMYB15 overexpressors

had differing B. cinerea susceptibility from Col-0 (Fig 4.13). These results indicate MYB15-induced lignification

does not impact B. cinerea defence in Arabidopsis. It is then difficult to assess any role of LsMYB15 as it could

still regulate lignification in lettuce with lignification not important in Arabidopsis defence, or it may also not

function in this manner in lettuce. The GRN predicts LsMYB15 may act as a regulator of lignin biosynthesis,

as its GRN predicted targets include CAD4, CAD8 and PRX52 all of which are involved in lignin biosynthesis

(Kim et al. 2004; Fernández-Pérez et al. 2015). Hence further characterisation of this gene requires gain or

loss of function analysis in lettuce.

In addition to detached leaf assays performed on transgenic plants, we also modified this protocol for

use on transiently infiltrated N. benthamiana. This dramatically reduces the time taken to characterise

a gene from 10 months to 5 weeks, allowing more genes to be tested. Protein accumulation may be

orders of magnitude larger than what is observed in transgenic plants. This appeared to exacerbate the

LsERF1 and LsWRKY7A phenotypes that were observed in lettuce and Arabidopsis respectively. However, the

relationship between expression and defence phenotype may be non-linear, and high-level over-accumulation

may introduce erroneous protein activity and/or targets. We believe this to be the case for the tested PTGS and

UPR regulators. LsDRB2, LsDRB4, LsSGS3, LsRDM1, LsBZIP17∆C and LsBZIP60s all promoted increased

susceptibility to B. cinerea compared to GFP-infiltrated N. benthamiana leaves. This increase in susceptibility

from overexpression is in contrast to numerous Arabidopsis PTGS mutants and tobacco plants with silenced

158



UPR regulators that also show increased susceptibility to necrotrophic pathogens, suggesting their wild-type

function promotes defence (Fig 4.16A, Ellendorff et al. 2009; Cao et al. 2016a; Cai et al. 2018; Xu et al. 2019).

Therefore, we hypothesise that these results may be artefacts of the high-level overexpression that does not

represent the wild-type function. Loss-of-function approaches such as viral-induced gene silencing (VIGS) or

CRISPR knockout would therefore be required to study the wild-type function of these regulators.

These results suggest that our transient N. benthamiana-B. cinerea detached leaf susceptibility assay is

able to accurately profile the effect of high-level overexpression on pathogen resistance. Whether these

results are representative of wild-type functions depends on whether erroneous behaviour is introduced by

the overexpression.

N. benthamiana is more closely related to lettuce (both asterid) than Arabidopsis (rosid), however, we still

expect that there may be differences in gene function when expressed in non-endogenous hosts. High-efficiency

Agrobacterium vacuum-infiltration of lettuce has been previously reported (Negrouk et al. 2005; Chen et

al. 2016; Yamamoto et al. 2018). Therefore, it may also be possible to perform transient B. cinerea

susceptibility assays, allowing the defence function of candidate lettuce genes to be tested within their

endogenous host. However, when following the protocol outline in Chen et al. 2016 using the visible RUBY

marker on several lettuce cultivars only small patches of RUBY were visible on < 5% of infiltrated leaves (He

et al. 2020b).

The Cauliflower Mosaic Virus (CaMV) 35S promoter has been used to test the effect of constitutive hub

gene expression in transgenic plants (Odell et al. 1985). However, the expression of these genes are very

tightly-controlled in non-infected conditions as they often regulate growth-defence. As we observed in transient

N. benthamiana, it may be undesirable to test the function of some genes under high-level overexpression. This

is particularly true in the case of LsBZIP60s or LsBZIP17∆C, where we attempted to express consecutively

active forms of these genes under the 35S promoter which was lethal. In order to study these genes, it is crucial

to induce expression in a more controlled manner, such as the use of estradiol-inducible promotors (Zuo et

al. 2000). In addition, naturally occurring pathogen inducible promotors can be used such as pBnGH3.17D7,

which has been engineered to drive expression specifically in response to S. sclerotiorum infection, and is

functional in both Arabidopsis and Brassica napus leaves (Lin et al. 2022).

The work highlights the value of computational prediction and gene regulatory network modelling in order to

identify candidate defence regulators from high-throughput transcriptomic profiling. ”Hub genes” with many

predicted targets are postulated to be key defence regulators within the network. Our findings suggest that

many hub genes do indeed act as defence regulators. Further testing of hub genes identified by our network
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may uncover further defence regulators.
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Chapter 5

Final Discussion

5.1 Summary of Key Findings

The overarching aims of this work were to identify candidate genes that could be utilised for the generation of

disease-resistant cultivars. To achieve this we have looked to further our understanding of the lettuce defence

response to necrotrophic fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Extensive datasets

generated by the Denby Lab and collaborators were essential in order to do this. Using these datasets, I have

applied numerous analytical methods to identify candidate lettuce defence genes and performed functional

characterisation on a short-list of selected candidates

Prior to my project, previous members of the Denby lab generated 284 RNA-sequencing datasets across

5 key experiments; lettuce-B. cinerea time series, lettuce-S. sclerotiorum time series, lettuce-B. cinerea

diversity panel, lettuce-S. sclerotiorum diversity panel and PI251246 x Armenian L. serriola (PIxArm) mapping

population parents. In addition, quantitative necrotroph susceptibility phenotyping was also performed on

the lettuce diversity panel and PIxArm RILs had also been performed by the Denby Lab. The Michelmore

Lab (UC Davis) also genotyped the PIxArm RILs, identifying 2677 genetic markers (Han et al. 2021). The

combinatorial analysis performed on these datasets is summarised in Figure 5.1.

5.1.1 Identification of lettuce genes associated with S. sclerotiorum susceptibility across

a genetically diverse population

In Chapter 2 (Pink et al. 2022), we profiled the S. sclerotiorum susceptibility and transcriptomes of

55 individual lettuce leaves from 21 diverse accessions. This approach focuses on individual leaves rather

than average expressions from each accession, therefore including intra-accession variability when correlating

pathogen susceptibility with gene expression. Prior to this, a broader phenotyping experiment was conducted,
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Figure 5.1: Flow diagram of the integrative analysis to identify candidate genes in lettuce for necrotrophic
pathogen resistance. Input datasets are listed on the left; Lettuce-necrotroph time series RNAseq:
high-density time series gene expression data during B. cinerea (Bc) or S. sclerotiorum (Ss) infection (Pink
et al. 2023; Ransom et al. 2023); Lettuce Diversity Panel RNAseq: gene expression after B. cinerea and S.
sclerotiorum infection in 21 diverse lettuce accessions (Pink et al. 2022); Lettuce Diversity Panel necrotroph
phenotyping: quantitative detached leaf assay phenotyping of B. cinerea and S. sclerotiorum resistance in
diverse lettuce accessions (Pink et al. 2022); PI x Arm RIL necrotroph phenotyping: quantitative detached
leaf assay phenotyping of B. cinerea and S. sclerotiorum resistance in 236 F6 recombinant inbred lines (RILs)
from the PI251246 x Armenian L. serriola mapping population (PIxArm) (Pink et al. 2022); PI x Arm RIL
genotyping: 2677 markers for the PIxArm population were previously described by Han et al. 2021; PIxArm
parent RNA-seq: gene expression in mapping population parents PI251246 and Armenian L. serriola (Pink
et al. 2022).
Summary of analysis performed to select candidates from these datasets. Lettuce-Necrotroph GRN: a
single gene regulatory network (GRN) modelling transcriptional regulation of time series DEGs using four
RNAseq datasets - time series and diversity panel RNAseq after B. cinerea and S. sclerotiorum infection
(Pink et al. 2023). Hub genes: transcription factors with many GRN targets, hence predicted to have a high
influence in necrotroph-induced transcriptional reprogramming. Lesion size – Gene Expression Correlation:
association of quantitative disease severity with gene expression across diversity accessions (Pink et al. 2022).
Genes associated with resistance/susceptibility: we notice that differential expression in response to
infection is a confounding factor for whether a gene will be resistance or susceptibility correlated, therefore we
use “Lesion size – Gene Expression Correlation” and “Lettuce-necrotroph time series RNAseq” to determine
whether a gene is associated with resistance or susceptibility (Pink et al. 2022). Lettuce-necrotroph QTLs:
identification of genetic loci that confer differences in B. cinerea or S. sclerotiorum susceptibility between
PI251246 and Armenian L. serriola. QTL candidate genes: genes located within QTL loci and differentially
expressed between mapping population parents.
Candidate genes for functional testing: hub genes, genes associated with diversity set
resistance/susceptibility or QTL candidates are all possible defence regulators which could be short-listed
for functional testing.
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evaluating S. sclerotiorum susceptibility across the same accessions with a higher level of replication over

multiple independent trials. Despite the more extensive dataset, the method of comparing individual leaf

susceptibilities to their respective transcriptomes proved to be more informative.

Many studies profile just a single resistant and susceptible accession in order to identify genes linked with

the disease sensitivity phenotype (Wu et al. 2016; Wang et al. 2017a; Chittem et al. 2020; Wan et al. 2021).

Although these are sometimes able to hand-pick some DEGs that play a role in the phenotype, they are

unable to disentangle the differences that are are linked to the disease phenotype and those that are not

at a transcriptome-level. However, our method enabled us to pinpoint genes whose expression was linked

with defence across 55 individual leaves from 21 diverse accessions. As such, we identified 3724 genes whose

expression correlated with increased S. sclerotiorum resistance, and a further 1580 correlated with increased

susceptibility. As far as we are aware this is the most extensive S. sclerotiorum screening of this type (coupled

pathogen susceptibility and transcriptomic profiling) in a crop species.

Crucially, our approach allows genes whose expression is not differentially expressed in response to infection,

but where a higher constitutive expression of the gene affects pathogen resistance either positively or negatively

to be identified. We identified multiple orthologues of COI1 whose expression were strongly correlated with

S. sclerotiorum resistance, and a MAP Kinase Substrate 1 (MKS1) orthologue correlated with increased

susceptibility. In Arabidopsis, COI1 is the JA receptor which activates JA signalling and B. cinerea defence

(Feys et al. 1994; Thomma et al. 1998), whereas MKS1 directly binds WRKY33 inhibiting JA response and

reducing B. cinerea defence (Andreasson et al. 2005; Petersen et al. 2010). Among others, the COI1 and

MKS1 results demonstrate the value of this approach to identify genes associated with both resistance and

susceptibility to S. sclerotiorum across the lettuce diversity panel. Thus, other resistance or susceptibility

correlated genes can used as candidate genes for functional testing.

Interestingly, we identified that S. sclerotiorum resistance-correlated genes were enriched for both orthologues

of Arabidopsis genes annotated with post-transcription gene silencing (PTGS) GO-terms and genes with

Pentatricopeptide Repeat Domains (PPRs). Howell et al. 2007 previously demonstrated that PPR transcripts

are a major source of secondary short-interfering RNAs (siRNAs). siRNAs derived from PPR transcripts

(PPR-siRNAs) have been implicated in plant-pathogen interactions with Phytophthora capsici expressing an

effector that suppresses PPR-siRNAs (Hou et al. 2019). Furthermore, orthologues of key proteins involved

in this siRNA biogenesis pathway are also correlated with S. sclerotiorum in the lettuce diversity such as an

RNA-dependent RNA polymerase (RDR2), dicer-like 4 (DCL4), suppressor of gene silencing 3 (SGS3) and

dsRNA-binding protein 4 (DRB4) (Peragine et al. 2004; Yoshikawa et al. 2013; Adenot et al. 2006). Together

these data suggest that an increased expression of the secondary siRNA biosynthesis machinery may increase S.

sclerotiorum resistance, possibly due to an increased ability to generate PPR-siRNAs. These findings highlight
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the ability of a high-throughput transcriptomic to uncover some novel biological findings using genetic variation

across diverse accessions, as well as identifying lettuce orthologues of known Arabidopsis defence regulators.

5.1.2 Integrative analysis to identify high-confidence genes within QTLs conferring

necrotroph resistance in lettuce

Also in Chapter 2, five necrotroph resistance QTLs were identified in a wild lettuce mapping population (L.

sativa PI251246 x Armenian L. serriola), two of which conferred resistance to B. cinerea and three conferred

resistance to S. sclerotiorum. These were the first reported QTLs conferring resistance to B. cinerea or S.

sclerotiorum in lettuce, although several S. minor QTLs have previously been reported in lettuce (Mamo et

al. 2019). These QTL loci could potentially be introgressed into elite breeding cultivars to increase pathogen

resistance, however many backcrossing generations would be required to remove undesirable genes that are in

linkage disequilibrium with the favourable allele. It may be faster to look to identify causative variants and

directly introduce these into an elite cultivar.

To this end, we perform comparative transcriptomics between the mapping population parents after S.

sclerotiorum infection, revealing 96 genes that were located within a QTL region and were differentially

expressed between the parents. Of these QTL DEGs, 5 genes showed higher expression in the parent harbouring

the resistance allele and were correlated with resistance across the entire diversity panel, this includes an

orthologue of pleiotropic drug resistance 12 (PDR12) which is involved in the secretion of camalexin (He

et al. 2019). A further 11 genes showed higher expression in the parent harbouring the susceptible allele and

were correlated with increased susceptibility across the diversity set. Hence by implementing an integrative

analysis workflow, we have reduced the list of candidate genes by > 99.5% from a total of 3264 genes located

within QTLs to a short-list of 16 high-confidence candidates that may underlie the differences in necrotroph

resistance in these QTL regions.

5.1.3 Utilising high-resolution temporal transcriptomic of the lettuce defence response to

infer a causal gene regulatory network

The utilisation of time series RNAseq and subsequent construction of gene regulatory networks (GRNs)

have emerged as powerful methodologies for high-throughput gene discovery in crop science, particularly

beneficial for species where generating transgenics presents significant challenges. This approach has been

instrumental in decoding the complex temporal dynamics of plant-pathogen interactions, providing unparalleled

insights into the regulatory mechanisms underlying disease resistance. For crops like lettuce, where transgenic

approaches are time-consuming and technically demanding, the accessibility of RNAseq offers a viable

alternative for understanding genetic responses to environmental stresses. When integrated into GRNs, these
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data facilitate the prediction of causal relationships between genes, highlighting potential targets for enhancing

disease resistance. This methodology not only circumvents the limitations associated with traditional genetic

manipulation in less tractable crop species but also accelerates the discovery of critical genes involved in stress

responses. Consequently, time series RNAseq and GRNs represent a significant advancement in crop gene

discovery, offering a pathway to improve crop resilience and productivity through a deeper understanding of

genetic regulation.

In Chapter 3 we present high-resolution temporal transcriptomics after B. cinerea’s infection of lettuce leaves

with 14 time points from 9 to 48 hours post inoculation (hpi). In addition, Ransom et al. 2023 previously

produced a 12 time point time series of lettuce-S. sclerotiorum infection (9 to 42 hpi). These datasets provide

unprecedented insight into the dynamics of pathogen-induced transcriptional reprogramming previously only

available in Arabidopsis (Windram et al. 2012; Lewis et al. 2015). Previous necrotrophic pathogen infection

temporal transcriptomic datasets available in crop species has been limited to 3-6 time points (De Cremer

et al. 2013; Zambounis et al. 2020; Xu et al. 2021; Wang et al. 2021; Wan et al. 2021).

Through an integrated analysis of both temporal transcriptomic datasets, we identified a core set of 4362

lettuce genes that exhibited differential expression in response to both pathogens in the same direction. This

enabled dual time series co-expression analysis, revealing modules of genes with highly similar expression

profiles in response to both pathogens. In Module 1 we identified orthologues of known JA/ET regulators

including ERF1, WRKY33 and MYC2 (Lorenzo et al. 2003; Birkenbihl et al. 2012; Lorenzo et al. 2004) and

enzymes involved in costunolide biosynthesis, a sesquiterpene lactone (STL) precursor in lettuce (Ikezawa

et al. 2011). Alongside 37 uncharacterised cytochrome P450s, this module suggests a mechanism where STL

biosynthesis, activated by JA/ethylene signalling, may contribute to B. cinerea resistance (Zhang et al. 2022;

Bennett et al. 1994). These findings were supported further in Chapter 4 through transcriptomic analysis of

transgenic lettuce overexpressing LsERF1, which showed increased expression of JA/ET signalling genes and

STL biosynthetic enzymes in mock conditions.

One of the most significant advantages to generating high-resolution temporal transcriptomic datasets is

the enhanced ability to model causal gene-regulatory networks (GRNs) (time series-GRN-annrev). Unlike

co-expression networks, which draw undirected edges based on correlation, the use of time series data allows

for the inference of causal, directed connections between regulators (TFs) and targets (Opgen-Rhein and

Strimmer 2007). time series GRNs are also able to incorporate the chronology of expression profiles, giving a

more accurate representation of the underlying biological system. Using this approach a causal GRN of the

lettuce-necrotroph defence response was modelled, incorporating both pathogen time series and static diversity

panels. This enables directed edges to be identified where a TF and target have highly similar expression profiles

in both time series, and their expression is tightly correlated across diverse lettuce accessions.

165



5.1.4 The lettuce-necrotroph GRN accurately identifies defence regulators

It should be first stated the machine-learning models used are not directly identifying “defence regulators”.

Instead, they predict the expression of a gene at an unseen time point based on the expression of transcription

factors (TFs). This is analogous to the way large language models such as ChatGPT are simply trained

by predicting the next word/character on large volumes of text, but by doing so they are able “learn” the

underlying complexities of human language. In a similar way, by attempting to predict expression of a gene

using TF expression, the random-forest is able to predict which TFs may be important in regulating that gene.

It is then possible to generate GRNs by drawing causal-directed edges between target genes and their

most informative TFs. Hub genes, TFs with many causal connections, are therefore predicted to regulate

a significant portion of the network. Since our lettuce-necrotroph GRN consists only of genes differentially

expressed in response to both B. cinerea and S. sclerotiorum infections, the GRN hubs are presumed to direct

a large proportion of the transcriptional reprogramming common to infection by both necrotrophic fungi. As

a result, these hub genes can be used as candidate ”defence regulators”, even though the models do not test

for this directly.

In chapters 3 and 4, we conduct an extensive validation of the gene-regulatory network (GRN) for both the

identification of defence regulators and the accuracy of inferred regulatory connections (edges). We assessed

the B. cinerea susceptibility of transgenic plants constitutively expressing six lettuce TFs in the GRN, out of

which three increased resistance (LsERF1, LsBOS1, LsWRKY7A), one increased susceptibility (LsNAC53∆C),

and two displayed no significant differences (LsMYB15 and LsWRKY7B). Five of these TFs were identified

as GRN hubs, LsWRKY7B was not identified as a hub and was only included to determine whether our

GRN could identify the function LsWRKY7 orthologue from two closely related paralogues. Additionally, two

GRN hub genes tested in transiently infiltrated N. benthamiana leaves both revealed increased susceptibility

(LsBZIP17∆C and LsBZIP60s). Therefore 6 out of 7 GRN hubs tested (86%) exhibited altered B. cinerea

defence, clearly demonstrating that a high proportion of GRN hubs function in vivo as necrotroph defence

regulators.

In addition to the ability to identify defence regulators, we are interested in the predictive accuracy of

individual edges within the GRN. Accurate prediction of a regulator’s targets not only sheds light on the

potential function of that regulator but also the likely consequences on the network of overexpressing or

mutating the regulator. Arabidopsis orthologues of LsNAC53’s predicted GRN targets, RBOHD and NSL1,

were upregulated in Arabidopsis lines expressing LsNAC53∆C. Since AtNAC53 has previously been identified

as a regulator of RBOH genes (Lee et al. 2012), this observation suggests that the GRN correctly identified

a conserved regulatory module without access to prior data. Beyond small regulatory modules, our results
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also demonstrate the GRN’s capability to predicting transcriptome-wide targets of a TF. For instance, the

GRN-predicted targets of LsERF1 significantly outperformed both random guessing and coexpression modules

as predictors of 35S::LsERF1 differentially expressed genes (LsERF1-OE DEGs). We also note that including

second-order targets (i.e., targets of TFs that are themselves targets of LsERF1) further increased the predictive

performance in detecting LsERF1-OE DEGs. This outcome aligns with expectations, as RNAseq does not

discriminate between direct and indirect targets.

The above results give us reasonable confidence that the GRN we inferred has accurately captured the

complex dynamic regulatory interactions that occur in response to pathogen infection in lettuce. As such,

this GRN represents a significant improvement in our ability to accurately predict direct regulatory edges in a

non-model species. Therefore, the GRN can now be used to identify additional defence regulators and their

putative targets.

5.2 Challenges and Limitations

Throughout the course of my PhD, I encountered a variety of challenges and limitations that impacted the

scope and direction of my research.

I attempted to generate Arabidopsis transgenic lines expressing constitutively active forms of LsBZIP17 and

LsBZIP60 under the control of the 35S promotor. These genes act as cell death activators, which I was unaware

of at the time of selection, and high expression was toxic to the plants, resulting in the death of those expressing

high levels of these genes. Although 35S is a very convenient promotor to indiscriminately drive high-level

expression, this is not always desirable, particularly when studying stress-responsive genes whose expression is

tightly controlled. As a result, I had to pivot to using transient expression in Nicotiana benthamiana to study

these genes. However, this approach significantly limited the experiments I could perform and impacting the

conclusions I was able to draw from my data.

Given that my the species of interest for this work is lettuce, we ideally want to study the function of our

candidate genes in lettuce. However, generating lettuce transgenics is very time-consuming which would limit

the amount of candidate genes I would have been able to test. Therefore the majority of my work utilised

Arabidopsis as a model for high-throughput testing. Although this has enabled us to test the defence function

of many genes, we only have data for 1 gene (LsERF1) in lettuce, it is unclear whether other defence regulators

identified in this work (LsNAC53, LsWRKY7A, LsBOS1, etc) function as defence regulators in lettuce.
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Another limitation is that due to the time constraints of the project, I began cloning candidate genes towards

the end of my first year. At this point, I produced an earlier version of the GRN, and I had not yet performed

an extensive analysis of the inferred network. Throughout, the following years of my PhD I produced further

iterations of the network, and performed more extensive analysis. These improvements included modifying

the train-test split, modifying the trees in the random forest, and updating the genes which were designed

as potential regulators (transcription factors). As a result, two of the genes I selected to generate transgenic

lines from (LsBOS1 and LsWRKY7B) were later deemed to have much less influence in the final version of the

network. Additionally, the final version of the network highlighted some interesting candidates which could

have been tested, which were not hub genes in earlier iterations of the GRN.

In Chapter 2, I analysed an RNA-seq dataset from a diversity-panel of lettuce after pathogen infection. The

aim of this dataset was to correlate gene expression with lesion size (a measurement of pathogen resistance).

However, the analysis of this dataset was complicated by having samples post-infection of lettuce varieties with

different levels of susceptibility to pathogen infection. For example, the genes whose expression correlated most

strongly with increased susceptibility (had higher expression in more susceptible varieties), were genes that were

known to promote increased resistance (e.g. LsERF1). This was puzzling at first, as we’d expect accessions

that express more LsERF1 to be more resistant to pathogen infection. However, this turned out to just be

an artefact of the experimental design. LsERF1, like many genes that promote pathogen resistance, is rapidly

upregulated in response to infection. Susceptible lettuce varieties have a much faster disease progression than

resistant varieties, hence genes such as LsERF1 are more likely to have been upregulated, making it appear

in our simple correlation that LsERF1 was linked with disease susceptibility, which we know to be false. As

a result, we had to discard genes whose expression changes in response to infection from these analyses.

By performing additional prepossessing steps, we were still able to draw valuable insights from this dataset

on genes where a higher constitutive level of expression impacts disease resistance (positively or negatively).

However in hindsight, we may have got greater value from this dataset if it was collected from un-inoculated

samples.

5.3 Future Directions and Next Steps

Building upon the extensive insights gained through the integrative analysis of high-throughput

transcriptomic datasets and the construction of a predictive gene regulatory network (GRN), this work sets

the stage for several promising avenues of research aimed at enhancing crop resilience against necrotrophic

pathogens. The challenges and limitations encountered not only highlight the complexity of plant-pathogen

interactions but also outline specific areas where further research can yield significant advancements. Future

work should focus on refining the predictive accuracy and resolution of the lettuce-necrotroph GRN, exploring
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innovative approaches to gene function validation, and translating these findings into practical strategies for

breeding disease-resistant lettuce cultivars. By addressing these objectives, this work can contribute to the

development of sustainable agricultural practices that can mitigate the impacts of plant diseases, thereby

ensuring food security and agricultural productivity in the face of changing environmental conditions.

5.3.1 Enhancing the resolution and predictive performance of the lettuce-necrotroph GRN

Our GRN has successfully identified lettuce defence regulators and offers a significant enhancement in

predicting directed regulatory edges. Compared to what was previously available in non-model organisms,

our time series datasets, with 3-hour resolution (3 hour gaps between time points), represent a considerable

step forward (De Cremer et al. 2013). Yet, to accurately model the chronological hierarchy of transcriptional

regulation and establish a chronological order of events in the reprogramming, there are still gaps to fill.

In elicitor or hormone treatment time series, the onset of transcriptional reprogramming is predictable

(5min-1hr post-treatment) (Hickman et al. 2017; Bjornson et al. 2021). However, in fungal inoculations

such as our time series, which is far less predictable due to the variable speed of pathogen growth between

experiments. In our B. cinerea time series 60% of genes were first differentially expressed between 21-24 hours

post inoculation (hpi), whereas in S. sclerotiorum, this large-scale transcriptional programming occurred at

39-42 hpi. Therefore, despite having ≥ 12 time points, the initial change in transcription (which is vital for

identifying putative regulators) occurs at 1-2 time points for the majority of differentially expressed genes.

Despite simultaneous differential expression (at our 3 hour resolution), the B. cinerea time series still provides

good data on the dynamic expression profiles, with many time points captured after initial gene expression

changes. Conversely, in the S. sclerotiorum time series, most genes are first differentially expressed in the last

two time points due to slower pathogen growth, resulting in less information on these dynamic profiles. Hence,

it is challenging to ”pull apart” the chronological hierarchy of transcriptional reprogramming and understand

the direct regulatory edges. As a result, in co-expression analysis, we have a single module of 942 genes

(Module 1) whose expression profiles across both time series are very difficult to separate. As a result, it is

challenging to assign direct TF-Target edges within this module.

A possible solution could come from additional time series with < 30 minute resolution, for example time

series after jasmonic acid (JA) and/or 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) at

10 min, 30min, 45min, 1 hr, 2hr post-treatment. Such a data set would provide a higher-resolution view within

the early critical window of transcriptional reprogramming. With this increase in resolution, we could more

accurately determine the time lag between the activation of a regulator and its putative targets, and observe
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whether intermediary regulators are activated during the lag period. Enabling the complex transcriptional

cascades to be deciphered.

We do not expect that the full pathogen-induced transcriptional reprogramming will occur in response to

hormone treatment, for example Windram et al. 2012 identified 9534 B. cinerea DEGs in Arabidopsis and

of these only 1550 were also differentially expressed in response to JA treatment (Hickman et al. 2017).

Thus demonstrating that a significant proportion of B. cinerea-induced transcriptional reprogramming is

JA-independent. The recognition of pathogen- or damage associated molecular patterns (PAMPs/DAMPs)

also triggers a rapid transcriptional response during pathogen infection. Bjornson et al. 2021 conducted a time

series after oligogalacturonide (plant cell wall fragments, DAMP) treatment in Arabidopsis, identifying 3973

DEGs, 1839 of which were identified as Arabidopsis-B. cinerea DEGs by Windram et al. 2012. The majority

of these DAMP-regulated B. cinerea DEGs (n=1187) were not differentially expressed by JA treatment in

Hickman et al. 2017 and include key regulators such as WRKY33, CAMTA3, TGA3 and WRKY70. Therefore,

if we wish to utilise additional time series experiments to gain a higher-resolution insight into the early

window of transcriptomic reprogramming, multiple treatments may be required such as a hormone (JA+ACC)

and a PAMP/DAMP. This approach would maximise the number of lettuce-necrotroph DEGs that may be

differentially expressed in these additional time series, uncovering high-resolution data on early transcriptional

reprogramming events.

As seen with the Arabidopsis EXPLICIT model that utilised > 20, 000 publicly available datsets to generate

an expression predictor (Geng et al. 2021), the addition of relevant data sets may improve our model

performance. Publicly available lettuce transcriptomic datasets include L. sativa cv. Tizian-Rhizoctonia

solani infection (Verwaaijen et al. 2019), L. sativa cv. Cobham Green-Bremia lactucae infection (Fletcher

et al. 2019), chitin-treated lettuce roots (Li et al. 2023b) and a 240-accession Lactuca spp diversity panel

(Zhang et al. 2017b). Although using all data from these studies may saturate our model, a subset of their

samples could be incorporated where our hubs show differing expression profiles.

To further reinforce confidence in the regulatory edges inferred by the network, more extensive in vivo

target validation should be conducted. Considering the challenges in generating transgenic lettuce lines,

higher throughput assays like the transient transformation of protoplasts or infiltration in mature leaves may

present a viable path. Subsequently, if transcriptome-wide datasets are generated for validation, they might

also contribute to training new, improved models.

While our GRN has made significant strides in capturing the regulatory dynamics in lettuce defence

mechanisms, a future challenge would be to develop network models that allow in silco simulation of
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perturbation effects. By not only identifying edges but also simulating the GRN’s response to altering regulator

expressions or modifying network structures (like adding or removing edges), attempt to re-wire the network.

5.3.2 Network predictions to the field: future challenges to generate disease-resistant

lettuce cultivars

This work has constructed a lettuce-necrotroph defence GRN, and validated it as a reliable resource for the

identification of lettuce defence regulators. The next significant step is to apply this knowledge in improving

the pathogen resistance of cultivars - ”GRN to field”. This will need to be achieved without negatively

impacting other important traits like yield, taste, and resistance to other pathogens/stresses and ensuring that

the molecular biology techniques used are not legislated against in the country of intended use.

Defence regulators’ expression is typically tightly controlled, with constitutive expression often leading

to undesirable effects. This includes growth-defence trade-offs, SA-JA antagonism leading to contrasting

biotrophic-necrotrophic resistance phenotypes, and altered taste profiles due to the continuous expression of

defence metabolites (Belkhadir et al. 2014; Thomma et al. 1998; Agrawal et al. 2002). This was observed

with our GRN hubs, as Arabidopsis lines expressing 35S::LsBOS1 showed reduced growth, suggesting that the

constant expression of a hub gene is likely not to be desirable under field conditions.

Instead, the use of a cis-regulatory element (CRE) which induces high-level expression, rapidly in response

to pathogen infection, but low expression in normal-growth conditions would be favourable. An 188bp CRE

within a Brassica napus promoter, pBnGH17D7, was shown to drive high expression specifically in response

to S. sclerotiorum, but not in normal growth conditions, nor after treatment with defence hormones JA

and ET (Lin et al. 2022). Using our lettuce-necrotroph transcriptomic datasets, lettuce promotors which

drive high-level expression rapidly in response to necrotrophic pathogen infection could be identified (e.g.

pLsat 1 v5 gn 3 82701 or pLsERF1) and engineered to remove CREs that drive expression in non-infected

tissue. Additionally, it may be possible to further engineer promoters by adding logic gates that can be

activated and repressed in specific conditions (Brophy et al. 2022).

Utilising pBnGH17D7 or lettuce promotors with similar expression profiles could enable the conditional

knockdown of genes that suppress pathogen defence, such as Lsat 1 v5 gn 0 1380 (LsBIR1). We identified

LsBIR1 to be strongly correlated with S. sclerotiorum susceptibility in our diversity panel (Pink et al. 2022).

Arabidopsis bir1-1 mutants show constitutively active defence responses, but have an extreme reduced

growth phenotype (Gao et al. 2009; Liu et al. 2016; Ma et al. 2017). While LsBIR1 mutants might

suffer from a significant yield reduction, we hypothesise that expressing a LsBIR1-RNAi construct under a
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pathogen-responsive promoter (e.g. pBnGH17D7 or pLsERF1) could increase pathogen resistance without

impacting yield. In addition, designing RNAi constructs to silence multiple orthologues could help overcome

any functional redundancies.

However, these approaches involve the addition of foreign DNA via Agrobacterium-mediated transformation

and therefore fall under the genetically modified (GM) classification. This imposes significant regulatory

constraints in several parts of the world, including the UK and Europe (Turnbull et al. 2021). However, the

recent passing of the Precision Breeding Act (2023) in England permits the development and marketing of gene

edited (GE) crops (Coe and Ares 2023; Caccamo 2023). Consequently, technologies such as CRISPR-Cas9,

which can induce targeted mutations without introducing foreign DNA, could become the focus of future

breeding programmes.

The ideal candidates for gene editing would be genes that negatively regulate pathogen defence, increase

resistance when mutated, and do not adversely impact other traits. Chapter 3 (Pink et al. 2023) identifies

LsNAC53 as one such candidate. We’ve shown that nac53-1 Arabidopsis mutants exhibit increased resistance

to B. cinerea, and that LsNAC53∆C expression within this mutant background complements AtNAC53,

restoring the susceptibility to wild-type level. Interestingly, AtNAC53 mutants have demonstrated improved

resistance to drought and heat-stress (Lee et al. 2012; Lee et al. 2014). Furthermore, AtNAC53 mutation

does not impact P. syringae DC3000 resistance, suggesting independence from JA-SA antagonism (Hickman

et al. 2019). These findings suggest that a CRISPR knockout mutant of LsNAC53 might improve resistance to

necrotrophic pathogens and environmental stresses, while maintaining defence against biotrophic pathogens.

LsCAMTA3, a prominent hub in our GRN is another candidate for gene-editing. AtCAMTA3 mutants

have been demonstrated to increase resistance to B. cinerea, S. sclerotiorum and P. syringae DC3000

(Galon et al. 2008; Du et al. 2009; Rahman et al. 2016). Although some defects like increased drought

susceptibility and reduced growth have been associated with AtCAMTA3 mutations (Zeng et al. 2022; Du

et al. 2009). Interestingly, these defects are not observed in warmer conditions (25-27◦C). While AtCAMTA3

is transcriptionally downregulated in response to B. cinerea, LsCAMTA3 shows an upregulation upon B.

cinerea and S. sclerotiorum infection, suggesting its mutation might considerably influence pathogen resistance.

If identified, CREs within the LsCAMTA3 promotor responsible for pathogen-induced expression could be

targeted for CRISPR mutation, potentially minimising adverse effects on other traits such as yield or drought

tolerance.

Having validated a candidate gene as an in vivo defence regulator, the next steps involve manipulating

this gene in lettuce plants using any of the methods discussed and then conducting field trials. A successful
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variety must outperform existing cultivars for necrotrophic pathogen resistance in a field environment, ideally

across several field sites in successive years. Moreover, it is crucial to ensure that the new variety maintains a

comparable performance in yield, nutritional content and taste as the existing elite cultivars before it can be

considered for commercialisation.

5.4 Concluding Remarks

The work presented within this thesis represents a significant improvement in our understanding of the lettuce

defence response to necrotrophic fungal pathogens. By utilising several high-throughput transcriptomic

datasets, it has been possible to:

• Identify over 5000 lettuce genes whose expression is correlated with S. sclerotiorum susceptibility

• Identify 16 high-confidence candidate genes located within five lettuce-necrotroph QTLs that may

underly the disease resistance phenotypes

• Reveal a core set of 4362 genes which are differentially expressed in the same direction in response to

both B. cinerea and S. sclerotiorum

• Infer a causal-directed gene regulatory network (GRN) which models transcriptional regulation during

pathogen infection, and is able to identify candidate defence regulators

• Demonstrate that our GRN outperforms both random guessing and co-expression modules in prediction

the downstream targets of a key lettuce defence regulator (LsERF1)

Through extensive validation of the GRN (performed in Chapters 3 and 4), we now have high-confidence

in its ability to accurately identify both candidate defence regulators and their downstream targets. Thus,

this GRN could ultimately be to used identify further lettuce defence regulators and to inform the generation

of disease-resistant lettuce cultivars. However, careful manipulation of these regulators’ expression may be

required to limit pleiotropic effects that result from crude constitutive over-expression or knockout.
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Data Availability

Supplemental Datasets:

Supplemental datasets for published and pre-printed chapters are available online

• Chapter 2 (Pink et al. 2022):

https://link.springer.com/article/10.1007/s00122-022-04129-5#Sec20

• Chapter 3 (Pink et al. 2023):

https://www.biorxiv.org/content/10.1101/2023.07.19.549542v1.supplementary-material

RNAseq data deposited on NCBI short reads archive (SRA):

• Diversity set and mapping population parent RNAseq data (PRJNA804213)

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA804213

• Lettuce-B. cinerea time-series RNAseq (PRJNA1013336)

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1013336

• LsERF1 overexpression RNAseq (PRJNA1022321)

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1022321

Lettuce Data Explorer (Shiny App):

A shiny app that allows users to view, plot or download data from the key data sets presented in this

thesis for genes of interest through a web app (Figure A). The shiny app is available from University of

York server (https://shiny.york.ac.uk/lettuce_transcriptomics/), or on shinyapps.io (https://

hpink97.shinyapps.io/Lettuce-Data/). Source code for the app is available at https://github.com/

hpink97/lettuce_data_app. Example outputs generated by the Shiny App are shown; time-series expression

of lettuce orthologues of selected Arabidopsis genes (Figure B), time-series expression heatmap for DEGs

associated with a specific GO-term (Figure C) and hub genes predicted to regulate genes involved with a

specific GO-term (Figure D)
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Figure A: Homepage of the Lettuce Data Explorer shiny app
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Figure B: An example output in the Shiny App, where a user has selected a “Multi Panel Line Plot” of
Time-Series Expression for lettuce orthologues of “ERF1, NAC053, WRKY7” with filters applied to only
display genes differentially expressed in the time-series. Download buttons above the plot enable the user to
either download the plot or download the data used to produce the plot.

176



Figure C: An example output in the shiny app, where a user has selected a Heatmap displaying time-series
expression for lettuce genes which are orthologues of Arabidopsis genes which are annotated with the GO-term
“jasmonic acid mediated signalling pathway” (GO:0009867). The user has also selected to filter for just genes
that are differentially expressed in the time-series. Download buttons above the plot enable the user to either
download the plot or download the data used to produce the plot.
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Figure D: An example output in the shiny app, identifying predicted gene regulatory network hubs for specific
genes of interest. The user has selected to view “Aggregated regulator statistics” for the transcription factors
which are predicted to regulate lettuce orthologues of genes annotated with the GO-term “response to jasmonic
acid”. The user has applied an additional filter, requiring the transcription factor to have at least 10 predicted
targets within the subset to be listed, and the results have been ordered by “FoldEnrichment”.
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Han, Rongkui, Dean Lavelle, Maria José Truco, and Richard Michelmore. 2021. “Quantitative trait loci and

candidate genes associated with photoperiod sensitivity in lettuce (Lactuca spp.)” Theoretical and Applied

Genetics 134:3473–3487.

Hancock, J.G. 1966. “Degradation of pectic substances associated with pathogenesis by Sclerotinia

sclerotiorum in sunflower and tomato stems”. Phytopathology 56:975–979.

Harholt, Jesper, Anongpat Suttangkakul, and Henrik Vibe Scheller. 2010. “Biosynthesis of pectin”. Plant

physiology 153 (2): 384–395.

Harvey, Sarah, Priyanka Kumari, Dmitry Lapin, Thomas Griebel, Richard Hickman, Wenbin Guo, Runxuan

Zhang, Jane E Parker, Jim Beynon, Katherine Denby, et al. 2020. “Downy Mildew effector HaRxL21

interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility”. PLoS Pathogens

16 (8): e1008835.

197

https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btw821/2931816/Biomartr-genomic-data-retrieval-with-R
https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btw821/2931816/Biomartr-genomic-data-retrieval-with-R
http://dx.doi.org/10.23986/afsci.71577
http://dx.doi.org/10.23986/afsci.71577


Have, Arjen ten, Wietse Mulder, Jaap Visser, and Jan AL van Kan. 1998. “The endopolygalacturonase gene

Bcpg1 is required for full virulence of Botrytis cinerea”. Molecular Plant-Microbe Interactions 11 (10):

1009–1016.

Hawkins, Nichola J, Chris Bass, Andrea Dixon, and Paul Neve. 2019. “The evolutionary origins of pesticide

resistance”. Biol. Rev. Camb. Philos. Soc. 94 (1): 135–155.

Hayes, Ryan J, Bo Ming Wu, Barry M Pryor, Periasamy Chitrampalam, and Krishna V Subbarao. 2010.

“Assessment of resistance in lettuce (Lactuca sativa L.) to mycelial and ascospore infection by Sclerotinia

minor Jagger and S. sclerotiorum (Lib.) de Bary”. HortScience 45 (3): 333–341.

He, Baoye, Huan Wang, Guosheng Liu, Angela Chen, Alejandra Calvo, Qiang Cai, and Hailing Jin.

2023a. “Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated

endocytosis”. Nature Communications 14 (1): 4383.

He, Jiuxing, Meng Kong, Yuanchao Qian, Min Gong, Guohua Lv, and Jiqing Song. 2023b. “Cellobiose elicits

immunity in lettuce conferring resistance to Botrytis cinerea”. Journal of Experimental Botany 74 (3):

1022–1038.

He, Jun, Yuqiang Liu, Dingyang Yuan, Meijuan Duan, Yanling Liu, Zijie Shen, Chunyan Yang, Zeyu Qiu,

Daoming Liu, Peizheng Wen, et al. 2020a. “An R2R3 MYB transcription factor confers brown planthopper

resistance by regulating the phenylalanine ammonia-lyase pathway in rice”. PNAS 117 (1): 271–277.

He, Kai, Xiaoping Gou, Tong Yuan, Honghui Lin, Tadao Asami, Shigeo Yoshida, Scott D Russell, and Jia

Li. 2007. “BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent

cell-death pathways”. Current Biology 17 (13): 1109–1115.

He, Xin, Longfu Zhu, Lian Xu, Weifeng Guo, and Xianlong Zhang. 2016. “GhATAF1, a NAC transcription

factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks”. Plant

Cell Reports 35:2167–2179.

He, Yubing, Tao Zhang, Hui Sun, Huadong Zhan, and Yunde Zhao. 2020b. “A reporter for noninvasively

monitoring gene expression and plant transformation”. Horticulture research 7.

He, Yunxia, Juan Xu, Xiaoyang Wang, Xiaomeng He, Yangxiayu Wang, Jinggeng Zhou, Shuqun Zhang,

and Xiangzong Meng. 2019. “The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12

mediate camalexin secretion for resistance to Botrytis cinerea”. The Plant Cell 31 (9): 2206–2222.

Heard, Steph, Neil A Brown, and Kim Hammond-Kosack. 2015. “An interspecies comparative analysis of the

predicted secretomes of the necrotrophic plant pathogens Sclerotinia sclerotiorum and Botrytis cinerea”.

PloS one 10 (6): e0130534.

Heller, Annerose, and Tanja Witt-Geiges. 2013. “Oxalic acid has an additional, detoxifying function in

Sclerotinia sclerotiorum pathogenesis”. PLoS One 8 (8): e72292.

198



Hemetsberger, Christoph, Christian Herrberger, Bernd Zechmann, Morten Hillmer, and Gunther Doehlemann.

2012. “The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase

activity”. PLoS pathogens 8 (5): e1002684.

Hermosa, MR, D Turra, V Fogliano, E Monte, and M Lorito. 2006. “Identification and characterization of

potato protease inhibitors able to inhibit pathogenicity and growth of Botrytis cinerea”. Physiological and

molecular plant pathology 68 (4-6): 138–148.

Herrera-Estrella, Luis, Ann Depicker, Marc Van Montagu, and Jeff Schell. 1983. “Expression of chimaeric

genes transferred into plant cells using a Ti-plasmid-derived vector”. Nature 303 (5914): 209–213.

Hickman, Richard, Claire Hill, Christopher A. Penfold, Emily Breeze, Laura Bowden, Jonathan D. Moore,

Peijun Zhang, Alison Jackson, Emma Cooke, Findlay Bewicke-Copley, Andrew Mead, Jim Beynon, David

L. Wild, Katherine J. Denby, Sascha Ott, and Vicky Buchanan-Wollaston. 2013. “A local regulatory

network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves”.

The Plant Journal 75 (1): 26–39.

Hickman, Richard, Marciel Pereira Mendes, Marcel C Van Verk, Anja JH Van Dijken, Jacopo Di Sora, Katherine
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Garcıa-Agustın, and Begonya Vicedo. 2015. “Silencing of OPR3 in tomato reveals the role of OPDA in

callose deposition during the activation of defense responses against Botrytis cinerea”. The Plant Journal

81 (2): 304–315.

Schaller, Florian, Christian Biesgen, Carsten Müssig, Thomas Altmann, and Elmar W Weiler. 2000.

“12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis”. Planta

210:979–984.

Scheben, Armin, Felix Wolter, Jacqueline Batley, Holger Puchta, and David Edwards. 2017. “Towards

CRISPR/Cas crops–bringing together genomics and genome editing”. New Phytologist 216 (3): 682–698.

Schilmiller, Anthony L, Abraham JK Koo, and Gregg A Howe. 2007. “Functional diversification of

acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action”. Plant Physiology 143 (2): 812–824.

Schoonbeek, Henk-jan, Hicret Asli Yalcin, Rachel Burns, Rachel Emma Taylor, Adam Casey, Sam Holt, Guido

Van den Ackerveken, Rachel Wells, and Christopher J Ridout. 2022. “Necrosis and ethylene-inducing-like

peptide patterns from crop pathogens induce differential responses within seven brassicaceous species”.

Plant Pathology 71 (9): 2004–2016.

Schouten, Alexander, Peter Van Baarlen, and Jan AL Van Kan. 2008. “Phytotoxic Nep1-like proteins from

the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells”. New

Phytologist 177 (2): 493–505.
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