
Deep learning-based multi-sensor fusion for
industrial process monitoring





Deep learning-based multi-sensor
fusion for industrial process monitoring

A dissertation submitted to

Department of Automatic Control and Systems Engineering

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

2nd June 2023



The University of Sheffield
Department of Automatic Control and Systems Engineering
Amy Johnson Building
Portobello Street
Sheffield, S1 3JD



“There is only one true

heroism in the world:

to see the world as it

is, and to love it”

Roman Rolland

v





Acknowledgement

First and foremost, I would like to express my deepest gratitude to my supervisor,
Professor Ashutosh Tiwari. Your guidance, patience, and unwavering belief inmy
abilities have been invaluable throughout this journey. Each discussion with you
has always been a treasure trove of knowledge, opening my eyes to new per-
spectives and methodologies, and offering insights and constructive criticisms
that pushed me to a level I did not think possible. You inspired me to remain resi-
lient in the face of adversity, a lesson I will carry with me beyond this academic
milestone. I am fortunate to have had you as my guide in this monumental
phase of my academic life.

Tomydearest father, Zhang Jianzhong, andmother, Chen Jv, whohaveprovided
me with continuous love, encouragement, and support throughout my entire
life, including the years spent on this PhD journey. Your unconditional love and
belief inmeprovided the strength I neededduringmy toughest times. Thank you
for the countless sacrifices youmade and for always puttingmy needs ahead of
yours. I hope that this achievement serves not only as a testament to my efforts
but more importantly, to your successful parenting. The journey to this PhD was
long and winding, and I could not have navigated it without you.

Great thanks to Dr Michael Farnsworth, Dr Divya Tiwari, and Dr Boyang Song,
who are ready to help all the time, providing me with meaningful guidance
and support. Big thanks to all the nice colleagues of Professor Ashutosh Tiwari’s

vii



group. It is my great pleasure to be a member of you.

Lastly, I would like to express my sincere appreciation to my friends and every-
one I met in the UK. Thank you for your company and it is a pleasure to have the
time with you.

viii



Declaration

I declare that the work presented in this thesis is my own. All material in this thesis
which is not of my own work, has been properly accredited and referenced.

Sheffield, 2 Jun 2023

ix





Abstract

Modern industrial processes rapidly evolvedue toadvanced technologies. How-
ever, long-term operation often leads to faults or anomalies originating from
ageing and stochastic factors, which can cost manufacturers up to 70% of their
production expenditures on maintenance. Effective process monitoring can be
crucial in preventing accidents, ensuring productivity, and preserving product
quality. A considerable body of research has illustrated that multi-sensor fu-
sion can be important for monitoring complex processes characterised by non-
linear, dynamic, and multi-modal properties.

Compared to traditional sensor fusion, deep learning-based fusion has the
advantages of being hypothesis-independent, allowing automatic feature ex-
traction, having a high upper complexity limit of the object being modelled,
and not relying on deep domain knowledge, making it an emerging direction.
However, its inherent properties, such as data hunger, black box, and high com-
putational complexity, limit its development in industrial data processing. There-
fore, this thesis focuses on the research of the following three aspects. Firstly,
what deep learning structure can be suitable for sensor fusion. Secondly, how
to alleviate the data hunger and black box nature of deep learning consider-
ing the complexities associated with industrial data acquisition and the need
for interpretability. Thirdly, how to optimise the computational consumption of
deep learning to save limited industrial computational resources.

This thesis first identifies the advantages of the attention mechanism for sensor

xi



fusion through a literature review and then proposed a novel dual-channel at-
tention model for sensor anomaly detection. This model was validated on a
public dataset and the results show that it outperforms the existing methods in
the literature working on this dataset in a number of metrics. However, the mod-
els based on attention mechanisms often require a large amount of data to be
used to their advantage, which can be difficult for industrial applications. There-
fore, a novel transfer learning approach was proposed to reduce the required
amount of data. This research first embeds sensor data into an embedding
space and then transfers a pre-trained natural language model to process the
sensor data, thus allowing even limited sensor data to benefit from the learning
capabilities of a large-depth model. The method was validated on three public
datasets and the results show that the method can achieve high performance
with a smaller amount of data. In addition, this research also shows that at-
tention mechanisms can be potentially useful for improving the interpretability
of deep learning. Finally, as the high computational load of the self-attention
mechanism was observed, a deep learning architecture specifically for pro-
cessing multi-sensor data was proposed for optimising the computational re-
source occupation based on the Fast Fourier Transform and the self-attention
mechanism. The results show a significant improvement in both memory usage
and inference speed.

xii



Contents

1. Introduction 1

1.1. Motivation: The Importance of Industrial Process Monitoring . . . . 1
1.2. The Role of Sensor Fusion in Process Monitoring . . . . . . . . . . . . 2
1.3. Research Challenges of Sensor Fusion in Process Monitoring . . . . 3
1.4. Research Scope of This Dissertation . . . . . . . . . . . . . . . . . . . 6
1.5. Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6. Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7. Thesis Outline and Research Contributions . . . . . . . . . . . . . . . 11
1.8. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Literature Review 15

2.1. Overview of Industrial Process Monitoring . . . . . . . . . . . . . . . 15
2.1.1. Model-based Process Monitoring . . . . . . . . . . . . . . . . 15
2.1.2. Knowledge-based Process Monitoring . . . . . . . . . . . . . 17
2.1.3. Data-based Process Monitoring . . . . . . . . . . . . . . . . . 18
2.1.4. Sensor Anomaly Detection . . . . . . . . . . . . . . . . . . . . 20

2.2. Definition and Architectures of Sensor Fusion . . . . . . . . . . . . . 22
2.2.1. Definition of Sensor Fusion . . . . . . . . . . . . . . . . . . . . . 22
2.2.2. Architecture of Sensor Fusion . . . . . . . . . . . . . . . . . . . 23

xiii



2.3. ConventionalMulti-Sensor Fusion Technologies for Industrial Process
Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1. Development of Sensor Technologies for Industrial Process

Monitoring and Faults Inspection . . . . . . . . . . . . . . . . 28
2.3.2. Commonly Used Sensor Fusion Algorithms for Industrial Pro-

cess Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4. Deep Learning Based Multi-Sensor Fusion Technologies . . . . . . . 39

2.4.1. Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . . . 41
2.4.2. Convolutional Neural Network (CNN) . . . . . . . . . . . . . . 44
2.4.3. Recurrent Neural Network (RNN) . . . . . . . . . . . . . . . . . 47
2.4.4. Transformer and Attention Mechanism . . . . . . . . . . . . . 51
2.4.5. Deep Learning and its challenges . . . . . . . . . . . . . . . . 55
2.4.6. Challenges of Deep Learning for Industrial Process Monitoring 59

2.5. Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3. Sensor Anomaly Detection Using Dual Channel Attention Mechanism in
Automated Vehicles 67
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3. Methodology and Architecture . . . . . . . . . . . . . . . . . . . . . 72

3.3.1. Overall Architecture of Dual-channel Attention CNN . . . . 72
3.3.2. CNN Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3. Dual-channel Attention Mechanism (DAM) . . . . . . . . . . 76
3.3.4. Class Token Concatenation . . . . . . . . . . . . . . . . . . . 80
3.3.5. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.1. Hyper Parameters and Training Process . . . . . . . . . . . . . 82
3.4.2. Results Evaluation Method . . . . . . . . . . . . . . . . . . . . 83
3.4.3. Single Anomaly Detection . . . . . . . . . . . . . . . . . . . . 84
3.4.4. Mixed Anomaly Detection . . . . . . . . . . . . . . . . . . . . 88

xiv



3.4.5. ADDITIONAL EVALUATIONS . . . . . . . . . . . . . . . . . . . . 89
3.5. Ablation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4. Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks 95
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3. Methodology and Architecture . . . . . . . . . . . . . . . . . . . . . 98

4.3.1. Similarities betweenNatural LanguageProcessingand Sensor
Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2. Model Architecture and Computation Process . . . . . . . . 100
4.4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1. Experiment 1: Condition monitoring of a hydraulic system . 106
4.4.2. Experiment 2: Bearing dataset . . . . . . . . . . . . . . . . . . 118
4.4.3. Experiment 3: Gearbox dataset . . . . . . . . . . . . . . . . . 120

4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5. Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion127
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3. Methodology and Architecture . . . . . . . . . . . . . . . . . . . . . 129

5.3.1. Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.2. Model input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.3. Decorrelation layer . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.4. Decorrelation block . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.1. Experiment dataset . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.2. Experiment environment and Sensorformer parameters . . . 136
5.4.3. Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xv



5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6. Discussion and Conclusions 141
6.1. Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2. Research Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References 149

A. Discussion on Application and Implementation in Practice 179
A.0.1. Integration into Existing Systems . . . . . . . . . . . . . . . . . 180
A.0.2. Maintenance and Updating . . . . . . . . . . . . . . . . . . . 180

B. Implementation codes - Chapter 3 181
B.1. Sensor Anomaly Injection . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.2. DA-CNN model Implementation and Training Process . . . . . . . . 187

C. Implementation codes - Chapter 4 207

D. Implementation codes - Chapter 5 221

xvi



List of Figures

1.1. Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Model-based Process monitoring . . . . . . . . . . . . . . . . . . . . 16
2.2. Data-based Process monitoring . . . . . . . . . . . . . . . . . . . . . 17
2.3. Data-based Process monitoring . . . . . . . . . . . . . . . . . . . . . 18
2.4. Classification based on the relationship between sensors . . . . . . 24
2.5. Classification based on the relationship between the inputs and

outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6. Different fusion levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7. Hybrid fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8. Hybrid fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9. Shewhart chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10.General sensor fusion architecture based on D-S theory . . . . . . 36
2.11. General Fuzzy Logic working flow . . . . . . . . . . . . . . . . . . . . 38
2.12. Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.13. Diagram of a single layer CNN . . . . . . . . . . . . . . . . . . . . . . 44
2.14.Multiple sensors input [141] . . . . . . . . . . . . . . . . . . . . . . . . 47
2.15. Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.16.Multiple sensors input [141] . . . . . . . . . . . . . . . . . . . . . . . . 50
2.17. Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.18.Overall architecture of the model proposed in [172] . . . . . . . . 55

xvii



2.19. Residual learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1. Instant Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2. Constant Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3. Gradual Drift Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4. Bias Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5. DA-CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6. CNN Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7. Dual-channel Attention Mechanism (DAM) . . . . . . . . . . . . . . 77
3.8. Sensor-wise attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.9. Time-wise attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.10. Performance comparison of different models for single anomaly

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.11. ROC Curves, AUC, and FPR95 of Instant Anomalies . . . . . . . . . 89
3.12. ROC Curves, AUC, and FPR95 of Bias Anomalies . . . . . . . . . . . 89
3.13. ROC Curves, AUC, and FPR95 of Constant Anomalies . . . . . . . . 89
3.14. ROC Curves, AUC, and FPR95 of Drift Anomalies . . . . . . . . . . . 89
3.15. ROC Curves, AUC, and FPR95 of Mixed Anomalies . . . . . . . . . . 90

4.1. Comparison between shallow neural network plus artificial feature
engineering and deep neural network which can extract features
automatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2. Multi-heads attention . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3. Sensor Data Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4. Proposed Model Architecture . . . . . . . . . . . . . . . . . . . . . . 100
4.5. Example of data reorganisation using 1-second sensor data as an

input data point (Sampling rates: sensor 1: 24Hz, sensor 2: 12Hz,
sensor 3: 6Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6. GPT-2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7. Attention heat map for accumulator task of experiment 1 . . . . . 110
4.8. 17 sensors attention weights . . . . . . . . . . . . . . . . . . . . . . . 111
4.9. Training history of 2 groups of sensors vs. Using all sensors . . . . . . 112

xviii



4.10. Classification accuracy under different amount of training data . 114

5.1. Sensorformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2. Decorrelation layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3. Channel mergence with time delay calibration . . . . . . . . . . . 133
5.4. Results of model speed and memory usage comparison . . . . . . 138

xix





List of Tables

1.1. Challenges of Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . 5

3.1. Hyper Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2. Instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3. Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4. Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5. Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6. Mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.7. PerformancedifferenceamongDSA-CNN, its sensor-wise attention-

only version, and its time-wise attention-only version . . . . . . . . . 90

4.1. Model parameters and training details . . . . . . . . . . . . . . . . . 106
4.2. Experiment 1-Operating conditions . . . . . . . . . . . . . . . . . . . 107
4.3. Experiment 1-Accuracy Comparison . . . . . . . . . . . . . . . . . . 108
4.4. Experiment 1-Method comparison . . . . . . . . . . . . . . . . . . . 117
4.5. Experiment 2-Subdataset . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6. Experiment 2-Results comparison . . . . . . . . . . . . . . . . . . . . 119
4.7. Experiment 3-Results comparison . . . . . . . . . . . . . . . . . . . . 121

5.1. Monitored Parameters of the Hydraulic System . . . . . . . . . . . . 135
5.2. Conditions of the Hydraulic System to be Predicted . . . . . . . . . 136
5.3. Hyper-parameters of Transformer and Sensorformer . . . . . . . . . 137

xxi



5.4. Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 139

xxii



Glossary

AI Artificial Intelligence

AM Additive Manufacturing

ANN Artificial Neural Network

BN Batch Normalisation

BPA Basic Probability Assignment

BSM Basic Safety Messages

CAVs Connected and Automated Vehicles

CCA Canonical Correlation Analysis

CL Center Line

CNN Convolutional Neural Network

CPS Cyber Physical System

CPS Cyber-Physical Systems

xxiii



CUSUM Cumulative Sum

D-S Dempster-Shafer

DAI-DAO Data in-Data out

DAI-FEO Data in-Feature out

DAM Dual-channel Attention Mechanism

DAS Data Acquisition System

DEI-DEO Decision in-Decision out

DFT Discrete Fourier Transform

EWMA Exponentially Weighted Moving Average

FEI-DEO Feature in-Decision out

FEI-FEO Feature in-Feature out

FFT Fast Fourier Transform

FL Fuzzy Logic

GNB Gaussian Naive Bayes

GPS Global Positioning System

GPT Pre-trained Transformer

GPU Graphic Processing Unit

GRU Gated Recurrent Unit

HI Health Index

ICA Independent Component Analysis

xxiv



IIoT Industrial Internet of Thing

IPC Industrial Personal Computers

JDL Joint Directors of Laboratory

KNN K-Nearest Neighbor

LCL Lower Control Limit

LDA Linear Discriminant Analysis

LIDAR Light Detection and Ranging

LN Layer Normalisation

LSTM Long Short-Term Memory

MSPM Multivariate Statistical Process Monitoring

NCA Neighborhood Component Analysis

NLP Natural Language Processing

PCA Principal Component Analysis

PLS Partial Least Squares Regression

PLS Partial Least Squares

RDE Research Data Exchange

ReLU Rectified Linear Unit

ResNets Residual Nets

RNN Recurrent Neural Network

RUL Remaining Useful Life

xxv



SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

SOTA State of The Art

SPC Statistical Process Control

SPMD Safety Pilot Model Deployment

SVD Singular Value Decomposition

TPU Tensor Processing Unit

TSA Time Series Analysis

TSC Time Series Classification

UCL Upper Control Limit

ViT Vision Transformer

xxvi



1
Introduction

1.1 Motivation: The Importance of Industrial Process
Monitoring
Modern industrial processes are evolving in a complex and extensive manner

due to the rapid development of advanced technologies and the rising de-
mand for high-quality, high-performance, and complex products on the global
market. However, regardless of how reliable the design of an industrial process is,
faults or anomalies are inevitable over long periods of operation due to the age-
ing of the system and a variety of unpredictable random factors [1], especially
for complex industrial processes. The diagnosis and maintenance of industrial
processes can be labour-intensive and time-consuming, and they usually cause
interruptions in the production process, which add significantly to the cost and
lower efficiency. According to [2], manufacturing companies spend between
15% and 70% of their whole production expenses on maintenance.

Moreover, failure to detect anomalies not only affects productivity and pro-
duction quality but may also lead to serious accidents over time. For example,

1



the explosion of the Mina Al-Ahmadi oil refinery caused by a fault in a condens-
ate line caused five deaths and the factory was destroyed by this accident [3].
In 2010, the Deepwater Horizon disaster released 5.3× 1011g of oil and 1.7× 1011g
of natural gas into the ocean because of the failure of a critical valve, making
it the largest accidental release [4]. This accident not only caused huge eco-
nomic damages and loss of life but also had a long-term impact on the marine
environment [4]. Therefore, effective and reliable process monitoring technolo-
gies that can detect and track the arising defects or anomalies have attracted
significant interest from both researchers and the industry.

1.2 The Role of Sensor Fusion in Process Monitoring
Inmodern industrial processes, the underlying non-linear, dynamic,multi-modal,

space-timecomplex andhigh-dimension natures are usually observed [5], which
renders them complex systems. For example, in the machining process, the
product quality is the result of a combination of various physical processes and
material properties, such as plastic deformation, chip formation, structural ho-
mogeneity and rigidity of material etc., making it a highly nonlinear and dy-
namic process [6]. Numerous studies have been conducted to figure out the
correlation between single sensor information (such as vibration and current)
and product quality or tool conditions [7] [8] [9], but gradually researchers real-
ised that the process monitoring based on a single sensor or process parameter
can be far from sufficient to handle its complexity. Hence, the research focus of
this domain has been moved to the multi-sensor system that monitors different
physical quantities at different locations [10] [11] [12], as combining information
from multiple sensors usually provides a more comprehensive recognition, and
led to better performance. The aforementioned phenomena are usually seen in
industrial process monitoring scenarios. Consequently, sensor fusion is gradually
growing in significance in this research area.

Sensor fusion refers to the integration and analysis of data and information

2 Introduction



from multiple sensors by combining redundant or complementary spatial or
temporal information to provide amore realistic and reliable representation of a
given system or object. Compared with the use of a single sensor, a multi-sensor
system has the following advantages [13]:

• Representation: In contrast to every single source, amulti-sensor system
usually has a higher level of abstraction, enabling a better semantic.
This facilitates the distillation of useful information from a large amount
of data obtained from industrial processes.

• Certainty: The confidence and signal-to-noise ratio of data can be im-
proved by combining the redundant information from multiple sensors
that monitor the same object or process, thus increasing the accuracy
and reducing the impact of single sensor failure and uncertainty on the
system. This feature is critical for dealingwith complex industrial environ-
ments such as dust contamination, changingworkloads, toughworking
conditions, and long-term working in industrial scenarios.

• Completeness: If new knowledge of the object being monitored can
be introduced by different sensors, a more comprehensive view can be
provided by organising these sensors into a consistent space, which is
preferable for handling the inherent complexity of industrial processes.

Therefore, sensor fusion technology is receiving increasing attention in modern
industry.

1.3 Research Challenges of Sensor Fusion in Process
Monitoring
Sensor fusion faces many challenges when applied to industrial process mon-

itoring, as in other applications. The challenges are summarised in table 1.1 [14–
17]. For any fusion algorithm, it is very difficult to solve all the problemsmentioned

1.3 Research Challenges of Sensor Fusion in Process Monitoring 3



in this table simultaneously. When designing a sensor fusion system for process
monitoring, the most critical challenges should be considered and identified,
depending on the characteristics and requirements of the specific tasks. The
common challenges in the view of industrial process monitoring are listed be-
low.

Sensor anomalies. Sensors are an important foundation for monitoring sys-
tems, as any monitoring and analysis algorithm relies heavily on sensor readings
to obtain information about the conditions of the system. The distortion of sensor
data will lead to a reduction in the amount of useful information, and even in-
troduce false information, which may lead to system degradation and even
catastrophic failure. However, the sensor readings can be anomalies due to
many reasons. For example, the harsh industrial environment (e.g., high work-
loads, dust contamination, strong vibration and long operating hours) and the
malicious attack [18].

Data correlation. This issue is very common for a process monitoring system
due to some process parameters of industrial processes can be highly correl-
ated with each other and system designers usually employ redundant sensors
mounted on distributed locations to monitor the same parameter. In addition,
the same noise source may bias different sensors simultaneously, making them
numerically correlated. This kind of dependency should be addressed properly,
otherwise, the fusion algorithm might be biased (over or under confidence) on
the one hand [15], and on the other hand, the computational resources may
be wasted.

Multiple modalities. In order to achieve a comprehensive perception of in-
dustrial processes, it is important to obtain data from different modalities which
might be significantly different in terms of characteristics, sampling frequency,
data structure, etc., such as vibration, vision, and pressure. How to fuse the dif-
ferent modalities and extract knowledge from them can be an essential and
challenging problem.

4 Introduction



Table 1.1.: Challenges of Sensor Fusion

Categories Challenges Descriptions

Data

-related

Data imperfection Distortion of data in the representation of real objects.

Data confliction
Opposite representation when representing the same

object.

Data correlation Dependencies between different sensors.

Data association
How to link data to different targets based on specific

tasks.

Data alignment
How to align the different types of data to a unified

framework.

Sensor

-related

Time scales
Sensors may vary in synchronisation, response time,

and sampling rates.

Sensor uncertainty
Sensor readings may be uncertain due to noise and

ambiguity.

Sensor anomalies
Outliers may be observed or the sensors may be in

a faulty state.

Accuracy
The accuracy of sensors has to be sufficient to fulfil

the requirements of tasks.

Algorithm

-related

Fusion of hard and soft data
The algorithms for the fusion of sensor data and

human-generated data.

Multiple modalities
Different modalities such as vision and vibration

may be monitored on the same object.

Granularity
A huge difference can be observed in the level of

details from different modalities (such as vibration

and temperature).

Architecture design Centralised or distributed fusion architecture.

Real-time performance
The trade-off between accuracy and inference

speed of fusion algorithm.

1.3 Research Challenges of Sensor Fusion in Process Monitoring 5



Granularity. This term represents the difference in the level of detail from dif-
ferent modalities. For example, the vibration data with a very high sampling
rate (around tens of kilohertz) can bemuch denser compared with other spares
data, such as rotation speed and temperature. However, it may be only a few
specific patterns inside of the vibration signal that really contributes to the in-
formation increment. The difference between the density of information and
data should also be addressed by the sensor fusion algorithms [19].

Real-time performance. It is another important challenge in process monit-
oring. If some faults in industrial processes are not spotted and addressed im-
mediately, they might quickly develop into failures. Considering the large and
complex input spaceof industrialmonitoring systems, achieving thedesired real-
time performance is not an easy task. Additionally, computational resources in
industrial scenarios are usually limited, which places higher demands on fusion
algorithms.

1.4 Research Scope of This Dissertation
Industrial process monitoring can be divided into model-based, knowledge-

based, and data-based process monitoring [20], which will be further discussed
in the following chapter. In this dissertation, the research focus will be data-
basedprocessmonitoring anddeep-learning-based sensor fusion algorithmswill
be developed for the following reasons:

• Firstly, in modern industries, the availability of process data has been
enhanced significantly by the advanced infrastructure for communic-
ation and computing [21], such as the Industrial Internet of Things (IIoT),
cloud/edge computing, and high-performance graphic/tensor pro-
cessing units (GPU/TPU). This provides a solid foundation for the data-
driven approach.

• Secondly, thedata-basedmethoddoes not require adeepunderstand-

6 Introduction



ing of the physical details of the process. This feature is preferred by
modern industries because of the increasing complexity of industrial
processes and the difficulties of modelling these processes physically.

1.5 Aims and Objectives
The overarching aim of this research is to adapt existing deep learning ar-

chitecture and develop novel deep learning architecture for the sensor fusion
domain for industrial process monitoring scenarios. This will be achieved through
the following list of objectives:

a) Objective 1: To develop a deep-learning-based reliable sensor anom-
aly detection algorithm to discover the anomaly values in amulti-sensor
data stream.

b) Objective 2: To develop a deep-learning-based fusion algorithm for
combining significantly different modalities for industrial process mon-
itoring.

c) Objective 3: To develop a transfer-learning-based method to mitigate
the data-hungry and black-box nature of deep learning for sensor fu-
sion in industrial process monitoring.

d) Objective 4: To reduce the computational resource consumption of the
developed algorithms, benefiting industrial usage.

1.6 Research Methodology
The overall research methodology of this thesis can be illustrated in Figure

1.1. This dissertation contributes to the industrial in-process monitoring domain
in three aspects, namely data reliability (Chapter 3), algorithm effectiveness
(Chapter 4), and computational efficiency (Chapter 5), as these can be three

1.5 Aims and Objectives 7



important indicators for evaluating the performance of a monitoring system.

Figure 1.1.: Research methodology

Objective 1: As shown in Figure 1.1, for achieving Objective 1 Sensor data an-
omaly detection, the first step was selecting a sensor anomaly detection data-
set, followed by problem-defining and -formulating. Then, among the preval-
ent deep learning algorithms, e.g. Convolutional Neural Networks (CNN), Artifi-
cial Neural Networks (ANN), Recurrent Neural Networks (RNN), etc., which deep
learning algorithm can be appropriate should be identified, before designing
the deep learning model architecture. Finally, the proposed model was evalu-
ated and compared with the other methods in the literature to verify its effect-
iveness.

The multiple time series data of Connected and Automated Vehicles (CAVs)
providedby the Safety PilotModel DeploymentData repository [22]were chosen

8 Introduction



for this research. This is because this dataset was composed of multi-sensor time
series and obtained under real CAV working conditions, and its representative-
ness was widely recognised. In addition, two high-quality publications in recent
years have used this dataset, providing good baselines for model performance
comparisons. The sensor anomaly detection task was formulated as a multi-
time series classification problem for a non-stationary process here, due to the
driving behaviour measured by multiple sensors was not controlled in this data-
set and the developed model was expected to provide an output on whether
the current sensor data present anomalies. The problem definition provides im-
portant guidance for the design of the model and the details will be presented
in Chapter 3. In terms of deep learning algorithms, the self-attention mechan-
ism of the Transformer was identified as a major building block for the overall
architecture via a literature review, since it has advantages for spatiotemporal
feature modelling, which can be essential for anomaly detection in multiple
sensor streams. The evaluation of the proposed model was kept the same as
the publications working on the same dataset to keep comparability.

Objective 2 and 3: Establishing a unified feature representation for different
modalities, as well as mitigating the data-hunger and black-box nature of deep
learning, are important aspects of improving the effectiveness of data-driven
industrial process monitoring algorithms. Due to the end-to-end model design,
these two objectives can be achieved simultaneously. As shown in Figure 1.1,
the first step for achieving the two objectives was selecting datasets of indus-
trial processes containing different modalities, followed by a transfer learning
scheme design used for reducing the required training data volume. The iden-
tification of the proper deep learning model was also conducted in this step.
Next, an embedding method was developed to combine different modalities
and how to identify the key sensors was investigated to improve the interpretab-
ility. Finally, the proposed model was evaluated and compared with the other
methods in the literature to test its performance and verify its effectiveness.

Themain dataset used in this researchwasConditionMonitoring of a Hydraulic

1.6 Research Methodology 9



System [23]. This is because this dataset contains 17 different sensors measur-
ing different modalities with different sampling rates, which can be suitable for
testing the proposed method. Two additional datasets, the bearing and gear-
box datasets were also applied here to verify the generalisability. These three
datasets were widely used in the literature, providing a variety of baselines to
compare with. In this research, the self-attention mechanism was used since
it was identified as an effective algorithm in the literature review and previous
research. In terms of transfer learning scheme design, the pre-trained natural
languagemodel, Generative Pre-trained Transformer 2 (GPT-2), was used under
the assumption that multi-sensor problems can be similar to natural language
processing. GPT-2 is an open-source model that can be fully run locally. The
latest GPT-3/4 can be more powerful, but they are held on a third-party server
which might be unacceptable by industrial applications due to data security
considerations. The reason for not using the prevailing transfer learning scheme
that transfers the model from a similar process is that similar industrial process
data may be equally difficult to obtain in industrial applications.

As for the creation of a unified embedding space, the data-driven method
was developed here as the efforts of artificial featuring engineering were ex-
pected to be kept minimum. The key sensor identification was based on the
self-attention mechanism since it can be regarded as the basis for the decisions
of the Transformer. The evaluation of the proposed model was kept the same
as the publications working on the same datasets.

Objective 4: To reduce the computational consumption of the Transformer.
As shown in Figure 1.1, The first step was to identify the major source of high
computational load. Then, the calculation mechanism can be modified and
adapted based on the characteristics of multiple sensors’ data processing. Fi-
nally, a deep learning architecture can be designed based on the modified
calculation mechanism, before evaluating and comparing its performance.

As this work can be an attempt to improve the Transformer architecture for

10 Introduction



sensor fusion used in previous research, the Hydraulic dataset was reused in this
research. The Fast Fourier Transform (FFT) based autocorrelation calculation was
employed here to improve the computational efficiency due to it can be effi-
cient for identifying the temporal and spatial redundancy. The overall model
architecture was kept the same as the original Transformer to keep comparabil-
ity. Finally, the original Transformer and the proposed model were tested on the
same GPU with full GPU capacity to evaluate their computational efficiencies.

1.7 Thesis Outline and Research Contributions
This thesis starts with investigating and verifying the potential of the Transformer

architecture, a deep learning architecture based on the Attention Mechanism,
on sensor anomaly detection. Then it focuses on adapting and improving this
architecture to sensor fusion tasks in process monitoring, with respect to training
data requirements, interpretability, and computational efficiency. The thesis is
composed of 6 chapters. A brief description of these chapters and the corres-
ponding contributions are given as follows:

Chapter 1: The current chapter first introduces the motivation for this research
and then discussed the importance and challenges of sensor fusion technology
in industrial process monitoring. Next, the research scope of this dissertation was
given, followed by aims and objectives. Finally, the key contribution of this dis-
sertation was summarised and the publications were listed.

Chapter 2: This chapter systematically reviewed theapplication ofmulti-sensing
fusion algorithms in industrial process monitoring, including an overview of indus-
trial process monitoring and sensor fusion technologies, as well as some com-
monly usedconventional sensor fusion algorithms andartificial intelligence-based
methods. The challenges of deep learning for the industry are also highlighted
in this chapter.

Chapter 3: This chapter proposes a novel Dual-channel Attention-based Con-

1.7 Thesis Outline and Research Contributions 11



volutional Neural Network for sensor anomaly detection inmultivariate time series.
The main contributions include:

a) A novel self-attention-based deep neural network block, Dual-channel
Attention Mechanism (DAM), was proposed. This block can incorpor-
ate sensor-wise and time wise attention, making the extraction of spa-
tiotemporal features integrated into the learning process, and elimin-
ating the artificial signal processing stage for extracting the spatiotem-
poral features before designing anomaly detection algorithms.

b) This method achieved SOTA performance on a public dataset of the
Connected and Automated Vehicles in a number of metrics, especially
its sensitivity and performance on small anomaly detection.

Chapter 4 This chapter develops a novel Transformer-baseddeep transfer learn-
ing solution that generalises the feature representation from a data-rich modal-
ity to address the challenges in sensor fusion, thus benefiting from the learning
ability of deep models and reducing the reliance on expensive industrial data
collection. The main contributions include:

a) This methodology can establish a unified feature representation and
association relationship for the multiple sensor data at significantly dif-
ferent sampling rates from different modalities.

b) The problem of poor interpretability when using Deep Learning in sensor
fusion tasks is alleviated based on the Attention Mechanism. By visual-
ising the attention weight matrix, the judgment basis of the model can
be inspected, thus assisting in the identification of critical sensors.

Chapter 5 This chapter proposes a modified Transformer architecture, Sensor-
former, for sensor fusion basedon the Fast Fourier Transformand the self-attention
mechanism to improve computational efficiency. The main contributions in-
clude:

12 Introduction



a) This architecture canmerge thecorrelatedchannels progressively through-
out the training process. Instead of the raw data level, the merging of
correlated data occurs at the feature learning level, providing a new
approach to addressing sensor correlation in Deep Learning.

b) The proposed method can reduce memory usage to around one-fifth
of its original size while maintaining similar inference accuracy. The in-
ference time can also be 2 times faster. This allows the Transformer to be
used for industrial multi-sensor data processing tasks in amore resource-
efficient and faster manner.

Chapter 6: This chapter summarises all the chapters, including the method-
ologies and the corresponding results. Based on the research presents in this
thesis, some future works worth investigating are presented subsequently.

1.8 Publications
• Zhang, Z., Farnsworth, M., Tiwari, D., Jewell, G. and Tiwari, A., 2022,

September. Sensorformer: A Memory-efficient Transformer for Industrial
Sensor Fusion. In 2022 27th International Conference on Automation
and Computing (ICAC) (pp. 1-6). IEEE.
DOI: 10.1109/ICAC55051.2022.9911157.

• Zhang, Z., Farnsworth, M., Song, B., Tiwari, D. and Tiwari, A., 2022. Deep
Transfer LearningWith Self-Attention for Industry Sensor Fusion Tasks. IEEE
Sensors Journal, 22(15), pp.15235-15247.
DOI: 10.1109/JSEN.2022.3186505

• Farnsworth, M., Tiwari, D., Zhang, Z., Jewell, G.W. and Tiwari, A., 2022.
Augmented classification for electrical coil winding defects. The In-
ternational Journal of Advanced Manufacturing Technology, 119(11),
pp.6949-6965. DOI: 10.1007/s00170-022-08671-w

1.8 Publications 13



• Tiwari, D., Farnsworth, M., Zhang, Z., Jewell, G.W. and Tiwari, A., 2021.
In-process monitoring in electrical machine manufacturing: a review of
the state of the art and future directions. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
235(13), pp.2035-2051. DOI: 10.1177/09544054211016675

• Zhang, Z., Yao, Y., Hutabarat, W., Farnsworth, M., Tiwari, D. and Tiwari, A.,
Self-attention-based Sensor Anomaly Detection in AutomatedVehicles.
Submitted to IEEE Transactions on Intelligent Transportation Systems.

14 Introduction



2
Literature Review

2.1 Overview of Industrial Process Monitoring
Industrial process monitoring leverages human labour, sensors, and various

data acquisition techniques to gather comprehensive insights from industrial
operations. This concept employs model-based, knowledge-based, and data-
driven approaches to analyse the collected data, aiming to infer the working
conditions and performance of the system. Within this framework, sensor an-
omaly detection plays a supporting role by identifying deviations in sensor data.
Although not the primary focus, this capability is essential for ensuring the accur-
acy and reliability of the monitoring process. It aids in the timely identification
of potential issues, contributing to the overall effectiveness of industrial process
monitoring by allowing for prompt corrective actions when necessary.

2.1.1 Model-based Process Monitoring

In model-based process monitoring, the first step is acquiring in-depth know-
ledge of the target process, which enables researchers to build amathematical

15



model to describe the process behaviour based on its physical and mathemat-
ical characteristics. The overall workflow can be illustrated in Figure 2.1. Given
a system input, the mathematical model will calculate the behaviour of the sys-
tem, allowing for comparison with the real behaviour. The difference between
real and calculated behaviour can be then identified by residual generation,
and the system conditions can be finally determined by evaluating the gen-
erated residuals. Namely, when the normal condition of this system is being
observed, the real behaviour should be the same as the calculated behaviour,
making the residuals zero. A non-zero value in the residuals is often an indication
of faults in the system. It is important to mention here that since noise and un-
certainty are generally present in real systems, the thresholds of residual values
are usually applied [24].

Figure 2.1.: Model-based Process monitoring

It is clear that interpretability is the strength of this approach since the physical
processes of processes are mathematically modelled. Over the last few dec-
ades, there has been a large number of mathematical model-based process
monitoring [25–27]. However, for manymodern industrial processes, developing
amodel-basedmonitoring system can be challenging due to the complexity of
the processes. Understanding sufficient physical details can be time-consuming
and difficult, which limits the application of the model-based methods [28].

16 Literature Review



2.1.2 Knowledge-based Process Monitoring

When sufficient physical details of the process are difficult to understand due
to the non-linear, dynamic or other complex factors, knowledge-based process
monitoring could be a possible alternative [28]. The conceptual workflow of
this method can be found in Figure 2.2. In this type of method, firstly, a dataset
that contains both historical normal and faulty conditions need to be created.
Then, the knowledge of this system can be extracted by evaluating the correl-
ation between the features of process parameters or sensor data and system
characteristics. Finally, the data from the real process will be analyzed based
on the extracted knowledge to identify system conditions. It can be found that
feature extraction can be critical for this type of method, as the representat-
iveness of these features will directly affect the performance of the monitoring
system. The commonly used features include statistical features such as mean,
variation, Kurtosis, and Skewness [29], time-frequency domain features [30],
and sometimes task-oriented features [31]. Expert systems [32], fuzzy logic [33],
and Bayesian networks [34] are examples of commonly used knowledge-based
model monitoring techniques [28].

Figure 2.2.: Data-based Process monitoring

Compared with the model-based method, although the knowledge-based
approach does not rely on the physical details of a system, it may not be an easy
task for this approach to address a large and complex input space, such as the
process monitoring system with a large number of sensors measuring different

2.1 Overview of Industrial Process Monitoring 17



modalities with different sampling rates. This is because extracting knowledge
from a high-dimension and complex space can be challenging.

2.1.3 Data-based Process Monitoring

Data-based, also called data-driven process monitoring is an approach that re-
lies entirely on the historical data of a system [35], hence it offers an alternative
when none of themethods mentioned earlier can handle the complexity of the
monitoring task. As shown in Figure 2.3, the data-driven process monitoring can
be regarded as an extension of the knowledge-based approach, with the dif-
ference that the knowledge extraction part is replaced by a data-drivenmodel.
The advantage of this method is that the mapping relationship between input
(sensor data) and output (system conditions) space can be found directly with
the help of the data-driven model, thus avoiding artificial knowledge extraction
and rule building.

Figure 2.3.: Data-based Process monitoring

Multivariate Statistical Process Monitoring (MSPM) is a set of commonly used
data-based methods and techniques for monitoring and controlling processes
by collecting and analysing multiple process variables. These methods are par-
ticularly suited to production environments where process variables have com-
plex interdependencies and interactions. The goal of MSPM is to ensure process
stability and maximise product quality while reducing waste and improving ef-
ficiency. By monitoring and analysing multiple variables in the industrial pro-

18 Literature Review



cesses, MSPM can identify production deviations, trends, and potential quality
issues based on the statistical hehaviour of multivariate process parameters that
are historically recorded [36].

The following are some examples of common MSPM methods:

• Principal Component Analysis (PCA): By identifying the dimensions that
contain the largest variation (principal components) in the data, PCA
reduces the dimensionality of the data while retaining most of the in-
formation. This helps to identify and monitor key variables in the pro-
duction process [36].

• Partial Least Squares Regression (PLS): PLS takes into account the cor-
relation between variables. It constructs a linear regression model to
predict one or more response variables. This is applicable when there
is a high degree of correlation between the process parameters [36].

• Statistical Process Control (SPC) charts: SPC charts are a tool for mon-
itoring the stability of an industrial process. It can identify abnormal
changes in the process by tracking the control limits of process variables
or product quality parameter [37].

• Multivariate control charts: such as T2 control charts and Squared Pre-
diction Error charts, specifically designed to monitor multiple variables
of interest. This is a frequent approach in the early literature [38].

Compared to model-based or knowledge-based approaches, data-based
approaches focus more on the use of real-world data to reveal the behaviour
and performance of processes. It supports continuous improvement. This is be-
cause, by continuously analysing newly collected data, the data-based feed-
back loop ensures that the process monitoring model can be continuously up-
dated and improved. However, the lack of interpretability is a significant draw-
back of this type of approach, as the characteristics and working behaviour of
the process aremodelled as a black box, resulting in the generalisation capabil-

2.1 Overview of Industrial Process Monitoring 19



ities of this method being often questioned. In addition, the data-hungry nature
is another disadvantage of this approach when applied to industrial scenarios,
as the complexity of the model rises with the complexity of the process being
monitored, and complex models tend to place higher demands on the amount
of historical data.

2.1.4 Sensor Anomaly Detection

Anomaly detection has been extensively researched in the literature and com-
monly used methods include, but are not limited to, statistical methods, signal
processing, time series analysis (TSA), anddata-drivenmethods, especially deep
learning. In a statistical approach, sensor data can be modelled by a statistical
model and readings that deviate from themodel prediction can be considered
anomalous according to a pre-defined threshold [39]. The statistical models for
this type of method can either be built from domain knowledge or statistically
derived from the data collected, such as the Gaussian model [40], histogram-
based model [41], Hypothesis testing [42], etc. Generally speaking, most of
them can be interpretable and computationally efficient. However, this type
of method requires that the sensor data can be characterised by a specific
distribution, which may not be the case for many applications, especially for
data of high dimensionality [43]. Signal processing-based anomaly detection,
such as the Fourier transform and the wavelet transform is another commonly
used method, which can be used for a variety of sensor data, such as acoustic,
vision, physical parameters date etc. In [44], a wavelet-basedmethod was pro-
posed to detect anomalies in the presence of noise, and they achieved remark-
able performancewith respect to detection rate and computational efficiency.
As signal processing methods attempt to form unique descriptions of different
signals, they often have an advantage when dealing with unseen anomalies.
However, similar to statistical methods, their performance may heavily depend
on making assumptions (e.g. quasi-stationarity) to processes such as noise dis-
tribution, which may limit their applications [43]. In terms of time-series analysis-

20 Literature Review



based anomaly detection, it can also be a prevailing Methodology [45], such
as Kalman filtering [46], autoregressive moving average [47], symbolic TSA [48],
etc. However, according to [43], this type of method may suffer from degrad-
ing performance when the anomaly causes dramatic changes to the original
sensor readings.

Deep learning as a promising technology for sensor anomaly detection has
receivedmore attention recently, particularly in scenarios where there are large
amounts of data with complex patterns and high dimensionality [49]. This is be-
cause deep learning methods typically can learn feature representations of the
data that contain complex patterns and dependencies automatically. Com-
pared with conventional methods, deep learning-based methods normally do
not require any assumptions on the distribution of input data or noise, making it
applicable inmost areas with a certain amount of data. CNN can be one of the
most commonly used methods and it has been shown to be effective in sensor
anomaly detection [50]. It can be especially useful for handling multiple sensor
inputs, as the multiple sensors data can be reorganised into one 2-d matrix or
different channels, which does not increase computational load significantly as
the other method when addressing multivariate inputs. For example, in [51],
Chen et al. proposed a CNN-based anomaly detection algorithm for multiple
sensor streams. However, CNN can be limited in its ability to model global fea-
tures due to its reliance on a large number of local kernels to extract features,
resulting in difficulty in capturing long-range dependencies, such as inter-sensor
dependencies and time dependencies. The above shortcomings of CNNs can
be well compensated by the LSTM, which models time dependence through
a recurrent structure. For example in [52], LSTM and CNN were combined to
detect sensor anomalies for Connected and Automated Vehicles (CAVs). They
achieved a state-of-the-art performance on a public CAV dataset. However,
since LSTM can be an RNN structure, despite the advantage over CNNs of in-
troducing time-dependent modelling, the forgetting problem may be still non-
negligible, resulting in small anomalies in the time series being difficult to detect.

2.1 Overview of Industrial Process Monitoring 21



2.2 Definition and Architectures of Sensor Fusion
Industry 4.0 or smartmanufacturing introduceda clear trend of industrial tech-

nology development, which is powered by advanced communication techno-
logy and advanced data analytical methods. In such a scenario, the variety
and amount of sensor data coming from the production process, products, and
production machinery may grow exponentially [53]. This often includes state,
process, vision, vibration pressure data, etc. Hence, there is a challenge on
how to harness sensor data collected from different modalities to extract bene-
ficial information, that can be used to improve the analysis performance such
as useful remaining life (RUL) estimation [54], faults inspection, and diagnosis.
Therefore, sensor fusion methods also referred to as data fusion, can play an
important role in solving this challenge.

2.2.1 Definition of Sensor Fusion

Humans and other animals normally employ a variety of senses, including sight,
touch, smell, hearing, and taste, to perceive the external environment in order
to gain a thorough awareness, assisting them in responding to the environment.
Sensor fusion is the engineering version of the same logic. This research domain
focuses on the methods for combining and deriving the information from mul-
tiple sensors to form a unified representation and thus improve the quality and
comprehensiveness of information compared with using a single sensor alone.
The formal definition of sensor fusion was initially given by the Joint Directors
of Laboratories (JDL): a multilevel, multifaceted process dealing with the auto-
matic detection, association, correlation, estimation and combination of data
from single and multiple sources to achieve refined position and identity estim-
ates, and complete and timely assessments of situations and threats and their
significance [55]. It can be found that the original concept of sensor fusion was
specifically aimed at target tracking and state estimation [56], but gradually,
as the benefits of multi-sensor fusion were widely witnessed, it had been gener-

22 Literature Review



alised to many other applications, such as autonomous vehicles [57], human
activity recognition [58], robotics [59], and industrial process monitoring [60]
etc.

2.2.2 Architecture of Sensor Fusion

Sensor fusion is an application-level term that involves many different disciplines.
Any attempt to obtain high-level information from multiple sensor information
sources can be classified as a sensor fusion technique. It is therefore difficult to
establish a unified sensor fusion classification method. In the literature, research-
ers usually classify sensor fusion architectures according to 3 different criteria:

• The relationship between the sensors being fused.

• The relationship between the inputs and outputs.

• The location where the fusion takes place.

Classification based on the relationship between sensors

These classification criteria were proposed by Durrant-Whyte [61]. As shown in
Figure 2.4, based on the relationships of multiple sensors, sensor fusion can be
divided into 3 different types:

• Competitive fusion: The competitive fusion configuration employs mul-
tiple sensors to measure the same modality independently to improve
the fault tolerance and reliability as illustrated by sensors S1 and S2 in
Figure 2.4. In some harsh working environments, sensors may experi-
ence failure, which can be unacceptable by some safety-critical sys-
tems, hence this kind of configuration is usually applied to such systems
to monitor critical parameters [62], such as hydraulic systems in aircraft
[63].

2.2 Definition and Architectures of Sensor Fusion 23



Figure 2.4.: Classification based on the relationship between sensors

• Complementary fusion: this configuration combines the sensors that
measure the same entities on different aspects to provide a more com-
prehensive view of the phenomenon being observed, which can be
illustrated by sensor S2 and S3 in Figure 2.4. For instance, in the field of
autonomous driving, although the cameras can easily determine the
identity of the surrounding objects, it can be challenging to precisely
measure the distance between the car and the other objects. The situ-
ation is the opposite for light detection and ranging sensors (LIDAR). For
LIDAR, while the distance information can be precise, the inference of
identity information can be challenging due to the lack of visual fea-
tures and low resolution [64]. Hence, the fusion of cameras and LIDAR
can enhance the understanding of the surrounding environment signi-
ficantly [65], and it can be classified as a complementary fusion con-
figuration.

• Cooperative fusion. This type of sensor fusion can be expressed by
sensor S4 and S5 in Figure 2.4. In this configuration, different sensors work
cooperatively to infer further information that can not be captured by

24 Literature Review



Figure 2.5.: Classification based on the relationship between the inputs and outputs

each of the single sensors. A typical example is binocular vision, which
uses the triangular formed by two cameras with different views and the
targets being observed to infer the depth of information.

Classification based on the relationship between the inputs and outputs

In addition to Durrant-Whyte’s classification based on sensor interrelationships,
Dasarathy offered an alternative classification method based on the relation-
ship between the inputs and outputs of sensor fusion algorithms [66] as shown
in Figure 2.5.

• Data In–DataOut (DAI-DAO) Fusion: This is the type of fusion where both
the input and output are raw data and no feature extraction or pattern
recognition will be performed, such as pixel matching in binocular vis-
ion and hyperspectral imaging techniques. Temporal and spatial data
registration is critical to this type of fusion, and it has significant require-
ments for data compatibility in terms of format, sampling rate, and di-
mensionality.

2.2 Definition and Architectures of Sensor Fusion 25



• Data In–Feature Out (DAI-FEO) Fusion: The features of the object or en-
vironment being observed are derived from multiple sources. This type
of fusion can be usually found in the domain of landscape monitoring
[67], for example in [68], different features indicating the air quality of
a city were generated from a variety of sources, such as sensors data
from air quality monitor stations, meteorological data, taxi trajectories
etc.

• Feature In–Feature Out (FEI-FEO) Fusion: A new feature space is gener-
ated from the features extracted from each of the single sensors. This
type of fusion is mainly used for improving the representativity or redu-
cing the complexity of the original feature space to lower the difficulty
of extracting the high-level information from the features [69].

• Feature In–Decision Out (FEI-DEO) Fusion: In this type of fusion, feature
extraction is usually performed first, and then a classifier or regressor is
used to make the decision. It could be one of the most commonly
used architectures of sensor fusion in process monitoring, and a large
amount of literature can be found in this domain falling into this cat-
egory [23] [70] [71].

• Decision In–DecisionOut (DEI-DEO) Fusion: This type of fusion focuses on
how to combine the decisions fromevery single source to provide a final
decision. When the above-mentioned architectures are not practical
due to excessive differences in data characteristics, DEI-DEO fusion is at
least feasible [72] [66].

Classification based on the location where the fusion takes place

In the literature, Dasarathy’s classification is sometimes simplified to sensor level
fusion (DAI-DAO, DAI-FEO), feature level fusion (FEI-FEO, FEI-DEO), and decision
level fusion (DEI-DEO) depending on where the fusion occurs as shown in Figure

26 Literature Review



(a) Sensor level fusion

(b) Feature level fusion

(c) Decision level fusion

Figure 2.6.: Different fusion levels

2.6 [73]. From sensor-level fusion to decision-level fusion, the level of abstrac-
tion increases with the level of fusion. It has to be mentioned that while lower
levels of fusion have the richest details of information, they are usually corrupted
by noise and large amounts of meaningless information. Higher levels of fusion
after data processing and feature extractionmay reduce the noise but may suf-
fer from information loss [66]. Therefore, in practice, it is a trade-off that should
be carefully considered when designing a sensor fusion architecture. In some
studies, different levels of fusion sometimes co-exist to achieve better perform-
ance, such as in [74], which can be referred to as hybrid fusion. An example
of this type of architecture can be found in Figure 2.7 where different levels of
fusion collaborate with each other to make final decisions.

2.2 Definition and Architectures of Sensor Fusion 27



Figure 2.7.: Hybrid fusion

2.3 Conventional Multi-Sensor Fusion Technologies for
Industrial Process Monitoring

2.3.1 Development of Sensor Technologies for Industrial Process
Monitoring and Faults Inspection

Since the dawn ofmodern industry, engineers and researchers have been trying
to monitor industrial processes to ensure the safety, stability and quality of indus-
trial production. The rough timeline of the development of sensor technologies
for process monitoring could be summarised in Figure 2.8. The very beginning
may be traced back almost a century to the statistical control charts, and the
most famous of these may be the Shewhart control chart proposed in the 1930s
[75] as shown in Figure 2.9. This technique is used to monitor whether a process
parameter is statistically controlled based on the assumption that the data are
normally distributed. In this method, the mean of the monitored parameter is
calculated as its centre line (CL), and then the upper control limit (UCL) and
lower control limit (LCL) can be obtained based on the CL as shown in the fol-

28 Literature Review



Figure 2.8.: Hybrid fusion

Figure 2.9.: Shewhart chart

lowing equations:
UCLX = X + A1σX

CLX = X

LCLX = X− A2σX

(2.1)

where σX is the standard deviation of the monitored parameter, A1 and A2

define the size of a fault-free working region. It can be found that the Shewhart
chart provides a clear visual representation of whether a process parameter is
abnormal or not, a small shift of mean cannot be effectively detected. Hence,
the cumulative sum (CUSUM) [76] and exponentially weightedmoving average
(EWMA) [77] were proposed to allow the accumulation of deviations from the
mean, making themmore sensitive to this kind of small deviation. However, due

2.3 Conventional Multi-Sensor Fusion Technologies for Industrial Process
Monitoring

29



to normal distributions and that the data are independent at each time steps
are important assumptions of these methods, their applications may be restric-
ted. Hence, some frequency domain monitoring schemes were proposed to
avoid these assumptions, such as periodogram-based monitoring [78], discrete
Fourier transform (DFT) based process parameter monitoring [79], and a vari-
ety of wavelet transform-based methods [80]. Although these methods were
proposed decades ago, they are still useful tools nowadays, and a number of
research can be found in the literature focusing on improving their adaptability
[81] [82].

It can be found that the above-mentioned process monitoringmethods focus
on univariate monitoring, and they simply ignore the cross-correlation among
process parameters which can contain critical information. Hence, multivariate
monitoringmethods were then proposed to solve this problem, such asmultivari-
ate EWMA [83], and multivariate CUSUM [84].

However, in modern industrial processes, the underlying non-linear, dynamic,
multi-modal, space-time complex and high-dimension natures are usually ob-
served [5], making the methods that monitor whether a range of process para-
meters are in the normal range far less sufficient to handle their complexity.
Therefore, how toabstract high-level information, suchas systemoperating status,
fault status, and/or product quality, directly from a large number of process
parameters is receiving increasing attention. As a result, sensor fusion-based
technologies, which can model the dependency among the process para-
meters and infer high-level information start to play an important role. Some
examples of commonly used algorithms are the Bayesian inference technique,
the Dempster-Shafer theory of evidence, fuzzy Logic etc.

Moreover, the recent rapid developments in artificial intelligence (AI), espe-
cially deep learning, provide a powerful alternative to the sensor fusion domain
for process monitoring applications and quickly become a trending research
area [85] [86] [87]. The main reason behind this is that deep learning algorithms

30 Literature Review



have shown a remarkable capability for feature learning from a complex input
space in many domains, such as natural language processing and computer
vision. Given the historical process data, they are able to find a mapping func-
tion from the input space to the output space automatically, even though this
function may be highly non-linear. In addition, unlike most of the conventional
methods, restricting assumption on input data is usually not required by deep
learning algorithms, increasing their flexibility significantly [28]. These features
are favoured when dealing with the complex parameters of modern industrial
processes, making them a hot topic in recent years.

2.3.2 Commonly Used Sensor Fusion Algorithms for Industrial Process
Monitoring

Principal Component Analysis (PCA)

An industrial process monitoring system that employs a high-dimensional input
to characterise the properties of processes inevitably holds redundancy and
correlated information, which may result in low monitoring performances and
overfitting of the sensor fusion algorithm [88]. Hence, PCA is used intensively as
it can be a very effective algorithm for data dimensionality reduction. The main
ideaof PCA is to project n-dimension features to k dimensions, and theprojected
features are known as k principal components. The k dimensions are mutually
orthogonal and they can be calculated from the original space, ordered by the
projected variance of the original data on the new axes. The workflow of PCA
can be summarised as follows:

1 ) Given a n-dimension data, X = {x1, x2, x3, . . . , xn}, to be reduced to k
dimensions.

2 ) Data decentralisation, i.e. the features of each dimension are subtrac-
ted from their respective mean values.

2.3 Conventional Multi-Sensor Fusion Technologies for Industrial Process
Monitoring

31



3 ) Calculate its covariance matrix 1
n XrXT.

4 ) Calculate eigenvalues and eigenvectors of covariancematrices by us-
ing Eigendecomposition or singular value decomposition (SVD)

5 ) Select the largest k eigenvalues, and the corresponding k eigenvectors
are then formed into an eigenvector matrix P.

6 ) Calculate the newly constructed k-dimension data Y by Y = PX.

It can be found that, due to the fact that the calculation of the covariance
matrix is necessary, the computational load can be increased hugely with the
increase of features number, and the outliers inside of features may influence a
lot.

Over the last few decades, dimensionality reduction has become an almost
universally adopted technology in the field of industrial process monitoring be-
fore building multi-sensor fusion models. Of these, PCA is probably the most
common one [89]. In [90], Heng et al. proposed a bearing monitoring model
that can predict its Remaining Useful Life (RUL) based on PCA. The multi-sensor
datawereprocessedby PCA to reduce thecomplexity of theirmonitoringmodel.
In [91], the PCA-processed data were the input of a valve monitoring system
designed for reciprocating compressors. Similarly, PCAcanalso bewidely found
for electric motor monitoring [92], machining process monitoring [93], and the
monitoring tasks in the nuclear power industry [94] etc.

In addition, many variants of PCA can also be found in industrial process mon-
itoring, such as robust PCA [95], kernel PCA [96], probabilistic PCA [97], and
recursive PCA [98] etc. It should be mentioned here that PCA is only one of
many ways to reduce the dimensionality of data, and there are many other ex-
cellent dimensionality reduction algorithms in the literature, such as Linear Dis-
criminant Analysis (LDA) [88], Neighborhood Component Analysis (NCA) [99],
Partial Least Squares (PLS) [100], Independent Component Analysis (ICA) [101],
etc.

32 Literature Review



Bayesian Inference

Baye’s theorem provides a method to determine the current state of the ob-
ject being observed by combining prior knowledge and current observations
mathematically, which can be described by the following equation:

P(y | x) =
P(x | y)P(y)

P(x)
(2.2)

where x can be the sensor measurements, and y can be the object’s states
under observation, such as faults or process conditions. It can be extended
to multiple sensors by assuming the observation of each sensor is conditionally
independent:

P (x1, . . . , xi | y) = P (x1 | y) ..P (xi | y) =
i

∏
i=1

P (xi | y) (2.3)

where xi denotes the individual sensor measurement. Hence

P
(
yj | xi

)
∝ P

(
yj
)
·

i

∏
i=1

P
(
xi | yj

) (2.4)

where yj denotes the state of the target object. By selecting themaximumvalue
of P

(
yj | xi

), the states can be determined. Bayesian inference is the recursive
version of Baye’s rule that takes time dependency into account by updating
the prior knowledge based on the previous posterior as shown in the following
equation:

P
(

y | Xk
)
=

P (xk | y) P
(
y | Xk−1)

P
(
xk | Xk−1

) (2.5)

where Xk−1 and Xk denote the previous and the current observations respect-
ively. Some researchers believe that Bayesian inference can be analogised as a
mathematical representation of the human reasoning process, due to the fact
that humans tend to make judgements about a situation based on their past
experience and update the judgements based on current observations [102].

As apopular sensor fusionmethodbasedonprobability theory, Baye’s theorem-
based methods have been widely used for process monitoring. In [103], Anne
et al. proposed a Bayesian method to monitor the working conditions of in-
duction motors based on the fusion of vibration, current and acoustic emission

2.3 Conventional Multi-Sensor Fusion Technologies for Industrial Process
Monitoring

33



sensors. Gaussian Naive Bayes (GNB) classifiers were used locally to infer the
system conditions based on each of the individual sensors, and then, the de-
cisions from these local classifiers were fused globally to generate the final de-
cisions by Bayesian inference. This two-stage design made the final decision
can be easily traced back to each of the sensors, as the decisions from each of
the sensors were the inputs of the global Bayesian inference, making the further
evaluation of a specific system fault possible. A similar two-stage design can
also be found in [102], the authors applied local classifiers to the different com-
ponents of amotor transmission system rather than the individual sensors, before
applying the global sensor fusion. The other examples can be found in [104]
and [92]. Generally, Bayesian inference models causality through probability,
which allows the probability of system conditions to be evaluated, making it an
important method in industrial process monitoring [102]. However, the Bayesian
methods have some weaknesses that limit their applications. Firstly, the prior
probabilities of the target events which can be essential for Bayesian methods
may be difficult to be determined [16]. Secondly, no knowledge of an event
is not allowed by Bayesian methods. For example, in the statement of whether
or not it will rain, if the probability of rain is 0.7, then there must be a probabil-
ity of 0.3 that it will not rain, and a state of uncertainty about whether or not it
will rain is not allowed to exist here. Hence, the difference between ignorance
(uncertainty) and randomness can not be discriminated against, making the
modelling of no knowledge very difficult [105].

Dempster-Shafer (D-S) Evidence Theory

To address the challenges faced by Bayesian methods mentioned in the previ-
ous section, the Dempster-Shafer (D-S) evidence theory was proposed by De-
mpster in [106] as a generalised version of the Bayesian method and further
developed by Shafer in [107]. On the one hand, D-S theory models the degree
of certainty that an event will occur through an interval of certainty, enabling
the modelling of ignorance or uncertainty. On the other hand, prior informa-

34 Literature Review



tion on the frequency of an event is not required, reducing the difficulty of using
sensor fusion algorithms [108].

In D-S theory, a finite set called frame of discernment, Θ, is firstly defined to
represent all the possibilities of states about a given system being considered as
follows:

Θ = {X1, X2 . . . XN} (2.6)

hence the set of all the subsets of Θ, i.e. the power set, can be expressed by:

2Θ =

 ∅, {X1} , {X2} . . . {XN} , {X1, X2} ,

. . . , {X1, X2, . . . , Xi} , . . . , Θ

 (2.7)

which represents all the possible propositions of the real states of the system,
including the empty set and its universe. Then, each element in this power set
will be mapped to between 0 and 1, which can be denoted by:

m : 2Θ → [0, 1] (2.8)

This process is called the basic probability assignment (BPA) and the mapping
rule is called mass function, requiring the following conditions:

m(∅) = 0 (2.9)

∑
A⊆Θ

m(A) = 1 (2.10)

Based on the value of m(A), the belief bel(A) which can be regarded as the
lower belief limit, and the plausibility pl(A) which can be regarded as the upper
limit of belief can be derived from the following equations:

Bel(A) = ∑
B⊆A

m(B) (2.11)

Pl(A) = ∑
B∩A ̸=∅

m(B) (2.12)

As a sensor fusion algorithm, D-S theory provides a combination rule that can
fuse thebelief frommultiple information sources (sensors), andeachof the sources

2.3 Conventional Multi-Sensor Fusion Technologies for Industrial Process
Monitoring

35



Figure 2.10.: General sensor fusion architecture based on D-S theory

is allowed to contribute belief to the joint belief based on its own degree of be-
lief. Using two different information sources with mass m1 and m2 as an example,
the combination process can be expressed by:

m(C) = (m1 ⊕m2) (C) =
1

1− k ∑
A∩B=C

m1(A)m2(B) (2.13)

where k is the coefficient measuring the conflict level between different inform-
ation sources, which can be derived by:

k = ∑
A∩B=∅

m1(A)m2(B) (2.14)

The results from the above-mentioned combination are usually used as the basis
for final decisions [109].

In terms of sensor fusion for industrial process monitoring, D-S theory can be
an important tool. The general process of applying D-S theory can be illustrated
by Figure 2.10. Firstly, BPA will be assigned to all the possible states of the system
being monitored based on the evidence provided by each information source,
followed by the joint belief calculation based on the combination rule. It can be
found that the representativeness and reasonableness of the BPA process are
the core of this approach. This is because evidence theory only provides a reas-
onable method for combining evidence from different sources, and the quality
of the evidence provided by different sensors is the key factor that directly af-
fects the performance of this method. Hence, there is much research focused

36 Literature Review



on the BPA process to develop a D-S theory-based process monitoring system.
In [110], Liu et al. used K-Nearest Neighbor (KNN) to assign the BPA to different
working conditions to monitor a motor transmission system. In [111], the authors
proposed a sensor fusion system for monitoring an Additive Manufacturing (AM)
process. A Convolutional Neural Network (CNN) was used to assign BPA based
on vision data, and then, it was fused with the BPA that came from the other
process parameters, achieving the fusion between vision and numerical pro-
cess parameters. Moreover, in [112], to improve the BPA process, the authors
introduced the assessment of information quality based on Shannon entropy to
the calculation of BPA, hence optimising the BPA. They successfully improved
the monitoring system of an engine by this method. Nevertheless, in addition to
the research on developing efficient BPA processes, the literature on optimising
the D-S evidence combination rule for industrial process monitoring can also be
found, for example, in [110] [113].

AlthoughD-S theory has beenproven efficient for sensor fusion in processmon-
itoring scenarios, it has some drawbacks. It is generally incapable of fusing the
evidence provided by highly conflicting data sources [114], and the evidence
provided by every single source is also assumed to be independent, which may
be very difficult to be ensured in real scenarios.

Fuzzy Logic (FL)

FL was first introduced by Lotfi Zadeh in [115], and it had gradually become a
popular high-level sensor fusion method due to its ability to model fuzzy inform-
ation. In this approach, the specific values of the sensors are fuzzified into an
interval from 0 to 1 by a function called the membership function, and then the
fuzzy output set can be generated by fusion rules defined in advance. The pre-
defined rules are usually in an IF-THEN format. For example, IF sensor 1 is large
and sensor 2 is small, THEN the output is small. For creating the rules, generally,
there are two options: (1) expert knowledge can be employed, (2) the rules can

2.3 Conventional Multi-Sensor Fusion Technologies for Industrial Process
Monitoring

37



Figure 2.11.: General Fuzzy Logic working flow

be calculated by historical data. Finally, the fuzzy output set can be defuzzified
to obtain the final output. The whole workflow can be illustrated in Figure 2.11.
In industrial sensor fusion scenarios, sensor uncertainty is widespread and the
influence of process parameters on the system can be sometimes ambiguous,
making it difficult to determine a one-to-one mapping from sensor data to per-
formance parameters. The FL can be a useful tool in such cases, this is because
it avoids the need to establish one-to-one mapping relationships by abstracting
sensor data into fuzzy descriptions such as ’small, medium or large’ and then
modelling the system behaviour by expert-specified rules.

Speaking of multi-sensor fusion for process monitoring, literature shows that
the FL could be a hot topic in complex non-linear process monitoring tasks. In
[116], Ge and Liu used FL on the decision level to monitor a chemical produc-
tion process based on the data from 41 sensors. Instead of using raw data,
the data were processed by a variety of technologies, such as PCA, PLS, and
ICA etc., and then FL has used to fusion the results from them to make the fi-
nal decision. In [117], Ammiche proposed an FL-based monitoring system for
monitoring the cement production process to address its non-linearity and time
dependency. In addition, machining-related process monitoring tasks, such as
surface roughnessmonitoring and tool wearmonitoring can be another domain
that intensively employs FL [118]. In [119], Kuntoglu and Saglam fused the feed
rate, cutting speed, depth of cut, acoustic emission, and tool tip temperature
by FL to predict machining tool wear. Similarly, Gajate et al. used FL to model

38 Literature Review



the signal from multiple sensors for tool wear monitoring. Compared with the
method in [119], the difference was that a neural network was combined with
FL, and the output of FL was used as the input of a neural network to make the
final decision.

Compared to probabilistic methods, FL has advantages in dealing with fuzzy
information and complex systems and is generally more suitable for high-level
applications such as decision-level fusion. However, due to the subjective de-
scription of information, such as expressions like ’high, medium, low’, and the
choice of membership functions generally highly relies on the experience of en-
gineers or researchers, its objectivitymaybequestioned [118]. In addition, while
the number of sensors to be fused, the computational complexity of FL can be
increased dramatically, making it challenging to use FL alone to monitor large
multi-sensor systems [120].

2.4 Deep Learning Based Multi-Sensor Fusion
Technologies
Deep learning is a data-driven approach. As many approaches to multi-

sensor fusion that can be used tomonitor industrial processes have been proven
effective in theory and in practice over a long time, deep learning may not be
necessarily essential. However, deep learning has several attractive advantages
that make it a very important role of this domain. Firstly, deep learning models
have the ability to automatically extract useful features and information from
large amounts of data. This can significantly reduce or even eliminate the reli-
ance on artificial feature engineering compared to traditional methods, which
may take a large amount of time and effort. Secondly, deep learning has a
strong potential to recognise sophisticated patterns and features out of data,
which can be difficult or even impossible for many traditional methods. This ad-
vantage is becoming increasingly important when dealing with the increasing

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 39



complexity of industrial process data. In other words, these two advantages
mean that while most traditional methods are only effective at specific levels
of fusion, e.g. D-S evidence theory is more suitable for decision-level fusion and
PCA is more suitable for the fusion at the raw data level, deep learning-based
approaches have no significant limitations in terms of fusion levels, giving it the
potential to be an end-to-end solution.

In addition, the availability of industrial sensor data has increased significantly
in recent years, which has built a solid basis for the use of deep learning. This is
because, firstly, modern industrial sensors are significantly more affordable and
reliable than those of the past, and they can be easily integrated into a variety
of machines of processes. Then, the recent rapid development of advanced
information and communication technologies such as Cyber-Physical Systems
(CPS), IIoT, big data etc. enables a large amount of sensor data to be collected,
stored and managed efficiently. Moreover, in addition to data availability, the
performance of computing technology such as cloud/edge computing and
hardware such as GPU/TPU is now much improved compared to the past, mak-
ing it possible for deep learning, which requires large computing capacity, to
be performed effectively and timely. The facts mentioned above are the reas-
ons why deep learning is receiving more and more attention in the industry. This
section will introduce the concepts of different deep learning algorithms and
summarise the current status and challenges of deep learning applications in
industrial process monitoring from the perspective of different deep learning al-
gorithms. The complete working flow of deep learning will be described in sec-
tion 2.4.1 as artificial neural network (ANN) is the most fundamental building
element of deep learning, and the other algorithms can be regarded as the
variants or different topologies of ANN. The working flow of the other algorithms
will not be repeated in the following sections, as they can be similar.

40 Literature Review



2.4.1 Artificial Neural Network (ANN)

The basic idea behind ANN was to replicate how biological neural network pro-
cess information, where each neuron combines the signals it received from the
neurons to which it is linked before passing them on to the next neuron in ac-
cordance with a simple activation rule, and such a network of interconnected
neurons is a neural network. Themathematical version of the above-mentioned
process is the ANN algorithm, and it was first proposed by McCulloch and Pitts
in the 1940s in [121], and this can be regarded as the very beginning of ANN.

The general architecture of ANN is composed of an input layer, several hid-
den layers, and an output layer, which can be illustrated in Figure 2.12a. Each

(a) Basic Neural Network Architecture (b) One Single Neuron

Figure 2.12.: Neural Network

neuron is linked to all the neurons in the previous layer except for the input layer,
and there is no direct connection among the neurons within each layer. The
computation process of each of the neurons in ANN is shown in Figure 2.12b,
which can be described by the following equation:

y = θ

(
N

∑
i=1

ωixi + b

)
(2.15)

where ωi are the weights of different inputs xi, b is the bias, θ (·) is the activation
function which maps this summed inputs of a single neuron to its output, and

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 41



in turn, the output is passed as the input of the next neuron. The activation
function is a very important element. This is because, based on equation 2.15,
an ANN without activation function is a linear regression model, which means
its modelling capacity can be limited. By using a non-linear activation function,
the non-linearity can be introduced to ANN, hence its scope of application can
be significantly expanded. The commonly used functions are Sigmoid, Tanh,
ReLU and its variants, Swish, and SoftMax, and a detailed description of these
functions can be found in [122].

Optimising the parameters of ANN, i.e. the ωi and b for all the layers is the key
for using ANN, which is also called the training process. This can be achieved by
minimising the distance between the outputs of ANN and the desired target val-
ues yi, i.e. the loss of ANN. Given a set of training data, (xi, yi, i = 1, . . . , B), where
B is the batch size of the training samples. The loss of ANN can be evaluated by
the following equation:

J (φ) =
1
B

B

∑
i=1
L (yi, y∗i ) (2.16)

where J (φ) denotes the mean loss of a batch of training data given the para-
meters of ANN φ, L(·) denotes the loss function which is used to evaluate the
loss between the output of ANN y∗i and its real values yi. Then the parameters
of ANN can be updated recurrently based on the loss obtained from equation
2.16 by the following equation, which is the backpropagation procedure [123]:

φj = φj−1 − η∇φJ
(

φj−1
) (2.17)

where η is the learning rate that controls the step size of each parameter up-
date iteration. The above process can be repeated until the loss of the model
converges and a complete training process is completed.

The nature of ANN can be a non-linear mapping function. ANN has gradu-
ally become the focus of research because, in 1989, Hornik et al. proposed the
Universal Approximation Theorem which proved that there is no theoretical up-
per limit to the complexity of the functions that can be fitted by an ANN [124].
This theorem stated that if an ANN has at least one hidden layer and its activa-

42 Literature Review



tion function Ψ is non-decreasing and satisfies Ψ : R −→ [0, 1], limλ→∞ Ψ(λ) = 1,
limλ→−∞ Ψ(λ) = 0 (e.g. sigmoid activation function), it can approximate any
functions from one finite space to another with arbitrary accuracy, by giving a
sufficient number of hidden neurons. This is the theoretical assurance that ANN
and deep learning methods have significant promise for a variety of applica-
tions.

Speaking to industrial process monitoring applications, the data collected by
the different sensors are often used as inputs to the ANN and the outputs can be
high-level information such as the working conditions of the system, thus achiev-
ing the fusion of data from multiple sensors. In the literature, process monitoring
using ANNs alone could be conservative and shallow networks are usually used.
Therefore the input data of ANN are often in the form of single value sensor data
such as temperature, speed, etc., rather than high-frequency complex signals
such as vibrations to avoid excessive difficulties for shallow ANN. For those using
high-frequency complex signals, manual feature extraction is often performed
to represent the original signal with several single values before using an ANN.
This is due to the fact that although there is no upper limit to the complexity of
the functions that can be fitted by an ANN, the challenge is whether the optimal
parameters can be obtained by optimisation [123]. In addition, the fully con-
nected structure will also introduce a large computational load that increases
exponentially with the number of input features. For example, given a hidden
layer with 1,000 neurons, if the input of an ANN has 1,000 features, there will be
1,000 x 1,000 = 1,000,000 parameters to be optimised.

In [125], Rafiee et al. developed an ANN-based gearbox monitoring system.
The vibration signal was firstly decomposed into 16 different wavelet packets
by wavelet transform, and then the standard deviations of these packets were
used as the input of a 3-layer ANN to classify whether the gearbox was in a faulty
condition. In [126], Aydin et al. used ANN to monitor the metal-cutting process.
The cutting speed, depth, force, and feed rate were employed as ANN’s input
to predict the wearing conditions of the tool. The above-mentioned methods

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 43



can be the typical methodology of using ANN for process monitoring, similar re-
search can also be found in [127] [128]. However, when solving multiple sensor
problems, the space of the extracted features can be huge, which can lead to
the failure of ANN. Hence, feature selection or dimension reduction technolo-
gies such as PCAare usually performed to reduce the input space. For example,
in [129], the genetic algorithm was used to select a small subset of features be-
fore using ANN. Similarly in [130], ReliefF, an algorithm that can search depend-
encies among features, was used.

2.4.2 Convolutional Neural Network (CNN)

As mentioned in the previous section, ANNs are normally not ideal for handling
the high sampling rates data directly which results in large input space. Hence,
CNN was proposed to mitigate this problem [131]. Using a 2-dimension input
as an example, the general structure of CNN can be illustrated in Figure 2.13.
Firstly, a number of kernels of size m× n can be randomly initialised to perform

Figure 2.13.: Diagram of a single layer CNN

convolution calculation with the input to generate feature maps based on the
following equation (the calculation process for one kernel):

G(i, j) = (X ∗ K)(i, j) = ∑
m

∑
n

X(i + m, j + n)K(m, n) (2.18)

44 Literature Review



where G(i, j) denotes the value in the feature map at i-th row and j-th column,
K(m, n) denotes the value in the kernel at m-th row and n-th column, and X is
the input. Then, a pooling layer is usually applied subsequently to downsample
the feature maps. This layer replaces the values in a small rectangular neigh-
bourhood of feature maps with their statistical features. For example, the max
pooling can be expressed by the following equation:

y = max
(p,q)∈R

xpq (2.19)

where y denotes the output value of the pooling operation at a rectangular
areaR, xpq denotes the element inR at (p, q). The other commonly used statist-
ical features include average, weighted average, L2 norm, etc. There has to be
mentioned that similar to ANN, nonlinear activation is also necessary for CNN,
and it can either be utilised before or after pooling. The above-mentioned con-
volution layer and pooling operation can be repeated several times to extract
features, and finally, all the feature maps from the last layer can be flattened
and sent to an ANN which is used for classification or regression.

Compared with ANN’s fully connected architecture, CNNs have the following
3 characteristics [123]:

• Sparse connectivity. Instead of a full connection, CNNs use smaller ker-
nels to scan the entire input in steps of a certain size, which effectively
reduces the number of network parameters and hence the computa-
tional load and training difficulty.

• Parameter sharing. This means each kernel shares parameters when
scanning all locations of the input, thus reducing the storage require-
ment of model parameters.

• Equivariant representations. The output of the convolution operation
will be shifted in accordance with the input data shift, so the learned
representations remain the same.

Therefore, CNNs are normally more appropriate for processing high-frequency

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 45



data, especially signals where local features are critical. A good example of
this is the major success of CNNs in image processing [132]. In terms of indus-
trial sensor data, high sampling rate data can be very important and intensively
used. For example, the high-frequency current signature can be an excellent
representation of motor conditions [133]. Vibration and acoustic emission data
which can be tens of kilohertz can be critical for the monitoring of bearings
[134], gears [135], motors [133], machining [136], drilling [137], welding [138]
etc. CNN provides a good alternative algorithm to extract features automat-
ically from such high-frequency data and make decisions, instead of artificial
feature engineering which requires domain knowledge and experience.

In [139], Jing et al. conducted a comprehensive comparative study of CNN
for gearbox condition monitoring tasks using vibration signals. They pointed out
that using CNN to extract features automatically from vibration signals improved
the accuracy of working condition classification by 10% compared with using
manual feature engineering both in the frequency and time domains. In [140],
Zhao et al. verified that in motor transmission monitoring, CNN is not only effect-
ive in extracting features of vibration signals, but they are also effective in resist-
ing noise contamination, which is widely present in vibration signals. In their ex-
periment, different types of noise with signal-to-noise ratios (SNRs) ranging from
5 to –5 dB were injected, such as white Gaussian noise, Laplacian noise, and
pink noise. They found that noise only had a limited effect on the monitoring al-
gorithm. In terms of multiple-sensor fusion problems, CNN-based methods can
be easily extended to the multiple-sensor version. Researchers often reorganise
data from multiple sensors into a two-dimensional matrix as input and then use
CNNs for feature extraction. An example can be found in [141] as shown in Fig-
ure 2.14. In addition, due to the outstanding achievements of CNNs in the field
of image processing, there is also some research in the literature using a similar
approach to visual image processing for the analysis of high-frequency sensor
data. For example in [142] and [143], the high-frequency signals can be con-
verted to images (time-frequency spectrum) by Fast Fourier Transform (FFT) or

46 Literature Review



Figure 2.14.: Multiple sensors input [141]

Wavelet Transform, and then a CNN can be used to extract features from these
images and make decisions.

2.4.3 Recurrent Neural Network (RNN)

In the previously mentioned ANN and CNN, the former input is not related to the
latter input, which means they can be not ideal for modeling the time depend-
ency. Although in the approach using CNNs the time series can be reorganised
into a vector or matrix and then the convolution kernel can be applied to scan
the entire sequence, the convolution kernel only extracts information from the
data in the current perception field and does not take into account the influ-
ence of previous data on the current feature extraction process. In other words,
the parameter-sharing mechanism of CNN will use the same set of parameters
to extract features spatially from a sequence while ignoring time dependence.
To introduce time-dependent modelling and increase the capabilities for mod-
elling sequential data, RNNs were proposed [144]. The overall structure of RNN
can be demonstrated in Figure 2.15. Generally, RNNs can be divided into 2

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 47



(a)

(b)

Figure 2.15.: Recurrent Neural Network

categories based on how to incorporate the previous output:

• Using the hidden states of previous output as the input of the current
feature extraction as shown in Figure 2.15a. It can be described by the
following equations:

h(t) = σ
(

b + Wh(t−1) + Ux(t)
)

y(t) = c + Vh(t)
(2.20)

where, σ (·) is the activation function, W , U, and V are weight matrix, b

and c are bias.

• Using the previous output directly as the input of the current feature
extraction as shown in Figure 2.15b. It canbedescribedby the following
equations:

h(t) = σ
(

b + Wy(t−1) + Ux(t)
)

y(t) = c + Vh(t)
(2.21)

48 Literature Review



In RNNs, in contrast to CNNs, parameter sharing occurs in the time dimension,
which means a set of parameters can be used to extract features at all time
steps of the input sequence, and the output at previous time steps can also be
incorporated as input to the current feature extraction process. Thus, RNNs can
be better at modelling time dependence. In addition, as shown in Figure 2.15,
the output of RNN at each of the hidden states can be accessible, enabling the
sequence-to-sequence mapping, and extending the scope of application of
neural networks significantly. However, it has to be mentioned that, due to the
inherent recurrent operation of RNNs, the gradients tend to vanish or explode
during the optimisation process as they have to propagate over a number of
time steps. This means it can be difficult for RNNs to model a long sequence
while keeping the information from the early time steps [145], also called the
forgetting problem. As a result, a gating mechanism was introduced to RNN to
address this. Generally speaking, this mechanism is able to alleviate the forget-
ting problem by the following strategies:

• The percentage of past information that can be used and the percent-
age of present information that can be stored in memory can be con-
trolled by gates.

• Part of the information from the past can be integrated directly into the
output without the recurrent operation.

Therefore, long-termdependencecanbebetter preservedandharnessed. Among
the network structures with this mechanism, Gated Recurrent Unit (GRU) [146]
and Long Short Term Memory (LSTM) [147] are the most widely used. Of these,
LSTM can be the more widely used in the field of industrial sensor fusion applic-
ation in literature, and its structure can be demonstrated in Figure 2.16.

RNN is a very important algorithm in industrial process monitoring, especially in
RUL estimation tasks, because the system’s degradation patterns can be highly
time-dependent (or work-cycle dependent) [148]. In RUL tasks, a number of
sensors can be used to monitor the key parameters of a system, generating

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 49



Figure 2.16.: Multiple sensors input [141]

multiple time series in different sampling rates, which makes the input space a
complex and high-dimensional space [149]. The final target of RUL is to map
the high-dimensional input space to a one-dimensional Health Index (HI) which
indicates how far until the system fails. Therefore, the dimension reduction tech-
nologies and feature extraction in the multi-streams time series can be the keys
to these tasks. Although many conventional sensor fusion algorithms might be
the options for RUL estimation, such as PCA [150], isometric feature mapping
reduction [151], and logistic regression [152], Wang et al. and Khelif et al. poin-
ted out that they might potentially distort the degradation patterns, causing
the large prediction errors when the system being evaluated is at the early or
end of its life cycle [153] [154]. As a result, RNNs have attracted the attention
of many researchers due to their excellent data-driven feature extraction cap-
abilities and they do not require any assumptions or domain knowledge on de-
gradation patterns [155]. Generally, multiple sensor data or manually extracted
features can be the input of RNNs, and the output can be the estimated RUL. For
example, in [156], LSTM was used to predict the RUL of electromagnetic pumps
based on vibration and pressure sensors. Similarly, in [157], the original RNN and

50 Literature Review



LSTM were combined to estimate the RUL of the turbofan engine based on the
data from 21 different sensors.

In addition, instead of using RNNs to find the mapping rules between sensor
readings and RUL directly, there aremany researchworks organised the RNN into
an autoencoder structure to obtain a latent representation of the original multi-
sensor data, and then the generated latent representation can be used as the
input of different RUL estimation algorithms. This is because this type of method
normally shows better generalisation ability and prediction accuracy [149]. For
example, in [149], the authors embedded the original multi-sensor signals into a
latent space by an RNN-based autoencoder, and then the generated repres-
entation was used to estimate the RUL of turbofan engines. A comprehensive
review of this type of method can be found in [158].

2.4.4 Transformer and Attention Mechanism

Inspired by the fact that humans tend to focus only on the key information in the
field of vision, the Attention Mechanism (AM) first appeared in the field of com-
puter vision and gradually became a hot topic [159] [160]. Then, Bahdanau
et al applied the AM to Recurrent Neural Network (RNN) to process natural lan-
guages. They found that the AM not only visualised deep learning models to
some extent but also addressed the fatal flaw of RNN: the forgetting problem
when processing long sequences [161]. Later on, researchers found that a deep
model built entirely on the principles of the AM improved the performance in
machine translation tasks considerably [162]. Here the RNN architecture was
abandoned as it was believed that the forgetting problem was rooted in the
large number of iterations of RNN, this model was named a Transformer [162].

The overall architecture can be illustrated in Figure 2.17. The original Trans-
former consists of encoder blocks and decoder blocks. While the encoder
blocks extract features from the input sequence, the decoder blocks gener-
ate an output sequence based on the feature extracted from the input. The

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 51



Figure 2.17.: Transformer Architecture

two Transformer blocks are composed of twomain components: themulti-head
self-attentionmechanism and the fully connected feed-forward network, which
can be the cores of the Transformer’s function.

The self-attention mechanism is one of AM and is used to calculate the im-
portance scores of each element in a sequence, and then each element can
be weighted before further processing. It should be mentioned that the import-

52 Literature Review



ance scores are obtained by a locally trainable ANN, which allows the Trans-
former to dynamically allocate its attention based on each input sequence,
enabling important information to be filtered out effectively. In addition, the
self-attentionmechanismprocesses eachelement in a sequence in parallel and
therefore offers the following benefits over traditional networks:

• Comparedwith the recurrent operation of RNNs, the parallel processing
leads to the Transformer generally not having the problem of forget-
ting that exists in RNNs, making it more efficient for processing long se-
quences and less prone to vanishing gradients [162].

• Due to the inherent parallel data processing, the training process of the
Transformer can make better use of high-performance AI acceleration
chips, such as GPUs and TPUs, making the training process faster and
more efficient.

• In contrast to the local pattern matching of CNNs, the self-attention
mechanism treats the elements at different distances equally, making
the long-range dependencies easier to be discovered [163] [164].

However, due to the self-attention mechanism can only perform linear projec-
tion which limits its modelling capacity, the fully connected feed-forward net-
work was added to the Transformer after the self-attention mechanism to intro-
duce non-linear transformation capacity.

The Transformer architecture was first proven to be effective in NLP tasks [162]
and has achieved significant success until today, such as the Pre-trained Trans-
former (GPT) family [165] and the very famous ChatGPT recently [166]. Further-
more, it also showed strong modelling capabilities in other areas, such as Vision
Transformer (ViT) for vision recognition [167] and Alphafold for protein structure
prediction [168]. As a result, in recent years, the Transformer architecture begins
to attract the attention of researchers in the field of industrial process monitor-
ing, especially for processing multiple sensor data streams. In [169], Jing et al.

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 53



found that the original Transformer architecture can be effective for processing
multiple streams of vibration signal processing in rotation machinery fault dia-
gnosis. They first divided raw vibration signals into multiple segments at equal
time intervals and reorganised these segments into a 2-dimension matrix as the
input of Transformers. Although they did not make any adaptive modifications
to the Transformer architecture and did not introduce any manual feature ex-
traction, on the Case Western Reserve University Bearing Fault dataset [170],
top-ranking accuracy was achieved. Similarly, in [171], a multiple time series
air handling units monitoring system based on the Transformer was proposed.
They compared the Transformer with GRU, a traditional time series processing
neural network, and the experiment results showed that the transformer model
outperformed the GRU in both performance and training easiness. However,
although the Transformer has great advantages in discovering the long-range
dependency in multi-streams time series, it can be less effective for local feature
recognition and sensitive to noise [172]. Hence, Pei et al. explored the combin-
ation of CNN and the Transformer to overcome the drawbacks, as local feature
recognition and noise resistance can be the strong points of CNN [172]. They
employed the Transformer block as theprimary feature extractor andperformed
a point-to-point mapping of the raw data before applying a CNN to extract the
higher-level features as shown in Figure 2.18. They found that, compared with
the original Transformer, CNNs, andGating RNNs, the Transformer combinedwith
CNN can bemuch better in accuracy under different levels of noise (SNR values
with the range of-6-6 dB). A similar methodology can also be found in [173] and
[174], where they applied CNN first before using the Transformer.

In addition to the end-to-end approaches mentioned above, the Transformer
can be also used to find the non-linear transformation between the raw sensor
data and the representative latent space, which can be very important for tra-
ditional process monitoring algorithms. For example, in Canonical Correlation
Analysis (CCA) based process monitoring, multiple sets of many-to-one linear
transformations of multi-sensor data need to be identified before calculating

54 Literature Review



Figure 2.18.: Overall architecture of the model proposed in [172]

the correlation coefficients of the transformed data which can be used to eval-
uate the health of the system. The key to this type of method can be how to
find the transformations that can properly represent the characteristics of the
process being monitored [175]. In [175], Chen et al. replaced the linear trans-
formations of the CCA-based monitoring algorithm with the Transformer to en-
able non-linear transformation, improving the performance of the CCA-based
method for nonlinear dynamic processes monitoring. Similarly, in [176], the key
contribution of their research can be the use of the Transformer to find the map-
ping function between raw sensor data and a latent space before further pro-
cessing.

2.4.5 Deep Learning and its challenges

The concept of depth in deep learning implies an increase in the number of
network layers. With the increasing depth of the neural network, the number of

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 55



non-linear transformations that can be performed by the deep learning mod-
els increases, which enables the models to abstract more complex representa-
tions from input data andmodels complex relationships and patterns. This allows
deep neural networks to extract features from complex data automatically and
eliminates the need for artificial feature engineering, which can be an import-
ant reason why deep learning has been used and achieved great success in a
variety of applications. However, training a deep network will not be as easy as
training a shallow network, which can be reflected in three main aspects:

a) Challenge 1: Difficult to train to convergence due to gradient vanish-
ing or explosion [177] [178]. During the backpropagation process by
which the deep learning model updates its weights, the partial derivat-
ive of the loss functionwith respect to theweightswill be calculatedand
then gradually propagates to the very first layers. When the network
layers are deeper, the gradients are likely to be repeatedly multiplied
by small numbers or large numbers in the chain rule of backpropaga-
tion, which results in the gradient vanishing or explosion problems re-
spectively. This means that the model is unable to update the weights
of the first few layers of the network, resulting in the model failing to
converge [179]. Currently, there are many existing methods to address
these problems, such as weight initialisation, gradient clipping, and nor-
malisation techniques. Weight initialisation techniques can effectively
balance the variance of the input and output at each of the layers,
preventing the gradient from being too small or too large, enabling the
training of deeper networks [180]. Gradient clipping is used to set an
upper limit for gradients to void extreme weight updates that prevent
the model from convergence. This technique was first found effective
in practice and later proved mathematically in [181]. In terms of nor-
malisation, such as batch normalisation and layer normalisation, they
are usually appliedbefore non-linear activation functions to stabilise the
distribution of the input, which prevents the inputs from drifting into the

56 Literature Review



saturation zone of the activation function, thus preventing the gradient
from being updated [182] [183]. Using a combination of these tech-
niques, the trainable depth of neural networks can be improved to tens
of layers for stochastic gradient descent (SGD) with backpropagation
[184].

b) Challenge 2: After deep networks are able to converge, due to the
overpowering fitting capability, they can be prone to suffer from over-
fitting and thus lose their generalisation capability, resulting in unsatis-
factory results on the unseen data [185]. This problem can be mitig-
ated by regularisation techniques that can reduce the complexity of
the model, such as dropout, weight decay, and early stopping tech-
niques. Dropout techniques can reduce the structural complexity by
randomly ignoring a certain percentage of the neurons within a layer
during every training iteration, forcing the model to bemore robust and
tends to learn independent features [186]. The weight decay tech-
nique works by introducing a penalty term to the loss function, encour-
aging the weights to be small during optimisation. The commonly used
regularisation can be the L2 regularisation as shown in the following
equation:

Obj = Loss+
λ

2
∗

N

∑
i

w2
i (2.22)

It can be found that in the process of minimising the objective func-
tion Obj, the weights tend to be closer to zero due to the inclusion of
penalty terms λ

2 ∗∑N
i w2

i , so the model with less complexity can be ob-
tained compared with the model trained without the weight decay
technique, preventing the overfitting problem [187]. As for the early
stop technique, it simply stops training when the performance on the
validation data begins to drop. Since while the model’s performance
rises in the training dataset, a drop in performance in the validation
dataset is often the signal that overfitting has begun [188].

c) Challenge 3: Degradation problem caused by the increasing depth.

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 57



As reported in [189] and [190], the degradation problem indicates the
deep learning models are likely to degrade while the depth of the net-
work increases. This may not be a result of overfitting as the training error
can increase with the increase of network depth. He et al. simply ad-
ded identity mapping layers to a shallower architecture and found that
the constructed deeper counterpart of the shallow network can not be
comparably good or better [184]. To address the degradation prob-
lem and enable the deeper networks, residual learning was proposed
in [184] as shown in Figure 2.19. Based on their experiment results, the

Figure 2.19.: Residual learning

difficulty of optimisation for deep networks with residual learning can be
significantly decreased by allowing the information flow to skip one or
more layers, and they achieved state-of-the-art performance among
all models of the same periods at a public dataset. This may be the first
time in the development of deep learning that extremely deep net-
works have started to take advantage, and the degradation problem
canbe still acceptable even though the depth of their proposedmodel
was increased to 1000. The resulting models were called Residual Nets
(ResNets), and they can be some of the first deep models to perform
well both in academia and commercial applications [123].

With the above challenges being solved or mitigated, the depth of trainable

58 Literature Review



networks has been increased to a very high level and shows very high perform-
ance in areas with large data volumes. Examples include the AlphaFold 2,
trained from a database of 170,000 proteins provided by UniPort [191], revolu-
tionising the field of protein spatial structure prediction, and ChatGPT based on
GPT series, trained by the texts from the internet which can be almost regarded
as an infinite database [192]. However, in the field of multi-sensor industrial pro-
cess monitoring, the application of models with large depths can be often lim-
ited, and this problem will be discussed in the next section.

2.4.6 Challenges of Deep Learning for Industrial Process Monitoring

Models with large depths offer great advantages in extracting complex patterns
from the data, which is one reason why deep learning has become an import-
ant algorithm in industrial multi-sensing fusion in recent years. However, there are
many challenges with deep learning-based algorithms in industrial applications
that prevent their large-scale application.

High demand for training data volume

The first challenge is that the amount of industrial multi-sensor data is often in-
sufficient to train deep learning models. Industrial processes are usually non-
linear, dynamic, and space-time complex, resulting in high dimensional, multi-
modal and multi-sampling frequency sensor data [5]. Therefore, it is often ne-
cessary to build large-depthmodels to extract features from such complex input
space, since the sufficient depth of a deep learning model is often related to
the complexity of the data [193]. Hence, when the amount of data is insuffi-
cient for training a deep neural network, researchers often have to use manual
feature extraction combined with shallow networks to process multi-sensor data
[130] [194] [195]. As manual feature extraction inevitably introduces information
loss and often requires domain knowledge, the powerful feature extraction cap-
abilities of deep learning with end-to-end benefits can not be fully exploited.

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 59



However, although industrial digitalisation is accelerating, the amount of in-
dustrial data accumulated is still far from adequate. This is because sensor data
acquisition for industrial scenarios is often not an easy task due to the following
reasons:

• Placement, selectionandmaintenanceof sensors require specialist skills
and experience, and investment in software and hardware.

• The quality of the sensor data can be affected by sensor noise, drift,
calibration, and harsh industrial environments.

• Data integration ofmultiple sensors canbechallengingdue to the need
for careful calibration and synchronisation of the sensors measuring dif-
ferent modalities.

• Data security-related issues may prevent data holders from sharing the
data, as the data may contain sensitive information about processes,
equipment, and products.

As a result, many researchers are investigating the use of deep learning in a
data-limited context. Transfer learning is one of the feasiblemethods which aims
to leverage pre-trained models and transfer knowledge from related domains,
to reduce the requirement for training data. In transfer learning, deep networks
are first pre-trained in the source domain and then have most of their weights
frozen or fine-tuned in the target domain at a very small learning rate, thus redu-
cing the amount of data required in the target domain. There are two different
approaches to performing transfer learning in the field of industrial process mon-
itoring. The first approach is to use the same or similar industrial processes as the
source domain to pre-train the models. For example in [196], Sun et al. trans-
ferred the model trained from a machining tool to a different machining tool to
predict the RUL. In [197], Mao et al. pre-trained their model from different gear-
ing systems before tuning the model at the target gear being monitored. Both
studies achieved high performance and clearly showed how transfer learning

60 Literature Review



can help reduce training data. The second approach is to convert the sensor
signals into 2D images and then use a pre-trained vision model to extract fea-
tures. This method has demonstrated excellent performance when processing
high-frequency signals. In [30], Shao et al. first transformed the vibration data
into images by wavelet transform, then extracted their features with a model
trained from ImageNet [198], and finally trained a shallow classifier using data
from the target domain, thus achieving the goal of using deep learning with a
small amount of industrial data for the monitoring of motor transmission system.
Similar research can also be found in [199].

However, although transfer learning can be effective in reducing the train-
ing data, it has strict restrictions. Firstly, industrial processes can be highly di-
verse, making similar industrial process data may be equally unavailable. If the
source domain is too dissimilar to the target domain, transfer learning can be
ineffective. Secondly, computer-vision-based transfer learning, which relies on
converting sensor signals into two-dimensional images, currently only has evid-
ence of good performance on high-frequency data in the literature, since the
time-frequency features which can be represented by images can be good
representations of this kind of signals. This kind of transfer learning can be very
rare in processing other numerical sensor data and multi-sensor data because
it is difficult to find valid image-like representations of them.

Lack of Interpretability

The second challenge is that deep learning models usually lack interpretability,
which means that their internal working mechanisms and how they make pre-
dictions are not transparent. In process monitoring, the black-box nature can
be problematic, as it can be difficult to identify the root cause of undesired
conditions that arise, especially for safety-critical monitoring where process fail-
ure may have serious consequences. In contrast, a lot of the traditional ap-
proaches, suchasDecision Trees, Linear Regression, andNARMAX, canbehighly

2.4 Deep Learning Based Multi-Sensor Fusion Technologies 61



interpretable. These methods can provide information on which input variables
and how they contribute to model decisions, making the analysis of potential
problems possible. Therefore, the use of deep learning in the industry is currently
limited compared to traditional methods.

High Computation Consumption

High computational resource consumption is another major challenge for deep
learning in industrial process monitoring. The success of deep learning relies
heavily on the increase in modern computing capabilities, as it can be ex-
tremely resource-consuming (computing power of the chip, memory and elec-
tricity, etc) [200]. In industry, however, it can be much more difficult to obtain
computational resources for the same capabilities than in other areas. Industrial
personal computers (IPCs) have high requirements for durability and reliability
because they usually operate in harsh environments, such as high temperatures,
dust, moisture, and vibration, and they are designed to work for a much longer
time with zero errors than normal PCs [201]. As a result, computation resources
for industrial scenarios can be limited and costly, making the industry conser-
vative about the use of large-depth models in process monitoring. In addition,
for industrial applications, a constrained time budget can be usually faced, as
the decisions made by monitoring algorithms can be sometimes integrated into
the control system to enable real-time response based on the system conditions
[202]. Hence, real-time performance can be also important. As a result, redu-
cing the computation complexity of deep learning and the required computa-
tional resource consumption is an important direction in industrial applications,
especially for applications in IIoT and edge computing scenarios [203].

2.5 Research Gaps
Based on the literature review and the challenges of applying deep learning

in industrial sensor fusion summarised in the previous section, the research gaps

62 Literature Review



are identified and summarised in this section.

a) Research gap 1: Despite the many advantages of the Transformer ar-
chitecture andAttentionMechanismover other deep learningalgorithms
and the success it has achieved in a variety of areas, it has had relatively
less application in the area of multi-sensor fusion for industrial process
monitoring in the literature. Apart from vision and natural language, it
remains to be answered whether and how the Transformer and Atten-
tion Mechanism can be applied to the field of multi-sensor information
processing. Objective 1 can be an attempt to fill the gap mentioned
above. This study is the first to use a Transformer-like architecture in the
task of the dataset used in the literature and achieved state-of-the-art
performance among published papers using the other deep learning
algorithms.

b) Research gap 2: The development of a unified methodology for cre-
ating feature representations for multi-sensor data is still to be investig-
ated. In the literature, the majority of multi-sensor fusion research re-
lies heavily on manual feature extraction to build up a multi-sensor fea-
ture representation. This approach can be labour-intensive on the one
hand, andon the other hand, relies on domain-specific knowledgeand
it may introduce a high degree of uncertainty about the representat-
iveness of the extracted features. Objective 2 is expected to provide
a novel data-driven approach based on deep learning algorithms for
the establishment of multi-sensor feature representations. In contrast to
conventional feature engineering, this method is expected to develop
an end-to-end deep learning approach to automatically model sensor
data and their dependencies across different modalities, thus avoiding
complex and uncertain artificial feature engineering.

c) Research gap 3: As explained in the previous section, the current use
of deep learning in industrial scenarios faces the challenge of insuffi-

2.5 Research Gaps 63



cient data. While there are many approaches in the literature that use
transfer learning to alleviate this problem, generally such approaches
still require data from similar processes, which can be equally difficult to
have. Research on whether models trained in data-rich but non-similar
processes can be transferred to the field of multi-sensing fusion can be
hard to find in the literature. Objective 3 is to contribute to this gap.
To the best of my knowledge, the research for achieving Objective 3 is
the first research that adapts the deep model (the Transformer) trained
from natural language to the industrial sensor fusion domain, reducing
the required volume of training data. In addition, in the literature on
sensor fusion based on deep learning methods, there is little research
on how to identify the key sensors for the final decisions, this is because
of the black-box nature of deep learning. Objective 3 also contributes
to improving the interpretability of deep learning in sensor fusion tasks.

d) Research gap 4: Due to the high computational complexity of the
Transformer, although it has the advantage of featuring learning, it can
be inefficient when dealing with large numbers of sensors, which signi-
ficantly limits its application in industry. However, the Transformer canbe
a relatively newmodel in the field of sensor fusion applications and has
received little research in the literature aimed at optimising it to make it
more suitable for processing multi-sensor data. Objective 4 can be the
attempt to optimise its computational efficiency, specifically for sensor
fusion tasks.

2.6 Summary
This chapter systematically reviewed the application of multi-sensing fusion al-

gorithms in industrial process monitoring. Firstly, in Section 2.1, the different types
of industrial processmonitoring and their respective advantages and disadvant-
ages are described, followed by Section 2.2 where the overview of sensor fu-

64 Literature Review



sion technologies was introduced. In Section 2.3, the historical development of
sensor data processing technologies for the industry was discussed, as well as
some commonly used conventional sensor fusion algorithms. Finally, in Section
2.4 the role of deep learning in process monitoring with respect to different al-
gorithms was reviewed. The challenges of deep learning for the industry were
listed in this chapter, namely, lack of data, lack of transparency, and high com-
putational complexity. This thesis aims to address or alleviate these challenges
and strives to enable industrial scenarios to benefit from the development of
deep learning and artificial intelligence technologies.

2.6 Summary 65





3
Sensor Anomaly Detection Using Dual
Channel Attention Mechanism in
Automated Vehicles

3.1 Introduction
With the digitalisation process of the industry, Cyber-Physical Systems (CPS),

enabled by advanced communications and computing technologies such as
IIoT, Artificial Intelligence (AI), and others, are playing an increasingly important
role in the industry [204]. As a consequence, industrial systems are increasingly
dependent on the data provided by sensors, which places greater demands
on the reliability of sensor data. In many industrial scenarios, sensors are heav-
ily used to monitor various processes, providing a large amount of data that
can be analysed to extract valuable information about the underlying phys-
ical processes and even integrated into the control or decision system [204].
Hence, anomaly detection can be essential where unexpected sensor beha-
viour can cause serious consequences, such as in manufacturing, transporta-

67



tion, and healthcare. The aim of sensor anomaly detection is to identify the
readings that deviate from the expected values, which can result from many
reasons, such as sensor malfunction and cyberattacks [205]. As a result, timely
intervention can be enabled to avoid potentially severe consequences.

This work proposes a Dual-channel Attention-based CNN (DA-CNN) based on
a self-attention mechanism for sensor anomaly detection. In the self-attention
mechanism, data from all time points can be processed in parallel, instead of
the recurrent computation in RNNs, making it significantly better than RNNs in
capturing long-range dependence without suffering from forgetting problems
[162]. Due to the advantages of CNN in local feature extraction, the proposed
DA-CNN combines two different deep-learning building blocks, self-attention
andCNN, to improve its performance for anomaly detection inmulti-sensor time
series, especially for mild anomalies.

3.2 Problem Statement
The concept of sensor anomaly refers to the situation in that sensor readings

deviate from their expected values by producing faulty data and failing to re-
flect the actual physical processes, causing potential errors in decisions that de-
pend on these readings. This work focuses on developing a supervised learning-
based method to identify anomalous data in multi-sensor time-series signals to
avoid serious consequences. The output of the proposed model can be the
anomaly conditions of the current time window, hence this work formulated
the anomaly detection problem as a multivariate time series classification (TSC)
problem. According to [206] [207], the commonly observed sensor abnormal
patterns can be summarised by the following types:

• Instant: a sudden and unanticipated alteration in the sensor time series
between two adjacent normal readings as shown in Figure 3.1.

• Constant: a temporary and stable observation that deviates from the

68 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



normal readings and lacks correlation with the underlying physical pro-
cesses as shown in Figure 3.2.

• Gradual drift: a slow and incremental shift in observed data over a
given time frame as shown in Figure 3.3, leading to a significant dif-
ference between the sensor readings and the actual system state over
time.

• Bias: a temporary and constant deviation from the normal readings as
shown in Figure 3.4.

• Miss: no readings from sensors, which can be regarded as ‘instant’ or
‘constant’ from an anomaly detection point of view according to [46].

Figure 3.1.: Instant Anomaly

Figure 3.2.: Constant Anomaly

In order to maintain comparability, the CAVs dataset used in [46] and [52]

3.2 Problem Statement 69



Figure 3.3.: Gradual Drift Anomaly

Figure 3.4.: Bias Anomaly

was employed. This dataset was provided by the Safety Pilot Model Deployment
(SPMD) program as reported in [208] and can be found in their research data
exchange (RDE) database [22]. This dataset was composed of a variety of
information generated during the driving process of vehicles, including the Ba-
sic Safety Messages (BSM), driving trajectories, driver-vehicle interaction data,
and environmental information, collected by the onboard Data Acquisition Sys-
tem (DAS), Global Positioning System (GPS), and roadside units. To keep con-
sistent with [46] and [52], in this work, three sensors were employed to evaluate
the proposed sensor anomaly detection method, namely, (1) Sensor 1: speed
measured on the vehicle, (2) Sensor 2: speed given by GPS, and (3) Sensor 3:
in-vehicle acceleration. As the environment of driving was not controlled and
the car driving decision (acceleration or deceleration) can also be considered

70 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



random, therefore the speed information of the car can be assumed as a non-
stationary process which can be expressed by the following equation:

yt = yt−1 + ut, ut ∼ IID
(

0, σ2
)

(3.1)

where yt denotes the speed or acceleration at time t, IID means independent
and identically distributed.

Since this dataset did not provide anomalous sensor data, the same anomaly
injection algorithm was used as in [46] and [52] as shown in Algorithm 1 to
model sensor anomaly behaviour caused by cyber-attacks and sensor failures.
As stated in [46] and [52], in a practical system, the probability of two sensors
being abnormal at the same time can be very low due to the high reliability of
the sensors, so we assume that only one sensor can be abnormal at the same
timepoint. For anomaly types, the first four of the five patternsmentionedabove
were used, which can be some of the most threatening to CAVs [209] [210].

Algorithm 1: Anomaly Injection
t← time step
T ← total number of data points
p← anomaly possibility
i← sensor index
n← number of sensors
xi ← sensor data
xi
′ ← sensor anomaly

for t ∈ T do
if a ∼ U(0, 1) ≤ p then

i← randint(n)

xi
′ ← xi + Anomaly

else
xi
′ ← xi

end if
end for

3.2 Problem Statement 71



It is important to note here that, in this study, no data normalisation operation
was used here. This is because, firstly, if sensor anomalies were injected after nor-
malisation, those severe outliers would be significantly different from the normal
values and thus make the task less difficult. Secondly, if the data were normal-
ised after anomaly injection, those severe outliers would cause the variance of
the original data to become extremely small, thus increasing the demand for
the precision of the data processed by the model and resulting in an unneces-
sary computational burden.

3.3 Methodology and Architecture
In this section, an introduction to the overall model architecture of DSA-CNN

is provided along with a detailed explanation of the two fundamental building
blocks of DSA-CNN, namely DAMblock andCNNblock. This is followedbyan ex-
planation of how the DAM block extracts and integrates the temporal patterns
(time-wise attention) and spatial patterns (sensor-wise attention) based on the
self-attention mechanism.

3.3.1 Overall Architecture of Dual-channel Attention CNN

The overall architecture can be described by Figure 3.5. The multiple sensor
time series data will be first passed into the class token concatenation function
whichwill be explained in detail in the following section to add a class token that
will be used as the feature representation for classification. Then, the output of
class token concatenation can be fed to the Dual-channel attention mech-
anism (DAM) block to generate the feature maps of the attention mechanism,
followed by a CNN block to further extract features. The DAM block and CNN
block will be repeated several times before using a linear layer to perform the
final classification. The output of this model can be the anomaly conditions of
the data being passed to this model.

72 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



In terms of the input, let X denote the multiple sensor streams as shown in the
following expression:

X = [X1, X2, . . . , XC] (3.2)

where XC denote theC-th sensor data stream. Each sensor streamcan be com-
posed of a series of readings over a predefined time window as shown in the
following equation:

XC = [x1, x2, . . . , xL] (3.3)

where L is the number of readings in a time window. Hence the input space of
the model can be expressed by X ∈ RC×L.

Figure 3.5.: DA-CNN Architecture

3.3.2 CNN Block

The proposed CNN Blocks employ 1d-CNN as a basic building element, and the
architecture can be demonstrated by Figure 3.6. As shown in Figure 3.6, the

Figure 3.6.: CNN Block

3.3 Methodology and Architecture 73



inputs can be first processed by a 1d-CNN layer and fed into a ReLU activa-
tion layer, before passing to the second 1d-CNN layer. Then, after the dropout
operation, the original inputs can be added to the current feature maps via
a shortcut connection. Finally, a normalisation layer is employed to form the
final feature maps. The computation flow can be described by the following
equation:

OutCNN = LN(Dropout(Conv2(ReLU(Conv1 (X)))) + X) (3.4)

where LN denotes the Layer normalisation, Conv1() and Conv1() are the convo-
lution operation, ReLU() is the activation function, X is the input multiple sensor
time series.

1d-CNN

CNNs have been proven effective and achieved some of the state-of-the-art
results for TSC among data-driven methods in literature [211] [212]. This is due to
the sensitivity of CNNs to local features can be higher and their feature learning
can be spatial invariant, compared with ANNs that treat all features equally
[123]. In this study, 1d-CNN was used here instead of the normal CNNs with two-
dimensional convolutional kernels. This is because the attentionmechanismwas
relied on tomodel the spatial dependencies, CNNswere only expected to focus
on a single series. For using 1d-CNN to TSC, the kernel size can be a key factor
affecting performance [213]. Most of the works using 1d-CNN regarded the
kernel size as a hyper-parameter and optimised it by grid search which can be
time-consuming and computation-expensive. As this work does not rely on 1d-
CNN to capture the major spatiotemporal features, the kernel size will not be
regarded as a hyper-parameter and it was simply restricted to (1, 3).

The computation process of 1d-CNN can be defined as the following equa-
tion:

Cj = bj +
Cin −1

∑
k=0

Wj,k ∗Xk (3.5)

74 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



where X is the multi-variate time series, ∗ denotes the convolution operation, Cj

is the output of the j − th convolution filters, Cin is the number of input convo-
lution channels, b and W are the biases and weights of the filters respectively.
In the proposed CNN blocks, the dimensionality of the output feature map can
be kept equal to the dimensionality of the input data to maintain extensibility.
This can be achieved by: (1) organising the number of output channels of the
second convolutional layer to be equal to the number of input channels of the
first convolutional layer, (2) configuring the convolutional kernels to 3 in size with
a stride of 1 and padding of 1. This makes the length of input and output can
be kept the same as shown in the following equation:

Lout =
Lin + 2× padding− (kernel_size− 1)− 1

stride
+ 1 (3.6)

Activation Layer

As the convolution operation can be considered as a linear mapping, a non-
linear activation layer is used after the first 1d convolution layer to introduce non-
linear modelling capabilities and thus enhance the representativeness of the
learned features, enhancing the capacity to model complex input space. In
the CNN Blocks of the proposed model, the ReLU is employed as the activation
function, which can be expressed by the following equation:

ReLU(H) = max(0, H) (3.7)

where H is the featuremappassed to ReLU. This is because ReLU has a significant
advantage over other activation functions such as tanh and sigmoid in terms of
computational complexity, mitigation of the gradient saturation problem, and
sparsity [214].

Layer Normalisation

The normalisation layer canbeacritical component in thedeepneural network.
By normalising the inputs to a layer to zero mean and unit variance, the training

3.3 Methodology and Architecture 75



process can be stabilised and the performance of the network can also be
improved [182] [183]. Batch Normalisation (BN) and Layer Normalisation (LN)
can be the prevailing normalisation methods. While BN normalises each feature
within a sample, LN normalises all features within each sample. To be specific,
BN erases the relative magnitudes of the different features but preserves the
relative magnitudes of the different samples. Hence, BN can be more effective
when the statistical behaviours among different samples are more important.
In contrast, LN wipes out the relative magnitudes between different samples
but keeps the relative magnitudes between different features within a sample.
Therefore, it can be more suitable for tasks where the features within a sample
are closely related. Speaking to the TSC task on CAV with unmanaged driving
behaviour, as the speeds and acceleration can be treated as non-stationary
processes, the statistical features among samples can be very uninformative for
sensor anomaly detection. As a result, LN can be more suitable for this task.

LN performs normalisation over the last 2 dimensions based on the following
equation:

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β (3.8)

where y and x denote the normalised matrix and input matrix respectively, ϵ is
a minimum preventing the denominator to be zero, γ and β are trainable affine
transform weight and bias. E[x] and Var[x] denote the mean and variance of
input x, which can be defined by the following equations:

E(x) = (1/t)
t

∑
i=1

xi (3.9)

Var[x] = (1/t)
t

∑
i=1

(xi − E(x))2 (3.10)

3.3.3 Dual-channel Attention Mechanism (DAM)

In multiple sensor anomaly detection tasks, abnormal data can appear at any
time and in any sensor, making both temporal and spatial (sensor-wise) features

76 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



very important. In this work, the Dual-channel Attention Mechanism (DAM) was
proposed to integrate the learning of spatiotemporal features into the training
process, hence the spatiotemporal features can be extracted progressively and
automatically.

The overall architecture of DAM can be illustrated by Figure 3.7. The input

Figure 3.7.: Dual-channel Attention Mechanism (DAM)

can be passed to two attention modules simultaneously, namely sensor-wise
attention and time-wise attention. The former is responsible for extracting spatial
dependencies among different sensors and the latter is for extracting temporal
dependencies among different time points. Then, the feature maps generated
by these two modules and the original input will be added together, forming a
shortcut connection, before normalisation. The output of the DAM is therefore
a feature map with integrated spatiotemporal features. The computation flow
of DAM can be described by the following equation:

OUTDAM = LN(LP(SWA(X)) + LP(TWA(XT)T) + X) (3.11)

where LP denotes linear projection, SWA and TWA mean sensor-wise attention
and time-wise attention respectively. The details of sensor-wise attention and
time-wise attention will be explained in the following section.

Sensor(Time)-wise attention

The sensor-wise attention processes the dependencies among different sensors
based on the self-attentionmechanismproposed in [162] as shown in Figure 3.8.

3.3 Methodology and Architecture 77



The self-attention could be analogous to retrieval systems: a query vector is used
to search information and then the search engine will try to look for the keys in its
database and pair the query vector, finally, the value vector corresponding to
the keyswill be the output. In the self-attentionmechanism, the input sequences
are mapped to the query vectors (Q), key vectors (K) and value vectors (V) by
linear projection as shown in Fig. 3.8 and expressed by the following equations:

Y = XWT + B (3.12)

where X ∈ RC×L, W ∈ R3L×L, Y, B ∈ RC×3L, and

Q, K, V = Y[0 : C, 0 : L], Y[0 : C, L : 2L], Y[0 : C, 2L : 3L] (3.13)

where Y[a : b, c : d] denotes the a to b rows and c to d columns of Y.

Figure 3.8.: Sensor-wise attention

The optimised mapping matrix (the weights of these linear layers) can be ob-
tained in the backpropagation process. Then, the attention weight is calcu-
lated by:

Attention_weitht = so f tmax
(

QKT
√

dk

)
(3.14)

where dk is the dimension of key vector and 1/
√

dk is the scalar which is used to
avoid the dominant term when calculating the softmax function, which may

78 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



Figure 3.9.: Time-wise attention

make the gradient difficult to calculate [162]. If Q and K are independent
and conform Gaussian distribution: N (0, 1), the variance of their dot product,
q · k = ∑dk

i=1 qiki, will be dk. This effect is not preferable when addressing high-
dimension data. This AM is called Scaled Dot-Product Attention [162]. Finally,
the attention weight is multiplied by the value vector and the final weighted
mapping is obtained as shown in equation 3.15,

Attention (Q, K, V) = so f tmax
(

QKT
√

dk

)
V (3.15)

It is obvious that the attention weights control the information flow within the
network. When the weight of a certain area of input data becomes zero, no
information can flow to the next layer of the network. In addition, each element
(row) in the attention output sequence is the attention evaluation result of the
entire input sequence. Hence, the dependencies among different sensors can
bemodelled and integrated. It can be found from the above calculations that,
the dimension of the output feature maps remains the same as the dimension
of the input data, namely Attention (Q, K, V) ∈ RC×L.

Similarly, in time-wise attention, the base unit for carrying out the calculation
of the attention mechanism can be replaced by the time steps, as shown in
Figure 3.9. Time-wise attention can be simply achieved by transposing the in-
put and then performing similar computations to obtain the Q, K and V before

3.3 Methodology and Architecture 79



calculating the attention weights:

Y = XWT + B (3.16)

where X ∈ RL×C, W ∈ R3C×C, Y, B ∈ RL×3C, and

Q, K, V = Y[0 : L, 0 : C], Y[0 : L, C : 2C], Y[0 : L, 2C : 3C] (3.17)

Therefore, the feature maps with the integrated time dependencies over the
entire time window can be obtained. Then, the feature maps of Time-wise at-
tention can be transposed to keep the equal dimensionality with Sensor-wise
attention, before adding them to the original input to make a shortcut con-
nection. Finally, the constructed feature map can be normalised, forming the
output feature map of the DAM block as shown in Figure 3.7.

3.3.4 Class Token Concatenation

Based on equation 3.15, it can be found that each row of the output of the
attention mechanism (corresponding to each sensor in this work) is a weighted
sum of all rows of the feature map from the previous layer, and the weights are
calculated based on the data fromeach sensor. Theoretically, it is reasonable to
take any row in the final output of the model’s feature map and use it as a multi-
sensor feature representation to perform classification, however, to avoid the
influence of specific sensor data on the feature representation of multi-sensor
data, we added a vector of random numbers to the input data as a token for
classification [162]. The features of all sensors can be weighted and integrated
into this token, hence this vector can be used as a final feature representation.
This operation is illustrated in Figure 3.5.

3.3.5 Algorithm

The overall computation flow of the proposed DA-CNN can be illustrated by
algorithm 2.

80 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



Algorithm 2: Dual-channel Attention CNN (DA-CNN)
Input: X ← CAV Sensor Readings
Output: Normal reading, Anomalous reading

1 X ← X + Anomalies # Anomaly injection
Model Initialisation:

2 for l in range(Number of layers in DA-CNN) do
3 Initiate Weights(l) ∼ N(0, 1)

4 Perform Singular Value Decomposition to Weights(l)

Ensure: Weights(l)Weights(l)T = I
Class Token Concatenation:

5 Token← rand((1, L))

6 X ← Concatenate((X, Token), dim = 0)

Forward:
7 for i in range(N) do
8 # DAM block calculations
9 XSWA ← LP(SWA(X))

10 XTWA ← LP(TWA(XT)T)

11 X ← XSWA + XTWA + X

12 X ← LN(X)

13 # CNN block calculations
14 Residual ← X

15 X ← ReLU(Conv1(X)) # Conv1
16 X ← Dropout(Conv2(X)) # Conv2
17 X ← LN(X + Residual)

18 Outputs = Classifier(X) = XWclassi f ier + bclassi f ier

Training:
19 for epoch in range(Number of epochs) do
20 Calculate Loss
21 Calculate Accuracy, Precision, Sensitivity, F-Score
22 Backpropagation

Return: Output

3.3 Methodology and Architecture 81



3.4 Experiments and Results

3.4.1 Hyper Parameters and Training Process

The parameters of the model proposed in this work are shown in Table 3.1.

Table 3.1.: Hyper Parameters

CNN Block

Conv1 channel_in = 15, channel_out=60, kernel size = 3, padding = 1, bias=False

Conv2 channel_in = 60, channel_out=45, kernel size = 3, padding = 1, bias=False

LN ϵ = 1e-6

Dropout 0.2

SWA

Self-attention qkv dimension (L) = 15

Linear projection Dropout = 0.1, in = 15, out = 15

TWA

Self-attention qkv dimension (L) = 3

Linear projection Dropout = 0.1, in = 3, out = 3

Classifier

Linear layer in = 15, out = number of classes

Training

Model depth (N) 7 (Number of DA-CNN blocks)

Initialisation Orthogonal, Gain = 1.41

Batch size 16

Learning rate 0.0001

This experiment was conducted on Google Colab environment with NVIDIA
Tesla P100 PCIe 16 GB, and PyTorch was used as the deep learning framework.
As we formulated the sensor reading anomaly detection task as a classification

82 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



task, the cross entropy loss was used as the loss function which can be defined
by the following equation:

Loss(y, ŷ) = −
C

∑
i=1

yi log (ŷi) (3.18)

where y and ŷ are the true labels andmodel prediction using one-hot encoding.

In terms ofmodel initialisation, orthogonal initialisationwas employed, namely,
the weight matrix W(l) of each layer will be initialised to an orthogonal matrix,
satisfying:

W(l)W(l)T
= I (3.19)

where I is an identity matrix, and l is the layer index. This is because the or-
thogonal initialisation is able to make the error term norm-preserving during the
backpropagation process [215], which can be expressed in the following equa-
tion: ∥∥∥δ(l−1)

∥∥∥2
=
∥∥∥W(l)T

δ(l)
∥∥∥2

=
∥∥∥δ(l)

∥∥∥2
(3.20)

where δ(l) is the loss term of the l layer of the model, and it has shown great
efficiency practically for training the model based on the attention mechan-
ism [192] [216]. Since in the proposed model, the activation function was all
ReLU and the average gradient of ReLU around 0 can be approximated as 0.5,
the initialised weight matrix was multiplied by

√
2 to preserve norm-preserving

property. This is denoted by Gain = 1.41 in Table 3.1.

3.4.2 Results Evaluation Method

Theperformanceof theproposedmethodwas evaluatedby the following scores
which can be normally used for assessing classification algorithms:

Accuracy =
TP + TN

TP + FP + FN + TN
(3.21)

Sensitivity =
TP

TP + FN
(3.22)

3.4 Experiments and Results 83



Precision =
TP

TP + FP
(3.23)

Specificity =
TN

TN + FP
(3.24)

F1 Score =
2( Sensitivity ∗ Precision )

Sensitivity + Precision (3.25)

where TP, TN, FP, and FN mean True Positive, True Negative, False Positive, and
False Negative respectively. In terms of the sensor anomalies detection domain,
as undetected abnormalities are far more damaging than classifying normal
readings as abnormal, the sensitivity score was highlighted in the results. As the
F1 score can be a comprehensive measure of precision and sensitivity, it was
used as a reference to compare the performance of different models.

3.4.3 Single Anomaly Detection

In this section, the performance of DA-CNN is evaluated with respect to the
occurrence of a single type of anomaly. To ensure comparability, the same
anomaly pattern, severity, and possibility (5%) were used as in [46] and [52]. The
results from CNN Kalman Filter (CNN-KF) [46], Multi-stage attention mechanism
with an LSTM-based CNN (MSALSTM-CNN) [52], and the proposed DA-CNN, in
instant, bias, constant and drift detection are compared in Table 3.2 to 3.5
respectively. The mean F1 score and sensitivity comparison for each type of
anomaly is summarised in Figure 3.10.

Instant anomaly detection

Table 3.2 shows the performance of DA-CNNcomparedwith themethodswork-
ing on the same dataset in literature for instant anomaly detection. As the sever-
ity of the anomaly increases, an improvement in the performanceof all methods

84 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



Figure 3.10.: Performance comparison of different models for single anomaly detection

can be observed. However, the proposed DA-CNN achieves higher F1 scores
for all severity levels of instant anomaly, compared with the SOTA performance
achieved by MSALSTM-CNN in the literature. Speaking to sensitivity, except for
the magnitude of 500× N(0, 0.01), DA-CNN can be also better than the other
methods significantly. It is worth noting that DA-CNN shows outstanding per-
formance in detecting mild anomalies. While the F1 score of the MSALSTM-CNN
at severity 25× N(0, 0.01) is 70.18%, the DA-CNN achieves 78.82%, and the sens-
itivity at this severity can also be improved by 16.65% by DA-CNN. In case of
severe anomalies, DA-CNN shows a slight improvement.

Bias anomaly detection

Table 3.3 shows the performance comparison for bias anomaly detection. For
all methods in this table, the longer the duration of the anomaly, the higher the
detection performance of the models for the samemagnitude. Similarly, for an-
omalies of the same duration, the higher magnitude of the anomaly, the higher

3.4 Experiments and Results 85



Table 3.2.: Instant

CNN-KF(%) [46] MSALSTM-CNN(%) [52] DA-CNN(%)

Anomaly Magnitude Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1 Spec

25 x N(0,0.01) 80.0 51.5 97.6 67.4 84.10 54.63 98.12 70.18 85.00 71.28 88.16 78.82 88.71

100 x N(0,0.01) 93.6 86.2 97.9 91.7 95.8 89.60 98.43 93.80 95.42 91.00 97.85 94.30 98.58

500 x N(0,0.01) 98.3 96.0 99.7 97.8 96.02 99.79 97.86 99.02 99.58 99.00 99.99 99.50 99.30

1000 x N(0,0.01) 98.8 97.1 99.8 98.4 98.98 98.16 99.21 98.68 99.58 99.05 99.99 99.52 99.27

10000 x N(0,0.01) 99.7 99.2 99.8 99.5 99.43 98.93 99.75 99.34 99.91 99.92 99.92 99.92 99.36

the detection performance. Based on the results in this table, the proposed DA-
CNNachieves improvements in both sensitivity and F1 scores amongmost of the
severity, compared to SOTA performance in the literature, except for the mag-
nitude of U(0, 1) with a duration of 3, where MSALSTM-CNN achieves the best F1
score (90.57%) and ours is 90.38%. However, it can be found that DA-CNN has
significant advantages in anomaly detection of small duration. In anomalies of
duration 3 and 5, DA-CNN improved on average by 2.57% and 1.28% in sensitivity
and F1 score respectively compared to MSALSTM-CNN.

Table 3.3.: Bias
CNN-KF(%) [46] MSALSTM-CNN(%) [52] DA-CNN(%)

Anomaly Magnitude Duration, d Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1 Spec

U(0,5) 3 94.6 89.3 99.5 94.2 95.10 90.53 99.47 94.78 95.92 93.86 98.79 96.26 98.53

U(0,5) 5 94.8 90.6 99.6 94.9 95.51 91.99 99.55 95.62 96.13 93.80 99.76 96.69 97.35

U(0,5) 10 95.9 94.4 99.1 96.7 96.56 95.74 99.06 97.37 97.12 96.69 99.05 97.84 99.28

U(0,3) 10 94.4 95.6 98.6 95.5 94.99 93.82 98.50 96.10 97.55 96.24 99.73 97.95 99.86

U(0,1) 10 88.0 84.8 95.9 90.0 88.55 85.81 95.89 90.57 88.69 86.18 95.02 90.38 88.56

Constant anomaly detection

Table 3.4 shows the performance comparison for Constant anomaly detec-
tion. It can be observed that the performance of CNN-KF, MSALSTM-CNN, and
DA-CNNmethods consistently improves as the anomaly duration increaseswhile

86 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



keeping theanomalymagnitudeconstant (U(0,5)). Their performancedecreases
as theanomalymagnitude reduceswhile keeping theduration constant (d=10).
The DA-CNN method, however, demonstrates superior performance in terms of
sensitivity and F1 score across all experiments. In addition, the proposedmethod
displays consistency in its performance, whereas the CNN-KF and MSALSTM-
CNN methods exhibit some variation. Nevertheless, all three methods show
slightly declining performance in the last row with the lowest anomaly mag-
nitude (U(0,1)).

Table 3.4.: Constant
CNN-KF(%) [46] MSALSTM-CNN(%) [52] DA-CNN(%)

Anomaly Magnitude Duration, d Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1 Spec

U(0,5) 3 94.9 89.9 99.6 94.5 95.05 90.25 99.51 94.65 95.73 92.71 99.04 95.77 99.89

U(0,5) 5 95.1 91.7 99.0 95.2 95.40 92.30 98.97 95.51 96.98 94.15 99.66 96.83 99.19

U(0,5) 10 96.2 94.9 99.1 97.0 96.61 95.61 99.28 97.41 98.59 97.71 99.59 98.64 99.56

U(0,3) 10 95.3 93.9 98.7 96.2 96.44 95.44 98.93 97.15 98.33 97.18 99.59 98.37 99.35

U(0,1) 10 91.2 87.8 98.6 92.7 93.02 90.76 98.69 94.55 96.56 92.97 99.76 96.25 99.90

Drift anomaly detection

Table 3.5 shows the results of gradual drift anomaly detection using the CNN-KF,
MSALSTM-CNN, andDA-CNNmodels. TheMSALSTM-CNNandDA-CNNmethods
exhibit satisfactory performance, while DA-CNN outperforms MSALSTM-CNN in
sensitivity and F1 score for all experiments. The highest F1-score of 98.97% is ob-
served in row 2 by theDA-CNNmethodwhen the duration is 20 and the anomaly
magnitude is linespace(0,4). The lowest F1-score is observed in row 3, with 94.2%
achieved by the CNN-KF method when the anomaly magnitude is the smal-
lest. Furthermore, compared with the MSALSTM-CNN and CNN-KF, the DA-CNN
demonstrates consistent performance throughout the experiments, with minor
fluctuations. In [46], Wyk et al. stated that detecting gradual drift can be one
of the most challenging tasks of anomaly detection. In the hardest situation,
namely the magnitude of linespace(0,2) with a duration of 20, DA-CNN can still

3.4 Experiments and Results 87



improve the sensitivity and F1 score by 2.2% and 1.12% respectively.

Table 3.5.: Drift
CNN-KF(%) [46] MSALSTM-CNN(%) [52] DA-CNN(%)

Anomaly Magnitude Duration, d Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1 Spec

Linespace(0,4) 10 94.7 93.1 99.2 96.1 96.01 95.85 99.14 97.46 98.59 96.99 99.61 98.29 99.73

Linespace(0,4) 20 96.0 95.6 99.3 97.4 96.21 96.03 99.27 97.62 99.11 98.67 99.27 98.97 99.27

Linespace(0,2) 10 93.0 89.6 99.3 94.2 94.36 93.09 99.07 95.58 98.39 97.32 99.47 98.38 99.26

Linespace(0,2) 20 93.7 93.2 98.7 95.9 94.09 92.78 99.52 96.03 97.34 94.98 99.43 97.15 99.89

3.4.4 Mixed Anomaly Detection

In the experiment, the performance of DA-CNN was also examined for the oc-
currences of all types of anomalies. The performance evaluation of different
algorithmswith respect to different sensors is given in Table 3.6. As this type of ex-
periment is not provided in [52], only [46] and the proposed method are shown
in this table. Based on the results, DA-CNN outperforms the other algorithms on
all three sensors, achieving the highest scores on almost all performance met-
rics, especially for sensitivity and F1 scores. This suggests that DA-CNN provides
a more accurate and robust approach to anomaly detection than the other
algorithms evaluated.

Table 3.6.: Mix
KF(%) [46] CNN(%) [46] CNN-KF(%) [46] DA-CNN(%)

Sensor Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1 Spec

1 97.8 90.5 95.9 93.1 98.0 93.3 99.5 96.3 98.1 94.2 99.4 96.7 99.32 98.42 98.17 98.30 99.35

2 98.0 90.6 96.0 93.2 97.0 90.4 98.7 94.4 97.6 92.9 98.4 95.5 98.70 96.12 98.14 97.12 99.25

3 96.1 85.1 89.0 86.9 94.7 83.3 97.6 89.8 95.7 87.3 97.3 92.0 95.57 89.36 97.11 93.07 98.60

88 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



3.4.5 ADDITIONAL EVALUATIONS

This section provides additional evaluations, namely the ROC, curve, AUC, and
the FPR95 metric (the false positive rate at the true positive rate equal to 95%),
which can be critical in anomaly detection tasks. The ROC and FPR95 can be
found in Figure 3.11 - 3.15

Figure 3.11.: ROC Curves, AUC, and FPR95 of Instant Anomalies

Figure 3.12.: ROC Curves, AUC, and FPR95 of Bias Anomalies

Figure 3.13.: ROC Curves, AUC, and FPR95 of Constant Anomalies

Figure 3.14.: ROC Curves, AUC, and FPR95 of Drift Anomalies

3.5 Ablation Experiment
In order to verify the positive effect of one of the core modules of the model

proposed in this paper, namely the DAM module, on performance, this section

3.5 Ablation Experiment 89



Figure 3.15.: ROC Curves, AUC, and FPR95 of Mixed Anomalies

presents ablation experiments.

Two distinct experiments were conducted to validate the efficacy of integrat-
ing sensor-wise and time-wise attention mechanisms. In the initial experiment,
we exclusively employed sensor-wise attention across both channels, focusing
on the individual characteristics of each sensor. Conversely, the second experi-
ment solely utilized time-wise attention in both channels, concentrating on tem-
poral dynamics. This ablation studywas designed to rigorously assess the impact
and effectiveness of combining sensor-wise and time-wise attention, providing
a comprehensive understanding of their synergistic potential in the proposed
model.

Table 3.7.: Performance difference among DSA-CNN, its sensor-wise attention-only version, and
its time-wise attention-only version

Tasks
DSA-CNN Sensor-wise attention only Time-wise attention only

Acc Sen Prec F1 Acc Sen Prec F1 Acc Sen Prec F1

Instant 25 x N(0,0.01) 85.00 71.28 88.16 78.82 82.50 70.70 84.33 76.92 63.75 44.90 57.14 50.29

Bias U(0,1)-10 88.69 86.18 95.02 90.38 84.13 83.13 90.35 86.59 71.33 76.83 76.92 76.88

Constant U(0,5)-3 95.73 92.72 99.04 95.77 95.65 92.13 99.48 95.67 92.23 88.31 96.37 92.17

Drift Linespace(0,2)-20 97.34 94.98 99.43 97.15 96.56 93.48 99.30 96.30 88.07 84.95 89.71 87.27

Mix - 3 95.57 89.36 97.11 93.07 94.58 89.89 93.49 91.70 92.23 85.58 90.78 88.10

To maintain comparability, all training parameters, data, the rest of the model
architecture, as well as the environment were kept the same. The ablation ex-
periments were only conducted on the most challenging tasks on each of the
anomaly types (The tasks that received the lowest F1 scores). The results can be
found in Table 3.7. It can be found that neither the use of sensor-wise attention
alone nor time-wise attention can achieve the performance of using them sim-

90 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



ultaneously, which validates the effectiveness of the proposed DAM in anomaly
detection.

3.6 Discussion
It is clear that theDA-CNNproposed in this paper offers significant advantages

in terms of sensitivity and F1 score, especially in minor sensor anomalies. Higher
sensitivity means fewer undetected anomalies, which can be crucial for safety-
critical application scenarios, such as the CAV velocity and acceleration data
used in this work, which can be the important decision bases for autonomous
driving systems [217].

As an important sensor anomaly detection algorithm, Kalman filtering has the
advantages of being easy to implement and computationally efficient, making
it widely used. It can predict the near future or current system state by tracing
back to a few past system state data, so by comparing the difference between
the estimated data and the measurements and setting a threshold, it can de-
termine if the sensor reading now is in an abnormal state. However, Kalman
filtering has three disadvantages in sensor anomaly detection. Firstly, its perform-
ance relies on artificial noise estimations, for example in [46] where the sensor
noise was assumed to be Gaussian white noise, which is sometimes not repres-
entative of the real noise in the actual system. Secondly, plain Kalman filtering
often requires the assumption that the system is linear and time-invariant [218].
This assumption can be satisfied when the time window taken for the analysis of
CAV velocities is small enough, but the timewindow for the analysis of time-series
data often cannot be too small to ensure that sufficient information can be in-
corporated, so the non-linearity introduced by the large time window becomes
a source of error in the Kalman filter estimations. Finally, defining thresholds for
normal intervals can be often difficult, as the intensity of noise in a real system
can be likely to vary according to environmental conditions. Thesemight be the
reason why the Kalman filter-based approach in [46] achieves relatively poor

3.6 Discussion 91



performance despite the fact that the use of CNNs to extract a representation
of the system state can overcome to some extent the problems of noise and
non-linearity within the time window.

LSTM is an RNN algorithm that excels in time series data modelling. It largely
alleviates the forgetting problem of traditional RNN by controlling the extent to
which long-term and short-term memory can be involved in downstream com-
putation through the gate structure. It, therefore, plays an important role in the
detection of anomalies in time-series sensor data. Due to the powerful fea-
ture extraction and non-linear modelling capabilities of deep learningmethods,
LSTM-based methods do not require an accurate estimation of noise, unlike Kal-
man filtering, and do not rely on the assumption of linear time-invariant systems.
This can be the possible reason why the LSTM-based method used in [52] out-
performs the Kalman filter-based method in [46]. However, since LSTM can be
still recursive in nature, the features of the initial time step can be still sometimes
difficult to learn, leading to potential improvements in the performance of LSTM-
based methods in detecting small anomalies. As for the self-attention mechan-
ism used in this work, since it has no recursive structure, information at all time
steps can be treated equally, avoiding the problem of forgetting. Thus DA-CNN
showed a significant improvement in experiments dealing with small anomalies.
Furthermore, in contrast to the use of the attention mechanism in [52] for all
time steps in the LSTM, this work proposes a dual-channel attention mechanism,
which can model not only the dependencies among different time steps but
also the dependencies between different data sources (sensors), so that the
feature maps obtained by DA-CNN can be more integrated and comprehens-
ive, leading to the significant performance improvement of DA-CNN shown in
the previous section.

However, due to the current supervised learning-based training approach,
the performance of the proposed model in dealing with unknown complex an-
omalous patterns has not been evaluated. A common deep learning-based
approach in the literature for handling unknown pattern anomalies can be the

92 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



unsupervised learning-based autoencoder architecture, which means recon-
structing the original normal signal using a deep learning model, then using
one of the latent spaces as a feature representation, and then the distance
between the latent space of the anomalous data and the latent space of the
normal data can be calculated as a criterion for the occurrence of anomalies
[149] [158]. The performance of DA-CNN in this type of methodology can be
an important future direction to be evaluated.

3.7 Summary
Anomaly detection in multi-sensor data streams can be an important founda-

tion for industrial process monitoring tasks, and it can be also an essential com-
ponent in many safety-critical systems, such as CAV. In this paper, a method,
DA-CNN, was proposed based on the self-attention mechanism and CNN to
detect the anomalous behaviour of CAV velocity and acceleration sensors. This
work proposed a dual-channel self-attention structure to enhance the sensitivity
of the model with respect to small anomalies, and this structure can integrate
the learning of spatiotemporal features into the training process of deep learn-
ing. The proposedmethodwas tested on a publicly available CAV dataset, and
the sensor anomaly was simulated based on the 4 most damaging anomalies
for CAVs [209] [210]. Based on the experimental results, the proposed DA-CNN
achieved 2.57%, 2.07%, 1.78%, and 3.83% performance gains in sensitivity for
drift, constant, bias, and instant anomalies, and 1.53%, 1.32%, 0.94%, and 2.21%
gains in F1 score, compared with the SOTA performance model in the literature
proposed in [52]. The experimental results also show that DA-CNN has a clear
advantage in handling small anomalies.

The main contributions can be summarised as follows:

• A novel approach, DA-CNN was proposed based on the self-attention
mechanism for sensor anomaly detection in multivariate time series.

3.7 Summary 93



This model is able to detect whether the multi-stream time series sensor
readings of a time window contain anomaly values.

• A novel self-attention-based deep neural network block, Dual-channel
Attention Mechanism (DAM) was proposed. In the proposed block,
the spatiotemporal features which can be vital for anomaly detection
[219] can be extracted and integrated progressively and automatic-
ally by sensor-wise and time-wise attention channels during the learning
process, eliminating the artificial signal processing stage for extracting
the spatiotemporal features before designing an anomaly detection
algorithm.

• This work has accomplished a performance benchmark that can be
state-of-the-art among the works within the field of CAVs. The experi-
ment results show that the proposed DA-CNN has a clear advantage
in handling small anomalies, and improves the sensitivity significantly
among all the experimental conditions being evaluated. This means
the proposed method has fewer undetected anomalies which can be
harmful in real systems compared with the other methods in the literat-
ure.

This work demonstrates the excellent feature extraction capabilities of Transformer-
like network structures for sensor anomaly detection. However, due to the cur-
rent supervised learning-based classification training approach, feature learn-
ing performance in the presence of unknown anomaly patterns is an important
future research direction.

94 Sensor Anomaly Detection Using Dual Channel Attention Mechanism in

Automated Vehicles



4
Deep Transfer Learning with
Self-attention for Industry Sensor
Fusion Tasks

4.1 Introduction
In industrial sensor fusion tasks, when dealing with a large and complex input

space, such as a large number of sensors with different sampling rates, more
complex and deeper networks are often necessary, as deeper networks have
stronger feature extraction capabilities [220]. This leads to a significant increase
in thedepth andwidth of themodel, resulting in highdemands on theamount of
training data. For industrial scenarios, collecting a large amount of training data
means a significant increase in time and expense, which is sometimes not even
possible. Alternatively, artificial feature extraction, such as time-domain statist-
ical feature extraction [29], frequency-domain feature extraction [221], plus a
shallow neural network [141] [222] can be used to reduce the need for training
data. For such a method, the performance is heavily dependent on the quality

95



of manually extracted features, and feature engineering often requires extens-
ive experimentation and an understanding of industrial processes, which can
be time-consuming and difficult. Therefore, a method that requires a relatively
small amount of data and does not rely on feature engineering is preferred. The
hard choices mentioned above can be described by Fig. 4.1

Figure 4.1.: Comparison between shallow neural network plus artificial feature engineering and
deep neural network which can extract features automatically

In addition, the lack of interpretability as discussed in the previous chapter is
another disadvantage of Deep Learning in industrial applications. Themechan-
ism by which input data is mapped to model output of Deep Learning is difficult
to obtain. Hence, while using Deep Learning, it is difficult to know which sensor
has the decisive influence in a multi-sensor system.

In this work, a novel transfer learning methodology for sensor fusion that trans-
fers a deep model from the natural language processing (NLP) domain, coined
’Transformer’ [162] to industrial applicationswas proposed. NLP is a data-rich do-
main, deep models in this domain are relatively easy to be adequately trained.
Lu et al. found that the feature extraction ability of such a complex deepmodel
has the potential to be transferred to other modalities since natural language
is a modality with a huge amount of data and features [192]. They found that
a pre-trained Transformer with fine-tuning offers great performance on numer-
ical operations, image classification, and protein folding prediction tasks. There-
fore, the transfer of feature representations identified from NLP to sensor fusion

96 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



problems could enable the application scenarios, with high input dimension
but insufficient data, to train very deep neural networks from raw to use deep
networks. Thus, the proposed method is expected to make use of the strong
learning ability of the deep neural network and the advantage of the training
ease of the shallow neural network to improve the sensor fusion task for manu-
facturing. This can be achieved by freezing all the attention and feed-forward
layers and training the input embedding, layer norm, and final full-connected
output layers only. It means that the computation of feature extraction which is
inherent in natural language will be transferred to sensor fusion tasks.

In addition, the self-attention mechanism used by Transformer can provide in-
sights into the final decision made by the deep network and obtain the weight
information, namely the attention map, of sensor data. This can be used for the
identification of critical sensors and hence makes up for the lack of interpretab-
ility when using the deep learning model in industrial sensor fusion tasks.

4.2 Problem Statement
Monitoring complex industrial processes requires utilising various sensing mod-

alities to obtain diverse process data, which presents a significant challenge on
how to effectively fuse the multi-sensor information to achieve comprehensive
monitoring. Deep learning has recently emerged as a promising approach due
to its capability of automatic feature learning. However, conventional shallow
neural networks often show insufficient learning capacity and require artificial
feature engineering, and the deeper networks that can overcome these limita-
tions typically require large volumes of data, which can be impractical in indus-
trial settings. Hence, the problem being solved in this research is how to enable
the use of deep networks for industrial sensor fusion. As a result, industrial pro-
cess monitoring can benefit from the learning capability of deep networks while
avoiding excessive demands on the amount of training data.

4.2 Problem Statement 97



In addition, as interpretability is preferred by industrial applications, another
problembeing investigated is how to obtain the decision basis for a deepmodel
that can help identify the key sensors in a large number of sensors.

4.3 Methodology and Architecture

4.3.1 Similarities between Natural Language Processing and Sensor
Fusion

Typically, when deep learning is used to deal with NLP problems, we often map
the words of a certain language into an embedding space which could be re-
garded as the unique identification information of each word. Transformer can
automatically learn not only the internal features of each word with the help of
multiple attention heads but also the features of the relationships among the
input word sequence on a single head of attention as shown in Fig. 4.2 [162].
This learning mechanism is preferred by sensor fusion tasks, where we want to
establish a unified feature representation that includes both inter-sensor and
intra-sensor information, where the inter-sensor information means the inform-
ation contained in the interrelation among different sensors and the intra-sensor
information means the information contained in a single sensor.

Figure 4.2.: Multi-heads attention

98 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



In NLP tasks, the model needs to recognize the meaning of a single word, and
it also needs to infer the information contained in a sentence or a paragraph.
Similarly, in a multi-sensor system, the information of each sensor could be com-
pared to a single word in NLP, and the information of all sensors can be regarded
as a sentence or paragraph. If themultiple sensor data from different modalities
can be mapped to a mapping space with a unified format, the extraction of
multi-sensor information could also be analogized to the understanding of para-
graph semantics as shown in Fig. 4.3. This gives the possibility to use NLP models

Word 1
Word 2
Word 3

Word N

Sensor 1
Sensor 2
Sensor 3

Sensor N

This
Hotel
Is
Not 
Good

Words Embedding Mapping Mechanism

Negative Comment System Conditions

Figure 4.3.: Sensor Data Mapping

on sensor fusion tasks. Technically speaking, the self-attention mechanism may
excel in handling multi-sensor data due to its inherent capacity to model inter-
actions and dependencies between any two data patches, regardless of their
position in the input sequence. This flexibility makes it particularly suitable for
multi-sensor environments, where data from different sensors may have com-
plex, non-linear relationships that vary over time. By computing attention scores
that reflect the importance of each sensor’s data point in the context of others,
self-attention allows the model to dynamically weigh and integrate information
across the entire set of inputs. This means that it can effectively capture the
temporal and spatial correlations between diverse sensor signals, enabling it to

4.3 Methodology and Architecture 99



learn from the rich, multidimensional data these sensors provide.

However, finding an optimised embedding space is not an easy task. In this
paper, we use a linear layer to learn the mapping rules automatically instead of
designing mapping rules artificially.

4.3.2 Model Architecture and Computation Process

The architecture of the proposed model can be described as shown in Fig. 4.4.
The overall computational flow is shown in Algorithm 3. Each part of this model
will be explained in the following items.

Figure 4.4.: Proposed Model Architecture

Data Normalisation

As the value range of different sensors will vary by orders of magnitude, in order
to facilitate training, the data from each sensor will be normalized using the
following formula:

Xnorm =
xi − xmin

xmax − xmin
(4.1)

100 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Data Reorganisation

The input of the Transformer is a two-dimensional matrix. Each row is a word
embedding vector and the two-dimensional input matrix is formed by stack-
ing the embedding vectors of each word. In this research, word embedding
is replaced with sensor data, hence different rows of input are different sensor
data. Since different sensors usually have different sampling rates corresponding
to the nature of the object being measured, in order to maintain the same em-
bedding vector length, data with a high sampling rate need to occupymultiple
embedding vectors, as shown in Fig. 4.5. To keep the length of the embedding

Figure 4.5.: Example of data reorganisation using 1-second sensor data as an input data point
(Sampling rates: sensor 1: 24Hz, sensor 2: 12Hz, sensor 3: 6Hz)

vector the same, the sampling rates of the sensors need to be in multiples, and
to achieve that some sensor values may be discarded or data paddingmay be
used. The reorganised input space can be described by:

X ∈ Rd×L (4.2)

where d is the sequence length, and L is the dimension of each element in the
input sequence.

Embedding Layer

The mapping of sensor data to the embedding space is done by a linear layer
with a dropout rate of 0.1 and orthogonally initialisedweights. Themapping rules

4.3 Methodology and Architecture 101



will be automatically learned as the parameters are updated during the training
process. At the same time, this layer also has the functions of preliminary feature
extraction and dimension adjustment for the upcoming layers. The embedding
layer can be described by the following equation:

Embedding(X) = ReLU
(
XWembedding + bembedding

) (4.3)

where Wembedding, bembedding are the weight matrix and bias matrix. ReLU(*) is the
activation function. X ∈ Rd×L, Wembedding ∈ RL×Lembedding , and bembedding ∈ Rd×Lembedding .
Lembedding is the embedding dimension which is used for matching the down-
stream layers.

Generative Pre-trained Transformer 2 (GPT-2)

In this research, a Transformer is expected to be the feature extraction engine,
therefore only its decoder part is required. OpenAI provides a pre-trained de-
coder of Transformer called GPT-2 with 1.5 billion parameters [223]. It is trained
from a 40GB non-task-specific training dataset which was crawled from 8 million
web pages. In sensor fusion tasks for industrial scenarios, it is difficult to train a
deep model with a large amount of data, however, this is not very difficult to
achieve in NLP scenarios. The architecture of GPT-2 is shown in Fig. 4.6 [224]. It is

Figure 4.6.: GPT-2 Architecture

composed of 12 attention layers and each attention layer consists of a 12 heads
attentionwhich is used to generate an attentionmap, two shortcut connections
with layer normalisation, and a fully connected feed-forward network. The in-
put dimension of GPT-2 is (N, 768), where N is the sequence number, namely
the number of rows of the input matrix. For example in Fig. 4.3, there are 5 rows,

102 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



so the sequence number is 5. The second number 768 is the size of each row.
Similar to the embedding layer described earlier, each row in this sequence will
share the same feed-forward network.

In this proposedmethod, similar to [192], 99.9% of the GPT2 model parameters
which were trained from the natural language dataset were frozen. Only the
normalisation layer, linear input and output layer were fine-tunedwith a learning
rate of 0.001 as this learning rate can balance the training speed and stability
based on practice, and Adam was used as its optimiser.

Return Last Operation

Because of the mask mechanism of GPT-2, only the output result at the last posi-
tion of the output sequence contains all the input sequence information, which
could be compared to the last hidden state in RNN. Therefore, since our work is
not a Seq2Seq task, only the last position in the output sequence will be used as
the input of the classifier.

Flatten Layer (optional)

Depending on the sampling rate of the sensor, if the data of the last sensor
occupies multiple rows in the sequence, we need to return all the rows of this
sensor, because the expected output result is the inter-sensor information. Thus,
in this case, a flattened layer is needed.

Classification Layer

After theabovecalculations, wehaveobtainedaunified feature representation
of the fused sensor data. The last layer of this model is a feed-forward neural
network for classification. The last position in the output sequence of the GPT2
attention block is the input of the classifier, and the number of output neurons is

4.3 Methodology and Architecture 103



the number of classes. This work only used a single-layer feed-forward network,
and the cross-entropy loss was used as its loss function.

4.4 Experiments and Results
Based on the description in the last section, the proposedmodel consists of an

embedding layer, GPT-2, and a classifier. As we transferred the parameters of
the pre-trained GPT-2, the GPT-2 has to be kept to its original structure. Since the
input and output dimensions of GPT-2 are (N, 768), the output dimension of the
embedding layer and the input dimension of the classifier were set to (N, 768)
to match the dimension of GPT-2. The input dimension of the embedding layer
depends on the dimension of the specific dataset and the output dimension of
the classifier can be determined by the target categories of specific tasks.

The hyperparameters and model configuration can be found in Table 4.1.
The feed-forward layer andmulti-head attention layer were frozen, as these two
parts contain all the features learned from natural language. The layer norm-
alisation was set to trainable since the data distribution is different for different
datasets. The learning rate was set to 0.001 because it was found in practice
that smaller learning rates lead to slow training and larger learning rates lead to
increased instability. The optimiser and initialisation remained the same as those
used in training the original GPT-2 model [223].

The proposed frameworkwas tested on three different datasets basedon con-
dition monitoring of a hydraulic system, the bearing condition of an electric
motor, and the gear and bearing working conditions of a gearbox. The experi-
mental results from the three mentioned datasets are provided in this section.

104 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Algorithm 3: Self-Attention-Based Deep Transfer Learning Method For Sensor
Fusion
Input: Multi-sensor data samples and the corresponding labels
Step 1 (Data preprocessing):
Normalising the multi-sensor data:

Xnorm =
xi − xmin

xmax − xmin

Constructing multi-sensor inputs to X ∈ Rd×L for Embedding.
Step 2 (Sensor data embedding):
Constructing the embedding space:

Embedding(X) = ReLU
(
XWembedding + bembedding

)
Step 3 (Transfer learning and feature extraction):
Construction of the feature representation by GPT-2 pre-trained from
language dataset as shown in Fig. 4.6.
Step 4 (Return Last Operation):
Return the last element of the output sequence.
if The last sensor occupies more than 1 row of embedding space then

Do flatten operation and return this vector
else if then

Return the last row of the output sequence
Step 5 (Fault classification):
Constructing the fault classifier, which is a single fully connected layer:

Classifier(X) = XWclassi f ier + bclassi f ier

Training the model with cross-entropy loss.
Output: The target categories.

4.4 Experiments and Results 105



Table 4.1.: Model parameters and training details

Experiment
Condition monitoring

of a hydraulic system
Bearing condition Gearbox condition

Pretrained

GPT2 model
Return last operation True True True

Position embedding None None None

Layer normalisation Trainable Trainable Trainable

Multi-head attention Frozen Frozen Frozen

Feed forward layer Frozen Frozen Frozen

Flatten layer False True False

Training Parameter initialisation
Orthogonal initialisation

(Gain = 1.41)

Orthogonal initialisation

(Gain = 1.41)

Orthogonal initialisation

(Gain = 1.41)

Learning rate 0.001 0.001 0.001

Optimiser Adam Adam Adam

Batch size 8 64 16

Loss function Cross entropy Cross entropy Cross entropy

4.4.1 Experiment 1: Condition monitoring of a hydraulic system

Task description

This classification task requires determining the operating conditions of a com-
plex hydraulic systembased on 17 sensors with different sampling rates (7 x 100Hz
sensors, 2 x 10Hz sensors, 8 x 1Hz sensors). The dataset was created by Helwig et
al. [23] on a test rig that was able to simulate a reversible degradation of system
performance. This hydraulic system was composed of a primary working circuit
and a secondary cooling circuit. Different loads were cyclically applied to a
pre-defined work cycle. The data was recorded in every one-minute snapshot,
therefore the total number of attributes for one data snapshot will be 8(sensors)×

60(s)× 1(Hz) + 2(sensors)× 60(s)× 10(Hz) + 7(sensors)× 60(s)× 100(Hz) = 43680.
This experiment was repeated 2204 times, hence the dataset had 2204 snap-
shots included.

This experiment has a total of five tasks to determine the operating conditions

106 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



of the five different parts of the system as shown in Table 4.2. This system may
have multiple faults at the same time.

Table 4.2.: Experiment 1-Operating conditions

Task System conditions

1 Cooler condition (1) Close to failure (2) Reduced efficiency
(3) Full efficiency

2 Valve condition (1) Optimal switching behaviour (2) Small lag
(3) Sever lag (4) Close to total failure

3 Internal pump (1) No leakage (2) Weak leakage
(3) Sever leakage

4 Hydraulic accumulator (1) Optimal pressure (2) Slightly reduced pressure
(3) Sever reduced pressure (4) Close to failure

5 Stable flag (1) Condition were stable (2) Non-static conditions

Data organisation

The sensors have three different sampling rates, 1Hz, 10Hz, and 100Hz respect-
ively. The one-minute snapshot data of the 1Hz sensor is used as the length of
the embedding vector (60 columns), hence the 10 Hz and the 100 Hz sensors
occupy 10 and 100 embedding vectors respectively. Therefore, one snapshot
of input data from these 17 sensors, a total of 43680 attributes, will be reshaped
as a matrix with 728 rows and 60 columns.

4.4 Experiments and Results 107



Table 4.3.: Experiment 1-Accuracy Comparison

Research group Method Cooler Valve Pump Accumulator Stable flag Mean

Helwig et al. [23] (2015) LDA 100% 100% 98.0% 90.4% N/A 97.1%

Berghout et al. [225] (2021) Auto-NAHL 100% 100% 100% 96.4% N/A 99.1%

Wu et al. [226] (2020) EGMSVMs 100% 100% 100% 76.5% N/A 94.1%

Gupta et al. [227] (2021) SECM N/A N/A N/A N/A N/A 92.3%

Lei et al. [228] (2019) PCA+XGBoost N/A 96.58% N/A N/A N/A N/A

Huang et al. [141] (2021) Deep CNN 100% 100% 99.0% 99.4% N/A 99.6%

Prakash et al. [130] (2020) ANN+XGBoost 99.54% N/A N/A N/A N/A N/A

Our results Experimental method 100% 100% 98.2% 91.4% (96.4%) 94.4% 98.7%

Results of prediction accuracy

The experimental results of model prediction accuracy and comparison with
other research are shown in Table 4.3, and the stable flag was not included in
the calculation of mean accuracy.

In this table, each percentage means accuracy which can be described by
the following equation:

Accuracy =
Number o f correct predictions
Total number o f predictions

(4.4)

The reason for using accuracy to assess model performance is that there is no
order of magnitude difference in the number of samples in each category in
this dataset. The accuracy in brackets in this table means the accuracy after
sensor selection has been applied, and this will be explained in detail in the
next section. Based on Table 4.3, it can be found that our proposed method
achieves an accuracy of 98.7%, ranking in the top three of published work in
recent years based on this dataset.

108 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Interpretability: Key sensor identification based on attention mechanism

In a multi-sensor system, a large number of sensors can be employed, how-
ever, not all of them will have an impact on the final decision. When we are
dealing with a complex industrial system, it can be difficult to identify critical
sensors. Using too many redundant sensors may increase the complexity of the
system, waste communication bandwidth and increase the computational bur-
den. Hence, deep learning methods that are interpretable to some extent are
preferred by the industry.

The concept of interpretability of deep learning models can be divided into
the following two aspects:

• Models are transparent to humans. The corresponding model para-
meters and the model decisions can be predicted before the model is
trained for a specific task [229].

• Decision interpretability. After a model makes a decision, humans can
understand the reasons for that decision [230].

This subsection shows the decision interpretability of the proposed method.

In general, AMs are used to control the information flow of deep networks. In
the process of backpropagation, the part of the data that has less impact on
the results will be masked gradually, and only the information that is decisive for
the final decision will be retained. The importance of input sensor data is reflec-
ted by the attention weights [231]. Hence, compared with the conventional
black-box deep learning models that give no information on which sensors it
relies, the key sensors can be identified by visualising the attention weights. As
shown in Table 4.3, the classification accuracy of the fourth task is only 91.4%.
This indicates that there may still be room for improvement. Therefore, we chose
this task to show the key sensor identification capability of AM.

As the data from 17 sensors are reorganised into 728 vectors of 60 columns,

4.4 Experiments and Results 109



the original attention heat map is a matrix of 728 rows and 728 columns. The
x-axis represents the input sequences and the y-axis represents the output se-
quences, for example, the first row is the attention scores of the first element in
the output sequence corresponding to all inputs. The dark blue colour means
this part of the data is masked and no information can flow to the next layers.
As mentioned in the previous section, the input sequence has 728 vectors of
size 60. Since the sensors with different sampling rates occupy different numbers
of input vectors, attention scores for input vectors from the same sensor need
to be added together. The processed attention heat map is shown in Fig. 4.7.
As mentioned above, the last row of the processed attention heat map, in this
case, the 17th row, is the output attention score based on all of these 17 sensors.

Figure 4.7.: Attention heat map for accumulator task of experiment 1

The attention weights shown in the 17th row can be visualised as Fig. 4.8.
Based on this information, the sensors are divided into two groups, the highest
attentionweights group and the lowest attentionweights group. 8 of the sensors
are contained in the highest attentionweights group, whereas another 8 sensors

110 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Figure 4.8.: 17 sensors attention weights

are contained in the lowest attention weights group. Then, instead of using all
these 17 sensors, the model is trained by these two groups separately. The train-
ing history is shown in Fig. 4.9 and the accuracy of using the top 8 attention
sensors and the last 8 attention sensors are 96.4% and 83.0%.

It can be found that using the highest attention weights group only to train the
model can obtain better results than using all the sensors, which means faster
convergence, higher accuracy and less fluctuation. The reason for this phe-
nomenon may be that selecting only the more important sensors can effect-
ively reduce the dimension of the input space and thus reduce the difficulty of
feature learning of the model. This result illustrates the key sensors identified by
the proposedmethod contain sufficient information for decision-making. As the
proposed method provides access to the decision basis of the model, it has a
higher degree of interpretability than traditional black-box models.

4.4 Experiments and Results 111



0 5 0 1 0 0 1 5 0
5 0
7 5

1 0 0

Te
st 

Ac
c (

%)

 A l l  1 7  s e n s o r s
 T o p  8  s e n s o r s
 L a s t  8  s e n s o r s

(a)

0 5 0 1 0 0 1 5 00
7

1 4
2 1
2 8
3 5

Tra
in 

Lo
ss

(b)

0 5 0 1 0 0 1 5 0
5 0

7 5

1 0 0

Tra
in 

Ac
c (

%)

E p o c h
(c)

Figure 4.9.: Training history of 2 groups of sensors vs. Using all sensors

112 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Model performance tests under different amounts of training data

This section compares the performance difference under different amounts of
training data between the pre-trained model and scratch model to evaluate
whether the parameters trained from natural languages can help to reduce
the necessary amount of training data. In this experiment, the training dataset
was trimmed to 6 subsets with different sizes, 100%, 80%, 60%, 40%, 20%, and 5%
of the original size respectively. The testing dataset for model evaluation was
kept the same as in Experiment 1: Condition monitoring of a hydraulic system
subsection 3) for all tests.

The test results are shown in the box plot shown in Fig. 4.10. It can be found
that regarding the prediction accuracy and its stability, the pre-trained model
outperforms the scratch model for all 5 tasks under all different training data
amounts. In task 1 as shown in Fig. 4.10 (a), although there is a significant per-
formance drop when the size of training data is reduced from 20% to 5% for both
models, the lower accuracy and larger fluctuation of the scratchmodel can be
observed. In task 2 as shown in Fig. 4.10 (b), when the amount of training data is
greater than or equal to 80% of its original size, these twomodels perform almost
the same. However, the performance of the scratchmodel decreases obviously
when the train data size shrinks to 60%, while the pre-trainedmodel keeps stable
until 20% of training data. As for tasks 3 and 4, the scratch model fails to capture
enough information to predict system conditions as shown in Fig. 4.10(c) and
(d). In terms of task 5 as shown in Fig. 4.10(e), compared with the fact that the
performance of the pre-trainedmodel is still relatively high even at 5% of training
data, the scratch model degrades remarkably after shrinking the size of training
data to 80%.

In summary, the model transferred from the natural language domain can ef-
fectively reduce the necessary amount of training data when using deep learn-
ing in the industrial sensor fusion domain. This means the workload and the time
consumed for collecting industrial data can be effectively saved. Current trans-

4.4 Experiments and Results 113



(a) Task1 (b) Task2

(c) Task3 (d) Task4

(e) Task5

Figure 4.10.: Classification accuracy under different amount of training data

114 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



fer learning solution for industrial sensor fusion requires similar industrial process
data to pre-train the deep learning model [232] [172]. Our proposed method
proves that similar industrial process data may not be the only option to perform
transfer learning for industrial sensor fusion. Hence, the limitations of using deep
learning in industrial scenarios can be reduced significantly.

Discussion of results and comparison of performance with the alternative
methods

The accuracy comparison of the works published in recent years can be found
in Table 4.3, and the comparison of the characteristics of these different meth-
ods can be found in Table 4.4. As the method proposed by Gupta et al. was
focused on detecting system degradation earlier, and it is different from the
condition monitoring focused on in this paper, their work is not included in the
comparison. As shown in Table 4.4, manual feature engineering is required for
all methods except the methods proposed in [228], [141], and our proposed
method. In contrast to other methods, our approach also does not require di-
mension reduction. This demonstrates the end-to-end nature of our proposed
approach.

In [23], Helwig et al. extracted a large number of features in the time and
frequency domain for all sensors, and for each extracted feature they analysed
its correlation with system faults by Pearson’s correlation coefficient and Spear-
man’s rank correlation coefficient. Then, only the highly relevant features are
used as the input of their classifier called Linear Discriminant Analysis (LDA). Their
accuracies for different tasks shown in Table 4.3 were achieved by different com-
binations of features obtained by different correlation analyses. This means that
when working on a new task, a large number of feature combinations have
to be traversed to find the best model. Similar feature engineering can also
be found in [225] and [226]. In [130], Prakash et al. used XGBoost technology
to select features before feeding data to a shallow neural network. The stud-

4.4 Experiments and Results 115



ies mentioned above all rely heavily on the use of artificial features to repres-
ent information from multiple sensors, thus combining the sensors with different
sampling rates and reducing the dimension of the input space to ensure that
the complexity of the input space does not exceed the capacity limit of the
classifier. In contrast, in our proposed method, manual feature extraction is not
required. On the one hand, the sensor data will be mapped to a unified em-
bedding space, thus combining sensors with different sampling rates. On the
other hand, the deep learning model trained from natural language, as fea-
ture extractors, can extract and select the features from the embedding space
automatically. Hence, it can significantly reduce the workload and avoid the
difficulty of artificial feature engineering.

In terms of the research of Huang et al. in [141], they used multiple independ-
ent parallel convolutional neural networks to extract features for each sensor.
The output of each of the convolutional neural networks was kept the same,
thus, the sensors with different sampling rates can be combined and automatic
feature extraction was also achieved. They have achieved excellent accuracy
on this dataset. However, such a network structure widens significantly as the
number of sensors increases. Cohen et al. pointed out that it is necessary to
increase the network depth if the width increases [220]. As the size of the indus-
trial dataset is usually limited, the depth of a network that can be trained is also
limited. Therefore, the number of input sensors has to be reduced to prevent the
network from being too wide. Huang et al. noted that the large input dimension
of their model was unacceptable as this will lead to training failure [141]. Hence,
they reduced the input dimension from 43680 to 6000 based on artificial sensor
selection. In contrast, our proposed method is relatively more insensitive to high
input dimensions. Since the amount of data in natural language is very large,
this allows for training deeper models and therefore it can handle higher input
dimensions compared to shallow networks. This is a preferred advantage when
dealing with large sensor numbers and a lack of a priori knowledge of these
sensors. In our experiment, we used the original size of the input (43680) without

116 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



any artificial dimension reduction.

Moreover, in our proposed method, the model decision basis provided by the
self-attention mechanism is also not available in other methods, and this allevi-
ates the black-box nature of deep learning models.

Table 4.4.: Experiment 1-Method comparison

Research

group

Feature

engineering

Dimension

reduction

Transfer

learning

Helwig et al. [23] Yes Yes No

Berghout et al. [225] Yes Yes No

Wu et al. [226] Yes Yes No

Lei et al. [228] No Yes No

Huang et al. [141] No Yes No

Prakash et al. [130] Yes Yes No

Our method No No Yes

4.4 Experiments and Results 117



4.4.2 Experiment 2: Bearing dataset

Task description

This dataset, created by the CaseWestern Reserve University Bearing Data Cen-
ter [233], is based on a task that identifies the bearing conditions of an electric
motor. Two vibration sensors are mounted on the drive end and the fan end
respectively. The faults occurred in three locations, bearing rolling element, in-
ner raceway, and outer raceway. Each location has three different levels of fault
severity, small, medium, and large. Thus, these ninedifferent fault categories plus
the healthy condition make a total of 10 different categories. It is a classification
problem of 10 categories, and the data of the 10 categories were collected for
four different working loads (0-3hp). Several sub-datasets are created based on
the methods provided in [234] [30] as shown in Table 4.5, and the proposed
method is evaluated on these 6 sub-datasets. The sixth sub-dataset was slightly
different from the others, it was based on predicting the bearing condition un-
der a high working load (3hp) based on the data collected from a low working
load (0-2hp).

Table 4.5.: Experiment 2-Subdataset

Subdataset 1 2 3 4 5 6

Training data 0 hp 1 hp 2 hp 3 hp 0-3 hp 0-2 hp

Testing data 0 hp 1 hp 2 hp 3 hp 0-3 hp 3 hp

118 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Data organisation

As the vibration signal from the 2 sensors was recorded during a certain time
period for each type of condition, and the length of each file was more than
120,000 data points, they need to be chunked into small portions. A 2x120 was
chosen as the window size of one portion (120 data points for each vibration
sensor) and the data was reorganised to a matrix with 4 rows and 60 columns
as the input of our deep network.

Experiment results

The experiment results of the proposed method and the results obtained in pre-
vious research are shown in Table 4.6.

Table 4.6.: Experiment 2-Results comparison

Method
Subdataset

1 2 3 4 5 6

[235] 88.9% - - - - -

[236] - - - 92.5% - -

[234] 98.8% 98.8% 99.4% 99.4% 99.8% 96.8%

[30] 100% 100% 100% 99.96% 99.95% 98.80%

Our method 99.12% 99.61% 99.49% 99.9% 99.84% 81.52%

It was observed that the best results of previous research have been achieved
in [30]. They used a 16-layer Visual Geometry Group (VGG-16) as a feature ex-
tractor to extract features in time-frequency images of vibration signals. Com-
pared with their results, the proposed method has similar accuracy in tasks 1-5
(nearly 100%). However, this method shows a worse accuracy than the accur-
acy in [30] in task 6. This may be because this research used the raw data in

4.4 Experiments and Results 119



the time domain as compared to the frequency domain analysis used in [30].
As mentioned in the task description, the requirement of this task is to use low
working load data to predict failures under heavy working loads and the speed
of the motor remains constant. In frequency domain bearing vibration ana-
lysis, the rotation speed of the shaft is a main factor affecting the frequency
feature distribution of vibration signal [237], and the severity of defects, rotation
speed, and working load mainly affect the amplitude of each frequency ele-
ment [221]. Therefore, as the rotation speed remains constant in this experiment,
the frequency domain analysis is less sensitive than the time domain analysis.

4.4.3 Experiment 3: Gearbox dataset

Task description

This dataset was created by Shao et al on a dynamic simulator which comprised
of a motor, a shaft, a gearbox, and a brake [30]. This task required the identi-
fication of the gear and bearing working conditions of the gearbox based on
the vibration signal. Gear and bearings have four faulty working conditions and
one healthy working condition.

Data organisation

The time window size for the vibration signal was kept at 4000, this implies that
the input data had 4000 data points, organised as a 40x100 matrix. This model
treats each 40x100 input as 40 different data sources and attempts to capture
features from inter- and intra- data sources.

Experiment results

The experiment results are shown in Table 4.7. As can be seen from the table,
the accuracy obtained by our proposed method is slightly higher than that ob-
tained by the best results in previous studies [30] [238]. Compared with the

120 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



Table 4.7.: Experiment 3-Results comparison

Classification method
Bearing Gear

Low load High load Low load High load

[238]

SAE-DNN 87.5% 92.1% 92.7% 91.9%

GRU 91.2% 92.4% 93.8% 90.5%

BiGRU 93.0% 93.6% 93.8% 90.7%

LFGRU 93.2% 94.0% 94.8% 95.8%

[30] Pre-trained CNN 99.94% 99.42% 99.64% 99.02%

Our proposed method 99.10% 99.85% 99.90% 99.92%

method proposed that used wavelet transformation of vibration signal as input
data [30], the proposed method uses the raw vibration signal and does not re-
quire any artificial feature extraction or data transformation.

4.4 Experiments and Results 121



4.5 Discussion
The experiment results demonstrate that it is feasible to use the deep model

transferred from NLP, in this case, a Transformer-based model called GPT-2, to
handle the task of multi-sensor fusion for industrial applications. The proposed
method offers advantages in the following aspects:

• Interpretability: The attention heat map indicates the decision basis of
the deep learning model which can be used for key sensor identifica-
tion, thereby assisting engineers to conduct system diagnosing or main-
tenance or reducing the redundancy of the system. The results from
experiment 1 demonstrate that using the data from important sensors
to classify system conditions is more accurate than using data from all
the sensors. This suggests that the AM has a positive effect on identi-
fying key sensors. Such a feature is not available in most other deep-
learning models. However, it is worth noting that no attention alloc-
ated to a sensor does not necessarily mean that the sensor does not
have enough information. It can only indicate that the sensor data
with strong attention are easier to harness during the backpropaga-
tion process. In other tasks with accuracy above 95%, there was little
difference between the results obtained by using the sensors with high
attention and all the sensors.

• Enable the use of deep learning models with limited industrial data.
Normally, transfer learning is a hot topic to solve the data shortage in
industrial scenarios requiring that the two datasets have some kind of
similarity [172] [239]. However, even collecting enough data on similar
industrial processes is costly and finding similar industrial processes also
has limitations. Our proposedmethoddemonstrates that a deepmodel
pre-trained in natural language can be transferred to industrial sensor
fusion tasks. As natural language is a data-rich modality, deep learning
models can be sufficiently trained from it. Therefore, the use of deep

122 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



learning for sensor fusion tasks is less likely to be limited by the limited
industrial data and the lack of similar industrial processes.

• Eliminate the need for artificial feature engineering: Manual feature ex-
traction and selection are labour-intensive, difficult and have high un-
certainty. However, in order to combine different sensors and reduce
the complexity of the input space, it is usually necessary. In the pro-
posedmethod, the sensor data with different sampling rates were com-
bined and mapped to a unified embedding space, and a deep learn-
ing model was used to extract features from the embedding space
automatically. Therefore no manual feature engineering was required.

However, while the model performs well on classification problems as shown
in this paper, it shows less capacity on the regression tasks, such as remaining
useful life prediction tasks. The reason for this may be that stacked attention
layers are better at searching for key information rather than mapping features
to a specific value. As mentioned in the previous Chapter, the output of AM is
calculated based on Q, K, and V vectors, where Q and K vectors are used to
search and match information and only the V vector is used to extract features.
As the V vector is obtained only using a linear layer, therefore AM may be less
capable of extracting abstract features from the data. In order to adapt the AM
to the regression task, the computational mechanism of the attention layer may
need to be adapted, whichmight be a possible future research direction. In ad-
dition, the large model size and high memory usage are other limitations of this
approach. The computational complexity and memory usage of this method
grows by the square of the length of the input sequence [240]. As a result, it
may cause high occupancy of computing resources in industrial applications.
How to minimise the model and find a balance between model performance
and resource consumption may be another future research direction.

4.5 Discussion 123



4.6 Summary
In conclusion, this work proposed a new deep transfer learning method to

deal with industrial sensor fusion tasks. The results of condition monitoring of a
hydraulic system show that the proposed method has achieved high accuracy
without feature engineering in an extremely large input space. This proposed
method allows industrial scenarios to use deep models with a relatively small
amount of data. In its accumulator conditions classification task, the accuracy
can be further improved from 91.4% to 96.4% if only the sensor data with high
attention scores are used as input. This phenomenon suggests that AM has a
positive effect on improving the interpretability of the deep learning model. As
can be seen from the results of bearing condition classification, the proposed
method achieves similar accuracy to the best results of previous studies in Tasks 1
to 5. However, it shows an unsatisfactory result in Task 6. The reason for the result
in task 6 may be due to the fact that the frequency domain analysis used in [30]
has an advantage in predicting high workloads conditions using low workloads
data when compared to the time domain analysis used in this study. As for
gearbox condition classification, the proposedmethod is slightly more accurate
in comparison with the accuracy obtained in [30].

The results of this research show that the pre-trained NLP model GPT-2 based
on the architecture of the Transformer also has the potential to handle multi-
sensor fusion tasks. The GPT-2 acts as a feature extraction engine that could
replace manual feature extraction thus eliminating the difficult choice of using
a deep model or a shallow model with artificial feature extraction for industrial
sensor fusion tasks. Moreover, the experimental results show that the deep learn-
ing model, in this case, GPT-2, trained from natural language can be transferred
to industrial sensor data, which means it may not be necessary to collect data
for specific kinds of machines or processes before using deep transfer learning.
Hence, the cost and time required for industrial data collection can be signi-
ficantly reduced. In addition, the AM allows the model to provide not only the
prediction information but also the basis for the model’s decision-making which

124 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



might be beneficial for industrial applications.

The main contributions of this work can be summarised as follows:

• A novel deep transfer learning solution that generalises the feature rep-
resentation from a data-rich modality, in this case, NLP, to address chal-
lenges in sensor fusion. This work demonstrates that when using trans-
fer learning in industrial scenarios, collecting data from similar industrial
processes for pre-training may not be necessary. The proposed transfer
learning method can effectively reduce the required amount of data
when using deep learning for industrial sensor fusion tasks, thus benefit-
ing from the learning ability of deep models and to some extent, elim-
inating the trade-off between deep and shallow models mentioned
above. To the best of my knowledge, it is the first work that uses the
model trained from language to solve the industrial sensor data pro-
cessing problem.

• The problem of poor interpretability when using Deep Learning in sensor
fusion tasks is alleviated. Based on the attention mechanism, the de-
cision basis of the deep learning model can be inspected, thus the key
sensors that are highly related to the final decisions can be identified.
Instead of analysing data from all sensors, it allows for a narrower ana-
lysis during diagnostics.

• A novel deep learning solution to automatically establish a unified fea-
ture representation and association relationship for the sensor data at
significantly different sampling rates from different modalities. For con-
ventional sensor fusion methods, decision-level fusion is a better op-
tion if the types of sensors are significantly different [72]. However, the
challenge for using decision-level fusion is that a large number of fea-
tures which can be highly correlated have to be created. This could
bias the final decision, and these features have to be processed prop-
erly [72]. In our proposed method, instead of utilising the raw data dir-

4.6 Summary 125



ectly, the sensor data with different sampling rates will be combined
and mapped to an embedding space, and the features among differ-
ent sensors can be extracted from the embedding space by a deep
neural network automatically. Hence, the challenge of decision-level
fusion can be avoided, the need for artificial feature engineering can
be eliminated, and the sensors with different sampling rates can also
be combined easily.

126 Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks



5
Sensorformer: A Memory-efficient
Transformer for Industrial Sensor Fusion

5.1 Introduction
As discussed in the previous chapters, the Transformer method can be an ef-

fective candidate for sensor fusion, offering the following advantages over sim-
ilar techniques:

• Compared with the local pattern-matching process (fixed kernels) of CNN,
the self-attention mechanism can adaptively discover the large-range de-
pendencies by its attention mechanism, hence, it has stronger modelling
capabilities and it may be amore efficient way to extract high-level inform-
ation [163][164].

• Transformer has remarkable extensibility, which means significant perform-
ance improvements can be observed as the model gets larger, such as
Turing Natural Language Generation (Turning-NLG)[241] and Generative
Pre-trained Transformer (GPT)[165].

127



• Some studies have shown that it has the ability to combine different mod-
alities, which is beneficial for makingmore comprehensive inferences[242].

However, since the computational complexity of the transformer is O(N2),
and the memory usage is also the square of the sequence length, comput-
ing time and required resources increase with the number of sensors (length of
sequence)[243], especially for processing the high sampling rate sensor data.
This can result in a significant occupation of resources in industrial applications,
whichmeans less efficiency andmore cost, especially in the case of edge com-
puting. The commonly used Principal Components Analysis (PCA) and the re-
moval of highly related sensor data can effectively reduce the sequence length
of the input, however, they may not be the best choice for a multi-sensor sys-
tem. In terms of PCA, the principal components could be less representative
than the original data, as the components with small variances may represent
influential information. As for removing the highly related sensor, for example,
in[141], it may contradict the original purpose of designing a multi-sensing sys-
tem. The purpose of introducing redundant sensors is to increase the robustness
of the monitoring system or to detect the same physical quantity at different
locations. These data can be highly related to each other. If these sensor data
are removed in the pre-processing stage to reduce the length of the input se-
quence, then this can result in the loss of many advantages of a multi-sensor
system.

In this work, a novel deep learning architecture, Sensorformer, was proposed
tomitigate theproblemsmentionedabove. Anauto-decorrelation block based
on the Fast Fourier Transform (FFT) was integrated with the self-attention block to
reducememory occupation and increase computing speed. Instead of remov-
ing the related data, this model automatically merges the related data during
the processing of the data. In addition, due to the inherent O(NlogN) computa-
tional complexity of FFT, the self-attention-based auto-decorrelation block can
also reduce the computational complexity from O(N2) to O(NlogN), hence the
memory occupation and computing time can be reduced significantly.

128 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



5.2 Problem Statement
The Transformer and its variants have achieved impressive success across nu-

merous fields, suchas natural languageprocessing, vision recognition, andmulti-
sensor industrial data processing. However, their application in industrial scen-
arios, especially in edge computing environments, can be often constrained
by their high memory usage and computational complexity, which pose chal-
lenges in terms of cost, efficiency, and feasibility, particularly when dealing with
large-scale or real-time tasks. Therefore, this research focuses on reducing the
memory usage and computational complexity of the Transformer for sensor fu-
sion tasks. As the sources of the high computational load of the Transformer
are the self-attention mechanism and the large input space, the goals of this
research are to reduce the computational complexity of the attention calcula-
tion and the size of the input sequence simultaneously in an end-to-endmanner.

5.3 Methodology and Architecture

5.3.1 Overall architecture

Sensorformer is composed of two different blocks, the self-attention block and
decorrelation block as shown in Fig.5.1 where N and M represent the number of
blocks, Q, K, and V are Query, Key, and Value respectively similar to Transformer
in[162]. The former block is the original transformer self-attention block which
is used to establish the unified feature representation of multi-sensor data[162],
and the latter block is used to reduce the sequence length before sending the
data to the transformer block by merging the correlated channels automatic-
ally. Our Sensorformer harnesses the removal of correlated channels as an inner
block of the deep learning model, which can progressively merge the correl-
ated channels throughout the whole inference process. Note that the number
of merged channels will increase with the number of decorrelation blocks. The
feed-forward layer of the decorrelation block is used for non-linear projection

5.2 Problem Statement 129



Figure 5.1.: Sensorformer Architecture

and its weights can be updated automatically during the backpropagation
process, hence the calculation of the correlation coefficient will not be restric-
ted to linear calculation.

The classifier used in our model is a simple one-layer neural network, and the
feed-forward layer is a three-layer neural network with a ReLU activation func-
tion.

5.3.2 Model input

The input of this model can be described by X ∈ Rd×L, where L is the time
window size of one sample, and d is the sequence length that is affected by
the sampling rates of multiple sensors. For example, if we have a 1-second time
window sample consisting of 2 sensors with the sampling rates of 10(Hz) and
50(Hz) respectively, L will be 10 and d will be 10(Hz)/10 + 50(Hz)/10 = 6. Xi ∈

130 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



Figure 5.2.: Decorrelation layer

R1×L denotes the i-th element of the input sequence.

5.3.3 Decorrelation layer

The decorrelation layer shown in Fig.5.1 can be illustrated by Fig.5.2. We propose
this mechanism with channel-wise data mergence to improve the efficiency of
information utilisation and reduce computation load. The mechanism of this
layer will be explained in the following subsections.

Pearson correlation coefficient calculation

In this research, Pearson’s correlation coefficient is used to measure the correla-
tion, which can be described by the following equation:

ρX ,Y =
cov(X ,Y)

σX σY
(5.1)

5.3 Methodology and Architecture 131



To simplify the calculation, based on stochastic process theory, the following
equation is used in practice to estimate Pearson’s correlation coefficient[244]:

RXiYi =
1

L− 1

L

∑
i=1

XiY (5.2)

where

Xi =

(
Xi − X̄

σXi

)
, Y =

L

∑
i=1

Xi − Xi (5.3)

σXi and X̄ are standard deviation and mean value of Xi. Note that Yi is the
reference variable which means the correlation between Xi and the sum of
the rest of the channels is evaluated here by RXiYi . This operation is to avoid
calculating C2

L times the correlation coefficient to identify the related channels.
In this case, only an L-times calculation is needed. The following equation is used
to describe the correlation between Xi and Yi at the time delay τ:

RXiYi(τ̄) = lim
L→∞

1
L

L

∑
t=1

XiYiτ (5.4)

BasedonWiener-Khinchin theorem, for computational efficiency,RXiYi(τ̄) can
be derived by FFT[245]:

SXY( f ) = F (Xt)F ∗ (Yt)

=
∫ ∞

−∞
Xte−i2πt f dt

∫ ∞

−∞
Yte−i2πt f dt

(5.5)

RXY(τ) = F−1 (SXY( f )) =
∫ ∞

−∞
SXY( f )ei2π f τd f (5.6)

where τ ∈ {1, · · · , L}, F and F−1 represent the FFT and its inverse, F ∗ means
F ’s conjugate matrix. As RXY(τ) for τ ∈ {1, · · · , L} can be obtained at the
same time by FFT, the computational complexity is O(LlogL). The entire process
mentioned above can be described by the dashed box in Fig.5.2.

132 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



Figure 5.3.: Channel mergence with time delay calibration

Channel mergence with time delay calibration

As shown in Fig.5.3, this layer is used to align the correlated channels at their
maximum similarity based on the correlation coefficient matrix obtained in the
last section. Then the correlated channels will be fused into a single channel,
hence the sequence length can be reduced in a reasonable manner.

Firstly, the signal is rolled τi steps to make sure the channels can be fused at
their maximum similarity. This is because the time delay between sensor data
may vary due to factors such as the location of the sensors or the characteristics
of the industrial process. Fusing the sensor data at their maximum similarity can
mitigate the impact of this time delay effect on the fused data. τi is calculated
by the following equation: τi is calculated by the following equation:

τi = arg Max
i∈{1,··· ,d}

(
RXi,Yi(τ)

) (5.7)

Then, the k most relevant channels are fused into one channel based on the
So f tMax scores of their correlation coefficients. The channel mergence layer
can be described by the following equations:

{τ′1, · · · , τ′k} = Topk{τ1, · · · , τi} (5.8)

5.3 Methodology and Architecture 133



R̂Q,K (τ
′
1) , · · · , R̂Q,K

(
τ′k
)
= SoftMax

(
1−RQ,K (τ

′
1) , · · · , 1−RQ,K

(
τ′k
)) (5.9)

ChannelMergence (Qk,Kk,Vk) =
k

∑
i=1

Roll
(
Vk, τ′k

)
R̂Q,K

(
τ′k
) (5.10)

where Topk{∗} is the operation that takes the largest k values, and Roll(∗) is the
rolling operation mentioned above. Note that the SoftMax is calculated based
on (1−RQ,K

(
τ′k
)
). This is because the channels that are highly correlated with

other channels are expected to have smaller weights, thus making channels
that are less correlated have large weights. RQ,K is the correlation coefficient
between Q and K. Note that k is a hyper-parameter that controls how many
channels will be merged at each of the decorrelation blocks. The output of
ChannelMergence is a single channel, and this merged channel will be con-
catenated with the rest of the channels. Therefore, the channel number of the
decorrelation layer output will be d− k + 1.

The multi-head operation used in Sensorformer can be described in the fol-
lowing equations:

MultiHead(Q,K,V) = Concat (head1, · · · ,headh) (5.11)

where h is the number of heads. Each headh is the operation of the whole decor-
relation layer, and the input of each head can be described by Xheadh

∈ Rd× L
h .

5.3.4 Decorrelation block

Similar to the self-attention block of Transformer, as shown in Fig.5.1, the decorrel-
ation layer is connected to a feed-forward layer via a shortcut connection[184]
and layer normalisation[183]. The feed-forward layer also has its shortcut con-
nection and layer normalisation.

134 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



Table 5.1.: Monitored Parameters of the Hydraulic System

Sensor Physical quantity Unit Sampling rate

PS1-6 Pressure bar 100Hz

EPS1 Motor power W 100Hz

FS1-2 Volume flow 1/min 10Hz

TS1-4 Temperature ℃ 1Hz

VS1 Vibration mm/s 1Hz

CE Cooling efficiency % 1Hz

CP Cooling power kW 1Hz

SE System efficiency factor % 1Hz

5.4 Experiments and Results
This experiment compared the inference speed, memory usage, and predic-

tion accuracy of the original Transformer and our proposed Sensorformer on
the same dataset (details below). The size of the Transformer and Sensorformer
were kept the same to make them comparable. The details of this experiment
are explained in this section.

5.4.1 Experiment dataset

The proposed method was tested on a public industrial multi-sensor dataset:
Condition Monitoring of a Hydraulic System, and it was created by Helwig et al.
in the experiment described in [23]. This experiment used 17 sensorswith different
sampling rates to measure different physical quantities at different locations of
a hydraulic system as shown in Table 5.1.

Based on these sensor data, the system conditions as shown in Table 5.2 were

5.4 Experiments and Results 135



Table 5.2.: Conditions of the Hydraulic System to be Predicted

Components Component conditions

1 Cooler condition (1) Close to failure (2) Reduced efficiency
(3) Full efficiency

2 Valve condition (1) Optimal switching behaviour (2) Small lag
(3) Sever lag (4) Close to total failure

3 Internal pump (1) No leakage (2) Weak leakage
(3) Sever leakage

4 Hydraulic accumulator (1) Optimal pressure (2) Slightly reduced pressure
(3) Sever reduced pressure (4) Close to failure

5 Stable flag (1) Condition were stable (2) Non-static conditions

expected to be identified. The total number of attributes for one data snapshot
was 8(sensors)× 60(s)× 1(Hz) + 2(sensors)× 60(s)× 10(Hz) + 7(sensors)× 60(s)×

100(Hz) = 43680, and the timewindow sizewas 60 seconds, hence, as described
in the previous section, the input space can be described by:

X ∈ R728×60 (5.12)

The data were normalised to 0 to 1 based on the following equation:

Xnorm =
xi − xmin

xmax − xmin
(5.13)

5.4.2 Experiment environment and Sensorformer parameters

This experiment was conducted on Google Colab environment with NVIDIA
Tesla P100 PCIe 16 GB, and PyTorch was used as the deep learning framework.
The hyper-parameters of Sensorformer and Transformer are shown in Table 5.3.

136 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



Table 5.3.: Hyper-parameters of Transformer and Sensorformer

Hyper-parameters Sensorformer Transformer

Batch size 30 30

Learning rate 0.0001 0.0001

Optimiser Adam Adam

Loss Cross Entropy Cross Entropy

Self-attention blocks 8 12

Self-attention heads 6 6

Decorrelation blocks 4 0

Decorrelation heads 2 N/A

Topk 100 N/A

Initialisation Orthogonal Orthogonal

5.4.3 Experiment Results

In this experiment, we tested the performance of the Transformer and Sensor-
former with 100% GPU occupancy to compare the memory efficiencies. As
shown in Table 5.3, both models used the same parameters and they were both
set to the same size (12 blocks). For the Transformer, the depth was 12 self-
attention blocks. As for the Sensorformer, it was composed of 4 decorrelation
blocks and 8 self-attention blocks. The results are shown in Fig. 5.4, the infer-
ence time and memory usage represent the average inference time and aver-
age memory usage of a single sample with 100% GPU memory usage. Based
on the results, it can be found that with maximum GPU occupation, our pro-
posed method takes only 50% of the inference time of the Transformer. In terms
of memory usage, Transformer uses 4.6 times more GPU memory than Sensor-
former. When deploying deep learning models for industrial multi-sensor data

5.4 Experiments and Results 137



Figure 5.4.: Results of model speed and memory usage comparison

processing, lower memory usage and less inference time mean more data can
be processed with the same computational resources. Our proposed method
is therefore more efficient and less costly.

The result of the accuracy of our proposedmethod can be found in Table 5.4.
The accuracy was evaluated by the following equation:

Accuracy =
Number o f correct predictions
Total number o f predictions

(5.14)

Based on the results, Sensorformer achieved the top four accuracies. Com-
pared with the 12-block Transformer, the accuracy of the Sensorformer only
dropped by 0.3%, but the memory efficiency and inference speed improved
significantly.

138 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



Table 5.4.: Performance Comparison

Research group Method Cooler Valve Pump Accumulator Mean

Helwig et al. [23] (2015) LDA 100% 100% 98.0% 90.4% 97.1%

Berghout et al. [225] (2021) Auto-NAHL 100% 100% 100% 96.4% 99.1%

Wu et al. [226] (2020) EGMSVMs 100% 100% 100% 76.5% 94.1%

Gupta et al. [227] (2021) SECM N/A N/A N/A N/A 92.3%

Lei et al. [228] (2019) PCA+XGBoost N/A 96.58% N/A N/A N/A

Huang et al. [141] (2021) Deep CNN 100% 100% 99.0% 99.4% 99.6%

Prakash et al. [130] (2020) ANN+XGBoost 99.54% N/A N/A N/A N/A

Our results Sensorformer 99.57% 100% 95.52% 98.57% 98.2%

Our results Transformer 99.57% 99.79% 97.76% 96.78% 98.5%

5.5 Discussion
As described in [162], in the self-attention mechanism, the similarity calcula-

tion is based on the multiplication of twomatrices of K(n,d) and Q(d,n), where n
is the length of the input sequence and d is the embedding dimension. This res-
ults in its computational complexity being O(n2 · d). In comparison, the similarity
calculation of our proposed decorrelation layer is based on the Pearson cor-
relation coefficient which can be converted to FFT-based calculation, hence
the O(nlogn) computational complexity is achieved. The calculated correla-
tion coefficient can be a function of the time delay τ. By rolling the signal
τ steps as shown in Figure 5.3, the signals can be synchronised before be-
ing merged, which reduces the input sequence length. This operation is per-
formed in each of the proposed decorrelation blocks, hence the redundancy
of themulti-sensor signal can be reduced progressively. Therefore, compared to
Transformer, our proposed model has more advantages in terms of resource oc-
cupancy. In addition, compared with the conventional redundancy removal
method that removes collected sensors in the data pre-processing stage, the
proposed method merges the correlated channel, resulting in less information

5.5 Discussion 139



loss.

5.6 Summary
The deep learningmodel, Transformer, has achieved state-of-the-art perform-

ance in many domains, including the industrial sensor data processing domain.
However, due to the highmemory usage and O(N2) computational complexity,
it can be resource-consuming, especially for processing industrial multi-sensor
data with high sampling rates. In this paper, we proposed Sensorformer with a
novel decorrelation block based on Fast Fourier Transform and the self-attention
architecture to reduce memory usage and inference time. This method does
not require the removal of highly relevant sensors during the data pre-processing
phase, hence the robustness and comprehensiveness introduced by redund-
ant sensors can be kept. The experiment results show that compared with the
original Transformer architecture, Sensorformer takes only half of the inference
time, and uses one-fifth of the GPU memory of the Transformer with remarkable
accuracy.

140 Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion



6
Discussion and Conclusions

6.1 Research Contributions
The thesis outlines significant contributions towards enhancing sensor data

processing and anomaly detection in industrial settings, leveraging advanced
deep learning techniques. These contributions, aligned with the thesis object-
ives, are summarized as follows:

Contribution 1

• Novel Model for Sensor Data Anomaly Detection: Introduced a novel an-
omaly detection model combining self-attention mechanisms with CNN,
focusing on sensor data reliability and quality for industrial process monit-
oring.

• Dual-Channel Self-Attention Structure: Developed a unique dual-channel
self-attention framework, integrating sensor-wise and time-wise attention
channels, to capture spatiotemporal features effectively.

141



• Improved Sensitivity and Performance: Demonstrated significant improve-
ment over state-of-the-art methods on a public CAV dataset, indicating
fewer undetected anomalies and enhanced anomaly detection capab-
ilities.

Contribution 2

• Deep Transfer Learning for Limited Data Scenarios: Proposed a novel deep
transfer learning approach to utilize Transformers trained on natural lan-
guage for sensor fusion tasks in industrial process monitoring, addressing
the challenge of limited data availability.

• First to Transfer Pre-trained Language Model for Industrial Sensor Fusion: Pi-
oneered the application of a pre-trained large languagemodel to address
industrial sensor fusion problems, tested across multiple datasets with high
accuracy and reduced need for manual feature engineering.

• Enhanced Interpretability and Feature Representation: Enhanced inter-
pretability through the self-attention mechanism’s ability to identify critical
sensors and automatic feature extraction, offering a novel approach to
multi-sensor representation without manual feature engineering.

Contribution 3

• InnovativeAuto-Decorrelation Block: Introducedanauto-decorrelation block
combining Fast Fourier Transformwith self-attention to lowermemory usage
and computational complexity, making the Transformer more suitable for
industrial applications.

• Resource Efficiency and Speed: Demonstrated significant reductions in
memory usage and inference time on a hydraulic systemmonitoring data-
set, enabling theefficient application of Transformers in resource-constrained

142 Discussion and Conclusions



industrial environments.

These contributions collectively advance the field of industrial process mon-
itoring by integrating cutting-edge deep learning techniques to address prac-
tical challenges such as limited data availability, the need for efficient compu-
tational resource usage, and the improvement of sensor data processing and
anomaly detection accuracy.

6.2 Research Limitations
The thesis acknowledges several limitations across its objectives, which are

critical for interpreting its results and findings:

Limitations of the work in Chapter 3

• The model’s real-system performance presented in Chapter 3 remains un-
verified as sensor anomalies were manually injected based on common
patterns, not actual anomalies.

• The supervised learning approach limits the model’s ability to handle un-
known and complex anomalous patterns, posing potential risks in safety-
critical systems due to its limited generalisation capability.

Limitations of the work in Chapter 4

• The data-driven method for sensor feature representation requires labeled
data, restricting its use in non-repeatable industrial processes.

• High-frequency sensors may dominate the embedding space due to their
proportional representation, making the method unsuitable for integrat-
ing vastly different sensor frequencies, such as vision and numerical data,
thereby limiting its applicability in certain monitoring tasks.

6.2 Research Limitations 143



• High computational resources are demanded by the pre-trained Trans-
former model, especially for large sensor arrays or high-frequency sensors,
due to the self-attention mechanism’s memory footprint.

• Themodel’s large size necessitates considerable storage space, potentially
limitingwidespreaddeployment in industrial settingswhere computing per-
formance and storage are constrained.

Limitations of the work in Chapter 5

• Modifications to the Transformer architecture prevent the use of the trans-
fer learning method from Chapter 4, increasing the model’s training data
requirements.

• Hyperparameter selection, specifically the number of channels to merge
based on sensor correlation, is challenging and requires extensive experi-
mentation to optimize, with no guaranteed optimal solution.

6.3 Future Work
In this section, future works are summarised for each objective of this thesis.

Future Work of Objection 1

In sensor anomaly detection, the performance of supervised learning on un-
knownanomaly patterns can be usually questioned. A commondeep learning-
based approach in the literature for handling unknown pattern anomalies can
be the unsupervised learning-based autoencoder architecture, which means
reconstructing the original normal signal using a deep learning model and then
using one of the latent spaces as a feature representation. By doing this, the dis-
tance between the latent space of the anomalous data and the latent space
of the normal data can be calculated as a criterion for the occurrence of an-

144 Discussion and Conclusions



omalies [149] [158]. Since the proposed DA-CNN architecture has advantages
in spatiotemporal features extraction, this model also has the potential to be
organised into autoencoder architecture to test the performance of DA-CNN
in this type of methodology in the future. This enables the model to have the
potential to detect any anomalous behaviour.

Future Work of Objection 2

The current establishment of multi-sensor feature representation is limited to the
fusion of numerical sensor data. However, it is frequently the case that many in-
dustrial processes generate data in many significantly different modalities, such
as sensors, images, text, audio, or even human input, providing amore compre-
hensive understanding of a given process. For example, the welding process,
visual, acoustic, as well as vibration and current parameters etc. can provide
important information [246]. As Transformer can be relatively easy to model the
dependencies between different parts of the input, it can be a very promising
possibility for multi-modal fusion if a proper method can be developed to create
a unified feature representation for data from different modalities. Transformer
has achieved remarkable performance on image-text and image-LiDar fusion
[247] [248] [249], but research on industrial sensor fusion remains limited.

Future Work of Objection 3

Transfer learning based on pre-trainedmodels can significantly reduce the data
requirements for training deep learning models, which can be very effective
in natural language [165] as well as image processing [250]. This is because
the learning of many basic features does not require task-specific data to be
captured, for example in image recognition, points, lines, colours, geometries,
textures and other basic features are required by almost all image recognition
tasks, so a large amount of feature learning can be done with related data.
In the field of industrial sensor data, different sensor data may also have many

6.3 Future Work 145



similar underlying feature learning processes, such as the acquisition of statist-
ical features, and features in the time domain frequency domain. Similar to
visual features such as points, lines, textures, etc., the specific representation of
these sensor data features may be different, but their computational processes
can be the same, offering the possibility of pre-training models in the field of
industrial sensors. The current transfer learning method employs the model pre-
trained from natural languages, whether the industrial version of a pre-trained
deep learning model can be more problem-specific and hence improves the
performance can be worth being investigated.

Future Work of Objection 4

In the work presented in Chapter 5, the correlations of the different sensors are
not calculated using their raw data, but using their non-linearly mapped expres-
sions. This non-linear mapping is learned by a neural network, which means that
the sensor correlation is calculated in its feature space. This gives us the pos-
sibility to calculate correlations for data of different modalities such as visual,
numerical signals, etc. Data from different modalities can first be mapped in
a data-driven manner to a unified representation from which correlations can
then be calculated, thereby reducing redundancy in a multi-modal system to
reduce computational load. Industrial process monitoring is moving in the direc-
tion of beingmore intelligent, integrated and comprehensive, so how to reduce
the computational burden for multi-modal monitoring systems may become a
promising direction for research.

6.4 Conclusions
This thesis presents research on deep learning-based multiple-sensor fusion for

industrial process monitoring applications. Industrial process monitoring can be
an important guarantee for the safety, efficiency and economy of industrial pro-
duction. Due to the high complexity of industrial processes, traditional sensor

146 Discussion and Conclusions



fusion algorithms and manual feature engineering can be sometimes difficult
and time-consuming. As a result, end-to-end approaches to automatic fea-
ture learning based on deep learning have received a high level of attention.
In addition, due to the development of IIoT and communication technologies,
the availability of industrial data is rapidly increasing, laying the foundation for
data-driven approaches. Therefore, this thesis focuses on how deep learning-
based methods can be applied and adapted to industrial sensor fusion tasks,
contributing to the process monitoring domain.

Based on the research presented in this thesis, it can be found that the Trans-
former architecture and the self-attentionmechanism in deep learningalgorithms
can be effective not only in multi-sensor anomaly detection tasks but also in
complex industrial process condition analysis. This is due to the fact that the
self-attentionmechanism can simultaneously take into account the internal fea-
tures of single-sensor data as well as the global dependencies among multiple
sensors, which can be very important when dealing with multi-sensor tasks. Fur-
thermore, as the nature of the self-attention mechanism is to calculate the ex-
tent to which each feature will be used for model decision-making, it can mit-
igate to some extent the drawbacks of deep learning methods in terms of their
lack of interpretability by visualising the attention weights. This advantage can
be used to identify key sensors within a multi-sensor system, which can be use-
ful for industrial process analysis, and to reduce the complexity of monitoring
systems.

As with other deep learning algorithms, a large amount of training data is re-
quiredwhen using Transformer, which is not friendly to industrial applications. The
research in this thesis found that using pre-trained large models from the field of
natural language processing can effectively alleviate this problem. Multi-sensor
data can be embedded into the embedding space in a similar way to natural
language embedding, and then interpreted for meaning using the pre-trained
model by fine-tuning it with industrial data. As for the high computational com-
plexity introduced by the Transformer, this can bemitigated bymodifying its self-

6.4 Conclusions 147



attentionmechanism to a Fast Fourier Transform-based calculation of the correl-
ation coefficient. This modification is specifically for multi-sensor data processing
and this work can contribute to the use of Transformer in industrial scenarios.

148 Discussion and Conclusions



References

[1] Andrew KS Jardine, Daming Lin and Dragan Banjevic. ‘A review on ma-
chinery diagnostics andprognostics implementing condition-basedmain-
tenance’. In:Mechanical systemsand signal processing 20.7 (2006), pp. 1483–
1510 (cit. on p. 1).

[2] Maurizio Bevilacqua and Marcello Braglia. ‘The analytic hierarchy pro-
cess applied to maintenance strategy selection’. In: Reliability Engineer-
ing & System Safety 70.1 (2000), pp. 71–83 (cit. on p. 1).

[3] MohammadAAlKazimi, HananAltabbakh, SusanMurray andKatieGrantham.
‘Evaluating generated risk event effect neutralization as a new mitiga-
tion strategy tool in the upstream industry’. In: Procedia Manufacturing 3
(2015), pp. 1374–1378 (cit. on p. 2).

[4] Elizabeth B Kujawinski, Christopher M Reddy, Ryan P Rodgers et al. ‘The
first decade of scientific insights from the Deepwater Horizon oil release’.
In: Nature Reviews Earth & Environment 1.5 (2020), pp. 237–250 (cit. on
p. 2).

[5] KX Peng, L Ma and K Zhang. ‘Review of quality-related fault detection
anddiagnosis techniques for complex industrial processes’. In:ActaAuto-
matica Sinica 43.3 (2017), pp. 349–365 (cit. on pp. 2, 30, 59).

149



[6] Mustafa Kuntoğlu, Abdullah Aslan, Hacı Sağlam et al. ‘Optimization and
analysis of surface roughness, flank wear and 5 different sensorial data
via tool condition monitoring system in turning of AISI 5140’. In: Sensors
20.16 (2020), p. 4377 (cit. on p. 2).

[7] C Scheffer, H Kratz, PS Heyns and F Klocke. ‘Development of a tool wear-
monitoring system for hard turning’. In: International Journal of Machine
Tools and Manufacture 43.10 (2003), pp. 973–985 (cit. on p. 2).

[8] Karali Patra, Surjya K Pal and Kingshook Bhattacharyya. ‘Artificial neural
network based prediction of drill flank wear from motor current signals’.
In: Applied Soft Computing 7.3 (2007), pp. 929–935 (cit. on p. 2).

[9] Mehrdad Nouri Khajavi, Ebrahim Nasernia and Mostafa Rostaghi. ‘Milling
tool wear diagnosis by feed motor current signal using an artificial neural
network’. In: Journal ofMechanical Scienceand Technology 30.11 (2016),
pp. 4869–4875 (cit. on p. 2).

[10] Mustafa Kuntoğlu andHacı Sağlam. ‘Investigation of progressive tool wear
for determining of optimized machining parameters in turning’. In:Meas-
urement 140 (2019), pp. 427–436 (cit. on p. 2).

[11] Onur Özbek andHamit Saruhan. ‘The effect of vibration and cutting zone
temperature on surface roughness and tool wear in eco-friendly MQL
turning of AISI D2’. In: Journal of Materials Research and Technology 9.3
(2020), pp. 2762–2772 (cit. on p. 2).

[12] Shuang Yi, Jinjin Li, Jiahua Zhu et al. ‘Investigation of machining Ti-6Al-
4V with graphene oxide nanofluids: tool wear, cutting forces and cutting
vibration’. In: Journal of Manufacturing Processes 49 (2020), pp. 35–49
(cit. on p. 2).

[13] Harvey B Mitchell. Multi-sensor data fusion: an introduction. Springer Sci-
ence & Business Media, 2007 (cit. on p. 3).

[14] Harvey B Mitchell. Data fusion: concepts and ideas. Springer Science &
Business Media, 2012 (cit. on p. 3).

150 References



[15] Bahador Khaleghi, Alaa Khamis, Fakhreddine O Karray and Saiedeh N
Razavi. ‘Multisensor data fusion: A review of the state-of-the-art’. In: In-
formation fusion 14.1 (2013), pp. 28–44 (cit. on pp. 3, 4).

[16] Federico Castanedo. ‘A review of data fusion techniques’. In: The sci-
entific world journal 2013 (2013) (cit. on pp. 3, 34).

[17] Wilfried Elmenreich. ‘A review on system architectures for sensor fusion
applications’. In: IFIP International Workshop on Software Technolgies for
Embedded and Ubiquitous Systems. Springer. 2007, pp. 547–559 (cit. on
p. 3).

[18] Po-Yu Chen, Shusen Yang and Julie A McCann. ‘Distributed real-time an-
omaly detection in networked industrial sensing systems’. In: IEEE Transac-
tions on Industrial Electronics 62.6 (2014), pp. 3832–3842 (cit. on p. 4).

[19] Man Lok Fung, Michael ZQ Chen and Yong Hua Chen. ‘Sensor fusion: A
review of methods and applications’. In: 2017 29th Chinese Control And
Decision Conference (CCDC). IEEE. 2017, pp. 3853–3860 (cit. on p. 6).

[20] Zhiqiang Ge, Zhihuan Song and Furong Gao. ‘Review of recent research
on data-based process monitoring’. In: Industrial & Engineering Chem-
istry Research 52.10 (2013), pp. 3543–3562 (cit. on p. 6).

[21] Shen Yin and Okyay Kaynak. ‘Big data for modern industry: challenges
and trends [point of view]’. In: Proceedings of the IEEE 103.2 (2015), pp. 143–
146 (cit. on p. 6).

[22] US Department of Transportation. Safety Pilot Model Deployment Data.
Website. https://catalog.data.gov/dataset/safety-pilot-
model-deployment-data. January 24, 2022 (cit. on pp. 8, 70).

[23] Nikolai Helwig, Eliseo Pignanelli and Andreas Schütze. ‘Condition monit-
oring of a complex hydraulic system using multivariate statistics’. In: 2015
IEEE International Instrumentation andMeasurement Technology Confer-
ence (I2MTC) Proceedings. IEEE. 2015, pp. 210–215 (cit. on pp. 10, 26, 106,
108, 115, 117, 135, 139).

151

https://catalog.data.gov/dataset/safety-pilot-model-deployment-data
https://catalog.data.gov/dataset/safety-pilot-model-deployment-data


[24] Rolf Isermann. Fault-diagnosis applications:model-basedconditionmon-
itoring: actuators, drives, machinery, plants, sensors, and fault-tolerant
systems. Springer Science & Business Media, 2011 (cit. on p. 16).

[25] Florian Sell-Le Blanc, Janna Hofmann, Rico Simmler and Juergen Fleis-
cher. ‘Coil winding process modelling with deformation based wire ten-
sion analysis’. In: CIRP Annals 65.1 (2016), pp. 65–68 (cit. on p. 16).

[26] SA Tsirkas, Paraskevas Papanikos and Th Kermanidis. ‘Numerical simula-
tion of the laser welding process in butt-joint specimens’. In: Journal of
materials processing technology 134.1 (2003), pp. 59–69 (cit. on p. 16).

[27] Quentin Sirvin, Vincent Velay, RébeccaBonnaire and Luc Penazzi. ‘Mech-
anical behaviour modelling and finite element simulation of simple part
of Ti-6Al-4V sheet under hot/warm stamping conditions’. In: Journal of
Manufacturing Processes 38 (2019), pp. 472–482 (cit. on p. 16).

[28] Fouzi Harrou, Ying Sun, Amanda S Hering, Muddu Madakyaru et al. Stat-
istical process monitoring using advanced data-driven and deep learn-
ing approaches: theory and practical applications. Elsevier, 2020 (cit. on
pp. 16, 17, 31).

[29] Jie Liu, Youmin Hu, Yan Wang et al. ‘An integrated multi-sensor fusion-
baseddeep feature learningapproach for rotatingmachinery diagnosis’.
In: Measurement Science and Technology 29.5 (2018), p. 055103 (cit. on
pp. 17, 95).

[30] Siyu Shao, StephenMcAleer, Ruqiang Yan and Pierre Baldi. ‘Highly accur-
ate machine fault diagnosis using deep transfer learning’. In: IEEE Trans-
actions on Industrial Informatics 15.4 (2018), pp. 2446–2455 (cit. on pp. 17,
61, 118–121, 124).

[31] Sikai Zhang and Zi-Qiang Lang. ‘Orthogonal least squares based fast fea-
ture selection for linear classification’. In: Pattern Recognition 123 (2022),
p. 108419 (cit. on p. 17).

152 References



[32] Siheung Kim, Jinwok Chung, Ilsung Hwang et al. ‘A rule based approach
to network fault and security diagnosis with agent collaboration’. In: Inter-
national Conference on AI, Simulation, and Planning in High Autonomy
Systems. Springer. 2004, pp. 597–606 (cit. on p. 17).

[33] Barera Sarwar, Imran Sarwar Bajwa, Shabana Ramzan, Bushra Ramzan
and Mubeen Kausar. ‘Design and application of fuzzy logic based fire
monitoring and warning systems for smart buildings’. In: Symmetry 10.11
(2018), p. 615 (cit. on p. 17).

[34] Sylvain Verron, Teodor Tiplica andAbdessamadKobi. Fault detectionwith
bayesian network. 2008 (cit. on p. 17).

[35] Venkat Venkatasubramanian, Raghunathan Rengaswamy, SuryaNKavuri
and Kewen Yin. ‘A reviewof process fault detection anddiagnosis: Part III:
Process history based methods’. In: Computers & chemical engineering
27.3 (2003), pp. 327–346 (cit. on p. 18).

[36] Dražen Slišković, Ratko Grbić and Željko Hocenski. ‘Multivariate statist-
ical process monitoring’. In: Tehnički vjesnik 19.1 (2012), pp. 33–41 (cit.
on p. 19).

[37] Peihua Qiu. Introduction to statistical process control. CRC press, 2013
(cit. on p. 19).

[38] Cynthia A Lowry and Douglas C Montgomery. ‘A review of multivariate
control charts’. In: IIE transactions 27.6 (1995), pp. 800–810 (cit. on p. 19).

[39] Ioannis Ch Paschalidis and Yin Chen. ‘Statistical anomaly detection with
sensor networks’. In: ACM Transactions on Sensor Networks (TOSN) 7.2
(2010), pp. 1–23 (cit. on p. 20).

[40] Rui Zhang, Ping Ji, Dinkar Mylaraswamy, Mani Srivastava and Sadaf Za-
hedi. ‘Cooperative sensor anomaly detection using global information’.
In: Tsinghua Science and Technology 18.3 (2013), pp. 209–219 (cit. on
p. 20).

153



[41] Miao Xie, Jiankun Hu and Biming Tian. ‘Histogram-based online anomaly
detection in hierarchical wireless sensor networks’. In: 2012 IEEE 11th in-
ternational conference on trust, security and privacy in computing and
communications. IEEE. 2012, pp. 751–759 (cit. on p. 20).

[42] Kobi Cohen and Qing Zhao. ‘Active hypothesis testing for anomaly de-
tection’. In: IEEE Transactions on Information Theory 61.3 (2015), pp. 1432–
1450 (cit. on p. 20).

[43] Laura Erhan, M Ndubuaku, Mario Di Mauro et al. ‘Smart anomaly detec-
tion in sensor systems: A multi-perspective review’. In: Information Fusion
67 (2021), pp. 64–79 (cit. on pp. 20, 21).

[44] Venkatesh Rajagopalan and Asok Ray. ‘Symbolic time series analysis via
wavelet-based partitioning’. In: Signal processing 86.11 (2006), pp. 3309–
3320 (cit. on p. 20).

[45] NawazMohamudally andMahejabeen Peermamode-Mohaboob. ‘Build-
ing an anomaly detection engine (ADE) for Iot smart applications’. In:
Procedia computer science 134 (2018), pp. 10–17 (cit. on p. 21).

[46] Franco Van Wyk, Yiyang Wang, Anahita Khojandi and Neda Masoud.
‘Real-time sensor anomaly detection and identification in automated
vehicles’. In: IEEE Transactions on Intelligent Transportation Systems 21.3
(2019), pp. 1264–1276 (cit. on pp. 21, 69–71, 84, 86–88, 91, 92).

[47] Karthick Thiyagarajan, Sarath Kodagoda and Linh Van Nguyen. ‘Predict-
ive analytics for detecting sensor failure using autoregressive integrated
moving averagemodel’. In: 2017 12th IEEE conference on industrial elec-
tronics and applications (ICIEA). IEEE. 2017, pp. 1926–1931 (cit. on p. 21).

[48] Nawaz Mohamudally. Introductory Chapter: Time Series Analysis (TSA) for
Anomaly Detection in IoT. IntechOpen, 2018 (cit. on p. 21).

[49] Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng and Danfeng Yao. ‘Deep
learning-based anomaly detection in cyber-physical systems: Progress

154 References



andopportunities’. In:ACMComputing Surveys (CSUR) 54.5 (2021), pp. 1–
36 (cit. on p. 21).

[50] Olivier Janssens, Viktor Slavkovikj, BramVervisch et al. ‘Convolutional neural
network based fault detection for rotatingmachinery’. In: Journal of Sound
and Vibration 377 (2016), pp. 331–345 (cit. on p. 21).

[51] Fatma Ozge Ozkok and Mete Celik. ‘Convolutional neural network ana-
lysis of recurrence plots for high resolution melting classification’. In:Com-
puter methods and programs in biomedicine 207 (2021), p. 106139 (cit.
on p. 21).

[52] Abdul Rehman Javed, Muhammad Usman, Saif Ur Rehman, Mohib Ul-
lah Khan andMohammad Sayad Haghighi. ‘Anomaly detection in auto-
mated vehicles using multistage attention-based convolutional neural
network’. In: IEEE Transactions on Intelligent Transportation Systems 22.7
(2020), pp. 4291–4300 (cit. on pp. 21, 69–71, 84, 86–88, 92, 93).

[53] Tiago Zonta, Cristiano André da Costa, Felipe A Zeiser et al. ‘A predict-
ive maintenance model for optimizing production schedule using deep
neural networks’. In: Journal of Manufacturing Systems 62 (2022), pp. 450–
462 (cit. on p. 22).

[54] Mohsen Ferdowsi, Andrea Benigni, AntonelloMonti and FerdinandaPonci.
‘Measurement Selection for Data-Driven Monitoring of Distribution Sys-
tems’. In: IEEE Systems Journal 13.4 (2019), pp. 4260–4268 (cit. on p. 22).

[55] FE White Jr. ‘Joint directors of laboratories data fusion subpanel report’.
In: Proceedings of the joint service data fusion symposium, DFS–90. 1990,
pp. 496–484 (cit. on p. 22).

[56] Wilfried Elmenreich. ‘An introduction to sensor fusion’. In: Vienna Univer-
sity of Technology, Austria 502 (2002), pp. 1–28 (cit. on p. 22).

[57] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry and Joseph
Walsh. ‘Sensor and sensor fusion technology in autonomous vehicles: A
review’. In: Sensors 21.6 (2021), p. 2140 (cit. on p. 23).

155



[58] Seungeun Chung, Jiyoun Lim, Kyoung Ju Noh, Gague Kim and Hyuntae
Jeong. ‘Sensor data acquisition and multimodal sensor fusion for human
activity recognition using deep learning’. In: Sensors 19.7 (2019), p. 1716
(cit. on p. 23).

[59] Mary BAlatise andGerhard PHancke. ‘A reviewonchallenges of autonom-
ous mobile robot and sensor fusion methods’. In: IEEE Access 8 (2020),
pp. 39830–39846 (cit. on p. 23).

[60] Mustafa Kuntoğlu and Hacı Sağlam. ‘Investigation of signal behaviors for
sensor fusion with tool condition monitoring system in turning’. In: Meas-
urement 173 (2021), p. 108582 (cit. on p. 23).

[61] Hugh F Durrant-Whyte. ‘Sensor models and multisensor integration’. In:
Autonomous robot vehicles. Springer, 1990, pp. 73–89 (cit. on p. 23).

[62] PietroMaris Ferreira, Martin Schaeffer, Adel Mezaour et al. ‘A- 40 to 250°C
TripleModular Redundancy Temperature Sensor for Turbofan Engines’. In:
2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI).
IEEE. 2018, pp. 1–6 (cit. on p. 23).

[63] Joel R. Sklaroff. ‘Redundancy management technique for space shuttle
computers’. In: IBM Journal of Research and Development 20.1 (1976),
pp. 20–28 (cit. on p. 23).

[64] Ihn-Sik Weon, Soon-Geul Lee and Jae-Kwan Ryu. ‘Object Recognition
based interpolation with 3d lidar and vision for autonomous driving of
an intelligent vehicle’. In: IEEE Access 8 (2020), pp. 65599–65608 (cit. on
p. 24).

[65] César DebeunneandDamienVivet. ‘A reviewof visual-LiDAR fusionbased
simultaneous localization and mapping’. In: Sensors 20.7 (2020), p. 2068
(cit. on p. 24).

[66] Belur V Dasarathy. ‘Sensor fusion potential exploitation-innovative archi-
tectures and illustrative applications’. In: Proceedings of the IEEE 85.1
(1997), pp. 24–38 (cit. on pp. 25–27).

156 References



[67] Billy Pik Lik Lau, Sumudu Hasala Marakkalage, Yuren Zhou et al. ‘A survey
of data fusion in smart city applications’. In: Information Fusion 52 (2019),
pp. 357–374 (cit. on p. 26).

[68] Yu Zheng, Furui Liu and Hsun-Ping Hsieh. ‘U-air: When urban air quality
inference meets big data’. In: Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. 2013,
pp. 1436–1444 (cit. on p. 26).

[69] Farman Ali, Shaker El-Sappagh, SM Riazul Islam et al. ‘A smart healthcare
monitoring system for heart disease prediction based on ensemble deep
learning and feature fusion’. In: Information Fusion 63 (2020), pp. 208–222
(cit. on p. 26).

[70] Ugochukwu Ejike Akpudo and Hur Jang-Wook. ‘An Automated Sensor
Fusion Approach for the RUL Prediction of Electromagnetic Pumps’. In:
IEEE Access 9 (2021), pp. 38920–38933 (cit. on p. 26).

[71] Jun Wu, Yongheng Su, Yiwei Cheng et al. ‘Multi-sensor information fu-
sion for remaining useful life prediction of machining tools by adaptive
network based fuzzy inference system’. In: Applied Soft Computing 68
(2018), pp. 13–23 (cit. on p. 26).

[72] Anna Stief, James R Ottewill, Jerzy Baranowski and Michal Orkisz. ‘A PCA
and two-stage Bayesian sensor fusion approach for diagnosing electrical
andmechanical faults in inductionmotors’. In: IEEE Transactions on Indus-
trial Electronics 66.12 (2019), pp. 9510–9520 (cit. on pp. 26, 125).

[73] Essam Debie, Raul Fernandez Rojas, Justin Fidock et al. ‘Multimodal fu-
sion for objective assessment of cognitive workload: a review’. In: IEEE
transactions on cybernetics 51.3 (2019), pp. 1542–1555 (cit. on p. 27).

[74] Rustem Dautov, Salvatore Distefano and Rajkumaar Buyya. ‘Hierarchical
data fusion for smart healthcare’. In: Journal of Big Data 6.1 (2019), pp. 1–
23 (cit. on p. 27).

157



[75] AthanasiosCRakitzis, SubhabrataChakraborti, SandileC Shongwe,Marien
A Graham and Michael Boon Chong Khoo. ‘An overview of synthetic-
type control charts: techniques and methodology’. In: Quality and Reli-
ability Engineering International 35.7 (2019), pp. 2081–2096 (cit. on p. 28).

[76] Ewan S Page. ‘Continuous inspection schemes’. In: Biometrika 41.1/2 (1954),
pp. 100–115 (cit. on p. 29).

[77] SW Roberts. ‘Control chart tests based on geometric moving averages’.
In: Technometrics 42.1 (2000), pp. 97–101 (cit. on p. 29).

[78] Margarita Beneke, Lawrence M Leemis, Robert E Schlegel and Bobbie L
Foote. ‘Spectral analysis in quality control: a control chart based on the
periodogram’. In: Technometrics 30.1 (1988), pp. 63–70 (cit. on p. 30).

[79] Teodor Tiplica, Abdessamad Kobi and Alain Barreau. ‘Spectral control
chart’. In: Quality Engineering 17.4 (2005), pp. 695–702 (cit. on p. 30).

[80] RajeshGanesan, Tapas KDas andVivekanandVenkataraman. ‘Wavelet-
based multiscale statistical process monitoring: A literature review’. In: IIE
transactions 36.9 (2004), pp. 787–806 (cit. on p. 30).

[81] Reza Baradaran Kazemzadeh,Mahdi KarbasianandMohammadAli Babakh-
ani. ‘An EWMA t chart with variable sampling intervals for monitoring the
processmean’. In: The International Journal of AdvancedManufacturing
Technology 66.1 (2013), pp. 125–139 (cit. on p. 30).

[82] Yan Su, Lianjie Shu and Kwok-Leung Tsui. ‘Adaptive EWMA procedures for
monitoring processes subject to linear drifts’. In: Computational statistics
& data analysis 55.10 (2011), pp. 2819–2829 (cit. on p. 30).

[83] Abdul HaqandMichael BCKhoo. ‘Anadaptivemultivariate EWMAchart’.
In: Computers & Industrial Engineering 127 (2019), pp. 549–557 (cit. on
p. 30).

[84] Abdul Haq, Tahir Munir and Michael BC Khoo. ‘Dual multivariate CUSUM
meancharts’. In:Computers & Industrial Engineering 137 (2019), p. 106028
(cit. on p. 30).

158 References



[85] Vahid Nasir and Farrokh Sassani. ‘A review on deep learning inmachining
and tool monitoring: methods, opportunities, and challenges’. In: The In-
ternational Journal of AdvancedManufacturing Technology 115.9 (2021),
pp. 2683–2709 (cit. on p. 30).

[86] Jinjiang Wang, Yulin Ma, Laibin Zhang, Robert X Gao and Dazhong Wu.
‘Deep learning for smart manufacturing: Methods and applications’. In:
Journal of manufacturing systems 48 (2018), pp. 144–156 (cit. on p. 30).

[87] Thanasis Kotsiopoulos, Panagiotis Sarigiannidis, Dimosthenis Ioannidis and
Dimitrios Tzovaras. ‘Machine learning and deep learning in smart man-
ufacturing: The smart grid paradigm’. In: Computer Science Review 40
(2021), p. 100341 (cit. on p. 30).

[88] Juan Jose Saucedo-Dorantes, Miguel Delgado-Prieto, Roque Alfredo
Osornio-Rios and Rene de Jesus Romero-Troncoso. ‘Multifault diagnosis
method applied to an electric machine based on high-dimensional fea-
ture reduction’. In: IEEE Transactions on industry applications 53.3 (2016),
pp. 3086–3097 (cit. on pp. 31, 32).

[89] Rodrigo Henrique Cunha Palácios, Alessandro Goedtel, Wagner Fontes
Godoy and José Augusto Fabri. ‘Fault identification in the stator winding
of induction motors using PCA with artificial neural networks’. In: Journal
of Control, Automation and Electrical Systems 27.4 (2016), pp. 406–418
(cit. on p. 32).

[90] Heng Wang, Guangxian Ni, Jinhai Chen and Jiangming Qu. ‘Research
on rolling bearing state health monitoring and life prediction based on
PCAand Internet of things withmulti-sensor’. In:Measurement 157 (2020),
p. 107657 (cit. on p. 32).

[91] Theodoros Loutas, Nick Eleftheroglou, George Georgoulas et al. ‘Valve
failure prognostics in reciprocating compressors utilizing temperaturemeas-
urements, PCA-based data fusion, and probabilistic algorithms’. In: IEEE
Transactions on Industrial Electronics 67.6 (2019), pp. 5022–5029 (cit. on
p. 32).

159



[92] Anna Stief, James R Ottewill, Michal Orkisz and Jerzy Baranowski. ‘Two
stage data fusion of acoustic, electric and vibration signals for diagnos-
ing faults in inductionmotors’. In: Elektronika ir Elektrotechnika 23.6 (2017),
pp. 19–24 (cit. on pp. 32, 34).

[93] Jinjiang Wang, Junyao Xie, Rui Zhao, Laibin Zhang and Lixiang Duan.
‘Multisensory fusion based virtual tool wear sensing for ubiquitous manu-
facturing’. In: Robotics andcomputer-integratedmanufacturing 45 (2017),
pp. 47–58 (cit. on p. 32).

[94] Wei Li, Minjun Peng and Qingzhong Wang. ‘Fault detectability analysis in
PCA method during condition monitoring of sensors in a nuclear power
plant’. In:Annals of Nuclear Energy 119 (2018), pp. 342–351 (cit. on p. 32).

[95] Lijia Luo, Shiyi Bao and Chudong Tong. ‘Sparse robust principal compon-
ent analysis with applications to fault detection and diagnosis’. In: Indus-
trial & Engineering Chemistry Research 58.3 (2019), pp. 1300–1309 (cit. on
p. 32).

[96] Jinjiang Wang, Junyao Xie, Rui Zhao, Laibin Zhang and Lixiang Duan.
‘Multisensory fusion based virtual tool wear sensing for ubiquitous manu-
facturing’. In: Robotics andcomputer-integratedmanufacturing 45 (2017),
pp. 47–58 (cit. on p. 32).

[97] Dongsoon Kim and In-Beum Lee. ‘Process monitoring based on prob-
abilistic PCA’. In: Chemometrics and intelligent laboratory systems 67.2
(2003), pp. 109–123 (cit. on p. 32).

[98] Jyh-Cheng Jeng. ‘Adaptive process monitoring using efficient recursive
PCA and moving window PCA algorithms’. In: Journal of the Taiwan Insti-
tute of Chemical Engineers 41.4 (2010), pp. 475–481 (cit. on p. 32).

[99] Tauheed Mian, Anurag Choudhary and Shahab Fatima. ‘A sensor fusion
based approach for bearing fault diagnosis of rotating machine’. In: Pro-
ceedings of the Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability 236.5 (2022), pp. 661–675 (cit. on p. 32).

160 References



[100] U Kruger, Q Chen, DJ Sandoz and RC McFarlane. ‘Extended PLS ap-
proach for enhanced condition monitoring of industrial processes’. In:
AIChE journal 47.9 (2001), pp. 2076–2091 (cit. on p. 32).

[101] Chudong Tong, Ahmet Palazoglu and Xuefeng Yan. ‘Improved ICA for
processmonitoringbasedonensemble learningand Bayesian inference’.
In: Chemometrics and intelligent laboratory systems 135 (2014), pp. 141–
149 (cit. on p. 32).

[102] Víctor H Jaramillo, James R Ottewill, Rafał Dudek, Dariusz Lepiarczyk and
Paweł Pawlik. ‘Conditionmonitoring of distributed systems using two-stage
Bayesian inference data fusion’. In: Mechanical Systems and Signal Pro-
cessing 87 (2017), pp. 91–110 (cit. on pp. 33, 34).

[103] Anna Stief, James R Ottewill, Jerzy Baranowski and Michal Orkisz. ‘A PCA
and two-stage Bayesian sensor fusion approach for diagnosing electrical
andmechanical faults in inductionmotors’. In: IEEE Transactions on Indus-
trial Electronics 66.12 (2019), pp. 9510–9520 (cit. on p. 33).

[104] Ferat Sahin, M Çetin Yavuz, Ziya Arnavut and Önder Uluyol. ‘Fault dia-
gnosis for airplaneengines using Bayesian networks anddistributedparticle
swarm optimization’. In: Parallel Computing 33.2 (2007), pp. 124–143 (cit.
on p. 34).

[105] Kari Sentz and Scott Ferson. ‘Combination of evidence inDempster-Shafer
theory’. In: (2002) (cit. on p. 34).

[106] Arthur P Dempster. ‘A generalization of Bayesian inference’. In: Journal of
the Royal Statistical Society: Series B (Methodological) 30.2 (1968), pp. 205–
232 (cit. on p. 34).

[107] Glenn Shafer. Amathematical theory of evidence. Vol. 42. Princeton uni-
versity press, 1976 (cit. on p. 34).

[108] Wentao Zhao, Tao Fang and Yan Jiang. ‘Data fusion using improved De-
mpster Shafer evidence theory for vehicle detection’. In: Fourth Inter-

161



national Conference on Fuzzy Systems and Knowledge Discovery (FSKD
2007). Vol. 1. IEEE. 2007, pp. 487–491 (cit. on p. 35).

[109] ArnaudMartin and IsabelleQuidu. ‘Decision support with belief functions
theory for seabed characterization’. In: 2008 11th International Confer-
ence on Information Fusion. IEEE. 2008, pp. 1–8 (cit. on p. 36).

[110] Yuwei Liu, Yuqiang Cheng, Zhenzhen Zhang and Jianjun Wu. ‘Multi in-
formation fusion fault diagnosis based on KNN and improved evidence
theory’. In: Journal of Vibration Engineering & Technologies 10.3 (2022),
pp. 841–852 (cit. on p. 37).

[111] Yingjie Zhang,Wentao Yan,Geok SoonHonget al. ‘Data fusion analysis in
the powder-bed fusion AM process monitoring by Dempster-Shafer evid-
ence theory’. In: Rapid Prototyping Journal (2021) (cit. on p. 37).

[112] Hepeng Zhang and Yong Deng. ‘Engine fault diagnosis based on sensor
data fusion considering information quality and evidence theory’. In:Ad-
vances in Mechanical Engineering 10.11 (2018), p. 1687814018809184
(cit. on p. 37).

[113] Xianghong Tang, Xin Gu, Lei Rao and Jianguang Lu. ‘A single fault de-
tection method of gearbox based on random forest hybrid classifier and
improved Dempster-Shafer information fusion’. In:Computers & Electrical
Engineering 92 (2021), p. 107101 (cit. on p. 37).

[114] Wen Jiang and Jun Zhan. ‘A modified combination rule in generalized
evidence theory’. In: Applied Intelligence 46.3 (2017), pp. 630–640 (cit.
on p. 37).

[115] Lotfi A Zadeh. ‘Fuzzy sets’. In: Information and control 8.3 (1965), pp. 338–
353 (cit. on p. 37).

[116] Zhiqiang Ge and Yue Liu. ‘Analytic hierarchy process based fuzzy de-
cision fusion system for model prioritization and process monitoring ap-
plication’. In: IEEE Transactions on Industrial Informatics 15.1 (2018), pp. 357–
365 (cit. on p. 38).

162 References



[117] Mustapha Ammiche, Abdelmalek Kouadri and Abderazak Bensmail. ‘A
modified moving window dynamic PCA with fuzzy logic filter and applic-
ation to fault detection’. In:Chemometrics and Intelligent Laboratory Sys-
tems 177 (2018), pp. 100–113 (cit. on p. 38).

[118] MRH Mohd Adnan, Arezoo Sarkheyli, Azlan Mohd Zain and Habibollah
Haron. ‘Fuzzy logic formodelingmachiningprocess: a review’. In:Artificial
Intelligence Review 43.3 (2015), pp. 345–379 (cit. on pp. 38, 39).

[119] Mustafa Kuntoğlu and Hacı Sağlam. ‘Investigation of signal behaviors for
sensor fusion with tool condition monitoring system in turning’. In: Meas-
urement 173 (2021), p. 108582 (cit. on pp. 38, 39).

[120] MohammadAminAhmadAkhoundi and EhsanValavi. ‘Multi-sensor fuzzy
data fusion using sensors with different characteristics’. In: arXiv preprint
arXiv:1010.6096 (2010) (cit. on p. 39).

[121] Warren S McCulloch and Walter Pitts. ‘A logical calculus of the ideas im-
manent in nervous activity’. In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133 (cit. on p. 41).

[122] Sagar Sharma, Simone Sharma and Anidhya Athaiya. ‘Activation func-
tions in neural networks’. In: towards data science 6.12 (2017), pp. 310–
316 (cit. on p. 42).

[123] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep learning. MIT
press, 2016 (cit. on pp. 42, 43, 45, 58, 74).

[124] Kurt Hornik, Maxwell Stinchcombe and Halbert White. ‘Multilayer feed-
forward networks are universal approximators’. In: Neural networks 2.5
(1989), pp. 359–366 (cit. on p. 42).

[125] J Rafiee, F Arvani, A Harifi andMH Sadeghi. ‘Intelligent conditionmonitor-
ing of a gearbox using artificial neural network’. In: Mechanical systems
and signal processing 21.4 (2007), pp. 1746–1754 (cit. on p. 43).

163



[126] Aydin Salimiasl and Ahmet Özdemir. ‘Analyzing the performance of arti-
ficial neural network (ANN)-, fuzzy logic (FL)-, and least square (LS)-based
models for online tool condition monitoring’. In: The International Journal
of Advanced Manufacturing Technology 87.1 (2016), pp. 1145–1158 (cit.
on p. 43).

[127] Zhigang Tian. ‘An artificial neural networkmethod for remaining useful life
prediction of equipment subject to condition monitoring’. In: Journal of
intelligent Manufacturing 23.2 (2012), pp. 227–237 (cit. on p. 44).

[128] K Patra, AK Jha, Tibor Szalay, J Ranjan and László Monostori. ‘Artificial
neural network based tool conditionmonitoring inmicromechanical peck
drilling using thrust force signals’. In: Precision Engineering 48 (2017), pp. 279–
291 (cit. on p. 44).

[129] Abhinav Saxena and Ashraf Saad. ‘Evolving an artificial neural network
classifier for condition monitoring of rotatingmechanical systems’. In:Ap-
plied Soft Computing 7.1 (2007), pp. 441–454 (cit. on p. 44).

[130] Jatin Prakash and Pavan Kumar Kankar. ‘Health prediction of hydraulic
cooling circuit using deep neural network with ensemble feature ranking
technique’. In:Measurement 151 (2020), p. 107225 (cit. on pp. 44, 59, 108,
115, 117, 139).

[131] Yann LeCunet al. ‘Generalization andnetwork design strategies’. In:Con-
nectionism in perspective 19.143-155 (1989), p. 18 (cit. on p. 44).

[132] Dulari Bhatt, Chirag Patel, Hardik Talsania et al. ‘CNN variants for com-
puter vision: History, architecture, application, challenges and future scope’.
In: Electronics 10.20 (2021), p. 2470 (cit. on p. 46).

[133] Tanvir Alam Shifat and JangWook Hur. ‘An effective stator fault diagnosis
framework of BLDCmotor based on vibration and current signals’. In: IEEE
Access 8 (2020), pp. 106968–106981 (cit. on p. 46).

164 References



[134] Chandrabhanu Malla and Isham Panigrahi. ‘Review of condition monit-
oring of rolling element bearing using vibration analysis and other tech-
niques’. In: Journal of Vibration Engineering & Technologies 7.4 (2019),
pp. 407–414 (cit. on p. 46).

[135] Ke Feng, JC Ji, Qing Ni and Michael Beer. ‘A review of vibration-based
gear wear monitoring and prediction techniques’. In: Mechanical Sys-
tems and Signal Processing 182 (2023), p. 109605 (cit. on p. 46).

[136] Gokberk Serin, Batihan Sener, AMuratOzbayoglu andHakki Ozgur Unver.
‘Review of tool condition monitoring in machining and opportunities for
deep learning’. In: The International Journal of AdvancedManufacturing
Technology 109.3 (2020), pp. 953–974 (cit. on p. 46).

[137] Galipothu Dheeraj Simon and R Deivanathan. ‘Early detection of drilling
tool wear by vibration data acquisition and classification’. In: Manufac-
turing Letters 21 (2019), pp. 60–65 (cit. on p. 46).

[138] K Balachandar, R Jegadeeshwaran, J Lakshmipathi and D Saravanaku-
mar. ‘Friction Stir Welding Tool Condition Prediction Using Vibrational Ana-
lysis Through Machine Learning–A Review’. In: Journal of Physics: Confer-
ence Series. Vol. 1969. 1. IOP Publishing. 2021, p. 012051 (cit. on p. 46).

[139] Luyang Jing, Ming Zhao, Pin Li and Xiaoqiang Xu. ‘A convolutional neural
network based feature learning and fault diagnosis method for the con-
dition monitoring of gearbox’. In: Measurement 111 (2017), pp. 1–10 (cit.
on p. 46).

[140] Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang and Michael
Pecht. ‘Deep residual shrinkagenetworks for fault diagnosis’. In: IEEE Trans-
actions on Industrial Informatics 16.7 (2019), pp. 4681–4690 (cit. on p. 46).

[141] KekeHuang, ShujieWu, Fanbiao Li, ChunhuaYangandWeihuaGui. ‘Fault
diagnosis of hydraulic systems based on deep learningmodel with multir-
ate data samples’. In: IEEE Transactions on neural networks and learning
systems (2021) (cit. on pp. 46, 47, 50, 95, 108, 115–117, 128, 139).

165



[142] CanCheng, Jianyong Li, Yueming Liu, MengNie andWenxiWang. ‘Deep
convolutional neural network-based in-process tool condition monitoring
in abrasive belt grinding’. In: Computers in Industry 106 (2019), pp. 1–13
(cit. on p. 46).

[143] Yu Liang, Binbin Li and Bin Jiao. ‘A deep learning method for motor fault
diagnosis based on a capsule network with gate-structure dilated con-
volutions’. In: Neural Computing and Applications 33.5 (2021), pp. 1401–
1418 (cit. on p. 46).

[144] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. ‘Learning
representations by back-propagating errors’. In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 47).

[145] Yoshua Bengio, Patrice Simard and Paolo Frasconi. ‘Learning long-term
dependencies with gradient descent is difficult’. In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166 (cit. on p. 49).

[146] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre et al. ‘Learn-
ing phrase representations using RNNencoder-decoder for statisticalma-
chine translation’. In: arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 49).

[147] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long short-termmemory’. In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 49).

[148] Felix O Heimes. ‘Recurrent neural networks for remaining useful life es-
timation’. In: 2008 international conference on prognostics and health
management. IEEE. 2008, pp. 1–6 (cit. on p. 49).

[149] Wennian Yu, II Yong Kim and Chris Mechefske. ‘An improved similarity-
basedprognostic algorithm for RUL estimation usingan RNNautoencoder
scheme’. In: Reliability Engineering & System Safety 199 (2020), p. 106926
(cit. on pp. 50, 51, 93, 145).

[150] Yingchao Liu, Xiaofeng Hu and Wenjuan Zhang. ‘Remaining useful life
prediction based on health index similarity’. In: Reliability Engineering &
System Safety 185 (2019), pp. 502–510 (cit. on p. 50).

166 References



[151] Tarak Benkedjouh, Kamal Medjaher, Noureddine Zerhouni and Said Re-
chak. ‘Remaining useful life estimation based on nonlinear feature re-
duction and support vector regression’. In: Engineering Applications of
Artificial Intelligence 26.7 (2013), pp. 1751–1760 (cit. on p. 50).

[152] Jihong Yan, Muammer Koc and Jay Lee. ‘A prognostic algorithm for ma-
chine performance assessment and its application’. In: Production Plan-
ning & Control 15.8 (2004), pp. 796–801 (cit. on p. 50).

[153] TianyiWang, Jianbo Yu, David Siegel and Jay Lee. ‘A similarity-basedpro-
gnostics approach for remaining useful life estimation of engineered sys-
tems’. In: 2008 international conference on prognostics and health man-
agement. IEEE. 2008, pp. 1–6 (cit. on p. 50).

[154] Racha Khelif, Simon Malinowski, Brigitte Chebel-Morello and Noureddine
Zerhouni. ‘RUL prediction based on a new similarity-instance based ap-
proach’. In: 2014 IEEE 23rd International Symposium on Industrial Electron-
ics (ISIE). IEEE. 2014, pp. 2463–2468 (cit. on p. 50).

[155] Narendhar Gugulothu, Vishnu Tv, Pankaj Malhotra et al. ‘Predicting re-
maining useful life using time series embeddings basedon recurrent neural
networks’. In: arXiv preprint arXiv:1709.01073 (2017) (cit. on p. 50).

[156] Ugochukwu Ejike Akpudo and Hur Jang-Wook. ‘An Automated Sensor
Fusion Approach for the RUL Prediction of Electromagnetic Pumps’. In:
IEEE Access 9 (2021), pp. 38920–38933 (cit. on p. 50).

[157] Kwok Tai Chui, Brij B Gupta and Pandian Vasant. ‘A genetic algorithm
optimized RNN-LSTMmodel for remaining useful life prediction of turbofan
engine’. In: Electronics 10.3 (2021), p. 285 (cit. on p. 50).

[158] Wennian Yu, Il Yong Kim and Chris Mechefske. ‘Analysis of different RNN
autoencoder variants for time series classificationandmachineprognostics’.
In: Mechanical Systems and Signal Processing 149 (2021), p. 107322 (cit.
on pp. 51, 93, 145).

167



[159] Volodymyr Mnih, Nicolas Heess, Alex Graves and Koray Kavukcuoglu.
‘Recurrent models of visual attention’. In: arXiv preprint arXiv:1406.6247
(2014) (cit. on p. 51).

[160] ZeyuCheng, Yi ZhangandChengkai Tang. ‘Swin-Depth: Using Transformers
and Multi-Scale Fusion for Monocular-Based Depth Estimation’. In: IEEE
Sensors Journal 21.23 (2021), pp. 26912–26920 (cit. on p. 51).

[161] Dzmitry Bahdanau, KyunghyunChoandYoshua Bengio. ‘Neuralmachine
translation by jointly learning to align and translate’. In: arXiv preprint
arXiv:1409.0473 (2014) (cit. on p. 51).

[162] Ashish Vaswani, Noam Shazeer, Niki Parmar et al. ‘Attention is all you
need’. In: Advances in neural information processing systems 30 (2017)
(cit. on pp. 51, 53, 68, 77, 79, 80, 96, 98, 129, 139).

[163] Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. ‘Local relation net-
works for image recognition’. In: Proceedings of the IEEE/CVF Interna-
tional ConferenceonComputer Vision. 2019, pp. 3464–3473 (cit. on pp. 53,
127).

[164] Prajit Ramachandran, Niki Parmar, Ashish Vaswani et al. ‘Stand-alone self-
attention in vision models’. In: Advances in neural information processing
systems 32 (2019) (cit. on pp. 53, 127).

[165] OpenAI. GPT-3. https://openai.com/blog/gpt-3-apps/ (cit. on
pp. 53, 127, 145).

[166] OpenAI. ChatGPT. https://openai.com/blog/chatgpt/ (cit. on
p. 53).

[167] Anurag Arnab, Mostafa Dehghani, Georg Heigold et al. ‘Vivit: A video
vision transformer’. In: Proceedings of the IEEE/CVF international confer-
ence on computer vision. 2021, pp. 6836–6846 (cit. on p. 53).

[168] DeepMind. Alphafold. https://www.deepmind.com/research/
highlighted-research/alphafold (cit. on p. 53).

168 References

https://openai.com/blog/gpt-3-apps/
https://openai.com/blog/chatgpt/
https://www.deepmind.com/research/highlighted-research/alphafold
https://www.deepmind.com/research/highlighted-research/alphafold


[169] Yuhong Jin, Lei Hou and Yushu Chen. ‘A new rotating machinery fault
diagnosis method based on the Time Series Transformer’. In: arXiv preprint
arXiv:2108.12562 (2021) (cit. on p. 53).

[170] Case Western Reserve University. Bearing Fault dataset.
https://engineering.case.edu/bearingdatacenter (cit. on
p. 54).

[171] BingjieWu,WenjianCai, FanyongChengandHaoranChen. ‘Simultaneous-
fault diagnosis considering time series with a deep learning transformer
architecture for air handling units’. In: Energy and Buildings 257 (2022),
p. 111608 (cit. on p. 54).

[172] Xinglong Pei, Xiaoyang Zheng and JinliangWu. ‘Rotatingmachinery fault
diagnosis through a transformer convolution network subjected to trans-
fer learning’. In: IEEE Transactions on Instrumentation and Measurement
70 (2021), pp. 1–11 (cit. on pp. 54, 55, 115, 122).

[173] Hui Wang, Jiawen Xu, Ruqiang Yan, Chuang Sun and Xuefeng Chen. ‘In-
telligent bearing fault diagnosis using multi-head attention-based CNN’.
In: Procedia Manufacturing 49 (2020), pp. 112–118 (cit. on p. 54).

[174] Hairui Fang, Jin Deng, Bo Zhao et al. ‘LEFE-Net: A lightweight efficient fea-
ture extraction network with strong robustness for bearing fault diagnosis’.
In: IEEE Transactions on InstrumentationandMeasurement 70 (2021), pp. 1–
11 (cit. on p. 54).

[175] Zhiwen Chen, Ketian Liang, Steven X Ding et al. ‘A comparative study
of deep neural network-aided canonical correlation analysis-based pro-
cess monitoring and fault detection methods’. In: IEEE Transactions on
Neural Networks and Learning Systems 33.11 (2021), pp. 6158–6172 (cit.
on p. 55).

[176] AneeshGNath, Sandeep S Udmale, Divyanshu Raghuwanshi and Sanjay
Kumar Singh. ‘Structural rotor fault diagnosis using attention-based sensor
fusion and transformers’. In: IEEE Sensors Journal 22.1 (2021), pp. 707–719
(cit. on p. 55).

169

https://engineering.case.edu/bearingdatacenter


[177] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of training
deep feedforward neural networks’. In: Proceedings of the thirteenth in-
ternational conference on artificial intelligence and statistics. JMLRWork-
shop and Conference Proceedings. 2010, pp. 249–256 (cit. on p. 56).

[178] Yoshua Bengio, Patrice Simard and Paolo Frasconi. ‘Learning long-term
dependencies with gradient descent is difficult’. In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166 (cit. on p. 56).

[179] Matías Roodschild, Jorge Gotay Sardiñas and Adrián Will. ‘A new ap-
proach for the vanishing gradient problemon sigmoid activation’. In: Pro-
gress in Artificial Intelligence 9.4 (2020), pp. 351–360 (cit. on p. 56).

[180] Meenal V Narkhede, Prashant P Bartakke and Mukul S Sutaone. ‘A re-
view on weight initialization strategies for neural networks’. In: Artificial
intelligence review 55.1 (2022), pp. 291–322 (cit. on p. 56).

[181] Jingzhao Zhang, Tianxing He, Suvrit Sra and Ali Jadbabaie. ‘Why gradient
clipping accelerates training: A theoretical justification for adaptivity’. In:
arXiv preprint arXiv:1905.11881 (2019) (cit. on p. 56).

[182] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas and Aleksander Madry.
‘Howdoes batch normalization help optimization?’ In:Advances in neural
information processing systems 31 (2018) (cit. on pp. 57, 76).

[183] Jimmy Lei Ba, Jamie Ryan Kiros and Geoffrey E Hinton. ‘Layer normaliza-
tion’. In: arXiv preprint arXiv:1607.06450 (2016) (cit. on pp. 57, 76, 134).

[184] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. ‘Deep residual
learning for image recognition’. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 770–778 (cit. on
pp. 57, 58, 134).

[185] Imanol Bilbaoand Javier Bilbao. ‘Overfittingproblemand theover-training
in the era of data: Particularly for Artificial Neural Networks’. In: 2017 eighth
international conference on intelligent computing and information sys-
tems (ICICIS). IEEE. 2017, pp. 173–177 (cit. on p. 57).

170 References



[186] Pierre Baldi and Peter J Sadowski. ‘Understanding dropout’. In:Advances
in neural information processing systems 26 (2013) (cit. on p. 57).

[187] Guodong Zhang, Chaoqi Wang, Bowen Xu and Roger Grosse. ‘Three
mechanisms ofweight decay regularization’. In:arXiv preprint arXiv: 1810.
12281 (2018) (cit. on p. 57).

[188] Lutz Prechelt. ‘Early stopping—but when?’ In: Neural networks: tricks of
the trade: second edition (2012), pp. 53–67 (cit. on p. 57).

[189] Kaiming He and Jian Sun. ‘Convolutional neural networks at constrained
time cost’. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 5353–5360 (cit. on p. 58).

[190] Rupesh Kumar Srivastava, KlausGreff and Jürgen Schmidhuber. ‘Highway
networks’. In: arXiv preprint arXiv:1505.00387 (2015) (cit. on p. 58).

[191] The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in
2023. https://www.uniprot.org/ (cit. on p. 59).

[192] Kevin Lu, Aditya Grover, Pieter Abbeel and Igor Mordatch. ‘Pretrained
transformers as universal computation engines’. In: arXiv preprint arXiv:
2103. 05247 1 (2021) (cit. on pp. 59, 83, 96, 103).

[193] Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu and Tie-Yan Liu. ‘On
the depth of deep neural networks: A theoretical view’. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 30. 1. 2016 (cit. on
p. 59).

[194] Zhe Li, Jingyue Li, Yi Wang and Kesheng Wang. ‘A deep learning ap-
proach for anomaly detection based on SAE and LSTM in mechanical
equipment’. In: The International Journal of Advanced Manufacturing
Technology 103 (2019), pp. 499–510 (cit. on p. 59).

[195] Caroline König andAhmedMohamedHelmi. ‘Sensitivity analysis of sensors
in a hydraulic conditionmonitoring system using CNNmodels’. In: Sensors
20.11 (2020), p. 3307 (cit. on p. 59).

171

https://www.uniprot.org/


[196] Chuang Sun, Meng Ma, Zhibin Zhao et al. ‘Deep transfer learning based
on sparse autoencoder for remaining useful life prediction of tool in man-
ufacturing’. In: IEEE transactions on industrial informatics 15.4 (2018),
2416–2425 (cit. on p. 60).

[197] Wentao Mao, Jianliang He and Ming J Zuo. ‘Predicting remaining useful
life of rolling bearings based on deep feature representation and transfer
learning’. In: IEEE Transactions on Instrumentation andMeasurement 69.4
(2019), pp. 1594–1608 (cit. on p. 60).

[198] Princeton University Stanford Vision Lab Stanford University. ImageNet.
https://www.image-net.org/index.php (cit. on p. 61).

[199] Pei Cao, Shengli Zhang and Jiong Tang. ‘Preprocessing-free gear fault
diagnosis using small datasets with deep convolutional neural network-
based transfer learning’. In: Ieee Access 6 (2018), pp. 26241–26253 (cit.
on p. 61).

[200] Chunlei Chen, Peng Zhang, Huixiang Zhang et al. ‘Deep learning on
computational-resource-limited platforms: a survey’. In: Mobile Informa-
tion Systems 2020 (2020), pp. 1–19 (cit. on p. 62).

[201] Siemens. SIMATIC IPC. https://new.siemens.com/global/en/
products/automation/pc-based/simatic-rack-ipc.html (cit.
on p. 62).

[202] Manabu Kano and Yoshiaki Nakagawa. ‘Data-based process monitor-
ing, process control, and quality improvement: Recent developments
and applications in steel industry’. In: Computers & Chemical Engineer-
ing 32.1-2 (2008), pp. 12–24 (cit. on p. 62).

[203] Yatao Yang, Runze Yang, Longhui Pan et al. ‘A lightweight deep learning
algorithm for inspection of laser welding defects on safety vent of power
battery’. In: Computers in industry 123 (2020), p. 103306 (cit. on p. 62).

[204] Edward A Lee. ‘The past, present and future of cyber-physical systems: A
focus on models’. In: Sensors 15.3 (2015), pp. 4837–4869 (cit. on p. 67).

172 References

https://www.image-net.org/index.php
https://new.siemens.com/global/en/products/automation/pc-based/simatic-rack-ipc.html
https://new.siemens.com/global/en/products/automation/pc-based/simatic-rack-ipc.html


[205] Sutharshan Rajasegarar, Christopher Leckie andMarimuthu Palaniswami.
‘Anomaly detection in wireless sensor networks’. In: IEEE Wireless Commu-
nications 15.4 (2008), pp. 34–40 (cit. on p. 68).

[206] Abhishek B Sharma, Leana Golubchik and Ramesh Govindan. ‘Sensor
faults: Detectionmethods andprevalence in real-world datasets’. In:ACM
Transactions on Sensor Networks (TOSN) 6.3 (2010), pp. 1–39 (cit. on p. 68).

[207] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya and Jugal K Kalita.
‘Network anomaly detection: methods, systems and tools’. In: Ieee com-
munications surveys & tutorials 16.1 (2013), pp. 303–336 (cit. on p. 68).

[208] Debby Bezzina and James Sayer. ‘Safety pilot model deployment: Test
conductor team report’. In: Report No. DOT HS 812.171 (2014), p. 18 (cit.
on p. 70).

[209] Jonathan Petit and Steven E Shladover. ‘Potential cyberattacks on auto-
mated vehicles’. In: IEEE Transactions on Intelligent transportation systems
16.2 (2014), pp. 546–556 (cit. on pp. 71, 93).

[210] Yilin Mo, Emanuele Garone, Alessandro Casavola and Bruno Sinopoli.
‘False data injection attacks against state estimation in wireless sensor
networks’. In: 49th IEEE Conference on Decision and Control (CDC). IEEE.
2010, pp. 5967–5972 (cit. on pp. 71, 93).

[211] Zhiguang Wang, Weizhong Yan and Tim Oates. ‘Time series classification
from scratch with deep neural networks: A strong baseline’. In: 2017 Inter-
national joint conferenceonneural networks (IJCNN). IEEE. 2017, pp. 1578–
1585 (cit. on p. 74).

[212] Hassan Ismail Fawaz,Germain Forestier, JonathanWeber, Lhassane Idou-
mghar and Pierre-Alain Muller. ‘Deep learning for time series classifica-
tion: a review’. In: Data mining and knowledge discovery 33.4 (2019),
pp. 917–963 (cit. on p. 74).

173



[213] Wensi Tang, Guodong Long, Lu Liu et al. ‘Rethinking 1d-cnn for time series
classification: A stronger baseline’. In:arXiv preprint arXiv:2002.10061 (2020),
pp. 1–7 (cit. on p. 74).

[214] Abien Fred Agarap. ‘Deep learning using rectified linear units (relu)’. In:
arXiv preprint arXiv:1803.08375 (2018) (cit. on p. 75).

[215] AndrewM Saxe, James L McClelland and Surya Ganguli. ‘Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks’. In:
arXiv preprint arXiv:1312.6120 (2013) (cit. on p. 83).

[216] Yanhong Fei, Yingjie Liu, XianWei andMingsongChen. ‘O-vit: Orthogonal
vision transformer’. In: arXiv preprint arXiv:2201.12133 (2022) (cit. on p. 83).

[217] Linzhen Nie, Jiayi Guan, Chihua Lu, Hao Zheng and Zhishuai Yin. ‘Longit-
udinal speed control of autonomous vehicle based on a self-adaptive
PID of radial basis function neural network’. In: IET Intelligent Transport Sys-
tems 12.6 (2018), pp. 485–494 (cit. on p. 91).

[218] Qiang Li, Ranyang Li, Kaifan Ji and Wei Dai. ‘Kalman filter and its applic-
ation’. In: 2015 8th International Conference on Intelligent Networks and
Intelligent Systems (ICINIS). IEEE. 2015, pp. 74–77 (cit. on p. 91).

[219] Lin Jiang, Hang Xu, Jinhai Liu et al. ‘Anomaly detection of industrial multi-
sensor signals based on enhanced spatiotemporal features’. In: Neural
Computing and Applications 34.11 (2022), pp. 8465–8477 (cit. on p. 94).

[220] Nadav Cohen, Or Sharir and Amnon Shashua. ‘On the expressive power
of deep learning: A tensor analysis’. In: Conference on learning theory.
PMLR. 2016, pp. 698–728 (cit. on pp. 95, 116).

[221] Hai Qiu, Jay Lee, Jing Lin and Gang Yu. ‘Wavelet filter-based weak sig-
nature detection method and its application on rolling element bearing
prognostics’. In: Journal of sound and vibration 289.4-5 (2006), pp. 1066–
1090 (cit. on pp. 95, 120).

174 References



[222] Minghui Cheng, Li Jiao, Pei Yan et al. ‘Intelligent tool wear monitoring
and multi-step prediction based on deep learning model’. In: Journal of
Manufacturing Systems 62 (2022), pp. 286–300 (cit. on p. 95).

[223] Alec Radford, Wu Jeffrey, Dario Amodei et al. Better Language Mod-
els and Their Implications. Website. https://openai.com/blog/
better-language-models/ Last access: Nov 2021. 2019 (cit. on pp. 102,
104).

[224] Alec Radford, Jeffrey Wu, Rewon Child et al. ‘Language models are un-
supervised multitask learners’. In: OpenAI blog 1.8 (2019), p. 9 (cit. on
p. 102).

[225] Tarek Berghout, Mohamed Benbouzid, SM Muyeen, Toufik Bentrcia and
Leila-HayetMouss. ‘Auto-NAHL: A neural network approach for condition-
basedmaintenanceof complex industrial systems’. In: IEEEAccess 9 (2021),
pp. 152829–152840 (cit. on pp. 108, 115, 117, 139).

[226] Jun Wu, Pengfei Guo, Yiwei Cheng et al. ‘Ensemble generalized multi-
class support-vector-machine-based health evaluation of complex de-
gradation systems’. In: IEEE/ASME Transactions onMechatronics 25.5 (2020),
pp. 2230–2240 (cit. on pp. 108, 115, 117, 139).

[227] Ashish Gupta, Hari Prabhat Gupta, Bhaskar Biswas and Tanima Dutta. ‘An
unseen fault classification approach for smart appliances using ongoing
multivariate time series’. In: IEEE Transactions on Industrial Informatics 17.6
(2020), pp. 3731–3738 (cit. on pp. 108, 139).

[228] Yafei Lei, Wanlu Jiang, Anqi Jiang et al. ‘Fault diagnosis method for hy-
draulic directional valves integrating PCA and XGBoost’. In: Processes 7.9
(2019), p. 589 (cit. on pp. 108, 115, 117, 139).

[229] Zachary C Lipton. ‘TheMythos ofModel Interpretability: Inmachine learn-
ing, the concept of interpretability is both important and slippery.’ In:
Queue 16.3 (2018), pp. 31–57 (cit. on p. 109).

175

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/


[230] Supriyo Chakraborty, Richard Tomsett, Ramya Raghavendra et al. ‘In-
terpretability of deep learning models: A survey of results’. In: 2017 IEEE
smartworld, ubiquitous intelligence & computing, advanced & trusted
computed, scalable computing & communications, cloud & big data
computing, Internet of people and smart city innovation. IEEE. 2017, pp. 1–
6 (cit. on p. 109).

[231] Sarah Wiegreffe and Yuval Pinter. ‘Attention is not not explanation’. In:
arXiv preprint arXiv:1908.04626 (2019) (cit. on p. 109).

[232] Yafei Deng, Delin Huang, Shichang Du et al. ‘A double-layer attention
based adversarial network for partial transfer learning in machinery fault
diagnosis’. In:Computers in Industry 127 (2021), p. 103399 (cit. on p. 115).

[233] Case Western Reserve University Bearing Data Center. Website. https:
//engineering.case.edu/bearingdatacenter. Last access: Sep
2021 (cit. on p. 118).

[234] Xiaoxi Ding and Qingbo He. ‘Energy-fluctuated multiscale feature learn-
ing with deep convnet for intelligent spindle bearing fault diagnosis’. In:
IEEE Trans on Instrumentation and Measurement 66.8 (2017), pp. 1926–
1935 (cit. on pp. 118, 119).

[235] WenliaoDu, Jianfeng Tao, Yanming Li andChengliang Liu. ‘Wavelet lead-
ers multifractal features based fault diagnosis of rotating mechanism’. In:
Mechanical Systems and Signal Processing 43.1-2 (2014), pp. 57–75 (cit.
on p. 119).

[236] Xiaohang Jin,Mingbo Zhao, TommyWSChowandMichael Pecht. ‘Motor
bearing fault diagnosis using trace ratio linear discriminant analysis’. In:
IEEE Transactions on Industrial Electronics 61.5 (2013), pp. 2441–2451 (cit.
on p. 119).

[237] PD McFadden and JD Smith. ‘Model for the vibration produced by a
single point defect in a rolling element bearing’. In: Journal of sound and
vibration 96.1 (1984), pp. 69–82 (cit. on p. 120).

176 References

https://engineering.case.edu/bearingdatacenter
https://engineering.case.edu/bearingdatacenter


[238] Rui Zhao, DongzheWang, Ruqiang Yan et al. ‘Machine healthmonitoring
using local feature-based gated recurrent unit networks’. In: IEEE Transac-
tions on Industrial Electronics 65.2 (2017), pp. 1539–1548 (cit. on pp. 120,
121).

[239] Xinglong Pei, Xiaoyang Zhengand JinliangWu. ‘RotatingMachinery Fault
Diagnosis Through a Transformer Convolution Network Subjected to Trans-
fer Learning’. In: IEEE Transactions on Instrumentation and Measurement
70 (2021), pp. 1–11 (cit. on p. 122).

[240] Jiehui Xu, JianminWang,Mingsheng Long et al. ‘Autoformer: Decompos-
ition transformers with auto-correlation for long-term series forecasting’.
In: Advances in Neural Information Processing Systems 34 (2021) (cit. on
p. 123).

[241] Microsoft Turing. Website. https://turing.microsoft.com/. Last
access: Sep 2022 (cit. on p. 127).

[242] Alec Radford, Jong Wook Kim, Chris Hallacy et al. ‘Learning transferable
visual models from natural language supervision’. In: International con-
ference on machine learning. PMLR. 2021, pp. 8748–8763 (cit. on p. 128).

[243] Jiachen Lu, Jinghan Yao, Junge Zhang et al. ‘Soft: Softmax-free trans-
former with linear complexity’. In: Advances in Neural Information Pro-
cessing Systems 34 (2021), pp. 21297–21309 (cit. on p. 128).

[244] Chris Chatfield. The analysis of time series: an introduction. Chapman
and hall/CRC, 2003 (cit. on p. 132).

[245] Norbert Wiener. ‘Generalized harmonic analysis’. In: Acta mathematica
55.1 (1930), pp. 117–258 (cit. on p. 132).

[246] DY You, XD Gao and S Katayama. ‘Review of laser welding monitoring’.
In: Science and technology of welding and joining 19.3 (2014), pp. 181–
201 (cit. on p. 145).

177

https://turing.microsoft.com/


[247] Valentin Gabeur, Chen Sun, Karteek Alahari andCordelia Schmid. ‘Multi-
modal transformer for video retrieval’. In: Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part IV 16. Springer. 2020, pp. 214–229 (cit. on p. 145).

[248] Jun Yu, Jing Li, Zhou Yu and Qingming Huang. ‘Multimodal transformer
with multi-view visual representation for image captioning’. In: IEEE trans-
actions on circuits and systems for video technology 30.12 (2019), pp. 4467–
4480 (cit. on p. 145).

[249] Aditya Prakash, Kashyap Chitta and Andreas Geiger. ‘Multi-modal fu-
sion transformer for end-to-end autonomous driving’. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 7077–7087 (cit. on p. 145).

[250] Kaiming He, Xinlei Chen, Saining Xie et al. ‘Masked Autoencoders Are
Scalable Vision Learners’. In: arXiv:2111.06377 (2021) (cit. on p. 145).

178 References



A
Discussion on Application and
Implementation in Practice

This thesis proposed deep learning methods, developed with PyTorch, for sensor
anomaly detection and processmonitoring based onmulti-sensor data streams.
The practical application of the proposed method, including the deployment
strategies and maintenance considerations, will be discussed in the appendix.
Examples of implementation codes are also provided in the following sections,
including the model architecture and the corresponding training process. De-
pending on the dataset, the hyperparameters of the models can be tuned to
find the best performance on the target dataset. It is important to note that
the methodology presented in this thesis has only been validated on publicly
available datasets and has not been deployed in real industrial systems. The
deployment methods discussed in this section are general application flows.

179



A.0.1 Integration into Existing Systems

The integration process begins with the collection of multi-sensor data streams.
Our methods are designed to be adaptable to various sensor types that collect
numerical data. Datapreprocessing steps, including normalisation, noise reduc-
tion, and feature extraction, were not conducted before training the models,
which means the models received raw sensor data for analysis.

Deployment of the PyTorch-based models into production environments can
be divided into a two-step process. First, the trained model, saved as a .pth file,
can be converted to an ONNX format to ensure compatibility across different
platforms. Second, the ONNX model can be deployed to either a server or an
edge device, which provides the computation and data processing capacity.
The deep learning models presented in the thesis support batch processing for
historical data analysis. This feature can be used for retrospective analysis, and
model retraining purposes.

A.0.2 Maintenance and Updating

Maintaining the accuracy and relevance of the deployedmodel over time can
be essential. A regular retraining schedule, leveraging newly gathered data to
continuously refine themodel. By fine-tuning themodel to update its parameters
in response to new data, the model can remain effective, as the characteristics
of the data stream may evolve.

180 Discussion on Application and Implementation in Practice



B
Implementation codes - Chapter 3

B.1 Sensor Anomaly Injection
1 from google.colab import drive

2 drive.mount(’/content/gdrive’)

3 import numpy as np

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 from tqdm import tqdm

7

8 # Anomaly injection

9 import random

10

11 df_instance = pd.read_csv(’/content/gdrive/MyDrive/Colab Notebooks/Sensor

Anomaly Detection/Data/gps_das_acce_10107.csv’, sep=’\t’)

12

13 def anomaly_gen(values, prob):

14 x = random.uniform(0,1)

15 cumulative_prob = 0.0

16 for item, item_prob in zip(values, prob):

17 cumulative_prob += item_prob

181



18 if x < cumulative_prob:

19 break

20

21 return item

22

23 # Instant

24 i = 0

25 while(i<43599):

26 values = [0, 1]

27 prob = [0.95, 0.05]

28 res = anomaly_gen(values, prob)

29 if res == 0:

30 df_instance.iloc[i,1] += 0

31 df_instance.iloc[i,0] += 0

32 i += 1

33 else:

34 ad = np.random.normal(loc=0.0 , scale=0.1)

35 column_idx = np.random.randint(low=2,high=5)

36 df_instance.iloc[i,1] = 1

37 df_instance.iloc[i,0] = column_idx - 1

38 df_instance.iloc[i,column_idx] = df_instance.iloc[i,column_idx] + ad *

500 # Instant

39 i += 1

40

41 ’’’

42 # Constant

43 duration = 3

44 i = 0

45 while(i<26000):

46 a = np.random.uniform(0.00,5)

47

48

49 values = [0, a]

50 prob = [0.95, 0.05]

51 res = anomaly_gen(values, prob)

52

53

182 Implementation codes - Chapter 3



54 if res == 0:

55 df_instance.iloc[i,1] = 0

56 df_instance.iloc[i,0] = 0

57 i += 1

58

59 else:

60 column_idx = np.random.randint(low=2,high=5)

61 df_instance.iloc[i:i+duration,column_idx] = res

62 df_instance.iloc[i:i+duration,1] = 1

63 df_instance.iloc[i:i+duration,0] = column_idx - 1

64 i += duration

65

66 # Bias

67 duration = 10

68 i = 0

69 # while(i<43600):

70 while(i<26000):

71 values = [0, 1]

72 prob = [0.95, 0.05]

73 res = anomaly_gen(values, prob)

74

75 if res == 0:

76 df_instance.iloc[i,1] += 0

77 df_instance.iloc[i,0] += 0

78 i += 1

79

80 else:

81 column_idx = np.random.randint(low=2,high=5) # inject anomaly to random

sensor

82

83 ad = np.random.uniform(0,1)

84

85 df_instance.iloc[i:i+duration,column_idx] = df_instance.iloc[i:i+

duration,column_idx] + ad

86 df_instance.iloc[i:i+duration,1] = 1

87 df_instance.iloc[i:i+duration,0] = column_idx - 1

88 i += duration

B.1 Sensor Anomaly Injection 183



89

90 # Drift

91 duration = 20

92 i = 0

93 while(i<26000):

94 values = [0, 1]

95 prob = [0.95, 0.05]

96 res = anomaly_gen(values, prob)

97

98 if res == 0:

99 df_instance.iloc[i,1] = 0

100 df_instance.iloc[i,0] = 0

101 i += 1

102

103 else:

104 column_idx = np.random.randint(low=2,high=5)

105 ad = np.linspace(0, 2, duration)

106

107 df_instance.iloc[i:i+duration,column_idx] = df_instance.iloc[i:i+

duration,column_idx] + ad

108 df_instance.iloc[i:i+duration,1] = 1

109 df_instance.iloc[i,1] = 0 # anomaly starts from 0, 0 is not an anomaly

110 df_instance.iloc[i:i+duration,0] = column_idx

111 df_instance.iloc[i,0] = 0

112 i += duration

113

114 # Mixex

115 duration = 20

116 i = 0

117 while(i<26000):

118 values = [0, 1]

119 prob = [0.95, 0.05]

120 res = anomaly_gen(values, prob)

121

122

123 if res == 0:

124 df_instance.iloc[i,1] += 0

184 Implementation codes - Chapter 3



125 df_instance.iloc[i,0] += 0

126 i += 1

127

128 else:

129 column_idx = np.random.randint(low=2,high=5) # inject anomaly to random

sensor

130 ad_type_idx = np.random.randint(low=1, high=5) # randomly selected

anomaly type

131

132 if ad_type_idx == 1: # Instant

133 ad = np.random.normal(loc=0.0 , scale=0.1) * 1000

134 df_instance.iloc[i,column_idx] = df_instance.iloc[i,column_idx] + ad

135 df_instance.iloc[i,0] = column_idx - 1 # faulty sensor

136 df_instance.iloc[i,1] = 1 # label

137 i += 1

138

139 elif ad_type_idx == 2: # Constant

140 duration = 10

141 ad = np.random.uniform(0.00,5)

142 df_instance.iloc[i:i+duration,column_idx] = ad

143 df_instance.iloc[i:i+duration,1] = 1

144 df_instance.iloc[i:i+duration,0] = column_idx - 1

145 i += duration

146 # i += 1

147

148 elif ad_type_idx == 3: # Drift

149 duration = 20

150 ad = np.linspace(0, 4, duration)

151 df_instance.iloc[i:i+duration,column_idx] = df_instance.iloc[i:i+

duration,column_idx] + ad

152 df_instance.iloc[i:i+duration,1] = 1

153 df_instance.iloc[i,1] = 0

154 # df_instance.iloc[i+1,1] = 0

155 df_instance.iloc[i:i+duration,0] = column_idx - 1

156 df_instance.iloc[i,0] = 0

157 # df_instance.iloc[i+1,0] = 0 # Uncomment: ingnore the initial small

value of anomaly

B.1 Sensor Anomaly Injection 185



158 i += duration

159 # i += 1

160

161 elif ad_type_idx == 4: # Bias

162 duration = 10

163 ad = np.random.uniform(0,5)

164 df_instance.iloc[i:i+duration,column_idx] = df_instance.iloc[i:i+

duration,column_idx] + ad

165 df_instance.iloc[i:i+duration,1] = 1

166 df_instance.iloc[i:i+duration,0] = column_idx - 1

167 i += duration

168 # i += 1

169 ’’’

170

171

172 # Data visualisation

173 lower_limit = 0

174 upper_limit = 43599

175 value_gpsdas = df_instance.iloc[lower_limit:upper_limit,2].values

176 value_das = df_instance.iloc[lower_limit:upper_limit,3].values

177 value_das_acce = df_instance.iloc[lower_limit:upper_limit,4].values

178 label = df_instance.iloc[lower_limit:upper_limit,1].values

179 fault_sensor = df_instance.iloc[lower_limit:upper_limit,0].values

180

181 fig, ax = plt.subplots(figsize=(24,8))

182 plt.figure(figsize=(24,8))

183 ax.plot(value_das, label=’Das’)

184 ax.plot(value_gpsdas, label=’GpsDas’)

185 ax.plot(value_das_acce, label=’Acc’)

186 ax.plot(label, label=’label’)

187 ax.plot(fault_sensor, label=’Fault_sensor’)

188 ax.legend()

189

190 print(df_instance)

Listing B.1: Sensor Anomaly Injection Algorithm

186 Implementation codes - Chapter 3



B.2 DA-CNN model Implementation and Training Process
1 from google.colab import drive

2 drive.mount(’/content/gdrive’)

3

4 import os

5 import pandas as pd

6 import matplotlib.pyplot as plt

7 import torch

8 import torch.nn as nn

9 from torch.utils.data import Dataset

10 from torch.utils.data import DataLoader

11 import numpy as np

12 from numpy import *

13 import math

14 import time

15 import torch.nn.functional as F

16 from tqdm import tqdm

17

18 use_gpu = torch.cuda.is_available()

19 print(use_gpu)

20 print(torch.cuda.device_count())

21 torch.cuda.current_device()

22 device = torch.device(’cuda’ if torch.cuda.is_available else ’cpu’)

23 print(device)

24

25

26 data_10107_path = ’/content/gdrive/MyDrive/Colab_Notebooks/Sensor Anomaly

Detection/Data/Instant/instance_25_full.csv’

27

28 # Here we create the training dataset with anomaly injected.

29 # rate: Training dataset size / Total number

30 # stride: How many data point per step

31 # num_fold: How many vertors will be used for 1 sensor in a time window

32

33 class ad_training_instant(Dataset):

34 def __init__(self, num_total=2590, window_size=15, stride=15, num_fold=1,

rate=1):

B.2 DA-CNN model Implementation and Training Process 187



35

36 self.num_fold = num_fold

37 self.window_size = window_size

38 self.stride = stride

39

40 self.num_data = int(num_total*rate)

41 self.d_model = int(window_size/num_fold)

42

43 self.y = torch.zeros(self.num_data).type(torch.long).to(device)

44 self.x = torch.zeros(self.num_data, int(3*self.num_fold), self.d_model)

.to(device)

45

46 data = pd.read_csv(data_10107_path, sep=’\t’)

47

48 # MinMax

49 # data.iloc[:, [3,4]] = (data.iloc[:,[3,4]] - data.iloc[:,[3,4]].min())

/ (data.iloc[:,[3,4]].max() - data.iloc[:,[3,4]].min())

50 # data.iloc[:, 5] = (data.iloc[:,5] - data.iloc[:,5].min()) / (data.

iloc[:,5].max() - data.iloc[:,5].min())

51

52

53

54

55 for i in tqdm(range(self.num_data)):

56 self.x[i][0:self.num_fold, :] = torch.tensor(data.iloc[(self.stride*i

):(self.window_size+self.stride*i), 3].values.reshape(self.num_fold,

self.d_model))

57 self.x[i][self.num_fold:self.num_fold*2, :] = torch.tensor(data.iloc

[(self.stride*i):(self.window_size+self.stride*i), 4].values.reshape(

self.num_fold, self.d_model))

58 self.x[i][self.num_fold*2:self.num_fold*3, :] = torch.tensor(data.

iloc[(self.stride*i):(self.window_size+self.stride*i), 5].values.reshape

(self.num_fold, self.d_model))

59

60 if sum(data.iloc[(self.stride*i):(self.window_size+self.stride*i),

2].values) == 0:

61 self.y[i] = torch.tensor(0, dtype=torch.long)

188 Implementation codes - Chapter 3



62 else:

63 self.y[i] = torch.tensor(1, dtype=torch.long)

64

65

66 self.len = self.x.shape[0]

67

68 # Getter

69 def __getitem__(self, index):

70 return self.x[index], self.y[index]

71

72 # Get length

73 def __len__(self):

74 return self.len

75

76 data = pd.read_csv(data_10107_path, sep=’\t’)

77

78 lower_limit = 0

79 upper_limit = 26000

80 value_gpsdas = data.iloc[lower_limit:upper_limit,3].values

81 value_das = data.iloc[lower_limit:upper_limit,4].values

82 value_das_acce = data.iloc[lower_limit:upper_limit,5].values

83

84

85 fig, ax = plt.subplots(figsize=(24,8))

86 plt.figure(figsize=(24,8))

87 ax.plot(value_das, label=’Das’)

88 ax.plot(value_gpsdas, label=’GpsDas’)

89

90 ax.plot(value_das_acce, label=’Acc’)

91 ax.legend()

92

93 dataset = ad_training_instant()

94

95 # Count the number of different classes

96 dataset_size = len(dataset)

97 classes = [’Normal’, ’Faulty’]

98 num_classes = len(classes)

B.2 DA-CNN model Implementation and Training Process 189



99 img_dict = {}

100 for i in range(num_classes):

101 img_dict[classes[i]] = 0

102

103 for i in range(dataset_size):

104 img, label = dataset[i]

105 img_dict[classes[label]] += 1

106

107 img_dict

108

109 train_size = 2340

110 test_size = 2590 - train_size

111 train_dataset, test_dataset = torch.utils.data.random_split(dataset, [

train_size, test_size], generator=torch.Generator().manual_seed(12))

112

113 class PositionwiseFeedForward(nn.Module):

114 ’’’

115 2 feed forward layer module

116 ’’’

117

118 def __init__(self, d_in, d_hid, dropout=0.1):

119 super().__init__()

120 self.w_1 = nn.Linear(d_in, d_hid)

121 self.w_2 = nn.Linear(d_hid, d_in)

122 self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)

123 self.dropout = nn.Dropout(dropout)

124

125 def forward(self, x):

126

127 residual = x

128

129 x = self.w_2(F.relu(self.w_1(x)))

130 x = self.dropout(x)

131 x += residual

132

133 x = self.layer_norm(x)

134

190 Implementation codes - Chapter 3



135 return x

136

137 class PositionwiseFeedForward_CNN(nn.Module):

138 ’’’

139 2 feed forward layer module

140 ’’’

141

142 def __init__(self, d_in, d_hid, d_model, dropout=0.2):

143 super().__init__()

144 self.w_1 = nn.Conv1d(in_channels=d_in, out_channels=d_hid, kernel_size

=1, bias=False)

145 self.w_2 = nn.Conv1d(in_channels=d_hid, out_channels=d_in, kernel_size

=1, bias=False)

146 self.layer_norm = nn.LayerNorm([d_in], eps=1e-6)

147 self.dropout = nn.Dropout(dropout)

148

149 def forward(self, x):

150

151 residual = x

152 x = x.permute(0, 2, 1)

153 x = self.w_2(F.relu(self.w_1(x)))

154 x = self.dropout(x)

155 x = x.permute(0, 2, 1)

156 x += residual

157

158 x = self.layer_norm(x)

159

160 return x

161

162

163 class Attention(nn.Module):

164 def __init__(self, d_model, num_heads, qkv_bias=True, qk_scale=None,

attn_drop=0., proj_drop=0.1, position_bias=True):

165 super().__init__()

166 self.d_model = d_model

167 self.num_heads = num_heads

168 head_dim = d_model // num_heads

B.2 DA-CNN model Implementation and Training Process 191



169 self.scale = qk_scale or head_dim ** -0.5

170 self.position_bias = position_bias

171

172 self.qkv = nn.Linear(d_model, d_model *3, bias = qkv_bias)

173 self.attn_drop = nn.Dropout(attn_drop)

174 self.proj = nn.Linear(d_model, d_model)

175 self.proj_drop = nn.Dropout(proj_drop)

176

177 self.softmax = nn.Softmax(dim=-1)

178 self.norm = nn.LayerNorm(self.d_model)

179 # self.norm1 = nn.LayerNorm(self.d_model)

180

181 # self.mlp = PositionwiseFeedForward(d_in=self.d_model, d_hid=self.

d_model * 4)

182

183 def forward(self, x, mask=None):

184 B_, N, C = x.shape

185

186 qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads

).permute(2, 0, 3, 1, 4)

187 q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use

tensor as tuple)

188 q = q * self.scale

189 attn = (q @ k.transpose(-2, -1))

190 attn = self.softmax(attn)

191

192 res = x

193 x = (attn @ v).transpose(1, 2).reshape(B_, N, C)

194 x = self.proj(x)

195 x = self.proj_drop(x)

196 x = self.norm(x + res)

197

198 # res_mlp = x

199 # x = self.mlp(x)

200 # x = self.norm1(x + res_mlp)

201 return x

202

192 Implementation codes - Chapter 3



203

204 class Attention_layer_for_dual(nn.Module):

205 def __init__(self, d_model, num_heads, qkv_bias=True, qk_scale=None,

attn_drop=0., proj_drop=0.1, position_bias=True):

206 super().__init__()

207 self.d_model = d_model

208 self.num_heads = num_heads

209 head_dim = d_model // num_heads

210 self.scale = qk_scale or head_dim ** -0.5

211 self.position_bias = position_bias

212

213 self.qkv = nn.Linear(d_model, d_model *3, bias = qkv_bias)

214 self.attn_drop = nn.Dropout(attn_drop)

215 self.proj = nn.Linear(d_model, d_model)

216 self.proj_drop = nn.Dropout(proj_drop)

217

218 self.softmax = nn.Softmax(dim=-1)

219 self.norm = nn.LayerNorm(self.d_model)

220 # self.norm1 = nn.LayerNorm(self.d_model)

221

222 # self.mlp = PositionwiseFeedForward(d_in=self.d_model, d_hid=self.

d_model * 4)

223

224 def forward(self, x, mask=None):

225 B_, N, C = x.shape

226

227 qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads

).permute(2, 0, 3, 1, 4)

228 q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use

tensor as tuple)

229 q = q * self.scale

230 attn = (q @ k.transpose(-2, -1))

231 attn = self.softmax(attn)

232

233 res = x

234 x = (attn @ v).transpose(1, 2).reshape(B_, N, C)

235 x = self.proj(x)

B.2 DA-CNN model Implementation and Training Process 193



236 x = self.proj_drop(x)

237 x = self.norm(x + res)

238

239 # res_mlp = x

240 # x = self.mlp(x)

241 # x = self.norm1(x + res_mlp)

242 return x, attn

243

244

245 # sensor-wise and time wise attention, initialise the feature

representation for the downstream

246 class Attention_dual(nn.Module):

247 def __init__(self, d_model, num_heads, length_model, attn):

248 super().__init__()

249 self.d_model = d_model

250 self.num_heads = num_heads

251 self.length_model = length_model

252 self.attn = attn

253

254 self.norm = nn.LayerNorm(self.d_model)

255

256 self.att_sensor_wise = Attention_layer_for_dual(d_model=self.d_model,

num_heads=self.num_heads)

257 self.att_time_wise = Attention_layer_for_dual(d_model=self.length_model

, num_heads=self.num_heads)

258

259 def forward(self, x, mask=None):

260 res = x

261 x1, attn_sensor = self.att_sensor_wise(x)

262

263 # x1, attn_sensor = self.att_time_wise(x.permute(0,2,1))

264 # x1 = x1.permute(0,2,1)

265

266 x2, attn_time = self.att_time_wise(x.permute(0,2,1))

267 x2 = x2.permute(0,2,1)

268 # x2, attn_time = self.att_sensor_wise(x)

269

194 Implementation codes - Chapter 3



270

271 x = x1 + x2

272 x = self.norm(x + res)

273

274 if self.attn == False:

275 return x

276 else:

277 return x, attn_sensor, attn_time

278

279

280 class AD_model(nn.Module):

281 def __init__(self, attn_depth, num_class, d_model, num_heads_attn,

orth_gain, length_model):

282 super().__init__()

283

284 self.d_model = d_model

285 self.num_heads_attn = num_heads_attn

286 self.attn_depth = attn_depth

287 self.num_class = num_class

288 self.length_model = length_model

289 self.cls_token = torch.randn(1,d_model).to(device)

290

291 self.att_dual = Attention_dual(d_model=self.d_model, num_heads=self.

num_heads_attn, length_model=self.length_model, attn=True)

292

293 self.attn = nn.ModuleList()

294 for i in range(self.attn_depth):

295 # self.attn.append(Attention(d_model=self.d_model, num_heads=self.

num_heads_attn))

296

297 self.attn.append(Attention_dual(d_model=self.d_model, num_heads=self.

num_heads_attn, length_model=self.length_model+1, attn = False))

298

299 # self.attn.append(PositionwiseFeedForward_CNN(d_in=(self.

length_model+1), d_hid=4 * (self.length_model+1), d_model=self.d_model))

# cls token added, hence + 1

300 self.attn.append(PositionwiseFeedForward_CNN(d_in=(self.d_model),

B.2 DA-CNN model Implementation and Training Process 195



d_hid=4 * (self.d_model), d_model=self.d_model)) # cls token added,

hence + 1

301 # self.attn.append(PositionwiseFeedForward(d_in=self.d_model, d_hid=4

* self.d_model))

302

303 self.classifier = nn.Linear(self.d_model, self.num_class)

304

305 # initialisation

306 for p in self.parameters():

307 if p.dim() > 1:

308 nn.init.xavier_uniform_(p)

309

310 if orth_gain is not None:

311 torch.nn.init.orthogonal_(self.classifier.weight, gain = orth_gain)

312 self.classifier.bias.data.zero_()

313

314

315 def forward(self, x):

316 B, _, _ = x.shape

317

318

319 #print(x.shape)

320

321 x, attn_sensor, attn_time = self.att_dual(x)

322 x = torch.cat((self.cls_token.unsqueeze(0).repeat(B,1,1), x), dim=-2)

323

324 for i in range(self.attn_depth):

325 x = self.attn[i](x)

326

327 x = x[:, 0, :]

328 x = self.classifier(x)

329

330 return x, attn_sensor, attn_time

331

332

333 model = AD_model(

334 attn_depth=7,

196 Implementation codes - Chapter 3



335 num_class=2,

336 d_model=15,

337 num_heads_attn=1,

338 orth_gain=1.41,

339 length_model=3

340 )

341 model.to(device)

342 # model.load_state_dict(torch.load("/content/gdrive/MyDrive/Colab_Notebooks

/Sensor Anomaly Detection/Instant/25/Instant25.pth"))

343 def get_p(net):

344 t = sum(p.numel() for p in net.parameters())

345 trainable = sum(p.numel() for p in net.parameters() if p.requires_grad)

346 return t, trainable

347 print(get_p(model))

348

349

350 weights = [1.5 if label == 1 else 1 for data, label in train_dataset]

351

352 sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(

train_dataset), replacement=True)

353

354 batch_size = 16

355 train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,

shuffle=False, drop_last=True, sampler=sampler)

356 test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,

shuffle=True, drop_last=True)

357 criterion = torch.nn.CrossEntropyLoss()

358 optimizer = torch.optim.Adam(params=model.parameters(), lr=0.0001)

359

360 def train(epoch):

361

362 correct1 = 0

363 total1 = 0

364 running_loss = 0

365

366 epoch_running_loss = 0

367 epoch_correct1 = 0

B.2 DA-CNN model Implementation and Training Process 197



368 epoch_total1 = 0

369

370 for batch_idx, data in enumerate(train_loader):

371 images, labels = data

372 optimizer.zero_grad()

373 outputs, _, _ = model(images)

374 outputs = outputs.squeeze(1)

375 loss = criterion(outputs, labels)

376 loss.backward()

377 #torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)

378 optimizer.step()

379

380 running_loss += loss.detach().cpu().item()

381 epoch_running_loss += loss.detach().cpu().item()

382

383 idx_control = (train_size // batch_size) // 4

384

385 if (batch_idx + 1) % idx_control == 0:

386 train_loss_list.append(running_loss / batch_size / idx_control)

387 #print(’[%d, %d], training loss is %.3f’ % (epoch, batch_idx,

running_loss / batch_size / idx_control))

388 running_loss = 0

389

390 if (batch_idx + 1) % (train_size // batch_size) == 0:

391 epoch_train_loss_list.append(epoch_running_loss / (train_size //

batch_size * batch_size))

392

393

394 _, predict1 = torch.max(outputs, dim=1)

395 predict1 = predict1.detach().cpu()

396 labels = labels.detach().cpu()

397 correct1 += (labels == predict1).sum().item()

398 total1 += labels.size(0)

399

400 epoch_correct1 += (labels == predict1).sum().item()

401 epoch_total1 += labels.size(0)

402

198 Implementation codes - Chapter 3



403 if (batch_idx + 1) % idx_control == 0:

404 train_accuracy_list.append(100 * (correct1 / total1))

405 #print(’Train acc: ’, 100 * (correct1 / total1))

406 correct1 = 0

407 total1 = 0

408

409 if (batch_idx + 1) % (train_size // batch_size) == 0:

410 epoch_train_accuracy_list.append(100 * (epoch_correct1 /

epoch_total1))

411 print(’Epoch train acc: ’, 100 * (epoch_correct1 / epoch_total1))

412

413

414

415 def test():

416 correct = 0

417 total = 0

418 test_loss = 0

419

420 epoch_correct = 0

421 epoch_total = 0

422 epoch_test_loss = 0

423 epoch_TP = 0

424 epoch_TN = 0

425 epoch_FP = 0

426 epoch_FN = 0

427

428 with torch.no_grad():

429 for batch_idx, data in enumerate(test_loader):

430 images, labels = data

431 outputs, _, _ = model(images)

432 outputs = outputs.squeeze(1)

433 _, predict = torch.max(outputs, dim=1)

434 predict = predict.detach().cpu()

435 labels = labels.detach().cpu()

436 correct += (labels == predict).sum().item()

437 total += labels.size(0)

438

B.2 DA-CNN model Implementation and Training Process 199



439 epoch_correct += (labels == predict).sum().item()

440 epoch_total += labels.size(0)

441

442 epoch_TP += ((predict == 1) & (labels.data == 1)).sum().item()

443 epoch_TN += ((predict == 0) & (labels.data == 0)).sum().item()

444 epoch_FN += ((predict == 0) & (labels.data == 1)).sum().item()

445 epoch_FP += ((predict == 1) & (labels.data == 0)).sum().item()

446

447 idx_control = (test_size // batch_size) // 4

448

449 if (batch_idx + 1) % idx_control == 0:

450 test_accuracy_list.append(100 * (correct / total))

451 #print(’correct/total:%d/%d, Test Accuracy:%.2f%%’ % (correct

, total, 100 * (correct / total)))

452 correct = 0

453 total = 0

454

455 if (batch_idx + 1) % (test_size // batch_size) == 0:

456 epoch_test_accuracy_list.append(100 * (epoch_correct /

epoch_total))

457

458 p = epoch_TP/(epoch_TP + epoch_FP)

459 s = epoch_TP/(epoch_TP + epoch_FN)

460

461 print(’Epoch test acc: ’, 100 * (epoch_correct / epoch_total)

)

462 print(’Precision: ’, 100 * p)

463 print(’Sensitivity: ’, 100 * s)

464 print(’F1 Score: ’, 100 * 2 * s * p / (s + p))

465

466 specificity = epoch_TN/(epoch_TN + epoch_FP)

467 print(’Specificity: ’, 100 * specificity)

468

469

470 outputs = outputs.detach().cpu()

471 loss = criterion(outputs, labels)

472

200 Implementation codes - Chapter 3



473 test_loss += loss.detach().cpu().item()

474 epoch_test_loss += loss.detach().cpu().item()

475

476 if (batch_idx + 1) % idx_control == 0:

477 test_loss_list.append(test_loss / batch_size / idx_control)

478 #print(’[%d, %d], test loss is %.3f’ % (epoch, batch_idx,

test_loss / batch_size / idx_control))

479 test_loss = 0

480

481 if (batch_idx + 1) % (test_size // batch_size) == 0:

482 epoch_test_loss_list.append(epoch_test_loss / batch_size /

idx_control)

483

484 #print(’epoch’, epoch)

485 # if (epoch+1) % 150 == 0:

486 # _, attention_map = model(images)

487 # # print(’attention_map’, attention_map[0])

488 # attention_map = attention_map[0][0][0]

489 # attention_map = np.array(attention_map.detach(), dtype=

float)

490 # # print(attention_map.shape)

491 # fig = plt.figure()

492 # ax = fig.add_subplot(111)

493 # ax.set_yticks(range(120))

494 # ax.set_xticks(range(120))

495 # im = ax.imshow(attention_map, cmap=plt.cm.viridis)

496 # plt.colorbar(im)

497 # plt.show()

498

499

500

501

502

503 if __name__ == ’__main__’:

504 train_loss_list = []

505 test_accuracy_list = []

506 train_accuracy_list = []

B.2 DA-CNN model Implementation and Training Process 201



507 test_loss_list = []

508 train_epoch = 300

509 train_time = []

510

511 epoch_train_loss_list = []

512 epoch_train_accuracy_list = []

513 epoch_test_loss_list = []

514 epoch_test_accuracy_list = []

515

516

517

518 for epoch in range(train_epoch):

519 print(’epoch: ’, epoch)

520 model.train()

521

522 start_time = time.time()

523 train(epoch)

524 end_time = time.time()

525 epoch_time = (end_time - start_time)

526 train_time.append(epoch_time)

527

528

529 model.eval()

530 test()

531

532

533

534 print(’trian time per epoch: ’, mean(train_time))

535

536

537 y1 = test_accuracy_list

538 y2 = train_loss_list

539 y3 = train_accuracy_list

540 y4 = test_loss_list

541

542 y11 = epoch_test_accuracy_list

543 y22 = epoch_train_loss_list

202 Implementation codes - Chapter 3



544 y33 = epoch_train_accuracy_list

545 y44 = epoch_test_loss_list

546

547 plt.subplot(4, 1, 1)

548 plt.plot(y1, ’o-’)

549 plt.xlabel(’Test acc vs. epochs’)

550 plt.ylabel(’Test accuracy’)

551

552 plt.subplot(4, 1, 2)

553 plt.plot(y3, ’.-’)

554 plt.xlabel(’Train acc vs. epochs’)

555 plt.ylabel(’Train acc’)

556

557 plt.subplot(4, 1, 3)

558 plt.plot(y4, ’.-’)

559 plt.xlabel(’Test loss vs. epochs’)

560 plt.ylabel(’Test loss’)

561

562 plt.subplot(4, 1, 4)

563 plt.plot(y2, ’o-’)

564 plt.xlabel(’Train loss vs. epochs’)

565 plt.ylabel(’Train loss’)

566

567 plt.show()

568

569

570

571

572 plt.subplot(4, 1, 1)

573 plt.plot(y11, ’o-’)

574 plt.xlabel(’Test acc vs. epochs’)

575 plt.ylabel(’Test accuracy’)

576

577 plt.subplot(4, 1, 2)

578 plt.plot(y33, ’.-’)

579 plt.xlabel(’Train acc vs. epochs’)

580 plt.ylabel(’Train acc’)

B.2 DA-CNN model Implementation and Training Process 203



581

582 plt.subplot(4, 1, 3)

583 plt.plot(y44, ’.-’)

584 plt.xlabel(’Test loss vs. epochs’)

585 plt.ylabel(’Test loss’)

586

587 plt.subplot(4, 1, 4)

588 plt.plot(y22, ’o-’)

589 plt.xlabel(’Train loss vs. epochs’)

590 plt.ylabel(’Train loss’)

591

592 plt.show()

593

594

595 torch.save(model.state_dict(), "/content/gdrive/MyDrive/Colab_Notebooks/

Sensor Anomaly Detection/Instant/25/Instant25.pth")

596

597 test_loader = DataLoader(dataset=test_dataset, batch_size=16, shuffle=False

, drop_last=True)

598

599 # ROC curve

600

601 model_test = model

602 model_test.to(device)

603

604 from sklearn.metrics import roc_curve, auc

605 # After training, get predictions for the ROC curve

606 model_test.eval() # set the model to evaluation mode

607 y_true = []

608 y_score = []

609

610 with torch.no_grad():

611 for inputs, labels in test_loader:

612 outputs, _, _ = model_test(inputs)

613 # Store true labels and predicted probabilities for class 1

614 y_true.extend(labels.cpu().numpy())

615

204 Implementation codes - Chapter 3



616 y_score.extend(outputs[:, 1].cpu().numpy())

617

618

619 # print(y_true)

620 # print(y_score)

621

622 # Compute ROC curve and ROC area

623 fpr, tpr, _ = roc_curve(y_true, y_score)

624 roc_auc = auc(fpr, tpr)

625 print(roc_auc)

626

627 print(f"FPR at 95% TPR: {fpr[np.where(tpr >= 0.95)[0][0]]}")

628

629 # Plot the ROC curve

630 plt.figure()

631 lw = 2

632 plt.plot(fpr, tpr, color=’darkorange’, lw=lw, label=’ROC curve (area = %0.2

f)’ % roc_auc)

633 plt.plot([0, 1], [0, 1], color=’navy’, lw=lw, linestyle=’--’)

634 plt.xlim([0.0, 1.0])

635 plt.ylim([0.0, 1.05])

636 plt.xlabel(’False Positive Rate’)

637 plt.ylabel(’True Positive Rate’)

638 plt.title(’Receiver Operating Characteristic’)

639 plt.legend(loc="lower right")

640 plt.show()

Listing B.2: DA-CNN model Implementation and Training Process

B.2 DA-CNN model Implementation and Training Process 205





C
Implementation codes - Chapter 4

1 !pip install transformers

2 from google.colab import drive

3 drive.mount(’/content/gdrive’)

4

5 import os

6 import pandas as pd

7 import matplotlib.pyplot as plt

8 import torch

9 import torch.nn as nn

10 from torch.utils.data import Dataset

11 from torch.utils.data import DataLoader

12 import numpy as np

13 from transformers import GPT2Model

14

15 data = pd.read_csv(’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/profile.txt’, sep=’\t’)

16 #data.columns = [’1’, ’2’, ’3’, ’4’, ’5’]

17 # data = data.values

18 # 1: Cooler 2: Valve 3: Internal pump leakage 4: Hydraulic accumulator 5:

Stable flag

19 # print(data.shape[1])

207



20 # print(data.shape[0])

21 # print(data)

22 # count1, division = np.histogram(data[:, 0])

23 # count2, division = np.histogram(data[:, 1])

24 # count3, division = np.histogram(data[:, 2])

25 # count4, division = np.histogram(data[:, 3])

26 # count5, division = np.histogram(data[:, 4])

27 # print(count1)

28 # print(count2)

29 # print(count3)

30 # print(count4)

31 # print(count5)

32

33 use_gpu = torch.cuda.is_available()

34 print(use_gpu)

35 print(torch.cuda.device_count())

36 torch.cuda.current_device()

37 device = torch.device(’cuda’ if torch.cuda.is_available else ’cpu’)

38 print(device)

39

40 class Hydraulic_data(Dataset):

41 def __init__(self):

42 self.y = torch.zeros(2204).type(torch.long).to(device)

43 self.x = torch.zeros(2204, 728, 60).to(device)

44

45 EPS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/EPS1.txt’

46 PS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS1.txt’

47 PS2_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS2.txt’

48 PS3_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS3.txt’

49 PS4_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS4.txt’

50 PS5_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS5.txt’

208 Implementation codes - Chapter 4



51 PS6_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS6.txt’

52

53 FS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/FS1.txt’

54 FS2_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/FS2.txt’

55

56 CE_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/CE.txt’

57 CP_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/CP.txt’

58 SE_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/SE.txt’

59 TS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS1.txt’

60 TS2_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS2.txt’

61 TS3_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS3.txt’

62 TS4_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS4.txt’

63 VS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/VS1.txt’

64

65 Label_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/profile.txt’

66

67 EPS1 = pd.read_csv(EPS1_path, sep=’\ ’)

68

69 PS1 = pd.read_csv(PS1_path, sep=’\ ’)

70 PS2 = pd.read_csv(PS2_path, sep=’\ ’)

71 PS3 = pd.read_csv(PS3_path, sep=’\ ’)

72 PS4 = pd.read_csv(PS4_path, sep=’\ ’)

73 PS5 = pd.read_csv(PS5_path, sep=’\ ’)

74 PS6 = pd.read_csv(PS6_path, sep=’\ ’)

75

209



76 FS1 = pd.read_csv(FS1_path, sep=’\ ’)

77 FS2 = pd.read_csv(FS2_path, sep=’\ ’)

78

79 CE = pd.read_csv(CE_path, sep=’\ ’)

80 CP = pd.read_csv(CP_path, sep=’\ ’)

81 SE = pd.read_csv(SE_path, sep=’\ ’)

82 TS1 = pd.read_csv(TS1_path, sep=’\ ’)

83 TS2 = pd.read_csv(TS2_path, sep=’\ ’)

84 TS3 = pd.read_csv(TS3_path, sep=’\ ’)

85 TS4 = pd.read_csv(TS4_path, sep=’\ ’)

86 VS1 = pd.read_csv(VS1_path, sep=’\ ’)

87

88 Label = pd.read_csv(Label_path, sep=’\t’)

89 Label = Label.replace([3, 20, 100], [0, 1, 2])

90

91 for i in range(2204):

92 #print(torch.tensor(EPS1.iloc[[i]].values).shape)

93 self.x[i][0:100, :] = torch.tensor(EPS1.iloc[[i]].values.reshape(100,

60))

94 self.x[i][100:200, :] = torch.tensor(PS1.iloc[[i]].values.reshape

(100, 60))

95 self.x[i][200:300, :] = torch.tensor(PS2.iloc[[i]].values.reshape

(100, 60))

96 self.x[i][300:400, :] = torch.tensor(PS3.iloc[[i]].values.reshape

(100, 60))

97 self.x[i][400:500, :] = torch.tensor(PS4.iloc[[i]].values.reshape

(100, 60))

98 self.x[i][500:600, :] = torch.tensor(PS5.iloc[[i]].values.reshape

(100, 60))

99 self.x[i][600:700, :] = torch.tensor(PS6.iloc[[i]].values.reshape

(100, 60))

100

101 self.x[i][700:710, :] = torch.tensor(FS1.iloc[[i]].values.reshape(10,

60))

102 self.x[i][710:720, :] = torch.tensor(FS2.iloc[[i]].values.reshape(10,

60))

103

210 Implementation codes - Chapter 4



104 self.x[i][720, :] = torch.tensor(CE.iloc[[i]].values)

105 self.x[i][721, :] = torch.tensor(CP.iloc[[i]].values)

106 self.x[i][722, :] = torch.tensor(SE.iloc[[i]].values)

107 self.x[i][723, :] = torch.tensor(TS1.iloc[[i]].values)

108 self.x[i][724, :] = torch.tensor(TS2.iloc[[i]].values)

109 self.x[i][725, :] = torch.tensor(TS3.iloc[[i]].values)

110 self.x[i][726, :] = torch.tensor(TS4.iloc[[i]].values)

111 self.x[i][727, :] = torch.tensor(VS1.iloc[[i]].values)

112

113 self.y[i] = torch.tensor(Label.iloc[i,0])

114 self.len = self.x.shape[0]

115

116 # Getter

117 def __getitem__(self, index):

118 return self.x[index], self.y[index]

119

120 # Get length

121 def __len__(self):

122 return self.len

123

124

125 dataset = Hydraulic_data()

126 train_size = 1704

127 test_size = 2204 - train_size

128 train_dataset, test_dataset = torch.utils.data.random_split(dataset, [

train_size, test_size])

129

130 input_dim = 60

131 output_dim = 3

132

133 class FPT(nn.Module):

134

135 def __init__(

136 self,

137 input_dim,

138 output_dim,

139 model_name=’gpt2’,

211



140 pretrained=False,

141 return_last_only=True,

142 use_embeddings_for_in=False,

143 in_layer_sizes=None,

144 out_layer_sizes=None,

145 freeze_trans=True,

146 freeze_in=False,

147 freeze_pos=False,

148 freeze_ln=False,

149 freeze_attn=True,

150 freeze_ff=True,

151 freeze_out=False,

152 dropout=0.1,

153 orth_gain=1.41,

154 ):

155 super().__init__()

156

157 self.input_dim = input_dim

158 self.output_dim = output_dim

159 self.model_name = model_name

160 self.return_last_only = return_last_only

161 self.use_embeddings_for_in = use_embeddings_for_in

162

163 self.in_layer_sizes = [] if in_layer_sizes is None else

in_layer_sizes

164 self.out_layer_sizes = [] if out_layer_sizes is None else

out_layer_sizes

165 self.dropout = dropout

166

167 if ’gpt’ in model_name:

168 assert model_name in [’gpt2’, ’gpt2-medium’, ’gpt2-large’, ’

gpt2-xl’]

169

170 from transformers import GPT2Model

171

172 pretrained_transformer = GPT2Model.from_pretrained(model_name)

173 if pretrained:

212 Implementation codes - Chapter 4



174 self.transformer = pretrained_transformer

175 else:

176 self.transformer = GPT2Model(pretrained_transformer.config)

177

178 if model_name == ’gpt2’:

179 embedding_size = 768

180 elif model_name == ’gpt2-medium’:

181 embedding_size = 1024

182 elif model_name == ’gpt2-large’:

183 embedding_size = 1280

184 elif model_name == ’gpt2-xl’:

185 embedding_size = 1600

186

187 else:

188 raise NotImplementedError(’model_name not implemented’)

189

190 if use_embeddings_for_in:

191 self.in_net = nn.Embedding(input_dim, embedding_size)

192 else:

193 in_layers = []

194 last_output_size = input_dim

195 for size in self.in_layer_sizes:

196 layer = nn.Linear(last_output_size, size)

197 if orth_gain is not None:

198 torch.nn.init.orthogonal_(layer.weight, gain=orth_gain)

199 layer.bias.data.zero_()

200

201 in_layers.append(layer)

202 in_layers.append(nn.ReLU())

203 in_layers.append(nn.Dropout(dropout))

204 last_output_size = size

205

206 final_linear = nn.Linear(last_output_size, embedding_size)

207 if orth_gain is not None:

208 torch.nn.init.orthogonal_(final_linear.weight, gain=

orth_gain)

209 final_linear.bias.data.zero_()

213



210

211 in_layers.append(final_linear)

212 in_layers.append(nn.Dropout(dropout))

213

214 self.in_net = nn.Sequential(*in_layers)

215

216 out_layers = []

217 last_output_size = embedding_size

218 for size in self.out_layer_sizes:

219 out_layers.append(nn.Linear(last_output_size, size))

220 out_layers.append(nn.ReLU())

221 out_layers.append(nn.Dropout(dropout))

222 last_output_size = size

223 out_layers.append(nn.Linear(last_output_size, output_dim))

224 self.out_net = nn.Sequential(*out_layers)

225

226 if freeze_trans:

227 for name, p in self.transformer.named_parameters():

228 name = name.lower()

229 if ’ln’ in name:

230 p.requires_grad = not freeze_ln

231 elif ’wpe’ in name:

232 p.requires_grad = not freeze_pos

233 elif ’mlp’ in name:

234 p.requires_grad = not freeze_ff

235 elif ’attn’ in name:

236 p.requires_grad = not freeze_attn

237 else:

238 p.requires_grad = False

239 if freeze_in:

240 for p in self.in_net.parameters():

241 p.requires_grad = False

242 if freeze_out:

243 for p in self.out_net.parameters():

244 p.requires_grad = False

245

246 def forward(self, x, output_attentions=True):

214 Implementation codes - Chapter 4



247

248 orig_dim = x.shape[-1]

249 if orig_dim != self.input_dim and not self.use_embeddings_for_in:

250 if orig_dim % self.input_dim != 0:

251 raise ValueError(’dimension of x must be divisible by patch

size’)

252 ratio = orig_dim // self.input_dim

253 x = x.reshape(x.shape[0], x.shape[1] * ratio, self.input_dim)

254 else:

255 ratio = 1

256

257 x = self.in_net(x)

258

259 transformer_outputs = self.transformer(

260 inputs_embeds=x,

261 return_dict=True,

262 output_attentions=output_attentions,

263 )

264 x = transformer_outputs.last_hidden_state

265

266 if self.return_last_only:

267 x = x[:, -ratio:]

268

269 x = self.out_net(x)

270 if self.return_last_only and ratio > 1:

271 x = x.reshape(x.shape[0], x.shape[1] // ratio, ratio * self.

output_dim)

272

273 if output_attentions:

274 return x, transformer_outputs.attentions

275 else:

276 return x

277

278 model = FPT(

279 input_dim=input_dim,

280 output_dim=3,

281 model_name=’gpt2’,

215



282 pretrained=True,

283 return_last_only=True,

284 use_embeddings_for_in=False,

285 in_layer_sizes=None,

286 out_layer_sizes=None,

287 freeze_trans=True,

288 freeze_in=False,

289 freeze_pos=False,

290 freeze_ln=False,

291 freeze_attn=True,

292 freeze_ff=True,

293 freeze_out=False,

294 dropout=0.1,

295 orth_gain=1.41,

296 )

297 model.to(device)

298 print(device)

299

300 batch_size = 8

301 train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,

shuffle=True, drop_last=True)

302 test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,

shuffle=True, drop_last=True)

303 criterion = torch.nn.CrossEntropyLoss()

304 optimizer = torch.optim.Adam(params=model.parameters(), lr=0.001)

305

306 def train(epoch):

307 running_loss = 0

308 correct1 = 0

309 total1 = 0

310 for batch_idx, data in enumerate(train_loader):

311 images, labels = data

312 optimizer.zero_grad()

313 outputs, _ = model(images)

314 #print(outputs)

315 outputs = outputs.squeeze(1)

316 #print(outputs.shape)

216 Implementation codes - Chapter 4



317 #print(labels.shape)

318 loss = criterion(outputs, labels)

319 loss.backward()

320 optimizer.step()

321 running_loss += loss.detach().cpu().item()

322 if (batch_idx + 1) % 100 == 0:

323 loss_list.append(running_loss / batch_size)

324 if (batch_idx + 1) % 206 == 0:

325 print(’[%d, %d], training loss is %.2f’ % (epoch, batch_idx,

running_loss / 206))

326

327 _, predict1 = torch.max(outputs, dim=1)

328 predict1 = predict1.detach().cpu()

329 labels = labels.detach().cpu()

330 correct1 += (labels == predict1).sum().item()

331 total1 += labels.size(0)

332

333 if (batch_idx + 1) % 100 == 0:

334 accuracy_list1.append(100 * (correct1 / total1))

335

336 if (batch_idx + 1) % 206 == 0:

337 print(’Train acc: ’, 100 * (correct1 / total1))

338

339

340

341 def test():

342 correct = 0

343 total = 0

344 with torch.no_grad():

345 for batch_idx, data in enumerate(test_loader):

346 images, labels = data

347 outputs, _ = model(images)

348 outputs = outputs.squeeze(1)

349 _, predict = torch.max(outputs, dim=1)

350 predict = predict.detach().cpu()

351 labels = labels.detach().cpu()

352 #print(outputs)

217



353 #print(predict)

354 #print(labels)

355 correct += (labels == predict).sum().item()

356 total += labels.size(0)

357 if (batch_idx + 1) % 62 == 0:

358 accuracy_list.append(100 * (correct / total))

359

360 print(’correct/total:%d/%d, Test Accuracy:%.2f%%’ % (correct, total

, 100 * (correct / total)))

361

362

363 if __name__ == ’__main__’:

364 loss_list = []

365 accuracy_list = []

366 accuracy_list1 = []

367 for epoch in range(10):

368 print(’epoch: ’, epoch)

369 model.train()

370 train(epoch)

371 model.eval()

372 test()

373

374 y1 = accuracy_list

375 y2 = loss_list

376 y3 = accuracy_list1

377 #print(’list: ’, y3)

378

379 plt.subplot(3, 1, 1)

380 plt.plot(y1, ’o-’)

381 plt.title(’test’)

382 plt.ylabel(’Test accuracy’)

383 plt.subplot(3, 1, 2)

384 plt.plot(y2, ’.-’)

385 plt.xlabel(’Train loss vs. epochs’)

386 plt.ylabel(’Train loss’)

387 plt.subplot(3, 1, 3)

388 plt.plot(y3, ’.-’)

218 Implementation codes - Chapter 4



389 plt.xlabel(’Train acc vs. epochs’)

390 plt.ylabel(’Train acc’)

391 plt.show()

392

393 # Attention map plot

394

395 torch.save(model.state_dict(), ’/content/gdrive/MyDrive/Colab Notebooks

/Saved_models/Hydraulic_Task1_1.pth’)

Listing C.1: Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks

219





D
Implementation codes - Chapter 5

1 from google.colab import drive

2 drive.mount(’/content/gdrive’)

3

4 import numpy as np

5 import torch

6 import torch.nn as nn

7 import math

8 import time

9 import torch.nn.functional as F

10

11 from numpy import *

12 import matplotlib.pyplot as plt

13 import os

14 import pandas as pd

15 from torch.utils.data import Dataset

16 from torch.utils.data import DataLoader

17

18 torch.manual_seed(0)

19

20 use_gpu = torch.cuda.is_available()

21 print(use_gpu)

221



22 print(torch.cuda.device_count())

23 torch.cuda.current_device()

24 device = torch.device(’cuda’ if torch.cuda.is_available else ’cpu’)

25 print(device)

26

27 class Hydraulic_data(Dataset):

28 def __init__(self):

29 self.y = torch.zeros(2204).type(torch.long).to(device)

30 self.x = torch.zeros(2204, 728, 60).to(device)

31

32 EPS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/EPS1.txt’

33 PS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS1.txt’

34 PS2_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS2.txt’

35 PS3_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS3.txt’

36 PS4_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS4.txt’

37 PS5_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS5.txt’

38 PS6_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/PS6.txt’

39

40 FS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/FS1.txt’

41 FS2_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/FS2.txt’

42

43 CE_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/CE.txt’

44 CP_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/CP.txt’

45 SE_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/SE.txt’

46 TS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

222 Implementation codes - Chapter 5



Monitoring of Hydraulic Systems/TS1.txt’

47 TS2_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS2.txt’

48 TS3_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS3.txt’

49 TS4_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/TS4.txt’

50 VS1_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/VS1.txt’

51

52 Label_path = ’/content/gdrive/MyDrive/Colab Notebooks/Data/Condition

Monitoring of Hydraulic Systems/profile.txt’

53

54 EPS1 = pd.read_csv(EPS1_path, sep=’\ ’)

55

56 PS1 = pd.read_csv(PS1_path, sep=’\ ’)

57 PS2 = pd.read_csv(PS2_path, sep=’\ ’)

58 PS3 = pd.read_csv(PS3_path, sep=’\ ’)

59 PS4 = pd.read_csv(PS4_path, sep=’\ ’)

60 PS5 = pd.read_csv(PS5_path, sep=’\ ’)

61 PS6 = pd.read_csv(PS6_path, sep=’\ ’)

62

63 FS1 = pd.read_csv(FS1_path, sep=’\ ’)

64 FS2 = pd.read_csv(FS2_path, sep=’\ ’)

65

66 CE = pd.read_csv(CE_path, sep=’\ ’)

67 CP = pd.read_csv(CP_path, sep=’\ ’)

68 SE = pd.read_csv(SE_path, sep=’\ ’)

69 TS1 = pd.read_csv(TS1_path, sep=’\ ’)

70 TS2 = pd.read_csv(TS2_path, sep=’\ ’)

71 TS3 = pd.read_csv(TS3_path, sep=’\ ’)

72 TS4 = pd.read_csv(TS4_path, sep=’\ ’)

73 VS1 = pd.read_csv(VS1_path, sep=’\ ’)

74

75 Label = pd.read_csv(Label_path, sep=’\t’)

76 Label = Label.replace([3, 20, 100], [0, 1, 2])

77

223



78 for i in range(2204):

79 #print(torch.tensor(EPS1.iloc[[i]].values).shape)

80 self.x[i][0:100, :] = torch.tensor(EPS1.iloc[[i]].values.reshape(100,

60))

81 self.x[i][100:200, :] = torch.tensor(PS1.iloc[[i]].values.reshape

(100, 60))

82 self.x[i][200:300, :] = torch.tensor(PS2.iloc[[i]].values.reshape

(100, 60))

83 self.x[i][300:400, :] = torch.tensor(PS3.iloc[[i]].values.reshape

(100, 60))

84 self.x[i][400:500, :] = torch.tensor(PS4.iloc[[i]].values.reshape

(100, 60))

85 self.x[i][500:600, :] = torch.tensor(PS5.iloc[[i]].values.reshape

(100, 60))

86 self.x[i][600:700, :] = torch.tensor(PS6.iloc[[i]].values.reshape

(100, 60))

87

88 self.x[i][700:710, :] = torch.tensor(FS1.iloc[[i]].values.reshape(10,

60))

89 self.x[i][710:720, :] = torch.tensor(FS2.iloc[[i]].values.reshape(10,

60))

90

91 self.x[i][720, :] = torch.tensor(CE.iloc[[i]].values)

92 self.x[i][721, :] = torch.tensor(CP.iloc[[i]].values)

93 self.x[i][722, :] = torch.tensor(SE.iloc[[i]].values)

94 self.x[i][723, :] = torch.tensor(TS1.iloc[[i]].values)

95 self.x[i][724, :] = torch.tensor(TS2.iloc[[i]].values)

96 self.x[i][725, :] = torch.tensor(TS3.iloc[[i]].values)

97 self.x[i][726, :] = torch.tensor(TS4.iloc[[i]].values)

98 self.x[i][727, :] = torch.tensor(VS1.iloc[[i]].values)

99

100 self.y[i] = torch.tensor(Label.iloc[i,0])

101 self.len = self.x.shape[0]

102

103 # Getter

104 def __getitem__(self, index):

105 return self.x[index], self.y[index]

224 Implementation codes - Chapter 5



106

107 # Get length

108 def __len__(self):

109 return self.len

110

111

112 dataset = Hydraulic_data()

113

114

115 train_size = 1704

116 test_size = 2204 - train_size

117 train_dataset, test_dataset = torch.utils.data.random_split(dataset, [

train_size, test_size], generator=torch.Generator().manual_seed(12))

118

119

120 # When the correlated channels have been merged, it can return a new tensor

with top_k channels being removed

121 def index_delete(tensor, index):

122 mask = torch.ones(tensor.numel(), dtype=torch.bool)

123 mask[index] = False

124 return tensor[mask]

125

126 class CrossCorrelation(nn.Module):

127 """

128 CrossCorrelation Mechanism with the following two phases:

129 (1) channel-based (sensor wise) dependencies discovery

130 (2) aggregation of highly correlated channel (sensor wise)

131 This block can replace the self-attention family mechanism seamlessly.

132 This block can shrunk the input data space by nonelinear dependencis

discorvery with O(nlogn) computation complexity

133 """

134 def __init__(self, num_topk, d_model, num_heads, compression_scale=0.7,

attention_dropout=0.1, output_attention=True):

135 super(CrossCorrelation, self).__init__()

136 self.compression_scale = compression_scale

137 self.output_attention = output_attention

138 self.dropout = nn.Dropout(attention_dropout)

225



139 self.top_k = num_topk

140

141 self.crosscorr_dim = d_model // num_heads

142

143 self.norm = nn.LayerNorm(self.crosscorr_dim, elementwise_affine=False

)

144

145 def correlation_removal_training(self, values, corr):

146 """

147 Speed up version of Crosscorrelation (a batch-normalisation style

design: corr will be calculated based on all the samples inside one

batch).

148 This is for training phase.

149 """

150 head = values.shape[1]

151 channel = values.shape[2]

152 length = values.shape[3]

153

154 # Find top k most corelated channels

155 top_k = self.top_k

156

157 # Use absolute value to evaluate the corr (B, H, C, L)

158 avg_corr = torch.mean(torch.mean(torch.abs_(corr), dim=1), dim=0) #

Mean of Batch and attention heads (C, L)

159 max_corr, time_delay_index = torch.max(avg_corr, dim=-1) # max(R(t+n)

for n belong to (0,L)) for all channel (C)

160 max_corr = max_corr/(length*(channel-1)) # Pearson correlation

coefficient can be estimated by 1/n * sum(y1(t)*y2(t+n)) n belong to (0,

t)

161 # as corr is calculated between y and y1+y2+...+

yn(channel), the coeff should be devided by num_channel

162 # hence, max_corr belong to (0,1)

163

164 # find the most correlated cluster

165 weights, index = torch.topk(max_corr, top_k, dim=-1) # channel index

166

167 # update corr

226 Implementation codes - Chapter 5



168 tmp_corr = torch.softmax((1-weights), dim=-1)

169

170 # cluster merge with time delay at max corr

171 time_delay = time_delay_index.index_select(-1, index)

172 tmp = torch.mul(values.index_select(-2, index), tmp_corr.reshape(

top_k,1))

173

174 for i in range(top_k): # Align the most relevant time_delay

175 tmp[:,:,i,:] = torch.roll(tmp[:,:,i,:], int(time_delay[i]), -1)

176

177 tmp_sum = torch.sum(tmp, dim=-2) # (B,H,L) unsq --> (B,H,C,L)

178 merged_channel = tmp_sum.unsqueeze(2)

179

180 # obtain the index of the rest channels

181 new_index = index_delete(torch.arange(channel), index.to(device))

182 tmp_values = values.index_select(-2, new_index.to(device))

183

184 new_values = torch.cat((merged_channel, tmp_values), dim=-2)

185

186 return new_values, index.to(device), new_index.to(device)

187

188

189 def forward(self, queries, keys, values):

190 _,C,_,_ = queries.shape # B,C,H,L

191

192 # Channel based dependencies

193 queries = self.norm(queries.permute(0,2,1,3).contiguous())

194 queries = torch.sum(queries, dim=-2).unsqueeze(-2).repeat(1,1,C,1) -

queries

195 keys = self.norm(keys.permute(0,2,1,3).contiguous())

196

197 q_fft = torch.fft.rfft(queries, dim=-1)

198 k_fft = torch.fft.rfft(keys, dim=-1)

199 res = q_fft * torch.conj(k_fft)

200 corr = torch.fft.irfft(res, dim=-1)

201

202 # Channel agg

227



203 V, index, new_index = self.correlation_removal_training(values.

permute(0,2,1,3).contiguous(), corr)

204

205 return V.permute(0,2,1,3).contiguous(), index, new_index

206

207

208 class CrossCorrelation_layer(nn.Module):

209 def __init__(self, correlation, d_model, num_heads):

210 super(CrossCorrelation_layer, self).__init__()

211

212 d_keys = d_model // num_heads

213 d_values = d_model // num_heads

214

215 self.correlation = correlation

216 self.query_projection = nn.Linear(d_model, d_keys * num_heads)

217 self.key_projection = nn.Linear(d_model, d_keys * num_heads)

218 self.value_projection = nn.Linear(d_model, d_keys * num_heads)

219 self.out_projection = nn.Linear(d_keys * num_heads, d_model)

220 self.num_heads = num_heads

221 self.norm = nn.LayerNorm(d_values * num_heads)

222

223 def forward(self, queries, keys, values):

224 B, C, L = queries.shape

225 H = self.num_heads

226

227 values_res = values

228 queries = self.query_projection(queries).view(B, C, H, -1)

229 keys = self.key_projection(keys).view(B, C, H, -1)

230 values = self.value_projection(values).view(B, C, H, -1)

231

232 out, index, new_index = self.correlation(

233 queries,

234 keys,

235 values

236 )

237

238 out = out.view(B, -1, L)

228 Implementation codes - Chapter 5



239 out = self.out_projection(out)

240 res = torch.cat((torch.zeros(B,1,L).to(device), values_res.index_select

(-2, new_index)), dim=-2)

241 out = self.norm(out + res)

242

243 return out

244

245

246

247 class PositionwiseFeedForward(nn.Module):

248 ’’’

249 2 feed forward layer module

250 ’’’

251

252 def __init__(self, d_in, d_hid, dropout=0.05):

253 super().__init__()

254 self.w_1 = nn.Linear(d_in, d_hid)

255 self.w_2 = nn.Linear(d_hid, d_in)

256 self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)

257 self.dropout = nn.Dropout(dropout)

258

259 def forward(self, x):

260

261 residual = x

262

263 x = self.w_2(F.relu(self.w_1(x)))

264 x = self.dropout(x)

265 x += residual

266

267 x = self.layer_norm(x)

268

269 return x

270

271

272 class CrossCorrelationBlock(nn.Module):

273 def __init__(self, num_topk, d_model, num_heads, attention_dropout=0.1):

274 super(CrossCorrelationBlock, self).__init__()

229



275 self.num_topk = num_topk

276 self.d_model = d_model

277 self.num_heads = num_heads

278 self.attention_dropout = attention_dropout

279

280 self.cross_correlation = CrossCorrelation(

281 num_topk=self.num_topk,

282 d_model=self.d_model,

283 num_heads=self.num_heads

284 )

285

286 # CrossCorralation layer

287 self.cross_corr_layer = CrossCorrelation_layer(self.cross_correlation,

d_model=self.d_model, num_heads=self.num_heads)

288 self.feedforward = PositionwiseFeedForward(d_in=self.d_model, d_hid=4*

self.d_model)

289

290 def forward(self, x):

291 x = self.cross_corr_layer(x,x,x)

292 x = self.feedforward(x)

293 return x

294

295

296 class Attention(nn.Module):

297 def __init__(self, d_model, num_heads, qkv_bias=True, qk_scale=None,

attn_drop=0., proj_drop=0., position_bias=True):

298 super().__init__()

299 self.d_model = d_model

300 self.num_heads = num_heads

301 head_dim = d_model // num_heads

302 self.scale = qk_scale or head_dim ** -0.5

303 self.position_bias = position_bias

304

305 self.qkv = nn.Linear(d_model, d_model *3, bias = qkv_bias)

306 self.attn_drop = nn.Dropout(attn_drop)

307 self.proj = nn.Linear(d_model, d_model)

308 self.proj_drop = nn.Dropout(proj_drop)

230 Implementation codes - Chapter 5



309

310 self.softmax = nn.Softmax(dim=-1)

311 self.norm = nn.LayerNorm(self.d_model)

312 self.norm1 = nn.LayerNorm(self.d_model)

313

314 self.mlp = PositionwiseFeedForward(d_in=self.d_model, d_hid=self.

d_model * 4)

315

316 def forward(self, x, mask=None):

317 B_, N, C = x.shape

318 qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads

).permute(2, 0, 3, 1, 4)

319 q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use

tensor as tuple)

320 q = q * self.scale

321 attn = (q @ k.transpose(-2, -1))

322 attn = self.softmax(attn)

323

324

325 #print(attn.shape)

326 res = x

327 x = (attn @ v).transpose(1, 2).reshape(B_, N, C)

328 x = self.proj(x)

329 x = self.proj_drop(x)

330 x = self.norm(x + res)

331

332 res_mlp = x

333 x = self.mlp(x)

334 x = self.norm1(x + res_mlp)

335 return x

336

337

338 class Sensorformer_FFT(nn.Module):

339 def __init__(self, decorr_depth, attn_depth, num_class, d_model,

num_heads, num_heads_attn, num_topk, orth_gain, attention_dropout=0.1):

340 super().__init__()

341

231



342 self.d_model = d_model

343 self.num_heads = num_heads

344 self.num_heads_attn = num_heads_attn

345 self.num_topk = num_topk

346 self.decorr_depth = decorr_depth

347 self.attn_depth = attn_depth

348 self.num_class = num_class

349 self.cls_token = torch.randn(1,d_model).to(device)

350

351 self.decorr = nn.ModuleList()

352

353 for i in range(self.decorr_depth):

354 self.decorr.append(CrossCorrelationBlock(num_topk=self.num_topk,

d_model=self.d_model, num_heads=self.num_heads))

355

356 self.attn = nn.ModuleList()

357

358 for i in range(self.attn_depth):

359 self.attn.append(Attention(d_model=self.d_model, num_heads=self.

num_heads_attn))

360

361 self.classifier = nn.Linear(self.d_model, self.num_class)

362

363 # initialisation

364 for p in self.parameters():

365 if p.dim() > 1:

366 nn.init.xavier_uniform_(p)

367

368 if orth_gain is not None:

369 torch.nn.init.orthogonal_(self.classifier.weight, gain = orth_gain)

370 self.classifier.bias.data.zero_()

371

372

373 def forward(self, x):

374 B, _, _ = x.shape

375 for i in range(self.decorr_depth):

376 x = self.decorr[i](x)

232 Implementation codes - Chapter 5



377

378 #print(x.shape)

379

380 x = torch.cat((self.cls_token.unsqueeze(0).repeat(B,1,1), x), dim=-2)

381 for i in range(self.attn_depth):

382 x = self.attn[i](x)

383

384 x = x[:, 0, :]

385 x = self.classifier(x)

386

387 return x

388

389

390 model = Sensorformer_FFT(

391 decorr_depth=4,

392 attn_depth=8,

393 num_class=3,

394 d_model=60,

395 num_heads=2,

396 num_heads_attn=6,

397 num_topk=101,

398 orth_gain=1.41)

399 model.to(device)

400 def get_p(net):

401 t = sum(p.numel() for p in net.parameters())

402 trainable = sum(p.numel() for p in net.parameters() if p.requires_grad)

403 return t, trainable

404 print(get_p(model))

405 # for p in model.parameters():

406 # p.register_hook(lambda grad: torch.clamp(grad, -clip_value, clip_value)

)

407

408

409

410 batch_size = 30

411 train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,

shuffle=True, drop_last=True)

233



412 test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,

shuffle=True, drop_last=True)

413 criterion = torch.nn.CrossEntropyLoss()

414 optimizer = torch.optim.Adam(params=model.parameters(), lr=0.0001)

415

416 def train(epoch):

417

418 correct1 = 0

419 total1 = 0

420 running_loss = 0

421

422 epoch_running_loss = 0

423 epoch_correct1 = 0

424 epoch_total1 = 0

425

426 for batch_idx, data in enumerate(train_loader):

427 images, labels = data

428 optimizer.zero_grad()

429 outputs = model(images)

430 outputs = outputs.squeeze(1)

431 loss = criterion(outputs, labels)

432 loss.backward()

433 #torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)

434 optimizer.step()

435

436 running_loss += loss.detach().cpu().item()

437 epoch_running_loss += loss.detach().cpu().item()

438

439 idx_control = (train_size // batch_size) // 4

440

441 if (batch_idx + 1) % idx_control == 0:

442 train_loss_list.append(running_loss / batch_size / idx_control)

443 #print(’[%d, %d], training loss is %.3f’ % (epoch, batch_idx,

running_loss / batch_size / idx_control))

444 running_loss = 0

445

446 if (batch_idx + 1) % (train_size // batch_size) == 0:

234 Implementation codes - Chapter 5



447 epoch_train_loss_list.append(epoch_running_loss / (train_size //

batch_size * batch_size))

448

449

450 _, predict1 = torch.max(outputs, dim=1)

451 predict1 = predict1.detach().cpu()

452 labels = labels.detach().cpu()

453 correct1 += (labels == predict1).sum().item()

454 total1 += labels.size(0)

455

456 epoch_correct1 += (labels == predict1).sum().item()

457 epoch_total1 += labels.size(0)

458

459 if (batch_idx + 1) % idx_control == 0:

460 train_accuracy_list.append(100 * (correct1 / total1))

461 #print(’Train acc: ’, 100 * (correct1 / total1))

462 correct1 = 0

463 total1 = 0

464

465 if (batch_idx + 1) % (train_size // batch_size) == 0:

466 epoch_train_accuracy_list.append(100 * (epoch_correct1 /

epoch_total1))

467 print(’Epoch train acc: ’, 100 * (epoch_correct1 / epoch_total1))

468

469

470

471 def test():

472 correct = 0

473 total = 0

474 test_loss = 0

475

476 epoch_correct = 0

477 epoch_total = 0

478 epoch_test_loss = 0

479

480 with torch.no_grad():

481 for batch_idx, data in enumerate(test_loader):

235



482 images, labels = data

483 outputs = model(images)

484 outputs = outputs.squeeze(1)

485 _, predict = torch.max(outputs, dim=1)

486 predict = predict.detach().cpu()

487 labels = labels.detach().cpu()

488 correct += (labels == predict).sum().item()

489 total += labels.size(0)

490

491 epoch_correct += (labels == predict).sum().item()

492 epoch_total += labels.size(0)

493

494 idx_control = (test_size // batch_size) // 4

495

496 if (batch_idx + 1) % idx_control == 0:

497 test_accuracy_list.append(100 * (correct / total))

498 #print(’correct/total:%d/%d, Test Accuracy:%.2f%%’ % (correct

, total, 100 * (correct / total)))

499 correct = 0

500 total = 0

501

502 if (batch_idx + 1) % (test_size // batch_size) == 0:

503 epoch_test_accuracy_list.append(100 * (epoch_correct /

epoch_total))

504 print(’Epoch test acc: ’, 100 * (epoch_correct / epoch_total)

)

505

506

507 outputs = outputs.detach().cpu()

508 loss = criterion(outputs, labels)

509

510 test_loss += loss.detach().cpu().item()

511 epoch_test_loss += loss.detach().cpu().item()

512

513 if (batch_idx + 1) % idx_control == 0:

514 test_loss_list.append(test_loss / batch_size / idx_control)

515 #print(’[%d, %d], test loss is %.3f’ % (epoch, batch_idx,

236 Implementation codes - Chapter 5



test_loss / batch_size / idx_control))

516 test_loss = 0

517

518 if (batch_idx + 1) % (test_size // batch_size) == 0:

519 epoch_test_loss_list.append(epoch_test_loss / batch_size /

idx_control)

520

521

522 if __name__ == ’__main__’:

523 train_loss_list = []

524 test_accuracy_list = []

525 train_accuracy_list = []

526 test_loss_list = []

527 train_epoch = 20

528 train_time = []

529

530 epoch_train_loss_list = []

531 epoch_train_accuracy_list = []

532 epoch_test_loss_list = []

533 epoch_test_accuracy_list = []

534

535

536

537 for epoch in range(train_epoch):

538 print(’epoch: ’, epoch)

539 model.train()

540

541 start_time = time.time()

542 train(epoch)

543 end_time = time.time()

544 epoch_time = (end_time - start_time)

545 train_time.append(epoch_time)

546

547

548 model.eval()

549 test()

550

237



551

552

553 print(’trian time per epoch: ’, mean(train_time))

554

555

556 y1 = test_accuracy_list

557 y2 = train_loss_list

558 y3 = train_accuracy_list

559 y4 = test_loss_list

560

561 y11 = epoch_test_accuracy_list

562 y22 = epoch_train_loss_list

563 y33 = epoch_train_accuracy_list

564 y44 = epoch_test_loss_list

565

566 plt.subplot(4, 1, 1)

567 plt.plot(y1, ’o-’)

568 plt.xlabel(’Test acc vs. epochs’)

569 plt.ylabel(’Test accuracy’)

570

571 plt.subplot(4, 1, 2)

572 plt.plot(y3, ’.-’)

573 plt.xlabel(’Train acc vs. epochs’)

574 plt.ylabel(’Train acc’)

575

576 plt.subplot(4, 1, 3)

577 plt.plot(y4, ’.-’)

578 plt.xlabel(’Test loss vs. epochs’)

579 plt.ylabel(’Test loss’)

580

581 plt.subplot(4, 1, 4)

582 plt.plot(y2, ’o-’)

583 plt.xlabel(’Train loss vs. epochs’)

584 plt.ylabel(’Train loss’)

585

586 plt.show()

587

238 Implementation codes - Chapter 5



588

589

590

591 plt.subplot(4, 1, 1)

592 plt.plot(y11, ’o-’)

593 plt.xlabel(’Test acc vs. epochs’)

594 plt.ylabel(’Test accuracy’)

595

596 plt.subplot(4, 1, 2)

597 plt.plot(y33, ’.-’)

598 plt.xlabel(’Train acc vs. epochs’)

599 plt.ylabel(’Train acc’)

600

601 plt.subplot(4, 1, 3)

602 plt.plot(y44, ’.-’)

603 plt.xlabel(’Test loss vs. epochs’)

604 plt.ylabel(’Test loss’)

605

606 plt.subplot(4, 1, 4)

607 plt.plot(y22, ’o-’)

608 plt.xlabel(’Train loss vs. epochs’)

609 plt.ylabel(’Train loss’)

610

611 plt.show()

Listing D.1: Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion

239


	Cover
	Quote
	Acknowledgement
	Declaration
	Abstract
	Introduction
	Motivation: The Importance of Industrial Process Monitoring
	The Role of Sensor Fusion in Process Monitoring
	Research Challenges of Sensor Fusion in Process Monitoring
	Research Scope of This Dissertation
	Aims and Objectives
	Research Methodology
	Thesis Outline and Research Contributions
	Publications

	Literature Review
	Overview of Industrial Process Monitoring
	Model-based Process Monitoring
	Knowledge-based Process Monitoring
	Data-based Process Monitoring
	Sensor Anomaly Detection

	Definition and Architectures of Sensor Fusion
	Definition of Sensor Fusion
	Architecture of Sensor Fusion

	Conventional Multi-Sensor Fusion Technologies for Industrial Process Monitoring
	Development of Sensor Technologies for Industrial Process Monitoring and Faults Inspection
	Commonly Used Sensor Fusion Algorithms for Industrial Process Monitoring

	Deep Learning Based Multi-Sensor Fusion Technologies
	Artificial Neural Network (ANN)
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Transformer and Attention Mechanism
	Deep Learning and its challenges
	Challenges of Deep Learning for Industrial Process Monitoring

	Research Gaps
	Summary

	Sensor Anomaly Detection Using Dual Channel Attention Mechanism in Automated Vehicles
	Introduction
	Problem Statement
	Methodology and Architecture
	Overall Architecture of Dual-channel Attention CNN
	CNN Block
	Dual-channel Attention Mechanism (DAM)
	Class Token Concatenation
	Algorithm

	Experiments and Results
	Hyper Parameters and Training Process
	Results Evaluation Method
	Single Anomaly Detection
	Mixed Anomaly Detection
	ADDITIONAL EVALUATIONS

	Ablation Experiment
	Discussion
	Summary

	Deep Transfer Learning with Self-attention for Industry Sensor Fusion Tasks
	Introduction
	Problem Statement
	Methodology and Architecture
	Similarities between Natural Language Processing and Sensor Fusion
	Model Architecture and Computation Process

	Experiments and Results
	Experiment 1: Condition monitoring of a hydraulic system
	Experiment 2: Bearing dataset
	Experiment 3: Gearbox dataset

	Discussion
	Summary

	Sensorformer: A Memory-efficient Transformer for Industrial Sensor Fusion
	Introduction
	Problem Statement
	Methodology and Architecture
	Overall architecture
	Model input
	Decorrelation layer
	Decorrelation block

	Experiments and Results
	Experiment dataset
	Experiment environment and Sensorformer parameters
	Experiment Results

	Discussion
	Summary

	Discussion and Conclusions
	Research Contributions
	Research Limitations
	Future Work
	Conclusions

	References
	Discussion on Application and Implementation in Practice
	Integration into Existing Systems
	Maintenance and Updating

	Implementation codes - Chapter 3
	Sensor Anomaly Injection
	DA-CNN model Implementation and Training Process

	Implementation codes - Chapter 4
	Implementation codes - Chapter 5

