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Chronic Health Conditions, and Multi-morbidity

by Samuel John Watchorn

Background: Falls in older adults represent a major cause of distress, injury, and
mortality. The UK is experiencing concurrent population ageing, increases in the
prevalence of multi-morbidity, and a growing care home population. Therefore, an
understanding of how multi-morbidity impacts falls risk in care home residents is
needed such that effective prediction models can be developed for this population.
Data: Data from the Health Data Research UK learning care homes project speci-
fying care home resident interactions with emergency care and in-hospital wards in
the County Durham and Darlington NHS trust were analysed to answer the research
question.
Methods: In the sample of 4002 care home residents chronic disease records were
grouped using dimensionality reduction and K-means cluster analysis. The result-
ing clusters were used as an explanatory variable during negative binomial regres-
sion analysis with the number of fall presentations per care home resident to the
emergency department as the outcome variable. Additional models explored asso-
ciations between individual chronic conditions, frailty measures, and interactions
between the chronic conditions with the fall presentations outcome.
Results: The combined cluster and regression analysis indicated a gradient of effect
sizes relating to the type of multi-morbidity present. The Non-Specific-High-Burden
(117.8%, 76.1%-169.2%), Cardiovascular-Metabolic (63%, 30.1%-103.7%), Neurological-
Psychiatric (41.4%, 17.3%-70.2%), Cardiovascular (23.8%, 3.4%-47.9%) clusters, were
all associated with increases in fall presentations when compared to the cluster in-
dicating the absence of chronic disease burden. Of the individual chronic health
conditions, hypotension (61.1%, 38.0%-87.9%), dementia (32.3%, 19.3%-46.7%), and
peripheral neuropathy (33.7%, 7.7%-65.7%) exhibited the largest impact on falls risk,
with smaller effects observed for cerebrovascular disease (18.6%, 2.6%-37.1%), atrial
fibrillation (21.8%, 8.4%-36.8%), and osteoarthritis and degenerative joint diseases
(15.6%, 1.3%-31.7%). Further models indicated the relationship of frailty with falls is
dependent on the index used.
Conclusions: The findings indicate that multi-morbidity impacts falls risk differ-
ently depending on the combination of chronic health conditions experienced. How-
ever, the role of multi-morbidity in falls risk is complex and in need of further re-
search. Improvements in standardised reporting of fall events at the care home level
and linking of this information with electronic health records is the next step for the
development of effective falls risk prediction models.
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Glossary of Terms

Term Description
Accuracy: The proportion of correct classifications in all classifications

made by a model. This can be misleading in data with a
large class imbalance as predictions of all classes are weighted
equally, meaning an algorithm can obtain high accuracy by re-
turning the majority class.

Area under the Curve
(AUC):

Summary measure of model discrimination. Patients are
ranked based on the model predicted probability of the out-
come occurring. Then for each threshold value the sensitivity
and 1-specificity are calculated. These values are plotted on a
curve, the area under which summarises the ability of a classi-
fier algorithm to separate the classes of an outcome. An AUC
of 1 shows perfect discrimination, with 0.5 showing the model
is no better than random chance.

Calibration: Agreement between risk of an outcome predicted by an ML
model and the proportion of the outcome in the data. Gener-
ally, for individuals with the same characteristics and therefore
the same predicted risk of the outcome (X%) there should be on
average X in 100 cases in the data with those characteristics for
a model to be well calibrated (Calster et al. 2016).

Care Home: Care homes provide accommodation and personal care for peo-
ple who need extra support in their daily lives. Also called
‘Residential Care’.

Classification: When the output variable has a finite set of values the learn-
ing problem is referred to as classification. Binary classification
refers to when the outcome variable only has two possible val-
ues.

Cost Function: Average loss over entire training dataset, optimisation strate-
gies aim to minimise this average loss over multiple iterations.

Cross-Validation: Randomly splitting the training data into equal sized folds such
that a separate model is evaluated on each fold having been
trained on the others. Data can be stratified to match distribu-
tions in the sample in each fold.

Decision Boundary: In binary classification, an ML model will classify a point as
having the outcome of interest above this threshold. At the de-
cision boundary, the class of a point is ambiguous.

External Validation: Testing of a model in data not used during the training phase.
Ensemble Learning: Modelling approaches, which build multiple weaker models

and combine their predictions for improved overall perfor-
mance.
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Fall: Sudden, involuntary transfer of body to the ground and at a
lower level than the previous one (Rubenstein et al. 1990).

Hyperparameter: Parameter whose value determines the learning process of an
ML algorithm. This is different to normal parameters, which
are derived through model training.

Hyperplane: Hyperplanes are used as decision boundaries in ML algorithms
for classification of data points.

ICD10 Code: International Statistical Classification of Diseases and Related
Health Problems (ICD) standardised codes.

Machine Learning: An automated computer based process, which extracts patterns
from data.

Model Discrimination: Ability of a model to distinguish between patients with and
without a particular outcome.

Negative Predictive
Value (NPV):

Proportion of true negative cases in all cases classified as nega-
tive by an ML algorithm.

Older Adult: Individual aged 65 or over.
Overfit: Situation when an ML model is fit too closely to the training

data and therefore cannot classify new instances effectively.
Overfit models will have high performance on training data but
a large drop in performance in testing.

Penalties: A penalty (or regularisation term) is included to avoid overfit-
ting a model to the training data such that the resulting algo-
rithm is generalizable to new instances.

Positive Predictive Value
(PPV):

Proportion of true positive cases in all cases classified as posi-
tive by an ML algorithm.

Sensitivity: The proportion of correctly classified positive cases by an algo-
rithm in all cases that are positive.

Specificity: The proportion of correctly classified negative cases by an al-
gorithm in all cases that are negative.

Supervised Learning: Where historical values of the outcome variable are used to
train a predictive model.

Training Set: Data used by ML algorithm to identify a pattern between input
and outcome data. This data is used for optimising weights
and parameters in an ML model.

Testing Set: Data not seen by ML model during the training phase, which
is used to assess the generalisability of the model. (Also called
a holdout set)

Type-1 ED A consultant led 24 hour service with full resuscitation facilities
and designated accommodation for the reception of accident
and emergency patients

Loss Function: Function for determining the difference between a prediction
and an actual observation in Supervised Learning.

Underfit: Situation when an ML model is oversimplified and cannot clas-
sify effectively in the training or testing sets. This can be the
result of under-training, over regularisation, or missing input
variables.

Unsupervised Learning: Training an ML model where historical values of the outcome
variable are not available. Clustering is a common form of un-
supervised learning task.
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From the young man who was lost,
For those that helped him find his way.
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Chapter 1

Introduction

1.1 Background

This thesis is an investigation into the role of multi-morbidity in determining the risk

of falls by care home residents aged over 65. The following chapter summarises the

essential background of the topic to contextualise the selection of research question

and study aims in Section 1.5.

Falls are defined as a sudden event that results in a person coming to rest on the

ground or other lower-level surface unintentionally, which includes falling back-

wards into bed or chairs (Rubenstein et al., 1990). A distinction is often drawn be-

tween ground-level falls, and falls from height due to the differences in severity and

outcomes associated with these falls (Yokota et al., 2020). Falls from height are more

associated with younger people and work related accidents (Yokota et al., 2020). For

the remainder of this thesis, any discussion of falls will refer to ground level falls

only, because these are the most common fall event in care home residents aged

over 65 (Talbot et al., 2005; Rubenstein, 2006). This thesis uses the common defini-

tion of multi-morbidity, which is the co-occurrence of two or more chronic health

conditions in the same individual (Johnston et al., 2019). The definition for chronic

health conditions used in this thesis is that of a long term physical health condition

used by the NHS. This is a health problem requiring management over an extended

time period that cannot be cured and instead only controlled or managed through

medication and/or other therapies (NHS England, 2023b).

The use of the term care home refers to UK residential care homes, which provide

sheltered accommodation to residents and support for daily living activities such as
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cooking, washing, dressing, medications, and using toilets (NHS England, 2022).

Residential care homes in the UK are distinct to nursing homes, where one or more

qualified nurses are also present in the care team (NHS England, 2022). The presence

of nursing staff reflects the increased complexity of care needs present in the nursing

home setting (NHS England, 2022). Henceforth the the term care home is used to

indicate the residential care home setting, which is the focus for this research.

Four areas are addressed in separate sections of this chapter as avenues to ex-

plore the background of falls risk in older adults. Section 1.2 addresses why predict-

ing falls in older adults is important by presenting their health effects (Section 1.2.1),

the effect of the ageing population (Section 1.2.2), how falls impact the urgent and

emergency care system (Section 1.2.3), and the benefits of predicting falls in older

adults (Section 1.2.4). Section 1.3 introduces the different types of risk factors for

falls, with explanations of the how these risk factors are categorised (Section 1.3.1),

and the relationship of falls with frailty (Section 1.3.2).

Having explored the context that falls risk prediction models are used in, find-

ings from the falls risk prediction literature are summarised in Section 1.4 based on

where the sample is located. Findings from the community dwelling, and care home

settings are summarised separately in Sections 1.4.2 and 1.4.3 respectively. Then a

joint discussion of how studies incorporated multi-morbidity into their models and

the scope for improvement is presented in Section 1.4.4. Following this the research

question, aims, and objectives are presented in Section 1.5, which draw from the key

themes presented in the preceding sections.

1.2 Why Predicting Falls in Older Adults is Important

1.2.1 How Falls Impact the Health of Older Adults

Falls represent the second most common cause of unintentional injury and death

worldwide across all age groups, with people aged over 60 particularly susceptible

to the worst outcomes (World Health Organisation, 2021). In the UK, one in three

people aged over 65 will experience at least one fall per year, with this proportion

rising to one in two people aged over 80 (Health & Care Excellence, 2013; Bergen,

Stevens, and Burns, 2016; NHS, 2021). This high prevalence in older patient groups
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meant falls in England were the leading cause of injury in adults and the 9th largest

cause of Disability adjusted Life Years (DALYs) during 2013 (Public Health England,

2022).

The effects that falls have on older adults are profound and include distress,

pain, injury, reduced mobility, loss of confidence, loss of independence, and mor-

tality (Health & Care Excellence, 2013). Falls also contribute to over two thirds of

unintentional injuries, which are the fifth most common cause of death among older

people (Pasquetti, Apicella, and Mangone, 2014). Traumatic injuries resulting from

falls can range from minor abrasions and bruising, fractures, to serious traumatic

brain injuries (Rubenstein, 2006). Due to the possible severity of these fall related

injuries, falls in people aged over 65 are a major contributor to increased mortal-

ity with only half of those admitted to hospital for a fall surviving beyond a year

(Rubenstein, 2006). Furthermore, a fall may lead to a hospital admission and period

of immobilisation, which in turn leads to an increased risk of subsequent falls due to

a reduction in muscle strength (Stalenhoef et al., 2002; Coker et al., 2015; Valenzuela

et al., 2018). This means a major impact of a fall in older people is the increased risk

of subsequent falls. Furthermore, falls can also elicit non-injurious effects such as

the psychological impact of fear of further falls, although this fear of falling can also

be present in people who have not yet fallen (Boyd and Stevens, 2009). Falls and the

fear of falls can lead to reduced activity, changes in gait, and depression, which have

all been found to raise the risk of future falls creating a vicious cycle (Stalenhoef et

al., 2002; Pasquetti, Apicella, and Mangone, 2014; Makino et al., 2017). Therefore,

the prevention of falls could elicit important benefits for patients.

However, it is important to recognise that not all falls can be prevented in a safe

and efficient manner. While the prevention of falls is highly desirable, implemen-

tation of zero falls strategies can have unintended consequences, and would have

a large opportunity cost due to the reduced efficiency of falls prevention interven-

tions (King et al., 2016; Public Health England, 2018). Additionally, zero falls strate-

gies can also be harmful to residents through use of immobilisation and restraint

to reduce falls risk, which are associated with rapid decline and worsened clini-

cal outcomes in older adults (Gastmans and Milisen, 2006). Therefore, a measured

response to the complex issue of falls is needed, where the prevention of falls is
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balanced against the capacity to benefit from intervention, and care home resident

independence is supported rather than curtailed.

A distinction needs to be drawn between falls in the community and the care

home setting due to the differences in both the frequency of falls, and the outcomes

experienced following a fall. Falls are three times more common in care home resi-

dents than those living in the community setting (Department of Health, 2009). Fur-

thermore, care home residents have worse outcomes after a fall with up to one third

of falls resulting in injury (Nurmi et al., 2009). Additionally, when considering the

vulnerable state of care home residents, the transport, attendance, and admission to

hospital can also carry increased risk of harm and distress beyond the presenting

condition. In a multi-centre cohort study of 1,418 patients aged over 65 in Australia,

an increase of 0.1 on a frailty index derived from a geriatric assessment score sig-

nificantly predicted worse outcomes following hospital admission (Hubbard et al.,

2017). These worsened outcomes included long (>28 days) lengths of stay, increased

inpatient mortality, pressure ulcers, delirium, and in-hospital falls (Hubbard et al.,

2017). Further evidence from a Brisbane cohort study found that 13% of patients

aged over 70 at discharge had developed daily living impairments and 22% devel-

oped bladder incontinence during their hospital stay (Lakhan et al., 2011). There-

fore, identification of high falls risk individuals for targeted prevention measures is

particularly desirable in the situation where falls and fall related injuries are more

likely in care home residents, and hospital transfer for this group carries additional

consequences.

In summary, falls are highly prevalent in older patient groups, which as dis-

cussed further in Sections 1.2.2 and 1.2.3 makes them a key area of focus for the pro-

vision of urgent and emergency care in the context of an ageing population. Addi-

tionally, the wide ranging health consequences of falls means the prevention of falls

can provide substantial benefits including improvements in health related quality of

life and reduced hospital transfers in vulnerable patient groups, which can lead to

further health related problems (Lakhan et al., 2011; Stenhagen et al., 2014; Hubbard

et al., 2017).
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1.2.2 The Importance of Falls Related Research in the Context of an Age-

ing Population

Research on falls prevention and the identification of high falls risk individuals will

become increasingly important as a result of the ageing population in the UK and

globally. The number of people aged over 85 in the UK is expected to double over

the next 20 years, as the generation born between 1946-1964 ages (Kingston et al.,

2018). Between 1990 and 2016 life expectancy in the UK at age 70 increased by 39%

for men and 21% for women, which has led to the population of people aged over 70

increasing by 25%, from 4 million to 5 million people (Office for National Statistics,

2018). This ageing of the UK population is expected to lead to an increase in the care

home population as the number of publicly funded care home residents is projected

to grow by 49% and privately funded by 110% between 2015 and 2035 (Wittenberg

and Hu, 2015). Additionally, as discussed in Section 1.2.1, the prevalence of falls

is increasing with age and care home residents are at an increased risk of falls and

fall related injuries compared to the community dwelling population (Department

of Health, 2009). Therefore, there will be more people living in care homes at an

increased risk of falls, who could benefit from proactive identification and treatment.

A key characteristic of the ageing population is an increase in the prevalence of

multi-morbidity in society, defined in Section 1.1 as the presence of two or more

chronic health conditions (Johnston et al., 2019). The prevalence of multi-morbidity

in UK adults aged over 65 is projected to rise from 54.0% in 2015 to 67.8% in 2035

(Kingston et al., 2018). An ageing population, and longer survival with chronic con-

ditions will result in more people living in a vulnerable condition for longer. As

people live longer with multiple conditions, there is an increased risk of falls caused

directly by the conditions themselves and multiple medications, or polypharmacy,

used to treat them (Bergen, Stevens, and Burns, 2016; Florence et al., 2018). There-

fore, a combination of the ageing population and increased prevalence of multi-

morbidity will cause increased falls and fall presentations to the Emergency Depart-

ment (ED) under the current system.

Faced with the challenges of an ageing population, several strategies published

by government and health bodies suggest a supportive legislative environment for
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the development of intelligent interventions targeted towards older patient groups

(Government office for Science, 2019; NHS, 2019; NHS England, 2020; Department

of Health and Social Care, 2021). The integration of health and social care, under the

‘whole systems integrated care’ proposal will have ramifications for how care homes

interact with the wider health system (Department of Health and Social Care, 2021).

This increased integration of care homes is echoed in the NHS long-term plan where

the expansion of community health teams is intended to provide an alternative route

to hospitalisation and support care home residents (NHS, 2019). Furthermore, the

Enhanced Health in Care Homes (EHCH) model represents a shift away from a reac-

tive approach to older patient care to a more proactive and integrated system with a

focus on individual needs (NHS England, 2020). The EHCH provides a framework

for implementing a series of evidence-based interventions and changes to service

provision in primary care and care homes to achieve this aim. The roll out of the

EHCH model to the whole country in 2023/24 will help cultivate an environment

where intelligent health interventions can have impacts on resident wellbeing and

outcomes. Furthermore, part of the EHCH model is intended to ease data sharing

between care homes and NHS providers, which may mean interventions making

use of these sources of linked data will also become more feasible in future (NHS,

2019).

There is also support for implementing intelligent health systems and integrat-

ing social care for older patients outside the UK. The European Commission sug-

gested that innovations in e-health, mobile health and telecare alongside integrated

care has the potential to substantially improve the efficiency of health systems in

the long term (Keifer and Effenberger, 2021). This runs in parallel with the WHO

recommendation for the use of focused research into the use of new metrics and

analytical methods for investigation into issues surrounding ageing (World Health

Organisation, 2022).

A key part of the falls prevention infrastructure is standardised, accurate, and

regularly updated sources of linked health records in the care home setting. These

sources of standardised information are often referred to as minimum data sets.

The international resident assessment instrument (InterRAI) and minimum data set

(MDS) 3.0 are examples of this standardised reporting of care home data, and are
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used extensively outside the UK (Fries et al., 1997; Saliba and Buchanan, 2008a; in-

terRAI, 2024). A similar prototype structured reporting dataset for use in care homes

is being trialled in the UK through the developing resources and minimum dataset

for care homes’ adoption (DACHA) study (Goodman, 2019). The DACHA study

data set differs to the InterRAI and MDS 3.0 because it builds upon the existing

data infrastructure in the NHS with the final minimum dataset recommendation for

wider use yet to be decided upon (Goodman, 2019; British Geriatrics Society, 2023).

As a result of the ageing population and changing legislative environment, the

linkage of data sources, and roll out of intelligent interventions that screen the Elec-

tronic Health Record (EHR) for patients at increased falls risk may be made eas-

ier and more efficient. However, such intelligent interventions need to be able to

account for the increases in multi-morbidity as the population ages. Therefore, re-

search into multi-morbidity and the role it plays in falls risk is essential going for-

wards. This research is intended to add to a movement towards intelligent and

integrated health and social care systems with a focus on identifying high falls risk

individuals in the care home setting. By researching the impact of multi-morbidity

on falls, the research presented in this thesis is addressing a key challenge of the age-

ing population. However, as shown in Section 1.2.3, falls in older adults are having

a major effect on the provision of urgent and emergency care services in the present

day, meaning this research also addresses current problems faced by the health sec-

tor.

1.2.3 The Benefits of Falls Related Research in Alleviating Current Pres-

sures in Emergency Care

In setting up the justification for the research question and aims presented in Sec-

tion 1.5.1, Sections 1.2.1 and 1.2.2 provided evidence for the extensive health im-

pacts of falls in older adults, and how the ageing population necessitates changes

in the health system. One of these avenues for change in the urgent and emergency

care system is in the Emergency Department (ED). The ED has come under pres-

sure through the confluence of long term demand, and hospital occupancy trends

with the aftereffects of the COVID-19 pandemic. A summary flow diagram of these

pressures is presented in Figure 1.1.
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FIGURE 1.1: Summary of Emergency Department (ED) Pressures

Figure adapted from NHS England (2023a)
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Attendances to UK consultant led (Type 1) EDs grew by 10.6% between 2016 and

2019, with the proportion of attendances resulting in 4-hour waits increasing from

8.5% in 2014 to 18.6% in 2018 and 23.8% in 2019 (Baker, 2020). A major cause of

worsening ED performance is the high occupancy levels of in-hospital beds, which

rose to an average of 95% filled in 2022 (NHS England, 2023a). This issue is further

exacerbated by the reduction in the total hospital bed stock, which fell by 8.3% be-

tween 2011 and 2020 (British Medical Association, 2022). One factor leading to high

hospital occupancy has been difficulty during discharge of patients to social or com-

munity care, which means patients are spending longer in hospital beyond the point

at which they could be discharged, as seen in Figure 1.1 (Foster, 2023).

High levels of bed occupancy can cause a build up of patients waiting to be

admitted from the ED leading to a backlog of demand and longer waiting times

(Morley et al., 2018; NHS England, 2023a). In these situations of increasing demand

and worsened flow through the department, EDs are increasingly facing problems

of overcrowding, which lead to worsened outcomes for patients and hospital staff

(Morley et al., 2018).

One cause of ED overcrowding identified in a systematic review was increases

in the frequency and complexity of presentations by patients aged over 65 (Morley

et al., 2018). Multi-morbidity is present in the majority of older people meaning EDs

need to handle increasing numbers of complex presentations as people continue to

live longer with multiple chronic health conditions (Barnett et al., 2012; Kehoe et al.,

2015; Florence et al., 2018; Head et al., 2021). Additionally, older adults are more

likely to be admitted following an ED attendance than those under 65, with multi-

morbidity, and residency in care homes both contributing to further increases in this

likelihood of admission (Crilly et al., 2008; Bunn et al., 2019; Brewster, O’Keeffe,

and Mason, 2019; McParland et al., 2022). This means ED attendances in this group

are contributing to the higher levels of bed occupancy described previously. Fur-

thermore, care home residents are also more likely to experience a long length of

stay as an inpatient due to their complex needs (Brewster, O’Keeffe, and Mason,

2019). Therefore, preventing falls in care home residents would impact both the

forward and backward pressures on the ED shown in Figure 1.1 through reducing

attendances by patients who are at an increased risk of both admission and longer
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lengths of stay.

In summary, EDs are becoming increasingly pressured meaning research into

opportunities for reducing overall ED service demand is worthwhile. A key group

identified as contributing to increases in ED service demand are older adults and

the leading cause of trauma presentations to EDs in this group are low-level falls.

Therefore, research into the identification of older adults at a high risk of a fall, and

the prevention of falls could benefit the emergency care system alongside patients.

1.2.4 Summary of the Benefits of Predicting Falls in Older Adults

Section 1.2.1 demonstrated how falls cause a multitude of negative health effects

in older adults. This combined with the pressure that fall presentations by older

adults place on UK EDs, discussed in Section 1.2.3, means that the prediction and

prevention of falls is a highly desirable objective.

Proactive identification of high falls risk individuals is only going to become

more important as the population of older adults continues to grow as described

in Section 1.2.2. Additionally, a key feature of the ageing population is increases

in survival with multi-morbidity. This means that research into developing efficient

falls risk flagging systems that are effective in highly multi-morbid samples is worth-

while with the potential to elicit patient and system level benefits.

Having explored the reasoning for why falls risk prediction in older adults is

beneficial, Section 1.3 demonstrates the complexity of predicting falls in older adults

by exploring the interrelationships between risk factors for falls and how these can

be incorporated into models. Following this the key themes in the falls risk predic-

tion literature are explored in Section 1.4 culminating in a discussion of why existing

methods for incorporating multi-morbidity into these models need further research.

1.3 Risk Factors for Falls Across the Older Adult Population

1.3.1 Categorising the Risk Factors for Falls

Older adults have different causes of falls and worse outcomes following falls from

standing height compared to younger adults (Rubenstein, 2006). The causes of falls

in older adults differ from those in younger adults in two ways.
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First, a range of internal factors relating to physiological and mental decline

change everyday features of the environment into fall hazards (Rubenstein, 2006).

Specifically in younger adults, falls are often caused by an identifiable environmen-

tal hazard, which would cause anyone to fall (Talbot et al., 2005; Heijnen and Riet-

dyk, 2016). This contrasts with many falls in the older adult population where there

is an interaction between these sources of age related physiological decline and a

feature of the environment. For example loose mats, electrical cords, pets, or other

items on the floor, which would not have caused a fall in the past but may now con-

tribute to a fall (NHS Inform, 2023). This means there are an increased number of

opportunities to fall as a person ages.

Second, the ability and capacity to recover from a loss of balance changes as

people age. This change has been presented as a shift from correcting balance using

the hips and core, to using multiple rapid steps to regain balance, to then being

unable to correct in time to prevent the fall (Rubenstein, 2006).

To add further complexity to this problem, older people often live with multiple

risk factors for falls and therefore it can be challenging to determine a singular cause

of a fall (Pasquetti, Apicella, and Mangone, 2014). For example alcohol consumption,

visual impairment, reduced muscle strength and proprioception in the extremities,

and medication side effects can all cause a fall outright, however ascribing a singu-

lar cause when they are all present at once is often counterproductive. Instead the

causes of falls in older adults are multifactorial and result from interactions between

internal and external risk factors.

When considering the falls risk of older adults, it is important to note that not all

falls result in injury (Rubenstein, 2006). Additionally, specific features of the fall itself

will change the risks of different injuries. For example, falling forwards or sideways

increases wrist and hip fracture probability respectively, while falling backwards

lowers the fracture risk (Nevitt, Cummings, and Osteoporotic Fractures Research

Group, 1993). The focus of the research in this thesis is on the risk that a fall event

bad enough to require hospital transfer occurs, rather than the range of possible

outcomes following the fall event. Therefore the risk factors discussed in this section

refer to features that increase the probability that such a fall will occur. While many

of these features will also change the risk of injury following the fall, this is outside
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the scope of the research and these effects are not explored further.

The remainder of this section discusses the evidence for different extrinsic (due

to the environment) and intrinsic (due to the individual) risk factors for falls in older

adults (Pasquetti, Apicella, and Mangone, 2014). Following this, the interrelation-

ship between frailty and falls is discussed in Section 1.3.2. Having investigated the

different kinds of risk factors, the discussion then moves to how these factors are

incorporated into models in the community and care home settings in Section 1.4.

Extrinsic Risk Factors for Falls

When considering the causes of falls in older adults, a distinction can be drawn

between those living in the community and care home residents. Community dwelling

older adults living at home are exposed to many extrinsic risk factors for falls, which

result from living in a private residence, and moving through the community setting

in daily life (Public Health Agency of Canada, 2014).

Identifying the contribution of individual environmental factors on causing a

fall is challenging due to their interaction with intrinsic risk factors and falls risk in-

creasing behaviours (Feldman and Chaudhury, 2008). However, environmental risk

factors clearly impact the likelihood of a fall, and can be separated into three groups

relating to risks in the home, community, and resulting from the weather (Public

Health Agency of Canada, 2014). Extrinsic risk factors in the home relate to items

such as loose mats, electrical cords, pets, and clutter on the floor but also features

of the building such as floor surfaces, stairway width, stair height, door sills, light-

ing, and bathroom fixtures (Northridge et al., 1995; Pynoos, Steinman, and Nguyen,

2010). Community based extrinsic risk factors relate to features outside the home en-

vironment such as raised curbs, and poorly maintained pavements (Gallagher and

Scott, 1997). Weather conditions can also increase the risk of a fall through reducing

grip and stability while walking on ice, snow, or wet leaves (Beynon et al., 2011).

Older adults living in the community experience a greater variety of extrinsic

risk factors than care home dwelling older adults. This is because the care home

setting is a more controlled environment, meaning many of the extrinsic risk factors

associated with falling are eliminated or mitigated through the design of the care

home space (Care Inspectorate, 2016). Additionally, care home staff can conduct
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a multi-factorial falls risk assessment for an individual resident to identify specific

mitigations that can be put in place (Care Inspectorate, 2016).

However, care home residents are generally more susceptible to falls and fall re-

lated injuries than community dwelling older people with three times the risk of

falling and ten times the risk of sustaining an injury following a fall (Department of

Health, 2009). This difference in fall and fall related injury risk cannot be explained

through extrinsic risk factors for the reasons expressed above. However, the degree

to which the remaining extrinsic risk factors in the care home, such as a raised step

or bathroom floor, would impact an individuals fall risk is dependent on the com-

bination of intrinsic risk factors inherent in that individual (Pasquetti, Apicella, and

Mangone, 2014; Public Health Agency of Canada, 2014). It seems reasonable there-

fore to suggest that intrinsic risk factors have an increased role in determining fall

events in the care home setting.

Intrinsic Risk Factors for Falls

Intrinsic risk factors for falls can be generally separated into age-related changes

in physiology and the progression of pathological predisposing conditions (Pas-

quetti, Apicella, and Mangone, 2014). These age related physiological changes can

be categorised into the deterioration of sight, hearing, musculoskeletal and central

nervous system functioning (Pasquetti, Apicella, and Mangone, 2014).

Walking, standing still, and standing up or sitting down are all complex bio-

mechanical activities, which rely on multiple bodily systems to act in a coordinated

manner with sufficient muscle strength, joint mobility, and proprioception in the

extremities. The interaction of multiple internal systems needed to maintain and

recover balance mean that the disruption or failure of any one of these systems may

lead to a fall (Rubenstein, 2006).

Beyond age related physiological changes, these systems can also be disrupted

by a wide variety of pathological conditions which also increase the risk of falls.

These can be grouped into categories including cardiovascular, internal medicine

and endocrine, neurological, musculoskeletal, psychiatric, genitourinary, and iatro-

genic (caused by drug side effects or immobilisation during treatment) (Rubenstein,

2006; Pasquetti, Apicella, and Mangone, 2014). These conditions can cause a fall
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outright or make the individual more susceptible to extrinsic factors leading to a fall

(Public Health Agency of Canada, 2014).

Cardiovascular conditions such as hypotension, and atrial fibrillation can cause

dizziness, and fainting (Denfeld et al., 2022). Whereas further conditions such as

heart disease can cause reduced proprioception in the extremities as a result of wors-

ened blood flow, which can increase falls risk through reduced foot control and bal-

ance (Denfeld et al., 2022).

Internal medical conditions can cause a wide range of fall risk increasing symp-

toms. For example diabetes can lead to peripheral neuropathy, which reduces feel-

ing in the feet and increases falls risk (Hicks et al., 2023). Furthermore, diabetic

retinopathy reduces visual acuity making someone less able to perceive fall hazards

(Schwartz et al., 2008). Additionally, if poorly controlled, diabetes can lead to hypo-

glycemia, which can cause dizziness and fainting (Schwartz et al., 2008).

Neurological conditions can have a range of effects that cause increased falls risk.

For example conditions such as dementia, cerebrovascular disease, and epilepsy can

cause wandering behaviour, delirium, worsened visual acuity, muscle weakness,

balance and gait changes, dizziness, fainting, and seizures all of which have an as-

sociated increase in falls risk (Hauer et al., 2003; Lamb et al., 2003; Fernando et al.,

2017).

Musculoskeletal conditions impact falls risk primarily through changes in mus-

cle strength, joint pain, impaired balance, changes in gait, and reduced ability to

recover from a loss of balance (Sturnieks et al., 2004; Rubenstein, 2006). Genitouri-

nary conditions primarily impact falls risk through causing rushing behaviour as a

result of urinary incontinence (Moon et al., 2021).

The most well documented relationship between a psychiatric condition and falls

is depression. The mechanisms through which depression impacts falls are cogni-

tive impairment, reduced walking speed, worsened reactions, and muscle weakness

(Kvelde et al., 2013).

Finally, iatrogenic mechanisms include the prescription of fall risk increasing

drugs, which have side effects including dizziness and fainting (Pasquetti, Api-

cella, and Mangone, 2014). Examples of medications linked with falls risk are anti-

depressants, benzodiazipines, and opioids (Bloch et al., 2011). Further iatrogenic
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mechanisms include reduced muscle strength as a result of a period of immobilisa-

tion in hospital (Growdon, Shorr, and Inouye, 2017).

The literature review in Chapter 3 investigates the relationships between patho-

logical conditions and falls in greater detail. However, there is a further intrinsic risk

factor for falls, which cannot be grouped into a single category of pathological con-

ditions. The following section provides a summary of the overlapping role of frailty

in the falls risk of older adults.

1.3.2 The Role of Frailty in Falls

There is an intrinsic inter-relationship between falls and frailty (Yang et al., 2023).

This means falls can be a partial cause of frailty as well as being a potential outcome

of frailty. Additionally many of the causes of frailty are associated with increased

falls risk (Clegg et al., 2013). This section will briefly summarise what frailty is,

possible causes of frailty, the overlap with multi-morbidity, and evidence for the

relationship between frailty and falls in older adults.

Frailty results from the cumulative decline of multiple physiological systems

over the course of a lifetime (Clegg et al., 2013). Frailty is a complex health state,

which is separate from disabilities and chronic disease although there is much over-

lap between these categories (Fried et al., 2001; Clegg et al., 2013). The frail state

means someone is less able to return to homeostasis following stressor events such

as falls (Clegg et al., 2013). The first operationalised definition in Fried et al. (2001)

used three or more components of weight loss, weakened muscles, low endurance

or energy, slow walking speed, and low physical activity level to identify frailty. The

concurrent presence of these components was used to indicate the frailty phenotype,

which refers to a cycle of reduced energy, activity, muscle mass and strength, slower

walking speed, and chronic under-nutrition (Fried et al., 2001). These features de-

plete an individual’s reserves, meaning they are less able to return to homeostasis

following even minor stressor events and more susceptible to a range of worsened

health outcomes (Clegg et al., 2013; Roe et al., 2017; Nghiem et al., 2021; Yang et al.,

2023).

Frailty is often identified in older adults using clinical indexes such as the elec-

tronic frailty index (EFI), and hospital frailty risk score (HFRS) (Clegg et al., 2016;



16 Chapter 1. Introduction

Gilbert et al., 2018). Further description of these indices is presented in Section 4.2.1.

Most individuals with frailty also have multi-morbidity, although a causal re-

lationship between these factors has not been proven (Vetrano et al., 2019). Using

pooled data from nine studies, Vetrano et al. (2019) found 14% of people living

with multi-morbidity are also frail, while 68% of people with frailty are also multi-

morbid. This suggests that chronic diseases are a major cause of frailty, although

only a small proportion of those with multi-morbidity will go on to develop frailty.

A fall can also act as an initial stressor event that leads to hospital admission and

a period of immobilisation, which leaves the patient in a frail state even after they

have recovered from the initial injury (Brown et al., 2009; Blain et al., 2016; Angulo

et al., 2020). Additionally, falls can lead to the fear of further falls, and reductions

in activity, which contribute to reduced muscle mass and strength. This reduced

muscle mass is one of the components in the Fried et al. (2001) definition for frailty

mentioned previously. Therefore, falls can act as a partial cause of frailty, whilst also

being an associated outcome of frailty. This can create a spiral effect of a fall leading

to future falls through the further development of frailty (Fried et al., 2001; Clegg

et al., 2013; Pasquetti, Apicella, and Mangone, 2014).

However, the presence of frailty can also be associated with increased falls risk

outside of this spiral effect. The functional decline which leads to frailty, can be

seen as a combination of the intrinsic physiological factors discussed previously that

mean frail individuals are at a higher risk of future falls (Yang et al., 2023). The

mechanism through which frailty impacts falls is through the loss of muscle strength

and balance, which were both mentioned in Section 1.3.1 during the discussion of

intrinsic risk factors for falls.

The complex interrelated extrinsic and intrinsic risk factors make the prediction

of falls in older adults challenging. Additionally, due to the differing risk environ-

ment between the community and care home settings, prediction model developed

in one may not translate across to the other setting. These issues are discussed fur-

ther in Section 1.4.
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1.4 Falls Prediction in Older Adults

1.4.1 Introduction

Depending on whether a person is living at home in the community, or in a care

home, they are likely to be exposed to a differing set of falls risk factors. As a result,

models typically examine only one of these populations when modelling falls risk to

allow for a better comparison of homogeneous cases (Gade et al., 2021b; Seaman et

al., 2022; Shao et al., 2023). In an early systematic review of 38 falls risk and mobility

assessment tools, Scott et al. (2007) concluded that due to few tools ever being tested

in different populations, or across sub-populations, no single tool could be assumed

to be validated across all older patient groups for predicting falls. Due to this lack

of generalisability between residence types the discussion of approaches taken and

findings are conducted separately for each location.

The differences in risk environment arise because people living in the commu-

nity are likely to be healthier and more mobile than those in the care home setting,

which may increase the number of opportunities to fall however, as discussed in Sec-

tion 1.4.3, this does not translate into a higher prevalence of falls in the community

(Department of Health, 2009). The comparatively higher levels of mobility may also

contribute to a difference in the mechanisms leading to the fall, with an increased

role for gait, balance and walking related risk factors in the community.

However, as seen in sections 1.4.2 and 1.4.3, even where the location of study

is the same, studies are still highly heterogeneous with differences in study design,

identification of falls, the statistical methods used in the analysis, and variables in-

cluded in the models. In relation to the topic of this thesis, studies also differ in

how they include multi-morbidity in their models, which is discussed separately for

studies in both the community and care home setting in Section 1.4.4. Tables 1.1

and 1.1 provide a cross section of literature in the community and care home setting

respectively to aid in this discussion.
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TABLE 1.1: Cross Section of Fall Prediction Literature in the Community Setting

Author
(Year)

Country Sample
Size

Model
Type

Study
Type

Exclusions Falls
Mea-
sure

Follow
up
period

Mmorb
mea-
sure

Method Performance

Kabeshova
(2015)

FR 3289 Der Retro AI FH N/A None ANN Sen 80.4%, Spec 92.54%

Richardson
(2015)

IE 6666 Der Prosp Severe CI SR 3 yrs Main ef-
fects

PR

Howcroft
(2017)

CA 100 Der Prosp CI, MI FC 6 mths None ROC 84.9% Acc, 50% Sen, 89%
Spec

Marques
(2018)

DE 102 Der Prosp CI, MI PC 1 yr None ROC Stance time variability
(AUC 0.72, Sen 77.8%,
and Spec 57.1%), swing
time (AUC 0.25, Sen
88.9%, Spec 100%), stride
length (AUC 0.97, Sen
77.8%, and Spec 92.9%)

Morin
(2019)

SE 49609 Der Retro
CC

None RD 1 yr Binary
term

LR each additional drug OR
1.02 (1.01–1.03)

Cella (2020) IT 96 Der Prosp CI, Speech
impairment

DR 1 yr None LLinR AUC 0.81 (0.72–0.90)

Bravo (2021) PT 504 Der Retro CI FH N/A Count
of dis-
eases

ROC Predicting recurrent
falls in history as the
outcome, AUC 0.79
(0.75–0.83)

Gade (2021) DK 198 Der Prosp CI, MI, AI FC 1 yr None PR MAE 0.88 falls
Lockhart
(2021)

US 171 Der Prosp Unclear Unclear None RF 81.6% Acc, 86.7% Sen,
80.3% Spec
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Dormosh
(2022)

NL 39342 Ext Val Prosp Died during
follow up

Free
text in
EHR

1 yr Main
effects
terms

LR AUC 0.69

Van de Loo
(2022)

NL, DE 5722 Der Prosp None FC 1 yr None LR AUC (any fall) 0.65, AUC
(recurrent falls) 0.70

Jacob (2022) IE 6900 Der Prosp Severe CI SR 3 yrs Binary
term

LR Mmorb (2+ conds) OR
1.32 (1.06-1.64), Mmorb
(4+ conds) OR 1.92 (1.54-
2.38)

TABLE 1.2: Cross Section of Fall Prediction Literature in the Care Home Setting

Author
(Year)

Country Sample
Size

Model
Type

Study
Type

Exclusions Falls
Mea-
sure

Follow
up
period

Mmorb
mea-
sure

Method Performance

Marier
(2016)

US 5129 Der Retro Missing
data

MDS
RD

N/A Main
effects
terms

LR AIC comparisson be-
tween models

Kuspinar
(2019)

CA 88690 Der, Val Prosp None Unclear 6 mths Main
effects
terms

DT, LR Validation across Cana-
dian regions: odds of
falling increase consis-
tently across regions
with increased risk score

Shaw (2019) CA 116 Der Prosp Less than 2
years in fa-
cility

Fall
incident
reports
in CH

3 yrs None ROC Sen 93%, Spec 38%



20
C

hapter
1.

Introduction

Vlaeyen
(2021)

BE 420 Val Prosp CI, severe
MI

FC by
care
home
staff

6 mths Main
effects
terms

ROC CaHFRiS: One month
AUC 0.65 (0.58-0.72),
Three month AUC 0.68
(0.62-0.73), Six months
AUC 0.66 (0.61-0.72)

Boyce (2022) US 3985 Der Retro Missing
data

MDS
RD

3 yrs None CART
LR

AUC 0.67 (0.64-0.69), Sen
(0.57), Spec (0.69)

Thapa
(2022)

US 2785 Der Retro Missing
data

Juniper
Com-
mu-
nities
RD

N/A None XG-
Boost

AUC 0.85 (0.79-0.89), Sen
70.6%, Spec 85.0%

Duprey
(2023)

US 733427 Der Retro Missing
data

Medicare
RD

2 yrs None LR AUC 0.67 (0.66-0.67)

Country codes: BE = Belgium, CA = Canada, DK = Denmark, FR = France, DE = Germany, IE = Ireland, IT = Italy, NL = Netherlands, PT = Portugal,
SE = Sweden, US = United States Study Characteristics: Der. = Derivation study, Val. = Validation study, Ext. Val = External validation study, Prosp =
Prospective , Retro = Retrospective, CC = Case control Group Exclusions: CI = Cognitive impairments or dementia, MI = Mobility impaired (cannot walk
without assistive device), AI = Recent Acute Illness Falls Measures: FC = fall calendar, SR = Self report, RD = Routine Data, PC = Phone call interview,
DR = Diary Reporting, FH = Fall history in interview or questionnaire, MDS = Minimum Data Set Multi-morbidity measure: Mmorb = Multi-morbidity
Statistical Method: PR = Poisson Regression, LR = Logistic Regression, ANN = Artificial Neural Network, DT = Decision Tree, RF = Random Forest,
CART = Classification and Regression Tree, ROC = Receiver Operator Curve threshold analysis, LLinR = Lasso linear regression, XG-Boost = Extreme
gradient boosting algorithm Performance Measure: Sen = Sensitivity, Spec = Specificity, Acc = Accuracy
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1.4.2 Predicting Falls in Community Dwelling Older Adults

Table 1.1 presents a cross section of the falls prediction literature based in the com-

munity setting. Whilst the studies presented come from a range of countries, all are

based in developed economies. However, the features extracted from the studies

demonstrate causes of heterogeneity in the literature. The sample sizes in Table 1.1

vary greatly often dependent on whether an in-person assessment was required for

the model to be developed versus the use of routinely collected health data. Fur-

thermore, the vast majority of models are developed in derivation studies, and are

rarely externally validated, which was also shown by a recent systematic review on

the topic where of the 72 models included, only 3 related to the validation of exist-

ing models (Gade et al., 2021b). The lack of external validation of existing models

is a consistent issue throughout the falls prediction literature, which severely limits

the progression of the field because models are developed in heterogeneous sam-

ples using inconsistent definitions and sampling criteria, meaning few overarching

conclusions can be drawn.

As seen in Table 1.1 community based studies differ in which groups of older

adults to exclude based on characteristics such as cognitive impairments (Richard-

son, Bennett, and Kenny, 2015; Howcroft et al., 2017; Marques et al., 2018; Cella et al.,

2020; Bravo et al., 2021; Gade et al., 2021a; Jacob et al., 2022), mobility impairments

(Howcroft et al., 2017; Marques et al., 2018; Gade et al., 2021a), acute illnesses (Gade

et al., 2021a; Kabeshova et al., 2015), and speech impairments (Cella et al., 2020).

Restrictions on cognitively impaired individuals are often introduced to improve

the data accuracy of self reported fall measures (Richardson, Bennett, and Kenny,

2015; Howcroft et al., 2017; Marques et al., 2018; Cella et al., 2020; Bravo et al., 2021;

Gade et al., 2021a; Jacob et al., 2022). However, these restrictions mean the eventual

models developed may not accurately reflect the falls risk experienced by the full

older adult population, which reduces their external validity and usability in prac-

tice. By excluding cognitively impaired individuals or those at an advanced stage

of illness from a study the resulting sample is less representative of the wider popu-

lation meaning the model findings may be less generalisable to these patients. This

is a particular issue when translating findings to care home residents where these
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groups are more prevalent.

Within the falls risk prediction in the community literature, a sub-field has de-

veloped in the use of gait and balance sensor technology for deriving features to be

used in falls risk prediction models (Howcroft et al., 2017; Marques et al., 2018; Cella

et al., 2020; Lockhart et al., 2021). As seen in Table 1.1 these studies sometimes place

exclusions on those with mobility impairments, which is due to initial assessments

being made based on walking without ambulatory devices (Howcroft et al., 2017;

Marques et al., 2018). These studies develop prospective models directly from sensor

information collected during assessments of gait, balance, and walking after which

participants are followed for up to one year to identify falls. While the resulting

models often have high reported performance (AUC ≥ 0.7), problems in sample size

(≤ 100) due to the need for in person assessment, and repeatability due to prototype

or expensive medical devices prevent the results from being widely generalisable or

externally validated (Howcroft et al., 2017; Marques et al., 2018; Cella et al., 2020;

Lockhart et al., 2021). This difficulty in external validation is not shared by models

making use of EHR data, which can be easier to translate across settings, however

as seen in Table 1.1 further differences between studies in the identification of falls

make the generalisation of results challenging.

The gold standard for prediction models is for training to be conducted using

prospectively collected data. This means the assessment of predictors or explana-

tory variables must happen before a follow up period where falls can be recorded.

By conducting the assessment of predictors before the fall event bias introduced

through reverse causality, where the fall event changes the explanatory variable

values can be avoided. This is particularly important in falls research because, as

discussed in Section 1.2.1, falls have a range of health effects and can cause large

changes in health outcomes in older adults (Rubenstein, 2006).

Some of the studies in Table 1.1 use a fall outcome based on the history of falls

as the outcome for their prediction models and achieve high headline performance

(Kabeshova et al., 2015; Bravo et al., 2021). However, by using variables measured

after the fall to split their sample there is no proof to support whether the identified

signal will be observable before the fall occurs, and instead only refers to splitting a

sample into occasional or recurrent fallers in the past (Kabeshova et al., 2015; Bravo
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et al., 2021).

Differences in how the studies in Table 1.1 measure falls also contribute to het-

erogeneity in their findings, performance, and identified relationships. Common

approaches include the identification of falls through standard reporting in the EHR

(Morin et al., 2019; Dormosh et al., 2022), phone interviews with participants on a

regular timescale (Marques et al., 2018), diary or calendar based reporting (Howcroft

et al., 2017; Cella et al., 2020; Gade et al., 2021a; Van De Loo et al., 2022), or self re-

porting falls history on a questionnaire (Kabeshova et al., 2015; Richardson, Bennett,

and Kenny, 2015; Bravo et al., 2021; Jacob et al., 2022) with each method having

strengths and weaknesses.

Several studies in the community setting have used routine EHR data for iden-

tifying falls (Morin et al., 2019; Dormosh et al., 2022). The advantage of using EHR

data is that there is a reduced cost meaning larger samples can be used, which can

improve the identification of relationships between exposures and outcomes, whilst

also improving how representative the sample is within the wider population. Fur-

thermore, the use of information contained in the EHR is already routinely collected

in standard practice, which would reduce the barrier to application of the eventual

modelling intervention. However, of the studies in Table 1.1 using EHR data, one

used fall related admissions to hospital (Morin et al., 2019), and the other used free

text in primary care records (Dormosh et al., 2022). Both of these methods for iden-

tifying falls introduce bias to the analyses through under-reporting of falls. Using

hospital admission information introduces under-reporting because non-injurious

falls will not result in hospital transfer and will therefore go unobserved (Morin et

al., 2019). Identification in primary care free text may also result in under-reporting

for the same reason as hospital admissions, but also because the lack of a standard-

ised field may cause falls to be missed when analysing the free text data (Dormosh et

al., 2022). Therefore, while using the EHR to identify falls can allow larger samples

there is a trade off in the lack of a reliable and complete fall indicator.

An alternative approach to using standardised sources of information for the

identification of fall events is to collect fall information directly from the study par-

ticipants. Whether this is done prospectively or retrospectively has a direct effect

on the quality of information collected with the latter more exposed to recall bias
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(Mackenzie, Byles, and D’Este, 2006; Fleming, Matthews, and Brayne, 2008). Ad-

ditionally, previous research has found older adults significantly under-report falls

in retrospective questionnaires (Peel, 2000). These methods also necessitate the ex-

clusion of certain patient groups due to their inability to engage with the collection

method (Richardson, Bennett, and Kenny, 2015; Howcroft et al., 2017; Marques et

al., 2018; Cella et al., 2020; Gade et al., 2021a; Jacob et al., 2022). This means mod-

els based on these approaches to measuring falls may face generalisability problems

due to non-representative samples, and inaccurate event rates, which can lead to

biases in the associations between exposures and outcomes in the models. These

problems are particularly important when considering the application of findings

from these community based studies to care home residents as the sample of study

due to the increased prevalence of cognitive impairments in this patient group.

There is no single best modelling approach for the prediction of falls in older

adults. In previous systematic review of prognostic models for falls prediction in

community dwelling older adults, all the included studies were identified as hav-

ing a high risk of bias due to the differences in statistical methods, study inclusion

criteria, and assessment of the falls outcome (Gade et al., 2021b). Studies in Table

1.1 used a range of standard statistical approaches such as logistic regression (Morin

et al., 2019; Dormosh et al., 2022; Van De Loo et al., 2022; Jacob et al., 2022), Pois-

son regression (Richardson, Bennett, and Kenny, 2015; Gade et al., 2021a), lasso lin-

ear regression (Cella et al., 2020) and identification of optimal thresholds using the

Receiver-Operator-Curve (ROC) (Howcroft et al., 2017; Marques et al., 2018; Bravo

et al., 2021). Additionally, machine learning approaches are not uncommon with

examples of Artificial Neural Networks (ANN) (Kabeshova et al., 2015), and Ran-

dom Forest (Lockhart et al., 2021) seen in the Table 1.1 literature cross-section. When

considering differences in model performance however, differences caused by the

choice of modelling approach are secondary to the sources of heterogeneity between

studies discussed previously in this section. Additionally, differences in the way

studies report results and performance makes direct comparison challenging. How-

ever, there are several overarching themes that can be drawn out of the community

dwelling falls prediction models relating to the role of particular variables, which

are consistently included in the models.
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Several variables are consistently found to significantly impact falls risk in the

community setting. In their systematic review of prognostic models in the com-

munity setting Gade et al. (2021b) identified Falls history as the most commonly in-

cluded predictor across the 72 included models. In the prospective studies presented

in Table 1.1, a history of falls was consistently found to significantly contribute to

model predictions (Cella et al., 2020; Gade et al., 2021a; Dormosh et al., 2022; Van

De Loo et al., 2022). Further variables relating to functional assessments such as the

timed up and go (TUG) test, and activities of daily living (ADL), are also often in-

cluded by authors (Kabeshova et al., 2015; Cella et al., 2020; Bravo et al., 2021; Van

De Loo et al., 2022; Jacob et al., 2022). These functional assessments are consistently

significantly associated with falls risk, however in the Kabeshova et al. (2015) study,

the use of an ANN model meant the contribution of any variable to the model was

unclear (Bravo et al., 2021; Cella et al., 2020; Van De Loo et al., 2022; Jacob et al.,

2022). The inclusion of other variables in models beyond demographic characteris-

tics such as alcohol consumption (Kabeshova et al., 2015; Morin et al., 2019; Gade

et al., 2021a), or hazards in the environment (Morin et al., 2019; Bravo et al., 2021)

are more inconsistent and their inclusion likely relates to data availability.

Further sets of variables which are consistently included in community based

models are medications and polypharmacy, chronic diseases, and multi-morbidity.

However, community based studies are inconsistent with how these variables are

included in models, which when combined with the complexity of the mechanisms

being modelled means their role in falls risk is less clearly identified than the more

direct features such as falls history or functional impairments.

While several of the studies in Table 1.1 consider the role of polypharmacy

(Kabeshova et al., 2015; Cella et al., 2020), four studies provide an opportunity for

inference due to the size of their samples and interpretable statistical methods used

(Richardson, Bennett, and Kenny, 2015; Morin et al., 2019; Van De Loo et al., 2022;

Jacob et al., 2022). Two of these studies used consecutive waves of the Irish longi-

tudinal study of ageing to prospectively analyse the role of polypharmacy on falls.

Richardson, Bennett, and Kenny (2015) found polypharmacy only impacted falls

risk in the presence of anti-depressants and benzodiazepines, and Jacob et al. (2022)

identified polypharmacy accounted for 13% of the identified relationship between
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falls and multi-morbidity (measured using a binary indicator). Medications relating

to anti-Parkinson’s, anti-epileptics, urinary frequency and incontinence, and antihis-

tamines were all found to exhibit significant risk increasing effects for falls in models

based in German and Dutch cohorts (Van De Loo et al., 2022). Additionally, a fur-

ther study using a case-control design found a small significant risk increasing effect

for each drug prescribed on a patient record (Morin et al., 2019). These findings all

indicate a role for medications and polypharmacy in determining falls risk; however

as seen in the Jacob et al. (2022) study there is an inter-relationship present between

these medications, chronic diseases, and multi-morbidity.

The role of chronic diseases in falls risk is an extensive topic, which has moti-

vated a wide range of studies, systematic reviews, and meta-analyses. The question

of which chronic diseases contribute to increased falls risk motivated the review of

reviews presented in Chapter 3. Commonly included chronic diseases in commu-

nity based studies are depression, urinary incontinence, and cognitive impairment

or dementia (Richardson, Bennett, and Kenny, 2015; Kabeshova et al., 2015; Gade

et al., 2021a; Dormosh et al., 2022; Van De Loo et al., 2022; Jacob et al., 2022; Bravo

et al., 2021). How studies incorporate multi-morbidity into predictive models and a

discussion of evidence for a relationship with falls risk is addressed in Section 1.4.4.

In conclusion, studies of falls risk prediction in the community setting are highly

heterogeneous due to differences in study design, exclusions of groups, methods

of identifying falls, statistical methods, variables included, and reporting of results.

Further external validation studies are needed to ensure lessons can be learned re-

garding which models generalise well to new samples. Additionally, as discussed

in Section 1.4.4, studies in the community and care home settings take similar ap-

proaches to identifying and incorporating multi-morbidity into their prediction mod-

els, which could be improved by applying methods from the multi-morbidity clus-

tering literature. However, while there are many similarities with the care home

setting, models developed in the community are unlikely to be generalisable to the

care home setting, which is discussed further in Section 1.4.3.
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1.4.3 Predicting Falls in Care Home Dwelling Older Adults

When compared to the community setting there are fewer predictive models for falls

risk developed in the care home setting. This is likely due to a combination of fac-

tors such as the availability of high quality data, and complexity of mechanisms and

relationships due to the prevalence of multi-morbidity and frailty in the care home

setting (Burton et al., 2021). The care home environment is different to the com-

munity setting both in terms of the extrinsic and intrinsic risk environment. Care

homes represent a more controlled environment than the community setting, where

proactive steps are taken to mitigate or eliminate extrinsic risk factors for falls (Care

Inspectorate, 2016; Cooper, 2017). This means there are likely to be fewer opportu-

nities for falls driven by environmental causes alone in a care home compared to the

community setting. However, as discussed in Section 1.2.1 falls are three times more

common in care home residents, meaning increases in the role of intrinsic risk factors

must override any reductions in extrinsic risk (Nurmi et al., 2009). As summarised

in Section 1.3.1 intrinsic risk factors relate to changes in physiology caused by age-

ing, and the progression of pathological conditions over time. Due to the reductions

in extrinsic risk, and changing role of intrinsic risk factors, models developed for use

in the community setting may not generalise well to the care home setting. The cross

section of studies summarised in Table 1.2 are used as a basis for the discussion in

this section.

The remainder of this section summarises the key themes in the falls risk pre-

diction literature for older adults living in care homes and contrasts these with the

discussion in Section 1.4.2. First decisions in the derivation of samples are discussed,

alongside the datasets used. Following this methods of identifying falls are con-

trasted to those used in the community setting. Next the major variables included

in models, and their relative importance to the predictions are discussed, which pro-

vides the basis for the discussion of methods for identifying multi-morbidity in Sec-

tion 1.4.4.

One of the major differences to studies based in the community is the relative

lack of data sets available to study falls in care home residents (Burton et al., 2021).

This is shown by several studies based in the USA and Canada in Table 1.2, which
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all made use of the Minimum Data Set (MDS) for Nursing home residents (Saliba

and Buchanan, 2008b; Marier et al., 2016; Kuspinar et al., 2019; Shaw et al., 2019;

Duprey et al., 2023; Boyce et al., 2022). Further studies used bespoke databases

developed by the Juniper communities chain of care homes in the USA (Thapa et

al., 2022), and across 15 Belgian nursing homes (Vlaeyen et al., 2020). The lack of

a similar database to the MDS in the UK for care home residents has hindered the

development of domestic falls risk prediction models, a point which is returned to

in Section 6.7 (Burton et al., 2021).

An additional difference between care home and community based studies is the

sample inclusion constraints imposed by authors. Exclusion criteria in care home

based studies are often restricted to data availability and completeness rather than

eliminating groups from the analysis (Marier et al., 2016; Shaw et al., 2019; Boyce

et al., 2022; Thapa et al., 2022; Duprey et al., 2023). The only study in Table 1.2 to

restrict their sample due to cognitive or mobility impairments was Vlaeyen et al.

(2020), compared to seven studies in Table 1.2 (Richardson, Bennett, and Kenny,

2015; Howcroft et al., 2017; Marques et al., 2018; Cella et al., 2020; Bravo et al., 2021;

Gade et al., 2021a; Jacob et al., 2022). This difference in the number of exclusion crite-

ria results from how the explanatory and outcome variables are assessed in studies

based in the care home. In community based studies, data on exposures and out-

comes are often collected directly from the individual through questionnaires, and

surveys (Kabeshova et al., 2015; Richardson, Bennett, and Kenny, 2015; Howcroft

et al., 2017; Marques et al., 2018; Cella et al., 2020; Bravo et al., 2021; Gade et al.,

2021a; Van De Loo et al., 2022; Jacob et al., 2022). However, this is in contrast to care

home based studies, which often use data collected from external observations or

routine data sources rather than responses from the individual (Marier et al., 2016;

Shaw et al., 2019; Vlaeyen et al., 2020; Boyce et al., 2022; Thapa et al., 2022; Duprey

et al., 2023). An example of this is how falls are identified between the two settings,

with fall calendars (Howcroft et al., 2017; Gade et al., 2021a; Van De Loo et al., 2022),

phone interviews (Marques et al., 2018), and self reporting (Richardson, Bennett, and

Kenny, 2015; Jacob et al., 2022) common in the community setting. In contrast, the

majority of studies in Table 1.2 used external measures such as routine data fields

(Marier et al., 2016; Boyce et al., 2022; Thapa et al., 2022; Duprey et al., 2023), and
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care home staff reports (Shaw et al., 2019; Vlaeyen et al., 2020). This means the accu-

racy of the data in these care home studies is not necessarily dependent on the health

state of the individual, which generally allows them to incorporate a wider range of

health states than studies in the community. The differences in the types of informa-

tion available further contributes to difficulty in generalising models developed in

the community setting to care homes.

Some of the variables included in falls risk prediction models in the care home

setting can be separated into similar groupings to those seen in the community set-

ting in Section 1.4.2. Similar to the community setting, a measure of falls history is

consistently included in care home based models with a similar fall risk increasing

effect identified (Marier et al., 2016; Shaw et al., 2019; Vlaeyen et al., 2020; Boyce et

al., 2022; Thapa et al., 2022; Duprey et al., 2023). A second grouping of explanatory

variables consistently seen in the community setting were functional assessments of

mobility such as the TUG test and ADL score (Kabeshova et al., 2015; Cella et al.,

2020; Bravo et al., 2021; Van De Loo et al., 2022; Jacob et al., 2022). Results from

community based studies using interpretable models found that functional impair-

ments measured through these scales were associated with an increase in the risk of

falls (Jacob et al., 2022; Van De Loo et al., 2022). However, a single care home based

study found that increased mobility and independence was associated with higher

falls risk in their care home sample (Duprey et al., 2023). This gives an indication of

how relationships between explanatory variables and falls can change between set-

tings, which may reduce the generalisability of models developed in the community

setting when applied to the care home. Despite the increased prevalence of disease

in care homes compared to the community setting, indicators for the presence of

chronic diseases that are known to increase falls risk are not consistently included

in care home based models, with only three of the seven studies in Table 1.2 includ-

ing them (Marier et al., 2016; Kuspinar et al., 2019; Thapa et al., 2022). The role of

chronic diseases in falls risk is addressed further in the Chapter 3 review of reviews.

Inclusion of multi-morbidity information in models was also lacking in the studies

shown in Table 1.2, which is discussed further in Section 1.4.4.

This section has shown that differences in the availability of data contributes to

fewer falls risk prediction models being developed for use in care homes compared
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to the community setting (Burton et al., 2021). Furthermore, the generalisability of

models developed in the community comes into question due to the types of in-

formation incorporated into the models, and changes to the relationships identified

as a person’s health state worsens. However, models developed in both the com-

munity and care home settings do not effectively incorporate multi-morbidity into

their prediction models, which is discussed further in Section 1.4.4. This presents the

opportunity for the research in this thesis and forms the final piece of background

before the research aim and objectives are stated in Section 1.5.

1.4.4 Incorporating Multi-morbidity into Falls Prediction

As discussed in Section 1.2.2 people are living longer with multiple chronic health

conditions, which means the relationships between chronic health conditions and

how they effect falls risk is an important area for study (Bergen, Stevens, and Burns,

2016; Kingston et al., 2018; Florence et al., 2018). Multi-morbidity was defined in

Section 1.1 and refers to the presence of two or more chronic health conditions in

the same individual (Johnston et al., 2019). In a situation where the size of the older

adult population and longevity with multi-morbidity are both increasing, under-

standing the complex relationship between different types of multi-morbidity and

falls will be increasingly important. However, there is a lack of extensive research

into the links between multi-morbidity and falls in older adults. Furthermore, when

multi-morbidity has been included as a predictor in falls risk models there is of-

ten over simplification present. The discussion in this section explores the different

methods of incorporating multi-morbidity seen in studies based in the community

and care home settings and how these methods fail to capture variation in multi-

morbidity presentations, which will have consequences for the relationships iden-

tified between multi-morbidity and falls. Following this, alternative approaches to

identifying multi-morbidity patterns are summarised, to provide the basis for the

research question, aim and objectives in Section 1.5.1.

Similar methods are used to identify multi-morbidity in studies identifying falls

risk, fall related injury, and fall related hospitalisation in the community setting.

These methods include counts of chronic conditions on record (Teixeira et al., 2019;
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Bravo et al., 2021), binary indicators for thresholds of the number of chronic condi-

tions on record (Afrin et al., 2016; Morin et al., 2019; Gade et al., 2021a; Barik et al.,

2022; Jacob et al., 2022; You et al., 2023), and using index values such as the age-

adjusted Charlson comorbidity index (McCoy et al., 2017; Garu et al., 2021). As seen

in Table 1.2, care home based studies predicting falls do not effectively account for

multi-morbidity beyond identifying the presence of the individual chronic condi-

tions (Marier et al., 2016; Kuspinar et al., 2019; Vlaeyen et al., 2020).

Identifying the effect of including sub-optimal measures of multi-morbidity into

models is challenging due to the heterogeneity between studies discussed in Sec-

tions 1.4.2 and 1.4.3. However, the presence of multi-morbidity is consistently iden-

tified as significantly increasing the risk of falls across settings and outcome mea-

sures (Afrin et al., 2016; Teixeira et al., 2019; Jacob et al., 2022; You et al., 2023; Barik

et al., 2022). Additionally, during ROC-threshold analysis, Bravo et al. (2021) found

the count of chronic conditions on record achieved a maximum AUC of 0.65 (Sen-

sitivity = 58.1%, Specificity = 63.8%) when discriminating between recurrent fallers

(≥2 falls) from occasional fallers (≤ 1 falls).

When identified through a binary threshold, the presence of multi-morbidity (≥

3 chronic conditions in this study) was associated with increases in all (≥ 1) and

recurrent (≥ 2) falls risk in post-menopausal women, with odds ratios of 1.82 (1.56-

2.13) and 1.41 (1.24-1.60) respectively when adjusted for age, medications, and smok-

ing status (Afrin et al., 2016). Further evidence from a cross sectional analysis of a

Chinese cohort of community dwelling older adults found multi-morbidity, mea-

sured through a binary threshold, significantly increased the risk of repeated falls,

with a reported odds ratio of 3.45 (1.47-6.97), when adjusting for demographic, geo-

graphical, and activity variables (You et al., 2023).

When measured through the count of chronic health conditions, Jacob et al.

(2022) identified a prospective association between multi-morbidity and falls in Irish

community dwelling older adults, with an increase in falls risk for two conditions

on record (OR = 1.32, CI = 1.06-1.64). Although the largest increase in this study

was observed for four or more chronic conditions (OR = 1.92, CI = 1.54-2.38) when

controlling for demographic variables, alcohol consumption, and falls history (Jacob
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et al., 2022). In a systematic review and meta analyses of falls risk factors in com-

munity dwelling older adults, Deandrea et al. (2010) derived a pooled odds ratio of

1.23 (1.16-1.30) for the association of incremental co-morbidity with falls based on

10 studies. While providing a greater indication of the gradient of falls risk effects

as a result of overall condition burden compared to the binary threshold approach,

measuring the number of chronic conditions on record does not differentiate fur-

ther between the types of multi-morbidity present, which may change the strength

of association with falls. This evidence still does not demonstrate whether multi-

morbidity effects persist when controlling for the presence of key chronic diseases.

Additionally, by using a binary threshold or a count of the chronic conditions present

as an indicator for multi-morbidity, authors are inadvertently grouping heteroge-

neous types of multi-morbidity together, which may have a range of effects on falls.

This means the overall multi-morbidity effects identified may be overestimating the

importance of certain multi-morbidity presentations, and underestimating the im-

portance of others.

Another alternative approach is to use an index of co-morbidity, where the pres-

ence of specific chronic conditions are scored differently based on various criteria.

McCoy et al. (2017) found each additional point on the age adjusted Charlson co-

morbidity index (AAC) was associated with an odds ratio of 1.05 (1.04-1.05) when

predicting hospital admission for fall-related injury. Additionally, Garu et al. (2021)

developed a model to predict fragility fractures following falls, finding AAC val-

ues of six or higher were associated with an odds ratio of 1.77 (1.14-2.73). The age

adjustment in the AAC refers to adding one point for each decade of age over 40

(Charlson et al., 1994). However, the core Charlson co-morbidity index was initially

intended to act as a predictor of 10 year survival, meaning the presence of several

falls risk increasing chronic conditions are not accounted for on this scale (Charlson

et al., 1987). Additionally, using an index scale does not aid in understanding the

mechanisms through which multi-morbidity causes changes in falls risk.

In order to understand the relationships between different multi-morbidity pat-

terns and falls risk, first groups of commonly occuring multi-morbidity presenta-

tions need to be identified. If reproducible groups of multi-morbidity can be identi-

fied and incorporated into falls risk prediction models, this could improve the way
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multi-morbidity is handled in these models in future. However, whilst multiple

studies have addressed how multi-morbidity presentations differ throughout the

older adult population, links between these different patterns and falls have not be

investigated.

In the multi-morbidity pattern literature, the focus is on understanding groups of

chronic health conditions that regularly co-occur in older adults in an effort to iden-

tify disease progressions, possible susceptibilities, and interactions between condi-

tions. Recent advances in computing capacity has motivated authors to apply ap-

proaches from the data mining and dimensionality reduction spheres to this problem

(Vu, Finch, and Day, 2011; Islam et al., 2014; Violán et al., 2018; Machón et al., 2020).

A common approach is to use cluster analyses to group chronic health condi-

tions together (Prados-Torres et al., 2014). For example, using multiple correspon-

dence analyses (MCA) to reduce the dimensionality in the multi-morbidity data fol-

lowed by a non-hierarchical clustering solution has been applied to analyse multi-

morbidity patterns in community dwelling older adults in Spain to identify whether

multi-morbidity patterns can be identified (Violán et al., 2018; Machón et al., 2020).

Through these studies common presentations of multi-morbidity were identified re-

lating to cardiovascular-metabolic-musculoskeletal-tobacco consumption cluster, a

cluster of musculoskeletal system conditions and connective tissue, and co-occuring

diabetes and retinopothy (Violán et al., 2018; Machón et al., 2020). In a systematic

review of 63 multi-morbidity patterns from 14 articles, Prados-Torres et al. (2014)

identified that a cardiovascular-metabolic pattern, a mental health pattern, and a

pattern of musculoskeletal conditions were consistently identified throughout the

literature. However, no studies in this review were conducted in the UK, meaning

further research is needed to asses whether the multi-morbidity patterns identified

in previous studies in other countries are applicable to the UK context (Prados-Torres

et al., 2014).

As discussed at the beginning of this section, the current approach of including

numbered or threshold based variables does not reflect the complexity present in

multi-morbidity information. Additionally, previous research into multi-morbidity

patterns has focused on community dwelling older adults outside the UK (Vu, Finch,

and Day, 2011; Islam et al., 2014; Prados-Torres et al., 2014; Violán et al., 2018;
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Machón et al., 2020). Therefore, there is an opportunity for novel research to be

conducted, which simultaneously addresses the lack of multi-morbidity studies into

care home residents based in the UK, and the over-simplification of multi-morbidity

information in falls risk prediction modelling. These gaps motivate the research

question, aims, and objectives of the analyses, which are presented in Section 1.5.1.

1.5 Aims, Objectives, and Outline of the Thesis

1.5.1 Research Question, Aims, and Objectives

As described in this chapter, falls represent a major source of injury, morbidity, mor-

tality, and healthcare resource use in older patient groups worldwide. In the context

of an ageing population, an automated falls risk flagging system based on informa-

tion routinely stored in the EHR is very desirable to aid practitioner decision making

and enable timely referral of patients at a high risk of falls to prevention interven-

tions.

A key feature of the ageing population is that patients are living longer with mul-

tiple chronic health conditions, or multi-morbidity. This means that any eventual

falls risk flagging system must be able to account for the variation in falls risk that

different multi-morbidity combinations may cause. Existing models of falls risk in

older adults fail to effectively represent the complexity present in multi-morbidity

data, meaning they may be unsuitable for wide-scale use. However, useful tech-

niques to categorise and group multiple chronic health conditions used in the wider

multi-morbidity literature provide an opportunity to explore the effect of multi-

morbidity on falls risk. Therefore, this thesis investigates patterns of chronic dis-

eases that regularly co-occur in UK care home residents, the associations between

these patterns and falls risk, and how specific risks can be quantified using statisti-

cal models based on data contained in routine EHRs.

The overarching research question for this thesis is "what is the contribution of

multi-morbidity in determining the risk of falls by care home residents aged over 65 and how

can these effects be identified in statistical models?" This question is addressed via the

following research aim and objectives.
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Research Aim:

Multi-morbidity has not been satisfactorily included in falls risk prediction mod-

els intended for use in the community or care home settings. Therefore the differen-

tial effects of different multi-morbidity presentations on falls risk is not well under-

stood. The overall aim of the research in this thesis is to develop an understanding

for the role of multi-morbidity in determining the falls risk of older adults residing in

UK care homes. Once patterns of multi-morbidity were identified using established

techniques, links between these patterns and falls risk were thoroughly investigated

using statistical models.

Research Objectives:

More specifically, the objectives of the research are to:

1. Review previous research to find evidence for which chronic health conditions

contribute to increased falls risk in community dwelling older adults.

2. Identify patterns of chronic health conditions that regularly co-occur in UK

care home residents.

3. Establish whether any patterns of multi-morbidity change the risk of falls in

care home residents.

4. Determine the association of individual chronic conditions with falls in the

sample of UK care home residents.

5. Investigate how specific combinations of chronic health conditions contribute

to the changes in falls risk identified for each multi-morbidity pattern.

6. Examine whether the contributions of individual chronic health conditions can

explain the effects on falls risk observed for patterns of multi-morbidity.

1.5.2 Thesis Structure

The initial thesis plan was to develop a prediction model for use in the pre-hospital

setting to stratify the risks of different outcomes in trauma patients. Such a model

was intended to aid in easing the demand pressures faced at the emergency depart-

ment through the identification of low-acuity cases in the pre-hospital setting. For
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this reason, a systematic review of mortality prediction models following traumatic

brain injuries in adults was undertaken and is presented in Chapter 2.

During the completion of the Chapter 2 systematic review, the research focus

shifted to presentations by older adults to the emergency department. This shift

occurred due to several converging themes identified in the wider literature and

Chapter 2 review. These themes were the challenges the health system will face

from an ageing population, the role of older adult presentations as a cause of emer-

gency department crowding, and the consistent significance of age in determining

TBI outcomes identified during the 2 review.

This new focus on older adults meant a statistical model to predict low acuity

presentations would be less appropriate due to the increased clinical need and com-

plexity of older adult presentations. Alongside this shift in focus, the opportunity

arose to work with a unique dataset, which identified care home residents and their

interactions with hospital and community care resources. Therefore, the Chapter 2

represents a key turning point for the project, and the experience gained when con-

ducting this review directly impacted the approach taken in the subsequent Chapter

3 review.

Following the shift in focus to older adults, a gap in the literature was identi-

fied surrounding the role of multi-morbidity in falls and fall presentations to emer-

gency departments by the care home residents. A Review of Systematic Reviews

was conducted in Chapter 3 to distill the findings from studies that assessed the role

of chronic diseases in causing falls in community dwelling older adults. Findings

from the community were used due to the lack of studies assessing the relationship

between chronic diseases and falls in care home residents. As a result of this review,

a shortlist of the chronic health conditions that were consistently associated with

increased falls risk was developed and included in later regression models.

Chapter 4 presents the methodology for the analyses in this thesis, drawing a

line between the falls risk prediction literature, and multi-morbidity pattern analy-

sis literature to present a novel approach to addressing the research question. Ad-

ditionally, an overview of the data to be used in the analyses is presented in this

chapter, alongside a description of the steps taken to process the chronic health con-

dition information identified from inpatient records. This chronic health condition
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information was then used in conjunction with the shortlist derived in the Chapter

3 review of reviews to differentiate the effects of individual chronic health condi-

tions on falls risk, and compare these findings to the patterns of multi-morbidity

identified. By demonstrating how no single chronic health condition was respon-

sible for the changes in falls risk associated with the patterns of multi-morbidity, it

was then possible to suggest a gradient of effects on falls risk based on the type of

multi-morbidity present.

The results of the cluster analysis and regression models are presented in the

Results (Chapter 5). Finally, in Chapter 6 the contextualisation of these results in

the wider literature, discussion of study limitations, recommendations for future

research, and the overall reflection and conclusions of the thesis are provided. While

there are still many questions remaining for the role of multi-morbidity in falls risk,

this is the first research which has identified a gradient of falls risk effects caused by

different patterns of multi-morbidity in UK care home residents.
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Chapter 2

Comparing Mortality Prediction

Models Following Traumatic Brain

Injury: A Systematic Review

2.1 Chapter Introduction

This chapter investigates the effectiveness of existing ML models for the prediction

of outcomes following Traumatic Brain Injuries (TBI) in adults. The topic for the sys-

tematic review was chosen to investigate the effectiveness of innovative methods for

predicting ongoing care needs in patients accessing emergency care. As discussed

in Section 1.5.2, the focus of the thesis research shifted during the completion of this

systematic review from avoidable attendances to fall attendances to emergency de-

partments by care home dwelling older adults. The shift towards focussing on care

home residents was partially motivated by an underlying theme identified in this

systematic review, where the differences in outcomes in older patients identified in

multiple studies motivated the further investigation of this patient group. This fur-

ther investigation highlighted how low falls are a common cause of TBI in older

patients, which led to the development of the wider project surrounding falls in care

home residents aged over 65 (Lawrence et al., 2016).
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2.2 Review Introduction

Traumatic Brain Injury (TBI) is a major global cause of death and disability (James,

2019). Rapid determination of the appropriate treatment path for patients with TBI

is crucial to maximise the chances of optimum outcomes. Statistical models predict-

ing mortality risk in patients with TBI are intended to aid with this determination by

providing information on likely outcomes in the early stages of patient management

at the Emergency Department (ED) or Intensive Care Unit (ICU). This information

can be used by clinicians to better manage patient needs whilst also giving families

justified indications of likely prognosis to help with counselling and managing ex-

pectations. In this review I compare the performance of mortality prediction models

in adult patients following TBI. The findings from this review were intended to moti-

vate decisions in model development and evaluation, based on the original analysis

plan. However, limitations in the data available at the care home level motivated the

change in direction for the analyses, which is presented in Chapter 4.

TBI is a form of acquired brain injury where sudden trauma causes damage to

the brain. This can be caused by blunt force or when an object penetrates the skull

and enters brain tissue (National Institute for Neurological Disorders and Stroke,

2019). A widely used measure of TBI severity is the Glasgow Coma Scale (GCS),

where symptoms are classified with a score of 3-15 and a lower score indicates more

severe TBI (Teasdale and Jennett, 1974). TBI severity can be grouped into three cat-

egories on the GCS: Mild (GCS 13-15), Moderate (GCS 9-12) and Severe (GCS < 9).

The focus of this review is moderate-severe TBI because the mortality rate is high-

est in these categories meaning the potential benefit from early identification and

aggressive treatment is higher in this group.

Two individual level prediction models have been developed and validated in

large multinational cohorts of patients. The International Mission for Prognosis and

Clinical Trial (IMPACT) and Corticosteroid Randomization after Significant Head

Injury (CRASH) scores incorporate demographic characteristics, lab results and CT-

imaging findings to make their predictions (Maas et al., 2007; Perel et al., 2008).

However, these scores are unable to take account of treatment protocols and only

make a prediction at admission, rather than updating them dynamically over time.
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In addition, they were established over a decade ago meaning incorporation of new

evidence and the effect of improved CT-scanning techniques makes updated models

necessary.

Whether to use standard statistical approaches or Machine Learning (ML) algo-

rithms for the prediction of binary outcomes such as mortality is an open debate in

the academic literature. While the methods may seem similar on the surface, they

differ in their fundamental approach taken to identifying relationships in data. At

the most basic level standard statistical techniques rely on models where the out-

come is related to the predictors based on some function of variable values, stochas-

tic noise, and estimable parameters based on an assumed distribution of observa-

tions. In this way, standard statistical approaches attempt to estimate the natural

process, that generated the data in the first place. ML algorithms take a different

approach however, where the natural link between the predictors and outcomes is

seen as complex and unknown. The focus of ML is instead to develop algorithms

that best reproduce the output values given the predictor information without mak-

ing assumptions about the form this relationship will take. In this way ML algo-

rithms can model complex non-linear relationships between variables, although this

is often achieved at the cost of interpretability of the findings.

Logistic regression remains the most popular algorithm for binary outcome pre-

diction. However, recent developments in computing capacity have raised the ques-

tion of whether more complex algorithms can be applied to this setting for improved

predictive performance. ML is an automated process, which extracts patterns from

data. Supervised ML methods use this automated process to identify a pattern be-

tween input variable and outcome values based on historical examples such that

predictions can be made in new instances (Kelleher, Mac Namee, and D’Arcy, 2015).

The two main phases in ML are model training and evaluation. Training refers to

the development of a model based on past examples, where parameters within the

model are fine tuned for improved performance. Evaluation is the phase where the

predictive performance of a trained model is assessed, ideally in unseen data. Key

terms for understanding the ML literature and methods of training and evaluation

are provided in the Glossary of terms. Additionally, a description of the methods

encountered during this review is provided in Appendix Table B.



42
Chapter 2. Comparing Mortality Prediction Models Following Traumatic Brain

Injury: A Systematic Review

The clinical usefulness of a prognostic model is dependent on its clinical and

methodological validity. Therefore, interrelationships between features identified in

the data must be reflective of clinically meaningful relationships rather than result-

ing from coincident features of the sample population. While the selection of ML

algorithm and corresponding hyperparameters (see the Glossary of Terms) is a key

part of this, the quality of the input data is of paramount importance for valid and

generalisable models to be developed.

Previous systematic reviews on the application of ML algorithms to head trauma

and emergency care settings found methodological quality and reporting is often

poor with many studies suffering from an elevated risk of bias (Perel et al., 2006;

Miles et al., 2020). This review aims to investigate the methodological validity, per-

formance, and generalisability of ML models for mortality prediction in adult pa-

tients with moderate to severe TBI.

2.3 Systematic Review Methodology

The study population for this systematic review is adult patients (16+) in acute care

settings with moderate to severe Traumatic Brain Injury (TBI), defined as a score

of 12 or below on the Glasgow Coma Scale (GCS). The method of interest is super-

vised or unsupervised prediction modelling methods where one of the outcomes

is mortality or, conversely survival. The outcomes for review are the reported dis-

crimination (C-statistic/AUC), sensitivity, specificity, accuracy, negative predictive

value, positive predictive value, and calibration statistics.

Four bibliographic databases (Medline, Web of Science, Embase and CINAHL)

were searched using headings, thesaurus terms and key words related to the review

title on 12/02/2021. These key words were based around the concepts: ‘Traumatic

Brain Injury’, ‘Prediction modelling’, ‘machine learning and regression’, ‘outcome of

mortality or survival’ and ‘acute care settings’. To reduce the risk of missing papers

relevant to the review, exploded headings and truncations were used in the searches.

The full search strategy is available the Appendix Section A. The search results were

filtered to studies published between 2015 to 2021 prior to download. Studies were
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limited to publication from 2015 onwards to reflect recent advances in computing

capacity, which have made ML models more feasible.

Full citations and abstracts of included papers were downloaded into Mende-

leyTM Version 1.19.8 and duplicates were removed. A single reviewer (SW) screened

the titles and abstracts against the inclusion criteria below, recording the results in

an Microsoft ExcelTM spreadsheet.

Inclusion Criteria:

1. Study based in Acute Care Setting (Emergency department, hospital ward, In-

tensive Care Unit)

2. Study population is adult patients with moderate to severe traumatic brain

injury (defined as 12 or below on the Glasgow Coma Scale (GCS) or other val-

idated measure)

3. Study presents machine learning, deep learning or regression model for out-

come prediction

4. One model outcome is either patient mortality or survival

5. Accuracy, discrimination or calibration of predictions reported

6. Study is written in English language

Exclusion Criteria

1. External validation or generalisability study of existing prediction model where

no additions or refinements are made

2. Study only identifies risk factors of mortality in TBI patients without develop-

ing a prediction model

3. Reviews of previous literature

(Specific age cohorts, for example, studies only including patients aged over 65,

were not considered grounds for exclusion in this review.)
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Following the initial inclusion judgement based on title and abstract, full texts of

included papers were downloaded into Mendeley. A sift of the full texts was per-

formed to ensure studies met the inclusion criteria. The reasons for exclusion at this

stage are presented using a PRISMA flowchart in Figure 2.1 alongside the search

results. Eighty-seven articles were excluded at the full text stage for the following

reasons. 16 studies used populations outside those defined in the inclusion criteria,

of these two were based in paediatric populations, eight had a high proportion of

mild TBI cases and six were based in non-TBI specific populations such as general

trauma. A further 37 studies did not meet the inclusion criteria relating to the models

used. This group comprised five studies that did not predict mortality or survival,

11 studies which did not develop prediction models at all, and 21 that only inves-

tigated risk factors for the outcome. Ten studies involved externally validating an

existing prediction model or score and the remaining 24 were conference abstracts

and posters. Following the full-text screening stage, 21 studies were included for

data extraction and evidence synthesis.
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FIGURE 2.1: PRISMA Flowchart of Search Results

Data were extracted from included studies in the following areas: data source

used, country of sample data, descriptive statistics of study population, handling of

missing data, prediction model type (and number, if more than one was present),

outcomes predicted by the model, explanatory variables included, discrimination,

calibration, and classification statistics. This information was organised in a Mi-

crosoft ExcelTM spreadsheet. The included articles were assessed using the Predic-

tion model study Risk of Bias Assessment Tool (PROBAST) with the results shown

in Tables 2.2 and 2.3.
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2.4 Systematic Review Results

2.4.1 Study Sample Characteristics

Characteristics of the included studies are presented in Table 2.1. These 21 included

studies developed 127 models, of which 47 (from 7 Studies) used prospectively col-

lected data with a mean sample size of 439 (ranging from 185-3496). Of the models

using prospective data 35 were based in multiple treatment centres with a mean

sample size of 400 (ranging 193-3496, corresponds to 3 studies). The remaining 12

models used prospective data from a single centre with a mean sample size of 553

(range 185-1275, corresponds to 4 studies).

The remaining 80 models (from 15 studies) retrospectively used data from ex-

isting datasets for model development with a mean sample size of 31,840 (ranging

from 54-212,666). Most models using retrospective data were based in a single treat-

ment centre (54 models) with a mean sample size of 384 patients (ranging 54-1620,

corresponds to 7 studies). The remaining 26 models used retrospective data from

multiple centres with a mean sample size of 97,212 (range 355-212,666).

Included study populations were often based in high income countries (HIC).

Of the 21 studies included 17 were based in a HIC. This corresponds to 7 based

in the USA, 3 in the UK, 2 in Taiwan and 1 in Sweden, Finland, Australia and New

Zealand, EU based, and Qatar. There were also four studies using populations based

in Middle income countries with 3 in Brazil and 1 in Iran. All data included in

studies selected for this review was collected between 2000 and 2019.

There was large variety in the criteria used to select study participants between

studies. It was common to set a threshold level of TBI severity accepted using the

GCS. Common levels for this threshold correspond to the general classifications of

TBI using the GCS, ie. GCS ≤ 13 for moderate-severe TBI and GCS ≤ 9 for only

severe TBI cases. Use of the GCS to identify TBI was not uniform across studies

however, head Abbreviated Injury Scale (AIS) ≥ 2 (Wan-Ting et al., 2020) and CT-

scan results (Muehlschlegel et al., 2016; Prosser et al., 2020) were also used to confirm

TBI presence. Another common criterion across studies was a threshold age or range

of ages for inclusion. Studies would also impose specific criteria depending on the
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TABLE 2.1: Included Study Characteristics

Lead Author Data Collec-
tion Period

Country Study De-
sign

Methods Study
Sample
Size

Inclusion Criteria Outcomes
Predicted

Dawes et al.
2015

2009-2010 USA Multicentre LR 822 GCS ≤ 8, caused by blunt trauma, ab-
normal IC findings on head CT

Inpatient
Mortality

Lu et al. 2015 2009-2012 Taiwan Single Cen-
tre

LR, ANN,
NB, DT

115 Admitted to nICU following m-sTBI,
age ≥ 18 years, did not die within 14
days, no missing data in record

6-month
Mortality

Kelly et al. 2015 2008-2012 USA Multicentre LR 3496 sTBI pats, age ≥ 14 years, Head AIS
≥ 3, could be matched to death index

30-day,
6-month
Mortality

Thelin et al. 2016 2005-2013 Sweden Single Cen-
tre

LR 417 Age ≥ 18 years, minimum of three
measures of S100B and NSE (first
in 48h and third within 72h after
trauma), admission CT data available,
LT functional outcome evaluated ≥ 3
months after trauma

Long Term
Functional
Outcome

Muehlschlegel
et al. 2016

2000-2013 USA Multicentre LR 413 Age ≥ 18 years, confirmed pTBI with
perforation of dura on head CT, clin-
ical evidence of brain injury follow-
ing examination, not dead on arrival,
medical data available

Inpatient
Survival

Alsulaim et al.
2017

2006-2011 USA Multicentre LR 93,397 Consciousness data available, all AIS
scores for any non-head body regions
= 0

Inpatient
Mortality

Han et al. et al.
2017

2006-2009 Singapore Single Cen-
tre

LR 300 GCS ≤ 8, consecutively admitted to
nICU at NNI Singapore

14-day, 6
month Mor-
tality

Junior et al. 2017 2003-2009 Brazil Single Cen-
tre

LR 1275 Not sedated before Neurological as-
sessment, no hemodynamic instabil-
ity, abnormalities identified on CT
scan

In hospital
Mortality
(unclear)

Zeiler et al. 2018 2005-2016 UK Single Cen-
tre

LR 358 Minimum 6 hours of recorded ICP
signals, adult patients, did not receive
decompressive craniectomy

6-month
Mortality

Winans et al.
2020

2011-2018 USA Single Cen-
tre

LR 402 Age ≥ 18 years, Trauma patients, GCS
≤ 8, GCS motor response sub-scores
of ≤ 5 (not following commands),
blunt trauma patients, not penetrat-
ing trauma patients

In hospital
Mortality

O’Briain et al.
2018

2000-2016 Australia
and New
Zealand

Multicentre LR 24,148 Age ≥ 17 years, Head Trauma pa-
tients, no multi trauma, patient is
ventilated, no inter ICU transfer, no
readmission, not admitted for pallia-
tive care/organ donation, not missing
outcome data, not missing PaO2 data

In hospital
Mortality

Najafi et al. 2018 2016 Iran Single Cen-
tre

LR 185 TBI patient, MOI is traffic accident,
transported directly from the scene
by EMS ambulance, ISS ≥ 9, aged
18-85, at least one vital sign parame-
ter ≥ 0 at scene, no incomplete data
in either the prehospital or hospital
patient records, no pregnancy or co-
morbidities present on record, trans-
fer time from the scene to hospital ≤
1 hour, patient not transferred in first
24hours

24-hour
Mortality
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Table 2.1: Included Study Characteristics (continued)
Lead Author Data Collec-

tion Period
Country Study De-

sign
Methods Study

Sample
Size

Inclusion Criteria Outcomes
Predicted

Raj et al. 2019 2003-2017 Finland Multicentre LR 472 Age ≥ 16, ICP monitoring for more
than 24hr, admitted to ICU within
24hr of trauma

30-day Mor-
tality

Abujaber et al.
2020

2014-2019 Qatar Single Cen-
tre

ANN, SVM 1620 Age ≥ 17 years, sustained TBI In hospital
Mortality

Wan-Ting et al.
2020

2014-2017 Taiwan Multicentre LR 438 Adult patients, ISS score ≥ 16 points
and head AIS ≥ 2, sufficient data on
record, no inter hosp transfer, no out
of hospital cardiac arrest, patient not
DNR

In hospital
Mortality

Prosser et al.
2020

2015-2016 UK Multicentre LR 355 Age ≥ 16 years, AIS severity of ≥ 3
for a confirmed TBI/intracranial in-
jury on head CT scan, transported to
hospital by land ambulance, not in-
jured nearest to SNC

30-day Sur-
vival

Fontoura Solla
et al. 2020

2012-2015 Brazil Single Cen-
tre

LR 517 Age ≥ 14, not penetrating TBI, patient
not transferred from other ICU, no
chronic sub-Dural hematoma present

14-day Mor-
tality

Wu et al. 2020 2012-2016 USA Multicentre LR, SVM,
K-NN, DT,
GNB, LDA

212,666 tICH present on record (epidural,
subdural, subarachnoid or intra-
parenchymal haemorrhage)

In hospital
Mortality

Zeiler et al. 2020 2015-2017 EU
Based

Multicentre LR 193 Not patients with EVD based ICP
data

6-month
Mortality

Kim et al. 2020 2003-2018 USA Single Cen-
tre

DT 54 MOI is firearm injury, Patient not
DOA, Clinical Imaging results avail-
able, no missing brain imaging data,
patient has injury with intracranial in-
volvement, no isolated spinal injury,
no missing clinical notes data, not du-
plicated entry

Mortality
(time period
unspecified)

Amorim et al.
2020

2012-2015 Brazil Single Cen-
tre

NB, RF,
BGLM,
PDA, GPLS,
SGB

517 Age ≥ 14, intracranial abnormality on
CT, not penetrating TBI, GCS ≤ 15, no
intracranial lesions on CT not caused
by MOI

14-day, In
hospital
mortality

Method Abbreviations: LR = Logistic Regression, SVM = Support Vector Machine, KNN =
K-Nearest Neighbours Classifier, DT = Decision Tree, GNB = Gaussian Naïve Bayes, NB = Naïve

Bayes, LDA = Linear Discriminate Analysis, ANN = Artificial Neural Network, BGLM = Bayesian
Generalised Linear Model, PDA = Penalised Discriminant Analysis, RF = Random Forrest, GPLS =
Generalised Partial Least Squares, SGB = Stochastic Gradient Boosting, Other Abbreviations: IC
= Intracranial, CT scan = computerised tomography, nICU = Neurological ICU, m-sTBI = moderate

to severe Traumatic Brain Injury, sTBI = Severe TBI, LT = Long Term, pTBI = penetrating TBI,
ICU = Intensive Care Unit, DNR = Do not rescue, SNC = specialised neurological centre, tICH =
Traumatic Intracranial Haemorrhage, ICP = intracranial Pressure, MOI = Mechanism of Injury

injury under investigation, for example including only penetrating (Muehlschlegel

et al., 2016) or blunt force (Dawes et al., 2015; Amorim et al., 2020; Fontoura Solla

et al., 2020) brain injuries.
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2.4.2 Predictors and Outcomes

The included studies incorporated a wide range of predictor variables in the devel-

oped models. A breakdown of the common predictors used in ML models devel-

oped in the included studies is shown in Appendix Table C. This table shows the

variables specified as model inputs for each study because assessment of the sig-

nificance or contributions of different predictors to overall model predictions can

be challenging or impossible for some ML algorithms. As shown in Appendix Ta-

ble C, commonly included predictor variables were: age (15/21 studies), GCS Score

(10/21 studies), pupillary reactivity (11/21 studies), biological sex (8/21 studies),

and comorbidities (5/21 studies). Many studies also included findings from CT-

scans (13/21 studies) in predictor variables, although a range of information was

incorporated from these scans.

Outcomes predicted by the included models can be separated into three cate-

gories based on prediction horizon: short-term, long-term and mixed. Short term

outcomes are defined as being within one month of initial injury, which corresponds

to 13 models that predict 24hr (1), 14-day (8) and 30-day (3) mortality, with a final

model predicting 30-day survival (1). Long-term outcomes were predicted by 81

models, specifically 6-month mortality (75) and long-term Glasgow Outcome Scale

(GOS) (6) collected after 3 months. Finally, an outcome without a pre-defined time

of measurement was predicted by 33 models, which used in-hospital mortality (28)

and survival (5).

2.4.3 Modelling, Performance and Validation

127 ML prediction models were included in the review and Logistic Regression

(105) was by far the most prevalent. The remaining models used the following ap-

proaches: Support Vector machine (5), Decision Tree (3), Naïve Bayes (2), Random

Forest (2), Artificial Neural Network (2), Penalised Discriminant Analysis (2), K-

nearest neighbours (1), Bayesian generalised linear model (1), Gaussian Naïve Bayes

classifier (1), Linear discriminate analysis (1), Generalised Partial Least Squares (1),

Stochastic Gradient Boosting algorithm (1).
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Univariate analysis was used in the selection of predictors in 8 studies, with 9

using other methods and 4 that were unclear about how predictors were chosen. Of

the 9 studies using methods other than univariate analysis, 3 used the findings of

previous literature, and 2 used situation based selection of variables that would be

available at the time the model was intended for use. A further 2 selected variables

for the testing of a specific hypotheses, which were the effect of adding a loss of con-

sciousness variable to existing injury scores (Alsulaim et al., 2017) and the usefulness

of ICP monitor derived signal variables (Zeiler et al., 2018). A single study used an

iterative variable selection method called recursive feature elimination and the final

study inputted all available variables into the ML algorithms. The general methods

used for feature selection are reported in Appendix Table C.

Appendix Table D provides a full breakdown of the reported predictive perfor-

mance of included models and the metrics reported for evaluation. In Appendix

Table D, model discrimination was consistently reported using the concordance or c-

statistic, which is equivalent to the Area Under the Receiver Operator Curve (AUC)

reported for 112 models. This statistic gives the probability a random patient from

the sample that experienced the outcome had a higher predicted probability than a

random patient that did not experience the outcome. Reporting of sensitivity (14),

specificity (13), accuracy (12), negative predictive value (7) (NPV) and positive pre-

dictive value (9) (PPV) was far less prevalent. For studies that reported calibration of

models (6), the Hosmer-Lemeshow statistic and associated p-Value were used most

frequently (5) with two of these studies reporting Brier scores alongside. The final

study reporting calibration used the correction rate.

Several approaches were taken to validate model predictions, although 105 mod-

els reported no validation method. Of the validated models, 5 used 10-fold cross

validation (2 studies), 10 used 5-fold cross validation (2 studies), 2 used Random

sampling (1 study), and 4 used bootstrapping for internal validation (1 Study). Only

11 models (2 studies) were reported as having used a training and testing set for

evaluation of model performance, of these 9 used an 80/20 and 2 a 70/30 training

and test split.

Due to the inconsistent reporting of evaluation metrics, differences in outcomes

predicted, and heterogeneity of sample populations meta-analysis was not attempted
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TABLE 2.2: PROBAST Risk of Bias

Lead Author
Surname

Year Participant
selection

Predictors and
Assessment

Outcomes and
Determination

Analysis Overall
Risk of
Bias

Dawes 2015 Low Low Low Unclear High
Lu 2015 Unclear Unclear Low Low Unclear
Kelly 2015 Unclear Low Low High High
Muehlschlegel 2016 Low Low Low High High
Alsulaim 2017 Low Low Unclear High High
Han 2017 Unclear Low Unclear Low High
Junior 2017 Low Low High High High
Zeiler 2018 Low Low Unclear High High
Winans 2020 Unclear Low Unclear Low High
O Briain 2018 Low Low Unclear High High
Najafi 2018 Unclear Low Unclear High High
Raj 2019 Unclear Low Low Low Unclear
Abujaber 2020 Low Low Low Unclear Unclear
Wan-Ting 2020 Low Low Unclear Unclear High
Fontoura Solla 2020 Low Low Unclear High High
Wu 2020 Low Low Low Low Low
Zeiler 2020 High Low Unclear High High
Kim 2020 High Unclear Unclear High High
Amorim 2020 Low Low Unclear Unclear Unclear
Prosser 2020 Low High Low High High
Thelin 2016 Low Low Low High High

in this review. However, of the 112 models, which reported an AUC value 109 of

these were above 0.7, and 80 were above 0.8, meaning a high proportion of mod-

els were able to discriminate between target outcomes effectively. However, due to

the underuse of appropriate testing data these AUC values were often calculated on

performance in training data making them unreliable.

2.4.4 Study Risk of Bias and Applicability

The study PROBAST results are shown in Table 2.2 with the applicability results in

Table 2.3. 16 studies were found to have a high risk of bias, mainly resulting from a

lack of external validation of model predictions and the poor reporting of evaluation

statistics mentioned in the previous section. Several studies also did not adequately

address the approach taken to handle missing data or report the degree of missing

data in their sample. Another common issue identified was not controlling for the

confounding influence of withdrawal of treatment based on the values of predic-

tors used in the model. Despite these issues in reporting, the majority (12/21) of
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TABLE 2.3: PROBAST Applicability

Lead Author
Surname

Year Participants
and Setting

Predictors and
Assessment

Outcome and
Determination

Overall Ap-
plicability
Concern

Dawes 2015 Low Low Low Low
Lu 2015 Low Low Low Low
Kelly 2015 Unclear Low Low Low
Muehlschlegel 2016 Low Low Low Low
Alsulaim 2017 Low Low Low Low
Han 2017 Low Low Low Unclear
Junior 2017 Unclear Low Unclear High
Zeiler 2018 Low Low Low Low
Winans 2020 Low Low Low Low
O’Briain 2018 Unclear Low Low High
Najafi 2018 Low Low Low Low
Raj 2019 Low Low Low Low
Abujaber 2020 Unclear Low Low Unclear
Wan-Ting 2020 Low Low Low Low
Fontoura Solla 2020 Unclear Low Low Unclear
Wu 2020 Low Low Low Low
Zeiler 2020 Low Low Low Low
Kim 2020 Low Low Low High
Amorim 2020 Unclear Low Low Unclear
Prosser 2020 Low High Low High
Thelin 2016 Low Low High High
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studies were found to be highly applicable to the review, as seen in Table 2.3. This

is mainly the result of the review placing few constraints on accepted models and

study populations.

2.5 Discussion

This review searched four electronic databases and identified 21 studies for inclu-

sion, which corresponded to 127 mortality prediction models in moderate to severe

TBI patient populations. Most of these models used logistic regression for prediction

and had an elevated PROBAST score for risk of bias. The quality of results reporting

was variable, with many papers only reporting discrimination statistics for model

performance. Following the aims highlighted in Section 2.2, this discussion is sepa-

rated into three sections covering methodological validity, model performance, and

the generalisability of model findings.

2.5.1 Methodological Validity

While Logistic Regression (LR) was the most popular modelling approach used in

the included studies, several other ML approaches were used and warrant further

investigation. A short discussion of the key assumptions and limitations of each

approach is presented below alongside the characteristics of the studies that used

them.

Logistic Regression (LR):

LR is an example of a standard statistical approach. This means the primary aim

of studies presenting LR models was often statistical inference rather than prediction

accuracy. This difference in primary objective likely informed decisions during the

methodology and evaluation of results, which may explain the sparse reporting of

key performance metrics and under use of validation approaches in these studies.

Predictors included in LR models need to be pre-defined and 7 of the 17 studies

presenting LR models used univariate analysis to inform predictor choice. This ap-

proach raises the risk of bias and may lead to the inclusion of non-clinically useful

variables being included due to correlation with meaningful variables.
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While LR offers a simple and interpretable method for predicting outcomes in

TBI patient populations, the inability to handle fuzzy decision boundaries means

models often have good predictive performance on average, whilst being poor at the

individual level. This makes the use of validation and testing methods alongside the

reporting of performance metrics such as NPV and PPV essential for studies mak-

ing use of LR. Unfortunately, this was often not the case for models included in this

review with only 2 LR studies reporting the NPV and 3 reporting PPV. Studies us-

ing LR often had small samples with insufficient data for minority classes, meaning

predictions made in this group run the risk of small sample bias.

Support Vector Machine (SVM):

Rather than attempting to emulate an underlying natural process through com-

bining weighted predictor variables, SVM simply attempts to split the data in a way

that maximises the margin around a decision boundary (hyperplane). Because of

this lack of underlying probabilistic logic, variable importance in the model predic-

tions cannot be interpreted as they can be in LR. This lack of interpretability is a key

reason why SVM is not a popular model in medical statistics, where model deci-

sions need to be clinically justifiable. This is one possible reason for why only 5 of

the 127 included prediction models used SVM (Abujaber et al., 2020; Wu, Marthi,

and Asaad, 2020) despite the high predictive performance achieved.

As covered in Appendix Table B, during an application of the SVM algorithm, the

‘C’ hyperparameter needs to be manually set. This refers to the penalty to be placed

on misclassified points during training. Neither study that developed SVM models

reported the value this hyperparameter took, nor was any sensitivity analysis of the

effect changing this parameter had on model performance.

Artificial Neural Network (ANN):

The two models using ANN identified in the review were examples of super-

vised learning, which refers to a situation where the actual value of the outcome vari-

able being predicted during training is known, and used to update internal model

weights and parameters.

In the two studies that presented ANN models reporting of the methodology

used for development was poor (Abujaber et al., 2020; Lu et al., 2015). Neither study
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defined what structure the final ANN took nor whether stochastic gradient descent

was used in training. One study (Lu et al., 2015) used cross validation to reduce over-

fitting risk while the other used a standard training and test data split (Abujaber et

al., 2020). Both studies reported key performance measures, which is discussed fur-

ther in Section 2.5.3. The fully connected multi-layer structure and iterative updating

of weights in an ANN model means it is often not clear how it arrives at a predic-

tion. This limits their usability as prediction models in clinical practice. Only one

study (Lu et al., 2015) assessed variable importance within the ANN model through

leave out comparisons of AUC values with t-tests to assess the significance of these

changes. While the attempted assessment of variable importance is commendable,

because of the way an ANN will combine variables together, individual assessment

of variables provides only a limited picture of the contribution a variable makes to

the model.

Naïve Bayes Classifier:

As covered in the Glossary of Terms Naïve Bayes models work through applying

Bayes Theorem and the simple assumption of conditional independence (CI). Even

though the CI assumption is not expected to hold, NB still achieves good perfor-

mance as a prediction algorithm for categorical outcomes. In the two studies that

developed Naïve Bayes (NB) Classifier models (Lu et al., 2015; Amorim et al., 2020),

both found the NB models outperformed all other models tested when predicting

mortality at different time points. One model had an AUC of 0.901 for predicting 6-

month mortality whilst also maintaining high sensitivity, specificity and calibration

values (Lu et al., 2015). The other NB model had a similarly high AUC of 0.906 for

predicting 14-day mortality. Both models found age and different GCS values were

the most important variables contributing to model predictions. Additionally, one

of these models incorporated multiple GCS measurements and the changes between

these measurements to add a degree of memory in the predictions (Lu et al., 2015).

Tree Based Models:

In the three decision trees included in the review, the C4.5 Algorithm was used

in one (Lu et al., 2015) and two did not specify the algorithm used to determine how

to split the data at each node (Kim et al., 2020; Wu, Marthi, and Asaad, 2020). None
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of the included decision tree models reported how overfitting was prevented in the

models or specified any pruning methods used. As seen in Appendix Table B, a key

weakness of decision trees is the classification of minority classes in unbalanced data

samples, which was often the case in included studies, as shown by Appendix Ta-

ble D. Unbalanced samples can lead to performance metrics such as accuracy being

misleading as discussed in the Glossary of Terms. Of the studies presenting decision

tree models, one addressed this problem using the synthetic minority oversampling

technique (SMOTE) (Wu, Marthi, and Asaad, 2020). SMOTE creates new minority

class instances using a nearest neighbour-based approach of original minority class

instances. While the SMOTE approach helps to address class imbalance, the usabil-

ity of the synthetic instances for training and testing is questionable. This is because

even though the new instances are similar to existing minority class examples in

the dataset, whether these instances occur in reality is unknown, meaning the end

model may be less generalisable to future data (Chawla et al., 2002). The effect of

using SMOTE should be addressed with sensitivity analysis and investigation of the

feasibility of synthetic instances. In the single study where SMOTE was used, no

analysis of the effect of synthetic instances was reported. The major advantages of

decision tree models is their ease of interpretation and clarity of how predictions are

made. Also, once trained these models require very little computing power to use,

as new instances only need to be run through a series of threshold or categorical

tests. These strengths make decision trees feasible for use in clinical practice, pro-

vided the overfitting risks are handled appropriately and sufficient data is available

for training, testing and validation.

Random Forest (RF):

As seen in Appendix Table B, RF models are an example of ensemble learning,

which use resampled data to train multiple DT models and aggregate the predictions

of these weaker models. Two RF models were identified from the same study in the

review, one predicting in-hospital mortality and the other 14-day mortality (Amorim

et al., 2020). There was no reporting of how the two Random Forest models included

for review were trained or the specific algorithm used. This under-reporting of de-

cisions made during training and development is a common theme among papers
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included for review and was especially prevalent in studies, such as the one present-

ing the Random Forest models that took a scattergun approach to developing many

different algorithms.

2.5.2 Variables of Interest

A discussion of variable importance in mortality prediction following moderate to

severe TBI is possible here because of the prevalence of LR use in the included stud-

ies. A wide range of input variables were included in the prediction models, al-

though the following sections focus on the most widely used between studies. A

list of the common predictors is presented in Appendix Table C. The variables are

grouped for convenience into demographic, clinical, injury characteristics, physio-

logical, radiology results, and other. This discussion will cover key issues such as

measurement, clinical validity, and variable importance in the models.

Demographic:

Age was the most commonly used demographic variable in the included studies

and was often identified through patient electronic health records. Studies using ML

methods where variable importance could be ascertained found age to be an impor-

tant predictor of survival outcome (Lu et al., 2015; Dawes et al., 2015; Kelly et al.,

2015; Thelin et al., 2016; Han et al., 2017; Junior et al., 2017; Zeiler et al., 2018; Winans

et al., 2020; Raj et al., 2019; Abujaber et al., 2020; Wu, Marthi, and Asaad, 2020;

Amorim et al., 2020). One study found multiple trauma cases were more common in

younger patients, suggesting there may be some interaction between age and mech-

anism of injury (Thelin et al., 2016). The impact of age on outcomes following TBI

was particularly pronounced in the oldest age categories (Han et al., 2017), which is

to be expected as patients with advanced age are often experience worse outcomes

following traumatic injury, as discussed in Section 1.2.1. Specifically, falls are the

leading cause of traumatic injuries in adults aged over 65. Additionally, falls are a

major mechanism of injury for TBI in this patient group (Lawrence et al., 2016).

Biological sex was included in models by 8 studies (Dawes et al., 2015; Lu et al.,

2015; Kelly et al., 2015; Zeiler et al., 2018; Winans et al., 2020; Wan-Ting et al., 2020;

Wu, Marthi, and Asaad, 2020; Amorim et al., 2020). The impact of biological sex on
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TBI outcomes is an open area for research where empirical studies have suggested

oestrogen and progesterone may have protective effects following TBI (Brotfain et

al., 2016). This means biological sex may have a direct effect on outcomes beyond

being a proxy for unobserved characteristics (Brotfain et al., 2016). However, in

the studies that included biological sex in models only one reported male sex as

having a significant association with mortality following severe TBI (Kelly et al.,

2015). The remainder either found biological sex to not be significantly associated

with mortality (Dawes et al., 2015), did not report individual variable significance

(Zeiler et al., 2018; Wan-Ting et al., 2020; Wu, Marthi, and Asaad, 2020), or did not

find biological sex to be among the most important attributes in the ML models (Lu

et al., 2015; Wu, Marthi, and Asaad, 2020).

Clinical:

The use and importance of GCS scores and components was not consistent be-

tween studies. 10 studies included the full GCS score as an input variable for their

models (Dawes et al., 2015; Lu et al., 2015; Thelin et al., 2016; Han et al., 2017; Zeiler

et al., 2018; Najafi, Zakeri, and Mirhaghi, 2018; Abujaber et al., 2020; Wan-Ting et

al., 2020; Amorim et al., 2020). The majority of these studies found GCS score to be

significantly associated with mortality outcomes (Dawes et al., 2015; Lu et al., 2015;

Thelin et al., 2016; Han et al., 2017; Zeiler et al., 2018; Najafi, Zakeri, and Mirhaghi,

2018; Wan-Ting et al., 2020; Amorim et al., 2020). Abujaber et al., 2020 however

found GCS was not an important predictor in their SVM model. A possible explana-

tion of the lack of importance of GCS found in some studies was the distribution of

severity of TBI cases in the sample population. In studies with a high proportion of

very severe TBI cases, GCS was found to be an important and significant predictor of

mortality (Dawes et al., 2015; Thelin et al., 2016; Han et al., 2017; Amorim et al., 2020).

However, when much of the sample had moderate to mild TBI, GCS was found to be

a less important predictor (Abujaber et al., 2020). The method of including the GCS

into prediction models was also inconsistent between studies. While some included

GCS as a continuous variable (Dawes et al., 2015; Thelin et al., 2016; Junior et al.,

2017) others opted for a three-category approach, which corresponded to the three

categories of TBI mentioned previously (Han et al., 2017; Abujaber et al., 2020). It is
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possible that, by including GCS as a three-category variable, some of the inconsis-

tency caused by lacking inter-rater reliability may be reduced leading to more robust

information being inputted into models. One study measured GCS at multiple time

points and incorporated the changes in these values into the model predictions (Lu

et al., 2015). By including the initial level and the changes from this, the authors in-

troduced a degree of memory into the model, where the trajectory of a patients GCS

status is considered during predictions. This means the models developed are using

less of a snapshot of information, possibly allowing better predictions to be made.

Five studies did not include the combined GCS score in their models, rather

opting for the constituent elements. Four of these included only the Motor score

(Muehlschlegel et al., 2016; Fontoura Solla et al., 2020; Zeiler et al., 2020; Kim et al.,

2020) while the last included the eye, verbal and motor scores as separate elements

in models (Wu, Marthi, and Asaad, 2020). Only including the motor score may im-

prove the validity of model predictions in severe TBI when patients are intubated,

sedated or intoxicated as there is evidence the full GCS score is less reliable in these

groups (Meredith et al., 1998; Marmarou et al., 2007).

Information on comorbidities was included in models of 4 studies (Dawes et al.,

2015; Lu et al., 2015; Ó Briain et al., 2018; Abujaber et al., 2020). Of those that re-

ported the significance of predictors, comorbidities were found to be not significant

predictors in logistic regression (Dawes et al., 2015) or not among the most important

predictors in less interpretable models (Abujaber et al., 2020; Lu et al., 2015). These

findings may result from small sample bias however as very few patients with each

specific comorbidity included had the outcome of interest. This could therefore lead

to insignificant findings due to the nature of the sample population rather than the

lack of clinical significance.

Injury characteristics and CT findings:

Mechanism of Injury (MOI) was incorporated into models by 3 of the included

studies (Dawes et al., 2015; Winans et al., 2020; Abujaber et al., 2020). One of the

major causes of TBI identified in these studies was falls from standing height ac-

counting for 26-34% of patients in the study populations. Falls from standing height

were found to be predictive of mortality in Dawes et al., 2015, although this was not
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supported by Winans et al., 2020. Also, Abujaber et al., 2020 did not find MOI to be

in the top ten most important predictors in their SVM model. During analysis of the

time taken to follow commands after TBI, a binary variable representing high ve-

locity trauma or fall from standing was statistically significant (Winans et al., 2020).

The authors suggest this means the velocity of the TBI-causing trauma has a role to

play in the return to consciousness following TBI.

8 studies ascertained the type of TBI present in patients using findings from Com-

puted Tomography (CT) scans (Dawes et al., 2015; Lu et al., 2015; Muehlschlegel et

al., 2016; Han et al., 2017; Abujaber et al., 2020; Wu, Marthi, and Asaad, 2020; Zeiler

et al., 2020; Amorim et al., 2020). One of the main things to be confirmed through a

CT scan is whether a haematoma or haemorrhage is present and where it is located.

At a simple level, the major difference between these conditions is haematoma de-

scribes bleeding that has clotted, whilst haemorrhage refers to ongoing bleeding.

This discussion of findings is split based on the area of the brain where the bleed

is identified because the associated effects on mortality is expected to be different.

Studies were most concerned with identifying intracerebral rather than intracranial

brain bleeds. Only 1 study included the presence of intracranial haematoma in their

prediction models, finding it did not significantly add to the prediction of inpatient

mortality (Dawes et al., 2015).

Presence of epidural haemorrhage on head CT was included as an input vari-

able in 2 studies (Wu, Marthi, and Asaad, 2020; Amorim et al., 2020) and epidural

haematoma in 1 study (Wu, Marthi, and Asaad, 2020). A key difference between

epidural and subdural haematomas is that the former does not cross the Suture Line

with the bleed located between the dura and skull rather than between the dura and

brain tissue. Presence of epidural haemorrhage was not among the most important

predictors reported in either study (Wu, Marthi, and Asaad, 2020; Amorim et al.,

2020). The reason behind this lack of importance is difficult to quantify due to the

methods used and unclear reporting of the studies. However, because prognosis

following epidural haemorrhage is generally good following early identification, its

importance in predicting mortality may be reduced compared to variables indicat-

ing more serious brain bleeds.

One of the more common locations for brain bleeds identified in the included
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studies was in the subdural space. Subdural haematomas were present in 65.7-

78.3% and haemorrhage present in 32.7-57.7% of patients in study populations. 5

studies included indicators for bleeds in the subdural space, with presence of sub-

dural haemorrhage on head-CT included by 2 studies (Wu, Marthi, and Asaad, 2020;

Amorim et al., 2020) and subdural haematoma by 3 studies (Dawes et al., 2015; Lu

et al., 2015; Han et al., 2017). All these studies introduced the presence of subdural

haemorrhage or haematoma with binary variables. The effect of including variables

that indicate subdural bleeds in mortality prediction models was mixed, two studies

found presence of a subdural bleed significantly added to the prediction model (Han

et al., 2017; Wu, Marthi, and Asaad, 2020) whereas another found it to be insignifi-

cant (Dawes et al., 2015). The other two studies that included presence of subdural

bleeds either used uninterpretable ML methods (Lu et al., 2015) or presented too

many models to effectively show what went into each (scattergun style modelling)

(Amorim et al., 2020).

Subarachnoid haemorrhage on head CT was included by 4 studies (Dawes et al.,

2015; Wu, Marthi, and Asaad, 2020; Zeiler et al., 2020; Amorim et al., 2020). Sub-

arachnoid haemorrhage refers to a bleed in the subarachnoid space, between the

arachnoid and pia layers. Prognosis following this kind of haemorrhage is similar

to subdural and generally much worse than epidural bleeds. Subarachnoid haem-

orrhage is understood to cause mortality through vasospasm and ischemia (Armin,

Colohan, and Zhang, 2006). The importance of subarachnoid haemorrhage in pre-

diction models was mixed, with one finding it significantly added to the model pre-

dictions (Wu, Marthi, and Asaad, 2020), while another found it insignificant (Dawes

et al., 2015), and the final two did not report their findings (Amorim et al., 2020;

Zeiler et al., 2020). A possible reason for the difference in findings resides in the

study population characteristics. While the study with significant findings had a

high proportion of moderate-mild TBI cases (Wu, Marthi, and Asaad, 2020), the

other was very severe with over 50% of the sample having a GCS of 3. This dif-

ference meant subarachnoid haemorrhage was far less prevalent as a proportion of

the study population in Wu, Marthi, and Asaad (2020) and could act as an indicator

between the mild-moderate TBI cases and the few severe cases on the LR model.

In the study with a high proportion of very severe TBI patients however, presence
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of subarachnoid haemorrhage was widespread (59.5% of sample) and other indica-

tors for very severe outcomes such as loss of basal cisterns offered better separation

between the survivors and non-survivors in the sample (Dawes et al., 2015).

2.5.3 Model Performance

As highlighted in the results section, performance of prediction models was reported

using discrimination statistics in almost all the included studies. As seen in the

Glossary of Terms, discrimination refers to the ability of a model to separate between

patients with and without the outcome. In other words, a model that discriminates

well would predict a higher probability of the outcome occurring for a randomly

selected positive case than a negative case. Although AUC is a useful summary

metric to capture model discrimination, it must be combined with other statistics

to ensure a model is effectively predicting outcomes. Unfortunately, the reporting

of sensitivity, specificity, negative predictive value was infrequent in the included

studies, as seen in Appendix Table D.1. This means that, while models may exhibit

a high AUC value, it is not possible to evaluate whether the model is effectively

predicting mortality rather than just returning the majority class.

The generalisability of a prediction model to new settings is reliant on several

features of the data, methodology, and testing in a study. Generalisability of findings

starts at the beginning of the modelling process with data collection. Collecting data

from multiple centres was used by 8 included studies to avoid the raised risk of

bias introduced by only using a single centre (Alsulaim et al., 2017; Dawes et al.,

2015; Kelly et al., 2015; Muehlschlegel et al., 2016; Ó Briain et al., 2018; Prosser et al.,

2020; Wu, Marthi, and Asaad, 2020; Zeiler et al., 2020). By using multiple centres,

models are made more robust to differences in protocols and other hospital level

fixed effects.

For model findings to be generalisable, care must be taken to ensure overfitting

risk is avoided or mitigated during training and appropriately tested for during

evaluation. To confirm a model is not overfit to the training data, the use of external

validation in new data is needed. A minority of included studies used validation

and testing strategies to test the generalisability of model findings in new settings.
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The external validation of model findings in unseen data is a key stage of develop-

ing a prediction model for use in clinical practice. This is because ML models are

designed to closely fit themselves to the training data, meaning the reported perfor-

mance on this data is not a reliable test for the performance of a model in new data.

The methods used for externally validating findings in included studies were n-fold

cross validation (Amorim et al., 2020; Lu et al., 2015; Raj et al., 2019; Wu, Marthi, and

Asaad, 2020) and splitting the data into a training and testing set (Abujaber et al.,

2020; Wu, Marthi, and Asaad, 2020). Bootstrapping was also used for internal val-

idation of model findings in one study (Han et al., 2017). The remaining 15 of the

included studies did not report using any validation methods to confirm the model

performance.

As highlighted in one study, by rigorously testing performance in a true holdout

data set, the comparative performance of a model will be reduced (Wu, Marthi, and

Asaad, 2020). Rigorous testing of findings will always represent good practice how-

ever, it is possible authors are eschewing this in the pursuit of a high headline AUC

value. The idea that high AUC guarantees a good model is flawed, especially when

this AUC is based on performance in training data. While not having the sample

size available for true holdout testing sets is not necessarily a problem, the limita-

tions this imposes on model generalisability and the conclusions that can be drawn

must be made clear.

2.5.4 Future Research Recommendations

Several recommendations for future research into prediction modelling for TBI out-

comes are proposed following this review. The first relates to the use of training and

testing sets or cross validation to evaluate model performance, which was lacking in

the majority of included studies despite this being standard practice in much of the

ML literature. The second recommendation surrounds improvements in reporting

of model development, performance, and evaluation metrics. While discrimination

statistics were often reported the coverage of sensitivity, specificity, NPV and PPV

alongside calibration measures were missing from most included studies. Without

these figures a comparison between models and evaluation of prediction quality be-

comes much more difficult. Also, the intended time period and hospital setting for
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the prediction model to be set in was rarely reported. This is important to allow

comparison of models based in the same setting.

Finally, only a single included study explored the concept of dynamic modelling.

Development of support tools that can update predictions to account for new infor-

mation at different time periods have a clear clinical benefit and warrant further

investigation.

2.5.5 Review Limitations

The review had several limitations. First a single reviewer (SW) was responsible

for the searching and screening of papers as well as any exclusion judgements. Al-

though any reasons for exclusion were reported, having a single reviewer elevates

the risk of bias inherent in the review. Second the inclusion of key terms in the search

strategy may have led to the omission of newer papers that have not had key terms

assigned. Third the review was limited to English language searches only.

2.6 Review Conclusion

There was no objectively ‘best’ model identified in the review. Due to the complex-

ity of modelling TBI outcomes and the wide range of factors that affect outcome,

sample populations need to be heterogenous and data needs to be collected for wide

range of variables for models to be generalisable. Future research needs to ensure

appropriate validation of findings and performance metrics are reported clearly to

allow direct comparisons between models to take place.
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Chapter 3

Association Between Chronic

Health Conditions and Falls in

Older Adults: A Review of

Reviews

3.1 Introduction

As discussed in Section 1.2.1, falls and fall-related injuries are a major source of

healthcare use in patients aged over 65 (Office for National Statistics, 2023). As con-

cluded in Section 1.2.4, research into falls is essential due to the ageing population

and associated increase in longevity among patients living with chronic health con-

ditions (National Institute of Health & Care Excellence, 2023). Understanding the

factors that lead to falls is important in addressing the prevention of falls in future.

Before attempting to model individual fall risk using the chronic condition record

in Section 4.4, it is important to identify the conditions to test in regression models.

There is a large body of research addressing fall pre-disposing chronic health condi-

tions and a number of systematic reviews and meta-analyses on the topic. Therefore,

a review of reviews format was selected to provide an evidence-based approach in

identifying a list of conditions to include in the analyses.

The questions this review aimed to answer are as follows:

• In people aged over 65, what chronic health conditions increase the risk of

falls?
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• What co-morbidity and multi-morbidity chronic health condition combina-

tions increase the risk of falls in people aged over 65?

The remainder of the review is structured as follows. Section 3.2 presents the

search strategy, approach to data extraction, and assessment of risk of bias for this

review. Section 3.3 describes the search results, tables of extracted data, and results

of the risk of bias assessment followed by a written summary of the findings. Sec-

tion 3.4 discusses these findings, answers to the two highlighted research questions,

presents recommendations to future research, and the review limitations. Finally,

Section 3.5 presents the review conclusions and indicates where the findings are ap-

plied in the wider thesis.

3.2 Review Methodology

3.2.1 Search Strategy

Due to the breadth of literature needed to answer the review questions stated in

Section 3.1 a review of reviews format was selected (Smith et al., 2011). This format

allows the distillation of findings from a large field of research, and minimises re-

visiting subjects that have already been covered in detail by previous authors. A

review of reviews written by Preston et al. (2021) was used as a framework upon

which the methodology taken in this review was based.

The population of interest in this review is adults aged over 65; however, to avoid

the unnecessary exclusion of reviews that used an over 60 age criteria where the

majority of the sample was aged over 65, the inclusion criteria for age was expanded

to capture these reviews. The effect of this expansion is discussed further in Section

3.4.3. The event of interest for the review was ground level falls in the population.

The exposure was the chronic health conditions an individual lived with at the time

of their fall.

The outcome for the review was the measure of effect a single chronic health

condition, or combination of chronic health conditions, had on the risk of a fall. This

can be reported as an odds ratio, risk ratio, hazard ratio, or similar, together with

associated confidence intervals.
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Four bibliographic databases (Medline, Embase, Web of Science, CINAHL) and

the PROSPERO review repository were searched on 07/03/2023 using exploded

headings, and key words related to the following components:

• Systematic Review

• Accidental falls

• Aged 65 and over

• Chronic health conditions (including co-morbidity and multi-morbidity)

A publication date filter of after 2000 was applied the research results, and only

papers available in English were considered for this review. A copy of the full list

of search terms is provided in Appendix Section E. The results of these searches are

presented using a Page et al. (2021) PRISMA Flowchart in Figure 3.1.

A single reviewer (SW) sifted titles and abstracts from the searches against the

following pre-defined inclusion criteria:

• Study is a systematic review, which presents a meta-analysis.

• Published after 2000.

• Review inclusion criteria included participants aged 60 or where no age-related

criteria were stated, included studies had a mean age of over 60.

• Review outcome focus is the risk of accidental Falls (not outcomes following a

fall).

• At least one chronic health condition is considered as an exposure in relation

to accidental falls in the review.

Following the initial sift on the basis of the titles and abstracts, full texts were

downloaded, and duplicates were removed. A sift of full texts was performed to

ensure the reviews met the inclusion criteria stated above. Reasons for exclusion

at this stage are reported in Figure 3.1 alongside the resulting number of papers

included in the review.



68
Chapter 3. Association Between Chronic Health Conditions and Falls in Older

Adults: A Review of Reviews

3.2.2 Data Extraction and Synthesis

A single reviewer (SW) performed the data extraction on included texts using a stan-

dardised form for the accurate identification of key features. General review infor-

mation was extracted at this stage (author, publication year, number of articles in

review, combined review sample size, included article publication date range) with

the findings reported in Table 3.1. Further information on the review inclusion cri-

teria, measurement of falls, chronic condition requirements, and exclusion criteria

were also extracted at this stage, with the findings summarised in Table 3.2.

Information from the meta-analysis in the included reviews was extracted using

a standardised form in an MS Excel spreadsheet. The data extracted at this stage

were the chronic conditions of interest, type of meta-analysis, number of study es-

timates pooled, combined sample size in estimate, reported heterogeneity measure,

estimate type, pooled estimate, and confidence interval with the findings reported

in Table 3.3. No meta-analysis or quantitative synthesis of results were planned for

this review of reviews due to time and resource constraints.

3.2.3 Risk of Bias Assessment

The risk of bias for each included systematic review was identified using the ROBIS

checklist (Whiting et al., 2016). This checklist provides a structured assessment of

four areas of the review (eligibility criteria used, study selection, data extraction and

study appraisal, evidence synthesis), which aids with the judgement of risk of bias

in the review as High, Low, or Unclear. The ROBIS assessment was conducted in a

standardised Microsoft ExcelTM spreadsheet by a single reviewer (SW) with Table

3.4 summarising the results.
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3.3 Results

3.3.1 Search Results

Figure 3.1 presents a PRISMA flowchart of the search results. There were 506 records

returned by the bibliographic searches, of which 475 were excluded through assess-

ment of the title and abstract against the inclusion criteria. The remaining 31 records

were downloaded into Mendeley reference manager.

FIGURE 3.1: PRISMA Flowchart of Search Results

A full text sift of these records against the inclusion criteria identified a further

22 papers to be excluded. Reasons for exclusion at this stage, shown in Figure 3.1,
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were presenting a narrative review only (n = 8), age criteria or mean age of included

papers below 60 (n = 7), no specific chronic conditions investigated (n = 4), investi-

gating outcomes following falls or outcomes not related to the risk of falls (n = 2),

and non-systematic search methods (n = 1). Data extracted from the included re-

views is presented in Tables 3.1-3.4 alongside a written description of the results in

Sections 3.3.2-3.3.4.

3.3.2 Characteristics of Included Reviews

Nine systematic reviews were included for review. Table 3.1 presents the character-

istics of the included reviews presenting quantitative meta analyses of risk estimates

for chronic health conditions on falls risk. The nine included reviews, which were

published between 2013 and 2023, included studies published between 1981 and

2022. The number of studies included in the reviews ranged between 5 and 220

based on the scope of the objectives, resources available to the reviewers, and the

paucity of existing research on the relationships of interest.

TABLE 3.1: Included Systematic Review Characteristics

Lead Author Year of Publication Number of papers in review Review Total Sample Size Study Publication Dates
Bloch 2013 220 Not Reported 1981-2011
Stubbs 2014 21 5367 1999-2013
Yeung 2019 36 45926 2012-2018
Mol 2019 63 49,164 1987-2017
Liu 2020 14 1,284,456 2012-2018
Malik 2020 10 36444 2000-2018
Oliviera 2021 23 46569 2009-2019
Xu 2022 34 76008 2013-2021
Veronese 2023 5 87,554 2016-2022
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TABLE 3.2: Inclusion Criteria of Each Systematic Review

Author
(Year)

Age Criteria Study Design Criteria Falls Outcome
Measured

Chronic Condition(s) re-
quirements

Exclusion Criteria

Bloch (2013) 60+ Observation or interven-
tion studies

Risk of falls None Sample is entirely stroke or neu-
rological patients, investigated non-
standard falls

Stubbs (2014) 60+ Prospective or retrospec-
tive studies with 6 month
minimum observation pe-
riod

Report falls as an
outcome

Sample includes patients
living with and without
chronic pain

Dementia patients, studies where
pain caused by a previous fall, Neu-
rological conditions, recent history
of trauma or orthopaedic surgery
within 6 months

Yeung (2019) Mean age 60+ None Falls or fracture
outcome reported

Sarcopenia present by
any definition and control
group

No primary data, no comparison
group

Mol (2019) 65+ Cross-sectional and longi-
tudinal designs

Falls reported at
follow up

Orthostatic (Postural)
Hypotension assessment
made at baseline

Non-primary research studies

Liu (2020) 60+ Cases and controls identi-
fied as fall and non-fall

Ordinary Falls
identified

Total knee or hip arthro-
plasty patients present in
sample

None

Malik (2020) Mean age 60+ Prospective and retrospec-
tive designs

Falls reported as
outcome

Sample contains patients
with and without Atrial
Fibrillation or Syncope

Investigation of falls or syncope on
the development of AF

Oliviera
(2021)

Mean age 60+ None Report a recog-
nised fall outcome

Study sample entirely pa-
tients with COPD

Various non-observational study
types, studies using postural bal-
ance as an outcome

Xu (2022) 65+ Case Control Studies Falls identified in
sample

Data on demographics and
comorbidities available

Non-primary research articles

Veronese
(2023)

Mean age 60+ Meta Analysis of observa-
tional studies

Association with
falls reported

Knee Osteoarthritis as-
sessed in Meta Analysis

Meta-analyses of cross-sectional
studies
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Table 3.2 presents a summary of the inclusion criteria used in the included re-

views. Five of these reviews imposed an explicit age restriction on the samples of

the included studies of over 60 (n = 3), or over 65 (n = 2). The remaining four reviews

did not explicitly state an age restriction; however, because accidental falls are most

common in older populations, the studies included in these reviews had a mean age

of over 60.

The included reviews all imposed eligibility criteria on study design to reduce

the included study heterogeneity for the eventual meta-analysis. As shown in Ta-

ble 3.2, these criteria were either explicitly specified in the inclusion criteria (n =

7), or covered in a general list of exclusion criteria (n = 2). There were few differ-

ences in the study design criteria accepted in the included reviews. Seven reviews

accepted a wide range of study designs encompassing observational and interna-

tional approaches (Bloch et al., 2013; Stubbs et al., 2014; Yeung et al., 2019; Mol et

al., 2019; Malik et al., 2020; Oliveira et al., 2021; Xu, Ou, and Li, 2022). One review

included only meta-analysis of case-control or cohort studies (Veronese et al., 2023).

The reporting of study design criteria for the final review was unclear, with the only

requirement specified that cases and controls were present in the included study

sample (Liu et al., 2020).

3.3.3 Meta-Analyses Results

Table 3.3 presents the 35 pooled meta analyses risk estimates extracted from the in-

cluded reviews. Of these estimates, four were non-significant. The approach to these

meta-analyses was either fixed effects (n = 25) or random effects (n = 9) with the de-

cision to pursue random effects due to either assumed or identified between-study

heterogeneity, which made fixed-effects meta-analysis inappropriate. The threshold

for deciding to use random effects differed between studies, with different threshold

values of various heterogeneity tests used or reviewer assessment based on included

study characteristics. The two methods used consistently for measuring heterogene-

ity were I2 or the Chi-squared test p-values. To aid comparison between estimates,

where both statistics were reported only the I2 is reported in Table 3.3. The pooled

meta-analysis estimates were presented as either Odds Ratios (n = 25), or Risk Ratios

(n = 10).
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The median sample size in the meta-analysis estimates was 10,649 with a range

from 502 to 87,554. The number of studies included in the meta-analysis estimates

also varied with a mean of 18, and range of 3 to 63 studies. However, the majority of

meta-analysis estimates were drawn from a wide range of studies, with only seven

estimates pooled from five studies or less. This figure does not include the esti-

mate by Veronese et al., 2023 because this was based on four previous meta-analyses

meaning it drew from a wide range of studies.

There were a range of chronic health conditions investigated in the pooled meta-

analysis estimates. The discussion of these results is grouped, based on the chronic

health condition of interest below. Of the 22 chronic health conditions addressed by

the included reviews, all were found to be significant by at least one meta-analysis.

There were four cases of disagreement between meta-analyses relating to estimates

for dementia, stroke, diabetes, and visual impairment. Each of these disagreements

is described below.

The effect of dementia on the risk of falls was addressed by two of the included

meta analyses (Bloch et al., 2013; Xu, Ou, and Li, 2022). A significant increase in

falls associated with dementia was identified in Bloch et al. (2013) (Random Effects

OR = 1.96, 1.8-2.14, I2 = 88%) based on 35 studies with a combined sample size

of 59,363. However, the estimate presented in Xu, Ou, and Li (2022) found an non-

significant effect for dementia (Fixed Effects RR = 1.11, 0.88-1.39, I2 = 59%) based on 9

studies with a combined sample size of 2277. The cause of this difference in findings

cannot be attributed to the meta-analysis method used, because even in the presence

of high heterogeneity between included studies, the fixed effects estimate would

have narrower confidence intervals than the random effects estimate. However, it

is possible that the smaller sample size in Xu, Ou, and Li (2022) both in terms of

included studies, and number of participants in those studies could have led to a

wider confidence interval surrounding the meta-analysis estimate.

Two of the included meta-analyses addressed the effect of strokes or cerebrovas-

cular disease on the risk of falls (Bloch et al., 2013; Xu, Ou, and Li, 2022). Bloch

et al. (2013) identified a significant effect for their pooled estimate, (Fixed effects OR

= 1.44, CI = 1.34-1.56, I2 = 20%) based on 49 studies with a combined sample size

of 54,336. Contrasting findings were presented by Xu, Ou, and Li (2022) (Random
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TABLE 3.3: Meta Analyses Risk Estimates

Condition Author (Year) Studies
in esti-
mate

Sample
Size

I2 Estimate Estimate
Type

Pooled
Esti-
mate

Lower
CI

Upper
CI

Dementia Bloch (2013) 35 59363 88% OR 1.96 1.8 2.14
Dementia Xu (2022) 9 2277 59% RR 1.11 0.88 1.39
Stroke Bloch (2013) 49 54336 20% OR 1.44 1.34 1.56
Stroke Xu (2022) 4 8158 87% RR 1.55 0.72 3.35
Parkinson’s Bloch (2013) 29 39477 50% OR 2.19 1.68 2.84
Parkinson’s Xu (2022) 3 2293 0% RR 3.05 1.84 5.05
ND Bloch (2013) 17 20281 0% OR 2.18 1.69 2.82
UI Bloch (2013) 34 59458 49% OR 1.73 1.6 1.88
UI functional sign Bloch (2013) 4 1826 19% OR 1.64 1.16 2.33
Diabetes Bloch (2013) 40 61028 11% OR 1.27 1.19 1.36
Diabetes Xu (2022) 7 10026 84% RR 1.08 0.87 1.34
Anaemia Bloch (2013) 5 502 0% OR 1.47 1.15 1.88
Visual Imp. Bloch (2013) 39 38671 47% OR 1.49 1.39 1.59
Visual Imp. Xu (2022) 4 4661 96% RR 1.24 0.91 1.69
Visual Imp. Bloch (2013) 16 31443 24% OR 1.29 1.18 1.4
Sensory Imp. Bloch (2013) 9 3125 38% OR 2.2 1.56 3.11
Hearing Imp. Bloch (2013) 17 21878 11% OR 1.37 1.27 1.48
Hypotension Bloch (2013) 20 11939 9% OR 1.27 1.09 1.47
Hypotension Mol (2019) 63 49164 - OR 1.73 1.5 1.99
Cardiac and Vascular Bloch (2013) 14 24367 0% OR 1.6 1.45 1.75
Heart Disease Xu (2022) 6 11078 0% RR 1.14 1.09 1.19
Hypertension Xu (2022) 7 9624 0% RR 1.08 1.03 1.12
Hypertension Bloch (2013) 35 45115 42% OR 1.28 1.19 1.37
Atrial Fibrillation Bloch (2013) 9 3402 0% OR 1.42 1.14 1.75
Atrial Fibrillation Malik (2020) 7 36444 37% OR 1.19 1.07 1.33
Depression Bloch (2013) 39 67858 40% OR 1.64 1.52 1.76
Depression Xu (2022) 6 9364 98% RR 4.34 4.02 4.68
Behavioural Disorder Bloch (2013) 16 35858 25% OR 1.27 1.14 1.42
Sarcopenia Yeung (2019) 16 23061 7% OR 1.75 1.55 1.97
Osteoarthritis Bloch (2013) 37 5284 88% OR 1.24 1.2 1.28
Osteoarthritis Veronese (2023) 4 87554 - RR 1.34 1.1 1.64
Cancer Bloch (2013) 17 26642 44% OR 1.22 1.09 1.35
Chronic Pain Stubbs (2014) 3 5367 0% OR 1.8 1.56 2.09
Chronic Pain Xu (2022) 3 2340 78% RR 1.22 1.11 1.34
Digestive Disease Bloch (2013) 8 10649 0% OR 2.2 1.65 2.93

CI = Confidence Interval, ND = Neurological Disease, Imp = Impairment, UI = Urinary
Incontinence, OR = Odds Ratio, RR = Relative Risk
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Effects Risk Ratio = 1.55, CI = 0.72 – 3.35, I2 = 87%) based on four studies with a

combined sample of 8158 participants. In this case of disagreement, it seems clear

the high level of heterogeneity present in the Xu, Ou, and Li (2022) review, when

combined with the smaller sample size, led to a very wide confidence interval and a

non-significant finding.

The effect of diabetes on falls risk was assessed in two pooled meta-analysis es-

timates from two of the included reviews (Bloch et al., 2013; Xu, Ou, and Li, 2022).

While Xu, Ou, and Li (2022) found a non-significant effect of diabetes on falls (Ran-

dom Effects RR = 1.08, CI = 0.87 – 1.34, I2 = 84%) this is likely a result of the high

level of heterogeneity in the seven pooled studies, which would cause the confidence

interval surrounding the pooled estimate to be wider. In contrast, the estimate de-

rived in Bloch et al. (2013) from 40 pooled studies with a combined sample size of

61028 found a significant effect when heterogeneity between studies was low (Fixed

Effects OR = 1.27, CI = 1.19 – 1.36, I2 = 11%).

Visual impairment was addressed by two of the included meta-analyses, with

seemingly contrasting findings (Bloch et al., 2013; Xu, Ou, and Li, 2022). A signifi-

cant risk increasing effect of visual impairment on the risk of falls based on a pooled

estimate from 39 studies with a combined sample size of 38,671 was identified by

Bloch et al. (Random Effects OR = 1.49, CI = 1.39 – 1.59, I2 = 47%). This result

is in contrast to the finding in Xu, Ou, and Li (2022) where four study estimates

were pooled with a combined sample size of 4661, resulting in an non-significant

effect (Random Effects RR = 1.24, CI = 0.91 - 1.69, I2 = 96%). The difference in these

findings may well have arisen from from the high heterogeneity between studies

presented in Xu, Ou, and Li (2022) leading to wider confidence limits surrounding

the pooled estimate when compared to the Bloch et al. (2013) pooled estimate.

The disparity of findings between Xu, Ou, and Li (2022) and Bloch et al. (2013)

surrounding the significance of dementia, cerebrovascular disease, diabetes, and vi-

sual impairment may be caused by differences in the sample sizes, heterogeneity,

and method used during the meta-analyses with the true effect of each condition

significantly associated with increased falls risk. However, an alternative explana-

tion is that unmeasured confounding, differences in the covariates included in the

base-study estimates, or complex interactions could be leading to this inconsistency
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TABLE 3.4: ROBIS Assessment Results

Author (Year) Q1 Q2 Q3 Q4 Q5 Q6 Q7 Risk of bias in the review
Bloch (2013) LOW LOW LOW HIGH YES YES YES LOW
Stubbs (2014) LOW LOW LOW LOW YES YES YES LOW
Yeung (2019) LOW LOW UNCLEAR LOW YES YES YES LOW
Mol (2019) LOW LOW LOW UNCLEAR YES YES YES LOW
Liu (2020) LOW LOW HIGH LOW NO YES NO HIGH
Malik (2020) LOW LOW HIGH HIGH YES YES YES LOW
Oliviera (2021) LOW LOW LOW HIGH YES YES YES LOW
Xu (2022) UNCLEAR HIGH LOW HIGH NO YES YES HIGH
Veronese (2023) LOW LOW LOW HIGH YES YES YES LOW

Q1: Concerns regarding specification of study eligibility criteria, Q2: Concerns regarding
methods used to identify and/or select studies, Q3: Concerns regarding methods used to

collect data and appraise studies, Q4: Concerns regarding the synthesis and findings, Q5:
Did the interpretation of findings address all of the concerns identified in Domains 1 to 4,
Q6: Was the relevance of identified studies to the review’s research question appropriately

considered?, Q7: Did the reviewers avoid emphasizing results on the basis of their
statistical significance?

between meta-analyses findings.

Of the nine included meta analyses, none attempted meta-analysis of specific

co-morbid combinations of chronic health conditions.

3.3.4 Review Risk of Bias (ROBIS) Results

A summary of the findings from the ROBIS assessment is presented in 3.4. Seven of

the included reviews were rated as having a low risk of bias following ROBIS assess-

ment. The included reviews largely took effective steps to reduce the risk of bias and

error during study selection, and data extraction. Use of study quality assessment

tools such as the Newcastle-Ottowa Score was widespread in the included reviews.

Two reviews were labelled as having a high risk of bias following the ROBIS

assessment (Liu et al., 2020; Xu, Ou, and Li, 2022). This was due to a lack of a

pre-defined study protocol in one (Xu, Ou, and Li, 2022), and the over-reporting

of significant study results without sufficient additional information for a reader to

make a judgement of the base study quality (Liu et al., 2020).
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TABLE 3.5: Chronic Condition Shortlist Following Review of Reviews

Pasquetti (2014) Cate-
gory

Chronic Health Condi-
tion

MA Supporting Ev-
idence:

MA Conflicting Evi-
dence:

Neurological
Cognitive Impairment or
Dementia

Bloch et al. 2013 Xu et al. 2022

Stroke or Cerebrovascu-
lar Disease

Bloch et al. 2013 Xu et al. 2022

Parkinsons Disease Bloch et al. 2013, Xu
et al. 2022

Urinary Incontinence Urinary Incontinence Bloch et al. 2013

Sensory Impairment
Vision Impairment Bloch et al. 2013 Xu et al. 2022
Hearing Impairment Bloch et al. 2013

Cardiovascular

Hypotension (postural) Bloch et al. 2013,
Mol et al. 2019

Atrial Fibrillation Bloch et al. 2013, Ma-
lik et al. 2020

Heart Disease Xu et al. 2022
Hypertension Bloch et al. 2013, Xu

et al. 2022
Psychiatric Depression Bloch et al. 2013, Xu

et al. 2022

Musculoskeletal
Sarcopenia Yeung et al. 2019
Osteoarthritis Bloch et al. 2013,

Veronese et al. 2023

Other

Cancer Bloch et al. 2013
Diabetes Bloch et al. 2013 Xu et al. 2022
Anaemia Bloch et al. 2013
Chronic Pain Stubbs et al. 2014
Digestive Disease Bloch et al. 2013

MA: Meta-analysis

3.4 Discussion

3.4.1 Evidence Synthesis

This review of reviews set out to answer in people aged over 65, which chronic

health conditions increase the risk of falls in meta-analyses. In the 9 meta-analyses

included within the review, significant risk increasing effects in pooled estimates

were identified for 18 chronic health conditions summarised in Table 3.5.

The second question of interest to the review was which combinations of chronic

co-morbidity and multi-morbidity have been previously identified as increasing falls

risk beyond a single fall pre-disposing chronic health condition? However, none of
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the included meta analyses addressed any specific chronic condition combinations

directly in pooled estimates, so this could not be considered further within the re-

view.

The range of chronic conditions in Table 3.5 demonstrates the complex relation-

ships present when attempting to understand the effect of multi-morbidity and acci-

dental falls in older adults. While it is likely that any two of these conditions, when

occurring concurrently, would increase fall risk, it is unclear whether there would

be an additional multiplicative component introduced by the interaction between

conditions.

Identifying the presence or magnitude of multiplicative components introduced

by multimorbid combinations of chronic conditions is important for the develop-

ment of effective falls risk screening tools intended for use in populations with high

levels of multi-morbidity.

A possible avenue for understanding the mechanism of multi-morbidity effects

would be through examining the fall pre-disposing symptoms that a chronic health

condition causes. The conditions in Table 3.5 lead to a range of symptoms known

to increase falls risk such as muscle weakness, confusion/disorientation, worsened

balance, reduced proprioception in extremities, urgency or pressure, and reduced

ability to perceive hazards (Pasquetti, Apicella, and Mangone, 2014). While these

symptoms increase falls risk in isolation, it is possible that combinations of these

symptoms may increase fall risk to a larger degree than the individual components

would suggest as multiple systems are affected. However, identifying and sepa-

rating out these combination effects from the role of the individual conditions is a

challenging endeavour, especially when considering the inconsistency of presenta-

tion and relationship with falls each chronic condition has.

An additional layer of complexity in understanding falls risk in older adults is

the mitigating effects presented by treatment and location. Community-dwelling

older adults are more exposed to extrinsic factors than those in institutionalised set-

tings, meaning that fall pre-disposing symptoms arising from certain chronic health

conditions may have a reduced effect in the care home setting due to proactive re-

moval of fall hazards in the environment. However, as discussed in Section 1.3.2

care home residents have a higher prevalence of frailty and intrinsic risk factors
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for falls which may counteract this environmental change. Furthermore, while a

chronic health condition may have been identified as increasing the risk of falls in

the wider population, the individual level effect will depend on individual treat-

ment and severity of that condition, meaning any multiplicative effects identified

may not be consistent across individuals.

Finally, previous authors have suggested a U-shaped relationship between mo-

bility and the risk of falls. In this theoretical framework fall risk is maximised due

to the confluence of extrinsic risk factors, and intrinsic factors, while an individual

is still mobile enough to be able to fall (Bath and Morgan, 1999). However, beyond

a certain level of condition burden, falls risk will reduce as a person becomes less

mobile with fewer opportunities to fall until eventually being confined to a bed.

Therefore, while multi-morbidity is likely to have a role in determining falls risk,

beyond a level of condition severity and disease burden, falls risk may decrease for

the individual rather than increase.

3.4.2 Future Research Recommendations

Several recommendations for future research were identified during this review. Re-

porting of adjustment for covariates present in the estimates taken from base studies

during the meta-analyses is important, especially when addressing falls risk, where

many factors have been identified as significant. Additionally, it is clear from this

review that the effect of single chronic conditions on falls risk is well researched,

whilst the effect of combinations of conditions is comparatively understudied. To

allow a more holistic view of falls risk resulting from chronic health conditions, fur-

ther research into the relationships between conditions, and how their co-occurrence

impacts the risk of falls is required. This topic is addressed further using the cluster

analysis described in Section 4.3.

3.4.3 Review Limitations

This review had several limitations. The first is that a single reviewer was involved

in the study search, inclusion decision, data extraction, and risk of bias judgements

during the review. While unavoidable due to resource constraints, having a single
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reviewer introduces a risk of bias to the review. To limit the effect of this, the re-

viewer followed pre-defined inclusion criteria during searches and used standard-

ised forms for data extraction and risk of bias assessment. Additionally, the methods,

findings, and conclusions of the review were discussed with a multi-disciplinary su-

pervision team.

An additional limitation is the review of reviews format. Having a systematic re-

view requirement necessitates a reasonable number of previously published articles

to exist on a relationship to be identified in the review. This means more niche, or

understudied, relationships between falls and chronic health conditions would not

be identified using this review approach. Such conditions are discussed further in

Section 4.4.3 during the application of findings from this review in regression mod-

els.

This review is also exposed to publication bias, where significant results are more

often accepted for publication, and identified in the included reviews. The risk of

exposure to publication bias was assessed during the ROBIS assessment in Section

3.3.4. Additionally, greater confidence that can be placed in a meta-analysis result

compared to individual study findings means the relationships identified in this re-

view may be seen as being more robust to the bias inherent in a single study estimate

rising from features of the sample data.

3.5 Conclusion

This review of reviews identified a list of 18 chronic health conditions, that have been

identified in previous meta-analyses as increasing the risk of falls in adults aged over

65, presented in Table 3.5. This list of conditions will be used in Chapter 4 to derive a

list of conditions to include in the models of fall count data. Additionally, this review

attempted to identify reviews of combinations of chronic conditions, although no

reviews were identified meaning an effective synthesis in this area was not possible.
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Chapter 4

Methodology

4.1 Chapter Introduction

Following the literature reviews presented in Chapters 2 and 3, this chapter presents

the methodology used for the analyses in this thesis, with the corresponding results

presented in Chapter 5. Section 4.2 of this Chapter explores the data to be used in

the project, and how these data were processed before the analyses. Sections 4.3 to

4.4 detail the steps taken during the analyses presented in this thesis. The reasoning

and theoretical underpinnings supporting the choice of particular approaches and

methods of interest are also presented in sections 4.3 and 4.4, together with the steps

performed during the analyses.

This chapter also introduces two aspects of novelty into the thesis. First, the the-

sis uses a combination of methods that has not been previously used for the inves-

tigation of associations between multi-morbidity and falls in older adults. The sec-

ond example is the sample data described in Section 4.2, which identifies care home

residents in routinely collected data across an NHS trust and has not been used to

investigate association between multi-morbidity and falls in previous research.

4.2 Data Processing

4.2.1 Derivation of Analysis Dataset

Dataset Accessed

The dataset used for this thesis was collected as part of the Health Data Research

UK (HDRUK) learning care homes project (Saliba and Buchanan, 2020). This study
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FIGURE 4.1: HealthCall Study Intervention and Controls Approach

linked electronic health records (EHRs) from the County Durham and Darlington

NHS Foundation Trust using pseudonymised NHS numbers for patients who in-

teracted with the trust hospitals and community services between 01/04/2018 and

30/09/2021.

The HDRUK study cohort was defined using registration data from the Health-

Call application, which included activation date (date resident was activated on the

HealthCall application), deactivation date (date of death or relocation away from

care home), and care home name for each individual in the dataset. We can be sure

the members of the study cohort were care home residents because the HealthCall

application was being trialled exclusively in care homes (Garner et al., 2024).

The wider HDRUK study pertained to an evaluation of a digital technology for

structured referrals of care home residents to hospital and community healthcare

services, which was called HealthCall (HealthCall, 2023). Care home residents were

identified from the HealthCall activation dataset by researchers in the HDRUK study

(Garner et al., 2024).

Within the HealthCall study, controls were residents in care homes that had not

yet adopted the HealthCall application, but had done so by the end of the study

period as summarised in Figure 4.1.

A care home resident in the data was identified when the individual was ac-

tivated using the HealthCall application being trialled exclusively in care homes.

Once a care home resident was included in the study cohort, their record of health-

care resource use was identified retrospectively from their first observation in any

dataset that placed them in the home (Garner et al., 2024). The HealthCall interven-

tion was delivered through care homes adopting the technology and activating their
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FIGURE 4.2: Sample size during data pre-processing

residents on the system.

Using the data in the HDRUK study as a starting point, the population of interest

for the analyses in this thesis was adults aged over 65 residing in care homes in the

County Durham and Darlington NHS Foundation Trust. The outcome of interest

was fall events that led to an emergency department attendance.

Based on these criteria, a cohort of 4899 care home residents was identified dur-

ing the study period mentioned previously by researchers in the HDRUK study

(Garner et al., 2022; HealthCall, 2023). The pseudonomised NHS Numbers for the

4899 care home residents identified in the HDRUK study represent the starting point

of the analysis for this project. EHRs detailing Emergency Department (ED) atten-

dances, and inpatient ward episodes were identified from the available data and

linked using these pseudonymised unique NHS numbers. These linked ED and in-

patient records were then used for the remainder of the analyses described in this

chapter.

Approach to Case Identification
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The approach to case identification before the analyses is shown in Figure 4.2.

Of the 4899 Care Home residents 4183 had inpatient records relating to an inpatient

stay during the study period. In the record of inpatient stays, the presence of acute

and chronic medical conditions was recorded using International Classification of

Diseases 10th Revision (ICD-10) codes. Using these codes, a list of chronic health

conditions present was derived, henceforth referred to as the chronic condition pro-

file, for each individual. A full description for how the chronic condition profile was

derived for each individual is provided later in this section. Residents without any

inpatient record were excluded from the analysis (n = 716). The absence of inpatient

records for these residents could indicate that these patients were not hospitalised

during the study period. However, it is also possible that care homes on the border

of the trust may have sent residents to hospitals in other trusts, meaning their records

would not have been available for study in this project. Additionally, it is possible

records could be missing or omitted due to problems inherent in structured data re-

porting (Zahabi, Kaber, and Swangnetr, 2015; Carayon et al., 2017). The impacts of

these issues are discussed further in Section 6.5 together with other limitations in the

analyses.

Age was identified through the minimum age on record when an individual was

first observed in the available data. Information on age was available for all mem-

bers of the cohort. Residents with an age below 65 were excluded from the analysis

(n = 181) leaving 4002 residents in the study cohort, as seen in Figure 4.2. Older

people living in care homes were the sample in this analysis because, as described in

Section 1.2.1, people in care homes are highly susceptible to falls, while the majority

of falls-related research is conducted in the community dwelling setting. There-

fore, the analyses in this thesis focuses on an under researched population, which

together with the novel combination of methods, contributes to the novelty of the

research.

Time in the Cohort

Time in the cohort was calculated as the study start date until either the end

of the observation period or, where applicable a date of death. Time in the cohort
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(measured in days) was used to derive the time offset value described further in

Section 4.4 for the count data regression analysis in Sections 5.4 and 5.5.

Identification of Falls

Falls were identified as any ED presentation with treatments and diagnoses in-

dicating a traumatic injury in the EHR. This definition was applied because falls are

the leading cause of trauma-related injuries in people over 65 (Samaras et al., 2010;

Atinga et al., 2018). A list of the specific treatments and diagnoses used to form the

fall presentation definition is available in Appendix Section F.

This approach to identifying falls was taken as a compromise due to no informa-

tion being available in routine ED or care home data for the identification of falls. An

alternative to this approach of identifying falls at ED would have been to use fall-

corresponding codes in the ICD-10 codes in the inpatient ward episode data (World

Health Organisation, 2004). However, this would have would have led to two ma-

jor limitations. First, it would have been unclear whether the fall had occurred in

the care home or in hospital. This is problematic because in-hospital falls are dif-

ferent in their aetiology, and risk factors to falls occurring in care homes meaning

they are outside the scope of the project. Second, individuals with a more serious

condition burden may be more likely to be admitted to hospital, leading to a sys-

tematic bias in the outcome variable for the regressions. The effect of this would

be to artificially strengthen the significance and magnitude of relationships between

fall admissions and chronic conditions that cause a more serious health state. More

serious condition burden may also increase the likelihood a resident was transferred

to ED following a fall, meaning this bias may still persist in the regression outcome,

however this bias would be smaller than the alternative identification of falls in the

in-hospital setting. This limitation in the analysis is discussed further in Section 6.5.

The presence of a fall event was indicated on each ED presentation and linked

to the NHS number. The sum of these fall presentations to ED over the full study

period was calculated for each individual NHS number, henceforth referred to as

the count of falls. The count of falls during the study period was then used as the

primary outcome in the regression models specified in Section 4.4.

Grouping Chronic Health Conditions
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Chronic health condition profiles were derived by grouping all ward episodes

across all hospital spells during the study period for each individual together, and

identifying the list of unique ICD-10 codes recorded for each individual in the inpa-

tient data. This list of unique codes for each individual was then matched against

the groups of ICD-10 codes identified in Calderón-Larrañaga et al. (2017). In this

study, Calderón-Larrañaga et al. (2017) proposed a classification system for collating

ICD-10 codes to identify chronic multi-morbidity in older adults. Distilling defini-

tions of chronic disease from a range of recognised health organisations, the multi-

disciplinary team of authors defined chronic disease through a series of key features

(Calderón-Larrañaga et al., 2017). These features were the duration of the time with

the condition, prognosis or trajectory of the condition, the reversibility of symptoms,

treatments required, and consequences in terms of disability and changes in quality

of life. Calderón-Larrañaga et al. (2017) then considered each ICD-10 code as being

chronic against these criteria through a process of selection by two teams followed

by review and final judgement by a third independent team of geriatricians. Once

codes were identified as being chronic, the authors then grouped these codes into

larger overarching categories. This grouping was performed based on clinical cri-

teria, and the relevance of the conditions to one another based on features of the

condition, treatment, prognosis, and prevalence. A summary table of the resulting

groups of ICD-10 codes is provided in Appendix Section H.

The matching of ICD-10 codes in the sample data to the groups derived in Calderón-

Larrañaga et al. (2017) was undertaken using the 2-digit over-arching ICD codes

available in the sample data rather than the more specific 3-digit format used by

the authors which was not available. This limitation in the data is likely to have in-

troduced a level of misclassification when identifying the chronic condition groups

used in the analysis, although this was unavoidable due to constraints in the avail-

able data. The effects of this issue are discussed further, together with other limita-

tions, in Section 6.5.

Presence or absence of these groups of codes from Calderón-Larrañaga et al.

(2017) was then recorded in the analysis dataset with a single binary indicator for

each group of chronic health condition ICD-10 codes, reported alongside each NHS

number. For example, in this system an individual with any of the five ICD-10 codes
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(E10, E11, E13, E14, E891) relating to the diabetes group in Calderón-Larrañaga et al.

(2017) present on their inpatient record would be assigned a positive value for the

diabetes group in the analysis.

Chronic condition groups with a prevalence of less than 1% were not included in

the analysis. This step was taken to reduce the dimensionality in the data. Of the 60

Calderón-Larrañaga et al. (2017) groups of chronic conditions, 12 were eliminated

from the analyses at this stage. These groups were asthma, chromosomal abnor-

malities, chronic infectious diseases, hematological neoplasms, inflammatory bowel

diseases, migraine and facial pain syndromes, multiple sclerosis, neurotic, stress-

related and somatoform diseases, obesity, Other skin diseases, peripheral vascular

disease, solid neoplasms. The impact of excluding these groups is discussed further

in Section 6.5.

Identifying Multi-morbidity

Multi-morbidity was defined within this study as the presence of two or more

Calderón-Larrañaga et al. (2017) chronic condition groups on the inpatient record of

a study participant. Chronic conditions were used for this project rather than acute

because it is reasonable to assume these conditions were present over most of, if not

the entire, study period.

Identifying Frailty

As discussed in Section 1.3.2, there is overlap between multi-morbidity and frailty,

and frailty can exist outside of multi-morbidity. Additionally, the relationship be-

tween frailty and falls risk in care home residents warrants further examination. For

this three index scores attempting to capture frailty burden were calculated for each

individual in the data set based on their inpatient record data and available demo-

graphic information. These were the Charlson Comorbidity Index (CCI) (Charlson

et al., 1987), Electronic Frailty Index (EFI) (Clegg et al., 2016), and Hospital Frailty

Risk Score (HFRS) (Gilbert et al., 2018).

The CCI is a weighted index score derived from a model of long term survival

with co-morbid chronic health conditions in a sample of New York patients in the

in-hospital setting. The CCI is calculated through assigning scores for each chronic
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health condition present (0, 1, 2, 3, or 6), adding one point for each decade in age

over 50, then calculating the sum of points for the individual (Charlson et al., 1987).

In the original paper, scores were grouped into 0 (none), 1-2 (mild), 3-4 (moderate),

≥ 5 (severe) (Charlson et al., 1987). The CCI has been extensively validated in the

in-hospital setting and is often included as a variable in prediction models as a proxy

of co-morbidity burden in older adults (Quan et al., 2011; Radovanovic et al., 2014).

The EFI is based on the cumulative deficit frailty model, which uses a range

of indicators (deficits) to identify frailty (Mitnitski, Mogilner, and Rockwood, 2001;

Clegg et al., 2016). These include chronic diseases, specific symptoms or disabilities,

and behaviours (Mitnitski, Mogilner, and Rockwood, 2001). The EFI includes the

36 deficits listed in Table 4.1 for the identification of individuals with frailty. To cal-

culate the EFI a score of 1 is applied to each deficit, with the total for an individual

divided by the total number of deficits (36). Categories of frailty can then be ap-

plied as follows: fit (EFI ≤ 0.12), mild frailty (0.12-0.24), moderate frailty (0.24-0.36),

severe frailty (EFI ≥ 0.36). The cut-offs for these categories were derived using the

quartiles of the EFI value with the 99th centile as the upper limit (Clegg et al., 2016).

Following specification of the scale, the authors internally and externally validated

the EFI using primary care records of over 900,000 older adults in England (Clegg

et al., 2016). This validation identified the EFI effectively differentiated different risk

groupings for mortality, hospitalisation, and nursing home admission.

The HFRS is a frailty risk score calculated from ICD-10 code information relat-

ing to chronic health conditions, symptoms and behaviours, and care procedures in

the in-hospital setting (Gilbert et al., 2018). The HFRS is calculated using 109 ICD-

10 codes with point values assigned to each code between 0.1 (fever of unknown

origin) and 7.1 (dementia in alzheimers disease). These point values are based on

the odds ratios of each ICD-10 code calculated in a logistic regression using mem-

bership of a cluster of frail patients as the outcome variable (Gilbert et al., 2018).

HFRS can be separated into three categories of frailty risk; low risk (HFRS ≤ 5), in-

termediate risk (5–15), and high risk (HFRS ≥ 15). These cut-offs were selected by

the authors based on the HFRS scores that best differentiated between proportion of

patients experiencing 30-day mortality, long length of hospital stay, and emergency

re-admission. Validation for the HFRS was performed in two cohorts of over 75s
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using hospital episode statistics and NHS data. During validation in a cohort of 569

patients, the HFRS was compared to the Fried phenotype definition of frailty, and

Rockwood frailty scores with positive correlation between the scales (Fried et al.,

2001; Rockwood and Mitnitski, 2007; Gilbert et al., 2018).

These three indices were identified in the analyses using two-digit ICD10 codes

available in the sample data, a full list of which are available in Appendix Section G

for each index. Table 4.1 provides a comparison of the information contained in the

three indices for ease of reference.
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TABLE 4.1: Frailty Indices Summary Table

Index Chronic Disease States Symptoms and Signs Disabilities and Other
Frailty Indicators

EFI Athritis, atrial fibrillation, chronic kidney
disease, coronary heart disease, diabetes,
foot problems, fragility fracture, heart fail-
ure, heart valve disease, hypertension, hy-
potension/syncope, osteoporosis, Parkin-
son’s disease, peptic ulcer, peripheral vas-
cular disease, respiratory disease, skin ul-
cer, stroke and transient ischemic attack,
thyroid disorders, urinary system disease,
anaemia and haematinic deficiency

Dizziness, dyspnoea,
falls, memory & cogni-
tive problems, polyphar-
macy, sleep disturbance,
urinary incontinence,
weight loss and anorexia

Activity limitations,
hearing loss, house-
bound, mobility &
transfer problems, re-
quirement for care, social
vulnerability, vision
problems

HFRS* Alzheimer’s disease, arrhythmias, chronic
kidney disease, dementia, depression
and psychiatric indicators, epilepsy, frac-
tures, gastrointestinal conditions, geni-
tourinary conditions (including urinary
incontinence), hearing and visual impair-
ments, hypotension, musculoskeletal con-
ditions (including arthritis and osteoporo-
sis), Parkinson’s disease, presence of in-
fectious diseases, stroke

Falls, hospital acquired
conditions, speech dis-
turbances, symptoms
and signs indicators
(including food, fluid,
and emotional state),
traumatic injuries

Care involving use of re-
habilitation procedures,
dependence on enabling
machines or devices, so-
cial environment, care
dependency

CCI Moderate to severe chronic kidney
disease, diabetes (separated into
uncomplicated/end-organ damage),
congestive heart failure, peptic ulcer,
peripheral vascular disease, stroke and
transient ischemic attack, myocardial
infarction, dementia, chronic obstructive
pulmonary disease, connective tissue
disease, liver disease (separated into
mild/moderate to severe), hemiplegia,
localized solid tumour, leukemia, lym-
phoma, metastatic solid tumour, AIDS

*This is a summary of the 109 ICD-10 codes included in the HFRS Calculation, the full list
is provided in Appendix Section G

Influence of COVID-19

It is important to acknowledge the potential confounding influence of the COVID-

19 pandemic on the analyses. This influence means the relationships identified may

not generalise to situations where the acute care system is functioning in more stan-

dard circumstances. During the COVID-19 pandemic more emphasis was placed

on keeping care home residents out of hospital wherever possible (British Geriatrics

Society, 2020). This change reduced the likelihood that residents who had fallen

would be transported to hospital in an effort to reduce their exposure to the virus
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(British Geriatrics Society, 2020). Additionally, COVID-19 may have caused the pre-

mature death of care home residents with particular chronic health conditions or

advanced frailty meaning these groups may have been under represented in the

analyses (Rachas et al., 2023). Finally, COVID-19 changed care home behaviour with

an increased emphasis on limiting infection spread, which lead to increased isolation

of residents and reductions in physical activity (Mahmood et al., 2021). This had the

unintended effect of increased risk of deconditioning in residents, and an associated

increase in falls risk as a result (Mahmood et al., 2021).

The effect of COVID-19 on the analyses will likely have led to a dampening of

relationships between chronic health conditions and transfer to hospital as a result

of a fall. Therefore the estimates of effect identified in models will likely be underes-

timates of the true values. The confounding influence of COVID-19 during the data

collection period described in Section 4.2 means the analyses should be repeated us-

ing more complete data sets across multiple trusts during more standard periods in

future, which is discussed further in Section 6.7.

4.2.2 Dataset Descriptive Analysis

Following the derivation of the analysis dataset, several sets of descriptive statistics

were derived. The results of these tests are presented in Section 5.2. First the con-

tinuous age variable was tested for normality using the Kolmogorov-Smirnov test.

Mean and standard deviation were derived for the continuous age variable, with

frequencies and percentages in each category for categorical variables. The count

of falls outcome variable was visually inspected using a histogram in Figure 5.3, to-

gether with descriptive statistics presented in Table 5.1. Additional histograms were

plotted for the age variable, and number of chronic condition groups recorded in

Figures 5.1 and 5.2 respectively.

4.3 Cluster Analysis of Multi-Morbidity Data

4.3.1 Cluster Analysis Introduction and Aims

A core aim of the thesis was to investigate the effect of multi-morbidity on falls

in care home residents. Cluster analysis is presented in this thesis to identify the
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groups of chronic conditions that are commonly co-occurring in the sample, with

the methods used described in Section 4.3.3 and the results presented in Section

5.3. However, before presenting the methodology, an explanation of what cluster

analysis is, and the key decisions to be made during the analysis, is required.

The core aim of cluster analysis is to place objects, in this case care home resi-

dents, into groups or clusters such that objects within a group are similar but those

in different groups are dissimilar (Murphy, 2012). These group characteristics can be

generally thought of as within-group homogeneity and between-group heterogene-

ity. A measure of the similarity between objects is required for a clustering algorithm

to identify these groups within data. When objects are plotted in geometric space,

similarity can be expressed as the distance between objects. However, one of the

key difficulties in clustering multi-morbidity data is that the variables indicating the

presence or absence of a condition are binary. This is a problem because similar-

ity between individuals cannot be directly expressed through 2D geometric distance

measures such as Euclidean distance when the available information is expressed in

binary variables (Bishop, 2006). Therefore, a pre-processing stage is needed before

clustering can be performed on the data. Previous studies have used a dimension-

ality reduction approach called Multiple Correspondence Analysis (MCA) for this

pre-processing, which produces output suitable for use with clustering algorithms

(Violán et al., 2018; Guisado-clavero et al., 2018; Violán et al., 2019; Machón et al.,

2020). MCA is described in greater detail in Section 4.3.2.

Another decision to be made in cluster analysis is the choice between hierarchi-

cal or non-hierarchical clustering methods. Hierarchical clustering uses partitions of

the data set through agglomerative (bottom up) or divisive (top down) techniques to

cluster the data (Murphy, 2012). Output from hierarchical clustering can be viewed

using a dendrogram (tree diagram), in which clusters are nested within larger clus-

ters. One reason given for taking a hierarchical approach is that co-occurring dis-

eases may result from underlying risk factors or genetics (Vu, Finch, and Day, 2011).

Non-hierarchical approaches are common in the multi-morbidity clustering lit-

erature and work through iteratively splitting or merging clusters based on an ob-

jective function. Examples that have been used include K-means clustering (Violán

et al., 2018; Guisado-clavero et al., 2018), K-medoids (Islam et al., 2014), and Fuzzy



4.3. Cluster Analysis of Multi-Morbidity Data 93

C-means (Violán et al., 2019). These approaches differ in several ways. The K-means

algorithm defines k clusters where membership of a data point to a cluster is cal-

culated according to the least-squared Euclidean distance between data points. K-

means differs from K-medoids in that the latter uses a data point for the centre of

the cluster rather than the mean value of all points in the cluster, which makes K-

medoids less susceptible to outliers. Fuzzy C-means allows data points to be mem-

bers of multiple clusters meaning an association between each data point and each

cluster centre is calculated with closer centres having a greater association. This is

particularly useful when clustering overlapping groups of data points where mem-

bership in multiple clusters is plausible. Generally, non-hierarchical approaches are

more robust to outliers, choice of the distance measure, and inclusion of irrelevant

variables in the analysis than their hierarchical counterparts (Everitt, Landau, and

Leese, 2010).

In both hierarchical and non-hierarchical approaches a key decision to be made

is the number of clusters to identify. There is a risk of bias present in non-hierarchical

methods, which results from needing to decide the number of clusters a priori. How-

ever, the end solution produced by a hierarchical approach is often over trained,

with data points separated into their own individual clusters. Therefore a decision

needs to be made within hierarchical clustering approaches regarding where to stop

the algorithm and take the resulting clusters at that stage. This decision regarding

where to cut the dendrogram at an intermediate point also carries a risk of bias. Use

of the Calinski-Harabasz (CH) index is common in the literature to justify choosing a

particular number of clusters in these situations (Vu, Finch, and Day, 2011; Foguet-

Boreu et al., 2015; Guisado-clavero et al., 2018; Violán et al., 2018; Machón et al.,

2020). The CH-index is a ratio of the between-and within-cluster dispersion, where

high values indicate greater separation between clusters (Caliñski and Harabasz,

1974). The optimal number of clusters is identified by conducting multiple itera-

tions with different numbers of clusters and taking the iteration with the highest CH

index value. However, this represents a data-driven approach, meaning it is possible

the clusters identified will not be reflective of real groups of patients.

Decisions made during the cluster analysis, were motivated by overcoming three

challenges. These challenges were the clustering of binary chronic health condition
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data, the choice of cluster algorithm, and number of clusters to identify in the final

solution.

This cluster analysis aimed to answer three questions related to the overarching

thesis research question:

1. In care home residents, what chronic health conditions regularly co-occur to-

gether?

2. To what extent do these clusters match those identified previously in commu-

nity dwelling older adults?

3. To what extent are the clusters of chronic health conditions identified associ-

ated with changes in the rate of falls in care home residents?

The first of these questions is answered using the methodology presented in Sec-

tion 4.3.3 and the results are presented in Section 5.3. The second question is ad-

dressed using the cluster results presented in Section 5.3.4, which are compared to

previous studies in the community setting in Section 6.3.1. The third question is

answered using the methodology described in Section 4.4.3, and the results are pre-

sented in Section 5.4.

4.3.2 Multiple Correspondence Analysis (MCA)

As mentioned in Section 4.3.1, binary variables are nominative and therefore similar-

ity between individuals cannot be directly expressed through 2D geometric distance

measures such as Euclidean distance (Bishop, 2006). Multiple Correspondence Anal-

ysis (MCA) can be used as a pre-processing step when identifying multi-morbidity

patterns in categorical data (Le Roux and Rouanet, 2010).

MCA is a dimensionality reduction technique, which summarises the informa-

tion contained in categorical variables using a graphical representation. This graph-

ical representation is based on the axes which maximise the variance in the data

(Husson, Le, and Pagès, 2017).

MCA output plots the row and category profiles together, with the distance and

angle with the origin between points relating to the strength of the relationship be-

tween them. The axes used to construct this output are the two perpendicular axes
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that maintain the maximum variance of the point clouds of row and category pro-

files that are in multi-dimensional space. It is useful to see the two dimensional plane

as a slice being cut through a multi-dimensional point cloud, with all points in the

cloud then being projected onto this slice at a 90 degree angle. Distance is expressed

in MCA through Chi-squared distance, which is the sum of the squared differences

of co-ordinates on each new axis. MCA was conducted using the software package

FactoMineR (Lê, Josse, and Husson, 2008).

Within the MCA output, the position of an individual’s data point is pulled to-

wards the position of the categories they are in because the co-ordinates of their data

point on the plot is the weighted sum of the co-ordinates of the categories they are

in. Therefore, the position of the data point representing the individual chronic con-

dition profile will be pulled towards the categories it is in and pushed away from

the categories it is not in. This interrelated positioning, where the location of each

element is dependent on the location of other elements is referred to as barycentric

positioning (Husson, Le, and Pagès, 2017). The result of this barycentric position-

ing is that individuals (rows) that have a similar chronic health condition profile are

plotted closer together.

As mentioned previously, the MCA output also provides the positioning of cate-

gories on the output plot. The positioning of these category profiles is governed by

a similar system of barycentric properties described for the individual row profiles

above. This means a category will be close to individuals that are in it and further

away from individuals that are not, because the co-ordinates of categories on the plot

correspond to the weighted sum of the co-ordinates of individuals that are in the cat-

egory. Additionally, chronic health condition categories that have similar profiles of

individuals with a positive value for that category are also plotted closer together.

This situation, where the individual row profiles and category profiles exhibit

gravity-like effects on one another, is referred to as the double barycentric property

in MCA (Husson, Le, and Pagès, 2017). This property leads to a spatial representa-

tion of similarity on a plot where the distance from the origin and between points

can be calculated using euclidean distance. For the cluster analysis described in Sec-

tion 4.3.3, the position of individuals on the MCA output was of interest, which is

reflected in the plots of MCA output presented in Section 5.3.2.
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4.3.3 Cluster Analysis Methodology

The analysis described in the Section 4.4 investigates how patterns of multi-morbidity

relate to falls in care home populations. The approach to identifying these patterns

of multi-morbidity is described in this section. The data were organised with dis-

eases based on ICD-10 codes codified as binary variables indicating the absence or

presence of an ICD-10 coded disease. Only diseases with more than one percent

prevalence in the population were included for analysis. This is based on work

in previous studies on multi-morbidity patterns in which a minimum prevalence

threshold was introduced to reduce the likelihood of spurious relationships being

identified during the cluster analysis (Violán et al., 2018; Violán et al., 2019).

Before the cluster analysis, multiple correspondence analysis (MCA) was used

to transform the binary disease data as described in Section 4.3.2. The proportion

of the total variance captured by the MCA analyses was assessed to indicate the

quality of the point cloud representation by the MCA axes. Due to the binary nature

of the data, a low proportion of the variance was expected to be captured by the axes

(Husson, Le, and Pagès, 2017).

A comparison of clustering algorithms was carried out for the analysis of two-

dimensional patterns of chronic health conditions in care home residents. This com-

pared the performance of four clustering algorithms, comprising two hierarchical

and two non-hierarchical approaches. Hierarchical algorithms tested were the Ward

method, and average linkage while the non-hierarchical approaches were K-means,

and K-medoids. These methods were chosen due to their use in community dwelling

samples in previous research. Additionally, the relative simplicity of interpreta-

tion of the resulting clusters when compared with fuzzy cluster approaches was

attractive to avoid over-complicating the analysis. A brief discussion of the theory,

strengths, and weaknesses of each clustering algorithm is presented below.

Ward’s Method

The Ward method is an agglomerative hierarchical clustering algorithm (Großwendt,

Röglin, and Schmidt, 2019). Ward’s method utilises a function, which relies on the

sum of the squared distance (SSD) between individual data points (Murtagh and

Legendre, 2014). The SSD refers to the total squared distance between points in each
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cluster summed over all clusters. Ward’s method calculates the SSD, then merges

the two clusters with the lowest between-cluster sum of squared distance, which

results in an increase in the within-cluster sum of squared distance. The increase

in the SSD describes the distance between the two clusters that have been merged.

This cycle is repeated until the data are contained a single cluster. Graphical out-

put, called a dendogram, is produced by this method, which is used to visualise

the hierarchy of clustering stages (Provost and Fawcett, 2013). Ward’s method can

effectively separate clusters of data in noisy sets although it is biased towards form-

ing rounded clusters. Other drawbacks of this approach are it is computationally

expensive, and due to the hierarchical nature, points placed in a cluster cannot be

reassigned (Großwendt, Röglin, and Schmidt, 2019).

Average linkage Method

The average linkage method is another agglomerative hierarchical clustering ap-

proach, meaning that all points start in their own cluster before being merged to-

gether in stages. This algorithm takes all pairs of points in two clusters, computes

the distance between them and takes the mean of these distances. This process is

completed for all possible pairs of clusters and the two clusters with the smallest

average distance are merged at each stage (Murphy, 2012). An advantage of this

approach is the ability to handle noisy data, although it becomes computationally

expensive in large data sets. Average linkage is also biased towards creating small

well-spaced clusters (Murphy, 2012).

K-means

K-means clustering, also known as Lloyd’s Algorithm, is a non-hierarchical it-

erative clustering approach. This requires the number (K) of clusters to group the

data points into, to be decided a priori (Witten, Frank, and Hall, 2011). Once K is

chosen, that number of cluster centres (centroids) is randomly assigned within the

data to form the centres of different clusters. The distance between each object and

each centroid is then calculated with objects being assigned to their closest centroid.

The mean attribute values over all objects in each cluster is calculated following this

initial iteration and the cluster centroids are then reassigned to these mean values
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(Witten, Frank, and Hall, 2011). The distance from this new centroid to all objects is

then re-calculated and objects are assigned to their nearest centroid. This process re-

peats until the centroids stabilise and objects do not change between clusters or until

a threshold of iterations is passed (Bishop, 2006). These stages are based on the op-

timisation criterion in K-means, where the sum of squared distances between data

points and the K centroids is minimised. The standard formula for distance in K-

means is the Euclidean distance. Weaknesses of K-means include needing to define

K, sensitivity to outliers and sensitivity to the initial centroid positioning (Hastie,

Friedman, and Tibshirani, 2009). The K-means algorithm has been used on MCA

output in a two-step solution to cluster multi-morbidity data in previous literature

(Guisado-clavero et al., 2018; Violán et al., 2018; Machón et al., 2020)

K-Medoids

K-medoids is a further development of the K-means algorithm, which follows

the same iterative structure but differs in the way centroid positioning is determined.

While the K-means algorithm can be susceptible to outliers in data, K-medoids over-

comes this by using the most centrally located data point for the centroid (or medoid)

of the cluster (Hastie, Friedman, and Tibshirani, 2009). This is calculated as the point,

which minimises the sum of distances to all other points in the cluster. By using the

most central data point rather than the mean value, K-medoids is more resistant

to cluster centres being ‘pulled’ towards outlier points, as can happen with the K-

means algorithm (Hastie, Friedman, and Tibshirani, 2009; Jin and Han, 2010).

Cluster Algorithm Comparison

To compare the four clustering algorithms mentioned above, solutions for each

algorithm needed to be derived and tested for suitability. The optimal numbers

of clusters were identified for each algorithm using the Calinski-Harabasz Index

(Caliñski and Harabasz, 1974). This is a popular method to identify the optimal

number of clusters in similar research and works effectively with all the clustering

methods to be tested in this analysis (Vu, Finch, and Day, 2011; Foguet-Boreu et al.,

2015; Guisado-clavero et al., 2018; Violán et al., 2018; Machón et al., 2020).
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Evaluating the quality of competing clustering solutions in this context is chal-

lenging because the cluster analysis described is an example of unsupervised learn-

ing. In this context, the true answer is not known, meaning an algorithm cannot be

evaluated in the same way as supervised learning where the degree of misclassifi-

cation gives an indication of performance (Everitt, Landau, and Leese, 2010). The

different clustering solutions were therefore compared using two intrinsic evalua-

tion metrics.

First, cluster stability was assessed using the mean Jaccard coefficient value over

100 iterations (Hennig, 2007). Jaccard coefficient values refer to the proportion of

points assigned to the same cluster as the initial solution when non-parametric boot-

strapping is applied to the data to create smaller sets to train the clustering algorithm

(Hennig, 2007). The Jaccard coefficient values are averaged over 100 iterations of this

process to create a single metric, which indicates the stability of the clustering solu-

tion to re-sampling of the data. A mean Jaccard coefficient value of 0.85 or more is

seen as indicating highly stable clusters while below 0.6 represents unstable clusters

(Hennig, 2007). The more stable a cluster the less likely it is to disappear or change

upon the incorporation of new data, under the assumption that the training dataset

is representative of the population. Greater confidence can be placed in the external

validity of stable clusters as they can be expected to be consistent in new samples of

the same population.

Second the Calinski-Harabasz (CH) Index will be used to investigate the defi-

nition or separation of the clustering solutions (Caliñski and Harabasz, 1974). This

index is a ratio of the sum of between and within cluster dispersion for all clusters,

where dispersion is defined as the sum of the squared distances between points and

higher CH index values indicate more closely-defined clusters.

The algorithm chosen for the final model was based on the highest CH index

value, provided the solutions have mean Jaccard coefficients that indicate a stable

solution. This ensures the clustering solution being taken forward will have the best

possible separation of clusters once a minimum threshold of 0.75 for stability has

been passed. The chosen threshold is based on the rule of thumb proposed in Zumel

and Mount (2014) which will ensure at least moderate stability in the solution carried

forwards. Further analysis of the final clustering solution was performed as follows.
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Prevalence in the cluster and Observed-Expected (O/E) ratios were calculated for

each chronic health condition in the resulting clusters. The OE ratio is a ratio of

the disease prevalence in the cluster compared to the prevalence in the full study

sample (Schäfer et al., 2014; Violán et al., 2018). The OE ratios aid interpretation of

the resulting clusters by identifying conditions highly associated with a particular

cluster.

The individual cluster membership in the final clustering solution was then used

during the analysis of fall count data described in Section 4.4 below. This followed

the original analysis plan, which used the cluster solution as an avenue to explore

the association between different types of multi-morbidity and falls in care home

residents.

4.4 Modelling Fall Count in a Care Home Resident Sample

4.4.1 Regression Analysis of Falls: Aim and Objectives

In order to explore the effects of various key variables from the EHR on fall presen-

tations to ED, a regression approach was used. The aims of this regression analysis

relates to overall thesis objectives 3, 4, 5, and 6 presented in Section 1.5.1..

The overall aim of the regression analysis was to analyse whether and how

chronic disease and multi-morbidity are associated with the count of fall presen-

tations by cohort members to the ED during the study period.

More specifically, the objectives were to:

• Identify the association between chronic health conditions and the count of fall

presentations to ED during the study period.

• Utilise the clustering solution from Section 4.3 further to investigate the associ-

ation of cluster membership with the count of fall presentations to ED during

the study period.

• Investigate the effect of interactions between these chronic health conditions

and what they can tell us about their relationship with fall count.
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4.4.2 Selection of Generalised Linear Models

The outcome to be modelled in the regression analyses is a count variable, which

represents a measure of the number of times an event, in this case fall presentations

to the ED, occurred within a specified time period (Cameron and Trivedi, 1998).

Regression analysis of count data involves a dependent variable, which measures

a count of an event occurring, with the conditional mean of this count variable de-

pendent on a set of independent variables. However, because count data is collected

during a window of time, the dependent variable in count regression actually repre-

sents a rate, i.e., the number of events over a period of time (Cameron and Trivedi,

1998).

It is typical for the Log-linear or Poisson distribution to be adopted for count data

regression (Hilbe, 2011). However, count data is often over-dispersed with the con-

ditional variance exceeding the conditional mean (Cameron and Trivedi, 1998). This

can lead Poisson regression models to underestimate standard errors, possibly caus-

ing the significance of explanatory variables to be misinterpreted (Hilbe, 2011). Fur-

thermore, in situations where count data encompass zero, zero-inflation may be oc-

curring (Cameron and Trivedi, 1998). Zero-inflation encompasses a situation where

more zero counts than would be consistent with the Poisson distribution are present

in the count variable (Cameron and Trivedi, 1998). For the count data model results

presented in Section 5.4, over-dispersion was identified using the decision rule in

Equation 4.1 (Hilbe, 2011). In the situation where over-dispersion occurs, Negative

Binomial regression will be used for the analysis as the equidispersion assumption

is relaxed due to an additional term in the relationship (Hilbe, 2011).

(RD)/(DF) > 1 (4.1)

Where RD = Residual Deviance, DF = Degrees of Freedom

The additional term in Negative Binomial regression allows the conditional vari-

ance to exceed the mean (Cameron and Trivedi, 1998). This makes Negative Bino-

mial suitable for modelling over-dispersed count data (Hilbe, 2011).
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4.4.3 Regression Methodology

Count of falls during the three-year study period was used as the outcome for five

regression models. The tables of results for these regression models, as well as the

associated tests described below, are presented in results Section 5.4. Initial models

were developed using Poisson regression. The presence of over-dispersion in the

resulting models was identified using the expression in Equation 4.1. In the situation

where over-dispersion was present, Negative Binomial regression was used instead

(Hilbe, 2011).

Explanatory variables included in the five regression models are presented in

Table 4.2. A time-offset variable was included in all regression models, calculated by

taking the natural log of time spent in the cohort, measured as the difference between

the start of the study to either the end of the study period, or a date of death. This

was included in the regression models to account for the differing lengths of time

spent in the cohort by sample members (Hilbe, 2011). The natural log of time is

used in this offset because the event rate in Equation 4.2 is rewritten as Equation 4.3

through the quotient rule of logarithms.

log(
µ

t
) = β0 + β1x1 (4.2)

log(µ) = log(t) + β0 + β1x1 (4.3)

In all models, age and biological sex were identified when an individual entered

the cohort, as described in Chapter 4.2.1, with CCI, EFI, HFRS summarised for each

individual over the entire study period in regressions 1, 2, and 3 respectively. These

regressions were carried out to explore whether frailty and co-morbidity scores were

associated with variation in care home resident fall patterns.

Regression model 4, in Table 4.2, included the membership of the final clustering

solution derived using the approach detailed in Section 4.3.3, with the resulting clus-

ter model presented and evaluated in results Section 5.3.4. By including the cluster

membership, the aim of this regression was to investigate whether different groups

of chronic conditions were associated with different numbers of fall presentations to
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the emergency department.

In the fifth regression model chronic health condition presence was included in-

dividually using binary variables, the derivation of which is described in Section

4.2.1.

Chronic health conditions to be included in this model follow from the short-list

derived in the review of reviews in Section 3.4.1, provided that an ICD-10 code could

be identified for the condition of interest, and the prevalence of the condition was

over 1% in the study sample.

Several of the chronic health conditions mentioned in the shortlist derived from

the review of reviews in Chapter 3 did not match up directly with the chronic health

condition groups being used in this thesis. The conditions in the shortlist affected

were heart disease, postural (orthostatic) hypotension, and digestive diseases. The

category of ’heart disease’ was split into three groups from Calderón-Larrañaga et

al. (2017), cardiac valve disease, ischemic heart disease, and heart failure.

In the absence of a group directly reflecting the postural hypotension category,

the more general grouping of hypotension was used instead. The use of this more

general hypotension grouping likely introduced misclassification bias due to the

wider range of codes included in the overarching category. Specifically, chronic hy-

potension, idiopathic hypotension and hypotension related to drugs would be cap-

tured by the hypotension 2 digit ICD-10 code in addition to postural hypotension.

Additionally, a wider range of syndromes can cause hypotension than postural hy-

potension, meaning the influence of these other syndromes was captured by the

hypotension indicator in the analyses. As a result, the findings from the analyses

cannot be reliably related directly to postural hypotension, and only relate to the

more general hypotension category. The lack of specificity in the ICD-10 codes is a

limitation of the analyses, which is discussed further in Section 6.5. Finally, the gen-

eral category of digestive disease recommended in the review of reviews was split

into three groups from Calderón-Larrañaga et al. (2017), colitis and related diseases,

oesophagus, stomach, and duodenum diseases, and prostate diseases.

Three of the categories recommended in the Chapter 3 review of reviews were

not included in the shortlist regression model. For the Sarcopenia category no ap-

propriate 2-digit format ICD-10 code could be identified. Additionally, the ICD-10
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code indicating the presence of chronic pain had a prevalence of less than 1% in

the sample and were therefore not included in the regression model. Finally, the

two Calderón-Larrañaga et al. (2017) groups indicating the presence of cancer had

a prevalence of less than 1% in the sample and were excluded from the analysis on

this basis.

Finally, three Calderón-Larrañaga et al. (2017) chronic health condition groups

were added to the review of reviews shortlist for inclusion in the regression models.

These groups indicated the presence of inflammatory arthropathies, peripheral neu-

ropathy, and chronic kidney disease. Peripheral neuropathy was added to the model

because the relationship between diabetes and falls acts partially through periph-

eral neuropathy (Timar et al., 2016; Riandini et al., 2020). Therefore, to separate out

these effects an indicator for peripheral neuropathy was included. The Calderón-

Larrañaga et al. (2017) group indicating the presence of inflammatory arthropaties

was added to the shortlist model due to symptoms including pain and stiffness in

joints which, especially when present in the lower limbs, could cause gait and bal-

ance issues, with an associated increase in falls risk (Armstrong et al., 2005; Hayashibara

et al., 2010; Stanmore et al., 2013). Finally, chronic kidney disease was included in the

regression model following a previous systematic review that found mixed results

regarding an association with accidental fall rate but a strong positive association

with fracture risk (Goto et al., 2020).

Following all regressions, Incident Rate Ratios (IRR) were derived by taking the

exponent of the regression coefficient estimates (Hilbe, 2011). The IRR quantifies

how the rate of fall presentations to ED during the study period changed when the

explanatory variable of interest was present compared to when it was not present.

Once the regression models were derived, Akaike Information Criterion (AIC)

values were used to compare the quality of fit between the regression models, with

a lower AIC indicating a better fit of the regression line to the data (Hilbe, 2011).

Due to the difficulty in visually inspecting count data residual plots accurately,

model diagnostics were performed using the DHARMa package (Hartig, 2022a).

This package simulates expected residuals versus the fitted Generalised Linear Model

(GLM) residuals (Hartig, 2022a). The output allows the formation of multiple tests

and plots to test for model misspecification. Tests for uniformity of the distribution
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TABLE 4.2: Main Effects Regression Models Independent Variables

Main Effects Regression Models Independent Variables
1: Charlson Comorbidity Index Age, Male Sex, CCI Score
2: Electronic Frailty Index Age, Male Sex, EFI Category
3: Hospital Frailty Risk Score Age, Male Sex, HFRS Category
4: Cluster Membership Age, Male Sex, Cluster Membership
5: Shortlist Age

Male Sex
Dementia
Cerebrovascular Disease
Parkinson’s Disease
Urinary Incontinence
Diabetes
Anaemia
Blindness and Visual Impairment
Other Eye Diseases
Glaucoma
Deafness and Hearing Impairments
Hypotension
Atrial Fibrillation
Bradycardia and Conduction Diseases
Cardiac Valve Diseases
Ischemic Heart Disease
Heart Failure
Hypertension
Depression and Mood Diseases
Inflammatory Arthropathies
Osteoarthritis and other Degenerative Joint
Diseases
Colitis and related diseases
Oesophagus, Stomach and Duodenum Dis-
eases
Prostate Diseases
Peripheral Neuropathy
Chronic Kidney Diseases

EFI Categories: Fit, Mild Frailty, Moderate Frailty, Severely Frail, HFRS Categories: Low
Risk, Intermediate Risk, High Risk
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versus expected, outliers, over-dispersion, and zero inflation were conducted us-

ing the DHARMa package, with the results reported for each count data regression

model in Sections 5.4 and 5.5.

4.5 Modelling Fall Count: Interaction Analysis

4.5.1 Aims

Following on from the findings in the initial regression models presented in Section

5.4, further analysis into the interactions between chronic health conditions and their

effect on fall presentations to ED was conducted.

This analysis sought to identify whether interaction effects between chronic health

conditions could be identified in the data, and whether this could reveal multiplica-

tive or mediating relationships between co-morbidities in determining the count of

fall presentations to ED by care home residents.

When conducting interaction analysis, there are several concepts which must

be explained such that the final results can be understood in their entirety. These

features are explored in Section 4.5.2.

4.5.2 Interactions Interpretation

Interactions are used in statistical modelling when the value of one explanatory vari-

able has an effect on the relationship between another explanatory variable and the

outcome (Hilbe, 2009). All interactions proposed in the analysis are between binary

explanatory variables, therefore this explanation of their effects and interpretation

will relate to binary interactions only.

For the regression Equation 4.4 below, the expected count of falls (µ) is the out-

come variable, with binary explanatory variables (x1 and x2) representing a specific

chronic health condition presence or absence.

log(µ) = β0 + β1x1 + β2x2 (4.4)

IRRx1 = ∆µ/∆x1 = exp(β1) (4.5)
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IRRx2 = ∆µ/∆x2 = exp(β2) (4.6)

As seen in Equations 4.4 to 4.6, when no interaction effect is present in the count

regression Equation 4.4 the incident rate ratios are equivalent to those seen in the

models described in Section 4.4.2. Equations 4.5 and 4.6 show that the measure of

effect on the expected count of each explanatory variable is solely dependent on the

regression coefficient for that variable. However, this main effect does not account

for any mediating effects the co-occurrence of chronic health conditions may have

on their relationship with falls.

For example, in Equation 4.7, an interaction term is added to represent the situ-

ation where both binary condition variables (x1 and x2) are present. By adding this

interaction term, as well as interpreting the main effect of each condition seen in

Equations 4.5 and 4.6, there is now an additional relationship which is conditional

on the presence or absence of the other condition, as seen in Equations 4.8 and 4.9.

log(µ) = β0 + β1x1 + β2x2 + β3x1x2 (4.7)

IRRx1 = ∆µ/∆x1 = exp(β1 + β3x2) (4.8)

IRRx2 = ∆µ/∆x2 = exp(β2 + β3x1) (4.9)

Therefore when interpreting the Incident Rate Ratio (IRR) estimates on a main

effect (exp(β1) or exp(β2)) directly this effect represents the independent impact of

the condition of interest; however, when the additional condition is present the ad-

ditional IRR on the interaction term between the conditions must be taken into ac-

count. The direct effect of condition x1 in Equation 4.7 when condition x2 is not

present is shown in Equation 4.10 below.

IRRx1|x2=0 = ∆µ/∆x1 = exp(β1 + β3x2) = exp(β1 + β3 ∗ (0)) = exp(β1) (4.10)
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By incorporating interaction effects in the regression models, it may be possible

to understand the mediating role that co-morbidity plays in the association between

specific chronic diseases and fall count. However, there is a trade-off present with

complexity of the model in interaction analysis, with higher order interactions be-

coming increasingly difficult to interpret. Additionally, increasing the number of

terms in the analysis would increase variance in the model estimates, and increase

the risk of identifying spurious relationships.

4.5.3 Interaction Analysis Methodology

Due to the high possible number of interactions to test, several approaches were

taken to minimise the number of combinations to consider in the interaction anal-

ysis. The methods taken here represent a more data-driven than hypothesis-driven

approach, which is a limitation discussed further in Section 6.5.

This analysis took several different approaches in order to investigate possible

interactions between chronic health conditions and identify any mitigating effects

they may have on the count of fall presentations to ED from care home residents in

the sample.

Following the count regression in Section 5.4, which incorporated the cluster

model findings derived in Section 5.3, interaction analysis was conducted for each

cluster (besides the absence cluster) separately. The absence cluster refers to the pat-

tern of in-patient records with little or no chronic condition groups present that were

groups together during the MCA, described in Section 4.3.2.

To identify conditions for interaction in these clusters, the O/E ratios were used

to identify the conditions that were most associated with a particular cluster. In-

teracting these conditions allowed the testing of whether the combination of these

conditions led to an increase or decrease in falls risk among people in that cluster.

The intention behind these interaction models was to explain why the effects on fall

count observed in the cluster regression model occurred. Next, the top five chronic

conditions by prevalence in the whole sample and each cluster were interacted in

separate models.

For each model derived during the interaction analysis, DHARMa plots and tests

were produced, with interpretation equivalent to those described in Section 4.4.3
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previously. Plots of residuals and QQ-plots were derived and investigated for each

model described above.

4.6 Alternative Methodologies Trialled

Several alternative approaches to answering the research question were explored

that are not presented in the thesis. Each of these is mentioned in this section, along-

side a brief explanation for why the approach was not continued.

The first of these alternative approaches attempted to identify ’avoidable’ fall

attendances to ED using an established definition to develop a binary outcome vari-

able. This strand of analysis was abandoned due to the clinical need often present in

fall presentations from care homes, which made them necessary by definition.

An alternative approach to the regression analyses was trialled, which used whether

a presentation to ED resulted from a fall as a binary outcome in logistic regression

analyses. This analysis was discontinued due to the effects of Covid-19 lockdowns,

which likely led to a change in the relationships between predictors and the outcome

at different times in the analysis.

Attempts to use network analysis of the chronic health condition profile data

to visualise the structure of relationships in multi-morbidity were attempted and

abandoned due to software availability in the TRE framework and time constraints.

Finally, previous authors have split their sample by biological sex when conduct-

ing analyses into multi-morbidity (Violán et al., 2018; Guisado-clavero et al., 2018).

A similar approach was trialled for this project however it was abandoned due to ex-

isting disparity between sexes in terms of healthcare outcomes, which would likely

have led to spurious findings.

4.6.1 Ethical Approval

Ethical approval for the project was obtained through the University of Sheffield

Research Ethics Committee self-declaration system, which confirmed that, because

the data were fully anonymised then further ethics approval was not required. Ap-

proval for the project was given on 19/11/2021. A copy of the Ethical approval letter

for the project is provided in Appendix Section I.
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Additional approval for accessing the research data was also given through an

approved data user authorisation agreement. A full copy of this agreement is pro-

vided in Appendix Section J. The time window in which the sample data were ac-

cessed for analysis in this project began following ethical approval on 19/11/2021

through until 24/03/2023 at which point they were deleted at the end of the wider

HDRUK project. The effect of this hard deadline for the analyses is discussed further

in Section 6.5.

4.6.2 Software Used

Software used during the analyses, and construction of the thesis were as follows.

R-studio version 1.2.5033 with a range of packages was used for the processing and

analyses of data (RStudio Team, 2020; Wickham et al., 2019; Wickham and Bryan,

2023; Grolemund and Wickham, 2011; Wickham, 2016; Lê, Josse, and Husson, 2008;

Kassambara and Mundt, 2020; Hennig, 2023; Maechler et al., 2022; Venables and

Ripley, 2002; Hartig, 2022a).

4.7 Summary

The methodology presented in this chapter represents a novel combination of meth-

ods for the investigation of multi-morbidity and falls in older adults. Additionally,

the sample data represents a novel dataset for investigating key questions surround-

ing multi-morbidity and falls in care home residents. While it is clear that the data

described in Section 4.2 were limited in terms of the information contained in the

EHR, and the time period of collection, when the influence of the Covid-19 pan-

demic undoubtedly impacted behaviour of staff and managers etc. in care homes

and the emergency care services. In addition, the structured referrals application

being trialled in the sample care homes may have led to a change in the relation-

ship between care homes and ED, meaning it is possible the relationships identified

may not be transferable to other care home resident populations without external

validation. These limitations are explored further in Section 6.5. However, despite

these limitations, it was still possible to leverage the existing features in the EHR to

analyse falls risk in care home residents, and the novel approach taken in this thesis
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could be applied to more robust and rich datasets in future research. The results of

the analyses are presented in Chapter 5, after which the key themes and differences

with existing literature are explored further in the discussion (Chapter 6).
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Chapter 5

Results

5.1 Introduction

This chapter presents the results of the analyses. Section 5.2 reports the descriptive

statistics and tests performed on the sample data. Section 5.3 provides the results

of the cluster algorithm comparison and testing. By identifying clusters of sample

members based on their multi-morbidity information a picture of the different pre-

sentations of multi-morbidity in care home residents was formed. However, these

clusters were also leveraged to expose how differences in multi-morbidity are asso-

ciated with changes in fall presentations by sample members. Section 5.4 specifies

the results of the five regression models specified in Section 4.4.3, including a model

using the cluster membership from Section 5.3 as an explanatory variable. These re-

gressions also investigated aspects of how chronic disease relates to falls, with three

models exploring the role of frailty, and a further model which used the shortlist

of chronic health conditions derived in the Chapter 3 review to further explain the

differences observed between the clusters. Finally, results from the interaction effect

analysis are presented in Section 5.5. These interaction models attempted to iden-

tify specific combinations of chronic conditions, which increased falls risk in sample

members.

5.2 Descriptive Statistics

The sample size for the analyses was 4002 care home residents. Demographic char-

acteristics of the data were explored using descriptive statistical tests. These results

are presented in Table 5.1. 37.4% of the sample was male (n = 1498), with a mean
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FIGURE 5.1: Histogram of Age

Age identified as the minimum age on record

age of 84.4 (SD = 7.6). The distribution of age in the sample is shown in Figure 5.1.

Use of the Kolmogorov-Smirnov test found age in the sample was significantly (P ≤

0.05) non-normally distributed with a negative skew.

TABLE 5.1: Analysis Dataset Descriptive Statistics

Categorical Variable N (%)
Male Sex 1498 (37.4%)
Multi-morbidity on Record 2651 (66.2%)

Continuous Variable Mean (SD)
Age 84.4 (7.6)
Number of Chronic Condition Groups 4.6 (4)
Days in Cohort 835.6 (398.5)
Number of Fall Presentations on Record 0.7 (1.1)

Multi-morbidity defined as two or more Chronic Condition Groups on inpatient record

The chronic disease burden is high in this sample, with a mean number of Calderón-

Larrañaga et al., 2017 chronic condition groups on the EHR of 4.6 (SD = 4). This was

further shown by the high proportion of multi-morbidity, defined as two or more

chronic condition groups on the Electronic Health Record (EHR), at 66.2% in the

sample.

Figure 5.2 shows the number of chronic condition groups on the EHR for each

individual. This shows the sample contained a large number of residents with zero
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FIGURE 5.2: Number of Chronic Condition Groups on the EHR His-
togram

Chronic Condition Groups identified using list derived in Calderón-Larrañaga et al., 2017

chronic condition groups on their EHR (n = 1335, 33.3%). Whether these residents

had no chronic conditions or if this is a result of missingness is unclear.

TABLE 5.2: Analysis Dataset Frailty Index Scores

Index Name Mean (SD)
CCI Score 5.46 (2.7)
Index Name N (%)
EFI

Fit 1331 (33.3%)
Mild Frailty 556 (13.9%)
Moderate Frailty 1603 (40.1%)
Severely Frail 512 (12.8%)

HFRS
Low Risk 3127 (78.1%)
Intermediate Risk 773 (19.3%)
High Risk 102 (2.5%)

CCI: Charlson Comorbidity Index, EFI: Electronic Frailty Index, HFRS: Hospital Frailty
Risk Score
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FIGURE 5.3: Count of Fall Presentations to ED over full study period
for each sample member histogram

Fall identified as Emergency Department attendance with investigation or treatment
relating to trauma

Further assessment of chronic condition burden in the sample was conducted

through calculating three electronic frailty index values based on information in the

EHR. A summary of these frailty scores for the whole sample is provided in Table

5.2.

There were differences in the level of frailty identified in the sample depending

on the frailty measures used. The Electronic Frailty Index (EFI) identified only 33.3%

of the sample as Fit with 13.9% of the sample identified as Mild Frailty and a com-

bined 52.9% as Moderate or Severely Frail. This is in contrast to the Hospital Frailty

Risk Score (HFRS), which labelled 78.1% of the sample as having a Low Frailty risk,

and only 21.8% as having an Intermediate or High Frailty Risk.

There are several sources that may have introduced differences in the level of

frailty identified in the sample by the EFI and HFRS indexes. First, the EFI incor-

porates several daily living deficits into the calculation of the score, with no cor-

responding ICD-10 code, this meant several of these deficits were assumed to be

present in a care home sample (activity limitations, housebound, mobility and trans-

fer problems, requirement for care, and social vulnerability). By assuming these
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deficits were present it is possible the level of frailty in the sample is being over-

estimated in the EFI results. However, the HFRS was developed in a cohort of older

adults over 75 admitted to hospital, wheras the EFI was derived from primary care

records of people age over 65 (Clegg et al., 2016; Gilbert et al., 2018). This may

have introduced a difference in the relative definitions of frail between these indi-

cies. Therefore, the HFRS may have a comparatively higher threshold that an indi-

vidual must pass in order to enter the higher categories of frailty risk than the EFI

leading to the differences in the level of frailty observed in Table 5.2.

The mean amount of time spent in the cohort, seen in Table 5.1, measured as time

between first contact and either a date of death or the end of the study period was

835.6 days (SD = 398.5) or 2.3 years. The number of fall presentations to the ED per

sample member during the study period is the outcome of interest for the regression

models presented in Sections 5.4 and 5.5. Descriptive statistics for the fall count

outcome are presented in Table 5.3, and a histogram of the distribution is shown in

Figure 5.3.

TABLE 5.3: Fall Presentations Descriptive Statistics

Statistic Value
Mean (SD) 0.72 (1.14)
Median 0
Interquartile Range (25th, 75th percentiles) 1 (0, 1)
Minimum 0
Maximum 18
No fall presentations on record 2281 (57%)
Fall presentations on record ≥ 1 1721 (43.0%)

Table 5.3 shows that the prevalence of at least one fall within the sample was 43%

(n = 1721) during the study period. As seen in Figure 5.3, the fall count outcome

exhibits a positive skew. Testing the distribution of the falls outcome variable using

the Kolmogorov-Smirnov test further confirmed the distribution was significantly

(P ≤ 0.05) different to a normal distribution, which is to be expected for count data.

Despite a large number of individuals experiencing no fall presentations to the ED

during the study period, the prevalence is sufficient for use as an outcome in the

regression models, the results of which are presented in Sections 5.4 and 5.5.

Having explored the descriptive characteristics of the sample data, and ensured
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the prevalence of falls and multi-morbidity are sufficient for examination through

the chosen methods, the Multiple Correspondence Analysis (MCA) processing stage

and cluster analysis were performed as described in Section 4.3.3, with the results

provided in Section 5.3.

5.3 Cluster Analysis

5.3.1 Introduction

The cluster analysis set out to answer two questions:

• What chronic health conditions commonly co-occur together in care home res-

idents?

• To what extent are these groups similar to clusters identified in community

dwelling older adults?

The first of these questions is addressed in Section 5.3.4 with the necessary pre-

liminary data manipulation and analyses presented in Sections 5.3.2 and 5.3.3. The

second question is addressed in Section 6.3.1 during the wider contextualisation of

the cluster results.

5.3.2 Multiple Correspondence Analysis (MCA)

Following the elimination of chronic conditions below the 1% prevalence thresh-

old, described in Section 4.2.1, there were 48 Calderón-Larrañaga et al., 2017 chronic

health condition groups considered for the analyses. The presence or absence of

each of these chronic health condition groups was recorded based on sample mem-

ber inpatient records. This resulted in a binary array of 48 variables, each relating to

a chronic condition group from Calderón-Larrañaga et al. (2017), which was used as

the input data for the MCA described in Section 4.3.2.

The MCA derived a lower-dimensional set of axes that retained the maximum

possible variance in the 48-dimension data. However, Figure 5.4 demonstrates that

this was a low proportion of the total variance. As detailed in Section 4.3.2 this low

proportion of variance captured is unavoidable due to the binary nature of the input

data. Because each subsequent dimension captured only a small amount of variance,
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the first two axes were selected for the analyses. As shown in Figure 5.4 these two

axes captured 9.3% and 3.3% of the variance respectively.

FIGURE 5.4: Variance captured in Multiple Correspondence Analysis
Axes

Following the selection of the first two axes from the MCA output, the co-ordinates

of every sample member were identified as the perpendicular projection of their

point in the 48-dimension point cloud onto these axes. The co-ordinates of these

points on the 2D MCA axes were then used as the input data for the four cluster-

ing algorithms described in Section 4.3.3. Results from the training, evaluation, and

comparison of these four clustering algorithms is presented in Section 5.3.3 below.

5.3.3 Cluster Solution Comparison

Cluster analysis was used to identify groups of commonly co-occuring chronic health

conditions, such that these groups could be assessed for how they impact falls risk

during the regression analysis in Section 5.4. Additionally, interpreting these clusters

in terms of the chronic conditions highly associated with them also gives a picture

of the likelihood of different presentations of multi-morbidty in the sample of care

home residents described in Section 5.2.

Four clustering algorithms were trained on the row-profile co-ordinate data from

the first two MCA axes, as described in Section 4.3. These algorithms were K-means,
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K-medoids, Ward’s method, and average linkage to allow comparison between hi-

erarchical and non-hierarchical approaches to clustering. Due to the lack of previ-

ous similar clustering research in care home residents, where the chronic condition

burden is highest, and people live with many chronic health conditions at once,

a data-driven approach was taken to identify the number of clusters determined

as optimal by each algorithm. The results of this hyper-parameter optimisation is

shown in Table 5.4 where algorithms were trained with differing numbers of clus-

ters and assessed using the Calinski-Harabasz index value. This value is a ratio of

the between-and within-cluster dispersion, where high values indicate greater sep-

aration between clusters (Caliñski and Harabasz, 1974). A limit of ten clusters was

imposed to minimise the risk of over-training in the data and, as seen in Table 5.4, all

algorithms saw diminishing returns in terms of Calinski-Harabasz index separation

before this limit was reached.

TABLE 5.4: Calinski-Harabasz Index Values for each clustering algo-
rithm

Number of Clusters K-Means K-Medoids Ward’s Method Average Linkage
2 4161.9 4020.1 3429.8 76.5
3 4048.2 3852.6 2986.1 40.9
4 4343.7 4313.6 3192.6 416.1
5 4505.3 4344.8 3394.8 1056.6
6 4228.9 4379.5 3462.9 986.9
7 4510.1 4306.9 3094.9 852.0
8 4562.1 4372.0 3016.8 730.9
9 4406.9 4229.2 2860.2 646.2
10 4391.6 4114.8 2826.8 583.9

The number of clusters identified with the highest cluster separation for each al-

gorithm differed, with K-means identifying 8 clusters, K-medoids and Ward’s method

identifying 6 clusters each, and the average linkage algorithm identifying 5 clusters.

The solution for each algorithm with the highest Calinski-Harabasz index of sep-

aration value was further assessed using the Mean Jaccard Coefficient, which evalu-

ates the stability of the cluster solution. These results are shown in Table 5.5.

The mean Jaccard Coefficient value over 100 iterations indicated higher solution

stability for the non-hierarchical algorithms (K-means, and K-medoids) when com-

pared with the hierarchical algorithms (Ward’s method, average linkage). Further-

more, while no solution was identified as highly stable (Mean Jaccard Coefficient ≥
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TABLE 5.5: Calinski-Harabasz Index and Jaccard Coefficient of opti-
mised solutions for each clustering algorithm

Clustering Algorithm Clusters Calinski-Harabasz Index Mean Jaccard Coefficient
K-Means 8 4562.1 0.78
K-Medoids 6 4379.5 0.74
Ward’s Method 6 3462.9 0.62
Average Linkage 5 1056.6 0.43

Jaccard Coefficient calculated over 100 iterations

0.8), the K-means solution and K-medoids solutions still provided reasonably stable

solutions (Mean Jaccard Coefficient ≥ 0.7). However, the clusters should be regarded

as having limited generalisability to the wider care home population as a result of

this lowered stability.

Following the procedure detailed above, the algorithm selected for final appraisal

and use in the fall count regression models in Section 5.4 was the K-means 8 clus-

ter solution. This solution had the largest separation measured through Calinski-

Harabasz index (4562.1) and the highest stability measured using the mean Jaccard

Coefficient over 100 iterations (0.78). Section 5.3.4 investigates the K-means 8 cluster

solution further, and describes each of these clusters in terms of the demographics

and chronic health condition patterns identified.

5.3.4 Final Cluster Solution

The 8 cluster K-means solution derived in Section 5.3.3 is plotted on the first two

MCA axes in Figure 5.5. The demographic characteristics and descriptive statistics of

each cluster are presented in Table 5.6. The position of individual data points on the

Figure 5.5 MCA axes represent a linear combination of their profile of chronic health

conditions. Therefore, the different positioning of individual points on these axes

reflect differences in the underlying chronic health condition profile. Each cluster

has been given a name reflecting the major features of that cluster for clarity, which

are described in greater detail throughout this section.

In order to understand the clusters in greater detail, Tables 5.7 and 5.8 present

the prevalence, and observed expected ratios (O/E ratio) of each chronic health con-

dition. In these ratios the observed prevalence for each chronic health condition in
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FIGURE 5.5: K-Means 8 Cluster Solution

TABLE 5.6: Final Solution Cluster Characteristics

Cluster Cluster Size Mean Age (SD) Mean N Chronic Conditions (SD) Mean Fall Count (SD) Mean CCI (SD)
1: Cardiovascular 381 85.5 (6.5) 7.1 (1.2) 0.6 (1.2) 7.5 (2)
2: Absence 1405 84.6 (7.9) 0.1 (0.4) 0.6 (0.9) 3.1 (1)
3: Cardio-Metabolic 168 84 (7) 12.1 (2) 0.9 (1.3) 9 (2)
4: N-S-High-Burden 158 81.6 (7.4) 13 (2.3) 1.3 (1.7) 8.5 (2.2)
5: Central 421 84.4 (7.1) 8.4 (1.3) 0.9 (1.2) 7.6 (2.4)
6: Low-Neuro-Psych 564 83.6 (8) 4.8 (1.1) 0.8 (1.3) 5.4 (1.9)
7: High-Neuro-Psych 289 81.8 (7.9) 7.5 (1.4) 0.8 (1.1) 5.9 (2.2)
8: Low-Cardio-Neuro 616 85.6 (6.6) 4.7 (1) 0.7 (1.1) 6.3 (2.2)
Whole Sample 4002 84.4 (7.6) 4.6 (4) 0.7 (1.1) 5.5 (2.7)

N-S-High-Burden: Non-Specific-High-Burden cluster, Cardio-Metabolic:
Cardiovascular-Metabolic cluster, Low/High-Neuro-Psych:

Low/High-Neurological-Psychiatric

the cluster is divided by the prevalence in the full sample (the expected prevalence),

which highlights the conditions associated with that cluster. An O/E ratio ≥ 2 in-

dicates a high degree of association of a chronic health condition with a particular

cluster. An O/E ratio ≥ 2 means the prevalence in the cluster is over double that

in the total sample. These tables are split by cluster to illustrate differences in the

prevalence of each condition in each cluster.

Interpretation of MCA Axes

The process for identifying a semantic interpretation for the axes was as follows.

First, conditions with consistent association across all clusters (diabetes, dementia,
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and hypertension) were removed because of their universal association with each

cluster besides the Absence cluster. Therefore, these conditions were not what is

differentiating between the positions of different clusters.

FIGURE 5.6: K-Means 8 Cluster Solution Pairwise Comparisons

Figure 5.6 indicates the three comparisons made between clusters to identify an

explanation of the Y-axis in the MCA output. Differences in O/E ratios for each con-

dition of ≥ 1 between the three pairs of clusters in Figure 5.6 (Comparisons A, B,

and C) were recorded as possible explanations of difference as a result of Y-axis po-

sitioning. Following this, the consistent themes across the three comparisons were

identified for the explanation of the Y-axis. This comparative analysis of O/E ratios

identified a difference between the top pane clusters (Low-Neuro-Psychiatric, High-

Neuro-Psychiatric, and Non-Specific-High-Burden clusters), which showed stronger

associations with neurological and psychiatric conditions, and the bottom pane clus-

ters (Low-Cardio-Neuro, Cardiovascular, and Cardiovascular-Metabolic clusters),

which were highly associated with cardiovascular conditions. Further support for

this was shown in the Central cluster, which had a moderate degree of association

with both sets of conditions whilst also holding a central position in Figure 5.6.

The X-axis in Figure 5.5 represents the primary axes derived during the MCA

pre-processing, and this places the Absence cluster at the far left side, whilst the
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Cardiovascular-Metabolic and Non-Specific-High-Burden clusters are placed at the

far right hand side. Investigating the difference between the clusters positioned at

the extremes on this axis in Table 5.6 shows that the Absence cluster represents a

large cluster with very low prevalence of chronic condition groups, with a mean of

0.1 (SD = 0.4) chronic condition groups on the EHR. This is in direct contrast with the

Cardiovascular-Metabolic and Non-Specific-High-Burden clusters where the mean

number of chronic condition groups was 12.1 (SD = 2) and 13 (SD = 2.3) respec-

tively. Therefore it seems reasonable to infer that the X-axis is splitting those sample

members that are defined by the absence of most or any of the condition groups

studied from those where those groups are present. Furthermore, the Low-Neuro-

Psychiatric and Low-Cardio-Neuro clusters have fewer chronic health conditions

than the High-Neuro-Psychiatric and Cardiovascular clusters (see Table 5.6). This

gives further indication of a reduction in multi-morbidity burden moving from right

to left along the X-axis in Figure 5.5.

FIGURE 5.7: K-Means 8 Cluster Solution X-axis Comparisons

To identify the specific condition groups being differentiated by the X-axis, in-

formation from Tables 5.7 and 5.8 was used alongside a similar approach for iden-

tifying the Y-axis conditions. This involved the comparison of condition preva-

lence between the Low-Cardio-Neuro and Low-Neuro-Psychiatric clusters with the
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Cardiovascular-Metabolic and Non-Specific-High-Burden clusters in a single left-

right comparison. On Figure 5.7 this involved looking for the similarities between

the Low-Cardio-Neuro and Low-Neuro-Psychiatric clusters in Circle A. Then sim-

ilarities were identified for the Cardiovascular-Metabolic and Non-Specific-High-

Burden clusters in Circle B. The differences between these two groups of clusters

were then compared in a single left-right comparison, as seen in Figure 5.7. This

comparison identified differences between the clusters based on several conditions,

and further confirmation was sought using the Central cluster to identify whether it

held a mediating position between these differences.

This comparison identified the changing degree of association with several groups

of conditions including musculoskeletal, gastrointestinal, metabolic, and sensory

impairment conditions. Generally, the right hand panes have an increasing degree

of association with these chronic health conditions, while the left panes do not. This

increasing degree of association also reflects an increase in the raw number of co-

incident chronic conditions on the EHR as we move between clusters along the X-

axis, as shown in Table 5.6.

In summary, the X-axis appears to differentiate between the general number of

chronic conditions on the EHR; however this difference is made up by the presence

of metabolic, musculoskeletal, gastrointestinal, and sensory impairment chronic con-

ditions on the right hand panes, versus the absence of these conditions on the left

hand panes in Figure 5.7. Meanwhile, the Y-axis on Figure 5.6 appears to be dif-

ferentiating between neurological and psychiatric conditions in the top panes, and

cardiovascular conditions in the bottom panes.

It is important to note that these groupings are not absolute, with co-occurrence

of conditions on opposite sides of the MCA plot still possible. However, the position-

ing on the plot means these combinations are a less likely occurrence on aggregate

based on this sample.

In the clinical context, the clustering results suggest that multi-morbidity com-

binations may be differentiated by cardiovascular conditions, and neurological and

psychiatric conditions which occur beyond the conditions seen at consistent rates

throughout the sample (diabetes, dementia, and hypertension).
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TABLE 5.7: K-Means Clustering Prevalence Table

1: Cardiovascular 2: Absence 3: Cardio-Metabolic 4: N-S-High-Burden
Chronic Condition Group Sample Prev. Cluster Prev. O/E Cluster Prev. O/E Cluster Prev. O/E Cluster Prev. O/E
Allergy 615 (15.37) 97 (25.46) 1.66 14 (1) 0.06 59 (35.12) 2.29 42 (26.58) 1.73
Anaemia 495 (12.37) 63 (16.54) 1.34 2 (0.14) 0.01 66 (39.29) 3.18 66 (41.77) 3.38
Atrial Fibrillation 979 (24.46) 255 (66.93) 2.74 3 (0.21) 0.01 127 (75.6) 3.09 72 (45.57) 1.86
Autoimmune Diseases 65 (1.62) 7 (1.84) 1.13 0 (0) 0 5 (2.98) 1.83 7 (4.43) 2.73
Blindness and Visual Impairment 58 (1.45) 1 (0.26) 0.18 0 (0) 0 4 (2.38) 1.64 12 (7.59) 5.24
Blood and Blood Forming Organ Diseases 57 (1.42) 11 (2.89) 2.03 0 (0) 0 10 (5.95) 4.18 7 (4.43) 3.11
Bradycardias and Conduction Diseases 156 (3.9) 51 (13.39) 3.43 0 (0) 0 39 (23.21) 5.96 16 (10.13) 2.6
Cardiac Valve Diseases 355 (8.87) 137 (35.96) 4.05 0 (0) 0 84 (50) 5.64 27 (17.09) 1.93
Cataract and Other Lens Diseases 101 (2.52) 2 (0.52) 0.21 0 (0) 0 8 (4.76) 1.89 15 (9.49) 3.76
Cerebrovascular Disease 431 (10.77) 33 (8.66) 0.8 3 (0.21) 0.02 41 (24.4) 2.27 56 (35.44) 3.29
Chronic Kidney Diseases 897 (22.41) 208 (54.59) 2.44 7 (0.5) 0.02 110 (65.48) 2.92 75 (47.47) 2.12
Chronic Liver Diseases 89 (2.22) 6 (1.57) 0.71 0 (0) 0 13 (7.74) 3.48 14 (8.86) 3.98
Chronic Pancreas, Biliary Tract and GBD 158 (3.95) 16 (4.2) 1.06 1 (0.07) 0.02 28 (16.67) 4.22 28 (17.72) 4.49
Chronic Ulcer of the Skin 520 (12.99) 98 (25.72) 1.98 8 (0.57) 0.04 80 (47.62) 3.66 52 (32.91) 2.53
Colitis and Related Diseases 640 (15.99) 40 (10.5) 0.66 2 (0.14) 0.01 68 (40.48) 2.53 89 (56.33) 3.52
COPD, Emphysema, Chronic Bronchitis 594 (14.84) 94 (24.67) 1.66 7 (0.5) 0.03 65 (38.69) 2.61 59 (37.34) 2.52
Deafness and Hearing Impairment 145 (3.62) 7 (1.84) 0.51 0 (0) 0 18 (10.71) 2.96 19 (12.03) 3.32
Dementia 1617 (40.4) 196 (51.44) 1.27 35 (2.49) 0.06 102 (60.71) 1.5 106 (67.09) 1.66
Depression and Mood Diseases 305 (7.62) 9 (2.36) 0.31 1 (0.07) 0.01 9 (5.36) 0.7 63 (39.87) 5.23
Diabetes 840 (20.99) 125 (32.81) 1.56 2 (0.14) 0.01 86 (51.19) 2.44 80 (50.63) 2.41
Dorsopathies 116 (2.9) 3 (0.79) 0.27 1 (0.07) 0.02 2 (1.19) 0.41 35 (22.15) 7.64
Dyslipidemia 205 (5.12) 12 (3.15) 0.61 0 (0) 0 19 (11.31) 2.21 35 (22.15) 4.32
Ear, Nose, and Throat Diseases 59 (1.47) 2 (0.52) 0.36 0 (0) 0 7 (4.17) 2.83 17 (10.76) 7.3
Epilepsy 119 (2.97) 1 (0.26) 0.09 0 (0) 0 6 (3.57) 1.2 14 (8.86) 2.98
Oesophagus Stomach and Duodenum Diseases 195 (4.87) 6 (1.57) 0.32 1 (0.07) 0.01 12 (7.14) 1.47 55 (34.81) 7.14
Glaucoma 110 (2.75) 3 (0.79) 0.29 0 (0) 0 8 (4.76) 1.73 13 (8.23) 2.99
Heart Failure 879 (21.96) 309 (81.1) 3.69 0 (0) 0 156 (92.86) 4.23 78 (49.37) 2.25
Hypertension 1592 (39.78) 237 (62.2) 1.56 7 (0.5) 0.01 152 (90.48) 2.27 128 (81.01) 2.04
Inflammatory Arthropathies 255 (6.37) 37 (9.71) 1.52 0 (0) 0 43 (25.6) 4.02 42 (26.58) 4.17
Ischemic Heart Disease 876 (21.89) 190 (49.87) 2.28 4 (0.28) 0.01 109 (64.88) 2.96 80 (50.63) 2.31
Osteoarthritis and DJD 529 (13.22) 38 (9.97) 0.75 5 (0.36) 0.03 50 (29.76) 2.25 75 (47.47) 3.59
Osteoporosis 287 (7.17) 19 (4.99) 0.7 1 (0.07) 0.01 11 (6.55) 0.91 37 (23.42) 3.27
Other Cardiovascular Diseases 426 (10.64) 52 (13.65) 1.28 2 (0.14) 0.01 66 (39.29) 3.69 54 (34.18) 3.21
Other Digestive Diseases 47 (1.17) 4 (1.05) 0.89 0 (0) 0 4 (2.38) 2.03 8 (5.06) 4.31
Other Eye Diseases 203 (5.07) 6 (1.57) 0.31 3 (0.21) 0.04 16 (9.52) 1.88 37 (23.42) 4.62
Other Genitourinary Diseases 845 (21.11) 90 (23.62) 1.12 8 (0.57) 0.03 87 (51.79) 2.45 97 (61.39) 2.91
Other Metabolic Diseases 208 (5.2) 8 (2.1) 0.4 2 (0.14) 0.03 23 (13.69) 2.63 37 (23.42) 4.51
Other Musculoskeletal and Joint Diseases 326 (8.15) 26 (6.82) 0.84 1 (0.07) 0.01 41 (24.4) 3 70 (44.3) 5.44
Other Neurological Diseases 255 (6.37) 9 (2.36) 0.37 1 (0.07) 0.01 9 (5.36) 0.84 42 (26.58) 4.17
Other Psychiatric and Behavioural Diseases 310 (7.75) 12 (3.15) 0.41 0 (0) 0 29 (17.26) 2.23 44 (27.85) 3.6
Other Respiratory Diseases 372 (9.3) 82 (21.52) 2.32 2 (0.14) 0.02 64 (38.1) 4.1 31 (19.62) 2.11
Parkinsons and Parkinsonism 159 (3.97) 10 (2.62) 0.66 3 (0.21) 0.05 7 (4.17) 1.05 9 (5.7) 1.43
Peripheral Neuropathy 153 (3.82) 9 (2.36) 0.62 0 (0) 0 15 (8.93) 2.34 48 (30.38) 7.95
Prostate Diseases 121 (3.02) 21 (5.51) 1.82 0 (0) 0 17 (10.12) 3.35 6 (3.8) 1.26
Schizophrenia and Delusional Diseases 61 (1.52) 1 (0.26) 0.17 0 (0) 0 1 (0.6) 0.39 9 (5.7) 3.74
Sleep Disorders 40 (1) 8 (2.1) 2.1 0 (0) 0 13 (7.74) 7.74 8 (5.06) 5.07
Thyroid Diseases 338 (8.45) 32 (8.4) 0.99 0 (0) 0 35 (20.83) 2.47 36 (22.78) 2.7
Venous and Lymphatic Diseases 60 (1.5) 17 (4.46) 2.98 0 (0) 0 17 (10.12) 6.75 2 (1.27) 0.84

Prevalence reported as Frequency (%), O/E: Observed-Expected Ratio, DJD: Degenerative
Joint Diseases, GBD: Gallbladder Diseases
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TABLE 5.8: K-Means Clustering Prevalence Table Continued

5: Central 6: Low-Neuro-Psych 7: High-Neuro-Psych 8: Low-Cardio-Neuro
Chronic Condition Group Sample Prev. Cluster Prev. O/E Cluster Prev. O/E Cluster Prev. O/E Cluster Prev. O/E
Allergy 615 (15.37) 106 (25.18) 1.64 89 (15.78) 1.03 41 (14.19) 0.92 167 (27.11) 1.76
Anaemia 495 (12.37) 97 (23.04) 1.86 61 (10.82) 0.87 58 (20.07) 1.62 82 (13.31) 1.08
Atrial Fibrillation 979 (24.46) 190 (45.13) 1.84 73 (12.94) 0.53 44 (15.22) 0.62 215 (34.9) 1.43
Autoimmune Diseases 65 (1.62) 12 (2.85) 1.75 18 (3.19) 1.96 10 (3.46) 2.13 6 (0.97) 0.6
Blindness and Visual Impairment 58 (1.45) 14 (3.33) 2.29 7 (1.24) 0.86 19 (6.57) 4.54 1 (0.16) 0.11
Blood and Blood Forming Organ Diseases 57 (1.42) 8 (1.9) 1.33 9 (1.6) 1.12 8 (2.77) 1.94 4 (0.65) 0.46
Bradycardias and Conduction Diseases 156 (3.9) 22 (5.23) 1.34 6 (1.06) 0.27 2 (0.69) 0.18 20 (3.25) 0.83
Cardiac Valve Diseases 355 (8.87) 56 (13.3) 1.5 6 (1.06) 0.12 3 (1.04) 0.12 42 (6.82) 0.77
Cataract and Other Lens Diseases 101 (2.52) 26 (6.18) 2.45 17 (3.01) 1.19 27 (9.34) 3.7 6 (0.97) 0.39
Cerebrovascular Disease 431 (10.77) 93 (22.09) 2.05 99 (17.55) 1.63 78 (26.99) 2.51 28 (4.55) 0.42
Chronic Kidney Diseases 897 (22.41) 173 (41.09) 1.83 78 (13.83) 0.62 42 (14.53) 0.65 204 (33.12) 1.48
Chronic Liver Diseases 89 (2.22) 19 (4.51) 2.03 14 (2.48) 1.12 21 (7.27) 3.27 2 (0.32) 0.15
Chronic Pancreas, Biliary Tract and GBD 158 (3.95) 26 (6.18) 1.56 24 (4.26) 1.08 16 (5.54) 1.4 19 (3.08) 0.78
Chronic Ulcer of the Skin 520 (12.99) 90 (21.38) 1.65 56 (9.93) 0.76 31 (10.73) 0.83 105 (17.05) 1.31
Colitis and Related Diseases 640 (15.99) 141 (33.49) 2.09 128 (22.7) 1.42 94 (32.53) 2.03 78 (12.66) 0.79
COPD, Emphysema, Chronic Bronchitis 594 (14.84) 115 (27.32) 1.84 86 (15.25) 1.03 57 (19.72) 1.33 111 (18.02) 1.21
Deafness and Hearing Impairment 145 (3.62) 35 (8.31) 2.29 23 (4.08) 1.13 31 (10.73) 2.96 12 (1.95) 0.54
Dementia 1617 (40.4) 302 (71.73) 1.78 335 (59.4) 1.47 173 (59.86) 1.48 368 (59.74) 1.48
Depression and Mood Diseases 305 (7.62) 47 (11.16) 1.46 58 (10.28) 1.35 105 (36.33) 4.77 13 (2.11) 0.28
Diabetes 840 (20.99) 175 (41.57) 1.98 142 (25.18) 1.2 84 (29.07) 1.38 146 (23.7) 1.13
Dorsopathies 116 (2.9) 16 (3.8) 1.31 19 (3.37) 1.16 40 (13.84) 4.78 0 (0) 0
Dyslipidemia 205 (5.12) 49 (11.64) 2.27 36 (6.38) 1.25 37 (12.8) 2.5 17 (2.76) 0.54
Ear, Nose, and Throat Diseases 59 (1.47) 8 (1.9) 1.29 7 (1.24) 0.84 14 (4.84) 3.29 4 (0.65) 0.44
Epilepsy 119 (2.97) 12 (2.85) 0.96 42 (7.45) 2.5 37 (12.8) 4.31 7 (1.14) 0.38
Oesophagus Stomach and Duodenum Diseases 195 (4.87) 40 (9.5) 1.95 30 (5.32) 1.09 46 (15.92) 3.27 5 (0.81) 0.17
Glaucoma 110 (2.75) 22 (5.23) 1.9 26 (4.61) 1.68 35 (12.11) 4.41 3 (0.49) 0.18
Heart Failure 879 (21.96) 165 (39.19) 1.78 9 (1.6) 0.07 12 (4.15) 0.19 150 (24.35) 1.11
Hypertension 1592 (39.78) 331 (78.62) 1.98 265 (46.99) 1.18 169 (58.48) 1.47 303 (49.19) 1.24
Inflammatory Arthropathies 255 (6.37) 54 (12.83) 2.01 25 (4.43) 0.7 22 (7.61) 1.19 32 (5.19) 0.82
Ischemic Heart Disease 876 (21.89) 174 (41.33) 1.89 74 (13.12) 0.6 47 (16.26) 0.74 198 (32.14) 1.47
Osteoarthritis and DJD 529 (13.22) 102 (24.23) 1.83 114 (20.21) 1.53 90 (31.14) 2.36 55 (8.93) 0.68
Osteoporosis 287 (7.17) 42 (9.98) 1.39 75 (13.3) 1.85 72 (24.91) 3.47 30 (4.87) 0.68
Other Cardiovascular Diseases 426 (10.64) 95 (22.57) 2.12 53 (9.4) 0.88 38 (13.15) 1.24 66 (10.71) 1.01
Other Digestive Diseases 47 (1.17) 11 (2.61) 2.22 7 (1.24) 1.06 10 (3.46) 2.95 3 (0.49) 0.41
Other Eye Diseases 203 (5.07) 46 (10.93) 2.15 33 (5.85) 1.15 45 (15.57) 3.07 17 (2.76) 0.54
Other Genitourinary Diseases 845 (21.11) 184 (43.71) 2.07 151 (26.77) 1.27 106 (36.68) 1.74 122 (19.81) 0.94
Other Metabolic Diseases 208 (5.2) 34 (8.08) 1.55 43 (7.62) 1.47 38 (13.15) 2.53 23 (3.73) 0.72
Other Musculoskeletal and Joint Diseases 326 (8.15) 63 (14.96) 1.84 43 (7.62) 0.94 49 (16.96) 2.08 33 (5.36) 0.66
Other Neurological Diseases 255 (6.37) 49 (11.64) 1.83 63 (11.17) 1.75 76 (26.3) 4.13 6 (0.97) 0.15
Other Psychiatric and Behavioural Diseases 310 (7.75) 74 (17.58) 2.27 77 (13.65) 1.76 64 (22.15) 2.86 10 (1.62) 0.21
Other Respiratory Diseases 372 (9.3) 70 (16.63) 1.79 34 (6.03) 0.65 23 (7.96) 0.86 66 (10.71) 1.15
Parkinsons and Parkinsonism 159 (3.97) 31 (7.36) 1.85 44 (7.8) 1.96 20 (6.92) 1.74 35 (5.68) 1.43
Peripheral Neuropathy 153 (3.82) 20 (4.75) 1.24 12 (2.13) 0.56 46 (15.92) 4.16 3 (0.49) 0.13
Prostate Diseases 121 (3.02) 26 (6.18) 2.04 19 (3.37) 1.11 12 (4.15) 1.37 20 (3.25) 1.07
Schizophrenia and Delusional Diseases 61 (1.52) 4 (0.95) 0.62 14 (2.48) 1.63 31 (10.73) 7.04 1 (0.16) 0.11
Sleep Disorders 40 (1) 7 (1.66) 1.66 1 (0.18) 0.18 0 (0) 0 3 (0.49) 0.49
Thyroid Diseases 338 (8.45) 68 (16.15) 1.91 79 (14.01) 1.66 51 (17.65) 2.09 37 (6.01) 0.71
Venous and Lymphatic Diseases 60 (1.5) 8 (1.9) 1.27 1 (0.18) 0.12 3 (1.04) 0.69 12 (1.95) 1.3

Prevalence reported as Frequency (%), O/E: Observed-Expected Ratio, DJD: Degenerative
Joint Diseases, GBD: Gallbladder Diseases

Having suggested an interpretation for the MCA axes, the focus now turns to the

individual clusters. Each cluster in Figure 5.5 represents a group of sample members

with varying prevalence of each chronic health condition. To explore the clusters in

greater detail, O/E ratios for each chronic condition were calculated and are pre-

sented in Tables 5.7 and 5.8. As mentioned previously, an O/E ratio ≥ 2 indicates

conditions with a high degree of association with a particular cluster as the preva-

lence in the cluster is over double that in the overall sample.



128 Chapter 5. Results

Cardiovascular cluster

The Cardiovascular cluster is an intermediate sized cluster containing 381 (9.5%)

sample members. Several chronic health conditions have over 50% prevalence in

the cluster with atrial fibrillation (66.93%), chronic kidney diseases (54.59%), heart

failure (81.1%), hypertension (62.2%), and dementia (51.44%). Additionally, cardiac

valve diseases (35.96%), diabetes (32.81%), and ischemic heart disease (49.87%) all

have prevalence over 30%.

The Cardiovascular cluster in Figure 5.5 is strongly associated with a group of

cardiovascular conditions. This strong association with cardiovascular conditions is

evidenced with atrial fibrillation (O/E = 2.74), bradycardias and conduction diseases

(O/E = 3.43), cardiac valve diseases (O/E = 4.05), heart failure (O/E = 3.69) and is-

chemic heart disease (O/E = 2.28) all showing a higher than expected prevalence in

the cluster. Furthermore, four additional chronic condition groups were associated

with the cluster. These were blood and blood forming organ diseases (O/E = 2.03),

chronic kidney diseases (O/E = 2.44), other respiratory diseases (O/E = 2.32), and

venous and lymphatic diseases (O/E = 2.98). The multi-morbidity observed in the

Cardiovascular cluster can therefore be seen as the co-occurence of multiple cardio-

vascular conditions, and several additional internal chronic conditions.

The Cardiovascular cluster has little association with neurological and psychi-

atric conditions. All included neurological and psychiatric conditions (besides de-

mentia, which is consistent across all clusters besides the Absence cluster) having

O/E ratios below 1. These O/E ratios demonstrate that while not entirely absent,

compared to other clusters these conditions occur in the Cardiovascular cluster at

a lower than expected rate. A similar situation is observed for the series of muscu-

loskeletal and metabolic chronic health conditions.

Absence cluster

The Absence cluster is the largest cluster in the solution presented in Figure 5.5

containing 1405 (35.1%) sample members. The chronic condition profiles in this clus-

ter contained little to no chronic condition presence with all O/E ratios in Table 5.7

at or close to zero. This large ’Absence’ cluster is consistent with the large peak of

observations with zero chronic health conditions identified in Figure 5.2. The lack of
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chronic disease in this group may indicate that 35% of the sample did not suffer from

the chronic health conditions included in the analysis. However, this seems unlikely

for the majority of the absence cluster considering they are care home residents aged

over 65.

There are several possible reasons for this Absence cluster to arise. The first of

these is missing data in the electronic health record. As described in Section 4.2,

cohort members without an inpatient record during the study period were excluded

from the analyses. Therefore, if the chronic condition history of these residents is

missing, this is due to issues in the standardised reporting of information in health

records rather than a lack of inpatient stays during the study period. This issue is

discussed further in Section 6.5.

It is also possible that a small proportion of the members of the Absence cluster

do have chronic health conditions, although those conditions were excluded from

the analyses due to having a prevalence of below 1% in the sample. However, this

is likely to be a small proportion of the 35% of the sample contained in the Absence

cluster.

A further possibility is that the Absence cluster is identifying a distinct group of

care home residents that are fitter, with fewer chronic health conditions than mem-

bers of other clusters. For example the absence cluster could represent self-funding

care home residents who are less capable of domestic chores, or live with learning

difficulties, or mental health diagnoses, which may motivate them to be placed in

a care home despite being in a more physically robust state than other residents.

For England as a whole, the self funded care home population represented 48.9% of

older adult care home residents (Office for National Statistics, 2023). However, the

North East of England (where the cohort of study is located) has a lower proportion

of self funders at 26.4% in 2022 (Office for National Statistics, 2023). While this ex-

planation may apply to part of the Absence cluster, it is unlikely to hold for the full

cluster.

In summary, the Absence cluster likely represents a combination of these differ-

ent groups of care home residents. There may be some self funded residents in a

more robust state, alongside those with chronic health conditions excluded from the
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analyses, and a further group of residents with missing information on their inpa-

tient record.

Cardiovascular-Metabolic cluster

The Cardiovascular-Metabolic cluster is highly associated with 34 of the stud-

ied chronic health condition groups, as shown by the O/E ratios ≥ 2 in Table 5.7.

The 168 (4.2%) sample members in this cluster have the second highest chronic con-

dition burden of all clusters with an average of 12.1 chronic condition groups on

the EHR. An initial consideration of the condition prevalence in the cluster shows

nine conditions have over 50% prevalence. These were atrial fibrillation (75.6%), car-

diac valve disease (50%), chronic kidney diseases (65.48%), dementia (60.71%), dia-

betes (51.19%), heart failure (92.86%), hypertension (90.48%), ischemic heart disease

(64.88%), and other genitourinary diseases (51.79%). Heart failure and hypertension

were largely ubiquitous in the cluster, meaning that the Cardiovascular-Metabolic

cluster typically identifies sample members with these two conditions, alongside a

high burden of additional chronic health conditions.

The Cardiovascular-Metabolic cluster is associated not only with cardiovascular

conditions, but also multiple musculoskeletal, metabolic, sensory impairments, and

gastrointestinal chronic health conditions, as seen in Table 5.7. Furthermore, the few

conditions not associated with the Cardiovascular-Metabolic cluster are those ex-

pected following the MCA axes description, with both psychiatric condition groups

having O/E ratios ≤ 1 (schizophrenia and delusional diseases O/E = 0.39, depres-

sion and mood diseases O/E = 0.70). Of the neurological conditions included, only

cerebrovascular disease showed a strong association with the cluster (O/E = 2.27),

with epilepsy (O/E = 1.2) and Parkinson’s disease (O/E = 1.05) both occurring at the

expected rate in the sample.

Non-Specific-High-Burden cluster

The Non-Specific-High-Burden cluster represents the members with the highest

level of multi-morbidity with a mean number of chronic condition groups on the

EHR of 13 (SD = 2.3). This translates into 41 of the 47 condition groups included for

study having a higher than expected prevalence in the cluster. With only 158 (3.9%)

sample members in the cluster, it is the smallest cluster in the solution.
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Unlike the Cardiovascular-Metabolic cluster, there are no conditions that are ef-

fectively ubiquitous in the cluster, suggesting a breadth of multi-morbidity combina-

tions are present in the Non-Specific-High-Burden cluster. Conditions with over 50%

prevalence in the Non-Specific-High-Burden cluster are colitis and related diseases

(56.33%), dementia (67.09%), diabetes (50.63%), hypertension (80.01%), ischemic heart

disease (50.63%), and other genitourinary diseases (61.39%).

Central cluster

Figure 5.5 shows the Central cluster is placed centrally among the different multi-

morbidity clusters. The Central cluster has moderate associations with many condi-

tions including the group of cardiovascular, sensory impairment, and gastrointesti-

nal chronic conditions, with cerebrovascular disease (O/E = 2.05) the only neurolog-

ical condition.

Low-Neuro-Psychiatric Cluster

The Low-Neuro-Psychiatric cluster contains 564 (14.1%) sample members with a

comparatively low prevalence of conditions compared to the other clusters but some

association with neurological, and psychiatric condition groups. As seen in Table 5.8

the included psychiatric (schizophrenia and delusional diseases O/E = 1.63, depres-

sion and mood diseases O/E = 1.35) and neurological conditions (cerebrovascular

disease O/E = 1.63, epilepsy O/E = 2.5, Parkinson’s disease O/E = 1.96, and de-

mentia O/E = 1.47) exhibit some association with the cluster, although this is not as

strong as other clusters.

Only dementia had a prevalence of over 50% in the Low-Neuro-Psychiatric clus-

ter. The reduced chronic condition burden in this cluster is shown in Table 5.6

where sample members in the Low-Neuro-Psychiatric cluster had a mean number

of chronic conditions of 4.8 (SD = 1.1) on the EHR.

High-Neuro-Psychiatric Cluster

The High-Neuro-Psychiatric cluster contains 289 (7.2%) sample members, with

a mean number of chronic condition groups on the EHR of 7.5 (SD = 1.4). The

High-Neuro-Psychiatric cluster shows a strong association with neurological and
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psychiatric conditions in Table 5.8, with very little association to cardiovascular con-

ditions. Psychiatric condition variables showed strong association with the High-

Neuro-Psychiatric cluster (schizophrenia and delusional diseases O/E = 7.04, de-

pression and mood diseases O/E = 4.77, other psychiatric and behavioural diseases

O/E = 2.86). Several neurological conditions were also strongly associated with the

High-Neuro-Psychiatric cluster, with cerebrovascular disease (O/E = 2.51), epilepsy

(O/E = 4.31), and other neurological diseases (O/E = 4.13) all showing strong rela-

tionships. However, several neurological conditions showed only moderate associ-

ation with the High-Neuro-Psychiatric cluster, specifically dementia (O/E = 1.48),

and Parkinson’s disease (O/E = 1.74).

Sensory impairment conditions were also associated with the High-Neuro-

Psychiatric cluster, with blindness and visual impairment (O/E = 4.54), cataract and

other lens diseases (O/E = 3.7), deafness and hearing impairment (O/E = 2.96), ear

nose and throat diseases (O/E = 3.29), glaucoma (O/E = 4.41), and other eye diseases

(O/E = 3.07) all presenting strong associations with the cluster. Another groups

of conditions associated with the High-Neuro-Psychiatric cluster is musculoskeletal

conditions, with dorsopathies (O/E = 4.78), osteoarthritis (O/E = 2.36), osteoporosis

(O/E = 3.47), and other musculoskeletal and joint diseases (O/E = 2.08) all showing

strong association with the cluster. Therefore, the High-Neuro-Psychiatric cluster

can be seen as a cluster representing the confluence of neurological chronic condi-

tions, with sensory impairments, and musculoskeletal chronic conditions.

Low-Cardio-Neuro Cluster

The Low-Cardio-Neuro cluster is the largest non-absence cluster in the solution

containing 616 (15.4%) sample members. The Low-Cardio-Neuro cluster exhibits

a moderate association with cardiovascular conditions, and the consistent chronic

conditions across all clusters, but with comparatively lower condition burden than

other clusters. The mean number of condition groups on the EHR of the Low-

Cardio-Neuro cluster members is 4.7 (SD = 1) in Table 5.8. The association with

cardiovascular conditions in the Low-Cardio-Neuro cluster is weak with only atrial

fibrillation (O/E = 1.46), hypertension (O/E = 1.24), heart failure (O/E = 1.11), and

ischemic heart disease (O/E = 1.47) having O/E ratios ≥ 1. No O/E ratios calculated
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for the Low-Cardio-Neuro cluster pass the ≥ 2 threshold indicating no strong associ-

ations, with neurological conditions besides dementia (O/E = 1.48) and Parkinson’s

disease (O/E = 1.43) exhibiting O/E ratios ≤ 1.

Following the identification of the 8 groups of differing chronic condition preva-

lence and association, the clusters were incorporated into the regression models to

identify whether differences in the makeup of the groups of chronic condition pro-

files are associated with differences in fall rates in care home residents. The results

of this further investigation, are presented in Section 5.4 and 5.5 below.
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5.4 Main Effects Regression Analysis

5.4.1 Introduction

The results presented in this section follow from the count data regression method-

ology covered in Section 4.4. The objective of this regression analyses was to inves-

tigate associations between chronic disease, and multi-morbidity with fall presenta-

tions to the emergency department by sample members. This overarching aim was

separated into four separate objectives in Section 4.4, which are re-iterated below.

1. Explore the role of frailty, and the effectiveness of three frailty index scores

(CCI, EFI, HFRS) for accounting for variation in falls in the sample of care

home residents

2. Examine whether different groups of chronic health conditions are associated

with fall presentations beyond the number of conditions present.

3. Identify the association between specific chronic health conditions and the

count of fall presentations to ED during the study period.

4. Investigate the effect of interactions between these chronic health conditions

and what they can tell us about their relationship with the number of falls.

Regression models were developed to meet each of these objectives as follows.

The first objective is met using three regression models, which used different frailty

index scores (Charlson Comorbidity Index, Electronic Frailty Index, and Hospital

Frailty Risk Score) as explanatory variables alongside age and sex. Results of these

three models are presented in Section 5.4.2 (Table 5.9).

The second aim was answered using the K-means cluster membership, described

in Section 5.3.4, as an explanatory variable in a regression model. Cluster member-

ship was used as a proxy for the multi-morbidity combinations because specifying

all the combinations would be infeasible. The results of this regression model are

presented in Section 5.4.3 (Table 5.10).

The third aim of the regression analysis was investigate associations between

specific chronic health conditions and falls. This regression uses a shortlist of the

Calderón-Larrañaga et al., 2017 chronic health condition groups, which follows from
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the findings of the review of reviews in Chapter 3. The results of this regression

model are shown in Section 5.4.4 (Table 5.11).

The fourth aim described above is addressed in the interaction analyses results

presented in Section 5.5. All of the regression models described above use the count

of Fall presentations to ED during the study period described in Section 5.2, as the

outcome for regression. Following preliminary analysis of the fall count outcome

variable, overdispersion was identified, and Negative binomial regression models

were used in the place of Poisson regression models. The results of this preliminary

analysis are summarised in Appendix Section K.

5.4.2 Frailty Regression Analysis

Three negative binomial regression models were developed to investigate the role of

frailty in determining fall presentations to the emergency department. The indices

used in these models were the Charlson Comorbidity Index (CCI), Electronic Frailty

Index (EFI), and Hospital Frailty Risk Score (HFRS) with the results shown in Table

5.9.

In relation to the effect of frailty on fall presentations to the ED, the models sug-

gest a relationship is present; however, there is disagreement present between the

scales regarding how increasing frailty impacts the rate of fall presentations to ED.

Based on the CCI (Table 5.9), a one point increase in the CCI results in a 5.4%

(3.6%-7.3%) increase in fall presentations during the study period. As seen in Ap-

pendix Table G, the CCI point increases range from 1-6 dependent on which health

condition is present. Additionally, because the CCI was not developed to reflect

falls risk, the conditions associated with the largest point increases on the index are

not commonly identified as fall risk increasing conditions. For example AIDs or

metastatic solid tumours (6 points on CCI) would be associated with a 32.4% in-

crease in falls presentations based on the model in Table 5.9, whereas dementia or

cerebrovascular disease would only be associated with 5.4% increases (1 point on

CCI).

The EFI was calculated and split into categories of frailty, based on the author’s

definitions as described in Section 4.2.1. The EFI category ’Fit’ was used as the refer-

ence category, with the other categories effects calculated compared to this category.
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TABLE 5.9: Frailty Indices Regression Results

Explanatory Variables P-Value IRR 2.5% IRR CL 97.5% IRR CL
(i) CCI Model

Intercept 0.000 0.000 0.000 0.001
Age* 0.006 1.010 1.003 1.017
Male Sex 0.055 0.898 0.813 0.992
CCI Score* 0.000 1.054 1.036 1.073

(ii) EFI Model
Intercept 0.000 0.000 0.000 0.000
Age* 0.000 1.015 1.008 1.021
Male Sex* 0.028 0.887 0.804 0.978
EFI Category:

Fit Reference - - -
Mild Frailty* 0.020 1.227 1.047 1.436
Moderate Frailty* 0.000 1.411 1.263 1.576
Severely Frail* 0.000 2.185 1.902 2.509

(iii) HFRS Model
Intercept 0.000 0.000 0.000 0.000
Age* 0.000 1.015 1.008 1.022
Male Sex 0.164 0.925 0.838 1.022
HFRS Category

Low Risk Reference - - -
Intermediate Risk* 0.000 1.482 1.327 1.655
High Risk 0.211 1.211 0.922 1.584

* = P ≤ 0.05, CCI: Charlson Comorbidity Index, EF: Electronic Frailty Index, HFRS:
Hospital Frailty Risk Score, IRR: Incident Rate Ratio, CL: Confidence Limit

Significant (P ≤ 0.05) effects were identified for all frailty categories in comparison

to the ’Fit’ category. These categories indicate that an increasing degree of frailty

is associated with increasing fall presentations to the ED. Specifically, compared to

those in the Fit category, Mild Frailty increased fall presentations by 22.7% (4.7%-

43.6%), wheras Moderate Frailty resulted in a 41.1% (26.3%-57.6%) increase. The

largest effect was observed for severely Frail sample members with an increase in

fall presentations of 118.5% (90.2%-150.9%) when compared to those in the Fit cate-

gory. This indicates a clear relationship between both frailty and fall presentations,

but also increasing frailty leads to an increasing rate of fall presentations to the ED.

In contrast to the EFI, sample members in the High Risk of frailty category of the

HFRS did not have a significantly different (P > 0.05) count of fall presentations to

ED during the study period compared to those with Low Risk of frailty, as shown in

Table 5.9. However, compared to those in the Low Risk category of the HFRS, sample

members in the Intermediate Risk category experienced 48.2% (32.7%-65.5%) more fall
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presentations to ED during the study period.

Based on the results presented above, it is clear the presence of frailty when com-

pared to non-frail individuals increases falls risk in care home residents. However,

the HFRS and EFI results contrast over how increasing frailty impacts falls risk. The

difference between these indices may possibly arise from the differences in informa-

tion used to calculate the scores, with the EFI possibly better able to differentiate

between the levels of frailty in an information constrained setting. It is possible that

the U-shaped relationship indicated in the HFRS model resulted from people in the

High Risk category having potentially (very) limited activity and therefore fewer op-

portunities to fall. Furthermore, people in the Intermediate risk category may have

been more active with a corresponding increase in opportunities to fall. Such a U-

shaped relationship has been suggested previously in community dwelling older

adults (Bath and Morgan, 1999).

In conclusion, the regression analyses identified that frailty plays a role in de-

termining falls risk. However, the shape this relationship takes is dependent on the

index used to differentiate frailty status. Additionally, while there is clear overlap

between frailty and multi-morbidity, the contribution of multi-morbidity in deter-

mining falls risk may go beyond those effect sizes seen for frailty alone.

5.4.3 Multi-Morbidity Regression Analysis

Following the K-means 8 cluster solution presented in Section 5.3, a negative bino-

mial regression model was developed using cluster membership as an explanatory

variable alongside age and sex. As seen in Table 5.10, the Absence cluster was used

as the reference category because this appeared to best represent the ’condition ab-

sence’ cluster in the analysis. The initial aim of this regression model, to identify

whether the clusters of chronic health conditions are associated with different levels

of falls, is answered by the significant effects of all other clusters in relation to the

Absence cluster.

The different Incident Rate Ratio (IRR) values for each cluster in Table 5.10 show

that the clusters of chronic health conditions are associated with different rates of

fall presentations to the ED by sample members. Specifically, each cluster had a

significantly different fall rate when compared to the Absence cluster. Furthermore,
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the different combinations of multi-morbidity identified for each cluster, discussed

previously in Section 5.3.4, lead to different effects on fall presentations to ED in care

home residents.

The results also give some indication of a gradient in effect size based on the

types of multi-morbidity present. These different effects can be identified by using

the regression results in Table 5.10 in conjunction with the condition prevalence re-

sults for each cluster in Tables 5.7 and 5.8. As discussed in Section 5.3, each cluster

is identifying mostly distinct groups of multi-morbidity in the sample population,

with a different mix of chronic health conditions in each.

TABLE 5.10: K-Means Cluster Negative Binomial Regression Results

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.000 0.000 0.000
Age* 0.000 1.016 1.010 1.023
Male Sex 0.073 0.906 0.820 1.000
K-Means Cluster Membership

2: Absence Reference - - -
1: Cardiovascular* 0.033 1.238 1.034 1.479
3: Cardiovascular-Metabolic* 0.000 1.630 1.301 2.037
4: Non-Specific-High-Burden* 0.000 2.178 1.761 2.692
5: Central* 0.000 1.653 1.412 1.934
6: Low-Neuro-Psychiatric* 0.000 1.430 1.237 1.653
7: High-Neuro-Psychiatric* 0.001 1.414 1.173 1.702
8: Low-Cardio-Neuro* 0.004 1.267 1.094 1.465

* = P ≤ 0.05, IRR: Incident Rate Ratio, CL: Confidence Limit

The gradient of effect size provides an opportunity to explore which combina-

tions of chronic health conditions could be driving the increases in falls risk seen in

Table 5.10. Based on the IRR values in the table, there are four tiers of effect size. This

description starts with the clusters exhibiting the smallest effect sizes and increases

to the largest effect size.

The Cardiovascular and Low-Cardio-Neuro clusters have the smallest effect sizes

of the clusters in Table 5.10. Cardiovascular cluster membership was associated with

a 23.8% (3.4%-47.9%) increase in fall presentations, while the Low-Cardio-Neuro

cluster membership led to a 26.7% (9.4%-46.5%) increase. Both effects were found to

be significant (P ≤ 0.05). Observing differences between these clusters and those ex-

hibiting larger effect sizes may give useful insights into the role of multi-morbidity in
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determining falls risk. Recalling the cluster descriptions from Section 5.3.4, the Car-

diovascular cluster has strong association with range of cardiovascular condition

groups, alongside an elevated prevalence of diabetes, and dementia in the cluster.

In contrast the Low-Cardio-Neuro cluster is not highly associated with any chronic

condition groups in Table 5.8 meaning in isolation few conclusions can be drawn.

However, as a comparator to other cluster effect sizes, the Low-Cardio-Neuro clus-

ter may allow useful conclusions to be drawn.

The Low-Neuro-Psychiatric and High-Neuro-Psychiatric clusters exhibited the

next level of effect size in Table 5.10, with 43.0% (23.7%-65.3%) and 41.4% (17.3%-

70.2%) increases in fall presentations when compared to the Absence cluster. When

attempting to explain this increase in effect size several comparisons can be made.

First, what are the differences between the Low-Neuro-Psychiatric and High-Neuro-

Psychiatric clusters with the Cardiovascular and Low-Cardio-Neuro clusters, how

do the clusters compare when condition burden is taken into account (Low-Neuro-

Psychiatric cluster vs Low-Cardio-Neuro cluster, and the High-Neuro-Psychiatric

cluster vs Cardiovascular cluster), and then how do the Low-Neuro-Psychiatric and

High-Neuro-Psychiatric clusters differ?

Examining Tables 5.7 and 5.8, the overarching difference between the Low-Neuro-

Psychiatric and High-Neuro-Psychiatric clusters, and the Cardiovascular and Low-

Cardio-Neuro clusters is that the former have a much reduced association with car-

diovascular conditions, and an increased association with the included psychiatric

and neurological conditions. This difference suggests that the confluence of psychi-

atric and neurological conditions may have a stronger risk increasing effect than the

combination of multiple cardiovascular conditions.

However, with the information available we can also make a sub-comparison

to identify differences in how the type of multi-morbidity relates to falls risk when

the number of chronic conditions is similar between clusters. This involves com-

paring the Low-Neuro-Psychiatric cluster (mean number of conditions = 4.8) with

the Low-Cardio-Neuro cluster (mean number of conditions = 4.7). Additionally a

further comparison can be made between the High-Neuro-Psychiatric cluster (mean

number of conditions = 7.5) with the Cardiovascular cluster (mean number of con-

ditions = 7.1) to further examine differences in how the type of multi-morbidity may
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influence falls risk beyond the number of chronic health conditions present.

When making these comparisons, the Low-Neuro-Psychiatric cluster sees an in-

crease in association with psychiatric and neurological conditions, and decreased as-

sociation with cardiovascular conditions when compared to the Low-Cardio-Neuro

cluster. Examining the effect sizes in Table 5.10 shows the Low-Neuro-Psychiatric

cluster (43%) has a larger effect on fall presentations when compared to the Low-

Cardio-Neuro cluster (26.7%). This difference in effect sizes when comparing

neurological-psychiatric multi-morbidity with cardiovascular multi-morbidity be-

comes more pronounced when examining the differences between the effect sizes of

the High-Neuro-Psychiatric (41.4%) and Cardiovascular (23.8%) clusters.

The increases in effect size observed from the Cardiovascular and Low-Cardio-

Neuro clusters to the Low-Neuro-Psychiatric and High-Neuro-Psychiatric clusters

cannot be explained through increased condition burden alone. These differences

seem to indicate that neurological-psychiatric multi-morbidity exhibits a larger im-

pact on falls risk than isolated cardiovascular multi-morbidity.

Examining the differences between the Low-Neuro-Psychiatric and High-Neuro-

Psychiatric clusters, which exhibit a similar effect size, may also provide an op-

portunity to discount chronic conditions that may not be contributing to increased

falls risk. When making this comparison in conjunction with Tables 5.7 and 5.8

a group of sensory and visual impairments is strongly associated with the High-

Neuro-Psychiatric cluster and not the Low-Neuro-Psychiatric cluster. The similar ef-

fect sizes observed for the Low-Neuro-Psychiatric and High-Neuro-Psychiatric clus-

ters suggest the differences between the clusters are not contributing to a change in

falls risk. Therefore, sensory and visual impairments may not be associated with a

change in falls risk in this sample. This conclusion will be discussed further when

the role of individual conditions is assessed in Section 5.4.4.

The Cardiovascular-Metabolic and Central clusters resulted in 63.0% (30.1%-

103.7%) and 65.3% (41.2%-93.4%) increases in fall presentations when compared to

the Absence cluster in Table 5.10. The Central cluster presents medium to strong

associations with almost all of the chronic conditions included in the analysis: this

means that deriving conclusions from this cluster is challenging. However, the clus-

ter exhibits the highest prevalence of dementia (71%) of all clusters, and has the
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3rd highest condition burden (mean number of conditions = 8.4, SD = 1.3). In con-

trast, the Cardiovascular-Metabolic cluster represents the most multi-morbid sample

members with cardiovascular conditions. The Cardiovascular-Metabolic cluster has

a strong association with all the included cardiovascular conditions, and the second

highest condition burden across the clusters (mean number of conditions = 12.1, SD

= 2). The increase in effect size seen when comparing the Cardiovascular-Metabolic

cluster to the Low-Neuro-Psychiatric and High-Neuro-Psychiatric clusters suggests

that concurrent heart failure, hypotension, and atrial fibrillation alongside other

chronic conditions have a larger impact on falls rate than the psychiatric and neuro-

logical condition combinations seen in the Low-Neuro-Psychiatric and High-Neuro-

Psychiatric clusters.

The largest effect size identified in Table 5.10 was identified for sample mem-

bers in the Non-Specific-High-Burden cluster with a 117.8% (76.1%-169.2%) increase

in fall presentations during the study period. This is a small cluster of the members

with the highest level of multi-morbidity, with high prevalence in many of the condi-

tions included in the study. However, the level of condition burden seen in the Non-

Specific-High-Burden cluster (mean number of conditions = 13, SD = 2.3) is compara-

ble to that seen in the Cardiovascular-Metabolic cluster (mean number of conditions

= 12.1, SD = 2) suggesting that the large increase in effect size likely goes beyond

the sheer level of multi-morbidity. Investigating Table 5.7, we can see that the Non-

Specific-High-Burden cluster has stronger associations with the included psychiatric

and neurological conditions than the Cardiovascular-Metabolic cluster. However,

the Non-Specific-High-Burden cluster also exhibits strong associations with the car-

diovascular conditions that characterise the Cardiovascular-Metabolic cluster. This

suggests that the multi-morbidity present in the Non-Specific-High-Burden cluster

is the combination of multiple neurological, psychiatric, and cardiovascular condi-

tions which appears to be the most potent combination in leading to increased falls

risk in the sample.

The gradient of these effects, differences in chronic disease burden, and specific

make up of the clusters leads to several issues for discussion, which are addressed

further in Section 6.3.2.
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The results in this section suggest there is a gradient of effects observed for differ-

ent kinds of multi-morbidity on falls risk in care home dwelling older adults. Specif-

ically, neurological-psychiatric multi-morbidity exhibits stronger associations with

increased fall presentations than isolated cardiovascular multi-morbidity. However,

the cardiovascular-metabolic pattern exhibited a larger effect than neurological-

psychiatric multi-morbidity. The largest effect was observed for the Non-Specific-

High-Burden cluster suggesting a combination of the cardiovascular-metabolic and

neurological-psychiatric patterns may represent the most potent combination for in-

creased falls in care home residents. These themes are discussed further in Section

6.3.

5.4.4 Chronic Health Conditions Regression Analysis

A key aim of the regression analyses was to identify whether the fall pre-disposing

chronic health conditions identified in previous literature during the Review of Re-

views in Chapter 3 had a consistent impact on fall presentations by care home resi-

dents in the sample. The results of the chronic health condition shortlist model are

presented in Table 5.11.

The results in Table 5.11 indicate that, while significant risk-increasing effects

were identified in meta-analyses during the Chapter 3 review, these effects may not

translate to the care home setting directly, or when the outcome is fall presentations

to the ED. The summary of results below focuses on the groups of variables included

in the chronic condition effects model results reported in Table 5.11. These results

are interpreted as the conditions that lead to a significant change in the number

of fall presentations during the study period compared to the baseline rate of fall

presentations in the sample.

The effect sizes seen in Table 5.11 are small, meaning a statistically significant

result may be of limited clinical significance. Additionally, the small effect sizes seen

in Table 5.11, when compared to those resulting from the cluster regression model

in Table 5.10, indicate a possible effect of multi-morbidity that is not being captured

by the individual condition effects.

The results in Table 5.11 are summarised below by discussing conditions impact-

ing similar physiological systems together. Eight informal categories are used below
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TABLE 5.11: Fall Pre-disposing Chronic Health Condition Shortlist
Negative Binomial Regression Results

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.000 0.000 0.000
Age* 0.000 1.013 1.007 1.020
Male Sex* 0.006 0.856 0.773 0.948
Neurological Conditions:

Dementia* 0.000 1.323 1.193 1.467
Cerebrovascular Disease* 0.032 1.186 1.026 1.371
Parkinson’s and Parkinsonism 0.164 1.183 0.950 1.468

Cardiovascular Conditions:
Hypotension* 0.000 1.611 1.380 1.879
Atrial Fibrillation* 0.002 1.218 1.084 1.368
Bradycardia and Conduction Diseases 0.665 0.946 0.748 1.191
Cardiac Valve Diseases 0.652 0.960 0.815 1.129
Ischemic Heart Disease* 0.004 1.202 1.070 1.350
Heart Failure 0.110 0.891 0.782 1.014
Hypertension 0.876 0.990 0.886 1.107

Sensory Impairment Conditions:
Blindness and Visual Impairment 0.916 0.980 0.684 1.391
Other Eye Diseases 0.780 1.033 0.839 1.267
Glaucoma 0.122 0.786 0.590 1.038
Deafness and Hearing Impairments 0.126 1.208 0.963 1.512

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.272 1.115 0.931 1.333
Osteoarthritis and other DJD* 0.046 1.156 1.013 1.317

Psychiatric Conditions:
Depression and Mood Diseases 0.502 0.938 0.788 1.113

Other Conditions:
Urinary Incontinence 0.142 1.099 0.979 1.233
Diabetes* 0.010 0.838 0.740 0.949
Peripheral Neuropathy* 0.016 1.337 1.077 1.657
Chronic Kidney Diseases 0.256 0.928 0.823 1.046
Anaemia 0.097 1.136 0.988 1.304
Colitis and Related Diseases 0.188 0.910 0.799 1.035
Oesophagus Stomach, and Duodenum Diseases 0.281 1.131 0.919 1.387
Prostate Diseases 0.415 0.881 0.662 1.163

* = P ≤ 0.05, DJD: Degenerative Joint Disease, IRR: Incident Rate Ratio, CL: Confidence
Limit

to aid with reporting whilst also ensuring significant results are not over-emphasised

in the reporting compared to non-significant results. These categories are demo-

graphic variables, neurological conditions, psychiatric conditions, cardiovascular

conditions, musculoskeletal conditions, sensory impairments, metabolic conditions,

and other internal medical conditions.

There was a 1.3% (0.7%-2%) increase in fall presentations for each year of age.



144 Chapter 5. Results

Male sex exhibited a protective effect, leading to a significant 14.4% decrease in fall

presentations to ED during the study period.

Binary indicators for three neurological conditions were included in the model

reported in Table 5.11. These were dementia, cerebrovascular disease, and Parkin-

son’s disease. Dementia was significantly associated with a 32.3% (19.3%-46.7%)

increase in fall presentations to ED, while cerebrovascular disease led to an 18.6%

(2.6%-37.1%) increase. Parkinson’s disease was not significantly (P > 0.05) asso-

ciated with any change in the count of fall presentations to ED. However, because

only 3.97% of the sample had Parkinson’s this non-significant finding may be due to

a Type-2 error rather than lack of association.

There was a single psychiatric condition group included in the regression model,

which was Depression and Mood Diseases. This was not significantly (P > 0.05)

associated with a change in fall presentations to ED.

There were seven cardiovascular chronic health condition groups included in

the shortlist regression model, of which only three had a significant association with

fall presentations to ED. Hypotension was associated with a large increase of 61.1%

(38.0%-87.9%), while more moderate effect sizes were observed for atrial fibrillation

and ischemic heart disease, which contributed 21.8% (8.4%-36.8%) and 20.2% (7.0%-

35.0%) increases respectively. The remaining included cardiovascular conditions of

bradycardia and conduction diseases, cardiac valve disease, heart failure, hyperten-

sion had a non-significant association (P > 0.05).

Two musculoskeletal chronic health conditions were included in the shortlist re-

gression model. Osteoarthritis and degenerative joint diseases was associated with

a 15.6% (1.3%-31.7%) increase in fall presentations whereas inflammatory arthrop-

athies had a non-significant (P > 0.05) effect.

Four binary variables were included to represent sensory impairments in the

sample members. Blindness and visual impairment, other eye diseases, glaucoma,

deafness and hearing impairment were all found to be non-significant (P > 0.05) in

the model.

Diabetes and peripheral neuropathy both exhibited significant effects on the count

of falls. Diabetes contributed to a 16.2% (26.0%-5.1%) decrease in fall presentations
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to the ED, while peripheral neuropathy was associated with a 33.7% (7.7%-65.7%)

increase in fall presentations.

The remaining conditions in the shortlist model, encompassing a range of inter-

nal medical conditions (anaemia, and chronic kidney diseases), gastrointestinal con-

ditions (colitis and related diseases, oesophagus stomach and duodenum diseases,

and prostate diseases), and urinary incontinence were all found to be non-significant

(P > 0.05). Possible explanations for these conditions being non-significant are dis-

cussed in Section 6.3.2.

To summarise the results in Table 5.11, each year of age was significantly asso-

ciated with a small increase in fall presentations to ED over the study period. Ad-

ditionally, male sex exhibited a moderate protective effect. Of the included chronic

health conditions: cerebrovascular disease (18.6%), dementia (32.3%), hypotension

(61.1%), atrial fibrillation (21.8%), ischemic heart disease (20.2%), osteoarthritis and

degenerative joint diseases (15.6%), and peripheral neuropathy (33.7%) were all found

to be associated with significant increases in fall presentations during the study pe-

riod. Meanwhile, diabetes (-16.2%) exhibited the only significant protective effect of

the included chronic health conditions. None of the included sensory impairment

or psychiatric conditions were found to significantly impact fall presentations in the

model.

These model results further demonstrate that the relationship between multi-

morbidity and falls will depend on the chronic health conditions present. The pres-

ence of hypotension, dementia, or peripheral neuropathy were associated with the

largest changes in fall presentations, however these effects were smaller than those

observed for the clusters in Table 5.10. How these results contrast with those ob-

served for the gradient of effects seen for different multi-morbidity combinations is

discussed further in Section 6.3.2.

Following the regression models several follow-up tests were performed as de-

tailed in Methodology section 4.4.3. The results of these evaluation tests and plots

follow in Section 5.4.5 below. The results of further analysis into the possible inter-

action effects present between variables is presented in Section 5.5.
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5.4.5 Model Diagnostics

Several tests and metrics were used to evaluate the model results presented in Sec-

tion 5.4. The first of these metrics was the Akaike information criterion (AIC), as de-

scribed in methodology Section 4.4.3. This is a comparative metric, which accounts

for model complexity and quality of fit to give an indication of how well different

models explain variation in the outcome variable, with a lower AIC value indicating

a better comparative fit. AIC values for each model from Section 5.4 are presented in

Table 5.12. All models had similar AIC values, with the chronic condition shortlist

model having the lowest score of the models from this section.

TABLE 5.12: Single Effects Negative Binomial AIC Comparison

Single Effects Model AIC Value
CCI 9089.667
EFI 9004.621
HFRS 9077.762
K-Means Clustering 9050.46
Chronic Condition Shortlist 8972.798

CCI: Charlson Comorbidity Index, EFI: Electronic Frailty Index, HFRS: Hospital Frailty
Risk Score, AIC: Akaike Information Criterion

Expected versus fitted residual plots for negative binomial regression models are

not easily interpretable by eye. Therefore, to assist with assessing the appropriate-

ness of the model, the DHARMa package was used. This package generates scaled

residuals using the calculated model which can be interpreted graphically, as is done

for a linear regression. These scaled residuals are the cumulative density values from

the cumulative distribution function for the observed fall count in the sample, and

the expected fall count from the model for each sample member. The simulated

scaled residuals can then be interpreted via graphical means in the same manner as

residuals from a standard linear regression model.

The QQ plots presented in Figure 5.8 show the quantiles of the scaled residuals

produced using the DHARMa package. A well fit model is shown in these plots

where the quantiles of the scaled residuals are equivalent to the theoretical quantiles.

In this situation, the points fall on the 45-degree line in the plot.

The advantage of using the DHARMa package is the interpretation of these

rescaled residuals is equivalent irrespective of the underlying distribution used to
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construct the model. As seen in Figure 5.8, the lack of systematic deviation from

the 45-degree line in these plots by the five models indicates that there are no major

concerns in the fit of the models at different levels of the outcome.

The DHARMa package provides several diagnostic tests for model fit, which

are overlayed on the plots in Figure 5.8. These are the Kolmogorov-Smirnov test,

Over/Under dispersion test, and outliers test. As noted in the package details, the

outlier test is unreliable for use with negative binomial models, and the results are

therefore not worth investigating further (Hartig, 2022b). The Kolmogorov-Smirnov

test in this instance identifies whether the observed residual quantiles differ sig-

nificantly from the theoretical quantiles. As seen in Figure 5.8 none of the models

showed evidence of deviation from the assumed distributions. Finally, the disper-

sion test uses a ratio of the observed residuals and simulated residuals to identify

whether over or under dispersion are present. None of the models in Figure 5.8

show evidence of over or under dispersion. All of the tests performed suggest the

models are well fit, which gives further weight to the conclusions of the analysis.
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FIGURE 5.8: DHARMa QQ Plots for Single Effects Negative Binomial
Models

(A) CCI Model DHARMa QQ Plot (B) EFI Model DHARMa QQ Plot

(C) HFRS Model DHARMa QQ Plot (D) K-Means Cluster Model DHARMa QQ
Plot

(E) Chronic Condition Shortlist Model
DHARMa QQ Plot
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5.5 Interaction Regression Analysis

5.5.1 Introduction

I now turn to exploring the effects of condition co-occurrence and how combinations

of conditions could present a mitigating or intensifying effect on the relationship

between multi-morbidity and falls. The aims of this analysis were to test a sys-

tematic range of possible condition interactions to further explore the role of multi-

morbidity in determining fall presentations by sample members. This analysis is

also used to reveal more about the changes in fall risk described in the previous

analyses. Furthermore, the identification of such interactions could have important

clinical impacts through the improvement of both the understanding of mechanisms

driving the effect of multi-morbidity on falls risk, but also the improvement of falls

risk prediction models for use in highly multi-morbid populations. Identifying com-

binations of chronic health conditions of interest could also lead to proactive inter-

vention and mitigation of increased falls risk in future.

5.5.2 Results

A single model of condition interaction was developed using the full sample. This

model explored interactions between the five chronic health conditions with the

highest prevalence in the sample, whilst controlling for the shortlist of chronic health

conditions derived in the Chapter 3 review of reviews. Interactions between the

following conditions were considered in the model: dementia, hypertension, atrial

fibrillation, chronic kidney disease, and urinary incontinence. The most prevalent

conditions were selected for this model because the interaction of these conditions

is the most likely to occur in the care home resident population. Therefore, iden-

tifying whether multiplicative effects of multi-morbidity on falls risk exist between

these conditions could have clinical implications which, if identified and acted upon,

could lead to benefits for patients.

The five most prevalent chronic health condition groups in the sample were com-

bined using pairwise interactions in a negative binomial regression model. The re-

sults of this model indicate that, there is no evidence of multiplicative effects of these
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chronic conditions on falls risk. This is shown in Table 5.13 where the interaction

terms are non-significant (P > 0.05) in the model.

Further interaction models were developed for each cluster, using the condi-

tions with over a 15% prevalence threshold in the cluster and an Observed-Expected

(O/E) ratio of ≥ 2. These thresholds were used to maximise the possibility that

the interaction would be occurring in a sufficiently large sample size for meaningful

conclusions to be drawn. Where more than five conditions met the criteria within

the cluster, the conditions with the top five O/E ratios were used for the pairwise

interactions.

The cluster based interaction models were conducted within the cluster, meaning

that it is important to contextualise the results in what is already known about the

clusters from previous analyses. Additionally the findings from these sub-sample

models cannot be directly compared because the base level of falls differs between

the clusters, as seen in Table 5.6. Therefore, these models are making comparisons

between individuals within the clusters to identify what conditions were associated

with the highest fall rates in the cluster. This means that if all sample members in

a cluster exhibited a similar fall count throughout the study period as a result of

similar chronic condition influence, the effects of these chronic conditions may be

non-significant in these interaction models.

Table 5.14 presents the results of the Cardiovascular cluster interaction analysis

model, where five conditions were combined in pairwise interactions alongside the

chronic condition shortlist. In this model, all of the included variables and interac-

tions were non-significant (P > 0.05). The sample members in the Cardiovascular

cluster may all have consistent chronic condition profiles, meaning there is limited

variation in explanatory variables versus the outcome. Second, there may be little

difference in the fall count between members of the cluster. Also, it is possible that

the interactions between conditions took place in a small sample size, leading to

wide confidence intervals and non-significant effects. Finally, it is also possible that

these conditions do not exhibit multiplicative multi-morbidity effects on falls.

Table 5.15 shows the interaction model derived for the Cardiovascular-Metabolic

cluster where five cardiovascular conditions were placed in pairwise interactions
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TABLE 5.13: Top 5 in prevalence from Shortlist Regression Interaction
Model

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.000 0.000 0.000
Age 0.000 1.013 1.007 1.020
Male Sex 0.006 0.854 0.771 0.946
Interaction Terms

Dementia - Hypertension 0.454 0.909 0.722 1.144
Dementia - Atrial Fibrillation 0.155 1.207 0.952 1.531
Dementia - Chronic Kidney Diseases 0.978 0.996 0.773 1.285
Dementia - Urinary Incontinence 0.964 1.006 0.790 1.283
Atrial Fibrillation - Hypertension 0.706 0.952 0.754 1.203
Hypertension - Chronic Kidney Diseases 0.274 1.164 0.908 1.494
Urinary Incontinence - Hypertension 0.308 1.143 0.903 1.448
Atrial Fibrillation - Chronic Kidney Diseases 0.978 0.996 0.785 1.265
Urinary Incontinence - Atrial Fibrillation 0.092 0.801 0.632 1.014
Urinary Incontinence - Chronic Kidney Diseases 0.669 0.944 0.740 1.204

Neurological Conditions:
Dementia* 0.005 1.312 1.104 1.558
Cerebrovascular Disease* 0.030 1.190 1.029 1.375
Parkinson’s and Parkinsonism 0.188 1.173 0.941 1.457

Cardiovascular Conditions:
Hypotension* 0.000 1.611 1.380 1.881
Atrial Fibrillation 0.186 1.200 0.935 1.536
Bradicardia and Conduction Diseases 0.680 0.948 0.749 1.195
Cardiac Valve Disease 0.705 0.966 0.820 1.136
Ischemic Heart Disease* 0.004 1.203 1.070 1.352
Heart Failure 0.154 0.902 0.791 1.027
Hypertension 0.879 0.983 0.799 1.206

Sensory Impairment Conditions:
Blindness and Visual Impairment 0.839 0.961 0.671 1.365
Other Eye Diseases 0.893 1.016 0.824 1.248
Glaucoma 0.125 0.787 0.591 1.039
Deafness and Hearing Impairment 0.122 1.211 0.964 1.515

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.256 1.120 0.934 1.339
Osteoarthritis and DJD* 0.039 1.162 1.018 1.325

Psychiatric Conditions:
Depression and Mood Diseases 0.465 0.932 0.783 1.106

Other Conditions:
Urinary Incontinence 0.432 1.117 0.863 1.440
Diabetes* 0.014 0.844 0.745 0.956
Peripheral Neuropathy* 0.019 1.328 1.069 1.647
Chronic Kidney Diseases 0.353 0.862 0.643 1.148
Anaemia 0.088 1.140 0.992 1.309
Colitis and Related Diseases 0.207 0.913 0.801 1.039
Oesophagus, Stomach and Duodenum Diseases 0.276 1.132 0.921 1.389
Prostate Diseases 0.438 0.886 0.665 1.170

* = P ≤ 0.05, IRR: Incident Rate Ratio, CL: Confidence Limit, DJD: Degenerative Joint
Diseases
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TABLE 5.14: Cardiovascular Cluster: Interaction Regression Model

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.000 0.000 0.000
Age* 0.022 1.038 1.008 1.071
Male Sex 0.371 1.215 0.821 1.797
Interaction Terms

Cardiac Valve Diseases - Heart Failure 0.532 1.518 0.452 5.256
Atrial Fibrillation - Cardiac Valve Diseases 0.147 0.484 0.187 1.225
Cardiac Valve Diseases - Chronic Kidney Diseases 0.328 0.620 0.248 1.524
Cardiac Valve Diseases - Ischemic Heart Disease 0.358 1.546 0.639 3.707
Atrial Fibrillation: - Heart Failure 0.710 1.287 0.355 4.502
Heart Failure - Chronic Kidney Diseases 0.974 0.982 0.341 2.753
Ischemic Heart Disease - Heart Failure 0.966 1.023 0.388 2.674
Atrial Fibrillation - Chronic Kidney Diseases 0.445 0.686 0.273 1.698
Atrial Fibrillation - Ischemic Heart Disease 0.393 1.513 0.606 3.735
Ischemic Heart Disease - Chronic Kidney Diseases 0.399 1.453 0.649 3.251

Neurological Conditions:
Dementia 0.168 1.330 0.912 1.950
Cerebrovascular Disease 0.177 1.540 0.855 2.756
Parkinson’s and Parkinsonism 0.106 2.408 0.844 6.844

Cardiovascular Conditions:
Hypotension 0.067 1.720 0.982 3.019
Atrial Fibrillation 0.627 1.506 0.326 7.517
Bradicardias and Conduction Diseases 0.749 1.101 0.632 1.895
Cardiac Valve Diseases 0.922 1.084 0.236 5.143
Ischemic Heart Disease 0.427 0.553 0.142 2.207
Heart Failure 0.798 0.792 0.153 4.461
Hypertension 0.323 0.815 0.559 1.190

Sensory Impairment Conditions:
Other Eye Diseases 0.837 1.163 0.280 4.282
Deafness and Hearing Impairment 0.117 0.227 0.031 1.065

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.499 1.241 0.683 2.236
Osteoarthritis and DJD 0.418 1.308 0.722 2.354

Psychiatric Conditions:
Depression and Mood Diseases 0.567 0.678 0.181 2.311

Other Conditions:
Urinary Incontinence 0.315 1.258 0.827 1.907
Diabetes 0.276 0.772 0.496 1.195
Peripheral Neuropathy 0.899 1.080 0.326 3.333
Chronic Kidney Diseases 0.859 1.139 0.294 4.615
Anaemia 0.885 1.040 0.628 1.707
Colitis and Related Diseases 0.153 0.596 0.297 1.144
Oesophagus, Stomach, and Duodenum Diseases 0.337 1.972 0.474 8.013
Prostate Diseases 0.393 0.689 0.303 1.513

* = P ≤ 0.05, IRR: Incident Rate Ratio, CI: Confidence Limit, DJD: Degenerative Joint
Diseases
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alongside the shortlisted chronic health conditions. The interaction terms in the Ta-

ble 5.15 model were all non-significant (P ≥ 0.05). The Cardiovascular-Metabolic

cluster has only 168 sample members present, meaning these interactions may have

been taking place in very small sub-samples with limited statistical power. In this

cluster however, heart failure, and hypertension each had prevalence over 90% in

the cluster, meaning they are unlikely to explain variation in fall rate within the

cluster. In contrast, cerebrovascular disease contributed to a 100.2% (17.8%-242.2%)

increase in fall rate in this cluster. These results suggest therefore that when heart

failure, and hypertension are present on the inpatient record, the additional pres-

ence of cerebrovascular disease can greatly increase the rate of fall presentations to

ED from an already elevated level.

The interaction model in Table 5.16 was derived from the Non-Specific-High-

Burden cluster sample, which is characterised by a high burden of chronic disease

across almost all groups considered in the analyses. In this model five pairwise inter-

action terms were derived, however these interaction terms were all non-significant

(P > 0.05) in the Non-Specific-High-Burden cluster model.

The Central cluster interaction model presented in Table 5.17 derived pairwise

interactions between four variables associated with the cluster. These interaction

terms were all non-significant in the model, with all other terms besides age showing

non-significant effects.

In the Low-Neuro-Psychiatric cluster, no condition groups passed the thresholds

for interaction, as described previously, and so no interaction model was developed.

The High-Neuro-Psychiatric cluster is associated with neurological and psychi-

atric condition presence. In the model presented in Table 5.18 five chronic condition

groups were included in pairwise interactions alongside the chronic condition short-

list derived following the Chapter 3 review of reviews. The included interactions in

this cluster were all non-significant (P > 0.05).

The final Cluster interaction model developed was in the Low-Cardio-Neuro

cluster, which as seen previously, is defined by weak association with cardiovas-

cular conditions. For this reason, no chronic condition groups passed the thresholds

specified for interaction in this cluster.

The cluster based interaction models described in this section did not identify
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TABLE 5.15: Cardiovascular-Metabolic Cluster: Interaction Regres-
sion Model

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.002 0.001 0.000 0.034
Age 0.866 1.004 0.965 1.044
Male Sex 0.826 0.930 0.524 1.640
Interaction Terms:

Bradicardias and Conduction Diseases - Cardiac Valve Diseases 0.772 1.240 0.368 4.224
Bradicardias and Conduction Diseases - Heart Failure 0.585 0.340 0.012 9.938
Bradicardias and Conduction Diseases - Inflammatory Arthropathies 0.705 1.357 0.360 5.092
Hypotension - Bradicardias and Conduction Diseases 0.342 0.511 0.164 1.579
Cardiac Valve Diseases - Heart Failure 0.823 1.287 0.199 8.371
Cardiac Valve Diseases - Inflammatory Arthropathies 0.968 1.028 0.329 3.198
Hypotension - Cardiac Valve Diseases 0.593 0.708 0.244 2.046
Heart Failure - Inflammatory Arthropathies 0.756 1.640 0.124 24.909
Hypotension - Heart Failure 0.575 0.523 0.074 3.733
Hypotension - Inflammatory Arthropathies 0.606 1.479 0.396 5.554

Neurological Conditions:
Dementia 0.329 1.357 0.801 2.317
Cerebrovascular Disease* 0.028 2.002 1.178 3.422
Parkinson’s and Parkinsonism 0.343 1.911 0.602 5.872

Cardiovascular Conditions:
Hypotension 0.202 4.406 0.610 31.701
Atrial Fibrillation 0.613 1.205 0.656 2.251
Bradicardias and Conduction Diseases 0.659 2.452 0.075 72.149
Cardiac Valve Diseases 0.803 0.750 0.111 5.051
Ischemic Heart Disease 0.562 0.836 0.504 1.385
Heart Failure 0.913 1.122 0.194 6.679
Hypertension 0.183 0.519 0.231 1.179

Sensory Impairment Conditions:
Other Eye Diseases 0.527 1.360 0.579 3.128
Glaucoma 0.832 0.845 0.204 3.099
Deafness and Hearing Impairment 0.440 1.426 0.662 3.032

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.760 0.619 0.041 8.121
Osteoarthritis and DJD 0.329 0.712 0.400 1.246

Psychiatric Conditions:
Depression and Mood Diseases 0.650 0.708 0.186 2.311

Other Conditions:
Urinary Incontinence 0.580 1.200 0.704 2.059
Diabetes 0.833 1.068 0.643 1.778
Peripheral Neuropathy 0.198 0.382 0.097 1.191
Chronic Kidney Diseases 0.969 0.987 0.579 1.699
Anaemia 0.947 0.980 0.588 1.629
Colitis and Related Diseases 0.564 0.835 0.492 1.410
Oesophagus, Stomach, and Duodenum Diseases 0.353 0.527 0.156 1.577
Prostate Diseases 0.927 0.954 0.408 2.197

* = P ≤ 0.05, IRR: Incident Rate Ratio, CL: Confidence Limit, DJD: Degenerative Joint
Diseases
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TABLE 5.16: Non-Specific-High-Burden Cluster: Interaction Regres-
sion Model

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.000 0.000 0.004
Age 0.815 0.996 0.970 1.023
Male Sex* 0.021 0.560 0.367 0.841
Interaction Terms:

Espohagus, Stomach, and Duodenum Diseases - Peripheral Neuropathy 0.853 0.923 0.448 1.882
Depression and Mood Diseases- Peripheral Neuropathy 0.134 0.524 0.254 1.064
Other Eye Diseases - Peripheral Neuropathy 0.776 1.195 0.417 3.389
Inflammatory Arthropathies- Peripheral Neuropathy 0.746 1.186 0.484 2.836
Depression and Mood Diseases - Espohagus, Stomach, and Duodenum Diseases 0.114 1.968 0.972 4.030
Other Eye Diseases - Espohagus, Stomach, and Duodenum Diseases 0.212 2.073 0.773 5.422
Inflammatory Arthropathies - Espohagus, Stomach, and Duodenum Diseases 0.910 0.935 0.331 2.409
Other Eye Diseases - Depression and Mood Diseases 0.403 1.685 0.580 4.651
Depression and Mood Diseases - Inflammatory Arthropathies 0.715 1.248 0.444 3.396
Other Eye Diseases - Inflammatory Arthropathies 0.846 1.181 0.278 4.926

Neurological Conditions:
Dementia 0.899 1.032 0.687 1.571
Cerebrovascular Disease 0.077 1.466 1.024 2.094
Parkinson’s and Parkinsonism 0.295 0.594 0.243 1.292

Cardiovascular Conditions:
Hypotension* 0.001 2.078 1.428 3.022
Atrial Fibrillation* 0.003 1.915 1.339 2.769
Bradicardias and Conduction Diseases 0.652 1.170 0.641 2.054
Cardiac Valve Diseases 0.364 1.281 0.807 2.001
Ischemic Heart Disease 0.084 1.466 1.019 2.125
Heart Failure 0.342 0.806 0.551 1.174
Hypertension 0.069 1.699 1.063 2.795

Sensory Impairment Conditions:
Blindness and Visual Impairment 0.573 0.799 0.399 1.516
Other Eye Diseases 0.599 0.767 0.317 1.721
Glaucoma 0.305 0.636 0.290 1.273
Deafness and Hearing Impairment 0.206 1.488 0.872 2.482

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.274 0.614 0.284 1.262
Osteoarthritis and DJD 0.500 1.173 0.792 1.742

Psychiatric Conditions:
Depression and Mood Diseases 0.908 1.041 0.577 1.859

Other Conditions:
Urinary Incontinence 0.863 0.964 0.678 1.379
Diabetes 0.843 0.960 0.679 1.355
Peripheral Neuropathy* 0.033 2.108 1.182 3.755
Chronic Kidney Diseases 0.110 0.691 0.469 1.010
Anaemia* 0.022 1.614 1.144 2.279
Colitis and Related Diseases 0.089 1.479 1.014 2.175
Oesophagus, Stomach, and Duodenum Diseases 0.256 0.648 0.338 1.209
Prostate Diseases 0.099 0.211 0.031 0.820

* = P ≤ 0.05, IRR: Incident Rate Ratio, CL: Confidence Limit, DJD: Degenerative Joint
Diseases
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TABLE 5.17: Central Cluster: Interaction Regression Model

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.000 0.000 0.000
Age* 0.013 1.030 1.008 1.052
Male Sex 0.325 0.850 0.629 1.144
Interaction Terms:

Hypotension - Colitis and Related Diseases 0.131 1.860 0.880 3.916
Cerebrovascular Disease - Colitis and Related Diseases 0.242 1.621 0.761 3.387
Urinary Incontinence - Colitis and Related Diseases 0.924 1.032 0.569 1.876
Cerebrovascular Disease - Hypotension 0.628 1.241 0.553 2.754
Urinary Incontinence - Hypotension 0.394 0.722 0.362 1.428
Cerebrovascular Disease - Urinary Incontinence 0.818 0.920 0.476 1.795

Neurological Conditions:
Dementia 0.244 1.230 0.897 1.697
Cerebrovascular Disease 0.957 0.983 0.548 1.727
Parkinson’s and Parkinsonism 0.400 0.784 0.464 1.299

Cardiovascular Conditions:
Hypotension 0.347 1.333 0.753 2.336
Atrial Fibrillation 0.596 1.085 0.821 1.434
Bradicardias and Conduction Diseases 0.784 1.094 0.596 1.963
Cardiac Valve Diseases 0.721 1.082 0.727 1.598
Ischemic Heart Disease 0.090 1.297 0.987 1.705
Heart Failure 0.650 1.077 0.803 1.444
Hypertension 0.089 0.729 0.522 1.023

Sensory Impairment Conditions:
Blindness and Visual Impairment 0.085 0.454 0.189 1.000
Other Eye Diseases 0.567 1.151 0.734 1.784
Glaucoma 0.797 0.914 0.482 1.670
Deafness and Hearing Impairment 0.600 1.142 0.717 1.795

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.180 1.335 0.904 1.958
Osteoarthritis and DJD 0.369 0.850 0.609 1.178

Psychiatric Conditions:
Depression and Mood Diseases 0.893 1.034 0.650 1.620

Other Conditions:
Urinary Incontinence 0.278 1.264 0.853 1.874
Diabetes 0.491 0.894 0.667 1.198
Peripheral Neuropathy 0.232 1.455 0.827 2.544
Chronic Kidney Diseases 0.340 1.165 0.872 1.556
Anaemia 0.846 1.036 0.743 1.440
Colitis and Related Diseases 0.062 0.627 0.398 0.978
Oesophagus, Stomach, and Duodenum Diseases 0.304 1.285 0.822 1.986
Prostate Diseases 0.285 1.416 0.776 2.529

* = P ≤ 0.05, IRR: Incident Rate Ratio, CL: Confidence Limit, DJD: Degenerative Joint
Diseases
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TABLE 5.18: High-Neurological-Psychiatric Cluster: Interaction Re-
gression Model

Variable P-Value IRR 2.5% IRR CL 97.5% IRR CL
Intercept 0.000 0.001 0.000 0.004
Age 0.955 0.999 0.975 1.024
Male Sex 0.524 0.871 0.603 1.248
Interaction Terms:

Depression and Mood Diseases - Peripheral Neuropathy 0.672 0.781 0.287 2.004
Depression and Mood Diseases - Espohagus, Stomach, and Duodenum Diseases 0.554 1.414 0.520 3.650
Other Eye Diseases - Depression and Mood Diseases 0.747 0.794 0.226 2.404
Cerebrovascular Disease - Depression and Mood Diseases 0.706 1.196 0.538 2.589
Espohagus, Stomach, and Duodenum Diseases - Peripheral Neuropathy 0.610 0.602 0.082 2.675
Other Eye Diseases - Peripheral Neuropathy 0.879 0.874 0.166 3.518
Cerebrovascular Disease- Peripheral Neuropathy 0.129 2.298 0.925 5.658
Other Eye Diseases- Espohagus, Stomach, and Duodenum Diseases 0.365 1.981 0.516 6.833
Cerebrovascular Disease- Espohagus, Stomach, and Duodenum Diseases 0.771 1.239 0.347 4.008
Cerebrovascular Disease- Other Eye Diseases 0.403 0.529 0.131 1.727

Neurological Conditions:
Dementia* 0.009 1.761 1.236 2.537
Cerebrovascular Disease 0.219 0.695 0.419 1.136
Parkinson’s and Parkinsonism 0.788 0.892 0.418 1.750

Cardiovascular Conditions:
Hypotension 0.635 1.161 0.676 1.930
Atrial Fibrillation 0.115 1.441 0.972 2.114
Ischemic Heart Disease 0.475 0.814 0.498 1.296
Heart Failure 0.066 0.323 0.103 0.827
Hypertension 0.265 1.249 0.897 1.749

Sensory Impairment Conditions:
Blindness and Visual Impairment 0.243 1.496 0.836 2.611
Other Eye Diseases 0.864 0.937 0.494 1.719
Glaucoma 0.556 0.841 0.507 1.361
Deafness and Hearing Impairment 0.147 1.539 0.929 2.499

Musculoskeletal Conditions:
Inflammatory Arthropathies 0.871 0.939 0.476 1.734
Osteoarthritis and DJD 0.486 1.153 0.820 1.618

Psychiatric Conditions:
Depression and Mood Diseases 0.138 0.664 0.418 1.045

Other Conditions:
Urinary Incontinence* 0.019 1.588 1.144 2.204
Diabetes 0.699 0.917 0.628 1.326
Peripheral Neuropathy 0.874 1.060 0.557 1.958
Chronic Kidney Diseases 0.349 0.763 0.468 1.210
Anaemia 0.997 0.999 0.677 1.453
Colitis and Related Diseases 0.487 0.864 0.606 1.221
Oesophagus, Stomach, and Duodenum Diseases 0.796 1.096 0.596 1.962
Prostate Diseases 0.910 1.057 0.450 2.305

* = P ≤ 0.05, IRR: Incident Rate Ratio, CL: Confidence Limit, DJD: Degenerative Joint
Diseases
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any multiplicative multi-morbidity interaction effects between chronic condition vari-

ables. However, this analysis is not definitive, and alternative approaches may be

better suited for identifying these effects, as discussed in Section 6.5. However, the

consistency of these findings indicates that the conditions tested for interactions

within this analysis are unlikely to interact in a meaningful way to cause changes

in the risk of fall presentations during the study period.

5.5.3 Interaction Analysis Further Plots and Tests

DHARMa residual plots for the interaction models presented in Section 5.5.2 are

shown in Appendix Section L. These plots show no strong systematic relationships

in the residuals of these interaction models. This suggests that the lack of significant

interactions was not a result of systematic bias within the models.

5.6 Conclusion

The results presented in this chapter and Sections 5.3-5.5 in particular, used a novel

combination of methods to analyse an understudied population in health data re-

search. The aim of the analyses was to investigate what chronic health conditions

have an impact on the rate of fall presentations to the ED by care home residents,

and whether their is evidence for a multiplicative role of multi-morbidity in this re-

lationship. While several useful findings were identified, the results of the analyses

suggest there is not a multiplicative effect of multi-morbidity on falls. Specifically,

Section 5.3 identified clusters of chronic health conditions, which exhibited different

relationships with the conditions studied in the analyses. Differences in fall pre-

sentations during the study period between these clusters were identified in Section

5.4. However, the analyses in Section 5.5 found no evidence that the effects observed

went beyond additive effects of individual chronic conditions. Possible explanations

for this lack of finding are explored further in the Section 6.5. The following chapter

contextualises the results of the analyses in the wider literature, whilst also address-

ing study limitations, and opportunities for future research.
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Chapter 6

Discussion and Conclusions

6.1 Introduction to Chapter

The empirical research presented in this thesis set out to identify patterns of multi-

morbidity in UK based care home residents, and what impact these patterns had on

the risk of falls. Answering these questions is essential in the context of an ageing

population and resource constrained healthcare setting and the research presented

in this thesis is intended to motivate further study into this area. The discussion

in this chapter is structured as follows: after an initial comparison of findings with

previous literature in Section 6.3, clinical and policy implications of the results are

discussed in Section 6.4. Next the limitations of the research are discussed in Section

6.5, following which a summary of the novel contribution made by this thesis is

provided in Section 6.6. The recommendations for future research are presented in

Section 6.7. Finally, the conclusions of the thesis, and reflections on the PhD process

are summarised in Section 6.8.

6.2 Summary of Main Findings

Based on the results in Section 5.4.3 a gradient of multi-morbidity effects can be

drawn with relation to falls in care home residents. The High-Neuro-Psychiatric

and Low-Neuro-Psychiatric clusters had a stronger association with fall presenta-

tions to emergency departments than the Cardiovascular condition cluster, with

41.4%, 43% and 23.8% increases respectively when compared to the Absence clus-

ter. However, the Cardiovascular-Metabolic cluster exhibited a stronger effect than
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either of the Neurological-Psychiatric clusters with a 63% increase in fall presen-

tations associated with this cluster compared to the Absence cluster. Finally, the

strongest increase of 117.8% was observed for the Non-Specific-High-Burden clus-

ter, which may represent sample members where both the neurological-psychiatric

pattern, and cardiovascular-metabolic patterns are present. Therefore, this may rep-

resent the most potent combination for increased falls risk in care home dwelling

older adults in the sample.

When considering the role of individual chronic health conditions, hypoten-

sion (61.1%), dementia (32.3%), and peripheral neuropathy (33.7%) exhibited the

largest effects, with smaller risk increasing effects observed for cerebrovascular dis-

ease (18.6%), atrial fibrillation (21.8%), and osteoarthritis and degenerative joint dis-

eases (15.6%).

In an investigation of the relationship between frailty and fall presentations in

care home dwelling older adults, three indices were examined in Section 5.4.2. The

results of these regression models indicate how the measure used to asses frailty will

partially determine the relationship identified. Additionally, the results highlight the

risk of using measures such as the Charlson Comorbidity Index (CCI) to reflect the

role of frailty in falls risk, when this metric was designed for prediction of ten year

survival (Charlson et al., 1987).

6.3 Discussion of Findings

6.3.1 Clusters of Chronic Health Conditions in UK Care Home Residents

The cluster analysis presented in this thesis had two aims. The first was to iden-

tify groups of chronic health conditions in the sample of care home residents, and

compare the resulting patterns to those previously identified in care home resident

populations. The second aim of the cluster analyses was to examine whether the

fall rate varies between the identified patterns of multi-morbidity. In meeting these

two aims the analyses made two novel contributions to knowledge. This is because

patterns of multi-morbidity are under-researched in UK care home resident popu-

lations, which this analyses addresses. The second source of novelty is that multi-

morbidity patterns have not previously been linked to falls risk in either care home
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resident or community dwelling populations. Considering how many individual

chronic conditions are linked with changes in falls rate in previous literature, this

analysis represents an important step towards understanding how groups of these

conditions may impact falls (Rubenstein, 2006; Deandrea et al., 2010; Bloch et al.,

2013).

Some of the patterns of multi-morbidity in the cluster solution were similar to

two major patterns identified in previous multi-morbidity studies based on sam-

ples of community dwelling older adults. These patterns were a cardiovascular-

metabolic pattern and neurological-psychiatric pattern observed in the Cardiovascu-

lar-Metabolic and High-Neuro-Psychiatric clusters respectively. These patterns per-

sist across samples and different analysis methods, suggesting they are valid group-

ings of chronic disease presentations in older adults. However, while the overarch-

ing groupings were the same, there were differences identified in the present study

when compared to previous research in the community setting which are discussed

for each pattern below.

Cardiovascular-Metabolic Pattern

A cardiovascular-metabolic pattern of multi-morbidity has been consistently iden-

tified in the community setting using a range of samples and analysis approaches

(Islam et al., 2014; García-Olmos et al., 2012; Machón et al., 2020; Vu, Finch, and Day,

2011; Guisado-clavero et al., 2018; Déruaz-Luyet et al., 2017; Schafer et al., 2010; Vi-

olán et al., 2019; Marengoni et al., 2020). The main features of this pattern are the

coincidence of diabetes, hypertension, and a range of cardiovascular diseases (car-

diac valve disease, ischemic heart disease, atrial fibrillation). Additional related con-

ditions inconsistently observed in the pattern are obesity, dislipidemia, chronic kid-

ney disease, chronic liver disease, and peripheral neuropathy. This cardiovascular-

metabolic pattern is explained by metabolic syndrome, where the presence of dia-

betes, hypertension, and obesity raise the risks of developing cardiovascular condi-

tions (Byrne and Wild, 2011).

In contrast to previous studies in the community setting, the cardiovascular-

metabolic pattern identified in the care home resident sample also incorporates fur-

ther links with neuro-degenerative chronic conditions (dementia, cerebrovascular
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disease), and cardiovascular conditions (heart failure). This suggests that when

identifying patterns of multi-morbidity in care home residents, we may be observ-

ing a further progression of those patterns seen previously in the community set-

ting. In studies based exclusively in community dwelling older adults neurological

conditions such as dementia, and cerebrovascular disease have not been associated

with the cardiovascular-metabolic pattern (Vu, Finch, and Day, 2011; García-Olmos

et al., 2012; Islam et al., 2014; Déruaz-Luyet et al., 2017; Guisado-clavero et al., 2018;

Machón et al., 2020). However, three studies based outside the UK with mixed sam-

ples of community dwelling and institutionalised older adults identified at least one

neurological condition in a cardiovascular-metabolic pattern cluster (Schafer et al.,

2010; Violán et al., 2019; Marengoni et al., 2020). By incorporating mixed samples it

is possible that these studies were identifying a similar cluster of sample members to

that seen in the Cardiovascular-Metabolic pattern in the present study. These find-

ings suggest a further progression of the cardiovascular-metabolic pattern of chronic

conditions may be the development of neuro-degenerative conditions in the future,

however further research is needed to investigate this relationship further, which is

discussed in Section 6.7.

Neurological-Psychiatric Pattern

The second overarching pattern identified in multiple studies of community dwelling

older adults is the neurological-psychiatric pattern (Schafer et al., 2010; Guisado-

clavero et al., 2018; Machón et al., 2020; Marengoni et al., 2020). This pattern in-

volves a cluster of neurological conditions such as dementia, cerebrovascular dis-

ease, epilepsy, or Parkinson’s disease with depression and mood diseases the most

common psychiatric condition included for study (Schafer et al., 2010; Guisado-

clavero et al., 2018; Machón et al., 2020; Marengoni et al., 2020). Additional to the

neurological and psychiatric conditions included in this pattern, studies based in

the community setting also consistently include a range of gastrointestinal, muscu-

loskeletal, and sensory impairment chronic conditions (Schafer et al., 2010; Guisado-

clavero et al., 2018; Machón et al., 2020; Marengoni et al., 2020). In studies where

no neurological-psychiatric cluster was identified, this combination of neurological

conditions with gastrointestinal, musculoskeletal, and sensory impairment chronic
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conditions persisted (García-Olmos et al., 2012; Violán et al., 2019).

The High-Neuro-Psychiatric pattern in Section 5.3 was strongly associated with

neurological (dementia, epilepsy, cerebrovascular disease), psychiatric (depression

and mood disorders, schizophrenia and delusional disorders), gastrointestinal (oe-

sophagus, stomach, and duodenum diseases, colitis, and other digestive diseases),

musculoskeletal (osteoporosis, osteoarthritis, dorsopathies), and sensory impairments

(blindness and visual impairments, deafness and hearing impairments, glaucoma).

Whilst some combination of all the conditions associated with the High-Neuro-

Psychiatric cluster have been identified in studies based in the community setting,

these conditions were all strongly associated with a single cluster in the care home

setting. This may suggest that the progression of this pattern of multi-morbidity is

a further development of a pattern seen in the community setting (Prados-Torres et

al., 2014).

The association of dementia and psychiatric conditions such as depression has

been noted in previous research, although the relationship may be bi-directional

with each condition contributing to the state of the other (Quinn and Dickinson,

2014). Furthermore, symptoms of dementia and cerebrovascular disease include loss

of emotional control and increased delirium, which may also increase the risk of an

individual being diagnosed with concurrent psychiatric conditions (NHS England,

2023d; NHS England, 2023c).

Several mechanisms explain the presence of sensory impairment, gastrointesti-

nal, and musculoskeletal conditions in the neurological-psychiatric pattern of multi-

morbidity observed in the community setting, and now in the care home setting, as

a result of the research presented in this thesis.

In a recent systematic review and meta-analysis, visual impairments in older

adults was found to be associated with the presence of dementia (Shang et al., 2021).

However, this association may be caused by the high prevalence of visual impair-

ments due to age related changes in the eye leading to coincidental co-occurrence

of vision problems with dementia in older adults. Processing of visual informa-

tion in the brain can also be impaired through damage caused by the symptoms

of neurological conditions such as dementia, and cerebrovascular disease, so there

may be a causal relationship present for a subset of this group of residents (NHS
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England, 2023d; NHS England, 2023c). Recent studies in older adults have sug-

gested a relationship between digestive diseases and psychiatric conditions due to

a bi-directional gut-brain relationship, which may explain the occurrence of these

groups alongside the neurological-psychiatric pattern (Bi et al., 2021; Zheng et al.,

2023).

The consistent inclusion of musculoskeletal conditions in the neurological-

psychiatric pattern may indicate a causal link between the conditions in the pattern

and bone health, fracture risk, or muscle strength. However, a recent review found

little evidence to support this association more than co-incident occurrence of osteo-

porosis with dementia (Downey et al., 2017). It is possible however that reductions

in activity as a result of the neurological and psychiatric conditions in the pattern

may increase the risk of developing the musculoskeletal conditions.

Conclusion of Cluster Analysis Discussion:

The cluster analyses identified evidence that the Cardiovascular-Metabolic and

Neurological-Psychiatric patterns of chronic disease previously observed in com-

munity dwelling older adults also occur in care home residents. The continuation

of multi-morbidity patterns from the community to care home setting is to be ex-

pected as the core underlying chronic conditions would be unchanged during this

transition. However, the multi-morbidity patterns observed in this care home sam-

ple may represent a further progression of the major patterns when compared to the

community setting, which demonstrate the possible progression of the underlying

mechanisms present. How these patterns evolve over time, and lead to individuals

developing further chronic conditions in future requires further research, which is

discussed further in Section 6.7.

Furthermore, while previous studies focused on highly prevalent multi-morbidity

combinations, or functionally independent older adults, this analysis was able to

show possible links between several rarer neuro-degenerative conditions, which

were often not included in previous studies. Finally, while the inclusion of a wide

range of chronic health conditions increased the complexity of the analyses and in-

terpretation it also provided a realistic view of multi-morbidity in care home resi-

dents.
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In conclusion, while the cluster analyses presented in the thesis represent a promis-

ing area of study, further research is needed to establish important multi-morbidity

patterns in UK care home residents. By identifying these patterns in care home

residents, clinicians may be better able to identify the likely progression of multi-

morbidity over time, which may provide opportunities to identify candidates for

fall-prevention interventions. To ensure the findings are transferable to the UK-wide

care home population, the cohorts used in this further research must be drawn from

all regions, rather than the single hospital trust that this analysis was based on.

6.3.2 The Role of Chronic Disease and Multi-Morbidity in Determining

Fall Count in Care Home Residents

Negative Binomial regression analysis was used to identify whether the patterns

of chronic health conditions described in Section 6.3.1 caused a change in falls risk

among care home residents in the sample. This analysis further explored whether

different clusters differ in their falls risk and addressed two aims of the research

presented in Section 1.5.1. Identifying the falls risk associated with different combi-

nations of conditions would allow for the further identification of possible mecha-

nisms, and improve predictive performance of falls risk prediction models intended

for use in highly multi-morbid samples. The results of this analysis, presented in

Sections 5.4 and 5.5, found the clusters of chronic health conditions were associated

with different counts of fall presentations.

The analysis of multi-morbidity patterns identified several novel findings for dis-

cussion. First, a gradient of falls risk effects was identified for different patterns of

multi-morbidity. Four tiers of effect were identified, with the smallest increases in

fall presentations to the ED associated with the Cardiovascular (23.8%) and Low-

Cardio-Neuro (26.7%) clusters when compared with the Absence cluster. The sec-

ond tier of effect was identified for two patterns of neurological-psychiatric multi-

morbidity with the Low-Neuro-Psychiatric and High-Neuro-Psychiatric clusters as-

sociated with 43.0% and 41.4% increases respectively.

However, while neurological-psychiatric multi-morbidity was identified as hav-

ing a larger effect on the rate of fall presentations than isolated cardiovascular multi-

morbidity, the Cardiovascular-Metabolic cluster exhibited a still larger increase of
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63.0% compared to the Absence cluster.

The final tier of effect was identified for the Non-Specific-High-Burden cluster

with an associated 117.8% increase in fall presentations when compared to the Ab-

sence cluster. However, when analysing the condition make-up of this cluster it

may represent a combination of the Neurological-Psychiatric and Cardiovascular-

Metabolic patterns.

The identification of a gradient of associations with fall rate between the patterns

of chronic disease discussed in Section 6.3.1 represents a novel finding in the multi-

morbidity pattern, and falls literature. This is the first time the overarching patterns

of chronic disease have been linked with differing fall rates in the care home set-

ting. However, further analysis attempting to explain this gradient of effects using

the shortlist of chronic conditions that increase falls risk, identified during the Chap-

ter 3 literature review, found no evidence of specific multiplicative multi-morbidity

effects beyond the main condition effects identified.

The core argument of this thesis is that the combination of conditions that make

up multi-morbidity matter, which is not reflected by the measures commonly used

in the falls risk literature (Morin et al., 2019; Bravo et al., 2021; Gade et al., 2021a;

Barik et al., 2022; Jacob et al., 2022; You et al., 2023). As seen in the review of sys-

tematic reviews presented in Chapter 3, there are a wide range of chronic health

conditions identified as increasing the risk of fall events in older adults. Due to the

variety of mechanisms and strengths of relationships present, it is unreasonable to

expect the impact of two chronic conditions co-occurring will be the same as another

pair of conditions. When this is scaled up to reflect the variety of multi-morbidity

presentations in care home residents, incorporating multi-morbidity using a count of

chronic conditions, binary thresholds, or standardised index values into these mod-

els may represent an over-generalisation of multi-morbidity presentations. This is

because these methods do not allow for the complex range of effects when condi-

tions co-occur and present a single estimate for a ’multi-morbidity effect’, when in

reality multi-morbidity will exhibit a different effect dependent on the conditions

present. Therefore, an approach is needed to identify and incorporate the salient

multi-morbidity combinations that impact falls risk beyond the individual condi-

tions themselves. The cluster based negative binomial regression results found that
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different types of multi-morbidity exhibited large changes in fall rate, which sug-

gest that different combinations of multi-morbidity exhibit different levels of falls

risk. This means that the way multi-morbidity will impact an outcome is dependent

on the context, or conditions that make up the specific multi-morbidity presenta-

tion. If this is the case, attempts to group these different relationships into a single

generalised estimate of a multi-morbidity effect will be met with a subsequent re-

duction in model performance. Therefore, indicating the type of multi-morbidity

present will better reflect the underlying data generating process. However, efforts

to reflect the multi-morbidity context will come with a trade off in model complexity

and reduction in degrees of freedom.

Furthermore, the effect sizes observed in the main effects regression models, pre-

sented in Section 5.4.4, were not large enough to explain the changes in falls risk seen

in the cluster regression results, presented in Section 5.4.3. This suggests there is a

role for multi-morbidity in determining falls risk beyond the individual effects of

the chronic conditions present.

The third aim of the research, presented in Section 1.5.1 was the identification

of specific combinations of chronic health conditions that change falls risk. The in-

teraction analyses results identified no evidence of multiplicative multi-morbidity

effects in the combinations tested. This is in contrast to the findings of the cluster-

based regression model, presented in Section 5.4.3, where different multi-morbidity

presentations exhibited very different associations with falls. This difference in find-

ings shows that incorporating multi-morbidity into fall risk models is a challenging

task because of the range of possible effects that could arise from the combination of

conditions. Additionally, even within a single combination of chronic health condi-

tions, there will be a range of risk effects and mechanisms in operation. The combi-

nation and degree of condition severity, response to treatment, and polypharmacy

effects will also exhibit moderating effects on the actual impact of multi-morbidity

on falls risk. This complex array of competing effects and interactions may be the

next barrier for falls risk prediction models to overcome, which may unlock their

predictive effectiveness in highly multi-morbid samples. I contend that there ex-

ists a middle ground to be pursued between highly complex modelling, and the

oversimplified measures being used currently (Morin et al., 2019; Bravo et al., 2021;
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Gade et al., 2021a; Barik et al., 2022; Jacob et al., 2022; You et al., 2023). In the initial

stages of understanding multi-morbidity, being able to identify consistent groups is

the first step. Once these groupings can be identified, decision rules for determin-

ing group membership need to be defined, which allow the categorisation of new

samples without the need for complex cluster analyses. The results of the cluster

analyses made some headway in this area, and demonstrated there a relationships

between multi-morbidity and falls risk present, which warrant further study.

Once a sample is stratified into the presence of specific multi-morbidity group-

ings, it may be possible to derive risk effects of these groupings, which allow a model

to reflect some of the individuality presented by multi-morbidity effects. A promis-

ing direction for this research is network analysis, where chronic condition informa-

tion is translated into individual combinations of conditions, with a network visu-

alisation used to facilitate understanding of the complexity in these data. This is a

growing area in the multi-morbidity literature, which is discussed further in Section

6.7 (Hernández, Reilly, and Kenny, 2019). However, as of yet, no study has linked

the groups identified through network analyses to falls risk in care home residents.

This is the first study to draw a link between specific patterns of multi-morbidity

and falls risk in care home residents based in the UK. While the findings point to the

existence of multi-morbidity effects, no specific mechanisms were identified for why

these effects occur beyond the cluster analyses groupings. This research presented

a novel combination of multi-morbidity cluster analysis, and associated analysis of

falls risk to try and draw a link between the patterns identified and the risk of falls.

However, while the clusters of chronic disease presentations had different falls risk

associated with them, the attempt to identify which specific combinations were driv-

ing this falls risk found limited evidence for why these effects occurred. Therefore,

as is discussed in Section 6.7, future research is needed to identify which combina-

tions were motivating the effects seen, why specific multi-morbidity patterns exhibit

different risk effects, and how these patterns can be operationalised into future falls

risk prediction models. Reflecting the individuality present in multi-morbidity is a

key challenge for falls risk prediction models to overcome in order to predict falls in

groups with high levels of multi-morbidity.



6.4. Clinical and Policy Implications 169

6.4 Clinical and Policy Implications

The patterns of chronic disease discussed in Section 6.3.1 were found to increase the

risk of falls in care home residents as seen in Section 5.4.3. The specific groups of

chronic health conditions identified in this research need to be externally validated

in other samples of care home residents before the findings can be considered robust.

However, identifying the groups of chronic diseases that most regularly co-occur fa-

cilitates the development of interventions that target the specific mechanisms at play

in each group to reduce the risk of a fall. Furthermore, identification of these pat-

terns in care home residents may provide an opportunity for practitioners to better

understand the likely trajectory of multi-morbidity and put in place preventative

measures in the community setting. Such proactive management could lead to a re-

duction in falls in future cohorts of care home residents. A large effect was identified

for the cluster that showed evidence of the cardiovascular-metabolic syndrome pat-

tern of disease. Further patterns that increased falls risk were identified in a cluster

of neurological conditions, a further group emulating the neurological-psychiatric

condition pattern, and finally a group of cardiovascular conditions. These groups of

conditions are likely to impact falls through a variety of mechanisms, meaning non-

targeted intervention may not have a consistent effect on the prevention of these

falls.

In the context of the ageing population in the UK, where the number of care

home residents is expected to grow substantially in a resource constrained setting,

improving the efficiency with which healthcare resources are allocated in this patient

group is essential (Kingston et al., 2018; Office for National Statistics, 2018; Witten-

berg and Hu, 2015). As discussed in Section 1.2.1, falls in older adults are the leading

cause of trauma presentations to the emergency department in this group. Falls risk

prediction models offer an avenue to identify people at a high risk of falls based on

routinely collected information stored in the electronic health record (EHR). How-

ever, because people are living longer with multi-morbidity, any fall risk prediction

model for use in older adult populations needs to be effective in highly multi-morbid

populations.

By improving the accuracy of fall risk prediction models in highly multi-morbid
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patients, system level cost savings can be elicited through the better targeting of

fall prevention interventions. Furthermore, because the mechanisms through which

multi-morbidity impacts falls differ between multi-morbidity presentations, iden-

tifying those presentations at the highest risk of falls provides the opportunity for

better targeted intervention in these patient groups. Additionally, by understanding

the progression multi-morbidity patterns over time, clinicians may be better able to

mitigate these increases in falls risk sooner and prevent future falls through review

of medications and preventative measures.

If a sufficiently high performing falls risk prediction model can be developed,

people at a high risk of falls can be flagged for review by clinicians. This process

has two major potential benefits. First, it could lead to the identification of high falls

risk people sooner and at a reduced time cost. Second, by leveraging information

contained in the EHR through risk prediction models, clinician decisions surround-

ing treatment and interventions could be based on a range of in-depth information,

which may improve the overall the effectiveness of the resulting decisions.

Incorporating the individuality of multi-morbidity presentations into prediction

models may aid in improving their predictive performance in care home residents.

However, in order to distinguish between different risk groups, a reliable and com-

parable source of data is required for the care home setting. For this reason, a key

policy development would be to emulate the Minimum Data Set (MDS), which is

used in the USA and Canada. The MDS is a standardised questionnaire completed

for all residents of nursing homes certified by Medicare or Medicaid in the USA

(Saliba and Buchanan, 2008b). The information contained in the MDS covers de-

mographic information, functional or activity based impairments, observations of

psychological and physical functioning, medications, treatments and therapies, and

records of health conditions present. The development of a similar data set in the

UK is ongoing through the developing research resources and minimum data set for

care homes’ adoption and use (DACHA) study (Goodman, 2019; Burton et al., 2022).

Such a data set, bringing together multiple sources of information on care home res-

idents, will provide an invaluable opportunity to further explore the relationships

identified in this research.
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By having a such a repository of information, many of the issues faced in this the-

sis surrounding the identification of falls at the care home level, and reliable report-

ing of chronic diseases could be overcome. Furthermore, additional observations

such as Activities of Daily Living (ADL), Timed Up and Go (TUG) test observations,

and other functional test results could be recorded, which are beneficial for the de-

velopment of predictive models in UK populations. Finally, the development of a

standardised data reporting structure would improve the feasibility of rolling out a

falls risk prediction model in practice. This recommendation is discussed further in

Section 6.7.

Predictive modelling in patients susceptible to falls is an area of research that will

become more important as the population ages. However, the existing challenges of

clinical interpretability, trustworthiness of model predictions, and the complexity of

the underlying mechanisms that cause falls means there are unavoidable trade offs

in developing a tool for use in clinical practice. Bodies such as National Institute for

Health and Clinical Excellence (NICE) have taken a moderate approach, demanding

that clearly effective models are demonstrated through external validation before

such a prediction model would be considered for clinical practice (Health & Care

Excellence, 2013). However, research into the comparative predictive performance

of standard practice would be informative to indicate where predictive modelling

could be useful. Understanding the sensitivity and specificity of practitioner predic-

tions in different situations would indicate where a predictive model would be most

useful, and allow more targeted development of such models. Rather than attempt-

ing to replace the clinician in the decision, the statistical model must always be a tool

that aids the clinician in their decision. However, for this to be done effectively, the

role of clinical intuition, and degree of evidence used by practitioners needs to be

understood.

6.5 Limitations of the Research

The research presented in this thesis had several limitations. Where possible, steps

were taken to mitigate these limitations and their effects on the analyses.

1. Identification of Falls
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The first limitation related to the identification of falls in the available data. Be-

ing unable to identify falls at the care home level would have meant that a pro-

portion of falls by sample members will have gone unobserved. To overcome

this, falls were identified at the emergency department level instead. How-

ever, no information was available regarding the cause of an attendance. To

mitigate this, I applied a definition of trauma presentations to the emergency

department by the cohort members, which was used as a proxy for falls. This

definition is reasonable because a high proportion of trauma presentations are

caused by falls in older adults (Sterling, O’Connor, and Bonadies, 2001; Labib

et al., 2011; Benhamed et al., 2023). However, the use of such a proxy definition

to identify falls may have led to a degree of mis-classification in the outcome

variable used during the regression analyses.

Furthermore, by identifying falls at attendance to the emergency department

level, falls that did not require treatment or transport to hospital were not

recorded in this dataset. This would have had two effects on the analyses.

First, explanatory variables which raise the risk of injurious falls, would have

been more likely to be identified in this analysis. Additionally, sample mem-

bers with a higher condition burden may have been more likely to be trans-

ferred to hospital due to the seriousness of their condition, which would raise

the likelihood their fall was observed in the data and artificially strengthen the

identified relationship. Finally, it is possible that some sample members who

fell bypassed the emergency department entirely and were admitted directly,

meaning their fall would have been unrecorded. While this measure of falls

is not perfect for identifying all falls, it does give an accurate picture of emer-

gency department service use resulting from falls in this patient group.

2. ICD-10 Code Availability

The second group of limitations refer to the use of two digit ICD-10 codes col-

lected through standardised data reporting as a result of an inpatient stay in
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one of the County Durham and Darlington Foundation Trust (CDDFT) hos-

pitals to identify the chronic disease records. This introduced several limita-

tions into the analysis. First, chronic condition information for sample mem-

bers without an inpatient attendance during the study period could not be

observed. However, the three year study period, and high level of healthcare

resource use in care home residents, meant the effect of this is expected to be

small. This missing data adds to the mis-classification problem, with the ef-

fect on the analysis being to reduce the clarity of effects observable through

regression analysis and a subsequent increase in standard errors. This effect

would also lead to a widening of confidence intervals, and underestimation of

effect sizes of explanatory variables on the outcome. Additionally only the two

digit ICD-10 codes were available for use, rather than the more specific 3-digit

ICD-10 codes, which are recommended by the original authors of the chronic

health condition groups used in this thesis (Calderón-Larrañaga et al., 2017).

Using the less specific codes introduced a level of miss-classification into the

analysis, which would have impacted the accuracy and precision of the results

during the regression analysis.

The final problems with the use of ICD-10 codes for identifying chronic dis-

ease, relate to the codes themselves. First, the use of ICD-10 codes collected in

inpatient stays means the research was reliant on standardised data reporting.

In the case of patients with a high degree of multi-morbidity, it is possible that

the only conditions reported on their inpatient record would be those directly

related to their stay. Furthermore, using ICD-10 codes in isolation to indicate

chronic disease, is that the codes themselves do not give any indication of con-

dition severity, management, or treatment. This means that the effects esti-

mated during the regression analysis may not include the full array of possible

presentations, severity, and management of a condition. This is important be-

cause multiplicative multi-morbidity effects may only result from more severe,

or unmanaged, chronic condition states. The expected effect of this conflation

of possible disease states is wider confidence intervals and biased estimates of

effect by explanatory variables. Finally, the risk of falls presented by a chronic

condition will be directly related to how that condition is being treated and
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managed.

3. Accounting for Frailty in Regression Models

The next limitation to be discussed is the non-inclusion of a measure of frailty

in the negative binomial regression model, which used the clusters as input

data. By not including a measure of frailty in this regression, the effect at-

tributed to the clusters may have been partially due to the effect of frailty

rather than multi-morbidity effects. Additionally, because the outcome was

fall-related ED attendances, sample members in a frail condition would have

been more likely to sustain an injury, which required treatment in hospital,

meaning they were more likely to be observed in the outcome. The measure

of frailty was not included in this model because much of the input data used

in deciding the individual level of frailty was the presence of several chronic

conditions and age, which were all captured in the regression already, mean-

ing the score would have been highly inter-correlated with other explanatory

variables in the regression.

4. Inclusion of Severity Information

An additional limitation in the analyses is the lack of severity information

regarding the chronic health conditions identified through inpatient records.

This is important because the severity and presence of specific symptoms re-

lated to a single chronic health condition may have large consequences for how

that chronic condition relates to falls. For example, dementia was present in

40.4% of the sample, however wandering behaviour would only have been

present in a sub group of these sample members with dementia. This means

the dementia indicator in the regression models is capturing multiple sub groups,

with dementia contributing differently to overall falls risk in each. For future

models to effectively identify falls risk in care home residents, they will need

to include indications of condition severity, or the presence of specific falls risk

increasing symptoms to differentiate between subgroups within the chronic

health condition indicators.

5. Interaction Analyses
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The final limitations to be discussed in this section relate to the method used

for the interaction analyses. This approach identified the most prevalent condi-

tions by cluster over an O/E ratio threshold for inclusion in regression models

as interaction effects. This approach was taken to reduce down the number of

possible combinations needed to test in the analyses; however this also led to

several problems.

First, by identifying these effects separately within each cluster, what made

a particular cluster have a higher risk effect compared to other clusters was

not identified. Additionally, the choice of interactions often did not reflect the

unique attributes of the specific cluster, and by using only pairwise combina-

tions the complexity inherent in the multi-morbidity data was not being re-

flected in the analyses. In addition, O/E ratios are calculated relative to the

prevalence of a condition in the whole sample, meaning conditions with lower

prevalence were often attributed with very high O/E ratios, while it was much

harder for a cluster to be differentiated based on a highly prevalent disease

such as dementia, which was not associated with any cluster through O/E

ratios, despite having over 50% prevalence in many clusters. This meant the

decision rules used to select chronic conditions for interaction did not always

identify the most salient combinations for a particular cluster and reduced the

overall quality of the findings. Finally, adopting a data-driven systematic ap-

proach approach meant the interaction of conditions was not based on pre-

determined clinically viable mechanisms, which were expected to impact falls.

A data-driven approach was adopted for this stage due to time and resource

constraints and the need to develop some way of selecting conditions to inter-

act in a re-producible way. The combination of these problems and the limi-

tations mentioned previously may have contributed to much of the insignifi-

cance of many of the interaction effects in the analysis in Section 5.5.

The research conducted in this thesis had to contend with challenging circum-

stances regarding the availability of data, and fallout from the COVID-19 pandemic.

However, as is discussed in Section 6.6 these challenges motivated creative solutions

that led to novel contributions to knowledge being derived.
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6.6 Novel Contributions to Knowledge

This thesis makes an important contribution to new knowledge in several ways sur-

rounding the methods used, reviews of the literature, and results found. The reviews

of literature in Chapters 2 and 3 addressed unanswered questions on topics within

Traumatic Brain Injuries, and falls. This led to the identification of key themes and

conclusions, which were applied in developing the research methodology and im-

pacted the direction of the analyses.

The Chapter 2 review introduced novelty by comparing the effectiveness of ma-

chine learning approaches for mortality prediction following TBI. This review identi-

fied that there was no objectively best model developed, due to differences in under-

lying samples and information available. Furthermore, the review identified a need

to improve the transparency and reporting of performance metrics and decisions

made in training such that models developed could by compared in future. This

review impacted the direction of the research presented in the thesis by prompting

a change in direction towards exploring falls in older adults. This was due to falls

causing the majority of TBIs in older adults and age was a consistently important

factor in the studied ML models regarding mortality following TBI in the Chapter 2

review (Lawrence et al., 2016).

The Chapter 3 review was the first to identify conditions associated with changes

in falls risk from the range of reviews published since 2000 using a review of reviews

format. While individual reviews have drawn conclusions, there has been no previ-

ous attempt to draw their conclusions together in a single summary of the literature

surrounding falls risk increasing chronic health conditions. This was a gap that the

Chapter 3 review filled, with the resulting shortlist of chronic health conditions used

as the basis for the regression models using individual chronic conditions in Sections

5.4 and 5.5.

This is the first empirical research study to identify clusters of chronic health con-

ditions in UK based care home residents, and link these clusters with fall presenta-

tions to the emergency department. Additionally, this was undertaken using a novel

combination of methods involving the three step analyses of MCA pre-processing of
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chronic condition data, cluster analysis to form groups of sample members with sim-

ilar chronic condition records, and inclusion of cluster membership as an explana-

tory variable for regression with falls as an outcome.

Throughout these analyses, the resulting models demonstrated the inconsistent

effects of multi-morbidity on falls in older adults. This means that there is possi-

ble scope for improving falls risk prediction models that are used in highly multi-

morbid populations.

As a result of the novel combination of methods, estimates for the effect of mem-

bership in patterns of multi-morbidity were derived, which allowed a comparative

analysis to identify those patterns that most impacted falls in care home residents.

This is a new application of existing approaches to the question of falls risk in older

adults, which can be replicated in future studies.

This approach could also be applied to new data sets because it is based on the

commonly available two digit ICD-10 codes. Additionally, in comparison with pre-

vious studies focused on multi-morbidity in older adults, the research presented in

this thesis adds to the body of evidence through the number of conditions included

in the analysis, and the full picture these provided surrounding multi-morbidity in

UK care home residents.

The research presented in this thesis also involved the use of a unique data set,

developed as part of the HDRUK ’Learning Care Homes: Continuous improvement

of structured referrals’ project (Saliba and Buchanan, 2020). By using a data set based

covering an entire NHS trust, robust analyses were developed, which avoided prob-

lems arising from single centre, or provider bias.

6.7 Recommendations for Future Research

Many of the limitations encountered in the thesis relate to data quality and usabil-

ity. Therefore, the primary recommendation for future research into falls in the care

home is the development of a standardised data set, which is consistent across care

homes. Development of a minimum data set, similar to that seen in the US, for use in

care homes would allow research into key geriatric syndromes such as falls through
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accurate identification at the care home level without the need for researchers to de-

velop bespoke data sets. Moving away from bespoke data sets into a standardised

environment would be hugely beneficial to the falls risk prediction literature, as a

common data set could be used to train, test, and apply these models in practice,

which will inevitably lead to improvements in performance and usability. This is es-

pecially important when researching multi-morbidity patterns in data using cluster

algorithms, which are highly susceptible to changes in the underlying data, which

makes comparison of results between studies challenging. Furthermore, if a stan-

dardised data set is compiled in the community setting, research into the progres-

sion of multi-morbidity and health outcomes during the transition between the com-

munity and care home settings setting would be made possible. Additionally, this

standardised data set could be a source of more accurate records such that the ap-

proaches taken in this thesis could be repeated using more reliable base data across

multiple regions of the UK, rather than a single NHS trust.

An opportunity for future research also exists in the linking of multi-morbidity

patterns in the community setting with fall rates. Using a similar approach to that

used in this thesis would also allow for further investigation of how chronic dis-

ease patterns progress between the community and care home settings and whether

relationships with falls change during this transition.

Additionally, authors should move away from treating ’multi-morbidity’ as a

single effect that can be captured in a single measure or estimate, rather multi-

morbidity is context specific and will have different effects dependent on the con-

ditions, and treatments an individual experiences. Therefore further research is

needed into how the individual complexity in multi-morbidity can be incorporated

into falls risk models in such a way that the mechanisms are methodologically valid,

and understandable to clinicians.

In summarising this individual level complexity, further study is needed to iden-

tify combinations of chronic conditions that relate to falls in care homes, such that

the findings from this research can be validated in external populations. Identi-

fying consistent combinations of chronic conditions is essential for improving the

performance and usability of models with larger prediction horizon. This is espe-

cially important in the context of an ageing population in a resource constrained
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healthcare setting. Pursuing approaches that allow individuals to be members of

multiple multi-morbidity groupings rather than attempting to define them into sin-

gle groups is desirable to reflect the individual heterogeneity in the presentation of

multi-morbidity. Network analysis allows effective visualisation of multi-morbidity

patterns, and using this in conjunction with cluster approaches may provide further

opportunities to explore the role of multi-morbidity in falls risk (Hernández, Reilly,

and Kenny, 2019).

Finally, the movement towards tailored individual risk scores based on specific

chronic conditions on record and observations in electronic health records would

allow for a greater degree of personalisation in the management of falls risk. How-

ever, research evaluating the effectiveness of combinations tying together the output

from falls risk models with specific interventions and mitigations to allow for this

personalisation will also be required in future.

6.8 Concluding Comments

6.8.1 Reflections on the PhD Process

The PhD process has been a challenging endeavour, but not for the reasons I ex-

pected, and I will carry forward several key lessons into my future career. The chal-

lenges discussed in this section have demonstrated to me the importance of seeking

out advice, finding roles that allow me to work with others, and believing that my

abilities and work rate are enough to be proud of. I see now that the PhD process

is primarily intended to develop an early career researcher, as well as the pursuit of

actionable research findings. While it is difficult to distil the lessons of the last three

years into a narrative, the discussion that follows will attempt to draw together the

experiences that shaped the PhD experience and make clear the lessons I have drawn

from each.

The isolationist tendency brought on during the pandemic had a subtle effect on

my desire to ask for help. Starting the PhD during this period meant I did not see

another PhD student struggling, having difficulties, or seeking the advice through-

out the first year. Instead I saw only progress during infrequent group meetings.

I think now that not seeing others asking for help, which they undoubtedly were,
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influenced a sub-conscious calculation that asking for help was an admission of fail-

ure in some way. Laid on top of this was an assumption that failure was an absolute

threshold beyond which lies little prospect of a rewarding career. This unwilling-

ness to reach out for help, and aversion to asking for advice greatly hampered me

through the course of the PhD, and I definitely experienced much unnecessary stress

around expectations, and personal failings throughout the three years. This ate up

much of the bandwidth in my mind at times, however I do not regret these periods,

for they helped me see the behaviours that I can change that made me more resilient

in the long term. Moving to a place where I see seeking help and advice as a sign of

strength through showing the desire to improve is now a major goal in my personal

development. Towards this aim I intend to set measurable goals, which will help

me break out the habit of isolationism in work. I see this development in mindset as

one of the major victories during the PhD process, and can see this change will pay

dividends throughout my career.

The second reflection I will make on the last three years is linked to the unwill-

ingness to ask for help discussed previously. I think now that some of the reason

I was unwilling to ask for help related to my views at the time of my abilities as a

researcher and how hard I was working. Seeing my own view as a single opinion,

rather than a measure of absolute fact has been a major development through the

PhD. The effects of these negative personal views meant I was very susceptible to

focusing on the negative aspects of feedback, decisions taken during the research,

and results rather than seeing these things on a continuum. By not seeing the posi-

tive attributes of what I had done, my overall view of the projects progress was often

completely at odds to those around me. I categorised everything in terms of either

success or failure, and failed to see the limitations of this. Reflecting on this there

are several lessons to be learned, which can be applied in future. First, it is clear I

was caught in the simultaneous grip of imposter syndrome, perceived expectations

of others, high personal expectations of myself, and a degree of perfectionism. I

believe the root of all these challenges come from a fear of exposing myself to uncer-

tainty. In order to overcome this I intend to have a focus on actively seeking out and

reflecting upon feedback until this becomes a habit. Furthermore, within this I need

to focus on seeing both the positive and negative aspects of feedback with an equal
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degree of weight and recognise my own tendency to focus on the negative. Finally, I

need to recognise all outcomes exist on a spectrum and accept that my best effort is

enough, rather than tying my view of the effort to the outcome that occurred. I think

these lessons will help me develop a healthier approach to work in future if applied

effectively.

The final reflection on the PhD process to be discussed is my approach to prob-

lem solving, and how I manage this process internally. Throughout the PhD my

approach to problem solving was to consume myself with the details, and obsess

until a solution was found. However, this often led to situations where only I un-

derstood the reasoning for a solution, or where errors occurred, I had to re-approach

the problem entirely. I have begun to accept that problems experienced in work do

not reflect negatively on my abilities. Furthermore, focusing on why the problem

occurred and blaming myself does not solve problems. To overcome these tenden-

cies I have accepted that when a problem occurs I have the responsibility to handle

it effectively, then put in place steps to ensure it does not happen again rather than

wasting effort and time blaming myself for not forseeing the difficulties. By chang-

ing my focus from things I cannot control such as past actions, into how I act in the

moment and work towards finding a solution I am more efficient and positive as a

worker, whilst also being more sustainable in my approach to work.

While my PhD experience has been far from linear, the lessons learned, chal-

lenges overcome, and mindset shift has been worth the time spent irrespective of

whether I attain the degree. Divorcing the success of the project from the results of

the research was the single poignant change, that allowed me to grow as a researcher,

and gave me the space to unpick the lessons discussed in this section, which will

support me throughout my career.

6.8.2 Overall Conclusion

The research presented in this thesis is directed towards identifying patterns of

multi-morbidity in care home residents, and how these patterns relate to falls. De-

spite failing to identify specific combinations of multi-morbidity that impact falls

risk through interaction analyses, the results still provide evidence that the impact

of multi-morbidity on falls is context specific. Four patterns of multi-morbidity were
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identified in the solution, which all raised the risk of fall presentations to the emer-

gency department. These were cardiovascular conditions with and without associ-

ated metabolic syndrome conditions, a late stage development of the cardiovascular-

metabolic syndrome pattern with associated neurological components. Further group-

ings related to neuro-degenerative conditions were identified without a psychiatric

component. Finally, a neurological-psychiatric pattern was identified with sensory,

digestive, and musculoskeletal components beyond those seen in the community

setting. While further research is needed in care home populations to validate these

patterns, their being broadly in accordance with previous findings from the com-

munity setting provide support for their validity. Fall risk prediction models used

in highly multi-morbid samples need to adopt an approach to incorporate some of

the individuality present in multi-morbidity rather than adopting over-generalised

approaches. Future research needs to be directed towards identifying the impacts

of multi-morbidity on falls due to the expansion of multi-morbidity resulting from

the ageing population. Furthermore, the development of minimum standardised

data sets across care homes in the UK would allow further development of falls risk

prediction models in this population.
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TABLE A.1: Medline Search Terms: 202 Papers returned

Filters (2015, English)
Concept Terms
Prediction Predict*.ti,ab. or *Prognosis/ or *Risk/ or Prognos*.ti,ab.

or risk*.ti,ab. or likelihood.ti,ab. or *Probability/ or *Like-
lihood Functions/ or probability.ti,ab. or chance.ti,ab. or
*Odds Ratio/ or odds.ti,ab.

Machine Learning and
statistical approaches

exp Regression Analysis/ or regression.ti,ab. or logis-
tic.ti,ab. or exp Machine Learning/ or machine learn-
ing.ti,ab. or *Neural Networks, Computer/ or neural net-
work*.ti,ab. or *Decision Trees/ or Decision Tree*.ti,ab.
or Random For?est*.ti,ab. or *Artificial Intelligence/ or
AI.ti,ab. or Artificial Intelligence.ti,ab. or *Models, Statis-
tical/ or Transfer Learning.ti,ab. or *Support Vector Ma-
chine/ or Support Vector Machine.ti,ab. or *Bayes Theo-
rem/ or na?ve bayes classifier.ti,ab. or exp Deep Learning/
or deep learning.ti,ab.

Mortality exp Mortality/ or mortality.ti,ab. or exp Death/ or
death.ti,ab. or die.ti,ab. or dying.ti,ab. exp Survival Anal-
ysis/ surviv*.ti,ab.

Emergency care exp Emergency Service, Hospital/ or Emergenc*.ti,ab. or
exp Critical Care/ or Intensive Care.ti,ab. or Critical
Care.ti,ab. or exp Ambulatory Care/ or Urgent.ti,ab. or
exp Emergency Medical Services/ or exp Trauma Centers/

Traumatic Brain Injuries exp Brain Injuries, Traumatic/ or traumatic Brain In-
jury.ti,ab. or brain injury.ti,ab. or head injury.ti,ab. or
TBI.ti,ab. or exp Brain Injuries/ or exp Skull Fractures/

Adults exp Adult/
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TABLE A.2: Embase Search Terms: 652 Papers returned

Filters 2015+, English
Concept Terms
Prediction *prediction/ or Predict*.ti,ab. or *prognosis/ or *risk/ or

Prognos*.ti,ab. or risk*.ti,ab. or likelihood.ti,ab. or *proba-
bility/ or probability.ti,ab. or chance.ti,ab. or *odds ratio/
or odds.ti,ab.

Machine Learning and
statistical approaches

*multiple linear regression analysis/ or *multivariate logis-
tic regression analysis/ or *linear regression analysis/ or
*regression analysis/ or *multiple regression/ or *nonlin-
ear regression analysis/ or *logistic regression analysis/ or
regression.ti,ab. or logistic.ti,ab. or exp machine learning/
or machine learning.ti,ab. or *artificial neural network/
or neural network*.ti,ab. or *"decision tree"/ or Decision
Tree*.ti,ab. or Random For?est*.ti,ab. or *artificial intelli-
gence/ or Artificial Intelligence.ti,ab. or *statistical model/
or Transfer Learning.ti,ab. or *support vector machine/ or
Support Vector Machine.ti,ab. or *Bayesian learning/ or
naive bayes classifier.ti,ab. or exp deep learning/ or deep
learning.ti,ab.

Mortality exp mortality/ or mortality.ti,ab. or exp death/ or
death.ti,ab. or die.ti,ab. or dying.ti,ab. or surviv*.ti,ab. or
exp Survival Analysis/

Emergency care exp emergency care/ or Emergency*.ti,ab. or exp intensive
care/ or Intensive.ti,ab. or Critical.ti,ab. or exp ambulatory
care/ or Urgent.ti,ab. or exp emergency health service/

Traumatic Brain Injuries exp traumatic brain injury/ or traumatic Brain Injury.ti,ab.
or brain injury.ti,ab. or exp brain injury/ or head in-
jury.ti,ab. or exp head injury/ or TBI.ti,ab. or exp skull
fracture/

Adults exp Adult/
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TABLE A.3: Web of Science Search Terms: 147 Papers returned

Filters Core collection, 2015-21, English, articles
Concept Terms
Prediction TI = (Predict OR Prognosis OR Risk OR Prognostic OR like-

lihood OR Probability OR chance OR odds) OR AB = (Pre-
dict OR Prognosis OR Risk OR Prognostic OR likelihood
OR Probability OR chance OR odds)

Machine Learning and
statistical approaches

TI = (Regression OR logistic OR Machine Learning OR
Neural Network OR Decision Tree OR Random Forest OR
Random Forrest OR Artificial Intelligence OR Statistical
Model OR Transfer Learning OR Support Vector Machine
OR naive bayes classifier OR Deep Learning) OR AB = (Re-
gression OR logistic OR Machine Learning OR Neural Net-
work OR Decision Tree OR Random Forest OR Random
Forrest OR Artificial Intelligence OR Statistical Model OR
Transfer Learning OR Support Vector Machine OR naive
bayes classifier OR Deep Learning)

Mortality TI = (Mortality OR Death OR die OR dying OR survive OR
survival) OR AB = (Mortality OR Death OR die OR dying
OR survive OR survival)

Emergency care TI = (Emergency Care OR Critical OR Ambulatory OR Ur-
gent OR Emergency Medical Service OR Emergency De-
partment OR Emergency) OR AB = (Emergency Care OR
Critical OR Ambulatory OR Urgent OR Emergency Medi-
cal Service OR Emergency Department OR Emergency)

Traumatic Brain Injuries TI = (Traumatic Brain Injury OR Brain Injury OR Head In-
jury OR TBI OR Skull Fracture) OR AB = (Traumatic Brain
Injury OR Brain Injury OR Head Injury OR TBI OR Skull
Fracture)
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TABLE A.4: CINAHL Search Terms

Search Query Results
S1 (MM "Trauma+") 12,636
S2 TI trauma* or AB Trauma* 120,502
S3 TI injur* or AB injur* 220,789
S4 TI wound* or AB wound* 52,290
S5 TI pierc* or AB pierc* 1,414
S6 TI penetrat* or AB penetrat* 12,557
S7 TI broken or AB broken 4,091
S8 TI break or AB break 10,206
S9 (S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR

S7 OR S8)
358,097

S10 (MH "Prediction Models") 270
S11 TI predict* or AB predict* 372,640
S12 (MM "Prognosis+") 66,949
S13 TI Prognos* or AB Prognos* 111,411
S14 TI risk or AB risk 736,168
S15 TI likelihood or AB likelihood 45,470
S16 (MM "Probability+") 2,980
S17 TI probability or AB probability 39,006
S18 TI chance or AB chance 22,324
S19 (MM "Odds Ratio") 195
S20 TI Odds or AB Odds 127,158
S21 S10 OR S11 OR S12 OR S13 OR S14 OR S15

OR S16 OR S17 OR S18 OR S19 OR S20
1,200,859

S22 (MM "Regression+") 1,544
S23 TI regression or AB regression 253,524
S24 TI logistic or AB logistic 122,149
S25 (MM "Machine Learning+") 1,124
S26 TI machine learning or AB machine learn-

ing
6,132

S27 (MM "Neural Networks (Computer)") 1,474
S28 TI neural network or AB neural network 4,405
S29 (MM "Decision Trees+") OR (MM "Ran-

dom Forest")
540

S30 TI Decision Tree or AB Decision Tree 2,382
S31 TI Random Forest or AB Random Forest 1,541
S32 (MM "Artificial Intelligence+") 12,374
S33 TI Artificial Intelligence or AB Artificial

Intelligence
3,397

S34 (MM "Models, Statistical+") 9,491
S35 TI Transfer Learning or AB Transfer

Learning
802

S36 (MH "Support Vector Machine") 30
S37 TI Support Vector Machine or AB Support

Vector Machine
1,853

S38 TI naive bayes or AB naive bayes 328
S39 TI bayesian or AB bayesian 6,698
S40 (MH "Deep Learning") 458
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TABLE A.4: CINAHL Search Terms

Search Query Results
S41 TI deep learning or AB deep learning 2,118
S42 (S22 OR S23 OR S24 OR S25 OR S26 OR

S27 OR S28 OR S29 OR S30 OR S31 OR S32
OR S33 OR S34 OR S35 OR S36 OR S37 OR
S38 OR S39 OR S40 OR S41)

299,858

S43 (MM "Mortality+") 31,611
S44 TI mortality or AB mortality 197,529
S45 (MM "Death+") 26,628
S46 TI Death or AB Death 177,026
S47 TI die or AB die 19,251
S48 TI dying or AB dying 16,328
S49 TI surviv* or AB surviv* 210,100
S50 S43 OR S44 OR S45 OR S46 OR S47 OR S48

OR S49
522,711

S51 (MM "Emergency Care+") 27,761
S52 TI Emergency or AB Emergency 129,457
S53 (MM "Critical Care") 15,055
S54 (MM "Intensive Care Units") 15,679
S55 TI Intensive or AB Intensive 90,625
S56 TI Critical or AB Critical 143,675
S57 (MM "Ambulatory Care") 6,724
S58 TI Urgent or AB Urgent 19,121
S59 (MM "Emergency Medical Services") 20,413
S60 S51 OR S52 OR S53 OR S54 OR S55 OR S56

OR S57 OR S58 OR S59
398,356

S61 S9 AND S21 AND S42 AND S50 AND S60 872
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TABLE B.1: Description of ML and Statistical Approaches Seen in Sys-
tematic Review

Approach Description and Characteristics
Logistic Regression
(LR)

LR is an example of a standard statistical approach, which transforms
a linear combination of input variable values into a non-linear sig-
moid function (s-shaped) using the logistic function. Following this
transformation, model estimates of the outcome value are bound be-
tween zero and one and interpreted as the predicted probability the
outcome will occur. Setting a threshold for this predicted probability
value allows LR to be used for binary classification problems. The
individual contributions of different input variables towards model
predictions are reported using odds ratios, which makes LR mod-
els more interpretable than other more complex ML methods. LR
assumes individuals can be separated using a linear decision bound-
ary. In addition, LR requires little to no multicollinearity between
input variables for unbiased predictions to be made.

Support Vector Ma-
chines (SVM)

SVMs create a linear decision boundary between different classes of
the outcome variable in higher dimensional space. Standard SVM in-
volves transforming the original data into a higher dimensional space
where the data points are linearly separable by a decision boundary.
This boundary is a hyperplane, which separates the data and max-
imises the margin between the separated classes. The margin being
maximised by an SVM refers to the perpendicular Euclidean distance
between the closest data points (support vectors) on either side of the
hyperplane (Kelleher et al. 2015). Predictions are made by an SVM
based on the position of new data points to the decision boundary.
Because the predictions made by an SVM only rely on the support
vector values, there is a reduced risk of overfitting the data compared
to other ML approaches (Kelleher et al. 2015).

Artificial Neural
Networks (ANN)

Artificial Neural Networks (ANN) are a collection of iterative error-
based learning approaches, which use layers of connected nodes
(neurons) to model complex non-linear relationships between out-
come and predictor variables. Connections between nodes in an
ANN represent the strength of association between features. While
unsupervised ANN algorithms exist, those seen in this review were
all supervised. Supervised ANN are trained using back-propagation
of the weighted connections and stochastic gradient descent. Effec-
tively this means the ANN will make a single pass over the training
data, identify where wrong predictions were made on average and
iteratively update the weights of the connections such that fewer er-
rors are made in the next pass of the training data. This approach is
known as stochastic gradient descent with the intention that an ANN
will be trained once the average error stops decreasing, falls below a
predefined threshold, or passes a certain number of pre-defined iter-
ations. This learning approach does raise the issue of local minima,
where the model settles on a sub-optimal outcome due to the com-
plexity of the underlying error surface. However, local minima are
not by-default problematic as a global minima will likely be overfit
to the training data.
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TABLE B.1: Description of ML and Statistical Approaches Seen in Sys-
tematic Review

Approach Description and Characteristics
Naïve Bayes Classi-
fier (NB)

Naïve Bayes models are a relatively simple ML method, which have
fast training times and require less computing power to run than
other more complex approaches. This is achieved through the ap-
plication of Bayes theorem and the use of the class conditional inde-
pendence (CI) assumption to enable high dimensional probabilities
to be estimated using one-dimensional conditional probabilities. CI
refers to a property where the effect of an attribute value on a given
class is independent of the values of the other attributes (Han et al.
2006). The CI assumption is not expected to hold, which is why these
models are named naive Bayes. However, NB still achieves compara-
tive predictive performance when applied to real world data for clas-
sification. This is because predictions are made based on the rela-
tive sizes of the predicted probabilities, rather than the probabilities
themselves. This means the model is somewhat robust to errors when
calculating the exact probabilities. NB models also benefit from fast
training times as relatively few predicted probabilities need to be cal-
culated and these calculations are simplified through the CI assump-
tion.

Decision Tree (DT) DTs make predictions through a series of ordered tests of the explana-
tory variable values. Tree based models start with an initial test at the
root node, followed by further tests in interior nodes until the tree
terminates at a leaf node. When training a DT, each node is chosen
in a way that best splits the data such that there is homogeneity of
classes in the resulting partitions. This is also referred to as maximis-
ing the information gain, by using the explanatory variable that is
most informative of the outcome classes to form the node. The aim
in a DT is to finish with leaf nodes that have maximum purity, mean-
ing there is maximal separation between the classes. During testing
new instances are classified based on the majority class in the result-
ing leaf node. A major decision to be made in the development of
a DT is what stopping criteria to use. Stopping criteria are required
because DTs are inherently susceptible to overfitting, as an algorithm
can continue until every point occupies a leaf node. Frequently used
criteria are stopping splits being made when the number of resulting
instances fall under a user defined threshold, minimum information
gain, and maximal tree depth. The major advantages of DT mod-
els is their ease of interpretation and clarity of how predictions are
made. Also, once trained these models require very little computing
power to use, as new instances only need to be run through a series
of threshold or categorical tests.

Random Forest (RF) RF is an ensemble learning approach, where the predictions of mul-
tiple weak DT models are combined to make predictions with higher
performance. In binary outcome prediction, Random Forests work
by training many different DT models on resampled data, then clas-
sifying a new instance based on the majority vote of all the trees. The
reason behind this data resampling is to make the resulting ensemble
model more robust to changes in the sample data, with the hope that
this translates to better generalisability in new settings.
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TABLE C.1: Included Study predictors
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Demographic
Age 15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Gender 8 Yes Yes Yes Yes Yes Yes Yes Yes
Ethnicity/Race 3 Yes Yes Yes

Clinical:
GCS Score 10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
GCS Eye 2 Yes Yes
GCS Verbal 2 Yes Yes
GCS Motor
Score

7 Yes Yes Yes Yes Yes Yes Yes

IMPACT 2 Yes Yes
ISS 5 Yes Yes Yes Yes Yes
Comorbidities 4 Yes Yes Yes Yes
Pupillary Reac-
tivity

11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Pupil Size 5 Yes Yes Yes Yes Yes
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TABLE C.1: Included Study predictors
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In-hospital
Complications

2 Yes Yes

Injury Charac-
teristics
MOI 3 Yes Yes Yes

Physiological:
Heart Rate 4 Yes Yes Yes Yes
Systolic Blood
Pressure (SBP)

4 Yes Yes Yes Yes

Diastolic blood
pressure (DBP)

2 Yes

INR (int norm
rat)

4 Yes Yes Yes Yes

Blood Glucose
Level

3 Yes Yes Yes
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TABLE C.1: Included Study predictors
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White Blood
Cell Count

2 Yes Yes

Hypoxemia 2 Yes yes
Hypotension 3 Yes Yes yes
Hypoxia 2 Yes Yes
Intracranial
Pressure (ICP)
monitor infor-
mation (catchall)

3 Yes Yes Yes

Cerebral perfu-
sion pressure
(CPP)

2 Yes Yes

Mean Arterial
Pressure (MAP)

4 Yes Yes Yes Yes

Pressure Re-
activity Index
(PRx)

2 Yes Yes

Respiratory rate 2 Yes Yes
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TABLE C.1: Included Study predictors
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Alcohol-Blood
Level

2 Yes Yes

Radiology:
Subdural
hematoma

3 Yes Yes Yes

Subarachnoid
haemorrhage

4 Yes Yes Yes Yes

epidural haem-
orrhage

2 Yes Yes

subdural haem-
orrhage

2 Yes Yes

Epidural
haematoma
(Mass?)

2 Yes Yes

Epidural
hematoma

2 Yes Yes
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TABLE C.1: Included Study predictors
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CT Diagno-
sis/Findings

2 Yes Yes

Cistern Status
(traj, perf, penet)

2 Yes Yes

intraventricular
haemorrhage

2 Yes Yes

Miscellaneous:
Hospital Fixed
Effects

3 Yes Yes Yes

Regional Fixed
Effects

2 Yes Yes
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Abujaber
(2020)

In hospital
Mortality

12.5 1620 1 All In-
cluded

ANN 70/30 RS 0.94 62 96 92 96 66 - CCA

Abujaber
(2020)

In hospital
Mortality

12.5 1620 2 All In-
cluded

SVM 70/30 RS 0.96 73 99 96 88 88 - CCA

Alsulaim
(2017)

In hospital
Mortality

9.9 93,397 1 Hypothesis
Based

LR - - 0.70 - - - - - - CCA

Alsulaim
(2017)

In hospital
Mortality

9.9 93,397 2 Hypothesis
Based

LR - - 0.77 - - - - - - CCA

Alsulaim
(2017)

In hospital
Mortality

9.9 93,397 3 Hypothesis
Based

LR - - 0.83 - - - - - - CCA

Alsulaim
(2017)

In hospital
Mortality

9.9 93,397 4 Hypothesis
Based

LR - - 0.81 - - - - - - CCA

Alsulaim
(2017)

In hospital
Mortality

9.9 93,397 5 Hypothesis
Based

LR - - 0.86 - - - - - - CCA

Alsulaim
(2017)

In hospital
Mortality

9.9 93,397 6 Hypothesis
Based

LR - - 0.87 - - - - - - CCA

Amorim
(2020)

14 Day Mor-
tality

22.8 517 1 Previous
Literature

NB Unclear 5-F
CV

0.91 - - - - - - MI

Amorim
(2020)

14 Day Mor-
tality

22.8 517 2 Previous
Literature

BGLM Unclear 5-F
CV

0.88 - - - - - - MI

Amorim
(2020)

14 Day Mor-
tality

22.8 517 3 Previous
Literature

PDA Unclear 5-F
CV

0.88 - - - - - - MI

Amorim
(2020)

14 Day Mor-
tality

22.8 517 4 Previous
Literature

RF Unclear 5-F
CV

0.88 - - - - - - MI
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Amorim
(2020)

In hospital
Mortality

30.9 517 5 Previous
Literature

RF Unclear 5-F
CV

0.84 - - - - - - MI

Amorim
(2020)

In hospital
Mortality

30.9 517 6 Previous
Literature

GPLM Unclear 5-F
CV

0.83 - - - - - - MI

Amorim
(2020)

In hospital
Mortality

30.9 517 7 Previous
Literature

SGB Unclear 5-F
CV

0.82 - - - - - - MI

Amorim
(2020)

In hospital
Mortality

30.9 517 8 Previous
Literature

PDA Unclear 5-F
CV

0.80 - - - - - - MI

Dawes
(2015)

In hospital
Mortality

38.8 822 1 Previous
Literature

LR - - 0.94 - - - - - - MI

Fontoura-
Solla (2020)

14 Day Mor-
tality

22.8 517 1 Univariate
Models

LR - - 0.85 - - - - - HL
and
Brier

CCA

Fontoura-
Solla (2020)

14 Day Mor-
tality

22.8 517 2 Univariate
Models

LR - - 0.81 - - - - - HL
and
Brier

CCA

Han (2017) 14 Day Mor-
tality

- 300 1 Univariate
Models

LR - BS 0.81 69 82 - 75 77 HL
and
Brier

CCA

Han (2017) 14 Day Mor-
tality

- 300 2 Univariate
Models

LR - BS 0.84 76 83 - 79 80 HL
and
Brier

CCA

Han (2017) 6 month
mortality

- 300 3 Univariate
Models

LR - BS 0.81 80 71 - 75 77 HL
and
Brier

CCA
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Han (2017) 6 month
mortality

- 300 4 Univariate
Models

LR - BS 0.84 82 72 - 77 77 HL
and
Brier

CCA

Junior
(2017)

In hospital
Mortality

19.1 1275 1 Unclear LR - - 0.77 - - - - - HL -

Kelly (2015) 30 Day Mor-
tality

21,
16

3496 1 Univariate
Models

LR - - 0.84 - - - - - - CCA

Kelly (2015) 6 month
mortality

21,
16

3496 2 Univariate
Models

LR - - 0.82 - - - - - - CCA

Kim (2020) In hospital
Mortality

48.1 54 1 Univariate
Models

DT - - - - - - - - - CCA

Lu (2015) 6 month
mortality

25.2 115 1 Situation
Based

ANN - 10-
F
CV

0.81 62 90 - - - CR CCA

Lu (2015) 6 month
mortality

25.2 115 2 Situation
Based

NB - 10-
F
CV

0.90 81 91 - - - CR CCA

Lu (2015) 6 month
mortality

25.2 115 3 Situation
Based

DT - 10-
F
CV

0.78 70 92 - - - CR CCA

Lu (2015) 6 month
mortality

25.2 115 4 Situation
Based

LR - 10-
F
CV

0.87 68 91 - - - CR CCA
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Muehl-
schlegel
(2016)

Inpatient
Survival

42.4 413 1 Univariate
Models

LR - - 0.93 - - - - - - CCA

Muehl-
schlegel
(2016)

Inpatient
Survival

42.4 413 2 Univariate
Models

LR - - 0.96 - - - - - - CCA

Muehl-
schlegel
(2016)

Inpatient
Survival

42.4 413 3 Univariate
Models

LR - - 0.96 - - - - - - CCA

Muehl-
schlegel
(2016)

Inpatient
Survival

42.4 413 4 Univariate
Models

LR - - 0.95 - - - - - - CCA

Muehl-
schlegel
(2016)

Inpatient
Survival

42.4 413 5 Univariate
Models

LR - - 0.97 - - - - - - CCA

Najafi (2018) 24hr Mortal-
ity

14 185 1 Univariate
Models

LR - - - - - 93 - - HL CCA

O’Briain
(2018)

In hospital
Mortality

17.2 24148 1 Unclear LR - - 0.88 - - - - - - CCA

O’Briain
(2018)

In hospital
Mortality

17.2 24148 2 Unclear LR - - 0.88 - - - - - - CCA

Prosser
(2020)

30 Day Sur-
vival

23,
8

355 1 Unclear LR - - 0.88 - - - - - - MI
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Raj (2019) 30 Day Mor-
tality

19 472 1 Recursive
Feature
Elimina-
tion

LR - 5-F
CV

0.67 - - - - - - CCA

Raj (2019) 30 Day Mor-
tality

19 472 2 Recursive
Feature
Elimina-
tion

LR - 5-F
CV

0.72 - - - - - - CCA

Thelin
(2016)

Long Term
GOS

20 417 1 Univariate
Models

LR - - - - - - - - - MI

Thelin
(2016)

Long Term
GOS

20 417 2 Univariate
Models

LR - - - - - - - - - MI

Thelin
(2016)

Long Term
GOS

20 417 3 Univariate
Models

LR - - - - - - - - - MI

Thelin
(2016)

Long Term
GOS

20 417 4 Univariate
Models

LR - - - - - - - - - MI

Thelin
(2016)

Long Term
GOS

20 417 5 Univariate
Models

LR - - - - - - - - - MI

Thelin
(2016)

Long Term
GOS

20 417 6 Univariate
Models

LR - - - - - - - - - MI

Wan-Ting
(2020)

In hospital
Mortality

24.7 438 1 Situation
Based

LR - - 0.76 71 75 - 89 49 HL CCA

Winans
(2020)

In hospital
Mortality

40 402 1 Unclear LR - - 0.91 75 93 - - - - CCA
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Wu (2020) In hospital
Mortality

9 212666 1 Previous
Literature

SVM 80/20 10-
F
CV

0.79 75 83 79 - 31 - CCA

Wu (2020) In hospital
Mortality

9 212666 2 Previous
Literature

SVM 80/20 - - - - 79 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 3 Previous
Literature

SVM 80/20 - - - - 80 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 4 Previous
Literature

LR 80/20 - - - - 80 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 5 Previous
Literature

KNN 80/20 - - - - 81 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 6 Previous
Literature

DT 80/20 - - - - 79 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 7 Previous
Literature

GNBC 80/20 - - - - 74 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 8 Previous
Literature

LDA 80/20 - - - - 81 - - - CCA

Wu (2020) In hospital
Mortality

9 212666 9 Previous
Literature

SVM 80/20 10F
CV

0.76 71 - 81 - 27 - CCA

Zeiler (2018) 6 month
mortality

- 358 1 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 2 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 3 Hypothesis
Based

LR - - 0.84 - - - - - - -
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Zeiler (2018) 6 month
mortality

- 358 4 Hypothesis
Based

LR - - 0.86 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 5 Hypothesis
Based

LR - - 0.86 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 6 Hypothesis
Based

LR - - 0.85 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 7 Hypothesis
Based

LR - - 0.76 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 8 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 9 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 10 Hypothesis
Based

LR - - 0.81 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 11 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 12 Hypothesis
Based

LR - - 0.81 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 13 Hypothesis
Based

LR - - 0.76 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 14 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 15 Hypothesis
Based

LR - - 0.80 - - - - - - -
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Zeiler (2018) 6 month
mortality

- 358 16 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 17 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 18 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 19 Hypothesis
Based

LR - - 0.78 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 20 Hypothesis
Based

LR - - 0.81 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 21 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 22 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 23 Hypothesis
Based

LR - - 0.83 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 24 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 25 Hypothesis
Based

LR - - 0.76 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 26 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 27 Hypothesis
Based

LR - - 0.79 - - - - - - -
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Zeiler (2018) 6 month
mortality

- 358 28 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 29 Hypothesis
Based

LR - - 0.82 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 30 Hypothesis
Based

LR - - 0.80 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 31 Hypothesis
Based

LR - - 0.74 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 32 Hypothesis
Based

LR - - 0.74 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 33 Hypothesis
Based

LR - - 0.74 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 34 Hypothesis
Based

LR - - 0.74 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 35 Hypothesis
Based

LR - - 0.75 - - - - - - -

Zeiler (2018) 6 month
mortality

- 358 36 Hypothesis
Based

LR - - 0.74 - - - - - - -

Zeiler (2020) 6 month
mortality

20.7 193 1 Univariate
Models

LR - - 0.71 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 2 Univariate
Models

LR - - 0.78 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 3 Univariate
Models

LR - - 0.81 - - - - - - Imp
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Zeiler (2020) 6 month
mortality

20.7 193 4 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 5 Univariate
Models

LR - - 0.78 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 6 Univariate
Models

LR - - 0.80 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 7 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 8 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 9 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 10 Univariate
Models

LR - - 0.83 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 11 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 12 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 13 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 14 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 15 Univariate
Models

LR - - 0.81 - - - - - - Imp
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Zeiler (2020) 6 month
mortality

20.7 193 16 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 17 Univariate
Models

LR - - 0.67 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 18 Univariate
Models

LR - - 0.77 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 19 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 20 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 21 Univariate
Models

LR - - 0.75 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 22 Univariate
Models

LR - - 0.78 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 23 Univariate
Models

LR - - 0.79 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 24 Univariate
Models

LR - - 0.79 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 25 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 26 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 27 Univariate
Models

LR - - 0.81 - - - - - - Imp
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TABLE D.1: Systematic Review Model Performance Table

Author
(Year)

Outcome Prev.
(%)

Study
N.

MN Var. Selec-
tion

Model
Type

Training
Split

VM AUC Sen
(%)

Spec
(%)

Acc
(%)

NPV
(%)

PPV
(%)

Cal. MDH

Zeiler (2020) 6 month
mortality

20.7 193 28 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 29 Univariate
Models

LR - - 0.82 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 30 Univariate
Models

LR - - 0.80 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 31 Univariate
Models

LR - - 0.81 - - - - - - Imp

Zeiler (2020) 6 month
mortality

20.7 193 32 Univariate
Models

LR - - 0.81 - - - - - - Imp
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Prev = Prevalence of outcome in sample, Study N. = Study sample size, MN = Model Number, Var. Selection Method = Variable Selection Method, VM = Validation
Method, Sen = Sensitivity, Spec = Specificity, Acc = Accuracy, NPV = Negative Predictive Value, PPV = Positive Predictive Value, Cal. = Calibration, MDH = Missing
Data Handling, CCA = Complete Case Analysis, MI = Multiple Imputation, Imp = Imputation, - = Not Reported, 10-F CV = 10-fold cross validation, 5-F CV = 5 fold
cross validation, CR = Correction Rate, HL = Hosmer-Lemeshow P-Value Reported, Brier = Brier Score Reported, LR = Logistic Regression, SVM = Support Vector
Machine, ANN = Artificial Neural Network, NB = Naïve Bayes Classifier, DT = Decision Tree, RF = Random Forrest, KNN = K-Nearest Neighbours, BGLM = Bayesian
Generalised Linear Model , PDA = Penalised discriminant analysis, GPLM = Generalised Partial Least Squares, SGB = Stochastic Gradient Boosting, GNBC = Gaussian
Naïve Bayes Classifier, LDA = Linear Discriminate Analysis, BS = Bootstrapping
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TABLE E.1: Medline Search Terms: 68 Papers returned

Filters 2000-present, English Language, Reviews
Concept Terms
Accidental Falls exp Accidental Falls (27833)
Older Adults exp "Aged, 80 and over"/ or exp Aged/ (3436262)
Systematic Reviews exp "Systematic Review"/ (214346)
Multi-morbidity and
chronic disease

exp Comorbidity/ or exp Multiple Chronic Conditions/
or exp Multimorbidity/ or exp Chronic Disease/ or exp
neoplasms/ or exp musculoskeletal diseases/ or exp di-
gestive system diseases/ or exp stomatognathic diseases/
or exp respiratory tract diseases/ or exp otorhinolaryngo-
logic diseases/ or exp nervous system diseases/ or exp eye
diseases/ or exp urogenital diseases/ or exp cardiovascu-
lar diseases/ or exp "hemic and lymphatic diseases"/ or
exp "congenital, hereditary, and neonatal diseases and ab-
normalities"/ or exp "skin and connective tissue diseases"/
or exp "nutritional and metabolic diseases"/ or exp en-
docrine system diseases/ or exp immune system diseases/
(14293225)

TABLE E.2: Embase Search Terms: 103 Papers returned

Filters 2000-present, English Language, Reviews
Concept Terms
Accidental Falls exp falling/ (48625)
Older Adults exp aged/ or exp home for the aged/ (3549498)
Systematic Reviews exp "systematic review"/ (423082)
Multi-morbidity and
chronic disease

exp chronic disease/ or exp comorbidity/ or exp multi-
ple chronic conditions/ or exp neoplasm/ or exp muscu-
loskeletal disease/ or exp digestive system disease/ or exp
mouth disease/ or exp respiratory tract disease/ or exp
ear nose throat disease/ or exp neurologic disease/ or exp
eye disease/ or exp urogenital tract disease/ or exp car-
diovascular disease/ or exp lymphatic system disease/ or
exp skin disease/ or exp connective tissue disease/ or exp
metabolic disorder/ or exp endocrine disease/ or exp im-
munopathology/ (19414193)
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TABLE E.3: Web of Science Search Terms: 182 Papers returned

Filters 2000-present, English Language, Reviews
Concept Terms
Accidental Falls TI=(fall) OR AB =(fall) OR TI=(fallen) OR AB =(fallen)

OR TI=(accidental fall) OR AB =(accidental fall) OR
TI=(trip) OR AB =(trip) OR TI=(collapse) OR AB =(col-
lapse) (695727)

Older Adults TI=(Aged) OR AB =(Aged) OR TI=(Elderly) OR AB =(El-
derly) OR TI=(over 65) OR AB =(over 65) OR TI=(older)
OR AB =(older) (5179919)

Systematic Reviews TI=(systematic review) OR AB =(systematic review)
(379613)

Multi-morbidity and
chronic disease

TI=(multimorbidity) OR AB =(multimorbidity) OR
TI=(chronic) OR AB =(chronic) OR TI=(multimorbid) OR
AB =(multimorbid) OR TI=(multiple health conditions) OR
AB =(multiple health conditions) OR TI=(comorbidities)
OR AB =(comorbidities) OR TI=(comorbid) OR AB =(co-
morbid) OR TI=(comorbidity) OR AB =(comorbidity)
(1517019)

TABLE E.4: PROSPERO Search Terms: 136 Papers returned

Filters None
Concept Terms
Accidental Falls MeSH DESCRIPTOR Accidental Falls EXPLODE ALL

TREES OR accidental falls OR falls
Older Adults MeSH DESCRIPTOR Aged EXPLODE ALL TREES OR

MeSH DESCRIPTOR Aged, 80 and over EXPLODE ALL
TREES OR Elderly OR 65+ OR aged OR 65 OR 65 and over
OR aged 65 and over

Multi-morbidity and
chronic disease

MeSH DESCRIPTOR Chronic Disease EXPLODE ALL
TREES OR MeSH DESCRIPTOR Multiple Chronic Condi-
tions EXPLODE ALL TREES OR MeSH DESCRIPTOR Co-
morbidity EXPLODE ALL TREES OR MeSH DESCRIPTOR
Multimorbidity EXPLODE ALL TREES OR comorbidity
OR chronic disease
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TABLE E.5: CINAHL Search Terms: 17 Papers returned

Filters 2000-present, English Language, Reviews
Concept Terms
Accidental Falls (MH "Accidental Falls") (26,182)
Older Adults (MH "Aged+") OR (MH "Aged, 80 and Over+") (939,334)
Systematic Reviews (MH "Systematic Review") (118,910)
Multi-morbidity and
chronic disease

(MH "Mental Disorders, Chronic") OR (MH "Chronic Dis-
ease+") OR (MH "Comorbidity") OR (TI multimorbidity )
OR (AB multimorbidity ) (143,544)
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TABLE F.1: Fall Definition Code Descriptions

Category ICD-10 Code Description

Diagnosis Codes

Contusion/abrasion*
Dislocation/fracture/joint injury/amputation*
Head injury*
Laceration
Muscle/tendon injury
Soft tissue inflammation
Soft Tissue Inflammation (Hip) (Bilateral)
Sprain/ligament injury
Sprain/ligament injury (Cervical spine) (Not applicable)

Treatment Codes

Wound Closure/Dressing
Wound closure (excluding sutures) - other (e.g. clips)
Wound closure (excluding sutures) - wound glue
Wound closure (excluding sutures) - steristrips
Sutures - primary sutures
Sutures - secondary/complex suture
Dressing - dressing minor wound/burn/eye
Breaks/ Dislocations following trauma
Splint
Plaster of Paris - application Plaster of Paris
Manipulation - manipulation of upper limb fracture
Manipulation - manipulation of lower limb fracture
Manipulation - manipulation of dislocation
Sling/collar cuff/broad arm sling
Loan of walking aid (crutches)
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TABLE G.1: Charlson Comorbidity Index Codes

Condition ICD-10 Codes Points
AIDS B20, B21, B22, B24 6
Any malignancy, in-
cluding lymphoma and
leukemia, except malig-
nant neoplasm of skin

C00, C01, C02, C03, C04, C05, C06, C07, C08, C09,
C10, C11, C12, C13, C14, C15, C16, C17, C18, C19,
C20, C21, C22, C23, C24, C25, C26, C30, C31, C32,
C33, C34, C37, C38, C39, C40, C41, C43, C45, C46,
C47, C48, C49, C50, C51, C52, C53, C54, C55, C56,
C57, C58, C60, C61, C62, C63, C64, C65, C66, C67,
C68, C69, C70, C71, C72, C73, C74, C75, C76, C81,
C82, C83, C84, C85, C88, C90, C91, C92, C93, C94,
C95, C96, C97

2

Cerebrovascular disease G45, G46, H34.0, I60, I61, I62, I63, I64, I65, I66, I67,
I68, I69

1

Chronic pulmonary dis-
ease

I27.8, I27.9, J40, J41, J42, J43, J44, J45, J46, J47, J60,
J61, J62, J63, J64, J65, J66, J67, J68.4, J70.1, J70.3

1

Congestive heart failure I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5, I42.6,
I42.7, I42.8, I42.9, I43, I50, P29.0

1

Dementia F00, F01, F02, F03, F05.1, G30, G31.1 1
Diabetes with chronic
complication

E10.2, E10.3, E10.4, E10.5, E10.7, E11.2, E11.3,
E11.4, E11.5, E11.7, E12.2, E12.3, E12.4, E12.5,
E12.7, E13.2, E13.3, E13.4, E13.5, E13.7, E14.2,
E14.3, E14.4, E14.5, E14.7

2

Diabetes without chronic
complication

E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1,
E11.6, E11.8, E11.9, E12.0, E12.1, E12.6, E12.8,
E12.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0,
E14.1, E14.6, E14.8, E14.9

1

Hemiplegia or paraple-
gia

G04.1, G11.4, G80.1, G80.2, G81, G82, G83.0, G83.1,
G83.2, G83.3, G83.4, G83.9

2

Metastatic solid tumour C77, C78, C79, C80 6
Mild liver disease B18, K70.0, K70.1, K70.2, K70.3, K70.9, K71.3,

K71.4, K71.5, K71.7, K73, K74, K76.0, K76.2, K76.3,
K76.4, K76.8, K76.9, Z94.4

1

Moderate or severe liver
disease

I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9,
K76.5, K76.6, K76.7

3

Myocardial infarction I21, I22, I25.2 1
Peptic ulcer disease K25, K26, K27, K28 1
Peripheral vascular dis-
ease

I70, I71, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1,
K55.8, K55.9, Z95.8, Z95.9

1

Renal disease I12.0, I13.1, N03.2, N03.3, N03.4, N03.5, N03.6,
N03.7, N05.2, N05.3, N05.4, N05.5, N05.6, N05.7,
N18, N19, N25.0, Z49.0, Z49.1, Z49.2, Z94.0, Z99.2

2

Rheumatic disease M05, M06, M31.5, M32, M33, M34, M35.1, M35.3,
M36.0

1
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TABLE G.2: Electronic Frailty Index Codes

EFI Deficits ICD-10 Codes
Activity limitation Assumed Present
Anaemia and haematinic defi-
ciency

D50, D51, D52, D53, D56, D58, D59, D61, D62, D63,
D64

Arthritis M00, M05, M06, M13, M15, M16, M17, M18, M19
Atrial fibrillation I48
Cerebrovascular disease G45, G46, I60, I61, I62, I63, I64, I67, I68, I69,
Chronic kidney disease N04, N08, N18, Q61
Diabetes E10, E11, E14
Dizziness R42
Dyspnoea R06, W84
Falls W00, W01, W03, W04, W05, W06, W07, W08, W10,

W17, W18, W19, Y30
Foot problems S90, S91, S92, S93, S99
Fragility fracture M80
Hearing impairment H61, H83, H90, H91, H93
Heart failure I27, I42, I43, I50, I51
Heart valve disease I05, I07, I08, I34, I35, I36, I37, I38, Q22
Housebound Assumed present
Hypertension I10
Hypotension/syncope I95, R55
Ischaemic heart disease I24, I25
Memory and cognitive problems F00, F05, F06, F70, F71, F79, G30, R41
Mobility and transfer problems Assumed present
Osteoporosis M80, M81
Parkinsonism and tremor G20, G21, G23
Peptic ulcer K27
Peripheral vascular disease I73, Q27
Polypharmacy Assumed present
Respiratory disease J9, C78, J06, J22, J39, J42, J43, J44, J47, J60, J61, J67,

J80, J84, J94, J95, J96, J98, J99, Q33
Skin ulcer L89, L97, L98
Sleep disturbance G47
Social vulnerability Assumed present
Thyroid disease E03, E05, E06, E07
Urinary incontinence R32
Urinary system disease C68, D41, N20, N21, N30, N32, N35, N39, N48,

N73, N76, N81, N89, N90, N95, Q54, Q63, R39, T83
Visual impairment H01, H02, H04, H05, H10, H17, H18, H20, H21,

H25, H26, H28, H31, H35, H36, H47, H49, H51,
H54, H55, H57, H58, S05, W44,

Weight loss and anorexia F50
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TABLE G.3: Health Frailty Risk Score Codes

ICD-10 code HFRS Points Code Description
F00 7.1 Dementia in Alzheimer’s disease
G81 4.4 Hemiplegia
G30 4 Alzheimer’s disease
I69 3.7 Sequelae of cerebrovascular disease
R29 3.6 Other symptoms and signs involving the nervous

and musculoskeletal Systems
N39 3.2 Other disorders of urinary system (includes uri-

nary tract infection and urinary incontinence)
F05 3.2 Delirium, not induced by alcohol and other psy-

choactive substances
W19 3.2 Unspecified fall
S00 3.2 Superficial injury of head
R31 3 Unspecified haematuria
B96 2.9 Other bacterial agents as the cause of diseases clas-

sified to other chapters (secondary code)
R41 2.7 Other symptoms and signs involving cognitive

functions and awareness
R26 2.6 Abnormalities of gait and mobility
I67 2.6 Other cerebrovascular diseases
R56 2.6 Convulsions, not elsewhere classified
R40 2.5 Somnolence, stupor and coma
T83 2.4 Complications of genitourinary prosthetic devices,

implants and grafts
S06 2.4 Intracranial injury
S42 2.3 Fracture of shoulder and upper arm
E87 2.3 Other disorders of fluid, electrolyte and acidbase

balance
M25 2.3 Other joint disorders, not elsewhere classified
E86 2.3 Volume depletion
R54 2.2 Senility
Z50 2.1 Care involving use of rehabilitation procedures
F03 2.1 Unspecified dementia
W18 2.1 Other fall on same level
Z75 2 Problems related to medical facilities and other

health care
F01 2 Vascular dementia
S80 2 Superficial injury of lower leg
L03 2 Cellulitis
H54 1.9 Blindness and low vision
E53 1.9 Deficiency of other B group vitamins
Z60 1.8 Problems related to social environment
G20 1.8 Parkinson’s disease
R55 1.8 Syncope and collapse
S22 1.8 Fracture of rib(s), sternum and thoracic spine
K59 1.8 Other functional intestinal disorders
N17 1.8 Acute renal failure
L89 1.7 Decubitus ulcer
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Z22 1.7 Carrier of infectious disease
B95 1.7 Streptococcus and staphylococcus as the cause of

diseases classified to other chapters
L97 1.6 Ulcer of lower limb, not elsewhere classified
R44 1.6 Other symptoms and signs involving general sen-

sations and perceptions
K26 1.6 Duodenal ulcer
I95 1.6 Hypotension
N19 1.6 Unspecified renal failure
A41 1.6 Other septicaemia
Z87 1.5 Personal history of other diseases and conditions
J96 1.5 Respiratory failure, not elsewhere classified
X59 1.5 Exposure to unspecified factor
M19 1.5 Other arthrosis
G40 1.5 Epilepsy
M81 1.4 Osteoporosis without pathological fracture
S72 1.4 Fracture of femur
S32 1.4 Fracture of lumbar spine and pelvis
E16 1.4 Other disorders of pancreatic internal secretion
R94 1.4 Abnormal results of function studies
N18 1.4 Chronic renal failure
R33 1.3 Retention of urine
R69 1.3 known and unspecified causes of morbidity
N28 1.3 Other disorders of kidney and ureter, not else-

where classified
R32 1.2 Unspecified urinary incontinence
G31 1.2 Other degenerative diseases of nervous system,

not elsewhere classified
Y95 1.2 Nosocomial condition
S09 1.2 Other and unspecified injuries of head
R45 1.2 Symptoms and signs involving emotional state
G45 1.2 Transient cerebral ischaemic attacks and related

syndromes
Z74 1.1 Problems related to care-provider dependency
M79 1.1 Other soft tissue disorders, not elsewhere classi-

fied
W06 1.1 Fall involving bed
S01 1.1 Open wound of head
A04 1.1 Other bacterial intestinal infections
A09 1.1 Diarrhoea and gastroenteritis of presumed infec-

tious origin
J18 1.1 Pneumonia, organism unspecified
J69 1 Pneumonitis due to solids and liquids
R47 1 Speech disturbances, not elsewhere classified
E55 1 Vitamin D deficiency
Z93 1 Artificial opening status
R02 1 Gangrene, not elsewhere classified
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R63 0.9 Symptoms and signs concerning food and fluid in-
take

H91 0.9 Other hearing loss
W10 0.9 Fall on and from stairs and steps
W01 0.9 Fall on same level from slipping, tripping and

stumbling
E05 0.9 Thyrotoxicosis [hyperthyroidism]
M41 0.9 Scoliosis
R13 0.8 Dysphagia
Z99 0.8 Dependence on enabling machines and devices
U80 0.8 Agent resistant to penicillin and related antibiotics
M80 0.8 Osteoporosis with pathological fracture
K92 0.8 Other diseases of digestive system
I63 0.8 Cerebral Infarction
N20 0.7 Calculus of kidney and ureter
F10 0.7 Mental and behavioural disorders due to use of al-

cohol
Y84 0.7 Other medical procedures as the cause of abnor-

mal reaction of the patient
R00 0.7 Abnormalities of heart beat
J22 0.7 Unspecified acute lower respiratory infection
Z73 0.6 Problems related to life-management difficulty
R79 0.6 Other abnormal findings of blood chemistry
Z91 0.5 Personal history of risk-factors, not elsewhere clas-

sified
S51 0.5 Open wound of forearm
F32 0.5 Depressive episode
M48 0.5 Spinal stenosis (secondary code only)
E83 0.4 Disorders of mineral metabolism
M15 0.4 Polyarthrosis
D64 0.4 Other anaemias
L08 0.4 Other local infections of skin and subcutaneous

tissue
R11 0.3 Nausea and vomiting
K52 0.3 Other noninfective gastroenteritis and colitis
R50 0.1 Fever of unknown origin
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TABLE H.1: Calderon-Laranaga ICD-10 Code Groups

Grouping ICD-10 Codes
ALLERGY J301,J302,J303,J304,J450,K522,L20,L23,L500,Z516
ANEMIA D50,D51,D52,D53,D55,D56,D57,D58,D59,D60,D61,D63,D64
ASTHMA J45
ATRIAL FIBRILLATION I48
AUTOIMMUNE DIS-
EASES

I731, L10, L12, L40, L41, L93, L94, L95, M30, M31, M32,
M33, M34, M35, M36

BLINDNESS, VISUAL
IMPAIRMENT

H54,Z442,Z970

BLOOD AND BLOOD
FORMING ORGAN DIS-
EASES

D66, D67, D68, D69, D71, D720, D730, D731, D732, D74,
D750, D761, D763, D77, D80, D81, D82, D83, D84, D86, D89

BRADYCARDIAS AND
CONDUCTION DIS-
EASES

I441,I442,I443,I453,I455,Z950

CARDIAC VALVE DIS-
EASES

I05, I06, I07, I08, I091, I098, I34, I35, I36, I37, I38, I390, I391,
I392, I393, I394, Q22, Q23, Z952, Z953, Z954

CATARACT AND
OTHER LENS DIS-
EASES

H25,H26,H27,H28,Q12,Z961

CEREBROVASCULAR
DISEASE

G45,G46,I60,I61,I62,I63,I64,I67,I69

CHROMOSOMAL
ABNORMALITIES

Q90,Q91,Q92,Q93,Q95,Q96,Q97,Q98,Q99

CHRONIC INFEC-
TIOUS DISEASES

A15, A16, A17, A18, A19, A30, A31, A50, A52, A53, A65,
A66, A67, A692, A81, B20, B21, B22, B23, B24, B381, B391,
B401, B572, B573, B574, B575, B65, B92, B94, J65, M863,
M864, M865, M866

CHRONIC KIDNEY
DISEASES

I120, I130, I131, I132, I139, N01, N03, N04, N05, N07, N08,
N11, N183, N184, N185, N189, Q60, Q611, Q612, Q613,
Q614, Q615, Q618, Q619, Z905, Z940

CHRONIC LIVER DIS-
EASES

B18, K70, K713, K714, K715, K717, K721, K73, K74, K753,
K754, K758, K761, K766, K767, K778, Q446, Z944

CHRONIC PANCREAS,
BILIARY TRACT AND
GALLBLADDER DIS-
EASES

K800, K801, K802, K808, K811, K86, Q440, Q441, Q442,
Q443, Q444, Q445, Q450

CHRONIC ULCER OF
THE SKIN

I830, I832, L89, L97, L984

COLITIS AND RE-
LATED DISEASES

K520, K528, K551, K552, K572, K573, K574, K575, K578,
K579, K58, K590, K592, K62, K634, K64,

COPD, EMPHYSEMA,
CHRONIC BRONCHI-
TIS

J41, J42, J43, J44, J47

DEAFNESS, HEARING
IMPAIRMENT

H80, H90, H911, H913, H919, Q16, Z453, Z461, Z962, Z974

DEMENTIA F00, F01, F02, F03, F051, G30, G31
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DEPRESSION AND
MOOD DISEASES

F30, F31, F32, F33, F34, F38, F39, F412

DIABETES E10, E11, E13, E14, E891
DORSOPATHIES M40, M41, M42, M43, M47, M48, M49, M50, M51, M53,

Q675, Q761, Q764
DYSLIPIDEMIA E78
EAR, NOSE, THROAT
DISEASES

H604, H661, H662, H663, H701, H71, H731, H741, H810,
H831, H832, H95, J300, J31, J32, J33, J341, J342, J343, J35,
J37, J380, J386, K051, K053, K07, K110, K117, Q30, Q31, Q32,
Q35, Q36, Q37, Q38

EPILEPSY G40
ESOPHAGUS, STOM-
ACH AND DUODE-
NUM DISEASES

I85, I864, I982, I983, K21, K220, K222, K224, K225, K227,
K230, K231, K254, K255, K256, K257, K264, K265, K266,
K267, K274, K275, K276, K277, K284, K285, K286, K287,
K293, K294, K295, K296, K297, K298, K299, K311, K312,
K313, K314, K315, Q39, Q40, Z903

GLAUCOMA H401, H402, H403, H404, H405, H406, H408, H409
HEART FAILURE I110, I130, I132, I27, I280, I42, I43, I50, I515, I517, I528, Z941,

Z943
HEMATOLOGICAL
NEOPLASMS

C81, C82, C83, C84, C85, C86, C88, C90, C91, C92, C93, C94,
C95, C96

HYPERTENSION I10, I11, I12, I13, I15
INFLAMMATORY
ARTHROPATHIES

M023, M05, M06, M07, M08, M09, M10, M11, M12, M13,
M14, M45, M460, M461, M468, M469,

INFLAMMATORY
BOWEL DISEASES

K50, K51

ISCHEMIC HEART DIS-
EASE

I20, I21, I22, I24, I25, Z951, Z955

MIGRAINE AND
FACIAL PAIN SYN-
DROMES

G43, G440, G441, G442, G443, G448, G50

MULTIPLE SCLEROSIS G35
NEUROTIC, STRESS-
RELATED AND SO-
MATOFORM DISEASES

F40, F41, F42, F43, F44, F45, F48

OBESITY E66
OSTEOARTHRITIS
AND OTHER DE-
GENERATIVE JOINT
DISEASES

M15, M16, M17, M18, M19, M362, M363

OSTEOPOROSIS M80, M81, M82
OTHER CARDIOVAS-
CULAR DISEASES

I09, I281, I310, I311, I456, I495, I498, I70, I71, I72, I790, I791,
I950, I951, I958, Q20, Q21, Q24, Q25, Q26, Q27, Q28, Z958,
Z959

OTHER DIGESTIVE
DISEASES

K660, K900, K901, K902, K911, K93, Q41, Q42, Q43, R15,
Z904, Z980
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OTHER EYE DISEASES H022, H023, H024, H025, H04, H05, H104, H17, H184,
H185, H186, H187, H188, H189, H193, H198, H201, H21,
H310, H311, H312, H318, H319, H33, H352, H353, H354,
H355, H357, H358, H359, H36, H47, H48, H49, H51, Q10,
Q11, Q13, Q14, Q15, Z947

OTHER GENITOURI-
NARY DISEASES

B901, N200, N202, N209, N210, N218, N219, N22, N301,
N302, N303, N304, N31, N320, N323, N328, N329, N33,
N35, N393, N394, N480, N484, N489, N701, N711, N731,
N734, N736, N761, N763, N81, N88, N895, N905, N952,
Q54, Q620, Q621, Q622, Q623, Q624, Q627, Q628, Q638,
Q639, Q640, Q641, Q643, Q644, Q645, Q646, Q647, Q648,
Q649, Z906, Z907, Z960

OTHER METABOLIC
DISEASES

E20, E21, E22, E23, E24, E25, E26, E27, E28, E29, E31, E34,
E35, E40, E41, E42, E43, E44, E45, E46, E64, E70, E71, E72,
E74, E75, E76, E77, E79, E80, E83, E84, E85, E88, E85, E85,
E85, E89, K903, K904, K908, K909, K912, M83, M88, N25

OTHER MUSCU-
LOSKELETAL AND
JOINT DISEASES

B902, M212, M213, M214, M215, M216, M217, M218, M219,
M22, M23, M24, M252, M253, M357, M61, M652, M653,
M654, M700, M720, M722, M724, M750, M751, M753,
M754, M797, M841, M89, M91, M93, M94, M96, M94, M94,
M94, M99, Q65,Q66, Q68, Q71, Q72, Q73, Q74, Q77, Q78,
Q796, Q798, Q87, S382, S48, S58, S68, S78, S88, S98, T05,
T096, T116, T136, T147, T90, T91, T92, T93, T94, T95, T96,
T97, T98, Z440, Z441, Z891, Z892, Z893, Z894, Z895, Z896,
Z897, Z898, Z899, Z946, Z966, Z971

OTHER NEUROLOGI-
CAL DISEASES

B900, D482, G041, G09, G10, G11, G12, G13, G24, G25, G26,
G32, G37, G51, G52, G53, G70, G71, G723, G724, G728,
G729, G73, G80, G81, G82, G83, G90, G91, G938, G939, G95,
G99, M471, G99, G99, G99, Q00, Q01, Q02, Q03, Q04, Q05,
Q06, Q07, Q760

OTHER PSYCHIATRIC
AND BEHAVIORAL
DISEASES

F04, F06, F07, F09, F102, F106, F107, F112, F116, F117, F122,
F126, F127, F132, F136, F137, F142, F146, F147, F152, F156,
F157, F162, F166, F167, F172, F176, F177, F182, F186, F187,
F192, F196, F197, F196, F196, F196, F50, F52, F60, F61, F62,
F63, F68, F70, F71, F72, F73, F78, F79, F80, F81, F82, F83,
F84, F88, F89, F95, F99

OTHER RESPIRATORY
DISEASES

B909, E662, J60, J61, J62, J63, J64, J65, J66, J67, J684, J701,
J703, J704, J84, J92, J941, J953, J955, J961, J98, Q33, Q34,
Z902, Z942, Z943, Z963

OTHER SKIN DISEASES L13,L28,L301,L43,L508,L581,L85,Q80,Q81,Q821,Q822,Q829
PARKINSON AND
PARKINSONISM

G20,G21,G22,G23

PERIPHERAL NEU-
ROPATHY

B91, G14, G54, G55, G56, G57, G58, G59, G60, G628, G629,
G63, M472, M531, M541

PERIPHERAL VASCU-
LAR DISEASE

I702,I73,I792,I798

PROSTATE DISEASES N40,N411,N418
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SCHIZOPHRENIA
AND DELUSIONAL
DISEASES

F20,F22,F24,F25,F28

SLEEP DISORDERS F510,F511,F512,F513,G47
SOLID NEOPLASMS C, D00, D01, D02, D03, D04, D05, D06, D07, D09, D320,

D321, D329, D330, D331, D332, D333, D334, Q85
THYROID DISEASES E00,E01,E02,E03,E05,E062,E063,E065,E07,E350,E890
VENOUS AND LYM-
PHATIC DISEASES

I780,I83,I87,I89,I972,Q820
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declaration.
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Trusted Research Environment 
 
Hosted by Durham University 
 
 
 
 
    
 
Approved Data User Authorisation Agreement 
 
 
 
 
 
 
 
 
 
 
 
Version 1 FINAL October 2020 
 
 
 
 
 
 
 
 
 
 
  



 Trusted Research Environment (TRE) 
 
TRE Proposed Data User Information 
The purpose of this document is to gather all relevant information to ensure that users of the 
TRE have appropriate permissions and training in place. 
 
1. Name: Samuel Watchorn 

 
2. Student  

 
3. Institution and Department: The University of Sheffield, School of Health and Related 

Research 
 

4. Project Title for which TRE access is required: Modelling fall patterns in elderly care 
home residents for use in risk stratification and prediction algorithms 

 
5. The following training needs to be completed prior to accessing the TRE (with the 

exception of the AIMES TRE training, which begins on first accessing the TRE). If you 
have already completed relevant training, please indicate the date of completion and 
provide your course certificate with this form. (Training should have been completed / 
refreshed within the last 12 months). 

 
Training required Completion Date 
MRC e-learning module Research Data and 
Confidentiality 

29/04/21 

DPST Toolkit requirements met (Must include ‘Data 
Security Awareness and Protection’) 

01/07/21 

 Date due to start 
AIMES TRE training 07/07/21 

  
6. Please provide a brief description of measures you will take to ensure that privacy of 

information is maintained while you are accessing data held within the TRE.  If any 
additional equipment or other arrangements need to be put in place in order for you to 
access the information securely (e.g. privacy screen), please indicate in the space below. 

 
I will be accessing the data under the University of Sheffield governance 
regulations and have completed the required training (in information governance, 
protecting information, protecting research data, GDPR research and 
confidentiality). I will be working alone and on a university computer. I do not 
require any other equipment. 
 
 

 
7. Software Tools. Where an Approved Data User works is employed by an academic 

institution, they may request use of existing Durham University statistical / analytical 



software packages available within the TRE for their academic-led studies. Additional 
terms may apply. If such software is required, please list below. 

Access to R, R-Studio and Python 
 
 

 
 

TRE Data User Declaration  
 
Proposed Data User: (“the Applicant”) Samuel Watchorn 
 
The above-named Applicant hereby applies to be an approved data user of the Durham 
University hosted Trusted Research Environment (“TRE”), with the right of access to 
datasets held in the TRE in order to undertake analysis for approved purposes in support of 
the Project. Access is subject to the terms of this Declaration as set out below.  
 
“Approved Data User” shall mean a person who has signed the declaration below. The 
Approved Data User shall either be a Principal Investigator (“PI”) of a Project or a person 
who is authorised by the Project PI to have access to Project research data held in the TRE 
and who the TRE Operations Group is satisfied can be given access to the TRE.  
 
Note - Where the Applicant is an employee of Durham University, they are required to 
complete sections a), b) and c) (as appropriate) of the declaration only. Applicants not 
employed by Durham University must obtain a signature from an authorised signatory for 
and on behalf of their institution (the Institution named in section c) of the declaration).  
 
Durham University hosts data on a server in the TRE and provides Approved Data Users with 
secure remote access to data held by the TRE.  
 
The Applicant hereby acknowledges and accepts the responsibilities as set out below:  
 

Approved Data User Responsibilities  
 
A) The Applicant is aware of the sensitive nature of the data being accessed and shall 
maintain the security and confidentiality of any datasets held by the TRE in accordance with 
the terms of this Declaration, the requirements of data protection legislation and the Data 
Protection Principles (as outlined in the appropriate data sharing / collaboration agreement 
associated with the Project). 
 
B) The Applicant shall report any events that are in breach of the terms of the Declaration.  
Reports by the Applicant must be made to a TRE designated Duly Authorised Person in the 
first instance as soon as becoming aware of the incident.  
 
C) The Applicant agrees:  
1) To complete approved information governance training: 

• the MRC e-learning module Research Data and Confidentiality;  
• IG toolkit  
• AIMES TRE training 



 
2) To confirm completion of information governance training by sending a completed course 
certificate to the TRE Operations Group prior to being given access to the TRE;  
 
3) Not to reuse the Project Dataset for any purpose which is outside of the project’s original 
scope for which the data was obtained, without the formal agreement of the relevant Data 
Controller if applicable;  
 
4) Not to share data or any derived data set with colleagues who are not Approved Data 
Users for that particular Project;  
 
5) Not to attempt to link the data to other datasets;  
 
6) Not to attempt to de-anonymise / de-pseudonymise the data;  
 
7) To ensure that individual-level data is not transferred into or outside the TRE via any 
means including, for example, SFTP , photographs, voice recording, screen grabbing or note 
taking; unless explicit agreement is given by the Data Controller; 
 
8) Not to share or disclose their TRE login details;  
 
9) Not to allow people who are not Approved Data Users access to individual level data 
within the TRE; 
 
10) To make every effort to stop people who do not have a right of access from viewing data 
on the TRE screen;  
 
11) To ensure that  the TRE and the relevant health or social care body responsible for 
initially providing patient service user data are acknowledged as data sources in all resulting 
reports and publications. E.g. “We acknowledge the support of the TRE, Durham University, 
for managing and supplying the anonymised data, and NHS data supplier (please specify) for 
the original data source.” 
 
D) The Applicant, once accepted as an Approved Data User, may be given access to more 
than one research project dataset. A new User Declaration must be completed for each 
Project.  
 

Definitions   
 
Project: means a unique research, service improvement or evaluation study with a PI, 
specified cohort, aims and methods that is logged onto the TRE Project Management 
System and has obtained all required governance approvals.  
 
Project Dataset: means the research data that has been pseudonymised, anonymised 
uniquely and is specifically for use within a Project. The Project Dataset shall relate to the 
cohort and purpose defined for the Project and the terms of the relevant collaboration and 
information sharing agreements.  
 



TRE Operations Group: means a group convened by the Executive Dean of the Faculty of 
Social Sciences and Health to independently assess applications for access to the TRE. 
Representation from Durham University’s Research Policy, Information Governance, Legal 
Services, and Computing and Information Services will be called upon as appropriate.   
 
 
 
Signatures  
 
a) Declaration by Applicant for Approved and Authorised Data User 
status  
 
By signing, the Applicant accepts the terms set out above.  
 
Delete as applicable: 
 
1. Applicant hereby confirms that they are a staff member at Durham University 
 
Sign section a) below and section b) where the Applicant is not the PI of the Project.  
 
2. Applicant hereby confirms that they are a student at Durham University 
 
Sign section a); supervisor to sign section c).  
  
3. Applicant confirms that they are not a staff member or student at Durham University and 
have received authorisation from their own institution. 
 
Sign section a); section b) where the Applicant is not the PI of the Project; section c) supervisor 
to sign where applicable, and section d) authorised signatory to sign to indication Institutional 
approval.  
 
Any breach of the terms of this Declaration by the Applicant will result in access being 
withdrawn, and a review will be undertaken by the TRE Governance Group who will decide on 
any other action deemed necessary. The TRE Governance Group has a duty to report serious 
legal or regulatory breaches to the appropriate authorities (such as the Data Protection 
Commissioner, Employers and professional regulatory bodies).  
 
Name: Samuel Watchorn                                                                            (“the Applicant”)  
 
Position: PhD Student 
 
Institution: University of Sheffield 
 
Signature: SJWatchorn 
 
Date signed: 01/07/2021 

  



 
b) Declaration by Project Principal Investigator  
 
Note: Where the Approved Data User is not the PI of the Project, this Declaration must be 
signed by the PI below.  
 
By signing and dating below, you acknowledge that the Applicant named above has read and 
understood the terms of this Declaration.  
 
Name: Professor Suzanne Mason 
 
Position: Professor of Emergency Medicine 
 
Institution:  University of Sheffield 
 
Signature:   
 
Date signed: 07/07/2021 
 
 

 
 
 
 
c) Declaration by Student Supervisor  
 
Note: Where the Approved Data User is a student, this Declaration must be signed by the 
student’s supervisor.  
 
By signing and dating below, you acknowledge that the Applicant named above has read and 
understood the terms of this Declaration.  
 
Name: Professor Suzanne Mason 
 
Position: Professor of Emergency Medicine 
 
Institution: University of Sheffield 
 
Signature:  
 
Date signed: 07/07/2021 
 
 
 
 
 
 
 



d) Declaration by External Institution

Applicants for Approved Data User status who are not employees of Durham University must 
have this section signed for and on behalf of their institution by an authorised signatory.  

The Institution named below hereby agrees that the Applicant named in section a) above is a 
bona fide employee or student of this Institution engaged in a reputable data analysis project 
for which all relevant required permissions have been granted, and that the Project Dataset 
requested can be entrusted to this person in the knowledge that they will conscientiously 
discharge their obligations in regard to the confidentiality of the Project Dataset.  

This Institution agrees to abide by the terms of this Declaration and shall take responsibility for 
ensuring that the proposed Approved Data User complies with the terms of this Declaration, 
relevant data sharing agreements, and all applicable statutory and regulatory permissions and 
Data Protection requirements, and the Institution agrees to provide a secure working 
environment and suitable technical resources to meet this obligation.  

The Institution agrees that a breach of this Declaration may lead to the withdrawal of access to 
the TRE for the Institution, its staff and students, and that Durham University, as host of the 
TRE, has a duty to report serious legal or regulatory breaches to the appropriate authorities 
(such as the Data Protection Commissioner and professional regulatory bodies).  

The Institution has completed, and had approved by the Durham TRE Operations Group, a 
corresponding TRE Institutional Access Form/ is a signatory to a corresponding Collaboration 
Agreement for the project for which User Access is required. 

Name: 

Position: 

Signature: 

Date signed: 

For and on behalf of: 
(The “Institution”)  

18th August 2021

The University of Sheffield
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Appendix K

Overdispersion Tests Results

As described in Section 4.4.2 before the results of the count data regression models
were interpreted, the level of over-dispersion present was identified. The results
of this over-dispersion testing for the Poisson regression models is shown in Table
K.1. The final column in this table (RD/DF) indicates there is clear over-dispersion
present in the fall count data. These results indicate the variance of the fall count
data exceeds the mean, meaning Poisson regression is not appropriate for use in this
instance. Therefore, as discussed in Section 4.4.2, Negative Binomial regression was
used instead. As a result of the additional term incorporated in the equidispersion
relationship, there is no over-dispersion present in the negative binomial models.
This is shown in the final column in Table K.2 where all values are ≤ 1. Therefore,
the results presented in the five main effects models presented in Chapter 5 result
from negative binomial regression models.

TABLE K.1: Poisson Regression Over-dispersion Table

Poisson Model RD DF RD/DF
CCI 5479 3998 1.37
EFI 5342 3996 1.34
HFRS 5455 3997 1.36
K-Means Clusters 5396 3992 1.35
Chronic Condition Shortlist 5285 3980 1.33

RD: Residual Deviance, DF: Degrees of Freedom, CCI: Charlson Comorbidity Index, EFI:
Electronic Frailty Index, HFRS: Hospital Frailty Risk Score



268 Appendix K. Overdispersion Tests Results

TABLE K.2: Negative Binomial Regression Over-dispersion Table

Negative Binomial Model RD DF RD/DF
CCI 3709 3998 0.93
EFI 3712 3996 0.93
HFRS 3713 3997 0.93
K-Means Clusters 3715 3992 0.93
Chronic Condition Shortlist 3724 3974 0.94

RD: Residual Deviance, DF: Degrees of Freedom, CCI: Charlson Comorbidity Index, EFI:
Electronic Frailty Index, HFRS: Hospital Frailty Risk Score
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Appendix L

DHARMa Residual Plots for
Interaction Models
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FIGURE L.1: DHARMa Q-Q Plots Interaction Models

(A) DHARMa QQ Plot for Top 5 by Prevalence
Interaction model

(B) DHARMa QQ Plot for Cardiovascular
cluster Interaction model

(C) DHARMa QQ Plot for Cardiovascular-
Metabolic cluster Interaction model

(D) DHARMa QQ Plots for N-S-High-Burden
cluster Interaction model
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FIGURE L.2: DHARMa Q-Q Plots for Interaction Models Continued

(A) DHARMa QQ Plot for Central cluster In-
teraction model

(B) DHARMa QQ Plot for Low-Neuro-
Psychiatric cluster Interaction model

(C) DHARMa QQ Plot for High-Neuro-
Psychiatric cluster Interaction model

(D) DHARMa QQ Plot for Low-Cardio-Neuro
cluster Interaction model


