
Training Deep Generative Models Via
Lifelong Learning

Fei Ye

Doctor of Philosophy

University of York

Department of Computer Science,

September 2022

Abstract

Lifelong learning represents an essential function of an artificial intelligence system, which can

continually acquire and learn novel knowledge without forgetting it. Lately, deep learning

has brought new possibilities for the development of artificial intelligence, including artificial

lifelong learning systems. However, most existing lifelong learning systems are limited to the

classification task, and lifelong generative modelling remains a new stage. In this PhD thesis,

our research goal mainly focuses on training deep generative models in the context of lifelong

learning. The advantage of our research topic over general continual learning is that we can

implement many downstream tasks within a unified framework, including classification, image

generation, image interpolation, and disentangled representation learning. Firstly, we propose a

new lifelong hybrid approach, combining the advantages of Generative Adversarial Net (GAN)

and Variational Autoencoder (VAE) for lifelong generative modelling. The proposed model can

learn a robust generative replay network that provides high-quality generative replay samples

to relieve forgetting, while we also train inference models to capture meaningful latent repre-

sentations over time. Secondly, to learn a long sequence of tasks, we propose a novel dynamic

expansion model that can reuse existing network parameters and knowledge to learn a related

task while building a new component to deal with a novel task. Thirdly, we propose a novel

lifelong teacher-student framework where a dynamic expansible GAN mixture model imple-

ments the teacher module. Then, we introduce a novel self-supervised learning approach for

the Student that allows capturing cross-domain latent representations from the entire knowl-

edge accumulated by the Teacher as well as from novel data. Finally, we extend the lifelong

teacher-student framework to task-free continual learning, where the task information is un-

available. The proposed model can adaptively expand its network architecture when detecting

the data distribution shift during the training, which can be applied to infinite data streams.

1

Contents

1 Introduction 1

2 Background and Literature Review 6

2.1 Background . 6

2.1.1 Generative Adversarial Nets (GANs) . 6

2.1.2 Variational Autoencoder . 7

2.1.3 Lifelong Learning and Its Settings . 10

2.1.4 Disentangled Representation Learning 11

2.1.5 Generative Replay Mechanism for Lifelong Learning 14

2.2 General Continual Learning . 14

2.2.1 Regularization Based Methods . 14

2.2.2 Dynamic Architectures . 16

2.2.3 Memory Based Approaches . 17

2.2.4 Knowledge Distillation . 20

2.3 Task-Free Continual Learning . 23

2.3.1 Memory Based Approaches . 23

2.3.2 Dynamic Expansion Model . 24

2.4 Conclusion . 25

3 Lifelong Learning Using VAEGAN 27

2

CONTENTS 3

3.1 Introduction . 27

3.2 Lifelong Generative Adversarial Autoencoder . 28

3.2.1 Problem Formulation . 29

3.2.2 Training A Robust Generative Replay Network 30

3.2.3 The Inference Mechanism of LGAA . 32

3.2.4 The Objective Function for the Inference Models 35

3.3 Lifelong Training Algorithm for LGAA . 39

3.3.1 Supervised Learning . 40

3.3.2 Semi-Supervised Learning . 43

3.3.3 Unsupervised Learning . 44

3.3.4 Using A Memory Buffer for Storing Model Parameters, in Lifelong Learning 45

3.4 Experiments . 46

3.4.1 Reconstruction and Interpolation Results Following Unsupervised Life-

long Learning . 46

3.4.2 Lifelong Disentangled Representations 48

3.4.3 Quality Assessment of the Generated Images 49

3.4.4 Lifelong Supervised Learning . 51

3.4.5 Semi-Supervised Learning . 53

3.4.6 Ablation Study . 54

3.4.7 Transfer Metric and Transfer Learning 56

3.5 Conclusion and Limitations . 58

4 Dynamic Growing Mixture Model 59

4.1 Introduction . 59

4.2 Methodology . 61

4.2.1 Network Architecture . 64

CONTENTS 4

4.2.2 Component Selection and Mixture Expansion Mechanism 65

4.2.3 Algorithm Implementation . 67

4.2.4 Supervised Learning Task . 68

4.2.5 Learning A Compact Student Module and the Training Algorithm 77

4.3 Experiments . 78

4.3.1 Hyperparameter Setting and Network Architecture 78

4.3.2 Datasets and Evaluation Criteria . 78

4.3.3 Generative Modelling Tasks . 79

4.3.4 The Lifelong Learning of Complex Datasets 81

4.3.5 Classification Tasks . 83

4.3.6 Ablation Study . 87

4.3.7 Image to Image Translation Task . 88

4.3.8 Model’s Complexity . 89

4.4 Conclusion and Limitations . 90

5 Dynamic Self-Supervised Teacher-Student Network 91

5.1 Introduction . 91

5.2 Dynamic Self-Supervised Teacher-Student Network (D-TS) Framework 94

5.2.1 Problem Definition . 95

5.2.2 Preliminaries . 96

5.2.3 The Knowledge Discrepancy Score (KDS) 96

5.2.4 The Teacher Module . 99

5.2.5 The Student Module . 102

5.2.6 Student Learning . 105

5.2.7 The Training Algorithm . 106

5.3 Applications . 107

CONTENTS 5

5.3.1 Prediction Tasks . 108

5.3.2 Learning Disentangled Representations 110

5.3.3 Inter-Domain Interpolation . 111

5.4 Experiments . 112

5.4.1 The Evaluation of Representation Learning During Unsupervised Lifelong

Learning . 113

5.4.2 Study of The Latent Space of The Student Module 114

5.4.3 Lifelong Learning of Databases With Complex Images 117

5.4.4 Supervised Learning . 121

5.4.5 Model Complexity . 122

5.4.6 Ablation Study . 122

5.5 Conclusion and Limitations . 127

6 Teacher-Student Framework for TFCL 129

6.1 Introduction . 129

6.2 Method . 132

6.2.1 Problem Definition . 133

6.2.2 Knowledge Incremental Assimilation Mechanism (KIAM) 134

6.2.3 Continual Generative Knowledge Distillation 137

6.2.4 Expert Pruning Approach . 139

6.2.5 Implementation . 141

6.3 Experiments . 145

6.3.1 Settings and Baselines . 145

6.3.2 Generative Modelling Tasks Under TFCL 146

6.3.3 Learning Complex Data Streams Under TFCL 148

6.3.4 Ablation Study for Defining the Number of Components 149

CONTENTS 6

6.4 Conclusion and Limitation . 150

7 Conclusion and Future Work 153

7.1 Summary of Contributions . 154

7.2 Future Work . 155

List of Figures

2.1 The learning procedure of GAN, which involves two components, the generator

and the discriminator. 7

2.2 The learning procedure of VAE, where the encoder and decoder are used to

model the encoding and decoding distributions, respectively. 8

2.3 The procedure of general continual learning where each task is associated with

a different data domain. During the N -th task learning, the model can access

the training dataset of the N -th task while all previously learnt datasets are not

available. 10

2.4 The procedure of task-free continual learning, where each data batch contains

training samples from different data domains while the task information and

boundaries are unavailable. During the N ′-th training time/step, the model can

only access the N ′-th data batch while all previous data batches are not available. 10

2.5 The disentangled representation results from [64]. 12

2.6 The learning procedure of GRM, which involves two components, the generator

and the classifier. 13

7

LIST OF FIGURES 8

2.7 The learning process of LGM, which includes two components, the teacher and

student module. Both teacher and student modules are implemented by VAEs.

During the second task learning, the student module is fixed and provides the

knowledge for the teacher’s learning. In the next task learning, the teacher and

student exchange their roles. 21

3.1 The detailed network architecture for the generator and discriminator. 31

3.2 The structure of three differentiable non-linear functions Fς(·), Fε(·), Fδ(·) im-

plemented by three encoders. 33

3.3 The detailed network architecture for the inference models. The ”Encoder 2” has

two output layers, and we employ the ”Softplus” activation function to ensure

the non-negativity of the hyperparameter σ. The final layer in ”Encoder 3”

gives two probability outputs when the number of tasks is two. If we know the

number of tasks, we need to redesign the final layer in ”Encoder 3” such that the

number of probability outputs matches the number of tasks. Such a limitation

is discussed in Section 3.5 at the end of this chapter. 34

3.4 The network structure of the proposed LGAA model. The whole learning proce-

dure is divided into two steps. In the first step, we draw random vectors {u, z,d}

from the prior distributions and then consider them as input for the generator for

producing the fake image. The adversarial loss, defined by Eq. (3.2), is used for

both the generator and discriminator. In the second step, the objective function

Eq. (3.14), is used to update the inference and generator models. 35

LIST OF FIGURES 9

3.5 Using the memory buffer in the LGAA framework. Once the first task is learnt,

we use a buffer to preserve the generator’s parameters. Then, during the second

task learning, the preserved generator is used as a generative replay mechanism,

producing a batch of samples. The generated data samples are incorporated

together with new samples drawn from the second task for training LGAA.

Then, the process of creating buffers for temporary storing generator parameters

is repeated each time when learning a new task. 45

3.6 The reconstruction and generation results under the CelebA to CACD lifelong

learning. 47

3.7 The reconstruction and generation results under the CelebA to 3D-Chair lifelong

learning. 48

3.8 Interpolation results after lifelong learning. 49

3.9 Results when manipulating the latent variables under the CelebA to 3D-Chair

lifelong learning when considering the loss function from Eq. (3.20). We change

a single latent variable in the latent space from -3.0 to 3.0 while fixing all others. 50

3.10 Evaluation of the image reconstruction quality for various lifelong learning meth-

ods. 50

3.11 Reconstruction results on MNIST when changing a single continuous latent vari-

able while fixing all others. 55

3.12 Assessing the knowledge transferability, calculated using Eq. (3.21), for the

LGAA model under the CelebA to CACD, and for CelebA to 3D-Chair lifelong

learning. The average reconstruction errors are calculated based on samples from

CACD and 3D-Chair datasets during the second task learning. 56

4.1 The network architecture of the generator under unsupervised learning. 63

4.2 The network architecture of the encoder under unsupervised learning. 63

LIST OF FIGURES 10

4.3 The network architecture of the proposed GMM consisting of K components.

Each component can be seen as a single VAE model. 65

4.4 The procedure of the proposed knowledge measure approach. When seeing a new

task, we generate a set of samples using each component. Then these generated

samples and real samples from the new task are used for checking the model

expansion (Eq. (4.4)). 67

4.5 The network architecture of the encoding-decoding network under the image-to-

image translation task, where input size is 256 × 256 × 3. ”batch” is the batch

size, which is set to 8 in our experiment. 70

4.6 The network architecture of the encoder under the image-to-image translation

task. 71

4.7 The network architecture of the classifier under the classification task. 72

4.8 The network architecture of the generator under the classification task. 73

4.9 The network architecture of the encoder under the classification task. 73

4.10 Diagram showing the learning structure for the proposed GMM mixture model.

Only a few components (’Encoder K’, ’Student Encoder’, ’Decoder K’, and ’Stu-

dent Decoder’) update parameters during each stage of lifelong learning. Mean-

while, we always train the student module in each task learning by using the

objective function from Eq. (4.13). 77

4.11 (a) The evaluation of the knowledge similarity between the given new task and

the information already known by the GMM under the MSFIR lifelong learning.

We also plot the number of components in each task learning. (b) The model’s

performance and complexity change when using different thresholds λGMM in

Eq. (4.4) during MSFIR lifelong learning. ’GMM-100’ denotes that the GMM

model is trained using the threshold λGMM = 100. 80

LIST OF FIGURES 11

4.12 Reconstructed image results achieved by the student module of the GMM after

CCCOS lifelong learning. 81

4.13 Interpolation results obtained by the student module of GMM, after CCCOS

lifelong learning. 82

4.14 Reconstructed image results achieved by the GMM after CCCOS lifelong learn-

ing. The first row represents testing images and the second row are their recon-

structions using GMM. 83

4.15 The estimation of the discrepancy distance between different domains, where the

first one was assumed to have already been learnt by the model. 86

4.16 The target risk (classification error) on all datasets, achieved by the proposed

GMM when learning a sequence of the MNIST, SVHN and CIFAR10, namely

MSC. We employ ’Easy-to-Hard’ and ’Hard-to-Easy’ to denote that the model is

trained under MSC and CMS lifelong learning, respectively. (a) The results from

BatchEnsemble. (b) The results of the GMM that shares part of the parameters

between components. (c) The results of the GMM when do not share parameters

among components. 87

4.17 Image to Image translation results when learning three different tasks under the

lifelong learning. 89

LIST OF FIGURES 12

5.1 The diagram illustrating the learning procedure for the proposed lifelong frame-

work, which consists of three steps (See details in Section 5.2.7). First, when

seeing a new task (the t-th task), we perform the Knowledge Discrepancy Score

evaluation, by employing SE or KFD criterion, which guides us to perform either

the selection or expansion process (Eq. (5.6)). Second, we update the teacher

module by using Eq. (5.8) and Eq. (5.9) where we omit the GRM process when

a selected expert is reused for learning a new task. Third, we update the stu-

dent module on real samples from the current task combined with generative

replay samples drawn by the teacher module. The more detailed pseudo code is

provided in Section 5.2.7. 92

5.2 The network architecture of each teacher expert, involving a generator and a

discriminator. 100

5.3 The unsupervised learning procedure for D-TS. When learning the t-th task

learning, we perform the KDS evaluation between the new dataset Dt
SU , and the

data sets generated by the teacher’s experts, Di
GU , i = 1, . . . , K. If the minimum

KDS is larger than a threshold hold, then we add a new expert to the mixture

system (teacher module), otherwise, we select the expert with the minimum KDS

for learning the t-th task. The activated experts are shown in red. The student is

trained along with the teacher module, aiming to compress the knowledge from

different sources (experts) into a compact latent space. 101

5.4 The network architecture of the inference models used for modelling qςstu(z |x)

and qψstu(e | z). 103

5.5 The network architecture of the classifiers FδTeah
ŝ

(x) and Fδ (x). The final layer

in the classifier outputs a Q-dimensional probability vector using the softmax

activation function. 108

LIST OF FIGURES 13

5.6 Knowledge discrepancy evaluation and the expansion of the network during the

training. 115

5.7 Latent space projections for D-TS model. 115

5.8 Results when varying the latent variables under the CelebA to 3D-Chair lifelong

learning. We change a single latent variables in the latent space from -3.0 to 3.0

while fixing the others. 117

5.9 Interpolation results under the CelebA, CACD, 3D-Chair and Omniglot lifelong

learning. 120

5.10 Generation and reconstruction of images when considering D-TS-KFD under

CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN and MNIST (CCCSSM) life-

long learning. 121

5.11 Image generation and reconstruction from D-TS-SE after the CCCSSM database

sequence lifelong learning. 122

5.12 Results for the measures used for the Knowledge Discrepancy Score for the ex-

pansion of the teacher module under CelebA, CACD, CIFAR10, Sub-ImageNet,

SVHN and MNIST lifelong learning. 123

5.13 The risk evaluation (classification error) and the performance of the student

module when changing the KDS threshold in K-DS-hold where ’hold’ is the

threshold in Eq. (5.6). 123

5.14 The running time for D-TS-KFD when considering 20 epochs for both training

and updating a component, while for D-TS-KFD∗ we consider only 5 epochs

when updating a component, according to Eq. (5.6), under CelebA, CACD,

CIFAR10, Sub-ImageNet, SVHN and MNIST lifelong learning. 124

5.15 Images generated by WGAN when considering GRMs. 124

LIST OF FIGURES 14

5.16 Images generated by the teacher module from the proposed lifelong teacher-

student framework. 125

5.17 Image reconstructions by the student module after CelebA, CACD, 3D-Chair

and Omniglot lifelong learning. 126

6.1 The network architecture of the generator and a discriminator. 136

6.2 The removal of unnecessary experts, where the given criterion controls the num-

ber of teacher experts. 139

6.3 The learning procedure of the proposed framework where we omit the updating

of the memory for the sake of simplification. 141

6.4 The network architecture of the encoder. 143

6.5 The cross-domain reconstruction results of various models under MSFIRC setting.148

6.6 Image interpolation results of CGKD-GAN under CelebA-Chair setting. 149

6.7 The effect of varying λCGKD. 150

List of Tables

3.1 Reconstruction error under CelebA to 3D-Chair lifelong learning. 49

3.2 Classification results following the lifelong learning of MNIST (M) and Fashion

(F) . 51

3.3 Classification results under MSFIIC lifelong learning 53

3.4 Semi-supervised classification error results on SVHN database, under the SVHN

to Fashion lifelong learning. 54

3.5 Semi-supervised classification error results on MNIST database, under the MNIST

to Fashion lifelong learning. 54

3.6 Quantitative evaluation on the representation learning ability 55

3.7 Task inference accuracy after the lifelong learning of MNIST and Fashion. . . . 56

4.1 The performance of various models after the MSFIR lifelong learning. 80

4.2 The performance of various models under the CCCOS learning setting. 83

4.3 Classification accuracy of various models after the MSFIRC lifelong learning. . . 84

4.4 Classification accuracy of various models after the MSFIRRC’s lifelong learning. 84

4.5 Results of continuous learning benchmark. 85

4.6 Results of Split CIFAR. 85

4.7 The number of parameters of various models under MSFIR unsupervised learning. 88

15

LIST OF TABLES 16

4.8 The number of parameters of various models under the CelebA, CACD, 3D-

Chair, Omniglot and Sub-ImageNet (CCCOS) lifelong learning setting. 88

4.9 The number of parameters of various models under the lifelong supervised learn-

ing (MSFIRC). 89

5.1 The performance of various models under the MSFIR lifelong learning setting. . 112

5.2 The performance when learning a sequence of six tasks. 113

5.3 The lifelong learning of a sequence of six tasks. 113

5.4 MSE of the reconstructed interpolated images using Eq. (5.24). 116

5.5 Image reconstruction errors when learning datasets containing complex images,

such as the CCCSSM sequence. 118

5.6 Image reconstruction errors when learning datasets containing complex images,

such as the CCCSSM sequence. 118

5.7 Classification accuracy under the supervised lifelong learning of MNIST, Fashion,

SVHN and InverseFashion (IFashion) databases. 121

5.8 The number of parameters required by various models for the unsupervised life-

long learning of MFSIR, MSFICOM and CCCSSM database sequences. 122

5.9 The performance for all testing data samples when considering that training

data are missing for certain databases (marked with ‘*’). The total number of

training samples for CACD* and Sub-ImageNet* is 10,000, respectively. 125

5.10 The results when considering just five training epochs for updating an existing

component, when the condition to expand the model is not fulfilled in Eq. (5.6). 126

6.1 FID for various models under the MSFIRC setting. 146

6.2 The FID of various models under the CI-MSFIRC setting. 148

6.3 The FID for the results generated by various models under the CelebA-Chair

learning setting. 149

Acknowledgements

I would like to express my gratitude to my primary supervisor, Dr. Adrian G. Bors, who guided

me throughout this project. He has regular meetings with me to discuss the research, including

helpful corrections on the writing and constructive suggestions. I have learned a lot of research

and writing skills from those meetings. In addition, he supports me in publishing the research

findings at several top-tier conferences, which provides opportunities for me to communicate

with international scholars. Finally, I am pleased to work with him on the research project.

I would also like to thank my assessor, Prof. Richard Wilson, for the helpful discussions in

the TAP meetings and his precise assessment of my work. In addition, he also provides valuable

suggestions on my research and thesis writing, which is important for my thesis. Finally, I also

wish to acknowledge the help provided by my colleagues in the Vision, Graphics and Learning

Research group, who usually held several interesting research seminars that provided valuable

research insights for me.

I would like to thank my friends, Guoxi Huang, ZeChao Hu, Jingbo Yang and Cameron

Kyle-Davidson in the UK, for their support and help during my PhD study.

Finally, I would like to thank my family members for their support. My mother, YueZhen

Hou, and my father, YuFu Ye encourage me to pursue a PhD degree at a top university while

they also provide a kind of spiritual encouragement and support for me.

17

Declaration

I declare that this thesis represents my own original work, which I undertook at the University

of York during 2018 - 2022, and I am the sole author. This work has not previously been

presented included in a thesis submitted to this or any other institution for a degree, diploma

or other qualifications.

Some parts of this thesis have been published or accepted in journals and conference pro-

ceedings; where items were published jointly with collaborators, the author of this thesis is

responsible for the material presented here.

Conference Papers:

• Fei, Ye, and Adrian G. Bors. ”Learning latent representations across multiple data do-

mains using lifelong vaegan.” In European Conference on Computer Vision (ECCV 2020),

pp. 777-795. Springer, Cham, 2020.

• Fei, Ye, and Adrian G. Bors. Lifelong Generative Modelling Using Dynamic Expansion

Graph Model. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2022

Oral), pp. 8857-8865, 2022,

Journal Papers:

• F. Ye and A. G. Bors, ”Dynamic Self-Supervised Teacher-Student Network Learning,” in

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,

18

LIST OF TABLES 19

doi: 10.1109/TPAMI.2022.3220928.

Notations

Notations Description

N The total number of tasks in general continual learning.

N ′ The total number of training times/steps for a data stream under task-free continual learning.

DiS The i-th labelled training dataset.

DiD The task label dataset, which represents the task information for DiS from the i-th task.

DiSU The i-th unlabelled training dataset.

DiT The i-th labelled testing dataset.

p(xiSU) The data distribution formed by samples from the i-th training dataset DiSU .

{xi,yi} An image with the associated with the class label.

d⋆i The task label (one-hot vector) for xi.

z The continuous latent variable.

u The discrete latent variable, representing the class information.

d The discrete latent variable, representing the domain/task information.

e The discrete latent variable, representing expert identity information.

X The data space.

W The dimension of a data sample.

L The dimension of a latent variable d.

Q The dimension of a latent variable u.

V The dimension of a latent variable e.

Z The space of the latent variable z.

m The size of a data batch.

K The current number of components/experts in the model.

Gθ The generator with the parameter θ.

Dη The discriminator with the parameter η.

{Xbatch,Ybatch} The labelled data batch.

Dbatch The data batch of the task label.

DG The labelled dataset generated using the model.

DGU The unlabelled dataset generated using the model.

DGU The unlabelled dataset generated using the model.

DŝGU The unlabelled dataset produced by the ŝ-th expert.

DŝG The labelled dataset produced by the ŝ-th expert.

DtD The task label set of the t-th task.

Ai The i-th component/expert in the mixture framework.

A A single model.

ŝ The index of the current selected component/expert in the mixture system.

20

Chapter 1

Introduction

Humans have an inherent ability to memorise, interpret and transfer knowledge across tasks,

[4]. Lifelong/Continual learning represents the capability of people or animals of being able

to continually acquire new skills or novel knowledge from a sequence of tasks while also main-

taining their performance on previously learnt tasks [44]. When presented with a new task,

humans would use their previously learnt experience in order to understand it. This ability

is essential for adaptation and solving many real-world problems and would be very useful if

it could be implemented in artificial systems in order to advance their capabilities. Artificial

learning systems, able to learn new information from multiple sources while expanding their al-

ready assimilated cognitive abilities, would be able to solve multiple challenges [125]. However,

lifelong learning remains a serious challenge for deep learning applications. While deep learning

approaches perform well in many specific data classification applications [64], they suffer from

the catastrophic forgetting problem [6, 136, 129, 163] when attempting to learn new tasks. This

happens because a deep learning model, which had been trained initially on a specific database,

loses that knowledge when it is trained for a new task on a novel data set. While deep learning

was concerned mostly with language and image processing, the goal of lifelong learning is to

process a wide variety of data. In this PhD thesis, we limit our study to learning databases of

images.

Lifelong learning has attracted much attention in recent years because of its potential ap-

plications in many real-world systems such as autonomous learning agents and robots [125].

The natural property of lifelong learning is also relevant to many practical applications. For

example, the bank fraud detection system should be able to continuously learn new cases to

improve the system’s robustness. Moreover, a robot should be able to acquire new knowledge in

1

CHAPTER 1. INTRODUCTION 2

a dynamically changing environment without forgetting it in order to make a reasonable deci-

sion when the environment changes. In addition, studying lifelong learning can bridge the gap

between the computational model and the brain-like machine and promote the development of

artificial intelligence research.

A lifelong learning problem can be defined by several individual tasks and a model, where

each task is defined by sets of images from several incremental classes or from a single larger

data set, which is maybe provided through a continuous data stream. During lifelong learning,

only one set of training examples from the current task is available for training the model,

while the model cannot access all previously seen tasks. Once training is complete, the model’s

effectiveness on all test examples is evaluated using a predefined performance metric such as

Freschet Inception Distance (FID) [63]. This thesis also considers a more realistic setting for

lifelong learning called Task-Free Continual Learning (TFCL) [7], which assumes there is no

task information access during the training.

Prior research aiming to alleviate catastrophic forgetting was often focused on regular-

ization [191], dynamic architectures [142] and memory-based methods [106]. For instance,

regularisation-based approaches would generally impose a more significant penalty for changing

the model parameters in order to relieve catastrophic forgetting [99]. However, these approaches

do not work well when learning entirely different data sets. Dynamic architecture approaches

would either freeze the weights for sections of the network or add new processing nodes when

learning new tasks [129]. The drawback of these approaches is that they invariably require

additional network structures, thus increasing the number of parameters requiring training for

storing additional information. Other continual learning methods rely on a small memory buffer

that stores some past samples [22] or uses a generator to reproduce previously learned samples

[175]. The memory-based approaches have shown impressive results in continual learning but

cannot handle an increasing number of tasks due to limited memory capacity.

On the other hand, most of the existing continual learning studies mainly focus on the

classification task, where a classifier can continuously learn new classes [134]. Training deep

generative models using lifelong learning has been recently investigated in several works [193, 2].

These studies have shown that generative models in lifelong learning can benefit many down-

stream tasks, including the image interpolation [2], disentangled representation learning [2] and

image to image translation task [193]. These approaches typically use generative technologies

such as the Variational Autoencoder (VAE) [85] and Generative Adversarial Net (GAN) [52]

CHAPTER 1. INTRODUCTION 3

to generate previously learned samples that are used to re-train the model to avoid forgetting.

However, since the performance of these approaches depends heavily on the quality of the

generative replay samples, they would suffer from catastrophic forgetting when learning a long

series of tasks. In addition, when a single generative technology (GAN or VAE) is used for

generative replay, it still suffers from the limitation of either lacking an inference mechanism

(GAN) or producing blurred images (VAE). In this thesis, our research mainly focuses on

training generative models under lifelong learning and aims to develop several methodologies

to overcome the limitations of prior studies. Moreover, this research also investigates three

different settings for lifelong learning : 1) learning a finite number of tasks; 2) learning an infinite

number of tasks; 3) learning infinite data streams without knowing the task information; These

settings represent the basis for developing practical applications in lifelong learning. Therefore,

we implement these settings by developing several new models, briefly described in the following.

First, we address the first learning situation by proposing a new hybrid approach that com-

bines the advantages of GANs and VAEs in a unified optimisation framework. Here, the GAN

model is trained to produce high-quality generative replay patterns, while inference models

are enforced to learn cross-domain latent representations for both past and current tasks using

VAE losses. However, the proposed lifelong hybrid approach can only be applied to a few tasks

and would suffer from serious forgetting problems when trying to learn an unlimited number of

tasks. This inspires us to address the second learning setting by developing a lifelong learning

framework, called the Dynamic Growing Mixture Model (GMM), which dynamically expands

its network architecture to cope with an increasing number of tasks. To test whether the pro-

posed GMM model is more advantageous than a single/static model in learning a long series of

tasks, we construct a series of experiments on both supervised and unsupervised learning. The

empirical results show that dynamically expanding the network architecture can significantly

reduce forgetting compared to a single/static model.

Although GMMs achieve promising results in lifelong learning, they require a multi-head

structure for performing the component selection during the testing phase. To address this

issue, we develop a dynamic self-supervised Teacher-Student framework which can continually

embed different data domains into a single latent space modelled by a lightweight student

module. During the testing phase, the proposed model only requires the student module for

the inference and discards the teacher module, accelerating the processing required for inference

while also reducing the memory requirement.

CHAPTER 1. INTRODUCTION 4

The third learning context, called Task-Free Continual Learning (TFCL) [7] is a special case

of continual learning in which the model can not access the task information and boundaries.

To address this challenging learning paradigm, we develop a new teacher-student framework,

where the teacher learns a dynamic expansion model as a parameterised memory to retain long-

term information. We also introduce a short-term memory (STM) for temporarily storing the

incoming information. To enable the model expansion, we develop a novel dynamic expansion

criterion that evaluates the probabilistic distance between the STM and each previously learnt

teacher component. Such a mechanism can avoid frequent expansion and ensure knowledge

diversity among components during the training. Finally, to embed the stored knowledge into

a single latent space, we propose to learn a VAE-based student module and a new knowledge

distillation approach that transfers the teacher’s and STM’s knowledge into the student module.

We outline the remainder of this thesis as follows :

• Chapter 2. Literature review : We introduce the related works of general continuous

learning and task-free continual learning. We also discuss the drawbacks of the existing

lifelong learning approaches, which inspire us to propose several new lifelong learning

models described in the following chapters.

• Chapter 3. Lifelong learning with a hybrid approach : We propose to learn a

generative model under continual learning by taking the properties of GAN and VAE

models that can learn cross-domain latent representations over time.

• Chapter 4. Dynamic growing mixture model : We develop the Dynamic Growing

Mixture Model (GMM) model that can address the limitations of the static network

architecture in learning an infinite number of tasks.

• Chapter 5. Dynamic Self-Supervised Teacher-Student Network Learning : Al-

though GMMs can achieve promising results in lifelong generative modelling, they require

a mechanism for performing the component selection at the testing phase, which leads

to additional inference times. This chapter proposes a new lifelong learning framework

based on the teacher-student structure, which aims to transfer the teacher’s knowledge

to a lightweight student module without forgetting. The proposed framework can signifi-

cantly reduce inference times and maintain a lightweight student module during testing.

CHAPTER 1. INTRODUCTION 5

• Chapter 6. Task-free continual learning using a teacher-student framework :

In this chapter, we extend the proposed teacher-student framework (chapter 5) for task-

free continual learning and introduce a new dynamic expansion criterion that does not

require accessing the task information during the training. The proposed framework can

be applied to learning infinite data streams without forgetting.

• Chapter 7. Conclusion and future works : We provide a detailed discussion of the

conclusion and hints about the future development of the research results from this thesis.

Chapter 2

Background and Literature Review

Although lifelong learning can be applied to a variety of applications such as natural language

processing, text or speech, the research results presented in this thesis are focused on processing

images. In this chapter, we first introduce several methods used in this thesis, including the

Variational Autoencoder (VAE) and the Generative Adversarial Network (GAN). Then we pro-

vide an overview of related work on general continual learning, where the task label is always

given during training. The lifelong approaches can be divided into four branches: regularisation-

based methods, dynamic architectures, memory-based and knowledge distillation-based meth-

ods. Since task-free continual learning represents an important and realistic setting, we also

provide an overview of related work on task-free continual learning in the remainder of this

chapter.

2.1 Background

2.1.1 Generative Adversarial Nets (GANs)

GANs represent a promising approach for both unsupervised and semi-supervised learning [52].

The learning procedure of a GAN is presented in Figure 2.1. A GAN is made up of two different

networks which are coupled: the Generator and the Discriminator. These two networks are

separately trained while playing a Min-Max game where the Discriminator network is trained

to receive both fake and real data samples while learning to distinguish them from each other.

Meanwhile, the generator is trying to produce more realistic data, such as images, that would

fool the Discriminator network. The loss for training GANs is defined as, [52]:

6

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

Generated image

Generator
Discriminator

Adversarial lossPrior distribution

Figure 2.1: The learning procedure of GAN, which involves two components, the generator and
the discriminator.

LG = Ez∼p(z) [log (1−Dη (Gθ (z)))] , (2.1)

LD = −Ex∼p(x) [logDη (x)]− Ez∼p(z) [log (1−Dη (Gθ (z)))] , (2.2)

where z is a low-dimensional random noise vector sampled from a simple prior distribution

p (z) = N (0, I) and x is a real training sample drawn from a data distribution 1 p(x). Gθ(z)

is parameterized by θ and is implemented by a generator that receives a random vector z and

returns an image x. Dη(x) is parameterized by η and is implemented by a discriminator network

which receives an image x and returns a scalar. In practice, the generator and discriminator

can be implemented by using the deep CNN networks and the output of the discriminator

in the original GAN [52] is confined to [0, 1] by using the sigmoid function. Although the

GAN model has shown impressive results in image generation, it still encounters two main

drawbacks: (1) Mode collapse [156] happens when the generator tends to generate images of a

limited number of categories; (2) The unstable learning [143] induces a strong generator and

a weak discriminator, which can not find the optimal solution for the GAN and thus produce

unrealistic image generation results.

2.1.2 Variational Autoencoder

The Variational Autoencoder (VAE) is a popular latent variable generative model, firstly pro-

posed in [85]. The learning procedure of VAEs is shown in Figure 2.2 where a VAE is shown

as having two module components, namely the encoder and decoder. Let x and z be the

1Following from the original GAN [52] works and other existing studies in generative modelling fields [11, 55],
we adopt the data distribution to represent the probability distribution of data samples.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

ReconstructionDecoder

Reparameterization trick

z

Encoder

Figure 2.2: The learning procedure of VAE, where the encoder and decoder are used to model
the encoding and decoding distributions, respectively.

observed and the latent variable, respectively. Let p(x) represent a data distribution and

pθ(x | z) be a decoding distribution which is usually implemented as the Gaussian distribution

pθ(x | z) = N (f(z; θ), σ2I), where f(z; θ) parameterized by θ is the decoder that receives a

latent code z and its output is used as the mean vector of N (f(z; θ), σ2I). σ is the standard

deviation which is fixed for the decoding process. The learning goal of a VAE aims to maximize

the real sample log-likelihood, defined as:

log

∫
pθ(x | z)p(z) dz , (2.3)

where p(z) is the prior distribution N (0, I). To solve Eq. (2.3), the VAE framework derives a

new objective function, described as follows.

In addition to the decoding distribution pθ(x | z), we can replace the true posterior distribu-

tion pθ(z |x) with an approximation distribution q(z). We start by defining the Kullback-Leibler

divergence between pθ(z |x) and q(z), following from [34]:

DKL[q(z) || pθ(z |x)] = Ez∼q(z)[log q(z)− log pθ(z |x)] . (2.4)

According to Bayes rule, we can rewrite Eq. (2.4) as:

DKL[q(z) || pθ(z |x)] = Ez∼q(z)[log q(z)− log pθ(z |x)− log p(z)] + log p(x) . (2.5)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

Then we rearrange Eq. (2.5), resulting in:

log p(x)−DKL[q(z) || pθ(z |x)] = Ez∼q(z)[log pθ(x | z)]−DKL[q(z) || p(z)] . (2.6)

In practice, q(z) is implemented by a parameterized distribution qς(z |x) = N (fµ(x), (fσ(x))
2I),

where fµ(x) and fσ(x) are the functions to return the mean and standard deviation vector,

implemented by a neural network with the trainable parameters ς. Eq. (2.6) can be rewritten

by replacing q(z) by qς(z |x):

log p(x)−DKL[qς(z |x) || pθ(z |x)] = Ez∼qς(z |x)[log pθ(x | z)]

−DKL[qς(z |x) || p(z)] .
(2.7)

The Right-Hand-Side (RHS) of Eq. (2.7) is called the Evidence Lower Bound (ELBO) [85].

The VAE loss function is the minimization of the negative ELBO:

LVAE = −Ez∼qς(z |x)[log pθ(x | z)] +DKL[qς(z |x) || p(z)] , (2.8)

where the first term in RHS of Eq. (2.8) is the negative reconstruction error defined as:

log pθ (x | z) = − 1

2σ2
∥x− f (z; θ)∥2 − 1

2
W log 2πσ2 , (2.9)

where W is the dimension of x. The second term in RHS of Eq. (2.8) is the KL divergence

term. In the VAE optimization, one simple approach to enable the sampling procedure is by

using the reparameterization trick [85] which firstly draws π ∼ N (0, I) and then the latent

variable z is calculated as z = fµ(x) + fσ(x)
⊙

π, which allow the differentiable optimization

process using Eq. (2.8), where
⊙

is the element-wise product.

The VAE’s performance can be improved by deriving a tight ELBO, using the Importance

Weighted Autoencoder (IWELBO) [18] in which the tightness is controlled by the number

of weighted samples considered. Other approaches focus on the choice of the approximate

posterior distribution, including by using normalising flows [84, 137], implicit distributions [115]

or using hierarchical variational inference [70]. The IWELBO bound can be used with any of

these approaches to further improve their performance [151]. Additionally, online variational

inference [119] has been used in VAEs, but requires storing the past samples for computing the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

Task 1 Task 2 Task �

Model
Can not acess
Can acess

Figure 2.3: The procedure of general continual learning where each task is associated with a
different data domain. During the N -th task learning, the model can access the training dataset
of the N -th task while all previously learnt datasets are not available.

Data batch 1 Data batch 2 Data batch �’

Model
Can not acess
Can acess

Figure 2.4: The procedure of task-free continual learning, where each data batch contains
training samples from different data domains while the task information and boundaries are
unavailable. During the N ′-th training time/step, the model can only access the N ′-th data
batch while all previous data batches are not available.

approximate posterior, which is intractable when learning an infinite number of tasks.

2.1.3 Lifelong Learning and Its Settings

Continual/Lifelong learning represents a long-standing challenge for the machine learning ap-

proaches [125, 58]. Different from the traditional deep learning paradigm, which can access all

training samples and aims to learn a single dataset, lifelong learning considers learning succes-

sively a sequence of tasks where each one is associated with a different dataset or with groups

of samples from various data categories. During each task learning, the model can access the

training samples from the current task while all previously learnt tasks are unavailable. With-

out accessing past samples, deep learning frameworks gradually lose their previously learnt

knowledge, leading to catastrophic forgetting [125]. In this thesis, we study two main lifelong

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

learning scenarios, described as follows.

General continual learning is the most popular scenario in which the task information and

label are given during the training [134]. For a given sequence of N tasks, each task (the

t-th task) consists of a training set Dt
S = {{xj,yj}}

Nt
S

j=1 and testing set Dt
T = {{xj,yj}}

Nt
T

j=1,

respectively, where xj ∈ X and yj ∈ Y are the data sample and its corresponding class label

(one-hot vector), respectively. X and Y are the data and class label space, respectively. N t
S

and N t
T represent the total number of samples for Dt

S and Dt
T , respectively. For unsupervised

learning, each task (the t-th task) has an unlabelled training set2 Dt
SU = {xj}

Nt
S

j=1 and testing set

Dt
TU = {xj}

Nt
T

j=1, respectively. In the N -th task learning (Supervised learning), the model can

only access the training samples from DN
S , as shown in Fig. 2.3. Once the learning of all tasks

is finished, the performance of the model is evaluated on all testing datasets {D1
T , · · · , DN

T }.

Task-free continual learning is a more realistic scenario where the model sees only a small set

of samples in a training period/step [7] without knowing task boundaries. Let Di
TU = {xj}

NT
i

j=1

and Di
SU = {xj}

NS
i

j=1 be the unlabelled test and training sets, for the i-th data domain/dataset,

where NT
i and NS

i represent the number of samples for the test and training sets, respectively.

In task-free continual learning, we create a joint dataset S = {D1
SU ∪ D2

SU ∪ · · · ∪ DN
SU} as

a data stream S, where N is the total number of datasets. For a given data batch size m

(We consider m = 64 in the experiments), the data stream can be divided into N ′ disjoint

data batches {X1
batch,X

2
batch, · · · ,XN ′

batch} in a batch-to-batch learning manner [7] and each data

batch Xt
batch contains m samples. For a given set of N ′ training times/steps, each training step

(the t-th step) is associated with a small batch of training samples Xt
batch := {xj}mj=1. In the

N ′-th training period/step, the model can only access the data batch XN ′

batch while all previously

learnt data batches {X1
batch, · · · ,XN ′−1

batch } are unavailable, as shown in Fig. 2.3. After all training

steps are finished, the model’s performance is evaluated on all testing samples. The primary

difference between general continual learning and task-free continual learning is that TFCL

does not access any task information and boundaries during training.

2.1.4 Disentangled Representation Learning

Learning a disentangled representation from data distributions is an important problem in

computer vision. Generative models provide a general way to achieve this goal by learning a

2Since Dt
SU has the same dataset size with Dt

S , we employ N t
S to denote the total number of samples for

Dt
SU .

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

set of critical latent variables that can determine meaningful variations in visual spaces. The

definition of disentangled representation is an open problem, but most studies consider it to be

a data decomposition into sets of statistically and syntactically independent variables. In order

to understand what is the disentangled representations, we show an example in Figure 2.5 (ref

from [64]) where the face has meaningful variations as changing one single latent variable from

-3 to 3 while fixing other variables. This shows that a single latent variable captures a specific

meaningful variation in face images.

Figure 2.5: The disentangled representation results from [64].

In the following, we show how β-VAE [64] can learn disentangled representations by simply

modifying the objective function of VAEs. The main change in the objective function is to set

a large penalty factor β > 1 on the KL divergence term:

LBVAE = −Eqς(z |x) [log pθ (x | z)] + βDKL [qς (z |x) || p (z)] , (2.10)

where β controls the balance between reconstruction fidelity and the degree of disengagements

in latent variables [64]. To understand why increasing β can help disengagements, some works

[112] [80] have decomposed the KL divergence term into two terms:

Ex∼p(x) [DKL (qς (z |x) || p (z))] = I(x; z) +DKL [q̃ (z) ||p (z)] , (2.11)

where q̃(x) =
∫
x
qς(z |x)p(x) dx is the aggregated posterior [112]. Minimising the last term can

encourage disengagements in latent variables. However, minimising the above equation results

in reducing the mutual information I(·; ·) between latent variables z and observed data x. In

practice, this can lead to an increasing reconstruction error during the training. Recently, many

technologies have been developed to induce disengaged representation without sacrificing recon-

struction quality. For instance, Burgess et al. [19] provided a deep analysis on the emergence of

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

Generator

Task 1 Task 2 Task N

Classifier

Generated images Pseudo labels

Joint dataset

Figure 2.6: The learning procedure of GRM, which involves two components, the generator
and the classifier.

disentangled representation in β-VAEs and proposed a new training procedure which progres-

sively increases the penalty of the KL divergence term in order to balance disengagements and

reconstruction accuracy. Gao et al. [48] proposed to use the multivariate mutual information,

namely total correlation, to help find interpretable representations in VAEs. Kim et al. [80]

proposed a VAE-based disentangled learning model, called FactorVAE, which encourages the

distribution of latent representation to be independent and factorial over the dimensions by pe-

nalising the total correlation in the VAE objective function. A similar idea has been employed

in [26] where the author demonstrated that the total correlation is the more important penalty

in the VAE objective function for inducing disentangled representation.

Learning only continuous latent representations has limitations in the case of databases

with complex images that contain discrete variations. Many research studies attempt to learn

continuous and discrete representations to capture both the class and the continuously changing

properties of data. Dupont et al. [41] proposed jointly learning continuous and discrete latent

variables in VAEs to discover disentangled and interpretable representations. This joint VAE

model introduces gradually increasing the penalty of two KL divergence terms in the VAE

objective function to balance disengagements and reconstruction quality. The InfoGAN [27]

is another kind of unsupervised disentangled learning method, which learns a subset of codes

to capture meaningful representations. The InfoGAN derived a lower bound on the mutual

information between latent codes and the generation process, treated as an additional term in

the GAN objective function. In our research, we also explore the learning of the disentangled

representations in the lifelong learning setting.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

2.1.5 Generative Replay Mechanism for Lifelong Learning

Since this research focuses, among other research directions, on training generative models in

lifelong learning, we give a brief overview of the generative replay mechanism (GRM). The

idea behind the GRM is to train a deep generative model, such as a GAN or VAE, as a

generative replay network that provides past examples to relieve forgetting. A GRM consists

of two components: the generator and classifier, and its application to classification is shown in

Fig. 2.6. When GRM sees a new task, it first generates the previously learned samples through

the generation process, and then the classifier predicts the pseudo labels for each generated

sample. Finally, these pseudo-samples are merged with new given samples to form a joint

dataset which is used to train the model for the subsequent task learning. In this thesis, we

show that GRM can be used for classification tasks and lifelong generative modelling.

2.2 General Continual Learning

Most of the existing works focus on general continual learning. They usually require task labels

to define the task-specific component and loss function evaluation. In this section, we give an

overview of related work on general continual learning.

2.2.1 Regularization Based Methods

Regularization approaches normally impose constraints on the objective function during train-

ing in order to alleviate catastrophic forgetting [191]. Changes in the neural network weights

are penalized by considering a regularization term in the objective function, for instance. Kirk-

patrick et al. [86] introduced the Elastic Weight Consolidation (EWC) algorithm, which en-

courages the weights of a neural network deemed significant to keep close their previous values

when learning a new task. This approach proposes using a quadratic penalty on the difference

between the parameters associated with the old and new tasks, which aims to minimize the

change in the previously learnt parameters when learning a new task. Empirical results [77]

have shown that EWC is good at the permutation tasks where each task is built using MNIST

with a different random permutation of the image pixels. However, EWC performs worse when

learning completely new categories incrementally. In addition, one disadvantage for EWC is

that the Fisher matrix is kept for each task and is used in the loss function when learning a

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

new task. This can increase the computational complexity of learning a long sequence of tasks.

This problem was addressed by [145], which only employs a single Fisher matrix to preserve

the information of all previously learned tasks and therefore, the computational costs do not

increase when the number of tasks grows.

More recently, regularization approaches have been developed based on the Bayesian In-

ference framework. For instance, Nguyen et al. [119] introduced a new continual learning

framework, called Variational Continual Learning (VCL), which employs the Bayesian prin-

ciple to overcome forgetting. Typically, VCL defines a projection operator at the t-th task

learning [119]:

qt(ϵ) = argmin
q∈Q

DKL

[
q(ϵ) || 1

Zt
qt−1(ϵ)p(D

t
S | ϵ)

]
, t = 1, · · · , N , (2.12)

where ϵ is the model’s parameter and DKL is the Kullback-Leibler (KL) divergence. Dt
S is the

dataset of the t-th task and 1
Zt

is the intractable normalizing constant. qt(ϵ) is the tractable

normalised approximation, and Q is a family of approximations. However, to solve Eq. (2.12)

without accumulating errors, VCL requires storing a few samples for each task to calculate

the task-specific approximate posterior, which is then used to regularise the updating of the

model’s parameters on a new task. VCL was shown to be successfully used in both the clas-

sifier and generative models, such as VAEs. Ahn et al. [3] analysed the drawbacks of VCL,

including the computation time and space complexity and proposed a new solution, which in-

troduces two additional regularisation terms that preserve old knowledge by freezing important

parameters while allocating the remaining capacity to tackle a new task. Moreover, several

works have proposed to regulate the learned representations that are robust to forgetting in

continual learning. Ebrahimi et al. [43] introduced a new lifelong learning framework, which

learns a disjoint representation for task-specific and task-invariant features. The main idea

of this approach is to employ adversarial learning to induce task-invariant features that are

combined with newly created task-specific features to learn new tasks. Khurram et al. [73]

proposed a new approach that employs a deep Representation Learning Network (RLN) and a

prediction learning network for continual learning. Specifically, the proposed approach employs

the meta objective function [46] to update RLN that can be composed with the prediction

learning network to make predictions for data samples. The empirical results show that the

meta-learning can induce suitable representations that can improve the model’s performance

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

in continual learning. However, these approaches require using significant computational costs,

especially for learning a growing number of tasks [106], since they involve the inner iterative

optimisation paradigm.

2.2.2 Dynamic Architectures

Dynamic architectures employ a flexible network architecture, which can be dynamically changed

when learning new tasks. Resu et al. [142] proposed the Progressive Neural Network, which

starts with a basic structure and increases its complexity when training with new information.

In order to avoid catastrophic forgetting, this approach considers sub-networks for each newly

learnt task, whose parameters are then frozen when learning new tasks. Aljundi et al. [6]

proposed a mixture model, namely the Expert Gate for continual learning, where each expert

is implemented as an autoencoder for learning a new task. Once all tasks have been learnt, the

Expert Gate employs the reconstruction error as a component selection criterion at the testing

phase. A component with the minimum reconstruction error is selected for the evaluation of

the given task. The empirical results have shown that the Expert Gate can achieve impressive

results when learning a long sequence of tasks. Wen et al. [174] introduced a new ensemble

model for continual learning, called BatchEnsemble. This ensemble model consists of several

components and each of these can have an independent weight matrix Wi. However, the en-

semble model would require many more parameters when learning a long sequence of tasks. To

solve this issue, BatchEnsemble generates each weight matrix Wi by using a tuple of trainable

vectors ri and si, expressed as:

Wi = W ◦ Fi,Fi = ris
T
i , (2.13)

where W is the joint weight matrix which is frozen after the first task learning to avoid forget-

ting. ◦ is the element-wise multiplication operator. Eq. (2.13) is used to generate the specific

network parameters for the i-th ensemble member. The previously learned information can be

entirely preserved since each member has its own trainable parameters. However, the main dis-

advantage of using the BatchEnsemble for continual learning is that the number of tasks must

be known before training, which is not applicable in a realistic scenario in which we usually do

not know the number of tasks. In addition, each ensemble member in BatchEnsemble can only

learn a unique task and can not learn several similar tasks, which leads to more parameters when

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

learning a long sequence of tasks. Yan et al. [179] proposed a new dynamic expansion model

for class incremental learning. The main idea of this approach is to dynamically build a new

feature extractor, which is combined with the previously learnt feature to form a super-feature

extractor. Then a task-specific classifier is built on the top of this super-feature extractor.

This approach can preserve the best performance on all previously learnt tasks since it only

updates partial parameters when learning a new task. The recent study [38] has implemented

the dynamic expansion model using an advanced neural network called Vision Transformer

(ViT) [36] in which the task token θi is assigned to a certain task and a sub-classifier is built on

the top the task-attention block for making predictions for a given sample. However, similar

to BatchEnsemble, this approach does not reuse an existing component to learn several similar

tasks. The total number of parameters will grow linearly as the number of tasks increases.

In addition, most existing dynamic expansion models mentioned above [38, 179, 174, 142] can

only be applied to the classification task, limiting their usability to a wide range of applications

such as image reconstruction, image interpolation and disentangled representation learning.

2.2.3 Memory Based Approaches

Memory-based approaches can be generally divided into two categories: storing a few samples

as a memory buffer and training a generator as a generative replay network. Firstly, we review

the former.

Lopez-Paz et al. [106] introduced a general continual learning framework called the Gradi-

ent Episodic Memory (GEM) that employs a small memory buffer to store a subset of samples

of each task. An important component in this framework is the task descriptors preserving the

additional information for each task, such as the task label. During each task learning, the mem-

ory replays previously stored samples which are used to train the model to relieve forgetting.

Chaudhry et al. [12] analysed GEM and found that GEM encounters a huge computational

burden when the memory buffer size and the number of tasks are increased. Therefore, the

author introduced an improved version of GEM, called Averaged GEM (A-GEM), which re-

duces the computational costs by introducing a new objective function that replaces (t − 1)

constraints of GEM with a single constraint, where t is the number of tasks. A-GEM has been

shown to reduce computational complexity and achieve better performance than GEM. More

recently, Bang et al. [16] has shown that the diversity of samples in an episodic memory plays

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

an important role in the performance. The authors proposed a new diversity-aware sampling

approach that promotes the diversity of samples by evaluating the classification uncertainty.

Then a data augmentation approach is used to augment the memory to further encourage

sample diversity and improve performance. Yoon et al. [188] introduced a simple yet effective

sample selection approach that selectively stores the most representative and informative sam-

ples into the memory buffer, called the Online Coreset Selection (OCS). This approach utilises

the gradient information to select samples that minimise the angle between the gradient vector

of samples from the current task and the memory preserving all past samples. Sun et al. [157]

investigated the memory selection from an information-theoretic perspective and proposed a

stochastic information-theoretic reservoir sampler (InfoRS) that aims to store informative data

points while filtering out uninformative ones. Specifically, InfoRS detects informative data

points by calculating the negative log conditional probability − log p(y⋆ |YM;XM,x⋆) where

{y⋆,x⋆} is a pair of new training samples and {YM,XM} are memorized samples. Intuitively,

if {y⋆,x⋆} is obtained from a new task, − log p(y⋆ |yM;XM,x⋆) will be large and {y⋆,x⋆} will

be added into the memory buffer to ensure sample diversity. Wang et al. [166] proposed em-

ploying a data compression method to store more memorised samples. The main idea of this

approach is to use the JPEG algorithm [165] to compress the stored samples. In this way, the

memory buffer can store a large number of compressed samples, which would preserve more

information of previously learnt tasks. Empirical results indicate that this data compression

technology can relieve forgetting of past tasks and improve performance. Madaan et al. [108]

proposed a new approach for learning unsupervised representations under continual learning,

which is based on the data augmentation approach called Mixup [195]. Typically, Mixup cre-

ates virtual training examples by performing the interpolations on a pair of training samples.

In the case of continual learning, Mixup is used to create additional examples by interpolating

between the samples uniformly obtained from the memory buffer and the current task, which

is called Lifelong Unsupervised Mixup [108]. In addition, the memory-based approach can also

be combined with the regularization methods to further enhance its performance, including the

Bayesian inference [162], kernel function [32], gradient optimization [161, 102, 100, 167]. Al-

though memory-based approaches provide promising results, using the additional storage space

for learning is still necessary. This issue is addressed in [130], which introduced a memory

recovery paradigm that synthesises samples from the learned classifier, called the transfer set,

which is used for learning the next task to relieve forgetting. This approach can be used in a

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

CL scenario that does not require preserving past data samples.

In addition to using a memory buffer, recent works have explored the intrinsic properties

of generative models for continual learning. Typical approaches for the generative replay are

using Generative Adversarial Networks (GAN) [52] or Variational Autoencoders (VAE) [85] as

generative models. Shin et al. [57], proposed a dual-model architecture consisting of a deep

generative model and a classifier. This computational framework replays past knowledge by

generating pseudo-data using generative models trained on previous tasks, while the learned

classifier predicts the label for these generative replay samples. Then, this pseudo-dataset is

used with the new samples to train the system on the next task learning. A similar idea

is presented in [175], where the authors also use a GAN as a generative replay network that

retains previously learned samples and reproduces them in the subsequent learning task to relive

forgetting. This approach has been shown to improve both classification and generation tasks.

Liu et al. [104] presented a new approach for incremental class learning. Unlike existing GRM

methods that generate data samples in the image space, this approach introduces a feature

replay mechanism that generates previously learned feature vectors to relieve forgetting. The

advantage of such an approach is that it reduces memory requirements and speeds up the

learning process. In addition to the generative replay mechanism, Cong et al. [29] extended

the style transfer techniques [198, 127] to enable GAN to learn a sequence of tasks without

forgetting. However, such an approach still requires adding new network parameters to adapt

to a new task, which is not scalable for learning an infinite number of tasks. Moreover, GANs

would suffer from mode collapse such that the model only captures a few modes of the true

distribution [156]. Mode collapse in continual learning usually occurs when the model is trained

on a long sequence of tasks where each task has a completely different data domain [181].

GAN-based GRM usually lacks inference mechanisms, and consequently, it cannot learn

meaningful latent representations that support many downstream tasks, including image in-

terpolation and reconstruction. By employing VAEs in lifelong learning, we can provide both

generative replay and inference mechanisms, given that it consists of a decoder (generator) and

an encoder. The first work using VAEs in lifelong learning was proposed in [2], which aims

to learn disentangled representations under lifelong learning, called Variational Autoencoder

with Shared Embeddings (VASE). To enable learning meaningful latent variables across multi-

ple domains, VASE introduces a new loss function based on the Minimum Description Length

(MDL) principle [64], which progressively increases the representational capacity to accommo-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

date learning new data. The empirical results show that VASE can learn several disentangled

representations across multiple data domains under lifelong learning. More recently. Ramapu-

ram et al. [132] proposed the Lifelong Generative Modeling (LGM), which employs VAEs for

two networks working in tandem: a teacher and a student module. The teacher network replays

past knowledge through the generation process, as shown in Fig. 2.7, where the decoder of the

teacher module receives a random vector sampled from a normal distribution and outputs the

generation, while the student module continually learns knowledge from the data generated by

the teacher module. At the subsequent task learning, the teacher and student exchange their

roles in order to accumulate all previously learnt knowledge. The quality of the data generated

from previously learnt knowledge in algorithms such as LGM [132] or VASE [2] depends on

the generative abilities of VAEs, which are not that great, when compared to those of GANs,

and usually result in blurred images. These models do not perform well in the case of complex

data due to a rather poor replay of the knowledge from the previously learnt databases. Seff

et al. [146] proposed the Augmented Generator objective function, based on a GAN, which is

known as a better data generator than VAEs. Nevertheless, this model is applied on rather

simple data. Kuzina et al. [89] introduced a lifelong learning approach for VAE, namely the

Boosting Approach for continual learning of VAE (BooVAE), which learns the approximation

of the aggregated posterior as a prior for each learned task. BooVAE employs the trainable

pseudo-inputs as the parameters of the approximation of the posterior, and these pseudo-inputs

preserve the past knowledge used to relieve forgetting. BooVAE has shown promising results in

image generation tasks under lifelong learning. However, since BooVAE uses the static network

architecture, it is suitable for learning several tasks for a single data domain and hardly dealing

with a long sequence of different data domains.

2.2.4 Knowledge Distillation

Methods for transferring information from one model to another have been studied in recent

years [62, 65]. This process is also called Knowledge Distillation (KD), where a classifier is

trained on the predictions made by another classifier, [128]. A single classifier was trained

using an ensemble of networks in order to achieve higher performance with fewer computations

[9].

Knowledge distillation has recently been used to relieve forgetting in continual learning. Li

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

Teacher

 Student

The first task

Teacher

 Student

The second
task

The generated
dataset

Generate
Teacher

 Student

The third
task

The generated
dataset Generate

Figure 2.7: The learning process of LGM, which includes two components, the teacher and
student module. Both teacher and student modules are implemented by VAEs. During the
second task learning, the student module is fixed and provides the knowledge for the teacher’s
learning. In the next task learning, the teacher and student exchange their roles.

et al. [99] introduced a lifelong learning system, called Learning without Forgetting (LwF),

which encourages the predictions for each data sample to be similar to the outputs from the

original network by using Knowledge Distillation [65]. Zhai et al. [194] introduced a GAN-

based learning framework for conditional image generation called Lifelong GAN. Unlike existing

GAN-based GRM, which mainly focuses on the classification task, Lifelong GAN can be used

for classification and conditional image generation tasks. The main idea of Lifelong GAN is to

employ knowledge distillation that enforces the matching between the latent representations of

the current task and the previously learnt task. However, this approach still requires to use the

auxiliary data during the knowledge distillation process, which is intractable when learning an

infinite number of tasks. Then Zhai et al. [192] proposed an efficient lifelong learning framework

for conditional image generation called Piggyback GAN. Instead of using the generative replay

or memory buffer for either generating or storing data, Piggyback GAN dynamically adds new

network parameters for learning a new task while all previously learnt parameters are frozen

to avoid forgetting. However, the total number of network parameters is also increased as

learning more tasks. Buzzega et al. [20] introduced a simple and effective approach for continual

learning using knowledge distillation, called the Dark Experience Replay (DER). This approach

employs a memory buffer to store samples for past tasks and then minimize the distance on

the network’s output between the current task and memorized samples. DER was initially

designed for general continual learning and can be extended for task-free continual learning by

adapting reservoir sampling [164] that randomly selects samples from the data stream and then

adds them into the memory buffer. Dhar et al. [33] introduced a new knowledge distillation

approach for continual learning without memory buffers. This approach treats the previously

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

learnt model as the teacher and a newly initialized model as the student module. Then it

generates attention maps for both the student and teacher module by using Grad-CAM [147]

and introduces a loss term that minimizes the distance on the attention maps between the

teacher and the student module. Fini et al. [45] introduced a two-stage processing algorithm to

relieve catastrophic forgetting in continual learning. The first stage, called the warm-up stage,

minimizes the classification loss over the new-task classifier using the incoming samples. The

second stage, called the joint training, performs the knowledge distillation and the training

with the new task, simultaneously. These approaches were also extended in [59] to enable

incremental learning in the online scenario. Douillard et al. [37] formulated continual learning

as representation learning and introduced a new knowledge distillation loss that minimizes

the distance to the outputs of the final and intermediate layers between the trained teacher

and a newly initialized student module. A similar idea was introduced in [149] to minimize

the dissimilarity of the network’s output between previous and current tasks from the low-

dimensional subspace.

In addition to relieving forgetting, knowledge distillation-based methods have also been

used to solve data imbalance problems in continual learning. Hou et al. [69] introduced to

learn a unified classifier that treats both old and new tasks uniformly, while the knowledge

distillation loss was used for relieving forgetting. Zhao et al. [196] found that optimising the

knowledge distillation loss can not help the model treat old and new tasks fairly. To solve this

problem, the author first trains a new model on both incoming and memorised samples using

cross-entropy and knowledge distillation losses. Then a new approach, called Weight Aligning

[196], is proposed to correct the model trained in the first stage.

Furthermore, knowledge distillation has also been used for transferring relevant knowledge

when learning a new task. Ke et al. [76] employed a fully connected network or a CNN ar-

chitecture as the knowledge base that preserves the knowledge from all learnt tasks. A knowl-

edge distillation approach, called knowledge transfer attention [76], was proposed to selectively

transfer useful information from the knowledge base when learning a new task, promoting the

forward knowledge transfer. Such an idea was also used in [94] to transfer the knowledge to a

subset of network layers selected by the Expectation-Maximization (EM) algorithm, which can

be applied to other existing continual learning methods to further improve their performance.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 23

2.3 Task-Free Continual Learning

Task-free continual learning represents a special form of lifelong learning in which access to

task information is not required during the training. In this section, we summarize the current

works of task-free continual learning into two branches: memory-based approaches and dynamic

expansion models.

2.3.1 Memory Based Approaches

The Reservoir [164] was a simple but effective approach for continual learning, which shows

impressive results compared to other continual learning methods [22]. The Reservoir can be seen

as a popular baseline for task-free continual learning, which manages a memory buffer M with

a fixed capacity. Although the Reservoir has several advantages, it still lacks an appropriate

sample selection criterion that can selectively store informative data points into the memory

buffer. Recently, several memory-based works have focused on designing an effective sample

selection approach for the memory buffer. Aljundi et al. [7] proposed to employ a small

memory buffer and a simple sample selection approach that maintains the samples with the

highest loss among the new samples and the current memory buffer. The empirical results

show that using a small memory buffer benefits task-free continual learning. The memory

replay approach was then combined with the generative replay mechanism for training both

the classifier and the Variational Autoencoders (VAEs) [85], resulting in a model called Maximal

Interfered Retrieval (MIR), [5]. Specifically, MIR proposes a new retrieval mechanism which

favours to store the samples with the highest loss value. Unlike existing work that focuses only

on the classification task, MIR can be used for both the classification and image generation

tasks. However, since the sample selection in MIR strongly depends on the loss value, MIR

needs to use different selection criteria for the classification and generation tasks. The Gradient

Sample Selection (GSS) [8] is another approach that treats sample selection as a constrained

optimization reduction. More recently, a Learner-Evaluator framework was proposed for TFCL,

called the Continual Prototype Evolution (CoPE) [30], which aims to store the same number

of samples for each class in the memory in order to ensure the balance replay. CoPE consists

of two components, the evaluator and the learner, enabling learning and evaluation at any

time. The empirical results show that CoPE achieves impressive results, especially for learning

highly imbalanced data streams. Jin et al. [75] proposed to modify the stored samples in

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

order to create more “challenging” examples for replay, called Gradient-based Memory EDiting

(GMED). Unlike the other existing memory approaches that store real training samples, GMED

directly edits the training samples via gradient updates and then stores them in a memory

buffer. Moreover, GMED can be combined with any existing memory-based methods to further

improve their performance.

2.3.2 Dynamic Expansion Model

Although memory-based approaches show promising results in task-free continual learning,

learning an infinite number of data streams using those approaches is still challenging due to

the fixed-length memory buffer. The other challenge for the memory-based approach is the

negative backward transfer caused by some stored samples that interfere with updating the

model using incoming samples [22]. A dynamic expansion model (DEM) can address these

constraints from two aspects:1) DEM relieves the negative backward transfer by preserving

previously learned knowledge into frozen components from a mixture system, in which the

frozen components do not update their parameters when learning new samples and can thus

maintain the optimal performance ; 2) DEM can achieve better generalisation performance

under TFCL by allowing each component to model one or only a few similar underlying data

distributions. The first work employing DEM for TFCL was proposed in [133] which intro-

duces a new learning system for TFCL called the Continual Unsupervised Continual Learning

(CURL). Unlike existing TFCL works that focus on the classification task, CURL studies a

more sophisticated setting in continual learning where the task and class labels are unavailable.

In order to adapt to changes in the data distribution during training, CURL dynamically builds

new inference models to capture the information from the incoming samples. An expansion

criterion evaluating the log-likelihood of the incoming samples is introduced in CURL to bal-

ance the complexity of the model and its generalisation performance. However, CURL has two

drawbacks:1) CURL has only a single generator that continuously updates all its parameters,

which leads to catastrophic forgetting when it learns a long sequence of data streams because

the frequent updating of the generator leads to losing the information of the earlier learnt

tasks; 2) CURL learns several inference models which benefit the clustering task and cannot

handle many downstream tasks, including image interpolation across domains. Another DEM

approach was proposed in [95] in which a new Neural Dirichlet process-based expansion mech-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

anism is introduced for component expansion in a mixture system called the Continual Neural

Dirichlet Process Mixture (CN-DPM). Unlike CURL, which expands its network architecture

only for the inference models, CN-DPM expands the network architecture for both the gener-

ator and inference models. The advantage of CN-DPM over CURL is that CN-DPM does not

use GRM to relieve forgetting and thus can preserve the complete information of the previously

learnt samples. However, like CURL, CN-DPM does not embed the information of all tasks

into a single latent space. Therefore, it is suitable for classification and image generation tasks

and cannot perform image interpolation and disentangled representation tasks [181].

2.4 Conclusion

In this chapter, we discuss the research studies from the areas of general continual learning

and task-free continual learning. The former assumes that the task label is given while there

are no task labels for the second category of continual learning settings. To prevent forgetting,

various methods are used, including memory-based, regularisation-based, dynamic architecture

and knowledge distillation. Among these, the generative replay mechanism has the ability to

generate data which is probabilistically consistent with the probabilistic representations of the

tasks learnt in the past. By having a small buffer memory to store previous samples can also

accomplish this task while requiring additional storage space. Moreover, the memory-based

approaches are not scalable when learning a growing number of tasks. In this thesis, we explore

the generative replay mechanism and memory buffer used for lifelong generative modelling.

Recently, significant attention has been paid to the dynamic extension model because of its

scalability and generalisation performance. Thus, a static architecture model cannot handle an

infinite number of tasks due to its limited model capacity. In addition, the static architecture

model cannot guarantee the best performance for past tasks because it constantly updates

the entire network parameters when it sees new samples. The Dynamic Extension Model

(DEM) can overcome the limitations of a static architecture model through two mechanisms:

1) DEM freezes previously learned parameters to preserve the knowledge of past tasks; 2) DEM

dynamically builds new components to adapt to new tasks;

Although existing approaches work well in general continual learning, applying these tech-

nologies in task-free continual learning is still challenging due to the absence of task information.

Two approaches, the memory buffer and the dynamic expansion model have been shown to be

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

useful for task-free continual learning. However, the memory-based approach is suitable for pro-

cessing a fixed-length data stream and would suffer from catastrophic forgetting when learning

infinite data streams. This motivates us to combine the memory buffer and DEM to deal with

real-world applications where we do not know precisely the task boundaries or the length of

a data stream. Moreover, existing studies for DEM do not take into account the knowledge

similarity when performing model expansion, which leads to non-optimal network architec-

tures. In this thesis, we address this issue by developing a new dynamic expansion mechanism

that ensures learning components charactering diverse knowledge in a mixture system. Fur-

thermore, this thesis proposes a new expert pruning approach to further remove unimportant

experts/components.

Chapter 3

Lifelong Learning Using VAEGAN

3.1 Introduction

In order to alleviate catastrophic forgotten, memory-based approaches introduce employing a

memory buffer to store a small subset of previously seen data samples [5, 8, 22]. However, such

an approach requires designing the criteria that would dynamically remove or add data samples

in the buffer. Additionally, as the number of tasks increases, memory-based approaches would

require large buffers, which is unsuitable in practical applications. Another solution, called the

Generative Replay Mechanism (GRM) [57], consists of enabling a generator as a generative

replay network for reproducing past samples when learning new tasks.

Many lifelong learning approaches consider using Generative Adversarial Networks (GANs)

to implement the generative replay mechanism. Such an approach was first proposed in [57],

where a classifier is considered in the GRM framework, learning from the samples associated

with a new task while the generated samples are drawn from the outputs of the generator.

However, such an approach requires generating a large number of samples after each task

switch during lifelong learning, which would result in significant additional memory require-

ments. More recently, GRM-based methods have been combined with knowledge distillation

for conditional image generation in a method called Lifelong GAN [193], which is built upon the

BicycleGAN framework [199]. Lifelong GAN mainly focuses on the conditional image genera-

tion task while requiring to store past samples when learning new tasks, which is not applicable

for learning an infinite number of tasks. Additionally, these approaches require designing a spe-

cific network architecture such as the classifier [57] and an encoding-decoding framework [193]

to support learning many downstream tasks. Such methods are not able to learn meaningful

27

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 28

latent representations within a single latent space. This represents a challenge for many tasks,

including image interpolation [123] or disentangled representation learning [80].

Learning meaningful and disentangled data representations has been shown to benefit many

applications [182]. Recently, learning disentangled representations under lifelong learning was

explored by introducing a framework based on the Variational Autoencoder (VAE), called

VAE with Shared Embeddings (VASE) [2], which uses an environment-dependent mask to

learn domain-specific latent representations. Additionally, VASE also uses the GRM to relieve

forgetting. However, VAE-based GRM methods usually would yield blurred generative replay

samples when compared with using GANs as GRM, leading to a degenerated performance on

the past tasks. In this chapter, we develop the Lifelong Generative Adversarial Autoencoders

(LGAA), representing a new approach to lifelong learning which combines the advantages of

both GAN and VAEs models. We propose to train a robust generative replay network by using

adversarial learning while also training the inference models on the joint data samples corre-

sponding to the new task and the generated samples by the generator through a new objective

function. The trained inference models can be used in a variety of applications, such as classi-

fication, image interpolation and learning disentangled representations. The advantage of the

proposed LGAA over existing GRM-based methods is that LGAA can learn a robust generative

replay network compared to VAE-based methods, while it can also capture meaningful latent

representations across domains when compared to GAN-based approaches.

The rest of this chapter consists of Section 3.2, which introduces the proposed Lifelong

Generative Adversarial Autoencoder and Section 3.3, where we provide the training algorithm of

the proposed model. Finally, Section 3.4 contains the experimental results and their discussion,

while the conclusions of this chapter are drawn in Section 3.5.

3.2 Lifelong Generative Adversarial Autoencoder

The quality of the generated samples is the key to the performance of the GRM-based mod-

els during lifelong learning [181]. Additionally, most GRM-based approaches do not have an

inference model to use in training [57], which prevents them from extracting meaningful repre-

sentations for downstream tasks. This inspires us to propose a novel lifelong learning approach,

Lifelong Generative Adversarial Autoencoder (LGAA), which not only learns a robust genera-

tive replay network but also trains accurate inference models for representation learning.

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 29

The key idea of the proposed LGAA is to combine the advantages of GAN and VAE into

a unified framework, in which GAN learning enables to produce high-quality generative replay

samples while VAE learning encourages representation learning. To implement this goal, we

propose to design GAN and VAE models, respectively, and then combine them into a unified

framework. Firstly, we formulate a GAN generator as a generative replay network in super-

vised learning, which receives two additional hidden variables d and u to represent the unknown

class and task information. Secondly, we introduce a VAE framework with the same hidden

variables that are modelled by additional appropriate distributions approximated using the

inference models. Using two models to implement lifelong generative modelling can have two

main advantages : (1) It learns additional inference models when compared to the GAN-based

methods, enabling to implement many downstream tasks, including image reconstruction, im-

age interpolation and classification tasks; (2) It uses the GAN loss to improve the quality of

generative replay samples, benefiting from relieving network forgetting when compared to the

VAE-based methods that usually produce blurry generative replay samples; One simple ap-

proach for training such two models in a unified framework is to combine GAN and VAE losses

into a simple objective function. However, such an approach has two main weaknesses : (1)

It requires designing a hyper-parameter to balance the importance of GAN and VAE losses,

making the model more complex; (2) It requires performing several runs in order to select an

appropriate hyper-parameter, which is time-consuming. In this chapter, we introduce an alter-

native optimization approach that formulates GAN and VAE losses into a two-step updating

procedure. Specifically, we update the generator using the GAN loss in the first step to provide

good initial parameters for the generator. Then the second step updates the generator and

inference models using the VAE loss, aiming to learn meaningful latent representations for the

data. Such a design does not require the additional hyper-parameter selection process and is

easy to implement.

3.2.1 Problem Formulation

Let X and Z represent the data and latent variable space, respectively. For a given sequence of

N tasks, each task has a training set Dt
S = {{xj,yj}}

Nt
S

j=1 and a testing set Dt
T = {{xj,yj}}

Nt
T

j=1,

respectively. xj ∈ X and yj ∈ Y (one-hot vector) are an observed variable, and the target

variable (class label), where Y is the space of the class label. N t
S and N t

T are the total number

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 30

of samples for Dt
S and Dt

T , respectively. In unsupervised learning where we do not have class

labels, each task (the t-th task) is assigned with an unlabelled training set1 Dt
SU = {xj}

Nt
S

j=1

and testing set Dt
TU = {xj}

Nt
T

j=1, respectively. Since this chapter focuses on task-aware continual

learning, we also define a task label dataset2 Dt
D = {d⋆j}

Nt
S

j=1 to represent the task information for

Dt
S and Dt

SU . Specifically, D
t
D has the same dataset size with Dt

S and each task label d⋆j (one-

hot vector) represents the task information for the j-th labelled sample {xj,yj} and unlabelled

sample xj in Dt
S and Dt

SU , respectively. Our learning goal is to learn an inference model

which can accumulate the representation information from novel concepts without forgetting

previously learnt knowledge. This can allow us to perform many downstream tasks, such as

classification, reconstruction and interpolation tasks, by using the inference model.

3.2.2 Training A Robust Generative Replay Network

We consider that the underlying information of observed data samples is defined by three

latent variables {u,d, z} where d = {di | i = 1, . . . , L} is the discrete variable (one-hot vector)

representing the domain information, where L is the number of domains. Each dimension di in

the vector d is either 0 or 1, and the summation of all dimensions of d is equal to 1. Meanwhile,

similarly, u = {ui | i = 1, . . . , Q} is the Q-dimensional one-hot vector, which represents the class

information. z is the continuous variable with 256 dimensions, which is drawn from a Gaussian

distribution N (0, I). The generation process is defined by:

d = fOneHot(d, L), d ∼ Cat
(
L, pd1 , · · · , pdL

)
,

u = fOneHot(u,Q), u ∼ Cat
(
Q, pu1 , · · · , puQ

)
,

z ∼ N (0, I) ,

x′ = Gθ(z,d,u) ,

(3.1)

where Cat(·) is the Categorical distribution and pdj = 1/L, j = 1, · · · , L is the probability

for each outcome. Each puj = 1/Q, j = 1, · · · , Q has the same probability. fOneHot(d, L)

is a function that transfers the category variable d to the L-dimensional one-hot vector d

where the d-th vector’s entry is 1, and all others are 0. x′ is the image drawn from the

1Since Dt
SU has the same dataset size with Dt

S , we employ N t
S to denote the total number of samples for

Dt
SU .
2We employ d⋆

j to denote a label (one-hot vector) that represents the task information for the j-th labelled
(xj ,yj) and unlabelled training sample xj in Dt

S and Dt
SU , respectively.

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 31

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
128 units

Deconvolution layer
3 units

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
1 units

Latent variable
256 dimensions

Generator Discriminator

Fully connected layer
��� × � × � units

Deconvolution layer
256 units

Figure 3.1: The detailed network architecture for the generator and discriminator.

generator distribution, modelled by the generator Gθ(z,d,u) implemented by a neural network

with trainable parameters, θ. In order to train a powerful generative replay network, we use

the Wasserstein GAN (WGAN) [11] loss with the gradient penalty [55], which consists of a

generator Gθ and a discriminator network Dη with the parameter set η. The main goal of the

discriminator network in the GAN training paradigm is to distinguish fake images (generated

images) from real ones [52]. In the WGAN-GP framework, the final layer of the discriminator

network outputs a single scalar and does not use any activation functions to restrict its outputs

[11]. The loss functions used for WGAN-GP are defined by [55]:

LGLGAA(θ) =
1

m

m∑
i=1

{
−Dη(Gθ(ui, zi,di))

}
. (3.2)

LDLGAA(Xbatch, η) =
1

m

m∑
i=1

{
Dη(Gθ(ui, zi,di))−Dη(xi) + λ(∥∇x̃iDη(x̃i)∥2 − 1)2

}
, (3.3)

where λ = 10 is considered in our all experiments according to [55]. LGLGAA and -LDLGAA are

the loss functions for the generator and discriminator, respectively. In each training iteration

of the mini-batch learning [92], we obtain a real data batch Xbatch = {x1,x1, · · · ,xm} from the

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 32

training dataset and m is the batch size in the mini-batch learning [92] (during the experiments

we considered the batch size as m = 64). In addition, the generator Gθ(ui, zi,di) in each

training iteration produces a fake image data batch X′
batch = {x′

1,x
′
2, · · · ,x′

m} in the mini-

batch learning where xi and x′
i are the i-th sample from Xbatch and X′

batch, respectively. ui and

di in the generation process are given by the class and task labels associated with xi and zi

is drawn from N (0, I). x̃i is the interpolated image produced by x̃i = sxi + (1− s)x′
i where s

is drawn from a uniform distribution U(0, 1). Dη represents the discriminator that receives an

image xi and returns a scalar, implemented by a neural network with trainable parameters η.

We provide the detailed network architecture for the generator and discriminator in Fig. 3.1.

The third term from the right-hand side of Eq. (3.3) is the gradient weighted by the penalty λ

[55]. This penalty term aims to enforce a Lipschitz constraint on the discriminator. WGAN [11]

implements the Lipschitz constraint by considering weight clipping, which can lead to undesired

convergence behaviour during the training [55]. This issue is addressed by WGAN-Gradient

Penalty (GP) [55], which introduces a penalty term that penalizes the norm of the gradient of

the discriminator with respect to its input, leading to better performance while maintaining

a stable learning procedure. The main idea of the WGAN-GP regularisation term is inspired

by Corollary 1 from [55], which demonstrates that the optimal WGAN discriminator has unit

gradient norm almost everywhere under the data distribution and the generator distribution.

If the class labels and task/domain labels are available, ui and di in Eq. (3.2) and Eq. (3.3)

can be obtained from the training dataset; otherwise, they are obtained from Eq. (3.1). The

adversarial loss allows the generator and discriminator to be trained alternately such that the

discriminator aims to distinguish real from generated data, while the generator tends to fool

the discriminator by generating realistic data [52, 11].

3.2.3 The Inference Mechanism of LGAA

Most GAN-based lifelong methods [57, 176, 193] do not learn an accurate inference model

and, therefore can not derive a meaningful data representation. For the model proposed in this

chapter, we consider three differentiable non-linear functions Fς(·), Fε(·), Fδ(·), implemented by

three encoders. These encoders aim to infer three different types of latent variables {z,d,u}, as

indicated in Section 3.2.2 and shown in Fig. 3.2. We implement Fς(·) considering the underlying

Gaussian distribution N (µ,σ2I), where {µ = Fµ
ς (x),σ = Fσ

ς (x)} are the hyperparameters of

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 33

Encoder1

Encoder2 Encoder3

�

�

�

reparameterization
trick

Input

Softmax
layer

Softmax
layer

��(.) ��(.)

��(.)

Figure 3.2: The structure of three differentiable non-linear functions Fς(·), Fε(·), Fδ(·) imple-
mented by three encoders.

the Gaussian distribution, returned by Fς(x), where F
µ
ς (.) and Fσ

ς (.) denote the output for

the single hyperparameter vector. We use the reparameterization trick [85, 138] for sampling

z = µ+π
⊙

σ, where π is a random noise vector sampled from N (0, I) and
⊙

is the element-

wise product, in order to ensure end-to-end training. When designing Fε(·) and Fδ(·), we usually

require implementing two deep convolutional neural networks with a considerable number of

layers to process high-dimensional data, which leads to more parameters and computational

costs. In this thesis, we desire to reduce the number of parameters by designing a lightweight

neural network. One reasonable choice is to take a low-dimensional feature vector of the data

as an input and process this representation using a simple neural network. However, since

the encoder Fδ(·) aims to make predictions on the class labels across different tasks, using the

original image x as an input can improve the performance of the classification task because x

contains additional category information than the low-dimensional variable z. As a result, we

only consider implementing Fε(·) using a simple fully connected network that takes z as the

input, where the softmax function implements the last layer’s activation function that returns

a set of probabilities {d′1, · · · , d′L}. By considering the performance of the classification task,

we implement Fδ(·) using a deep neural network with a softmax layer that returns a set of

probabilities {u′1, · · · , u′Q}. The detailed network architecture for the inference models is shown

in Fig. 3.3.

One can infer the discrete latent variables d and u is by transferring the probability outputs

{d′1, · · · , d′L} and {u′1, · · · , u′Q} of Fε(·) and Fδ(·) to one-hot vectors. However, such one-hot

vectors can not be used in the training process because we can not use backpropagation to

learn Fε(·) and Fδ(·) [41]. In order to mitigate this, we use the Gumbel-Max trick [56] for

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 34

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
256 units

Encoder 2

Fully connected layer
256 units

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
10 units

Encoder 1

Fully connected layer
200 units

Fully connected layer
100 units

Fully connected layer
2 units

Encoder 3

Softmax function

Softmax function

�� . �� . �� .

Latent variable �

Softplus

Figure 3.3: The detailed network architecture for the inference models. The ”Encoder 2”
has two output layers, and we employ the ”Softplus” activation function to ensure the non-
negativity of the hyperparameter σ. The final layer in ”Encoder 3” gives two probability
outputs when the number of tasks is two. If we know the number of tasks, we need to redesign
the final layer in ”Encoder 3” such that the number of probability outputs matches the number
of tasks. Such a limitation is discussed in Section 3.5 at the end of this chapter.

achieving the differentiable relaxation of discrete random variables. The Gumbel-Max trick

was firstly used in [72] to define a continuous distribution called the Gumbel-Softmax distri-

bution, which can sample continuous relaxations of one-hot vectors. Such a distribution was

independently considered in [109], and is also called as the Concrete distribution. The sampling

procedure of the discrete variable from a categorical distribution is not differentiable [72]. The

Gumbel-Softmax distribution solves this drawback by using the softmax function as a differ-

entiable approximation to the non-differentiable arg-max while employing samples drawn from

the standard Gumbel distribution as independent noise in the sampling process. Thanks to

the differentiable property, the Gumbel-Softmax distribution has been successfully applied to

various deep generative models. Wang et al. [168] introduced using the Gumbel-Softmax distri-

bution to draw the continuous relaxation of the model prediction, where each class probability

is estimated using a classifier q(y |x). This approach was used in the generative model’s train-

ing process and has been empirically found to reduce the variance of gradients [168]. Dupont et

al. [41] proposed learning disentangled joint continuous and discrete representations for a VAE

framework, in which the discrete variable is sampled through the Gumbel-Softmax distribution.

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 35

Fake

Generator

Real

Discriminator

Adversarial
 loss

Generator

Encoder1

Encoder2 Encoder3

u

z

d

u

z d

�

�

Figure 3.4: The network structure of the proposed LGAA model. The whole learning procedure
is divided into two steps. In the first step, we draw random vectors {u, z,d} from the prior
distributions and then consider them as input for the generator for producing the fake image.
The adversarial loss, defined by Eq. (3.2), is used for both the generator and discriminator. In
the second step, the objective function Eq. (3.14), is used to update the inference and generator
models.

However, these approaches only consider learning a single data domain/set and can not learn

a sequence of tasks. In this thesis, we explore the Gumbel-Softmax distribution for generating

the continuous relaxation of the discrete variables in the context of lifelong learning.

The sampling process of discrete latent variables using the Gumbel-Max trick is defined as

follows [72]:

d̂j =
exp((log d′j + gj)/T)
L∑
i=1

exp((log d′i + gi)/T)

,
(3.4)

where d′i is the i-th entry of the probability defined by the softmax layer characterizing Fε(·)

and d̂j is the continuous relaxation of the j-th dimension of the variable d, while gi is sampled

from the distribution Gumbel(0, 1) and T is the temperature parameter that controls the degree

of smoothness. A small T indicates that the variable d sampled using Eq. (3.4) is close to the

one-hot vector. In contrast, a large T indicates that the process of sampling d is similar to that

of sampling from a uniform distribution [72]. In our experiments, we set T = 0.5 to encourage

the sampling as close as possible to that of the one-hot representation. We use the Gumbel

softmax distribution for sampling both domain d and discrete u variables.

3.2.4 The Objective Function for the Inference Models

GANs lack an inference mechanism and use a random number generator for the generation

process, preventing them from capturing data representations properly. In this chapter, we aim

to derive an objective function to train the inference models (encoders). The VAE model [85]

is one of the most popular representation learning frameworks, which consists of a decoder and

an inference model. Despite the fact that VAE models have been successfully applied to image

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 36

generation, reconstruction and interpolation tasks [18, 84, 137, 70], most of them only learn a

single latent representation z which can not capture the discrete information such as the class

label. Recently, learning both continuous and discrete representations in a VAE framework was

investigated in [41]. However, the model proposed in [41] can only learn a single and static

data domain and would suffer from catastrophic forgetting when learning a sequence of tasks.

Unlike the existing approaches discussed above, we aim to learn inference models that can infer

latent representations across different data domains without forgetting.

Due to the robust inference mechanism, the VAE model is suitable for representation learn-

ing, and its objective function is defined as [85]:

LLGAA
VAE (x, θ, ς) = −Ez∼qς(z |x)[log pθ(x | z)] +DKL[qς(z |x) || p(z)] , (3.5)

where qς(z |x) and pθ(z) are the variational and prior distributions (Gaussian), respectively.

pθ(x | z) is the decoder used to reconstruct images. However, Eq. (3.5) can only allow the

VAE model to capture the continuous latent representations, which can not be used in our

model since we have three different latent variables z,u,d. Inspired by [41], which derives

an objective function to regulate both continuous and discrete representations, we consider

learning three latent variables within a VAE framework [85]. Before we derive the objec-

tive function, we first define the regularization term for latent variables, which are usually

implemented by the KL divergence [85, 41, 64, 159]. Following from [41], we assume all la-

tent variables {z,d,u} are conditionally independent and we have the variational distribution

qς,ε,δ(z,d,u|x) = qς(z |x)qε(d |x)qδ(u |x). We also assume all latent variables {z,d,u} are

independent and we have the prior distributions p(z,u,d) = p(z)p(u)p(d). We can derive the

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 37

KL divergence term that regulates the learning of {z,u,d}, expressed as:

DKL[qς,ε,δ(z,d,u |x) || p(z,d,u)] = Eqς,ε,δ(z,d,u |x)

[
log

qς,ε,δ(z,d,u |x)
p(z,d,u)

]
= Eqς(z |x)qε(d |x)qδ(u |x)

[
log

qς(z |x)qε(d |x)qδ(u |x)
p(z)p(d)p(u)

]
= Eqς(z |x)qε(d |x)qδ(u |x)

[
log

qς(z |x)
p(z)

]
+ Eqς(z |x)qε(d |x)qδ(u |x)

[
log

qε(d |x)
p(d)

]
+ Eqς(z |x)qε(d |x)qδ(u |x)

[
log

qδ(u |x)
p(u)

]
= Eqδ(u |x)qς(z|x)DKL[qε(d |x) || p(d)]

+ Eqε(d |x)qς(z |x)DKL[qδ(u |x) || p(u)]

+ Eqδ(u |x)qε(d |x)DKL[qς(z |x) | p(z)]

= a1DKL[qς(z |x) || p(z)] + a2DKL[qε(d |x) || p(d)]

+ a3DKL[qδ(u |x) || p(u)] .

(3.6)

Using the KL divergence to regulate both continuous and discrete variables in a generative

framework is used in [41, 28, 50], which only considers learning a static dataset and two latent

variables. In order to allow the latent variables to encode the data information, we define the

objective function that combines the reconstruction error and KL divergence terms (Eq. (3.6)),

expressed as:

LLGAA
VAE (x, θ, ς, ε, δ) = −Eqς,ε,δ(z,d,u |x) log[pθ(x | z,d,u)] +DKL[qς(z |x) || p(z)]

+DKL[qε(d |x) || p(d)] +DKL[qδ(u |x) || p(u)] .
(3.7)

Since qε(d |x) takes a high-dimensional image as the input, we usually process this input data

using a deep CNN network with several convolutional layers, which leads to more computational

complexity and parameters. To further reduce the model size, we then consider replacing the

high-dimensional data x in qε(d |x) with a low-dimensional latent variable z, resulting in a

lightweight inference model qε(d | z) implemented by a simple fully connected network with

fewer parameters that are enough to process z. Such a replacement still ensures that the domain

variable d can be drawn from qε(d | z) while z can also be seen as a compact representation of

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 38

x. Then Eq. (3.7) is rewritten as:

LLGAA
VAE (x, θ, ς, ε, δ) = −Eqς,ε,δ(z,d,u |x) log[pθ(x | z,d,u)] +DKL[qς(z |x) || p(z)]

+DKL[qε(d | z) || p(d)] +DKL[qδ(u |x) || p(u)] ,
(3.8)

where the latent variable z in the second KL divergence term of Eq. (3.8) can be drawn from

qς(z |x). In Eq. (3.8), we have separated KL divergence components for the continuous z space,

as well as for the discrete and domain spaces u and d, respectively. Meanwhile, θ, ς, ε, δ represent

the parameters of the corresponding networks. qς(z |x) is a variational distribution (Gaussian)

whose hyperparameters are estimated by the encoder Fς(·). qε(d | z) is considered as a cate-

gorical distribution whose parameters {d′1, · · · , d′L} are predicted by Fε(·). Similarly, qδ(u |x)

is considered as a categorical distribution whose parameters are predicted by Fδ(·). We also

employ the Gumbel-Max trick (Eq. (3.4)) to draw the continuous relaxation of the discrete vari-

ables from qδ(u |x) and qε(d | z) to ensure end-to-end training [109]. p(u) = Cat(Q, pu1 , · · · , puQ)

is the prior implemented by the uniform categorical distribution where each parameter is set

to pui = 1/Q, i = 1, · · · , Q. Similarly, p(d) = Cat(L, pd1 , · · · , pdL) is the prior implemented by

the uniform categorical distribution where each parameter is set to pdi = 1/L, i = 1, · · · , L.

Training a VAE framework with the discrete variable using the Gumbel Softmax distribution

has been investigated in [109, 41]. However, those approaches can only learn a static and

pre-defined data distribution, which can not be applied to lifelong learning.

For the supervised learning setting, auxiliary information such as class and task labels can

be used to guide the inference model. For supervised learning we employ the cross-entropy loss

fCE(·, ·, ·) which is defined as:

fCE(y
′,y, Q) = −

Q∑
i=1

yi log y
′
i , (3.9)

where yi and y′i are the i-th entry of the class label y (one-hot) and the prediction y′, re-

spectively. Q is the dimension of the variable u and the class label y. By employing the

cross-entropy loss fCE(·, ·, ·), the inference models qε(d | z) and qδ(u |x) can be updated by

minimizing:

Ld(x,d
⋆, ε, L) = fCE(Fε(Fz(x)),d

⋆, L), Fz(x) = Fµ
ς (x) + π

⊙
Fσ
ς (x) , (3.10)

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 39

Lu(x,y, δ, Q) = fCE(Fδ(x),y, Q) , (3.11)

where π is a random noise vector sampled from N (0, I) and
⊙

is the element-wise product.

Fµ
ς (x) and F

σ
ς (x) return the Gaussian hyperparameters µ and σ, respectively. y and d⋆ are the

class and task labels, respectively, which can be obtained from the empirical training datasets.

The network architecture of the generator and inference networks of the proposed LGAA is

shown in Fig. 3.4. The proposed model is flexible to be extended for recognizing new tasks

by automatically appending the domain variable d and optimizing the task-inference model

qε(d | z) when faced with learning a new task.

The inference models in the proposed LGAA aim to map an input into three compact

low-dimensional feature vectors {z,d,u}, with each describing different characteristics of the

input data. The decoder (generator) will recover an image from these three feature vectors. In

the supervised learning framework, we optimize the inference models qε(d | z) and qδ(u |x) by

introducing additional cross-entropy loss functions, such as Eq. (3.10) and Eq. (3.11), where

each inference model is encouraged to capture different characteristics of an input. It allows for

performing many downstream tasks, including image classification and interpolation, within a

unified framework at the same time. Additionally, LGAA introduces a robust generative replay

network for producing past samples, statistically consistent with those learnt previously from

various databases. This allows the inference models to capture the context information and

implicitly model the correlation between the new task and the previously learnt knowledge.

The following section introduces the algorithm used for training LGAA.

3.3 Lifelong Training Algorithm for LGAA

In the following, we introduce a new training algorithm that enables LGAA to learn knowledge

from a sequence of tasks without forgetting. The key idea of the proposed training algorithm

consists of two distinct updating procedures where we firstly update the parameters of the

generative replay network and afterwards those of the whole model. Our algorithm is different

from existing hybrid models in three aspects: 1) Existing hybrid models are only trained for

a single dataset [113]. However, the proposed LGAA is able to learn several data domains

successively without forgetting; 2) Existing hybrid models usually train the generator and

inference modules with a single optimization function [91], which requires balancing the GAN

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 40

and VAE losses. The other hybrid models learn an optimal coupling between the generator and

inference modules using adversarial learning [91, 113, 25, 35, 40, 96, 115, 156]. However, those

models can not achieve high-quality data reconstructions since using only adversarial learning

can not learn an optimal inverse mapping of the generator. The proposed LGAA introduces a

training algorithm consisting of two updating procedures for updating the inference model and

generator separately. The advantage of the proposed two-step optimization is that adversarial

learning can provide good initial parameters for the generator, and then the VAE inference-

based learning for the whole model encourages learning meaningful latent representations that

lead to good reconstruction performance; 3) Existing hybrid models usually learn a single latent

variable during the training [115], which is not applicable for a wide range of applications.

The proposed LGAA learns both discrete and continuous variables, which can be used in

classification and disentangled representation learning. In the following, we introduce different

loss functions for LGAA, which allow for the model to be used for supervised, semi-supervised,

and unsupervised learning.

3.3.1 Supervised Learning

During the training, we first update the generator’s parameters by using the WGAN-GP loss

function at the t-th task learning. The adversarial loss function for the generator (Gθt) and

discriminator (Dηt) at the t-th task learning is defined as:

LsupG (Ybatch,Dbatch, θ
t, ηt) =

1

m

m∑
i=1

{
−Dηt(Gθt(yi, zi,d⋆i))

}
, (3.12)

LsupD (Xbatch,Ybatch,Dbatch, θ
t, ηt) =

1

m

m∑
i=1

{
Dηt(Gθt(yi, zi,d⋆i))

−Dηt(xi) + λ(∥∇x̃iDηt(x̃i)∥2 − 1)2
}
,

(3.13)

where Gθt denotes that the generator’s parameters θt are updated at the t-th task learning.

{xi,yi} is the i-th labelled sample of the data batch {Xbatch,Ybatch} = {xi,yi}mi=1 obtained

from a joint dataset Dt
S

⋃
DG where Dt

S is the training dataset of the t-th task, where m

represents the number of data samples in the batch. DG is a generated dataset3, where each

image x is generated using the generator Gθt−1 and the associated class label y is predicted

3We do not use the superscript in DG for denoting task information since the generation process of the
dataset DG at each task learning is clearly described in Algorithm 1.

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 41

Algorithm 1: The supervised learning for LGAA
Input: All training databases
Output: The model’s parameters

1 for t < N do
2 if t == 1 then
3 Obtain the training dataset Dt

S ;
4 Obtain the task label dataset Dt

D ;

5 end
6 else
7 Generative replay process ;
8 for c < datasetSize do
9 Generate xc using the generator ;

10 Predict the class label yc using the inference model qδt−1(u |x) ;
11 Obtain zc using qςt−1(z | x) and predict the task label d⋆c using qεt−1(d | z) ;
12 Form a labelled sample {xc,yc} ;
13 DG = DG

⋃
{xc,yc} ;

14 DGD = DGD
⋃
d⋆c ;

15 end
16 Form a joint dataset Dt

S = Dt
S

⋃
DG ;

17 Form a joint dataset Dt
D = Dt

D

⋃
DGD ;

18 end
19 for epoch < 20 do
20 for j < batchCount do
21 Obtain the data batches {Xbatch,Ybatch} from Dt

S ;
22 Obtain the data batch Dbatch from Dt

D ;
23 Adversarial learning ;
24 Update the generator and discriminator only once on {Xbatch,Ybatch,Dbatch}

using Eq. (3.12) and Eq. (3.13) ;
25 Learning by the VAE loss ;
26 Update all components only once on {Xbatch,Ybatch,Dbatch} using Eq. (3.14) ;
27 Updating the inference models ;
28 Update qεt(d | z) only once on {Xbatch,Dbatch} using Eq. (3.10) ;
29 Update qδt(u | x) only once on {Xbatch,Ybatch} using Eq. (3.11) ;

30 end

31 end

32 end

using the inference model qδt−1(u |x). Since the class labels are available in the joint dataset

Dt
S

⋃
DG, ui in Eq. (3.12) and Eq. (3.13) can be assigned by yi from the data batch Ybatch.

Dbatch = {d⋆i }mi=1 in Eq. (3.13) is the data batch and obtained from a joint dataset Dt
D

⋃
DGD

that represents the task information for Dt
S

⋃
DG, where D

t
D = {d⋆j}

Nt
S

j=1 is the task label dataset

of the t-th task and has the same dataset size with Dt
S. DGD is a generated dataset and has the

same dataset size with DG, where each task label in DGD is produced as follows : (1) Obtain

a sample x from DG; (2) Obtain the latent representation z for x using the inference model

qςt−1(z | x); (3) Predict the task label for the latent code z using the inference model qεt−1(d | z);

In the second updating step, we update the parameters of the whole model by using the

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 42

objective function, defined as:

LSupVAE(Xbatch, θ
t, ς t, εt, δt) =

1

m

m∑
i=1

{
− Eqςt,εt,δt (z,d,u |xi) log[pθt(x | z,d,u)]

+DKL[qςt(z |xi) || p(z)] +DKL[qεt(d | zi) || p(d)]

+DKL[qδt(u |xi) || p(u)]
}
,

(3.14)

where zi in the third term is inferred by qςt(z |xi) with the sample xi and Xbatch is the data

batch. Note that Eq. (3.14) does not require the class label data batch Ybatch. We also update

the inference models qδt(u |xi) and qεt(d | zi) using the cross-entropy losses (Eq. (3.10) and

Eq. (3.11)) on the data batches {Xbatch,Ybatch,Dbatch}. During the testing phase, the inference

model qδ(u |x) can be used for classification.

We provide the pseudocode for the supervised learning of the LGAA in Algorithm 1, which

can be summarized into three steps:

Step 1. Generative replay process: At the first task learning, the proposed LGAA does not

require the generative replay process to relieve forgetting and therefore is directly trained on

the first task. The training and task label datasets in the following task are created by the

generative replay process, described as follows. We assume that the model was trained on t− 1

tasks. In a new task learning (the t-th task), we perform the generative replay process to create

a joint dataset Dt
S

⋃
DG consisting of the real training dataset Dt

S from the t-th task and a

dataset DG generated using the model trained on t − 1 tasks. We also form a joint dataset

Dt
D

⋃
DGD, which represents the task information for all samples.

Step 2. Adversarial learning: We update the discriminator and generator in the mini-batch

learning manner, in which the data batches {Xbatch,Ybatch,Dbatch} are obtained from the

datasets Dt
S

⋃
DG and Dt

D

⋃
DGD, while the parameters of the discriminator and generator

are only updated once using Eq. (3.12) and Eq. (3.13).

Step 3. The whole model updating: In the mini-batch learning, we update all components only

once on a data batch Xbatch obtained from the joint dataset Dt
S

⋃
DG using Eq. (3.8). We then

update qεt(d | z) and qδt(u | x) only once on the data batches {Xbatch,Ybatch,Dbatch} obtained

from the datasets Dt
S

⋃
DG and Dt

D

⋃
DGD using Eq. (3.10) and Eq. (3.11), respectively. As

shown in Algorithm 1, the number of training epochs for each task is 20 and the number of

iterations (batchCount) in each training epoch is determined by batchCount = datasetSize/m,

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 43

where m = 64 is the batch size and datasetSize is training dataset size. If the total number of

training iterations for the current task learning is not finished, we continually perform Step 2

and Step 3, otherwise, we perform Step 1 for the next task learning.

3.3.2 Semi-Supervised Learning

We apply our model to the lifelong semi-supervised learning setting where only a small subset

of samples from each task has known labels, while the rest of the data is unlabelled. We

design different objective functions for the labelled and unlabelled samples. The generator

and discriminator training are the same as in Eq. (3.12) and Eq. (3.13). The whole model is

optimized by the objective function for the labelled data without the inference model qδ(u |x)

at the t-th task learning:

LSVAE(Xbatch,Ybatch, θ
t, ς t, εt) =

1

m

m∑
i=1

{
− Eqςt (z |xi),qεt (d |xi) log[pθt(x | z,d,yi)]

+DKL[qςt(z |xi) || p(z)] +DKL[qεt(d | zi) || p(d)]
}
,

(3.15)

where yi is the i-th label from the data batch Ybatch. In addition, we model the unlabeled

data samples by using LLGAA
VAE (x, θt, ς t, εt, δt), defined in Eq. (3.8), where the discrete variable u

is sampled from the Gumbel-softmax distribution whose probability vector is obtained by the

encoder qδt(u |x). The semi-supervised loss used to train the proposed model is defined as:

LSemiVAE (Xbatch,Ybatch,X
unsupervised
batch , θt, ς t, εt, δt) = LSVAE(Xbatch,Ybatch, θ

t, ς t, εt, δt)

+ βSemiLSupVAE(X
unsupervised
batch , θt, ς t, εt),

(3.16)

where βSemi = 0.5 is used to control the importance of unsupervised learning when compared

with the component associated with supervised learning [185]. LSupVAE(X
unsupervised
batch , θt, ς t, εt)

is the mini-batch learning form of LLGAA
VAE (x, θt, ς t, εt, δt) and can be used for unlabelled data

samples Xunsupervised
batch without requiring class labels. LSVAE(Xbatch,Ybatch, θ

t, ς t, εt, δt) is used to

calculate the loss for a pair of labelled data batches {Xbatch,Ybatch}. In addition, the entropy

loss Lu(x,y, δ, Q) is also performed with the labelled data samples in order to enhance the

prediction ability of qδ(u |x), as in Eq. (3.11).

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 44

3.3.3 Unsupervised Learning

In this section, we apply the proposed LGAA for the lifelong unsupervised learning setting,

where the class labels for samples are unavailable. Similarly to the supervised learning frame-

work, the first updating step of the training at the t-th task learning employs adversarial loss:

LUG (Dbatch, θ
t, ηt) =

1

m

m∑
i=1

{
−Dηt(Gθt(zi,d⋆i))

}
, (3.17)

LUD(Xbatch,Dbatch, θ
t, ηt) =

1

m

m∑
i=1

{
Dηt(Gθt(zi,d⋆i))−Dηt(xi)

+ λ(∥∇x̃iDηt(x̃i)∥2 − 1)2
}
,

(3.18)

where xi is the i-th sample from the data batch Xbatch. d
⋆
i , obtained from the data batch Dbatch,

is the task label for xi. In the second updating step, the whole model is updated by:

LUVAE(Xbatch, θ
t, ς t, εt) =

1

m

m∑
i=1

{
− Eqςt (z |xi),qεt (d |xi) log[pθt(x | z,d)]

+DKL[qςt(z |xi) || p(z)]

+DKL[qεt(d | zi) || p(d)]
}
.

(3.19)

Learning meaningful and disentangled representations has become a new and important

topic in computer vision [64, 171]. The disentangled representations aim to learn a set of

variables, where each one (scalar) captures the variation of a specific characteristic of the

image and is independent of the other variables. Learning disentangled representations can be

implemented by using the VAE framework, which was firstly proposed in [64], called β-VAE

where a hyperparameter β > 1 is used to regularize the KL divergence term in the VAE’s loss

function to encourage learning disentangled representations. One downside for β-VAE is that

the model usually produces blurred reconstruction results when using a large hyperparameter

β. This is because penalizing the KL divergence term leads to the reduction of the mutual

information between the observed variable x and the latent variable z (See details in Section

2.1.4). This negative effect can be relieved by an improved β-VAE objective function [19], which

progressively increases the information capacity of the latent representation during training.

However, most existing disentangled representation methods only consider learning a static

and pre-defined data distribution, while the lifelong learning of disentangled representations is

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 45

Fake

Generator

Real

Discriminator

Adversarial
 loss

Generator

Encoder1

Encoder2 Encoder3

u

z

d

u

z d

First task learning
finished Memory buffer

Model

Preserve
parameters Sampling process

Model

u

z

d

Second dataset

�

�

Figure 3.5: Using the memory buffer in the LGAA framework. Once the first task is learnt, we
use a buffer to preserve the generator’s parameters. Then, during the second task learning, the
preserved generator is used as a generative replay mechanism, producing a batch of samples.
The generated data samples are incorporated together with new samples drawn from the second
task for training LGAA. Then, the process of creating buffers for temporary storing generator
parameters is repeated each time when learning a new task.

a new research topic [139]. In this chapter, we employ the improved β-VAE method [19] to

replace the second term from Eq. (3.19), aiming to learn disentangled representations in the

context of lifelong learning:

LUdisVAE(Xbatch, θ
t, ς t, εt) =

1

m

m∑
i=1

{
− Eqςt (z |xi),qεt (d |xi) log[pθt(x | z,d)]

+ γ|DKL[qςt(z |xi) || p(z)]− C|

+DKL[qεt(d | zi) || p(d)]
}
,

(3.20)

where γ and C are a multiplicative and a linear constant used for controlling the degree of

disentanglement. For the experiments, we consider the recommended hyperparameters from

[19], where the multiplicative parameter is γ = 4, while we increase the hyperparameter C from

0.5 to 25.0 during the training.

3.3.4 Using A Memory Buffer for Storing Model Parameters, in

Lifelong Learning

Instead of generating a collection of data samples by the generator, we can employ a small

memory buffer to preserve the current model’s parameters before learning the next task. Then,

the preserved model is used to generate a batch of data to be used for training together with

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 46

data sampled from the database corresponding to the subsequent task learning. The buffer is

always fixed in size while increasing the number of tasks to be learnt during lifelong learning.

After learning the current task, the old model parameters stored in the buffer will be replaced

by the current model parameters. Then, during the new task learning, the parameters from

this buffer are used by the model for generating a batch of data corresponding to the stored

model. The buffer used in our model can achieve a similar performance without the need to

increase the required memory when adding new tasks to be learnt. This mechanism provides a

reduced memory requirement in the proposed model, and its learning structure is displayed in

Fig. 3.5.

3.4 Experiments

In this section, we investigate how the proposed Lifelong Generative Adversarial Autoencoder

(LGAA) model learns meaningful and interpretable image representations under the lifelong

learning of several tasks.

3.4.1 Reconstruction and Interpolation Results Following Unsuper-

vised Lifelong Learning

We train the LGAA model using the loss functions LUD, LUG and LUVAE from equations (3.17),

(3.18) and (3.19), which contain adversarial and VAE objective functions, respectively, and we

consider to use Adam algorithm [82] with the learning rate of 0.001 for training. We resize all

images of CelebA and CACD to the resolution 64 × 64 × 3. The results for the unsupervised

lifelong learning of CelebA [105] to CACD [24] are provided in Figures 3.6a-c where we show

the real images, generated images, and the real image reconstructions, respectively. Meanwhile,

in Figures 3.7a-c, we provide real images, generated images and the reconstructions of the real

images from Fig. 3.7a, after the lifelong learning of CelebA to 3DChair [13]. From these results,

it can be observed that the proposed approach can learn different data domains sequentially

and provide good reconstruction results.

In the following, we perform data interpolation experiments under the lifelong learning

setting in order to evaluate the manifold continuity in the latent space. We call lifelong inter-

polation when the interpolation is performed between multiple data domains by considering

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 47

(a) Real samples. (b) Generations.

(c) Reconstructions.

Figure 3.6: The reconstruction and generation results under the CelebA to CACD lifelong
learning.

data from different databases, under the lifelong learning setting. We randomly select two

images and then infer their discrete u, and continuous z latent variables by using the infer-

ence model. Then, we perform the interpolation on these latent variables and the resulting

interpolated variables are used as inputs to the generator for the image reconstruction. The in-

terpolation results are shown in Fig. 3.8-a for CelebA to CACD, and in Fig. 3.8-b for CelebA to

3D-chair lifelong learning. We can observe from the images from the last two rows of Fig. 3.8-b

that a chair is transformed into a human face, where the chair’s seat and backside are smoothly

changed into the eyes and hair of a person. This shows that the LGAA model can learn the

joint latent space of two completely different data configurations.

In the following, we evaluate the reconstruction quality of the images generated by the

proposed LGAA and other VAE-based methods under CelebA to 3D-Chair lifelong learning.

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 48

(a) Real samples. (b) Generations.

(c) Reconstructions.

Figure 3.7: The reconstruction and generation results under the CelebA to 3D-Chair lifelong
learning.

To achieve this, we calculate the reconstruction error using the Mean Square Error, summing up

the square error between all real testing samples and their reconstructions and then computing

the average. The results are provided in Table 3.1, which show that the proposed LGAA

outperforms other VAE-based methods on the image reconstruction performance. This result

also indicates that the proposed LGAA can learn meaningful latent representations across

different data domains over time, which can be potentially used for data compression in the

context of continual learning.

3.4.2 Lifelong Disentangled Representations

Within the unsupervised lifelong learning framework, we train the LGAA model under the

CelebA to 3D-Chairs lifelong learning by using the loss function from Eq. (3.20) in order to

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 49

(a) CelebA-CACD (b) CelebA-3DChair

Figure 3.8: Interpolation results after lifelong learning.

Table 3.1: Reconstruction error under CelebA to 3D-Chair lifelong learning.

Dataset LGAA LGM [132] VAEGAN [115]

CelebA 313.20 351.23 357.25

3D-Chair 328.05 330.12 341.23

Average 320.62 340.67 349.24

achieve unsupervised disentangled representations, as described in Section 3.3.3. We consider

the multiplicative parameter γ = 4, while increasing the linear one C from 0.5 to 25.0 in

Eq. (3.20), during the training. After the training, we change one of the dimensions of a

continuous latent representation z, inferred by using the inference model, for a given input,

and then map it back to the visual data space by using the generator. The disentangled

results are presented in Figures 3.9a-f, indicating changes in the appearance of gender, facial

narrowing, skin tone variation, skin face pose, chairs’ size, and chairs’ style. These results

show that the LGAA model can discover various disentangled representations in CelebA and

3D-Chairs databases following lifelong learning.

3.4.3 Quality Assessment of the Generated Images

We use Inception score (IS) [144] and Fréchet Inception Distance (FID) [63] in order to evaluate

the quality of generated image results after lifelong learning. We train various methods under

the CelebA to CACD lifelong learning setting. The FID scores, calculated between 5,000 target

images and 5,000 generated images, where target images include samples from both CelebA

and CACD databases, are provided in Fig. 3.10-a. The results of the proposed LGAA are

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 50

(a) Gender change (b) Face width manipulation

(c) Skin variation (d) Pose change

(e) Chair style in 3D chairs (f) Chair size variation in 3D chairs

Figure 3.9: Results when manipulating the latent variables under the CelebA to 3D-Chair
lifelong learning when considering the loss function from Eq. (3.20). We change a single latent
variable in the latent space from -3.0 to 3.0 while fixing all others.

FI
D

 sc
or

e

 LGAA LifelongGAN VAEGAN

LGM
Methods

LGAN

(a) Fréchet Inception Distance (FID) for gen-
erated images after CelebA and CACD lifelong
learning.

IS
 sc

or
e

VAEGANLGAA LGM
Methods

(b) Inception Score (IS) for image reconstructions
after Cifar10 to MNIST lifelong learning.

Figure 3.10: Evaluation of the image reconstruction quality for various lifelong learning meth-
ods.

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 51

Table 3.2: Classification results following the lifelong learning of MNIST (M) and Fashion (F)

Dataset Lifelong LGAA LGAN [57] LGM [132] EWC [86] Transfer MeRGANs [176]

MNIST M-F 98.76 98.41 97.29 37.7 40.63 98.34

MNIST F-M 98.77 98.32 98.85 99.12 98.25 98.27

Fashion M-F 92.01 91.42 91.71 91.38 91.01 91.12

Fashion F-M 89.24 89.15 86.05 54.53 37.92 88.86

compared with three other lifelong learning approaches: LGAN [57], LifelongGAN [194] and

LGM [132]. A low FID score indicates that the model is able to generate more realistic images

with respect to the real data distribution. We also consider Cifar10 [87] to MNIST database

lifelong learning. The IS score on the reconstructions of 5,000 CIFAR10 testing samples, is

provided in Fig. 3.10-b, where we compare with VAEGAN [115] and LGM [132]. A higher IS

score indicates a better diversity of reconstructed images. The results from Fig. 3.10-b show that

the proposed LGAA achieves a higher IS score than VAE-based methods, where VAE-based

methods usually generate blurred images. The approach proposed in this chapter produces

higher-quality generative replay images and can learn better data representations than other

GAN-based lifelong learning approaches.

3.4.4 Lifelong Supervised Learning

We compare LGAA with various methods under the lifelong supervised learning setting as

described in Section 3.3.1. LGAN [57] typically trains a classifier (called Solver) on both

the images generated by the GAN and the training samples from the current task. We also

consider an auxiliary classifier for LGM [132] by training it on the mixed data consisting of

images generated by LGM and the training samples of the current task.

We train the LGAA model under the MNIST to Fashion [177] (M-F) lifelong learning

and also when considering the reversed order of database learning, as F-M. The classification

results, after the lifelong training, are reported in Table 3.2, where ’Transfer’ is a baseline

that is directly trained on a new task after each task switch and we compare the proposed

LGAA with several other models from the literature. We observe that GRM-based methods

can prevent forgetting, and their performance relies on the quality of the generative replay

samples. GAN-based methods provide slightly better results than the VAE-based method since

the generative replay network using a GAN can produce higher-quality data samples compared

with models using VAEs. From Table 3.2, we can also find that only the learning of the first

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 52

task would suffer from the degenerated performance caused by forgetting. When comparing

with the results provided by the baselines, the proposed LGAA model achieves the best results

on the first task, demonstrating that LGAA can generate high-quality samples which allow the

inference model to predict the accurate class label for each sample, resulting in a small target

risk on the first task. Additionally, LGAA also outperforms other baselines on the average

classification accuracy.

In addition, we find that LGAN achieves similar performance compared with the proposed

LGAA. The reason is that LGAN also employs the GAN as a generative replay mechanism,

which can provide high-quality generative replay samples for lifelong learning. Therefore, LGAN

can achieve competitive performance on the classification task compared with the proposed

LGAA. However, LGAN lacks an inference mechanism and, therefore, can only perform the

classification and image generation tasks. In contrast, one of the main advantages of the

proposed LGAA over LGAN is the inference mechanism that enables LGAA to implement many

downstream tasks, including image interpolation and disentangled representation learning.

Furthermore, the results from Table. 3.2 show that all models suffer a significant drop in

performance when changing the lifelong learning setting from M-F to F-M. The main reason for

this phenomenon is that the Fashion database is more complex than MNIST because it contains

images of various clothing items, which are more complex than those of hand-written digits

which make up MNIST. When the Fashion dataset is used as the first task to be learnt, we replay

samples corresponding to Fashion when learning the second task in which the performance loss

on Fashion is mainly caused by the generative replay mechanism. In contrast, when MNIST is

used as the first task, we do not see a significant drop in performance after lifelong learning. This

is because the MNIST is a simple dataset and the generative replay mechanism can produce

more realistic images corresponding to MNIST after learning the database as the second task

learning. These results also indicate that changing the order of tasks has an influence on the

performance of LGAA, which is not addressed by the proposed model.

We also investigate the performance of the proposed approach when learning a long sequence

of tasks, which involves several similar and dissimilar datasets. We train various models under

lifelong learning of MNIST, SVHN, Fashion, InverseFashion, InverseMNIST and CIFAR10,

namely MSFIIC. For InverseFashion and InverseMNIST, we inverse the pixels x from every

image from the database as 255-x. We report the classification results in Table 3.3. We can

observe that the proposed LGAA achieves the best results for almost every task when compared

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 53

Table 3.3: Classification results under MSFIIC lifelong learning

Dataset LGAA LGM [132] MeRGANs [176]

MNIST 86.79 86.14 82.08

SVHN 52.18 23.87 34.20

Fashion 64.37 55.00 61.20

InverseFashion 78.60 49.83 74.17

InverseMNIST 97.33 86.49 93.44

CIFAR10 52.36 57.09 58.49

Average 71.94 59.74 67.27

to the other methods. We can also observe that GAN-based models can relieve forgetting better

than the VAE-based models outperforming the latter in terms of average classification accuracy.

3.4.5 Semi-Supervised Learning

For the semi-supervised training of LGAA, described in Section 3.3.2, we consider only a small

number of labelled images from each database (1,000 for MNIST and 10,000 for Fashion) while

the other images are not labelled (59,000 for MNIST and 50,000 for Fashion). The classification

results following lifelong learning when using LGAA compared to other semi-supervised learning

methods are provided in Table 3.5. These results show that the proposed approach LGAA

outperforms LGAN [57], under the semi-supervised learning setting,

In the following, we train LGAN and LGAA under the lifelong learning of SVHN and

Fashion, where we only access 1,000 and 10,000 labelled training samples for SVHN and Fashion,

while the remaining 72,257 and 50,000, for SVHN and Fashion, respectively, are unlabelled. We

report the results in Table 3.4, which shows that the proposed LGAA still outperforms LGAN

for lifelong semi-supervised learning. In Tables 3.5 and 3.4, we include the results for methods

which are only trained on one database, and we can observe that LGAA provides similar results

to these, despite being at a significant disadvantage when learning successively two databases.

Since we consider the lifelong semi-supervised learning setting, the performance of LGAA

and LGAN degenerates when learning a new task, due to the forgetting process. However,

other baselines are trained for learning a single task where the model can access a set of labelled

samples and all unlabelled samples during the training. There are no forgetting issues for such

baselines. These results show that the proposed LGAA still achieves competitive results when

compared to the state-of-the-art models that are not trained using lifelong learning, successively

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 54

Table 3.4: Semi-supervised classification error results on SVHN database, under the SVHN to
Fashion lifelong learning.

Methods Lifelong Error

LGAA Yes 60.36

LGAN [57] Yes 63.25

kNN [83] No 77.93

TSVN [83] No 66.55

M1+KNN [83] No 65.63

M1+TSVM [83] No 54.33

M1+M2 [83] No 36.02

Table 3.5: Semi-supervised classification error results on MNIST database, under the MNIST
to Fashion lifelong learning.

Methods Lifelong Error

LGAA Yes 4.34

LGAN [57] Yes 5.46

Neural networks (NN) [83] No 10.7

Deep networks (CNN) [83] No 6.45

TSVM [83] No 5.38

CAE [83] No 4.77

M1+TSVM [83] No 4.24

M2 [83] No 3.60

M1+M2 [83] No 2.40

Semi-VAE [117] No 2.88

on multiple databases but using conventional learning on a single database, which entails to a

significant disadvantage for LGAA. These results also demonstrate that the proposed approach

can be potentially used in other semi-supervised learning tasks.

3.4.6 Ablation Study

In this section, we investigate the importance of different latent variables used in the proposed

LGAA model.

Choosing the categories of latent variables. First, we consider the proposed framework

with only the continuous latent variable z as a baseline for comparison. Afterwards, we train

the proposed framework with two inference models {z,d} by considering the discrete variable

d, representing the domain, as well. We investigate whether using the task inference model

can degenerate the performance of the proposed approach. The average reconstruction error

(MSE) across all testing data is reported in Table 3.6. We also train a simple classifier on

the reconstructions produced by the model on all training samples. Then we evaluate the

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 55

(a) Changing the first dimension of z
from -2 to 2 .

(b) Changing the second dimension of
z from -1 to 1.

Figure 3.11: Reconstruction results on MNIST when changing a single continuous latent vari-
able while fixing all others.

Table 3.6: Quantitative evaluation on the representation learning ability

MNIST and Fashion

Methods Lifelong Dataset Reconstruction error (MSE) Accuracy (%)

LGAA M-F MNIST 4.75 92.53

Baseline M-F MNIST 4.71 91.29

LGAA M-F Fashion 17.44 67.66

Baseline M-F Fashion 16.54 67.97

LGAA F-M MNIST 4.92 93.29

Baseline F-M MNIST 5.14 92.34

LGAA F-M Fashion 13.16 66.97

Baseline F-M Fashion 14.78 66.45

classification accuracy on all testing samples using the classifier. This test can reflect the

quality of the reconstruction results and is reported in Table 3.6. We observe that the proposed

LGAA model’s performance, when considering task inference, does not deteriorate while the

model learns the information from several databases.

Then we perform the task inference experiments under the lifelong learning of MNIST

followed by the Fashion database, as well as the other way around under the F-M sequence.

The results, when estimating the domain d, are reported in Table 3.7. We find that the task-

inference model can infer, in most cases, the task ID for the given data. This result also

demonstrates that the latent variable z captures the task and implicitly domain information,

which enables the task-inference model qε(d | z) to make accurate predictions.

Enforcing the disentanglement between the latent variables z and u. We train the

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 56

Batches

R
ec

o
n
st

ru
ct

io
n
 e

rr
o
r

The proposed
Baseline

(a) Average reconstruction error on CACD dur-
ing the lifelong CelebA to CACD

Batches

R
ec

o
n
st

ru
ct

io
n
 e

rr
o
r

The proposed
Baseline

(b) Average reconstruction error on 3D-Chair dur-
ing the lifelong CelebA to 3D-Chair

Figure 3.12: Assessing the knowledge transferability, calculated using Eq. (3.21), for the LGAA
model under the CelebA to CACD, and for CelebA to 3D-Chair lifelong learning. The average
reconstruction errors are calculated based on samples from CACD and 3D-Chair datasets during
the second task learning.

Table 3.7: Task inference accuracy after the lifelong learning of MNIST and Fashion.

MNIST and Fashion

Methods Lifelong Dataset Accuracy (%)

LGAA M-F MNIST 91.26

LGAA M-F Fashion 91.12

LGAA F-M MNIST 94.25

LGAA F-M Fashion 97.48

proposed model considering three latent vectors {u, z,d} under the lifelong supervised learning

setting. After training, the inference model qδ(u |x) is used to make predictions. Then we

change one dimension of the latent vector z inferred by qς(z |x) while fixing the others. In

Figures 3.11-a and 3.11-b, we show the results for the images showing the digit ‘7’ from MNIST

when changing the first and the second dimension of z within the ranges [−2, 2] and [−1, 1],

respectively. From the results in Fig. 3.11 we observe that the latent variable z only represents

the handwriting styles instead of the digit types in the images, which is modelled by the variable

u.

3.4.7 Transfer Metric and Transfer Learning

By using the generative replay mechanism, the proposed approach can accelerate the training

speed for learning future tasks by transferring the previously learned knowledge. The transfer

of knowledge between a past task and the currently given task is stronger when the new task

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 57

is related to the previously learned statistical representation. In this case, the model should

be able to adapt quickly when learning the new task. In order to measure the task knowledge

transferability in the network, we define the performance criterion for a model trained in the

past when shown a newly given batch sample while learning a newly given i-th task:

Fα(Xi,j, fθi,j−1
(Xi,j)), j > 0 . (3.21)

Eq. (3.21) evaluates the performance for the j-th batch of training samples Xi,j on the i-th

task (batch size is 64), achieved by the model which was trained with the j − 1-th data batch

from the i-th task. Fα(·, ·) is a performance metric which can be implemented as the Mean

Square Error (MSE) or by evaluating the classification accuracy, depending on the given task.

fθi,j−1
(·) is the model which has been updated using the (j − 1)-th batch during the learning

of the i-th task. Once a model fθ has been trained on the i− 1 task, we can use Eq. (3.21) to

evaluate the capacity of transfer learning from one task (the i− 1-th task) to another (the i-th

task).

In the following, we train the proposed model under the CelebA to CACD and from the

CelebA to 3D-Chair lifelong learning, respectively. Since we investigate task knowledge transfer-

ability, we consider a baseline that is only trained on a single dataset with randomly initialized

parameters. Therefore, we consider training this baseline on a single dataset (CACD or CelebA)

only and then evaluate the performance in each training step using Eq. (3.21). The baseline

employs the same network architecture from LGAA. In contrast, we train the proposed LGAA

in lifelong learning by evaluating its performance in each training step at the second task learn-

ing using Eq. (3.21) to investigate whether the previously learnt parameters are benefiting the

learning of a new dataset. We use the MSE as the performance metric Fα(·, ·) in Eq. (3.21)

and the results are shown in Figures 3.12-a and 3.12-b for the CelebA to CACD database, and

CelebA to 3D-Chair, respectively. From Fig. 3.12-a we observe that the model provides reason-

able reconstruction errors in the initial training phase of the second task while the learning for

the baseline proceeds rather slowly. This is due to the fact both CACD and CelebA are human

face datasets, which means that they share similar facial feature information with each other.

So the model can quickly adapt to a new task, which is similar to the previously learnt task,

as we can observe from the decreasing average reconstruction errors during the learning steps.

From Fig. 3.12-b, we observe that the proposed LGAA approach achieves lower reconstruction

CHAPTER 3. LIFELONG LEARNING USING VAEGAN 58

errors than the baseline in the beginning stage of the training procedure. Then the baseline

learns better than the proposed approach, while the proposed LGAA approach is actually a

lifelong learning approach which also knows the information from the past learnt datasets, while

aiming to learn the information from the current dataset as well. The reason behind this is

that the human face image dataset shares few features with the 3D-chair images, which have

a completely different appearance. The knowledge learned from CelebA is less likely to have a

positive transferable effect when learning an entirely different dataset.

3.5 Conclusion and Limitations

In this chapter, we propose a new approach for lifelong learning, called the Lifelong Generative

Adversarial Autoencoder (LGAA), which relies upon using the advantages of jointly using GAN

and VAE generative deep learning methods into a unified lifelong learning framework. The

proposed LGAA can learn meaningful representations across domains without forgetting them

under lifelong learning. This approach can be used in a wide range of applications, including

data classification, semi-supervised learning, reconstruction, generation and interpolation. In

addition, we investigate the transfer learning ability of the proposed LGAA and find that the

proposed LGAA can learn fast for a new task when the previously learnt tasks share similar

features and information with respect to new data samples.

In the following, we summarise the limitations of the proposed LGAA into two aspects:

• The proposed LGAA model is still limited when learning an infinite number of tasks

since the GAN would suffer from the mode collapse [156] when learning several entirely

different datasets. This causes catastrophic forgetting for the proposed LGAA given that

the model can not obtain generative replay samples of reasonably good quality.

• The proposed LGAA still requires knowing the maximum number of tasks before the

training since qε(d | z) is a static inference model and can not dynamically increase the

dimension of the latent variable d.

Those limitations inspire us to develop a new lifelong learning approach enabled by the

dynamic expansion mechanism for learning a growing number of tasks, described in the next

chapter.

Chapter 4

Dynamic Growing Mixture Model

4.1 Introduction

Lifelong learning represents a learning paradigm in which a model is trained to successively

learn a series of tasks without forgetting the information associated with any of these tasks.

Modern deep learning models have been successfully used in a wide range of applications,

including image translation [103], image processing [183], object recognition [135] and image

synthesis [122]. Existing deep models tend to perform well only when accessing all training

samples during a single learning stage. When attempting to learn multiple tasks, such models

would only know the last task and would fail on those learnt in the past. The collapse in

performance is caused by the fact that the parameters of the model are changed when training

on a new task, and this phenomenon is called catastrophic forgetting [125].

One popular approach to relieve forgetting the Generative Replay Mechanism (GRM) [57],

which can be implemented by either the Variational Autoencoder (VAE) [85], or the Generative

Adversarial Net (GAN) [52]. A generative model aims to provide pseudo data when learning a

new task in order to avoid forgetting by using GRM [2, 132, 141, 175, 180]. GRM-based models

have shown good performance in the continual classification task but would gradually lose their

performance when learning an increasing number of tasks. Additionally, the other drawback

of GRMs is that of suffering from the mode collapse [156], especially when learning several

entirely different data domains. To address these two problems, it was proposed to combine

the dynamic expansion and GRM into a unified optimization framework [133] in which the

model’s capacity is increased to adapt to the data distribution shift. However, this approach

still suffers from forgetting due to the repeated recursive use of many GRM processes. Other

59

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 60

attempts are focused on the dynamic expansion mechanism [95] and on using ensemble struc-

tures [43, 74, 174], in which each component is built on the top of a joint network backbone.

These approaches can avoid forgetting since they do not update the previously learnt network

parameters when learning new data [43]. However, most of the dynamic expansion models only

focus on supervised learning and are not suitable for unsupervised image generation tasks.

After considering the limitations of previous research studies and the method described in

Chapter 3, this chapter introduces a new approach that combines the generative replay and

dynamic expansion mechanisms into a unified framework, aiming to address the challenges

of lifelong learning from two aspects: network forgetting and complexity. First, the GRM-

based methods usually see a reduction in the performance of all previous tasks when learning

a new task. This result is caused by the generative replay process that repeatedly generates

previous data during the new task learning while the quality of generative replay samples is

gradually decreased as the number of tasks increases. To reduce the performance degeneration

caused by GRM, we propose a dynamic expansion method that builds a new component while

freezing the others to preserve the previously learnt information. Second, to reduce the model’s

complexity while maintaining its performance, we introduce a new knowledge-measure approach

for evaluating the knowledge similarity between each previously learnt component and the

data distribution of the dataset corresponding to the incoming task. The proposed knowledge

measure approach chooses an appropriate component for learning a related task that shares

similar visual concepts with the knowledge of the selected component. This approach reduces

the accumulated errors caused by the GRM processes. Furthermore, accumulating knowledge

into a single latent space using a student module, which can infer the information across

domains, is an attractive feature in lifelong learning. Teacher-student architectures have not

been explored so far in other lifelong mixtures or ensemble models [95, 182]. We adopt a

knowledge distillation (KD) method for transferring the knowledge learnt by each component

of the mixture learning system into a lightweight student module.

In this chapter, we summarise our contributions as follows:

• We propose a new lifelong learning model, which can dynamically expand its network

architectures according to the novelty of the incoming task while reusing an existing

component to learn a related task.

• We propose a new knowledge distillation approach that enables a lightweight student

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 61

module to learn the knowledge from the Generative Mixture Model (GMM) as well as

from the new tasks. Furthermore, the student module can capture the cross-domain latent

representations over time while enjoying fast inference during the testing phase.

• We perform several experiments, and the empirical results demonstrate that the proposed

approach achieves the state of the art performance in both the generative modelling and

classification tasks.

The rest of this chapter, discusses the methodology, including the architecture, learning

algorithm and its implementation, in Section 4.2. The experiments are detailed in Section 4.3

and the conclusions from the research presented in this chapter are drawn in Section 4.4.

4.2 Methodology

The VAE framework has shown promising performance in lifelong generative modelling [2, 132]

due to its powerful inference mechanism that supports many downstream tasks such as image

reconstructions and interpolations. However, these works [2, 132] employ a single VAE frame-

work, which fails to learn a growing number of tasks due to the fixed model capacity. In this

section, we introduce a new VAE-based approach to address a long sequence of tasks. The key

idea of the proposed approach is to learn a dynamic expansion model (mixture system) in which

each component is implemented using a single VAE model which can be dynamically built when

learning a new task. In order to reduce the model size, we propose to share many parameters

among components. Specifically, these shared parameters are formulated as a shared encoder

and decoder, respectively, which are only built once at the initial training phase and updated

only at the first task learning to avoid forgetting, as described in Section 4.2.1. In addition,

dynamically building and learning a new component for each task still leads to a considerable

number of parameters, especially when learning a growing number of tasks. We address this is-

sue by proposing a component expansion and selection mechanism, which evaluates the novelty

of a new task as the signal for the model expansion, as described in Section 5.4.6. The key idea

of the proposed mechanism is to calculate the difference in the loss value between the generated

images from each component and the training samples from the new task. A high measure in-

dicates that the new task contains different information from the already learnt knowledge and

we can build a new component to learn this new task. In contrast, a low measure evaluated by

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 62

the expansion criterion will choose an appropriate component to learn this new task through

the component selection process, which can reduce the model size. In addition, based on the

mixture of the VAE framework, we extend the proposed GMM to implement two applications:

classification and image-to-image translation, as described in Section 4.2.4. Specifically, we

employ the concept of Conditional VAE (CVAE) [153] to implement each component of GMM

since CVAE can enable prediction tasks within a VAE framework.

However, one weakness of the proposed GMM framework is the model size, which will be

increased over time when learning a growing number of tasks. Such a design can not deploy

the proposed GMM into a resource-constrained machine. In addition, since each VAE-based

component in the proposed GMM only embeds information from the associated tasks into its

own latent space, we can not perform the image interpolation across multiple data domains due

to lacking of a shared latent space. To solve these issues, one efficient approach is to formulate

the proposed GMM as the teacher module and transfer its learned knowledge to a fixed-size

student module through knowledge distillation, described in Section 4.2.5. Specifically, we

implement the student module using a single VAE model, aiming to embed the information

from all previously learnt tasks into a shared latent space, which supports image interpolations

across different data domains over time. The other advantage of introducing the student module

is to enjoy a fast inference process during the testing phase.

Learning setting. In this chapter, we focus on a general setting in lifelong learning where

the task label is provided during the training [125]. Let X and Z represent the data and

latent variable space, respectively. Let us consider the learning of a sequence of N tasks, where

each task (the t-th task) is assigned with a training set Dt
S = {{xj,yj}}

Nt
S

j=1 and a testing

set Dt
T = {{xj,yj}}

Nt
T

j=1. xj ∈ X and yj ∈ Y (one-hot vector) are an observed variable, and

the target variable (class label), where Y is the space of the class label. N t
S and N t

T are the

total number of samples for Dt
S and Dt

T , respectively. In addition, let Dt
SU = {xj}

Nt
S

j=1 and

Dt
TU = {xj}

Nt
T

j=1 be the unlabelled training and testing dataset from the t-th task. Let p(xtTU)

and p(xtSU) denote the data distribution1 for Dt
TU and Dt

SU , respectively
2. Our goal in lifelong

learning is to learn a model that only accesses samples from the associated training set (Dt
S

or Dt
SU) in the t-th task learning while it cannot access data corresponding to the previously

1Following from the original GAN paper [52] and other extensive works [55, 11], we employ the concept of
the data distribution.

2Since the dataset size of Dt
TU and Dt

SU is equal to that of Dt
T and Dt

S , we employ N t
T and N t

S to denote
the total number of samples for Dt

TU and Dt
SU , respectively.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 63

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
3 units

Latent variable 100
dimensions

Shared decoder Decoder

Fully connected layer
��� × � × � units

Deconvolution layer
256 units

Feature maps

f��
d f��

d

Figure 4.1: The network architecture of the generator under unsupervised learning.

Fully connected layer
1024 units

Fully connected layer
100 units

Encoder

Fully connected layer
100 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Convolution layer
1024 units

Shared encoder

Feature vector

f��
e f��

e

Flatten

Figure 4.2: The network architecture of the encoder under unsupervised learning.

learnt (t− 1) tasks. Once all tasks are completed, we evaluate the performance of the trained

model on all testing sets ({D1
T , · · · , DN

T } or {D1
TU , · · · , DN

TU}), where N represents the number

of tasks.

To relieve network forgetting, a mixture system can be adopted. The optimal performance

on the target datasets can be achieved when the number of components in the mixture model

matches the number of tasks because the model does not suffer from the forgetting caused by

the generative replay mechanism. However, such a mixture system would require using many

additional network parameters and is not scalable for learning a growing number of tasks. In-

spired by this conclusion, we develop a new Growing Mixture Model (GMM) that satisfies two

aspects. First, we address forgetting in lifelong learning by preserving the learned knowledge in

the frozen network structure while dynamically building and adding and training new compo-

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 64

nents to the growing mixture, for learning new tasks. Second, to reduce the complexity of the

model while maintaining performance, we share some of the parameters between these compo-

nents and introduce a new knowledge-measure approach that guides the GMM to reuse some

of the network parameters for learning a related task through a component selection process.

4.2.1 Network Architecture

In this section, we detail the proposed GMM’s network architecture. In order to reduce the

whole model’s parameters, GMM introduces a shared module that consists of two neural net-

works feς̂s : X → Z ′ and fd
θ̂s
: Z → X ′, corresponding to the shared VAE encoder and decoder3,

respectively, where X and Z ′ are the space of the image x and the output (feature vector)

of feς̂s . The dimension of Z ′ is larger than Z that is the space of the latent variable z. X ′ is

the output space of fd
θ̂s
, which has smaller dimensions than the data space X . {ς̂s, θ̂s} are the

parameters of the shared module. When GMM expands, we dynamically build a component-

specific module that consists of two neural networks feς̃i and fd
θ̃i
: X ′ → X , corresponding to

the specific VAE encoder and decoder, where i represents the component index and {ς̃i, θ̃i} is

the parameter set. feς̃i receives the output from the shared encoder feς̂s(x) and returns Gaussian

hyperparameters. Therefore, the encoder for the i-th component is implemented by feς̃i(f
e
ς̂s
((x)))

which outputs the Gaussian hyperparameters {µ,σ} used to form an encoding distribution

q{ς̂s,ς̃i}(z |x) = N (µ,σ2I) (Gaussian), where {ς̂s, ς̃i} denotes the specific and shared parame-

ters. Similarly to the encoder, we implement the decoder p{θ̂s,θ̃i}(x | z) for the i-th component

by fd
θ̃i
(fd
θ̂s
(z)). The network architecture of the decoder and encoder for one VAE component

is shown in Fig. 4.1 and Fig. 4.2. We also provide the overall structure of the proposed GMM

in Fig. 4.3, where each component can be seen as a single VAE model. Let Ai to denote the

i-th component consisting of q{ς̂s,ς̃i}(z |x) and p{θ̂s,θ̃i}(x | z), and the optimization corresponds

to maximize the Evidence Lower Bound (ELBO) [85]:

LELBO(x, θ̂s, θ̃i, ς̂s, ς̃i) = Ez∼q{ς̂s,ς̃i}(z |x)

[
log p{θ̂s,θ̃i}(x | z)

]
−DKL

[
q{ς̂s,ς̃i}(z |x) ∥ p(z)

]
,

(4.1)

3We employ θ̂s and ς̂s to denote the parameters of the shared module. The goal of the shared VAE encoder
and decoder is to output the feature vectors, which are used as input for the specific encoder and decoder.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 65

Decoder 1

Shared decoder

Decoder �

Shared encoder

Encoder 1

Encoder �

�

�

�

�

�

�

reparam
eterization

 trick
reparam

eterization
 trickInput

Reconstruction

Outputs the vector over
feature space Outputs the vector over

feature space

Figure 4.3: The network architecture of the proposed GMM consisting of K components. Each
component can be seen as a single VAE model.

where the shared modules are only updated by using Eq. (4.1) for the first task learning in

order to avoid forgetting the prior knowledge in the subsequent task learning. In practice, the

first term in Eq. (4.1) is implemented as the negative reconstruction error [148].

4.2.2 Component Selection and Mixture Expansion Mechanism

When the number of components is equal to that of tasks, the learning errors are not cumulating

successively after learning several tasks. However, such a learning paradigm requires to train a

task-specific component of a mixture system, which would lead to substantial memory budgets

as the number of tasks grows. To address this problem, we introduce a knowledge-evaluation

approach that guides component selection and mixture expansion. The primary motivation

is that a certain component can easily learn several similar tasks and benefit from positive

knowledge transfer when learning a new task. To achieve this goal, a reasonable solution is for

a given component to learn tasks of a similar nature, by evaluating a discrepancy distance on

the data corresponding to different tasks.

First we can consider estimating the discrepancy distance [114] between the new task and

each of the previously trained components. A high discrepancy distance indicates that the new

task is novel enough, and that we should build a new component for learning this task. The

discrepancy distance between two distributions p(xiSU) and p(x
j
SU) is defined as, [114]:

Ldiscrepancy

(
p(xiSU), p(x

j
SU)

)
= sup

(h,h′)∈H2

∣∣∣Ex∼p(xiSU) [L (h′ (x) , h (x))]

− Ex∼p(xjSU)
[L (h′ (x) , h(x))]

∣∣∣ , (4.2)

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 66

where H is the space of the classifiers. In practice, the discrepancy value in Eq. (4.2) can be

estimated by training two classifiers h and h′ on two labelled datasets Di
S and Dj

S, respectively.

However, such an approach requires classifiers that are assumed to be trained on the labelled

dataset, which is not available in unsupervised learning. In this study, we introduce an alter-

native approach to estimate task similarity, which does not require extra neural networks and

computational costs. We assume that at the t-th task learning, we have already learned K

components. When we see a new task (the (t + 1)-th task), we propose to compare the loss

value between each learned component and the new task (the (t+ 1)-th task):

FS(Ai, t+ 1, Dt+1
SU) =

1

m′

m′∑
k=1

∣∣∣LELBO(x′
(i,k), θ̂s, θ̃i, ς̂s, ς̃i)− LELBO(x(t+1,k), θ̂s, θ̃i, ς̂s, ς̃i)

∣∣∣ , (4.3)

wherem′ is the number of samples that are used for the evaluation andAi is the i-th component.

| · | denotes the absolute value. Dt+1
SU is the unlabelled training dataset from the (t+1)-th task.

In practice, we set m′ = 5000 for all experiments. Since we can not access all past samples, we

use each component to generate pseudo sample x′
(i,k), where i represents the component index.

x(t+i,k) represents the k-th real training sample obtained from the unlabelled training set of the

(t + 1)-th task. Eq (4.3) compares the given data with the new task (the t + 1-th task) with

the information already known by the model. We test the loss value provided by the mode

with the newly given samples X(t+1,k) with the that obtained with the samples generated by

the model. This measures the novelty of the new data for the model.

The main reason for comparing the losses can be summarized into two aspects. Firstly, since

each component in the GMM is a VAE model, the first term in the loss function is implemented

using the reconstruction error. For a given image that was not seen before and was entirely

different from the previously learnt images, the VAE model would not produce an accurate

image reconstruction, resulting in a large reconstruction error. As a result, comparing the loss

value between the generated images and new training samples can indicate the novelty of the

data corresponding to a new task. Secondly, comparing the loss value is an efficient approach

as it does not require significant computational costs compared to other distance measures,

while is also easy to implement. Eq. (4.3) can measure the knowledge similarity between each

component and the new task, which can be used for selecting a component or for deciding when

to expand the architecture with a new component:

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 67

Decoder 1
Expansion
criterion

New task

Samples

Shared decoder

Decoder �

Samples

Generate

Generate

Prior distribution

Knowledge
measure

Measure

Measure

Figure 4.4: The procedure of the proposed knowledge measure approach. When seeing a new
task, we generate a set of samples using each component. Then these generated samples and
real samples from the new task are used for checking the model expansion (Eq. (4.4)).

min
i=1,··· ,K

{
FS(Ai, t+ 1, Dt+1

SU)
}
≥ λGMM , (4.4)

where λGMM is a threshold which controls the model size of the GMM and K is the current

number of components. The procedure of the proposed knowledge measure is illustrated in

Fig. 4.4. If Eq. (4.4) is satisfied, the GMM will add a new component for learning the (t+1)-th

task, otherwise, it will select a component according to the knowledge measure:

FGMM
find (A1, · · · ,AK , t+ 1, Dt+1

SU) = argmin
i=1,··· ,K

{
FS(Ai, t+ 1, Dt+1

SU)
}
, (4.5)

where ŝ = FGMM
find (A1, · · · ,AK , t + 1, Dt+1

SU) is the selected component index. Then we choose

the ŝ-th component for learning the (t+ 1)-th task with the generative replay process.

The choice of λGMM in the expansion criterion, defined by Eq. (4.4), represents a trade-

off between model complexity (size) and performance. For example, if λGMM is very large,

the GMM tends to reuse a component for learning a new task more frequently, while the

performance of previous tasks would be reduced due to the repetitive usage of the generative

reply mechanism (GRM). On the other hand, when λGMM is very small, GMM tends to create

more components, increasing the complexity of the model while reducing the accumulated errors

caused by the GRM processes.

4.2.3 Algorithm Implementation

We present the pseudocode in Algorithm 2, for the unsupervised learning algorithm for GMM,

which is summarized in three steps in the following:

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 68

• Step 1. Training phase: If GMM has no components, we build a new component at the

beginning of the first task learning, otherwise, we check the flag ’isAdd’ in Algorithm 2

to decide either the mixture expansion or the component selection process. If the flag

”isAdd == True” at the t-th task learning, we dynamically build a new component and

train it on Dt
SU , otherwise, we train the selected component (ŝ-th component) on the joint

dataset Dt
SU

⋃
Dŝ
GU consisting of the training and generated dataset. Note that we use

Dt
SU to denote the unlabelled dataset, which is different from the labelled dataset (Dt

S).

Dŝ
GU is the unlabelled dataset generated by using the selected component (Aŝ). The

total number of training iterations (iterationNumber in Algorithm 2) is determined by

iterationNumber = (dataSize/batchSize)×epoch, where batchSize = 64 and epoch = 20

are the batch size and training epochs, respectively. dataSize is the total number of

samples for the current training dataset.

• Step 2. The evaluation of knowledge measure: After the current task learning (the t-th

task) is finished, we evaluate the knowledge comparison measure between each learnt

component and the dataset of the next task (the (t+ 1)-th task) by using Eq. (4.3).

• Step 3. The expansion and selection process: We employ the knowledge measure to de-

cide either the expansion or the selection process, controlled by an expansion threshold

λGMM. If Eq. (4.4) is satisfied, then we set the flag ’isAdd = True’, otherwise, we set

’isAdd = False’ in Algorithm 2. We then return back to Step 1 to perform the next task

learning.

4.2.4 Supervised Learning Task

Although the proposed GMM mainly focuses on the unsupervised generative modelling task,

it can be extended to two applications: image classification and image-to-image translation

(ITIT). Therefore, we only modify the network architecture of individual components to im-

plement these applications, and the training process is similar to that required in unsupervised

learning (Algorithm 2). In the following, we introduce the detailed implementation for two

applications. Note that we usually use θ and ς to represent the parameters of the genera-

tor (decoder) and the encoder for both applications for the sake of reducing the number of

notations.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 69

Algorithm 2: Unsupervised learning of GMM

1 (Input:All training databases) ;
2 for t < N do
3 if t == 1 then
4 isAdd = True ;
5 end
6 Get the unlabelled training set Dt

SU ;
7 if isAdd == False then

8 Generate the dataset Dŝ
GU using the ŝ-th component ;

9 From a joint dataset Dt
SU = Dt

SU

⋃
Dŝ
GU ;

10 end
11 else
12 Build a new component for GMM ;
13 end
14 for index < iterationNumber (Only update each model once in each iteration) do
15 Get the data batch Xbatch from the training set Dt

SU ;
16 if isAdd == False then

17 Update the selected component with Xbatch using LELBO(x, θ̂s, θ̃ŝ, ς̂s, ς̃ŝ)
18 ŝ is the selected component index ;

19 end
20 else

21 Update the new component with Xbatch using LELBO(x, θ̂s, θ̃K+1, ς̂s, ς̃K+1) ;
22 end

23 end
24 The evaluation of knowledge measure ;
25 Calculate the knowledge measure using Eq. (4.3) ;

26 if mini=1,··· ,K
{
FS(Ai, t+ 1, Dt+1

SU)
}
≥ λGMM , then

27 isAdd = True ;
28 end
29 else
30 Select a component ;

31 ŝ = argmini=1,··· ,K
{
FS(Ai, t+ 1, Dt+1

SU)
}
;

32 isAdd = False ;

33 end

34 end

Image to Image Translation (ITIT) task. Unlike the image reconstruction task [85], which re-

ceives an original image and aims to give an accurate reconstruction, the ITIT aims to predict

and generate a target image for a given source image [71]. To implement the image-to-image

translation task, we need to redesign the network architecture of each component in the GMM.

Conditional VAE (CVAE) [153] is a well-known variant of VAEs, which enables to make pre-

diction tasks. We employ the concept of the CVAE for implementing ITIT for two reasons: (1)

The CVAE is a VAE-based model, which can be used as the component/expert in the GMM;

(2) The CVAE is mainly used for the prediction task, which is suitable for ITIT. The loss

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 70

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Shared module

Latent variable
256 dimensions

[�����, �, �, �� × �] [�����, �, �, ���]

Resize Resize

[�����, �, �, ���]

Combine

Deconvolution � × �� units

Deconvolution � × �� units

Deconvolution � × �� units

Deconvolution � × �� units

Deconvolution � × �� units

Deconvolution � × �� units

Deconvolution � × �� units

 Module

[�����, �, �, ���]

Deconvolution � units

f��
ITIT f��

ITIT

Figure 4.5: The network architecture of the encoding-decoding network under the image-to-
image translation task, where input size is 256 × 256 × 3. ”batch” is the batch size, which is
set to 8 in our experiment.

function of the CVAE is defined by:

LCVAE(g,x, ς̂s, ς̃i, θ̂s, θ̃i) = −Eq{ς̂s,ς̃i}(z |x,g)[log p{θ̂s,θ̃i}(g | x, z)]

+DKL

[
q{ς̂s,ς̃i} (z | x,g) || p{υ̂s,υ̃i} (z | x)

]
,

(4.6)

where p{υ̂s,υ̃i}(z | x) represents the prior network that receives x and returns z [153]. p{θ̂s,θ̃i}(g |

x, z) and q{ς̂s,ς̃i} (z | x,g) are the generation and recognition network [153], respectively, where

g belongs to the image domain and has the same size with x in the image-to-image translation

task. Although the original objective function of CVAE, defined by Eq. (4.6), can ensure a

lower bound of the conditional log-likelihood [153], implementing each component of the GMM

by using the CVAE would lead to more parameters and computational complexity, especially

when the GMM continually builds several components during lifelong learning. In this chapter,

we aim to design a lightweight network architecture and modified objective function for each

component to minimize the overall computational complexity. We find that the prior network

p{υ̂s,υ̃i}(z | x) requires processing the high-dimensional data x using a deep neural network

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 71

Fully connected layer
1024 units

Fully connected layer
256 units

Encoder

Fully connected layer
256 units

Convolution � × �� units

Shared encoder

Feature vector

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Convolution � × �� units

Flatten

f��
ITITf��

ITIT

Softplus

Figure 4.6: The network architecture of the encoder under the image-to-image translation task.

with numerous parameters. Additionally, when the variable g is a high-dimensional data in the

image-to-image translation task, q{ς̂s,ς̃i} (z | x,g) would lead to more computational complexity

as its input involves two high-dimensional data x and g.

To reduce the total number of parameters for each component in the GMM, we firstly

consider replacing q{ς̂s,ς̃i} (z | x,g) by employing an encoder q{ς̂s,ς̃i} (z | g), which only processes

a certain high-dimensional data and forms a Gaussian distribution N (µ{ς̂s,ς̃i},σ
2
{ς̂s,ς̃i}I) where

{µ{ς̂s,ς̃i},σ{ς̂s,ς̃i}} are hyperparameters. Then, we consider replacing the prior network p{θ̂s,θ̃i}(z |

x) [153] by adopting a normal distribution p(z) = N (0, I) which does not involve any trainable

parameters, further reducing the model size. As image-to-image translation is challenging in

lifelong learning, we implement p{θ̂s,θ̃i}(g | x, z) by employing an encoding-decoding network

fITIT
θ̂s

(fITIT
θ̃i

(x, z)) whose network architectures are shown in Fig. 4.5, where fITIT
θ̂s

and fITIT
θ̃i

are the

shared and individual module, respectively. q{ς̂s,ς̃i}(z | g) = N (µ{ς̂s,ς̃i},σ
2
{ς̂s,ς̃i}I) is a Gaussian

distribution implemented by an encoding network fITIT
ς̃i

(fITIT
ς̂s

((g))) where fITIT
ς̂s

(.) is the shared

encoder and fITIT
ς̃i

(·) receives the output from fITIT
ς̂s

(g) and returns the Gaussian hyperparameters

{µ{ς̂s,ς̃i},σ{ς̂s,ς̃i}}. We provide the detailed network architectures of fITIT
ς̃i

(·) and fITIT
ς̂s

(g) in

Fig. 4.6.

Each component Ai in the image to image translation task consists of p{θ̂s,θ̃i}(g | x, z) and

q{ς̂s,ς̃i}(z | g), where i represents the component index. Then, Eq. (4.6) is reformulated to be

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 72

Fully connected layer
1024 units

Classifier

Softmax layer
10 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Convolution layer
1024 units

Shared classifier

Feature maps Latent variable

Flatten

Latent variable

Combine
Feature vector

Figure 4.7: The network architecture of the classifier under the classification task.

used as the objective function for the i-th component in the Image-to-Image translation task,

LITIT(x,g, ς̂s, ς̃i, θ̂s, θ̃i):

LITIT(x,g, ς̂s, ς̃i, θ̂s, θ̃i) = −Eq{ς̂s,ς̃i}(z |g)[log p{θ̂s,θ̃i}(g | x, z)]

+DKL[q{ς̂s,ς̃i}(z |g) || p(z)] .
(4.7)

The first term in Eq. (4.7) is implemented by the negative reconstruction error, which has

been widely used in other works [148]. Compared to the original objective function, defined

by Eq. (4.6), our objective function, defined by Eq. (4.7) can not ensure a lower bound of the

conditional log-likelihood. We can observe that g in Eq. (4.7) belongs to the image domain,

and i is the component index. Compared to the unsupervised image reconstruction task, the

generator p{θ̂s,θ̃i}(g | x, z) in the image-to-image translation task can only map the source

image x to the target image g and is unable to generate paired images {x,g}. As a result,

each component in the image-to-image generation task fails to implement the GRM procedure.

Reusing the same component to continually learn several tasks would suffer from catastrophic

forgetting due to the absence of generative replay samples. To avoid this issue, the GMM in the

image-to-image translation task dynamically adds a new component when seeing a new task

(Each component learns a unique task.).

Classification task. For the classification task, we consider u to be the discrete variable (one-

hot vector) representing the class label. Therefore, we implement p{δ̂s,δ̃i}(u | x, z) as a classifier

which also has the shared parameters δ̂s and the component-specific parameters δ̃i. We provide

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 73

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
3 units

Latent variable 100
dimensions

Shared decoder Decoder

Fully connected layer
��� × � × � units

Deconvolution layer
256 units

Feature mapsClass label

Vector

Combine

f��
Class f��

Class

Figure 4.8: The network architecture of the generator under the classification task.

Fully connected layer
1024 units

Fully connected layer
100 units

Encoder

Fully connected layer
100 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Convolution layer
1024 units

Shared encoder

Feature vectorClass label

Feature vector
Combine

Flatten

f��
Class f��

Class

Figure 4.9: The network architecture of the encoder under the classification task.

the network architecture of the classifier in Fig. 4.7. In order to reduce the whole model size,

we also replace p{υ̂s,υ̃i}(z | x) of Eq. (4.6) by a simple normal distribution p(z) = N (0, I), and

then the objective function used for training the classifier of the i-th component is defined as:

LC(x,y, ς̂s, ς̃i, δ̂s, δ̃i) = fCE(p{δ̂s,δ̃i}(u |x, z),y, Q)

+DKL[q{ς̂s,ς̃i}(z | x,y) || p(z)] ,
(4.8)

where the first term is the cross-entropy loss and z in the first term is given by the inference

model q{ς̂s,ς̃i}(z | x,y). In the testing phase, the classifier p{δ̂s,δ̃i}(u |x, z) can be used to im-

plement the classification task, where z is drawn from the prior p(z). Since Eq. (4.8) is used

to train the classifier, it still requires learning the generator in order to implement the GRM

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 74

procedure. We propose the objective function for the generator of the i-th component as:

LGen(x,y, ς̂s, ς̃i, θ̂s, θ̃i) = −Eq{ς̂s,ς̃i}(z |x,y)[log p{θ̂s,θ̃i}(x |y, z)]

+DKL[q{ς̂s,ς̃i}(z | x,y) || p(z)] ,
(4.9)

where p{θ̂s,θ̃i}(x |y, z) is implemented by fClass
θ̃i

(fClass
θ̂s

(y, z)) where fClass
θ̂s

(y, z) is the shared gen-

erator (decoder) that receives y and z and returns a feature/tensor, which is fed into fClass
θ̃i

(·)

to produce x. Note that y can be obtained from the training dataset when the class label

is available. We provide the network architecture of the generator in Fig. 4.8. q{ς̂s,ς̃i}(z |

x,y) is implemented by a Gaussian distribution N (µ̃{ς̂s,ς̃i}, σ̃
2
{ς̂s,ς̃i}I) whose hyperparameters

{µ̃{ς̂s,ς̃i}, σ̃{ς̂s,ς̃i}} are provided by a neural network fClass
ς̃i

(fClass
ς̂s

((x,y))) where fClass
ς̂s

(x,y) is the

shared encoder that receives x and y and returns a feature, which is fed into fClass
ς̃i

(·) to pro-

duce the Gaussian hyperparameters {µ̃{ς̂s,ς̃i}, σ̃
2
{ς̂s,ς̃i}} used to form the Gaussian distribution

q{ς̂s,ς̃i}(z | x,u) = N (µ̃{ς̂s,ς̃i}, σ̃
2
{ς̂s,ς̃i}I). We provide the network architecture of the encoder in

Fig. 4.9. Each component Ai in the classification task consists of p{θ̂s,θ̃i}(x |y, z), q{ς̂s,ς̃i}(z | x,y)

and p{δ̂s,δ̃i}(u | x, z).

In practice, we update the model’s parameters using the objective functions LGen and LC

from equations Eq. (4.9) and Eq. (4.8) with the mini-batch of data samples. In addition, the

objective function (LGen) is also used for the model expansion in the classification task after

each task finishes:

min
i=1,··· ,K

{
FcS(Ai, t+ 1, Dt+1

S)
}
≥ λGMM , (4.10)

where Dt+1
S is the labelled training dataset from the (t+ 1)-th task and FcS(·, ·) is defined as:

FcS(Ai, t+ 1, Dt+1
S) =

1

m′

m′∑
k=1

∣∣∣LGen(x
′
(i,k),y

′
(i,k), ς̂s, ς̃i, θ̂s, θ̃i)− LGen(x(t+1,k),y(t+1,k), ς̂s, ς̃i, θ̂s, θ̃i)

∣∣∣ ,
(4.11)

where Ai has the parameter sets {ς̂s, ς̃i, θ̂s, θ̃i} and we use the decoder p{θ̂s,θ̃i}(x |y, z) of Ai to

generate the pseudo sample x′
(i,k), where z ∼ p(z) and y is a randomly generated class label

(one-hot vector). i represents the component index. We also use the classifier (inference model)

p{δ̂s,δ̃i}(u | x, z) of Ai to predict the class label y′
(i,k) for x

′
(i,k) and therefore y in LGen is given

by the class label y′
(i,k). x(t+i,k) and y(t+i,k) represent the k-th real training sample and label

obtained from the training set of the (t + 1)-th task. If the expansion criterion (Eq. (4.10)) is

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 75

Algorithm 3: GMM for the classification task

1 (Input:All training databases) ;
2 for t < N do
3 if t == 1 then
4 isAdd = True ;
5 end
6 Get the labelled training set Dt

S from the t-th task ;
7 if isAdd == False then

8 Generate the labelled dataset Dŝ
G from the ŝ-th component ;

9 Combine two datasets Dt
S = Dt

S

⋃
Dŝ
G ;

10 end
11 else
12 Build a new component ;
13 end
14 for index < iterationNumber (Only update each model once in each iteration) do
15 Get the data batches {Xbatch,Ybatch} from the set Dt

S ;
16 if isAdd == False then

17 Update the parameters {ς̃ŝ, δ̃ŝ} with {Xbatch,Ybatch} using LC(x,y, ς̂s, ς̃ŝ, δ̂s, δ̃ŝ) ;

18 Update the parameters {ς̃ŝ, θ̃ŝ} with {Xbatch,Ybatch} using LGen(x,y, ς̂s, ς̃ŝ, θ̂s, θ̃ŝ) ;

19 end
20 else
21 Update the parameters of the new component ;

22 Update the parameters {ς̃K+1, δ̃K+1} with {Xbatch,Ybatch} using

LC(x,y, ς̂s, ς̃K+1, δ̂s, δ̃K+1) ;

23 Update the parameters {ς̃K+1, θ̃K+1} with {Xbatch,Ybatch} using

LGen(x,y, ς̂s, ς̃K+1, θ̂s, θ̃K+1) ;

24 end

25 end
26 The evaluation of knowledge measure ;
27 Calculate the knowledge measure using Eq. (4.11) ;

28 if mini=1,··· ,K
{
FcS(Ai, t+ 1, Dt+1

S)
}
≥ λGMM , then

29 isAdd = True ;
30 end
31 else
32 Select a component ;

33 ŝ = argmini=1,··· ,K
{
FcS(Ai, t+ 1, Dt+1

S)
}
;

34 isAdd = False ;

35 end

36 end

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 76

Algorithm 4: Algorithm for the teacher-student

1 Input:All training databases) ;
2 for t < N do
3 if t == 1 then
4 isAdd = True ;
5 end
6 Get the unlabelled training set Dt

SU ;
7 if isAdd == False then
8 Generate dataset Dŝ

GU from the ŝ-th component ;

9 Dt
SU = Dt

SU

⋃
Dŝ

GU Form a joint dataset ;

10 end
11 else
12 Build a new component ;
13 end
14 for index < iterationNumber (Each module in each iteration is updated only once) do
15 Get the data batch Xbatch from Dt

SU ;
16 if isAdd == False then

17 Update the selected component using LELBO(x, θ̂s, θ̃ŝ, ς̂s, ς̃ŝ) and Xbatch ;
18 end
19 else

20 Update the new component using LELBO(x, θ̂s, θ̃K+1, ς̂s, ς̃K+1) and Xbatch ;
21 end
22 The learning of the student module ;
23 Update the student module by using Eq. (4.13) with Xbatch and generative replay samples ;

24 end
25 The evaluation of knowledge measure: ;
26 Calculate the knowledge measure using Eq. (4.4) ;

27 if mini=1,··· ,K
{
FS(Ai, t+ 1, Dt+1

SU)
}
≥ λGMM , then

28 isAdd = True ;
29 end
30 else
31 Select a component ;

32 ŝ = argmin
i=1,··· ,K

{
FS(Ai, t+ 1, Dt+1

SU)
}
;

33 isAdd = False ;

34 end

35 end

not satisfied, we perform the component selection in the classification task by:

FGMM
findSup(A1, · · · ,AK , t+ 1, Dt+1

S) = argmin
i=1,··· ,K

{
FcS(Ai, t+ 1, Dt+1

S)
}
, (4.12)

where ŝ = FGMM
findSup(A1, · · · ,AK , t+1, Dt+1

S) is the index of the selected component in supervised

learning. We provide the pseudocode for the classification task in Algorithm 3.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 77

Real images Shared encoder

Encoder1

EncoderK

Student encoder

Shared decoder

Decoder1

DecoderK

Student decoder

Reconstruction

z

z

Figure 4.10: Diagram showing the learning structure for the proposed GMM mixture model.
Only a few components (’Encoder K’, ’Student Encoder’, ’Decoder K’, and ’Student Decoder’)
update parameters during each stage of lifelong learning. Meanwhile, we always train the
student module in each task learning by using the objective function from Eq. (4.13).

4.2.5 Learning A Compact Student Module and the Training Algo-

rithm

In order to map multiple tasks into a single latent space, we propose training a compact

student (VAE) model under unsupervised learning. The advantage of training a student is

that of being able to compress the information learnt by a complex Teacher module, such

as the GMM, described in Section 4.2.3, into a lightweight model which would not have to

perform a component selection process and thus enjoys fast inference during the testing phase.

Furthermore, the student module enables many applications, including image reconstruction

and interpolation across multiple domains. To implement these goals, we propose a Teacher-

Student framework, whose structure is shown in Fig. 4.10, where the GMM is used as the

teacher module, while a student module is built based on the top of a shared encoder and a

shared decoder. We then propose a new objective function for the student’s learning, which

consists of the optimization of the current task (the t-th task) and the knowledge distillation,

expressed as:

LGMM
Stu (xt, ς̂s, ς̃stu, θ̂s, θ̃stu) = Eq{ς̂s,ς̃stu}(z |xt)

[
log p{θ̂s,θ̃stu}(x | z)

]
−DKL

[
q{ς̂s,ς̃stu}(z | xt) || p(z)

]
︸ ︷︷ ︸

ELBO on the t-th task

+

K∑
i=1

(
Eq{ς̂s,ς̃stu}(z |x′

i)

[
log p{θ̂s,θ̃stu}(x | z)

]
−DKL

[
q{ς̂s,ς̃stu}(z | x′

i) || p(z)
])

︸ ︷︷ ︸
Knowledge distillation optimization

, (4.13)

where x′
i is a sample generated from the i-th VAE component of the GMM and xt is a real

training sample from the t-th task. K is the total number of components. We provide the

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 78

network architecture of a GMM as a teacher with a student module in Fig. 4.10, where the

student module has subsets of parameters {θ̃stu, ς̃stu} and also shares parameters with the

joint network that consists of shared VAE encoder and decoder. This can further reduce the

complexity of the whole system while ensuring the usage of a lightweight student module in the

testing phase. Furthermore, during training, the student module is always activated to compress

the knowledge from the new task together with the knowledge of the trained K components of

the GMM in each task learning. The detailed training algorithm for the teacher-student system

is shown in the pseudocode from Algorithm 4.

4.3 Experiments

4.3.1 Hyperparameter Setting and Network Architecture

We use TensorFlow [1] for the implementation of all models. We adopt the Adam optimization

algorithm [82] where we consider a learning rate of 0.0002 and β = 0.5. We consider the

input image size as 32× 32× 3 pixels while the kernel size is 3× 3. We implement the shared

encoder feς̂s by using a CNN with four layers with {128, 256, 512, 1024} processing units. We

implement each sub-encoder feς̃i by using a fully connected network with two layers of {1024, 100}

processing units. For the decoding process, we implement the shared part fd
θ̂s

by using a CNN

that has three layers consisting of a fully connected layer with 256 * 8 * 8 processing units and

other two convolution layers with {256, 256} units. Then we implement the sub-encoder fd
θ̃i
by

using a CNN that consists of three layers with {256, 256, 3} units. For the large input size of

(64× 64× 3) pixels, the shared encoder f eς̂s is implemented by a CNN with {64, 128, 256} units.

We also implement the sub-encoder feς̃i by using a network that consists of a convolution layer

with 256 units and two fully connected layers with {1024, 256} units. For the decoding process,

we implement the shared decoder fd
θ̂s

by using a network that consists of three convolution

layers with {256, 256, 256} units and a fully connected layer with 256 * 8 * 8 units. We then

implement the sub-decoder fd
θ̃i
by using a CNN that consists of {256, 128, 3} processing units.

4.3.2 Datasets and Evaluation Criteria

This section introduces detailed information about the dataset and evaluation criteria.

• In unsupervised learning, we consider learning a sequence of tasks where each task is

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 79

associated with a dataset. The sequence of databases used for training includes MNIST

[93], SVHN [118], Fashion [177], InverseFashion (IFashion) and Rated MNIST (RMNIST).

We call this learning setting as MSFIR.

• If we incorporate CIFAR10 [87] after MSFIR, as the last learning task, resulting in

MSFIRC sequence for supervised classification. We resize all images to the resolution

32× 32× 3 pixels.

Evaluation criteria: In supervised learning, we calculate the average classification accuracy

on all tasks as the performance criterion. In unsupervised learning, we adapt the structural

similarity index measure (SSIM) [68], the Mean Squared Error (MSE) and the Peak-Signal-to-

Noise Ratio (PSNR) [68] in order to evaluate the image reconstruction quality. The calculation

form of the SSIM and PSNR criteria are provided as follows:

SSIM(x,x′) =
(2µxµx′ + c1)(2σxx′ + c2)

(µ2
x + µ2

x′ + c1)(σ2
x + σ2

x′ + c2)
, (4.14)

PSNR(x,x′) = 10 log10
max (x)2

MSE(x,x′)
, (4.15)

where x and x′ are the real testing and reconstructed image, respectively. µx and µx′ are

the pixel sample mean of x and x′, respectively. σ2
x and σ2

x′ are the variance of x and x′,

respectively. MSE(·, ·) is the mean square error. c1 = (k1Limage)
2 and c1 = (k2Limage)

2 are two

variables where Limage is the dynamic range of the pixel-values and k1 = 0.01 and k2 = 0.03.

We employ the skimage library to implement the PSNR and SSIM criteria.

Baselines: In this chapter, we compare with three popular continual learning models: CURL

[133], LGM [132] and BatchEnsemble (BE) [174]. BE was used in supervised learning. In order

to compare the proposed model with BE for unsupervised learning, we implement BE as a

mixture model where each component is a VAE model that has a tuple of trainable vectors

built on the top layer of a joint neural network. We only update this joint neural network at

the first task learning afterwards freezing it to avoid forgetting.

4.3.3 Generative Modelling Tasks

We train various models on MSFIR lifelong learning tasks, and the number of training epochs

for each task learning is 20. We present the results obtained after the lifelong learning of

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 80

Threshold
Add expert

Add expert

Add expert

(a) (b)

Figure 4.11: (a) The evaluation of the knowledge similarity between the given new task and
the information already known by the GMM under the MSFIR lifelong learning. We also plot
the number of components in each task learning. (b) The model’s performance and complexity
change when using different thresholds λGMM in Eq. (4.4) during MSFIR lifelong learning.
’GMM-100’ denotes that the GMM model is trained using the threshold λGMM = 100.

Table 4.1: The performance of various models after the MSFIR lifelong learning.

MSE SSMI PSNR

Datasets LGM CURL BE GMM Stud LGM CURL BE GMM Stud LGM CURL BE GMM Stud

MNIST 129.93 211.21 19.24 26.64 176.82 0.45 0.46 0.92 0.88 0.42 14.52 13.27 22.57 21.02 13.72

Fashion 89.28 110.60 38.81 33.67 178.04 0.51 0.44 0.61 0.75 0.37 15.82 14.89 14.46 19.68 8.81

SVHN 169.55 102.06 39.57 30.27 146.70 0.24 0.26 0.66 0.64 0.47 8.11 10.86 18.90 15.55 13.58

IFashion 432.90 115.29 36.52 35.03 158.18 0.26 0.54 0.75 0.77 0.43 9.04 15.51 19.32 19.47 14.17

RMNIST 130.28 279.47 25.41 22.97 157.55 0.45 0.29 0.88 0.90 0.43 14.51 10.84 21.31 21.71 14.18

Average 190.38 163.72 31.91 29.71 163.45 0.38 0.39 0.76 0.78 0.42 12.40 13.07 19.31 19.48 12.89

MSFIR in Table 4.1 where “Stu” represents the performance of the student model which is

worse than that of GMM because the student module is trained on the generated knowledge

from GMM. From Table 4.1, we observe that the proposed GMM outperforms the baseline in

each task, demonstrating the advantage of the proposed approach. We also evaluate the novelty

of the information contained in the new data compared with the already learnt information by

the model, calculated using the left-hand side of Eq. (4.10) and the number of components in

Fig. 4.11a, where GMM had trained four components after lifelong learning. This result shows

that the first component that has already learnt MNIST, is used to learn a similar dataset,

RMNIST.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 81

(a) Testing samples. (b) Reconstructions.

Figure 4.12: Reconstructed image results achieved by the student module of the GMM after
CCCOS lifelong learning.

4.3.4 The Lifelong Learning of Complex Datasets

In this section, we evaluate the proposed GMM model when considering more complicated

tasks. Firstly, we introduce several datasets.

Sub-ImageNet (Sub-IM). To balance the number of samples in each task, we build a subset of

ImageNet, namely Sub-ImageNet, by randomly collecting 60,000 samples from the ImageNet

[88], which contains a variety of images of higher complexity. We then select 50,000 samples as

the training set while all remaining samples are used as the testing set.

CelebA. It is a large-scale face attributes dataset which has more than 200K celebrity images

[105].

CACD. This dataset contains 163,446 images from 2,000 celebrities collected from the internet

[24].

3D-Chair. This dataset contains rendered images of around 1000 different three-dimensional

chair models [14].

For CelebA, CACD and 3D-Chair, we randomly select ninety per cent of all samples from

each dataset as the training dataset while all remaining samples are employed as the testing

dataset. We build a sequence of complex tasks, including CelebA, CADS, 3D-Chair, Omniglot

and Sub-ImageNet databases, namely CCCOS, where we resize all images as 64×64×3 pixels.

Various models are trained under CCCOS, and we report the results in Table 4.2. We can

observe that the proposed GMM outperforms other baselines on both CCCOS and MSFIR

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 82

Figure 4.13: Interpolation results obtained by the student module of GMM, after CCCOS
lifelong learning.

settings, according to the results from Table. 4.2, respectively. We present the reconstruction

results achieved by the GMM in Fig. 4.14, where the GMM model is shown that it can provide

accurate image reconstructions for each task. We also show the image reconstruction results

achieved by the student module of the GMM in Fig. 4.12, which show that the proposed

approach produces high-quality image reconstructions.

In the following, we also consider exploring joint latent spaces through the image interpo-

lation experiment. We employ the inference model of the GMM’s student module to infer the

latent codes for two different images. Then, we generate the intermediary images by smoothly

changing the latent code of one image to that of another image, and the results are shown in

Fig. 4.13. From the results from rows 3-4 and 5-6 from Fig. 4.13 we can observe that GMM’s

student module can generate smooth interpolations even when the original images are from

completely different domains, such as face images and 3D chairs, or faces and specific signs,

respectively. These results demonstrate that the proposed knowledge distillation loss can en-

courage the Student module to learn cross-domain representations within a single latent space.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 83

Table 4.2: The performance of various models under the CCCOS learning setting.

MSE SSMI PSNR

Datasets LGM CURL BE GMM Stud LGM CURL BE GMM Stud LGM CURL BE GMM Stud

CelebA 1536.06 1446.86 209.93 214.55 646.95 0.33 0.34 0.69 0.69 0.49 15.14 15.42 23.61 23.52 18.71

CACD 2348.35 2202.88 459.93 363.17 1394.11 0.26 0.27 0.55 0.62 0.38 13.16 13.40 20.21 21.28 15.38

3D-Chair 1430.87 1258.02 629.55 483.29 1527.70 0.43 0.47 0.73 0.80 0.47 15.68 16.18 19.26 20.72 15.60

Omniglot 3356.40 2464.04 753.30 361.33 4258.15 0.20 0.26 0.78 0.89 0.28 11.76 13.13 18.55 21.99 10.75

Sub-IM 1147.64 1336.58 773.89 783.21 1064.51 0.30 0.32 0.37 0.37 0.32 15.80 16.07 18.47 18.44 17.06

Average 1963.86 1741.68 565.30 441.11 1778.29 0.30 0.33 0.62 0.67 0.39 14.31 14.84 20.02 21.19 15.50

(a) CelebA. (b) CACD. (c) 3D-chair. (d) Omniglot. (e) Sub-ImageNet.

(f) Task 1. (g) Task 2. (h) Task 3. (i) Task 4. (j) Task 5.

Figure 4.14: Reconstructed image results achieved by the GMM after CCCOS lifelong learning.
The first row represents testing images and the second row are their reconstructions using GMM.

4.3.5 Classification Tasks

In this section, we compare GMM with the state-of-the-art approaches for the classification

task. LGM [132] is designed for the unsupervised learning task, and we can use LGM for the

classification task by training a classifier on the joint dataset consisting of real samples and the

generated samples from LGM. We report the classification accuracy in Table 4.3, which shows

that the proposed GMM outperforms other baselines. Additionally, BE also achieves good

performance since its number of components is equal to the number of tasks, and consequently

suffers less from forgetting.

Additionally, we investigate the performance of various models when learning a long se-

quence of tasks. We consider training various models considering seven tasks, including MNIST,

SVHN, Fashion, IFashion, RMNIST, rotated Fashion (RFashion which contains the same im-

ages as Fashion database, but which are rotated with 180 angles) and CIFAR10 (MSFIRRC).

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 84

Table 4.3: Classification accuracy of various models after the MSFIRC lifelong learning.

Dataset LGM [132] CURL [133] BE[174] GMM MRGANs [175]

MNIST 90.54 91.30 99.40 99.44 91.24

SVHN 22.56 62.05 74.46 85.13 64.12

Fashion 68.29 79.18 88.95 91.49 80.10

IFashion 73.70 82.51 86.45 68.75 82.19

RMNIST 90.52 98.56 99.10 98.50 98.30

CIFAR10 57.43 67.34 52.48 65.27 67.19

Average 67.17 80.16 83.47 84.76 80.52

Table 4.4: Classification accuracy of various models after the MSFIRRC’s lifelong learning.

Dataset GMM BE [174]

MNIST 86.01 99.28

SVHN 86.91 74.84

Fashion 90.68 87.60

IFashion 91.02 86.03

RMNIST 99.01 98.77

RFashion 91.43 86.60

CIFAR10 64.61 54.79

Average 87.10 83.99

The threshold λGMM from Eq. (4.4), which defines the selection of the components from GMM

is set to 180 when training on MSFIRRC. After the learning of all given tasks is finished, the

GMM eventually has learnt five components. The GMM reuses the first component that has

learnt MNIST, in order to learn a similar task (RMNIST), and reuses the third component to

firstly learn Fashion and then RFashion. The classification results are reported in Table 4.4,

where the proposed GMM outperforms BE in terms of the average classification accuracy.

Moreover, the proposed GMM achieves the best performance on almost every dataset when

compared to BE, except for the MNIST database, where BE has better results.

Although the proposed GMM is mainly used in task-incremental learning, we also investigate

the performance of GMM in the class-incremental setting. Following the setting from [124],

we create a new dataset, namely Permuted MNIST, where we have ten tasks and each task

is defined by the MNIST database with a fixed permutation of pixels [124]. We also consider

the Split MNIST [191], which splits MNIST into five tasks where each task contains samples

belonging to two successive classes. For Permuted MNIST, the classifier in each expert is

implemented by using a Multilayer Perceptron (MLP) consisting of two hidden layers, where

each layer has 100 hidden units, according to [124]. For Split MNIST, we implement the

classifier of each expert by a neural network comprised of two layers where each layer has 256

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 85

Table 4.5: Results of continuous learning benchmark.

Methods Permuted MNIST Split MNIST

Improved VCL* [158] 93.1± 1 98.4± 0.4

EWC* [86] 84 63.1

DLP* [150] 82 61.2

SI* [191] 86 98.9

FROMP* [124] 94.9± 0.1 99.0± 0.1

FRCL-TR* [162] 94.3± 0.2 97.8± 0.7

FRCL-RND* [162] 94.2± 0.1 97.1± 0.7

GMM 96.46 ± 0.03 (10 C) 99.21 ± 0.04 (5 C)

GMM 88.78 (7 C) 96.77 (4 C)

GMM 95.25 (8 C) 91.37 (3 C)

Table 4.6: Results of Split CIFAR.

Methods Split CIFAR

FROMP-L2 75.6± 0.4

FROMP 76.2± 0.4

SI 73.5± 0.5

VCL + random coreset 67.4± 1.4

EWC 71.6± 0.9

GMM 76.40 ± 0.3 (6 C)

GMM 65.70 (5 C)

hidden units, according to [124]. We search the threshold λGMM of Eq. (4.10) from 80 to 120

for Permuted MNIST and from 30 and 60 for Split MNIST, resulting in employing different

numbers of components.

In addition, we also consider a challenging dataset, namely Split CIFAR, because it contains

more complex images, Split CIFAR [191], in continual learning. Following the same procedure

from [124], Split CIFAR considers the CIFAR10 that is employed as the first task, and then we

consider the following five tasks where we select training samples from 10 consecutive categories

from CIFAR100 as a task and so we have six tasks for Split CIFAR. Following from [124], we

adopt a network architecture that consists of four convolutional layers and two fully connected

layers. It notes that the shared classifier is implemented by means of four convolutional layers.

During the GMM expansion process, we build a sub-classifier by using two fully connected

layers, based on the top layer of the shared classifier. Therefore, each sub-classifier reuses

parameters from this shared classifier, which can reduce the whole model size. We only update

the parameters of the shared classifier when learning the first task in order to relieve forgetting.

Compared to FROMP [124], the one major weakness of the proposed GMM is the training

process of the shared modules whose parameters are only updated at the first task learning

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 86

Figure 4.15: The estimation of the discrepancy distance between different domains, where the
first one was assumed to have already been learnt by the model.

and are frozen in subsequent task learning. As a result, the proposed GMM does not explore

the full model capacity for learning new tasks. In addition, FROMP can keep a fixed model

structure during the training but requires a memory buffer to store many data samples of

all prior tasks. In contrast, the proposed GMM does not need any memorized examples but

continually adds and freezes parameters during the training, aiming to preserve all previously

learned information. Furthermore, the main idea and technology from FROMP can be used

in the training process of the shared module of the proposed GMM, which enables updating

shared parameters across multiple tasks and thus would improve model performance.

During this experiment, we search for the best threshold λGMM ∈ [80, 100] from Eq. (4.10) for

Permuted MNIST and λGMM ∈ [30, 60] for Split MNIST and Split CIFAR. The best threshold

λGMM for Permuted MNIST, Split MNIST and Split CIFAR is 98, 56 and 55, respectively. We

perform five independent runs and calculate the average classification accuracy for Permuted

MNIST, Split MNIST and Split CIFAR, which are shown in Table 4.5 and Table 4.6 where we

cite all results4 from [124] except for the proposed GMM which are provided by this experiment.

We denote by ”N C” the fact that GMM has learnt N components. These results demonstrate

that we can achieve optimal performance by ensuring that the number of components in GMM

is equal to the number of learnt tasks where the model does not suffer from forgetting.

4Some results were reported in supplementary material from [124].

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 87

Task1 Task2 Task3

(a)

Task1 Task2 Task3

(b)

Task1 Task2 Task3

(c)

Figure 4.16: The target risk (classification error) on all datasets, achieved by the proposed
GMM when learning a sequence of the MNIST, SVHN and CIFAR10, namely MSC. We employ
’Easy-to-Hard’ and ’Hard-to-Easy’ to denote that the model is trained under MSC and CMS
lifelong learning, respectively. (a) The results from BatchEnsemble. (b) The results of the
GMM that shares part of the parameters between components. (c) The results of the GMM
when do not share parameters among components.

4.3.6 Ablation Study

This section investigates the importance of each module in the proposed GMM. Firstly, we

evaluate the performance of the proposed GMM by varying the threshold λGMM from Eq. (4.10),

for deciding when to add new components to the mixture model, and the results are shown in

Fig. 4.11b. A large threshold λGMM allows GMM to reuse components frequently, resulting in

worse performance but a more compact architecture for GMM. In contrast, a small threshold

allows GMM to expand more often during the training, increasing the model’s complexity while

improving performance.

Additionally, we investigate whether the proposed component selection process can find

a component that does not suffer from much degeneration during learning.. We train two

classifiers h, h′ on MNIST and a joint dataset (MNIST and A) where A is another dataset,

respectively. Then, we estimate the discrepancy distance between MNIST and A by evaluating

the outputs of these two classifiers h and h′ using Eq. (4.2). We present the results in Fig. 4.15

where ”(MNIST, Fashion)” represents the discrepancy distance between MNIST and Fashion

databases, estimated using the two classifiers h and h′. From Fig. 4.15, we observe that the

discrepancy distance is small when two tasks are related (for example, MNIST and RMNIST).

The proposed component selection procedure reuses the component trained on MNIST to learn

a similar dataset, such as RMNIST, demonstrating that the proposed selection procedure can

help GMM choose an appropriate component when just a small discrepancy between the learnt

knowledge and the information representation of the new task is detected.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 88

Table 4.7: The number of parameters of various models under MSFIR unsupervised learning.
Model LGM [132] CURL [133] BE [174] GMM Stu

Parameters 3.3× 108 2.3× 108 3.6× 108 2.1× 108 1.4× 108

Table 4.8: The number of parameters of various models under the CelebA, CACD, 3D-Chair,
Omniglot and Sub-ImageNet (CCCOS) lifelong learning setting.

Model LGM [132] CURL [133] BE [174] GMM Stu

Parameters 1.9× 109 2.0× 109 2.0× 109 7.2× 108 1.7× 108

In the following, we investigate the performance of the proposed GMM when changing the

order of tasks during lifelong learning. We train the proposed GMM under MNIST, SVHN

and CIFAR10 (MSC) lifelong learning, and compare with training with the same databases,

but in a different order, CMS. We show the empirical results in Figures 4.16-a and b, which

indicate that GMM and BE have a significant difference in the results when changing the order

of tasks during lifelong learning. This is because GMM and BE share most of the parameters

between the components, while the shared module is only updated at the first task learning.

As a result, the shared module can provide low-level feature information extracted from the

first task for the subsequent task learning. However, such feature information can be changed

and thus affect the performance of the subsequent tasks when changing the first task. These

results show that the proposed GMM is sensitive to changes in the order of task learning. In

order to address this issue, we also investigate the performance of the GMM that does not share

parameters among components. In this case, each newly created component in the GMM has

independent parameters and does not share its parameters with other components. We plot

the target risks of this model in Fig. 4.16c. From this plot, we can observe that by employing

independent parameters for each newly created component, such components are less sensitive

to changes in the learning tasks order, while achieving better performance compared with the

models that share parameters among components.

4.3.7 Image to Image Translation Task

In this section, we apply our model GMM for image-to-image translation tasks. We build a

sequence of Map [71], CMP [131], and Shoe [190] datasets. We train GMM on this sequence

by using the objective function from Eq. (4.7), and the visual results are shown in Fig. 4.17.

We observe that the proposed GMM achieves high-quality image-to-image translation results

without forgetting. These results show that the proposed GMM can be potentially applied to

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 89

Table 4.9: The number of parameters of various models under the lifelong supervised learning
(MSFIRC).

Model LGM CURL BE [174] GMM MRGANs [175]

Parameters 5.9× 108 3.3× 108 3.9× 108 3.4× 108 3.3× 108

(a) Maps.

(b) Reconstructions.

(c) testing samples from CMP [131]

(d) Reconstructions.

(e) Testing samples from [190].

(f) Reconstructions.

Figure 4.17: Image to Image translation results when learning three different tasks under the
lifelong learning.

the image-to-image translation task under lifelong learning.

4.3.8 Model’s Complexity

In this section, we evaluate the model size when experimenting with various methods. The

number of parameters required by various methods are reported in the Tables 4.7, 4.8, 4.9

where ’Stu’ denotes the number of parameters for the Student module of GMM. These results

show that the proposed GMM requires fewer parameters for training than other models.

CHAPTER 4. DYNAMIC GROWING MIXTURE MODEL 90

4.4 Conclusion and Limitations

In this chapter, we propose a new dynamic expansion model (GMM) and introduce a new

knowledge measure that evaluates the novelty of the incoming task before expanding the net-

work architecture. This knowledge measure provides guidelines for the expansion and selection

mechanisms while ensuring that a certain component is reused for learning a related task, thus

ensuring that the number of parameters for the model is appropriate for the given tasks. The

proposed knowledge measure leads the proposed GMM to learn a reasonable network architec-

ture while providing good performance in all test sets.

We conduct a series of experiments for lifelong supervised and unsupervised tasks. We

also evaluate the effectiveness of the student module of the proposed GMM under the cross-

domain image reconstruction and interpolation tasks. The empirical results show that we

can transfer the knowledge from the GMM into a lightweight student model that captures

different underlying data distributions into a single latent space and implicitly models the

connections between different data domains. Compared to the LGAA described in Chapter 3,

the proposed GMM can learn an unlimited number of tasks without forgetting, depending only

on the computational resources available.

In the following, we summarise some limitations of the proposed GMM:

• Sharing parameters among components in the GMM can reduce the model size. However,

such an approach can lead to unstable performances when changing the order of tasks,

discussed in Section 4.3.6.

• The proposed knowledge measure approach relies on the inference mechanism of each

component. As a result, powerful implicit generative models [116] such as GANs can not

be efficiently used as components in the GMM.

• The GMM trains a rather weak student module, producing blurred image reconstructions

and interpolations. This inspires us to develop a new lifelong teacher-student framework

to learn a robust student module, as described in the next chapter.

Chapter 5

Dynamic Self-Supervised

Teacher-Student Network

5.1 Introduction

In Chapter 4, we have shown how to train a dynamic expansion model for continual learning.

However, due to the poor generation capacity of VAEs, the proposed GMM learns a weak

student module which is not able to produce satisfactory results on the cross-domain image

reconstruction and interpolation tasks. In addition, the expansion processes in the proposed

GMM and existing models [95, 133, 184] rely on modelling the sample log-likelihood/density

estimation and the inference mechanism of each component, which is limited when considering

a more powerful implicit generative model [116].

To address the drawbacks of prior works, a new lifelong learning framework is proposed

in this chapter, called the Dynamic Teacher-Student (D-TS), where the Teacher module is

implemented by a dynamically expandable GAN mixture model which expands its network

architecture according to the novelty of given tasks. The idea of expanding neural networks

has been used in GMM, described in Section 4.2.2 of Chapter 4, which compares the difference

between the already-learnt knowledge and a new task. Specifically, GMM evaluates the distance

on the sample log-likelihood between the generated samples yielded by each component and

compares it to the sample data corresponding to a new task. However, such an expansion

criterion can not be directly used in D-TS because each teacher expert in D-TS is implemented

using an implicit deep generative model (GAN) that can not estimate the sample log-likelihood.

In order to solve this issue, this chapter introduces a new criterion, called the Knowledge

91

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 92

Teacher

Expert 1

Expert K

New task

KDS
criterion

Expansion

Selection

Expert
K+1

Build

Expert �
Select

Teacher
learning

Yes

No

Student

Real samples

Generative
samples

Provide

Produce

Figure 5.1: The diagram illustrating the learning procedure for the proposed lifelong framework,
which consists of three steps (See details in Section 5.2.7). First, when seeing a new task (the
t-th task), we perform the Knowledge Discrepancy Score evaluation, by employing SE or KFD
criterion, which guides us to perform either the selection or expansion process (Eq. (5.6)).
Second, we update the teacher module by using Eq. (5.8) and Eq. (5.9) where we omit the
GRM process when a selected expert is reused for learning a new task. Third, we update the
student module on real samples from the current task combined with generative replay samples
drawn by the teacher module. The more detailed pseudo code is provided in Section 5.2.7.

Discrepancy Score (KDS) that evaluates the relevance between each learnt teacher expert and

the incoming task. Specifically, KDS is employed to determine the novelty of an incoming

task after each task switch, guiding us to either reuse an existing expert for learning a related

task or build a new expert for learning an entirely different task. To model the correlations

on the underlying factors between multiple domains, a lightweight latent variable generative

model is developed as the student module and a self-supervised learning approach is proposed

that trains the student module on mixing real training samples with generative replay samples

drawn from the teacher module, as shown in Fig. 5.1. In addition, a new regularized term

is introduced in the student’s objective function, which minimizes the distance between the

posterior distribution learnt by the student and the conditional distribution parameterized by

the identity information of each expert. This regularized term encourages embedding multiple

knowledge sources from the teacher module into several clusters in the latent space of the

student module, which further improves the cross-domain reconstruction and interpolation

performance. This chapter summarizes the difference between D-TS and GMM (described in

Chapter 4) in three aspects: (1) The GMM employs the VAE as the component of the teacher

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 93

module, which results in rather poor generation results and can not provide a high-quality

knowledge transfer for the student’s learning. In contrast, the D-TS can dynamically build

GAN-based components/experts, providing better generation results. (2) The GMM employs

the sample log-likelihood evaluation as the dynamic expansion criterion. In contrast, D-TS

provides a more flexible dynamic expansion criterion, which can enable the implicit generative

models, such as GANs, to be used as the components of the teacher module. (3) The student

module in GMM is designed differently from that in D-TS. In addition, the D-TS introduces a

new conditional prior that regularizes the student’s learning, resulting in better reconstruction

performance.

The main contributions of this chapter are:

• This chapter studies a more challenging lifelong learning setting in which we desire to

learn domain-specific representations while also inferring the characteristics of these rep-

resentations into a single latent space.

• This chapter proposes a new lifelong learning framework, namely the Dynamic Teacher-

Student Network (D-TS), which enables the teacher module to expand its network archi-

tecture in order to learn a growing number of tasks. Meanwhile, the student module in

D-TS is self-supervised trained to learn both predictive as well as generative representa-

tions across domains.

• This chapter proposes a new criterion, called the Knowledge Discrepancy Score (KDS)

which controls the selection and expansion of the teacher module. The proposed KDS

enables each expert/component to be implemented by a GAN model.

• This chapter introduces a new conditional prior that employs the identity information of

the teacher expert to embed different knowledge sources (modelled by different teacher ex-

perts) into different clusters in the latent space of the student module during the training,

leading to better image reconstruction performance.

The rest of the chapter is organized as in the following. The Dynamic Teacher-Student (D-TS)

framework is described in Section 5.2 and some of its applications are in Section 5.3. The

experimental results are provided in Section 5.4 and the conclusions of this chapter are drawn

in Section 5.5.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 94

5.2 Dynamic Self-Supervised Teacher-Student Network

(D-TS) Framework

The dynamic expansion models have shown promising performance in lifelong learning [95,

133, 184] due to the network expansion mechanisms that can dynamically increase the model’s

capacity to deal with new tasks. These methods are based on the VAE-based framework

[133, 184], which can learn meaningful latent representations that support image reconstructions

and interpolations. However, one major weakness of these methods is the inability to perform

image interpolations across different data domains due to the lack of a shared latent space.

This issue is addressed by the teacher-student framework (GMM), proposed in Chapter 4,

which learns a VAE-based student module to embed information from all prior tasks into a

single latent space. However, GMM employs a VAE-based teacher framework, which can not

provide high-quality knowledge transfer for the student module learning, resulting in poor

performance. In this chapter, we solve this issue by developing a dynamically expandable GAN

teacher module, which implements each teacher expert using the GAN model [52] that can

produce high-quality generative replay samples.

One major challenge for the GAN-based teacher module is the expansion criterion. Com-

paring the sample log-likelihood as the expansion signal has shown promising results for the

VAE-based teacher framework, described in Chapter 4, which, can not be applied to the GAN-

based teacher framework since the GAN model does not have inference mechanisms. We solve

this issue by introducing a new expansion criterion, namely the Knowledge Discrepancy Score

(KDS), described in Section 5.2.3. The key idea of KDS is to evaluate the distance between

the generated images from each teacher expert and the training samples from a new task using

various measures. Such a design does not require the inference mechanisms of each teacher

expert and thus can implement the teacher module using any deep generative technologies.

The proposed KDS can guide to dynamically build a new expert for the teacher module when

the new task contains novel enough information while selecting an appropriate to learn several

similar tasks, aiming to maintain a compact network architecture for the teacher module. The

detailed teacher module updating process is presented in Section 5.2.4.

However, the GAN-based teacher framework can not learn meaningful latent representa-

tions and thus fails to implement image reconstructions and interpolations across multiple data

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 95

domains over time. We address this issue by introducing a VAE-based student module and a

new loss function that transfers the knowledge from the teacher module and the new task to

the student module. In addition, mapping the information from multiple data domains into

a single cluster would lead to performance loss in the image interpolation task because the

different domains share the same region of the latent space. We solve this issue by employ-

ing a conditional prior distribution to regulate the latent representation optimization of the

student module, which can encourage embedding the information from different data domains

into different regions of the latent space. We provide the detailed student model design and its

updating process in Section 5.2.5 and Section 5.2.6, respectively.

The main contributions of this section are:

• We propose to employ the WGAN-GP technology to implement a dynamic expansion

framework as the teacher module, which provides high-quality knowledge transfer for the

student module learning.

• We propose a new expansion criterion (KDS) to control the network expansion process

of the teacher module. The proposed KDS can also help the teacher module reuse an

appropriate teacher expert to learn several similar tasks.

• We propose to use a conditional prior distribution to regulate the latent variable in the

student module learning, which can improve the image interpolation tasks.

5.2.1 Problem Definition

Following the notations from Chapter 4, let p(xiSU) and p(x
i
TU) be the data distribution1 for the

unlabelled training set Di
SU , and testing set Di

TU of the i-th task, respectively. For a sequence

of N domains (tasks), we assume that each data distribution p(xiSU), defined on the data space

X ∈ RW , is obtained from the i-th task, where W is the dimension2 of the data sample. In

the context of lifelong learning, a model A (generator or classifier) only accesses samples drawn

from p(xiSU) at the i-th task learning. Our learning goal is to train A to capture the generative

factors from a sequence of N tasks without forgetting previously learnt latent representations,

where N is the total number of tasks. Our model consists of a teacher module made up of a

1Following from the original GAN paper [52] and other extensive works [55, 11], we employ the concept of
the data distribution.

2Since we mainly focus on the image dataset, we have W = Wight × Hight × Channel, where Weight,
Hight and Channel are the image weight, hight and channel, respectively.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 96

mixture of Generative Adversarial Networks (GAN) and a student module, implemented by a

generative latent variable model.

5.2.2 Preliminaries

In the following, we describe the GAN model, which is used as an expert in a mixture system in

the teacher module [180]. A GAN model [52] consists of two components: a generator network

Gθ : Z → X and a discriminator network Dη : X → R, of parameters θ and η, respectively. The

generation process is started by drawing a random noise vector z ∈ Z from a fixed multivariate

Gaussian distribution N (0, I) as the input of the generator Gθ(z) which outputs a fake image

x′. The discriminator network Dη(x), of parameters η, is trained to distinguish x′ from a real

image x, while the generator Gθ(z), of parameters θ, is trained to generate fake images x′ that

can fool the discriminator. In this chapter, we employ the Wasserstein GAN-Gradient Penalty

(WGAN-GP) [11, 55] in the teacher module whose training is defined by the loss function: [55]:

LDTS
G (θ) =

1

m

m∑
i=1

{
−Dη(Gθ(zi))

}
. (5.1)

LDTS
D (Xbatch, η) =

1

m

m∑
i=1

{
Dη(Gθ(zi))−Dη(xi) + λ(∥∇x̃iDη(x̃i)∥2 − 1)2

}
, (5.2)

where λ = 10 is the penalty term [55], which is considered in our all experiments according to

[55]. LDTS
G and LDTS

D are the loss functions for the generator and discriminator, respectively.

Xbatch = {x1,x1, · · · ,xm} is a real data batch obtained from the training dataset and m is the

batch size in the mini-batch learning [92] (during the experiments we considered the batch size

as m = 64). x̃i is the interpolated image produced by x̃i = sxi + (1 − s)x′
i where s is drawn

from a uniform distribution U(0, 1). Dη represents the discriminator that receives an image xi

and returns a scalar, implemented by a neural network with trainable parameters η.

5.2.3 The Knowledge Discrepancy Score (KDS)

Before we describe the D-TS framework, we first introduce the Knowledge Discrepancy Score,

which represents the criterion used to control the expansion of the teacher module. Existing

mixture models use the log-likelihood/density estimation [95, 133], evaluated by each compo-

nent with a new training set, for the expansion or selection process. However, these mixture

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 97

models require each component to have an inference mechanism (sample log-likelihood/loss

estimation), which does not allow for the use of explicit generative models as experts. The

sample log-likelihood estimation is also used in the GMM, described in Eq. (4.3) of Chapter 4,

for the selection and expansion process. However, the GMM has two main weaknesses. Firstly,

the sample log-likelihood evaluation limits the GMM use in a more powerful generative model

such as GANs. Secondly, the teacher module in GMM can not provide high-quality knowledge

transfer for the student’s learning due to the poor generation results yielded by VAEs. In this

section, we introduce an alternative approach to evaluate the expansion and selection of com-

ponents for the mixture model using the Knowledge Discrepancy Score, which addresses these

two drawbacks. Firstly, we define the KDS, which aims to evaluate the knowledge similarities

between the two datasets, described in the following.

Definition 1 Knowledge discrepancy score (KDS). Given two unlabelled datasets Di
SU and

Dj
SU over the image space X , let us define a distance measure function fs. The KDS between

two sets is defined as:

KDSfs
(
Di
SU , D

j
SU

)
= fs

(
Φ
(
XDiSU

)
,Φ

(
XDjSU

))
, (5.3)

whereXDiSU
∈ Rm′×W andXDjSU

∈ Rm′×W are two data subsets formed bym′ samples randomly

obtained from Di
SU and Dj

SU , respectively, where W is the dimension of each sample. Φ(·) is

a mapping function3 which can be of arbitrary complexity. m′ is considered as 5,000 in our

experiments. In the following, we introduce two measures for implementing KDS.

Knowledge Fréchet Distance (KFD). A direct approach would evaluate the distance between

two empirical data distributions in the high-dimensional data space by using a probabilistic

measure. However, such an approach requires additional computations [51], or auxiliary training

[17, 101]. Recently, perceptual features extracted from deep Convolutional Neural Networks

(CNN), pre-trained on ImageNet [88], have been shown to be suitable for style matching [49]

and transfer learning [189]. One of the advantages of using perceptual features is to capture

a compact representation of the data, which can be used in many downstream tasks with

reasonable computational overheads. This motivates us to consider evaluating the KDS in the

feature space to reduce the required computation complexity. The Fréchet Inception Distance

3The function Φ(·) in the definition of KDS is arbitrary complexity, which can be implemented by a feature
extractor from a pre-trained model or a loss estimator. Such designs can allow us to explore more KDS measures
by only modifying fs and Φ, which will be investigated in future work.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 98

(FID) was a popular approach first proposed in [63], representing a metric used to evaluate

the distance between two empirical data distributions. Specifically, this approach first extracts

a feature vector from each image using the last pooling layer of an Inception v3 model pre-

trained on ImageNet. Then the FID score between the real image and the generated dataset is

calculated based on these feature vectors using the Fréchet distance. The FID score has been

widely used to evaluate the performance of GANs in image generation tasks [143, 121, 197].

A high FID score indicates that the GAN model can not generate more realistic images with

respect to the samples from the real training dataset. In this section, we generalize FID for the

selection and expansion criterion in the teacher module, which then can be used to evaluate

the task similarity. Specifically, we consider using the Fréchet distance [39] for implementing

fs(·), evaluated on the low-dimensional feature space, as:

KDSKFDfs (Di
SU , D

j
SU) =

∥∥∥fe (Φ(
XDiSU

))
− fe

(
Φ
(
XDjSU

))∥∥∥2

+ Tr
[
κ
(
Φ
(
XDiSU

))
+ κ

(
Φ
(
XDjSU

))
−

2
(
κ
(
Φ
(
XDiSU

))
κ
(
Φ
(
XDjSU

)))1/2]
,

(5.4)

where Tr(·) is the trace and Φ(·) is implemented as a mapping function that transforms an

image subset4 XDiSU
from Di

SU into the feature matrix Xf

DiSU
∈ Rm′×W′

by using the feature

extractor, which in our experiments is implemented by the last pooling layer of an Inception v3

model [160]5, trained on ImageNet, where W ′ < W is the dimension of the feature space. fe(·)

and κ(·) are used to calculate the mean vector and covariance matrix for Xf

DjSU
∈ Rm′×W′

. We

call Eq. (5.4) as the Knowledge Fréchet Distance (KFD), which represents the generalization

of the Fréchet Distance Score [63].

Student’s Evaluation (SE). For evaluating the novelty and similarity between the knowledge as-

sociated with each expert and that of the incoming task, we can use a measure of the knowledge

learned by a student module, which is implemented as a VAE-based framework, and represents

a depository of the knowledge from all previous tasks. The student module is able to estimate

the loss value across domains. A similar loss value between the past and new data would indi-

cate that the given task is known to the student module. In this case, the KDS implements a

4We employ XDi
SU

to denote a subset formed by samples randomly selected from Di
SU , which reduces the

computational costs for the evaluation of the knowledge discrepancy score.
5The Inception v3 model was a pre-trained model [63], which has been used in the FID evaluation. As the

same as FID, Eq. (5.4) can estimate the FID score based on two datasets.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 99

distance measure fs, evaluating the absolute differences in the loss function results between the

data samples associated with the new tasks and those generated by each teacher expert from

the mixture. We define the KDS using the student’s evaluation as:

KDSSEfs (D
i
SU , D

j
SU) =

∣∣∣Φ(
XDiSU

)
− Φ

(
XDjSU

)∣∣∣ , (5.5)

where we implement fs as a function that calculates the absolute value fs = | · | and Φ(·) is

implemented as the function that returns the loss value Φ(XDiSU
) = (1/m′)

∑m′

i=1 SE(XDiSU
[i])

where XDiSU
[i] is the i-th data sample of XDiSU

and SE(·) is the estimator for the loss value,

implemented by the student’s objective function, defined in Eq. (5.12). SE can be computed

more efficiently than KFD because it is directly estimated by the student module and does not

require an externally pre-trained network. Compared to the dynamic expansion mechanism

of the GMM described in Chapter 4, which relies on the loss evaluation for each mixture

component, both KFD and SE only access generated images from each component and can

thus implement by a more powerful generative model (GAN) for each component, improving

the model’s performance. Furthermore, the other KDS criteria can be implemented by only

modifying fs and Φ, which will be investigated in our future study.

5.2.4 The Teacher Module

Existing teacher-student frameworks [180] use a single GAN as the teacher module, but such

an approach has limitations when learning several different datasets due to the mode collapse

problem [156] (see also the empirical results in Section 5.4.6). In this chapter, we develop a

novel dynamically expandable experts-based memory system for the teacher module in order to

learn a growing number of different tasks. To ensure a compact network architecture, we would

require that a certain expert learns several data domains from tasks that have similarities with

each other. We assume that after the (t − 1)-th task learning is finished, we have trained K

experts {Gθ1 , . . . ,GθK}, where each expert is a GAN and the proposed model’s architecture is

shown in Fig. 5.2. Let Pθi represent the probability distribution of the data produced by the

generator Gθi of parameters θi. By employing the KDS, we can define the dynamic expansion

and selection mechanism used to control the teacher expansion process, shown in Fig. 5.3,

where KDSfs(·, ·) is evaluated between the knowledge accumulated by each expert and that

corresponding to the incoming task.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 100

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
128 units

Deconvolution layer
3 units

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
1 units

Latent variable
256 dimensions

Generator Discriminator

Fully connected layer
��� × � × � units

Deconvolution layer
256 units

Figure 5.2: The network architecture of each teacher expert, involving a generator and a
discriminator.

Selection and expansion using KDS. From Fig. 5.3, after learning the (t− 1)-th task, the com-

ponent selection and network expansion procedure are performed by a non-parametric inference

process in which we first evaluate the Knowledge Discrepancy Score between the new dataset

Dt
SU , and the set Di

GU generated by each of the teacher’s experts Gθi , i = 1, . . . , K and then we

check the model expansion by:

min
i=1,...,K

{
KDSfs

(
Di
GU , D

t
SU

)}
> hold , (5.6)

where Dt
SU denotes the unlabelled training dataset from the t-th task, and K is the current

number of experts in the teacher module. hold is the expansion threshold used to control the

model expansion. If the expansion criterion, defined in Eq. (5.6), is satisfied, then the teacher

module expands its capacity by building a new expert, otherwise the teacher module selects

the most appropriate expert for learning the new task (the t-th task), according to:

FDTS
selection(D

t
SU , θ1, · · · , θK) = argmin

i=1,··· ,K

{
KDSfs(D

i
GU , D

t
SU)

}
, (5.7)

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 101

Expert K+1

Expansion criterion
is satisfied

Load samples
from

(
Encoder

After (t-1)-
th task
learning Expert K

Expert 2

Latent space
Add

Prior

...

..
..

Train

Train
No

Yes

Expert 1

Expert

regulate

Select an expert

Build a new expert

���
�

���
�

 ��

KDS evaluation

KDS�� �1
��, ��

��

KDS�� �2
��, ��

��

, ���KDS�� �� �

���
�

���
� ���

�

Figure 5.3: The unsupervised learning procedure for D-TS. When learning the t-th task learn-
ing, we perform the KDS evaluation between the new dataset Dt

SU , and the data sets generated
by the teacher’s experts, Di

GU , i = 1, . . . , K. If the minimum KDS is larger than a threshold
hold, then we add a new expert to the mixture system (teacher module), otherwise, we select
the expert with the minimum KDS for learning the t-th task. The activated experts are shown
in red. The student is trained along with the teacher module, aiming to compress the knowledge
from different sources (experts) into a compact latent space.

where ŝ = FDTS
selection(D

t
SU , θ1, · · · , θK) is the index of the selected teacher expert. Given that

the new task (the t-th task) shares similar knowledge with respect to the selected expert, we

can use fewer training epochs for updating the ŝ-th expert when compared to training a new

component added to the teacher module. Compared to the expansion criterion in the GMM,

both SE and KDS evaluations do not need the inference mechanism of experts. As a result, we

can implement each expert in D-TS using arbitrary generative models.

Training the dynamic expansible mixture model. After selection or expansion, we define the

teacher’s loss function for the following t-th task in a mini-batch learning manner as:

LDTS
G (θŝ) =

1

m

m∑
i=1

{
−Dηŝ(Gθŝ(zi))

}
. (5.8)

LDTS
D (Xbatch, ηŝ) =

1

m

m∑
i=1

{
Dηŝ(Gθŝ(zi))−Dηŝ(xi) + λ(∥∇x̃iDηŝ(x̃i)∥2 − 1)2

}
, (5.9)

where Dηŝ(·) and Gθŝ are the discriminator and the generator of the selected teacher expert

(the ŝ-th teacher expert), parameterized by ηŝ and θŝ, respectively. If the expansion criterion,

defined in Eq. (5.6), is satisfied at the t-th task learning, we dynamically build a new teacher

expert {DηK+1
,GθK+1

} and set the index ŝ of the selected teacher expert as ŝ = K + 1 in

Eq. (5.8) and Eq. (5.9), respectively. The newly created teacher expert will be trained on the

training dataset Dt
SU from the t-th task learning and Xbatch is a data batch from Dt

SU . If the

expansion criterion, defined in Eq. (5.6), is not satisfied at the t-th task learning, we select

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 102

an appropriate teacher expert using Eq. (5.7) and ŝ = FDTS
selection(D

t
SU , θ1, · · · , θK). Then we

form a joint dataset Dt
SU

⋃
Dŝ
GU , including samples from the new training set Dt

SU from the

t-th task and the dataset Dŝ
GU generated by Gθŝ , where ŝ is the index of the selected expert.

We train the selected teacher expert {Dηŝ ,Gθŝ} in the mini-batch learning manner on the joint

dataset Dt
SU

⋃
Dŝ
GU using Eq. (5.8) and Eq. (5.9), respectively, in which Xbatch is a data batch

from Dt
SU

⋃
Dŝ
GU . We name D-TS-KFD the model when considering the Knowledge Fréchet

Distance (KFD), and D-TS-SE when using the student’s evaluation, for KDS in order to decide

whether to select a new expert for the teacher module.

5.2.5 The Student Module

For the design of the student module, we consider two crucial requirements: (1) A light archi-

tecture with fewer parameters than the teacher module; (2) A powerful inference mechanism

for representation learning. Following from [41], we define a latent variable generative model

pθstu(x, z, e)=pθstu(x | z, e)p(z, e) as the student module, where the discrete variable e that is

assumed to be the V -dimensional one-hot vector, also called expert-variable, represents the

identity information associated with each expert, defined in the teacher module while the con-

tinuous variable z represents the fundamental generative factors. For instance, we can employ

a V -th dimensional one-hot vector e = [1, 0, 0, · · · , 0]T to represent the identity information of

the first teacher expert, where V = 10 is the dimension in our experiments. The loss function

of the student module for a single task is defined as [41]:

LDTS
single(x, θstu, ςstu, ψstu) = −Eqςstu,ψstu (z,e |x) [log pθstu(x | z, e)]

+DKL[qςstu(z |x) || p(z)]

+DKL[qψstu(e |x) || p(e)] ,

(5.10)

where qςstu(z |x) and qψstu(e |x) are two variational distributions. qςstu(z |x) is implemented

as a Gaussian distribution N (µ,σ2I), where {µ,σ} are the hyperparameters of the Gaussian

distribution, returned by a neural network of input x. A latent variable z can be drawn using

the reparameterization trick [85, 138] z = µ + π
⊙

σ, where π is a random noise vector

sampled from N (0, I) and
⊙

is the element-wise product. qψstu(e |x) is implemented as a

Categorical distribution Cat(V, pe1, · · · , peV) whose parameters {pe1, · · · , peV } are given by the

probability outputs {e′1, · · · , e′V } of an expert-inference network, where V is the total number

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 103

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
256 units

Fully connected layer
256 units

Fully connected layer
500 units

Fully connected layer
200 units

Fully connected layer
10 units

Softmax function

The latent variable z

Softplus

Figure 5.4: The network architecture of the inference models used for modelling qςstu(z |x) and
qψstu(e | z).

of the probability outputs. In order to reduce the variation of gradients [168] and use the one-

hot form of e in the end-to-end training, we adopt the Gumbel-Max trick [56, 110], which was

also used in [41, 72, 109, 168], to calculate a differentiable relaxation for the discrete variables:

êj =
exp

(
(log e′j + gj)/T

)∑V
i=1 exp ((log e

′
i + gi)/T)

, (5.11)

where e′j is the j-th probability output obtained by the softmax layer of a neural network that

models qψstu(e |x) and ê = {ê1, · · · , êV } is the continuous relaxation of e. gj is sampled from

Gumbel(0, 1), while T is the temperature parameter controlling the smoothness. This sampling

process is implemented during both inference and generation.

However, by employing a simple fixed prior p(z) in Eq. (5.10) would lead to posterior

collapse, [60], especially when learning several different data domains. In addition, employing

a simple fixed prior p(z) in Eq. (5.10) can not be helpful for embedding multiple knowledge

sources from the teacher module into several clusters in the latent space of the student module.

Furthermore, learning qψstu(e |x), where ψstu represents the corresponding network parameters,

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 104

requires designing a large-scale neural network in order to process the high-dimensional variable

x. To address these issues, we propose to modify the two Kullback-Leibler (KL) terms in

Eq. (5.10). Firstly, we replace qψstu(e |x) with qψstu(e | z) which can be implemented by using a

simple neural network to process the low-dimensional latent variable z. Therefore, the second

KL term in Eq. (5.10) is replaced by DKL[qψstu(e | z) || p(e)]. Secondly, we replace the prior

p(z) with a new distribution p(z | e⋆) by incorporating the identity information of the teacher

experts, which uses the expert label6 e⋆ to regulate the information embedding process for

the student module. Specifically, we can assign the expert label e⋆ to each data sample x

(generated or real) because we know that each data sample is learnt or generated by a specific

teacher expert during the training phase. Then we implement p(z | e⋆) considering the Gaussian

distribution N (B(e), I), where B(·) is a function that firstly maps e⋆ to a scalar e⋆ and then

transforms e⋆ into a mean vector for the Gaussian distribution where each entry is e⋆, and

I is the identity matrix. As a result, the first KL divergence term in the right-hand side of

Eq. (5.10) is expressed by DKL[qςstu(z |x) || p(z | e⋆)], where ςstu represents the corresponding

network parameters. Therefore, B(e⋆) can transfer the expert label e⋆ to a mean vector that

is used to regulate the updating of qςstu(z |x). When the proposed framework learns the first

task, the objective function for the student module from Eq. (5.10) is defined as:

LDTS
single(x, θstu, ςstu, ψstu) =− Eqςstu (z |x)qψstu (e | z) [log pθstu(x | z, e)]

+DKL[qςstu(z |x) || p(z | e⋆)]

+DKL[qψstu(e | z) || p(e)] ,

(5.12)

where z in the third KL divergence term is obtained from qςstu(z |x). e⋆ in the prior distribution

p(z | e⋆) is the expert label7, which was associated with the data x. We desire to minimize the

KL divergence between qςstu(z |x) and the prior p(z | e⋆), assumed to be Gaussian distributions,

in order to allow the student module to embed knowledge inferred from different sources (experts

that are assigned by the unique expert-variable from the teacher module) into different regions

of its latent space. We provide the detailed network design used for modelling qςstu(z |x) and

qψstu(e | z) in Fig. 5.4.

6Since the latent variable e can not be obtained from the dataset, we assign the expert label e⋆ for each
sample x to denote the identity information of the expert. e⋆ (one-hot vector) has the same dimension as e.

7We assign the expert label e⋆ (one-hot vector) to each data sample x, which is an observed variable and is
different from the latent variable e.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 105

5.2.6 Student Learning

Existing KD approaches assume that data samples are provided by the user during the training

[168, 53]. However, in the context of the lifelong learning setting, we do not have access to

past samples, and these KD approaches can not be applied in our framework. In this chapter,

we introduce a new training approach in which past data samples are generated by the teacher

module. Then, these pseudo samples can be used for training the student module. Additionally,

unlike existing KD approaches that transfer knowledge only at the logit-level [81, 126, 128],

the proposed approach can transfer statistic data representations through sampling without

accessing any real samples and labels of past tasks. Moreover, the proposed training approach

transfers the knowledge from the teacher module represented by multiple source distributions,

implemented by mixtures of expert GAN models, as described in Section 5.2.4, to a compact

student latent space. By considering the teacher’s knowledge and a new task, we design a loss

function which is used to update the student module in the mini-batch learning manner:

LDTS
Stu (Xbatch, θstu, ςstu, ψstu) =

1

m

m∑
j=1

{−Eqςstu (z |xj)qψstu (e | z) [log pθstu(x | z, e)]

+DKL[qςstu(z |xj) || p(z | e⋆j)]

+DKL[qψstu(e | zj) || p(e)]} ,

(5.13)

where zj is drawn from qςstu(z |xj) and xj is the j-th sample of the data batch Xbatch. e⋆j is

the expert label, which was associated with the data xj. To form Xbatch in each training step,

we draw the same number of generative samples from each teacher expert. These generated

samples are incorporated together with the real training samples of the current task. The

number of generated samples by each mixture expert component of the teacher module is

considered in the same proportion as those sampled from the database corresponding to the

newly given task. Compared to the GMM described in Chapter 4, the student’s learning in D-

TS has several differences: (1) The D-TS employs a conditional prior distribution to regularize

the student’s learning, leading to better reconstruction performance; (2) The teacher module in

D-TS can provide high-quality knowledge transfer for the student’s learning compared with the

GMM; (3) The D-TS extends the student module to the supervised learning task as described

in Section 5.3.1.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 106

5.2.7 The Training Algorithm

In the following, we provide the pseudocode in Algorithm 5 describing the pipeline of the

proposed lifelong unsupervised learning strategy, which is summarized into three steps:

• Step 1. Selection and expansion mechanism: When starting learning the first task, the

teacher module has no experts. In this case, we build a new expert and learn it according

to the training procedure from Step 2, otherwise, we verify the teacher’s expansion and

selection as follows: we evaluate the KDS between each teacher’s expert and the training

set of the current task (the t-th task) by using either KFD or SE as a criterion, as described

in Section 5.2.4. Then we consider the threshold hold from Eq. (5.6), to decide either the

selection of an expert to be updated, or initiating the expansion process for the teacher

module. We employ expansion in Algorithm 5 to denote the expansion state.

• Step 2. Updating an expert for the teacher module: If the teacher module

performs the expansion at the current task learning (the t-th task), then we directly

update the newly added expert on samples from the t-th task, otherwise, we form a joint

dataset Dt
SU

⋃
Dŝ
GU , including samples from the new training set Dt

SU from the t-th task

and the dataset Dŝ
GU generated by Gθŝ , where ŝ is the index of the selected expert. We

employ Dt
SU to denote the unlabelled dataset, which differs from the labelled dataset Dt

S.

We then update the selected expert Gθŝ on the data batch Xbatch from the joint dataset

Dt
SU

⋃
Dŝ
GU at the t-th task by using Eq. (5.8) and Eq. (5.9) in the mini-batch learning

manner [92]. Since we know the training datasetDt
SU will be learnt by the selected teacher

expert and the expert identity of each generated sample, we can assign the expert variable

e for each sample from the joint dataset Dt
SU

⋃
Dŝ
GU . The total number of training steps

for the teacher and student modules is determined by iterations = epoch× (dataSize/m)

where epcoh = 20 and dataSize are the number of training epochs and the dataset size.

m = 64 is the batch size.

• Step 3. Student updating: During each batch learning, we draw the same number of

generative samples from each teacher expert. These generative samples are incorporated

together with the real training samples of the current task, considered in an equal prob-

ability with those generated by each of the experts. These will form a batch of samples

Xbatch for updating the student module using Eq. (5.13). We also update the qψstu(e | z)

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 107

Algorithm 5: D-TS-KFD unsupervised training algorithm
Input: All training databases
Output: The model’s parameters

1 for t < N do
2 Step 1: Selection and expansion mechanisms ;
3 if t == 1 then
4 Build a new expert {Gθ1 ,Dη1} for the teacher module ;
5 end
6 else
7 Calculate KDS between each teacher expert and Dt

SU ;
8 Check the selection and expansion using Eq. (5.6) ;
9 if expansion = True then

10 Build a new expert for the teacher module ;
11 end
12 else
13 Select an expert for the current task learning according to Eq. (5.7) ;
14 end

15 end
16 Get the unlabelled training set Dt

SU ;
17 if expansion = False then

18 Form a joint dataset Dt
SU = Dt

SU

⋃
Dŝ
GU , D

ŝ
GU is generated by Gθŝ ;

19 end
20 Step 2 and 3: Teacher and student learning ;
21 for index < iterations (All models are only updated once in each iteration) do
22 Get the training data batch Xbatch from Dt

SU ;
23 Update the teacher on Xbatch using Eq. (5.8) and Eq. (5.9) ;
24 Generate the data batch X′

batch using the teacher module ;
25 Combine X′

batch and Xbatch to form a new data batch Xbatch = Xbatch
⋃
X′
batch ;

26 Update networks of the student on Xbatch using Eq. (5.13) ;
27 Update qψstu(e | z) on Xbatch with the associated expert labels using cross-entropy loss

;

28 end

29 end

on the data batches Xbatch with the associated expert labels using the cross-entropy loss,

where z is obtained from qςstu(z |x) with the sample x. The student model is each time

initialized with the parameters learnt previously, while only when trained for the first

time its parameters would be randomly generated.

5.3 Applications

In the following we provide some applications of the proposed lifelong learning framework.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 108

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
10 units

Classifier

Softmax function

Figure 5.5: The network architecture of the classifiers FδTeah
ŝ

(x) and Fδ (x). The final layer in
the classifier outputs a Q-dimensional probability vector using the softmax activation function.

5.3.1 Prediction Tasks

In this section, we extend the D-TS framework for classification tasks. We implement each

expert from the teacher module by using a combination of a generator and a solver. The solver

is a neural network, which outputs the class probability, trained by minimizing the cross-entropy

loss, defined as:

LcTeach(x,y, δTeahŝ , Q) = fCE(FδTeah
ŝ

(x),y, Q) , (5.14)

where fCE(·, ·, ·) is the cross-entropy loss function, which is defined as:

fCE(y
′,y, Q) = −

Q∑
i=1

yi log y
′
i , (5.15)

where yi and y
′
i are the i-th entry of the class label y (one-hot vector) and the prediction y′,

respectively. Q is the dimension of the class label y. {x,y} is a paired sample from the labelled

dataset. FδTeah
ŝ

(x) is the solver (classifier), defined by parameters δTeahŝ in the selected teacher

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 109

Algorithm 6: D-TS-KFD supervised training algorithm
Input: All training databases
Output: The model’s parameters

1 for t < N do
2 Step 1: Selection and expansion mechanisms ;
3 if t == 1 then
4 Build a new expert {Fθ1 ,Dη1 , FδTeah

1
} for the teacher module ;

5 end
6 else
7 Calculate KDS between each teacher expert and Dt

S ;
8 Check the selection and expansion using Eq. (5.6) ;
9 if expansion = True then

10 Build a new expert for the teacher module ;
11 end
12 else
13 Select an expert for the current task learning according to Eq. (5.7) ;
14 end

15 end
16 Get the training set Dt

S ;
17 if expansion = False then

18 Dt
S = Dt

S

⋃
Dŝ
G, D

ŝ
G generated by the selected teacher expert Gθŝ ;

19 end
20 Step 2 and 3: Teacher and student learning ;
21 for index < iterations (All models are only updated once in each iteration) do
22 Get the data batch {Xbatch,Ybatch} from Dt

S and {X′
batch,Y

′
batch} generated by all

teacher experts ;
23 Update the teacher on {Xbatch,Ybatch} using Eq. (5.8), Eq. (5.9) and Eq. (5.16) ;
24 Xbatch = Xbatch

⋃
X′
batch, Ybatch = Ybatch

⋃
Y′
batch ;

25 Update the student on {Xbatch,Ybatch} using Eq. (5.17) ;
26 Update the classifier of the student module on {Xbatch,Ybatch} using Eq. (5.16) ;
27 Update qψstu(e | z) on Xbatch with the associated expert variables using cross-entropy

loss ;

28 end

29 end

expert8 (the ŝ-th expert). In order to allow the student module to perform data classification

tasks, we introduce a classifier model Fδstu(x) for the student module, trained on images and

labels obtained from the data generated by the teacher module and by using image samples

from the current database:

LcStu(Xbatch,Ybatch, δstu, Q) =
1

m

m∑
j=1

{
fCE (Fδstu (xj) ,yj, Q)

}
, (5.16)

where {xj,yj} is the j-th paired sample from the labelled data batch {Xbatch,Ybatch} which

also contains the generated samples and the associated class labels obtained by each teacher

8We employ δTeahŝ to denote the classifier’s parameter set of the selected expert, which is different from δstu
that denotes the classifier’s parameter set of the student module.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 110

expert. m = 64 is the data batch size. We provide the detailed network architecture of the

classifiers FδTeah
ŝ

(x) and Fδstu (x) in Fig. 5.5. Eq. (5.16) compares the outputs predicted by the

student module against the ground-truth labels from the labelled data batch {Xbatch,Ybatch}.

Eq. (5.16) is only used to optimize Fδstu (x) and we also introduce an objective function to

optimize both Fδstu (x) and other components of the student module by incorporating the

variable u accounting for the class information, resulting in:

LSupStu (Xbatch, θstu, ςstu, δstu) =
1

m

m∑
j=1

{
− Eqςstu (z |xj)qψstu (e | zj)qδstu (u |xj) [log pθstu(x | z,u, e)]

+DKL[qςstu(z |xj) || p(z | e⋆j)]

+DKL[qψstu(e | z) || p(e)] (5.17)

+DKL[qδstu(u |xj) || p(u)]
}
,

where e⋆j is the expert label, which was associated with the data xj. The variational distribu-

tion qδstu(u |x) is modelled by a categorical distribution Cat(Q, u′1, · · · , u′Q) whose parameters

{u′1, · · · , u′Q} are given by the classifier Fδstu(x), where Q = 10 is the total number of classes.

We also employ the Gumble-max distribution [56] to draw the continuous relaxation of the vari-

able u in order to enable end-to-end optimization. p(u) is a uniform categorical distribution

Cat(Q, pu1 = 1/Q, · · · , puQ = 1/Q).

5.3.2 Learning Disentangled Representations

Most artificial intelligence learning approaches aiming to describe meaningful feature variations

through generative learning are based on inference models such as VAEs. Certain constraints

can be imposed on the VAE loss function in order to induce disentangled representations [19,

26, 41, 48, 64, 80]. For enticing the learning of disentangled representations under the lifelong

learning framework, we consider the following loss function for the student module:

LDisStu (Xbatch, θstu, ςstu) =
1

m

m∑
j=1

{
− Eqςstu (z |xj)qψstu (e | z) [log pθstu(x | z, e)]

+ γ
∥∥DKL[qςstu(z |xj) || p(z | e⋆j)]− C

∥∥}, (5.18)

where γ and C control the degree of disentanglement. We set γ = 4 in our experiments to avoid

sacrificing much reconstruction ability while C is linearly increased from a very small value of

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 111

0.5 to 25.0 during the training, [64]. We omit the KL term on qψstu(e | z) since this term would

not benefit from disentangled representation learning.

5.3.3 Inter-Domain Interpolation

After lifelong learning, the inference model of the student module can provide several latent

representations {z1, z2 . . . , zN} where each zt represents the generative factors for images ob-

tained from the dataset Dt
SU . The lifelong learning model, besides representing the generative

factors for each domain/task (the t-th task), it also captures the shared generative factors across

domains. To evaluate this property, we manipulate the latent variable space by interpolating

the images drawn from two different domains. Let xi and xj be two images obtained from the

datasets of the i-th task and j-th task, respectively. Let we define a function that receives a

pair of images and returns the interpolated image:

finterpolation(i, j, c,x
i,xj) = Dec(Enc(xj)c+ Enc(xi)(1− c)) , (5.19)

where Enc(·) is the encoder that receives the data samples xj and xi and returns the latent

variables zj and zi, respectively. Dec(·) is the decoding function implemented by a decoder

(We only consider the continuous variable z in the VAE framework), and c ∈ [0, 1] is the

interpolation parameter in Eq. (5.19). In order to simplify the notation, we employ x̃i→j(c) to

denote the result from the function finterpolation(i, j, c,x
i,xj). We extend the image interpolation

from [123] into exploring the joint latent space of all previously learnt N domains/tasks, under

the lifelong learning setting:

• Boundary conditions [123]. x̃i→j(0) = xi and x̃i→j(1) = xj when Dec(·) is the optimal

decoding function.

• Monotonicity [123]. We assume that Dec(.) is the decoding function. For a given distance

measure fsimilarity(·, ·) evaluating the similarity between two images, we can define the

distance from the interpolated image to the original input.

fsimilarity(x̃i→j(c),x
i) ≤ fsimilarity(x̃i→j(c

′),xi) , (5.20)

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 112

Table 5.1: The performance of various models under the MSFIR lifelong learning setting.

MSE SSMI PSNR

Datasets LGM D-TS-KFDD-TS-SE BE-Stu LTS LGMD-TS-KFDD-TS-SE BE-Stu LTS LGMD-TS-KFDD-TS-SE BE-Stu LTS

MNIST 19.60 26.84 28.61 33.66 73.97 0.90 0.88 0.87 0.86 0.73 22.51 21.14 20.64 20.13 17.10

SVHN 292.15 29.67 31.04 71.58 42.98 0.36 0.65 0.64 0.47 0.54 11.33 12.65 12.58 12.13 11.91

Fashion 80.95 39.35 48.96 149.26 45.64 0.17 0.72 0.66 0.47 0.72 12.65 18.38 17.01 13.57 17.77

IFashion 94.32 35.92 37.94 83.44 37.60 0.58 0.74 0.75 0.61 0.76 16.35 18.70 17.86 15.89 18.34

RMNIST 19.58 24.09 23.81 24.29 21.97 0.90 0.89 0.89 0.90 0.90 22.51 21.46 21.53 21.57 21.64

Average 101.32 31.17 34.07 72.45 44.83 0.58 0.78 0.76 0.66 0.73 17.07 18.47 17.92 16.66 17.35

where c′ > c and

fsimilarity(x̃i→j(c
′),xj) ≤ fsimilarity(x̃i→j(c),x

j) , (5.21)

• Smoothness [123]. The interpolation function finterpolation(i, j, c,x
i,xj) is Lipschitz contin-

uous with a constant M .

∥∥finterpolation(i, j, c,xi,xj)− finterpolation(i, j, c+ a,xi,xj)
∥∥ ≤M |a| . (5.22)

Unlike in [123] which only considers a static dataset, we aim to learn latent representations

under the lifelong learning setting, which is more challenging because neural network models

would forget previously learnt latent representations when trained on a new task. Given the

image interpolation properties from above, we define a new criterion evaluating the effectiveness

of the model when performing image interpolation:

fsimilarity2(x̃i→j(c),x
j), c > 0.5 , (5.23)

where fsimilarity2(·) is a pre-defined criterion, which can be implemented as the image reconstruc-

tion error. If fsimilarity2(x̃i→j(c),x
j) is small, this means that the interpolated result x̃i→j(c) is

very similar to xj, as c increases.

5.4 Experiments

In the following, we evaluate the application of the Dynamic Teacher-Student Network (D-TS)

in lifelong learning tasks. We use the Adam optimization algorithm [82], with a learning rate of

0.0002 and the hyperparameter β = 0.5. The number of training epochs for each task is set to

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 113

Table 5.2: The performance when learning a sequence of six tasks.

MSE SSMI

Datasets BE-Stu D-TS-KFD D-TS-SE LGM LTS BE-Stu D-TS-KFD D-TS-SE LGM LTS

MNIST 24.32 23.71 23.21 18.97 26.96 0.89 0.90 0.90 0.90 0.89

SVHN 85.21 31.93 30.07 229.13 61.45 0.49 0.64 0.65 0.35 0.45

Fashion 167.38 43.72 42.14 90.62 81.56 0.47 0.71 0.71 0.15 0.56

IFashion 113.90 41.62 41.18 173.60 60.84 0.62 0.74 0.74 0.38 0.66

CIFAR10 359.09 203.70 208.72 676.13 220.72 0.21 0.35 0.33 0.04 0.33

Ommiglot 275.66 179.83 182.27 273.54 147.43 0.65 0.82 0.80 0.68 0.84

Average 170.93 87.42 87.93 243.66 99.83 0.56 0.69 0.69 0.42 0.62

Table 5.3: The lifelong learning of a sequence of six tasks.

PSNR

Datasets BE-Stu D-TS-KFD D-TS-SE LGM LTS

MNIST 21.52 21.55 21.66 22.62 21.03

SVHN 11.80 12.77 13.20 11.45 13.42

Fashion 13.36 17.75 17.95 11.67 16.52

IFashion 15.10 17.57 17.19 12.58 16.62

CIFAR10 14.91 15.08 15.19 12.22 15.33

Ommiglot 16.91 18.80 18.36 17.46 19.26

Average 15.60 17.25 17.26 14.67 17.03

20. In all experiments, we consider 60,000 randomly selected images from each database that

does not split the training and testing sets for training and 10,000 for testing, unless specified

otherwise.

5.4.1 The Evaluation of Representation Learning During Unsuper-

vised Lifelong Learning

We evaluate the performance of various methods for unsupervised lifelong learning. We con-

sider five tasks, in a sequence called MFSIR, defined by the databases: MNIST [93], Fashion

[177], SVHN [118], InverseFashion (IFashion) and Rotated MNIST (RMNIST). The results are

reported in Table 5.1, where we use the threshold hold = 150 for D-TS-KFD and hold = 50 for

D-TS-SE. We consider the Mean Square Error (MSE), the Structural Similarity Index Mea-

sure (SSIM) [68] and the Peak-Signal-to-Noise Ratio (PSNR) [68] for evaluating the image

reconstruction quality.

For comparison, we consider LTS [180], which uses a large network architecture, defined as

a single processing module, for the teacher module, and we consider the Lifelong Generative

Modeling (LGM) [132]; we also adapt the BatchEnsemble [174] in order to train a student

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 114

model, under the unsupervised lifelong learning setting. We consider building an ensemble of

VAEs as the teacher module, where the number of components is equal to the number of tasks.

Then we train a VAE model as the student module, which accumulates knowledge from both

the teacher module and the tasks learnt during the lifelong learning. The models D-TS-SE or

D-TS-KFD, which employ the knowledge distillation for D-TS, as explained in Section 5.2.3,

by using either SE or KFD as the expert selection criterion, respectively, and achieve the best

result for every task.

We evaluate the performance when learning a sequence of seven challenging tasks, defined

by databases which contain complex and diverse images: MNIST, SVHN, Fashion, IFashion,

CIFAR10 [87], Omniglot [90] and MNIST. We consider a threshold hold = 150 for both D-TS-

KFD and D-TS-SE. The results are provided in Table 5.2 and Table 5.3. The proposed method

outperforms other models in this challenging learning setting which, includes several databases,

some with strong content similarities.

We also investigate how the proposed framework adds a new expert during lifelong learning

by evaluating either KFD or SE after each task switch, and the results are shown in Figures 5.6-a

and 5.6-b. After learning the first task, KFD between the first expert and the next task (SVHN

database), is 230 and therefore the teacher module adds a new expert to learn SVHN. Then,

after learning the third task, KFD between each expert and the next task (IFashion database)

is smaller than 150, and therefore the teacher module reuses the third expert in order to learn

IFashion. KFD and SE measures exhibit different characteristics. For instance, KFD is small

when two tasks share similar visual concepts, while for example the SE score is small when two

databases share similar global structures and colour palettes. The architecture expansion of

the teacher module is shown in Fig. 5.6-c, where D-TS-KFD and D-TS-SE lead to a reasonable

number of experts, each capturing specific knowledge from the databases.

5.4.2 Study of The Latent Space of The Student Module

Projection of the latent variables. In the following, we project the latent variables extracted

by the student module to show how similar knowledge sources are embedded into the same

cluster in the latent space, considering images drawn from different domains: MNIST, SVHN,

Fashion, IFashion and RMNIST (MSFIR sequence). For this analysis, we train D-TS-KFD

under MSFIR lifelong learning with the threshold for adding a new component set to hold = 220

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 115

Threshold 150

Add expert Add expert

(a) KFD when learning 5 tasks.

Threshold 50

Add expert

Add expert

(b) SE when learning 5 tasks.

SE

SE

(c) Network expansion in D-TS.

Figure 5.6: Knowledge discrepancy evaluation and the expansion of the network during the
training.

in Eq. (5.6). After the training, we select a batch of 64 images for each domain. Then we use

the inference model qςstu(z |x) to produce the mean vector (hyperparameter of the Gaussian

distribution) for each image and we average the results as z∗ which is used as coordinates (z∗, z∗)

for each image in Fig. 5.7. We can observe that the student module embeds similar domains,

as they are modelled by a certain expert from the teacher module, into the same cluster in

the latent space. See the overlap between the coordinates of MNIST and RMNIST, as well as

between Fashion and IFashion, where the latent spaces are better separated when using the

conditional prior, according to the results from Fig. 5.7-a. When the proposed D-TS-KFD does

not use the conditional prior, the knowledge learnt by each teacher expert is embedded into

the same region of the latent space, as shown in Fig. 5.7-b.

(a) With conditional prior. (b) Without conditional prior.

Figure 5.7: Latent space projections for D-TS model.

Lifelong learnt disentangled representations. In the following experiments, we evaluate

the ability of the D-TS model to create disentangled representations under lifelong learning,

as discussed in Section 5.3.2. We train D-TS-KFD under CelebA to 3D-Chair lifelong learning

using the loss function from Eq. (5.18), where γ = 4 and C is linearly increased from 0.5 to 25.0

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 116

during the training, [64]. We can observe from the disentangled results, shown in Fig. 5.8a-f,

that the student module can capture meaningful generative factors of images, such as changing

the gender of a person, face size, face makeup, hairstyle, chair size or by rotating the object

(chair) shown in the image.

Table 5.4: MSE of the reconstructed interpolated images using Eq. (5.24).

Interpolation D-TS-KFD D-TS-KFD-Without LTS

CelebA → CACD 208.53 249.51 440.11

CACD → CelebA 179.14 198.05 409.43

CIFAR10 → Sub-ImageNet 234.32 230.74 346.77

Sub-ImageNet →CIFAR10 221.35 218.82 316.61

Average 210.84 224.28 378.23

Inter-domain interpolations enabled by lifelong learning. Interpolations in the latent spaces were

previously used for exploring model representations [183]. A good interpolation result indicates

that the model can learn a meaningful latent representation of data by exploring the latent

space between two locations from this space. Following the description from Section 5.3.3 we

show that the proposed model not only that it can learn meaningful representations across

domains over time, but it can also be used to explore the inter-domain latent spaces. We

train the proposed D-TS-KFD model under the CelebA [105], CACD [24], 3D-Chair [14] and

Omniglot (CCCO) lifelong learning for exploring their joint latent spaces. We show the inter-

polation results obtained when using the interpolation equation (Eq. (5.19)) from Section 5.3.3,

when varying c ∈ [0, 1], in Fig. 5.9, where we can observe how a human face can be smoothly

transformed into images of multiple domains, while a chair is transformed into a human face

while its frame gradually becomes the eyes and mouth in the face. These results indicate that

the student module has additional modelling abilities and can capture surprising relationships

between different latent space regions from multiple domains.

In the following, we evaluate the performance of the proposed D-TS-KFD in the image

interpolation task. We train the proposed D-TS-KFD model considering CelebA, CACD, CI-

FAR10, Sub-ImageNet, SVHN and MNIST (CCCSSM) database lifelong learning. After the

training, we extract the latent variables zi and zj from two images xi and xj belonging to the

i-th and j-th domain/task, respectively, using the student module. We consider 1000 such im-

age pairs from different domains. Then we generate the interpolated reconstructions by using

the decoder:

x̂ = pθstu(x | 0.2 zi + 0.8 zj, ej) , (5.24)

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 117

(a) Gender change

(b) Face size

(c) Makeup

(d) Hair style

(e) Chair size

(f) Chair turning

Figure 5.8: Results when varying the latent variables under the CelebA to 3D-Chair lifelong
learning. We change a single latent variables in the latent space from -3.0 to 3.0 while fixing
the others.

where zi and zj are the latent variable for xi and xj, respectively, obtained using the inference

model qςstu(z |x). ej is the expert variable for xj, obtained using the inference model qψstu(e |x).

Then we evaluate the interpolation performance of the D-TS-KFD by employing Eq. (5.23) in

which we calculate MSE between the real image xj and the interpolated reconstruction x̂.

pθstu(x | 0.2 zi + 0.8 zj, ej) is the decoder of the student module. We report the MSE results

in Table 5.4, where ’D-TS-KFD-Without’ represents D-TS-KFD without using the regularized

variable e⋆ in the KL divergence term DKL[qςstu(z |x) || p(z | e⋆)] from Eq. (5.12) (p(z | e⋆) =

N (0, I) is fixed). These results indicate that D-TS-KFD can provide a smaller reconstruction

error than other baselines such as LTS, which demonstrates that D-TS-KFD can learn a smooth

latent space for multiple domains under lifelong learning.

5.4.3 Lifelong Learning of Databases With Complex Images

For this experiment, we train various models under the CCCSSM database sequence lifelong

learning. These databases contain a variety of rather complex images showing human faces as

well as natural images among others. We evaluate the Mean Square Error (MSE), Structural

Similarity Index Measure (SSMI) and PSNR results for the reconstructed images from the six

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 118

Table 5.5: Image reconstruction errors when learning datasets containing complex images, such
as the CCCSSM sequence.

MSE SSMI

Datasets LGM D-TS-KFD D-TS-SE BE-Stu LTS LGM D-TS-KFD D-TS-SE BE-Stu LTS

CelebA 703.62 137.67 141.47 153.25 215.43 0.05 0.55 0.56 0.54 0.40

CACD 979.18 160.66 123.49 265.80 246.99 0.03 0.58 0.65 0.45 0.44

CIFAR10 515.66 161.05 150.78 306.72 215.42 0.08 0.42 0.44 0.23 0.33

Sub-ImageNet 551.39 172.56 154.41 303.50 230.55 0.08 0.41 0.45 0.24 0.33

SVHN 62.15 28.76 34.08 52.71 34.90 0.20 0.65 0.62 0.50 0.60

MNIST 22.44 31.41 28.34 25.17 25.66 0.88 0.86 0.88 0.89 0.89

Average 472.51 115.35 105.43 184.53 161.49 0.22 0.58 0.60 0.48 0.50

Table 5.6: Image reconstruction errors when learning datasets containing complex images, such
as the CCCSSM sequence.

PSNR

Datasets LGM D-TS-KFD D-TS-SE BE-Stu LTS

CelebA 12.18 18.42 18.81 19.00 16.37

CACD 10.86 18.15 19.39 16.80 16.12

CIFAR10 13.35 16.23 16.82 15.81 15.32

Sub-ImageNet 13.14 16.00 16.82 15.88 15.08

SVHN 13.50 12.95 13.70 13.43 13.94

MNIST 21.74 20.18 20.69 21.27 21.16

Average 14.13 16.99 17.71 17.03 16.33

datasets, and the results are provided in Table 5.5 and Table 5.6. From these tables, we can

observe that the proposed framework performs better on these complex image datasets, when

compared to other methods by a large margin. The proposed D-TS-SE, employing the SE

criterion for deciding whether to add or not a new expert, performs better than D-TS-KFD,

which uses the KFD criterion, for the lifelong learning of sequences of both complex and simple

image databases. Visual results for the lifelong learning of the CCCSSM sequence of databases,

produced by D-TS-KFD and by D-TS-SE, are provided in Fig. 5.10 and Fig. 5.11, respectively,

where each expert is able to capture information which is different from that associated with

all other experts. Furthermore, the teacher module is able to embed, when appropriate, the

information associated with two similar databases into a single expert, which accelerates the

training speed and reduces the required memory. The teacher module expansion, when trained

with the CCCSSM sequence, is analysed in the plots from Figures 5.12a-b, when considering

the threshold hold = 150 for D-TS-KFD and hold = 50 for D-TS-SE, in Eq. (5.6). From

Figures 5.12a, we can observe that D-TS-KFD requires four experts for the lifelong learning

of the CCCSSM sequence and is able to distinguish between different visual concepts from

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 119

several tasks while assigning the relevant experts to the incoming tasks. For instance, the first

expert only learns the data distribution of CelebA and CACD, while the second expert learns

those of CIFAR10 and Sub-ImageNet databases. In contrast, D-TS-SE, as it can be seen from

Fig. 5.12-b, requires only three experts after lifelong learning.

We can also observe that D-TS-SE performs better than D-TS-KFD in the MSFIR set-

ting. However, D-TS-KFD is better than D-TS-SE in the CCCSSM setting involving complex

datasets. As shown in Tab. 5.1, the performance gap between D-TS-SE and D-TS-KFD is not

that large. Such a gap would be caused by the dynamic learning process of the GAN-based ex-

pert. However, as we know, GAN is in general a model which is not always stable [23], and can

not ensure the same quality for all generated images during each run. Therefore, the variation

in the quality of the knowledge generated by the teacher module can affect the performance of

the student module which is trained with such generated data.

For the lifelong learning of the sequence of datasets CCCSSM, containing complex images,

whose results are shown in Tab. 5.5 and Tab. 5.6. The number of experts for both D-TS-KFD

and D-TS-SE is 4 and 3, and examples of their generated images are shown in Fig. 5.10 and

Fig. 5.11, respectively. Learning the database MNIST is the last task in the lifelong learning

of the CCCSSM setting, with the results reported in Tab. 5.5 and Tab. 5.6. We have several

observations that explain the differences in performance between D-TS-SE and D-TS-KFD,

shown as follows:

• From the generated images from Fig. 5.10 and Fig. 5.11, “Expert 3” of D-TS-KFD learns a

rather simple dataset such as SVHN while all experts of D-TS-SE capture the information

of datasets containing complex images, such as those from CACD, CelebA, CIFAR10 and

Sub-ImageNet databases. This means that D-TS-SE can provide more information after

learning datasets with complex images when training the student module. What was

learnt by each teacher expert can lead to an imbalanced data issue in the batch learning

of the student module, where the number of generated samples corresponding to each

previously learnt dataset is different because each expert can only learn one task or several

different tasks. Therefore, the imbalanced data issue can influence the performance of

the student model on each dataset.

• In addition, D-TS-KFD provides clearer images for a dataset containing rather simple

images, such as SVHN, compared with D-TS-SE, as shown in the generated image results

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 120

Figure 5.9: Interpolation results under the CelebA, CACD, 3D-Chair and Omniglot lifelong
learning.

from Fig. 5.10 and Fig. 5.11. Since the simple dataset (SVHN) is sufficiently different

from the datasets containing more complex images, learning clearer images of the simpler

dataset would also affect the learning of the dataset with complex images because the

student module has a fixed model capacity. This analysis can be empirically found in

Tab. 5.5 and Tab. 5.6 where D-TS-SE mostly outperforms D-TS-KFD on the datasets

with more complex images such as CACD, CIFAR10 and Sub-ImageNet, while D-TS-KFD

outperforms D-TS-SE on SVHN.

• Moreover, it can be found from Fig. 5.11 where “Expert 1” of D-TS-SE tends to generate

some fuzzed images for CelebA, which would lead to the degenerated performance for the

student module of the D-TS-SE model trained on CelebA. This result can be found in the

empirical results from Tab. 5.5 and Tab. 5.6, where D-TS-KFD outperforms D-TS-SE on

CelebA.

• Eventually, the performance gap between D-TS-KFD and D-TS-SE in Tab. 5.5 and

Tab. 5.6 is not that large. Such a gap is mainly caused by two factors: the dynamic

learning process of the GAN-based experts and the imbalanced data sampling process for

each dataset.

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 121

Table 5.7: Classification accuracy under the supervised lifelong learning of MNIST, Fashion,
SVHN and InverseFashion (IFashion) databases.

Dataset D-TS-KFD LGM [132] LGAN [57] TS-EWC [86] EWC [86] D-TS-SE MeRGANs [176] CURL [133] BE-Stu [174]

MNIST 96.40 94.05 51.34 66.67 64.87 96.81 59.30 80.74 84.46

SVHN 65.21 47.24 48.16 55.63 54.12 68.68 55.31 68.46 62.78

Fashion 80.09 85.86 89.04 90.49 89.68 65.55 89.49 86.28 78.26

IFashion 86.68 89.08 92.15 92.30 92.76 88.48 92.17 91.48 81.94

Average 82.09 79.06 70.17 76.27 75.35 79.88 74.06 81.74 76.86

(a) Expert 1. (b) Expert 2. (c) Expert 3. (d) Expert 4. (e) Real testing.

(f) Reconstruc-
tions.

Figure 5.10: Generation and reconstruction of images when considering D-TS-KFD under
CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN and MNIST (CCCSSM) lifelong learning.

5.4.4 Supervised Learning

We evaluate the performance of the proposed approach in supervised classification tasks. The

results when training for the lifelong learning of MNIST, SVHN, Fashion and IFashion, are

provided in Table 5.7, where the number of training epochs for each task is 20. We observe

that GRMs-based methods used for comparison provide good results on the most recently

learned tasks and tend to achieve a lower performance on the earlier tasks. In contrast, the

proposed approach is able to balance its performance across all learned tasks during supervised

lifelong learning. CURL [133] uses a mixture model and is better in three tasks than D-TS-

KFD. Similar to unsupervised learning, we also consider the BatchEnsemble (BE) [174] as a

Teacher-Student model in the supervised lifelong learning setting. We first build an ensemble

model as the teacher module, based on BE, where each expert contains a VAE and a classifier.

We then train a classifier as the student module which accumulates the predictive knowledge

from both the teacher module and the tasks learned during the lifelong learning. During

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 122

(a) Expert 1. (b) Expert 2. (c) Expert 3. (d) Real testing. (e) Reconstruc-
tions.

Figure 5.11: Image generation and reconstruction from D-TS-SE after the CCCSSM database
sequence lifelong learning.

the lifelong supervised learning, each BE expert generates data samples and the associated

classifier infers the class labels for the generated images. Then, the paired images and their

corresponding classes are used to train the student module in order to overcome catastrophic

forgetting. We name this supervised model as BE-Stu. However, from the results in Table 5.7,

BE-Stu performs worse than D-TS in every task.

5.4.5 Model Complexity

In the following, we evaluate the number of parameters used for various unsupervised lifelong

learning methods when considering three sets of databases: MFSIR - which includes MNIST,

Fashion, SVHN, IFashion and RMNIST; MSFICOM - including MNIST, SVHN, Fashion, IFash-

ion, CIFAR10, Omniglot and MNIST; CCCSSM - including CelebA, CACD, CIFAR10, Sub-

ImageNet, SVHN and MNIST. The results for the number of parameters required are provided

in Table 5.8. D-TS-Stu represents the number of parameters for the student module. From

Table 5.8, it can be observed that the student module has significantly fewer parameters while

achieving the state of the art results compared to other lifelong learning methods.

Table 5.8: The number of parameters required by various models for the unsupervised lifelong
learning of MFSIR, MSFICOM and CCCSSM database sequences.

LLL sequence LGM [132] D-TS-KFD D-TS-SE D-TS-Stu BE-Stu LTS [180]

MFSIR 3.3× 108 2.3× 108 2.3× 108 8.0× 107 4.7× 108 3.3× 108

MSTICOM 3.3× 108 3.1× 108 2.3× 108 8.0× 107 5.2× 108 3.3× 108

CCCSSM 3.3× 108 3.1× 108 2.3× 108 8.0× 107 5.2× 108 3.3× 108

5.4.6 Ablation Study

Firstly, we consider a baseline model which uses a single GAN for the teacher module, as in

LTS [180], and does not use the selection and dynamical expansion mechanism as proposed

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 123

Threshold 150

Add Add Add

(a) KFD measure.

S
E

Threshold 50

Add Add

(b) SE measure.

Figure 5.12: Results for the measures used for the Knowledge Discrepancy Score for the ex-
pansion of the teacher module under CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN and
MNIST lifelong learning.

for the D-TS model in this chapter. We evaluate the source and target risks (measured as the

classification error), where the former is evaluated for the training data and the latter for the

testing data. All risks are calculated as the average classification errors by using the student

module, across the lifelong learning of MNIST, SVHN, Fashion, IFashion (MSFI). The results

are provided in Fig. 5.13a where ‘Single-Source’ represents the source risk evaluated by the

baseline and ‘D-TS-Target’ represents the target risk calculated on all testing samples by using

D-TS-KFD. We can observe that both D-TS-KFD and the baseline achieve low source risks

but the baseline has a higher target risk. These results show that multiple teacher experts can

help relieve forgetting compared to using a single teacher expert.

Task 1 Task 2 Task 3 Task 4

(a) Risks for D-TS-KFD and baseline. (b) Varying the KDS threshold ‘hold’.

Figure 5.13: The risk evaluation (classification error) and the performance of the student mod-
ule when changing the KDS threshold in K-DS-hold where ’hold’ is the threshold in Eq. (5.6).

We also consider the results when varying the threshold hold from Eq. (5.6), as described

in Section 5.2.4, and the results for MSFI sequence are provided in Fig. 5.13b, where the plots

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 124

from the upper graph indicate D-TS-KFD (hold), with hold ∈ {50, 150, 250, 300}. We can

observe that a lower threshold hold leads to more components, while for hold = 300 the system

would use a single component. This result is because a large value for hold can prevent the

expansion of the D-TS. From the bar-plot at the bottom of Fig. 5.13b we can observe that

the reconstruction MSE error would decrease for hold = 50 resulting in more components than

when using other KDS thresholds. These results show that changing the value of the KDS

threshold (hold) can trade-off between the model size and performance.

Figure 5.14: The running time for D-TS-KFD when considering 20 epochs for both training
and updating a component, while for D-TS-KFD∗ we consider only 5 epochs when updating
a component, according to Eq. (5.6), under CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN
and MNIST lifelong learning.

(a) CelebA to 3D-Chair. (b) CelebA to CACD.

Figure 5.15: Images generated by WGAN when considering GRMs.

Robustness to missing data during the training: We consider the following learning setting,

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 125

(a) Expert 1. (b) Expert 2. (c) Expert 3.

Figure 5.16: Images generated by the teacher module from the proposed lifelong teacher-
student framework.

Table 5.9: The performance for all testing data samples when considering that training data
are missing for certain databases (marked with ‘*’). The total number of training samples for
CACD* and Sub-ImageNet* is 10,000, respectively.

MSE SSMI

Datasets D-TS-KFD LTS D-TS-KFD LTS

CelebA 185.54 312.24 0.43 0.26

CACD* 124.92 400.32 0.63 0.28

CIFAR10 164.68 330.85 0.41 0.21

Sub-ImageNet* 176.34 337.68 0.41 0.22

SVHN 31.37 40.47 0.63 0.54

MNIST 30.11 25.82 0.87 0.89

Average 118.83 241.23 0.56 0.40

where the model is trained under the CelebA, CACD*, CIFAR10, Sub-ImageNet*, SVHN

and MNIST lifelong learning. We create CACD* and Sub-ImageNet* by considering only

10,000 samples, representing a small subset training set for CACD and Sub-ImageNet (the

total number of samples for CACD and Sub-ImageNet is 60,000), respectively. We would

like to evaluate whether the proposed framework can handle missing data well during lifelong

learning. The average result is provided in Table 5.9. From these results we can observe that

although we have much fewer training data from CACD* and Sub-ImageNet*, the proposed

D-TS-KFD framework still achieves very good results. LTS [180], used for comparison, tends

to forget more information from the tasks learned earlier on during lifelong learning.

Accelerating the future task learning: The proposed methodology is efficient in reusing the

learned knowledge when updating an existing expert, based on the similarity of its accumulated

knowledge compared to with the information from a new database. This results in the acceler-

ated learning of those tasks which contain similar information to what was already learned by

the D-TS model. In the following, we consider fewer training epochs when the model reuses a

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 126

Table 5.10: The results when considering just five training epochs for updating an existing
component, when the condition to expand the model is not fulfilled in Eq. (5.6).

MSE SSMI

Datasets D-TS-KFD* LTS D-TS-KFD* LTS

CelebA 117.61 215.43 0.60 0.40

CACD 148.95 246.43 0.59 0.44

CIFAR10 177.95 215.42 0.40 0.33

Sub-ImageNet 190.47 230.55 0.39 0.33

SVHN 33.03 34.90 0.63 0.60

MNIST 32.00 25.66 0.86 0.89

Average 116.6 161.49 0.58 0.50

(a) Real images. (b) Images reconstructed by the student module.

Figure 5.17: Image reconstructions by the student module after CelebA, CACD, 3D-Chair
and Omniglot lifelong learning.

selected expert of the teacher module for learning the next task, according to Eq. (5.6). The

results are provided in Table 5.10, where D-TS-KFD* denotes using only 5 training epochs for

updating an existing component, while 20 epochs are used for training a new component. We

observe that D-TS-KFD* still achieves good results while it also accelerates the training, as

shown in the bar-plots from Figure 5.14, where D-TS-KFD* would reduce the time required

for the full lifelong training by D-TS-KFD, where the latter uses 20 training epochs for both

training a new component as well as when updating an existing one. Both D-TS-KFD* and

D-TS-KFD use four experts for their teacher modules.

The mode collapse in GRM. We investigate how the mode collapse occurs during lifelong learn-

ing. We consider training a Wasserstein GAN (WGAN) [11] on two databases, CelebA and

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 127

3D-Chair, which do not have any common characteristics, with the first representing human

faces while the other contains images of chairs. In order to overcome the forgetfulness of WGAN,

we use the GRM [176] during the training. After the lifelong learning, we generate images using

the WGAN, which are shown in Fig. 5.15a. From these images we can observe that WGAN with

the GRM cannot generate clear images for the two given domains, CelebA and 3D-Chair. The

reason for this is that CelebA contains images which have completely different characteristics

from those of 3D-Chair database. In the following, we train a single WGAN with GRM under

the CelebA and CACD lifelong learning and the images generated by the WGAN are shown in

Fig. 5.15b. These generated images are of rather good quality. This shows that WGAN is able

to learn multiple similar databases. However, existing GRMs-based methods cannot be applied

to long sequences of tasks, where the datasets are entirely different from each other. The draw-

back outlined by this example motivates us to develop a novel dynamic memory system for the

teacher module. The proposed Knowledge Discrepancy Score (KDS) can detect and identify

the novelty of the incoming tasks and guides the teacher module to expand its capacity in order

to learn databases containing images with entirely different characteristics. In the following, we

train the proposed Dynamic Teacher-Student Learning model D-TS-KFD under the CelebA,

CACD, 3D-chair and Omniglot lifelong learning. After the lifelong learning process is finished,

our teacher module adds two new experts and the images generated by the teacher module

are shown in Fig. 5.16, where each expert models well images from similar databases such as

CelebA and CACD, with both containing face images. We also show the reconstructions made

by the student module in Fig. 5.17. We can observe that the student module is also able to

provide high-quality reconstructions across domains. These results indicate that the proposed

Lifelong D-TS provides better results than Generative Reply Mechanisms (GRM) methods.

5.5 Conclusion and Limitations

A novel Dynamic Teacher-Student Network (D-TS) learning framework, capable of continually

learning data representations without forgetting, is proposed in this chapter. The model is made

up of a teacher module, which is allowed to expand its architecture with new components, and a

student module. The Knowledge Discrepancy Score criterion is used for comparing the distance

between the incoming data and the information already acquired by the teacher module. For

implementing KDS we consider two measures: the Knowledge Frécher Distance (KFD) and the

CHAPTER 5. DYNAMIC SELF-SUPERVISED TEACHER-STUDENT NETWORK 128

Student’s Evaluation (SE). A new component (expert) is added to the teacher module when

KDS is above a certain threshold, when learning a new database. Otherwise, the most efficient

and flexible component is selected by the KDS from the mixture in order to be updated with

the information from the database. The selection mechanism contributes to reusing the learned

knowledge for accelerating the future task learning. In the experimental results we show that

D-TS can train a compressed student module which outperforms other methods in various

multi-task applications while also requiring fewer parameters to train.

The one limitation of the proposed D-TS is that it still requires accessing the task informa-

tion during the training, which can not be applied to a more realistic continual learning setting

(TFCL). In a real-time application, the system should learn and acquire information from the

streaming data without forgetting. The other limitation is that the teacher model size will grow

forever when learning a growing number of tasks, which is not suitable for resource-constraint

devices. In the next chapter, we introduce a new lifelong teacher-student framework to address

these limitations discussed above.

Chapter 6

Teacher-Student Framework for TFCL

6.1 Introduction

In chapters 3, 4 and 5, we mainly focus on a general continual learning setting in which the

task information and boundary are provided during the training. In this chapter, we study the

lifelong generative modelling [132] into a more sophisticated learning scenario, called Task-Free

Continual Learning (TFCL) [7], which does not require the task identity during the training and

testing. Training a model in TFCL is more challenging than general continual learning because

the data distribution can change at anytime during lifelong learning. One popular approach

to reduce forgetting in TFCL is the memory-based approach, which manages a fixed-capacity

memory buffer [30, 75] to store necessary data samples to be used for future training. During

the subsequent learning, the memory buffer can replay past data samples for updating the

model to relieve forgetting. The sample selection plays an important role in the performance of

the memory-based approaches [7]. However, the memory-based approach could potentially lead

to data privacy and security concerns [111]. Another approach to relieve forgetting in TFCL

is to train a powerful generator that produces high-quality generative replay samples, which

are statistically consistent with the training sets [181]. Compared to the memory-based ap-

proaches, which usually manage a capacity-fixed memory buffer, the generative replay network

can produce an unlimited number of samples, which can be used for training. However, these

approaches rely on a single memory and generation system, which is not scalable for learn-

ing infinite data streams due to their limited memory capacity while also requiring frequent

retraining [181].

Recently, the Dynamic Expansion Model (DEM) [95, 133] has shown promising results for

129

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 130

TFCL and can potentially be applied to infinite data streams. The key idea of the DEM is

to dynamically build a new expert/component when detecting data distribution changes while

freezing all previously trained components to preserve past knowledge. Compared to the static

model, the DEM is scalable to a dynamically changing learning environment and can achieve

better generalization performance. The expansion criterion in the DEM plays a vital role in

balancing the complexity of the model and the generalization performance. Existing DEM-

based methods implement the expansion criterion by considering the sample log-likelihood

evaluation [133] and Neural Dirichlet processes [95], but they cannot guarantee an optimal

trade-off between the network architecture and performance. They also have a multi-head

structure that requires performing the component selection process at the testing phase and

cannot model correlations between different data domains in a single latent space leading to

requiring additional computational resources. Meanwhile, its application is rather limited to

certain tasks such as cross-domain image interpolation [123, 181].

In this chapter, we address the limitations of existing DEM approaches by proposing a

scalable knowledge distillation framework to learn a data stream with a growing number of

statistical representations in a TFCL scenario while ensuring a lightweight network architecture

at the testing phase. To achieve this goal, the teacher-student framework [180, 184, 186] can

be adopted since it can accumulate knowledge over time and compress the learnt information

into a compact student module. The other advantage of the teacher-student framework over

the DEM method is that we can flexibly design the student architecture aiming to support

many applications, including unsupervised, supervised learning and disentangled representation

learning, which has been investigated in Chapter 5. However, the existing lifelong teacher-

student frameworks [180, 184, 186] require accessing the task information, which can not be

used in a more realistic learning scenario, such as TFCL. To address this issue, this study

proposes to train a dynamic expansion mixture model as the teacher module and manage a

short-term memory buffer to store more recent samples from a data stream. The introduction

of the short-term memory buffer has two main goals: (1) It can provide enough samples for

training one of the teacher experts, enabling it to learn knowledge from a data stream without

accessing task information; (2) It aims to store more recently seen data samples, representing

short-term information, which can be combined with the knowledge preserved by the teacher

module, representing the long-term information, to provide a better knowledge distillation

process for student learning.

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 131

The other obstacle to applying the teacher-student framework for TFCL is the dynamic

expansion criterion. The D-TS, described in Chapter 5, employs the Knowledge Discrepancy

Score (KDS) in Eq. (5.3) to control the teacher’s expansion process, which relies on task identity

and boundaries. To tackle this issue, we propose the Knowledge Incremental Assimilation

Mechanism (KIAM) that enables the teacher module to expand its network architecture in

the absence of task information. The primary idea of the KIAM is to evaluate the distance

between the current memory buffer (STM) and the already accumulated knowledge in the

teacher module as a signal to increase the teacher’s memorization capacity. A high measure in

KIAM indicates that the current memory buffer stores novel enough information with respect to

the already-learnt knowledge. As a result, we can freeze the current teacher expert to preserve

the information from the current memory buffer while building a new expert for subsequent

learning. Such a mechanism enables the teacher module to gradually accumulate new knowledge

without forgetting while ensuring knowledge diversity among all frozen components in the

teacher module. In addition, we further reduce the teacher model size by proposing a new

expert pruning approach that selectively removes redundant experts from the teacher module.

This pruning approach can induce a compact network architecture for the teacher module and

reduce the computational costs for knowledge distillation. Furthermore, in order to embed

multiple data domains into a single latent space, we propose to employ a data-free knowledge

distillation approach, namely the Continual Generative Knowledge Distillation (CGKD), to

transfer generative knowledge from the teacher to the student module without accessing any

task information in an online learning manner.

In summary, our contributions in this chapter are as follows:

• We extend the teacher-student framework for lifelong generative modelling in a challeng-

ing learning setting such as TFCL;

• We propose the Knowledge Incremental Assimilation Mechanism (KIAM) for the teacher

module, which enriches the teacher’s knowledge incrementally while ensuring a minimal

architecture;

• A new knowledge distillation learning approach is introduced to transfer generative knowl-

edge from a teacher to a student module in an online manner;

• We propose a new expert pruning approach for the teacher-student framework, which

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 132

reduces the size of the teacher module while enriching its knowledge diversity.

The rest of the chapter provides the setting for the proposed methodology in Section 6.2.

Afterwards, as part of the proposed methodology, in Section 6.2.2 is presented the knowledge

incremental assimilation mechanism, in Section 6.2.3, the continual generative knowledge dis-

tillation mechanism, and the expert pruning approach in Section 6.2.4. The implementation is

explained in Section 6.2.5, and the experimental results in Section 6.3. Eventually, Section 6.4

draws the conclusions and discusses the limitations of this chapter.

6.2 Method

The lifelong teacher-student frameworks, introduced in Chapters 4 and 5, have shown promising

performance in lifelong generative modelling. However, these methods can not be used in the

more challenging Task Free Continual Learning (TFCL) [7] since they require to access the task

information to implement the network expansion mechanisms. In this chapter, we address this

issue by developing a new dynamic expansion mechanism for the teacher module, which does not

rely on the task information. The key idea of the proposed approach is inspired by the biological

research [47] showing that short- and long-term information can be learned using distinct brain

regions at different stages. To implement this goal, we formulate a dynamic expansion model

(Teacher module) as a long-term memory system and introduce a short-term memory buffer

to preserve more recently seen data samples. Specifically, the short-term memory buffer has a

fixed size and we would like to increase the long-term memory’s capacity in order to accumulate

knowledge over time. This memory expansion process is implemented by the proposed FID-

based expansion mechanism that evaluates the distance between the knowledge learnt by the

teacher module and the samples from the short-term memory buffer and uses this measure

which is then used to expand the network architecture of the teacher module. Such an approach

can encourage the teacher module to gradually increase the model’s capacity together with its

knowledge without accessing task information. We provide the detailed dynamic expansion

mechanism in Section 6.2.2.

In addition, when considering to deploy the learning model to a resource-constrained device,

it is necessary to keep a fixed-size teacher module during the training. We implement this goal

by proposing an expert pruning approach, described in Section 6.2.4, which automatically

removes redundant teacher experts during the training. The key idea of the proposed expert

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 133

pruning approach is to evaluate the relationships among teacher experts and then remove the

experts that share similar knowledge.

6.2.1 Problem Definition

Let Di
TU = {xj}

NT
i

j=1 and Di
SU = {xj}

NS
i

j=1 be the unlabelled test and training sets, for the

i-th data domain/dataset, where NT
i and NS

i represent the number of samples for the test

and training sets, respectively. In this work, we focus on sequential learning of different data

domains without accessing the task/domain information. Therefore, we create a joint dataset

as a data stream S in task-free continual learning (TFCL [7]) by including all incoming training

sets in a sequence manner, expressed as:

S = {D1
SU ∪D2

SU ∪ · · · ∪DN
SU} , (6.1)

where N is the total number of datasets considered in the continual learning sequence. In

addition to the domain-incremental setting (Eq. (6.1)), we also consider a more challenging

setting that involves the class and domain shifts, expressed as:

S = {D1,1
SU ∪D1,2

SU ∪ · · · ∪D1,5
SU ∪ · · · ∪DN,1

SU ∪DN,2
SU ∪ · · · ∪DN,5

SU } . (6.2)

Following from the class-incremental learning setting [30], we divide each single dataset Di
SU

into five parts {Di,1
SU , · · · , D

i,5
SU} according to category information [7] and each data set Di,1

SU

contains samples from two classes [7], where i = 1, · · · , N . This setting is more challenging than

Eq. (6.1) since the model requires dealing with the change in the class and domain over time.

In task-free continual learning, the model is trained in a batch-to-batch learning manner [7]. To

clearly describe this learning paradigm, the data stream S can be divided in N ′ disjoint data

batches {X1
batch, · · · ,XN ′

batch} and each data batch Xi
batch containsm samples (In the experiment,

we setm = 64 as the data batch size). Learning the data stream S requires a total of N ′ training

steps/times. At a specific training step/time (the t-th training time), we only access a small

data batch Xt
batch, obtained from S while all previous data batches {X1

batch, · · · ,Xt−1
batch} are

unavailable. After a training model is done with the N ′-th training step/time, we evaluate the

average performance of the model on all test sets {D1
TU , · · · , DN

TU}. Compared with the problem

definition described in Chapters 3, 4 and 5, which can access the task information during the

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 134

training, TFCL represents a more challenging learning scenario where task identities are not

available while the model can only access a small batch of samples at a given time.

6.2.2 Knowledge Incremental Assimilation Mechanism (KIAM)

Humans can incrementally learn and memorize novel concepts throughout their entire lifespan

[15]. Specifically, biological research [47] shows that short- and long-term information/skills

can be learned using distinct brain regions at different stages. Inspired by this, we propose

to manage two memory systems storing both short- and long-term information to address

catastrophic forgetting in TFCL. Firstly, we introduce to employ a short-term memory buffer

[95] to store more recently seen data samples from the data stream S during the training,

aiming to preserve the up-to-date information. Then we introduce a long-term memory system

to preserve permanent information during training. One reasonable approach for implementing

a long-term memory system is employing a memory buffer with a fixed capacity to store many

crucial real training samples during the training [7]. However, due to the memory capacity

limitation, such an approach can not store enough information for the model training when

the data stream S involves a large number of underlying data distributions. Inspired by the

dynamic teacher-student framework described in Chapter 5, which enables the teacher module

to capture multiple data distributions without forgetting, we propose to implement a long-term

memory system using the dynamic expansion model (Teacher) that has several advantages

compared to the use of a memory buffer: (1) The dynamic expansion model can generate an

unlimited number of samples while the memory buffer can only store and replay a limited

number of samples; (2) The dynamic expansion model is scalable to the data stream S that

consists of multiple data domains; (3) Storing long-term information using a memory buffer

requires carefully designing an appropriate sample selection approach to selectively filter out

data samples deemed not important. However, such an approach would lose some previous

important data samples, resulting in performance degeneration. In contrast, the dynamic

expansion model can permanently preserve the past information by freezing all previously

trained components and learn novel knowledge through an appropriate dynamic expansion

mechanism.

The other challenge for the teacher module is its dynamic expansion process, which is

hard to control in the TFCL since we can not access the task information during training.

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 135

In this chapter, we address this issue by introducing the Knowledge Incremental Assimilation

Mechanism (KIAM) for the teacher module, which gradually increases the knowledge capacity

of the teacher module without accessing the task information. Let Mt represent a short-

term memory (STM) that has a fixed capacity, updated at the t-th training step and A =

{A1, · · · ,AK} be a teacher module assumed to have already trained K experts up to the

training step (the t-th training step), where each Aj is implemented by either a GAN [52] or a

VAE to learn a probability distribution Pθj of data samples produced by the generator module

with trainable parameters θj. Detecting when and what new concepts are provided is a real

challenge under the TFCL framework, where we do not know the task labels. To address this

problem, KIAM evaluates distances between the current memory (STM) and the already learnt

information, aiming to detect when the data distribution shift occurs:

min
j=1,··· ,K−1

{
fCGKD
p (D̃′

j,Mt)
}
≥ λCGKD , (6.3)

where D̃′
j is the dataset consisting of 200 samples drawn from Pθj , which represents a statistical

data representation characterized by parameters θj. In practice, we calculate fCGKD
p (D̃′

j,Mt)

by employing 200 samples randomly obtained from Mt in Eq. (6.3) in order to reduce the

computational costs. λCGKD ∈ [0, 200] is a threshold for controlling the number of experts for the

teacher module. fCGKD
p (·, ·) is a distance measure function that evaluates the similarity between

two datasets. We omit the current expert AK in Eq. (6.3) since AK is knowledgeable about

Mt. One potential approach for implementing fCGKD
p (·, ·) is training a discriminator using

adversarial learning [52] to estimate the discrepancy between the current memory buffer and the

already-learnt knowledge. However, such an approach can lead to considerable computational

costs, especially when the total number of training steps/times is large. Moreover, adversarial

learning is prone to unstable training behaviour and mode collapse problems [156], leading

to unstable signals for the model expansion using Eq. (6.3). In this chapter, we desire to

implement the distance measure fCGKD
p (·, ·) using a simple computational form without extra

training costs. The Fréchet Inception Distance (FID) score is a popular approach to evaluate

the performance of GAN models [63] and has been used as one of the KDS criteria in Chapter

5. We consider the FID [63] as the fCGKD
p (·, ·) measure for evaluating the knowledge similarity

between two datasets, because FID can be effectively evaluated on data samples without the

need to know the density form for each dataset. A small FID score indicates that a GAN model

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 136

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
256 units

Deconvolution layer
128 units

Deconvolution layer
3 units

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
1 units

Latent variable
256 dimensions

Generator Discriminator

Fully connected layer
��� × � × � units

Deconvolution layer
256 units

Figure 6.1: The network architecture of the generator and a discriminator.

can generate more realistic images with respect to the samples from the real training dataset

[63]. As a consequence, we can employ the FID to evaluate the knowledge similarity between

each previously trained expert and the current memory buffer (STM). Such measures can be

used as signals for the model expansion. Compared to the existing dynamic expansion models,

which employ the sample log-likelihood evaluation [133] and Neural Dirichlet processes [95] to

implement the expansion criterion, Eq. (6.3) relies on a distance measure between two datasets

which can better distinguish the new data samples from the already-learnt knowledge and thus

can provide good expansion signals for the model.

If the dynamic expansion criterion (Eq. (6.3)) is satisfied at the t-th training step, we freeze

AK (the current expert) that has already preserved the knowledge of the current memory

Mt, while adding a new expert AK+1 for the next training step (the (t+ 1)-th training step).

We also empty the current memory Mt so that the newly created expert AK+1 is able to

learn statistically different data in the following training steps. Compared to the expansion

process described in Chapter 5, Eq. (6.3) does not need accessing task information and thus is

suitable for task-free continual learning. In addition, the existing dynamic expansion method

(Continual Neural Dirichlet Process Mixture (CN-DPM)) [95] also employs the short-term

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 137

memory buffer to store recently received data samples for training, but the proposed KIAM

has several differences from CN-DPM: (1) The CN-DPM does not train a student module, while

the proposed KIAM implements the dynamic expansion model as a teacher module in a unified

framework to support student learning; (2) The CN-DPM employs the Neural Dirichlet process

for the model expansion, while the proposed KIAM uses the FID-based criterion; (3) The CN-

DPM implements each expert using a VAE model, resulting in blurred image generation results.

In contrast, the proposed KIAM can employ a more powerful generative model (GAN) to

implement each expert, providing better generative knowledge for training the student module.

6.2.3 Continual Generative Knowledge Distillation

Most existing approaches to knowledge distillation usually transfer the category from a com-

plex teacher module to a lightweight student module for the classification task [126]. These

methods are not able to distil the knowledge for generative modelling because previously learnt

samples are not available during the continual learning process. In this chapter, we introduce

a data-free KD approach for lifelong generative modelling in TFCL. Let us consider a latent

variable-based generative model pθstu(x, z) = pθstu(x | z)p(z) which is represented by the stu-

dent module in our teacher-student framework, where x and z represent the observed and latent

variables, respectively. pθstu(x | z) is the decoder and p(z) = N (0, I) is the prior distributions

for the latent space. An approach for distilling knowledge when having a teacher module char-

acterised by a probability distribution Pθj of data samples produced by the generator, would

require to minimise the KL divergence between Pθj and Pθstu , where Pθstu is the probability

distribution formed by samples generated using the student model. However, this optimization

is computationally infeasible due to the lack of an explicit density function for Pθj . Instead,

we propose to implement KD by minimizing the negative sample log-likelihood with respect to

the samples drawn from each Pθj :

LCGKD
KD (θ1, θ2, · · · , θK , θstu, ςstu) =

∑K−1

j=1

{
− Ex∼Pθj

[log pθstu(x)]
}
, (6.4)

where Pθj represents the probability distribution of the data generated by the j-th teacher

expert. A = {A1, · · · ,AK} is the teacher module and {θstu, ςstu} is the parameter set of the

student module. The direct calculation of Eq. (6.4) is intractable [85] and we introduce the use

of a variational distribution qςstu(z |x), parameterised by ςstu, to approximate the true posterior

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 138

pθstu(z |x), and therefore the marginal log-likelihood log pθstu(x) can be approximated by a lower

bound [85]. Then, Eq (6.4) can be calculated as:

LCGKD
KD (θ1, θ2, · · · , θK , θstu, ςstu) =

∑K−1

j=1

{
Ex∼Pθj

[−Eqςstu (z |x) [log pθstu (x | z)]

+DKL [qςstu (z |x) || p (z)]]
}
.

(6.5)

Together with the KD loss Eq. (6.5), and using the current memory buffer Mt for training the

model at the t-th training step, we design a unified objective function for training the student

module as:

LCGKD
Stu (Mt, θ1, θ2, · · · , θK , θstu, ςstu) = Ex∼PMt

[−Eqςstu (z |x) [log pθstu (x | z)]

+DKL [qςstu (z |x) || p (z)]]

+ LCGKD
KD (θ1, θ2, · · · , θK , θstu, ςstu) ,

(6.6)

where LCGKD
KD (Mt, θ1, θ2, · · · , θK , θstu, ςstu) is provided in Eq. (6.5) and PMt is the data distri-

bution of the samples from the memory buffer Mt at the t-th training step. The first term

encourages the student module to learn samples obtained from the memory buffer Mt that pre-

serves the short-term information, while the second term LCGKD
KD (Mt, θ1, θ2, · · · , θK , θstu, ςstu)

transfers the teacher’s knowledge, representing the long-term information, to the student mod-

ule. We train the student module using Eq. (6.6) in the mini-batch learning manner [92], which

has been widely used in the deep learning field [61, 92]. The network architecture of the decoder

(generator) and encoder of the student module is provided in Fig. 6.1 and Fig. 6.4, respectively.

Compared to the D-TS framework described in Section 5.2.6 and the proposed KD approach

(Eq. (6.6)), there are several differences: (1) Eq. (6.6) is used to transfer the knowledge at

each training step under TFCL, while the D-TS can access the whole training dataset from the

current task learning; (2) Eq. (6.6) employs a memory buffer Mt to store more recent samples,

which enables the student module to learn both short- and long-term information during the

training. In contrast, the D-TS framework does not have a memory buffer and its learning

relies on the task identity. (3) The teacher module in the D-TS framework always increases

its model size/capacity when learning a growing number of tasks. In contrast, the proposed

framework introduces an expert pruning approach that can maintain a fixed teacher’s model

size without sacrificing much performance, which is introduced in the next section.

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 139

Student evaluation

 Discrepancy matrix

Select a pair
of experts

 Discrepancy
evaluation

Remove the
selected epxert

Teacher

Yes
Yes

Figure 6.2: The removal of unnecessary experts, where the given criterion controls the number
of teacher experts.

6.2.4 Expert Pruning Approach

The teacher’s ensembles cannot grow forever, and in order to keep the number of parameters

in check and the model architecture compact while preserving the statistical representation

diversity of the teacher, we consider a component expert pruning approach. The primary

idea of the proposed expert pruning approach is that we can find and remove certain teacher

experts that share overlapping knowledge with other components. However, directly searching

multiple teacher components which represent similar information is computationally intractable.

Instead, we formulate such a searching process as a simple problem that first finds a pair of

teacher experts and then we remove one of them. Then, we can continually perform this search

process to remove more unnecessary teacher experts until a certain criterion is met.

Suppose that the teacher module has already trained K experts at the t-th training step,

A = {A1, · · · ,AK}. Let Q ∈ RK×K be a knowledge discrepancy matrix, where each Q[a, g]

represents the discrepancy score between experts Aa and Ag, where a and g are teacher expert

indexes. Given that the student module is already knowledgeable about the informational

content of all experts, it can be used for identifying whether two experts represent statistically

overlapping knowledge. We evaluate Q[a, g] by calculating the square loss ∥ · ∥2 on the latent

variables, inferred by the inference model qςstu (z |x) of the student module:

Lks(Aa,Ag) =
1

m′

m′∑
j=1

∥za,j − zg,j∥2 , (6.7)

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 140

where za,j and zg,j are latent variables, drawn from qςstu (z |x) when considering the data

samples x′
a,j and x′

g,j generated by Aa and Ag, respectively. m′ = 1000 is the total number

of generated samples. Eq. (6.7) is computationally efficient since it is evaluated on the low-

dimensional latent space. Although the FID can be used to evaluate the distance onto the

data generated by a pair of teacher experts, it still requires additional computation resources

when compared to Eq. (6.7). If the two experts, Aa and Ab share significant amounts of

information, their corresponding latent variables za and zb tend to be similar, resulting in

a small Lks(Aa,Ag) in Eq. (6.7). We use the square loss to evaluate the distance between

the latent variables due to being computationally efficient while other choices are discussed

in Section 6.4. Once the discrepancy matrix Q is evaluated, we identify a pair of experts

containing overlapping information by searching for the minimal discrepancy score in Q:

Ffind(Q) = argmin{{a,g} | a=1,··· ,K−1,b=1,··· ,K−1,a̸=g}
{
Q[a, g]

}
, (6.8)

where {a⋆, g⋆} = Ffind(Q). a⋆ and g⋆ are the indices of the selected experts. We only employ

Eq. (6.8) to find a pair of frozen teacher experts since the current teacher expert (AK) is still

activated and can not be removed. We then evaluate the discrepancy score between each other

expert from the teacher’s ensemble and either Aa⋆ or Ag⋆ :

Fdiversity(a
⋆,Q) =

K−1∑
j=1,j ̸=a⋆

{Q[a⋆, j]} . (6.9)

We employ Eq. (6.9) to estimate the discrepancy score for Aa⋆ and Ag⋆ , denoted as sa⋆ =

Fdiversity(a
⋆,Q) and sg⋆ = Fdiversity(g

⋆,Q). A higher discrepancy score, calculated using Eq. (6.9),

indicates that the selected component represents distinct knowledge from the other components

and should be kept. The main goal for Eq. (6.9) is that we keep the expert with the largest

discrepancy scores in the teacher module to ensure the knowledge diversity between the existing

teacher’s experts. If sa⋆ > sg⋆ , then we decide to remove Ag⋆ , while otherwise we remove Aa⋆ .

In order to eliminate more experts from the teacher module, after removing the deleted expert

from Q we continue with identifying other redundant experts from the teacher module using

Eq. (6.8) and (6.9) and designate them for removal. We iteratively remove experts from the

teacher module until the number of experts is equal to a predefined nA ∈ [3, 10], as illustrated

in Fig. 6.2.

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 141

STM

Create a new
expert and

clear the STM

Expert pruning

Add samples
in the current

memory

Yes
No

Student

Knowledge
distillation

KIAM
criterion

Train Learn

Figure 6.3: The learning procedure of the proposed framework where we omit the updating of
the memory for the sake of simplification.

6.2.5 Implementation

Since the teacher module can dynamically build several components to capture the information

from a data stream during the training, one appropriate approach for training the teacher mod-

ule is to update the newly created component (current component) while freezing all previously

learnt components to preserve past information. Such an approach allows the teacher module

to gradually store new knowledge without forgetting previously learnt information. Unlike the

D-TS framework described in Chapter 5, which considers the task information as being known

and thus allows the teacher module to reuse an existing component to learn a new task, the

CGKD does not perform the expert selection and constantly updates the current expert during

training. Suppose that the CGKD has learnt K experts {A1, · · · ,AK}, while AK is the current

expert, we provide the main objective function for the teacher module in the following.

GAN-based teacher module. We have two approaches: implementing each expert of the teacher

module by using either a VAE or a GAN. For the GAN-based teacher module, the current expert

AK has a discriminator network Dη parameterized by η and a generator GθK parameterized by

θK . We consider the WGAN-GP loss [55] for training the current K-th expert AK at the t-th

training step:

LGCGKD(θK , η) =
1

m

m∑
j=1

{
−Dη(GθK (zj))

}
, (6.10)

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 142

LDCGKD(Xbatch, θK , η) =
1

m

m∑
j=1

{
Dη(GθK (zj)−Dη(xj) + λ(∥∇x̃jDη(x̃j)∥2 − 1)2

}
, (6.11)

where m = 64 is the batch size and zj ∼ N (0, I) is a random vector. xj is the j-th real

sample from the data batch Xbatch obtained from the memory buffer Mt, where we employ the

subscript t to denote that the memory buffer Mt was updated at the t-th training step/time. λ

is a hyperparameter, and the last term is used to ensure the discriminator’s Lipschitz constraint,

[55]. x̃j is the interpolated image produced by x̃j = sxj + (1 − s)x′
j where s is drawn from a

uniform distribution U(0, 1) and x′
j is a generated image. We only need a single discriminator

during the training to reduce the whole model size. We provide the detailed network architecture

of the generator and discriminator in Fig. 6.1.

VAE-based teacher module. For the VAE-based teacher module, the current expert AK is im-

plemented as a VAE model consisting of a decoder pθK (x | z) and an encoding distribution

qς(z |x) = N (µ,σ2I) whose hyperparameters {µ,σ} are given by the encoder. A latent vari-

able z = µ + σ
⊙

τ is then drawn from N (µ,σ2I) using the reparameterization trick [85],

where τ ∼ N (0, I), and
⊙

is the element-wise product. We provide the detailed network ar-

chitecture of the encoder of the VAE-based expert in Fig. 6.4 while the decoder uses the same

network architecture from the GAN-based expert. We employ the VAE objective function for

training the current expert AK , expressed as:

LCGKD
VAE (Xbatch, θK , ς) =

1

m

m∑
j=1

{
− Eqς(z |xj) [log pθK (x | z)] +DKL [qς (z |xj) || p (z)]

}
, (6.12)

where xj is the j-th sample from the data batch Xbatch. Similar to GAN-based experts, we only

need a single encoding distribution qς(z |x) for the teacher module during the training because

all previously frozen experts {A1, · · · ,AK−1} do not need to be updated in the subsequent

learning. We summarize several differences for the teacher module between the D-TS and the

CGKD: (1) The teacher module in D-TS can select an existing component to learn a new

task, which requires accessing the task information. The proposed CGKD always updates the

current expert to learn new knowledge while freezing all previously learnt experts, which can

be used in TFCL; (2) The teacher’s model size in D-TS would grow as the number of tasks

increases. In contrast, we can fix the teacher’s model size in the CGKD by employing the

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 143

Convolution layer
64 units

Convolution layer
128 units

Convolution layer
256 units

Convolution layer
512 units

Fully connected layer
1024 units

Fully connected layer
256 units

Encoder

Fully connected layer
256 units

Softplus activation

Figure 6.4: The network architecture of the encoder.

expert pruning approach for removing the redundant teacher’s mixture modules; (3) The D-TS

only considers employing the GAN-based teacher module. In contrast, the CGKD investigates

the performance of both GAN- and VAE-based teacher experts.

Algorithm. We provide the pseudo-code in Algorithm 7, and we summarize the training algo-

rithm in five steps.

• (Updating the memory buffer Mt). We update Mt at the t-th training time/step by

adding a batch of samples Xt
batch obtained from the data stream S into its buffer if

the memory is not full |Mt| < |Mt|max, otherwise, we remove the earliest batch of sam-

ples included in Mt and add Xt
batch, where |Mt| and |Mt|max denote the current and

maximum number of samples for the memory buffer Mt.

• (Teacher learning). If the teacher module has only a single expert at the initial training

phase, we automatically build a new expert A2 at the (100)-th training step while freezing

A1. Such a building process can allow us to perform the dynamic expansion mechanism

during the subsequent learning because Eq. (6.3) requires at least a frozen expert. We

update the current expert on the memory buffer Mt using Eq. (6.10) and Eq. (6.11)

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 144

Algorithm 7: Training algorithm of CGKD*-GAN
Input: All training databases
Output: The model’s parameters

1 for t < N ′ do
2 Xt

batch obtained from S ;
3 Updating of the memory ;
4 if (|Mt| ≥ |Mt|max) then
5 Remove earliest samples from Mt ;
6 end
7 Mt = Mt

⋃
Xt
batch ;

8 Teacher learning ;
9 if (t == 100) then

10 Build a new expert A2 while fixing A1 ;
11 end
12 else
13 for j < iterations (Each model is only updated once in each iteration) do
14 Xbatch randomly obtained from Mt ;
15 Update the generator of the current expert on Xbatch using Eq. (6.10) ;
16 Update the discriminator on Xbatch using Eq. (6.11) ;

17 end

18 end
19 Checking the expansion ;
20 if (|Mt| ≥ |Mt|max) then
21 if Eq. (6.3) is stratified then
22 Build a new expert ;
23 Cleaning up Mt ;

24 end

25 end
26 Expert pruning ;
27 Perform the expert pruning (See details in Algorithm 8) ;
28 Student learning; ;
29 Perform the student learning (See details in Algorithm 9) ;

30 end

in the mini-batch learning manner in which ’iterations’ in Algorithm 7 is determined

by iterations = (|Mt|/batchSize)epoch where batchSize = 64 is the batch size, and

epoch = 1 is the number of training epochs.

• (Checking the expansion). To avoid frequent evaluation, we check the expansion when

the memory is full |Mt| = |M|max. When the expansion criterion is satisfied, according

to Eq. (6.3), we add a new expert AK+1 to the teacher module while cleaning up Mt to

avoid learning probabilistically overlapping data, in subsequent learning;

• (Expert pruning for KD). We remove the non-essential experts from the teacher module

using the proposed expert pruning approach until the number of experts (|A|) in the

teacher module A matches nA. We provide the detailed pruning process in Algorithm 8 ;

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 145

Algorithm 8: Expert pruning.

1 while |A| > nA do
2 Calculate Q using Eq. (6.7) ;
3 Find the indexes {a⋆, g⋆} of a pair of experts by Ffind(Q) ;
4 sa⋆ = Fdiversity(a

⋆,Q) , sg⋆ = Fdiversity(g
⋆,Q) ;

5 if sa⋆ > sg⋆ then
6 Remove the expert Ag⋆ from the teacher module ;
7 end
8 else
9 Remove the expert Aa⋆ from the teacher module ;

10 end

11 end

Algorithm 9: Student learning.

1 for j < iterations (Each model is only updated once in each iteration) do
2 Xbatch randomly obtained from Mt ;
3 for j′ < K − 1 do
4 Generate the data batch X′

j′ using Aj′ ;

5 end
6 Update the student module on {Xbatch,X

′
1, · · · ,X′

K−1} using Eq. (6.6) ;

7 end

• (Student learning). We distil the generative information from the teacher module to the

student module while simultaneously learning the information from the current memory

Mt using Eq. (6.6). The student module is updated in a mini-batch learning manner and

the detailed updating process is provided in Algorithm 9. Then we return to Step 1 for

the next training step (the (t+ 1)-th training step).

6.3 Experiments

6.3.1 Settings and Baselines

Setting: We consider a series of six data domains including MNIST [93], SVHN [118], Fashion

[177], IFashion, RMNIST and CIFAR10 [87]. We create a data stream S from all training sets

of these data domains, namely MSFIRC. We also consider the class-incremental setting where

we split each data domain into five parts, and each part consists of images from two different

classes [30]. We then create a data stream S by combining all parts of the six data domains,

namely Class Incremental (CL)-MSFIRC. The batch size and the number of epochs for each

training step are 64 and 1, respectively. The maximum memory size (STM) for MSFIRC and

CI-MSFIRC is 5000. Since this chapter focuses on lifelong generative modelling under TFCL,

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 146

Table 6.1: FID for various models under the MSFIRC setting.

Methods MNIST SVHN Fashion IFashion RMNIST CIFAR10 Average No

finetune 174.1 148.3 237.0 229.1 159.2 216.4 194.0 1

Reservoir [164] 127.2 159.3 213.4 201.6 110.2 113.3 154.2 1

LTS [180] 44.8 62,9 92.9 83.1 41.8 80.3 67.7 1

LGM [132] 104.8 134.3 194.3 168.1 94.8 91.5 131.3 1

CN-DPM [95] 118.7 73.4 120.7 120.3 97.9 97.6 104.8 18

CGKD-GAN 11.6 70.6 101.9 29.9 11.41 68.6 49.0 16

CGKD-VAE 122.9 73.6 109.2 104.3 119.1 86.4 102.6 11

CGKD*-GAN 12.0 74.6 69.8 22.3 11.4 68.5 43.1 7

CGKD*-VAE 82.6 82.5 127.0 132.9 88.8 86.3 100.0 7

we follow the settings from [181], which adopts the Fréchet Inception Distance (FID) [63] to

evaluate the performance of various models. We employ a Tesla V100-SXM2 (32GB) GPU and

RHEL 8 operating system for the experiment.

Baselines: The majority of the existing lifelong learning approaches do not focus on generative

modelling or require accessing the task information during training. Therefore, we compare the

proposed approach with more related methods such as: Reservoir [164], Lifelong Teacher Stu-

dent (LTS) [180], Lifelong Generative Modelling (LGM) [132], and CN-DPM [95], respectively.

For a fair comparison with CN-DPM, we also train a student module to learn generated data by

CN-DPM together with that from the memory buffer. In addition, we also assign a short-term

memory buffer with a maximum size of 5,000 for LGM and LTS to support TFCL. Specifically,

when the short-term memory buffer is full, LTS and LGM perform the GRM process to pro-

duce 5,000 samples while the memory buffer is empty and is ready to store new samples during

subsequent learning. All models are trained using the Adam algorithm [82] with a learning rate

of 0.0002.

6.3.2 Generative Modelling Tasks Under TFCL

In this section, we investigate the performance of the student module on a data stream with

multiple data distributions. The FID results for MSFIRC are shown in Tab. 6.1, where ’No’

in the last column stands for the number of experts required following the proposed lifelong

learning methodology. CGKD-GAN and CGKD-VAE represent using GAN and VAE as experts

in the teacher module and ‘*’ denotes the use of the proposed Expert Pruning, as explained in

Section 6.2.4. We can observe that GAN-based approaches significantly outperform VAE-based

methods in terms of the FID criterion, by achieving results of 67.7 by LTS versus 131.3 by LGM.

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 147

The proposed CGKD-GAN outperforms CN-DPM, despite the latter using many more experts

in its teacher module. Overall, GAN-based approaches can provide high-quality generative

replay data when compared to the VAE-based models and thus achieve better lifelong learning

performance.

In addition, compared to CGKD-GAN, CGKD*-GAN can reduce the number of experts

from 16 to 7 while still maintaining good performance. We can also observe that CGKD-VAE

and CGKD*-VAE achieve similar performance, while the CGKD*-VAE reduces the number

of components from 11 to 7. These results show that the proposed expert pruning approach

can further reduce the teacher model size without sacrificing performance. Furthermore, the

CGKD-GAN significantly outperforms CGKD-VAE by a large margin, demonstrating that the

GAN used as the teacher module can lead to better performance. The image reconstruction

results by CGKD-GAN are sharper than other baselines, as we can observe in Fig. 6.5.

In the following, we investigate the performance of various models in the class-incremental

setting. Under this setting, each dataset is divided into five parts, where each part consists of

samples from two classes. This setting is more challenging since the model requires dealing with

both class and domain shifts. We report the performance of the student module in Table. 6.2.

We can observe that static models, including finetune, Reservoir, LTS and LGM, perform worse

on the class-incremental setting when compared with the domain-incremental setting. This is

because the static model has a fixed capacity and can not capture more classes during the

training. From the results of Table. 6.2, we can observe that the CGKD-GAN outperforms

CGKD*-GAN, which shows that learning more components increases the performance for the

class-incremental setting. The reason behind this case is that more components can potentially

capture additional category information and thus are suitable for the class-incremental setting

in which the class changes over time. In addition, the GAN-based models still achieve a

better performance than the VAE-based methods in the class-incremental setting, showing that

the high-quality generative replay samples play a critical role in lifelong generative modelling.

Furthermore, the proposed CGKD-GAN outperforms other baselines in the class-incremental

setting.

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 148

Real samples Fineturn CGKD-GAN Reservoir OGKD-VAE CN-DPM LTS

MNIST

Fashion

SVHN

IFashion

RMNIST

CIFAR10

Figure 6.5: The cross-domain reconstruction results of various models under MSFIRC setting.

Table 6.2: The FID of various models under the CI-MSFIRC setting.

Methods MNIST SVHN Fashion IFashion RMNIST CIFAR10 Average No

finetune 158.1 167.6 246.2 233.3 138.6 229.4 195.6 1

Reservoir [164] 141.7 163.6 220.0 200.1 127.1 115.5 161.3 1

LTS [180] 101.9 99.4 140.6 139.5 99.9 95.5 112.8 1

LGM [132] 108.5 122.1 189.5 175.9 96.6 92.4 130.9 1

CN-DPM [95] 90.9 62.0 109.0 95.0 77.9 95.5 88.4 18

CGKD-GAN 16.7 65.1 44.5 43.9 27.9 85.2 47.2 11

CGKD-VAE 102.6 69.9 117.1 99.5 113.0 82.7 97.5 11

CGKD*-GAN 13.5 72.7 89.9 52.1 12.4 71.9 52.1 7

CGKD*-VAE 131.0 70.3 106.7 92.2 126.5 87.7 102.4 7

6.3.3 Learning Complex Data Streams Under TFCL

We examine the performance of the student module for the datasets consisting of complex

images. Following from [180], we consider 5000 samples for testing from each of the datasets,

CelebA [105] and 3D-chair [14], and we create a data stream named CelebA-Chair consisting

of these training samples. All samples in CelebA and 3D-Chair are resized as 64 × 64 × 3

pixels. We adopt the setting of MSFIRC for CelebA-Chair, and the results of the student

module are provided in Tab. 6.3. We can observe that the static model can achieve good

performance on the last dataset being learnt (3D-Chair) while performing worse on the first

dataset (CelebA) in the data stream being learnt, which shows that the static model suffers from

forgetting. In contrast, the dynamic expansion models can perform well on the first and second

datasets. In addition, the proposed CGKD-GAN outperforms other baselines while employing

fewer components when compared with CN-DPM. Furthermore, compared with CGKD-VAE,

CN-DPM achieves slightly better performance but employs many more experts than CGKD-

VAE. Since both CGKD-GAN and CGKD-VAE employ fewer components after CelebA-Chair

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 149

lifelong learning, we do not further reduce the model size for them using the proposed expert

pruning.

Table 6.3: The FID for the results generated by various models under the CelebA-Chair learning
setting.

Methods CelebA 3D-Chair Average No

finetune 35.79 9.90 22.85 1

Reservoir [164] 20.82 11.04 15.93 1

LTS [180] 20.68 11.47 16.07 1

LGM [132] 21.58 11.84 16.71 1

CN-DPM [95] 20.19 11.45 15.82 11

CGKD-GAN 18.05 11.32 14.68 3

CGKD-VAE 20.63 11.79 16.21 5

We also investigate the ability of the student module to learn cross-domain interpolations in

a single latent space. After the lifelong learning, we perform interpolations on the latent space

and the visual results are shown in Fig. 6.6. We observe that a 3D chair can be seamlessly

transformed into a human face, with the outline of the chair gradually becoming the eyes

of the human. These results show that the student module can learn cross-domain latent

representations under TFCL and would implicitly model the correlations between different

regions of two data domains into a single latent space.

Figure 6.6: Image interpolation results of CGKD-GAN under CelebA-Chair setting.

6.3.4 Ablation Study for Defining the Number of Components

In this section, we investigate the performance of the proposed CGKD-GAN when varying the

threshold λCGKD in Eq. (6.3). We train the proposed CGKD-GAN under MSFIRC lifelong

learning and the average FID score on all six testing datasets is provided in Fig. 6.7. We can

observe that the proposed CGKD-GAN does not lead to a significant change in the performance

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 150

130 140 150 160 170 180

10

15

20

Th
e

nu
m

be
r o

f e
xp

er
ts

130 140 150 160 170 180
Threshold

0

20

40
FI

D
 s

co
re

Figure 6.7: The effect of varying λCGKD.

when considering different values for λCGKD, as observed in the plot from the top of Fig. 6.7. A

small λCGKD tends to result in adding more experts for the teacher module. This result shows

that more experts do not lead to greater performance gains and an appropriate λCGKD would

represent a trade-off between model complexity and performance.

6.4 Conclusion and Limitation

In this chapter, we propose a new framework for task-agnostic lifelong generative modelling from

several different data domains without forgetting. Unlike the existing memory-based methods,

which employ a single memory buffer [7], the key idea of the proposed framework is to manage

two memory systems to store short- and long-term information. To implement this goal, this

study considers using a memory buffer with a fixed capacity to store more recent data samples

and implement the long-term memory system using a dynamic expansion model. In order to

learn data representation successively, we treat the long-term memory as a teacher module

into a unified framework to transfer its knowledge to a student module. However, expanding

the teacher’s capacity remains challenging under task-free continual learning due to the lack

of task information. To solve this issue, this study introduces the Knowledge Incremental

Assimilation Mechanism (KIAM) to progressively increase the teacher’s knowledge through a

dynamic expansion mechanism, resulting in a model with a minimal number of parameters.

In addition, this study aims to further optimize the teacher module size by introducing an

expert pruning approach that automatically removes those experts deemed unimportant from

the teacher module. This mechanism aims to promote knowledge diversity among experts and

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 151

reduces computational costs for knowledge distillation. Furthermore, we introduce a new data-

free approach that transfers the teacher’s knowledge to the student module without accessing

any task information, encouraging the student module to learn cross-domain representations

without forgetting.

In the following, we summarise several limitations of the proposed teacher-student frame-

work (CGKD) as follows. The proposed lifelong learning framework can only address a sequence

of datasets that belong to the same kind of applications. For instance, an artificial intelligence

system should be able to continually deal with different applications, including classification,

object detection, generation and language processing tasks. Moreover, such a system should

perform the inference in any task category following lifelong learning. However, the main chal-

lenge for this system is that different applications usually require different network architecture

designs, while existing methods fail to address this challenge. We believe that by developing

such a system can allow the machine to continually learn knowledge from different domains,

sources and devices, which benefits a wide range of real-world applications.

In addition, the computational cost for the proposed CGKD remains challenging since it

requires frequently checking the model expansion (Eq. (6.3)) and performing the expert pruning

process. One possible way to further reduce the computational costs is to have a more efficient

expansion criterion. In addition, instead of checking the model expansion at each training step,

we can perform the dynamic expansion mechanisms after performing a pre-defined number of

training steps. The other option to reduce the computational costs is to compare the distance

between the newly seen data batch and the already-learnt knowledge. Such an approach can

accelerate the dynamic expansion mechanism by generating fewer data samples.

On the other hand, the proposed CGKD would leak privileged information from the neu-

ral network-based evaluation into the training regime since the proposed expansion criterion

(Eq. (6.3)) involves the generation process. To address this issue, we can replace the FID-based

criterion with a new criterion that does not need the generation process. For instance, we can

compare the loss change in each training step using the student module, which is used as the

expansion signal for the teacher module. We will investigate this idea in a future study.

Furthermore, as shown in Section 6.2.4, we only consider employing the square loss to

calculate the distance between two latent variables in Eq. (6.7) for reducing the teacher model

size. However, the square loss is not a unique choice, and there are several other options,

such as probability measures. Firstly, Maximum Mean Discrepancy (MMD) [97] is a well-

CHAPTER 6. TEACHER-STUDENT FRAMEWORK FOR TFCL 152

known approach consisting of a distance on the space of probability measures, which has been

widely used in deep and machine learning research [42, 42]. Specifically, the MMD measure

can be empirically estimated using data samples from the empirical data distributions [42],

which is suitable for evaluating Eq. (6.7). Secondly, instead of calculating the distance between

samples in Eq. (6.7), we can evaluate the probability distance such as the Jensen–Shannon (JS)

divergence between variational distributions qςstu (z |xa,j) and qςstu (z |xg,j) modelled by the

student module, where xa,j and xg,j are data samples generated by Aa and Ag, respectively.

Moreover, although the proposed expert pruning approach can maintain a compact teacher

module by appropriately selecting a hyperparameter nA, it still can not learn an infinite data

stream due to the fixed maximum capacity. In a future study, we will address this limitation

by proposing two solutions. Firstly, we can gradually increase the hyperparameter nA over

time to increase the model’s capacity. Such a solution requires carefully designing a schedule to

update nA. The second solution is to introduce a new hyperparameter λ2 to replace nA and we

continually remove overlapped experts until a new criterion λ2 < min{Q} is met. Compared to

the hyperparameter nA, which has a pre-defined maximum model size, this solution can allow

the teacher module to reduce the model size appropriately while having no model capacity

limitations. We will investigate these ideas in our future study.

On the other hand, TFCL is still a new and challenging learning paradigm. In this chapter,

we have only investigated the performance of the proposed framework for unsupervised image

reconstruction and interpolation tasks. However, the proposed framework can be extended to

other downstream tasks, including supervised and disentangled representation learning, which

will be investigated in future work.

Chapter 7

Conclusion and Future Work

This thesis studies the deep generative model under the context of lifelong learning. Deep

generative models have shown promising results on individual tasks, especially when all training

samples are accessible. However, these models suffer from serious forgetting when training on

a sequence of tasks. To relieve forgetting, we first propose a novel hybrid model that combines

advantages from both GAN and VAE models, in which a GAN is trained to provide high-quality

replay samples while the VAE-based inference model is trained to capture meaningful latent

representations across multiple domains over time. However, this hybrid approach can not deal

with a growing number of tasks due to the fixed model capacity. This thesis addresses this issue

by proposing a growing mixture model (GMM) that can deal with a long sequence of tasks.

GMM dynamically expands the model capacity to address the learning of a novel task while

reusing the existing component to learn a related task, which reduces the whole model size. A

GMM can be used to train a weak student module by combining data generated by the GMM

and new data, through knowledge distillation. However, a student module, after being trained

by means of knowledge distillation, would perform worse on the image interpolation and cross-

domain image reconstruction tasks. To address this issue, we propose a new lifelong teacher-

student framework which dynamically adds new GAN components to learn novel concepts.

Meanwhile, we implement the student module as a generative latent variable model and propose

a new knowledge distillation loss that dynamically transfers generative factors from multiple

teacher components to the student module without forgetting. We further extend the proposed

teacher-student framework to task-free continual learning, which does not require accessing

task information and can be used for learning infinite data streams. In the following, we briefly

summarise the contributions of each chapter.

153

CHAPTER 7. CONCLUSION AND FUTURE WORK 154

7.1 Summary of Contributions

In Chapter 3, we propose a new hybrid model for lifelong generative modelling, which integrates

the generative ability of GANs and the inference capacity of VAEs into a unified optimisation

framework. We extend the proposed hybrid framework to deal with various applications, in-

cluding unsupervised generative modelling, semi-supervised classification, image interpolation

and disentangled representation learning. The empirical results show that the proposed LGAA

achieves better performance than other approaches while providing high-quality image repre-

sentation and disentangled representation results. In addition, we also study the transfer ability

of the LGAA when learning a new task. The empirical results demonstrate that when a new

task shares similar visual concepts with respect to the previously learnt datasets, LGAA can

converge quickly during the training phase when compared to the baseline that learns a new

task using randomly initialized parameters.

In Chapter 4, we propose a growing mixture model aiming to dynamically build new compo-

nents to learn novel tasks while freezing all previously trained components. Such a mechanism

can reduce the number of generative replay processes. In addition, we share many parameters

among all components for GMM to further reduce the whole model size. Furthermore, the pro-

posed GMM computes the correlation between the already accumulated knowledge and a new

task, which can guide to reuse an existing component for learning a related task. We perform a

series of experiments, and the empirical results demonstrate that the proposed GMM achieves

better performance than other baselines in both unsupervised and supervised learning tasks.

In Chapter 5, we discuss the limitation of the proposed GMM, which learns a student mod-

ule that tends to produce blurred image reconstructions. This is caused by using a VAE-based

teacher module that usually gives lower-quality generative replay samples for training the stu-

dent module. We address this limitation by developing a novel lifelong teacher-student system

that learns a dynamically expandable mixture GAN model as a teacher module. The primary

advantage of the GAN-based teacher module is to provide high-quality knowledge transfer for

student learning, enabling the student module to capture high-quality latent representations

across multiple data domains over time. In addition, we introduce a prior distribution to regu-

late the student optimisation by incorporating the identity information of each teacher expert

in the objective function, which further improves the image interpolation performance. Finally,

the proposed Dynamic Teacher-Student (D-TS) can be extended to various applications with

CHAPTER 7. CONCLUSION AND FUTURE WORK 155

only small modifications. We perform a series of experiments, and the empirical results demon-

strate that the proposed D-TS framework performs better than other related methods on both

supervised and unsupervised learning. In addition, the analysis results show that the proposed

D-TS can reuse a certain teacher expert to learn several similar tasks, benefitting the positive

knowledge transfer and the reduction of the model size.

In Chapter 6, we address a more realistic and challenging learning scenario (TFCL) in

which the task information and boundaries are unavailable during the training. The existing

teacher-student frameworks fail to address TFCL since their dynamic expansion process relies on

knowing the task identity. To address this issue, this study first introduces a short-term memory

buffer to store novel data samples, which are then used to provide enough information for

training the current teacher expert. Then, we introduce a new dynamic expansion mechanism

to evaluate the distance between the current memory and the already-learnt knowledge as the

expansion signal, which appropriately expands the teacher architecture without the need to

know any task information. Furthermore, we introduce an expert pruning approach to remove

those teacher experts, which contain similar (overlapping) information, which further reduces

the model size. The empirical results show that the proposed framework is scalable to a more

realistic continual learning scenario with several different data domains and performs better

than other methods.

7.2 Future Work

The Denoising Diffusion Probabilistic Models (DDPM) is a rapidly developed generative model

[152, 66, 107, 154], which has been been successfully applied to many applications beyond image

synthesis, including image super-resolution [67, 98], image inpainting [155], graph generation

[120], shape generation [21] and text-to-image generation [54, 79]. Unlike other popular gener-

ative models such as GANs and VAEs, which consider a unique data pass for the generation

process, generating an image using the diffusion-based model is implemented through an itera-

tive process in which noise is generated and gradually refined to a clear image through hundreds

of diffusion steps [66]. However, such a generation procedure requires significant computational

costs. Although many studies have proposed several solutions to accelerate the generation

process of DDPM by shortening the reverse diffusion steps [31] or by performing the diffu-

sion process in the low-dimensional latent space [140], the computational cost for the diffusion

CHAPTER 7. CONCLUSION AND FUTURE WORK 156

model is still very high compared to that for the GANs or VAEs. Due to the DDPM’s powerful

image generation ability, we can implement each teacher module using a diffusion model in

the proposed teacher-student system, which can provide much better generative replay samples

for student learning when compared with VAE- and GAN-based teacher modules. To reduce

the overall computational costs, one can develop a new knowledge distillation approach that

transfers the teacher’s knowledge to the student module when all tasks are finished, aiming to

reduce the generation process of the teacher module. As a result, the computational costs for

such a knowledge distillation approach rely on the teacher model size instead of the number of

tasks to be learnt. Furthermore, we can employ the expert pruning approach to remove those

experts considered unimportant to the teacher module, which would accelerate the knowledge

distillation process.

The proposed lifelong learning teacher-student framework can be developed as a continu-

ation of the research presented in this thesis, in which the generators are treated as the pa-

rameterized memories (teacher), which provide generative replay samples to relieve forgetting.

Then a mixture of solvers can be developed to improve the student learning capabilities in the

proposed framework, where each solver can be implemented using different network architec-

tures to deal with different applications such as classification, image reconstruction and object

detection. In addition, a knowledge distillation approach can be proposed to selectively transfer

the knowledge from each selected teacher component to a related student’s solver. Therefore,

the proposed framework’s component expansion and selection mechanism would evaluate the

relevance between old knowledge and the incoming task and determine the application type of

the incoming task. Finally, such a lifelong learning framework can address the learning of a

sequence of tasks with different applications over time.

Moreover, learning from data riddled with noisy labels is a more realistic scenario that has

been recently investigated in several works [78, 169, 187]. Such noisy data streams represent

more challenging experimental settings since a deep learning system can be intentionally ”in-

fected” or ”attacked” intentionally with wrong data in a security breach attempt to derail its

training. To address this challenging scenario, a correction mechanism can be proposed, which

continually corrects the noisy samples in order to achieve a good generalization performance.

The other solution is to develop a noisy sample detection mechanism, which identifies the

correct data samples from a noisy data stream and stores them in a memory buffer. In the

subsequent learning, the corrected supervised signals can be used from the memory buffer to

CHAPTER 7. CONCLUSION AND FUTURE WORK 157

detect incoming samples while the model is optimized using the memorized samples.

Moreover, few-shot learning [170] and continual learning [191] are two different but impor-

tant tasks for machine intelligence. Although these two tasks have been studied intensively,

merging them within a unified learning paradigm has scarcely been investigated. A recent

study has proposed the first benchmark for continual few-shot learning [10], which attempts to

promote the development of this research topic. In future studies, we can apply the proposed

teacher-student framework to address continual few-shot learning.

Furthermore, the proposed frameworks described in Chapters 3, 4, 5 and 6 mainly employ

the convolutional network as the backbone. In our future works, we would like to employ the

Vision Transformer (ViT) [36], which employs a self-attention mechanism, which proved its

effectiveness in many deep learning applications. Due to its good generalisation performance,

the ViT has recently been explored for continual learning [38, 172, 178]. However, ViT-based

approaches require access to the task information to generate specific attention masks for each

learning task [38, 178], which cannot be considered in a realistic continual learning scenario

with no explicit task boundaries [173]. Moreover, these approaches are based on either static

networks [172, 178] or on expansion models, where the number of their model parameters grows

infinitely when learning an increasing number of tasks [38], which makes them intractable for

learning long-term data streams. In a future study, we will develop a new ViT-based model to

address TFCL.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}

Symposium on Operating Systems Design and Implementation, pages 265–283, 2016.

[2] A. Achille, T. Eccles, L. Matthey, C. Burgess, N. Watters, A. Lerchner, and I. Higgins. Life-long

disentangled representation learning with cross-domain latent homologies. In Proc. Advances

Neural Inf. Proc. Systems (NeurIPS), pages 9873–9883, 2018.

[3] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual

learning with adaptive regularization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-

imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, In Proc. Advances

Neural Inf. Proc. Systems (NeurIPS), pages 4394–4404, 2019.

[4] E Akagünduz, A. G. Bors, and K. Evans. Defining image memorability using visual memory

schema. IEEE Trans. on Pattern Anal. and Machine Intelligence, 42(9):2165–2178, 2020.

[5] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min

Lin, and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In In

Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 1–9, 2019.

[6] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a network of

experts. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages

3366–3375, 2017.

[7] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proc.

of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 11254–11263, 2019.

[8] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online

continual learning. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 11816–11825,

2019.

[9] Mark Gales Andrey Malinin, Bruno Mlodozeniec. Ensemble distribution distillation. In Int.

Conf. on Learning Representations (ICLR), pages 1–9, 2020.

158

BIBLIOGRAPHY 159

[10] Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining

benchmarks for continual few-shot learning. arXiv preprint arXiv:2004.11967, pages 1–9, 2020.

[11] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proc.

Int. Conf. on Machine Learning (ICML), volume 70, pages 214–223. PMLR, 2017.

[12] Marcus Rohrbach Arslan Chaudhry, Marc’Aurelio Ranzato and Mohamed Elhoseiny. Efficient

lifelong learning with A-GEM. In Int. Conf. on Learning Representations (ICLR), pages 1–9,

2019.

[13] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D chairs: exemplar

part-based 2d-3d alignment using a large dataset of cad models. In Proc. of IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 3762–3769, 2014.

[14] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D chairs: exemplar

part-based 2D-3D alignment using a large dataset of CAD models. In Proc. of IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 3762–3769, 2014.

[15] Mohammadamin Banayeeanzade, Rasoul Mirzaiezadeh, Hosein Hasani, and Mahdieh Soleymani.

Generative vs. discriminative: Rethinking the meta-continual learning. In In Proc. Advances

Neural Inf. Proc. Systems (NeurIPS), volume 34, pages 21592–21604, 2021.

[16] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow mem-

ory: Continual learning with a memory of diverse samples. In Proc. of IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pages 8218–8227, 2021.

[17] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio,

Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In Proc. Inter.

Conference on Machine Learning (ICML), vol. PMLR 80, pages 531–540, 2018.

[18] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv

preprint arXiv:1509.00519, pages 1–8, 2015.

[19] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-

jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint

arXiv:1804.03599, pages 1–8, 2018.

[20] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark

experience for general continual learning: a strong, simple baseline. In In Proc. Advances Neural

Inf. Proc. Systems (NeurIPS), pages 1–9, 2020.

BIBLIOGRAPHY 160

[21] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely,

and Bharath Hariharan. Learning gradient fields for shape generation. In Proc. European Conf.

on Computer Vision (ECCV), pages 364–381, 2020.

[22] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. Dokania, P. H. S. Torr, and M.’A.

Ranzato. On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486,

pages 1–9, 2019.

[23] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized

generative adversarial networks. arXiv preprint arXiv:1612.02136, pages 1–9, 2016.

[24] B.-C. Chen, C.-S. Chen, and W. H. Hsu. Cross-age reference coding for age-invariant face

recognition and retrieval. In Proc. European Conf. on Computer Vision (ECCV), pages 768–

783, 2014.

[25] Liqun Chen, Shuyang Dai, Yunchen Pu, Erjin Zhou, Chunyuan Li, Qinliang Su, Changyou

Chen, and Lawrence Carin. Symmetric variational autoencoder and connections to adversarial

learning. In Proc. Int. Conf. on Artificial Intel. and Statistics (AISTATS), volume 84, pages

661–669. PMLR, 2018.

[26] T. Q. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud. Isolating sources of disentanglement

in variational autoencoders. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages

2615–2625, 2018.

[27] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Inter-

pretable representation learning by information maximizing generative adversarial nets. In Proc.

Advances Neural Inf. Proc. Systems (NeurIPS), pages 2172–2180, 2016.

[28] Jaewoong Choi, Geonho Hwang, and Myungjoo Kang. Disentangling the correlated continuous

and discrete generative factors of data. Pattern Recognition, 133:109055, 2023.

[29] Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. GAN memory with

no forgetting. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,

and Hsuan-Tien Lin, editors, In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages

1–9, 2020.

[30] Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from

non-stationary data streams. In Proc. of the IEEE Int. Conf. on Computer Vision (ICCV),

pages 8250–8259, 2021.

BIBLIOGRAPHY 161

[31] Kamil Deja, Anna Kuzina, Tomasz Trzcinski, and Jakub Mikolaj Tomczak. On analyzing gen-

erative and denoising capabilities of diffusion-based deep generative models. In Proc. Advances

Neural Inf. Proc. Systems (NeurIPS), pages 1–9, 2022.

[32] Mohammad Mahdi Derakhshani, Xiantong Zhen, Ling Shao, and Cees Snoek. Kernel continual

learning. In Proc. Int Conf. on Machine Learning (ICML), volume 139, pages 2621–2631. PMLR,

2021.

[33] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.

Learning without memorizing. In Proc. of IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR), pages 5138–5146, 2019.

[34] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, pages

1–21, 2016.

[35] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. In Proc. Int. Conf.

on Learning Representations (ICLR), pages 1–9, 2017.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image

recognition at scale. In Int. Conf. on Learning Representations (ICLR), pages 1–9, 2021.

[37] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet:

Pooled outputs distillation for small-tasks incremental learning. In Proc. European Conf. on

Computer Vision (ECCV), pages 86–102, 2020.

[38] Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Trans-

formers for continual learning with dynamic token expansion. In Proc. of IEEE Conf. on Com-

puter Vision and Pattern Recognition (CVPR), pages 9285–9295, 2022.

[39] DC Dowson and BV Landau. The Fréchet distance between multivariate Normal distributions.

Journal of Multivariate Analysis, 12(3):450–455, 1982.

[40] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville.

Adversarially learned inference. In Proc. Int. Conf. on Learning Representations (ICLR), pages

1–9, 2017.

[41] E. Dupont. Learning disentangled joint continuous and discrete representations. In Proc. Ad-

vances Neural Inf. Proc. Systems (NeurIPS), pages 710–720, 2018.

BIBLIOGRAPHY 162

[42] Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative neu-

ral networks via maximum mean discrepancy optimization. In Proceedings of the Thirty-First

Conference on Uncertainty in Artificial Intelligence, UAI, pages 258–267, 2015.

[43] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach.

Adversarial continual learning. In Proc. Proc. European Conf. on Computer Vision (ECCV)

(ECCV), vol. LNCS 12356, pages 386–402, 2020.

[44] J. Fagot and R. G. Cook. Evidence for large long-term memory capacities in baboons and

pigeons and its implications for learning and the evolution of cognition. Proc. of the National

Academy of Sciences (PNAS), 103(46):17564–17567, 2006.

[45] Enrico Fini, Stéphane Lathuilière, Enver Sangineto, Moin Nabi, and Elisa Ricci. Online continual

learning under extreme memory constraints. In Proc. European Conf. on Computer Vision

(ECCV), pages 720–735, 2020.

[46] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-

tation of deep networks. In Proc. Int Conf. on Machine Learning (ICML), volume 70, pages

1126–1135. PMLR, 2017.

[47] Anna Floyer-Lea and Paul M Matthews. Distinguishable brain activation networks for short-and

long-term motor skill learning. Journal of neurophysiology, 94(1):512–518, 2005.

[48] S. Gao, R. Brekelmans, G. ver Steeg, and A. Galstyan. Auto-encoding total correlation ex-

planation. In Proc. Int. Conf. on Artificial Intel. and Statistics (AISTATS), volume 89, pages

1157–1166. PMLR, 2019.

[49] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional

neural networks. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),

pages 2414–2423, 2016.

[50] Benoit Gaujac, Ilya Feige, and David Barber. Improving gaussian mixture latent variable model

convergence with optimal transport. In Asian Conference on Machine Learning, pages 737–752.

PMLR, 2021.

[51] Jacob Goldberger, Shiri Gordon, Hayit Greenspan, et al. An efficient image similarity measure

based on approximations of kl-divergence between two gaussian mixtures. In Proc. IEEE Int.

Conf. on Computer Vision (ICCV), pages 487–493, 2003.

[52] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS),

pages 2672–2680, 2014.

BIBLIOGRAPHY 163

[53] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A

survey. International Journal of Computer Vision, 129:1789–1819, 2021.

[54] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and

Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proc. of IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), pages 10696–10706, 2022.

[55] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of

Wasserstein GANs. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 5767–5777,

2017.

[56] Emil Julius Gumbel. Statistical theory of extreme values and some practical applications. NBS

Applied Mathematics Series, 33, 1954.

[57] Jaehong Kim Hanul Shin, Jung Kwon Lee and Jiwon Kim. Continual learning with deep gener-

ative replay. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 2990–2999, 2017.

[58] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.

Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

[59] Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. Incremental learning in online

scenario. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages

13923–13932, 2020.

[60] Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging infer-

ence networks and posterior collapse in variational autoencoders. In Int. Conf. on Learning

Representations (ICLR), pages 1–9, 2019.

[61] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. of

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[62] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge distillation with ad-

versarial samples supporting decision boundary. In Proc. AAAI Conf. on Artificial Intelligence,

volume 33, pages 3771–3778, 2019.

[63] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.

Gans trained by a two time-scale update rule converge to a local Nash equilibrium. In Proc.

Advances Neural Inf. Proc. Systems (NeurIPS), pages 6626–6637, 2017.

[64] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A.

Lerchner. β-VAE: Learning basic visual concepts with a constrained variational framework. In

Proc. Int. Conf. on Learning Representations (ICLR), pages 1–9, 2017.

BIBLIOGRAPHY 164

[65] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531, pages 1–9, 2015.

[66] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Proc.

Advances Neural Inf. Proc. Systems (NeurIPS), 33:6840–6851, 2020.

[67] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim

Salimans. Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res.,

23(47):1–33, 2022.

[68] Alain Hore and Djemel Ziou. Image quality metrics: PSNR vs. SSIM. In Proc. Int. Conf. on

Pattern Recognition (ICPR), pages 2366–2369, 2010.

[69] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified

classifier incrementally via rebalancing. In Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 831–839, 2019.

[70] Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, and Aaron Courville.

Hierarchical importance weighted autoencoders. In Int. Conf. on Machine Learning (ICML),

volume 97, pages 2869–2878, 2019.

[71] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with

conditional adversarial networks. In Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 1125–1134, 2017.

[72] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-Softmax. In Proc.

Int. Conf. on Learning Representations (ICLR), pages 1–9, 2017.

[73] Khurram Javed and Martha White. Meta-learning representations for continual learning. Ad-

vances in neural information processing systems, 32, 2019.

[74] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning

and continual learning with online mixtures of tasks. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), pages 9122–9133, 2019.

[75] Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory exam-

ples for online task-free continual learning. In In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), pages 1–9, 2021.

[76] Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar

and dissimilar tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin, editors, In Proc. Advances Neural Inf. Proc. Systems (NeurIPS),

pages 1–9, 2020.

BIBLIOGRAPHY 165

[77] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Mea-

suring catastrophic forgetting in neural networks. In Proc. AAAI Conf. on Artificial Intelligence,

pages 3390–3398, 2018.

[78] Chris Dongjoo Kim, Jinseo Jeong, Sangwoo Moon, and Gunhee Kim. Continual learning on

noisy data streams via self-purified replay. In Proc. of the IEEE Int. Conf. on Computer Vision

(ICCV), pages 537–547, 2021.

[79] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion mod-

els for robust image manipulation. In Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 2426–2435, 2022.

[80] H. Kim and A. Mnih. Disentangling by factorising. In Proc. of Int. Conf. on Machine Learning

(ICML), vol. PMLR 80, pages 2649–2658, 2018.

[81] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Empirical Methods

in Natural Language Processing (EMNLP), pages 1317–1327, 2016.

[82] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Int.

Conf. on Learning Representations (ICLR), pages 1–9, 2015.

[83] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep

generative models. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 3581–3589,

2014.

[84] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved vari-

ational inference with inverse autoregressive flow. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), pages 4743–4751, 2016.

[85] D. P. Kingma and M.Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,

pages 1–9, 2013.

[86] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,

J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R.

Hadsell. Overcoming catastrophic forgetting in neural networks. Proc. of the National Academy

of Sciences (PNAS), 114(13):3521–3526, 2017.

[87] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.

Technical report, University of Toronto, 2009.

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages

1097–1105, 2012.

BIBLIOGRAPHY 166

[89] Anna Kuzina, Evgenii Egorov, and Evgeny Burnaev. Boovae: Boosting approach for continual

learning of vae. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 17889–17901,

2021.

[90] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learn-

ing through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[91] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels

using a learned similarity metric. In Proc. Int Conf. on Machine Learning (ICML), volume 48,

pages 1558–1566, 2015.

[92] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015.

[93] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proc. of the IEEE, 86(11):2278–2324, 1998.

[94] Seungwon Lee, Sima Behpour, and Eric Eaton. Sharing less is more: Lifelong learning in deep

networks with selective layer transfer. In Marina Meila and Tong Zhang, editors, Proc. Int.

Conf. on Machine Learning (ICML), volume 139, pages 6065–6075. PMLR, 2021.

[95] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural Dirichlet process mixture

model for task-free continual learning. In Proc. Int. Conf. on Learning Representations (ICLR),

pages 1–9, 2020.

[96] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin. Alice: Towards understanding

adversarial learning for joint distribution matching. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), pages 5495–5503, 2017.

[97] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. MMD

GAN: Towards deeper understanding of moment matching network. In Proc. Advances Neural

Inf. Proc. Systems (NeurIPS), pages 2203–2213, 2017.

[98] Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting

Chen. Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing,

479:47–59, 2022.

[99] Z. Li and D. Hoiem. Learning without forgetting. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 40(12):2935–2947, 2017.

[100] Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. TRGP: Trust region gradient projection for

continual learning. In Proc. Int. Conf. on Learning Representations (ICLR), pages 1–9, 2022.

BIBLIOGRAPHY 167

[101] Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasserstein gan with quadratic transport

cost. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages

4832–4841, 2019.

[102] Hao Liu and Huaping Liu. Continual learning with recursive gradient optimization. In Proc.

Int. Conf. on Learning Representations (ICLR), pages 1–9, 2022.

[103] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation net-

works. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 700–708, 2017.

[104] Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan C. Raducanu, Andrew D. Bag-

danov, Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental

learning. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Work-

shops, pages 915–924, 2020.

[105] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proc. of

IEEE Int. Conf. on Computer Vision (ICCV), pages 3730–3738, 2015.

[106] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.

In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 6467–6476, 2017.

[107] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for im-

proved sampling speed. arXiv preprint arXiv:2101.02388, pages 1–9, 2021.

[108] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. Rethinking

the representational continuity: Towards unsupervised continual learning. In Proc. Int. Conf.

on Learning Representations (ICLR), pages 1–9, 2022.

[109] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation

of discrete random variables. In Proc. Int. Conf. on Learning Representations (ICLR), pages

1–9, 2016.

[110] C. J Maddison, D. Tarlow, and T. Minka. A* sampling. Proc. Advances Neural Inf. Proc.

Systems (NeurIPS), page 1–10, 2014.

[111] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online

continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,

2022.

[112] Alireza Makhzani and Brendan J Frey. Pixelgan autoencoders. In Proc. Advances Neural Inf.

Proc. Systems (NeurIPS), pages 1975–1985, 2017.

[113] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. In

Proc. Int. Conf. on Learning Representations (ICLR), pages 1–9, 2016.

BIBLIOGRAPHY 168

[114] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learn-

ing bounds and algorithms. In Proc. Conf. on Learning Theory (COLT), arXiv preprint

arXiv:2002.06715, 2009.

[115] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial variational Bayes: Unifying variational

autoencoders and generative adversarial networks. In Proc. Int. Conf. on Machine Learning

(ICML), volume 70, pages 2391–2400. PMLR, 2017.

[116] Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv

preprint arXiv:1610.03483, pages 1–9, 2016.

[117] S. Narayanaswamy, T. B. Paige, J.-W. Van de Meent, A. Desmaison, N. Goodman, P. Kohli, F.

Wood, and P. Torr. Learning disentangled representations with semi-supervised deep generative

models. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 5925–5935, 2017.

[118] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in nat-

ural images with unsupervised feature learning. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS) Workshop, pages 1–9, 2011.

[119] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual

learning. In Proc. of Int. Conf. on Learning Representations (ICLR), pages 1–9, 2018.

[120] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.

Permutation invariant graph generation via score-based generative modeling. In Proc. Proc. Int.

Conf. on Artificial Intel. and Statistics (AISTATS), pages 4474–4484. PMLR 108, 2020.

[121] S. Nowozin, B. Cseke, and R. Tomioka. f -gan: Training generative neural samplers using

variational divergence minimization. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS),

pages 271–279, 2016.

[122] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with

auxiliary classifier gans. In Int Conf. on Machine Learning (ICML), volume 70, pages 2642–

2651. JMLR, 2017.

[123] Alon Oring, Zohar Yakhini, and Yacov Hel-Or. Autoencoder image interpolation by shaping the

latent space. In Proc. of Int. Conf. on Machine Learning (ICML), volume 139, pages 8281–8290.

PMLR, 2021.

[124] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, and

Mohammad Emtiyaz E Khan. Continual deep learning by functional regularisation of memorable

past. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), volume 33, pages 4453–4464, 2020.

BIBLIOGRAPHY 169

[125] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with

neural networks: A review. Neural Networks, 113:54–71, 2019.

[126] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proc.

of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3967–3976, 2019.

[127] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:

Visual reasoning with a general conditioning layer. In Sheila A. McIlraith and Kilian Q. Wein-

berger, editors, Proc. AAAI Conf. on Artificial Intelligence, pages 3942–3951. AAAI Press,

2018.

[128] Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In Proc.

Int Conf. on Machine Learning (ICML), volume 97, pages 5142–5151. PMLR, 2019.

[129] R. Polikar, L. Upda, S. S. Upda, and Vasant Honavar. Learn++: An incremental learning

algorithm for supervised neural networks. IEEE Trans. on Systems Man and Cybernetics, Part

C, 31(4):497–508, 2001.

[130] Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on learned

experiences for class/task incremental learning. In Proc. Int. Conf. on Learning Representations

(ICLR), pages 1–9, 2022.

[131] Radim Šára Radim Tyleček. Spatial pattern templates for recognition of objects with regular

structure. In Proc. German Conf. on Pattern Recognition, vol. LNCS 8142, pages 364–374,

2013.

[132] Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative modeling.

Neurocomputing, 404:381–400, 2020.

[133] Dushyant Rao, Francesco Visin, Andrei A. Rusu, Yee Whye Teh, Razvan Pascanu, and Raia

Hadsell. Continual unsupervised representation learning. In Proc. Advances Neural Inf. Proc.

Systems (NeurIPS), pages 7645–7655, 2019.

[134] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:

Incremental classifier and representation learning. In Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), pages 2001–2010, 2017.

[135] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,

real-time object detection. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 779–788, 2016.

[136] B. Ren, H. Wang, J. Li, and H. Gao. Life-long learning based on dynamic combination model.

Applied Soft Computing, 56:398–404, 2017.

BIBLIOGRAPHY 170

[137] D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proc. Int.

Conf. on Machine Learning (ICML), volume 37, pages 1530–1538. JMLR, 2015.

[138] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate

inference in deep generative models. In Proc. Int. Conf. on Machine Learning (ICML), vol.

PMLR 32, pages 1278–1286, 2014.

[139] Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[140] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-

resolution image synthesis with latent diffusion models. In Proc. of IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pages 10684–10695, 2022.

[141] Mohammad Rostami, Soheil Kolouri, Praveen K Pilly, and James McClelland. Generative

continual concept learning. In Proc. AAAI Conf. on Artificial Intelligence, pages 5545–5552,

2020.

[142] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,

Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv

preprint arXiv:1606.04671, pages 1–9, 2016.

[143] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.

Improved techniques for training gans. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS),

pages 2234–2242, 2016.

[144] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved

techniques for training GANs. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages

2234–2242, 2016.

[145] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,

Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-

work for continual learning. In Proc. Int Conf. on Machine Learning (ICML), volume 80, pages

4535–4544. PMLR, 2018.

[146] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial

nets. arXiv preprint arXiv:1705.08395, 2017.

[147] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi

Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-

based localization. International Journal of Computer Vision., 128(2):336–359, 2020.

BIBLIOGRAPHY 171

[148] Huajie Shao, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong Liu, Dongxin Liu, Jun

Wang, and Tarek Abdelzaher. Controlvae: Controllable variational autoencoder. In Proc. Int

Conf. on Machine Learning (ICML), volume 119, pages 8655–8664. PMLR, 2020.

[149] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On learning the geodesic path for

incremental learning. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 1591–1600, 2021.

[150] Alex J Smola, SVN Vishwanathan, and Eleazar Eskin. Laplace propagation. In Proc. Advances

Neural Inf. Proc. Systems (NeurIPS), pages 441–448, 2004.

[151] Artem Sobolev and Dmitry Vetrov. Importance weighted hierarchical variational inference. In

Proc. Advances Neural Inf. Proc. Systems (NeurIPS), volume 32, pages 601–613, 2019.

[152] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-

vised learning using nonequilibrium thermodynamics. In Proc. Int Conf. on Machine Learning

(ICML), volume 37, pages 2256–2265. JMLR, 2015.

[153] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using

deep conditional generative models. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS),

pages 3483–3491, 2015.

[154] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Proc.

Int. Conf. on Learning Representations (ICLR), pages 1–9, 2021.

[155] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and

Ben Poole. Score-based generative modeling through stochastic differential equations. In Proc.

Int. Conf. on Learning Representations (ICLR), pages 1–9, 2021.

[156] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton. Veegan: Reducing mode

collapse in gans using implicit variational learning. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), pages 3308–3318, 2017.

[157] Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-

theoretic online memory selection for continual learning. In Proc. Int. Conf. on Learning Rep-

resentations (ICLR), pages 1–9, 2022.

[158] Siddharth Swaroop, Cuong V Nguyen, Thang D Bui, and Richard E Turner. Improving and

understanding variational continual learning. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), workshop, pages 1–9, 2018.

BIBLIOGRAPHY 172

[159] Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and Satoshi Yagi. Vari-

ational autoencoder with implicit optimal priors. In Proc. AAAI Conf. on Artificial Intelligence,

volume 33, pages 5066–5073, 2019.

[160] Jeff Tang. Intelligent Mobile Projects with TensorFlow: Build 10+ Artificial Intelligence Apps

Using TensorFlow Mobile and Lite for IOS, Android, and Raspberry Pi. Packt Publishing Ltd,

2018.

[161] Shixiang Tang, Dapeng Chen, Jinguo Zhu, Shijie Yu, and Wanli Ouyang. Layerwise optimization

by gradient decomposition for continual learning. In Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), pages 9634–9643, 2021.

[162] Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and

Yee Whye Teh. Functional regularisation for continual learning with Gaussian processes. In

Proc. Int. Conf. on Learning Representations (ICLR), pages 1–9, 2019.

[163] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint

arXiv:1904.07734, pages 1–9, 2019.

[164] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software (TOMS), 11(1):37–57, 1985.

[165] Gregory KWallace. The jpeg still picture compression standard. IEEE transactions on consumer

electronics, 38(1):xviii–xxxiv, 1992.

[166] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing HONG, Shifeng

Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual

learning. In Proc. Int. Conf. on Learning Representations (ICLR), pages 1–9, 2022.

[167] Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of

feature covariance for continual learning. In Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), pages 184–193, 2021.

[168] X. Wang, R. Zhang, Y. Sun, and J. Qi. KDGAN: knowledge distillation with generative ad-

versarial networks. In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 775–786,

2018.

[169] Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao

Xia. Iterative learning with open-set noisy labels. In Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), pages 8688–8696, 2018.

[170] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few

examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

BIBLIOGRAPHY 173

[171] Yu-Chun Wang, Chien-Yi Wang, and Shang-Hong Lai. Disentangled representation with dual-

stage feature learning for face anti-spoofing. In Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision, pages 1955–1964, 2022.

[172] Zhen Wang, Liu Liu, Yiqun Duan, Yajing Kong, and Dacheng Tao. Continual learning with

lifelong vision transformer. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 171–181, 2022.

[173] Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan, and Mingchen Gao. Improving

task-free continual learning by distributionally robust memory evolution. In Proc. Int Conf. on

Machine Learning (ICML), volume 162, pages 22985–22998. PMLR, 2022.

[174] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient

ensemble and lifelong learning. In Proc. Int. Conf. on Learning Representations (ICLR), pages

1–9, 2020.

[175] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, and Bogdan Raducanu. Memory

replay GANs: Learning to generate new categories without forgetting. In Proc. Advances Neural

Inf. Proc. Systems (NeurIPS), pages 5962–5972, 2018.

[176] C. Wu, L. Herranz, X. Liu, J. van de Weijer, and B. Raducanu. Memory replay GANs: Learning

to generate new categories without forgetting. In Proc. Advances Neural Inf. Proc. Systems

(NeurIPS), pages 5962–5972, 2018.

[177] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking

machine learning algorithms. arXiv preprint arXiv:1708.07747, pages 1–9, 2017.

[178] Mengqi Xue, Haofei Zhang, Jie Song, and Mingli Song. Meta-attention for vit-backed continual

learning. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages

150–159, 2022.

[179] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for

class incremental learning. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 3014–3023, 2021.

[180] Fei Ye and Adrian Bors. Lifelong teacher-student network learning. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2021.

[181] Fei Ye and Adrian G. Bors. Learning latent representations across multiple data domains using

lifelong VAEGAN. In Proc. European Conf. on Computer Vision (ECCV), pages 777–795, 2020.

[182] Fei Ye and Adrian G. Bors. Deep mixture generative autoencoders. IEEE Transactions on

Neural Networks and Learning Systems, pages 1–15, 2021.

BIBLIOGRAPHY 174

[183] Fei Ye and Adrian G Bors. Learning joint latent representations based on information maxi-

mization. Information Sciences, 567:216–236, 2021.

[184] Fei Ye and Adrian G Bors. Lifelong generative modelling using dynamic expansion graph model.

arXiv preprint arXiv:2112.08370, pages 1–9, 2021.

[185] Fei Ye and Adrian G. Bors. Lifelong mixture of variational autoencoders. IEEE Transactions

on Neural Networks and Learning Systems, pages 1–14, 2021.

[186] Fei Ye and Adrian G Bors. Dynamic self-supervised teacher-student network learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 45(5):5731–5748, 2022.

[187] Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels.

In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 7017–7025,

2019.

[188] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection

for rehearsal-based continual learning. In Proc. Int. Conf. on Learning Representations (ICLR),

pages 1–9, 2022.

[189] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in

deep neural networks? In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 3320–

3328, 2014.

[190] Aron Yu and Kristen Grauman. Semantic jitter: Dense supervision for visual comparisons via

synthetic images. In Proc. of IEEE Int. Conf. on Computer Vision (ICCV), pages 5571–5580,

2017.

[191] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In Proc.

of Int. Conf. on Machine Learning (ICML), volume 70, pages 3987–3995. PMLR, 2017.

[192] Mengyao Zhai, Lei Chen, Jiawei He, Megha Nawhal, Frederick Tung, and Greg Mori. Piggyback

gan: Efficient lifelong learning for image conditioned generation. In Proc. European Conf. on

Computer Vision (ECCV), pages 397–413. Springer, 2020.

[193] M. Zhai, L. Chen, F. Tung, J He, M. Nawhal, and G. Mori. Lifelong GAN: Continual learning

for conditional image generation. arXiv preprint arXiv:1907.10107, pages 1–9, 2019.

[194] Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha Nawhal, and Greg Mori. Lifelong

gan: Continual learning for conditional image generation. In Proc. of the IEEE Int. Conf. on

Computer Vision (ICCV), pages 2759–2768, 2019.

BIBLIOGRAPHY 175

[195] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond

empirical risk minimization. In Proc. Int. Conf. on Learning Representations (ICLR), pages

1–9, 2018.

[196] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination

and fairness in class incremental learning. In Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), pages 13205–13214, 2020.

[197] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In Proc.

Int. Conf. on Learning Representations (ICLR), pages 1–9, 2017.

[198] Miaoyun Zhao, Yulai Cong, and Lawrence Carin. On leveraging pretrained gans for generation

with limited data. In Proc. Int Conf. on Machine Learning (ICML), volume 119, pages 11340–

11351. PMLR, 2020.

[199] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang,

and Eli Shechtman. Multimodal image-to-image translation by enforcing bi-cycle consistency.

In Proc. Advances Neural Inf. Proc. Systems (NeurIPS), pages 465–476, 2017.

	Introduction
	Background and Literature Review
	Background
	Generative Adversarial Nets (GANs)
	Variational Autoencoder
	Lifelong Learning and Its Settings
	Disentangled Representation Learning
	Generative Replay Mechanism for Lifelong Learning

	General Continual Learning
	Regularization Based Methods
	Dynamic Architectures
	Memory Based Approaches
	Knowledge Distillation

	Task-Free Continual Learning
	Memory Based Approaches
	Dynamic Expansion Model

	Conclusion

	Lifelong Learning Using VAEGAN
	Introduction
	Lifelong Generative Adversarial Autoencoder
	Problem Formulation
	Training A Robust Generative Replay Network
	The Inference Mechanism of LGAA
	The Objective Function for the Inference Models

	Lifelong Training Algorithm for LGAA
	Supervised Learning
	Semi-Supervised Learning
	Unsupervised Learning
	Using A Memory Buffer for Storing Model Parameters, in Lifelong Learning

	Experiments
	Reconstruction and Interpolation Results Following Unsupervised Lifelong Learning
	Lifelong Disentangled Representations
	Quality Assessment of the Generated Images
	Lifelong Supervised Learning
	Semi-Supervised Learning
	Ablation Study
	Transfer Metric and Transfer Learning

	Conclusion and Limitations

	Dynamic Growing Mixture Model
	Introduction
	Methodology
	Network Architecture
	Component Selection and Mixture Expansion Mechanism
	Algorithm Implementation
	Supervised Learning Task
	Learning A Compact Student Module and the Training Algorithm

	Experiments
	Hyperparameter Setting and Network Architecture
	Datasets and Evaluation Criteria
	Generative Modelling Tasks
	The Lifelong Learning of Complex Datasets
	Classification Tasks
	Ablation Study
	Image to Image Translation Task
	Model's Complexity

	Conclusion and Limitations

	Dynamic Self-Supervised Teacher-Student Network
	Introduction
	Dynamic Self-Supervised Teacher-Student Network (D-TS) Framework
	Problem Definition
	Preliminaries
	The Knowledge Discrepancy Score (KDS)
	The Teacher Module
	The Student Module
	Student Learning
	The Training Algorithm

	Applications
	Prediction Tasks
	Learning Disentangled Representations
	Inter-Domain Interpolation

	Experiments
	The Evaluation of Representation Learning During Unsupervised Lifelong Learning
	Study of The Latent Space of The Student Module
	Lifelong Learning of Databases With Complex Images
	Supervised Learning
	Model Complexity
	Ablation Study

	Conclusion and Limitations

	Teacher-Student Framework for TFCL
	Introduction
	Method
	Problem Definition
	Knowledge Incremental Assimilation Mechanism (KIAM)
	Continual Generative Knowledge Distillation
	Expert Pruning Approach
	Implementation

	Experiments
	Settings and Baselines
	Generative Modelling Tasks Under TFCL
	Learning Complex Data Streams Under TFCL
	Ablation Study for Defining the Number of Components

	Conclusion and Limitation

	Conclusion and Future Work
	Summary of Contributions
	Future Work

