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Abstract 

System identification serves as a cornerstone in the formation of mathematical models for dynamical 

systems from the interpretation of observed data. Not only does this play a pivotal role in expounding 

complex relationships, but it also optimizes system performance, essential for architecting reliably 

robust controllers and fostering accurate predictions across multiple scientific and engineering realms. 

Nevertheless, model uncertainty in system identification poses consequential effects on the 

dependability of these models and the decision-making mechanisms within intricate systems. 

Addressing model uncertainty is fundamental for bolstering the resilience of the identified models. 

However, contemporary research often falls short, demonstrating a general lack of systematic 

approaches towards the efficacious evaluation and quantification of uncertainties. Moreover, there lies 

an inadequacy in research efforts to delve into sophisticated methodologies and emergent tools with the 

capability of efficiently navigating model uncertainty. This consequently overlooks potential avenues 

for the optimization of system identification and prediction in the face of inherent ambiguities and 

complexities inherent within dynamic systems. 

This thesis undertakes an examination of model uncertainty within NARMAX, an essential but 

commonly neglected component within system identification and modelling. The study accentuates the 

tangible influence model uncertainty wields upon decision-making within complex dynamic systems. 

The research introduces a polynomial based NARMAX model, leveraging the FROLS algorithm in 

conjunction with set theory for the quintessential quantification of uncertainty. Additionally, this thesis 

gives rise to several innovative methodologies, such as the DeepNARMAX network. This network 

maintains the interpretability and accuracy inherent to NARMAX while proficiently managing high 

dynamic scenarios. The network’s efficacy is put to the test in real-world applications, such as weather 

and power forecasting models. Further innovations presented within this thesis include the SW-

NARMAX model that pertains to seasonal weather forecasting and the MAB-NARMAX model capable 

of the efficient detection of model structures using a mask matrix. 
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Chapter 1  

Introduction 

1.1 Background and motivation 

1.1.1 System identification and prediction 

In an ideal scenario, most systems in the real world can be approximated by a mathematical model 

which can be used to evaluate the influence of components, predict the system response for further 

study and investigate the internal and external interaction of the system [1]. Two typical approaches are 

usually considered to develop the mathematical models: (i) the theoretical one that utilizes the 

fundamental laws of matter and energy, and (ii) the empirical one that exploits the system inputs and 

outputs recorded from experimental or operating data [2]. The theoretical approach might sometimes 

present challenges in application or may not be completely suitable, as the inherent dynamics of many 

real-world systems, such as the space weather systems, climate and weather systems, financial systems 

and other systems, which are different from the physical-based systems, are not fully known or can be 

ambiguous. In such systems, only a limited number of the fundamental laws of matter and energy may 

be discernible. On the contrary, by studying the wealth of information from the observation data rather 

than describe the system by physical laws, the empirical method, also be called system identification is 

widely applied and more practical in model development. System identification is an empirical method 

frequently used in developing mathematical models of dynamic and complex systems from observed 

inputs and outputs of systems using data-driven modelling methods. 

 

Figure 1 System Identification process 

A typical process of system identification is shown in Figure 1. By using data-driven modelling 

methods, like Linear regression [3], Nonlinear regression [4], Bayesian modelling [5], Lasso regression 

[6], Long short-term memory (LSTM) [7], Nonlinear autoregressive moving average with exogenous 

inputs modelling (NARMAX modelling) [1], and methods, an optimal model to describe the unknown 

system and generate reliable and accurate simulated output is built from the inputs and outputs of the 

system, which is the primary objective of the system identification [8]. The ideal result is to find the 

exact model of the unknown system, which is a rare situation as most applications are the black-box 

systems [1]. Therefore, an optimal model through system identification is more reasonable and desirable 

for analysing the system and produce accurate prediction [9]. Also, the system identification is 

applicable to all systems if there are observed data of inputs and outputs of the system [10]. Methods 
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of system identification are often quick and straightforward to be deployed in the study and application 

[1]. Thus, system identification has been widely applied in many areas of the real world, like space 

weather [11], industrial design and control [12], economy [13], weather [14], power grid control [15] 

and etc. 

However, several questions in the process of system identification greatly affect the performance of the 

identified models and understanding of the system, like the accuracy of the observed data, the form of 

the identified models and the values of parameters in the models. These problems will certainly lead to 

various identification results, which cause vagueness and uncertainty for studying complex systems. 

This situation is also defined as model uncertainty [16]. 

1.1.2 Model uncertainty 

Model uncertainty is a pervasive and inherent problem in system identification and prediction of real 

applications [17], which is hardly to be eliminated. If the system is well understood, where this system 

can be defined by a theoretical model, then there is no model uncertainty as the model is unique and 

correct. But as discussed above, in most realistic situations, systems are not fully comprehended. Thus, 

model uncertainty will exist with the existence of system identification. 

The intuitive way to reflect the uncertainties of the identified models is the differences between model 

output ŷ  and system response y , which arise from many aspects, such as unpredictable variability 

and system error in the input data, big noisy signal coupled with the original signal, model parameters, 

model structures, modelling methods, and the criteria to evaluate the differences [18]. Model 

uncertainty has increasingly attracted attention from system identification and modelling area, and 

research results on model uncertainty have put forward higher requirements and more extensive goals 

for system identification [19]. Often, model uncertainty to be reduced is the main objective as more 

accurate model definitely has more understanding of the system and more precise forecast of the system 

in the future. Given the numerous sources of model uncertainty, as illustrated in Figure 2, extensive 

research has been conducted to enhance model performance and minimize model uncertainty [20] [21] 

[22]. 

 
Figure 2 Sources of model uncertainty 

Model uncertainty has gradually become one of the critical information in analysing the system and 

understanding the practical cases, not only the problem to be reduced during the process [23, 24]. The 

model uncertainty information can greatly affect the decisions in human life directly or indirectly [25, 

26]. With the uncertainty information, not the optimal model but a set of identified models are 

constructed to analyse the system and generate either combination predictions or probabilistic forecast 
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[27]. Therefore, more modelling results are present to the end users and researchers to discover and 

invest the unknown systems. Thus, there is a trade-off between utilizing and reducing model 

uncertainty, which is shown in Figure 3. 

 
Figure 3 Trade-off between reducing and utilizing model uncertainty 

Model uncertainty will bring many identified models with similar performance, which increase the 

information entropy and provide more options for end users. However, more models represent more 

riskiness to trust the identified results, while sometimes one best model and most reliable prediction are 

more considered. Like in the weather prediction, travellers desire a certain predicting result for the 

preparation and decision, while researchers prefer comprehensive models to discover more possible 

interaction in the weather system. Therefore, it is important to measure the trade-off of dealing with 

model uncertainty and provide satisfied identification results. 

1.1.3 NARMAX and model uncertainty 

NARMAX is a widely applied and efficient data-driven modelling method, which can provide sparse, 

interpretable and transparent (SIT) parametric models [28]. The SIT NARMAX models are usually 

desirable and useful for understanding the inherent dynamics and interactions of the system states. 

Moreover, the NARMAX model is compact and clear to explain and reveal the model structure in many 

applications where the primary modelling objective and task are to exploit and obtain an insightful 

description of how the system output explicitly depends on the system inputs, and to provide precise 

prediction of the system from the system inputs. 

For convenience of description, consider the case of systems with single input and single output (SISO), 

denoted by ( )u t  and ( )y t , respectively, where 1,2,...,t T=  is the sampling index (time instant). The 

lagged input and output variables are defined as: 

 
( ) )

( ) )

( ), ( 1),..., (

( 1), ( 2),..., (

u

y

u

t

u t d u t d u

y

t n

y t y y

t

t t n

→ − − − −

→ − − −
 (1.1) 

where d is a time lag between the system input and output (usually 1d =  but can be set to zero if the 

system input ( )u t  instantly affects the system behaviour), 
un  and yn  are the maximum time lags. 

These lagged variables can be used to create a model term dictionary, which can be used to build models. 

Therefore, the NARMAX model is defined as [1]: 

 ( ) [ ( 1),..., ( ), ( ),..., ( ), ( 1),..., ( )] ( )y u ey t F y t y t n u t d u t d n e t e t n e t= − − − − − − − +  (1.2) 

where, ( )e t  is the noise sequence, which is not measurable but can be estimated using model prediction 

error in practical modelling , 
en  is the maximum lag for the system noise; ][F   is some nonlinear 



18 

 

function, where in practice, there are many types of model structures that can be used to approximate 

the unknown mapping ][F  , including power-form polynomial models [29], rational models [30], 

neural networks [31], fuzzy logic-based models [32], and wavelet expansions [33]. The most commonly 

used model is the power-form polynomial representation [1]. Normally, the NARMAX model can be 

considered as a generic linear-in-the-parameters representation as: 

 
1

( ) ( ) ( )
M

m m

m

y t p t e t
=

= +  (1.3) 

where ( ) ( ( ))m mp t p x t=  with 1,2,...,m M=  are the regressors formed by some combinations of model 

variables chosen from the variable vector 
1( ) [ ( ),..., ( )]T

nt x t x t=x , where the variables in the vector are 

the lagged inputs and outputs like: ( ) [ ( 1),..., ( ), ( 1),..., ( ), ( 1),..., ( )]T

u y ex t u t u t n y t y t n e t e t n= − − − − − − . m  

are the model parameters. In this representation, M represents the length of the identified model. 

Ideally, the goal of the system identification is to find the most appropriate model to describe the system 

and reveal the interactions of the inputs and outputs of the system, also to generate the accurate and 

reliable predictions of the system in the future. Thus, the most appropriate NARMAX model should 

also be able to predict future system behaviour accurately and reliably. 

Based on the source of model uncertainty shown in Figure 2, there are several aspects bringing model 

uncertainty in NARMAX modelling, including 

• Noisy data. The observed inputs and outputs of systems might be noisy and uncertainty due to 

system observation error, low SNR, ambiguity, data lineage etc. 

• Model parameter uncertainty. Like in Eq (1.3) the regressors ( )mp t  in the model are determined, 

while the corresponding parameters m  can be diverse from different training subsets. 

Therefore, many models with the same regressors and different parameters can be generated, 

and various predictions are produced. 

• Model structure uncertainty. Lots of factors lead to model structure uncertainty in NARMAX 

models. The nonlinear form [ ]F  , the model length M, the maximum time lags un and 
yn  are all 

greatly affect the modelling results. 

• Criteria uncertainty. Usually, the sum of error reduction ratios (SERR) is the main criteria to 

measure the performance of the NARMAX model [34]. When dealing with different real 

applications, several other criteria, like mean square error (MSE), root mean square error 

(RMSE), mean absolute error (MAE), the R-squared value 
2R  or the adjusted 

2R , correlation 

coefficient, etc. 

The necessity for discerning and examining model uncertainty in the NARMAX modelling approach is 

multifaceted, rooted in several pivotal factors: 

• Precision and Predictability Enhancement: The reduction of model uncertainty allows for 

formulating and implementing a more accurate and optimal NARMAX model. Such models 

are capable of revealing the complex and dynamic interactions prevalent within the system, 

thereby improving the model’s predictability and minimizing previous inaccuracies. 

• Deeper Understanding: The inclusion of model uncertainty within NARMAX modelling 

promotes a broader understanding of dynamical systems. This includes grasping the system’s 

peculiarities, its base functionality, as well as enabling prediction of future behaviours. 
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• Balancing Trade-Offs: An additional incentive is the delicate balancing required in the complex 

and intricate NARMAX networks with model uncertainty. Addressing this complexity and 

uncertainty encourages the development of more accurate, flexible, and practical models that 

can closely represent dynamic and complex systems. 

• Innovation and Progress: Incorporating model uncertainty into established methodologies 

provides a pathway for creating novel NARMAX frameworks that encourage further progress 

in this academic field. This aims to stimulate both theoretical advancements and practical 

implementations, demonstrating the utility and efficiency of these innovative frameworks. 

• Real World Applications: Ultimately, deploying these modelling approaches to realistic 

applications is a compelling factor. By ensuring that improved predictive capabilities and deep 

understanding offered by managing model uncertainty are applicable to various practical fields 

- from engineering to technology and economics. 

By analysing and studying model uncertainty in NARMAX modelling, this research aims to augment 

knowledge in this discipline, thereby fostering a sturdy understanding and accurate prediction of 

complex systems across numerous professional fields. In short, superior management of model 

uncertainty in NARMAX is essential to fully exploit this modelling paradigm’s potential. 

1.2 Research hypotheses 

This research study seeks to present and defend two hypotheses which find their foundation in the realm 

of NARMAX. These hypotheses nominally revolve around the strategic integration of model 

uncertainty as an adjustable hyperparameter, conjecturing that this incorporation could significantly 

bolster the performance and applicability of NARMAX models. 

The first hypothesis maintains that by integrating model uncertainty as a critical hyperparameter within 

the NARMAX framework, a marked enhancement in predictive accuracy and reliability can be achieved 

for complex dynamical systems, in contrast to conventional NARMAX models. Existing NARMAX 

models have typically discounted or minimized the relevance of model uncertainty in their formulation, 

while this study argues that such an uncertainty holds a key role in computational modelling. Taking 

into account the inherent challenges and intricate complexities linked with the behaviour of dynamic 

systems, the need for greater model accuracy and robustness has never been more apparent. Hence, the 

interlacing of model uncertainty becomes imperative to bolster the performance and predictive capacity 

of models deployed in scenarios that demand a high degree of precursor understanding and prospective 

acuity. 

The second hypothesis contends that NARMAX models, which have been meticulously engineered 

with explicit consideration of model uncertainty, exhibit a higher degree of adaptability and overall 

effectiveness when confronted with real-world applications. Such models, therefore, present a broader 

comprehension and yield more insightful understanding of complex systems across various domains. 

In unpredictable, field-based applications, it is common to encounter a wide range of uncontrolled 

variables and conditions. Here, the rigidity of conventional models may pose an impediment. As a result, 

there are compelling arguments favouring an alternative approach, one that embraces flexibility over 

rigidity. Thus, the NARMAX model, designed with a clear accommodation to model uncertainty, 

emerges as an ideal candidate. Such a model, equipped with the power to adapt to fluid and 

unpredictable scenarios, can offer a broader spectrum of utility and penetrate deeper into the 

understanding concerning the behaviour and essential properties of complex systems across a diverse 

array of domains. 
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In summation, this research focuses on harnessing the capabilities of NARMAX models and further 

enhancing their robustness and predictive efficiency by consciously integrating model uncertainty. The 

examination and defence of these hypotheses forms the core of this research study. Once validated, 

these hypotheses have the potential to considerably transform and improve the practical applications of 

dynamic system modelling, injecting an advanced degree of reliability and breadth into the modelling 

of complex, multifaceted systems. The practical implication of this research, therefore, becomes the 

demonstration of the sheer power of model uncertainty and how its thoughtful integration into the 

NARMAX models can augment their overall utility and predictive potency. 

1.3 Aims and objectives 

In this thesis, the primary focus is centred around the exploration and examination of model uncertainty 

in NARMAX modelling. Model uncertainty is a pervasive issue in system identification and modelling, 

extending beyond just NARMAX modelling. This issue is especially significant when dealing with 

complex dynamical systems. Furthermore, uncertainty can directly influence decision-making by 

introducing variability into possible outcomes linked to specific actions. Additionally, uncertainty 

indirectly plays a role by introducing private information. In strategic interactions, the interconnection 

between uncertainty and private information is inherent: uncertainty creates variations in private 

information when different agents possess varying access to information regarding uncertain 

phenomena. Conversely, the presence of private information can also lead to uncertainty if agents are 

considering its potential implications, resulting in concerns related to moral hazard and adverse. 

Numerous studies on the uncertainty of NARMAX models have been conducted, however, a systematic 

definition, analysis, or quantification of this uncertainty has not been the focus of these investigations. 

Instead, they tend to concentrate on examining specific prominent or independent uncertainties. As a 

consequence, in NARMAX modelling, model uncertainty has received less attention compared to 

hyperparameters, such as model structure, due to the absence of systematic analysis and investigation. 

The emphasis is often on exploring uncertainties that emerge after the modelling process, resulting in 

redundancies and complexities in the modelling procedure, and impeding the comprehensive 

identification and research of complex dynamic systems. 

Additionally, with the increased penetration of applications, model uncertainty has transitioned from 

being merely a singular negative impact to a catalyst for considerable interest and demand for 

probabilistic modelling and prediction emerging from such uncertainty. Although probabilistic models 

offer uncertain representations of systems, it is worth noting that, in most cases, as the systems 

themselves are largely unknown, all system models derived through any method can be viewed as 

"pseudo-models". Thus, in comparison to deterministic models, probabilistic models can depict systems 

more comprehensively, while offering highly credible probabilistic predictions for system responses. 

The research aims are summarized as follows: 

• To scrutinize and critically evaluate the nature and implications of model uncertainty within 

the context of NARMAX modelling. 

• To investigate and ascertain the balance between trade-offs and advantages associated with 

model uncertainty in complex and profound NARMAX networks. 

• To design innovative NARMAX models or methods, introducing model uncertainty into the 

modelling process, seamlessly integrating model uncertainty to enhance the effectiveness of the 

model and understanding of real systems. 

• To implement the constructed NARMAX models in real-world settings, thereby demonstrating 

their applicability and efficiency across varied practical domains. 



21 

 

The principal objective of this research is to extensively probe and address the relatively uncharted 

territory of model uncertainty within NARMAX modelling. Propelled by the apparent systematic gaps 

in the present understanding of model uncertainty and its associated implications, this study aims to 

delve into the intricate nature of model uncertainty, proposing innovative methods or models that can 

effectively encompass and manage this uncertainty. 

The study is driven by an ambition to devise NARMAX models that offer a comprehensive grasp of 

real systems and yield precise, efficient predictions, even when applied to multifaceted, complex 

networks. By achieving this, the research aims to dismantle oft-observed redundant complexities in 

established modelling procedures, laying a foundation for improved, more reliable applications of 

NARMAX models across varied real-world scenarios. The detailed objectives are as follows: 

• To conduct an exhaustive review of the existing literature concerning model uncertainty in 

NARMAX modelling to procure a detailed understanding of its current status and identify any 

discrepancies. 

• To execute a theoretical examination of model uncertainty as applied to the NARMAX model, 

with a focus on its impact on the precision, predictability, and understanding of dynamical 

systems. 

• To formulate an original approach for handling the balance between trade-offs in model 

uncertainty while preserving the intricacy of NARMAX networks. 

• To design and establish sophisticated NARMAX frameworks that incorporate model 

uncertainty, which in turn enhances their predictive capabilities and overall understanding of 

dynamics. 

• To validate the evolved NARMAX models by employing them in practical scenarios - evaluate 

their performance and adaptability across assorted fields such as technology, engineering, and 

economics. 

This research study is anchored on in-depth exploration and elucidation of the relatively uncharted 

domain of model uncertainty within NARMAX. This study postulates that model uncertainty, being an 

inherent attribute often viewed negatively in problem-solving paradigms, could become a valuable 

resource in the canvas of advanced NARMAX modelling. 

The primary aim of this research is to dismantle the knotted complexities and redundancies in the 

existing modelling procedures by adeptly incorporating model uncertainty in formulating NARMAX 

models. It plans to leverage the latent potential of model uncertainty to develop models that ensure a 

broader understanding of complex systems. Such models are expected to provide precise, insightful, 

and reliable predictions when implemented to multi-faceted and complex networks across a spectrum 

of domains including technology, engineering, and economics. 

In fulfilling this aim, the research lays out a detailed plan including systematic analysis of the existing 

literature on model uncertainty in NARMAX modelling to encapsulate a detailed understanding of its 

current status and underline the existing knowledge gaps. It involves theoretical examination of model 

uncertainty as applied to NARMAX models prudently outlining its impacts on precision, predictability, 

and understanding of dynamical systems. The plan also includes crafting novel approaches to balance 

trade-offs in model uncertainty while maintaining the intricacy of NARMAX networks and the creation 

of sophisticated NARMAX frameworks that effectively weave model uncertainty enhancing their 

predictive prowess and dynamic system understanding. Finally, it intends to showcase the practicality 

and adaptability of the evolved NARMAX models across varied real-world scenarios. 
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1.4 Outline of the thesis 

This thesis comprises seven chapters.  

Chapter 1 introduces and explains the background of the study, its aims and objectives. 

Chapter 2 provides a comprehensive overview of the evolution of NARMAX, its fundamental 

models, and prominent feature extraction algorithms. It underscores the importance of implementing 

NARMAX models in the identification of complex dynamic non-linear systems. Furthermore, an 

expansive study on model uncertainty is undertaken, including insights into its background, 

classifications, in addition to research on uncertainty within the context of NARMAX models and 

machine learning. Through this analysis, the review highlights the significance of studying 

uncertainty in NARMAX models and pinpoints existing challenges in this domain. 

Chapter 3 provides centres on the methodology of this thesis. Acknowledging the complexities of 

system identification with the NARMAX method due to system inaccessibility, the study explores the 

identification of key system factors and their impacts through modelling mechanisms. This includes 

handling model uncertainty originating from diverse NARMAX hyperparameters configurations, as 

these are known to affect optimal model selection and predictive value generation. Tackling this 

necessitates a detailed approach to define, examine, and quantify such uncertainties to efficiently reduce 

them during the modelling procedure. The chapter further looks into the rising prominence of 

probabilistic models in system research for their comprehensive information provision. However, it also 

acknowledges their capacity to increase inherent model uncertainties. A qualitative and quantitative 

scrutiny of uncertainties in polynomial NARMAX models has been done, establishing a link between 

the uncertainties set’s size and corresponding hyperparameters values. It lays the groundwork for 

defining matching objective functions and optimization processes needed to yield optimal model 

versions. 

Chapter 4 provides a novel approach called the DeepNARMAX network, which enhances the 

efficiency of the classic polynomial NARMAX model. The new model’s construct includes several 

layers for processing input signals, dimension expansion, feature selection and reduction, non-linear 

operations, and model creation. The chapter also proposes a PSO-based algorithm for optimizing the 

calculation of a new hyperparameter - gate weight, which ensures optimal feature selection. The 

DeepNARMAX model was validated and tested through comprehensive experiments and comparisons 

with established neural network models. The DeepNARMAX successfully addresses the dimensional 

explosion issue and improves the capability for dealing with complex dynamic scenarios while 

maintaining the interpretability and accuracy of the classic NARMAX model. 

Chapter 5 provides a novel sliding window NARMAX method to handle the local details of the system. 

This SW-NARMAX model can divide the dataset through a sliding window, then perform NARMAX 

modelling on the system within this window, thereby obtaining an ensemble NARMAX model for 

system description. At the same time, in order to verify the effectiveness of the sliding window 

NARMAX model, this chapter applies the SW-NARMAX model to seasonal weather forecasting, using 

data from past 43 years for seasonal weather modelling and prediction. The research results also prove 

that SW-NARMAX models are effective in describing and predicting weather systems. 

Chapter 6 provides a new mask attention-based NARMRAX (MAB-NARMAX) modelling approach 

for nonlinear dynamic system identification. The mask attention mechanism is borrowed from the 
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extensively utilized neural network Transformer, aiming to diminish the dependencies among the 

features and neurons. The efficacy of the proposed method is evaluated through three simulation 

datasets. Results indicate that the advanced MAB-NARMAX modelling scheme displays impressive 

multi-step-ahead prediction capabilities for nonlinear system identification, as it can generate a 

valuable model structure. Despite high noise pollution resulting in low Signal-to-Noise Ratio (SNR), 

the proposed method consistently delivers reliable system models, outperforming leading machine 

learning methods such as LASSO and LSTM 

Chapter 7 summarizes the principal findings and contributions of this research. This study explores 

model uncertainty within NARMAX framework, filling a significant gap in systematic research on 

model uncertainty. To tackle this, we innovatively treat model uncertainty as a hyperparameter and 

introduce three methods: DeepNARMAX, Sliding Window NARMAX, and Mask Attention-based 

NARMAX. These methods demonstrate reliability and efficiency across high dynamic situations, 

seasonal weather forecasting, and model structure detection. However, future work needs to address 

quantification of model uncertainties, inclusion of more non-linear functions for complex system 

modelling, and validation of these methods in real-world systems. Despite the limitations, the potential 

of these new methods in significantly enhancing NARMAX-based model utility and efficiency is high. 

Furthermore, we highlight the relevance of integrating NARMAX into Explainable AI (XAI) and Green 

AI initiatives. For XAI, NARMAX can effectively handle interpretability challenges while for Green 

AI, it can model intricate systems without extensive computational requirement, ensure transparency, 

and display adaptability across diverse environmental contexts. Therefore, NARMAX-based solutions 

could perfectly align with sustainability goals while maintaining transparency and interpretability. 

1.5 Novelty and contributions of the thesis work 

1.5.1 Novelty and contributions 

The overall novelty of this thesis lies in the development and application of enhanced NARMAX 

models for improving system identification and handling the model uncertainty. 

• A novel comprehensive qualitative and quantitative examination of model uncertainty inherent 

in NARMAX modelling was carried out, culminating in an aggregated analysis on the concept 

of quantification associated with NARMAX model uncertainty. Moreover, the study proposes 

both optimization and probabilistic modelling techniques, predicated on empirically quantified 

model uncertainty. 

• A novel approach, the DeepNARMAX network, that enhances the efficiency of the classic 

polynomial NARMAX model, was proposed. This new model includes multiple layers for 

processing input signals, dimension expansion, feature selection and reduction, non-linear 

operations, and model creation. 

• A new hyperparameter-gate weight was present to control the optimization and iteration of the 

DeepNARMAX network, while a novel PSO-based algorithm for optimizing the calculation of 

gate weight was proposed. This ensures optimal feature selection, addressing the dimensional 

explosion issue, improving the capability for dealing with complex dynamic scenarios, and 

maintaining the interpretability and accuracy of the classic NARMAX model. 

• A sliding window NARMAX approach was introduced in the application for seasonal weather 

forecasting, demonstrating its effectiveness in modelling and prediction of seasonal weather. 

The sliding window method allowed for an ensemble NARMAX model to describe the 

system’s local details and generate probabilistic predictions, 
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• A groundbreaking mask attention-based NARMAX (MAB-NARMAX) approach designed to 

tackle the daunting task of model structure detection, a prominent challenge in numerous real-

world applications. This innovative methodology leverages the advantageous features of the 

NARMAX model, synergistically integrating the computational efficiency and information 

processing prowess of the mask matrix commonplace in Transformer neural network models. 

1.5.2 Research publications: 

1. Sun, Y. and Wei, H.-L. (2022). “Efficient mask attention-based NARMAX (MAB-NARMAX) 

model identification,” in Proc. 2022 27th International Conference on Automation & 

Computing (ICAC). 

2. Sun, Y., and Wei, H.-L. (2022). “How weather conditions affect the spread of Covid‑19: 

Findings from a study using interpretable machine learning and NARMAX models,” in Jiang, 

R. (Editor), Crookes, D. (Editor), Wei, H. L.(Editor), Zhang, L. (Editor), Chazot, P. (Editor): 

Recent Advances in AI‑enabled Automated Medical Diagnosis, , pp.238-252. 

3. Yiming Sun, Ian Simpson, Hua-Liang Wei, and E. Hanna, "Probabilistic seasonal forecasts of 

North Atlantic atmospheric circulation using complex systems modelling and comparison with 

dynamical models," Meteorological Applications, 2023 (Published). 

4. Ian Simpson, Edward Hanna, Laura Baker, Yiming Sun, and Hua-Liang Wei, "North Atlantic 

circulation indices: links with summer and winter temperature and precipitation in north-west 

Europe, including persistence and variability," International Journal of Climatology, 2023 

(Published)
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Chapter 2  

Literature Review 

The literature review presented in this chapter aims to provide a comprehensive background and 

understanding of model uncertainty in complex dynamic system modelling, with a specific focus on 

NARMAX and machine learning methods. The field of complex dynamic systems encompasses a wide 

range of real-world phenomena, such as power grid [35], traffic network [36, 37], robotics [38], 

biological networks [39], social systems [40, 41], and economic processes [42], which are characterized 

by intricate interactions between their components and non-trivial system behaviours. As these systems 

often exhibit high levels of uncertainty, developing accurate models is of paramount importance to 

facilitate informed decision-making, optimization, and control. NARMAX, as an efficient system 

identification method, can capture nonlinear relationships and intricate interactions among system 

components and produce accurate prediction about the system [1]. However, the conventional 

NARMAX modelling approach suffers from various limitations, particularly with regard to model 

uncertainty, which encompasses both parameter uncertainty and structure uncertainty. This chapter 

seeks to explore the existing body of knowledge on NARMAX modelling and the incorporation of 

machine learning and deep learning techniques to address these uncertainties, with the objective of 

improving model accuracy and enabling probabilistic prediction. 

2.1 Nonlinear autoregressive moving average with exogenous inputs 

(NARMAX) model 

In this section, we will introduce NARMAX modelling, a powerful approach for complex dynamic 

system identification. We will discuss its history, advantages, limitations, and applications, as well as 

review existing methodologies and techniques. This foundation will facilitate our exploration of model 

uncertainty and the integration of machine learning and probabilistic prediction methods in NARMAX 

modelling. 

2.1.1 Brief introduction 

The NARMAX model was first introduced and developed in early 1980s as a generalization of linear 

AMARX models to address inherent nonlinearity and complexity in real-world dynamic systems by 

Stephen Billings. The concept of early NARMAX modelling was to combine linear dynamic and static 

nonlinear elements selected by correlation analysis for identification of nonlinear systems [43]. Later, 

early developments were proposed to explore different aspects of NARMAX modelling and parameter 

estimation. In [44], a nonlinear difference equation of NARMAX model was introduced and two 

modified parameter estimation algorithms were proposed. In [45], three modified extended least squares 

algorithms were considered for the parameter estimation and structure detection of NARMAX models. 

In [46, 47], deterministic and stochastic nonlinear systems are delved, laying the groundwork for 

NARMAX modelling by discussing input-output parametric representations, identification methods, 

and model structures. Collectively, these explorations significantly contributed to the development and 

formalization of NARMAX methodology. 

After the early developments and formalization of the NARMAX methodology, researchers continued 

to refine and expand NARMAX to improve its performance, robustness, and applicability in various 

fields. NARMAX was formally introduced versatile and powerful tool for representing and identifying 

nonlinear systems in [29], combining nonlinear autoregressive, moving average, and exogenous input 
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components to capture complex system dynamics. Furthermore, the orthogonal least squares (OLS) 

algorithm was proposed for efficient model identification, addressing the challenges of term selection 

and overfitting in [48]. Since the formal introduction of NARMAX, it gained increased attention due to 

the capabilities to capture the nonlinear dynamics of various real-world systems, like automotive diesel 

engine design [49], solar-powered thermoacoustic refrigerator identification [50], modelling of space 

weather like sunspot [51], electroencephalogram (EEG) signal processing and modelling [52]  

As NARMAX continued to gain traction in various fields, additional advancements were made to 

improve its overall effectiveness and practicality. Researchers focused on improving the parameter 

estimation techniques of NARMAX models, with a particular emphasis on enhancing computational 

efficiency and reducing the need for manual intervention. In [53], a recursive extended least squares 

(RELS) algorithm was proposed, allowing for real-time identification of NARMAX models. This 

development was especially beneficial for applications that required fast identification, such as adaptive 

control systems. In [54], A novel forward orthogonal search (FOS) technique, which maximizes the 

overall dependency (MOD), was introduced to identify significant variables and select a subset from a 

collection comprising all original variables. The FOS-MOD algorithm operates through a 

straightforward and easily implementable mechanism, generating efficient subsets while preserving the 

interpretability of each feature in relation to the original data. In [55], an integrated forward orthogonal 

search algorithm, assisted by squared correlation and mutual information measures, to effectively 

identify the model structure of complex nonlinear systems, was proposed. The proposed approach 

shows potential in identifying accurate and parsimonious models, but a more comprehensive 

comparison with alternative methods and an investigation into its robustness would further solidify its 

value and applicability. In [56], a novel approach for sparse model identification in nonlinear system 

identification by combining the forward orthogonal regression algorithm with mutual information was 

introduced. The proposed method demonstrates potential in constructing accurate and parsimonious 

models, but further investigation and comparison with alternative approaches would provide a more 

comprehensive understanding of its true benefits and limitations. 

Another significant milestone in the history of NARMAX was the introduction of different nonlinear 

form of NARMAX models in [57-61]. These models incorporated wavelet transformations, rational 

functions and radial basis function network, some powerful mathematical tools for analysing nonlinear 

system, into the NARMAX framework. The resulting NARMAX models were better suited for handling 

nonstationary and multiscale phenomena, further extending the applicability of NARMAX to a broader 

range of systems. The detailed discussion of these NARMAX models is in next section. 

In recent years, the research of NARMAX have focused on improving parameter estimation and 

variable selection algorithm efficiency, incorporating advanced machine learning techniques, 

developing hybrid approaches, ensuring model interpretability, and expanding applicability to various 

domains [62-66]. In [67], a novel iterative forward orthogonal least squares regression (IFOLS) 

algorithm for identifying nonlinear systems with non-persistent excitation was present. The proposed 

IFOLS method demonstrates improved performance compared to traditional techniques, offering a 

promising alternative for nonlinear system identification in challenging excitation scenarios. In [68], a 

novel Maximum Relevance-Minimum Multicollinearity (MRmMC) method for feature selection and 

ranking was proposed, which addresses the challenges posed by multicollinearity in predictive 

modelling. However, the MRmMC method involves an iterative process for feature selection and 

ranking, which could lead to increased computational complexity, especially for high-dimensional 

datasets or large-scale problems. In [28], a novel mask attention-based NARMAX (MAB-NARMAX) 

modelling method was proposed to reduce the model structure uncertainty in nonlinear system 
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identification, where the mask attention mechanism came from the attention-based deep neural network 

(Transformer). 

As the research on NARMAX continues to evolve, new applications of NARMAX have also been 

explored. In [69], a novel non-destructive testing method based NARMAX system identification 

method for mechanical structural health assessment was proposed. By obtaining frequency response of 

NARMAX model from time domain, the structural health situation was analysed effectively with the 

factors affecting the situation of mechanical structures. In [70], a diagonal recurrent neural network 

(DRNN) based NARMAX method was applied to accurately predict the behaviour of magnetic shape 

memory alloy (MSMA) actuators and describe the hysteresis nonlinearity degree of the device. In [34], 

to understand the influenza and influenza-like illness and provide accurate and timely forecasts of 

seasonal influenza, NAMRAX was introduced as a sparse, interpretable and transparent (SIT) model in 

the medical and healthcare area. By comparing with state-of-the-art methods, NARMAX can not only 

provide accurate forecasts, but also present explainable relationship between system inputs and outputs 

and the interaction of the ‘black box’ system. In [71], the NARMAX method was used to build a 

nonlinear dynamic model of cortical responses to wrist perturbations. By applying NARMAX, a 

common model structure across all participants, which could provide a reference for future clinical 

studies investigating abnormal cortical responses associated with sensorimotor impairments was 

identified. The study found that the measured cortical response is a mixed outcome of the nonlinear 

transformation of external inputs and local neuronal interactions or inherent neuronal dynamics at the 

cortex. 

In conclusion, recent studies have demonstrated the advantages of NARMAX models in addressing 

complex nonlinear problems. The key benefits of NARMAX models include their ability to provide 

accurate predictions, reveal explainable relationships between system inputs and outputs, and shed light 

on the interactions within "black box" systems. Researchers are continuously exploring new 

applications and refining existing methodologies to improve the performance, reliability, and robustness 

of NARMAX models. The ongoing development and research in NARMAX models hold significant 

implications for various domains. By harnessing the power of NARMAX modelling techniques, 

researchers and practitioners can gain deeper insights into complex systems, improve decision-making 

processes, and develop innovative solutions to pressing challenges. As the field continues to progress, 

it is expected that the versatility and adaptability of NARMAX models will further establish them as a 

valuable tool for addressing diverse nonlinear problems across a myriad of disciplines. 

2.1.2 Typical version of NARMAX models 

Based on the definition of NARMAX, the general NARMAX model is normally defined as [46]: 
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where ( )y k , ( )u k , and ( )e k  are the system output, input and noise signals, respectively; 
yn , 

un , and 

en  are the maximum lags for the system output, input, and noise signals, respectively; ][F   is some 

typical nonlinear function, and d is a time delay for the input signals, which is typically set to 1d = . 

Throughout the years, to enhance the performance of NARMAX, researchers focused on improving the 

model structure selection and parameter estimation processes in NARMAX models since the successful 

application in various real-world problems. 
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Power-form polynomial NARMAX model 

Initially, the power-form polynomial model was proposed as the NARMAX model form [29], which 

means that the unknown nonlinear mapping ][F   is the power-form polynomial function. Therefore, 

the power-form polynomial representation of NARMAX model is defined as [1]: 
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where ( )y k , ( )u k , and ( )e k , 
yn , 

un  , and 
en  are defined as before;  is the degree of polynomial 

nonlinearity, 
1 2 mi i i  are parameters, 

y u en n n n= + + . 

The power-form polynomial NARMAX model has shown great performance in terms of flexibility, 

adaptability, and interpretability in various applications. Their versatility and adaptability allow for 

accurate modelling and prediction of system behaviours, providing valuable insights and improved 

control strategies. Moreover, the power-form polynomial NARMAX models offer a balance between 

model complexity and interpretability, making them a powerful tool for researchers and practitioners 

seeking to understand and optimize real-world systems with inherent nonlinearities. These models have 

shown exceptional performance in fields such as engineering [72], environmental sciences [73], 

economics [74], and biomedical engineering [75]. 

Polynomial-based models can exhibit certain limitations, particularly when attempting to capture highly 

nonlinear behaviours. This is because their fixed structure may not be flexible enough to accurately 

represent the complex dynamics inherent in severely nonlinear systems. Therefore, alternative nonlinear 

function forms were introduced to model structure selection. Detailed introduction of polynomial 

NARMAX is discussed in Section 3. 

Rational NARMAX model 

Rational NARMAX models are a type of NARMAX models that use rational functions to nonlinear 

relationships within a dynamic system [30, 59], which is defined as a ratio of two polynomial functions, 

making it capable of capturing more complex or certain types of singular or near singular behaviours. 

The rational NARMAX model is defined as [59]: 
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( ) ( ) ( )
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A y k y k n u k u k n e k e k n e k

 −  − −  − −  − +
 

=
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 

 (2.5) 

where ( )y k , ( )u k , and ( )e k , 
yn , 

un  , and 
en  are defined as before; ][A   and ][B   are functions in 

polynomial forms. It is assumed that ][ 0A    . The rational model offers a broader representation 

compared to the standard polynomial NARMAX model. In fact, setting the denominator polynomial 
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][B   to be equal to 1 makes the rational model equivalent to the polynomial NARMAX model [76]. 

Furthermore, various other rational models, such as integral, recursive, and output-affine models, can 

be considered as special cases of the rational model [1]. 

Rational NARMAX models offer increased flexibility and accuracy by approximating a wider variety 

of nonlinear behaviours with compact, parsimonious representations. However, they come with certain 

drawbacks related to computational complexity, stability, and interpretability. The choice of using 

rational NARMAX models depends on the specific problem and the trade-offs between accuracy, 

complexity, and interpretability. 

Wavelet-based NARMAX models 

Wavelet-based NARMAX models employ wavelet functions as nonlinear elements within the 

NARMAX structure to capture the inherent nonlinearities in dynamic systems [77]. Wavelets are 

mathematical functions with time and frequency localization properties [78], which enable these models 

to represent non-stationary or transient behaviours more effectively [79]. Additionally, wavelet 

functions allow for multiresolution analysis, providing a framework for analysing complex system 

dynamics at multiple levels of detail [80]. 

In the wavelet-based NARMAX model, the input signal ( )u t , output signal ( )y t , and noise signal ( )e t  

at different time lags are represented using a set of wavelet basis functions [81]. The Wavelet-based 

NARMAX model can be converted into a linear-in-the-parameter form [81]: 

 
1

( ) ( ) ( )
M

m m

m

y t p t e t
=

= +  (2.6) 

where ( ) ( 1,2, , )mp t m M=   are predictors/model terms generated by the scaled and shifted variants of 

certain mother wavelets; m  is the related parameters. The identification and estimation process 

involves optimizing these coefficients to minimize the prediction error. In most instances, representing 

a nonlinear dynamical system only necessitates a limited number of significant basis functions, chosen 

from an extensive library of available functions [58]. Wavelet-based NARMAX models offer a 

powerful approach for modelling nonlinear dynamic systems, with advantages in time-frequency 

localization, multiresolution analysis, adaptability to discontinuities, sparse representation, and 

improved model performance. These characteristics make them particularly suitable for analysing 

complex systems with non-stationary, time-varying, or transient behaviours [82]. Due to their unique 

properties, wavelet-based NARMAX models have been successfully applied in various fields, including 

solar wind modelling and prediction [83], ecological environmental modelling [84], and high tide 

forecast and modelling [85], among others. 

Radial basis function (RBF)-based NARMAX models 

Radial basis function (RBF)-based NARMAX models incorporate radial basis functions as nonlinear 

elements within the NARMAX structure to represent complex nonlinear relationships in dynamic 

systems [86, 87]. RBFs are a versatile class of functions that can capture a wide range of nonlinear 

behaviours, making them suitable for modelling various systems [88, 89]. These models are particularly 

useful in handling systems with localized behaviours, as RBFs are characterized by their limited regions 

of influence, allowing the model to adapt to changes in the system dynamics more effectively [90]. 

Similarly, the RBF-based NARMAX can be defined as: 
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M

m m

m

y t f t e t t e t 
=

= + = +x x  (2.7) 

where M is the total number of candidate regressors, ( ( )), ( 1,2, , )m t m M = x  are the model regressors 

and m  are the model parameters. Take an RBF network with Gaussian kernels for the nonlinear form 

f̂  as an example: 

 ( )
1

ˆ ( ( )) ( ); ,
M

i i i i

i

f t t 
=

=x x σ c  (2.8) 
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T 11

( ); , exp ( ) ( )
2

i i i i i it t t − 
= − −  − 

 
x σ c x c x c  (2.9) 

where i  is the general standard Gaussian kernel; 
T

,1 ,, ,i i i d   =    are the dilation parameters to 

define the Gaussian kernel width; 
T

,1 ,, ,i i i dc c =  c  are the location parameters that determine the kernel 

positions; i  are positive diagonal matrices [86]. Certainly, there are more types of kernel functions to 

comprise the RBF-based NARMAX models. 

The RBF-based NARMAX models involve optimizing the RBF parameters, such as centers and widths 

of the kernel function in the RBF network, to minimize the prediction error [91]. While RBF-based 

NARMAX models offer a flexible and powerful approach for modelling nonlinear dynamic systems, 

they also come with certain drawbacks, such as increased computational complexity, challenges in 

selecting appropriate RBF parameters, and potential overfitting risk especially when using a large 

number of basis functions. 

2.1.3 Typical variable selection algorithm 

The Orthogonal Least Squares Estimator and the Error Reduction Ratio 

The Orthogonal Least Squares (OLS) estimator, initially developed in the late 1980s, was designed for 

parameter estimation in NARMAX models, which have a linear-in-the-parameters representation [48, 

72, 92, 93]. The fundamental concept behind the OLS estimator involves defining and incorporating an 

auxiliary model with terms orthogonal over the estimation dataset. This approach allows for the 

sequential and independent estimation of individual model coefficients, even in the presence of 

correlated measurement noise. Afterward, the auxiliary model is mapped back to the original system 

model as a final step. Applying this straightforward algorithm repeatedly not only yields unbiased 

estimates for each coefficient in succession but also reveals the contribution that each model term makes 

to the system output variance. 

Consider a general linear-in-the-parameters NARMAX model defined as: 

 
1

( ) ( ) ( )
M

i i

i

y k p k e k
=

= +  (2.10) 

where ( ), 1,2,...,y k k N=  is the system output, ( ) ( ( ))i ip k p k= x , 1,2,...,i M=  are the regressors 

transformed by the combination of complex functions of selected lagged model variables from the 

vector  
T

1 2( ) ( ), ( ), , ( )nk x k x k x k= x , where ( )lx k , 1,2,...l n=  are the lagged system input signal 

[ ( 1),..., ( )]uu k u k n− − , lagged system output signal [ ( 1),..., ( )]yy k y k n− −  and the lagged noise signal

[ ( 1),..., ( )]ee k e k n− − , 
u y en n n n= + + , i  are the model parameters, ( )e k  is the prediction error. The 
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assumption is that each of the regressors, denoted as ( )ip k , is independent of any model parameters, 

illustrated as i . This independence is represented mathematically as ( ) / 0i jp k   = , 1,2,...,i M=  and 

1,2...,j M= . 

Ideally, the goal of OLS algorithm is to convert the initial non-orthogonal regression model (2.10) into 

an alternative regression model featuring orthogonal regressors or terms. In other words, the aim is to 

establish an auxiliary model with orthogonal terms to one another. 
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=
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where ig  are the orthogonal regression model parameters; ( )iw k , 1,2,...,i M=  are orthogonal vectors: 
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with 2
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=

=  . As the regressors in model (2.10) are assumed to be independent, therefore, the 

orthogonalization mechanism is defined as: 
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where 
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1( )p k is the first model term in model (2.10), which is determined by the error reduction ratio (ERR). 

Accordingly, it can be derived that: 
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and the parameters i  in model (2.10) can be derived from the orthogonal regression model parameters: 
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During the orthogonalization mechanism, one key area is to select the orthogonal terms in model (2.11). 

A straightforward yet efficient method for identifying a subset of important regressors, the error 

reduction ratio (ERR), was proposed to select the most significant terms based on their ERR values. 

For each orthogonal terms, their ERR values iERR  is defined as [48]: 
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where iw  is the orthogonalized vector and y  is the system output vector. 

The OLS estimator boasts higher efficiency compared to the classical least squares algorithm. Its power 

stems from its capacity to rank and select the most significant or relevant model terms from a potentially 

large initial set of candidate terms. This capability is often crucial for subset model selection, and in 

nonlinear dynamic model identification, it assists with model interpretation and frequently improves 

the generalization properties of the fitted models. However, there are some certain challenges for the 

basic OLS algorithm, like the location of the first orthogonalized term in model (2.13), the selection of 

incorrect or redundant model term. Thus, various variable selection algorithms based on the basic OLS 

algorithm were present. 

The Forward Regression OLS Algorithm 

The Forward Regression with OLS (FROLS) algorithm, also referred to as the Orthogonal Forward 

Regression (OFR) algorithm, is widely recognized for its ability to select and rank significant terms 

[92]. Consequently, it has emerged as a standard algorithm frequently employed in nonlinear model 

structure detection [94, 95]. 

Taking the polynomial NARX model of nonlinear degree  as an example, this model can also be 

considered as the linear-in-the-parameters representation: 
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where ( 1,2,..., )m m M =  are model parameters and ( )mp k  are model terms defined as 

 
1,1 ,,,( ) ( )( ) ( () )m y y m uy u mup k y k km y m u k m u k m − − −= −   (2.19) 

 
,1 ,2 ,

,1 ,2 ,

1

1

...

...

y y y my y

u u u mu u

m m m n

m m m n

    

    
 (2.20) 

With 1,2,...,m M= , , 0my mu  ; ) 1(mp    is related to a constant term; 0my =  indicates that ( )mp k  

contains no )(y   variables; 0mu =  indicates that ( )mp k  contains no )(u   variables. Let 

[ (1), (2),..., ( )]T

m m m mp p p N=p  be a m-th candidate model term vector and  1 2, , , MD = p p p  be a 

candidate dictionary, which is normally redundant. The objective of the FROLS algorithm is to find a 

subset    
0 0 1 2 0

1 2, , , , , ,
MM M i i iD =  = α α α p p p  from the dictionary D, where 

0, {1,2, , 1,2,...,},
mm i m k Mi M ==  α p . Therefore, based on the selected subset, the NARX model in 

equation (2.18) can be transformed as: 

 
0 01 1 M M = + + +y α α e  (2.21) 

The detailed procedure of FROLS is discussed in Chapter 3. 
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The Forward Orthogonal Search Algorithm by maximising the overall dependency (FOS-MOD) 

Algorithm 

The FOS-MOD algorithm aims to maximize the overall dependency (MOD) in order to identify 

significant variables and select a subset from a library containing all original variables [54]. The FOS-

MOD algorithm begins by converting a general feature subset selection problem into a multivariate 

regression problem using the concepts of pseudo-response and pseudo-regression. The core idea behind 

FOS-MOD is to ensure that the selected subset adequately represents the overall features in the original 

measurement space. This is achieved by explaining the variation in the overall features using the 

selected subset with an acceptable accuracy, surpassing a predefined threshold. FOS-MOD generates a 

ranked list of selected features, ordered based on their percentage contribution to representing the 

overall features. 

Denote  1 2, , , nS = x x x  as the dataset formed by N observations and n attributes in the measurement 

space, where  1 2( ), ( ), , ( )nk k kx x x  is the k-th instance signal vector; 
T

(1), 2), , ( )( jj j jx x x N =  x  is the 

j-th attribute of the observation vector. The goal of FOS-MOD algorithm is to find one subset 

   
11 2, , , , ,

dd d i iS =  = z z z x x , to represent the features, where ., {1,2, 1,2, , .,, .}
mm i mi dmn=   =z x  and 

d n . The fundamental requirement is to ensure that the overall features in the measurement space are 

adequately represented using 
dS . This is achieved by confirming that the variation in the overall 

features can be explained by the elements of 
dS  with a satisfactory level of accuracy, like: 

 ( )1 2, , ,i i d if=  +x z z z e  (2.22) 

where if  represents an unknown function that describes the relationship between the i-th variable and 

the selected variables, and 
ie  is an unobservable error accounting for the discrepancy in the 

approximation. The effectiveness of the selected subset dS  can be assessed by examining its ability to 

approximate individual features ( 1,2, , )i i n= x  in the measurement space. For instance, one can 

evaluate the percentage of variation in 
ix  that can be explained by the elements in dS . Assuming the 

percentage of variation in 
ix  accounted for by the elements in dS  is ( )ip d , the average percentage of 

variation in the overall features 
1 2, , , nx x x  that can be explained by 

dS  can be defined as 

1
(( ) (1/ ) )

n

ii
p d n p d

=
=  . If the percentage ( )p d  exceeds a given threshold, 

dS  can be considered as 

the final subset. Otherwise, additional significant variables need to be included in 
dS . The detailed 

procedure of FOS-MOD is discussed in [1, 54]. 

Recently, the OLS algorithm has attracted more attention due to its efficiency and accuracy. In [96], the 

recursive OLS (ROLS) algorithm is utilized to optimize the radial basis probabilistic neural networks. 

The ROLS algorithm is introduced to recursively train the weights between the hidden layer and the 

output layer of the RBNN as the algorithm holds the ability to process a large number of training 

samples. In [97], a multiple OLS algorithm (m2OLS) was proposed as an extension of the typical OLS 

algorithm. By using the proposed m2OLS algorithm, the k-sparse signal vector can be recovered from 

the noiseless measurement. In [98], a greedy OLS algorithm based on the Householder transformation 

is developed to deal with the multivariable Wiener system identification. The proposed greedy OLS 

algorithm utilizes the Householder transformation strategy to select the most active information in the 

potential variables to lower the computation complexity and the system sensitivity. In [99], an 

accelerated OLS (AOLS) algorithm is introduced, which is a greedy scheme designed for accurate 
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reconstruction of sparse vectors from random linear combinations of their components. The AOLS 

enables the quantification of relationships between objectives in multi-objective reinforcement learning, 

which addresses the problem of inferring a sparse vector from random linear combinations of its 

components, emphasizing efficient and accurate reconstruction in large-scale scenarios. 

Collectively, these developments underscore the versatility and evolving nature of the OLS algorithm, 

highlighting its continued relevance and adaptability to various domains, from neural network 

optimization and signal processing to system identification, by incorporating strategies like recursive 

training, sparsity exploitation, efficient variable selection, and computational acceleration. 

2.1.4 Summary 

The evolution of NARMAX models has undergone a continuous series of refinements and innovations, 

which have been aimed at enhancing their performance, robustness, and applicability across diverse 

domains. Originally, NARMAX models were developed as a generalization of linear AMARX models. 

However, over time these models have evolved considerably, and have incorporated advanced 

mathematical tools, machine learning techniques, and hybrid approaches specifically to address the 

challenges associated with nonlinear systems. Additionally, researchers have been exploring novel 

ways to improve parameter estimation, variable selection, and model interpretability, which are all 

essential components in the development of a reliable and accurate NARMAX model. Given these 

ongoing efforts, it is anticipated that NARMAX models will maintain their position as a highly valuable 

tool for nonlinear system identification and prediction, ultimately expanding their impact and 

applicability across various fields. 

2.2 Model uncertainty 

In any statistical model, uncertainty is an inevitable factor that must be considered. One of the most 

challenging aspects of building a model is to understand and quantify the level of uncertainty in the 

model. In the context of this literature review, we are concerned with the concept of model uncertainty, 

which arises when multiple models can be used to explain the data. The problem of model uncertainty 

is particularly significant in complex models, where there are many parameters and interactions. The 

aim of this section is to critically review the literature on model uncertainty, with a focus on exploring 

different methods for quantifying and managing model uncertainty. We will also discuss the 

implications of model uncertainty for decision-making using statistical models and highlight areas 

where further research is needed. 

2.2.1 Brief introduction of model uncertainty 

Model uncertainty pertains to the degree of ambiguity linked with the selection of a specific model that 

represents a real-world occurrence [100]. This primarily arises when several competing models can 

equally explain the observed data, or in cases of uncertain model assumptions, a common challenge in 

research [101-104]. In system identification, the choice of the most suitable model plays a vital role in 

generating valid predictions and deductions [105, 106]. Nonetheless, model selection is an arduous task, 

primarily when multiple competitive models exist, each having its unique strengths and limitations 

[107-109]. The challenge of model uncertainty is especially prominent when handling complex 

dynamic datasets, where numerous variables and interactions come into play [110]. Therefore, 

recognizing model uncertainty is critical to the success of data-driven models. The ability to handle and 

mitigate model uncertainty ensures credible inference and predictions, fostering widespread 

applicability of the model. Ignoring model uncertainty can lead to challenges such as overfitting, biased 

results and incorrect conclusions, reducing the usefulness and reliability of the model. 
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2.2.2 The category of model uncertainty 

Model uncertainties result from various factors, such as the scale of data analysis, complexity of the 

phenomenon, accuracy of measurements, and validity of assumptions underlying the models [111-113]. 

This section presents a detailed account of the diverse sources of uncertainties involved in modelling 

and the standard methods utilized for their mitigation. 

Data-Related Uncertainty: 

Data-related uncertainties refer to the uncertainty, ambiguity, or lack of clarity in the data that could 

affect the accuracy and reliability of the analysis [114]. Incomplete or noisy data, measurement errors, 

and outliers are common limitations that could create uncertainties in the data [115, 116]. For instance, 

if the dataset is incomplete, the results of the analysis may not accurately represent the population, as 

there could be some critical observations missing [117]. Similarly, if the data contains measurement 

errors, it could result in incorrect conclusions or interpretations [118]. Finally, outliers or anomalies in 

the data could also create uncertainties, as they could be due to data-entry errors, or they could represent 

legitimate data points that are informative and should not be excluded from the analysis [119]. 

Model parameter uncertainty 

Model parameter uncertainty is a fundamental challenge in system identification and modelling. The 

uncertainty arises from the fact that the values of the parameters in models are not known exactly, and 

this uncertainty can have a significant impact on the accuracy and reliability of the models [120]. Model 

parameters are estimates that describe the relationships between variables in the model, influencing the 

conclusions drawn from analysing data [121]. Estimating model parameters necessarily involves a 

degree of error due to imperfect modelling assumptions and limitations in data collection and analysis. 

This intrinsic error causes model parameter uncertainty, which can affect the accuracy and reliability of 

the conclusions drawn from the data [122]. There are different types of elements to leading to model 

parameter uncertainty, including non-stationary dataset, model misspecification, heteroscedasticity, etc 

[123-126]. 

• Non-stationary data: Non-stationary time series may exhibit dynamic changes in statistical 

properties, such as trends, seasonal effects, or abrupt shifts in the underlying data generating 

process, which can pose challenges to accurately estimating model parameters [127]. These 

changes may lead to the evolution of the relationships between the variables in the model over 

time, and therefore, require specialized techniques to effectively capture and model the dynamic 

nature of the data generating process. [128]. 

• Limited data: Insufficient data may yield imprecise and unreliable parameter estimates, as the 

limited sample size may not provide adequate information to accurately infer the true values of 

the model parameters [129]. In such situations, careful data pre-processing and modelling are 

crucial to minimize bias and variance in the parameter estimates, and to select an appropriate 

model that can effectively capture the underlying data generating process [130]. 

• Model misspecification: Misspecified models can also result in biased or inefficient parameter 

estimates, which can have a significant impact on the accuracy of the model predictions [131]. 

Such biases can arise due to omitted variables, errors in variable measurement, or nonlinearity 

in the data generating process [132]. 

• Heteroscedasticity: Heteroscedasticity denotes the attribute of a dataset wherein the dispersion 

of residuals is nonuniform across the domain of the predictor variable [133]. With the 

fluctuations in the predictor variable, the residual magnitudes exhibit variation, yielding an 
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unequal distribution of error terms. This irregularity complicates the estimation and 

interpretation of associations amongst variables in statistical modelling [134]. Consequently, 

heteroscedasticity engenders parameter uncertainty, potentially affecting the dependability of 

the model’s prognostications and deductions [135]. 

• Outliers: Outliers are characterized as distinct data points that diverge markedly from the 

prevailing observations in a dataset [136]. The presence of these atypical values can engender 

considerable uncertainty in the model parameters [137]. This uncertainty arises from the 

disproportionate impact outliers impart on the estimation of model coefficients, thereby 

potentially compromising the accuracy and robustness of the model [138]. As such, in the realm 

of statistical analysis, it is imperative to diligently scrutinize and, if necessary, address these 

anomalous observations to ensure the reliability of the model’s inferences and predictions.  

• Correlated predictors/ Multicollinearity: Multicollinearity emerges in statistical modelling 

when predictor variables manifest significant intercorrelations, complicating the accurate 

estimation of each predictor’s individual impact [139]. The entwined nature of correlated 

predictors leads to unstable coefficient estimates, hampering the reliability and interpretability 

of model inferences [140]. Thus, addressing multicollinearity is vital to ensuring the 

dependability of parameter estimates and model-based conclusions in the realm of statistical 

analysis. 

System identification and modelling require careful consideration of model parameter uncertainty to 

ensure the validity and reliability of statistical models and the conclusions drawn from them. Effective 

accounting for sources of model parameter uncertainty is essential to improve data collection and 

analysis strategies, resulting in more accurate and reliable inferences about the underlying data-

generating process. The development of models that capture the complexity of real-world systems can 

ultimately facilitate more robust decision-making, making model parameter uncertainty a critical factor 

in system identification and modelling. 

Model structural uncertainty 

Model structural uncertainty, a crucial aspect of system identification and modelling, encompasses the 

ambiguity or lack of clarity when selecting an appropriate model structure to represent a given system 

or phenomenon [141]. Model structural uncertainty emerges as a consequence of the simplifications 

and approximations employed in model equations, alongside the incomplete or imprecise portrayal of 

real-world processes and interactions [142, 143]. These uncertainties can stem from limitations in the 

model structure or incorrect assumptions that fail to capture the full complexity of the investigated 

system. 

Addressing model structural uncertainty is essential for ensuring accurate and reliable predictions, 

simulations, or control strategies derived from the model. The category of model structure uncertainty 

is diverse. The typical model structure uncertainty is shown as: 

• Functional form: Model structure uncertainty originates from the selection of a simulated 

function in the context of statistical modelling, potentially engendering biased or inconsistent 

predictions [144]. This issue emerges when the authentic underlying association between 

variables is inaccurately captured by the employed function. As a result, it is imperative to 

meticulously select an appropriate functional form to accurately represent the intrinsic 

relationships among variables, thereby mitigating the detrimental consequences of biased or 

inconsistent prognostications [145]. 
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• Complexity: Complex systems often necessitate the development of intricate models that 

encompass multiple variables and their interactions [146]. The elaborate nature of such systems 

presents considerable challenges in accurately specifying the suitable model structure. 

Consequently, researchers must exercise diligence in model selection and validation to ensure 

a robust representation of the complex system’s underlying dynamics and relationships [147, 

148]. 

• Lack of knowledge: Model structure uncertainty can arise due to a lack of knowledge or 

understanding of the underlying system being modelled, which can make it difficult to choose 

an appropriate modelling approach or to specify the appropriate variables to include in the 

model [149]. 

A comprehensive comprehension of the origins and varieties of model structural uncertainty empowers 

scholars to make judicious decisions during model development and selection, ultimately augmenting 

the model’s generalization capability, robustness, and reliability. Furthermore, the scrutiny of model 

structural uncertainty enables researchers to identify potential biases, discrepancies, or constraints 

inherent in the model, which can be rectified through model refinements, ensemble modelling, or 

alternative uncertainty quantification methodologies. In summary, the investigation and contemplation 

of model structural uncertainty serve a pivotal function in the formulation and implementation of 

dependable and accurate models across diverse domains, thereby fostering enhanced decision-making 

and system control. 

Criteria uncertainty 

Criterion uncertainty, within the realm of system identification, encompasses the equivocality or 

variability associated with the choice and application of germane metrics or assessment benchmarks for 

appraising the aptness and effectiveness of a particular model [150]. This form of uncertainty arises 

owing to the multitude of available evaluative indices, the discretionary nature of selecting a suitable 

criterion, or the inherent compromises between antithetical objectives such as model complexity and 

generalizability [151]. The recognition and management of criterion uncertainty are thus essential to 

ensure that the model evaluation process accurately reflects the model’s performance, ultimately 

contributing to the development and selection of robust and reliable models in diverse fields of study. 

Acknowledging and tackling criterion uncertainty is vital for ensuring the robustness and dependability 

of model evaluation and selection procedures. By discerning and alleviating criterion uncertainty, 

scholars can attain a more nuanced comprehension of model performance across diverse aspects, 

thereby facilitating well-informed decisions throughout model development, enhancement, and 

implementation [152]. Moreover, addressing criterion uncertainty can unveil potential limitations or 

shortcomings in a model’s performance, which can be amended through additional model 

improvements or by examining alternative model structures or parameterizations [153]. In summation, 

the contemplation and examination of criterion uncertainty are of paramount importance for the 

formulation of accurate and reliable models, ultimately fostering enhanced decision-making and system 

control. 

2.2.3 Model uncertainty in NARMAX 

Uncertainty in NARMAX models can stem from various sources. Based on the analysis of category of 

model uncertainty, the uncertainty in NARMAX modelling is from measurement noise, model structure 

inaccuracies, parameter estimation errors and the blur of model validation. Addressing uncertainty in 

NARMAX models is crucial for ensuring reliable predictions, model validation, and control design. 
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Data-related uncertainty in NARMAX modelling 

Data related uncertainty is normally introduced by the noisy or incomplete observation, inherent 

variability in data-generating processes, and limitations in system assumptions, which is more related 

to the quality of the dataset. The most direct approach is to clean the dataset. Before NARMAX 

modelling, data cleaning methods such as outlier detection, data imputation, and data smoothing can be 

used to reduce noise and missing values in the data. This helps to mitigate the impact of data uncertainty 

on modelling results. 

In [1], several data uncertainty in NARMAX modelling has been discussed. Firstly, checking and 

eliminating the input-output data for outliers prior to system identification and to assess any trends is 

imperative, as minor trends in the data can pose challenges when employing correlation, spectral 

analysis, and parameter estimation techniques, and thus should be removed. Methods such as least 

squares trend fitting and removal can be utilized, or data differencing can be applied. However, it is 

important to note that differencing may amplify the noise level in the signals, as it essentially involves 

differentiation.  

Secondly, Attempting to filter the data for noise removal or enhancement of poorly designed or executed 

experimental data is typically ineffective and should be circumvented. Determining the distinction 

between noise and valuable system-generated information prior to identification is unattainable. 

Consequently, designing filters to attenuate noise might inadvertently eliminate dynamic information 

about the underlying system. This could result in an identified model that conforms to the dataset, 

despite the dataset lacking comprehensive system information. Therefore, the identified model will 

consistently be inaccurate and insufficient. 

Finally, the adage "garbage in, garbage out" holds significant relevance in the context of system 

identification. If the data utilized for identification is substandard due to a poorly designed experiment, 

inappropriate data sampling or pre-treatment, or substantial noise that cannot be sufficiently addressed 

through a noise model, the resulting identification is likely to be unsatisfactory. The outcome remains 

poor irrespective of the algorithm employed, the type of models fitted, or the computing power 

harnessed for data processing. 

Therefore, applying NARMAX to real applications requires exploring and experiments as the quality 

of dataset in the real problems would differ. Also, the lack of understanding of the real problems would 

introduce the misjudgement of the noise and signal. Thus, to deal with the data-related uncertainty, 

exploration and exploitation would be the appropriate method. 

Parameter uncertainty in NARMAX modelling 

NARMAX models have various advantages in capturing complex relationships between system inputs 

and outputs and generating reliable and robust system models to present accurate forecast. Still, the 

parameter uncertainty can adversely impact the accuracy and the reliability of the NARMAX models. 

The estimated parameters in NARMAX models can be affected by various factors, like the dataset of 

systems, the complex property of the time-vary dynamic systems and the undiscovered understanding 

of the complex system. Research on parameter uncertainty in NARMAX has been a crucial step in 

recent years. 

In [64], a time-varying(TV)-NARX model with multiwavelet basis functions and ultra-orthogonal 

forward regression (UOFR) algorithm was proposed to effectively tracks the changing TV parameters 

in simulated systems and EEG signal modelling. By expanding the TV coefficients of TV-NARX 
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models with multiwavelet basis functions, the model was transformed into a time-invariant regression 

problem. Meanwhile, the novel UOFR algorithm aided by mutual information (MI) could identify the 

most parsimonious model structures and estimate the model parameters. Thus, the parameter 

uncertainty in TV system could be weakened by converting the TV system into a time-invariant system. 

In [154], to provide a robust path following control following of an Autonomous Underwater Vehicle 

(AUV), A NARMAX-based self-tuning PID controller was designed for controlling the Autonomous 

Underwater Vehicle (AUV) dynamics in real-time with an online recursive extended least squares 

(RELS) algorithm, which achieved path following for the AUV. The proposed NARMAX based 

controller could present real-time parameters in the model and handle uncertainties with PID control 

and a Lyapunov-based backstepping control. In[11], the cloud model and cloud transformation was 

applied to the NARX modelling, to estimate the cloud parameters and generate the prediction band of 

NARX models. The proposed cloud-NARX model could not only identify the space weather system, 

but also quantify the uncertainty of model parameters using the prediction band. 

Parameter uncertainty in NARMAX modelling remains as the important aspect as it has a significant 

impact on the accuracy and reliability of the model. The parameter uncertainty can be handled by using 

several feedback methods to reduce the uncertainties as much as possible or can be quantified with 

probabilistic results to illustrate more information from NARMAX models. Both methods can measure 

the uncertainty in the processing parameters, while the choice of method depends on the needs of the 

actual application. 

Model structure uncertainty in NARMAX modelling 

Model structure uncertainty arises from the simplifications and assumptions made during the model 

formulation process. In NARMAX modelling, the choice of functional form, the number of input/output 

lags, and the degree of nonlinearity, which are the fundamental issues since the introduction of 

NARMAX method, are all critical factors that contribute to model structure uncertainty. Several authors 

have discussed the importance of addressing model structure uncertainty in NARMAX modelling to 

ensure accurate representation of the underlying system dynamics. 

In [155], a novel Integrated Forward Orthogonal Search (IFOS) algorithm, aided by the squared 

correlation and mutual information was proposed to introduced to improve the reliability of NARMAX 

model structure and reduce the uncertainty. By incorporating linear and nonlinear dependency measures 

and employing an incremental construction process, the algorithm facilitates the identification of 

accurate, interpretable, and robust models. In [156], the application of information criteria, like the 

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the Adjustable 

Prediction Error Sum of Squares (APRESS) , for model selection and model averaging of NARMAX 

has been extensively investigated. Comparing the performance of three criteria, the findings indicate 

that APRESS yields superior models in terms of generalization performance and model complexity. 

Moreover, a model averaging technique is introduced, which has the potential to produce an averaged 

model exhibiting enhanced generalization robustness compared to individual models. 

One problem in quantify and measure the model structure uncertainty in NARMAX and other machine 

learning method is to balance the complexity of models and the performance during the testing period. 

During the training period, the model structure determination and selection are greatly affected with the 

introduction of model structure uncertainty. To handle such uncertainty, an effective method is to utilize 

as many types as possible of model structures to identify the most appropriate NARMAX model. 

However, for most real applications, the complex and dynamic nature prefers large nonlinearity and 

high dimensional models, while these models might lead to overfitting problems in the testing period. 
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Thus, the balance of reducing model structure uncertainty and accurate identification of system should 

be valued. 

Addressing model structure uncertainty is crucial for developing accurate and reliable NARMAX 

models. Various approaches, including model selection, validation, and averaging techniques, have 

been proposed and investigated in the literature. As the field continues to evolve, more advanced 

techniques and hybrid modelling approaches are expected to emerge, offering further improvements in 

the performance of NARMAX models. 

2.2.3 Summary 

In summation, model uncertainty constitutes a vital element in the formulation, assessment, and 

implementation of mathematical and statistical models. A comprehensive comprehension of the distinct 

categories of model uncertainty—data, parameter, structural, and criterion uncertainty—empowers 

scholars to make judicious decisions throughout the modelling process. By identifying and addressing 

these uncertainties, researchers can develop more accurate and reliable models, ultimately fostering 

enhanced decision-making and system control. 

It is essential to acknowledge that model uncertainty can materialize in diverse forms and influence 

various facets of model performance. As a result, a holistic approach to addressing model uncertainty 

should encompass the detection, analysis, and mitigation of uncertainties across different categories. 

This methodology can unveil potential biases, inconsistencies, or constraints within a model, enabling 

researchers to refine and enhance their models through targeted improvements, alternative model 

structures, or parameterizations. 

Furthermore, addressing model uncertainty can contribute to a more nuanced understanding of model 

performance across different aspects, thereby informing model development, refinement, and 

application. By contemplating model uncertainty during model evaluation and selection procedures, 

researchers can ascertain the robustness and reliability of their models, ultimately facilitating improved 

decision-making and system control. 

Within the realm of system identification and modelling, addressing model uncertainty remains a 

critical and ongoing research endeavour. Prospective work in this domain should persist in exploring 

innovative methodologies for quantifying and mitigating model uncertainty, as well as establishing best 

practices for incorporating uncertainty analysis into the modelling process. By advancing our 

knowledge and management of model uncertainty, researchers can persist in formulating more precise 

and dependable models, ultimately promoting improved decision-making and system control across an 

array of domains. 

2.3 Model uncertainty in Machine Learning 

As machine learning algorithms are increasingly employed in various critical applications, addressing 

uncertainty in predictions and decision-making becomes imperative. Uncertainty in machine learning 

may arise from multiple sources, including noisy or incomplete data, inherent variability in data-

generating processes, or limitations in modelling assumptions. Addressing uncertainty enables models 

to yield reliable and robust predictions, which is particularly crucial in safety-critical applications. 

Two primary types of uncertainty exist: aleatoric uncertainty, originating from inherent variability in 

data and remaining irreducible, and epistemic uncertainty, stemming from a lack of knowledge about 

the data-generating process and being mitigable through additional data collection or model refinement. 
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Methods to tackle uncertainty in machine learning encompass Bayesian approaches, ensemble 

techniques, and confidence intervals. These strategies aim to quantify and propagate uncertainty, 

facilitating informed decision-making and risk assessment. The handling of uncertainty constitutes a 

critical area of research, carrying substantial implications for the secure and responsible implementation 

of machine learning technologies. 

2.3.1 Brief introduction of machine learning 

Machine learning, an essential subfield of artificial intelligence, has experienced considerable growth 

and development since its emergence in the mid-20th century [157]. The discipline comprises a wide 

array of techniques and algorithms that enable computational systems to learn from data, identify 

patterns, and autonomously make decisions [158]. Applications of machine learning span across various 

sectors, including healthcare [159], finance [160], natural language processing [161], robotics [162], 

and computer vision [163]. This introductory section presents an in-depth overview and historical 

context of machine learning, tracing its progression from early theoretical foundations to the ground-

breaking innovations that have significantly reshaped the field in recent years. 

The foundations of machine learning can be traced back to the 1940s and 1950s, with seminal works 

on cybernetics, information theory, and the development of the first artificial neural networks [164]. 

Key figures such as Alan Turing and Claude Shannon contributed to the groundwork for artificial 

intelligence and the notion that machines could learn from data. In [165], the famous Turing Test was 

proposed by Alan Turing, which evaluates a machine’s ability to exhibit human-like intelligence. 

During this period, other significant works also emerged. For instance, in [166], the first mathematical 

model of an artificial neuron was present. Moreover, in [167], a fundamental concept, Hebbian learning, 

in the development of neural networks was introduced. 

The 1960s marked the beginning of machine learning as a distinct research area, with the development 

of early algorithms, such as the perceptron [168] and the Least Mean Squares (LMS) algorithm [169]. 

In this era, alternative approaches to machine learning garnered increased attention. Investigations 

concentrated on symbolic methods [170], rule-based systems [171], and expert systems [172]. A 

prominent instance is the development of the ID3 algorithm, which established the basis for decision 

tree learning [173]. Other notable methodologies encompassed the progression of the k-nearest 

neighbours’ algorithm, Bayesian networks, and genetic algorithms. 

The k-nearest neighbours (k-NN) algorithm embodies an instance-based learning technique that 

classifies data points according to the majority class of its k nearest neighbours [174]. This non-

parametric approach demonstrates efficacy in classification and regression tasks, particularly when 

working with smaller datasets and fewer dimensions. Bayesian neural networks [175], or belief neural 

networks, represent directed acyclic graphs capturing probabilistic relationships between variables, 

facilitating efficient reasoning and learning under uncertain conditions. These networks provide a robust 

framework for modelling intricate systems and cater to various applications, encompassing diagnostics, 

decision-making, and anomaly detection. Genetic algorithms [176], drawing inspiration from natural 

evolutionary processes, employ search heuristics for optimizing solutions within expansive problem 

spaces. Genetic algorithms find widespread utility in optimization, machine learning, and search tasks 

across diverse fields. 

The 1980s saw a resurgence of interest in artificial neural networks, sparked by the introduction of the 

backpropagation algorithm [177]. This methodology facilitated the learning of intricate representations 

in multi-layer neural networks, thereby unlocking novel avenues for machine learning investigation. In 
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the 1990s, the field witnessed further advancements with the development of Support Vector Machines 

(SVM) [178]. This approach, grounded in statistical learning theory, facilitated efficient learning from 

high-dimensional data, becoming extensively adopted across diverse applications. The employment of 

kernel methods in SVMs also permitted learning of non-linear decision boundaries, thereby augmenting 

their applicability. 

The early 2000s witnessed a surge in digital data availability and the requisite computational power for 

processing it. This period also marked the emergence of ensemble methods, such as AdaBoost [179] 

and Random Forests [180]. These approaches enhanced the performance of individual learning 

algorithms through output amalgamation, frequently yielding more accurate and robust models. 

Concurrently, researchers delved into unsupervised learning techniques, including clustering and 

dimensionality reduction [181]. Algorithms like k-means clustering [182] and Principal Component 

Analysis (PCA) [183] gained prominence due to their capacity to discern patterns and structures within 

unlabelled data. Simultaneously, the development of reinforcement learning algorithms, like Q-

Learning [184] and SARSA [185], opened up new possibilities in robotics and control systems. The 

2000s also marked the advent of novel machine learning paradigms, such as semi-supervised learning, 

transfer learning, and active learning [186-188]. 

The 2010s heralded the deep learning revolution, characterized by deep neural networks’ success in 

various applications, such as image and speech recognition [189]. Notable breakthroughs like CNNs 

showcased deep learning’s potential in computer vision tasks [190]. Jointly, the generative adversarial 

networks (GANs) ushered in a new era of generative models, capable of generating realistic data types 

[191]. In the natural language processing realm, advancements included RNNs [192], LSTMs [7], and 

the Transformer architecture [193], laying the groundwork for modern language models like BERT 

[194], GPT [195], and RoBERTa [196]. Recent progress in reinforcement learning, exemplified by 

DeepMind’s AlphaGo [197] and AlphaZero [198], has achieved superhuman p0erformance in games 

like Go and Chess.  

Addressing uncertainty, a current challenge, is crucial for reliable decision-making in safety-critical 

applications [199]. Techniques such as Bayesian deep learning [200] and ensemble methods [201] are 

employed to quantify and propagate uncertainty. A further challenge in the field involves developing 

interpretable machine learning models. Explainable AI (XAI) seeks to develop methods that make 

complex machine learning models understandable and accountable [202].  

In summary, machine learning has experienced considerable advancements, and the field’s rapid 

evolution is driven by data availability, computational power, and new research directions. Tackling 

challenges associated with uncertainty, explanability, and interpretability is essential for the secure 

application of machine learning technologies. This interdisciplinary area will persistently bring 

transformative effects on society, fostering innovation and sculpting the future of numerous sectors. 

2.3.2 Model uncertainty in machine learning 

Uncertainty is a critical aspect of machine learning, particularly in domains where dependable models 

are essential [203]. The scholarly community has acknowledged the importance of uncertainty in 

machine learning, identifying novel problems and challenges. At least two types of uncertainty exist in 

machine learning: aleatoric and epistemic [204]. Aleatoric uncertainty refers to the inherent randomness 

in the data, while epistemic uncertainty refers to the uncertainty in the model’s predictions due to a lack 

of knowledge or understanding [205]. 
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Researchers have devised diverse techniques to manage uncertainty, including uncertainty estimation 

and differentiation between the two uncertainty types. The prominence of uncertainty in machine 

learning has garnered substantial attention, and addressing it is vital for creating reliable models. 

Quantifying uncertainty in machine learning has been an active area of research, with various 

approaches proposed to address aleatoric and epistemic uncertainty. Some notable research works 

include: 

Bayesian Methods 

Bayesian methods represent a significant approach to tackling uncertainty in machine learning, as they 

integrate prior knowledge regarding model parameters and subsequently update this information with 

observed data to produce posterior distributions [206]. Bayesian methods have been applied to various 

machine learning models, such as Bayesian Neural Networks [207] and Gaussian Processes [208]. 

These models can provide estimates of both aleatoric and epistemic uncertainty through predictive 

distributions. 

Bayesian methods offer a systematic framework for addressing uncertainty by quantifying and 

managing it effectively [209-211]. Through the integration of prior knowledge and its subsequent 

update based on observed data, these methods facilitate the computation of comprehensive posterior 

distributions over model parameters. This, in turn, allows for the quantification of uncertainty and 

supports informed decision-making. In [212], “Dropout”, a widely-used regularization technique, was 

proposed and interpreted as an approximation to Bayesian inference in deep learning models. This 

approach is computationally efficient and can be easily implemented in existing deep learning 

architectures, making it an attractive option for quantifying model uncertainty.  

Bayesian methods, despite their merits, present certain drawbacks. Primarily, the selection of prior 

distributions substantially influences the model’s performance, necessitating meticulous contemplation 

of appropriate priors. Furthermore, the impact of selected priors may persist even after updating with 

observed data, potentially yielding biased estimates if the priors do not accurately represent the 

underlying data-generating process. Secondly, calculating comprehensive posterior distributions can 

impose significant computational challenges, especially for intricate models such as deep neural 

networks. 

Ensemble Techniques 

Ensemble methods, long-established in machine learning, are introduced to enhance model performance 

and robustness [213]. These techniques amalgamate multiple models’ outputs to generate more accurate 

and stable predictions [214]. By capitalizing on individual learning algorithms’ strengths and 

counterbalancing their weaknesses, ensemble methods bolster overall performance [215]. The primary 

idea behind ensemble methods is that a group of diverse and complementary models can better capture 

complex patterns in the data than a single model [216]. 

Bagging (Bootstrap Aggregating) [217], boosting [218], and stacking (stacked generalization) [219] 

exemplify such techniques. These ensemble techniques provide a powerful means to improve model 

performance and stability by leveraging the strengths of multiple base models and compensating for 

their weaknesses. By training several machine learning models with varying initializations and 

integrating their predictions, these ensemble methods illustrated the feasibility of obtaining reliable 

uncertainty estimates. This methodology facilitates the differentiation between epistemic and aleatoric 

uncertainty by scrutinizing the ensemble’s prediction variability. 
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However, ensemble techniques are not without limitations. Firstly, they can demand significant 

computational resources, as multiple models must be trained and combined, which may be impractical 

for large-scale or real-time applications. Secondly, the choice of individual models within the ensemble, 

as well as the combination strategy, can significantly impact the ensemble’s performance. Thus, 

selecting an optimal ensemble configuration can be challenging and requires extensive experimentation. 

Finally, while ensemble techniques can improve predictive performance and provide a measure of 

uncertainty, they may not offer a principled framework for quantifying and managing uncertainty as 

Bayesian methods do. Despite these drawbacks, ensemble techniques remain valuable tools in machine 

learning and can provide substantial performance improvements when applied judiciously. 

Confidence Intervals 

Confidence intervals serve as a valuable tool for quantifying uncertainty in machine learning predictions 

by establishing a range of plausible values for a particular prediction [220]. By offering insights into 

the uncertainty surrounding a given prediction, confidence intervals can facilitate more informed 

decision-making and risk assessment processes [221]. 

However, it is crucial to recognize the limitations and assumptions underlying confidence intervals. 

One such assumption is that the underlying data distribution is known or can be accurately estimated. 

In practice, this assumption may not hold true, potentially leading to inaccurate or misleading intervals. 

Additionally, the interpretation of confidence intervals can be prone to misinterpretation. A common 

misconception is that the confidence interval captures the probability of a true parameter lying within 

the interval, whereas it actually represents the probability that the interval, when computed from 

multiple samples, will contain the true parameter. 

Despite these limitations, confidence intervals remain a valuable tool for assessing uncertainty in 

machine learning models, provided that practitioners are aware of the assumptions and potential pitfalls. 

Incorporating confidence intervals into model evaluation can offer a more comprehensive 

understanding of the model’s performance and help inform decision-making processes under 

uncertainty. 

Out-of-distribution detection 

One challenge in addressing uncertainty is the detection of out-of-distribution (OOD) inputs, which are 

examples that differ significantly from the training data. Identifying OOD inputs is vital to avert 

overconfident predictions in regions where the model’s uncertainty is high. Methods for OOD detection 

encompass Mahalanobis distance-based techniques [222] and Bayesian uncertainty estimates [223]. 

These approaches strive to pinpoint inputs deviating from the learned distribution and offer uncertainty 

estimates indicative of the model’s limited knowledge regarding these instances. However, discerning 

OOD inputs can be complex, as the boundary between in-distribution and out-of-distribution data may 

not be apparent, and the employed techniques may not always provide accurate uncertainty estimates. 

Consequently, further research and development of robust methods are essential for effective OOD 

analysis and improved uncertainty quantification. 

Adversarial training 

Adversarial training constitutes a method for enhancing model robustness through the incorporation of 

adversarial examples—perturbed inputs intentionally crafted to provoke incorrect predictions. In [224], 

it has been demonstrated that adversarial training can yield models with increased resilience to 

adversarial attacks and reduced epistemic uncertainty. By prompting the model to generate accurate 
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predictions despite adversarial perturbations, adversarial training can produce more dependable 

uncertainty estimates. However, this approach may not always yield models that generalize well to 

unseen data or entirely new adversarial perturbations. Additionally, adversarial training can be 

computationally demanding, as it involves generating adversarial examples and updating model weights 

iteratively. Consequently, while adversarial training offers a viable strategy for augmenting model 

robustness and refining uncertainty estimates, its limitations necessitate further exploration of 

alternative methods to address these concerns effectively. 

2.3.3 Summary 

In summary, the significance of addressing uncertainty in machine learning cannot be overstated, 

particularly as these models become integral to safety-critical applications. Numerous approaches have 

emerged to estimate and manage uncertainty, encompassing Bayesian techniques, ensemble methods, 

active learning, and adversarial training. Although substantial advancements have been achieved in 

recent years, further investigation is required to develop models proficient in quantifying and 

propagating uncertainty. Such developments will ensure dependable and robust decision-making across 

a wide range of domains. 

2.4 Challenges 

In the realm of engineering and scientific exploration, the challenge of modelling complex, dynamic 

systems—ranging from engineered structures to natural phenomena like climate and space weather—

presents a critical frontier. The precision with which these models can predict system behaviours has 

profound implications for both the development of technologies and our understanding of the world 

around us. This thesis delves into the realm of model uncertainty: a pervasive issue in system 

identification that has garnered extensive study. Yet, when extending the application of system 

identification methodologies into arenas such as climate science and space weather prediction, where 

exact models are elusive, we encounter a renewed and intensified significance of model uncertainty 

[55]. 

Model Uncertainty in Engineering and System Identification 

Historically, the field of data-driven modelling has grappled with model uncertainty through the 

development and refinement of system identification techniques. These methodologies, including 

advanced strategies like NARMAX, aim to construct mathematical models that mirror the dynamics of 

physical systems based on empirical data. While these models are invaluable for predicting system 

responses and designing control mechanisms, they inherently suffer from uncertainties due to 

simplifications, assumptions, and the inherent unpredictability of system behaviors. The engineering 

community has made significant strides in quantifying and mitigating these uncertainties, leveraging 

both theoretical advancements and computational tools to enhance model reliability and robustness [29] 

[225] [226]. 

Expanding Horizons: Complex and Dynamic Systems 

The exploration of complex and dynamic systems, such as climate dynamics and space weather, pushes 

the boundaries of traditional system identification methods. Unlike engineered systems, where physical 

laws and empirical data guide model development, these natural systems are governed by processes that 

are not fully understood, making precise modelling an aspirational goal rather than a practical reality 

[227, 228]. The intrinsic complexity of these systems, coupled with their susceptibility to chaotic 

behaviours and the vast scale of interactions, exacerbates model uncertainty. The limited availability of 
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observational data, the computational demands of simulating such systems, and the need for 

interdisciplinary collaboration further compound the challenge. 

Bottleneck Issues and the Path Forward 

The exploration into model uncertainty within these complex systems has been historically hindered by 

several bottleneck issues: 

Computational Limitations: The complexity and scale of systems like climate and space weather require 

immense computational resources for modelling and simulation. Until recent advancements in 

computational power and techniques, these requirements were prohibitive. 

Data Availability: Effective modelling demands extensive, high-quality observational data. For many 

complex systems, such data are sparse or have only recently become available through advancements 

in sensing and monitoring technologies. 

Interdisciplinary Integration: The accurate modelling of complex systems necessitates the integration 

of knowledge across diverse scientific disciplines. This interdisciplinary approach poses both 

methodological and logistical challenges, slowing the pace of progress. 

Inherent Nonlinearity and Complexity: The predictive modelling of systems characterized by complex 

nonlinear dynamics (e.g. chaos, randomness and nonstationary) is inherently challenging. Traditional 

modelling approaches often fall short in capturing the complexity of these dynamics. 

Justification for This Research 

Given these challenges, this research is motivated by the urgent need to advance our understanding and 

methodologies for dealing with model uncertainty in the context of complex, dynamic systems. This 

thesis represents a timely and necessary inquiry into the nature of model uncertainty as it manifests in 

these less understood domains. By leveraging recent advancements in computational techniques, data 

availability, and interdisciplinary approaches, this work aims to develop new frameworks and 

methodologies capable of addressing the nuanced challenges presented by complex systems modelling. 

This research not only contributes to the theoretical and methodological advancements in the field of 

system identification but also has practical implications for predicting and mitigating the impacts of 

climate change, enhancing the reliability of space weather forecasts, and beyond. Through this work, 

we seek to illuminate the pathways through which model uncertainty can be understood, quantified, and 

mitigated in the pursuit of more reliable and accurate models for both engineered and natural systems. 

2.5 Summary 

In summary, addressing uncertainty in NARMAX models is essential for ensuring their reliability and 

robustness, particularly in safety-critical applications. This literature review has provided an overview 

of the key concepts, methods, and challenges related to uncertainty in NARMAX models, focusing on 

Bayesian and ensemble approaches, model selection, and scalability issues. Although significant 

progress has been made in recent years, further research is needed to develop more efficient and robust 

methods for quantifying and managing uncertainty in NARMAX models. This will ultimately enable 

more reliable predictions, model validation, and control design across diverse domains
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Chapter 3  

Quantification of Model Uncertainty and Probabilistic Decision in 

NARMAX 

Model uncertainty is pervasive in system identification and prediction, which makes it be faced and 

considered as an essential factor to produce robust and reliable results. Just like other system 

identification methods, NARMAX serves as an interpretable and effective method for identifying 

complex nonlinear dynamic systems. During the implementation process, it also considers model 

uncertainty as a crucial indicator. By measuring the degree of uncertainty in known NARMAX models, 

we can characterize their reliability and robustness, thereby validating the effectiveness of both the 

model and method. At the same time, the uncertainty of the model can also serve as a feature for training 

and optimizing NARMAX models, thereby obtaining more stable system models and further enhancing 

our understanding of the system. In addition, by accepting and utilizing model uncertainty, we can 

identify and describe system diversity, such as probabilistic system prediction outputs, composite 

system model groups etc., thus compensating for deficiencies in generating probabilistic predictions 

with NARMAX models and enhancing our comprehensive understanding of systems. 

While the uncertainty of NARMAX models has been extensively studied and utilized, there is still no 

unified theory to explain and summarize it. Instead, analysis and discussion are based on modelling 

tasks for different systems. However, there are commonalities between the ambiguity in different 

modelling processes and the uncertainty of NARMAX models. Therefore, this chapter first analyzes, 

summarizes, and categorizes the types of uncertainties in NARMAX models; uses set theory principles 

to mathematically describe and quantify the uncertainty of NARMAX models; at the same time 

discusses how to measure and use the uncertainty of NARMAX models based on information theory 

and optimization theory. 

3.1 Introduction 

Model uncertainty is an inherent problem for all system identification and modelling, not only for 

NARMAX modelling, as the system in real world, especially the complex dynamical systems, such as 

environmental systems (climate change, natural hazards), economic systems (economic and financial 

market), healthcare systems (epidemiological analysis research, cancer etiologic analysis research), 

engineering systems (power systems, robotic systems). Also, uncertainty has a direct impact on decision 

making by introducing variability into the potential outcomes associated with a particular course of 

action, such as harvesting and weather conditions. Additionally, uncertainty plays an indirect role by 

giving rise to the presence of private information. In strategic interactions, uncertainty and private 

information are inherently interconnected. Uncertainty creates variations in private information when 

different agents possess access to varying information regarding the uncertain phenomena. Similarly, 

the existence of private information can also give rise to uncertainty if agents are considering its 

implications, leading to concerns of moral hazard and adverse selection. 

In practical settings, uncertainty serves as a primary driver of competitive advantage, thereby creating 

business opportunities that can be advantageous for entrepreneurial endeavours. In the realm of theory, 

uncertainty paves the way for the exploration of agent decision-making and strategic interactions, 

embodying a captivating and intellectually intricate pursuit that diverges significantly from the study of 

actions and interactions among physical particles. Across both practical and theoretical domains, 

uncertainty assumes a prominent role. 
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In the vast majority of system analyses, due to insufficient understanding of the system, lack of prior 

knowledge about it and inadequate research on its interaction with the environment, there is a tendency 

to use data-driven system modelling methods. Data-driven system modelling can obtain models and 

fitting results for the system by analysing its inputs and outputs without relying on prior knowledge of 

the system. However, the issue of model uncertainty still exists in data-driven system modelling 

methods. Since these methods rely on the input and output of the system and use parameterized 

computational models to simulate system behaviour, the structure and parameters of these models are 

often not unique. At the same time, due to the existence of differences in observational data, such as 

signal-to-noise ratio and unknown factors affecting the system, coupled with a lack of unified standards 

for defining model quality, there is significant uncertainty in data-driven system modelling. This greatly 

affects trust and reliance on these types of models, especially when the system required one best model 

to describe and forecast. 

NARMAX, as an efficient, reliable and accurate nonlinear data-driven method, is widely used in the 

modelling of complex dynamic systems. The NARAMX model is specifically designed for the purpose 

of identifying nonlinear systems. Its main function is to determine the appropriate model structure by 

carefully selecting the most important model items from a large dictionary of numerous candidate 

models. This selection process is crucial for constructing an accurate representation of the underlying 

system. Assuming that the identified individual model structural elements can perfectly describe the 

real system components, most models have the ability to accurately represent the system. But as 

discussed above, in many practical applications, this assumption is invalid because of the uncertainty. 

Thus, conducting an in-depth analysis of the factors attributing to the uncertainty of the NARMAX 

model, investigating the impact of diverse factors on the model’s uncertainty, and studying the role of 

NARMAX model uncertainty on outcomes is of utmost importance. This endeavour seeks to establish 

a comprehensive and quantified theory for analysing uncertainties in NARMAX models, which 

significantly influences the research and utilization of NARMAX. To accomplish this, the present 

chapter begins by providing a thorough literature review, with a particular focus on polynomial 

constructed NARMAX models. Subsequently, an analysis and summary of the causes for uncertainties 

in these models are presented. Leveraging these insights, the chapter then offers mathematical 

descriptions and quantifications for each influencing factor, thereby enabling the transformation of 

qualitative challenges into specific quantitative aspects during the analysis of uncertainties within 

NARMAX models. Building upon this foundation, a quantitative exploration of the contributions made 

by each influencing factor towards the uncertainties in NARMAX models is carried out. Consequently, 

an optimized modelling methodology is established, aimed at either eliminating or harnessing these 

uncertainties. 

3.2 NARMAX 

3.2.1 NARMAX models  

The general NARMAX model, a representation for a broad range of nonlinear systems, is denoted as 

[1]: 

 

3

( ) [ ( 1), ( 2),...., ( ),

( ), ( 1),..., ( ),

( 1), ( 2),..., ( )] ( )

y y y y

u u u u

e e e

y t F y t d y t d y t d n

u t d u t d u t d n

e t d e t d e t d n e t

= − − − − − −

− − − − −

− − − − − − +

 (3.1) 
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where ( )y t , ( )u t , and ( )e t  are the system output, input and noise sequences, respectively; 
yn , un , 

and en  are the maximum lags for the system output, input, and noise (error), which are one of the key 

element to determine the model structure and model parameters; ][F   is one of the typical nonlinear 

functions to describe the complex system, and 
yd , ud , and ed  are time delays that can be set by the 

prior knowledge. Typically, 0y ed d= =  and 1ud = . The incorporation of noise terms is essential to 

account for various factors such as measurement noise, modelling errors, and unmeasured disturbances 

within the NARMAX framework. Accurately modelling noise is of paramount importance, as 

practically every real-world dataset is influenced by noise. Neglecting noise in the modelling process 

inevitably leads to incorrect results. In the context of nonlinear systems, solely relying on the descriptor 

white noise - characterized by second-order moments - is inadequate. Nonlinear systems require the 

consideration of higher-order moments since they assume significance and impact system behaviour. 

The general process of the NARMAX model is shown in Figure 4. The objective is to find a transparent 

NARMAX model to explain the unknown system and produce the accurate predictions/simulated output 

ˆ( )y t . 

 
Figure 4 The process of the NARMAX modelling 

Originally conceived as a model, NARMAX has evolved into a broader philosophy encompassing 

nonlinear system identification. The NARMAX approach involves a series of steps: 

• Structure detection to identify the model terms. 

• Parameter estimation to determine the model coefficients. 

• Model validation to assess its unbiasedness and correctness. 

• Prediction to determine the future output. 

• Analysis to explore the system’s dynamical properties. 

Structure detection serves as a fundamental component of NARMAX, particularly in linear parameter 

estimation where model order determination is relatively straightforward. Typically, the quick and 

efficient approach involves estimating models of increasing order (e.g., one, two, three, etc.), which are 

subsequently validated and compared to identify the simplest yet adequate representation of the system. 

This process is effective due to the assumption of a pulse transfer function representation, wherein each 

increase in model order augments the number of unknown parameters by two (one additional coefficient 

for the numerator and denominator). Overfitting is easily discerned through methods such as pole zero 

cancellations. 
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However, the straightforward approach employed in linear systems identification does not readily 

extend to the nonlinear domain. Consider the NARMAX model with a cubic polynomial expansion that 

includes three lagged input term ( 1)u t − , ( 2)u t − , and ( 3)u t − , one lagged output term ( 1)y t − , and two 

lagged noise terms ( 1)e t −  and ( 2)e t − . In this case, the total number of potential candidate terms 

amounts to 84, as all possible combinations within the cubic expansion are encompassed. Naïvely 

attempting to estimate a model by including all these terms and subsequently pruning them can give 

rise to significant numerical and computational challenges, which should be diligently avoided. 

Nonetheless, it is often observed that only a subset of terms holds substantial importance in the model 

representation. Hence, the process of structure detection, which involves iteratively selecting terms one 

at a time based on their significance, assumes critical importance. This intuitive approach follows a 

logical progression of incorporating the most significant terms first, followed by subsequent terms in 

order of their importance. The termination point is reached when the model achieves adequacy, 

numerical efficiency, and soundness. Most notably, this pragmatic strategy enables the development of 

parsimonious models that establish meaningful relationships with the underlying system. 

In practical applications, numerous model structures are accessible to approximate the unknown 

mapping function ][F   in the given equation, like power-form polynomial models, rational models, 

neural networks, fuzzy logic-based models, wavelet expansions, radial basis function (RBF) networks, 

and many more. Due to the attractive features of the power-form polynomial functions, like smoothness 

of polynomials, approximation of functions, transparency, ability of handling noisy data and 

interpretability to describe the nonlinear systems, the polynomial NARMAX models have been the most 

popular nonlinear function in the NARMAX method. Therefore, in this thesis, the polynomial 

NARMAX model is set to be the default NARMAX model. 

The polynomial NARMAX model can be represented by the power-form polynomials: 
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where  is the degree of polynomial nonlinearity, 
1 2 mi i i  are model parameters, 

y u en n n n= + + , and 
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Thus, the equation (3.2) can be explicitly expressed as 
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 (3.5) 

Normally, the degree of a multivariate polynomial is determined by the highest order present among its 

terms. Taking a polynomial function 
4

3

1 2 3 4 0 1 2 2 3 3 4 4 1

2

1 2( , , , )f x x x x a a x x a x x a x a x x= + + + + , where 0a , 1a , 

2a , 3a , and 4a  are the parameters in the polynomial function, as an example, the nonlinearity degree 
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of this function is 4= . In this case, one polynomial NARMAX model with nonlinear degree  means 

that the order of the model terms in this polynomial NARMAX model can be no higher than . 

From the model (3.3), there are several types of NARMAX models based on the inputs of the model. 

One of the special and widely used models is the NARX model, which does not rely on the noise-related 

terms, shown in Figure 5. 

 
Figure 5 The process of the polynomial NARX modelling 

The description of the NARX model is denoted as: 

 
( ) [ ( 1), ( 2),...., ( ),

( ), ( 1),..., ( )] ( )

y y y y

u u u u

y t F y t d y t d y t d n
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 (3.6) 

In NARX models, the output of the system depends on the inputs of the system and the previous outputs 

of the system. Similarly, the NARX model can be expressed as a linear-in-the-parameter function like 

model (3.2), where the model terms in model (3.2) are defined as: 
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 (3.7) 

Based on the philosophy of the NARMAX, once the model structure of NARMAX model is detected, 

the next step is to find the key model terms. Due to the time delay information, there are more generated 

model terms compared to the original inputs and outputs signals, like ( 1)u t − , ( 2)y t − , etc, while the 

total number of candidate model terms in the polynomial NARMAX model is denoted as: 

 ( )!/ [ ! !]M n n= +  (3.8) 

where ( ) 1y u e y u en n n n d d d= + + − + + +  for the polynomial NARMAX model , yd , ud , and ed  are the 

starters of time delay, typically 1y ed d= =  and 1ud = , and ( ) 1y u y un n n d d= + − + +  for the polynomial 

NARX model;  is the nonlinearity degree of the model. 
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Figure 6 Model feature selection of polynomial NARX model 

As shown in Figure 6, the mechanism of determination of the model terms in NARX model is developed 

based on the Orthogonal Least Squares (OLS) and associated error reduction ratio (ERR). The 

aforementioned algorithm discerns the requisite dynamic and nonlinear terms in the model by 

calculating the contribution each possible model term makes to the system’s output. This facilitates the 

construction of the model one term at a time, overtly highlighting the significance of each newly added 

term. Furthermore, this algorithm presents its results in an intuitive and easily comprehensible manner 

by demonstrating the percentage contribution each selected model term produces for the output 

variance. Consequently, this innovative algorithm is user-friendly for both experts and non-experts. 

Similar to analytical modelling methods, the algorithm introduces the important model terms first, 

refining the model subsequently by incorporating less significant effects. The solitary differentiation 

resides in the fact that, in the NARMAX method, model terms can be identified directly from the data 

set. Once the model structure has been defined, the unknown parameters within the model can be 

estimated. 

The OLS category of algorithms is compatible with linear-in-the-parameter models for single-input, 

single-output (SISO) and multi-input, multi-output (MIMO) systems. The input isn’t necessitated to 

take a particular form; even in the presence of unknown nonlinear noise, the algorithms provide 

unbiased estimates. Moreover, the procedure is scalable to highly intricate nonlinear systems. If an 

analytical model is wholly or partially identified, the terms derived from this model can be utilized to 

initiate the model structure selection in orthogonal least squares and help discover any absent model 

terms. 
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For extensive 
yn , un  and/or en , the initial candidate model terms encompassed in the complete 

NARMAX or NARX model can be substantial. However, in the majority of practical situations, it is 

common for only a handful of candidate model terms to be critical for elucidating the intrinsic dynamic 

relationship. Thus, not every candidate model term necessitates inclusion in the model. Polynomial 

expansions can exhibit ill-conditioned attributes due to the burgeoning complexity of the involved 

terms. Nevertheless, these issues can be predominantly mitigated if only the meaningful model terms 

are elected and incorporated into the model. This aspect further establishes the parsimonious nature of 

NARMAX. 

 
 

a) Independent noise model terms b) coloured noise model terms 

Figure 7 Two types of noise models in NARMAX models 

For noise terms { ( )}e t  in NARMAX models, they are assumed to be independent of any input and output 

variables, and therefore, the system does not entail any lagged noise terms or noise-dependent terms, 

shown in Figure 7 a. Nevertheless, in numerous instances, the noise signal { ( )}e t  might exhibit as a 

potentially nonlinear, correlated, or coloured noise sequence, which is probable for the majority of 

genuine data sets. As shown in Figure 7 b, the noise term ( )e t  is normally defined as: 

 ) ˆ( |) 1( ( )e t yy tt t= −−  (3.9) 

where [ [ 11 ] [ 1]], , )ˆ( | 1) ( t tty t t F y u e− − −− = , which is the one-step-ahead prediction by the NARMAX model. 

As shown in Figure 8, in the case of the NARMAX model, the structure selection method commences 

with the identification of a process NARX model. It then proceeds by estimating the noise sequence and 

continues iteratively in accordance with an ELS-type procedure. 

 
Figure 8 Model feature selection of the polynomial NARMAX model 
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The NARMAX modelling process and OLS class algorithms can ensure the NARMAX model closely 

aligns with the complex dynamic system under study. The NARMAX model terms selected by the OLS 

algorithm optimally interpret and reconstruct the internal interactions of this system, thereby inferring 

factors that significantly impact it. Not only does the NARAMX model provide a clear structure and 

parameters, but it also ranks the influence of each term in the system. 

3.2.2 The Forward Regression OLS Algorithm 

Consider a polynomial NARMAX model of nonlinear degree  as: 
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where 1 2( ) ( , ,..., )kx t k i i i=  are defined as (26). Thus, model (3.10) can be represented in the linear-in-

the-parameters form: 
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where ( 1,2,..., )m m M =  are model parameters and ( )mp t  are model terms defined as 
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It is easy to indicate that if 0em = , then we have a NARX model, which is considered as the 

demonstration of the FROLS in the following. 

Denote [ (1),..., ( )]Ty y N=y  as the output vector with N points and [ (1),..., ( )] 1,2,...,T

m m mp p N m M= =p  

as the input vectors by the m-th candidate model term. Thus, we have 1 2{ , ,..., }MD = p p p  as the candidate 

dictionary of the M model terms. The goal of the modelling can be defined as finding a subset 

0 01 2{ , ,..., }M MD   =  that: 

 
0 01 1α αM M = + + +y e  (3.14) 

where 0( 1,2,..., )i i M =  are the related model parameters. 

From the definition we can have 

 
0MD D  (3.15) 

So, the subset 
0MD  can also be defined as 

0 0
1{ ,..., }

MM i iD = p p , where i i = p . The model (3.14) can also 

be represented by a matrix form as 

 θy = +A e  (3.16) 
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where 
01, ,α αMA =  

   is a full column rank, 
0

T

1, ,θ M  =    is the parameter vector, and e  is the 

error. 

The steps of the FROLS algorithm are defined as: 

Step 1: Define T = y y , calculate 
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The first selected model term is 11 p = , while the first orthogonal vector is 1q . With the selection of 

first model term 1 , there are 0( 1)M −  model terms needed to be identified. Assuming after the ( 1)n −

-th step, there are ( 1)n −  model terms selected forming a subset 1 1 1{ ,..., }nnD  − −=  and an 

orthogonalized set 1 1 1{ ,..., }n nQ − −= q q . 

Step n ( 2n  ): Let 1 2 1, , , sm m m −    . 
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The algorithm will end at the 0M -th step to form the defined dataset 
0MD  or satisfying the condition 

that 
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where   is a predefined value. 

Suppose the algorithm stops at 0M -th step, then the model is represented by 
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which is the same as 
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in which the element 
0(1 )ij i j Ma     is calculated in the above algorithm. 

3.3 Qualitative and Quantitative of model uncertainty in NARMAX 

3.3.1 Qualitative Analysis of uncertainty in NARMAX models and polynomial NARMAX models 

From the literature review, it is discussed that there are four categories of model uncertainty in 

NARMAX modelling. 

• Model uncertainty in data. 

• Model structure uncertainty. 

• Model parameters uncertainty. 

• Model uncertainty in criteria. 

As shown in Figure 9, the uncertainties of the aforementioned four NARMAX models correspond to 

the four stages of NARMAX model training optimization, namely: data pre-process, model structure 

determination, model parameter estimation and model validation. For each model uncertainty, there are 

various factors contributing to the uncertainty of each model, driving the emergence of model 

uncertainty. Therefore, this section qualitatively analyses and categorizes the uncertainties in 

NARMAX models and polynomial NARMAX models, laying a solid foundation for quantitative 

analysis of model uncertainty. 
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Figure 9 The identification steps for NARMAX model and related model uncertainties 

3.3.1.1 Model uncertainty in data 

Model uncertainty in data typically stems from noisy or incomplete observations, inherent fluctuations 

in data-generation processes, and constraints in system assumptions, all factors directly influencing the 

quality of the dataset. And it is this quality that directly influences the accuracy and robustness of the 

data-driven modelling. Therefore, all factors that affect the quality of a dataset can be collectively 

referred to as noise. 

Noise, particularly that which is found in a dataset, is typically unrelated to the modelling process. 

Instead, it is associated with the collection, conversion, or storage of the dataset itself [229]. 

Consequently, the existence of this noise is not obviated by varying modelling methodologies. 

Furthermore, it is crucial to note that this type of noise is dissimilar to the noise present in the NARMAX 

modelling process. Specifically, in the context of noise, system responses may be linked to, or as per 

the coloured-noise definition, correlated with errors. Then again, during the creation of models, 

specifically, NARX models, the absence of a noise term as a system driver means that the quality, or 

signal-to-noise ratio (SNR), of the initial datasets heavily influences the ultimate accuracy of the model. 

A noise process can be further categorized into one of several classes based on its frequency spectrum 

or time attributes, as delineated below [230]: 

• White noise - purely arbitrary noise characterized by a balanced power spectrum. 

• Band-limited white noise - a noise characterized by a balanced spectrum and constrained 

bandwidth typically encompasses the limited spectrum of the respective device or signal. 

• Narrowband noise - a noise process exhibiting a limited bandwidth, for instance, a ‘hum’ of 50-

60 Hz typical of an electricity supply. 

• Coloured noise - non-white noise, or any broad-band noise with a non-flat spectral shape, 

exemplified by pink noise, brown noise, and autoregressive noise. 

• Impulsive noise - comprising short-duration pulses with variable amplitude and duration. 

• Transient noise pules - comprising noise pulses of relatively long duration. 

In the vast majority of cases, noise directly impacts the quality of a dataset, thereby preventing data-

driven modelling methods from accurately detecting model structures. This leads to more ambiguous 

parameter estimates and results in less precise system models, causing uncertainties in modelling. 

Additionally, the presence of noise severely affects model stability. For instance, models optimized 
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through training can precisely reflect system responses due to high signal-to-noise ratios in training 

sets; however, because test sets have lower signal-to-noise ratios and larger disturbances in model 

inputs, there is a mismatch between model outputs and system responses on testing machines or real-

world applications. This also contributes to model uncertainty. 

Therefore, for the NARMAX model, noise affects the NARMAX modelling in two ways, and these two 

methods bring different types of model uncertainty： 

1. For systems driven without noise, that is, systems explainable by the NARX model, the noise 

in the dataset is either irrelevant or detrimental to the NARX modelling process. Since the 

modelling process resamples the dataset into training sets, validation sets and test sets, it can 

be assumed that noise uniformly exists throughout the entire dataset. This prevents scenarios 

where signal-to-noise ratios are high in training sets but low in test sets or vice versa. In certain 

applications such as signal processing, even though denoising treatments are applied to original 

signals, complete elimination of noise isn’t achievable; however, it’s reasonable to assume that 

this residual noise is evenly distributed across all data points within a set. Therefore, under 

these circumstances we can hypothesize that uncertainties caused by noise within a NARMAX 

model remain constant and do not vary with changes made to other hyperparameters of said 

NARMAX model. 

2. For systems driven by noise, the noise not only affects the quality of the data set, thereby 

introducing uncertainty into the NARMAX model, but it can also serve as a driver for the 

system and become an input to the NARMAX model. According to the logic of NARMAX 

modelling, noise interacts with system inputs and outputs to form new input variables for the 

system. The inclusion of a general noise model in the NARMAX method is frequently 

considered judicious since it encapsulates all conceivable noise model components that may 

surface during the process of nonlinear system identification. 

Consequently, both white and coloured noise could potentially serve as the noise term in 

NARMAX models, particularly as, in a majority of applications, coloured noise drives the 

system. Importantly, there are no specific constraints with regard to the noise’s probability 

distribution. In instances where the NARMAX model includes noise, it is generally partitioned 

into three subsidiary models. To exemplify, consider a polynomial NARMAX model: 
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where [ ]( )pf   refers to a NARX model, [ ]( )pnf   refers to the input-output signal and noise-

related sub-model, and [ ]( )nf   refers to the purely noise sub-model. 

From three sub-models, the noise model terms are denoted as the normal input variables for the 

NARMAX system. The noisy candidate model terms are generated based on the 

hyperparameter en  and nonlinearity degree , which are key elements to bring the model 

structure uncertainty and model parameter uncertainty in NARMAX models, while the type of 

the noise (white or coloured) are the noise uncertainty itself.  
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In conclusion, the uncertainty brought about by the inherent noise in the dataset is constant and 

unaffected by the NARMAX modelling process and experimental setup. Therefore, despite its existence, 

this type of uncertainty can be defined as an independent parameter when analysing and utilizing model 

uncertainties. On the other hand, the uncertainty caused by noise terms, especially the type of noise, 

directly affects model performance and system description; thus, requiring quantitative analysis. 

3.3.1.2 Model structure uncertainty 

The model structure uncertainty is mainly derived from the selection of the fitting function used in the 

modelling method and its structural form. In the context of NARMAX models, the structural 

determination is based on critical elements identified in the prior analysis of NARMAX modelling. 

Specifically, this includes the nonlinear mapping function F, the maximum time delay 
yn , un , and en , 

and the initial delay 
yd , ud , and ed  for system output signal, input signal and noise signals, 

respectively, These hyperparameters are key in defining the structure of NARMAX models. The 

uncertainty in a model’s structure can thus be regarded as a direct consequence of the variety of choices 

available for these hyperparameters. 

Non-linear mapping functions play a pivotal role in approximating and fitting complex dynamic 

systems that are unknown. Specifically, for NARMAX models, the frequently utilized functions 

encompass polynomial functions, rational models, neural networks, fuzzy logic-based models, wavelet 

functions, Radial Basis Function (RBF) networks, and others.  

Each non-linear function carries unique merits and limitations. Polynomial functions operate smoothly 

and their NARMAX model counterparts demonstrate superior accuracy. Additionally, they are adept at 

analysing and leveraging noise terms. Despite their transparency and interpretability, polynomial 

NARMAX models fall short when dealing with severe non-linear behaviours. Compared to its 

polynomial counterpart, the rational NARMAX model capably emulates severe non-linear behaviours, 

which represent more general expressions derivatives of the polynomial NARMAX model. This implies 

that the polynomial NARMAX model is a specific form of the rational NARMAX model. However, its 

interpretability is not as potent relative to the polynomial NARMAX model. The Neural Network-based 

NARMAX Model amalgamates the robust non-linear fitting advantages, particularly with a range of 

activation function choices and neuron weight training algorithms. This ensures such NARMAX 

models efficiently mimic systems’ non-linear behaviours. Nonetheless, due to the complexity in neuron 

connections and activation function properties, these models lack interpretability. The fundamental 

concept of employing wavelet representations for dynamical systems hinges on the prospect of realizing 

the NARMAX model using wavelet decompositions. This involves expanding the unidentified function 

][F   using combinations of multi-resolution wavelet basis functions. In most scenarios, only a minimal 

number of significant basis functions, derived from a redundant library of functions, are requisite for 

representing a non-linear dynamical system. 

Therefore, for the NARMAX model, the selection probability of nonlinear mapping functions is equal. 

Only when there is prior knowledge or specific requirements from a particular case will there be a single 

requirement for the nonlinear mapping function. The diversity of choices inevitably brings about 

uncertainty in the model structure. For the NARMAX model that has already selected a nonlinear 

mapping function, such as the polynomial NARMAX model, the uncertainty of the model structure 

caused by the selection of nonlinear functions no longer exists. This is because there is no need to 

consider other nonlinear mappings in the NARMAX modelling process, and only needs to use the 
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selected nonlinear mapping for fitting, modelling and prediction. Therefore, for a polynomial 

NARMAX model, its basic structure is determined - it’s based on a polynomial function.  

For the NARMAX model that has already selected a nonlinear mapping function, such as the 

polynomial NARMAX model, the uncertainty of the model structure caused by the selection of 

nonlinear functions no longer exists. This is because there is no need to consider other nonlinear 

mappings in the NARMAX modelling process, and only needs to use the selected nonlinear mapping 

for fitting, modelling and prediction. Therefore, for a polynomial NARMAX model, its basic structure 

is determined - it’s based on a polynomial function. 

Another factor that brings uncertainty to the structure of the NARMAX model is delay information, 

including the maximum time delay 
yn , un , and en , and the initial delay 

yd , ud , and ed  for system 

output signal, input signal and noise signals, respectively. As shown in Figure 4, the system output, input 

and noise signal will be transformed into new variables by adding the time delay information for the 

NARMAX modelling. During this process, the value of the delay hyperparameter directly affects the 

candidate model term and its quantity. To more clearly express the uncertainty of model structure 

brought about by delay information, we first define a set S, whose elements are all candidate model 

terms generated based on delay information. Thus, we have 

 { , 1,2,..., ( , , , , , , [ }])i y u e y u eS s i f n n n d d d F = =  (3.31) 

where is  is the candidate model terms, )(f   is the function to determine the number of candidate model 

terms based on the time delay information and the nonlinear mapping function ][F  . For the polynomial 

NARMAX model, we have 
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where ( ) 1y u e y u en n n n d d d= + + − + + + , typically 1y ed d= =  and 1ud = , and ( ) 1y u y un n n d d= + − + +  

for the polynomial NARX model;  is the nonlinearity degree of the model. The candidate model terms 

in polynomial NARMAX model are described as model (26). 

For a certain nonlinear mapping function based NARMAX model, the number of elements in S, that is, 

the number of candidate model terms, has a direct relationship with delay information. However, since 

modelling is a study of unknown systems, the dynamic characteristics of the system cannot be 

accurately grasped. Therefore, in many cases, due to the inaccuracy of time delay values, it can’t be 

guaranteed that all valid information is included in the set S of candidate model terms, which is 

 trueS S  (3.33) 

where trueS  is the set containing all model terms of the real systems.  

Usually, 
yd , ud , and ed  are set to 1 or 0, and 

yn , un , and en  can increase indefinitely. Ideally, as the 

time delay information increases, it gets closer to the dynamic characteristics of the real system, and 

the probability that the actual model item is an element of set S becomes higher. However, an infinite 

maximum time delay still cannot guarantee that all real system model items are included in the 

generated candidate model items. Moreover, as the number of candidate model items increases, so does 

modelling redundancy. Redundant model items are considered noise for NARMAX modelling 

objectives. Therefore, more redundant model items equate to a lower signal-to-noise ratio, leading to 

greater uncertainty caused by noise. From equation (3.32), for polynomial NARMAX model,  is also 

a key factor that determines the number of the candidate model terms. With larger , more candidate 
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model terms will be generated for the polynomial NARMAX models, which leads to the same model 

structure uncertainty as the time delay. 

The model structure uncertainty in NARMAX models is primarily determined by the choice of fitting 

function used and its structural form. Nonlinear mapping functions, particularly in NARMAX models, 

play a crucial role in fitting and approximating unknown, dynamic systems. Function types can include 

polynomial functions, rational models, neural networks, fuzzy logic-based models, wavelet functions, 

Radial Basis Function networks, etc. Each comes with unique strengths and weaknesses. 

Hyperparameters such as nonlinear mapping function, maximum time delay, and initial delay for system 

output, input and noise signals, and form keys in defining the structure of NARMAX models. The 

uncertainty in a model’s structure can, therefore, be seen as a direct result of the varying choices 

available for these hyperparameters. Such uncertainty is a challenge when working with unknown 

systems where the system’s dynamic characteristics cannot be accurately determined. However, the 

model structure’s uncertainty driven by the selection of nonlinear functions ceases to exist once a 

specific nonlinear mapping function, like a polynomial, is chosen. 

3.3.1.3 Model parameter uncertainty 

Model parameter uncertainty in NARMAX refers to the uncertainty caused by parameters of the model 

terms selected in the NARMAX models. However, numerous cases arise where a system’s internal 

parameters are influenced by other external variables or parameters. External influences that impact a 

system’s dynamic behaviour because what is termed as the External Parameter-Dependent (EPD) or 

External Signal-Dependent (ESD) problem. This contrasts with the typical Internal Parameter-

Dependent (IPD) problem in which the parameters are explicitly present and factored into the system 

model. In EPD or ESD problems, although the external parameters do not explicitly appear in the system 

model, they indirectly influence the system behaviour either via internal parameters or another interface. 

First, we analyse the model parameter uncertainty caused by the system internal parameters. 

Denote a NARMAX model in the linear-in-the-parameters representation: 
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and ( )( )i t x , 1,2,...,i M=  refers to the regressors produced by nonlinear functions and predetermined 

lagged system variables, M is the number of the selected model terms, i  is the parameter related to the 

model terms )( ( )i t x . Based on the OLS class of algorithms, the estimation of the parameters i  does 

not directly apply the least squares (LS) method, but integrates feature selection, that is, the choice of 

model terms and corresponding parameter estimation. 

Unlike the LS optimization, the objective of NARMAX modelling is to get an auxiliary model 
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where ( ) ( 1,2,..., )iw t i M=  are orthogonal terms across the estimation dataset consisting of N samples as 
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Assuming that the model terms ( )( )i t x  are linear independent across the estimation dataset, the 

orthogonalization procedure can be summarized as the follows, originating from the first model term 
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Thus, we have 
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The final NARMAX model is the linear combination of M model terms shown in model (3.36), which 

is equal to model (3.14). Thus, the parameters i  are related to the orthogonal parameters ig  as 
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Therefore, in the NARMAX model, there is a direct relationship between the NARMAX model 

structure and its associated parameter i . That is to say, once the specific structure of the NARMAX 

model and its terms are determined, the related parameter values i  can be directly obtained according 

to equation (3.40) and equation (3.41). Consequently, there’s a positive correlation between the model 

parameter uncertainty by the internal parameters and structural uncertainty. 

In [225], the externalparameter-dependent (EPD) problem of NARMAX modelling has been proposed. 

Define an EPD model as: 

 ( ) ( )( ) ( 1), , , ( 1), , , ( ) ( )θ vy uy t F y t y t n u t u t n e t = −  − −  − +
   (3.42) 

where ][F   is the nonlinear function; ( ) Θθ v   is the internal parameter vector, a function dependent on 

the external parameter set Ωv . The sets Θ and Ω correspond respectively to the internal and external 

parameter sets. 
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In the EPD problem, the most important factor is assumption that   differs from the different cases. 

Thus, we have 
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where L  denotes L experiments/cases, )( 1,2,..., )(if i L =  are different functions including linear and 

nonlinear sharing the same mapping type; . . is t  implies that the individual model is contingent upon 

the exogenous parameter i .The goal of the EPD problem is to find a commonly structured NARMAX 

model within the L experiments. Suppose a common NARMAX model has been identified through L 

subsets, the estimation of the relevant model parameters is carried out in each individual subsets of L 

experiments. The identical NARMAX model serves in estimating parameters across disparate datasets. 

Consequently, the uncertainty inherent in the model parameters disassociates from the model structure’s 

uncertainty, emerging as an independent variable influencing the model’s uncertainty. 

3.3.1.4 Model uncertainty in criteria 

The uncertainty in a model, which may arise due to varying evaluation standards, can be understood as 

the ambiguity introduced by different validation methods. Central to all system identification efforts, 

model validation, inclusive of NARMAX, serves to confirm that the model realistically represents the 

actual system, as opposed to merely fitting it to system response values. Thus, if an applied validation 

standard focuses solely on fitting system response values rather than accurately depicting the actual 

system, it may result in a model that shows excellent performance on existing datasets but lacks the 

capacity to generalize to real-world applications, particularly in predicting future system responses. 

Consequently, model validation criteria remain both non-negotiable and essential components of system 

identification. 

Optimally, the evaluation criteria for models should be independent of the modelling methods. This 

means that all model types, be they NARMAX or otherwise, need to employ the same standards for 

performance evaluation. As highlighted in the literature review in Chapter 2, there are typically two 

evaluation methods for non-linear system identification: statistical-based verification and qualitative 

verification. Either evaluation method proves effective in comparing and measuring models, including 

NARMAX, facilitating the selection of the most suitable model from a pool of potential options. 

The evaluation standard based on the minimum MSE can effectively measure the accuracy of a model. 

Generally speaking, MSE is used to measure the error between the predicted values and actual values 

of a model in a test set. There are two methods for obtaining predicted values in the NAMRAX model’s 

test set: one-step-ahead (OSA) and model predicted output (MPO). 

OSA refers to one-step forecasting, let’s first define this model: 

 2

0 1 2( ) ( 1) ( ( 2)) ( )y t a a y t a u t e t= + − + − +  (3.44) 

The OSA predictions of model (3.44) starting from step 3 is defined as: 
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It can be seen that the prediction of current time will utilize the observation at the previous time, while 

the MPO predictions of model (3.45) from step 3 is denoted as: 
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In OSA predictions, each calculation is virtually reset at every step given that measured outputs are 

used on the right-hand side. This inhibits the accumulation of errors. Alternatively, in equation (3.46), 

after initialization, only the predicted output values are used on the right-hand side. Consequently, any 

errors in the MPO values accumulate expediently, becoming clearly evident. This phenomenon explains 

why a deficient model (e.g., insufficient, biased, unstable) may yield satisfactory OSA predictions under 

certain circumstances. However, MPOs, which essentially serve as long-term predictions, typically 

illustrate when a model is inadequate. 

Hence, when the NARMAX model accurately depicts the system’s response and internal structure, the 

two prediction calculation methods tend to converge in evaluating NARMAX model performance. 

However, should the NARMAX model fail to comprehensively represent the system, these distinct 

prediction calculation methods are likely to provide differing assessment results regarding the 

performance of the NARMAX model. 

But MSE is not the only evaluation criterion in NARMAX modelling. The objective in system 

identification is to pinpoint the simplest unbiased model that can adequately represent the system. An 

incremental increase in model terms will typically lead to a decrease in MSE. But the increased 

NARMAX model with smaller MSE may not the exact model to describe the system. Therefore, in 

order to fully evaluate and select the NARMAX model, other evaluation indicators such as APRESS, 

AIC and BIC are also used to determine the length of the NARMAX model.  

While the uncertainty brought by model standards is similar to that of model structure, the biggest 

difference lies in that the uncertainty of model evaluation criteria is caused by independent assessment 

standards. Specifically, it involves measuring a NARMAX model with determined parameters for 

nonlinear functions, model terms and responses, choosing the optimal one from many possible models 

without involving the design of the model itself. Therefore, just like in NARMAX modelling, the 

uncertainty brought about by evaluation criteria forms an integral part of NARMAX modeming’s 

inherent uncertainties. 

However, when assessing the uncertainty of the NARMAX model, it is requisite to first establish one 

or more evaluation criteria to optimize the NARMAX model. Granted, the chosen evaluation criteria 

may not wholly evaluate the NARMAX model’s performance. In such an instance, during the modelling 

process, should the evaluation criterion transition from uncertain to certain, the uncertainty introduced 

by these standards is no longer a concern. 

Through qualitative analysis, it is discerned that while the uncertainty of the NARMAX model 

comprises four components, notably model uncertainty in data, model structure uncertainty, model 
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parameters uncertainty, and model uncertainty in criteria. During the NARMAX modelling process, the 

uncertainty induced by data can be viewed as a constant. Similarly, uncertainty originating from 

evaluation criteria is perceived as definitive evaluation standards during modelling. Consequently, the 

uncertainty of the NARMAX model predominantly constitutes uncertainties in both model structure 

and parameters. In the following section, we intend to undertake a quantitative analysis of these 

uncertainties to establish a theoretical foundation for leveraging them to derive more suitable 

NARMAX models. 

3.3.2 Quantitative analysis of the model uncertainty in NARMAX models and polynomial NARMAX 

models 

Firstly, this section quantitatively analyses the uncertainty of the NARMAX model. To address the 

uncertainty mathematically, we introduce set theory to quantify the uncertainties. In order to quantify 

the uncertainty of the NARMAX model in terms of a set, we first need to define the elements within 

this set. As can be inferred from the previous section, there are various ways to express the uncertainty 

of a NARMAX model. In this thesis, however, we choose to represent this uncertainty through the 

NARMAX model itself. That is, any NARMAX model F that has been derived using NARMAX 

modelling methods on a given dataset S and meets system identification requirements while accurately 

describing and predicting real systems is considered an element within our set representing uncertainties 

in the NARMAX model. 

Definition: Define a set U, which is the model uncertainty in NARMAX, as: 

 1{ ( , , , , ( , )),..., ( , , , , ( , ))}PU M y u e f d n M y u e f d n=  (3.47) 

where ( , , , , ( , )) ( 1,..., )iM y u e f d n i p= , as the element of the uncertainty set U, is the NARMAX models 

that fulfils the objectives of the system identification, p  is the number of the NARMAX models in the 

set; y , u , and e  are the system output, input, and noise signals; f  is the nonlinear function of the 

NARMAX model; ( , )d n  is the time delay information. It is easy to prove that the definition of the set 

U is reasonable. 

Proof. In order to validate the rationality of the NARMAX uncertainty set U, it is imperative to establish 

that all elements within this set simultaneously comply with three conditions: disorder, diversity and 

determinacy [231]. 

Disorder: Disorder refers to the equal status of elements in a set, without any necessary sequential 

relationship. The element ( , , , , ( , ))iM y u e f d n  in the set U is a NARMAX model obtained from the same 

dataset S. These NARMAX models have met the objectives of system identification and received 

subjective or objective recognition. There is no issue of hierarchy among these models, thus satisfying 

the unordered nature of elements in a set. 

Uniqueness: The definition of uniqueness is that any two elements in a set are considered to be different, 

meaning each element can only appear once. It is easy to prove that two NARMAX models 1M  and 2M  

cannot be the same model in the set. Let 1M  and 2M  are two polynomial NARMAX models as: 
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where 1 ( 0,1,2)ia i =   and 2 ( 0,1,2)ia i =   are the model parameters, 1

ix   and 2

ix   are the model terms in 

two NARMAX models. If 1M   and 2M   are two same elements, it means that model terms and 

parameters are completely consistent 
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Then we have 
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Thus, 1M  and 2M  are actually the same model. 

Therefore, each element of U represents a unique NARMAX model, even if the structure and terms of 

the NARMAX model are exactly the same, there will still be differences in model parameters, thus 

meeting the requirement for uniqueness. 

Determinacy: Determinacy refers to the concept that given a set, any element can only have two states: 

either belonging or not belonging to this set, and there is no ambiguous situation. In terms of the 

NARMAX model, according to the definition of elements, as long as it meets the goal of system 

identification, then this NARMAX model is an element in set U. Therefore, the definition of set U is 

complete and reasonable. 

Based on the qualitative analysis of NARMAX model uncertainty in the previous section, it is known 

that the uncertainty of the NARMAX model consists of four aspects: data, structure, parameters, and 

evaluation criteria. Therefore, set U can be defined as the union of uncertainties caused by these four 

factors. 

Based on the qualitative analysis of the model uncertainty in NARMAX, the set U can be represented 

as the union of the sets of four types of model uncertainty, that is 

 
data para struc critNARMAXU UU U U=    (3.53) 

where dataU , 
paraU , strucU , and critU  correspond to the sets of uncertainty arising from data, parameters, 

model structure, and criteria, respectively, as shown in Figure 10. It’s crucial to underline that U is 

inherently defined by its respective system, implying that during the NARMAX modelling execution, 

comparing the uncertainties of distinct systems is not feasible. Every system identification encompasses 

its exclusive U. 

 

Figure 10 The Venn diagram of the model uncertainty in NARMAX 

As defined, the components within U are NARMAX models iM  that fulfil the requirements of system 

identification. Meaning, due to variances in data, structure, parameters, and criteria, numerous 

NARMAX models exist that meet system identification objectives. The components within dataU , 
paraU , 

strucU , and critU  represent a collection of NARMAX models, iM , influenced by these four factors to 

achieve the system identification goal. The definitions for these four subsets, analysed qualitatively in 
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the previous section, are as follows: 
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where 
jM , kM , 

pM , and 
qM  are identified NARMAX models affected by different factors. 1p , 2p , 

3p , and 4p  are the number of NARMAX models in each subset. In set dataU , the elements 
jM  are 

determined by the noise model terms , ,...w ce e e= , where we  and ce  represent the white and coloured 

noise model terms; and other noise signals. In strucU  , kM   are primarily influenced by the nonlinear 

mapping function f, and the delay hyperparameters d and n. According to the literature review analysis, 

the nonlinear mapping functions in NARMAX modelling mainly include polynomial functions, 

wavelet-like functions, neural networks etc., hence it’s defined that f belongs to one of these series of 

nonlinear mapping functions. And both d and n take non-negative integer values. In 
paraU  ,    is the 

model parameter belonging to , while in critU , 
qM  are determined independently due to the criteria. 

Corollary For an unknown system, compared to the critU , the other three sets can be defined as infinite 

sets. While due to the existence of the prior knowledge, all subsets dataU , 
paraU , strucU , and critU  can be 

considered as finite sets. Therefore, set NARMAXU  is also a finite set. Consequently, the size of uncertainty 

in the NARMAX model can be determined by measuring the size of this set. From the definition of U, 

we have 

 NARMAX

uncertaintyL p  (3.55) 

where NARMAX

uncertaintyL   indicates the level of model uncertainty in NARMAX, p refers to the number of 

NARMAX models in U. 

Similarly, we have 
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data

uncertainty
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uncertainty
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uncertainty
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uncertainty

L p

L p

L p

L p









 (3.56) 

where data

uncertaintyL , struc

uncertaintyL , para

uncertaintyL , and crit

uncertaintyL  are the level of model uncertainty in data, structure, 

parameter and criteria, and 1p , 2p , 3p , and 4p  are the number of NARMAX models in dataU , 
paraU , 

strucU , and critU , respectively. 

However, for each subset, the number of NARMAX models, that is, the size of the subset does not have 

a proportional relationship with the impact factor of each subset. 

Consider a nonlinear system [232] 

 2( ) 0.605 ( 1) 0.163 ( 2) 0.588 ( 1) 0.240 ( 2) 0.15sin( ( 1)) ( )y t y t y t u t u t u t t= − − − − + − − − − − +  (3.57) 

where the system noise ( ) ~ (0,0.1)t N  and ( ) ~ [ 1,1]u t U − , and the total data points are set to be 500. The 

aim is to discern both the structure of the model and the unidentified parameters within the model, 

relying on the documented samples. In the modelling, we set f poly= , and 1d = . Predictions in the 

testing set (the last 100 points) by NARMAX models with different structures and parameters are shown 
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in Figure 11, and the models by different hyperparameters are listed in Table 1. 

  
a) 22, y un n= = = (MSE=0.0084) b) 32, y un n= = = (MSE=0.0091) 

 
 

c) 42, y un n= = = (MSE=0.0087) d) 52, y un n= = = (MSE=0.0087) 

  
e) 23, y un n= = = (MSE=0.0084) f) 33, y un n= = = (MSE=0.0091) 
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g) 43, y un n= = = (MSE=0.0089) h) 53, y un n= = = (MSE=0.0087) 

  
i) 24, y un n= = = (MSE=0.0084) j) 34, y un n= = = (MSE=0.0087) 

  
k) 44, y un n= = = (MSE=0.0090) l) 54, y un n= = = (MSE=0.0087) 

Figure 11 Comparison between observations and predictions in the testing set (100 data points) of different 

NARMAX models (model length = 5) 

By analysing the model (3.57), when f poly= , the polynomial NARMAX cannot find the ‘true’ model 

as there is a non-polynomial model term sin( ( 1))u t − , which is a common situation for most applications. 

Noticed that no system identification method can develop the ‘true’ model when the prior knowledge 

about sin( ( 1))u t −  is missing. Still, we can have several best models and transparent model structures to 

describe the system. 

As shown in Figure 11, the 12 ‘best’ NARMAX models have the similar performance over the testing 

period indicated by MSEs, which are around 0.008. Moreover, the interpretable model structures are 
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listed in Table 1, where there are 8 unique NARMAX models with 12 different hyperparameters 

determining the model structure. This indicates that although the number of NARMAX models that 

meet system identification purposes does not increase proportionally with the setting of 

hyperparameters, i.e., ( ) )(N model N hyperparameter= , it also suggests a positive correlation between 

the quantity of NARMAX models and the value of hyperparameters for unknown systems. That is to 

say, there’s a direct relationship between model uncertainty and hyperparameters. 

Table 1 The NARMAX models by different hyperparameters (model length = 5) 

 

Model 

term index 
, 2y un n =  , 3y un n =  , 4y un n =  , 5y un n =  

2 

1 ( 1)y t −  ( 1)y t −  ( 1)y t −  ( 1)y t −  

2 ( 1)u t −  ( 1)u t −  ( 1)u t −  ( 1)u t −  

3 ( 2)u t −  ( 2)u t −  ( 2)u t −  ( 2)u t −  

4 
2( 2)y t −  

2( 2)y t −  

2( 2)y t −  

2( 2)y t −  

5 
2( 2)u t −  ( 3) ( 3)u t y t− −  ( ) ( )2 4u t u t− −  ( ) ( )2 4u t u t− −  

3 

1 ( 1)y t −  ( 1)y t −  ( 1)y t −  ( 1)y t −  

2 ( 1)u t −  ( 1)u t −  ( 1)u t −  ( 1)u t −  

3 ( 2)u t −  ( 2)u t −  ( 2)u t −  ( 2)u t −  

4 
2( 2)y t −  

2( 2)y t −  

2( 2)y t −  

2( 2)y t −  

5 
2( 2)u t −  ( 3) ( 3)u t y t− −  ( ) ( )

2
1 4u t u t− −

 

( ) ( )2 4u t u t− −  

4 

1 ( 1)y t −  ( 1)y t −  ( 1)y t −  ( 1)y t −  

2 ( 1)u t −  ( 1)u t −  ( 1)u t −  ( 1)u t −  

3 ( 2)u t −  ( 2)u t −  ( 2)u t −  ( 2)u t −  

4 
2( 2)y t −  

2( 2)y t −  

2( 2)y t −  

2( 2)y t −  

5 ( )
4

2u t −
 ( ) ( ) ( )

2
3 2 3u t u t y t− − −  ( ) ( ) ( )

2
4 3 3u t y t u t− − −  ( ) ( ) ( )

2
5 4 2u t u t u t− − −  

Consider another nonlinear system: 

 2( ) 0.605 ( 1) 0.163 ( 2) 0.588 ( 1) 0.240 ( 20) ( )y t y t y t u t u t t= − − − − + − − − +  (3.58) 

where the noise signal ( )t   and the input signal ( )u t   have the same definition with model (3.57). 

Similarly, we define f poly=  and 1d = . Compared to model (3.57), this system is straightforward and 

easy to identify. However, model (3.58) is still unknown to users. Predictions in the testing set (the last 

100 points) by NARMAX models with different structures and parameters are shown in Figure 12, and 

the models by different hyperparameters are listed in Table 2. 

As shown in Figure 12 and Table 2, when 
yn  and un  is not sufficient to the ‘true’ system, the identified 

NARMAX models have similar model structure with the ‘true’ model and relative accurate predictions. 

However, if the hyperparameters are enough to model, NARMAX models always find the ‘best’ model, 

which shall be the only identified NARMAX model in the set U. Thus, there is no uncertainty in this 

situation. However, for most applications in the real world, this situation is rare. Therefore, for most 

NARMAX models, we define the model uncertainty in NARMAX has a positive correlation with the 

hyperparameters in equation (3.34). 
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a) 182, uyn n= ==

(MSE=0.0246) 

b) 183, uyn n= ==

(MSE=0.0373) 

c) 184, uyn n= ==

(MSE=0.0373) 

   
d) 202, uyn n= ==

(MSE=0.0080) 

e) 203, uyn n= ==

(MSE=0.0080) 

f) 204, uyn n= ==

(MSE=0.0080) 

   
g) 222, uyn n= ==

(MSE=0.0080) 

h) 223, uyn n= ==

(MSE=0.0080) 

i) 224, uyn n= ==

(MSE=0.0080) 

   
j) 242, uyn n= ==

(MSE=0.0080) 

k) 243, uyn n= ==

(MSE=0.0080) 

l) 244, uyn n= ==

(MSE=0.0080) 

Figure 12 Comparison between observations and predictions in the testing set (100 data points) of different 

NARMAX models (model length = 4) 

Table 2 The NARMAX models by different hyperparameters (model length = 4) 

 

index , 2y un n =  , 3y un n =  , 4y un n =  , 5y un n =  

2 

1 ( 1)u t −  ( 1)u t −  ( 1)u t −  ( 1)u t −  

2 ( 1)y t −  ( 1)y t −  ( 1)y t −  ( 1)y t −  

3 ( )
2

2y t −
 

( 20)u t −  ( 20)u t −  ( 20)u t −  
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4 ( 18)y t −  ( )
2

2y t −
 ( )

2
2y t −

 ( )
2

2y t −
 

3 

1 ( 1)y t −  ( 1)u t −  ( 1)u t −  ( 1)u t −  

2 ( 1)y t −  ( 1)y t −  ( 1)y t −  ( 1)y t −  

3 ( )
2

2y t −
 

( 20)u t −  ( 20)u t −  ( 20)u t −  

4 ( )
2

( 18)1 y ty t −−
 ( )

2
2y t −

 ( )
2

2y t −
 ( )

2
2y t −

 

4 

1 ( 1)y t −  ( 1)u t −  ( 1)u t −  ( 1)u t −  

2 ( 1)u t −  ( 1)y t −  ( 1)y t −  ( 1)y t −  

3 ( 2)u t −  ( 20)u t −  ( 20)u t −  ( 20)u t −  

4 ( )
2

( 18)1 y ty t −−
 ( )

2
2y t −

 ( )
2

2y t −
 ( )

2
2y t −

 

3.3.3 Optimizing and probabilistic NARMAX modelling based on the model uncertainty 

The purpose of system identification is to construct a model that can accurately describe the system and 

precisely predict its future responses. Therefore, NARMAX modelling involves adjusting 

hyperparameter settings, studying different structures and parameters of NARMAX models, and using 

one or more evaluation criteria to obtain the ‘optimal’ NARMAX model. Based on the quantitative 

analysis in the previous section, an ‘optimal’ NARMAX model equates to eliminating uncertainty in 

NARMAX modelling. 

Define the modelling objective function as 

 0( , , , ,[ , ] ), ˆ( ,, )J y u e f d y y yM =  (3.59) 

where y , u  , and e  are the system output, input, and noise signals; f  is the nonlinear function of the 

NARMAX model; ( , )d n  is the time delay information;   is the NARMAX model parameters, and 0M  

is the length of the NARMAX model.   denotes the difference between the system y  and the 

NARMAX model ŷ , which is defined as 

 
( ) ( )

( )

1 1 1 2 1 2
1 2 1

1 2 1 2
1 1

0
1 1

1

( ) ( ) ( ), ( )

( ), ( ), , ( ) ( )

i

l

n n n

i i i i i i
i i i i

n n

i i i i i i
i i i

y t f x t f x t x t

f x t x t x t e t



−

= = =

= =

= +  +   +

+    +

 (3.60) 

where 

 ( )( )

( )( )

) 1

( )

1

1

( y y y

m y y u y u u

y u y u e y u e e

y t m d m n

x t u t m n n d m n n

e t m n n n n m n n dn

d

d

d


−  


= − − +   +

 +

+ −

− − − +   +

−

+ −


+

+

 (3.61) 

Thus, the system identification can be seen as an optimization problem as 



73 

 

 

0

0

0

}

min ( , , , ,[ , ], )

, ,..

,

ˆ, ( , )

. .

{

.}

,

{

{ ,

, , ,.

,...}

..

J y u e f d n

e noise coloured noise

f

M y y

s t white

poly Nnomial

MSE OSA MPO

wavelet N

d n

M

 





+

+













=

 (3.62) 

where the definition of the conditions has been discussed in the previous section. 

Since the system is unknown, it can be assumed that all constructed models are ‘pseudo-models’. 

Similarly, for NARMAX, there isn’t a ‘true’ NARMAX model ŷ  capable of fully describing nonlinear 

dynamic systems. Despite this, it is desirable to obtain a ‘better’ model and more accurate system 

predictions by continuously optimizing the hyperparameters of NARMAX modelling. The process of 

obtaining a ‘better’ NARMAX model is essentially the continuous reduction of uncertainty in the 

NARMAX model as it increasingly approximates the real system. Thus, the optimization problem 

defined by (3.62) generally resorts to local optimization techniques. The complexities and high 

dimensionality of the problem pose challenges to finding a global optimum - a solution that yields the 

minimum possible error across the entire solution space. Depending particularly on the nature of the 

error surface - which is largely unknown, the optimization procedure could end up being trapped in one 

of potentially many local minima, rather than finding a global minimum. Implementing local 

optimization in this context could also be a matter of computational efficiency. The defined optimization 

problem, while it may not guarantee the best possible model, is computationally less expensive and 

quicker than more exhaustive techniques such as global optimization. Given the high-dimensional 

nature of the search space (i.e., the array of hyperparameters in the NARMAX model), using local 

optimization can expedite the process of finding a suitable model that can then be further refined. 

However, in recent years, as opposed to single deterministic predictions, probabilistic forecasts of 

system responses have gradually gained attention and are widely used. Although there is a certain level 

of uncertainty in probabilistic forecasts, they provide a vague description rather than a definitive one 

for the system. This covers more possibilities for practical applications, ensuring a more comprehensive 

analysis and study of the system.  

For NARMAX models, the prediction value under the same system input and output is definite for a 

specific NARMAX model. To generate probabilistic predictions though, multiple NARMAX models 

with similar performance are needed. According to the quantification definition from the previous 

section, the more NARMAX models there are, the greater uncertainty it brings about. Therefore, unlike 

the ‘optimal’ singular NARMAX model, probability-based forecast values from NARMAX models 

utilize this inherent uncertainty. 

Optimal NARMAX models based on the model uncertainty The optimal NARMAX model is to minimize 

the objective function (3.62) to construct the ‘best’ NARMAX model and generate most accurate 

predictions of the system. Assume there is no prior knowledge about the system, where the constraint 

conditions, especially the range of values for [ , ]d n  is the set of non-negative integers, which is an 

infinite range. During the modelling process, in order to include as much system information as possible, 

the values of hyperparameters are set to be as large as possible. For example, [ , ]d n  is set to a sufficiently 

large positive integer. As for the polynomial NARMAX model,  is also defined as a sufficiently large 

positive integer. 
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Taking a polynomial NARMAX modelling as an example, the general polynomial NARMAX model is 

defined as model (27). In the first iteration, let 0y ed d= = , 1ud = , 1

max

y u en n n n= = = , and 
1

max= . 

Based on the equation (30), the number of the candidate model terms is calculated 

 1
1

1

)!(

! !

max
max

max

n
M

n

+
=  (3.63) 

where 13 max

y u en n n n n= + + = , while 
1

maxM  candidate model terms form the candidate dictionary 1

cD . 

By applying the FROLS algorithm, the best desired model 
1

polyM  within the constrains conditions can be 

achieved. However, the set 1

cD  is redundant, meaning most candidate model terms are equivalent as the 

noise terms to the model. To mitigate the impact of these interference model terms, hyperparameters 

can be redefined and a new NARMAX model is trained. In the s-th ( 2s  ) iteration, let 0y ed d= = , 

1ud = , max

y u e sn n n n= = = , and max

s= . The number of the candidate model terms in the s-th iteration 

is 

 
!!

)!( ma

s

x
m sax

max

s

n
M

n

+
=  (3.64) 

And the trained NARMAX model is poly

sy . The iterative process will terminate when the newly trained 

NARMAX model is identical to the previous one, or when it reaches a predetermined number of 

iterations. 

Then the set U, describing the model uncertainty and consisting of q ‘best’ NARMAX models, is 

defined as 
1{ ,..., }poly pol

q

yU M M= . Among all the NARMAX models in set U, an optimal model is then 

selected. 

Probabilistic NARMAX modelling based on the model uncertainty Compared to the optimal NARMAX 

modelling, the probabilistic NARMAX modelling are several ‘best’ NARMAX models in the set U to 

provide a comprehensive understanding of the system and the probabilistic NARMAX predictions for 

the system. Consider lq  NARMAX models from the set U forming a subset 
probU  as 

 
1{ ,..., }

l

poly poly

prob qU M M=  (3.65) 

Then the predictions from the 
lq  NARMAX models is 

 1
,...[ ],

l

T

q
=Y y y  (3.66) 

where [ ( 1),..., ( )] ( 1,2,..., )ˆ ˆ
i

T

i li T T h i qy y= + + =y  is the predictions of the i-th NARMAX model over 

the time period from 1T +  to T h+ ; T is the total data points in the dataset, h is the desirable time in 

the future. 

Also, to describe the system, besides the selected NARMAX models in the set 
probU , a statistical analysis 

of the model terms with the related importance is obtained. The simultaneous existence of specific 

models and statistical analysis of model terms contributes to a more comprehensive understanding of 

the system. 

3.4 Summary 
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This chapter delves into the methodology adopted for this thesis, with particular focus on the Nonlinear 

Autoregressive Moving Average model with eXogenous inputs (NARMAX), a recognized and widely 

referenced technique for the modelling of dynamic nonlinear systems. NARMAX distinctly excels at 

accurately identifying systems, extracting a clear and interpretable model, and generating precise 

system predictions. Despite its advantages, actual system identification remains a challenge with 

NARMAX modelling due to the lack of awareness of the system. Therefore, a decisive task is to identify 

the critical factors and their internal structural impacts on the system through modelling techniques. 

This inevitably necessitates dealing with model uncertainty emerging from differing configurations of 

NARMAX hyperparameters. The presence of this uncertainty influences the selection of optimal 

models and the production of predictive values for system responses. Thus, a systematic approach to 

defining, analysing, and quantifying such uncertainties in NARMAX models is of utmost importance 

to effectively mitigate or minimize them during the modelling process. 

In recent years, probabilistic models have begun to gain traction in system research due to their ability 

to provide a more extensive set of information and more valuable predictive values. Owing to the 

structure of NARMAX models, which is established post-training, the need arises for multiple similarly 

performing NARMAX models to provide probability information. This, however, increases the 

uncertainty inherent in these models. 

Commencing with a brief introduction of NARMAX modelling in conjunction with the Forward 

Regression Orthogonal Least Squares (FROLS) algorithm, the chapter emphasizes its main attention on 

polynomial-based models due to their superior interpretability and stability. The chapter also offers both 

qualitative and quantitative assessments of uncertainties in these models, defining them as ‘NARMAX 

Model Uncertainty Sets’ using set theory. The conclusion drawn points to a direct link between the size 

or extent of these sets and the values assigned to their respective hyperparameters. Defining the 

objective function related to these uncertainties and the optimization processes involved in generating 

either singularly optimal or probabilistically optimal versions, the entire exercise appears similar to 

acquiring the best possible version(s) within an accepted range for those parameters. 
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Chapter 4  

Deep Polynomial NARMAX Model 

The polynomial NARMAX model is extensively utilized in dynamic non-linear system modelling due 

to its robust interpretability and simplicity. The Weierstrass theorem posits that any continuously 

differentiable function within a defined closed space can be expressed as a series of polynomial 

functions. Therefore, theoretically, the polynomial NARMAX model can describe a broad spectrum of 

non-linear systems. However, in actual application, most systems are black-box systems with undefined 

coupling relations between features and variables. This leads to a requirement to define a number of 

hyperparameters in polynomial NARMAX modelling, including the degree of non-linearity in 

polynomial functions and the delay information of variables. These hyperparameters have a significant 

influence on the structure and parameters of the polynomial NARMAX model. As a result, the 

ambiguity of these hyperparameters can introduce possible uncertainties in the modelling process. 

To mitigate the effects of hyperparameter ambiguity in modelling, a large set of hyperparameters that 

encompasses maximal system information is defined initially. Following this, we create optimal 

polynomial NARMAX models from potential model elements discerned by these hyperparameters, 

which satisfies system identification requirements. However, this method poses two distinct problems. 

Firstly, the majority of potential model elements become redundant in the modelling process. This 

redundancy increases with the escalating values of these hyperparameters, necessitating more time for 

modelling. Additionally, it results in noise interference from less effective elements, thereby reducing 

the signal-to-noise ratio and affecting the quality of modelling. Secondly, the increase in these 

parameter numbers can cause a significant rise in the dimensionality of potential models. Despite the 

absence of theoretical limits on dimensions, it becomes infeasible to manage a vast quantity of 

candidates because of hardware limitations, particularly when using the FROLS algorithm to construct 

their respective models. 

To address these challenges while still utilizing an extensive set of candidate models, efficiently 

managing redundancy, and improving the signal-to-noise ratio, we propose a novel deep Polynomial 

Network training optimization algorithm. This algorithm is designed to address potential issues 

associated with an increase in dimensionality and a reduced signal-to-noise ratio that may result from 

heightened parameter values. In response to these issues, we have introduced a network structure that 

includes both the generation layer and the driller layer, explaining their structures and functions 

separately. This study introduces training optimization algorithms founded on Particle Swarm 

Optimization (PSO) for the active selection of elements to construct the final model. The performance 

of the proposed networks is verified using multiple different cases, similar to actual applications. Our 

DeepNARMAX demonstrations suggest that it has the capacity to effectively identify useful 

information, construct optimal descriptions, and provide accurate, reliable predictions. 

4.1 Introduction 

NARMAX models prove to be extensively effective in identifying and predicting nonlinear systems. 

Particularly, the Polynomial NARMAX models offer a more precise and clear representation of the 

nonlinear system structure and the pivotal variables that influence the system. Inherently, these models 

possess an exceptional capability to grasp and simulate both linear and nonlinear dynamics and 

interactions, displaying their broad applicability. Polynomial NARMAX models extend linear models 

by accommodating the nonlinearities and interactions that fall beyond the reach of linear approaches. 
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These models are integral in circumventing hypothesis errors when a statistician mistakenly imposes 

linearity on a nonlinear system, thus preventing errors leading to inaccurate predictions and system 

identification. 

The structure of the Polynomial NARMAX model comprises the order of the autoregressive part 

(historical values of the output), the order of the moving average part (past error values), and the 

maximum lag of the exogenous inputs (past or current values of external or exogenous variables). These 

parameters dictate the temporal depth at which previous outputs and inputs affect the current output. 

Primarily, this temporal depth sets the groundwork for the model’s exceptional predictive ability. The 

model encapsulates historical values of the output, past error values, and past or current values of 

external or exogenous variables. Consequently, its strengths dwell in the ability to embody the 

stochastic elements, deterministic factors, and any additional influences into one singular equation. 

Polynomial NARMAX models function by transposing the primary input data into a higher-dimensional 

space using a group of non-linear basis functions. This nonlinear transformation permits the formation 

of a model that remains linear in the parameters, facilitating the employment of efficient linear system 

identification methods for the estimation of these parameters. Further, Polynomial NARMAX models 

offer a clear comprehension of the significant variables that impact the system. Utilizing a polynomial 

form, one can discern the impacts of the interactions between various variables on the output, and the 

extent of these interactions. These models can symbolize a vast class of nonlinear dynamics and operate 

as a universal prediction modelling tool, providing them an edge over numerous other model structures 

that struggle to clearly represent variable interactions. It’s pivotal to note that the selection of the model 

order, coupled with the choice of the non-linear basis functions, requires an expertise. It’s a quandary 

that frequently demands a compromise between complexity and comprehension; a simplistic model 

might disregard vital details, whereas an overly complex model may vex interpretation. 

Define the nonlinearity degree of the polynomial NARMAX model as , and the maximum time lags 

for output, input and noise signals as 
yn , un , and en . The candidate model terms are constructed from 

the system’s output y , input u  and noise signals e  based on the nonlinearity degree  and maximum 

time delay parameter 
yn , un , and en . Considering a single input single output system, where the 

output y , input u  and noise signals e  are linearly expanded with the time delay information as 

 ( 1), ( 2),..., (

( 1),

( ) ( 1), ( 2),..., ( )

( ) )

( ) ( 2) ),..., (

y

u

e

y t y t y t y t n

u t t

e t

u t u u t n

e t e t e t n

→ − −

−

−

→ −

→

− −

− −

 (4.1) 

Then, based on , transform the expanded linear model terms into nonlinear exponential terms: 

 

: ( 1) , ( 2) ,..., ( )

: ( 1) , ( 2) ,..., ( )

: ( 1) , ( 2) ,..., ( )

u

e

yy y t y t y t n

u u t u t u t n

e e t e t e t n

− − −

− − −

− − −

 (4.2) 

And nonlinear cross model terms: 
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1 1

1 1

1 1

1 1

1

: ( 1) ( 2),..., ( 1) ( )

: ( 1) ( 2),..., ( 1) ( )

: ( 1) ( 2),..., ( 1) ( )

: ( 1) ( 1),..., ( ) ( )

: ( 1) ( 1),..., ( ) (

y

u u

y

y

e e

u

yy y t y t y t n y t n

u u t u t u t n u t n

e e t e t e t n e t n

y u y t u t y t n u t n

y e y t e t y t n e t n

− −

− −

− −

− −

−

− − − + −

− − − + −

− − − + −

 − − − −

 − − − − 1

1 1

)

: ( 1) ( 1),..., ( ) ( )

e

u eu e u t e t u t n e t n

−

− − − − − −

 (4.3) 

The number of the candidate model terms M is calculated as: 

 
)!

!

(

!

n
M

n

+
=  (4.4) 

where 
y u en n n n= + + . Define a set D, in which the elements are the candidate model terms in equation 

(4.1), (4.2), and (4.3), as follows: 

 1{ , 1,2,..., | ( 1), ( 1),..., ( ) ( ) }i i u eD x i M x y t u t u t n e t n −= = = − − − −  (4.5) 

According to the FROLS algorithm, constructing a polynomial NARMAX model with L terms from set 

D requires L steps. For the first step, the algorithm involves M ERR calculation operation, while starting 

from the )( 2s s   step, there are ( 1)M s− +  orthogonal operations and ( 1)M s− +  ERR calculation 

operations. Let the algorithm stops at L step, then the number of operations 
opN  is 

 
2

2

2( 1)

(2 1) 1

p

L

s

oN M s M

L M L

=

= − + +

= − − +


 (4.6) 

From equation (4.6), the number of operations including calculation of ERR values and 

orthogonalization of model terms rely on the dimension M and model length L. The larger 
opN , the 

higher the complexity. Given the system is unknown, a higher degree of nonlinearity  and larger time 

delay information n are defined during the modelling process to construct more model terms. This 

ensures a comprehensive description of the system without neglecting important information. However, 

according to equation (4.4), as  and n  increase, there’s a risk of dimension explosion in the number 

or dimensions M of candidate model terms. 

.

 
 

a) 3-D graph of dimension M varying with  

and n 

b) 2-D graph of dimension M varying with  

and n 

Figure 13 The relationship between the candidate model terms set D and the nonlinearity  and time delay n 
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Assuming the range of values for  is [1,6]  and the range of values for time delay n is [1,1000] , the 

dimension of set D is shown in Figure 13. Overall, as n and  increase, M also increases. Moreover, 

with the continuous growth of n and , the value of M shows an explosive rise. When n and  reach 

their maximum values within the range, the value of M is achieved to 151.4 10 , which is a significant 

high value, demonstrating the dimension explosion with the growing of  and n. 

  

  

  

Figure 14 The relationship between M and the n with separate nonlinearity degree  

As shown in Figure 14 , for the linear polynomial NARMAX model, M and n are directly proportional, 

as 1000linearM = , when 1000n = . However, as the degree of nonlinearity  increases, M experiences a 

dimension explosion. For instance, when 2= , 5

2 5 10M = =  , which is 500 times of the linear model 

terms. Similarly, 7

3 1. 8 106M = = , which is 
41.68 10  times the linear model terms’ dimension linearM  

and 33 times that of when 2= . While when 6= , 15

6 1.4 102M = =  , which is 
121 42 10.   the linear 
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dimension linearM , 92.83 10  times 2M = , 68.46 10  times 3M = , 33701 times 4M = , and 167.67 times 

5M = . 

The phenomenon of dimensional explosion gives rise to three significant issues. The first pertains to 

the inflation in computational complexity induced by an excessive number of model terms. According 

to equation (4.6) the ERR and orthogonal operations in FROLS correspond directly to the 

dimensionality of candidate model terms. Consequently, as the dimensionality of these candidate model 

terms escalates, therefore do the operations for polynomial NARMAX models of equivalent lengths, 

thereby spiralling the computational complexity. This not only extends the training duration but also 

necessitates massive hardware resources during the modelling process. For instance, ChatGPT-4, which 

houses approximately 1.7 trillion parameters, required an extensive input of resources by OpenAI – 

approximately three years of training using around 10,000 high-performance GPUs and a substantial 

financial investment. 

The second issue deals with the redundancy and interference despite having ample candidate model 

terms that secure exhaustive detail about systems. For instance, if a polynomial NARMAX model with 

a nonlinearity degree 6=  has 10 terms, then the signal-to-noise ratio (SNR) during modelling would 

be quite low. This scenario exacerbates the task for FROLS in selecting suitable model terms due to the 

interfering noise, thus undermining the reliability of the identified models. 

The third issue is that a surplus of model terms inherently escalates model uncertainty, which becomes 

especially pronounced when dealing with real-world systems that are predominantly complex, dynamic, 

and nonlinear. Since a comprehensive model that fully explicates these systems is largely non-existent, 

it follows that all models serve as approximations. The principal aim of modelling is to depict the real 

system with minimal error while offering insights into the system. Nevertheless, the rise in candidate 

model terms introduces an increase in models fulfilling system identification goals, subsequently 

fostering heightened model uncertainty. 

Therefore, the importance of developing new methods to address these issues cannot be overstated. The 

novel method should not only maintain the interpretability of NARMAX models, but also solve the 

high-dimensionality and vast model uncertainty. A typical method is the neural network, especially the 

deep neural networks (DNNs) or the deep learning (DL). Firstly, DNNs are adept at handling high 

dimensionality, thereby potentially mitigating the computational complexity associated with 

dimensional explosion. They can process vast amounts of data simultaneously, efficiently reducing 

training time and hardware resources requirements. Secondly, DNNs’ ability to learn and extract 

relevant features from redundant data can help to reduce the interference from the plethora of model 

terms. They can deal with non-linear relations, adapting to external noise and disturbances. Finally, 

DNNs’ capacity for accommodating complexities and uncertainties ingrained in real-world systems 

offers an agile solution to capturing system characteristics with minimal error. While all models are 

approximations, DNNs, due to their flexibility and learning capability, could potentially provide a closer 

approximation to the actual system. By so doing, they reduce model uncertainty and enhance the fidelity 

of system identification. 

DNNs, while offering significant advantages for system identification, also present notable challenges. 

Overfitting, for instance, is a major drawback, where the network learns peculiar patterns within the 

training data that may not apply universally to new data sets. This scenario can cause erroneous system 

characterization and incorrect predictions when faced with new data. Further, these networks are often 

considered ‘black boxes’ due to their lack of interpretability. Even though they are proficient at mapping 

inputs to outputs, understanding the particular roles different layers play within the model is complex. 
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This lack of transparency can inhibit identification of model terms and hamper comprehensive system 

understanding, which is crucial for system identification. Also, DNNs necessitate large volumes of 

training data, which may not always be accessible in system identification contexts. Moreover, their 

significant demand for computational resources and time may restrict their use in real-time 

identification scenarios. Lastly, these networks might show sensitivity towards parameter initialization 

and hyperparameter settings. Improper configuration might lead to non-convergence or inferior 

solutions, thereby compromising performance. Therefore, in the face of these challenges, DNNs’ 

potential for addressing dimensional explosion in system identification needs to be realized only after 

adequately addressing their limitations. 

Thus, by bringing together DNNs and polynomial NARMAX, a novel deep polynomial NARMAX 

(DeepNARMAX) modelling seeks to leverage the advantages of both. The DL capabilities of DNNs 

can be used to alleviate the dimensional explosion issues faced by NARMAX, while the transparency 

and interpretability of NARMAX models can help solve the ‘black box’ mystery of DNNs, yielding a 

model that is powerful, efficient, and interpretable. This amalgamation seeks to push the boundaries of 

system identification and modelling, allowing for more robust, reliable, and meaningful data analysis 

and system insights. 

4.2 The scheme of the DeepNARMAX model 

The complex dynamical system identification and prediction problem is to identify the most appropriate 

and interpretable model(s) and generate the most accurate prediction(s) in the future given the observed 

data. As mentioned above, we have addressed the difficulties of the complex dynamical system 

identification: balancing the trade-off between model structure uncertainty and computation efficiency 

and generating transparent and interpretable models. To overcome the issues, we introduce the ‘driller-

generator’ architecture in D-NARMAX-NN. Moreover, to maximize the utilization of information, we 

propose the ‘gate-weight’ concept and ‘swarm-based’ algorithm for training and optimizing the gate-

weight. 

4.2.1 The structure of the DeepNARMAX network 

The general structure of the proposed network is shown in Figure 15. There are four different novel 

layers in the hidden layers, which are linear transformation layer, driller layer, generator layer, and 

model detection layer, along with the input layer and the output layer, combining the proposed 

DeepNARMAX network. 

Initially, the system’s input and output signals are defined as the network’s input feature parameters. 

These parameters, upon entering the network, first undergo a linear transformation within the hidden 

layer. Given specific time delay hyperparameters, these input feature parameters are expanded into 

high-dimensional linear feature vectors. These vectors subsequently traverse through a driller layer, 

where a subset is chosen as inputs into the subsequent network layers. After this driller layer, the feature 

vector dimensionality is reduced before it serves as an input for a generator layer. In this layer, cross-

multiplication operations are performed on these feature vectors, resulting in outputs encompassing 

both original and cross-multiplied, newly generated features. 

It is noteworthy that the driller and generator layers are interdependent. The total count of drillers and 

generators is determined by , denoting the nonlinearity degree in polynomial NARMAX models, 

implying there will be l pairs or 2  individual driller-generator layers. Upon navigating through all 2

 layers, both drillers and generators, the linear features are inputted into a model detection layer. Here, 

FROLS algorithm selects optimal features from these inputs, constructing the ideal polynomial 

NARMAX model, the output for this specific network layer. 
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Figure 15 The scheme of DeepNARMAX. 

The detailed architecture and neurons are in the left part. Each individual-coloured square stands for the 

candidate model term. The light blue and dark blue squares in the left part are the description of drilling 

layer. The light blue squares mean blocking, while the rest allows the model term pass. The brief 

structure of D-NARMAX-NN is shown in the right part. 

Consider a multi input single output (MISO) system, where 
1 2, , ,[ . ].. T

n=u u u u  are the n-dimensional 

inputs signals, [ (1), (2),..., ( )] , 1,2,...,T

i i i iu u u T i n= =u  is the i-th input signal vector with T observations 

for each vector, [ (1), (2),..., ( )]Ty y y T=y  is the system output signal/vector. The objective of deep 

polynomial NARAMX is to find one or a group of appropriate models to reveal the system’s interaction 

and describe the system. In the following sections, the mathematical definition of the hidden layers will 

be defined. 

 
Figure 16 The detailed illustration of the proposed DeepNARMAX network framework 

4.2.1.1 Linear Transformation Layer 

To map the dynamical interaction between the system output and the observed information, we design 

the linear transformation layer, which can produce dynamical linear features based on the prior 

knowledge or end-users’ preferences. Supposing the system is a multi-input and single-output (MISO) 

system, there are several inputs: 1 2[ , ,..., ]T

nu u u u= , and single output: y , where 1, 1,2,...,i

mu i n =  

and 1my  . In D-NARMAX-NN, the system inputs and output would be redefined as the input sample 

of the network. Concretely, we adjust the input sample with time lags and expand the original features 

into higher dimensional linear features: 
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1 2 1 1 1 1[ , ,..., ] [ ( ), ( ),..., ( ),...,

( ), ( ),..., ( ),

( ),..., ( )]

T

u

n n n n u

T

y

p

y

x x x x u t u t d u t n

u t u t d u t n

y t d y t n

= = − −

− −

− −

 (4.7) 

where 
1[ ,..., ]T

px x x=  is the transformed linear features, and 1, 1,2,...,i

qx i p = ; 
1,..., ,n yd d d  are the 

starting time lags for the system inputs and output. Denote 
1max( ,..., , )max n yd d d d=  is the maximum 

starting time lags, while the length of the transformed linear features , 1,2,...,ix i p=  is maxl m d= − . 

4.2.1.2 Driller-generator Layer 

Driller To reduce the dimensionality of the transformed linear features, we take the idea of mask layer 

in the Transformer [193] and the dropout in the deep learning [233] and design the driller layer in our 

D-NARMAX-NN, which reduce the dimensionality of features and the computational complexity. As 

shown in Figure 16, there are L driller layers in the network. The inputs of each driller layer are the 

features of dimensional expansion, while the output of each driller layer is the set of features with 

dimensionality reduction. 

Let 1[ ,..., ]s slP p p =  is the input of the driller layer, where 1, 1,2,...,i

lp i s = . Without loss of 

generality, ip  can be linear or nonlinear features from the system inputs. Define the driller layer as: 

 
1 1 2 2[ ( ), ( ),..., ( )]v v v v v v v

s sDr dr dr dr  =  (4.8) 

 
[0,0,...,0] ,

( )
[1,1,...,1] ,

T v

i thv v

i i T v

i th

dr
 


 


= 






 (4.9) 

where v  is the v-th layer in the network; , 1,2,...,v

idr i s=  is the i-th driller in the v-th driller layer; v

i  is 

denoted as the gate weight of the i-th driller, which controls the values of v

idr  (zero vector or all-ones 

vector); th  is the threshold value of the gate weight. If the v

i  is smaller than the threshold th , then 

the driller is zero vector; otherwise, the driller is all-ones vector. 

Denote 
1 2

[ , ,..., ]
r

T

ll l lP p p p=  as the output of the driller layer, where 
1, 1,2,...,

j j r

l

lp l l =  and rl  

equals the number of all-ones vector in the driller layer. As shown in Figure 17, the output of the driller 

layer is defined as: 

 v

lP P Dr=  (4.10) 

where  denotes the Hadamard product. Clearly, there are less dimensionality of lP  compared with 

P , leading to reduction of the dimension of the feature vector and computation complexity. The values 

of drillers in the drilling layer are controlled by the proposed gate weight v

i , which will be optimized 

based on the modelling performance of each iteration, as shown in Figure 17. The detailed optimization 

algorithm is present in the next section. 

Generator The driller layer can significantly reduce the complexity of the features and select the 

relative important features. However, we need to increase the nonlinearity information of the features 

for modelling and prediction. Thus, we introduce the ‘generator’ layer directly behind the driller layer 

to generate features with higher nonlinear degree . 

The input of the generator layer is the output of the driller layer, which is lP  as defined above. Define 

1 2 1
[ , ,..., , ,..., ]

r Rr

T

G G GG G GP p p p p p
+

=  as the output of the generator layer, where 
1, 1,2,...,

iG

lp i R =  is the 

generated complex feature. In the generator layer, there are two parts of the complex features. For the 

first part, we keep all inputs of the generator layer as the output as shown in Figure 17 which is: 
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1 2

[ , ,..., ,...] [ ,......]
r

r

T T

G l

l

GGGP p p p P= =  (4.11) 

The second part of the output of generator layer is the nonlinear mapping of the input features: 

 
1 11[ , ,..., ] [ , ( ),..., ( )]

r R r R

T T

G l G G l G GR rP P p p P F p F p
+ + −= =  (4.12) 

where ( , 1 .) ,..iF i R r= −  are some nonlinear mapping forms. There are plenty of nonlinear mapping 

functions as discussed above. Here we implement the polynomial form in the generator layer, meaning 

)(iF   are cross product form or square product form such as 1

2

lp  or 1 3l lp p  shown in Figure 17. Thus, the 

output of the generator layer in the DeepNARMAX network is 

 
1 1 1 2 1 1

2 2[ , ,..., ] [ , ,..., , ,..., ,..., ]
r R r r r rl l

T T

G l G G l l l l l llP P p p P p p p p p p p p
+ −

= =  (4.13) 

 

Figure 17 Driller-Generator Layer. 

The bottom row represents the inputs of the driller-generator layer. The lower row in the middle box 

denotes the driller, where the light blue cubes stand for the blocking operation and the navy cubes 

suggest the passing operation. With the passing operation, less features (third last row) are selected 

from the input of the layer. The top box indicates the generator, which combine the selected features 

from driller and the generated features by cross multiplication. 

4.2.1.3 Model detection layer 

In the model detection layer, the FROLS algorithm is utilized to select the most significant feature 

vectors of the output of the generator layer and construct the most appropriate NARMAX model with 

the selected features. The output of the generator layer is defined by equation (4.13). Considering the 

FROLS algorithm, Gp  is the candidate set containing all candidate features to describe the system. Then 

as discussed in section 3.2, the FROLS algorithm will select 0M  features among the set Gp  and 

calculate the related parameters. 

4.2.1.4 Hyperparameter optimization  

In the comprehensive domain of deep learning, the hyperparameter optimization is essential as it 

determines the learning structure and speed of the model. Some typical hyperparameter, like the number 

of layers and neurons, the activation function, the batch size, epochs, dropout rate, etc. The optimal 

number of layers and neurons is a critical yet complex task. The selection significantly influences the 

model’s capacity to effectively learn from the data and generate precise predictions. To deal with the 

problem, there are several methods to exploring the number of layers and neurons in deep learning, like 

the grid search [234], random search [235], evolutionary algorithm [236], and Bayesian optimization 

[237]. 
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In the proposed DeepNARMAX architecture, hyperparameter optimization emerges as a critical factor 

for comprehensive system identification and probabilistic prediction. The model’s activation function 

is defined as a set of polynomial functions, rendering the determination of the number of layers and 

neurons per layer crucial for overall model performance. Conforming to the fundamental architecture 

of input-hidden-output, it is conveniently straightforward to determine the number of neurons in both 

the input and output layers. These are inherently dictated by the system. However, ascertaining the 

optimal number of hidden layers and neurons within each poses a more complex problem. To address 

this, we implement a random search methodology for its effective optimization within the scope of this 

thesis. 

Suppose the unrevealed system is a MISO system, with m  inputs.Also assume that the actual model of 

the system is unknown.   To obtain satisfactory model approximations of the system, we normally an 

appropriate nonlinear degree maxd  and the maximum time lags maxn  for the input and output signal. 

According to Eq (3.1), the time lags for input signal and output signal are usually different in the 

NARMAX model. However, in the proposed DeepNARMAX, we define the initial maximum time lags 

for input, output and error signals as maxn . 

For a DeepNARMAX model structure, with the highest nonlinear degree maxd , the maximum number 

of hidden layers maxL  can be defined as: 

 2 2max maxL d= +  (4.14) 

Note that there are always a linear transformation layer and a model detection layer. The number of 

driller-generator layers is determined by the highest nonlinear degree . Similarly, we can derive the 

maximum number of neurons in the hidden layers based on the initial parameters maxn  and m , with the 

driller rate p . Once the maximum number of hidden layers and neurons determined from the initial 

parameters, the random search can then be applied to optimize the hyperparameters. 

4.2.2 Swarm-based Gate weight optimizing mechanism 

To obtain the most appropriate model through the proposed D-NARMAX-NN, it is desirable to let the 

related features more obvious and the irrelevant features less remarkable. Therefore, in the proposed D-

NARMAX-NN, the optimal model will be trained through iterations. Consider the model from D-

NARMAX-NN in  -th iteration as: 

 
1

ˆ ( , ) ( | )
I

i i i i

i

y x x exc   
=

=  +  (4.15) 
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where ix  is the selected features in the identified model; |i ix  is the gate weight of ix  in the  th 

iteration; ic  is the parameters related to the selected features; I is the total number of terms in the model; 

ˆ| |e y y= −  is the error between modelling results and observed output. Denote the loss function of 

identified model in  -th iteration ( , )y x


  as: 

 2 2

2 2
ˆ| , ) || | , ) )|| || ( | ||( ( i i i iL x x y x x y c xx y     = − =  −  (4.17) 

The purpose of the training process is to minimize the loss function: 

 (m |n , )i
DLx X

L x x 


 (4.18) 

Which is equal to find the most related model terms which controlled by the gate weight: 
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[0,1]

( | , )argmax
i

i i iL x x






 (4.19) 

In this thesis, we propose swarm-based gate weight optimizing algorithm to update the gate weight, 

optimize the model structure and identify the most fitted model for the system. Suppose ( 1)L  +  as the loss 

function of the identified model 
1 1 1 1( , ) |ˆ ( )i i i ix cy x x     + + + +=  in 1 + -th iteration, while L  in the 

 -th iteration. 

4.2.2.1 Convergence after iteration: 1L L +   

In this situation, the 1 + -th identified model 1 1 )ˆ ( , xy + +  performs better than the  -th model 

)ˆ ( ,y x  , meaning the identified model terms in model 1 1 )ˆ ( , xy + +  are more effective than those in 

model )ˆ ( ,y x  . The model terms in 1 1 )ˆ ( , xy + +  will be kept in the dictionary, while the related gate 

weights can be updated as follows: 

 1 1 [1,2]| | ,i i ii x x    + +    (4.20) 

4.2.2.2 Divergence after iteration: 1L L +   

In this situation, the identified model 1 1 )ˆ ( , xy + +  performs not good as )ˆ ( ,y x  . However, some 

model terms in model 1 1 )ˆ ( , xy + +  might have critical influence in the prediction and system 

modelling. Thus, the related gate weights are updated as follows: 

 1 1 (0,1)| | ,i i i ix x    + +    (4.21) 

4.2.2.3 Equality after iteration: 1L L + =  

Though model 1 1 )ˆ ( , xy + +  has the same performance compared with model )ˆ ( ,y x  , model 

structures of two models can be either totally same or partly same. Despite the difference of two models, 

all model terms will be recorded in the candidate dictionary. The updating strategy of the related gate 

weights differ due to the similarity of model structure. 

The model structures of two identified models in two iterations are totally same. 

If 1 1 )ˆ ( , xy + +  and )ˆ ( ,y x   share the same model structure, then the model terms identified in 
1 1 )ˆ ( , xy + +  or )ˆ ( ,y x   are more important compared with other options. So, the importance of model 

terms can be reflected by the related gate weights. In this thesis, we propose a swarm-based gate weight 

algorithm to optimize the values of the gate weights. 

The swarm-based gate weight updating algorithm The gate weights are the key parameters to control 

the selection of the features shown in equation (4.14). With larger gate weights, the related features will 

have more opportunity to pass the driller layer. To fully investigate the effectiveness of the features, the 

swarm-based gate weight updating algorithm is proposed to optimize the values. 

Define |i ixP  is as the largest gate weight of model term ix  in the training period, 1 +  is the prediction 

error in 1 + -th iteration. For the gate weight of each model terms shown in the identified model, the 

updating strategy is as follows: 

 1 1 1| |i i i ix x v   + + ++  (4.22) 

where (0,1)  ; v  is the updating velocity of the gate weight, which is defined as: 

 1 1 1 1

1 | 2( ( )0.5 | ) 0.5 |
ix i i i iv xv xP    

     + + + ++ − + −       (4.23) 

where (0,1]  , 1 2 (0.1],   .  
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The model structures of two identified models in two iterations are partly same. 

Model terms in 1 1 )ˆ ( , xy + +  can be divided into two group: model terms within )ˆ ( ,y x   and model 

terms outside of )ˆ ( ,y x  . For model terms outside of )ˆ ( ,y x  , the related gate weights can be 

updated by equation (4.22), while for the other group the related gate weights can be updated by the 

proposed swarm-based gate weight updating algorithm. 

4.3 Case study 

In this section, experimental results are presented to demonstrate the performance of the proposed 

DeepNARMAX network. Firstly, we have designed three simulation models, including various types 

such as SISO and MISO systems, to verify the feasibility and stability of the proposed network. This is 

done to demonstrate that the network has the capability to identify real systems and provide accurate 

interpretive models. Secondly, this thesis selects two actual systems – ETT and weather - to validate 

the performance of our network in handling real unknown dynamic complex systems. Simultaneously, 

it compares with state-of-the-art methods like traditional NARAMX, LSTM, Informer, Reformer etc., 

illustrating its effectiveness and superiority. 

4.3.1 Simulating case study 

In the following simulating cases, 6 simulated models are used to measure the performance of the 

proposed DeepNARMAX network. The systems vary from SISO system to MISO system with different 

inputs, and noises. The data points for each system are all set to be 500, while 80% of the data points is 

set to be the training set, while the rest 20% is set to be the testing set. To avoid overfitting, in the 

training set, the k-folder cross validation is utilized. Moreover, the classic polynomial NARMAX model 

is used to compare the performance of the proposed DeepNARMAX network. For DeepNARMAX, 

each experiment will run 1000 iterations to gain the best model. 

4.3.1.1 Simulating system 1 

Consider a single input single output model, with a while noise single as 

 ( 3) 0.5 ( 2) 0.25 ( 2) ( 3) 0.01 ( )( ) 0.6 ( 1) 0.2 ( 2)z tt zz t u t t u t u u t e t= − −  − + − −− −− − +  (4.24) 

 0.1y z = +  (4.25) 

where ( ) ~ [ 1,1]u t U − , ( ) ~ (0,0.1)e t N , and ~ (0,1)N . Define the 3=  and the starting of the time 

delay 1y ud d= =  and 0ed = , the maximum time delay 5y u en n n= = =  for DeepNARMAX network 

and classic NARMAX model. 

Two transparent identified models by DeepNARMAX and classic NARMAX are listed in Table 3, 

where the model terms are the exact same with those in the system (4.24), while the parameters of two 

models are slightly different with those in the system (4.24). Meanwhile, two models by 

DeepNARMAX and classic NARMAX are identical including the model terms and the related 

parameters. The comparison between the observation and one-step-ahead predictions of two models is 

shown in Figure 18. Due to two models are exactly identical, thus, two curves representing the 

predictions by two models completely overlap. The statistical results mean square error (MSE) and 

mean absolute error (MAE) are listed in Table 4. Similarly, the MSEs and MAEs of two models over 

the testing set are same. 

Table 3 Comparison of the identified models by DeepNARMAX network and classic NARMAX for case 1 

Index DeepNARMAX Classic polynomial NARMAX System 
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Model Term 
Model 

Parameter 
Model Term 

Model 

Parameter 
Model Term 

Model 

Parameter 

1 ( 2)u t −  0.528 ( )2u t −  0.528 ( 2)u t −  0.5 

2 ( )1y t −  -0.534 ( )1y t −  -0.534 ( )1y t −  -0.6 

3 ( ) ( )2 3u t u t− −  -0.221 ( ) ( )2 3u t u t− −  -0.221 ( ) ( )2 3u t u t− −  -0.25 

4 ( ) ( )2 3u t y t− −  -0.205 ( ) ( )2 3u t y t− −  -0.205 ( ) ( )2 3u t y t− −  -0.2 

 
Figure 18 Comparison in the testing set of two models by DeepNARMAX and classic NARMAX and the 

observation for case 1 

Table 4 Statistical performance over the testing period of two models for case 1 

 MSE MAE 

DeepNARMAX 0.014818 0.096537 

Classic NARMAX 0.014818 0.096537 

The experiment 1 highlighted that for SISO systems, DeepNARMAX equates NARMAX in accurately 

pinpointing factors that influence the system and constructing precise models for their description. 

While the presence of noise induces some degree of discrepancy between the constructed model 

parameters and the actual parameters, leading to certain deviation between both models and the test 

system, results from Table 4 illustrate that these discrepancies do not compromise the models’ accuracy 

and stability. 

4.3.1.2 Simulating system 2 

Consider a MISO model, with a while noise single as 

 1 4 2

3 4 1 4 3

( ) 0.6 ( 1) 0.5 ( 1) ( 2) 0.2 ( 3) ( 2)

0.25 ( 1) ( 2) 0.4 ( 1) ( 2) 0.15 ( 2) ( 4) 0.01 ( )

y t y t u t u t u t y t

u t u t u t y t u t u t e t

= − − + − − − − −

− − − + − − − − − +
 (4.26) 

where 1( ) ~ [ 1,1]u t U − , 2 ( ) ~ (0,1)u t N , 3 ( ) ~ [0.1]u t U , and 4 ( ) ~ (0.5,1)u t N , ( ) ~ (0,1)e t N . Define 4=  

and the starting of the time delay 1y ud d= =  and 0ed = , the maximum time delay 5y u en n n= = =  for 

DeepNARMAX network and classic NARMAX model. 

Two transparent identified models by DeepNARMAX and classic NARMAX are listed in Table 5. 

From the Table 5, the model terms selected by DeepNARMAX and classic NARMAX modelling are 

the same as the simulated system (4.25), while the parameters of two models are quite similar to those 

of system (4.25). Since the two models are completely consistent with the real system, therefore, the 

predicted values of the model on the test set are almost identical to the observed values, as shown in the 
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Figure 19. 

Table 5 Comparison of the identified models by DeepNARMAX network and classic NARMAX for case 2 

 
DeepNARMAX Classic polynomial NARMAX System 

Model Term 
Model 

Parameter 
Model Term 

Model 

Parameter 
Model Term 

Model 

Parameter 

1 ( ) ( )1 41 2u t u t− −  0.500 ( ) ( )1 41 2u t u t− −  0.500 ( ) ( )1 41 2u t u t− −  0.5 

2 ( )1y t −  -0.599 ( )1y t −  -0.599 ( )1y t −  -0.6 

3 ( ) ( )3 41 2u t u t− −  -0.250 ( ) ( )3 41 2u t u t− −  -0.250 ( ) ( )3 41 2u t u t− −  -0.25 

4 ( ) ( )1 1 2u t y t− −  0.400 ( ) ( )1 1 2u t y t− −  0.400 ( ) ( )1 1 2u t y t− −  0.4 

5 ( ) ( )2 3 2u t y t− −  -0.201 ( ) ( )2 3 2u t y t− −  -0.201 ( ) ( )2 3 2u t y t− −  -0.2 

6 ( ) ( )4 32 4u t u t− −  -0.150 ( ) ( )4 32 4u t u t− −  -0.150 ( ) ( )4 32 4u t u t− −  -0.15 

 
Figure 19 Comparison in the testing set of two models by DeepNARMAX and classic NARMAX and the 

observation for case 2 

Experiment 2 underscored that, for MISO systems, DeepNARMAX aligns with NARMAX in terms of 

accurately identifying influential factors in the system and creating precise models for those phenomena. 

Despite the noise-induced discrepancies between the actual parameters and those derived in the 

models—which lead to certain deviations between both models and the test system—the results 

presented in Table 6 suggest that these divergences do not undermine the accuracy and stability of the 

models. 

Table 6 Statistical performance over the testing period of two models for case 2 

 MSE MAE 

DeepNARMAX 57.5 10−
 

0.0069687 

Classic NARMAX 57.5 10−
 

0.0069687 

4.3.1.3 Simulating system 3 

Consider a MISO model, with a while noise single as 

 
2 2 2

1 4 2 3 4

1 4 3

( ) 0.6 ( 1) 0.5 ( 20) ( 2) 0.12 ( 3) ( 2) 0.25 ( 1) ( 2)

0.4 ( 1) ( 2) 0.5 ( 2) ( 30) 0.01 ( )

y t y t u t u t u t y t u t u t

u t y t u t u t e t

= − − + − − − − − − − −

+ − − − − − +
 (4.27) 

where 1( ) ~ [ 1,1]u t U − , 2 ( ) ~ (0,1)u t N , 3 ( ) ~ [0.1]u t U , and 4 ( ) ~ (0.5,1)u t N , ( ) ~ (0,1)e t N . Define 4=  

and the starting of the time delay 1y ud d= =  and 0ed = , the maximum time delay 5y u en n n= = =  for 

DeepNARMAX network and classic NARMAX model. 
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Table 7 Comparison of the identified models by DeepNARMAX network and classic NARMAX for case 3 

 

DeepNARMAX Classic polynomial NARMAX System 

Model Term 
Model 

Parameter 
Model Term 

Model 

Parameter 
Model Term 

Model 

Paramete

r 

1 ( 1)y t −  -0.599 X X ( 1)y t −  0.5 

2 
2

1 4( 20) ( 2)u t u t− −  0.498 X X 
2

1 4( 20) ( 2)u t u t− −  -0.6 

3 
2 2

2( 3) ( 2)u t y t− −  -0.119 X X 
2 2

2( 3) ( 2)u t y t− −  -0.25 

4 3 4( 1) ( 2)u t u t− −  -0.25 X X 3 4( 1) ( 2)u t u t− −  0.4 

5 1( 1) ( 2)u t y t− −  0.402 X X 1( 1) ( 2)u t y t− −  -0.2 

6 4 3( 2) ( 30)u t u t− −  -0.503 X X 4 3( 2) ( 30)u t u t− −  -0.15 

4.3.2 ETT system 

4.3.2.1 Introduction 

The Electricity Transformer Temperature (ETT) serves as a pivotal indicator in long-term deployment 

of electric power. Power distribution, defined as the allocation of electricity to diverse areas based on 

sequential usage, incorporates a key challenge, namely, predicting subsequent area-specific demands. 

These demands fluctuate depending on varying factors such as weekdays, holidays, seasons, weather 

conditions, and temperatures, among others. Nevertheless, to date, no existing method enables long-

term forecasting relying on extensive real-world data with elevated precision. Any inaccurate prediction 

risks damaging the electrical transformer. Consequently, given the absence of a proficient forecasting 

method, managers currently base decisions on empirical values that substantially exceed actual 

demands, leading to unnecessary power wastage and equipment depreciation. On the contrary, oil 

temperatures serve as a reflection of the electricity transformer’s condition. An efficacious strategy 

involves predicting the safety of the oil temperature in electrical transformers to prevent wastage. 

To investigate the granularity in the Long Short-Term Forecasting (LSTF) problem, discrete datasets, 

designated as {ETTh1, ETTh2}, are utilized at a one-hour level. Each data point comprises seven 

features: the predictive value, ‘oil temperature’ and six distinct types of power load features. The data 

is partitioned as follows: 12 months for training, 4 months for validation, and 4 months for testing. 

4.3.2.2 Experiments settings 

A grid search is conducted to optimize the hyperparameters of the DeepNARMAX. For , it is chosen 

from {3, 4,5,6} , meaning the number of driller-generator layers is chosen from {6,8,10,12} , while the 

starting time delay of the output 
yd  is chosen from {24,48,168,336,720} , while the starting time delay 

of the input ud  is set from 1. Also, the maximum time delay for the output 
yn  and the input un  is set 

to be 1000. For the other hyperparameter settings, they are tunned following the [238]. Each dataset is 

standardized to have a zero mean. In the context of the Long Short-Term Forecasting (LSTF) settings, 

the size of the prediction window, denoted as 
yL , is incrementally expanded to include {24, 48,168, 

336, 720} for the datasets {ETTh1, ETTh2}. The method of Prophet employs a series-to-point 

prediction setting, whilst the RNN-based approaches conduct dynamic decoding by left shifting on the 

prediction windows. 

It is noticed that for the DeepNARMAX models, the starting time delay equals to the prediction 

windows in the LSTF or RNN-based algorithm. Suppose the starting time delay 
yd  of DeepNARMAX 

model is 24, thus the identified model should be represented as 
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)

ˆ( ) ( ( 24), ( 25),..., ( ),

( 1),..., ( ), ( 1),..., ( )) (

y

u e

t F y t y t y t n

u t u t n e t e t n e t

y = − − −

− − − − +
 (4.28) 

Thus, we have 

 
.

ˆ

.

( ( ( 23),..., ( 1), ( ),..., ( 1),...) ( )

( ( 22),..., ( 2), ( 1),. , ( 2),...) ( 2)

...

( ( ),..., ( 24), ( 23),..., ( 24),...) ( 244 )

1)

ˆ( 2)

ˆ( 2 )

y u

y u

y u

F y t y t n u t u t n e t

F y t y t n u t u t n e t

F y t y t n u t u t n e

y

t

y t

t

y t

− − + − + +


− − + + − + + +




+ =

+ =

+ = − + + − + + +

 (4.29) 

For each model, the choice of the model length is defined by the MSE in the validating set. To verify 

the performance of the methods, MSE and MAE of the prediction window are calculated.  

4.3.2.3 Results of predictions 

The statistical results are listed in Table 5. From the table, the proposed model, DeepNARMAX, 

showcases a considerably enhanced inference performance across all datasets. Moreover, the error rate 

associated with its predictions increases at a gradual and moderate rate as the predictive horizon expands. 

This underscores the success of the DeepNARMAX model in effectively broadening the prediction 

capacity. Besides, the DeepNARMAX model shows improvement of the forecast compared to the 

Informer, a transformer based deep neural network with self-attention mechanism, by a MSE reduction 

of 55.2% (at 24), 15.2% (at 48), 9.7% (at 168), 2.1% (at 336), and 0.6% (at 720). From the reduction of 

MSE, the proposed DeepNARMAX has great prediction ability in the short-time prediction, like 

24yL = , while with the increasing of the prediction window, the performance of the DeepNARMAX 

model gradually aligns with that of Informer. That is, in terms of long-term prediction performance, 

DeepNARMAX does not show a significant improvement compared to self-attention based deep neural 

networks like Informer, but its prediction accuracy remains excellent. 

Also, the DeepNARMAX model demonstrates remarkably improved results compared to the LSTM 

variant of recurrent neural networks (RNNs). With a MSE reduction of 72.4 % (at 24), 47.5% (at 48), 

46.2% (at 168), 62.1% (at 336), and 62.5% (at 720), our method suggests that the DeepNARMAX 

modelling has relative better forecast ability than the RNN-based models. Whether it’s short-term 

forecasting or long-term forecasting, DeepNARMAX can achieve more accurate predictions. 

Meanwhile, on average, the proposed DeepNARMAX method exhibits better performance compared 

to DeepAR, ARIMA, and Prophet in terms of MSE, achieving reductions 74.6% (at 24), 49.1% (at 48), 

65.6% (at 168), 71.9% (at 336), and 73.6% (at 720). 

  
(a) 24yL =  for ETTh1 (b) 24yL =  for ETTh2 
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(c) 48yL =  for ETTh1 (d) 48yL =  for ETTh2 

  
(e) 168yL =  for ETTh1 (f) 168yL =  for ETTh2 

  
(g) 336yL =  for ETTh1 (h) 336yL =  for ETTh2 
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(i) 720yL =  for ETTh1 (j) 720yL =  for ETTh2 

Figure 20 Comparison between observation and prediction by DeepNARMAX model in the prediction windows 

for ETT 

The comparison between observation and prediction over each prediction window of proposed 

DeepNARMAX model over two datasets is shown in Figure 20, where the blue lines represent the 

prediction, and the red lines indicate the observation. The comparison results not only indicate that the 

DeepNARMAX model can accurately obtain system predictions, but also track changes in the system’s 

trend. That is to say, on a local level, the DeepNARMAX model can keep up with rapid shifts in the 

system, thereby validating its reliability. 

The performance comparison between the DeepNARMAX model and other deep network models is 

intuitively illustrated in Figure 21 using the ETTh1 dataset. We selected a prediction window of 168 

for the comparison. Within this window, the solid blue line depicts observed values, and the solid red 

line illustrates the values predicted by DeepNARMAX. The series of dotted lines correspond to 

predictions from other models including Informer, LogTrans, LSTMa, DeepAR, ARIMA, Prophet, and 

Reformer within the same predictive window. From the figure, it’s evident that the predictions from 

DeepNARMAX (red solid line) exhibit a strong alignment with observed trends (blue solid line) while 

maintaining relatively small errors. A comparably high level of accuracy is also visible in the 

predictions from Informer, denoted by light red dotted lines, which track observed trends closely. 

However, significant discrepancies are noted between the predictions from Prophet and Reformer, and 

actual observations. As the forecast steps increase, the difference between predicted and actual values 

widens, indicating a weaker long-term forecasting ability for these models in contrast to their short-

term predictions. Contrarily, the DeepNARMAX model, along with models like Informer, showcase 

remarkable proficiency in both short and long-term forecasting. 

 
Figure 21 The comparison between observation and predictions of all models over the prediction window with 

168 for ETT 

4.3.2.3 Results of DeepNARMAX models 

Compared to other deep network models, the unique advantage of DeepNARMAX is its interpretability. 
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That is, it relies on the efficient interpretability of NARMAX modelling, and the structure and 

parameters of the model are very clear. This provides extremely effective information for system 

analysis and research. Table 9 and Table 9 list the top 5 effective model items and their parameters in 

the DeepNARMAX model identified based on different prediction windows for ETTh1 and ETTh2 

datasets. 

Table 9 highlights that DeepNARMAX, while inheriting the interpretability of the NARMAX model, 

provides a lucid model structure with corresponding parameters for every model term. These terms 

unambiguously present the relationship and consequential influence between the system’s input and 

output signals. For instance, in a model based on the ETTh1 dataset, a 24-point prediction window can 

be reformatted into a 24-step-ahead predictive problem within DeepNARMAX, implying the current 

system response could be impacted by the response from 24 steps earlier. Table 9 enumerates five 

crucial terms of our model. A conclusion drawn from this underline the considerable influence of 

( 28)y t −  on the predictions made 24 steps ahead, along with meaningful impacts of all six input signals 

on the ETT’s output – exceptionally notable being the second feature – ‘high useless load’. 

DeepNARMAX’s clear structure and robust feature analysis make it adept not only at precise short and 

long-term sequence forecasting, but also at revealing esoteric information about systems’ interactions, 

especially the effects of input/output signals on them. Even if discrepancies exist between forecast 

accuracy and actual application, interpretable models offer remarkably insightful information. 

4.3.3 weather system 

4.3.3.1 Introduction 

Local Climatological Data (LCD) summaries furnish an overview of climatic variables for a single 

weather station over a distinct month in the US. These summaries, derived from surface observations 

conducted manually and via automated systems such as AWOS and ASOS, utilize source data from the 

Integrated Surface Data (ISD) dataset curated by the National Centers for Environmental Information. 

These summaries encompass numerous locations globally, offering measurements of multiple climatic 

variables. These include hourly, daily, and monthly recordings of temperature, dew point, humidity, 

winds, sky condition, weather type, atmospheric pressure, and more . 

4.3.3.2 Experiment settings 

The dataset encompasses localized climatological data from approximately 1,600 sites within the U.S., 

covering a span of four years from 2010 to 2013. Data points are logged every hour, each comprising 

12 features including the predictive feature ‘wet bulb’ and an additional 11 climate/weather-related 

features. The breakdown of the data into training, validation, and testing sets is conducted over periods 

of 28, 10, and 10 months respectively. Similarly, to verify the performance of the methods, MSE and 

MAE of the prediction window are calculated.  

A grid search is executed to optimize the hyperparameters of the DeepNARMAX. The nonlinearity, 

denoted as , is chosen from the range{3, 4,5,6} , implying the selection of driller-generator layers from 

the set {6,8,10,12} . The initial time delay of the output, denoted as 
yd  is chosen from the set 

{24,48,168,336,720} , while the initial time delay for the input ud  is set at 1. Both the maximum time 

delay for the output 
yn  and the input un  is set at 500 steps. The tuning of other hyperparameters is 

guided by [238]. Each dataset is standardized to have a zero mean. Each dataset was standardized to 

have a zero mean. Within the scope of LSTF settings, the prediction window size, denoted as 
yL , is 

incrementally expanded to include {24, 48,168, 336, 720} for the dataset. The method of Prophet 

employs a series-to-point prediction setting, whilst the RNN-based approaches conduct dynamic 

decoding by left shifting on the prediction windows. 
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4.3.3.3 Results of the predictions 

The statistical results are listed in Table 11. The table illustrates that the proposed DeepNARMAX 

model exhibits significantly improved inference performance across all datasets. Additionally, its 

associated prediction error rate presents a gradual and moderate uptrend as the prediction horizon 

extends, underscoring DeepNARMAX’s successful expansion of its predictive capacity. 

DeepNARMAX significantly surpasses the Informer model by exhibiting a MSE reduction of 13% (at 

24), 13.5% (at 48), 16.4% (at 168), 19.6% (at 336), and 20% (at 720). This considerable MSE reduction 

emphasizes DeepNARMAX’s exceptional ability to make accurate short-term predictions. As the 

prediction window expands, the performance of DeepNARMAX gradually converges with that of the 

Informer model. Thus, while DeepNARMAX may not demonstrate significant improvements in long-

term prediction compared to self-attention-based deep neural networks, its predictive accuracy remains 

commendable. 

Further, DeepNARMAX outperforms LSTM. It presents substantial MSE reductions of 17.6% (at 24), 

18.9% (at 48), 37.5% (at 168), 45.6% (at 336), and 71% (at 720), implying that DeepNARMAX 

modelling provides relatively better forecasting abilities than RNN-based models. This holds true for 

both short and long-term forecasts where DeepNARMAX consistently achieves more accurate 

predictions. Additionally, DeepNARMAX consistently outperforms DeepAR, ARIMA, and Prophet in 

terms of MSE, achieving reductions of 43.5% (at 24), 44.4% (at 48), 58.7% (at 168), 70.4% (at 336), 

and 73.2% (at 720) on average. The value of MSE indicates that the DeepNARMAX model, compared 

to the DeepAR, ARIMA and Prophet models, possesses both short-term and long-term forecasting 

capabilities. The aforementioned three models are reliable in short-term forecasting but perform poorly 

in long-term predictions. 

  
a) 24yL =  b) 48yL =  

  
c) 168yL =  336yL =  
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Figure 22 Comparison between observation and prediction by DeepNARMAX model in the prediction windows 

for weather system 

Figure 22 portrays a comparison of observations and predictions for the proposed DeepNARMAX 

model across the weather dataset, where blue lines represent predictions and red lines denote 

observations. The comparison substantiates that the DeepNARMAX model can not only generate 

accurate system predictions but also effectively track changes in system trends. In other words, on a 

microscale, the DeepNARMAX model efficiently manages rapid system shifts, thereby demonstrating 

its reliability. 

4.3.3.4 Results of the DeepNARMAX models 

Table 9 emphasizes that DeepNARMAX, inheriting the interpretability of the NARMAX model, offers 

a transparent model structure paired with corresponding parameters for each model term. Each term 

unequivocally delineates the relationship and resulting influence between the system’s input and output 

signals. For instance, when considering a model based on the weather dataset, a 48-point prediction 

window can be translated into a 48-step-ahead predictive challenge within DeepNARMAX. This 

suggests that the current system response could be affected by the response registered 48 steps prior, 

where ( 25)y t −  is significant to the current system response, with 
4u  and 

5u , which are wind speed 

and wind direction. 
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Table 8 Top 5 model terms in the models for ETTh1 with different prediction window 

 ( ) ( ( 24),...)y t F y t= −  ( ) ( ( 48),...)y t F y t= −  ( ) ( ( 168),...)y t F y t= −  ( ) ( ( 336),...)y t F y t= −  ( ) ( ( 24),...)y t F y t= −  

 Model term theta Model term theta Model term theta Model term theta Model term theta 

1 ( ) ( ) ( )
2

228 42 26y t u t y t− − −  0.055 ( ) ( ) ( )2 249 2 7y t u t u t− − −  0.180 ( )
2

172y t −  0.323 ( )340y t −
 

0.67929

8 
( )735y t −

 

0.24

8 

2 ( ) ( )
2 2

328 53y t u t− −  0.077 ( ) ( )
2

152 23y t u t− −  0.197 ( ) ( )
2

2 44 71u t u t− −  0.095 ( ) ( )3 13 350u t y t− −
 

0.12759

8 
( ) ( )1 526 65u t u t− −

 

0.07

1 

3 ( ) ( ) ( )
2

2 628 1 41y t u t u t− − −  0.083 ( ) ( ) ( )2 231 80 49t u tu y t− − −
 0.136 ( ) ( ) ( )4 276 26 179u t u t y t− − −  0.103 ( )

2

1 25u t −  

0.00937

8 
( ) ( )3 11 733u t y t− −

 

0.22

0 

4 ( ) ( ) ( ) ( )5 228 28 42 26t u t u t ty y− − − −  
-

0.067 
( ) ( ) ( )5 149 37 92y t u t u t− − −

 0.134 ( ) ( ) ( )
2

4 376 172 43u t y t u t− − −  

-

0.111 
( ) ( )4 29 89u t u t− −

 -0.06196 4 ( 34)u t −  
0.18

0 

5 ( ) ( )4 188 97u t u t− −
 0.127 ( ) ( ) ( ) ( )2 5 131 49 47 86u t y t u t u t− − − −

 

-

0.077 
( ) ( )

2

4 690 97u t u t− −  0.024 ( ) ( )6 61 340u t y t− −
 

0.13595

1 
( ) ( )3 35 77u t u t− −

 

0.07

4 

 

Table 9 Top 5 model terms in the models for ETTh2 with different prediction window 

 

( ) ( ( 24),...)y t F y t= −  ( ) ( ( 48),...)y t F y t= −  ( ) ( ( 168),...)y t F y t= −  ( ) ( ( 336),...)y t F y t= −  ( ) ( ( 24),...)y t F y t= −  
 

Model term theta Model term theta Model term theta Model term theta Model term theta 

1 ( )42y t −
 

0.879 ( )63y t −
 

0.505 ( ) ( ) ( )5 277 162 189u t u t y t− − −
 

0.109 ( )4 22u t −
 

0.109 ( )724y t −
 

0.699 

2 ( ) ( )
2

27 29y t y t− −  

0.210 ( ) ( )
2

548 21y t u t− −  

0.159 ( ) ( ) ( )5 5174 36 60y t u t u t− − −
 

0.321 ( )2 21u t −
 

0.321 ( )6 27u t −
 

-0.300 

3 ( ) ( ) ( )40 27 29y t y t y t− − −
 

-0.593 ( ) ( ) ( )48 59 70y t y t y t− − −  0.127 ( ) ( ) ( ) ( )6 5 545 174 36 60u t y t u t u t− − − −  0.034 ( )
2

5 7u t −  

0.034 ( ) ( )6 327 45u t u t− −
 

0.089 

4 ( ) ( )
2

37 25y t y t− −  

0.099 ( ) ( ) ( )6 51 24 48u t u t y t− − −  0.069 ( )3 98u t −
 

0.206 ( ) ( )4 435 45u t u t− −
 

0.206 ( )4 92u t −
 

0.225 

5 ( ) ( )2 14 27u t y t− −
 

0.103 ( ) ( ) ( ) ( )563 48 21 61y t y t u t y t− − − −
 

-0.096 ( ) ( ) ( ) ( )5 2 577 97 150 189u t u t u t y t− − − −
 

0.120 ( ) ( )1 537 46u t u t− −
 

0.120 ( )
2

6 27u t −  

-0.016 

 

Table 10 Top 5 model terms in the models for weather with different prediction window 

 ( ) ( ( 24),...)y t F y t= −  ( ) ( ( 48),...)y t F y t= −  ( ) ( ( 168),...)y t F y t= −  ( ) ( ( 336),...)y t F y t= −  ( ) ( ( 24),...)y t F y t= −  

 Model term theta Model term theta Model term theta Model term theta Model term theta 
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1 ( )3 48u t −
 0.571 ( ) ( ) ( )4 4 316 5 47u t u t u t− − −

 0.239 ( )169y t −
 0.479 ( )6 1u t −

 0.420 ( )3 21u t −  0.782 

2 ( ) ( ) ( )10 6 213 1 13u t u t u t− − −
 0.134 ( ) ( )

2

925 49y t u t− −  0.128 ( ) ( ) ( )11 6 220 4 44u t u t u t− − −
 0.113 ( ) ( )2 96 33( 340)y u t ut t− −−

 0.157 ( ) ( )11 10( 721) 41 23u t uy t t−− −
 0.160 

3 ( ) ( ) ( )6 425 3 8y t u t u t− − −
 0.025 ( ) ( )

2

10 6 25t yu t− −  0.027 ( ) ( )
2

5 935 28u t u t− −  0.073 ( )
2

3 320 ( 80)yt tu −−  -0.012 ( ) ( )6 61( 730) 0 28u ty ut t−− −
 0.069 

4 ( ) ( )
2

10 613 48u t u t− −  0.044 ( ) ( )5 1041 48u t u t− −
 0.146 ( ) ( ) ( )

2

11169 11 11 15y t u t u t− − −  0.079 ( ) ( )8 3 )24 2 ( 3430u yt tu t −− −
 0.061 ( ) ( ) ( )3 11 1021 14 23u t u t u t− − −  -0.158 

5 ( ) ( )
2

725 4y t u t− −  0.091 ( ) ( )
2

10 56 5u t u t− −  0.084 ( ) ( ) ( )2 3 212 21 48u t u t u t− − −
 0.134 ( ) ( ) ( )8 9 448 48 50u t u t u t− − −

 0.091 ( ) ( )
2

11 350 21u t u t− −  -0.244 

 

Table 11 Statistical performance over the testing period on three datasets 

Method DeepNARMAX Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet 

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

E
T

T
h

1
 

24 0.032 0.151 0.072 0.206 0.083 0.229 0.222 0.389 0.114 0.272 0.107 0.280 0.108 0.230 0.115 0.275 

48 0.103 0.252 0.122 0.273 0.131 0.293 0.284 0.445 0.193 0.358 0.142 0.327 0.155 0.274 0.168 0.330 

168 0.168 0.297 0.172 0.330 0.187 0.355 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763 

336 0.234 0.374 0.242 0.417 0.230 0.428 1.860 1.124 0.590 0.698 0.445 0.552 0.468 0.593 1.549 1.820 

720 0.253 0.401 0.269 0.435 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253 

E
T

T
h

2
 

24 0.042 0.175 0.093 0.240 0.102 0.255 0.263 0.437 0.155 0.307 0.098 0.263 3.554 0.445 0.199 0.381 

48 0.098 0.206 0.115 0.270 0.129 0.298 0.458 0.545 0.190 0.348 0.141 0.321 3.190 0.474 0.304 0.462 

168 0.140 0.296 0.169 0.334 0.206 0.392 1.029 0.879 0.385 0.514 0.205 0.394 2.800 0.595 2.145 1.068 

336 0.203 0.357 0.205 0.375 0.217 0.397 1.668 1.228 0.558 0.606 0.604 0.607 2.753 0.738 2.096 2.543 

720 0.243 0.390 0.232 0.395 0.263 0.413 2.030 1.721 0.640 0.681 0.429 0.580 2.878 1.044 3.355 4.664 

W
ea

th
er

 

24 0.108 0.315 0.117 0.251 0.136 0.279 0.231 0.401 0.131 0.254 0.128 0.274 0.219 0.355 0.302 0.433 

48 0.154 0.318 0.178 0.318 0.206 0.356 0.328 0.423 0.190 0.334 0.203 0.353 0.273 0.409 0.445 0.536 

168 0.213 0.376 0.246 0.388 0.309 0.439 0.654 0.634 0.341 0.448 0.293 0.451 0.503 0.599 2.441 1.142 

336 0.248 0.355 0.297 0.416 0.359 0.484 1.792 1.093 0.456 0.554 0.585 0.644 0.728 0.730 1.987 2.468 

720 0.251 0.389 0.359 0.466 0.388 0.499 2.087 1.534 0.866 0.809 0.499 0.596 1.062 0.943 3.859 1.144 
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4.4 Summary 

4.4.1 Analysis of model uncertainty in DeepNARMAX 

DeepNARMAX  as a deepened version of the classical polynomial NARMAX model,  has its own 

deficiency, which lies in the aspect of model uncertainty.  

Firstly, the model’s sophistication does not necessarily translate into an absolute reflection of the real-

world system, despite its capacity to handle complex dynamical scenarios. This limitation often arises 

due to the difficulty in obtaining an accurate hyperparameter placement during the optimization process. 

Although the use of PSO-based gate weight optimization algorithm proves to be effective to optimize 

the selection process, it may still result in a suboptimal selection. This issue could possibly lead to faulty 

or inaccurate predictions which in turn amplifies the model uncertainty. 

Secondly, the decision-making process in the driller layer, which is supposed to prioritize more 

impactful features, can subject the model to misjudgements. As groundbreaking as this feature might 

be, inaccurate judgments could arise due to the inherently difficult task of perfectly analyzing the 

influence degree of different features on the system. This could lead to potentially major features being 

underrated or minor ones being overestimated, thereby negatively affecting the model’s overall 

accuracy and increasing model uncertainty. 

Furthermore, model uncertainty becomes more profound with the increased complexity of the system. 

This was highlighted with the use of two actual power and weather forecasting models. Whilst they 

serve as good examples of complex dynamic systems, they also illustrate potential problem areas since 

such systems are known for their inherent unpredictability. Thus, the same “deepness” that makes 

DeepNARMAX desirable for complex scenarios might also increase the range of possibilities for errors 

to creep into the modelling process. 

Lastly, the DeepNARMAX relies heavily on iterative training before model refinements are 

implemented. Although this process is meant to perfectionize the model, each iterative process 

introduces a level of variation. Hence, it’s plausible to consider that subsequent variations could 

accumulate over time, thereby escalating the model’s uncertainty. 

In conclusion, while  the introduction of a deep learning perspective to the NARMAX modelling 

process is generally aspirational and beneficial, it brings to light the classical dilemma between model 

complexity and model uncertainty. Going forward, it will be crucial to continually fine-tune the trade-

off between incorporating advanced features and managing the uncertainties that arise thereof. 

Investigations into more efficient hyperparameter optimization algorithms and feature selection 

processes may prove beneficial in circumventing some of the highlighted drawbacks. 

4.4.2 Summary 

The classic polynomial NARMAX model is extensively applied in complex dynamic nonlinear 

modelling due to its interpretability, reliability, and stability. Its interpretability, worth noting, allows a 

systematic elucidation of the system’s internal logic and the interaction between input/output signals 

and the system itself, subsequently facilitating the analysis of influential factors in complex dynamic 

systems. However, practical applications often encounter issues like a low signal-to-noise ratio, 

escalated model uncertainty, and high demand for hardware computing resources when establishing 

substantial hyperparameters for the classic polynomial NARMAX model. These issues compromise or 
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even inhibit the effective development of polynomial NARMAX models. To mitigate these problems, 

this thesis introduces an innovative deep polynomial NARMAX network modelling method. 

Initially, we construct and propose the DeepNARMAX network mainly consisting of an input layer, 

linear transformation layer, driller layer, generator layer, model detection layer, and output layer from 

basic logical structure of networks. The input layers represent the original inputs u and outputs y of the 

system while linear transformation layers linearly expand dimensions based on  and delay information 

n applied to original input signals ‘u’ and output signals y to extract linear dynamic features. The driller 

layer selects features from previous-layer outputs by reducing their dimensionality with defined driller 

ratio controlling reduction proportions. The generator performs nonlinear operations on reduced-

dimension features, including squaring uniform features or cross-multiplying different ones. Typically, 

the driller layers pair up with generator layers. The number of these pairs equals . Finally, the output 

from the last generator is fed into model detection where the FROLS algorithm is utilized for feature 

selection, model construction, and parameter calculation, resulting in the final DeepNARMAX model. 

To ensure optimal feature selection within the driller’s layer and division according to the impact degree 

on systems, this thesis introduces a novel gate weight hyperparameter describing times each feature 

vector gets selected during network training or influence degree upon systems. The proposed PSO-

based gate weight optimization algorithm updates values during the training process and considers the 

trade-off between exploration and exploitation thereby optimizing the calculation of characteristic’s 

gate weights. Finally, a check is performed on the optimized DeepNARMAX model against real-world 

systems over test sets, allowing us to ensure model validity. 

A series of comprehensive experiments was performed to affirm the efficiency of the proposed 

DeepNARMAX networks and algorithms. Three simulated systems were selected, including a single-

input-single-output (SISO) system and two multi-input-single-output (MISO) systems, to validate 

whether the newly proposed DeepNARMAX retains the same interpretability and accuracy as the 

classic NARMAX. Then, two actual power and weather forecasting models were utilized to validate 

the performance of the DeepNARMAX under actual, dynamically complex scenarios. After several 

iterations over the training set, the network obtains one or multiple models then adjusts them using k-

fold cross-validation avoiding overfitting problem. 

The effectiveness of the proposed DeepNARMAX is further demonstrated by comparison with state-

of-the-art deep sequential neural networks such as Informer, LSTM etc. Notably, the interpretability of 

the DeepNARMAX model is a significant advantage that enables better understanding and utilization 

of complicated scenarios. In conclusion, the proposed DeepNARMAX addresses the dimension 

explosion issue encountered in the NARMAX modelling process while enhancing capabilities in 

complex dynamical situations, particularly analytical abilities towards highly complicated, high-

dynamic scenarios, all while retaining the conventional NARMAX models’ foundations and effectively 

resolving uncertainties that arise throughout the modelling process. 
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Chapter 5  

Ensemble Sliding Window NARMAX Models for Seasonal Weather 

Forecast 

Dynamical seasonal forecast models are improving with time but tend to underestimate the amplitude 

of atmospheric circulation variability and to have lower skill in predicting summer variability than in 

winter. Here we construct NARMAX to develop the analysis of drivers of North Atlantic atmospheric 

circulation and jet stream variability, focusing on the East Atlantic (EA) and Scandinavian (SCA) 

patterns as well as the North Atlantic Oscillation (NAO) index. New time series of these indices are 

developed from Empirical Orthogonal Function (EOF) analysis. Geopotential height data from the 

ERA5 reanalysis are used to generate the EOFs. Sets of predictors with known associations with these 

drivers are developed and used to formulate a sliding window NARMAX model. 

5.1 Introduction 

5.1.1 Seasonal weather modelling and forecasting 

The North Atlantic jet stream strongly influences the weather in Northwest Europe and has a significant 

role in determining the strength and sign of North Atlantic atmospheric circulation indices such as the 

North Atlantic Oscillation (NAO), East Atlantic Pattern (EA) and Scandinavian Pattern (SCA); the 

anomalous weather patterns of a particular season can be described by the interplay of these modes of 

variability [239]. Recent extreme seasons have been characterised by distinctive jet stream 

configurations, and jet strength and location are intimately linked with extreme weather conditions (e.g., 

in temperature and precipitation) experienced across Northwest Europe [239]. Extreme seasonal 

weather has important socio-economic implications, in terms of risk avoidance, with costs to the 

insurance industry (e.g., ~£1.5 billion across the UK in winter 2013/14) [240], and impacts on 

agriculture, food security, energy supply, public health/wellbeing, and severe weather planning. 

Until relatively recently, North Atlantic atmospheric variability was thought to be largely due to 

unpredictable fluctuations [241]. However, dynamical seasonal forecasting systems have been used to 

develop skilful seasonal forecasts for UK winter weather from a few months ahead [242]. Many factors 

(drivers) appear to influence the NAO and jet-stream changes, and these potential drivers can be broadly 

grouped into cryosphere effects from variations in sea-ice extent and snow cover, oceanic effects from 

NA sea-surface temperatures, tropical influences such as the El-Niño Southern Oscillation (ENSO), and 

stratospheric effects due to stratospheric circulation variability, solar variability, volcanic eruptions, and 

the Quasi-Biennial Oscillation [243]. These drivers of jet stream variability can oppose or reinforce one 

another, and there are indications of interactions between them [14]. Drivers of jet-stream variability 

show seasonal variation, and distinctive drivers of jet-stream variability operate in different seasons. In 

addition to these identifiable drivers, a significant part of North Atlantic jet changes is driven by internal 

unforced variability due to chaotic internal dynamical processes [244, 245]. While a consensus has now 

been reached that some observed drivers can be reproduced in climate models, improved understanding 

of more recently identified drivers of the North Atlantic extratropical jet stream is crucial for making 

progress in UK seasonal climate predictions [243]. 

The focus of government-funded research is on dynamical forecast systems; however, such forecasts 

are not always accurate, such as in winter 2004-5 [246] and more recently in 2013-14, when dynamical 

model forecasts did not well predict the positive winter NAO, and furthermore did not consider the 
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accompanying positive EA pattern and hence the exceptionally heavy rain and flooding in southern 

England [247]. While dynamical seasonal forecast models are sensitive in winter to tropical forcing 

such as El Niño events, some evidence suggests that they may be relatively insensitive to Arctic 

variability [248]. Compared with winter, dynamical model forecasts show relatively little skill in 

summer, when there is less forcing from the tropics [243]. Recent work on seasonal prediction with 

dynamical models has also revealed an intriguing conundrum called the Signal to Noise issue: this is 

where such models reasonably well predict the year-to-year variability of the winter NAO but under-

predict its amplitude, due to a systematic underestimation of the mechanisms influencing mid-latitude 

atmospheric circulation [242, 249, 250]. Supplementing dynamical seasonal forecasting systems, 

statistical methods identify slowly varying boundary conditions such as sea-ice variability, ocean 

temperatures and influences from the stratosphere, which are capable of “nudging” the jet stream and 

providing elements of predictability (e.g., [246, 251, 252]). In the mid latitudes, statistical forecasting 

has been relatively neglected compared with the tropics; however, recent developments in statistical 

techniques, under the umbrella of “machine learning” (e.g., [1, 14]) have taken place mainly outside the 

climate-science community and are relatively quick and cheap to implement. 

The novel application of these advanced statistical techniques and systems science methods has 

significant potential to improve forecast skill and help inform development of the next generation of 

dynamical seasonal forecasting systems. Here we use a Nonlinear AutoRegressive Moving Average 

with eXogenous inputs (NARMAX) systems identification approach [1, 14], which is an interpretable 

machine learning method, to identify and model linear and non-linear dynamic relationships between a 

range of meteorological and related variables. In addition to its ability to delineate non-linear relations, 

NARMAX is able to identify non-stationary associations that arise from changes in forcings over time, 

building on studies where dynamical models have suggested changes in NAO forecast skill over periods 

of several decades [253], and so NARMAX therefore has significant potential to help improve 

Northwest Europe seasonal weather forecasts. In a pioneering application of NARMAX in this area, 

[14] found significant skill in NAO winter forecasting and identified key sources of predictability. Here 

we extend skilful seasonal forecasting to the summer season, where dynamical seasonal prediction 

models currently remain most problematic, and identify factors that contribute skill to the forecast. Our 

results form a firm basis for improving Northwest European regional seasonal weather prediction and 

should therefore be of interest to potential end-users as well as to model developers and the broader 

seasonal prediction scientific community. 

5.1.2 Description of predictors for indices of seasonal weather forecast 

Updated versions of the three principal empirical orthogonal functions (EOFs) of European and North 

Atlantic atmospheric circulation variability (NAO, EA and SCA) were generated using 500 hPa 

geopotential height data from the European Centre for Medium-Range Forecasts (ECMWF) ERA5 

reanalysis [254], combined with the Python eofs package [255]. ERA5 is based on the Integrated 

Forecasting System (IFS) and replaces ECMWF’s earlier ERA-40 and ERA-Interim reanalysis 

products. We obtained ERA5 data, specifically of sea surface temperatures (SSTs), sea ice cover, sea 

level pressure and 500 hPa geopotential heights, from the Copernicus Climate Data Store. 

The summer EOFs are based only on high summer (July and August), as using the full June/July/August 

data generates a poorly defined pattern for EOF1. This is consistent with previous analysis, e.g., [256] 

which suggest there is a strong summer NAO signal that characterises July and August, while the 

summer NAO behaves differently during June. The three winter EOFs are based on seasonal data for 

the full winter quarter (December, January, and February). Maps for the winter and summer EOFs are 

shown in Figure 23. These are largely similar to the EOFs obtained by [239] but also show some notable 
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differences. For example, the winter Scandinavian pattern has the high-pressure anomaly further west 

than the [239] version, centred to the north and north-east of the British Isles, while the winter NAO 

has the low-pressure anomaly centred to the south of Greenland, rather than over Iceland. The 

differences are mostly down to the different methodology used to calculate the EOFs, rather than 

different time periods. 

Monthly 500hPa geopotential height forecasts from SEAS5 (provided by ECMWF) and GloSea5 

(provided by the UK Met Office) were analysed and projected onto the EOFs using the project Field 

functionality of the elf’s package. Seasonal forecast runs were provided by the Copernicus Climate 

Change Service (C35) via the Climate Data Store website. For both models, hindcasts are available 

from 1993 to 2016 inclusive. For SEAS5, a complete set of seasonal forecast runs are also available 

from 2017 onwards, but at the time of analysis for GloSea5, C35 only provided an incomplete set of 

seasonal forecast runs, covering the winters of 2017/18 to 2019/20 inclusive and the summers of 2018 

and 2019. 

 
Figure 23 The three primary EOFs of atmospheric circulation variability (at the 500 hPa geopotential 

height level) from ERA5 reanalysis based on 1950 to 2021 for winter and high summer  

A number of variables that may be used to predict the North Atlantic jet stream and atmospheric 

circulation variability, and by extension temperature and precipitation over north-west Europe, have 

been collected for both winter (DJF) and summer (JJA), building from the drivers identified by [257], 

[246] and [239]. A wide range of potential drivers has been assembled, so as to be able to select from a 

wide range of variables for inclusion in NARMAX. SST anomaly patterns are used, including the El 

Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), plus sea-ice 

anomalies, snow cover anomalies and tropical precipitation anomalies. The stratospheric polar vortex 
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and Quasi-Biennial Oscillation (QBO) are used as predictors for winter atmospheric circulation, but not 

summer, due to a lack of evidence for them having a strong influence on summer atmospheric 

circulation. 

Table 12 Potential drivers of winter and summer atmospheric circulation variability that are used as 

predictors for NARMAX models 

Dataset 

Variable used and their 

abbreviations as used in this 

study 

Region selected Dates 

Atlantic 

Multidecadal 

Oscillation 

(AMO) 

ERA5 SST 

7-75W, 25-60N, regional SST 

anomaly minus global SST 

anomaly 

1956-2021 

Sea surface 

temperature 

Nino 3.4 

Tropical Atlantic (TASST) 

W.Indian Ocean (WISST) 

E. Indian Ocean (EISST) 

W. Pacific (WPSST) 

E. Pacific (EPSST) 

North Atlantic Horseshoe (NAH) 

 

North Atlantic dipole (DIP) 

 

North Atlantic tripole (TRI) 

 

Sub-Polar Gyre (GRE) 

Barents Sea SST (Bar_SST) 

Greenland/Iceland Norwegian 

Seas (GIN) 

North Atlantic SST gradient 

(SST_grad) 

Sub-Polar Gyre (SPG_SST) 

170-120W, 5S-5N 

50W-0E,5S-5N 

50-85E, 5S-5N 

85-120E,5S-5N 

120-170E,5S-5N 

140-90W, 5S-5N 

40-15W, 15-30N minus 60-

40W,30-45N 

52-40W, 42-52N minus 35-

20W, 35-42N 

60-40W, 40-55N minus 80-

60W, 25-35N 

60-10W, 50-65N 

25-70E, 75-80N 

20W-20E, 65-80N 

60-30W, 20-40N minus 60-

10W, 50-65N 

60-10W, 50-65N 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

 

1956-2021 

 

1956-2021 

1956-2021 

1956-2021 

 

1956-2021 

Sea ice 

concentration 

Barents-Kara Seas (BK) 

E. Siberian/Laptev Seas (ESL) 

Beaufort/Chukchi Seas (BC) 

Canadian Archipelago/Baffin Bay 

(ArB) 

Greenland Sea (GRE) 

Bering Sea (BER) 

Hudson Bay (HUD) 

Labrador Sea (LAB) 

10-100E,65-85N 

100-180E, 68-85N 

180-120W, 68-85N 

120-45W, 63-80N 

45-0W, 63-85N 

195-155W, 55-68N 

100-70W, 50:63N 

70-45W, 40-63N 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

1956-2021 

Tropical 

precipitation 

Tropical Atlantic Rainfall (TAR) 

W. Indian Ocean Rainfall (WIR) 

E. Indian Ocean Rainfall (EIR) 

W.Pacific Rainfall (WPR) 

E. Pacific Rainfal (EPR) 

50W-0E,5S-5N 

50-85E, 5S-5N 

85-120E,5S-5N 

120-170E,5S-5N 

140-90W, 5S-5N 

1979-2021 

1979-2021 

1979-2021 

1979-2021 

1979-2021 
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Stratospheric 

polar vortex 
Temperature 100hPa 65-90N 1956-2021 

Sea level 

pressure 
Barents SLP 60-120E, 67.5-90N 1956-2021 

Carbon 

dioxide 
Annual CO2 level NA 1959-2021 

QBO Mean zonal wind, 30hPa NA 1956-2021 

sunspots Sunspot no. NA 1956-2021 

Snow cover 

extent 
Eurasian snow 55-150E, 45-80N 1979-2021 

HadCRUT5 2m Temperature anomaly 90W-90E, 20-80N 1955-2021 

MJO Indices 
200hPa velocity potential 

anomalies 
 1979-2021 

Sea surface temperature anomalies, sea ice coverage anomalies, the Atlantic Multidecadal Oscillation 

(AMO), tropical precipitation anomalies and the strength of the stratospheric polar vortex were 

calculated based on ERA5 reanalysis data. This version of the AMO is based on the region from 7-

75ºW, 25-60ºN, subtracting the global SST anomaly from the regional SST anomaly to remove biases 

that would result from the upward trend in global SSTs. For summer, an SST based North Atlantic 

dipole index is used, based on [258] , who provided evidence for a link between this and a high-pressure 

anomaly to the west of the British Isles, resulting in relatively anticyclonic weather over Britain. The 

North Atlantic Horseshoe SST pattern [259] is linked with the winter NAO. The North Atlantic tripole 

is based on the methodology of [260], who provided evidence for this being linked especially with the 

NAO in winter. Snow cover data are based on. Monthly sunspot numbers were obtained from the Solar 

Influences Data Analysis Center [261]. The QBO data are obtained from the Free University of Berlin 

[262]. A full list of the drivers is provided in Table 12. 

5.2 The ensemble sliding window NARMAX models 

5.2.1 The sliding window NARMAX models 

Usually, the NARMAX model can generate reliable predictions and reveal convincing transparent 

relationships between the system input and output over the entire period of the dataset. However, it is 

more desirable to pay attention to and make use of local information in the dataset, especially for a 

complex dynamic time-varying system or process like climate change. Therefore, in the following we 

introduce the sliding window NARMAX model for seasonal forecasts.  

The sliding window is a popular approach used for analysing and processing time-series data, signal 

processing and machine learning [263-265]. The main idea of this method is to take a subset of data, 

referred to as a ‘window’, and slide that window across the entire dataset, performing some operation 

on the data within the window before moving it. Due to the outstanding performance of understanding 

the time-varying system, the sliding window is introduced into the NARMAX modelling framework to 

discover the local information and evolution of the system dynamics over time. In [266], a 30-year 

sliding window is utilized in NARMAX modelling to investigate the intricate nonlinear relationship 

between iceberg discharge. The outcome demonstrates a significant level of fitness and emphasizes that 

there’s been a century-long shift in dominant causes from primarily glaciological (SMB) to climatic 

(ocean temperature). In [267], the sliding window NARMAX was introduced to capture the time-

varying relationships and contributions of these factors over the century because a static model is not 

sufficient for analysing the discharge of icebergs from West Greenland during the 20th century, as the 
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factors contributing to this discharge (including climatic and glaciological conditions) are non-linear 

and varied greatly over the century. 

The sliding window NARMAX is crucial for seasonal weather forecasting due to its ability to model 

complex and dynamically changing systems. It can adapt over time to reflect changes in influential 

factors and their interactions, enhancing the accuracy of weather predictions. It’s particularly effective 

in handling complex and nonlinear relationships within meteorological variables. Despite not wholly 

eliminating uncertainties, it significantly improves forecast accuracy. 

The proposed framework of the sliding window NARMAX model is shown in Figure 24. Taking a 

single-input, single-output system as an example, where the measured input signal of N samples is 

denoted by 
1 2[ , ,..., ]T

NU u u u=  and the corresponding output is denoted by 
1 2[ , ,..., ]T

NY y y y= . In a 

matrix format, the dataset of the system can be represented as 
1 1[ , ] [( ,..., ) ,( ,..., ) ]T T

N ND U Y u u y y= = . 

Let 1[1,1,...,1]wW =  be a window of length w. With the one-step forward sliding window (which is 

shown in the dotted rectangles in Figure 24, the original dataset D can be resampled as follows: 
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 (5.1) 

For each windowed dataset ˆ
mD , a NARMAX model ˆ

mY  can be generated using the method discussed 

in Chapter 2. Thus, based on (5.1), there will be M NARMAX models 
1( ,..., )ˆ ˆ ˆ

MY Y Y= , which are 

represented by the green rectangles in Figure 24, and M predictions of the system output 1,..., ]ˆ ˆ ˆ[ My y y=  

will be calculated accordingly. Therefore, the sliding window NARMAX method produces a set of 

system predictions rather than a single forecast value, and this set forms the basis for a NARMAX-

derived probabilistic prediction of the system output. 

 
Figure 24 The framework of the sliding window NARMAX models. 
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Figure 25 The schematic illustration of the resample by sliding window 

Note that the whole available observations are split into two parts: 1) around 80% of the data are used 

for model training; 2) the remaining 20% are used for model testing. Each windowed dataset is a subset 

of the training dataset. To find the most appropriate model for each window, the associated windowed 

dataset is further partitioned into training and validation sub-datasets. For each window, the role of the 

validation data is threefold: 1) to test and validate the model performance using “unseen” data during 

the training process; 2) to optimise and adjust model parameters and hyper-parameters, such as the 

window size and the model structures, where necessary; and 3) to avoid overfitting. 

5.2.2 Model selection and verification 

NARMAX modelling encompasses both linear and nonlinear models. In this case, as discussed above 

the polynomial form of model structure, including both linear and nonlinear forms, is considered. Note 

that different nonlinear degrees can lead to quite different models, which will affect the forecast and the 

explanation of the system. A model with a higher nonlinear degree may produce a more accurate 

representation of the system and hence produce better prediction. However, such a model can become 

very complex, and it needs a large number of samples for model training and estimation. Therefore, the 

present modelling challenge is a typical small-size problem, where the number of observations is 

smaller than the number of regressors. Taking a system with n input variables as an example, if the 

nonlinear degree of the model is , then the number of generated model terms would be ( )! ! !n n+ , 

where the symbol “!” denotes the factorial function. Thus, it is unlikely to have a high nonlinear degree 

, such as 4= , otherwise, the number of generated model terms, ( )! ! !n n+ , would be tremendous, 

leading to an extremely sensitive identified model. 

In order to avoid overfitting and reduce the sensitivity of the model but meanwhile guarantee a reliable 

model structure, the highest nonlinear degree is set to be three in this study. Then for each windowed 

dataset, there are 3 candidate model forms: , ,mli mq mcM M M , representing the linear, quadratic, and cubic 

models for the m-th windowed dataset, respectively. Therefore, with the window of length w, there are 

a total of 3M NARMAX models including linear and nonlinear model forms. To select the best models 

from the huge number of potential model candidates, the validation set is applied as discussed in above. 

For each model miM  (identified from the m-th windowed dataset), where { , , }li qi c , the prediction for 

the validation set is denoted by ˆv

miy . The values of the mean squared error (MSE) of each of the 3M 

identified models are denoted by, v

mlimse , 
v

mqmse , and v

mcmse , respectively. The best model is selected 

by comparing the MSE in each data group. Thus, for each window of length l, there are M best 

NARMAX models. 
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To reduce the risk that arises from using a single model and in order to constrain model uncertainty, 

NARMAX predictions are based on a weighted average of multiple models [14]. In this study, the 

weighted average scheme is also considered to deliver the predicted value. But unlike the method in 

[14], the weights are calculated based on the MSE of the M models over the validation period, rather 

than over the training period. NARMAX methods are generally robust for system analysis and 

prediction but using a single “best” model may be risky in some applications. Therefore, it is reasonable 

to apply a model-averaging algorithm to reduce the risk associated with depending solely on a single 

model, especially when dealing with small sample size applications; this can also mitigate the sensitivity 

of the model to noise or uncertainties [14]. In this study, the weighted mean scheme is also considered 

to deliver the predicted value. But unlike the method in [14], the weights are calculated based on the 

MSE of the M models over the validation period, rather than over the training period. 

Assume the values of mean squared errors (MSE) of n MARMAX models over their respective training 

periods are known as 1,..., smse mse , respectively. Let 

 1 11/ , ..., 1/ snl mse l mse= =  (5.2) 

 1 ... nl l l= + +  (5.3) 

 1 1 / , ..., /s sc l l c l l= =  (5.4) 

Then, the averaged model prediction can be defined as: 

 
11

ˆ .. ˆ.ˆ test

s

te tst tes

nc cy y y= + +  (5.5) 

Some typical model validation criteria, including correlation coefficients, mean absolute error (MAE) 

and root mean square error (RMSE), are used to evaluate model performance. The number of forecasts 

needs to be sufficiently large to make the statistical conclusions about the skill of the forecast robust 

and convincing. In this study, we use the out-of-sample set, comprising the validation set and the testing 

set, to calculate the values of the statistical metrics. Models are trained over the 80% of the original 

dataset, while model performance is evaluated over the remaining 20% of the dataset. Also, the Brier 

score [268] and the reliability diagram [269] are used in this study to evaluate the quality of the seasonal 

forecast models. The Brier score estimates the difference between the observed and expected outcomes. 

Brier introduced it in 1950 to address the verification of weather forecasts [270], and it is herein defined 

as: 

 
2

1

1
)(

n

i ii
B i xr erScore d

n =
= −  (5.6) 

Normally, x  takes the value 1 or 0 according to whether or not the event occurred in the predefined 

class, especially a binary classification forecast, while ip  is the forecast probability for such occasion 

i . To clearly calculate the Brier scores of the SW-NARMAX models, we define the two class as 

follows: 

 [ 0.5 ]1: 1 0., , 5iclass x p=  −  (5.7) 

 02 : 0, [ 3, .5) (0.5,3]iclass x p  −= −   (5.8) 

To calculate the Brier score of the SW-NARMAX models, the forecast probability ip  should be 

obtained first. By applying the sliding window methods in the training period, there will be s SW-

NARMAX models identified as discussed above. Thus, for each year in the testing set, there are s 

predictions as defined above. We can calculate the forecast probability by 
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where count  means function to calculate the quantity that meets the condition, ,ˆ , 1 2,...,iy i s=  

indicates the predictions of i-th SW-NARMAX model. 

Based on the definition of the classes, the Brier score verifies the accuracy of the predictions of SW-

NARMAX models matching the class of the observation. The smaller the Brier score, the more 

consistent the category of SW-NARMAX predictions is with the category of observed values; 

otherwise, they are inconsistent. 

5.2.3 Dynamical models 

To help assess the accuracy and utility of NARMAX-generated seasonal forecasts, comparisons are 

made with the seasonal forecasts from two commonly used dynamical models. Monthly forecast runs 

are obtained from the C35 Copernicus Climate Change Service. For this analysis, hindcast data for 1993 

to 2016 are used from the ECMWF SEAS5 model [271] and the Met Office GloSea5 model [272]. The 

GloSea5 outputs are based on seven ensemble members, while SEAS5 has 25 ensemble members over 

this period. The monthly runs are aggregated to produce a seasonal forecast that corresponds to the 

seasonal prediction from one month out (e.g., the winter forecasts are based on December with one 

month lead time, January with two months lead time, and February with three months lead time, 

corresponding to a seasonal forecast issued in November). 

Predictions of 500hPa heights from the dynamical models are assessed against the three EOFs discussed 

in Section 2, for both winter and summer. As with NARMAX, in the case of summer, June is considered 

separately from high summer (July and August), while winter is defined simply as December, January 

and February and is labelled by the year of the January. Correlation, RMSE and the Brier score are used 

together to provide an indication of forecast skill. Reliability diagrams are used to give an additional 

probabilistic indication of the reliability of these model predictions. These compare the observed 

frequency of an event with the forecast probability of it happening [273], grouped together into 

probability bins. Reliability is high if the probability of the event happening is close to the forecast 

probability. 

5.3 Experiments and Results of seasonal weather forecast based on sliding 

window NARMAX models 

In this section, sliding window NARMAX models are defined by the indices they use (station-based 

NAO, EA, and SCA), by the start year of the predictor dataset (1950 or 1979), and by season (summer 

or winter). For example, the junSNAO79 (JASNAO79) summer models are the sliding window 

NARMAX models for the summer SNAO in June (July and August average), using the 1979-2022 

predictor dataset. In the main part of this thesis, we focus on the NARMAX prediction results based on 

the 1979 (start date) datasets, while the rest of the prediction results are presented in the Supplementary 

Information. For a better evaluation of the performance of different models against observations, model 

results are based on weighted averages of the model ensemble members over validation and test periods. 

5.3.1 Summer seasonal prediction results 

5.3.1.1 SNAO summer results 

For each index, the ten most frequent predictors in the sliding window NARMAX models (16 
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JunSNAO79 models and 15 JASNAO models) are listed in Figure 26 (a-b). Although the frequency of 

the predictors between the various models is different, there are some common patterns among the 

predictors. ‘BC’ and ‘ESL’ are both selected in both the JunSNAO79 and JASNAO79 models, 16 and 

12 times respectively. For JunSNAO79 models, ‘TAR’, ‘WIR’, ‘EIR’, and ‘WPR’ are more important 

than other predictors, while ‘NAsnow’, ‘BK’, ‘EPR’, ‘TRI’, ‘DIP’, ‘BER’ and ‘ArB’ have more 

influence for JASNAO79. 

The predictions made by the sliding window NARMAX models are presented alongside the observed 

SNAO time series in Figure 26 (c-d). In the figures, the red lines with ‘o’ markers are the observation 

of the indices (i.e., the EOF time series defined in Section 2), while the blue lines with ‘x’ markers are 

the weighted average predictions by the sliding window NARMAX models. The light blue area is the 

95% confidence interval (CI) generated by the identified NARMAX models. As shown in Figure 26 (c-

d), the averaged predictions by sliding window NARMAX models closely match the observed NAO 

changes, with the observed NAO values mainly lying within the 95% CI range. The 4-digit decimal 

values in Figure 3 (c-d) are the Brier scores based on the NARMAX ensemble weighted mean prediction 

for each year. These Brier scores are close to zero, with the highest value 0.036 in 2015 in Figure 26 

(c), indicating the robustness of the NARMAX models. Thus, the results overall indicate that the sliding 

window NARMAX models can produce generally accurate and reliable predictions. 

NARMAX verification statistics against observed data are summarised in Table 13. Model-observation 

correlations coefficients of the junSNAO79 models and JASNAO79 models for the entire out-of-sample 

period (2011-2021) are 0.94 and 0.91 respectively and are highly significant (p<=0.01). To more fully 

assess model performance, we also present RMSE and MAE values for the validation and testing sets. 

For JunSNAO79 models, RMSEs (MAEs) of the validation set and testing set are 0.10 (0.07) and 0.33 

(0.27). For JASNAO79 models, RMSEs (MAEs) are 0.166 (0.11) and 0.49 (0.39). 

  
(a) Predictors from models of junSNAO79 (b) Predictors from models of JASNAO79 
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(c) Comparison between observation and 

prediction band of junSNAO79 

(d) Comparison between observation and 

prediction band of JASNAO79 

Figure 26 Results (predictors (a, b) and predictions (c, d) by sliding window NARMAX) of junSNAO79 and 

JASNAO79. 

Predictors are shown according to the month in which that value occurred (e.g., AprTAR = tropical 

Atlantic rainfall for the month of April). Refer to Table 12 for a full list of predictor names. 

5.3.1.2 EA summer results 

The 10 most frequent predictors in the sliding window NARMAX models (16 JunEA79 models and 11 

JAEA79 models) are shown in Figure 27 (a-b). There is some consistency in the analysis of the 

predictors: ‘DIP’, ‘HUD’, ‘GRE’, ‘WIR’, and ‘BER’ are selected in models for two indices with high 

frequencies. Among them, ‘aprDIP’ is the most frequency selected predictor for the two indices: 10 

times for junEA79 and 5 times for JAEA79. Meanwhile, there are several unique predictors in 

NARMAX models, like ‘lead3SS’ for JunEA79 and ‘TAR’ for JAEA79. ‘lead3SS’ shows high 

influence on the JunEA79 and less effect on the JAEA79, while ‘TAR’ has the opposite effect on the 

two indices. 

The comparison between the prediction of sliding window NARMAX models for SNAO and the 

observations is shown in Figure 27 (c-d), while the verification statistics for the validation and testing 

periods for the average predictions by the model ensembles are shown in Table 13。 

Similarly, Figure 27 (c-d) show that the weighted average predictions by NARMAX models usually 

perform well in following the observed yearly values from 2011 to 2021 (out-of-sample period) for 

JunEA79 and JAEA79. Most observations are in the prediction band formed by the 95% CI of the 

predictions. However, in four years, 2019 and 2020 for JunEA79 and 2019 and 2021 for JAEA79, the 

NARMAX models did not produce accurate predictions. These four more poorly predicted years are in 

the testing set, which suggests that the selected NARMAX models are unable to follow year-to-year 

EA changes without further prior information. Despite this limitation, overall, the Brier scores in Figure 

27 support the robustness of the sliding window NARMAX models.  

Model-observed correlation coefficients of the JunEA79 and JAEA79 models for the out-of-sample 

period (2011-2021) are 0.90 and 0.85 respectively (Table 13), which are highly significant (p <= 0.01). 

In the validation period, models generate accurate predictions for these two indices, with low RMSE 

(MAE) values of 0.12 (0.09) for JunEA79, and 0.22 (0.18) for JAEA79. The errors between the 

predictions and observations are marginally greater for the testing period, but the overall performance 

of the NARMAX models remains robust. 

  
(a) Predictors from models of junEA79 (b) Predictors from models of JAEA79 
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(c) Comparison between observation and 

prediction band of junEA79 

(d) Comparison between observation and 

prediction band of JAEA79 

Figure 27 Results (predictors (a, b) and predictions (c, d) by sliding window NARMAX) of junEA79 and JAEA79.  

5.3.1.3 SCA summer results 

The statistical analysis of predictors in 14 JunSCA79 NARMAX models and 13 JASCA79 models are 

shown in Figure 28 (a-b). The models for two SCA indices have some common predictors, including 

‘LAB’, ‘HUD’, ‘BK’ and ‘BER’. Similarly, there are some unique predictors in the models of each 

index: i.e., ‘DIP’, ‘EURsnow’ and ‘TRI’ in the JunSCA79 models, and ‘NAsnow’, ‘lead4SS’ and 

‘GRE’ in the JASCA79 models. Ranked by frequency of the predictors in the models for JunSCA79, 

‘ESL’ has the most influence on the index, since it occurs 17 times (out of 47) in the analysis.  

  
(a) junSCA79 (b) JASCA79 

  

(c) Comparison between observation and prediction 

band of junSCA79 

(d) Comparison between observation and prediction 

band of JASCA79 
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Figure 28 Results (predictors (a, b) and predictions (c, d) by sliding window NARMAX) of junSCA79 and 

JASCA79.  

Similarly, Figure 28 (c-d) shows the comparison between the weighted averaged predictions and 

observations over the out-of-sample period for SCA. Most observations are, once again, in the 

prediction band generated by the sliding window models. Brier scores marked in the figures reflect the 

robustness of the trained models with a highest value of 0.034 (for the JunSCA79 in 2019) However, 

as before, in a very few years, i.e., 2018 for JunSCA79 and 2015 and 2019 for JASCA79 (i.e., three out 

of 22 years), the probabilistic prediction bands do not encompass the observations. The statistical 

verification metrics for these models are once again summarised in Table 13. 

Model-observation correlation coefficients of the junSCA79 models and JASCA79 models for the 

whole out-of-sample period (2011-2021) are respectively 0.77 and 0.75 (Table 13), which again are 

significant at the p < 0.01 level. The values of RMSE and MAE in the validation and testing sets show 

that the two NARMAX SCA models produce generally good predictions in the out-of-sample period. 

Although RMSE and MAE in the testing set are slightly higher than those in the validation set, the 

testing period values remain small, supporting considerable predictive capability of the NARMAX 

models. 

Table 13 Verification statistics for averaged sliding window NARMAX models for summer seasonal prediction 

(validation period = 2011-2016; test period = 2017-2021).  

 RMSE MAE Correlation 

(2011-2021)  Validation Testing Validation Testing 

junSNAO79 0.10 0.33 0.07 0.27 0.94 

JASNAO79 0.16 0.49 0.11 0.39 0.91 

junEA79 0.12 0.48 0.09 0.46 0.90 

JAEA79 0.22 0.55 0.18 0.43 0.85 

junSCA79 0.11 0.39 0.08 0.38 0.77 

JASCA79 0.36 0.57 0.25 0.54 0.75 

5.3.2 Winter seasonal prediction results 

5.3.2.1 NAO winter results 

The frequency analysis of predictors in the winter NAO models are shown in Figure 29 (a), showing 

the ten most chosen predictors among all models. As listed in Figure 29 (a), the joint most selected 

predictors are ‘SepNAH’ and Sep_SPG_SST, with ‘OctBER’ as the next most frequently identified 

predictor. The performance comparison is shown in Figure 29 (b). The comparison shows that sliding 

window NARMAX models have accurate prediction capability, with low Brier scores shown in the 

figures. 

The verification statistics of weighted average of models is shown in Table 14. For the winter NAO79 

model, the model-observation correlation coefficients over the out-of-sample (2011-2021) period are 

0.92. For this model, the RMSE (0.17) and MAE (0.11) values for the validation set are lower than 

those for the testing set (RMSE of 0.62 and MAE of 0.52) but both these sets of values indicate high 

model accuracy. 
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(a) Predictors analysis of models for winter NAO79 
(b) Comparison between observation and averaged 

prediction for winter NAO79 

Figure 29 Results (predictors (a) and predictions (b) by sliding window NARMAX) of NAO79 in winter.  

5.3.2.2 EA winter results 

Figure 30 (a) shows the predictor analysis in models of the winter EA79. ‘augBK’ is the most commonly 

identified predictor in winter EA79 models. Based on the frequency analysis of predictors in EA79 

predictor models, the most commonly selected predictors are ‘HUD’ and ‘BK’, indicating they have 

more influence on the winter EA. 

Performance comparison is shown in Figure 30 (b). The weighted average prediction by winter EA79 

models (blue line) closely follows the observations in both the validation and training sets, and the 

model prediction band consistently encompasses the observations. This comparison once again 

highlights the skilful performance of the NARMAX models, which is confirmed by the statistical 

verification results shown in Table 14. 

 

 

(a) Predictors analysis of models for winter EA79 
(b) Comparison between observation and averaged 

prediction for winter EA79 

Figure 30 Results (predictors (a) and predictions (b) by sliding window NARMAX) of EA79 in winter.  

5.3.2.3 SCA winter results 
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(a) Predictors analysis of models for winter SCA79 
(b) Comparison between observation and averaged 

prediction for winter SCA79 

Figure 31 Results (predictors (a) and predictions (b) by sliding window NARMAX) of SCA79 in winter.  

The 10 most frequent predictors in winter SCA79 models are shown in Figure 31 (a), where sea ice 

dominates the predictors and ‘LAB’ is the only predictor to occur more than once. Figure 31 (b) shows 

the comparison between observations and weighted average prediction of identified models. Most 

observations are in the prediction band, although the winter SCA79 models did not produce a skilful 

prediction in 2021. However, the correlation coefficients (0.82 for SCA79) listed in Table 14indicate 

overall high predictive skill. The RMSE and MAE of SCA79 in the testing set are larger than those of 

other indices, although the prediction band (average value with 95% CI) usually encompasses the 

observations. 

Table 14 Verification statistics for averaged sliding window NARMAX models for winter seasonal weather 

(validation period = 2011-2016; test period = 2017-2021).  

 RMSE MAE Correlation 

(2011-2021)  Validation Testing Validation Testing 

winterNAO79 0.17 0.62 0.11 0.52 0.92 

winterEA79 0.20 0.36 0.13 0.31 0.83 

winterSCA79 0.37 0.79 0.24 0.65 0.82 

5.3.3 Seasonal weather forecast by dynamical models 

Figure 32 illustrate how SEAS5 fared when predicting the winter and high summer NAO, EA and SCA, 

using hindcast data for 1993 to 2016. There is a consistent tendency to under-predict the amplitude of 

the extreme seasons, to a greater extent than is observed for the NARMAX predictions. GloSea5 has 

higher skill than SEAS5 at predicting the East Atlantic pattern, and for example correctly predicted that 

the winter of 2004/05 would probably have a negative EA, although the observed outcome was more 

extreme than predicted by any of the ensemble members. Conversely, SEAS5 performs better with the 

NAO, although its ensemble did not catch the intensity of the negative NAO in the winter of 2009/10. 

SEAS5 particularly tended to underpredict the variability in the East Atlantic pattern in winter. For the 

Scandinavian pattern, again SEAS5 underpredicted the variability but performed better overall than 

GloSea5, which showed a slight negative correlation with the observed Scandinavian pattern. 

In the case of high summer, covering July and August, skill is generally lower for the summer NAO 

than for the winter NAO, although both SEAS5 and GloSea5 showed a small positive correlation with 
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the observed outcomes. GloSea5 performs better than SEAS5 at predicting the summer EA and SCA 

but again the overall correlations are low. It appears that high summer is the area where NARMAX may 

prove especially useful as a means of improving the reliability of our seasonal forecasts. 

When June is considered, the dynamical models perform much better, reflecting their greater skill at 

one month out. SEAS5 shows particularly high skill with predicting the June East Atlantic pattern, with 

a correlation of 0.81, but both models have correlations of around or above 0.6 for the June NAO and 

EA. For the Scandinavian pattern, correlations are lower, with evidence of a lag developing for the more 

recent years, with the dynamical models’ predictions of extreme Scandinavian pattern Junes being a 

month in arrears. 

Reliability diagrams and Brier scores have been generated for winter and high summer. Generally, the 

results from the dynamical models show considerable divergence between the predicted probability of 

the EOFs being positive, negative or near neutral, and the observed probability. The Brier scores for the 

dynamical models are mostly around 0.2, compared with Brier scores of less than 0.1 for the predictions 

from NARMAX. The results for June (not shown) have closer correspondence between the predicted 

probability and the actual probability, but still with Brier scores consistently above 0.1. 
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Figure 32 SEAS5 ensemble mean and 10th and 90th percentile predictions of NAO (left), EA (middle) and SCA 

(right), compared with observed values.  

5.3.4 Comparison between dynamic models and sliding window NARMAX models 

To more fully measure the performance of NARMAX models, this section presents a comparison of 

predictions by the SEAS5 and GloSea5 dynamical models with the sliding window NARMAX models 

discussed earlier. GloSea5 model output were not readily available for after 2017. Therefore, the 

following two training periods are used to develop NARMAX models: 1979 to 2000 (22 years) and 

1979 to 2005 (27 years), where the out-of-sample periods are respectively 2001 to 2016 (16 years) and 

from 2006 to 2021 (16 years). 

Table 15 Verification statistics comparing the dynamical model hindcasts with NARMAX forecasts for the period 

2001-2016 (with NARMAX using the training period:1979-2000).  

Index 
Correlation with observed RMSE 

SEAS5 GloSea5 NARMAX SEAS5 GloSea5 NARMAX 

DJF_NAO 0.59 0.23 0.13 0.93 1.10 1.10 

DJF_EA -0.15 0.31 0.55 1.23 1.07 0.95 
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DJF_SCA 0.44 0.12 0.84 1.21 1.03 0.64 

Jun_SNAO 0.66 0.66 0.46 0.79 0.81 0.90 

Jun_EA 0.78 0.71 0.81 0.52 0.68 0.45 

Jun_SCA 0.55 0.63 0.50 0.63 0.62 0.73 

JA_SNAO -0.08 0.09 0.25 1.16 1.15 1.22 

JA_EA 0.00 0.41 0.67 0.73 0.67 0.58 

JA_SCA 0.04 0.30 0.27 0.92 0.87 0.84 

In Table 15 , the predictions by NARMAX are compared with the SEAS5 and GloSea5 models for 

winter and separately for June and for high summer (July and August). In most cases, NARMAX 

models show comparable skill to the dynamical models. For JunSNAO and JASNAO, NARMAX 

models produce accurate predictions in the early years from 2001 to 2010, while from 2011 onwards, 

NARMAX predictions are less accurate, mainly because the training period for NARMAX is too short 

with insufficient information to capture changes in seasonal North Atlantic atmospheric circulation. For 

JunEA and JAEA, NARMAX models show more skilful performance compared with dynamic models. 

For JunSCA and JASCA, NARMAX models show similar forecasting capability to dynamic models. 

Another comparison between the SEAS5 dynamical model and NARMAX models with different 

training periods is shown in Table 16. The statistical results for these NARMAX models show higher 

correlation coefficients and smaller RMSE for all indexes, indicating a more skilful performance than 

the SEAS5 model. A comparison of the results presented in Table 15 and Table 16 indicates that having 

a relatively modest amount of extra information in the training period enables NARMAX to capture 

more details of North Atlantic atmospheric circulation and generate considerably better models. 

Table 16 Verification statistics comparing the SEAS5 model hindcasts and forecasts with NARMAX, for the 

period 2006 to 2021. 

Index 
Correlation with observed RMSE 

SEAS5 NARMAX SEAS5 NARMAX 

DJF_NAO 0.62 0.77 0.99 0.79 

DJF_EA 0.03 0.77 0.92 0.57 

DJF_SCA 0.26 0.74 1.09 0.78 

Jun_SNAO 0.83 0.87 1.36 0.58 

Jun_EA 0.79 0.88 0.93 0.53 

Jun_SCA 0.37 0.83 0.90 0.52 

JA_SNAO -0.08 0.70 0.80 0.82 

JA_EA 0.43 0.90 0.64 0.40 

JA_SCA 0.04 0.72 0.95 0.54 
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Figure 33 Comparisons between NARMAX predictions and SEAS5 hindcasts and forecasts for the period 2006-

2021. 

5.4 Summary 

5.4.1 Analysis of the seasonal weather system based on sliding window NARMAX models 

The results presented here highlight the potential for NARMAX to add considerable value to current 

dynamical model predictions of NAO, EA and SCA, especially in the case of summer, where dynamical 

models tend to struggle to a greater extent than for winter. The NAO alone only accounts for some of 

the variability in temperature and precipitation over north-west Europe, making it useful to predict other 

important modes of atmospheric circulation variability. For example, [239] attributed the exceptionally 

high rainfall of winter 2013/14 over much of the UK primarily to a strongly positive East Atlantic 

pattern. It is therefore encouraging that the NARMAX results are strongly correlated with the 

observations in the case of EA and SCA as well as NAO. 

Splitting the summer into June and July/August shows that the dynamical models perform better at 

forecasting June NAO, EA and SCA from one month ahead than at forecasting July/August, as would 

be expected. The highest correlation with the observed data is 0.81, in the case of SEAS5 predictions 
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of June EA (compared with correlations of 0.94 and 0.90 for the 1956 and 1979 NARMAX runs for 

June EA respectively). Surprisingly, the NARMAX verification rate is similar for June and for 

July/August, indicating that there is less of an advantage over the dynamical models at relatively short 

time range, but that the accuracy of NARMAX does not decline as much for two and three months 

ahead, at least in the case of summer.  

Compared with the dynamical models, NARMAX predictions show a reduced “signal to noise” 

problem, i.e., the year-to-year variability of the NAO, EA and SCA is captured accurately, and while 

the amplitude of extreme events is at times underpredicted, it is generally underpredicted to a much 

smaller extent than is observed with the dynamical models. When analysing summer predictions for 

June and for July/August, it is clear that the “signal to noise” problem with the dynamical models 

increases markedly when predicting two and three months ahead as opposed to just one month ahead, 

at least in the case of summer. This is far less apparent with the NARMAX predictions, suggesting that 

NARMAX-assisted forecasts may be especially useful at reducing the “signal to noise” problem when 

forecasting further ahead. It is particularly encouraging that this appears to be true for summer, as the 

dynamical models tend to struggle more with seasonal predictions of summer than of winter. 

The lists of predictors that the sliding window NARMAX chooses for summer are mixed, but some 

consistent results stand out. The 1956 model (see supplementary material) selects the Canadian 

Archipelago/Baffin Bay sea ice concentrations (ArB) as one of the top two predictors of the June and 

July/August NAO. Solar activity with a 2-year lead time is most often chosen for the July/August NAO. 

The 1979 model favours tropical precipitation for predicting the June NAO, and April North American 

snow cover is most often selected for predicting July/August NAO. For the July/August NAO, the 1956 

model most often selects tropical rainfall, the East Siberian/Laptev Seas sea ice concentration is one of 

the two most selected predictors. ESL is also the most often selected predictor for June SCA, and the 

ArB is most often selected for July/August SCA. 

The 1979 model has less of a strong tendency to select sea ice concentrations. The April North Atlantic 

Dipole pattern of sea surface temperature anomalies is most selected for predicting the summer EA. For 

June NAO, April tropical precipitation patterns make up the two most often selected predictors, while 

for July NAO, April North American snow cover is most often selected.  

The recurrence of sea ice concentrations in the top ten predictors must be taken with some caution, for 

as [246] discussed, the recent sharp decline in sea ice concentrations could contribute to models 

overestimating the influence of sea ice and potentially issuing poorer forecasts for recent years. 

However, despite this issue, the NARMAX predictions consistently outperformed the dynamical 

models, especially in the case of high summer (July and August). 

The 1979 model most often selects the September North Atlantic Horseshoe (NAH) to predict the winter 

NAO, and the 1956 model has the May NAH as the second most often selected predictor. This is a 

reassuring result, as it ties in well with the findings of [274], which identified plausible physical 

explanations for observed links between the NAH and the subsequent winter NAO, particularly in 

relation to the NAH during the preceding summer and autumn. The 1956 model most often selects 

October Barents-Kara Sea ice concentrations for the winter NAO.  

The 1956 model also most often selects the May NAH in predicting the winter EA, but in the case of 

the 1979 model, the most commonly selected predictors are August Barents-Kara Sea sea ice 

concentrations for the winter EA, and October Labrador sea ice concentrations for the winter SCA.  
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[246] discussed links between solar activity (with a lead time of 6 months to 2 years) and the June 

tripole and the winter NAO. Neither of those were in the top ten predictors of the 1979 NARMAX 

model, although in the model from 1956, the April and July tripole both featured in the ten most 

frequently selected predictors. The October stratospheric polar vortex only appears in the top ten 

predictors of the 1956 model, which selects it second most in predicting winter EA and SCA. 

Lagged teleconnection links between sea ice concentrations, sea surface temperature anomalies, tropical 

precipitation and subsequent atmospheric circulation patterns have already been found. For example, 

there may be links between Barents-Kara Sea ice concentrations and extratropical atmospheric 

circulation via complex teleconnections with the Aleutian low and tropical sea surface temperature and 

rainfall variations [275]. This also ties in well with the 1956 NARMAX model frequently choosing 

October Barents-Kara sea ice concentrations as a predictor of the winter NAO. There is also evidence 

for a link between tropical precipitation anomalies and wintertime European precipitation events [276] 

and, correspondingly, the East Atlantic Pattern [247]. 

5.4.2 Summary 

These results demonstrate that NARMAX models have considerable potential to improve upon purely 

dynamical model based seasonal weather predictions, especially in the case of high summer (July and 

August), and therefore significantly extend the pilot study which focused on winter. It is important to 

provide NARMAX with a reasonably long training period (ideally upwards of 25 years) to ensure a 

higher level of accuracy. Links with individual indices that are frequently chosen by NARMAX are a 

basis for future work, both with the aim of evaluating the physical plausibility of the links identified by 

NARMAX, and for using NARMAX to assist the identification of new teleconnection links that have 

not previously been identified and explored. Follow-up work will downscale the three principal EOFs 

to determine the links between the EOF time series (both observed and predicted by NARMAX) and 

Northwest European temperatures and precipitation, including links with persistence and variability 

indices as well as maximum, minimum and mean values, that are relevant for end-users such as the 

agri-food, energy and tourism industries. 
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Chapter 6  

Efficient Mask Attention-Based NARMAX (MAB-NARMAX) Model 

Identification  

6.1 Introduction 

Data-driven modelling and complex system identification has consistently been a powerful technique 

in analysing and investigating systems and their behaviours [1, 28]. Sparse, interpretable, and 

transparent (SIT) parametric models are usually desirable and useful for understanding the inherent 

dynamics and interactions of the system states. An effective representation of the SIT modelling method 

is the famous NARMAX (nonlinear autoregressive moving average with exogenous inputs) model [1]. 

Moreover, a NARMAX model is usually compact and clear to explain and reveal the model structure 

in many applications where the primary modelling objective and task are to exploit and obtain an 

insightful description of how the system output explicitly depends on the system inputs [2]-[5]. 

In NARMAX modelling, model structure detection and selection are critical procedures for efficient 

and effective model identification [1, 277][10]. The detection and decision of the model structure can 

be influenced by lots of factors of the signals from the system, like signal noise, the sampling rate of 

the signal, and the richness of the input signal. Other factors, which come from the modelling process, 

like the maximum lags in the system signals and the nonlinear degree for the polynomial model, are 

also crucially important for reliable system identification [277]. 

For convenience of description, consider the case of systems with single input and single output (SISO), 

denoted by ( )u t  and, respectively, where t is the sampling index (time instant). The lagged input and 

output variables are defined as: 

 
( ) )

( ) )

( ), ( 1),..., (

( 1), ( 2),..., (

u

y

u

t

u t d u t d u

y

t n

y t y y

t

t t n

→ − − − −

→ − − −
 (6.1) 

where d is a time lag between the system input and output (usually 1d =  but can be set to zero if the 

system input ( )u t  instantly affects the system behaviour), un  and yn  are the maximum time lags. 

These lagged variables can be used to create a model term dictionary, which can be used to build models. 

In doing so, a sparse learning algorithm, e.g., the orthogonal least squares with error reduction ratio 

(OLS-ERR) algorithm [14], the term clustering based algorithm [278], and random search approaches 

[279, 280], can be used to determine a set of best models. 

It is important to define the model settings appropriately. Taking the choice of un  and yn  as an 

example, if these two hyper-parameters are much smaller than that of the ‘true’ system model, then 

many important lagged variables will not get involved in model construction, implying that the resulting 

model term dictionary will only contain partial information of the underlying system. Consequently, 

the finally identified ‘best’ model(s) may not be able sufficiently to characterize the system input-output 

behaviour. This is a fundamental issue in all system identification and data-driven modelling practices 

and applications, no matter what kind of models (e.g., NARX/NARMAX, traditional neural networks, 

deep neural networks) are used. Therefore, in practice, un  and yn  are usually set to be large enough 

to ensure that the dictionary is large enough for representing the input-output behaviour of the system 

of study. However, large un  and yn  means that larger numbers of candidate model terms are included 

in the dictionary, many of which are irrelevant and not useful for characterizing the system dynamics 
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but can only increase the difficulty in finding the best and most reliable models. So, it is always a 

challenge to properly define the model settings for transparent, interpretable, and parsimonious model 

identification of complex systems whose structure is completely unknown. Many methods and 

algorithms have been proposed for model structure determination in the literature. In [155], a novel 

mutual information-based integrated forward orthogonal search algorithm was proposed. This 

algorithm can comprehensively measure the contributions of the model terms for NARMAX model 

identification. In [281], an adjustable prediction error sum of squares (APRESS) was proposed for 

model structure detection. In [282], the performance of APRESS was compared with the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC), and it  was shown that APRESS 

outperforms AIC and BIC for robust and parsimonious model structure selection. In [283], an efficient 

alternative model structure selection algorithm using an exhaustive-like mechanism was proposed. 

These methods, as well as many other methods, were designed to prevent spurious model terms from 

being included in the final models; this is important for obtaining a set of best models that are not only 

transparent and parsimonious, but also have good generalization properties. 

Recently, a novel attention-based neural network named Transformer has been widely used [284]. A 

particular layer, ‘mask’, in the multi-head self-attention of Transformer is utilized for specializing (rare 

information), syntactic (dependency syntax and significant relations) and window roles (size of the 

signals and relative position) [285, 286]. The structure and good properties of mask layer motivate us 

to introduce the concept and scheme of ‘mask’ into system identification for model structure selection. 

This study aims to exploit the potential of the idea of mask layer or mask matrix used in Transformer 

and make use of it for better model identification of nonlinear dynamic systems. The work focuses on 

NARMAX model identification and the use of mask operations for model input variable and term 

selection. The performance of the proposed mask attention-based NARMAX (MAB-NARMAX) 

method is evaluated via three simulation case studies, and the experimental results confirm the good 

properties of the new method.  

6.2 The Mask attention-based NARMAX 

6.2.1 Mask layer 

A mask matrix is such a square matrix whose entries are either zero or one, that is, , [0,1],T

i

T

jM M 

[287]. A mask matrix can improve computational efficiency in complex neural networks [288]. 

Generally, mask matrices used in Transformer are defined in 2D space and use binary values to indicate 

which features (variables) or neurons are important and in favour of further processing in the next stage. 

 
Figure 34 The diagonal two-dimensional mask matrix 

The black dots in the diagonal mask matrix mean the value is 1, where , 1j jM = , while the white circles 

(or disks) indicate that the value is 0, where , 0,i jM i j=  . With the definition of the mask matrix [289], 

the self-attention in Transformer can be redefined as the mask-attention function: 
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where the queries , keys K and values kT d
V


  are three  separate parts transformed from the 

input dnX  ; TTM  , , [0,1]i jM   is the mask matrix; )(S   is the softmax function; kd  is the 

dimension of K . For details about mask matrix and mask-attention function, interested readers are 

referred to [290, 291], where several mask generation methods are presented. 

Note that variable and model term selection for NARMAX can be carried out in 1D space, where the 

model term index can be represented as a mask vector, as shown in (6.4). 

Specifically, the mask vector is defined as: 

 1

0,

1,

l

l

l

m if l s
M

m if l p


= =
= 

= =
 (6.4) 

where , 1,2,...,s p L= , L is the total length of the mask vector; s  and p  are random indexes of the mask 

vector, representing the location of ‘0’ in the mask while p  is the position of ‘1’.In this study, a random 

sampling and random generation approach is used to generate mask matrices (vectors). 

 
Figure 35 The proposed 1D mask matrix 

6.2.2 NARMAX and polynomial NARX 

The nonlinear autoregressive moving average with exogenous input (NARMAX) model is defined as 

[1]: 

 

( ) [ ( 1),..., ( ),

( ),..., ( ),

( 1),..., ( )] ( )

y

u
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y k F y k y k n

u k d u k d n

e k e k n e k
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 (6.5) 

where, ( )y k , ( )u k and ( )e k  are the system output, input and noise sequences, respectively; yn , un , 

and en  are the maximum lags for the system output, input, and noise; ][F   is some nonlinear function, 

and d is a time delay, typically set to 1d = . The noise terms ( )e k  are normally defined as the prediction 

errors. In practice, there are many types of model structures that can be used to approximate the 

unknown mapping ][F  , including power-form polynomial models [29], rational models [30] , neural 

networks [31], fuzzy logic-based models [292], and wavelet expansions [79, 293, 294]. The most 

commonly used model is the power-form polynomial  representation [1]. 

The polynomial NARX model is the special case of the polynomial NARMAX model, which does not 

include the noise-dependent or noise model terms [1]. NARX model is of the form: 

 ( ) [ ( 1),..., ( ), ( ),..., ( )] ( )y uy k F y k y k n u k d u k d n e k= − − − − − +  (6.6) 
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Equation (6.6)Error! can usually be rearranged as: 
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where  is the degree of polynomial nonlinearity, 1 2 ... mi i i  are model parameters, y u en n n n= + + , and 

 
1 2 1 2 1 2... ...

1

( ( ), ( ),..., ( )) ( ),1
m m m p

m

i i i i i i i i i i

p

f x k x k x k x mk
=

=    (6.8) 

 
( ), 1

( )
( ), 1

y

m

y y y u

y k m
x k

u k m mn n

n

n n

m 

 

−
= 

− + + +
 (6.9) 

More specifically, (3) can be explicitly written as: 

 
1 1 1 2 1 21 1 1
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The degree of a multivariate polynomial is defined as the highest nonlinear order among all the model 

terms. Like the model ( ) 0.5 ( 1) ( 1) 0.25 ( 1) ( 2)y k y k u k y k u k= − + − + − − , the degree of nonlinearity is 2, that 

is, 2= . 

6.2.3 MAB-NARMAX model 

 

Figure 36 The structure and process of the proposed MAB-NARMAX method 

The general process of the proposed MAB-NAMRAX is shown in Figure 36. On the basis of the mask 

vector and the polynomial NARX model defined by (3) and (9), respectively, we define a mask attention 

based NARX model as: 

 
1 1 1 1 2 1 2 11 11

... ...10 1
ˆ )( ) ... ( )... ( )) ((

n n n
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1

1 1 2 1 2, , ,..., . }{0,1} { ..n

p nm p i ii i i i   is a mask matrix with binary values in each mask layer. Equation 

(6.11) is the description of the output of the final layer in Figure 36. For each layer in the masked 

NARMAX model, the NARMAX maps the discrete terms to an output as: 

 ( ) ( , )
lM l l l lS X M A X K=  (6.12) 

 ( , )l l l lK KA X X=   (6.13) 
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1 ( ( ))

ll lMX F S X+ =  (6.14) 

where lM  is the mask matrix in the l-th layer, ( )
l lMS X  is the regressors selected by the mask matrix in 

the l-th layer,  means doc product between mask matrix and the model terms from former layer; lX  

is the input signal of the l-th layer, lK  is the time lagged operation, ( , )l lA X K  are the lagged variables of 

lX ; 1lX +  are the selected model terms. 

Then, the current best model is compared with the target signal to evaluate the performance of the 

identified NARMAX model. A backward-optimization algorithm is applied to adapt the values of the 

mask matrix for a better NARMAX model. Once the error of the identified model is below a specified 

threshold (tolerance), the MAB-NAMRAX modelling procedure will terminate. 

6.3 Case study 

To demonstrate the performance of the proposed method, three nonlinear systems with different noise 

are considered. For comparison purposes, LASSO [295] and LSTM [296] are also utilized to solve the 

same problems. To better evaluate the these methods, multi-step-ahead (long-term) prediction [297], 

rather than one-step-ahead prediction is considered.  

The each of the three systems, a total number of 500 input-output data points  were recorded, 70% of 

which (consisting of the first 350 points) was for training, 20% (consisting of the next 100 points) was 

for validating and the remaining 10% (consisting of the final 50 data points) was for test.  

Following [155], the maximum time lags for the system signals in the proposed MAB-NARMAX were 

chosen to be 5, and the nonlinear degree was set to be 3. For comparison purposes, the input vector for 

the LASSO and LSTM models had the same predictors as those for the MAB-NARMAX. In this study, 

the configurations of the LSTM network were as follows: 

 The number of maximum echoes M = 250. 

 The number of neurons in the hidden layer N = 200. 

 The initial learning rate 𝜆 = 0.005. 

 The number of layers L = 4. 

6.3.1 Example 1: A System Contaminated by White Noise 

Consider a nonlinear system contaminated by white noise as below: 

 
( ) 0.6 ( 1) 0.5 ( 2) 0.2 ( 2) ( 3)

0.25 ( 2) ( 3) ( )

y t y t u t u t y t

u t u t e t

= − − + − − − −

− − − +
 (6.15) 

where the input ( )u t  is uniformly distributed on [ 1,1]− , while the noise ( )e t  is Gaussian with zero 

mean and standard deviation of 0.025. It was assumed that the ‘true’ system model structure was not 

known. With these model settings, the proposed method was applied to these 500 data points. 

The identified model structures by the two methods are listed in Table I, from which it can be seen that 

the proposed method correctly identified all the four ‘true’ model terms, whereas Lasso selected two 

more spurious linear and one more nonlinear model terms and LSTM could not generate a transparent 

model structure. The root means square error (RMSE) and mean absolute error (MAE) of the three 

models produced by MAB-NARMAX, LASSO and LSTM are shown in Table II. 
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Table 17 Identified model structure for Example 1 

Index Term True model 
Model by 

MAB-NARMAX 

Model by 

LASSO 

1 𝑢(𝑡 − 1) × × -0.0064 

2 𝑢(𝑡 − 2) 0.5 0.4989 0.4933 

3 𝑢(𝑡 − 3) × × -0.0054 

4 𝑦(𝑡 − 1) -0.6 -0.6022 -0.5873 

5 𝑢(𝑡 − 2)𝑢(𝑡 − 3) -0.25 -0.2476 -0.2373 

6 𝑢(𝑡 − 2)𝑢(𝑡 − 5) × × -0.0115 

7 𝑢(𝑡 − 2)𝑦(𝑡 − 3) -0.2 -0.2060 -0.1798 

Table 18 Statistical criteria performance for Example 1 

Method 
Testing set 

RMSE MAE 

MAB-NARMAX 0.0209 0.0173 

LASSO 0.0224 0.0188 

LSTM 0.1091 0.0544 

Note that in Table 17 here (and in Table 20 and Table 21 in the following sections), all model terms 

selected by either MAB-NARMAX or Lasso are isted in the 2nd coclumn. The symbol ‘X’ indicates that 

the model term is either not in the true system model or not selected by MAB-NARMAX. 

To graphically show the performance of all models on the testing dataset, a comparison between the 

model prediction and the measurement is shown in Figure 37. From which it can be observed that all 

models show excellent performance for the simulation example here, but a closer inspection can reveal 

that MAB-NARMAX outperforms LASSO and LSTM. 

 
Figure 37 Comparisons between MAB-NARMAX, LASSO and LSTM for Example 1 on the training, 

validating, and testing sets 

6.3.2 Example 2: A System with both Internal and Additive Noise 

Consider the following system: 

 ( ) 0.6 ( 1) 0.2 ( 2) ( 3) 0.5 ( 2) 0.25 ( 2) ( 3) ( )z t z t u t u t u t u t u t e t= − − − − − + − − − − +  (6.16) 

 ( ) ( ) ( )y t z t t= +  (6.17) 

where the input is following the uniformly distribution on [-1,1], the internal noise 2( ) ~ (0,0.01 )e t N  and 

the additive noise 2( ) ~ (0,0.1 )t N . 
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Again, the ‘real’ model structure was set to be a black box. The identified model structures by MAB-

NARMAX and LASSO are listed in Table 19, where the proposed method correctly identify all four 

‘true’ model terms with almost the same parameters, however, Lasso selected a great number of 

spurious model terms.  This results in that the parameters of the selected model terms by Lasso are quite 

different from the ‘true’ model structure. The values of RMSE and MAE of all models by are listed in 

Table 20. The predictions from all models on the testing dataset, are shown in (6.16). Again, a closer 

inspection can reveal that MAB-NARMAX shows better prediction performance.  

Table 19 Identified model structure for Example 2 

Index Term 
True 

model 

Model by 

MAB-NARMAX 
LASSO Model 

1 u(t − 2) 0.5 0.5258 0.5138 

… … × × … 

4 y(t − 1) -0.6 -0.5407 -0.1549 

… … × × … 

7 u(t − 2)u(t − 3) -0.25 -0.2277 -0.2241 

 … × × … 

9 u(t − 2)y(t − 3) -0.2 -0.2157 -0.0388 

 … × × … 

15 y(t − 3)y(t − 5) × × -0.0110 

Table 20 Statistical criteria performance for Example 2 

 

Method 
Testing set 

RMSE MAE 

MAB-NARMAX 0.1074 0.0840 

LASSO 0.1090 0.0861 

LSTM 0.1857 0.1472 

 
Figure 38 Comparisons between MAB-NARMAX, LASSO and LSTM for Example 2 on the training, 

validating, and testing sets 

6.3.3 Example 3: the input is driven by a non-white noise 

Consider the following nonlinear system: 

 ( ) ( ) 0.5 ( 1)w t e t e t= − −  (6.18) 

 ( ) 0.6 ( 1) 0.2 ( 2) ( 3) 0.5 ( 2) 0.25 ( 2) ( 3) ( )y t y t u t y t u t u t u t w t= − − − − − + − − − − +  (6.19) 
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where the input u(t) is uniformly distributed on [ 1,1]− and the internal noise 2( ) ~ (0,0.05 )e t N .Model 

structures identified by MAB-NARMAX and LASSO methods are listed in Table 21, in which the 

proposed method can precisely find all the four ‘true’ model terms, whereas Lasso selected many 

spurious model terms. The values of RMSE and MAE of all models are listed in  

Table 22. 

The predictions from the two models on the whole dataset are shown in Figure 39. While all models 

give excellent predictions, a closer inspection can show that MAB-NARMAX performs better. 

Table 21 Identified model structure for Example 3 

Index Term 
True 

model 
MAB-NARMAX LASSO Model 

1 u(t − 1) × × -0.0123 

2 u(t − 2) 0.5 0.5045 0.50119 

… … × × … 

Er5 y(t − 1) -0.6 -0.6150 -0.7023 

… … × × … 

9 y(t − 5) × × -0.0119 

… … × × … 

14 u(t − 2)u(t − 3) -0.25 -0.2455 -0.2361 

… … × × … 

17 u(t − 2)y(t − 3) -0.2 -0.2065 -0.1630 

… … × × … 

33 y(t − 4)2 × × 0.0148 

 

Table 22 Statistical criteria performance for Example 2 

Method 
Testing set 

RMSE MAE 

MAB-NARMAX 0.0489 0.0385 

LASSO 0.0489 0.0402 

LSTM 0.2307 0.1493 

 
Figure 39 Comparisons between MAB-NARMAX, LASSO and LSTM for Example 3 on the training, 

validating, and testing sets 

6.4 Summary 

This study proposes a novel mask attention-based NARMAX (MAB-NARMAX) method for solving 

the model structure detection problem which is a fundamentally important and challenging task in most 
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real applications. MAB-NARMAX makes use of the power and good properties of NARMAX, and the 

efficient computational and information processing capability of the mask matrix used in the 

Transformer neural network model. The mask matrix used in MAB-NARMAX is actually a mask 

vector; it has a simple structure but can help produce more precise, efficient and parsimonious models 

than the most commonly used state-of-the-art methods – LASSO and LSTM for the multi-step-ahead 

(long-term) prediction, as shown by the three numerical examples. The application of MAB-NARMAX 

model is not limited to the polynomial NARX and NARMAX models. It can also be applied to any 

linear-in-the-parameters modelling. Still, a further comprehensive study and investigation on the mask 

matrix and the backward optimization in MAB-NARMAX will be carried out in the future. 

The limitations of this study lie in two aspects. First, we have only used mask matrix as feature selection. 

In the future, more investigations on the backward optimization scheme will be carried out. Second, our 

experimental studies focus on  three numerical examples, but in the future, more analyses on real-world 

application will be investigated. 
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Chapter 7  

Conclusions and Future Work 

This section encapsulates the key findings and contributions of this study. The research commenced 

with an exploration of model uncertainty, both qualitatively and quantitatively, to afford a 

comprehensive understanding of model uncertainty in the context of NARMAX. Subsequently, three 

innovative methods were introduced: DeepNARMAX, Sliding Window NARMAX, and Mask 

Attention-based NARMAX, where model uncertainty was treated as a hyperparameter of the model. 

Lastly, the thesis outlined the study’s limitations, future work directions, and concluding remarks. 

7.1 Summary of the thesis work 

This thesis explores model uncertainty in NARMAX modelling, a pervasive issue in system 

identification and modelling. The study addresses the absence of systematic research on model 

uncertainty in current literature, highlighting its impact on decision-making, private information, and 

complex dynamic systems. The research is also driven by a recent shift that treats model uncertainty 

not merely as a negative impact, but as a catalyst for probabilistic modelling and prediction.  

In chapter 3, a systematic study about the model uncertainty in NARMAX modelling is present. 

NARMAX is lauded for its ability to accurately identify systems, construct clear and interpretable 

models, and provide precise system predictions. However, real system identification remains a 

challenge due to an insufficient understanding of the system. Therefore, identifying the key factors and 

their internal impacts on the system through modelling techniques becomes crucial. A central issue is 

dealing with model uncertainty, which arises from differing NARMAX hyperparameters 

configurations. Such uncertainty impacts the selection of optimal models and the production of 

predictive values for system responses. As a result, defining, analysing, and quantifying NARMAX 

model uncertainties are vital to mitigate or minimize their effects on the modelling process. Probabilistic 

models, which provide a broader set of information and valuable predictive values, have gained 

popularity in recent years. However, due to the NARMAX model’s post-training structure, multiple 

NARMAX models are required to offer probability information, which in turn increases these models’ 

inherent uncertainty. 

The chapter starts with a brief introduction to NARMAX modelling and the Forward Regression 

Orthogonal Least Squares (FROLS) algorithm, focusing primarily on polynomial-based models due to 

their greater interpretability and stability. It also provides both qualitative and quantitative assessments 

of uncertainties relating to these models, defining them as ‘NARMAX Model Uncertainty Sets’ 

employing set theory. The observations made establish a direct correlation between the size of these 

uncertainty sets and the values assigned to their corresponding hyperparameters. The chapter concludes 

by defining the objective function related to these uncertainties and outlining the optimization processes 

for generating either singularly optimal or probabilistically optimal versions. This process is akin to 

obtaining the best possible versions within an acceptable range for those parameters. This 

comprehensive approach to understanding and handling model uncertainties augments the robustness 

of NARMAX modelling and offers a pathway to more effective and reliable system identification and 

prediction. 

In chapter 4, an innovative method, the DeepNARMAX network modelling is proposed. 

DeepNARMAX network primarily consists of several layers including the input, linear transformation, 
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driller, generator, model detection, and output layers, each catering to a specialized function towards 

generating a reduced, linearised, and optimal model. Yet, for optimal feature selection and maintaining 

a proportional balance in representation from differing systems, the thesis introduces a unique gate 

weight hyperparameter. This new hyperparameter, optimizable through the PSO-based method, 

describes the number of times each feature vector is selected during network training or the level of 

influence it exerts on the system. A series of comprehensive experiments affirm the efficiency of 

DeepNARMAX, showing that it retains similar interpretability and accuracy as compared to classic 

NARMAX. The DeepNARMAX network was extensively tested and validated using three simulated 

systems and two real-world power and weather forecasting models, proving its efficacy in dynamically 

complex situations. Its effectiveness is further demonstrated through comparison with other state-of-

the-art deep sequential neural networks, such as Informer and LSTM. 

The main contribution of this work is the introduction of the deep polynomial NARMAX network and 

its gate weight hyperparameter. These innovations address dimension explosion issues encountered in 

traditional NARMAX modelling. The DeepNARMAX approach enhances analytical capabilities for 

high-dynamic scenarios while maintaining the basic pillars of traditional NARMAX model and 

effectively handling uncertainties during the modelling process. This new approach not only 

significantly enhances the applicability and efficiency of NARMAX models but also provides a more 

comprehensive understanding of complex systems. 

In Chapter 5, a Sliding Window NARMAX (SW-NARMAX) method is introduced, promising to 

significantly enhance seasonal weather modelling and forecasting. The implementation of the SW-

NARMAX model is shown to efficiently engage with system’s localized characteristics—the model 

segments the dataset using a concept of a sliding window and subsequently applies NARMAX 

modelling within this specific window to generate a cohesive NARMAX model ensemble for accurately 

representing the system. Validation of the SW-NARMAX method involves its application to seasonal 

weather forecasting, utilizing historical data spanning 43 years to perform modelling and prediction 

operations. The research results effectively substantiate the high performance and reliability of SW-

NARMAX models in the accurate characterization and prediction of weather systems. Delving into the 

analytical processes, the results from the SW-NARMAX model reveal its potential to significantly 

augment current dynamical predictions, particularly for summer weather forecasts where traditional 

models face challenges. The NARMAX-derived models exhibit a reduced ‘signal to noise’ issue, 

demonstrating consistent accuracy in capturing year-to-year weather variability, even during extreme 

events. 

A notable feature of SW-NARMAX models is their ability to manage data scalability while effectively 

focusing on specific localized system dynamics. The dynamic segmentation of the data using sliding 

windows allows the model to create localized NARMAX representations which, when combined, offer 

an overarching system perspective. This enhances the model’s adaptability in complex and changing 

environments. The predictors chosen by the SW-NARMAX models for weather forecasting show a 

promising correlation with known influential factors like sea ice concentrations and atmospheric 

circulation patterns. However, it’s also noted by researchers that the recent sharp decline in sea ice 

concentrations could lead to potential overestimations in sea ice influence, yet despite this issue, SW-

NARMAX predictions consistently outperformed the dynamical models. 

In chapter 6. a novel Mask Attention-based NARMAX (MAB-NARMAX) method to address the 

fundamentally important and challenging task of model structure detection, which is often an issue in 

real-world applications. MAB-NARMAX leverages the robust features of NARMAX as well as the 

computational efficiency and information processing abilities of the mask matrix employed in the 
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Transformer neural network model. Despite possessing a simple structure, the mask vector used in 

MAB-NARMAX ensures the generation of more precise, efficient, and parsimonious models compared 

to commonly used state-of-the-art methods like LASSO and LSTM, particularly for the multi-step-

ahead prediction. This superiority is evidenced through three numerical examples. While MAB-

NARMAX’s application is not confined to polynomial NARX and NARMAX models and could extend 

to any linear-in-the-parameters modelling, future work will exhibit a comprehensive analysis of the 

mask matrix and the backward optimization in MAB-NARMAX. 

7.2 Limitations and future work 

This thesis primarily focuses on the exploration of uncertainty within NARMAX models. For the 

inaugural time, a systematic qualitative and quantitative analysis of uncertainty in NARMAX models 

was executed, embedding uncertainty as a fundamental factor within NARMAX modelling. We also 

introduced three novel modelling techniques rooted in NARMAX and applied them to several intricate 

dynamic nonlinear system models for validation analysis. The results compellingly showcased their 

feasibility and dependability. 

However, our work has certain shortcomings and deficiencies that necessitate further research and 

enhancement in future studies. 

Firstly, pertaining to the quantification of uncertainty in NARMAX models, we solely analyzed 

polynomial NARMAX model uncertainties quantitatively, bypassing other variants of NARMAX 

models such as wavelet variations or rational ones. Hence, additional research about the global model 

uncertainty is imperative. 

Regarding our proposed DeepNARMAX model, which is established on polynomial based NARMX 

models; since these cannot accurately delineate certain non-linearities, it necessitates the incorporation 

of more non-linear functions to aptly illustrate systems. Therefore, it is necessary to develop a 

DeepNARMAX network that includes different non-linear functions for more complex system 

modelling. 

In the context of the Sliding window NARMX model, this study exclusively investigated ensemble-

NARMX modelling with varying structures but did not delve into ensemble-NARMX modelling with 

altering parameters. Practical avenues for future work involve combining structural uncertainties with 

parameter uncertainties for a comprehensive depiction and examination of systems. 

With respect to the Mask-attention based NARMX model, its efficacy was confirmed using simulation 

models, but validating the model using real-world systems is suggested for future research. This will 

necessitate comparisons with other modelling methods to accomplish comprehensive verification. 

7.3 Future development 

7.3.1 Explainable AI for complex and dynamic systems 

Explainable Artificial Intelligence (XAI) has gained considerable attention, reflecting a growing interest 

in understanding and interpreting the predictions of intricate computational models, particularly deep 

learning models. The complexity inherent in these models often results in a “black box” scenario, where 

the interpretability of the model becomes challenging. This lack of transparency becomes particularly 

acute in fields where there is an absence of ‘ground truth’, such as climate change and space weather 

forecasting. The deficiency of accurate ground truth data coupled with incomplete physical 
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understanding presents obstacles in interpreting the predictions of the AI systems. Various contingent 

factors compound this issue, including the lack of comprehensible models or benchmarks for 

comparison which ultimately impede the evaluation of the AI system’s explanatory capabilities. 

NARMAX provides a robust approach to these interpretability challenges. These models, which may 

feature polynomial or other functional forms, enable straightforward interpretation, delivering insights 

into the dynamics of the system and the interrelation between variables. Furthermore, the NARMAX 

methodology includes systematic procedures for identifying the most significant terms within the model. 

This process assists in discerning which variables and interactions influence the system’s behaviour 

most profoundly thereby helping in understanding complex system dynamics. Functioning beyond 

simple predictive capabilities, NARMAX models can describe the dynamics of a system in a manner 

that uncovers underlying mechanisms, even in situations where the physical principles are not entirely 

comprehensible. 

Despite the promising potential of NARMAX models as an XAI tool, there remain several challenges 

related to their application to complex and dynamic systems that are without a well-understood physical 

basis. These challenges include: 

• Model Complexity: The complexity of nonlinear systems can often result in a large number of 

terms in NARMAX models, which can render the interpretation of these models difficult. 

• Data Requirements: The construction of accurate NARMAX models often demands extensive 

and high-quality data. The availability of such data can be a major challenge, especially in fields 

like space weather forecasting and climate change. 

• Computational Demand: The tasks of structure detection, parameter estimation, and model 

validation can require considerable computational resources. This computational demand can 

be particularly problematic for large-scale problems. 

The proposed NARMAX-based approaches show remarkable potential for explicitly modelling 

nonlinear dynamics, especially in contexts where traditional physical modelling might be arduous. As 

an XAI method, NARMAX-based models pose solutions to these challenges, turning them into valuable 

tools for extracting insights from complex and dynamic systems. By further developing and refining 

these techniques, it is predicted that they will increasingly contribute to a more transparent and 

comprehensible AI landscape. 

7.3.2 Green AI 

Artificial Intelligent Energy Efficiency, or "Green AI," represents an innovative direction in AI research 

and development. The primary focus is to meld methods for devising AI models that are 

environmentally amicable and exhibit high energy efficiency. "Green AI" underscores the importance 

of mitigating the excessive carbon footprint linked to the deployment and training of AI models, a 

challenge stemming from the considerable computational requirements of massive-scale deep learning 

models. The objective is to attain a balance between environmental impact and AI advances and 

operationality by optimising algorithms, more effective utilization of hardware, and considering the 

energy source in computational environments. 

NARMAX based model functions as a valuable instrument for anticipating and modelling intricate 

nonlinear systems. The model is influential in scenarios where external factors and the system's past 

values are integral to its behaviour. Incorporating NARMAX based methods into Green AI entails 

harnessing the model's efficiency and interpretability to foster sustainable AI solutions. Here are ways 

NARMAX can contribute to fuelling Green AI: 
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• Efficiency: NARMAX based models can encapsulate the dynamics of complex systems without 

the extensive computational requirements inherent in deep learning models. Such efficiency is 

conducive to the Green AI's objective of reduced energy consumption. 

• Interpretability: NARMAX based models, owing to their structured nature, grant a clear insight 

into how outputs are influenced by inputs. Such transparency lends credibility and accessibility 

to AI systems, feeding into XAI's element of Green AI by offering models that are 

environmentally friendly and interpretable. 

• Adaptability: NARMAX based models can be adjusted to various domains, evidenced by their 

use in climate modelling and renewable energy forecasting - domains essential to understanding 

and mitigating environmental impacts. This adaptability ensures that Green AI initiatives can 

freely exploit the benefits of accurate and efficient modelling across diverse environmental 

contexts. 

• Optimization: The parameters of NARMAX models can be further optimized for increased 

accuracy and efficiency, leading to sustainable AI solutions. Advanced optimization techniques 

can quell the computational load and energy consumption of model training and inference, 

thereby aligning with Green AI fundamentals. 

By blending NARMAX based methods into Green AI's endeavour, researchers can create AI solutions 

that are efficient in modelling intricate systems, and at the same time, resonates with sustainability 

goals. Such amalgamation underscoring the potential for AI to wield a positive influence on 

environmental challenges whilst maintaining its commitment to transparency and interpretability. 
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